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Preface

The papers in this volume were presented at the 20th Annual International Sym-
posium on Algorithms and Computation, held December 16–18, 2009, in Hawaii,
USA. In response to the Call-for-Papers, 279 papers were submitted. Each paper
received at least three reviews by either Program Committee members or experts
selected by Program Committee members. In all, 120 papers were selected based
on the review reports and are included in this volume. We wish to thank all who
submitted papers for consideration and all Program Committee members and
reviewers for their excellent and hard work. To our invited speakers, we wish to
thank you for sharing your expertise. Finally, we wish to thank our colleagues
who contributed to the success of the symposium and the sponsors for their
assistance and support.

December 2009 Yingfei Dong
Ding-Zhu Du
Oscar Ibarra
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Abstract. In this talk I will describe some recent results concerning the
connection between the bubblesort sorting algorithm and certain integer
sequences used to analyze various juggling patterns. The analysis leads
to new results on the joint distribution of the descent and maximum
drop statistics of a permutation, as well as a new class of identities for
the classical Eulerian numbers.
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Abstract. To identify flexible/rigid region in a protein is one of the
central issues in the field of molecular biology as this could provide insight
into its function and a means to predict possible changes of structural
flexibility by the environmental factors such as temperature and pH.
Several methods were developed for this purpose.

One of standard methods is to model the protein as a geometric graph
embedded in R3 by regarding an atom as a vertex and a bond between
atoms as an edge with a fixed length. It analyzes the protein’s rigid-
ity by using the theory of structural rigidity. Algorithms such as 3D
pebble game were developed for this. Computer software like FIRST
(Floppy Inclusions and Rigid Substructure Topography) uses this al-
gorithm. These software are used widely and successfully now. Algo-
rithms used by FIRST and other programs rely their correctness upon
the theory of structural rigidity. From the mathematical point of view,
however, the correctness proof is incomplete because it relies on the so
called ”Molecular Conjecture” which has been a long standing open prob-
lem over twenty-five years in the field of combinatorial rigidity. In the
past years, however, in spite of the absence of the rigorous proof of the
Molecular Conjecture, empirical data have been accumulated that sup-
port the conjecture. Recently, we were able to settle the Molecular Con-
jecture affirmatively in R3 and in higher dimensions and provide the
theoretical validity of the algorithms behind such software as FIRST,
FRODA, etc.

A d-dimensional body-and-hinge framework is a structure consisting
of rigid bodies connected by hinges in d-dimensional space. The generic
infinitesimal rigidity of a body-and-hinge framework has been charac-
terized in terms of the underlying multigraph independently by Tay and
Whiteley as follows: A multigraph G can be realized as an infinitesimally
rigid body-and-hinge framework by mapping each vertex to a body and
each edge to a hinge if and only if

((
d+1
2

)
− 1

)
G contains

(
d+1
2

)
edge-

disjoint spanning trees, where
((

d+1
2

)
− 1

)
G is the graph obtained from

G by replacing each edge by
((

d+1
2

)
− 1

)
parallel edges. In 1984 they

jointly posed a question about whether their combinatorial character-
ization can be further applied to a nongeneric case. Specifically, they
conjectured that G can be realized as an infinitesimally rigid bofy-and-
hinge framework if and only if G can be realized as that with the ad-
ditional “hinge-coplanar” property, i.e., all the hinges incident to each

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 2–3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Proof of the Molecular Conjecture 3

body are contained in a common hyperplane. This is the definition of
“the Molecular Conjecture”.

In this talk, we will first introduce main topics in the field of combina-
torial rigidity and then give a brief overview of the proof of the moleclar
conjecture.

This is a joint work with Shin-ichi Tanigawa.
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Abstract. We handle in this paper three dominating clique problems,
namely, the decision problem itself when one asks if there exists a domi-
nating clique in a graph G and two optimization versions where one asks
for a maximum- and a minimum-size dominating clique, if any. For the
three problems we propose optimal algorithms with provably worst-case
upper bounds improving existing ones by (D. Kratsch and M. Liedloff,
An exact algorithm for the minimum dominating clique problem, Theo-
retical Computer Science 385(1-3), pp. 226–240, 2007). We then settle all
the three problems in sparse and dense graphs also providing improved
upper running time bounds.

1 Introduction

Given a graph G(V, E), a dominating clique is a clique which is also a dominat-
ing set for G. Determining whether there exists a dominating clique or not is
known to be NP-hard ([1]) and so are the two related problems min dominat-

ing clique and max dominating clique, where we are asked for a dominating
clique of minimum and of maximum size, respectively. These problems can of
course be solved by enumerating all the subsets of V . So, an interesting prob-
lem is to devise algorithms able to optimally solve the three problems existing

dominating clique, min dominating clique and max dominating clique

within time O(2c|V |p(|V |)), where c is a constant lower than 1 and p some poly-
nomial function. Notice that, compared to the slightest improvement of c, p
is non relevant. So, from now on, we use notation O∗(2c|V |) in order to omit
polynomial factors.

Regarding existing dominating clique, trivial O∗(2|V |) bound has been
initially broken by [2] down to O∗(3|V |/3) = O∗(1.443|V |) using a result by [3],
namely that the number of maximal (for inclusion) independent sets in a graph
is at most 3|V |/3. Recently, [4] have proposed a branching algorithm that, ac-
cording to a measure and conquer analysis [5], solves min dominating clique

with polynomial space and running time O∗(1.3387|V |), and another one that
requires O∗(1.3234|V |) time and space. Naturally, these algorithms also solve
existing dominating clique.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 4–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we first devise several branching algorithms for existing dom-

inating clique (Section 2), max dominating clique (Section 3) and min

dominating clique (Section 4), achieving improved running times respect to
the existing results mentioned above. Our algorithms work in polynomial space,
but also provide interesting bounds using memorization technique to the case
where an exponential memory space is allowed. The following table summarizes
our results in Sections 2, 3 and 4.

Former result Our result
existing dominating clique O∗(1.3387|V |) O∗(1.2740|V |)
- exponential space allowed O∗(1.3234|V |) O∗(1.2556|V |)
max dominating clique O∗(1.4423|V |) O∗(1.3196|V |)
- exponential space allowed O∗(1.2937|V |)
min dominating clique O∗(1.3387|V |) O∗(1.3248|V |)
- exponential space allowed O∗(1.3234|V |) O∗(1.298|V |)

In Section 5, we restrict ourselves to sparse and dense graphs, and produce
parameterized algorithms depending on minimum, maximum and average de-
gree. For instance, we show in Section 5 that if n− δ = o(n), or if the density of
the graph D(G) = 1 − o(1), min dominating clique can be solved in subex-
ponential time and max dominating clique within roughly the same running
time as max clique. On the other hand, if D(G) = o(1) both min and max

dominating clique can be also solved in subexponential time.
It is easy to see that no polynomial time approximation algorithm can exist for

min dominating clique and max dominating clique, since any such algo-
rithm should first solve existing dominating clique that is NP-complete. For
this reason, in Section 6, we present some approximation results for min domi-

nating clique and max dominating clique by exponential time algorithms
that run faster than the corresponding exact algorithms for these problems. The
approximation ratio of an algorithm A for an NP-hard problem Π is defined
by the ratio between the value of an optimal solution for Π over the value of a
solution computed by A.

In what follows, given a graph G(V, E) and a vertex v ∈ V , the neigh-
borhood N(v) of v is the set of vertices that are adjacent to v and the set
N [v] = N(v) ∪ {v} is called the closed neighborhood of v. For the degree
of v, we use the notation d(v) = |N(v)|; the anti-degree of v is the quan-
tity d̄(v) = |V \ N [v]|. For any set H ⊂ V , we write NH(v) = N(v) ∩ H ,
dH(v) = |NH(v)| and d̄H(v) = |H \NH [v]|; G[H ] is the subgraph induced by H
in G. Finally, for v ∈ V , we set f(v) = 1 − |N(v)|/|V |. For simplicity, we set
n = |V | and m = |E|. For any function T , T (n) stands for the maximum run-
ning time the algorithm requires to compute T on a graph containing at most n
vertices.

Due to limits in paper’s length some of the results are given without proofs
that can be found in [6].
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2 Existing Dominating Clique

2.1 A Tight O∗(22n/5) Branching Algorithm

We use the same notations as in [4]: S is the set of vertices we have added to
the solution, D is the set of vertices we have discarded, A = ∩s∈SN(s)\D is the
set of vertices still available and F = V \ (

⋃
s∈S N(s)) is the set of free vertices,

i.e., the set of vertices that still remain to be dominated; T (S, D, A, F ) is a
boolean function that returns true if and only if there exists a dominating clique
in G contained in A and with no vertex from D. As pointed out in [4], for min

dominating clique, it is equivalent to solve existing dominating clique or
to determine if there exists v ∈ V such that T ({v}, ∅, N(v), V \ N [v]) = true.

We devise in this section, an improved algorithm, called EDC that computes
T ({v}, ∅, N(v), V \ N [v]) (for each vertex v) as follows:

1. if F = ∅, then T (S, D, A, F ) = true;
2. if ∃u ∈ F , such that dA(u) = 0, then T (S, D, A, F ) = false;
3. if ∃u ∈ A, such that dF (u) = 0, then T (S, D, A, F ) = T (S, D∪{u}, A\{u}, F )
4. otherwise, fix u ∈ A such that dA(u) is maximal and set T (S, D, A, F ) =∨

w∈A\NA(u) T (S ∪ {w}, D ∪ (A \ NA[w]) ∪ NF (w), NA(w), F \ NF (w)).

Rules 1, 2 and 3 are straightforward, so we only need to prove correctness of
the branching rule. If we add some vertex u to S, we must discard from A any
vertex that is not neighbor of u. On the other hand, assume that every vertex
in A \N(u) have been discarded. Then, any vertex still available is in NA(u), so
we can safely add u to S. Hence, in any case we take one vertex from A\NA(u),
leading to the recurrence of the branching rule. Notice that, because of this
insertion of u in the last case, the clique computed by Algorithm EDC may be
not a minimum dominating clique.

Proposition 1. Algorithm EDC decides whether there exists a dominating clique,
or not, with running time O∗(22n/5) = O∗(1.3196n). This bound is tight.

Proof. We simply count the number of vertices in the remaining graph having
n = |A ∪F | vertices. Fix δ = mina∈A{|A \NA(a)|} = |A \NA(u)|. By definition
of u we have: T (n) �

∑
w∈A\NA(u) T (|NA(w)| + |F | − dF (w)) � δ × T (|A| −

δ + |F | − 1) � δ × T (n − δ − 1). Then, a simple recursion shows that T (n) �
maxδ∈N{δn/(δ+1)} = 4n/5.

Tightness is shown in the following graph. Consider a collection Gp of p stars
of size 5 (1 center plus 4 outer vertices). Set A is the set of the outer vertices,
and set F is the set of the centers. Any outer vertex u is adjacent to any other
outer vertex in any other star; so, dA(v) = 4p−4. When the algorithm branches
on any of these outer vertices, it has to solve existing dominating clique on
four identical copies of Gp−1 and, in this case T (n) = Ω(4n/5). �	

2.2 Improvement of EDC

We now refine algorithm EDC in such a way that when branching on a vertex u
(of maximum degree dA(u)), instead of removing for each of the δ branches δ+1
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vertices, we remove in the worst case δ + 2 vertices in δ − 1 branches, and δ + 1
vertices only in one branch. To do this, we say that a vertex w is good if: (i) either
|A \NA(w)| � δ + 1, or (ii) w is adjacent to at least two vertices in F , or (iii) w
is adjacent to only one vertex v ∈ F and this vertex v has another neighbor w′

in N(w). Otherwise, we say that w is bad.
Suppose first that there exists a vertex u such that any vertex in A \ NA[u]

is good. We branch on u, as in EDC. For each w ∈ A \ NA[u], in the branch
we take w, we remove at least δ + 2 vertices. Indeed, in the two first cases this
is trivial. In the third one, if we take w we can safely discard w′ (and we also
remove δ + 2 vertices) since, otherwise, if we take w′ then w does not cover new
elements so w is useless (this case being handled in some other branch).

Assume now there exist at least two non adjacent bad vertices u and u′.
Suppose first that u is adjacent to v in F and u′ is adjacent to v′ 
= v. Let
u1, u2, . . . , uδ the vertices in A \ NA[u] (with uδ = u′). When branching on u1,
we consider the cases of taking u1 or not, u2 or not, . . . Then, in the branch
where all the other vertices in A \NA[u] but u′ = uδ have been discarded, v has
degree 1 and then we have to take u in the solution (without branching on u′).
In this way, we get δ − 1 branches where we remove δ + 1 vertices.

Suppose now v′ = v. Then, in the branch where all the other vertices in
A \ NA[u] but u′ have been discarded, d(v) = 2 (since u is bad); so, we have to
take either u or u′, but it is not interesting to take u′ (take u instead). So we
can keep u in the solution (without branching on u′). In this way, we get also
δ − 1 branches where we remove δ + 1 vertices.

In all, we get either T (n) � (δ − 1)T (n − δ − 2) + T (n − δ − 1), or T (n) �
(δ − 1)T (n − δ − 1). The worst case of these recurrence relations is T (n) �
3T (n− 6) + T (n − 5), leading to the following proposition.

Proposition 2. Algorithm EDC’ decides whether there exists a dominating cli-
que, or not, with running time O∗(20.35n) = O∗(1.2740n).

2.3 Memorization: Trading Space for Time

The principle of memorization, as it has been explained for example in [7], is
quite simple. Before running the algorithm on the main graph, we run it on every
induced subgraph of size at most αn and store the results in a table (note that,
in the algorithms, available vertices never become free (or vice-versa), hence the
number of subproblems of size αn to consider is

(
n

αn

)
). Now, we run the main

algorithm until the remaining graph has size αn or less; then a polynomial-time
query in the storage table allows us to conclude. Thus, the total running time
and space is O∗

(
max

{(
n

αn

)
, 1.2740(1−α)n

})
. This value is minimal for α verifying

1.27401−α = 1/(αα(1 − α)1−α), leading to T (n) = O∗(1.2556n).

3 Max Dominating Clique

The function T (S, D, A, F ) is now an integer function that returns the cardinality
of a maximum dominating clique in G contained in set A and with no vertex
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from set D, if any, and −∞ otherwise. Once again, solving max dominating

clique is equivalent to finding maxv∈V {T ({v}, ∅, N(v), V \ N [v])}. Note that
now we cannot discard as in Algorithm EDC any vertex that has degree 0 in F ,
because we could be led to a solution that is not a maximum one; however,
we claim that we can compute a solution with the same running time by the
following algorithm called MDC1 that works as follows:

1. if A = F = ∅, then T (S, D, A, F ) = |S|;
2. if ∃u ∈ F , such that dA(u) = 0, then T (S, D, A, F ) = −∞;
3. fix w ∈ A such that dA(w) is maximum, and dF (w) is maximum among

vertices of maximum dA. If there exists u ∈ A \ N [w], such that dF (u) = 0,
then T (S, D, A, F ) = maxu′∈A\(NA(w)∪{u}){T (S ∪ {u′}, D ∪ (A \ NA[u′]) ∪
NF (u′), NA(u′), F \ NF (u′))};
otherwise, T (S, D, A, F ) = maxu∈A\NA(w){T (S ∪ {u}, D ∪ (A \ NA[u]) ∪
NF (u), NA(u), F \ NF (u))}.

To prove correctness, just consider the following three facts: (i) if we add some
vertex to S, we must discard any vertices from A that are not its neighbors; (ii) if
every vertices in A \ N(w) have been discarded, then any vertex still available
is in NA(w), so we can safely add w to S; (iii) if every vertex in A \N(w) but u
has been discarded, then only one among u and w may be added; furthermore,
if dF (u) = 0, we can safely discard u and add w to S.

Proposition 3. Algorithm MDC computes a maximum-size dominating clique,
if any, with running time O∗(22n/5). This bound is tight. Using memorization,
Algorithm’s MDC runs in time and space O∗(1.2937n).

4 Min Dominating Clique

The function T (S, D, A, F ) is now an integer function that returns the cardinality
of a minimum dominating clique in G contained in set A and with no vertex
from set D, if any, and ∞ otherwise. Once again, solving min dominating

clique is equivalent to finding minv∈V {T ({v}, ∅, N(v), V \ N [v])}. We denote
in this section by dA(v) the degree of v within the set A of available vertices and
by d̄A(v) the anti-degree of v always within set A. The following remarks hold.

Remark 1. Each vertex j ∈ A is adjacent to at least one vertex i ∈ F , or else j
can be discarded as it cannot be part of the dominating clique. �	

Remark 2. There exists at least one vertex j ∈ A such that d̄A(j) � 1, or else
a pure set covering problem where the set F corresponds to the universe U of
elements and the set A corresponds to the collection S of the (nonempty) subsets
of U and the aim is to determine a minimum cardinality sub-collection S′ ⊆ S
which covers U . This set covering problem is known to be solvable to optimality
in O∗(1.2301|A|+|F |) time ([5]). But, as |A| + |F | � n this is not superior to
O∗(1.2301n) time. �	
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Remark 3. Each vertex i ∈ F is adjacent to at least three vertices j, k, l ∈ A, or
else a low exponential complexity immediately holds in the worst case. Indeed, if
i ∈ F is adjacent only to the vertex j ∈ A, then no branch occurs, j is included
in S dominating i which is removed from F ; alternatively, i ∈ F is adjacent
to vertices j, k ∈ A and either j or k must be included in S to dominate i.
Then: if dF (j) � 2, either j is included in S and at least 3 vertices are removed,
or j is discarded, k is included and i is covered, i.e., 3 vertices are removed.
If dF (k) = dF (k) = 1, d̄A(j) � 1 holds, or else k could be discarded without
branching. But then, in both cases at least three vertices are fixed leading to
T (n) � 2T (n− 3) corresponding to O∗(1.2599) time. �	

We claim that we can solve min dominating clique in time O∗(1.3248n) by
the following algorithm called MINDC1:

1. if A = F = ∅, then T (S, D, A, F ) = |S|;
2. else, if ∃i ∈ F , such that dA(i) = 0, then T (S, D, A, F ) = ∞;
3. else, if ∀j ∈ A d̄A(j) = 0, then solve the problem as a minimum set covering

problem according to Remark 2 with complexity not superior to O∗(1.2301n);
4. else, if ∃i ∈ F , such that 2 � dA(i) � 1, then branch on the vertices adjacent

to i according to Remark 3 with complexity not superior to O∗(1.2599n);
5. else, if ∀i ∈ F dA(i) � 3, then select j ∈ A such that d̄A(j) is maximum and

branch according to the following exhaustive cases
(a) d̄A(j) � 1 with vertex j ∈ A adjacent to only one vertex i ∈ F with

dA(i) = 3.
(b) d̄A(j) � 1 with vertex j ∈ A adjacent to only one vertex i ∈ F with

dA(i) � 4.
(c) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent

to exactly two vertices h, i ∈ F with dA(i) � dA(h) = 3.
(d) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent

to exactly two vertices h, i ∈ F with dA(i) � dA(h) = 4.
(e) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent

to exactly two vertices h, i ∈ F with dA(i) � dA(h) � 5.
(f) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent

to at least three vertices g, h, i ∈ F .
(g) d̄A(j) � 2 with vertex j ∈ A non adjacent to vertices k, m ∈ A and

adjacent to at least two vertices h, i ∈ F .

Proposition 4. Algorithm MINDC computes a minimum-size dominating clique,
if any, with running time O∗(1.3248n). Using memorization, it runs in time and
space O∗(1.2980n).

5 Dense and Sparse Graphs

5.1 Graphs of Fixed Maximal or Minimal Degree

Notice that if a graph has maximum degree Δ, all the maximal cliques can
be computed with running time O∗(3Δ/3) and all the cliques with running
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time O∗(2Δ). In particular, dominating clique problems are polynomial if Δ
is finite and subexponential if Δ = o(n).

In the case of high minimum degree δ, this does not remain true. Indeed, max

clique easily reduces to max dominating clique by adding to the graph in-
stance G a new vertex adjacent to any vertex in G, and max clique is well known
to be NP-hard even in graphs of minimum degree n− 4 (max independent set

being NP-hard in graphs of maximum degree 3,[1]). Then, even in graphs with
minimum degree δ � n − δ for some constant δ max dominating clique is not
polynomial (if P
= NP). However, there are some interesting results.

Let us begin with a preliminary remark: in a graph, for any v ∈ V , if there
exists some dominating clique K containing v, then there exists a dominating
clique K ′ ⊆ K with |K ′| � |V \N(v)|. Clique K ′ could be, for instance, obtained
by simply taking one neighbor in K for any vertex in V \ N(v).

Then, by definition, for any v ∈ V , nf(v) � n − δ. But thanks to the previ-
ous remark, if there exists a dominating clique, then there exists a dominating
clique of size at most nf(v). Thus, existing, and min dominating clique can
be computed with running time O∗

((
n

n−δ

))
. In particular, existing, and min

dominating clique are polynomial if n − δ is finite and subexponential if
n − δ = o(n).

We now exhibit Algorithm MDC2 for max dominating clique:

1. for every v ∈ V , form the collection S(v) of every subset of N [v] of size at
most nf(v) that is a dominating clique;

2. for every S ∈ S(v), compute a maximum clique in G[
⋂

s∈S N [s]];
3. return the maximum-size clique among those computed in Step 2.

MDC2 optimally solves for max dominating clique in any graph and has run-
ning time O∗

(
cn
(

n
n−δ

))
if the algorithm used to solve max clique has com-

plexity O∗(cn) (proofs omitted). In particular, max dominating clique can
be computed with the same exponential bound on running time as max clique

in graphs such that n− δ = o(n); this bound cannot be improved (thanks to the
reduction from max clique mentioned above).

Note that the best worst-case complexity bound for max clique is, to our
knowledge, the O∗(1.1889n) bound claimed by [8] in his unpublished technical
report, or the O∗(1.2210n) algorithm by [9], that is the best published result.

5.2 Graphs of Small Average Degree

More generally, the density of a graph can be defined as D(G) = 2m/(n(n−1)) =
d/(n− 1) where d is the average degree of the graph. It can be easily seen that,
if D(G) = o(1), the size of a maximum clique is o(n) and then we can enumerate
all cliques in subexponential time.

We now focus ourselves on the case where D(G) /∈ o(1) but is bounded above
by some constant λ ∈ [0, 1]. In this case, average degree is at most λ(n − 1),
hence:

m � λn(n − 1)
2

� λn2

2
(1)
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By enumeration of subsets of size at most
√

D(G)n, we trivially find if there is a
dominating clique (and return the minimal and the maximal one) with running
time O∗

((
n√
λn

))
. This is only interesting for rather small values of λ; for example,

if
√

λ = 1/20, running time is O∗(1.22n).
As far as existing dominating clique and max dominating clique are

concerned (not min dominating clique), we can greatly improve this result.
Notice that, for any dominating clique K we have the following inequality m �
|K|(|K| − 1)/2 +

∑
v∈K dV \K(v).

Assume first that there exists a vertex v ∈ K such that dV \K(v) < μn + 1/2,
for a given μ whose value will be fixed later. Then n(1− f(v)) < μn+1/2+ |K|.
In [10] it is established that in a graph of size n, the cliques of size k or less (where
n/k � 3) can be enumerated within time O∗((n/k)k). Thus, we can enumerate all

maximal cliques containing v with running time T (n) = O∗
((

μn+ 1
2+|K|
|K|

)|K|)
=

O∗
(
2|K| log2(1+μn/|K|)). Since this function is increasing with K and, according

to (1), |K| �
√

2m + 1 �
√

λn + 1, this leads to T (n) = O∗
(
2
√

λn log2(1+μ/
√

λ)
)
.

On the other hand, if for any v ∈ K, dV \K(v) � μn + 1/2, using also (1), we
get: m � |K|(|K|−1)

2 + |K|
(
μn + 1

2

)
= |K|2

2 + |K|μn =⇒ |K| � (
√

λ + μ2 − μ)n.
In this case, running time for enumerating all small subsets containing v is
bounded above by T (n) = O∗(( n

(
√

λ+μ2−μ)n
)(
√

λ+μ2−μ)n). We finally fix μ to its

best value, i.e. when the two running times are equal.
In the following table, bounds on running time of the above method vs. run-

ning time of exhaustive search (both depending on parameter λ) are given.
√

λ 1/4 1/6 1/8 1/10 1/20 1/50
Optimal μ 0.326 0.248 0.200 0.169 0.097 0.045
Running time of our algorithm 1.233n 1.164n 1.127n 1.104n 1.056n 1.046n

Running time of exhaustive search 1.755n 1.570n 1.458n 1.385n 1.220n 1.104n

5.3 Graphs of High Average Degree

In this section, we deal with graphs of density D(G) � 3/4. As previously, it is
easy to see that in such graphs max dominating clique is harder than max

clique. Let us now define Algorithms mDC1 and MDC3 for min dominating

clique and max dominating clique, respectively.
The former, mDC1, works as follows: fix ε =

√
1 − D(G), compute any subset

of size at most εn and return a smallest one that is a dominating clique if any.
On the other hand, Algorithm MDC3 works as follows:

1. fix ε =
√

1 − D(G) and compute any subset of size at most εn; let K0 be a
largest one that is a dominating clique, if any;

2. for every v ∈ V such that nf(v) � εn, form the collection S(v) of every
subset of size at most nf(v) that is a dominating clique;
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3. for every S ∈ S(v), compute a maximum clique in G[
⋂

s∈S N [s]];
4. let K1 be a clique of maximum size among those computed in Step 3; output

max{K0, K1}.

Algorithm mDC1 solves min dominating clique in subexponential running time,
while Algorithm MDC3 solves max dominating clique within the same running
time as the max clique-algorithm called in Step 3, with a subexponential multi-
plicative factor (proofs omitted). Again, no improvement in the exponential basis
of the running time seems possible thanks to the reduction from max clique

to max dominating clique mentioned above.

6 Moderately Exponential Approximation

Since any approximation algorithm for min dominating clique or max dom-

inating clique solves existing dominating clique that is NP-complete, it
is impossible to devise any polynomial approximation algorithm for min- and
max dominating clique. Thus, it seems interesting to see if it is possible
to compute solutions for the two optimization problems that guarantee a good
approximation ratio with moderately exponential running time; interesting run-
ning times of approximation algorithms lie between the best known complexity
for solving existing dominating clique (O∗(1.2740) with our algorithm) and
the best known complexity for solving the corresponding optimization problem.
We propose in what follows two algorithms mMOD and MMOD that do this for min

dominating clique and max dominating clique, respectively. Obviously, in
what follows we assume that we handle graphs admitting dominating cliques.

Algorithm mMOD(ρ) for min dominating clique works as follows: run al-
gorithm EDC’ and let K0 be the dominating clique computed; compute all the
subsets of V whose size is at most n/ρ; let K1 be a dominating clique of minimum
size among them; if none is found, then set K1 = V ; return argmin{|K0|, |K1|}.

Proposition 5. If G(V, E) has a dominating clique then, for any ρ, 2 � ρ �
15.24, it is possible to compute a ρ-approximation to min dominating clique

with polynomial space and running time O∗
((

n
n/ρ

))
. This is faster than the exact

(polynomial space) algorithm for ρ � 11.71. If exponential space is allowed, then,
for any ρ, 2 � ρ � 16.60, it is possible to compute a ρ-approximation to min

dominating clique with running time and space O∗
((

n
n/ρ

))
. This is faster

than the exact (exponential space) algorithm for ρ � 12.40.

Unfortunately, this strategy does not work as far as max dominating clique

is concerned. Indeed, consider the following instance: K = (ki)i�n/3 is a clique
and S(si)i�n/3, T (ti)i�n/3 are two independent sets. Add an edge for each
pair (ki, si), (ki, ti) and (si, ti). All the dominating cliques but K have size ex-
actly 3. Thus, searching for all small and/or large cliques leads to an unbounded
approximation ratio. However, it is possible to get some approximation result if
we observe that algorithm EDC’ is able not only to find a dominating clique, but
also, given a subset S, to find a dominating clique containing S.
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Based upon this remark we devise Algorithm MMOD(ρ) for max dominating

clique that works as follows: compute all the subsets K of V whose size is at
most n/ρ; if K is a clique, then find T (K, N [K] \

⋂
v∈K N [v],

⋂
v∈K N(v), V \

N [K]), according to algorithm EDC’ (where N [K] = ∪v∈KN [v]); return the
largest dominating clique found, denoted by K.

Proposition 6. If G(V, E) has a dominating clique, then, for any ρ � 2 it is
possible to compute a ρ-approximation to max dominating clique with polyno-
mial space and running time: O∗

((
n

n/ρ

)
1.2740n(1−1/ρ)

)
. This is faster than the

exact (polynomial space) algorithm for ρ � 168. If exponential space is allowed,
then, for any ρ � 2 it is possible to compute a ρ-approximation to max domi-

nating clique with running time and space O∗
((

n
n/ρ

)
1.2556n(1−1/ρ)

)
. This is

faster than the exact (exponential space) algorithm for ρ � 204.
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Abstract. Exhaustive enumeration of stereoisomers is one of the most
fundamental and important problems in chemoinformatics. In this paper
we deal with chemical compounds composed of carbon, hydrogen, oxy-
gen and nitrogen atoms whose graphical structures are tree-like graphs,
and consider stereoisomers caused only by asymmetry around carbon
atoms. We introduce a mathematical representation for stereoisomers,
and propose a dynamic programming algorithm of generating all
stereoisomers without duplication. The algorithm first computes the
number of stereoisomers of a given tree with n vertices in O(n) time
and space. Then the algorithm constructs each stereoisomer by back-
tracking the process of computing the numbers of stereoisomers in O(n)
space and in O(n) time per stereoisomer. The latter result is achieved
by a fast bijection algorithm for combinations of distinct integers.

1 Introduction

Exhaustive enumeration of isomers/stereoisomers is one of the most fundamen-
tal and important problems in chemoinformatics because it plays core roles in
structure elucidation and molecular design [5]. Since Cayley studied enumera-
tion of alkanes in the 19th century [2], extensive studies have been done, which
include Pólya’s seminal work on counting the number of isomers using group
theory [9,10]. Two chemical compounds with the same isomer may have differ-
ent three-dimensional configurations due to asymmetry around carbon atoms
and many other structural asymmetries. Stereoisomers often exhibit different
chemical properties, and synthesis of a specific stereoisomer remains a challeng-
ing issue in chemistry. In this paper, we consider stereoisomers caused only by
asymmetry around carbon atoms. Such stereoisomers might be further divided
into more detailed classes according to their three-dimensional conformations
and stabilities. However, if the combinatorial structures based on asymmetry
around carbon atoms are different, then the stereoisomers are considered dif-
ferent in any definition. Then stereoisomers caused only by asymmetry around
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carbon atoms are fundamental and practically important. As to enumeration of
such stereoisomers, several methods have been proposed [1,3,12], which mostly
follow the work by Nourse [8]. Given a chemical compound with m carbon atoms,
these methods first create a list of all 2m combinations of the two choices of
asymmetries around each carbon atom, and remove each set S of combinations
that represent the same stereoisomer leaving one of them as their representative.
Although such a set S of combinations can be constructed in O(|S|m) time by
a method on permutation groups called the configuration groups, the time and
space complexity of the entire algorithm is Ω(2m), which is always exponential
even if the number of stereoisomers is any small.

In this paper, we focus on tree structured molecules (i.e., acyclic molecules)
and develop algorithms for enumerating stereoisomers with guaranteed compu-
tational complexity. Differently from the existing approaches based on config-
uration groups, we use dynamic programming. For this, we treat a given tree
structured molecule as a tree rooted at its structural center, and derive recur-
sive formulas for the numbers of stereoisomers of rooted subtrees. However, it
is nontrivial to represent stereoisomers with a mathematically consistent form,
without which such recursive formulas cannot be derived. The main contribution
of this paper is to give a mathematical representation for stereoisomers by intro-
ducing a new notion, “orientation of carbon circuits,” and to design a dynamic
programming algorithm that counts the total number K of stereoisomers of a
given tree based on the derived recursive formulas and a traceback algorithm
that constructs the k-th stereoisomer of the tree for each k = 1, 2, . . . , K, by
identifying the stereoisomer of each subtree corresponding to the k-th stereoiso-
mer. In this paper, we assume that each of the four arithmetic operations can
be done in constant time. Our algorithm counts the number K of stereoisomers
in O(n) time and enumerates all K stereoisomers without duplication in O(n)
time per stereoisomer, where n is the number of atoms in a given tree. Our algo-
rithms are optimal provided that each stereoisomer needs to be output explicitly
in O(n) time. In particular, the latter result is achieved by a new bijection al-
gorithm, which is required as a subroutine of the traceback algorithm. More
specifically we show that, given integers p ∈ {1, 2, 3, 4} and n ≥ p, there is an
O(1) time algorithm that delivers the k-th set from the

(
n
p

)
sets of p distinct

integers k1, k2, . . . , kp ∈ [1, n]. We also conducted computational experiments to
evaluate the practical computation time of the proposed algorithm.

2 Preliminary and Problem Formulation

Problem definition. In this paper, we deal with the problem defined as follows.

Input: A tree-like chemical graph whose vertex set V consists of carbon, hydro-
gen, oxygen and nitrogen atoms. A vertex-number n : V → {1, 2, . . . , |V |}, by
which each vertex is numbered from 1 to |V |.
Output: All the “stereoisomers” that can be generated by asymmetric carbon
atoms and double bonds between two adjacent carbon atoms.
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(a) Tetrahedron

(b) Ethylene (c) Allene

Fig. 1. (a) The four directions d0, d1, d2 and d3 around a carbon atom in the three-
dimensional space. (b) and (c) Configurations around a chain of double bonds between
two carbon atoms u and v. The rectangle shows the plane that contains the left two
hydrogen atoms x and y. Thick lines indicate edges on the front side of the plane and
dashed lines indicate edges on the back side of the plane.

Our first task is to define “stereoisomers” by a mathematically consistent
form, which will be given in Section 3.

We denote a given chemical graph by G = (V, E) with a vertex set V and
an edge set E. The vertex set V is partitioned into VC = {v | v is a carbon
atom}, VH = {v | v is a hydrogen atom}, VO = {v | v is an oxygen atom} and
VN = {v | v is a nitrogen atom}. We denote |V | = n. Multiple edges are treated
as one single edges and the edge set E is partitioned into E1 = {e | e is a single
bond}, E2 = {e | e is a double bond} and E3 = {e | e is a triple bond}.

The three-dimensional structure around a carbon atom forms a regular tetra-
hedron, as shown in Fig. 1(a), where d0, d1, d2 and d3 represent the directions
along the four edges incident to the carbon atom. We define the configuration
around a carbon atom v as a correspondence between the edges incident to v and
di (i = 0, 1, 2, 3), where we do not distinguish two correspondences which result
in the same stereoisomorphic (stereochemically isomorphic) compounds. For ex-
ample, there is only one configuration around v if v is adjacent to an atom by a
triple bond. Informally, we consider that there are two different configurations
around v only when one of the following cases occurs:

(i) v is adjacent to four different substructures;
(ii) v is adjacent to a substructure T1 with a double bond and two different
substructures T2 and T3 with single bonds, and T1 is not symmetric along the
double bond; and
(iii) v is adjacent to two substructures T1 and T2 with double bonds, and Ti,
i = 1, 2 is not symmetric along the double bond.

The exact relationship between configurations and stereoisomers is given in the
full version [6].

We here show our assumption on the three-dimensional structure of a chain
of double bonds between two carbon atoms u and v such that u is adjacent to
two atoms x and y by single bonds and v is adjacent to two atoms w and z by
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single bonds, as shown in Fig. 1(b) and (c). For the number k of double bonds
between u and v, we assume that
• x, y, w and z are on the same plane when k is odd; and
• x, y, w and z are not on the same plane when k is even.

For example, Fig. 1(b) and (c) illustrate the chain of double bonds of ethylene
(k = 1) and allene (k = 2), respectively.

Isomorphism of tree-like graphs. Let V (G) and E(G) denote the sets of
vertices and edges of a multigraph G, respectively. Two chemical graphs Gu and
Gv with roots u ∈ V (Gu) and v ∈ V (Gv) are rooted-isomorphic, which is denoted
by Gu ≈

r
Gv, if they admit an isomorphism such that u corresponds to v, and

each vertex in Gu corresponds to a vertex in Gv of the same type of atoms.
Every tree admits a structurally unique vertex or edge, called the unicentroid

and bicentroid, respectively [7]. The root of a given tree is defined by the ver-
tex/vertices in its unicentroid or bicentroid. For every non-root vertex u ∈ V ,
the parent of u is defined to be the vertex v adjacent to u which is nearer to
the root than u. For each vertex v ∈ V , Ch(v) denotes the set of the children of
vertex v, and the rooted tree Tv is defined to be the tree induced by v and all
descendants of v.

For each subtree Tv, let σ(v, Tv) (σ(v) for short) denote the signature of the
subtree Tv, that is a non-negative integer satisfying a property that σ(v, Tv) =
σ(u, Tu) if and only if Tv ≈

r
Tu. It is known that signatures of all rooted subtrees

of a given tree can be computed in linear time [4].

3 Definition of Stereoisomer

This section gives a formal definition of stereoisomers, considering difference of
configurations.

Definition of representations and stereoisomorphism. To define stereoiso-
mers of G, we first introduce a label l(v) for each carbon atom v ∈ VC, where l(v)
takes one of +, −, cis, trans and nil (nil means that v has a unique configuration
around v). As will be shown, labels cis and trans do not always correspond to
chemical terms cis and trans. We define the total order among these labels by
“ + ” > “ − ” > “cis” > “trans” > “nil.” For every vertex v ∈ VO ∪ VN ∪ VH,
define l(v) = nil.

We next introduce a representation I of G as a set of pairs of vertex-number
n(v) and label l(v) over all vertices v ∈ V . That is,

I = {(n(v), l(v)) | v ∈ V }.

Let R(G) denote the set of all representations I of G, where |R(G)| = 5|VC|

holds. Similarly, for each vertex v ∈ V , we define a representation Iv of the
rooted subtree Tv as

Iv = {(n(u), l(u)) | u ∈ V (Tv)}.
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Let R(Tv) denote the set of all representations Iv of Tv. As will be shown in Def-
inition 3, only representations which satisfy a certain condition, called “proper
representations,” define stereoisomers.

For each vertex v ∈ V such that V (Tv) = {v, v1, . . . , vp} holds, the signature
σs(Iv) of a representation Iv ∈ R(Tv) is given as the sequence

σs(Iv) = [(σ(v), l(v)), (σ(v1), l(v1)), . . . , (σ(vp), l(vp))],

where the order that v1, v2, . . . , vp appear in the sequence is determined by the
next recursive formula.
(i) For a leaf v ∈ V , p = |V (Tv) \ {v}| = 0. We define σs(Iv) = [(σ(v), l(v))].
(ii) For a representation Iv of the subtree Tv rooted at a non-leaf vertex v ∈
V with Ch(v) = {x1, x2, . . . , xk}, denote Iv = {(n(v), l(v))} ∪ Ix1 ∪ Ix2 ∪
· · · ∪ Ixk

, Ixi ∈ R(Txi) (i = 1, 2, . . . .k). We assume without loss of gener-
ality that σs(Ix1), σs(Ix2), . . . , σs(Ixk

) are sorted in a lexicographically non-
decreasing order and that it holds σs(Ixi) = [(σ(xi1), l(xi1)), (σ(xi2), l(xi2)), . . . ,
(σ(xini ), l(xini ))], ni = |V (Txi)| (i = 1, 2, . . . , k). Then we define [v1, v2, . . . , vp] =
[x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2 , . . . , xknk

].

Definition 1. For two subtrees Tu and Tv, representations Iu ∈ R(Tu) and
Iv ∈ R(Tv) are rooted-stereoisomorphic if and only if σs(Iu) = σs(Iv) holds. If
Iu and Iv are rooted-stereoisomorphic, we write this as Iu ≈

I
Iv.

The signature σs(I) of a representation I ∈ R(G) is defined as follows.
(i) If G has the unicentroid v, then we define σs(I) = σs(Iv).
(ii) If G has the bicentroid {v1, v2}, where σs(Iv1) ≥ σs(Iv2 ) and σs(Ivi) =
[(σ(vi1), l(vi1)), (σ(vi2), l(vi2)), . . . , (σ(vini ), l(vini))], ni = |V (Txi)| (i = 1, 2),
then we define σs(I) = [(σ(v11), l(v11)), (σ(v12), l(v12)), . . . , (σ(v1n1 ), l(v1n1)),
(σ(v21), l(v21)), . . . , (σ(v2n2 ), l(v2n2))].

Definition 2. Two representations I, I ′ ∈ R(G) are stereoisomorphic if and
only if σs(I) = σs(I ′) holds.

We define “proper representations” to denote those which give recursive struc-
tures of configurations around carbon atoms in Definition 3. Also two distinct
representations I and I ′ may be stereoisomorphic. We show how to uniquely
choose one of them as the “canonical form” in Definition 4.

Definition of proper representations. In the rest of this section, we regard
only the vertex v1 with n(v1) < n(v2) in the bicentroid {v1, v2} of G as the
centroid of G, and treat the edge corresponding to a double bond between two
adjacent carbon atoms as two distinct edges. We consider that these two edges
and two carbon atoms form a circuit, which we call a carbon circuit.

We define an orientation of a carbon circuit between two adjacent carbon
atoms u, v ∈ VC only if one of the following cases holds. Otherwise, no orientation
is defined for such carbon circuits. We suppose that v is closer to the root
than u. Orientation of carbon circuits is the new key notion to lead us to a
mathematically consistent representation for stereoisomers.
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(a)

(b)

(c)

Fig. 2. (a) and (b) The orientation of a carbon circuit, where d0, d1, d2 and d3 are the
directions from u. (c) A structure around a non-root vertex v.

Case-1. u has two children x and y such that σs(Ix) > σs(Iy) (see Fig. 2(a)):
For the four directions d0, d1, d2 and d3 of carbon atom u (see Fig. 1(a)), x and
y are assumed to be in directions d2 and d3, respectively. Then we define the
orientation of the carbon circuit between u and v as d0 → u → d1 (see Fig. 2(a)).

Case-2. u and its child u′ ∈ VC are connected by a double bond and the orien-
tation of the carbon circuit between u and u′ is defined (see Fig. 2(b)): For the
four directions d0, d1, d2 and d3 of carbon atom u (see Fig. 1(a)), v is assumed
to be in directions d0 and d1 and the orientation of the carbon circuit between
u and u′ is already given as d2 → u → d3. Then we define the orientation of the
carbon circuit between u and v is given as d0 → u → d1 (see Fig. 2(b)).

Definition 3. A representation I ∈ R(G) or Iv ∈ R(Tv), v ∈ V is called proper
if the label l(v) of each carbon atom v ∈ VC in I (or Iv) satisfies the following
condition.

Case-1. v is connected with four atoms: l(v) ∈ {+,−} if σs(Iu) of every child
u of v is different from each other, and l(v) = nil otherwise.

Case-2. v and one of its children u ∈ VC are connected by a double bond:
(i) the carbon circuit between v and u has no orientation: l(v) = nil.
(ii) the carbon circuit between v and u has an orientation, and v is not the
centroid of G: l(v) ∈ {cis , trans} if v has another child x than u, and l(v) = nil
otherwise.
(iii) the carbon circuit between v and u has an orientation, and v is the centroid
of G:
(iii-1) v and its child u′(
= u) are connected by a double bond: l(v) ∈ {cis , trans}
if the carbon circuit between u and u′ has orientation, and l(v) = nil otherwise.
(iii-2) v and its children x, y(
= u) are connected by single bonds: l(v)∈{cis , trans}
if σs(Ix) 
= σs(Iy), and l(v) = nil otherwise.

Case-3. The other case: l(v) = nil.
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As is discussed in the full version [6], a proper representation Iv ∈ R(Tv) real-
izes a set of configurations around carbon atoms in Tv, and is considered as a
rooted-stereoisomer of Tv. Similarly we consider a proper representation I ∈
R(G) as a stereoisomer of G.

Canonical form of proper representations. Two proper representations
Iu ∈ R(Tu) and Iv ∈ R(Tv) may be rooted-stereoisomorphic. We determine
one of all rooted-stereoisomorphic (resp., stereoisomorphic) proper representa-
tions as the “canonical form” of the corresponding rooted-stereoisomer (resp.,
stereoisomer).

Definition 4. Let L(I) be a non-decreasing sequence of the elements (n(v), l(v))
in a set I according to the given numbering of the vertices in V .
(i) The proper representation I ∈ R(G) with the lexicographically maximum L(I)
among all proper representations in R(G) which are stereoisomorphic is defined
as the canonical form of these representations.
(ii) For each vertex v ∈ V , the canonical form of representations in R(Tv) which
are rooted-stereoisomorphic is defined by the representation Iv ∈ R(Tv) with the
lexicographically maximum L(Iv) among them.

Definition 5. For a tree G = (V, E), we define the number f∗(G) of stereoiso-
mers of G by the number of all canonical forms of proper representations in
R(G). Similarly, for each vertex v ∈ V , we define the number f(G, v) of stereoiso-
mers of G by the number of all canonical forms of proper representations in
R(Tv).

Definition 6. For a tree G = (V, E), let I(G) denote a set of proper repre-
sentations in R(G) such that |I(G)| = f∗(G) and no two representations in
I(G) are stereoisomorphic. Similarly, for each vertex v ∈ V , let I(v) denote a
set of proper representations in R(Tv) such that |I(v)| = f(G, v) and no two
representations in I(v) are stereoisomorphic.

We call a vertex v ∈ VC with l(v) ∈ {+,−} an asymmetric carbon atom. If
l(v) ∈ {cis , trans} then we say that a cis-trans isomer arises around v. By
definition, a cis-trans isomer cannot arise around an asymmetric carbon atom v.

To compute f(G, v) (f(v) for short), we define the following.
• g(G, v) (g(v) for short): the number of combinations of stereoisomers of Tx

over all children x of v such that
(i) v is not an asymmetric carbon atom; and
(ii) no cis-trans isomer arises around any vertex u with u = v or an ancestor
u connected to v by a chain of double bonds between carbon atoms,
• h(G, v) (h(v) for short): the number of combinations of stereoisomers of Tx

over all children x of v such that
(i) v is an asymmetric carbon atom; or
(ii) a cis-trans isomer arises around any vertex u with u = v or an ancestor u
connected to v by a chain of double bonds between carbon atoms.

Our algorithm is based on a complete set of recursive formulas between canon-
ical forms of subtrees Tv, v ∈ V , using f, g and h, which is given in the full



Enumerating Stereoisomers of Tree Structured Molecules 21

version [6]. Here we show some of the recursive formulas for f(v), g(v) and h(v).
Let v ∈ VC be a carbon atom which has three children x, y and w (see Fig. 2(c)).
We consider the case when Tx ≈

r
Ty and Tx 
≈

r
Tw. Then Ix 
≈

I
Iw and Iy 
≈

I
Iw

hold, and we see that v is an asymmetric carbon atom if and only if Ix 
≈
I

Iy

holds. Hence we have

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy},

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 
≈
I

Iy},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)}
∪ {I ∪ {(n(v), l(v))} | I ∈ Ih(v), l(v) ∈ {+,−}},

g(v) = f(x)f(w), h(v) =
(

f(x)
2

)
f(w), f(v) = g(v) + 2h(v).

4 Dynamic Programming Algorithm for Counting

The first phase of our algorithm, called Counting phase, determines f∗(G) after
computing f(v), g(v) and h(v) for every vertex v ∈ V from the leaves to the root
along tree G. When we reach the centroid, we are ready to compute f∗(G). An
entire description of the algorithm is given as follows.

Algorithm Counting phase
Input: A tree G = (V, E) rooted at its centroid, where the vertex set consists
of carbon, hydrogen, oxygen and nitrogen atoms along with vertex-numbers.
Output: The number of stereoisomers f∗(G) and f(v), g(v), h(v) for every ver-
tex v ∈ V which is not the unicentroid.

Compute signatures of all rooted subtrees Tv, v ∈ V ;
Initialize the scanning queue Q ← φ;
for each leaf v ∈ V do

g(v) := 1; h(v) := 0; f(v) := 1; Let v be “scanned”;
if the parent u of v has no “unscanned” child and u is not the unicentroid
then ENQUE(Q, u)

end for;
while Q 
= φ do

v = DEQUE(Q);
Compute f(v), g(v) and h(v) according to the recursive formulas in [6];
Let v be “scanned”;
if the parent u of v has no “unscanned” child and u is not the unicentroid
then ENQUE(Q, u)

end while;
Compute f∗(G) according to the recursive formulas in [6].

Theorem 7. For a tree-like chemical graph G = (V, E) with |V | = n, Counting
phase computes the number of stereoisomers f∗(G) in O(n) time and space.
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5 Traceback Algorithm for Enumeration

The second phase of our algorithm, called Output phase, constructs proper
representations for stereoisomers by using f∗(G), f(v), g(v) and h(v) for all
non-unicentroid vertices v. For i = 1, 2, . . . , f∗(G), we output the proper repre-
sentation for the i-th stereoisomer of G by backtracking the computation process
of Counting phase. When we compute the k-th rooted-stereoisomer of Tv, we de-
tect the corresponding l(v) and calculate ku for every child u of v, and we trace
the computation process recursively to the leaves of G.

We do not maintain any table of (rooted) stereoisomers during Counting
phase. However, Output phase needs to find for a given k the k-th combina-
tion of numbers ku of all children of u. To design an O(1) time algorithm for
finding a desired combination of such numbers ku, we define bijections between
a set of tuples and combinations of the elements in tuples.

Definition 8. For positive integers M1, M2, . . . , Mp, define

D(M1, M2, . . . , Mp) := {[k1, k2, . . . , kp] | ki ∈ {1, 2, . . . , Mi}, i = 1, 2, . . . , p}.

Let D(; M1, M2, . . . , Mp) denote a bijection between the set {1, 2, . . . , M1M2 · · ·
Mp} of integers and D(M1, M2, . . . , Mp). Let D(k; M1, M2, . . . , Mp) denote the
k-th tuple [k1, k2, . . . , kp] ∈ D(M1, M2, . . . , Mp) in the bijection.

Definition 9. For positive integers n and p, define the set Cn,p of tuples by

Cn,p := {[k1, k2, . . . , kp] ∈ [1, n]p | kj 
= kj′ , 1 ≤ j < j′ ≤ p}.

Let Cn,p() denote a bijection between the set {1, 2, . . . ,
(
n
p

)
} of integers and

Cn,p. Let Cn,p(k) denote the tuple [k1, k2, . . . , kp] ∈ Cn,p corresponding to k ∈
{1, 2, . . . ,

(
n
p

)
}.

We have shown that there exist bijections D(; M1, M2, . . . , Mp) and Cn,p() such
that we can compute D(k; M1, M2, . . . , Mp) in O(p) time for any integer k ∈
{1, 2, . . . , M1M2 · · ·Mp} and we can compute Cn,p(k) in O(1) time for any integer
k ∈ {1, 2, . . . ,

(
n
p

)
} for p ∈ {1, 2, 3, 4}. See the full version [6] for the detail.

Here we show an example of computation process of traceback procedure.
We consider the case when v ∈ VC and v has three children. Let x, y and w
be three children of v (see Fig. 2(c)). Similarly to Counting phase, we consider
the case when Tx ≈

r
Ty and Tx 
≈

r
Tw hold. If g(v) < k ≤ g(v) + h(v) holds,

then we set k̂ = k− g(v) and choose the k̂-th rooted-stereoisomer of {Iv | l(v) =
+ (i.e., v is an asymmetric carbon atom)} as the k-th rooted-stereoisomer. Then
we set l(v) := + and [k′, kw] := D(k̂;

(
f(x)

2

)
, f(w)), [kx, ky] := Cf(x),2(k′). The

details of computation processes for all the other cases are given in the full
version [6] and the following theorem holds.

Theorem 10. For a tree-like chemical graph G = (V, E) with |V | = n, Output
phase enumerates all the stereoisomers I ∈ I(G) without duplication in O(n)
space and in O(n) time per stereoisomer.
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6 Concluding Remarks

In this paper, we introduced a mathematical representation of stereoisomers of
tree-like chemical graphs, and designed a dynamic programming algorithm for
generating stereoisomers. We implemented our algorithm and conducted some
experiments to evaluate the practical performance. For a compound with compo-
sitional formula C25O24H52, Counting phase took less than 0.01 sec., and Output
phase took 39.39 sec. (on a PC with 1.2GHz CPU) for enumerating 8,388,608
stereoisomers. We observed that the computation time of Output phase increases
linearly to the number of stereoisomers, and that the number of stereoisomers
f∗(G) is identical with that computed by Razinger et al. [11].

It is left as future work to extend our algorithm to a wider class of graphs,
such as outerplanar graphs. It is also important to visualize the output repre-
sentations.
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Abstract. Given n terminals in the plane R2 and a positive integer k, the bot-
tleneck Steiner tree problem is to find k Steiner points in R2 so that the longest
edge length of the resulting Steiner tree is minimized. In this paper, we study
this problem in any Lp metric. We present the first fixed-parameter tractable al-
gorithm running in O(f(k) · n2 log n) time for the L1 and the L∞ metrics, and
the first exact algorithm for any other Lp metric with 1 < p < ∞ whose time
complexity is O(f(k) · (nk +n log n)), where f(k) is a function dependent only
on k. Note that prior to this paper there was no known exact algorithm even for
the L2 metric, and our algorithms take a polynomial time in n for fixed k.

1 Introduction

We consider the following problem, called the bottleneck Steiner tree problem (BST).

Problem 1 (BST). Given n points, called terminals, in the plane and a positive integer
k, find a Steiner tree spanning all terminals and at most k Steiner points that minimizes
the length of its longest edge.

Such a Steiner tree with the length of the longest edge minimized is called a bottleneck
Steiner tree (also known as a min-max Steiner tree).

Unlike the classical Steiner tree problem where the sum of the edge lengths of the
Steiner tree is minimized, this problem asks a Steiner tree where the maximum of the
edge lengths is minimized and the Steiner points in the resulting tree can be chosen in
the whole plane R2.

The bottleneck Steiner tree problem (shortly BST) has been studied with many ap-
plications, like VLSI layout [4], multi-facility location, and wireless communication
network design [9]. Previous work on BST considered the Euclidean plane (L2) or the
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rectilinear plane (L1). BST is known to be NP-hard to approximate within ratio
√

2 in
the L2 metric or ratio 2 in the L1 metric [9]. For the L1 metric, the matching upper
bound was known by Wang and Du [9] and for the L2 metric, the best known upper
bounds on approximation ratio is 1.866 by Wang and Li [10]. For the special case of
this problem where there should be no edge connecting any two Steiner points in the
optimal solution, Li et al. [7] present a (

√
2 + ε)-factor approximation algorithm and

inapproximability within ratio
√

2.
Also, there has been effort on devising an exact algorithm for finding the locations of

k Steiner points. Many researchers considered the variation of BST where a topology T
of Steiner trees is fixed, called the bottleneck Steiner tree with fixed topology (BST-FT);
the resulting Steiner tree should have the same topology as a given tree T [8,5]. Once
we have an exact algorithm for this problem BST-FT, we can find an exact solution to
BST by enumerating all valid topology trees.

For the L1 (or the L∞) metric, Ganley and Salowe [5] presented an O((n+k)2) time
exact algorithm for BST-FT, which leads to an exact algorithm for BST with running
time O((n + k)!(n + k)2). The situation for the L2 metric (or the Euclidean metric)
is much worse. There was no known exact algorithm for BST in the L2 metric but few
partial results: Sarrafzadeh and Wong [8] presented an O((n + k) log(n + k)) time
algorithm for the decision version of BST-FT. More recently, Bae et al. [3] presented
exact algorithms for k ≤ 2; O(n log n) time for k = 1 and O(n2) time for k = 2.

The aim of this paper is to devise exact algorithms for BST in any Lp metric,
which run fast for small fixed k. We present two exact algorithms for BST: (1) an
O(f(k) · n2 log n)-time algorithm for the L1 or the L∞ metric and (2) an O(f(k) ·
(nk + n log n))-time algorithm for the Lp metric with 1 < p < ∞, where f(k) is
a function dependent on k only. Note that both algorithms run in time polynomial in
n for fixed k. The algorithm for the L1 and the L∞ metrics is a fixed-parameter al-
gorithm with respect to parameter k. A fixed-parameter algorithm is one that has time
complexity of the form f(k) ·nO(1). Thus, we show that BST in the L1 metric is fixed-
parameter tractable with respect to parameter k. On the other hand, we failed to achieve
fixed-parameter tractability for the other case but it is worth noting that our algorithm
for the Lp metric with 1 < p < ∞ is the first exact algorithm for BST.

2 Properties of Bottleneck Steiner Trees

Let P ⊂ R2 be a set of n points; we call each point in P a terminal. A bottleneck
spanning tree of P is a spanning tree of P such that the length of a longest edge is
minimized. We call the length of a longest edge in a bottleneck spanning tree of P
the bottleneck of the set P , denoted by b(P ). Note that b(P ) is dependent only on the
set P , and not on a particular spanning tree of the points P . A minimum spanning
tree MST (P ) of given points P is a spanning tree of P with minimum sum of the
edge lengths. Obviously, MST (P ) is a bottleneck spanning tree of P . Throughout
this section, the underlying distance function is assumed to be the Lp metric for any
1 ≤ p ≤ ∞, and d(a, b) denotes the Lp-distance between two points a, b ∈ R2.

Since computing a minimum or bottleneck spanning tree of a given set can be done
easily, the bottleneck Steiner tree problem can be viewed as finding a set Q of k optimal
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locations to minimize the bottleneck b(P ∪ Q) of P ∪ Q over all such sets of k points
in the plane R2. We let e1, . . . , en−1 be the edges of MST (P ) in the order that their
lengths are not increasing, and |ei| denote the length of ei with respect to the Lp metric.

A solution to the bottleneck Steiner tree problem is a set Q of k Steiner points and its
resulting Steiner tree, which is a bottleneck spanning tree T ∗ of P ∪ Q. By definition,
there can be many bottleneck Steiner trees for an instance of the problem. Here, we
prove the following theorem for any Lp metric to restrict ourselves to Steiner trees with
helpful properties.

Theorem 1. There always exists a bottleneck Steiner tree T ∗ for the terminal set P
with a set Q of k Steiner points that satisfies the following conditions BST1–4:

BST1 Each edge in T ∗ belongs to MST (P ) or is incident to a Steiner point in Q.
BST2 Each Steiner point q ∈ Q is located at the center of the minimum enclosing Lp

circle of its neighbors in T ∗.
BST3 The degree of each Steiner point is bounded by a constant Δ. More specifically,

Δ = 7 for the L1 and the L∞ metrics; Δ = 5 for any Lp metric with 1 < p < ∞.
BST4 There is a positive integer c with 1 ≤ c ≤ (Δ − 1)k such that T ∗ excludes

e1, . . . , ec but includes ec+1, . . . , en−1.

Bae et al. [3] have proved this theorem for the L2 metric, and then exploited it to devise
exact algorithms for the Euclidean bottleneck Steiner tree problem for k ≤ 2.

Observe that BST1 easily follows from the optimality of the minimum spanning tree;
its proof can be found also in Bae et al. [3]. Furthermore, we can locally rearrange the
locations of Steiner points to satisfy BST2 without any combinatorial change of the
Steiner tree. Thus, in this section, we mainly discuss BST3 and BST4.

We start with bounding the number of nearest neighbors of each point.

Lemma 1. Let q be a point in the plane and p1, . . . , pm be other m points around q
in counter-clockwise order. If d(pi, q) ≤ d(pi, pj) for any 1 ≤ i, j ≤ m with i 
= j,
then we have either m ≤ 8 for the L1 and the L∞ metrics or m ≤ 6 for the Lp metric
with 1 < p < ∞. Moreover, the maximum value of m can be obtained only if we have
equality d(pi, q) = d(pi, pi−1) = d(pi, pi+1) for any 1 ≤ i ≤ m.

Lemma 2. There exists a bottleneck Steiner tree T ∗ such that T ∗ fulfills BST1–3 and
there is a positive integer c where T ∗ excludes e1, . . . , ec but includes ec+1, . . . , en−1.

Now, we give a lower bound on the bottleneck improvement depending on the number
k of allowed Steiner points.

Lemma 3. For any k points q1, . . . , qk ∈ R2, we have b(P ∪ {q1, . . . , qk}) ≥
|e(Δ−1)k+1|.
Conversely, Lemma 3 gives an upper bound on the possible number c of removed edges
from MST (P ) as appeared in BST4, finally proving Theorem 1.

Hence, a possible way to solve BST is as follows: For each c with 1 ≤ c ≤ (Δ−1)k,
we remove e1, . . . , ec from MST (P ), to obtain c + 1 induced subtrees T1, . . . , Tc+1.
Then, we find k Steiner points to reconnect the Ti with new edges incident to the Steiner
points, minimizing the longest edge length. Finally, we choose the best solution among
all c as an optimal solution for the original problem.
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Fig. 1. An illustration of the case when k = 3 and c = 6. (a) From MST (P ), (b) remove c = 6
longest edges e1, . . . , e6 to have c + 1 = 7 subtrees T1, . . . T7. (c) An abstract topology T0 is a
tree on the ti, representing these subtrees, and the si, representing Steiner points.

This motivates another variation of the problem, called the bottleneck Steiner tree
problem with a fixed topology on subtrees.

Problem 2 (BST-FT-ST). Given a set P of n terminals in the plane, two positive inte-
gers k and c with c ≤ (Δ− 1)k, and a topology T0 on the c + 1 subtrees Ti induced by
MST (P ) and k Steiner points, find an optimal placement of k Steiner points to obtain
a bottleneck Steiner tree that has the same topology as T0.

The topology T0 in the above problem has c + k + 1 vertices V := {s1, . . . , sk,
t1, . . . , tc+1}, where ti represents subtree Ti and sj represents a Steiner point. See
Figure 1. We call each si a Steiner vertex in order to distinguish it from a Steiner point
chosen as a point in R2, and let S := {s1, . . . , sk} be the set of Steiner vertices. A
Steiner point can not have degree 1 but may have degree 2 in the bottleneck Steiner
tree [8]. Together with BST3, we can assume that each sj has degree between 2 and Δ
in T0. Also, to distinguish T0 from a topology tree used in BST-FT [8,5], we call T0 an
abstract topology while a topology tree on terminals is called a concrete topology.

Notice that an abstract topology T0 has at most Δk + 1 vertices. This means that
the number of possible abstract topologies is independent of the number n of terminals.
We end this section with an easy bound on the number of abstract topologies, which is
based on the Prüfer code.

Lemma 4. Given k Steiner points, the total number of abstract topologies over all
1 ≤ c ≤ (Δ − 1)k is bounded by O((Δk + 1)Δk−1).

3 Fixed-Parameter Algorithm for the L1 and the L∞ Metrics

In this section, we present a fixed-parameter algorithm for BST-FT-ST in the L∞ (and
equivalently the L1) metric. Thus, throughout this section, d(a, b) denotes the L∞ dis-
tance between two points a, b ∈ R2. Recall that we are given an abstract topology T0
on V = {s1, . . . , sk, t1, . . . , tc+1}. Also, we assume that every internal vertex of T0 is
a Steiner vertex. If we have ti ∈ V which is an internal vertex in T0, we can just split
T0 at ti into two abstract topologies and consider each separately since any optimal
placement of Steiner points in one is independent from the terminals in the other.

We first consider the decision version of BST-FT-ST: for a given real value λ > 0,
we would like to answer whether there exists a placement of k Steiner points such that
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the maximum edge length in the resulting Steiner tree with the same topology as T0 is
at most λ. Once we obtain an efficient decision algorithm, we do a binary search on
critical values of λ to find the smallest λ∗ that yields the positive answer “YES”. Thus,
λ∗ is the optimal bottleneck value for a given abstract topology T0.

We should mention that the optimal objective value λ∗ may be determined by |ec+1|,
the longest edge that is left from MST (P ). We, however, consider only the edges
incident to any Steiner point and optimize their lengths; afterwards, we can simply
compare the obtained value to |ec+1|. Thus, in the remaining of this paper, we assume
that λ∗ is always determined by the length of an edge incident to a Steiner point.

3.1 Decision Algorithm

Our algorithm can be seen as an extension of the algorithm by Ganley and Salowe [5];
namely, from concrete topologies to abstract topologies. We choose an arbitrary Steiner
vertex of T0 as a root, and consider T0 as a rooted tree. Let C(v) be the set of children of
a vertex v in T0. For each vertex v of T0, we shall associate a region Rλ(v) as follows.
If v = ti, representing a subtree Ti of MST (P ), then Rλ(v) is the set of terminals
contained in Ti. Otherwise, if v is a Steiner vertex, Rλ(v) :=

⋂
u∈C(v) Rλ(u) ⊕ Bλ,

where Bλ denotes the L∞-ball (i.e., a square) of radius λ centered at the origin and ⊕
denotes the Minkowski sum operation. We compute the regions Rλ(v) in a bottom-up
manner starting from the leaves, and answer “YES” if Rλ(v) 
= ∅ for all vertices v of
T0; otherwise, report “NO”. The correctness of the algorithm is straightforward.

To compute the regions Rλ(v), we shall show that Rλ(v) can be simply described in
terms of squares centered at the terminals in P . We denote by B(p, r) the L∞-ball of
radius r centered at point p ∈ R2. Also, for two vertices u and v in T0, let δu,v be the
length of the path between u and v (i.e. the number of edges) in T0, and L(v) be the set
of leaves which are descendants of v in T0.

Lemma 5. Let v be an internal vertex of a given abstract topologyT0. Suppose Rλ(u) 
=
∅ for all descendants u of v in T0. Then, we have Rλ(v) =

⋂
ti∈L(v)

⋃
p∈Ti

B(p, λ ·
δti,v).

Lemma 5 tells us the complexity of Rλ(v) as well as how to compute it.

Lemma 6. The decision version of BST-FT-ST can be solved in O(kn2) time.

3.2 Optimization Algorithm

We shall show that the exact solution of BST-FT-ST can be obtained by O(log n) im-
plementations of the decision algorithm. Following is a key lemma for our purpose.

Lemma 7. Let λ∗ be the smallest real number that the decision algorithm reports YES.
Then, there exists a Steiner vertex si such that the area of Rλ∗(si) is zero.

For any Steiner vertex si and two terminals p ∈ Tj and p′ ∈ Tj′ , consider the value
λ such that B(p, λ · δsi,tj ) touches B(p′, λ · δsi,tj′ ). We call such λ a critical value.
Lemma 7 implies that there is si such that we have two touching squares B(p, λ∗ ·δsi,tj)
and B(p′, λ∗ · δsi,tj′ ) where p ∈ Tj and p′ ∈ Tj′ ; thus, λ∗ is also a critical value.
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Lemma 8. BST-FT-ST in the L∞ metric can be solved in O(kn2 log n) time.

In order to solve BST, we enumerate all possible abstract topologies and solve BST-FT-
ST for each. The number of abstract topologies is at most O((7k+1)7k−1) by Lemma 4
and Theorem 1. Finally, we obtain a fixed-parameter algorithm for BST in the L1 or the
L∞ metric.

Theorem 2. Given n terminals and a positive integer k, a bottleneck Steiner tree with
k Steiner points in the L1 or the L∞ metric can be exactly computed in O((7k + 1)7k ·
n2 log n) time.

4 Exact Algorithm for the Euclidean Metric and the Lp Metric

In this section we present an algorithm that finds an exact solution to BST-FT-ST in the
L2 (the Euclidean) metric, leading to the first exact algorithm for BST in the Euclidean
metric. Throughout this section, d(a, b) denotes the Euclidean distance between two
points a and b. Also, we assume that every leaf of the given abstract topology T0 is a
terminal vertex as in Section 3. Note that our algorithm works for any Lp metric by
Theorem 1 while we mainly discuss bottleneck Steiner trees in the Euclidean metric.

As Ganley and Salowe [5] pointed out earlier, it seems much harder to find an exact
solution to BST in the Euclidean metric (or any Lp metric) than in the L1 metric. One
could try a similar approach as done in Section 3 but would immediately face with
a difficulty; a nice description of the region Rλ(v) like Lemma 5 is hardly obtained.
Indeed, that is one of the reasons why no exact algorithm has been discovered yet for
the Euclidean case. This also causes another difficulty in collecting critical values λ
among which the optimal objective value λ∗ can be found. To overcome all difficulty,
we make full use of the properties of bottleneck Steiner trees revealed in Section 2,
introducing some new concepts; determinators and primary clusters.

4.1 Determinators and Primary Clusters

Consider an optimal placement Q = {q1, . . . , qk} of k Steiner points for a given ab-
stract topology T0. Recall that the corresponding Steiner tree T ∗ is supposed to satisfy
BST1–4. Let ri be the length of the longest edge incident to qi in T ∗ and Bi be the disk
centered at qi with radius ri. By BST2, each Bi has two or three points on its boundary,
which are among the neighbors of qi in T ∗. Note that a disk is said to be determined by
three points or by two diametral points if the three points lie on the boundary of the disk
or if the two points define the diameter of the disk, respectively. We call the three or
two points determining a disk the determinators of the disk or of its center. Note that if
si is adjacent to tj in T0 we can assume that, in the resulting Steiner tree, qi is adjacent
to the closest terminal in subtree Tj .

Let Di be the set of determinators of qi in T ∗. Di consists of two or three points in
P ∪ Q. In the case where there are more than three points on the boundary of Bi, we
arbitrarily choose three of them. Then, the following is an immediate observation.

Lemma 9. If qi ∈ Dj in T ∗, then ri ≥ rj .
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(a) BST T ∗

q1
q2

q3

s1
s2

s3

(b) concrete topology T (c) DAG G on [S]

[s1] = {s1, s2}

[s3] = {s3}

Fig. 2. (a) A bottleneck Steiner tree T ∗ for abstract topology T0 in Figure 1; The arrows indicate
the determinators Di of each Steiner points and terminals that are determinators of some qi are
depicted as small solid squares. Dotted circles indicate Bi whose radius is ri. (b) An induced
concrete topology T taking only terminals that are determinators, Di ∩ P , with determinator
information; An optimal placement of Steiner points is determined by these selected terminals
only. Here, we have a primary cluster [s1] = {s1, s2}. See r1 = r2 ≥ r3 in (a). (c) Directed
acyclic graph G on [S] based on the determinator relation on T induces a partial ordering on [S].

Based on the sets of determinators, Di, we can infer an ordering on the Steiner vertices.
First, we build an equivalence relation ≡ on S = {s1, . . . , sk}; si ≡ sj if and only if
qi ∈ Dj and qj ∈ Di. We denote by [si] the equivalence class that includes si, and let
[S] := {[si] | si ∈ S}. Now, we construct a directed graph G on [S] in which there
is a directed edge from [si] to [sj ] if and only if there are two indices i′ and j′ with
si′ ∈ [si] and sj′ ∈ [sj ] such that qj′ ∈ Di′ . Obviously, G is acyclic. We denote by
([S],�) a partial ordered set induced by G. Lemma 9 implies that if sj ∈ [si], then
ri = rj , and if [si] � [sj ] then ri′ ≤ rj′ for any i′, j′ with si′ ∈ [si] and sj′ ∈ [sj ].
Let M be the set of all the maximal elements in [S] with respect to �. More precisely,
M = {[si] ∈ [S] | there is no other [sj ] ∈ [S] with [si] � [sj ]}. We call each subset of
Steiner vertices in M a primary cluster. See Figure 2 for more illustrative explanation.

Since the optimal objective value λ∗ for given abstract topology T0 is determined
as max ri (as assumed in the beginning of Section 3), it is obvious that λ∗ is indeed
determined by a primary cluster in M.

Lemma 10. Assume that all symbols and relations are induced from a bottleneck Steiner
tree as above. Then, there always exists a primary cluster [si] ∈ M such that λ∗ = ri.

4.2 Algorithm

Our algorithm enumerates all possible combinations of determinators (D1, . . . , Dk) for
a given abstract topology T0. By a fixed combination of determinators, the equivalence
relation (S,≡) and the partial ordering ([S],�) are inferred as above. At last, we will
be able to collect critical values by handling each primary cluster.

Thus, our algorithm for BST-FT-ST in the L2 metric is summarized as follows:

(1) Enumerate all possible combinations of determinators Di for abstract topology T0.
(2) For a fixed combination of the determinators Di, build a concrete topology T .
(3) For each primary cluster induced by the Di, collect critical values.
(4) Do a binary search on the collected critical values to find the optimal value λ∗.
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From now on, we describe each step of the algorithm in more details.

(1) Enumeration of all possible combinations of determinators For a given abstract
topology T0, a rough calculation on the number of combinations of determinators gives
us 20kn3k: (i) we choose two or three neighbors from at most five neighbors of each
si in T0 and, (ii) choose one terminal from at most n terminals in Tj if tj was chosen
for si at (i).

In order to prune a number of unnecessary combinations of determinators, we bring
a known geometric structure, namely, the farthest color Voronoi diagram. The farthest
color Voronoi diagram is a generalization of the standard farthest-neighbor Voronoi
diagram to colored point sets [6,1]: Given a collection C = {P1, . . . , Pl} of l sets of col-
ored points, define the distance to a color i for 1 ≤ i ≤ l as di(x) := minp∈Pi d(x, p).
Then, the farthest color Voronoi diagram FCV D(C) is a decomposition of R2 into
Voronoi regions V Ri for subset Pi, defined to be the set {x ∈ R2 | di(x) > dj(x), 1 ≤
j ≤ l, j 
= i}. Each edge of FCV D(C) is the set of points that have the same set
of two farthest colors; each vertex is a point that has three or more farthest colors.
Each Voronoi region V Ri is again refined into cells σp for each p ∈ Pi such that
σp = {x ∈ V Ri | d(x, p) = di(x) = minq∈Pi d(x, q)}. We regard FCV D(C) as
this refined diagram. Note that each cell, edge, or vertex of FCV D(C) is determined
by (thus, associated with) one, two, or three points in

⋃
i Pi. For more details about

the farthest color Voronoi diagram, we refer to Huttenlocher et al. [6] and Abellanas
et al. [1]. We now introduce an interesting relation between the farthest color Voronoi
diagram and the determinators.

Lemma 11. Given the determinators Di of qi, let m := |Di ∩ P |, the number of ter-
minals that are determinators of qi. If m > 0, then qi lies on the (3 − m)-face φi of
FCV D(Ci) determined by Di ∩ P , where Ci = {V (Tj) | tj a neighbor of si in T0}
and V (Tj) ⊆ P denotes the vertex set of Tj .

Thus, as a preprocessing, we compute FCV D(Ci) for each Steiner vertex si, where
Ci is defined as in Lemma 11. Since we have at most 5 subsets of P in Ci, the total
combinatorial complexity of all FCV D(Ci) is O(n) and O(n log n) time is sufficient
to build them for any Lp metric with 1 < p < ∞ [6].

To enumerate combinations of determinators, we first choose one face φi (of any
dimension) from FCV D(Ci) to fix Di ∩ P . Then, for each edge between two Steiner
vertices si, sj in T0, we have four possibilities to fix Di \ P ; qi ∈ Dj or qi /∈ Dj ,
and qj ∈ Di or qj /∈ Di. Thus, we have (O(n))k combinations of Di ∩ P and 4k

combinations of Di \ P . Hence, we have at most (O(n))k · 4k = (O(n))k possible
combinations of the determinators in total.

(2) Building a corresponding concrete topology At this step, we are given the determi-
nators Di for each Steiner point. The Di induce a concrete topology T from the abstract
topology T0 by choosing the terminals appeared in any of the Di. Note that T consists
of at most 3k terminals and k Steiner points since Di contains at most three terminals.
We should mention that when building T from T0, we drop some edges, which are not
related to the Di. Since an optimal placement of Steiner points is determined only by
the Di, these dropped edges do not matter for getting critical values at Step (3).
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(3) Collecting critical values In order to collect critical values λ, we search each pri-
mary cluster [si] ∈ M. By Lemma 10, a primary cluster [si] among M causes the
longest edge in the resulting Steiner tree T ∗; that is, λ∗ = ri = rj for any sj ∈ [si].
Recall that the placement qj for each sj ∈ [si] is determined by its determinators Dj .
Thus, to precompute (candidates of) the value λ∗, we take a subtopology Ti of T , which
is an induced subtree by [si] and their determinators.

In Ti, every leaf is a terminal in P and every internal vertex is a Steiner vertex with
degree 2 or 3. Observe that any degree-2 Steiner point is located at the midpoint of its
two neighbors by BST2. Thus, degree-2 Steiner points are rather easy to find once we
know an optimal placement of all degree-3 Steiner points. We modify Ti into a weighted
tree T ′i by the following operations: (1) Initially, assign weight 1 to every edge of Ti. (2)
Whenever there is a degree-2 Steiner vertex, we remove it from Ti and its two incident
edges are merged into one with summed weight.

Now, let m be the number of Steiner vertices in T ′i , and w(e) be the weight of an
edge e of T ′i . Then, T ′i consists of exactly 2m + 1 edges and m internal vertices (all
Steiner). Without loss of generality, we assume that s1, . . . , sm are the Steiner vertices
in T ′i . For each edge e of T ′i , we assign a function he : (R2)m → R defined to be

he((q1, . . . , qm)) :=
1

w(e)
{the length of e when sj is placed at qj ∈ R2 for each j}.

Let q∗1 , . . . , q∗m be an optimal placement of m Steiner points. Then, at (q∗1 , . . . , q∗m), we
have equality he((q∗1 , . . . , q∗m)) = he′((q∗1 , . . . , q∗m)) for any pair of two edges e, e′ of
T ′i , by Lemma 9.

The function he indeed returns the distance between two points, so it defines an
algebraic surface of degree 2 in R2m+1, which is the graph of he. Furthermore, at every
point (q1, . . . , qm) ∈ (R2)m that satisfies all the equalities, the 2m+1 surfaces meet all
together at a point (q1, . . . , qm, λ) ∈ R2m+1; this point is a vertex (0-face) of the lower
(or upper) envelope of the 2m+1 surfaces. Fortunately, all 0-faces of the lower envelope
of algebraic surfaces in high dimension can be computed by Agarwal et al. [2]; in our
case, it costs O((2m + 1)2m+ε) time for any positive ε. Once we find all the 0-faces
of the lower envelope, we have at most O((2m + 1)2m+ε) critical values by taking the
height (the (2m + 1)-st coordinate) of each 0-face of the lower envelope.

We do this procedure for every primary cluster, collecting O((2k + 1)2k+ε) critical
values in total in the same time bound.

(4) Binary search on critical values At this step, we do a binary search on the collected
critical values using a decision algorithm running on the concrete topology T . We make
use of a modified version of the decision algorithm by Sarrafzadeh and Wong [8]. We
choose an arbitrary internal vertex of T as a root and consider T as a rooted tree.

By Lemma 11, every Steiner point qi must lie in the face φi chosen at Step (1). We
thus redefine the region Rλ(si) for each Steiner vertex as follows:

Rλ(si) := φi ∩
⋂

u∈C(si)

(Rλ(u) ⊕ Bλ),

where C(si) is the set of children of si in T and Bλ is a unit disk centered at the origin.
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If φi is a segment or a point, this additional intersection with φi does not increase the
complexity. For easy analysis of the case where φi is a two-dimensional face, we trian-
gulate each two-dimensional face of FCV D(Ci) at Step (1) and take φi as a triangle.
Since the triangulation does not increase the complexity of FCV D(Ci), we still have
O(n) number of vertices, edges, and triangular faces in FCV D(Ci). Also, computing
Rλ(si) is done without additional cost; φi is either a point, a segment, or a triangle.
Since T consists of O(k) vertices, our modified decision algorithm runs in O(k log k)
time, based on the analysis by Sarrafzadeh and Wong [8].

Hence, for each concrete topology T , we can find an optimal objective value λ∗ in
O(k log k · log((2k + 1)2k+ε)) = O(k2 log2 k) time. To see the total time complexity,
initially we spend O(n log n) time to compute FCV D(Ci), Steps (3)–(4) take O((2k+
1)2k+ε) time, and we repeat Steps (3)–(4) (O(n))k times; O((2k + 1)2k+ε · (O(n))k +
n log n) time to solve BST-FT-ST in total. Combining this with Lemma 4, we finally
conclude:

Theorem 3. Given n terminals and a positive integer k, a bottleneck Steiner tree with
k Steiner points in the Lp metric with 1 < p < ∞ can be exactly computed in O(f(k) ·
(nk + n log n)) time, where f(k) = O((5k + 1)5k−1(2k + 1)2k+ε2O(k)) = O(k7k ·
2O(k)).

Remark that our algorithm only finds an optimal placement Q of k Steiner points.
To obtain a bottleneck Steiner tree, it suffices to compute the minimum spanning tree
MST (P ∪ Q) for points P ∪ Q.
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Abstract. Given a universe N containing n elements and a collection
of multisets or sets over N , the multiset multicover (MSMC) or the set
multicover (SMC) problem is to cover all elements at least a number of
times as specified in their coverage requirements with the minimum num-
ber of multisets or sets. In this paper, we give various exact algorithms
for these two problems, with or without constraints on the number of
times a multiset or set may be picked. First, we can exactly solve the
MSMC without multiplicity constraints problem in O(((b + 1)(c + 1))n)
time where b and c (c ≤ b and b ≥ 2) respectively are the maximum
coverage requirement and the maximum number of times that each ele-
ment can appear in a multiset. To our knowledge, this is the first known
exact algorithm for the MSMC without multiplicity constraints problem.
Second, we can solve the SMC without multiplicity constraints problem
in O((b + 2)n) time. Compared with the two recent results in [Hua et
al., Set Multi-covering via inclusion-exclusion, Theoretical Computer Sci-
ence, 410(38-40):3882-3892 (2009)] and [Nederlof, J.: Inclusion Exclusion
for hard problems. Master Thesis. Utrecht University, The Netherlands
(2008)], we have given the fastest exact algorithm for the SMC without
multiplicity constraints problem. Finally, we give the first known exact
algorithm for the MSMC or the SMC with multiplicity constraints prob-
lem in O((b + 1)n|F |) time and O((b + 1)n|F |) space where |F | denotes
the total number of given multisets or sets over N .

1 Introduction

In this paper, we study exact algorithms for the set multicover(SMC) and the mul-
tiset multicover(MSMC) problems. In the set multicover problem, we are given a
universe N of n elements and a family of sets F = {S1, ···, S|F |} where each Si is a
subset of N , and we need to find a minimum cardinality sub-family F ′ ⊆ F such
that each element i ∈ N is covered bi integral number of times. In the multiset
multicover problem, we are given a collection of multisets instead of a collection
of sets. Here a multiset Si contains a specified number of copies of each element
i ∈ N . Note that in order to minimize the total number of picked sets or multisets,
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c© Springer-Verlag Berlin Heidelberg 2009



Exact Algorithms for Set Multicover and Multiset Multicover Problems 35

each set or multiset can be chosen a number of times. Here if we further require
that each set or multiset can be chosen at most a specified number of times, the
SMC or the MSMC problem becomes the SMC or the MSMC with multiplicity
constraints problem. Much attention has been given to approximation algorithms
for these problems in the past several decades [11,10,3,4,5]. Besides approximate
algorithms, recently there has also been some effort in understanding how fast we
can exactly solve these covering problems.

By using the inclusion-exclusion principle and a fast zeta transform technique,
Björklund et al. [1] have shown that the set cover problem can be exactly solved
in O∗(2n) time using O∗(2n) space. Here, using the O∗(f(n)) notation we omit
a (log f(n))O(1) factor. Based on this observation, they proposed a family of
exact algorithms for the set partitioning problems which improve all the previ-
ous algorithms. Later on they showed that similar faster algorithms can also be
obtained by using the so called fast subset convolution [2]. Very recently, Hua
et al. and Nederlof have independently given their exact algorithms for the set
multicover problem in [6] and [9], respectively. In [6], we show that the set multi-
cover problem can be exactly solved in O∗((2b)n) time using O∗((b + 1)n) space
or in O∗(2O(bn2)) time with polynomial space. In [9], based on a novel count-
ing formulation, the set multicover problem can be solved in O((b + 1)n|Fmc|)
time and polynomial space. Here |Fmc| means the total number of given sets.
Although this result greatly outperforms the polynomial space exact algorithm
given in [6], as discussed in [8], the algorithm given in [6] can also exactly count
the number of set multicovers that satisfy the coverage requirements. We are not
aware of any known exact algorithms for solving the multiset multicover, the set
multicover with multiplicity constraints and the multiset multicover with multi-
plicity constraints problems. Some key notations and their definitions are given
in Table 1.

Table 1. Some key notations and definitions

Notations Definitions

N = {1, · · ·, n} The universe set.
Fms (Fmc) (Fsc) A collection of (multi)sets in a multiset multicover (set mul-

ticover) (set cover) instance.
B = (b1, · · ·, bn) The positive integral coverage requirement vector indicating

that each element i must be covered at least bi times and
b = maxi∈N (bi).

C = (Fms(S, i)) The vector indicating the number of times that each ele-
ment i ∈ N appears in each multiset S ∈ Fms and c =
maxi∈N,S∈Fms

(Fms(S, i)). We assume c ≤ b and b ≥ 2.
ck(Fsc) The number of k -tuples < s1, · · ·, sk > over Fsc such that

the union of the sets
⋃k

i=1 si without removing duplicate
elements satisfies the coverage requirements.
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Table 2. Summary of exact algorithms for various covering problems

Problem Time Space Ref.

Set Cover(SC) O∗(2n|Fsc|)1 Polynomial [1]
Set Cover(SC) O∗(2n) O∗(2n) [1]
Set Multicover(SMC) O∗((2b)n) O∗((b + 1)n) [6]

Set Multicover(SMC) O∗(2O(bn2)) Polynomial [6]
Set Multicover(SMC) O∗((b + 1)n|Fmc|)1 Polynomial [9]
Set Multicover(SMC) O((b + 2)n) See note2 Here
Multiset Multicover(MSMC) O∗((b + 1)n|Fms|)1 Polynomial Here
Multiset Multicover(MSMC) O((b + 1)n|Fms|) See note3 Here
SMC with Multiplicity Constraints O((b + 1)n|Fmc|) O((b + 1)n|Fmc|) Here
MSMC with Multiplicity Constraints O((b + 1)n|Fms|) O((b + 1)n|Fms|) Here

1 It’s easy to know that |Fsc| = |Fmc| = O(2n), |Fms| = O((c + 1)n).
2 max{

(
n

m1

)
(b + 1)n−m1 ,

(
n

m2

)
(b + 1)n−m2}, where m1 = �n+1

b+2 � and m2 = �n+1
b+2 	.

3 max{
(

n
m1

)
cm1(b+1)n,

(
n

m2

)
cm2(b+1)n}, where m1 = � c(n+1)

c+1 � and m2 = � c(n+1)
c+1 	.

Our Results. In this paper, we give: (1) the fastest exact algorithm for the set
multicover problem; (2) the first known exact algorithm for the multiset multi-
cover problem; and (3) the first known exact algorithm for the set or multiset
multicover with multiplicity constraints problem.

Table 2 summarizes previous related results and those given in this paper.

Preliminaries. The Inclusion-Exclusion Principle. [folklore]: Let S be a
finite set with subsets A1, A2, ..., An ⊆ S, and with the convention that∩i∈∅Ai =
S, then we know the number of elements in S which lie in none of the Ai is

|
n⋂

i=1

Ai| =
∑

X⊆N

(−1)|X| · |
⋂

i∈X

Ai| (1)

Counting Set Covers. By using the inclusion-exclusion principle (Equation 1),
Björklund et al. [1] prove that the number ck(Fsc) of set covers can be calculated
through Equation 2. Here asc(X) denotes the number of sets in Fsc which avoid
(do not cover) any element in the set X ⊆ N .

ck(Fsc) =
∑

X⊆N

(−1)|X|asc(X)k (2)

Solving the Set Cover Problem via Counting Set Covers. According to
the definition of ck(Fsc) (c.f. Table 1), we can see that, in order to find the
minimum number of sets that satisfy the coverage requirement, we just need to
find the minimum k value that satisfy ck(Fsc) > 0 using binary search. This is
a standard approach which was first used in [1]. Hua et al. [6] also employed a
similar approach for exactly solving the set multicover problem, i.e., searching
the minimum k that guarantees a positive ck(Fmc) number of set multicovers. In
this paper, similar to what is done in [9], we will not directly count the number
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of multicovers; instead, we will first transform the multicover problems into the
set or multiset cover problem, and then we search for the minimum k value that
satisfies a positive number of set covers.

2 Two Formulations for Counting the Transformed Set
Covers

We first explain how to transform the set or multiset multicover problem into
the corresponding set cover problem, as follows. For each element i ∈ N with bi

coverage requirement, we replace this element with bi replicated elements. This
means that the universe N with n elements will be augmented to become a new
universe N ′ with at most bn elements. Accordingly, the collection of (multi)sets
Fmc or Fms will be respectively expanded into a new collection of (multi)sets
F ′mc or F ′ms. For example, if bi = 2 and bj = 1, then the element i will be replaced
with element i1 and i2; similarly, the element j will be replaced with the element
j1 or we just say that it remains unchanged. Then the set {i, j} will be replaced
with two new sets {i1, j1} and {i2, j1}. Accordingly, the multiset {i, i, j} will
be replaced with three new multisets {i1, i1, j1}, {i1, i2, j1} and {i2, i2, j1}. In
this case, we can count the ck(F ′mc) number of set covers for the set multicover
problem and can count the ck(F ′ms) number of multiset covers for the multiset
multicover problem.

Now a straightforward formulation for ck(F ′mc) or ck(F ′ms) is to directly apply
the ck(Fsc) formula given in Equation 2. By using amc(X) or ams(X) to denote
the number of sets or multisets in F ′mc or F ′ms that do not cover any element in
X , we can give the similar formulations for counting the transformed (multi)set
covers, by Equations 3 and 4.

ck(F ′mc) =
∑

X⊆N ′

(−1)|X|amc(X)k (3)

ck(F ′ms) =
∑

X⊆N ′

(−1)|X|ams(X)k (4)

However, we can easily see that the straightforward formulations for calcu-
lating ck(F ′mc) and ck(F ′ms) are extraordinarily inefficient in terms of time com-
plexities. For example, Equation 3 immediately yields an O∗(|F ′mc|2bn) time and
polynomial space algorithm. So in this paper, we need to employ another kind
of efficient formulations. This new formulation for the set multicover problem
was first given by Nederlof in [9]. In this section, we extend it to the multiset
multicover problem.

These new formulations are obtained by taking advantage of the symmetry
information behind Equations 3 and 4. By analyzing all the subsets X used in
these two equations, and since the augmented universe N ′ is composed by many
replicated elements for each single element with non-unit coverage requirement,
we can see that there are many symmetric subsets X ⊆ N ′ in the sense that
this family of subsets {X} have the same amc(X) or ams(X) values. From this
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Table 3. Some notations for counting the transformed set covers

Notations Definitions

Y (X) = (Y (1), · · ·, Y (i))1 Y is a nonnegative integer function on the set X ⊆ N .
Y (X) � B(X) For each i ∈ X, we have Y (i) ≤ bi.
F Y

mc (F Y
ms) A new collection of (multi)sets constructed on Fmc (Fms)

where each element i ∈ N is replaced with Y (i) elements. If
Y (i) = 0 then any (multi)set S ∈ Fmc (Fms) which covers
element i will be deleted.

1 We will use Y instead of Y (X) in a clear context.

observation, we can conclude that, in order to lower the time complexity, it is
not necessary to calculate the amc(X) or ams(X) value anew for each subset
X ⊆ N ′. Instead, we can just calculate the amc(X) or ams(X) value once for all
symmetric subsets X ⊆ N ′. Now before delving into more details, we need to
introduce some necessary notations in Table 3.

With these notations, we know that FB−Y
mc and FB−Y

ms respectively denote the
new collection of sets or multisets constructed on either Fmc or Fms where each
element i ∈ N is replaced with bi − Y (i) elements. From this we can see that
for each Y (N) � B(N), FB−Y

mc or FB−Y
ms can group a class of symmetric subsets

X ⊆ N ′ that have the same amc(X) or ams(X) values (c.f. Equations 3 and 4).
For example, if we set Y = (b1, · · ·, bn), then FY

mc = F ′mc and FY
ms = F ′ms.

From the above analysis, we can give the new formulations for calculating
ck(F ′mc) and ck(F ′ms) in Equations 5 and 6. As mentioned earlier, a similar
formulation for the set multicover problem was first used in [9].

ck(F ′mc) =
∑

Y�B

(−1)
∑

1≤i≤n Y (i)(
∏

1≤i≤n

(
bi

Y (i)

)
)(|FB−Y

mc |)k (5)

ck(F ′ms) =
∑

Y�B

(−1)
∑

1≤i≤n Y (i)(
∏

1≤i≤n

(
bi

Y (i)

)
)(|FB−Y

ms |)k (6)

Then the remaining question is how to calculate |FY
mc| (|FY

ms|), i.e., the new num-
ber of sets (multisets) in Fmc (Fms). But before this, we need to give a helping
lemma.(For an example, please refer to the first paragraph of this section.)

Lemma 1. If an element a is replaced with r number of replicated elements,
then the multiset which only contains s number of elements a will be expanded
into

(
r+s−1

r−1

)
number of new multisets.

According to lemma 1, we give the formula for calculating |FY
ms| in Equation 7.

Here S denotes a multiset belonging to Fms and t(S) is a set composed by
different elements in the set S. Also cj denotes the number of times that the
element j appears in a multiset S. If for all j ∈ t(S) we set cj = 1, then we can
obtain a similar formula for calculating |FY

mc| in Equation 8.

|FY
ms| =

∑

S∈Fms

∏

j∈t(S)

(
cj + bj − Y (j) − 1

bj − Y (j) − 1

)
(7)
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|FY
mc| =

∑

S′∈Fmc

∏

j∈S′

(bj − Y (j)) (8)

With these two new formulations, for each Y � B, by directly computing
|FY

ms| or |FY
mc|, we have Theorem 1.

Theorem 1. The multiset multicover or the set multicover problem can be solved
in O∗((b + 1)n|Fms|) (O∗((b + 1)n|Fmc|)) time using polynomial space.

3 Dynamic Programming Based Algorithms For
Calculating All F Y

ms and All F Y
mc

We first give some necessary notations in Table 4. Then we compute all FY
ms and

FY
mc values through the following Algorithm 1 and Algorithm 2, respectively.

Note that the multiplicative factors used in the recursions (steps 16 and 17 in
Algorithm 1) are derived from the helping lemma 1.

Table 4. Some notations for calculating F Y
ms and F Y

mc

Notations Definitions

v(X) = (v(1), · · ·, v(i)) v is a positive integer function on the set X ⊆ N .

v(X) � (c, · · ·, c)|X| For each i ∈ X, we have v(i) ≤ c and there are |X| c.
(v(X), m) We append the m value at the end of the v(X) vector.
XY Replace each element i ∈ X with Y (i) elements.

XY (i)−1 The same as XY except that the element i is replaced with
Y (i) − 1 elements.

c(X1, (N\X)Y ) The number of sets in F Y ′
mc that include all the elements in X.

Here the new collection of sets F Y ′
mc is constructed on Fmc as

follows: each element i ∈ X remains unchanged and each element
i ∈ N\X is replaced with Y (i) elements.

d(XY , (N\X)Y , v(X)) The number of multisets in F Y ′
ms that include all the elements in

X and each i ∈ X appears v(i) times in the multiset. Here F Y ′
ms

is constructed on Fms as follows: each element i ∈ X is replaced
with Y (i) elements and each element j ∈ N\X is replaced with
Y (j) elements.

The time and space complexities for Algorithm 1 are given in Lemma 2.

Lemma 2. For all Y � B, the FY
ms values can be calculated in O(((b + 1)(c +

1))n) time and max{
(

n
m1

)
cm1(b+1)n,

(
n

m2

)
cm2(b+1)n} space where m1 = � c(n+1)

c+1 �
and m2 = � c(n+1)

c+1 �.

Proof. We first analyze the time and space used from Step 1 to Step 8. The
used space can be calculated from the formula

∑n
m=0

(
n
m

)
cm = (c + 1)n. Since

all the d(X1, (N\X)0, v(X)) values can be obtained by scanning Fms, then since
|Fms| = O((c+1)n), this takes only O((c+1)n) time. Second, we analyze the time
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Algorithm 1. Calculating FY
ms using Dynamic Programming

Input: - Fms and the coverage requirement vector B
Output: The F Y

ms values for all Y � B
1: For each X ⊆ N do
2: If X is not empty then
3: For each v(X) � (c, · · ·, c)|X| do
4: Set d(X1, (N\X)0, v(X)) = Fms(X) where Fms(X) is the indicator function

which equals 1 if X ∈ Fms and 0 otherwise
5: End For
6: If X is an empty set, we just set d(∅1, N0, ∅) = 0.
7: Store the d(X1, (N\X)0, v(X)) value into a look-up table.
8: End For
9: For t from n downto 0 do

10: For each X ⊆ N and |X| = t do
11: For each Y (N) � B(N) where Y (N) is from (0, · · ·, 0)n to (b1, · · ·, bn) (using

lexicographic order) do
12: For each v(X) � (c, · · ·, c)|X| (using lexicographic order) do
13: If for some i ∈ X where Y (i) = 0 then d(XY , (N\X)Y , v(X)) = 0
14: If for all i ∈ X we have Y (i) = 1 or if X = ∅ then
15: If for some j ∈ N\X where Y (j) = 1 then d(XY , (N\X)Y , v(X)) =

d(XY , (N\X)Y (j)−1, v(X)) +
∑c

m=1 d((X ∪ {j})Y , (N\(X ∪ {j}))Y , (v(X), m))
16: If for all j ∈ N\X we have Y (j) ≥ 2 then d(XY , (N\X)Y , v(X)) =

d(XY , (N\X)Y (j)−1, v(X)) +
∑c

m=1
m

Y (j)−1d((X ∪ {j})Y (j)−1, (N\(X ∪
{j}))Y , (v(X), m))

17: If for some i ∈ X where Y (i) ≥ 2 then d(XY , (N\X)Y , v(X)) =
Y (i)+v(i)−1

Y (i)−1 · d(XY (i)−1, (N\X)Y , v(X))

18: Store the calculated d(XY , (N\X)Y , v(X)) value into a table
19: End For
20: End For
21: End For
22: Remove all d(ZY , (N\Z)Y , v(Z)) values from the table where |Z| = |X| + 1
23: End For
24: Return all the F Y

ms values and for each Y � B we have F Y
ms = d(∅Y , NY , ∅).

and space used from Step 9 to Step 23. The total time used in these steps can
be computed using the formula O(

∑n
m=0

(
n
m

)
cm(b + 1)n) = O((c + 1)n(b + 1)n).

According to Step 22, the total space used in these steps is max0≤i≤n{
(
n
i

)
ci(b +

1)n}. From this, we can easily obtain the result. �	

When all the FY
ms values have been stored into a table, according to Lemma 2

and Equation 6, we can see that the time and space complexities for calculating
ck(F ′ms) are dominated by Algorithm 1. Thus we have Theorem 2. By comparing
with Theorem 1, we can see that our algorithm can reduce the time complexity
by a polynomial factor. However, this is achieved by paying exponential space.
Thus this result leaves room for further improvement.
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Algorithm 2. Calculating FY
mc using Dynamic Programming

Input: - Fmc and the coverage requirement vector B
Output: The F Y

mc values for all Y � B
1: For each X ⊆ N do
2: If X is not empty, we set c(X1, (N\X)0) = Fmc(X) where Fmc(X) is the indi-

cator function which equals 1 if X ∈ Fmc and 0 otherwise; If X is an empty set,
we set c(∅1, N0) = 0.

3: Store the c(X1, (N\X)0) value into a look-up table.
4: End For
5: For t from n downto 0 do
6: For each X ⊆ N and |X| = t do
7: For each Y (N\X) � B(N\X) where Y (N\X) is from (0, · · ·, 0)|N\X| to

(b1, · · ·, b|N\X|) (using lexicographic order) do
8: for some i ∈ N\X where Y (i) �= 0, we calculate c(X1, (N\X)Y ) using the

recursion c(X1, (N\X)Y ) = c(X1, (N\X)Y (i)−1) + c((X ∪ {i})1, (N\(X ∪ {i}))Y )
and then store it into a table

9: End For
10: End For
11: Remove all c(Z1, (N\Z)Y ) values from the table where |Z| = |X| + 1
12: End For
13: Return all the F Y

mc values and for each Y � B we have F Y
mc = c(∅1, NY ).

Theorem 2. The multiset multicover problem can be exactly solved in O(((b +
1)(c + 1))n) time using max{

(
n

m1

)
cm1(b + 1)n,

(
n

m2

)
cm2(b + 1)n} space where

m1 = � c(n+1)
c+1 � and m2 = � c(n+1)

c+1 �.

The time and space complexities for Algorithm 2 are given in Lemma 3.

Lemma 3. For all Y � B, the FY
mc values can be calculated in O((b+2)n) time

using max{
(

n
m1

)
(b + 1)n−m1 ,

(
n

m2

)
(b + 1)n−m2} space where m1 = �n+1

b+2 � and
m2 = �n+1

b+2 �.

Proof. First, both the time and space used from Step 1 to Step 4 equal O(2n).
Then we analyze the time and space complexities of Step 5 to Step 12. The total
time used for these steps can be calculated through the formula

∑n
m=0

(
n
m

)
(b +

1)n−m = (b + 2)n. Due to Step 11, the total space used for these steps is
max0≤i≤n{

(
n
i

)
(b + 1)n−i)}. Summing up the time and space used for these two

parts, we can obtain the result. �	

Now similar to Theorem 2, we have Theorem 3.

Theorem 3. The set multicover problem can be solved in O((b+2)n) time using
max{

(
n

m1

)
(b + 1)n−m1 ,

(
n

m2

)
(b + 1)n−m2} space where m1 = �n+1

b+2 � and m2 =
�n+1

b+2 �.
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4 An Exact Algorithm for Set or Multiset Multicover
with Multiplicity Constraints Problem

In this section, we turn our focus to the SMC or MSMC with multiplicity
constraints problem and give an exact algorithm called EMCM. Here we use
the multiplicity constraints vector D = (dS) to indicate the maximum num-
ber of times that each multiset (set) S ∈ Fms (Fmc) can be chosen and d =
maxS∈Fms (Fmc)(dS).

Algorithm 3. EMCM : Exact Algorithm for Set or Multiset Multicover with
Multiplicity Constraints Problem
Input: Fms or Fmc, the vector (dS) and the coverage requirement vector B
Output: The minimum number of (multi)sets that satisfy B and respect (dS)
1: For each (multi)set Si ∈ Fms (Fmc) where 1 ≤ i ≤ |Fms| (|Fmc|) we define O((b +

1)n) vertices with labels from (Si, 0, · · ·, 0) to (Si, b, · · ·, b); We call all the vertices
constructed on Si as level i vertices.

2: Set an initial vertex with label (S0, 0, · · ·, 0) and we call this vertex as level 0 vertex.

3: For i = 0 to |Fms| − 1 (|Fmc| − 1) do
4: For j = 0 to dSi+1 do
5: For each vertex (Si, y1, · · ·, yn) with non-empty incoming edges (except the

level 0 vertex) we add the (j+1)th directed edge with edge weight j to (Si+1, y1 +
j ∗ z1, · · ·, yn + j ∗ zn). Here zi means (multi)set Si+1 contains zi element xi. Note
that if yi + j ∗ zi ≥ b then we just set yi + j ∗ zi = b.

6: End For
7: End For
8: Find a shortest path from the vertex (S0, 0, ···, 0) to (S|Fms|, b, ···, b) or ((S|Fmc|, b, ··

·, b)). If there does not exist such a path then we know we can not find a valid
multicover, otherwise, just return the sum of the weights and the corresponding
copies of the (multi)sets on the directed shorted path.

Theorem 4. The EMCM algorithm can solve the MSMC or SMC with multi-
plicity constraints problem in O((b + 1)n|Fms|) (O((b + 1)n|Fmc|)) time using
O((b + 1)n|Fms|) (O((b + 1)n|Fmc|)) space.

Proof. First, we know that there are O((b+1)n|Fms|) (O((b+1)n|Fmc|)) vertices
and O((b+1)n|Fms|(d+1)) (O((b+1)n|Fmc|(d+1))) directed edges. Second, since
the constructed graph is a sparse directed acyclic graph, by using the Dijkstra’s
algorithm together with topological sorting, we can easily obtain the result. �	

Remark: Observe that, for the SMC or the MSMC problem, each set or multiset
in Fmc or Fms can be used at most b times, the proposed EMCM algorithm can
also be used as a constructive algorithm for these two problems.
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5 Future Work

The time and space complexities of Algorithm 1 which is to calculate all FY
ms

values are still very high. It should be possible to devise a more efficient algorithm
which uses O((b + c + 1)n) time. This could be done by computing much fewer
d(XY , (N\X)Y , v(X)) interim values. In addition, it should be very interesting
to design an exact multiset multicover algorithm with O∗((b + 1)n) time—that
is, the time is independent of the number of times that each element appears in
a multiset.

We need to emphasize that counting the number of transformed set covers for
multiset multicover, i.e., the ck(F ′ms) value, is different from directly counting the
number of multiset multicovers, i.e., the ck(Fms) value. Although there is now an
exact algorithm for calculating ck(Fms) [8], the algorithm requires exponential
space. So it is worthwhile to try to devise polynomial space efficient algorithms
for computing ck(Fms).

It would be worthwhile also to apply our results to some practical scenar-
ios, such as the minimum length wireless link scheduling problem [7] and the
minimum cost cell planning problem [12].
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Abstract. Given m unit disks and n points in the plane, the discrete
unit disk cover problem is to select a minimum subset of the disks to
cover the points. This problem is NP-hard [11] and the best previous
practical solution is a 38-approximation algorithm by Carmi et al. [4].
We first consider the line-separable discrete unit disk cover problem (the
set of disk centres can be separated from the set of points by a line) for
which we present an O(m2n)-time algorithm that finds an exact solu-
tion. Combining our line-separable algorithm with techniques from the
algorithm of Carmi et al. [4] results in an O(m2n4) time 22-approximate
solution to the discrete unit disk cover problem.

1 Introduction

Recent interest in specific geometric set cover problems is partly motivated by ap-
plications in wireless networking. In particular, when wireless clients and servers
are modelled as points in the plane and the range of wireless transmission is
assumed to be constant (say one unit), the resulting region of wireless communi-
cation is a disk of unit radius centred on the point representing the corresponding
wireless transmitting device. Under this model, sender a successfully transmits
a wireless message to receiver b if and only if point b is covered by the unit disk
centred at point a. This model applies more generally to a variety of facility
location problems for which the Euclidean distance between clients and facilities
cannot exceed a given radius, and clients and candidate facility locations are rep-
resented by discrete sets of points. Examples include (1) selecting locations for
wireless servers (e.g., gateways) from a set of candidate locations to cover a set
of wireless clients, (2) positioning a fleet of water bombers at airports such that
every active forest fire is within a given maximum distance of a water bomber,
(3) selecting a set of weather radar antennae to cover a set of cities, and (4)
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selecting locations for anti-ballistic defenses from a set of candidate locations to
cover strategic sites. These problems can be modelled by the discrete unit disk
cover problem (DUDC), whose definition is: Given sets P of m points and Q of
n points in the plane (candidate facilities and clients, respectively), find a set
P ′ ⊆ P (facilities) of minimum cardinality such that Disk(P ′) covers Q, where
Disk(A) denotes the set of unit disks centred on points in set A. In this work,
we consider the line-separable discrete unit disk cover (LSDUDC), where P and
Q are separated by a line l.

The DUDC problem is NP-hard [11]. In a recent result, Carmi et al. [4]
describe a polynomial-time 38-approximate solution, improving on earlier 108-
approximate [6] and 72-approximate solutions [16]. We present an O(m2n)-time
algorithm that returns an exact solution to the LSDUDC problem, as well as
a thorough proof of correctness of the technique. By combining the LSDUDC
algorithm with techniques from the algorithm of Carmi et al. [4], we present
a 22-approximation algorithm to the DUDC problem, improving on the best
previous practical polynomial-time approximation factor of 38.

1.1 Related Work

Line-Separable Discrete Unit Disk Cover. A solution to the LSDUDC prob-
lem was independently discovered and published by [3, Lemma 1], where they pro-
pose a dynamic programming algorithm with a time bound of O(m2n) but whose
correctness is not straightforward nor is it formally argued. This paper presents an
alternative algorithm together with a proof of correctness. Both algorithms follow
natural approaches, yet a full proof of correctness is not immediate.

ε-nets for Geometric Hitting Problems. Using ε-nets, Mustafa and Ray
[15,14] have recently presented a (1 + ε)-approximation to the DUDC problem.
Their algorithm runs in O(m2(c/ε)2+1n) time, where c ≤ 4γ [14]. Their γ value
can be bounded from above by 2

√
2 [8,12]. The fastest operation of this algo-

rithm is obtained by setting ε = 1 for a 2-approximation, and this will run in
O(m2·(8

√
2)2+1n) = O(m257n) time in the worst case. Clearly, this algorithm will

not be practical for large values of m.

Minimum Geometric Disk Cover. In the minimum geometric disk cover
problem, the input consists of a set of points in the plane, and the problem is to find
a set of unit disks of minimum cardinality whose union covers the points. Unlike
our problem, disk centres are not constrained to be selected from a given discrete
set, but rather may be centred at arbitrary points in the plane. Again, this prob-
lem is NP-hard [7,17] and has a PTAS solution [9]. Of course the problem can be
generalized further: see [5] for a discussion of geometric set cover problems.

Discrete k-Centre. Also related is the discrete Euclidean k-centre problem:
given a set P of m points in the plane, a set Q of n points in the plane, and
an integer k, find a set of k disks centred on points in P whose union covers Q
such that the radius of the largest disk is minimized. Observe that set Q has a
discrete unit disk cover consisting of k disks centred on points in P if and only
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if Q has a discrete k-centre centred on points in P with radius at most one.
This problem is NP-hard if k is an input variable [2]. When k is fixed, Hwang
et al. [10] give a mO(

√
k)-time algorithm, and Agarwal and Procopiuc [1] give an

mO(k1−1/d)-time algorithm for points in Rd.

2 Overview of the Algorithm

In this section we describe a polynomial-time algorithm for the line-separable
discrete unit disk cover (LSDUDC) problem and prove its correctness. Details
of the algorithm and its running time will be discussed in Section 3. Recall that
we have two sets P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qn} of points in
the plane that are separated by a line l. We want to find a subset P ′ ⊆ P of
minimum cardinality such that all points of Q are covered by unit disks centred
at the points of P ′. An instance of the problem is shown in Figure 1. Without
loss of generality we assume that l is a horizontal line and points of P are above
l. Let di denote the unit disk that is centred at pi, for i ∈ {1, 2, . . . ,m}, and
let D denote the set of these disks. We use pi and di interchangeably, e.g., our
solution can be considered both as a set of points (a subset of P ) and as a set
of disks. Further, when we discuss the intersection of a line with a disk, we are
referring to the intersection of the line with the boundary of the disk.

d1

d2

p1 p3

q3

q2

q1

p2

p4
p5

d4 d5d3

l

q4

q5

q6

q7

q8 q9

Fig. 1. An instance of the line-separable discrete unit disk cover problem

During the execution of our algorithm, it may be determined that a disk d ∈ D
should be added to the solution or that it is not relevant for the remainder of
the computation of the solution set. When this occurs, we remove disk d from
the problem. Similarly, we remove a point q ∈ Q if this point is not relevant
for the remainder of the computation (i.e., point q is covered by a disk in the
partial solution being constructed). Our algorithm relies on the following three
observations:

1. If a disk d1 covers no points from Q, we remove it.
2. If a disk d1 is dominated by a disk d2, then we can remove d1 from the

problem instance. Disk d2 dominates d1 if it covers all points of Q covered
by d1. If two disks cover the same subset of points from Q, we designate the
dominating disk as that whose left intersection with l is rightmost.



48 F. Claude et al.

3. If a point q1 ∈ Q is only covered by a disk d1, then d1 must be part of the
solution. We also remove d1 together with all points of Q covered by d1.

These three observations give us three Simplification rules. The idea is to apply
these rules to as many disks as possible and simplify the problem. For example,
consider the problem instance shown in Figure 1. Initially no disk dominates
another, thus we cannot apply the second rule. Disk d3 is the only disk that
covers q4 and, similarly, disk d5 is the only disk that covers q9. Thus we add
d3 and d5 to the (initially empty) solution and remove them together with the
points that are covered by them, namely {q2, q3, q4, q5, q6, q7, q8, q9}. Now disk d4
covers no point and can be removed. There is only one remaining point (q1) and
it is covered by the two remaining disks (d1 and d2). According to our convention,
d1 is dominated by d2 and is removed. Now d2 is the only disk covering q1. We
add d2 to the solution and remove d2 and q1. No disks or points remain and
we are done. Thus the Simplification rules suffice for this instance and give
an optimal solution {d2, d3, d5}. This example also illustrates that an optimal
solution is not necessarily unique, as {d1, d3, d5} is also an optimal solution. In
general, however, these Simplification rules do not suffice to obtain an optimal
solution.Referring to Fig. 1, if given only disks d1, d2 and d3 and points q1, q2
and q3, then no point q ∈ Q is covered by only one disk and no disk dominates
any other one.

We augment the Simplification rules with a simple greedy step to solve the
problem. We rename the disks so that the left intersection of di with l is to the
left of the left intersection of di+1 with l. We say that di precedes di+1 in the
ordering (the disks in Figure 1 follow this ordering). This combined algorithm,
Greedy, works by first applying the Simplification rules as many times as
possible. Next we find the first remaining disk in the left-to-right order, say
dj . We add dj to our solution and remove dj from D and all points covered
by dj from Q. We apply the Simplification rules followed by the greedy step
repeatedly until all disks have been removed. Since we remove at least one disk
at each greedy step, the algorithm terminates after at most m iterations. See
Algorithm 1 for the corresponding pseudocode.

Algorithm 1. Greedy (D,Q)
D ←sortLeftToRight(D) //sort in increasing order of left intersection with l
S ← ∅
while D �= ∅ do do

Simplification (D, Q, S) //Simplification possibly modifies D, Q and S
d� ← leftmost disk in D
S ← S ∪ {d�}
D ← D \ d�

Q′ ← {q ∈ Q | q is contained in d�}
Q ← Q \ Q′

end while
return S
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2.1 Correctness of Greedy

We now prove the correctness of the algorithm by proving that Greedy gives a
minimum LSDUDC solution. Assume for the sake of contradiction that there is
an algorithm Opt that gives a cover with fewer disks than Greedy. Let d1 be
the first disk in the ordering that is selected by Greedy but not by Opt. Let C
be the set of points in Q that are covered by d1 (we consider only the remaining
points and disks, i.e., those that have not been removed by the algorithm). First
assume that C is covered by a single disk d0 in the solution of Opt. Since d1
is not removed in the Simplification step, it is not dominated by any other
disk. Thus the only possibility is that d0 and d1 cover exactly the same set of
(remaining) points (i.e., set C) and d0 precedes d1 in the ordering. In this case,
we replace d0 with d1 in Opt, pushing the first difference between the solution
of Greedy and Opt to the right. Otherwise, C is covered by at least two disks
in the solution of Opt. Let d2 and d3 be two disks in the solution of Opt such
that each of them cover a strict subset of C. Without loss of generality assume
that d2 precedes d3 in the ordering. We prove that d1 ∪ d3 covers all points of Q
covered by d2 ∪ d3.

l

q

�1 r2

x

r3r1�2 �3

d1

d2

d3

p1

p2

p3

Fig. 2. Proof of correctness of Greedy. If d1 is the first disk selected by Greedy and
not by Opt, then Opt must have d2 and d3 in its solution.

Let �i and ri denote the respective left and right intersection points of the
boundary of the unit disk di with the line l, for i ∈ {1, 2, 3}. If d2 precedes d1 in
the ordering, d1 dominates d2 (otherwise, Greedy would select d2 and not d1
at this step). In this case we replace d2 with d1 in Opt, pushing the difference
between the two algorithms to the right. Hence we are left with the case in which
d1 precedes d2 and d2 precedes d3 in the ordering. Thus the points are ordered
�1, �2, �3, r1, r2, r3 along line l (see Figure 2). Note that we cannot have a pair
of disks nested below l, otherwise the nested disk is dominated by the other.
Furthermore, we know that (d1 ∩ d3) \ d2 
= ∅. Let R = d2 \ d1. It suffices to
prove that R is completely contained in d3.

Proposition 1. Region R is contained in disk d3.

Proof. Since points r1 and r2 both lie between �3 and r3 on line l, both points
r1 and r2 are in disk d3. Let x denote the rightmost point of the intersection of
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the boundaries of disks d1 and d2. Observe that x lies on the boundary of region
(d1 ∩ d3) \ d2. Consequently, x ∈ d3. Since the boundary of R consists of arcs of
unit disks joining the points x, r1, and r2, it follows that R is contained in the
1-hull of {x, r1, r2}, where the 1-hull of {x, r1, r2} is the intersection of all unit
disks that contain {x, r1, r2}, denoted 1-H({x, r1, r2}). Since {x, r1, r2} ⊆ d3, it
follows that R ⊆ 1-H({x, r1, r2}) ⊆ d3. �	

Thus by removing d2 from the solution of Opt and adding d1 to it we will
have a feasible solution with the same number of disks. This pushes the first
difference between the solution of Greedy and Opt to the right. By continuing
this argument we can prove that the solution returned by Greedy uses the same
number of disks as Opt and therefore Greedy is an optimal algorithm.

3 Implementation Details and Analysis

We construct a graph G = (V,E), where each node vi ∈ V corresponds to
disk di for i ∈ {1, . . . ,m} (recall that di is the ith disk sorted according to its
left intersection with l). We also associate a counter cvi to each node vi that
stores the number of points in Q contained in disk di that have not yet been
covered by the algorithm. Similarly, we associate with each edge e = (vi1 , vi2)
a counter ce that represents the number of points contained in di1 ∩ di2 . This
graph can be constructed in O(m2n) time by checking which points are contained
in the intersection of each pair of disks, adding the corresponding edges, and
updating the node and edge counters. The algorithm Greedy-Graph starts by
traversing the nodes in order v1, v2, . . . , vm. At each node vi, there are three
possible cases: (1) The counter cvi is 0; in this case di does not contain any
points or is dominated by a set of disks that has already been added to the
solution. This disk will not be in the solution set, so we can ignore this node and
continue with the next one. This is analogous to the first Simplification rule.
(2) There is an edge e = (vi, vk), k > i, such that ce = cvi ; in this case we know
that di is dominated by disk dk. Again, we ignore this node and continue. This
corresponds to an application of the second Simplification rule. (3) Every edge
e = (vi, vk), k > i, satisfies ce < cvi ; that means that disk di is not dominated by
any disk to its right. In this case we add di to the solution set and we eliminate
all remaining points contained by this disk from the graph. We continue with
the next node in the graph. Note that this is an application of the third rule of
Simplification and the greedy step.

In order to identify the appropriate case above we traverse the adjacency
list of each node we visit. This requires O(m) time in the worst case. When
a disk is added to the solution in the third case, all points contained in the
disk must be eliminated. Consider the elimination of a point p in disk di. Let
N(vi) = {vk | c(vi,vk) > 0}. For all vk ∈ N(vi), we decrease cvk

and c(vi,vk) by
one. In addition, for each pair of elements {vk1 , vk2} ⊆ N(vi), we check whether
the point is contained by both disks, and if this is case we decrease c(vk1 ,vk2 )

by one. This can take at most O(m2) time per point, thus the time required for
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eliminating all points is bounded by O(m2n) time. Since the time required to
construct the graph is O(m2n), the overall process takes O(m2n) time.

3.1 Correctness of Greedy-Graph

We now demonstrate that the Greedy-Graph algorithm is optimal by showing
that the set of disks returned by this algorithm has the same cardinality as that
returned by the Greedy algorithm presented in Section 2.

Lemma 1. If S is the disk cover returned by Greedy-Graph, and S′ is the
disk cover returned by Greedy, then |S| = |S′|.

Proof. Assume for the sake of contradiction that |S| 
= |S′|. Recall that Greedy

is optimal, therefore |S′| and |S| can only differ if |S| > |S′|. Let d1 be the
first disk in the left-to-right order that is present in the solution of Greedy-

Graph, and not in the solution of Greedy. At some point during its execution,
Greedy must have decided to discard disk di. The only mechanisms in Greedy

for discarding disks are the first and second Simplification rules. Recall that
the first rule removes a disk if it contains no points, and the second rule discards
a disk if it is dominated by some other disk. We now show that for any of the
following possible events, Greedy-Graph will discard the same disk d1.

– Empty - Suppose d1 contains no points. In this case, Greedy-Graph will
find that cv1 = 0. Therefore, d1 will be discarded by Case 1, in contradiction
to our assumption.

– Dominance (right) - Now suppose d1 is dominated by some disk to the
right, dr. In this case, we will encounter d1 first during our walk, and we will
have that cv1 = c(v1,vr). Therefore, Greedy-Graph will remove d1 by Rule
2, in contradiction to our assumption.

– Dominance (left) - Suppose d1 is dominated by some disk to the left, d�.
In this case, we will have encountered d� first during our walk. There are
two possible cases in this scenario:
(i) If cv�

> c(v�,vk) for all dk, d� is added to S by Rule 3 of Greedy-Graph.
All points covered by d� are removed, leaving no points covered by d1.
This is now an instance of the Empty case.

(ii) Otherwise, cv�
= c(v�,vk) for some dk. This means that d� is dominated by

dk. Greedy-Graph would discard d� by Rule 3. By transitivity, dk also
dominates d1. If dk is to the right of d1, then this is now an instance of
Dominance (right), and thus we reach a contradiction. If dk is to the left
of d1, then this is again an instance of Dominance (left), so we apply this
same argument recursively. The recursion stops either when we reach an
instance of Dominance (right) or case (i) of Dominance (left). �	

We have shown that the solution of Greedy-Graph has the same cardinality as
the solution of Greedy, and since Greedy is optimal, so is Greedy-Graph.

Theorem 1. Given sets P of m points and Q of n points in the plane, where
P and Q can be separated by a line l, LSDUDC can be solved in O(m2n) time.
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4 Approximate Discrete Unit Disk Cover

We now show that our algorithm for the line-separable discrete unit disk cover
(LSDUDC) problem leads to a 22-approximation algorithm for the discrete unit
disk cover (DUDC) problem. The approximation algorithm is based on a suitable
adaptation of the 38-approximation algorithm of Carmi et al. [4].

For simplicity, we use the notation and assumptions of [4]. In that work, the
DUDC problem is supported by a variant of the LSDUDC problem: suppose are
given a set of disks D = L ∪ U . The disks in U are centred above a line l while
the disks in L are centred below l. We are also given a set of points Q covered
by U . The goal is to obtain the subset G of D of smallest cardinality such that
every point in Q is covered by a disk in G.

Note that our line-separable algorithm does not immediately result in a
straightforward improvement to the approximation factor of the algorithm of
Carmi et al. Their proof of correctness uses the fact that their 2-approximation
to the LSDUDC problem consists of disks forming the lower boundary of U ,
where the lower boundary is the union of all disk boundary arc segments below
l not contained in other disks. This is not necessarily the case in our solution.

Instead, we first solve the LSDUDC problem optimally using our algorithm
on the set of disks U to obtain a disk set H and then use the greedy minimum
assisted cover algorithm (see Carmi et al. [4, §2] for the formal definition) over
the sets H and L to obtain an improved solution E. Now we wish to compare
the cardinality of E with that of the global minimum disk cover G.

Consider the upper and lower components of the solutions E and G, i.e.,
EU = E ∩ U , EL = E ∩ L, GU = G ∩ U , and GL = G ∩ L. Note that |G| ≤ |E|
since G is the global minimum. Similarly, since E is the minimum assisted cover
based on H , it follows that |E| = |EU |+ |EL| ≤ |H/GL|+ |GL|, where H/GL is
the smallest subset of H that forms an assisted cover with GL.

Now we will show that 2|GU | ≥ |H/GL|. Given a disk d in GU , there are two
cases: either d lies above the lower boundary of H/GL, i.e., d is contained in the
union of all the disks in H/GL, or d contains one or more arc segments of the
lower boundary of H/GL. In the first case, Carmi et al. show that at most two
disks in H/GL suffice to cover d and, hence, for every such disk in the global
optimum solution G there are most two disks in H/GL. In the second case, let V
denote the subset of disks that have lower boundary segments that are contained
in d. The set of arc segments of the disks in V consists, from left to right, of a
partially-covered arc segment of the lower boundary, zero or more fully-covered
arc segments, and a partially-covered arc segment. Let W denote the disks whose
arcs are partially covered together with d. W dominates V and hence there is
at most one arc of the lower boundary fully contained in d; otherwise replacing
V with W results in a cover of smaller cardinality, deriving a contradiction,
since V ⊂ H , and H is the optimal LSDUDC solution1. Furthermore, observe
that the partially-covered arc disks must contain points not contained in the
fully-covered disk; otherwise they can also be eliminated while reducing the

1 Recall that all disks in V and U are centred above l, and all points in Q are below l.
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cardinality of the cover. As those disks contain other points, each of the disks is
partially covered by at least one other disk in G. We arbitrarily associate each
disk covered more than once to its leftmost disk in G. Thus, of the (at most)
three disks in V , at most two are associated to d. In sum, in either case each
disk in GU has at most two associated disks in H/GL from which it follows that
2|GU | ≥ |H/GL|. Hence, 2|G| = 2 (|GU | + |GL|) ≥ 2|GU | + |GL| ≥ |H/GL| +
|GL| ≥ |EU |+|EL| = |E|, which gives the approximation factor of two as desired.
Carmi et al. [4] prove that any disk can be used in up to eight applications of
the assisted LSDUDC algorithm, for which they have a 4-approximation. These
operations, followed by a 6-approximation for any remaining disks results in
an 8 × 4 + 6 = 38-approximation for the general DUDC problem. As we have
shown that our technique provides a 2-approximation for the assisted LSDUDC
problem, we now have an approximation ratio of 8 × 2 + 6 = 22 for DUDC.

4.1 Algorithm Analysis

There are essentially two main components to the algorithm for solving DUDC
by Carmi et al. [4]. First, they apply a grid of size 3/2×3/2 to the input data. Our
LSDUDC algorithm supplemented by their assisting disk technique is run on all
grid lines. Note that the number of relevant grid lines is O(n). Our technique runs
in O(m2n), and the assisting disk operation is easily implementable in O(mn),
so the running time of the first component is dominated by our step.

The second major component to their technique is finding the 6-approximation
for the DUDC of all disk centres and points contained in each of the 3/2 × 3/2
squares of the grid. Their technique is based on the application of a subset of nine
properties depending on where the disk centres are located. First, they determine
whether a solution exists using one or two centres by brute force, which is easily
done in O(m2n) time. The determination of which properties may be applied can
be done in O(m) time, and there are only two expensive steps that may be used
in any of the procedures, each of which may only be used a constant number of
times. First is the assisted LSDUDC technique, whose running time is O(m2n),
as we just discussed. The second technique that may be required is to determine
the optimal disk cover of a set of points using centres contained in one of the
1/2 × 1/2 squares, which can be solved in O(m2n4) time using the technique
presented in [13]. The centre of each disk can only be contained in one square,
and so this operation is never performed twice for any given disk. Therefore,
the complete DUDC algorithm achieves worst-case performance when all of the
disk centres in the plane are confined to a single 1/2 × 1/2 square, so that the
O(m2n4) operation is performed over the entire data set.

5 Conclusions

This paper presents a polynomial-time algorithm that returns an exact solution
to the LSDUDC problem, as well as a proof of correctness of the approach. This
algorithm for the line-separable problem allows us to improve the approximation
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algorithm of Carmi et al. [4], resulting in a 22-approximate solution to the general
DUDC problem, which runs in O(m2n4) time in the worst case.

Theorem 2. Given sets P of m points and Q of n points in the plane, we can
compute a 22-approximation of the DUDC problem in O(m2n4) time in the worst
case.
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Abstract. The submodular system k-partition problem is a problem of
partitioning a given finite set V into k non-empty subsets V1, V2, . . . , Vk

so that
∑k

i=1 f(Vi) is minimized where f is a non-negative submodular
function on V , and k is a fixed integer. This problem contains the hyper-
graph k-cut problem. In this paper, we design the first exact algorithm
for k = 3 and approximation algorithms for k ≥ 4. We also analyze the
approximation factor for the hypergraph k-cut problem.

1 Introduction

A set function f : 2V → � on a finite set V is called submodular if it satisfies
f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for every pair of sets X, Y ⊆ V [1,2].
Moreover, f is called symmetric if f(X) = f(V \ X) for every X ⊆ V , and
non-negative if f(X) ≥ 0 for every X ⊆ V . A submodular system is defined as a
pair (V, f) of a finite set V and a submodular function f on V .

Let k be an integer at least 2. A k-partition Pk of (V, f) is defined as a partition
of V into k non-empty sets V1, V2, . . . , Vk ⊆ V , i.e., Vi 
= ∅ for i ∈ {1, 2, . . . , k},
Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ k, and ∪k

i=1Vi = V . We denote the partition by
[V1, V2, . . . , Vk]. The cost of Pk, denoted by f(Pk) or f(V1, V2, . . . , Vk), is defined
as

∑k
i=1 f(Vi). In this paper, we consider the submodular system k-partition

problem, that asks to find a minimum cost k-partition of given submodular sys-
tem (V, f). Throughout this paper, it is supposed that f is non-negative and
given as an oracle which returns f(X) for X ⊆ V .

Submodularity often plays an essential role in studies on the connectivity
of graphs. In fact, the submodular system k-partition problem generalizes the
graph k-cut problem and hypergraph k-cut problem. For a graph or hypergraph
G = (V, E) with weight w : E → �, a k-cut is defined as a set of edges whose
removal divides G into at least k connected components. The k-cut problem asks
to find a minimum weight k-cut of the given graph or hypergraph.
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For a graph G and X ⊆ V , define f(X) as
∑

e∈δ(X) w(e) where δ(X) denotes
the set of edges joining vertices in X and V \ X . It is known that this set
function is symmetric and submodular. For a k-partition [V1, V2, . . . , Vk] of V ,∑k

i=1 f(Vi) is exactly twice the weight of a k-cut disconnecting V1, V2, . . . , Vk

each other. Hence the k-cut problem of undirected graphs can be formulated as
the k-partition problem with symmetric submodular systems.

For hypergraphs, the cut function defined above does not formulate the k-cut
problem as the submodular k-partition problem. However, by defining submod-
ular functions appropriately, it is possible to formulate the hypergraph k-cut
problem as the submodular system k-partition problem (see Section 2). Note
that the submodular functions used for this is not symmetric.

The graph k-cut problem is one of the fundamental problems in combina-
torial optimization. It is closely related to the reliability of networks, and has
many applications, for example, to the traveling salesperson problem, VLSI de-
sign, and evolutionary tree construction [5,12]. Goldschmidt and Hochbaum [7]
showed that the problem is NP-hard when k is not fixed. For fixed k, they pre-
sented a polynomial-time algorithm. Its running time is O(nk2

T (n, m)) where
T (n, m) is time for computing max-flow in a graph consisting of n vertices and m
edges. Note that T (n, m) is known to be O(mn log(n2/m)) [6]. After their work,
many polynomial-time algorithms for fixed k are obtained. An algorithm due to
Kamidoi, Yoshida and Nagamochi [9] runs in O(n4k/(1−1.71/

√
k)−34T (n, m)). An

algorithm due to Xiao [17] runs in O(n4k−log k). An algorithm due to Thorup [14]
runs in Õ(n2k). In addition, Karger and Stein [10] gave a random algorithm run-
ning in O(n2(k−1) log3 n).

For the hypergraph k-cut problem, Xiao [16] designed a polynomial-time al-
gorithm to the case of k = 3. However, no polynomial-time algorithm is known
when k is a fixed integer larger than 3. With regards to approximation algo-
rithms, Zhao, Nagamochi and Ibaraki [18] gave an algorithm achieving the ap-
proximation factor (1 − 2

k )min{k, dmax} with the result due to Xiao [16], where
dmax denotes the maximum size of hyperedges. Moreover, with the reduction to
the terminal k-vertex cut problem in bipartite graphs (see Section 2), we can
apply the LP-rounding algorithm due to Garg, Vazirani and Yannakakis [4]. It
achieves the approximation factor (2 − 2

k ).
Little is known about the submodular k-partition problem. Queyranne [13]

gave a (2 − 2
k )-approximation algorithm for the problem with symmetric

submodular functions. Zhao, Nagamochi and Ibaraki [18] presented a (k −
1)-approximation algorithm for the problem with non-negative submodular
functions.

Besides the reduction from the hypergraph k-cut problem to the submodular
system k-partition problem and the terminal k-vertex cut problem, our contri-
bution is to design algorithms for the submodular system k-partition problem.
For k = 3, we present a polynomial-time algorithm for k = 3. For k ≥ 4, we give
approximation algorithms. We also discuss the approximation factor of the algo-
rithms for the hypergraph k-cut problem. Table 1 summarizes these approxima-
tion factors. Our algorithms perform well especially for small k. For hypergraph
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Table 1. Comparison of approximation factors by the previous best and our algorithms

hypergraph k-cut problem submodular system k-partition problem

k = 3 1 (Xiao [16])
2 (Zhao et al. [18])
1 (This paper)

k = 4
1.5 (Garg et al. [4]) 3 (Zhao et al. [18])
4/3 (This paper) 1.5 (This paper)

k = 5
1.6 (Garg et al. [4]) 4 (Zhao et al. [18])
5/3 (This paper) 2 (This paper)

k ≥ 6
2 − 2/k (Garg et al. [4]) k − 1 (Zhao et al. [18])

k/2 − 1 (This paper) k + 1 − 2
√

k − 1 (This paper)

k-cut problem with k ≥ 5, our algorithms present worse approximation factor
than the algorithm due to Garg, Vazirani and Yannakakis [4] for the terminal
k-vertex cut problem. However, our algorithms have an advantage since they do
not need to solve the linear programming problems.

The key of our algorithms is uncrossing operation, which has been applied
to many problems related to submodular functions. In this paper, we prove a
theorem on uncrossing k-partitions and 2-partitions satisfying some conditions
(Theorem 4). This theorem is originally proven by Xiao [16] for hypergraphs.
We reveal in this paper that his result essentially relies only on submodularity
of the cut function in hypergraphs.

The rest of this paper is organized as follows. Section 2 introduces notations. It
also describes the reduction of the hypergraph k-cut problem to the terminal k-
vertex cut problem in bipartite graphs, and shows that the submodular system
k-partition problem contains the hypergraph k-cut problem. Section 3 proves
several properties of k-partitions. Section 4 gives an approximation algorithm for
the submodular system 4-partition problem. It also analyzes the approximation
factor of the algorithm for the hypergraph 4-cut problem. Several proofs and the
detail on our result for k ≥ 5 are not included in this article due to the space
limitation. They will appear in the full version of this paper.

2 Preliminaries

2.1 Notations

In this paper, � and �+ stand for the sets of reals and non-negative reals,
respectively. For a submodular system (V, f), we denote |V | by n. Each v ∈ V
is called a vertex. The complement of a subset X of V is denoted by X (i.e.,
X = V \ X).

Let [V1, V2, . . . , Vk] be a k-partition of a submodular system (V, f). Each Vi,
i ∈ {1, 2, . . . , k} is called a component of the partition. A k-partition is called
h-size if its all components contain at least h vertices. We note that a minimum
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h-size k-partition stands for a partition of minimum cost among all the h-size
k-partitions, and an h-size minimum k-partition stands for an h-size partition
of minimum cost among all the k-partitions.

For U ⊂ V , define a set function fU on U such that fU (X) = f(X) for
all X ⊆ U . Notice that if f is submodular, then fU is submodular. We call a
submodular system (U, fU ) subsystem of (V, f) induced by U .

For U ⊂ V , define VU as a set obtained from V by replacing U with a new
single vertex u (i.e., VU = (V \U) ∪ {u}). Moreover, define fU as a set function
on VU such that for every X ⊆ VU , fU (X) = f(X) if u 
∈ X and fU (X) =
f((X \ {u})∪U) otherwise. It is easy to check that if f is submodular, then fU

is submodular. We call this operation shrinking U into u.
We say that a 2-partition [X, X] crosses a k-partition [Y1, Y2, . . . , Yk] if both

X \ Yi and X \ Yi are non-empty for all i ∈ {1, 2, . . . , k}. This means that, if
[X, X] does not cross [Y1, Y2, . . . , Yk], then there exists some i ∈ {1, 2, . . . , k}
such that X ⊆ Yi or X ⊆ Yi. If k = 2, then [X, X] crosses [Y1, Y2] whenever
none of X ∩ Y1, X ∩ Y2, X ∩ Y1 and X ∩ Y2 is non-empty.

Suppose that a k-partition [V1, V2, . . . , Vk] and a 2-partition [X, X] of (V, f)
satisfies X ⊆ Vi with some i ∈ {1, 2, . . . , k}. Then (VX , fX) has a k-partition
[V ′1 , V ′2 , . . . , V ′k] that satisfies fX(V ′1 , V ′2 , . . . , V ′k) = f(V1, V2, . . . , Vk); I.e, each
k-partition of (V, f) whose some component contains X corresponds to a k-
partition of (VX , fX). The contrary also holds. Throughout this paper, we do not
distinguish such a k-partition of (V, f) with the corresponding one of (VX , fX).

For a finite set V , a hyperedge is defined as a subset of V . A hyper-
graph is defined as a pair (V, E) of V and a set E of hyperedges on V .
Let U1, U2, . . . , U� be disjoint subsets of V . Then δ(U1, U2, . . . , U�) denotes
the set of edges in E that intersect at least two of U1, U2, . . . , U�. Moreover,
δin(U1, U2, . . . , U�) denotes the set of edges in δ(U1, U2, . . . , U�) that do not
intersect V \ (U1 ∪ U2 ∪ · · · ∪ U�). When a weight w : E → �+ is given,
we define w(U1, U2, . . . , Ui) =

∑
e∈δ(U1,U2,...,U�) w(e), and win(U1, U2, . . . , U�) =∑

e∈δin(U1,U2,...,U�) w(e).
The cost of a k-cut for a hypergraph G can be represented by w(V1, V2, . . . , Vk)

where V1, V2, . . . , Vk represent vertex sets of connected components after remov-
ing the k-cut. Hence the hypergraph k-cut problem can be regarded as a problem
of computing a k-partition [V1, V2, . . . , Vk] of V minimizing w(V1, V2, . . . , Vk).
Hence we denote a k-cut by a k-partition of V in this paper.

Given two vertices s and t, an (s, t)-partition is a 2-partition such that s and
t are in different components. In this paper, time complexities of algorithms
are evaluated by the times of computing minimum (s, t)-partitions. A minimum
(s, t)-partition of a submodular system (V, f) can be computed by minimizing a
(asymmetric) submodular function. See [8] for recent algorithmic development of
the submodular function minimization. In hypergraphs (V, E), minimum (s, t)-
partitions can be computed by finding a maximum flow in digraphs with |V | +
2|E| vertices and |E| + 2

∑
e∈E |e| edges [11].



Divide-and-Conquer Algorithms 59

2.2 Reduction of the Hypergraph k-Cut Problem

In the terminal k-vertex cut problem, an undirected graph (V, E) with vertex
weight w : V → � and k terminals t1, t2, . . . , tk ∈ V are given. A vertex cut is
defined as a subset U of V whose removal disconnects given terminals each other.
The objective of the problem is to find a vertex cut U minimizing

∑
v∈U w(v).

First, let us observe that the hypergraph k-cut problem can be reduced to the
terminal k-vertex cut problem with bipartite graphs.

Let G = (V, E) be a hypergraph with weight w : E → �+. Let VE be the set
of vertices corresponding to E while ve ∈ VE denotes the vertex corresponding
to e ∈ E. Define E′ as a set of edges on V ∪ VE such that E′ contains an edge
joining u ∈ V and ve ∈ VE if and only if the hyperedge e contains u in G.
Then the bipartite graph B = (V ∪ VE , E′) can be defined from G. Define a
vertex-weight w′ : V ∪ VE such that w′(v) = +∞ for v ∈ V and w′(ve) = w(e)
for ve ∈ VE .

Choosing k terminals from V , solve the terminal k-vertex cut problem with
B and w′. Obtained minimum vertex cut U contains no vertex in V by the
definition of w′. Let F ⊆ E be the set of hyperedges corresponding to vertices in
U . Then F is a k-cut of hypergraph G because removing F from G disconnects
the k vertices in V chosen as terminals in the terminal k-vertex cut problem
each other. Moreover,

∑
e∈F w(e) =

∑
v∈U w′(v) holds. Therefore, by solving

the terminal k-vertex cut problem with choosing every set of k vertices in V as
terminals, we can solve the hypergraph k-cut problem.

Notice that this reduction preserves the approximation factor. Hence with a(
2 − 2

k

)
-approximation algorithm [4] to the terminal k-vertex cut problem, we

obtain the following.

Theorem 1. The hypergraph k-cut problem can be approximated within a factor
of 2 − 2

k if k is fixed. �	

We can reduce the hypergraph k-cut problem to the submodular k-partition
problem as follows. For each hyperedge e ∈ E, define the head denoted by h(e) as
an arbitrary vertex v contained by e. Moreover, define a set function fG : 2V → �
so that fG(X) =

∑
{w(e) | e ∈ E, h(e) ∈ X, e \ X 
= ∅} for X ⊆ V . It is easy to

prove that function fG is submodular. A k-cut [V1, V2, . . . , Vk] of the hypergraph
G = (V, E) satisfies w(V1, V2, . . . , Vk) = fG(V1, V2, . . . , Vk). Therefore, we obtain
the following.

Theorem 2. The hypergraph k-cut problem is contained by the submodular sys-
tem k-partition problem. �	

We note that the submodular function defined from the hypergraph is not sym-
metric. This is the difference between the graph k-cut problem and the hyper-
graph k-cut problem.

3 Basic Property of Partitions

In this section, we prove two important properties of k-partitions.
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Xi
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�= ∅�= ∅ �= ∅�= ∅

Fig. 1. P , Pk (left) and P ′
k (right) in Theorem 4

Theorem 3. Let [X1, X2, . . . , Xk] be a minimum k-partition of a submodular
system (V, f). Moreover, let X = ∪h

j=1Xij for {i1, i2, . . . , ih} ⊆ {1, 2, . . . , k}.
Then [Xi1 , Xi2 , . . . , Xih

] is a minimum h-partition of (X, fX). �	

Theorem 4. Let P = [X1, X2] and Pk = [Y1, Y2, . . . , Yk] be 2- and k-partitions
of a submodular system (V, f), respectively. Let Zij denote Xi ∩ Yj for each
i ∈ {1, 2} and j ∈ {1, 2, . . . , k}. If some pair of i ∈ {1, 2} and j ∈ {1, 2, . . . , k}
satisfies Zi′j′ 
= ∅ for all i′ 
= i and j′ 
= j, and f(Zij , Zij) ≥ f(P ), then

P ′k = [Y1 \ Xi, . . . , Yj−1 \ Xi, Xi ∪ Yj , Yj+1 \ Xi, . . . , Yk \ Xi]

is a k-partition of (V, f) that satisfies f(P ′k) ≤ f(Pk). �	

Theorems 3 and 4 have been already proven in [16] for hypergraphs. In particular,
Theorem 4 is important because it tells that when a minimum k-partition crosses
a 2-partition and they satisfies the conditions, we can uncross them by finding
another minimum k-partition.

The algorithm for the hypergraph 3-cut problem in [16] can be extended to the
submodular system 3-partition problem. We do not explain the detail because
it is straightforward by Theorems 3 and 4.

Theorem 5. A minimum 3-partition of a submodular system is computable by
O(n3) (s, t)-partition computations. �	

4 Approximation Algorithm for 4-Partition Problem

4.1 Submodular System 4-Partition Problem

In this section, we consider the submodular 4-partition problem with non-
negative submodular functions. As a consequence of Theorem 4, we obtain the
following theorem. The proof is omitted due to the space limitation.

Theorem 6. Let P = [X1, X2] be a minimum 3-size 2-partition of a sub-
modular system (V, f) with |V | ≥ 17. Then (V, f) has a minimum 4-partition
P4 = [Y1, Y2, Y3, Y4] satisfying one of the following conditions up to changing
indices of components in P and P4:
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Fig. 2. P and P4 in cases (ii) and (iii) of Theorem 6

(i) P4 is not 3-size;
(ii) Y1 ∪ Y2 = X1 and Y3 ∪ Y4 = X2;
(iii) 1 ≤ |X1 ∩ Y1| ≤ |X1 ∩ Y2| ≤ 2, X1 ∩ Y3 = X1 ∩ Y4 = ∅, and X2 ∩ Yj 
= ∅

for j ∈ {1, 2, 3, 4};
(iv) P does not cross P4. �	

Now we give our algorithm. When |V | ≤ 16, it is possible to compute an optimal
solution in constant time. Hence let us examine the case with |V | ≥ 17. Theorem
6 shows that there exists an optimal solution satisfying one of the four conditions
with a minimum 3-size 2-partition P . We note that a minimum 3-size 2-partition
is computable. The algorithm presented by Vazirani and Yannakakis [15] enu-
merates all the 2-partitions in the order of non-decreasing costs and with the
delay between two successive outputs at most O(n) minimum (s, t)-partition
computations. Since the number of 2-partitions not being 3-size is O(n2), a min-
imum 3-size 2-partition is found after at most O(n3) minimum (s, t)-partition
computations.

First, let us examine the case where (i) is satisfied, i.e., there exists a mini-
mum 4-partition [U, V1, V2, V3] with U ⊆ V , 1 ≤ |U | ≤ 2, and V1, V2, V3 ⊆ V \U .
By Theorem 3, [V1, V2, V3] is a minimum 3-partition of the subsystem induced
by V \U . Such a 3-partition can be found in O(n3) (s, t)-partition computations
by Theorem 5. By executing this for every U ⊆ V with 1 ≤ |U | ≤ 2, it is possi-
ble to compute an optimal solution in this case. The number of (s, t)-partition
computations for this is O(n5).

Next, let us consider the case where (ii) is satisfied. By Theorem 3, [Y1, Y2] is
a minimum 2-partition of the subsystem (X1, f

X1), and [Y3, Y4] is a minimum
2-partition of the subsystem (X2, f

X2). Hence an optimal solution can be found
by computing minimum 2-partitions twice, which needs O(n) minimum (s, t)-
partition computations.

When (iv) is satisfied, we can recursively apply our algorithm to (VX1 , fX1)
and (VX2 , fX2). Hence the remaining case is when (iii) is satisfied. In contrast
with the cases above, we do not know how to compute an optimal solution.
However, we can compute a 1.5-approximate solution in this case, or find a
2-size 2-partition not crossing an optimal solution.

Lemma 1. Suppose that P and P4 in Theorem 6 satisfy (iii), and that P
crosses any minimum 4-partition of (V, f). Moreover, assume that there exists a
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minimum 2-partition of (X1, f
X1) different from [Z1,1, Z1,2]. Then a minimum

3-partition [R1, R2, R3] of (X1, f
X1) satisfies

f(X2, R1, R2, R3) ≤ 1.5f(P4).

�	

We describe the entire of our algorithm below.

Algorithm Min4Pt(V ,f)
Input: A submodular system (V, f)
Output: A 4-partition of (V, f)
Step 1: Initialize the solution S with an arbitrary 4-partition of (V, f).
Step 2: If |V | ≤ 16, then enumerate all 4-partitions of V , and terminate with

outputting a minimum 4-partition among them.
Step 3: For every U ⊆ V with 1 ≤ |U | ≤ 2, compute a minimum 3-partition

{V1, V2, V3} of (V \U, fV \U ) by Theorem 5, and S ← min{S, [U, V1, V2, V3]}.
(This step is for (i) and (iii).)

Step 4: Compute a minimum 3-size 2-partition [X1, X2] of (V, f) such that
|X1| ≤ |X2|.

Step 5: Compute a minimum 2-partition [Q1, Q2] of (X1, f
X1) and a minimum

2-partition [Q3, Q4] of (X2, f
X2). Then S ← min{S, [Q1, Q2, Q3, Q4]}. (This

step is for (ii).)
Step 6: If |X1|≥5, then set S←min{S,Min4Pt(VX1 , fX1),Min4Pt(VX2 , fX2)}.

(This step is for (iv).)
Step 7: If |X1| ≤ 4, then compute a minimum 2-partition [A, B] with |A| ≥ |B|,

and set S ← min{S,Min4Pt(VA, fA),Min4Pt(VX2 , fX2)}. (This step is for
(iii) and (iv).)

Step 8: Terminate with outputting S.

Theorem 7. Algorithm Min4Pt computes a 1.5-approximate solution of the
submodular system 4-partition problem by computing minimum (s, t)-partitions
O(n6) times.

Proof. First, let us prove the 1.5-approximability of the algorithm by the induc-
tion on n. When |V | ≤ 16, Step 2 of the algorithm computes an optimal solution.
Below, we examine the cases where the conditions discussed in Theorem 6 are
satisfied by the minimum 3-size 2-partition [X1, X2] computed in the algorithm
and some minimum 4-partition. When (i) of Theorem 6 is satisfied, Steps 3 of
the algorithm finds an optimal solution as we have already seen. When (ii) of
Theorem 6 is satisfied, Step 5 of the algorithm finds an optimal solution. Then
the remaining case is when (iii) or (iv) of Theorem 6 holds.

Consider the case where (iv) of Theorem 6 is satisfied. In this case,
shrinking X1 or X2 preserves an optimal solution. Hence when |X5| ≥ 5,
Min4Pt(VX1 , fX1) or Min4Pt(VX2 , fX2) in Step 6 returns a 1.5-approximate
solution by the inductive hypothesis. When |X5| ≤ 4, Min4Pt(VA, fA) or
Min4Pt(VX2 , fX2) in Step 7 returns a 1.5-approximate solution by the inductive
hypothesis (Notice that A ⊆ X1).
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Consider the case where (iii) of Theorem 6 is satisfied. In this case, |X1| ≤ 4
holds. Lemma 1 implies that A = Z1,1, A = Z1,2, or [R1, R2, R3, X2] is
a 1.5-approximate solution where [R1, R2, R3] is a minimum 3-partition of
(X1, f

X1). If A = Z1,1 or A = Z1,2 holds, then Min4Pt(VA, fA) returns a
1.5-approximate solution by the inductive hypothesis. Otherwise, Step 3 com-
putes a 1.5-approximate solution since each of Ri, i = 1, 2, 3 contains at most
two elements.

Next, let us consider the times of computing minimum (s, t)-partitions. Let
x = |X1|. Since [X1, X2] is 3-size, 3 ≤ x ≤ n−3. Moreover, |VX1 | = n−x+1 and
|VX2 | = x + 1 hold. Define D(n) as the number of (s, t)-partition computations
by the algorithm. By the discussion above, all operations in Steps 1 to 6 can be
done by O(n5) (s, t)-computations. If |X1| ≥ 5, then the algorithm executes the
operations in Step 6. In this case, we have

D(n) ≤ D(x + 1) + D(n − x + 1) + O(n5). (1)

If |X1| ≤ 4, then the algorithm executes the operations in Step 7 instead of those
in Step 6. In this case, we have

D(n) ≤ D(x + 1) + D(n − |B1| + 1) + O(n5) ≤ D(5) + D(n − 1) + O(n5). (2)

It is easy to verify that D(n) = O(n6) satisfies both of (1) and (2). �	

4.2 Hypergraph 4-Cut Problem

Since the hypergraph 4-cut problem is contained by the submodular system 4-
partition problem as seen in Theorem 2, Algorithm Min4Pt works with the
same approximation factor. In what follows, we show that Algorithm Min4Pt

achieves better approximation factor for this problem.

Lemma 2. Assume that the submodular system (V, f) is constructed from a
hypergraph G = (V, E) with weight w : E → �+ as described in Section 2.2,
and that P and P4 in Theorem 6 satisfy (iii). Moreover, suppose that P crosses
any minimum 4-partition, and that there exists a minimum 2-partition of GX1

different from [Z1,1, Z1,2]. Then a minimum 3-partition [R1, R2, R3] of (X1, f
X1)

satisfies w(R1, R2, R3, X2) ≤ 4
3f(P4).

By replacing Lemma 1 with Lemma 2, we have the following.

Theorem 8. Algorithm Min4Pt achieves approximation factor 4/3 for the hy-
pergraph 4-cut problem. �	

5 Concluding Remarks

In this paper, we have presented algorithms for the submodular k-partition prob-
lem and the hypergraph k-cut problem. In spite of the progress made by these,
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we do not know whether the hypergraph k-cut problem and the submodular
system k-partition problem are polynomial-time solvable or NP-hard for fixed
k ≥ 4. Recently Fukunaga [3] showed that the hypergraph k-cut problem is
polynomial-time solvable when both k and maxe∈E |e| are fixed. Still the other
cases remain open. This is a challenging future work.
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Abstract. In this paper we study the protein structure comparison
problem where each protein is modeled as a sequence of 3D points, and
a contact edge is placed between every two of these points that are suf-
ficiently close. Given two proteins represented this way, our problem is
to find a subset of points from each protein, and a bijective matching
of points between these two subsets, with the objective of maximizing
either (A) the size of the subsets (LCP problem), or (B) the number of
edges that exist simultaneously in both subsets (CMO problem), under
the requirement that only points within a specified proximity can be
matched. It is known that the general CMO problem (without the prox-
imity requirement) is hard to approximate. However, with the proximity
requirement, it is known that if a minimum inter-residue distance is im-
posed on the input, approximate solutions can be efficiently obtained.
In this paper we mainly show that the CMO problem under these con-
ditions: (1) is NP-hard, but (2) allows a PTAS. The rest of this paper
shows algorithms for the LCP problem which improves on known results.

1 Introduction

The molecular shape of a protein typically determines the protein’s biological
mechanism. Hence, proteins with similar 3D structures can be expected to have
similar functions. This allows one to predict the functions of a protein base on
its structural resemblance to proteins of known functions. The incentive of mak-
ing such predictions has resulted in very substantial development of approaches,
algorithms, and software tools for evaluating the similarity between 3D pro-
tein structures, under the name of Protein Structure Alignment [18,17]. As a
fundamental problem in bioinformatics, many heuristic algorithms have been
proposed for this problem [2,3,6,8,10,11,13,16,20]. These systems generate good
alignments in practice. However, relatively few theoretical studies specific to the
problem have been made [1,7,12,15,21].

Due to differences in approaches to the problem, proteins have been modeled
in many different ways. In this paper we consider both the cases of treating
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proteins as sequences of 3D points and as contact maps. In modeling a protein
as a sequence of 3D points, each point represents the (relative) coordinate of
a residue in the protein. In this case one is to find a rigid transformation to
superimpose two proteins such that there is a good positional correspondence
between the proteins’ residues. We consider the case where the quality of the cor-
respondence is evaluated by the number of (disjoint) pairs of points, each from
one of the two proteins, that are within a given proximity ε of each other. We
call the problem of maximizing this number of pairs of points the largest com-
mon point set (LCP) problem under bottleneck distance. This problem
is known to be exactly solvable in O(n32.5) time [4], where n is the length of the
protein sequence. Akutsu [1] showed that there is an approximation algorithm
of O(n8.5) runtime which returns a solution that optimizes the target parameter
but does not fulfill the proximity requirement ε strictly. More precisely, a pair
of points in that solution may be up to 8ε apart. Chakraborty and Biswas [7]
showed an improved algorithm with each pair of points at most 2ε apart, at the
same time complexity. The present work improves this runtime to O(n8). When
two properties of protein structures (namely minimum inter-residue distance and
globular shape) are taken into account, this runtime can be shown to be O(n6.5).

The main contribution of this paper is in the variant of the problem which mod-
els proteins as contact maps. In modeling a protein as a contact map, each residue
is taken to be a vertex in a graph, where an edge (called a contact edge) exists be-
tween two vertices if and only if the vertices are no further than an allowed distance
(e.g. 5Å) apart. If two proteins are similar, their contact maps tend to be similar.
Hence to compare two proteins under such a model one typically looks for large
common subgraphs of the contactmaps of the two proteins. The residues’ positions
are typically not considered under such a model except for the purpose of creat-
ing edges. Nevertheless, a more realistic model where matched vertices has to be
no further than a threshold distance apart in the protein molecules has been sug-
gested [21]. We call the resultant problem contact map overlap (CMO) prob-
lem with distance constraint . This threshold distance makes a difference when
there is a requirement for any two residues in a protein to be at least some fixed dis-
tance apart. Under normal conditions, this restricts every residue to be matchable
to only constantly many residues in a relatively small bounded space. An inter-
esting consequence of this is that, while the CMO problem is NP-hard and hard
to approximate in the general case [12,21], under the conditions, approximation
solutions of a score at least 1− (c1ε+ c2) factor of the optimal (for some constants
c1, c2 and a runtime dependent factor ε) can be obtained in polynomial time ([21],
Theorem 4.1). In this paper we show that even under these conditions, the CMO
problem with distance constraint (1) is NP-hard, but (2) allows a PTAS (that is,
the optimal score can be approximated to within any factor, which is not possible
with the known method due to the factor c2).

2 Preliminaries

We first provide some background on protein structures. A protein structure
can be modeled as a finite, ordered sequence of 3D points. That is, each residue
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(Cα atom) in the protein is represented by a coordinate which encodes the
residue’s relative position with respect to other residues in the protein. Hence
a protein structure P of n 3D points is written as (p1, p2, . . . , pn), where each
pi ∈ R3. We will consider two characteristics of protein structures in this paper:

Fact 1. The distance between any two residues in a protein structure cannot
be too small due to steric clashes. (In fact, the distance between any two non-
consecutive points is no less than 4Å, and the distance between any two consecu-
tive points is about 3.8Å.) Throughout this paper we let Dl denote the minimum
inter-residue distance in any given protein. A consequence of this is that, if two
residues pi, pj are considered matchable iff ||pi − pj || ≤ d for some fixed d ∈ R,
then every residue is matchable with at most O((1 + 2d

Dl
)3) residues [21].

Fact 2. The points in any protein structure P is known to be bounded within
a sphere of radius RP , where RP = O(n) for general proteins, and RP = cn1/3

for some constant c for globular proteins [15]. Furthermore, it can be assumed
that the points are uniformly distributed in space. We now state our problems.

LCP problem under bottleneck distance

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and distance threshold
Dc ∈ R. Without loss of generality assume m ≥ n.

Output: (i) subsets P ′ ⊆ P , Q′ ⊆ Q, |P ′| = |Q′|,
(ii) bijection f : P ′ �→ Q′, and
(iii) rigid transformation (rotation and translation) t,
fulfilling the following conditions:
(A) maxp∈P ′ ||t(p) − f(p)|| ≤ Dc,
(B) the score S = |P ′| is maximized.

We refer to f as an alignment. An alignment can be sequential or non-
sequential : an alignment is sequential iff for any two points pi1 , pi2 ∈ P ′, where
the corresponding f(pi1) = qj1 and f(pi2) = qj2 , we have i1 < i2 iff j1 < j2. Oth-
erwise the alignment is non-sequential. The LCP problem which requires align-
ments to be sequential is said to be sequential, otherwise it is non-sequential. We
let P , Q , f , T , S denote an optimal P ′, Q′, f , t, S, respectively.

A protein can also be modeled as a contact map graph. A contact is a pair of
points in a protein that are no more than a given distance apart. Throughout this
paper we let Du denote this distance. In order to form contact edges, Du ≥ Dl.
A contact map graph of a protein consists of the residues (i.e., vertices) and their
contacts (i.e., edges). Each vertex v is also associated with a 3D point pos(v)
indicating the residue’s relative position from other points in the protein. In this
paper we consider the following problem using contact maps.

CMO problem with distance constraint

Input: contact maps G1 = (V1, E1), G2 = (V2, E2) and distance threshold
Dc ∈ R. Without loss of generality assume |V2| ≥ |V1|.

Output: (i) subsets V ′
1 ⊆ V1, V ′

2 ⊆ V2, |V ′
1 | = |V ′

2 |,
(ii) bijection M : V ′

1 �→ V ′
2 , and

(iii) rigid transformation (rotation and translation) t,
fulfilling the following conditions:
(A) maxv∈V ′

1
||t(pos(v)) − pos(M(v))|| ≤ Dc,

(B) S = |{(v, u) ∈ E′
1 | (M(v), M(u)) ∈ E′

2}| is maximized.
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We refer to M as an alignment. We consider vertices in V1, V2 to be ordered.
We let V1, V2, M , T , S denote an optimal V1, V2, M , t, S, respectively.

Approximate Solutions. We show algorithms that output approximations to
solutions for the problems above. The approximate solutions would: (1) fulfill
Condition (A) for a slightly larger distance threshold, i.e. (1+ ε)Dc for some ε ∈
R; (2) have a score at or above rS for some r ∈ R, r ≤ 1. We call such a solution
an (ε, r)-approximation. The algorithms we show have runtime complexities that
depend on 1/ε and r, i.e. discrepencies from the optimal due to both (1) and (2)
can be made arbitrarily small at the expense of higher runtimes.

Other notations. We let Δε = (1 + 2(1+ε)Dc

Dl
)3. Hence every residue in P can

be matched to at most O(Δε) residues in Q. For any point p and transformation
t, t(p) denotes the point obtained by transforming p with t. For a set of points
P , t(P ) denotes the set {t(p) | p ∈ P}. For r ∈ R, the r-sphere of a point p is
the sphere of radius r centered at p.

3 Hardness of the CMO Problem with Distance
Constraint

As mentioned, it is known that approximate solutions for the non-sequential
CMO problem with distance constraint can be obtained efficiently if max{2Dc,Du}

Dl

is bounded below a constant [21]. In fact a PTAS exists (see Theorem 5). We
first show that even in such a case, the problem is NP-hard.

Theorem 1. The non-sequential CMO problem with distance constraint is NP-
hard, even when max{2Dc,Du}

Dl
is bounded below a constant.

Proof. (Sketch) We use a reduction from the planar 1-in-3-SAT problem [9].
Planarity of the problem allows us to construct a geometrical representation of
the 1-in-3-SAT problem where none of the legs cross, to be used as input to the
CMO problem. We assume Dc > Du throughout this proof. As stated earlier,
Du ≥ Dl. We make no other assumption regarding Dc, Du, and Dl. That is,
max{2Dc,Du}

Dl
can be set to a small constant.

Given an input formula we will construct two sequences of 3D points P and
Q as input to the CMO problem. We assume that the optimal solution will have
the points in exactly the positions we place them in our construction. For each
clause we construct some points for both P and Q, where the contact edges
form chain-like structures which we call chains. Points constructed for different
clauses are separated by more than Dc apart, hence they form no contact edges
except for a few end-points which we will explain later (in Fig 6). Each point
in a chain form contact edges only with its two (one in the case of end-points)
immediate neighbors. For each clause, we construct six such chains for Q, and
three such chains for P . Each chain of the same clause has the same number of
points, η say. A cyclic structure formed using three additional points (called pivot
points) connects the six chains for Q through their end-points. One additional
pivot point connects the end-points of the three chains of P .
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Fig. 1. Overall view of a construction for the clause (x1 ∨ x2 ∨ x3)

Fig. 2. Chains connected by pivot points
(P not drawn accurately to allow clearer
viewing)

Fig. 3. An optimal mapping

Fig 1 shows how we would construct a structure for the clause (x1 ∨ x2 ∨ x3).
Note that in the points constructed for a single clause no contact edge exists
besides those that form the chains, and the connections between the end-points
of the chains to the pivot points. In Fig 2 we show the details at the pivot points.

In the construction of a clause each literal is represented using two chains for
Q and one chain for P . The CMO problem asks for a mapping between P and
Q which maximizes the number of corresponding contact edges in P and Q. To
achieve this maximization the chain for P must be completely mapped to only
one of the two chains for Q (i.e. giving η − 1 corresponding contact edges). We
will let the literal be assigned true or false depending on which of the two chains
for Q we find P ’s chain mapped to in a CMO output. We call a Q chain for true
assignment true chain, and a Q chain for false assignment false chain.

We now explain the pivot structure, which is constructed to ensure that ex-
actly one literal in the clause will be assigned true. Fig 2 shows the contact

Fig. 4. Details at the pivots

edges near the structure. Each false chain is in
contact with two pivot points; each true chain
is in contact with one. The end-points of the
chains for P need to be more than distance Du

from each other, but each within distance Dc

from the points in Q that they are mapped to
in the optimal mappings. Fig 4 shows a possible
arrangement.

There are exactly three mappings between
P and Q which maximizes the number of
corresponding contact edges, and they all map
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the single pivot point of P to one of the three pivot points of Q. Each map-
ping gives a total of 3(1 + η) corresponding contact edges. Fig 3 shows one
such mapping. In all three optimal mappings, exactly one literal in the clause is
assigned true.

Fig. 5.

The points at the other end of the chains (i.e. the end not
connected to a pivot point) are collected along two lines — one
for all the chains representing true assignment to a variable and
the other for false assignment. (A true chain does not imply a true
assignment to a variable, due to negation. That is, a literal of a
negated variable should have its true assignment chains at the
line for false assignment, and vice versa.) Such positioning may
require the two Q chains for a literal to swap position, which can
be done through arrangements as shown in Fig 5.

Chains for the same variable from different clauses are placed at close prox-
imity to each other, with a distance of Du between their consecutive end-points.
This is shown in Fig 6. Planarity of the problem allows such a construction of
the chains, which allows us to arrange it such that only the end-points form
contact edges. Fig 7 shows the arrangement. Note that under the arrangement,
points in P can be mapped to their respective points in Q.

Fig. 6. Construction for a variable that
appears in four clauses

Fig. 7. View from top of Fig 6

For any variable, an optimal mapping would have either all its corresponding
chains in P mapped to their corresponding chains in Q which represent true, or
to their corresponding chains in Q which represent false. This is because such
a mapping increases the number of corresponding contact edges through the
additional edges at the bottom-most layer, that is, by exactly the number of
occurrences of the variable (in the 1-in-3-SAT formula) minus one.

Hence an optimal solution for the CMO problem with distance constraint
results in a specific number of corresponding contact edges, which is computable
from the number of clauses and variable occurrences in the 1-in-3-SAT formula.
A solution with this optimal score for the CMO problem corresponds to whether
there is a set of variable assignments that fulfills the 1-in-3-SAT formula.
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We now look at the number of points needed for constructing P and Q so
far. Let α be the minimal number of points needed to construct a single clause,
then it can be shown that the number of points needed to construct an input of
n clauses is of order O(n2α).

Finally, in order to make the positions of the above points immutable in an
optimal solution in the CMO problem, we can add additional points on P and
Q — the additional points have only one optimal mapping, and this mapping
produces more corresponding edges than the total number of edges in the above
construction. Such can be achieved with, for example, points that form a “grid”
on the X-Y plane. These points can be placed sufficiently far away from the points
in the above construction to avoid forming contact edges with the construction.
It is clear that O(n2α) points suffice to construct these “grid” points.

The polynomial reduction witnesses the hardness of the problem.

4 Approximation Algorithms

We use the strategy in [19] to find a suitable rigid transformation to superimpose
the two protein structures. The following results are from therein.

Definition 1. Given a finite set of points P and two points p, p′ ∈ P , we write
〈[p]p′〉P iff p′ is the furthest point from p among all the points in P . We say that
p and p′ is a radial pair just in case either 〈[p]p′〉P or 〈[p′]p〉P .

Lemma 1 ([19]). Given a set of points P , rigid transformations T, T , and
radial pair p1, p2 ∈ P , if ||T(p1) − T (p1)|| ≤ δ and ||T(p2) − T (p2)|| ≤ δ, then
there exists a rotation R about the axis through the points T (p1) and T (p2), such
that ∀p ∈ P , ||R(T (p)) −T(p)|| ≤ 3δ.

Lemma 2 ([19]). If it is known that pi, pj ∈ P is a radial pair, and that
f(pi) = qk and f(pj) = ql for qk, ql ∈ Q, then one only needs to search among
O(1/ε5) transformations to find the transformation T in Lemma 1.

Lemma 3. Given that T , p1, p2 in Lemma 1 is known, there are at most O(mn)
rotations to evaluate to find R of Lemma 1 in the general case, and at most
O(nm1/3) rotations to evaluate in the case of globular proteins. These rotations
can be discovered in O(mn) time.

4.1 PTAS for LCP Problem under Bottleneck Distance

We now discuss how to evaluate a rotation in Lemma 3 for the LCP problem under
bottleneck distance. Given that the points are fixed in position, this evaluation
can be done by constructing a bipartite graph G(P ∪ Q,E) where (u, v) ∈ E iff
u ∈ P , v ∈ Q and ||u−v|| ≤ (1+ ε)Dc, and find the maximum bipartite matching
of G. Constructing a bipartite matching in the general case takes O(nm) time,
but for a globular protein this construction can be done in O(nΔε) time, since by
arranging points in Q into cells of size Dc × Dc × Dc all the points in Q within
distance (1 + ε)Dc of any point in P can be found in O(Δε) time.
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It is clear that the same bipartite graph is constructed for every rotation within
the same rotation interval. Furthermore, the bipartite graph for one rotation
interval can be constructed in O(1) time from that of an earlier rotation interval,
since they differ by only a single edge. In order to know which edge is added or
removed in a subsequently rotation interval, we sort the O(mn) (resp. O(mn1/3))
entry/exit points.

The maximum bipartite matching differs by at most an edge for any two
consecutive intervals. This allows us to use an algorithm for bipartite matching
which reuse results obtained for an interval in the matching of the next interval.

Lemma 4 ([5]). The bipartite matching problem can be solved with time com-
plexity O((|M | − |M0|)|E|), where M is a maximum matching, and M0 is some
initial matching.

By the algorithm a maximum matching M can be computed in O(|E|) time from
a matching M0 from the earlier rotation interval, that is, O(nm) in the general
case and O(nΔε) in the case of globular proteins. Hence in total,

1. Discovering the entry/exit points of the intervals take O(nm) time. Sorting
them takes O(nm lognm) time, or O(nm1/3 lognm1/3) for globular proteins.

2. Construction of the bipartite graph for the first rotation interval takes
O(nm) time, or O(nΔε) time for proteins.

3. An initial match for the first rotation interval requires O(m2.5) time [14].
4. The remaining O(nm) rotation intervals each takes O(1) time for input

modification, and O(|E|) = O(nm) time to find new matching. For globular
proteins, O(nm1/3) rotation intervals of O(1) time for input modification and
O(nΔε) time for new matching. In total,

Lemma 5. If a rotation axis is specified, the non-sequential LCP problem under
bottleneck distance can be solved in O(m2.5 + n2m2) time in the general case,
and O(m2.5 + n2m1/3Δε) time for globular proteins.

We do not know which pair is a radial pair of P , nor do we know their matching
points in Q. For this reason we exhaustively search all the possible m2n2 com-
binations of pairs of points in P and Q. By Lemma 2, each combination results
in O(1/ε5) possible matches. By Lemma 5 we have the following.

Theorem 2. There is an algorithm of time complexity O((n2m4.5 + n4m4)/ε5)
in the general case, or O((n2m4.5 + n4m2.3̄Δε)/ε5) in the case of globular pro-
teins, that outputs an (ε, 1)-approximate solution to the non-sequential LCP prob-
lem under bottleneck distance.

This improves the currently known best result of O(n8.5) to O(n8) (letting n =
m and ε = 1) for the general case [7]. When Dc/Dl is reasonably small, the
runtime dependency on m, n in the case of globular proteins can be further
improved to O(n3m2.3̄), if we relax the approximation ratio. To do so we use
the strategy for approximation as in Section 3.2 of [21]. The strategy divides the
points spatially, forming smaller, mutually independent sub-cases which are each
solved with bipartite matching exactly, and then merged to form the solution.
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Let k, Wx, Wy , Rj be as defined in Section 3.2 of [21]. Let D = 2Dc (i.e. instead
of D = max{2Dc, Du} as in [21], since there is no Du for the LCP problem).

However, instead of partitioning in 1 axis and obtaining blocks of size Wx ×
Wy × D, we partition along all 3 axes to obtain blocks of size D3, and we
let k along the x axis, y axis, and z axis be kx, ky , kz respectively. We re-
vise the definition of Rj to adapt to such a partitioning. Instead of k we now
have kxkykz partitioning schemes. Since there are now (kx − 1)(ky − 1)(kz − 1)
blocks in each Rj , the number of residues in each Rj , |Rj | = O(kxkykz( D

Dl
)3)

(since each block contains at most ( D
Dl

)3 residues). Bipartite matching for the
initial rotation interval takes O((|Rj |Δε)2.5) time for each Rj [14]. To compute
for all kxkykz partitioning schemes and for all #Rj partitions of Rj in each
partitioning scheme (i.e. n = #Rj |Rj |) then takes O(#Rj(kxkykz)(|Rj |Δε)2.5)
= O(n(kxkykz)2.5( D

Dl
)4.5Δε

2.5) time. The remaining O(nm1/3) rotation intervals
each requires recomputation for matching at most a single Rj to Q. For all kxkykz

partitioning schemes this takes O(nm1/3kxkykz|E|) = O(nm1/3kxkykz|Rj |Δε)
= O(nm1/3(kxkykz)2( D

Dl
)3Δε) time, using the algorithm in Lemma 4. A sim-

ilar analysis as in Section 3.2 of [21] will show that the method leads to a
(1 − 4

kx
)(1 − 4

ky
)(1 − 4

kz
) approximation. Hence,

Theorem 3. In the case of globular proteins, there is an algorithm of

O(n3(m2(kxkykz)2.5(2Dc

Dl
)4.5Δε

2.5 + m2.3̄(kxkykz)2(2Dc

Dl
)3Δε)/ε5)

time complexity that outputs an (ε, 1− 4( 1
kx

+ 1
ky

+ 1
kz

))-approximate solution to
the non-sequential LCP problem under bottleneck distance.

For the sequential LCP problem under bottleneck distance, instead of bipartite
matching, straight-forward dynamic programming can be used to find the max-
imum number of matches. We let f(η, μ) where 1 ≤ η ≤ n and 1 ≤ μ ≤ m,
denote the optimal number of matches for the subsequences (pη, pη+1, . . . , pn)
and (qμ, qμ+1, . . . , qm).

f(η, μ) = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(η + 1, μ) ||pη+1 − qμ|| ≤ (1 + ε)Dc

(pη is not matched in this case)
f(η, μ + 1) ||pη − qμ+1|| ≤ (1 + ε)Dc

(qμ is not matched in this case)
f(η + 1, μ + x + 1) + 1 μ ≤ μ + x ≤ m ∧ ||pη − qμ+x|| ≤ (1 + ε)Dc

f(η + y + 1, μ + 1) + 1 η ≤ η + y ≤ n ∧ ||pη+y − qμ|| ≤ (1 + ε)Dc

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The number of f(η, μ) values to compute in this dynamic programming is of
O(nm) in the general case and O(n|Δε|) for globular proteins. Note that by using
the bipartite graph we can easily search for points within (1 + ε)Dc apart. For
each f(η, μ), there are O(m) values from which to find a maximum in the general
case, and O(Δε) values for globular proteins. Hence, the runtime complexity for
a single rotation interval is O(nm2) in the general case, and O(nΔε

2) in the case
of globular proteins. In total we have the following.

Theorem 4. There is an algorithm of time complexity O(n4m5/ε5) in the gen-
eral case, and O(n4 m2.33̄Δε

2/ε5) in the case of globular proteins, that outputs
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an (ε, 1)-approximate solution to the sequential LCP problem under bottleneck
distance.

4.2 PTAS for CMO Problem with Distance Constraint

Combining the rotation intervals technique in Lemma 3 with the partitioning
technique from Xu et al. [21] we now show a PTAS for the non-sequential CMO
problem with distance constraint, under reasonable Dl, Du and Dc parameters.

In our method a radial pair of V1 is matched to a pair in V2 using some
transformation T . Then, for each rotation R ∈ [0, 2π) about the axis through
the radial pair, we obtain a contact map (V ′1 , E1) from (V1, E1) with the position
of each v ∈ V1 replaced with R(T (pos(v))). Now with the positions of both
(V ′1 , E1), (V2, E2) fixed, we will find an alignment f which maximizes S. Since
the result is equivalent for rotations within the same rotation interval, only one
representative R is used for each rotation interval.

We use the partitioning strategy as used in Section 3.2 of [21] on (V ′1 , E1),
and modify the partitioning scheme so that it is in all 3 axes, as in our earlier
section. Unlike in the earlier section D = max{2Dc, Du}. Consider the initial
rotation interval. For each partition Rj , we enumerate all Δε

|Rj | possible com-
binations of matches of residues in Rj to (V2, E2). By reusing the computation
for one combination on combinations with only a single change, we can find
an optimal solution for Rj in O(Δε

|Rj |) = O(Δε
O(kxkykz( D

Dl
)3)) time. The total

time needed for all #Rj partitions and for all kxkykz partitioning schemes is

O(#RjkxkykzΔε
O(kxkykz( D

Dl
)3)).

For the subsequent rotation intervals, first note that the difference between
the contact maps of any two consecutive rotation intervals is contained in a sin-
gle block, and note that any block is shared by at most O(kxkykz) partitions.
Hence for each subsequent rotation interval we only need to recompute for these
partitions. This is done for all kxkykz partitioning schemes and for all rotation

intervals. Hence we need O(nm(kxkykz)2Δε
O(kxkykz( D

Dl
)3)) time for general pro-

tein, and O(nm1/3(kxkykz)2Δε
O(kxkykz( D

Dl
)3)) time for globular proteins. Since

#Rj ≤ n, these time complexities dominate that for the initial rotation interval.

Theorem 5. There is an algorithm of time complexity

O(n3m3(kxkykz)2Δε
O(kxkykz(max{2Dc,Du}

Dl
)3)

/ε5) for general proteins, and

O(n3m2.33̄(kxkykz)2Δε
O(kxkykz(max{2Dc,Du}

Dl
)3)

/ε5) for globular proteins,
that outputs an (ε, 1−4( 1

kx
+ 1

ky
+ 1

kz
))-approximate solution to the non-sequential

CMO problem with distance constraint.

While this runtime is not as good as that in Theorem 4.1 in [21], it shows that
the non-sequential CMO problem with distance constraint allows a PTAS when
max{2Dc,Du}

Dl
is bounded below a constant. (Note that the runtime complexity in

Theorem 4.4 of [21] is not polynomial and not comparable with this result.)
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Abstract. We present a new lemma stating that, given an arbitrary packing of
a set of rectangles into a larger rectangle, a “structured” packing of nearly the
same set of rectangles exists. In this paper, we use it to show the existence of
a polynomial-time approximation scheme for 2-dimensional geometric knapsack
in the case where the range of the profit to area ratio of the rectangles is bounded
by a constant. As a corollary, we get an approximation scheme for the prob-
lem of packing rectangles into a larger rectangle to occupy the maximum area.
Moreover, we show that our approximation scheme can be used to find a (1+ ε)-
approximate solution to 2-dimensional fractional bin packing, the LP relaxation
of the popular set covering formulation of 2-dimensional bin packing, which is
the key to the practical solution of the problem.

1 Introduction

Due to their practical relevance, 2-dimensional (geometric) packing problems always
received considerable attention in the combinatorial optimization literature. Given that
the structure of their solutions can be extremely complicated, after some early approx-
imability results proved in the early 1980s [1,2,12,13], the study of these problems was
limited for a long time to the design of heuristic algorithms that could be useful in prac-
tice, without any proof of approximation guarantee. Moreover, in the last few years,
some progress was made towards the solution of some instances to proven optimality
by enumerative methods. Only in the last decade it was observed that the tools used
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in the late 1970s and early 1980s [15,21,29,32] to settle the approximability status of
the main 1-dimensional packing problems could in fact be used with the same pur-
pose also for their 2-dimensional counterparts. For two of the three basic 2-dimensional
packing problems, namely 2-Dim Strip Packing and 2-Dim Bin Packing, the picture of
approximability is now pretty clear, due to a series of recent relevant results listed in
the state-of-the-art review below. For the third basic problem, namely 2-Dim Geometric
Knapsack, the main question, concerning the existence of a polynomial-time approxi-
mation scheme (PTAS), remains open. In this problem, we are given a collection of two
dimensional rectangular items with profits and a bin. The goal is to find the maximum
profit subset of items that can be packed feasibly in the bin. In this paper we present the
first, to the best of our knowledge, nontrivial PTAS for a variant (in fact, restriction) of
2-Dim Geometric Knapsack in which items are rectangles of arbitrary size and the bin
cannot be enlarged. The restriction requires that the range of profit to area ratios of the
items to be bounded from above by a constant. As a special case, this implies a PTAS
for case when the profit of an item is equal to its area. This result has several applica-
tions in 2-Dim Bin Packing and 2-Dim Strip Packing. For example, it has already been
used independently by Harren and van Stee [20] and by Jansen et al. [23] to derive an
approximation algorithm for 2-Dim Bin Packing with absolute approximation ratio 2
(which is best possible unless P = NP ). For the 2-Dim Strip Packing the PTAS has
been used to achieve approximation algorithms with absolute ratios 1.939 . . . by Harren
and van Stee [20] and 1.75 + ε by Jansen and Prädel [22], respectively.

The main result leading to our PTAS for 2-Dim Geometric Knapsack is a new lemma
about the structure of the packings of the items in a bin. Very roughly, it says that given
any complicated packing of items in a bin, there is a simpler packing with almost the
same value of items. We also show that the PTAS above can be used to solve to near-
optimality the column generation problem for 2-Dim Fractional Bin Packing, which
is the LP relaxation of the natural (exponentially-large) Set Covering formulation of
2-Dim Bin Packing and plays a key role in the state-of-the-art practical solution break ap-
proaches to the problem (see e.g., [11]). By the well known connection between approxi-
mate separation and optimization [18,19,31], this leads to an asymptotic polynomial-time
approximation scheme (APTAS) for 2-Dim Fractional Bin Packing itself.

Basic notions: In the 2-dimensional packing problems considered in this paper we are
given a set I of items, the i-th corresponding to a rectangle having width (or basis) wi,
height hi, and profit pi, to be packed into bins, corresponding to unit squares. We will
let ai := wi ·hi denote the area of item i. For a subset S ⊆ I , we will use the notations
b(S) :=

∑
i∈S wi, h(S) :=

∑
i∈S hi, p(S) :=

∑
i∈S pi, a(S) :=

∑
i∈S ai.

A set C of items can be packed into a bin if the items can be placed into the bin
without any two overlapping with each other. We only consider the orthogonal packing
case, where the items must be placed so that their edges are parallel to the edges of
the bin. We address both the classical version without rotations, in which the edges
associated with the item heights have to be parallel to each other, and the version with
rotations, in which this restriction is not imposed. In the latter case, we will assume
w.l.o.g. wi ≥ hi for i ∈ I .

In 2-Dim Geometric Knapsack, only one bin is available and the objective is to pack
a subset of the items having maximum profit into the bin. In 2-Dim Bin Packing, an
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unlimited number of bins is available and the objective is to pack all the items in I into
the minimum number of bins. 2-Dim Fractional Bin Packing is the variant in which bins
can be assigned a real value in [0, 1], and the objective is to assign values to bins and
pack the items into these bins so that, for each item, the sum of the values assigned to
the bins containing the item is at least 1, and the sum of the values assigned to the bins
is minimized (for those familiar, this is just a solution to the configuration LP for 2-Dim
Bin Packing).

Given an instance I of a minimization problem, we let opt(I) denote the value of the
optimal solution of the problem for I . Given an algorithm for the problem, we say that
it has asymptotic approximation guarantee ρ if there exists a constant δ such that the
value of the solution found by the algorithm is at most ρ opt(I) + δ for each instance
I . If δ = 0, then the algorithm has (absolute) approximation guarantee ρ. An APTAS
is a family of polynomial-time algorithms such that, for each ε > 0, there is a member
of the family with asymptotic approximation guarantee 1+ ε. If δ = 0 for every ε, then
this is a PTAS. In case, the running time of the algorithm is polynomial in |I| and 1/ε

we obtain an asymptotic fully polynomial time approximation scheme(AFPTAS). The
definitions for a maximization problem are analogous, replacing “at most ρ opt(I)+ δ”
by “at least ρ opt(I)−δ” and “1+ε” by “1−ε”. In the paper we will let opt2KP(I) denote
the optimal solution value of 2-Dim Geometric Knapsack for the given instance I .

State-of-the-art: For 2-Dim Geometric Knapsack, a basic result of Steinberg [33] eas-
ily leads to an approximation guarantee arbitrarily close to 3 [10]. The best known
approximation algorithm for the problem, due to Jansen and Zhang [27], has an ap-
proximation guarantee of 2+ ε, for any ε > 0. On the other hand, no inapproximability
result is known. PTASs are known only with resource augmentation, i.e. the algorithm
can use a bin with both sides slightly enlarged [17], or even with only one side slightly
enlarged [24] (but the optimum does not have this privilege). Without resource aug-
mentation, a PTAS is also known in case all items are much smaller than the bin [16] or
when all items are squares [25].

As to the other two relevant 2-dimensional packing problems, for 2-Dim Strip Pack-
ing the result in [33] yields a polynomial-time algorithm with (absolute) approxima-
tion guarantee 2, and Kenyon and Rémila [28] showed the existence of an AFPTAS.
This was recently extended by Jansen and van Stee [26] to the case in which the items
can be rotated. Furthermore there is an APTAS by Jansen and Solis-Oba with additive
constant 1 [24].

For 2-Dim Bin Packing, Bansal et al. [3] showed that it does not admit an APTAS
unless P=NP. For the case without rotations, Caprara [8] presented a polynomial-time
algorithm with asymptotic approximation guarantee arbitrarily close to Π∞, where
Π∞ = 1.691 . . . is the so-called harmonic constant in the context of bin-packing [30].
For the case with rotations, an asymptotic approximation guarantee arbitrarily close to
2 follows from the result of [26]. APTASs are known for the 2-Stage and the Guillotine
2-Dim Bin Packing [6,9], in which the items must be packed in a certain structured way,
as well as for the cases in which one or two sides of the bins can be slightly enlarged
[7,3,14]. Building upon the results of [8,28], Bansal et al. derived in [4,5] a random-
ized approximation algorithm for 2-Dim Bin Packing, with and without rotations, with
asymptotic approximation guarantee arbitrarily close to 1 + lnΠ∞ = 1.525 . . .. This
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latter algorithm runs in polynomial time if there exists an APTAS for 2-Dim Fractional
Bin Packing, a question that was open before this paper.

Our results: The main result of this paper is a technical lemma on the structure of
packings of items into a bin. Roughly speaking, the lemma concerns a packing into a
bin of a set of items that can be partitioned into three subsets, namely “fat and tall”,
“fat and low”, and “thin and tall”, and for which the number of widths of the “fat and
low” items as well as the number of heights of the “thin and tall” items is bounded by a
constant. The (fairly complex) formal statement is:

Lemma 1 (Structural lemma). Consider a set of items (rectangles) that fits into a bin
(unit square) of the form L∪O∪V , where wi ≥ ε for i ∈ L∪O; hi ≥ ε for i ∈ L∪V ;
and the number of distinct widths of the items in O and heights of the items in V is
at most d, where ε and d are given constants. Let w1, w2 . . . be the distinct widths of
the items in O; h(wj) be the total height of the items having width wj; h1, h2 . . . be
the distinct heights of the items in V ; and b(hj) be the total width of the items having
height hj . Then, there exists a constant f(d, ε) such that, for any δ > 0, the following
set of rectangles fits into a unit square: the items in L plus, for j = 1, 2, . . ., a set of
rectangles of width wj and height δ for a total height at least h(wj) − δf(d, ε), and a
set of rectangles of height hj and width δ for a total width at least b(hj) − δf(d, ε).

By using this lemma, we are able to prove the following theorem, that shows that 2-
Dim Geometric Knapsack has a PTAS if the range of the profit/area ratios, namely
maxi∈I(pi/ai)/ mini∈I(pi/ai), is bounded from above by a constant. Note that, by
possibly scaling the profits, this is equivalent to saying that there exists a constant r
such that pi/ai ∈ [1, r] for i ∈ I .

Theorem 1. For any fixed r ≥ 1, there exists a PTAS for 2-Dim Geometric Knapsack
with and without rotations restricted to instances I for which pi/ai ∈ [1, r] for i ∈ I .
As a corollary, we get a PTAS for the problem of maximizing the area occupied in a
bin, whose existence was open so far.

Corollary 1. There exists a PTAS for the special case of 2-Dim Geometric Knapsack
with and without rotations in which pi = wi · hi for i ∈ I .

Although the straightforward column generation (or dual separation) problem for the
customary LP formulation of 2-Dim Fractional Bin Packing is a general 2-Dim Geomet-
ric Knapsack, to which Theorem 1 does not apply, we show that the column generation
problem for a closely-related variant can be solved near-optimally. By the well known
connection between approximate separation and optimization [18,19,31], this implies:

Theorem 2. There exists an APTAS for 2-Dim Fractional Bin Packing with and without
rotations.

As mentioned above, the results in [4,5] along with Theorem 2 imply:

Corollary 2 ([4,5]). For any fixed ε > 0, there exists a polynomial-time approxima-
tion algorithm for 2-Dim Bin Packing without rotations with approximation guarantee
arbitrarily close to 1 + lnΠ∞ = 1.525 . . ..

For the case without rotations, the bins can be assumed to be unit squares without loss
of generality. For the case with rotations, our results hold also for the case in which
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the bins can be arbitrary rectangles, and we address the case of unit squares only for
simplicity of presentation. For the sake of readability, in the coming sections we present
the above results in reverse order, which corresponds to increasing technical difficulty.
For a full discription of the proof of the structural lemma we refer to the full version.

Next-fit decreasing height: Throughout the paper, we will extensively use the next-fit
decreasing height (NFDH) procedure introduced by [13]:

Observation 1 ([13]) Consider a set of items I and its packing into bins by NFDH,
letting m be the number of these bins and, for j = 1, . . . , m, Sj be the subset of items
packed into the j-th bin. The following hold:

(i) if m > 1 and wi ≥ hi for i ∈ I , then the area a(S1) ≥ 1/4;
(ii) if m > 2, then max{a(S1), a(S2)} ≥ 1/4;

(iii) if m > 1, then a(S1) ≥ (1 − maxi∈S1 wi) · (1 − maxi∈S1 hi).

2 An APTAS for 2-Dim Fractional Bin Packing

In this section we prove Theorem 2. It is well known that 2-Dim Bin Packing can be
formulated as the Set Covering problem in which the set I of items has to be covered
by configurations from the collection C ⊆ 2I , where each configuration C ∈ C corre-
sponds to a set of items that can be packed into a bin. The associated 2-Dim Fractional
Bin Packing is the continuous relaxation of this Set Covering problem:

min{
∑

C∈C
xC :

∑

Ci

xC ≥ 1 (i ∈ I), xC ≥ 0 (C ∈ C)}. (1)

The dual of this LP is given by:

max{
∑

i∈I

πi :
∑

i∈C

πi ≤ 1 (C ∈ C), πi ≥ 0 (i ∈ I)}. (2)

The well known connection between approximate separation and optimization for (1)
reads:

Theorem 3 ([18,19,31]). There exists a PTAS for (1) if, for any ε > 0, there exists
a polynomial-time algorithm that, given (π∗i ) ∈ R|I|+ such that maxC∈C

∑
i∈C π∗i ≥

1 + ε, finds a configuration C∗ ∈ C such that
∑

i∈C∗ π∗i > 1.

Note that a PTAS for the 2-Dim Geometric Knapsack associated with the items in I in
which the item profits correspond to the dual values π∗i would suffice in Theorem 3.
Since the existence of such a PTAS remains open, we now introduce a variant of (1)
that, on the one hand, is almost equivalent to the original problem and, on the other,
has a dual separation problem that fulfils the requirements of Theorem 1. The definition
of this variant and its properties is the novelty of this section. The variant is simply
obtained by imposing a bound of 4ai on each dual variable πi:

max{
∑

i∈I

πi :
∑

i∈C

πi ≤ 1 (C ∈ C), 0 ≤ πi ≤ 4ai (i ∈ I)}, (3)

which corresponds to the primal problem with the additional variables yi:
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min{
∑

C∈C
xC +

∑

i∈I

4aiyi :
∑

Ci

xC + yi ≥ 1 (i ∈ I), xC , yi ≥ 0 (C ∈ C, i ∈ I)}. (4)

Lemma 2. Given any solution of (4) of value z∗, one can obtain in polynomial time a
solution of (1) of value at most z∗+1 for the case with rotations and z∗+2 for the case
without rotations.

Proof. Consider a solution (x∗C , y∗i ) of (4). Let I∗ := {i ∈ I : y∗i > 0} be the set of
items associated with a positive y-component in the solution. We pack the items in I∗

into bins by NFDH. If at least one of these bins contains a subset of items S∗ ⊆ I∗ such
that a(S∗) ≥ 1/4, we do the following. We let α := mini∈S∗ y∗i , and define the new
solution of (4) in which y∗i is decreased by α for i ∈ S∗ and xS∗ is increased by α. It
is immediate to verify that the new solution is feasible, and not worse than the previous
one since

∑
i∈S∗ 4aiα = 4αa(S∗) ≥ α.

We repeat the procedure above until no bin packed by NFDH with the items in I∗

has area occupied at least 1/4. In this case, by Observation 1(ii), for the case without
rotations we have that NFDH packs the items in I∗ into at most two bins, associated
with, say, subsets S∗1 and S∗2 . At this point, we define the new solution of (4) in which
y∗i is set to 0 for i ∈ S∗1 ∪ S∗2 and xS∗

1
, xS∗

2
are increased to value 1. This solution

is feasible also for (1) (by neglecting the y variables) and has a value which is larger
than the previous one by at most 2. On the other hand, for the case with rotations,
by Observation 1(i) NFDH packs the items in I∗ into one bin, and the reasoning is
analogous. Note that the number of iterations of the above procedure is at most |I| as,
in each iteration, at least one y∗i is decreased from a positive value to 0.

Lemma 3. There exists a PTAS for (4) with and without item rotations.

Proof. By the counterpart of Theorem 3 for (4), for any ε > 0 we need a polynomial-
time algorithm that, given (π∗i ) ∈ [0, 4ai]|I| such that maxC∈C

∑
i∈C π∗i ≥ 1+ε, finds a

configuration C∗ ∈ C such that
∑

i∈C∗ π∗i > 1. In other words, if the 2-Dim Geometric
Knapsack associated with the items in I having profits π∗i satisfies opt2KP(I) ≥ 1 + ε,
we want a solution of the problem of value > 1. Letting σ := ε/3, we first remove
all the items i ∈ I such that π∗i ≤ σai, whose overall contribution to opt2KP(I) is at
most σ. For the items left, the range of the profit/area ratios is [σ, 4], i.e., it becomes
[1, 4/σ] after scaling. Then, we apply the PTAS of Theorem 1 with internal precision σ
where now r = 4/σ. The solution found by this PTAS, after scaling profits back to their
original values, has value at least (1 − σ) (opt2KP(I) − σ) ≥ (1 − σ)(1 + ε − σ) > 1.

3 A PTAS for 2-Dim Geometric Knapsack

In this section we prove Theorem 1. Recall that we are assuming pi/ai ∈ [1, r] for i ∈ I ,
where r is a constant. For simplicity, we will assume that r is integer. By Observation
1(ii), items for a total area at least min{a(I), 1}/4 can be packed into the bin. Together
with pi/ai ≥ 1 for i ∈ I this implies opt2KP(I) ≥ min{a(I), 1}/4.

Let ε < 1/2 denote the accuracy required. Letting δ < ε2 be a suitable constant
threshold specified below, we distinguish the case in which a(I) ≥ δ, for which we ap-
ply the algorithm described below, from the case in which a(I) < δ. In this second case,
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if rotations are allowed all the items are packed into the bin by NFDH, by Observation
1(i). On the other hand, for the case without rotations handling instances in which the
overall area a(I) of the items is very small may be tricky. In fact, for the case in which
a(I) < δ, we adopt a completely different method illustrated in the full version.

Description of the main algorithm: We first illustrate the case without rotations, as
it is more complex. Let ε > 0 denote an internal accuracy parameter, assuming for
simplicity that 1/ε is integer. We will show how to find in polynomial time a solution of
value at least (1−αε) opt2KP(I)−ε, where α > 2 is a suitable constant (independent of
ε). Note that this yields a PTAS for the case in which a(I) > δ, implying opt2KP(I) > δ
(recalling δ < ε2 < 1/4), by setting for instance ε := (εδ)/α.

Size classification: Let ε0 := 1 and, for j = 0, . . . , 2/ε, εj+1 be a suitable constant,
depending on ε, r, εj , to be specified later, such that εj+1 < ε2εj . Let Ij ⊆ I denote the
subset of items that have width or height in the interval (εj+1, εj ]. We apply the method
that follows for all values m = 0, . . . , 2/ε, and take the best solution produced. We
neglect the items in Im (i.e., we find a solution in which none of these items is packed)
and partition the rectangles in I \ Im as follows: Let L (large) denote the rectangles
having both height and width > εm; O (horizontal) denote the rectangles having width
> εm and height ≤ εm+1; V (vertical) denote the rectangles having height > εm and
width ≤ εm+1; S (small) denote the rectangles having both height and width ≤ εm+1.

Rounding the items in O and V : In order to apply Lemma 1, we modify the widths
of the items in O (resp., the heights of the items in V ) so that there are only a constant
number of distinct widths (resp., heights). In this phase we allow the items in O to
be sliced horizontally (resp., the items in V to be sliced vertically) so as to be able to
form subsets whose total height (resp., width) is exactly a given value. At the end of
the algorithm, we will pack the items in O and V with their original sizes and without
slicing them.

We partition the items in O into groups Ojk for which the width and the profit/area
ratio is approximately the same, as follows:

Ojk := {i ∈ O : wi ∈ ((1 − ε)j , (1 − ε)j−1], pi/ai ∈ (r(1 − ε)k, r(1 − ε)k−1]}.

Note that we have to consider j = 1, . . . , �(log εm)/(log(1−ε))�, as wi ∈ (εm, 1], and
k = 1, . . . , �(log 1/r)/(log(1 − ε))� + 1, as pi/ai ∈ [1, r]. This implies that the total
number of groups is at most

gm := �(log εm)/(log(1 − ε))� · (�(log 1/r)/(log(1 − ε))� + 1) (5)

For simplicity, we redefine (decrease) the profits of the items in each group Ojk so that
their profit/height ratio is equal to r(1 − ε)j+k , i.e., the profit of any (slice of) item in
Ojk having height h is given by r(1 − ε)j+k · h. Given that items in Ojk can be sliced,
this implies that it is better to pack the items in Ojk with smallest width. Analogously,
we redefine the profits of the items in each group Vjk so that their profit/width ratio is
equal to r(1 − ε)j+k.

For each group Ojk , if h(Ojk) > 1/(1−ε)j , we keep only the items with the smallest
width for a total height equal to 1/(1− ε)j. Accordingly, in the reminder of this section
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we will assume h(Ojk) ≤ 1/(1 − ε)j . Then, we consider the items in increasing order
of widths, and define rgm/ε subgroups Ojk1, Ojk2, . . . of consecutive items, so that the
total height of the items in each subgroup Ojk� is h(Ojk)ε/(rgm). Note that the overall
number of subgroups of items in O is at most rg2

m/ε.
For each subgroup Ojk�, we define the increased width wjk� of all items as the largest

original width of an item in the subgroup. Finally, for each subgroup Ojk� we further
slice the items into �h(Ojk)ε/(rgmδm)� identical slices of width wjk� and height δm,
where δm ∈ [(εm+1/ε), εm] is a suitable constant, depending on ε, r, εm, to be specified
later. The possible residual slice of height < δm is neglected.

The rounding procedure for the items in V is analogous, leading to at most rg2
m/ε

distinct increased heights and, for each increased height hjk�, to identical slices of
height hjk� and width δm. After having defined the slices as above, we consider these
slices as single items that cannot be sliced further. Overall, this leaves us with a modified
instance I ′ with the items in L and the items corresponding to slices from O and V . Note
that |I ′| ≤ |I| as δm > εm+1.

Enumeration of the solutions for I ′: We enumerate all 2-Dim Geometric Knapsack
solutions associated with I ′ as these are polynomially many. Specifically, since the
area of each item in I ′ is at least δmεm, only the O(|I|1/(δmεm)) subsets with at most
1/(δmεm) items may be fit into the bin. Moreover, we can test in constant time if each
of these subsets indeed fits into the bin, since we can assume that the bottom left corner
of each item is placed into the bin at some (x, y) position which is an integer linear
combination of the widths and heights of the items in the subset, and therefore we
have O(22/(δmεm)) possible positions for each item. For each solution for I ′, and the
associated packing into the bin, we pack the small items in S and the original items in
O and V by the greedy procedure of the next section. Among the solutions defined in
this way, we keep the best one.

Converting the solution for I ′ into one for I: We use the empty spaces left in the bin
by the items in I ′ to pack the items in S, and the space occupied by the slices of items
in O and V to pack the original items in O and V . All (original) items in O, V and S
are unpacked at the beginning of this phase. In order to pack the items in S, we draw
horizontal and vertical lines through the coordinates of each corner of the items in I ′,
and let the cells be the rectangles that are empty among those defined by these lines.
We consider the cells one by one (in an arbitrary order) and, for each cell C, having
area aC , we consider the unpacked items in S in decreasing order of profit/area ratios
and define a subset R by selecting the first items until condition a(R) ≥ aC − 2εm+1
is satisfied. We pack all the items in R by NFDH into the cell, given that they fit as we
now show. Indeed, by Observation 1(iii), letting wC and hC be the width and height
of the cell, after scaling all small item widths by 1/wC and all item heights by 1/hC ,
we have that the area of any subset of items in S packed by NFDH in the cell, in case
some items are unpacked, is at least (1 − εm+1/wC) · (1 − εm+1/hC) · (wC · hC) ≥
wC · hC − 2εm+1 = aC − 2εm+1.

As to the items in O, for each group Ojk , we consider the slices of width wjk� and
height δm in increasing order of widths (i.e., by increasing �). For each such slice, we
consider the unpacked (original) items in Ojk in increasing order of widths, and define
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a subset R by selecting the first items until condition h(R) ≥ δm − εm+1 is satisfied.
We pack all items in R in the slice (noting that they clearly fit). Note that the order in
which we consider slices and items guarantees that we never run out of items. We do
the same for the items in V .

The case with rotations and proof of approximation guarantee: For a full descrip-
tion of the case with rotations and the following lemma we refer to the full version.

Lemma 4. By defining ε0 := 1 and, for each m = 0, . . . , 2/ε, δm :=
ε2/(2r2g2

mf(rg2
m/ε, εm)) and εm+1 := ε/(2r(2/(δmεm) + 1)2), the value of the 2-

Dim Geometric Knapsack solution produced by the algorithm above is at least (1 −
13ε) opt2KP(I) − ε, where gm is defined by (5) and f(·, ·) is the constant in the state-
ment of Lemma 1.
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Abstract. The max-coloring problem is to compute a legal coloring of
the vertices of a graph G = (V, E) with a non-negative weight function
w on V such that

∑k
i=1 maxv∈Ci w(vi) is minimized, where C1, . . . , Ck

are the various color classes. Max-coloring general graphs is as hard as
the classical vertex coloring problem, a special case where vertices have
unit weight. In fact, in some cases it can even be harder: for example, no
polynomial time algorithm is known for max-coloring trees. In this paper
we consider the problem of max-coloring paths and its generalization,
max-coloring a broad class of trees and show it can be solved in time
O(|V |+time for sorting the vertex weights). When vertex weights belong
to R, we show a matching lower bound of Ω(|V | log |V |) in the algebraic
computation tree model.

1 Introduction

The max-coloring problem takes as input a graph G = (V,E) with a weight
function w : V → N. The problem is to compute a legal coloring of V such
that

∑k
i=1 maxv∈Ci w(vi) is minimized, where C1, . . . , Ck are the various color

classes. When all the weights are 1, this problem reduces to the classical problem
of determining a legal coloring of V using the least number of colors.

The max-coloring problem arises in the problem of partitioning a set of n jobs
into batches, where all jobs in a batch start at the same time, and the batch is
completed when its last job finishes. The length of a batch is the length of the
longest job in this batch. The graph G has each job as a vertex and each edge in G
captures a conflict between a pair of jobs, that is, these jobs cannot be processed
in the same batch. Thus a valid schedule is a legal coloring of G, since each color
class consists of jobs that are conflict-free and can be processed together as one
batch. The goal is to minimize the makespan of the batch schedule, which is the
same as computing a max-coloring of G.

Since classical coloring is a special case of max-coloring (when all weights
are 1), the problem is hard for general graphs. Unlike the classical coloring
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problem, max-coloring bipartite graphs is APX-hard [8]. Even max-coloring of
trees is non-trivial: there is an exact algorithm with running time O(nlog n) where
n is the number of vertices, but only a PTAS is known if we restrict ourselves to
polynomial time algorithms [8]. Constant factor approximation algorithms and
NP-hardness results for various classes of perfect graphs were given in [2].

The focus of this paper is on max-coloring paths and the more general problem
of max-coloring skinny trees, these are trees where the set of vertices of degree
at least 3 form an independent set. It is easy to show that at most 3 color classes
are needed to optimally max-color a path (see, e.g., [1]). This simple observation
immediately yields an O(n4) time algorithm [5]. This was subsequently improved
to O(n2) by Escoffier et al. [3]. More recently, Halldórsson and Shachnai [6] gave
a recursive O(n log n) time algorithm.

In this paper we show algorithms for max-coloring paths and skinny trees that
take time O(n+S(n)), where S(n) is the time it takes to sort the vertex weights.
Since the vertex weights are integers, when they are polynomially bounded, our
algorithms take O(n) time using radix sort to sort the vertex weights. More
generally, using the randomized algorithm of Han and Thorup for integer sort-
ing [7] makes the expected running time of our algorithms O(n

√
log logn). Our

algorithms can be easily adapted to give 1 + ε approximation of the optimal
max-coloring in time O(n + 1/ε).

We next consider the problem of max-coloring a path with real vertex weights
and show a lower bound of Ω(n logn) in the algebraic computation tree model.
Thus the complexity of max-coloring a path with real vertex weights is Θ(n logn).

Organization of the paper. Though our result for skinny trees implies our
result for paths, we first present our algorithm for max-coloring paths as this
algorithm and analysis are simpler. This is done in Section 2. In Section 3 we
present our algorithm to max-color skinny trees. Section 4 contains our approx-
imation algorithm for this problem. Section 5 contains our lower bound result.

2 Max-Coloring a Path in Time for Sorting the Vertex
Weights

Our input is a path (v1, v2, . . . , vn) with a weight function w : {v1, . . . , vn} → N.
Since the degree of each vertex is at most 2, it is immediate that optimally max-
coloring a path requires at most three colors: call them red, blue, and green.
Let the weight of a color class be the weight of a heaviest vertex colored by
that color. We assume without loss of generality that the color class red has the
heaviest weight, followed by the color class blue and then the color class green.
The problem of max-coloring a path is the problem of determining the weights
of the blue and green color classes so that their sum is minimized, since the
color class red has weight wmax, the weight of the heaviest vertex. Any coloring
always has the form [wmax, β, γ], where the first coordinate denotes the weight
of the red color class, the second coordinate β denotes the weight of the blue

color class and the third coordinate γ the weight of the green color class.
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Algorithm 1. max-coloring-path (〈v1, . . . , vn〉, w)
1. b0 ← max 1≤j≤n−1 min{w(vj), w(vj+1)}
2. Scan the path from left to right identifying nodes u0, . . . , ur s.t. w(uj) > b0.

These vertices break the path into smaller subpaths ρ1, . . . , ρr.
3. Store the path decomposition 〈u0, (p1, z1), u1, . . . , (pr, zr), ur〉 as a linked

list, where pj is the parity of ρj and zj is a least weight vertex in ρj .
4. g0 ← max1≤j≤r w(zi)
5. Q ← queue containing the vertices zi in non-increasing order of w(zi).
6. for i = 1, . . . , r do
7. z ← pop first vertex from Q
8. r ← lighter u-vertex adjacent to z’s subpath
9. if r is the first or last vertex in the path decomposition then

10. update decomposition: remove r and its adjacent subpath
11. else if r appears in between two subpaths ρ′ and ρ′′ then
12. update decomposition: remove r and merge ρ′, r, ρ′′ into single subpath
13. set the parity of this merged path to 1+ sum of parities of ρ′ and ρ′′

14. if z’s subpath had odd parity then
15. bi = bi−1.
16. else if z’s subpath had even parity then
17. bi ← max{w(r), bi−1}
18. gi ← weight of the next z-vertex in Q
19. return best coloring among the candidates [wmax, bj , gj] for j = 0, . . . , r.

Fig. 1. Pseudocode of our algorithm for max-coloring a path

The algorithm is formally presented in Fig. 1.
We need the following lemmas to prove the correctness of our algorithm. The

proof of Lemma 1 is omitted here due to lack of space.

Lemma 1. Each candidate coloring [wmax, bj , gj] the algorithm produces is valid.

Lemma 2. Let i < r be such that bi < bi+1. Then for every valid coloring
[wmax, β, γ] if β < bi+1 then γ ≥ gi.

Proof. Consider the i + 1st iteration of the algorithm and let z be the vertex
removed from the queue (recall that w(z) = gi). Since bi+1 > bi it must be
the case that the subpath of z has even parity and that the lightest u-neighbor
of z has weight bi+1. It follows that any valid coloring [wmax, β, γ] such that
β < bi+1 must color both u-neighbors of z red; however, since the subpath has
even parity we must also color at least one vertex in the subpath green and
so γ ≥ gi. �	

Everything is in place to prove the correctness of our algorithm.

Theorem 1. Algorithm max-coloring-path outputs a feasible optimal max-
coloring.



90 T. Kavitha and J. Mestre

Proof. First, we note that from Lemma 1 it follows that the solution output is
a valid coloring. To argue that it is optimal, we compare its cost to any other
valid coloring [wmax, β, γ]. If β ≥ br then our algorithm considers the candidate
solution [wmax, br, gr] where gr = 0 (at the last iteration the queue is empty),
so the solution output is at least as good as [wmax, β, γ]. Otherwise, there exists
0 ≤ i < r such that bi ≤ β < bi+1 (note that for any valid coloring β ≥ b0 since
no two adjacent vertices can be colored red.). Therefore, by Lemma 2 we have
γ ≥ gi and since the algorithm considers the candidate solution [wmax, bi, gi], the
solution output is at least as good as [wmax, β, γ]. It follows that our algorithm
outputs an optimal solution. �	

Running time. The initial path decomposition and the first coloring can be
computed in O(n) time. Building the queue Q requires that we sort the weights
of the zj vertices. After that, in each iteration we update the path by removing
a subpath or we merge two adjacent subpaths. We can carry out the update
in O(1) time by keeping along with the vertices in Q, a pointer to the subpath
they belong to in the current path decomposition. Each iteration removes one
u-vertex from our path decomposition, so the total running time of the for loop
is O(r). Hence, other than the sorting done in Line 5, our algorithm runs in O(n)
time. The sorting time is our most expensive step. In the RAM model, this step
can be carried out in O(n

√
log logn) expected time using the algorithm of Han

and Thorup [7] for integer sorting. In fact, this sorting step is more efficient in
many cases, for example when the weights are polynomially bounded in n.

Theorem 2. The running time of our algorithm is O(n + S(r)), where S(r) is
the time it takes to sort the weights of the vertices z1, . . . , zr used in the initial
path decomposition.

3 Extension to Skinny Trees

In this section we present our algorithm for max-coloring a tree T = (V,E) hav-
ing the property that the set of vertices of degree at least 3 forms an independent
set. We call such a tree skinny. As we will see next, any such tree has the in-
teresting property that it always has an optimal coloring with at most 3 colors.
Two notable examples of trees falling in this class are paths (every vertex has
degree is at most 2) and spiders (there is a single vertex with degree 3 or more).

Lemma 3. Every skinny tree T has an optimal max-coloring using at most 3
colors.

Proof. Suppose a fourth color is used, where colors red ≥ blue ≥ green denote
the three heaviest color classes. Consider any vertex x that is colored by a color
different from these 3 colors. If this is a degree ≤ 2 vertex, then one of red,
blue, green is missing from its neighborhood. Hence we can change the color
of x to this missing color and this results in a valid coloring and the value to
be optimized does not increase by this change of color. Hence after we perform
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Algorithm 2. max-coloring-skinny-tree(T,w)
1. b0 ← g0 ← max(u,v)∈T min{w(u), w(v)}
2. H ← {v ∈ V | w(v) > b0}
3. L ← {v ∈ V | w(v) ≤ b0}
4. Q ← list z1, . . . , z|L| of vertices in L in non-increasing order of weight
5. for zi in Q do
6. transfer zi from L to H
7. let C be the connected component of H containing zi

8. [α, β] ← optimally 2-color C
9. bi ← max {β, bi−1}
10. gi ← maxv∈L w(v)
11. record [wmax, bi, gi] as a candidate solution
12. return best coloring among the candidate solutions

Fig. 2. Pseudocode of our algorithm for max-coloring a skinny tree

this step for every such x of degree at most 2, only vertices of degree 3 or higher
may be colored by a color other than red, blue, or green.

Let y be such a vertex. If y has no green-colored neighbors, then we can
change the color of y to green. So let us assume that y has a neighbor v that is
colored green. By the structure of T , we know that the degree of v is at most
2. Since one neighbor of v is y, there is at most another neighbor of v; hence one
of red, blue is missing from v’s neighborhood – thus we can change the color
of v from green to this missing color in red, blue. The value to be optimized
does not increase by this change of color. Repeating this step for every neighbor
of y that is colored green allows us to eliminate green from y’s neighborhood;
now y can be colored green. Hence it follows that the optimal max-coloring on
such a graph uses at most 3 colors. �	

From Lemma 3, an O(n3) time algorithm follows easily: Pemmaraju and Raman
[8] gave an O(kn) time algorithm that given a tree T and a tuple [W1, . . . ,Wk]
determines if there is a feasible coloring [W1, . . . ,Wk] of T ; since there are O(n2)
possible triples [wmax, β, γ] for 3-colorings, we get an O(n3) time algorithm. We
improve on this by showing an almost linear time algorithm for max-coloring
skinny trees. We first describe the algorithm and then proceed to show its cor-
rectness. The implementation details will be described later. The complete pseu-
docode for our algorithm is given in Fig. 2.

As we did before, we look at each edge and determine a lower bound b0 for
blue as b0 = max(u,v)∈T min{w(u), w(v)}. Since for any edge (u, v), both u
and v cannot be colored red, it follows that b0 is a lower bound for blue. We
partition the vertices into a set of heavy nodes H = {u ∈ T | w(u) > b0} and a
set of light nodes L = {u ∈ T | w(u) ≤ b0}.

In the ith iteration we transfer a node u ∈ L of maximum weight to H . Then
we optimally color with red and blue the nodes in H to obtain a coloring with
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cost [α, β]. We extend this into a proper 3-coloring by coloring the remaining
vertices of L with red, blue, and green. The cost of this coloring is at most
[wmax, bi, gi] where bi = max {β, bi−1} and gi = maxu∈L w(u). We record this
coloring as a candidate solution and at the end of the algorithm (when L = ∅)
we return the best candidate solution thus produced.

3.1 Correctness

The correctness of the algorithm relies on the following key lemmas.

Lemma 4. Let H be a subset of the vertices of a skinny tree T . Then every
coloring of H with red and blue can be extended to the whole tree using an
extra color green.

Proof. First color with green all the vertices in T \H whose degree is 3 or more.
The vertices that remain uncolored form a collection of paths whose endpoints
have degree 2 or 1 in the original tree. These left-over paths can be easily colored
without creating any conflicts. �	

Lemma 5. Let i be such that bi < bi+1 and [wmax, b, g] be a valid coloring of T
with b < bi+1. Then we must have g ≥ gi.

Proof. Let H and L be the set of heavy and light vertices after the ith iteration
is executed and let zi+1 be the vertex in L to be transferred to H in the i + 1st
iteration. Recall that gi = maxv∈Lw(v) = w(zi+1).

The vertices in H form a number of connected components in T . If the vertex
zi+1 is adjacent to none of these components then the cost of 2-coloring H+zi+1
cannot be more than 2-coloring H . Therefore, adding zi+1 must enlarge a single
component or merge several components. At any rate the cost of 2-coloring this
new component must be [α, bi+1]—the cost of coloring the remaining components
does not change with the update. Notice that this coloring is optimal for the
component. Since the coloring [wmax, b, g] from the lemma statement has b <
bi+1, it must be the case that at least one vertex in the component is colored
green. Since all nodes in the component have weight greater or equal than gi, it
follows that g ≥ gi. �	

Theorem 3. The algorithm max-coloring-skinny-trees outputs a feasible
optimal max-coloring.

Proof. First we note that by Lemma 4, every candidate solution is feasible and
thus the algorithm outputs a feasible solution.

Let [wmax, br, gr] be the last coloring produced by the algorithm. For each
valid 3-coloring [wmax, b, g] where b < br it follows from Lemma 5 and the fact
that b ≥ b0 that our algorithm finds an algorithm just as good. If b ≥ br then the
last coloring produced is at least as good since gr = 0 (at this point L = ∅). �	
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Implementation details. We will show that except for Line 4, the algorithm runs
in linear time. In fact, we only need to argue that the time spent on Lines 7
and 8 is linear as it is straightforward to implement the remaining lines in
linear time.

The details are omitted here due to lack of space. The main ideas are:

(1) The connected components of H can be kept track of via a union-find data
structure. The union operations follow the underlying tree structure and
for precisely this setup there exists a data structure that can execute both
operations in O(1) amortized time [4]. This means that we can execute Line 7
in O(deg(zi)) amortized time, where zi is the vertex being processed.

(2) Line 8 can be implemented in the same time bound by maintaining for each
connected component of H the root of the component and the two possible
2-colorings of the component: one that colors the root of the component red

and another that colors the root of the component blue. We call these the
red and blue options and we store their costs. When a vertex zi is transferred
from L to H , it can be shown how to compute the new root of the newly
formed component and how to compute the costs of the red/blue options in
O(deg(zi)) amortized time.

We conclude this section with Theorem 4.

Theorem 4. The algorithm max-coloring-skinny-trees can be implemented
to run in O(n + S(n)) time, where S(n) is the time it takes to sort the vertices
by weight.

4 A (1 + ε)-Approximation Algorithm in O(n + 1/ε)
Time

Except for the sorting step, the rest of our algorithm for skinny trees runs in
O(n) time. In this section we exploit this fact to get an algorithm that computes
a (1 + ε)-approximation of the optimal max-coloring in O(n + 1/ε) time.

Theorem 5. There is an O(n+1/ε) time (1+ε) approximation for max-coloring
a skinny tree.

The idea is very simple. Given a skinny tree and a weight function w and a real
number ε > 0, we create another weight function w′ so that for every vertex vi

in the tree

w′(vi) =
⌊

3w(vi)
ε wmax

⌋
.

The weights under w′ are integers in the range [0,
⌈3

ε

⌉
]. Therefore, by Theo-

rem 2 we can find an optimal max-coloring in O(n + 1
ε ) time using bucket sort

for sorting the weights of the zj vertices. We claim that this coloring is a 1 + ε
approximation for the original weights w. Let opt be the optimal coloring under
w and w(opt) be its cost; similarly, let opt

′ be the optimal coloring under w′

(the one output by our algorithm) and w′(opt) be its cost.
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We have w(opt
′) ≤ (w′(opt

′) + 3) ε wmax

3 , since there are only three color
classes. Further, this quantity is bounded by (w′(opt) + 3) ε wmax

3 since opt
′ is

optimal for w′. This in turn is bounded by w(opt) + ε wmax from the definition
of w′. Finally, since w(opt) ≥ wmax, we have w(opt)+ε wmax ≤ (1+ε) w(opt).

5 Lower Bounds on Max-Coloring a Path with Real
Vertex Weights

Our algorithm for max-coloring a path took time O(n + S(r)), where S(r) is
the time it takes to sort the weights of a subset of r vertices. The max-coloring
problem was defined for integral vertex weights, since this problem was motivated
by scheduling problems, where the time to process each job is integral. However
the max-coloring problem can be naturally extended to real vertex weights also.
When the vertex weights are real, our algorithm takes O(n log n) time (this is
the time needed for sorting n real numbers). We will now show that this is the
optimal running time for max-coloring a path in the real algebraic computation
tree model. In this model the operations {+,−,×,÷,√, = 0,≥ 0} on reals can
be performed at unit cost.

Our lower bounding method works via a problem that we call the max-
difference problem. In the max-difference problem, we are given a set {y1, . . . , yn}
of real numbers and let 〈yπ(1), . . . , yπ(n)〉 be these elements sorted in nondecreas-
ing order. The problem is to determine the maximum value of yπ(i+1) − yπ(i) for
1 ≤ i ≤ n− 1.

5.1 The Reduction from Max-Difference to Max-Coloring a Path

We will show an O(n) time reduction from the max-difference problem to the
max-coloring a path problem. Given a set {y1, . . . , yn} of n real numbers, let
us determine the maximum and minimum of y1, . . . , yn in O(n) time. Assume
that y1 is the minimum and yn is the maximum. We form an instance of the
max-coloring problem on a path as follows.

The path (v1, v2, . . . , vN ) consists of N = 5(n− 1) + 2 vertices. The leftmost
vertex v1 has weight yn + y1 − ε, where ε > 0 is a small constant. The next
vertex v2 has weight 2yn; recall that the largest value among the yi’s is yn and
this is the largest vertex weight here. We can assume that v2 (vertex with the
maximum weight) is colored red. Let the next heaviest color class be blue.
Note that since v1 is adjacent to v2, the blue color class has weight at least
yn + y1 − ε.

The remaining vertices (v3, . . . , vN ) can be split into n− 1 blocks, each with
5 vertices. Let us call the 5 vertices of the ith block zi, ui, xi1 , xi2 , u

′
i, where zi

has weight 0, vertices ui and u′i have weight yn + yi and vertices xi1 and xi2

have weight yn − yi. Note that if both ui and u′i are colored red, then one of
xi1 , xi2 has to be colored green. The vertices zi of weight 0 in each block allow
the blocks to be independent of each other.

There is a coloring of the path where the blue color class has weight yn+y1−ε
(the least possible weight for blue). Since ε > 0, this forces all the 2(n − 1)
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vertices of weights in {yn + y1, . . . , yn + yn−1} to be colored red in the initial
coloring. This thereby forces certain vertices with weights in {yn − y1, . . . , yn −
yn−1} to be colored green. So the green color class has weight yn − y1 here
(since y1 is the minimum among the yi’s, yn − y1 is the largest among the
yn − yi’s). Thus the sum of the blue and green color classes in the above
coloring is yn + y1 − ε + yn − y1 = 2yn − ε. Here we only compute the sum of
blue and green color classes to compare colorings since the red always has
weight 2yn.

If we want a lower weight for the green color class, then we need to increase
the weight of the blue color class. Suppose we want the weight of the green

color class to go down to yn−yπ(k); this means that all the vertices with weights
in {yn − y1, yn − yπ(2), . . . , yn − yπ(k−1)} are colored red or blue. The follow-
ing lemma holds because we have 2 vertices of weight yn − yπ(k−1) sandwiched
between 2 vertices of weight yn + yπ(k−1).

Lemma 6. For all the vertices of weight yn − yπ(k−1) to be colored non-green,
a vertex of weight yn + yπ(k−1) should be colored blue.

It is easy to see that with yn+yπ(k−1) as the heaviest blue vertex weight, we are
free to color vertices with weights in {yn+yπ(1), yn+yπ(2), . . . , yn+yπ(k−2)} blue,
thus we can make all vertices with weights in {yn − yπ(1), yn − yπ(2), . . . , yn −
yπ(k−1)} non-green. Thus the green color class has weight yn − yπ(k) now.
This makes the sum of blue and green color classes in such a coloring yn +
yπ(k−1) + yn − yπ(k).

We will take ε to be a very small value, let ε < (yn − y1)/(n− 1), the average
difference. Then the best (least weight) coloring among all the candidates for
blue+green color class weights which are: 2yn−ε, 2yn+yπ(1)−yπ(2), . . . , 2yn+
yπ(k−1) − yπ(k), . . . , 2yn + yπ(n−1) − yπ(n) is that 2yn + yπ(i−1) − yπ(i), where
“yπ(i−1) − yπ(i)” is the most negative, that is, yπ(i) − yπ(i−1) is the largest.

Thus solving the max-coloring a path problem solves the max-difference prob-
lem. An O(t(n)) running time for max-coloring a path implies an O(t(n) + n)
algorithm, that is, an O(t(n)) algorithm for the maximum difference problem,
since t(n) ≥ n for the max-coloring problem.

5.2 A Lower Bound for the Max-Difference Problem

In this section we will show the following: in the algebraic computation tree
model, if there exists an O(t(n)) algorithm for the max-difference problem,
then there exists an O(t(n) + n) algorithm for the following problem: given
{x1, . . . , xn} ∈ Rn, do these numbers in sorted increasing order form a non-
trivial arithmetic progression? That is, this problem “Is-it-an-AP” asks if there
a d > 0 such that

{x1, . . . , xn} = {min,min +d,min +2d, . . . ,min +(n− 1)d},

where min is the minimum among x1, . . . , xn. Then we will show an Ω(n log n)
lower bound for Is-it-an-AP.
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The O(n) time reduction from “Is-it-an-AP” to “max-difference” is simple:
we compute the max-difference of x1, . . . , xn, call this d. Then we compute the
following values z0, . . . , zn−1, where z0 = min and zi = zi−1+d for 1 ≤ i ≤ n−1,
(min is the minimum among x1, . . . , xn). It is easy to see that {x1, . . . , xn} forms
a yes instance of “Is-it-an-AP” if and only if

∑n
i=1 xi =

∑n−1
i=0 zi and d 
= 0.

Lower bound on “Is-it-an-AP”. Our lower bounding method is absolutely the
same as in the Element Distinctness problem. The yes instances of this problem
form at least n! connected components (the same reasoning as in Element Dis-
tinctness), so it follows from Ben-Or’s result that any algebraic computation tree
solving the Is-it-an-AP problem has depth Ω(logn! − n), which is Ω(n logn).

Theorem 6. The complexity of max-coloring a path with real vertex weights is
Θ(n log n) in the algebraic computation tree model.

Acknowledgments. Thanks to Magnús Halldórsson and Rajiv Raman for helpful
discussions.
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Abstract. We discuss two versions of the Fréchet distance problem in
weighted planar subdivisions. In the first one, the distance between two
points is the weighted length of the line segment joining the points. In
the second one, the distance between two points is the length of the
shortest path between the points. In both cases we give algorithms for
finding a (1 + ε)-factor approximation of the Fréchet distance between
two polygonal curves. We also consider the Fréchet distance between
two polygonal curves among polyhedral obstacles in R3 (1/ ∞ weighted
region problem) and present a (1 + ε)-factor approximation algorithm.

1 Introduction

Measuring similarity between curves is a fundamental problem that appears in
various applications, including computer graphics and computer vision, pattern
recognition, robotics, and structural biology. One common choice for measuring
the similarity between curves is the Fréchet distance, introduced by Fréchet in
1906 [16]. The traditional (continuous) Fréchet distance δF for two parametric
curves P ,Q: [0, 1] → Rd is defined as

δF (P,Q) = inf
α,β:[0,1]→[0,1]

sup
r∈[0,1]

S(P (α(r)), Q(β(r))),

where α and β range over all continuous non-decreasing functions with α(0) =
β(0) = 0 and α(1) = β(1) = 1, S is a distance metric between points, and d > 0
is the dimension of the problem.

The Fréchet distance is described intuitively by a man walking a dog on a
leash. The man follows a curve (path), and the dog follows another path. Both
can control their speed, but backtracking is not allowed. The Fréchet distance
between the curves is the length of the shortest leash that is sufficient for the
man and the dog to walk their paths from start to end.

A reparameterization is a continuous, non-decreasing surjective function. The
pair α, β of reparametrizations define how the end points of the leash, i.e. P (α(r))
and Q(β(r)), sweep along their respective curves. We say that α, β is a matching
between P and Q or α, β define a monotone walk from leash P (0)Q(0) to leash
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Fig. 1. An example of the Fréchet distance problem in weighted regions

P (1)Q(1). In this paper, we use s and t to denote α(r) and β(r), respectively.
We assume P and Q are polygonal, and denote by δ(P ) = (u1, u2, . . . , up) and
δ(Q) = (v1, v2, . . . , vq) the sequences of vertices of P and Q, respectively.

The discrete Fréchet distance, introduced by Either and Mannila [15], consid-
ers only the vertices of the (polygonal) curves. A coupling L between δ(P ) and
δ(Q) is defined as

(ua1 , vb1), (ua2 , vb2), . . . , (uam , vbm),

such that a1 = 1, b1 = 1, am = p, bm = q, and for i = 1, 2, . . . ,m, we have
ai+1 = ai or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi + 1. In other words, L is
an order preserving pairing of vertices in P and Q. Note that each vertex can
appear in L more than once. The discrete Fréchet distance is defined as

δdF (P,Q) = inf
L

max
i=1,2,...,m

S(uai , vbi).

Let R = {R1, R2, . . . , Rn′} be a subdivision of the plane with a total of n
vertices, with each region Ri ∈ R having associated a positive integer weight wi.
The length of a path π that stays within a region Ri of R is defined as wi|π|,
where |π| is the Euclidean length of π. The length of a path in R is the sum of
the lengths of the subpaths within each region of R.

Let P (s)Q(t) be the leash with endpoints P (s) and Q(t). Let Ri(P (s)Q(t)) be
the Euclidean length of the line segment with endpoints P (s) and Q(t) within
the region Ri. We define the distance between two points P (s) and Q(t) on
P and Q, respectively, as (a) S(P (s), Q(t)) =

∑n′

i=1 wi ∗ Ri(P (s)Q(t)) or (b)
S(P (s), Q(t))= the length of the shortest (weighted) path from P (s) to Q(t).

In this paper, we study the Fréchet distance problem in weighted regions in
the plane: Given a weighted subdivision R and two parameterized polygonal
chains P and Q in R, find the Fréchet distance between P and Q, where the
distance between two points P (s) and Q(t) on P and Q, respectively, is defined
either as in (a) or as in (b) above.

Without loss of generality, we assume R is triangulated and P and Q lie on
boundaries of weighted regions (see Fig. 1 as an illustration). We also



Fréchet Distance Problems in Weighted Regions 99

discuss a special case in R3, where the weights are either 1 or ∞ (i.e., free space
and obstacles).

Motivation. The motivation for studying such measurement comes from
path/travel planning. Let us consider the following scenario. Suppose during
a military operation, there are two teams of military units traveling on separate
paths. However, before reaching their own destinations, the two teams want to
maintain constant radio communications so that in case of any emergency one
team can rescue the other one in time. The question is how should these two
teams schedule their trips such that at any given time, the radio signal received
by one team from the other is stronger than a threshold, or what is the optimal
traveling schedule for each team such that minimum signal strength received is
maximized.

We use the Beer-Lambert law to model the decay (of the intensity) of an EM
wave traveling through a region. Beer-Lambert law states that there is a logarith-
mic dependence between the transmission T of the EM wave and the product of
the absorption coefficient associated with the region α and the distance l traveled
by the EM wave in the region, i.e. T = I

Io
= e−αl, where Io and I are the initial

intensity (or power) of the EM wave and the intensity after the path, respec-
tively [21]. If the EM wave travels through a set of regions R = {R1, R2, . . . , Rk},
the transmission T can be written as T = e

∑k
i=1 αili , where αi and li are the

absorption coefficient associated with Ri and the distance traveled by the EM
wave in Ri, respectively. The decay of the wave intensity can also be expressed
in terms of the absorbance A which is defined as A = − log10

I
I0

=
∑k

i=1 αili.
Notice that if we treat R as a weighted subdivision, where the weight of each
region Ri is its absorption coefficient αi, A is exactly the weighted length of the
path traveled by the EM wave. Hence, this scheduling problem can be reduced
to the Fréchet distance problem in weighted regions.

Previous Work. The Fréchet distance and its variants attracted considerable
attention in literature. Most previous work assumes an unweighted environment
and can be divided into two categories, depending on the distance metric used.
In the first category, the distance between two points is the Euclidean distance.
In other words, the leash is always a line segment, as in case (a) above. Bending
of the leash is not allowed. Fréchet distances in this category are also referred to
as non-geodesic Fréchet distances. Alt and Godau [4] give a fundamental study
on the computational properties of the Fréchet distance. They present an algo-
rithm that computes the exact Fréchet distance between two polygonal curves in
O(pq log pq) time, where p and q are the number of vertices of P and Q, respec-
tively. Either and Mannila [15] show how to find the discrete Fréchet distance
between two polygonal curves. Rote [19] gives algorithms for finding the Fréchet
distance between piecewise smooth curves. Buchin et al. [6] study the Fréchet
distance between polygons. Wang et al. [7] presents the first exact, polynomial-
time algorithm to compute a partial matching between two polygonal curves
via Fréchet distance. In the second category, the distance between two points
is the geodesic distance. Fréchet distances in this category are also referred to
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as geodesic Fréchet distances. The leash is allowed to bend to achieve to the
minimum length. Maheshwari and Yi [17] study the case in which the curves lie
on a convex polyhedron. Cook and Wenk [14] show how to compute the Fréchet
distance between two curves when the leash is constrained inside a polygon or
when polygonal obstacles are present between curves. Chambers et al. [8] give
a polynomial-time algorithm to compute the homotopic Fréchet distance be-
tween two polygonal curves in the presence of obstacles. The homotopic Fréchet
distance is the Fréchet distance with an additional continuity requirement: the
leash is not allowed to switch discontinuously, e.g. jump over obstacles (unless
the leash is long enough).

Weighted region shortest path problems have been investigated in computa-
tional geometry for about two decades. Using Snell’s refraction low and the con-
tinuous Dijkstra algorithm, Mitchell and Papadimitriou [18] present an
O(n8 log nN ′ρ

ε ) time algorithm, where N ′ is the largest integer coordinate of
vertices and ρ is the ratio of the maximum weight to the minimum weight. Alek-
sandrov et al. [2,3] provide two logarithmic discretization schemes that place
Steiner points along edges or bisectors of angles of regions in R, forming a ge-
ometric progression. The placement of the Steiner points depends on an input
parameter ε > 0 and the geometry of the subdivision. The (1+ ε)-approximation
algorithms in [2,3] take O(n

ε ( 1√
ε

+ logn) log 1
ε ) and O( n√

ε
log n

ε log 1
ε ) time, re-

spectively. Sun and Reif [20] give an algorithm, called BUSHWHACK, which
constructs a discrete graph G by placing Steiner points along edges of the subdi-
vision. By exploiting the geometric property of an optimal path, BUSHWHACK
computes an approximate path more efficiently as it accesses only a subgraph
of G. Combined with the logarithmic discretization scheme introduced in [2],
BUSHWHACK takes O(n

ε (log 1
ε + logn) log 1

ε ) time. Very recently, Aleksandrov
et al. [1] gave a query algorithm that can find an ε-approximate shortest path
between any two points in O(q̄) time, where q̄ is a query time parameter. The pre-
processing time of this algorithm is O( (g+1)n2

ε2/3q̄
log n

ε log4 1
ε ), where g is the genus

of the discrete graph constructed by the discretization scheme. Cheng et al. [10]
give an algorithm to approximate optimal paths in anisotropic regions, which is a
generalized case of weighted regions. Their algorithm takes O(ρ2 log ρ

ε2 n3 log(ρn
ρ ))

time, where ρ ≥ 1 is a constant such that the convex distance function of any
region contains a concentric Euclidean disk with radius 1/ρ. In weighted regions,
the time complexity of the algorithm is improved to O(ρ log ρ

ε n3 log(ρn
ε )) time,

where ρ is the ratio of the maximum weight to the minimum weight. Very re-
cently, Cheng et al. [11] also provided a query version of this algorithm that gives
an approximate optimal path from a fixed source (in an anisotropic subdivision)
in O(log ρn

ε ) time. The preprocessing time is O(ρ2n4

ε2 (log ρn
ε )2).

Our results. Let ε > 0 be a positive constant given as part of the input. We also
assume ε < 1 at times. We have the following results: (1) For weighted regions
in the plane, with S(P (s), Q(t)) =

∑n′

i=1 wi ∗Ri(P (s)Q(t)) (case (a) above), we
present a (1 + ε)-approximation algorithm that takes O(pqN4 log(pqN)) time,
N = O(C(R)(n

ε (log 1
ε + logn) log 1

ε ) is the total number of Steiner points used
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and C(R) is a constant associated with the geometry of the subdivision R;
(2) For weighted regions in the plane, with S(P (s), Q(t))=the length of the
shortest (weighted) path from P (s) to Q(t), we present a (1 + ε)-approximation
algorithm that takes O(C(R)2 pq

ε2 (log4 1
ε )q̄ + (g+1)n2

ε2/3q̄
log n

ε log4 1
ε ) time, where q̄

is a query time parameter related to computing shortest path and g is the
genus of the graph constructed by the discretization scheme. (3) We give a
(1 + ε)-approximation algorithm for finding the Fréchet distance between P
and Q among polyhedral obstacles in R3 (1 and ∞ weights). To the best of
our knowledge this is the first result for the R3 problem. The algorithm takes
O(C(R)2pq(1/ε2) log4(1/ε)(n2λ(n) log(n/ε)/ε4 + n2 log(nγ) log(n log γ))) time,
where γ is the ratio of the length of the longest obstacle edge to the Euclidean
distance between the two points, and λ(n) is a very slowly-growing function
related to the inverse of the Ackermann’s function.

2 Preliminaries and Definitions

We denote by P (s)Q(t) the leash (line segment, also called link, or shortest path,
depending of context) from P (s) to Q(t), where s, t ∈ [0, 1].

Alt and Godau [4] introduced the free space diagram to solve the decision ver-
sion of the non-geodesic Fréchet distance problem (unweighted case): Given two
polygonal curves P and Q, and a positive constant Δ, determine if δF (P,Q) < Δ.
A free space diagram is a [0, 1]× [0, 1] parameter space such that each point (s, t)
in the parameter space corresponds to a leash with end points P (s) and Q(t). A
free space cell C ⊆ [0, 1]2 is defined by two line segments, one from each curve. C
corresponds to the leashes with endpoints on the two segments. The free space in
the parameter space is defined as {(s, t) : S(P (s), Q(t)) < Δ}. That is, the free
space represents all links shorter than Δ. A monotone path is a path monotone
along both coordinate axes. There is a one-to-one correspondence between all
possible matchings of P and Q and all monotone paths from (0, 0) to (1, 1) in the
free space diagram. Hence, δF (P,Q) < Δ if and only if there exists a monotone
path in the free space from (0, 0) to (1, 1).

3 The Line Segment Leash

In this section, we discuss the case of the line segment leash. That is, S(P (s), Q(t))
=

∑n′

i=1 wi ∗ Ri(P (s)Q(t)). We first briefly discuss a pseudo polynomial exact
algorithm for solving the decision version of this problem. Then, we address
the optimization version of this problem directly and give a polynomial time
approximation algorithm.

3.1 An Exact Algorithm for the Decision Problem

In this section, we give an exact algorithm extending Alt and Godau’s algo-
rithm [4] to solve the decision version of the problem. Recall that the free space
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diagram introduced by Alt and Godau is a [0, 1] × [0, 1] parameter space such
that each point (s, t) in the parameter space corresponds to a leash with end
points P (s) and Q(t). The free space diagram can be decomposed into O(pq) free
space cells such that each cell C corresponds to the leashes with endpoints on
two segments, one from each curve, where p and q are the number of vertices of
P and Q, respectively. To determine if δF (P,Q) < Δ for some positive constant
Δ, we proceed as follows:

1. Partition each cell C into regions such that each region corresponds to leashes
intersecting the same sequence of edges in R.
2. For each region, find the free space with respect to the positive constant Δ
by solving an O(n) order bivariate polynomial system with O(n) equations and
inequalities.
3. Determine if there exists a monotone path in the free space from (0, 0) to (1, 1).

The partition in step 1 is an arrangement of O(n) curves of the form st +
c1s + c2t + c3 = 0, where c1, c2, and c3 are constants. In the worst case, the
total number of regions in the parameter space is (pqn2). Each region can be
defined mathematically by O(n) inequalities. Once the free space in each region
is computed, step 3 can be solved by decomposing the parameter space and
constructing a directed shortest path graph. We will address steps 1 and 3 in
detail in later sections. Both steps can be solved in polynomial time. Next, we will
show that Step 2 takes pseudo polynomial time, which dominates the complexity
of this algorithm.

For each region, let f(s, t) be the weighted length of the leash P (s)Q(t)
in terms of s and t, let and {e1, e2, . . . , ek} be the sequence of edges inter-
sected by the leash. Note that k = O(n) and e1 and ek are the two seg-
ments in P and Q, respectively. Following [9], the weighted length of leashes
within the same region have the same functional expression, i.e. S(P (s), Q(t)) =√

1 + m2
∑k−1

i=1 wi| pi+1−p
m−mi+1

− pi−p
m−mi

| =
√

1 + m2
∑k

i=1
aip+bi

m−mi
, where ai, bi are

constants, wi is the weight of the region bounded by edges ei and ei+1, m, p
are the slope and intercept of the leash, respectively, and mi, pi are the slope
and intercept of ei ∈ {e1, e2, . . . , ek}, respectively. Let the end points of e1 be
P (s1) = (x1, y1) and P (s2) = (x2, y2), respectively, and the end points of ek be
Q(t1) = (x3, y3) and Q(t2) = (x4, y4), respectively. For any s ∈ [s1, s2], we have

P (s) = (x1 + (x2 − x1)(s− s1)/(s2 − s1), y1 + (y2 − y1)(s− s1)/(s2 − s1)),

and similarly for any t ∈ [t1, t2], we have

Q(t) = (x3 + (x4 − x3)(t− t1)/(t2 − t1), y3 + (y4 − y3)(t− t1)/(t2 − t1)).

Expressing m and p in terms of s and t , we obtain that

m =
c1s + c2t + c3
d1s + d2t + d3
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and

p =
c′1st + c′2s + c′3t + c′4

d1s + d2t + d3
,

where c1, c2, c3, c
′
1, c
′
2, c
′
3, c
′
4, d1, d2, and d3 are constants. It follows that

f(s, t) =

√

1 + (
c1s + c2t + c3

d1s + d2t + d3
)2

k∑

i=1

ai(c
′
1st + c′2s + c′3t + c′4)/(d1s + d2t + d3) + bi

(c1s + c2t + c3)/(d1s + d2t + d3) − mi
.

We can find the boundary of free space in this region by solving the following
equation system: f(s, t) = Δ subject to O(n) inequalities that define the region.

Since there are O(n) fractional terms in f(s, t), we can convert this equation
system into a bivariate polynomial system of degree O(n) which consists of one
polynomial equation and O(n) inequalities and requires pseudo polynomial time
to solve [13].

Next, we are going propose an approximation algorithm for the optimization
version of this problem.

3.2 Discretization Using Steiner Points

We first discretize the problem by placing Steiner points in R extending the
discretization scheme given in [2]. Let E be the set of all edges in R. Let V
be the set of vertices in R. For any point v on an edge in E, let E(v) be the
set of edges incident to v and let d(v) be the minimum distance between v and
edges in E \ E(v). For each edge e ∈ E, let d(e) = sup{d(v)|v ∈ e} and let
ve be the point on e so that d(ve) = d(e). For each v ∈ V , the vertex radius
for v is defined as r(v) = εB

nwmax(v) , where ε is a positive real number defining
the quality of the approximation, B is a lower bound on δF (P,Q), and wmax(v)
is the maximum weight among all weighted regions incident to v. The disk of
radius r(v) centered at v defines the vertex-vicinity of v. B can be computed
in O(pq log(pq)) time using the standard (unweighted case) continuous Fréchet
distance algorithm described in [4], where p and q are the number of vertices of
P and Q, respectively.

For each edge e = v1v2 in E, we place Steiner points vi,1, vi,2, . . . , vi,ki outside
the vertex-vicinity of vi, for i = 1, 2, such that |vivi,1| = r(vi), |vi,jvi,j+1| =
εd(vi,j), for j = 1, 2, . . . , ki − 1, and vi,ki = ve. It follows from [2] that the
number of Steiner points placed on an edge is O(C(e)1/ε log 1/ε), where C(e) =
O( |e|d(e) log |e|√

r(v1)r(v2)
). Let N denote the total number of Steiner points and

vertices of R. Since we set r(v) = εB
nwmax(v) for each v ∈ R, we have N =

O(C(R)(n
ε (log 1

ε + logn) log 1
ε )), where C(R) = maxe∈R( |e| log |e|wmax(e)

d(e)B ) is a
constant associated with the geometry of R, and wmax(e) is the maximum weight
among all weighted regions incident to the end points of e.

We refer to a line segment bounded by two consecutive Steiner points on
an edge of R as a Steiner edge. An hourglass is the union of all leashes (line
segments) intersecting the same sequence of Steiner edges in the same order. Let
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Fig. 2. An hourglass is the union of leashes intersecting with the same set of Steiner
edges

H be an hourglass defined by a sequence of Steiner edges {e1, e2, . . . , ek}, where
e1 ∈ P and ek ∈ Q (See Fig. 2).

Lemma 1. Let l and l′ be two segments in H. Then, S(l) ≤ (1+2ε)S(l′)+2εB.

Proof. Let Ri1 , Ri2 , . . . , Rik−1 be the weighted regions in H , such that Rij is be-
tween ej and ej+1. Recall that for a region Rk of R, Rk(l) denotes the Euclidean
length of l within Rk. We have

S(l) =
k−1∑

j=1

wijRij (l) ≤
k−1∑

j=1

wij (Rij (l
′) + ej + ej+1),

where wij is the positive weight associated with Rij .
If a Steiner edge ej is outside of any vertex-vicinity, |ej | ≤ εRij−1(l′) and

|ej | ≤ εRij (l′), due to the placement of the Steiner points. If ej is incident to
a vertex v, then |ej | = r(v) = (εB)/(nwmax(v)). One segment can intersect at
most O(n) Steiner edges inside vertex vicinities. The result follows. �

Let lH be an arbitrary segment in H , with endpoints on P and Q. Let α and
β be two reparametrizations that define a matching between P and Q. Let
J = {H1, H2, . . . , Hk} be the set of hourglasses that are traversed by the leash
P (α(r))Q(β(r)). For an hourglass H ∈ J , let IH = {e|e = P (α(r))Q(β(r)), r ∈
[0, 1], e ∈ H}. Let H(α, β) be the segment in IH with the largest weighted
length. That is, S(H(α, β)) = maxe∈IH S(e). Let δ(α, β) = supr∈[0,1] S(P (α(r)),
Q(β(r))).

Lemma 2. |maxH∈J S(lH) − δ(α, β)| ≤ 4εδ(α, β).

Proof. Omitted.

We say that δ(J) = maxH∈J S(lH) is a 4ε-approximation of δ(α, β). Given a
sequence of hourglasses J = {H1, H2, . . . , Hk}, we call J legal if there exist
two reparmetrizations α, β that define a leash traversing the same sequence of
hourglasses as J .
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Lemma 3. We can find a value δ′F (P,Q) such that |δ′F (P,Q) − δF (P,Q)| ≤
4εδF (P,Q), that is, δ′F (P,Q) is a 4ε-approximation of δF (P,Q).

Proof. (Sketch) Let α̂,β̂ be the optimal reparametrizations that give the Fréchet
distance between P and Q. Let Ĵ be the sequence of hourglasses traversed by
the leash defined by α and β. Applying Lemma 2, we have,

|δ(Ĵ) − δ(α̂, β̂)| = |δ(Ĵ) − δF (P,Q)| ≤ 4εδ(α̂, β̂) = 4εδF (P,Q).

Then, there is a legal sequence of hourglasses that gives a 4ε-approximation of
δF (P,Q). �

3.3 Fréchet Distance between Two Segments

In this section, we study a special case of the problem where each curve consists
of one line segment. Similar to Alt and Godau’s algorithm, we attack the problem
in the parameter space D = [0, 1]2, where a leash P (s)Q(t) is associated with a
point (s, t) ∈ D. We refer to (s, t) ∈ D as the dual point of the leash P (s)Q(t).

Lemma 4. All leashes through a Steiner point v correspond to a curve in D,
with equation Cv : st + c1s + c2t + c3 = 0, where c1, c2, and c3 are constants.

Proof. Let v = (a, b), P (0) = (x1, y1), P (1) = (x2, y2), Q(0) = (x3, y3), Q(1) =
(x4, y4). We have

P (s) = (x1 + (x2 − x1)s, y1 + (y2 − y1)s),

Q(t) = (x3 + (x4 − x3)t, y3 + (y4 − y3)t),

and P (s)Q(t) : y− (y1 + (y2 − y1)s) = y1+(y2−y1)s−(y3+(y4−y3)t)
x1+(x2−x1)s−(x3+(x4−x3)t)

(x− (x1 + (x2 −
x1)s)).

Since P (s)Q(t) passes through v, we obtain that

(b− y1 − (y2 − y1)s)(x1 − x3 + (x2 − x1)s− (x4 − x3)t)) =
(a− x1 − (x2 − x1)s)(y1 − y3 + (y2 − y1)s− (y4 − y3)t),

and thus we have
Cv : st + c1s + c2t + c3 = 0,

where c1, c2, and c3 are constants. �

We call the curve Cv the dual curve of Steiner point v. Cv is continuous and
monotone along both (s and t) axes. Obviously, v lies on a leash if and only if
the dual point of the leash in D lies on Cv. Next we define the relative position
of two leashes with respect to a Steiner point v. Given two leashes P (s)Q(t)
and P (s′)Q(t′), we say they are on the same side of v if and only if there exists
two continuous functions α′, β′ : [0, 1] → [0, 1], such that α′(0) = s, α′(1) = s′,
β′(0) = t, β′(1) = t′ and v /∈ P (α′(r)Q(β′(r)), ∀r ∈ [0, 1]. Note that α′, β′ are
not necessarily monotone. Intuitively, two leashes are on the same side of v, if
one leash can reach the other one by sweeping its end points on their respective
curves without crossing v.
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Lemma 5. Cv divides D into two partitions, each partition corresponding to all
links on the same side of point v.

Proof. Omitted. �

We partition D by the dual curves of the Steiner points. Using the algorithm
in [5], the partition can be computed in O(N logN + k) time and O(N + k)
space, where N = O(C(R)(n

ε (log 1
ε +logn) log 1

ε )) is the total number of Steiner
points and k is the number cells, which is O(N2) in worst case. Let A denote
the partition.

Lemma 6. In A, each cell corresponds to an hourglass.

Proof. If two points (s, t), (s′, t′) belong to the same cell, then there exists a
walk between P (s)Q(t) and P (s′)Q(t′) that does not cross any Steiner point,
i.e. P (s)Q(t) and P (s′)Q(t′) intersect with the same set of Steiner edges. If
(s, t), (s′, t′) belong to different cells, then any walk between P (s)Q(t) and
P (s′)Q(t′) must cross at least one Steiner point. That is, P (s)Q(t), P (s′)Q(t′)
do not intersect with the same set of Steiner edges. �

The Fréchet distance between P and Q can then be approximated as follows:
1. Place Steiner points as described previously.
2. Partition D by dual curves of all Steiner points.
3. For each cell Z, choose an arbitrary leash l and assign S(l) as the weight of
the cell.
4. Find a monotone path T in D, from its left bottom corner, (0, 0), to its top
right corner, (1, 1), such that the maximum weight of the cells traversed by T is
minimized.

Since the sequence of cells traversed by a monotone path in D corresponds to
a legal sequence of hourglasses traversed by a leash following a match of P and
Q, and vice versa, by Lemma 3 the maximum weight of the cells traversed by T
is a 4ε-approximation of the Fréchet distance between P and Q.

3.4 Finding an Optimal Path in D

We define the cost of a path between two points in D as the maximum weight of
the regions traversed by the path. We decompose D by extending a horizontal
as well as a vertical line from every vertex until it reaches the boundary of D.
See Fig. 3 for an illustration. Let the new subdivision be D′.

Lemma 7. Given an edge e in D′, let p be a point on e and let Tp be an arbitrary
monotone path from (0, 0), i.e. the bottom left corner of D′, to p. Then, there
exists a monotone path from (0, 0) to any point on e with the same cost of Tp.

Proof. Omitted. �

Thus, given an optimal monotone path Tp from (0, 0) to an arbitrary point p ∈ e,
we can construct a monotone path from (0, 0) to any point in e, which has the
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same cost as Tp and is also optimal. To find the optimal monotone path from
(0, 0) to (1, 1), we construct a directed graph G having as vertices the (open)
edges as well as the vertices of D′. In G, a direct edge is added from a node v1 to a
node v2 if, in D′, v1 and v2 share a common cell and there exists a monotone path
from v1 to v2. The sought path can be found by running Dijkstra’s algorithm
on G.

Time complexity: The complexity of D′ is N4, where N = O(C(R)(n
ε (log 1

ε +
logn) log 1

ε )) is the number of Steiner points used, since each cell in D′ has O(1)
edges and vertices, and thus each cell contributes O(1) edges to G. Then, G has
O(N4) vertices and O(N4) edges and Dijkstra’s algorithm takes O(N4 logN)
time.

3.5 Fréchet Distance between Two Polygonal Chains

We extend the algorithm above to approximate the Fréchet distance between
two polygonal chains P and Q. Recall that p and q are the number of vertices of
P and Q, respectively. The parameter space D can be divided into pq subspaces,
which are equivalent to the free space cells in the free space diagram, such that
each subspace corresponds to all leashes bounded by the same two segments, one
from each chain. The Fréchet distance δF (P,Q) can be approximated by finding
the optimal path from the bottom left corner to the top right corner of D. The
complexity of D is O(pqN2) and the complexity of the decomposed parameter
space D′ is O(p2q2N4), where N = O(C(R)(n

ε (log 1
ε + logn) log 1

ε )) is the total
number of Steiner points. It takes O(p2q2N4 log(pqN)) time to approximate
δF (P,Q).

4 Geodesic Fréchet Distance

In this section we study two versions of the geodesic Fréchet distance problem.
We do not require the leash to be homotopic, i.e. the leash is allowed to sweep
discontinuously without penalty. For example, the leash can pass through or
jump over obstacles.

4.1 Geodesic Fréchet Distance in Weighted Regions in R2

Recall that the cost (weighted length) of a path in R is defined as the weighted
sum of its Euclidean lengths within each region of R. A geodesic path between
two points in R is a path between those points that has minimum cost. Here,
the distance between two points in R is the cost of the geodesic path between
those points.

We prove the geodesic Fréchet distance can be approximated by the discrete
geodesic Fréchet distance. Given two polygonal curves P,Q, to approximate
δF (P,Q), we need to add additional vertices to P and Q. We follow a similar
approach as in [2], except that we define the vertex radius of a vertex v in P
or Q as r(v) = εB

wmax(v) , where ε is a positive real number defining the quality
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D D’

Fig. 3. An example of the decomposition of D

of the approximation, B is a lower bound on δF (P,Q), and wmax(v) is the
maximum weight among all weighted regions incident to v. B can be computed
in O(pq log(pq)) time using the standard (unweighted case) continuous Fréchet
distance algorithm described in [4], where p and q are the number of vertices of
P and Q, respectively. Recall that the disk of radius r(v) centered at v defines
the vertex-vicinity of v. New vertices are placed on edges of P nd Q forming a
geometric progression with ratios depending on ε and on the geometry of R (see
Section 3.1 for details). The total number of additional vertices introduced on
each edge is O(C(R)1

ε log2 1
ε ), where C(R) is a constant associated with geometry

of R. Let P ′ and Q′ be the new polygonal chains and let p′ = O(C(R)p
ε log2 1

ε )
and q′ = O(C(R) q

ε log2 1
ε ) be the number of vertices of P ′ and Q′, respectively.

Lemma 8. The discrete geodesic Fréchet distance between P ′ and Q′ gives an
ε-approximation of the geodesic Fréchet distance between P and Q, i.e. (1 −
ε)δF (P,Q) ≤ δdF (P ′, Q′) ≤ (1 + ε)δF (P,Q).

Proof. Omitted. �

Instead of finding an exact geodesic path between two points we find an ap-
proximate path. Let δ′dF (P ′, Q′) be the approximate discrete Fréchet distance
computed by replacing the exact shortest path algorithm by the approxima-
tion algorithm, which gives an ε-approximation of the geodesic distance between
points. We have δ′dF (P ′, Q′) ≤ (1 + ε)δdF (P,Q) ≤ (1 + ε)2δF (P,Q) ≤ (1 +
3ε)δF (P,Q), assuming that ε ≤ 1, and similarly δ′dF (P ′, Q′) ≥ (1 − 3ε)δF (P,Q).
Thus, we obtain |δ′dF (P ′, Q′)− δF (P,Q)| ≤ 3εδF (P,Q). If a non-query based ap-
proximation algorithm is used, δ′dF (P ′, Q′) can be computed in time O(p′q′T (n, ε))
= O(C(R)2 pq

ε2 (log4 1
ε )T (n, ε)), where T (n, ε) is the time to compute an ap-

proximate shortest path between two points. If a query-based approximation
algorithm is used, then δ′dF (P ′, Q′) can be computed in O(p′q′QUERY (n, ε) +
PRE(n, ε)) = O(C(R)2 pq

ε2 (log4 1
ε )QUERY (n, ε) + PRE(n, ε)), where

QUERY (n, ε) is the query time and PRE(n, ε) is the preprocessing time of
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the algorithm. For example, if we use the algorithm proposed by Aleksandrov
et. al. [1], the algorithm takes O(C(R)2 pq

ε2 (log4 1
ε )q̄ + (g+1)n2

ε2/3q̄
log n

ε log4 1
ε ) time,

where q̄ is a query time parameter and g is the genus of the graph constructed
by the discretization scheme.

4.2 Geodesic Fréchet Distance in R3 with Obstacles

In this subsection, we briefly discuss the geodesic Fréchet distance problem in
1 or ∞ weighted regions in R3 (that is, among obstacles in R3). Let R be a
weighted subdivision in R3 with a total of n vertices. The weight of each region
Ri ∈ R is either 1 or ∞. Given two polygonal curves P and Q in R, we want
to find the Fréchet distance between P and Q, where the distance between two
points in R is defined as the length of the geodesic path between those points,
i.e. the length of the shortest obstacle-avoiding path.

We set r(v) = εB and add additional vertices on P and Q as described in
Section 4.1. Let P ′ and Q′ be the new curves.

Lemma 9. The discrete Fréchet distance between P ′ and Q′ gives an ε-
approximation of the Fréchet distance between P and Q, i.e. (1 − ε)δF (P,Q) ≤
δdF (P ′, Q′) ≤ (1 + ε)δF (P,Q).

Proof. Similar to the proof of Lemma 8. �

Let δ′dF (P ′, Q′) be the discrete Fréchet distance computed by a shortest path
approximation algorithm, which gives an ε-approximation of the shortest path.
We have

|δ′dF (P ′, Q′) − δF (P,Q)| ≤ 3εδF (P,Q).

δ′dF (P ′, Q′) can be computed in O(C(R)2pq(1/ε2) log4(1/ε)T (n, ε) time, where
C(R) is a constant depending on the geometry of the problem and T (n, ε) is
the time to approximate the shortest path between two points in R. For ex-
ample, we can use the approximation algorithm given by Clarkson [12], which
takes O(n2λ(n) log(n/ε)/ε4 + n2 log(nγ) log(n log γ)) time, where γ is the ratio
of the length of the longest obstacle edge to the Euclidean distance between the
two points, and λ(n) is a very slowly-growing function related to the inverse of
the Ackermann’s function. Thus, our algorithm takes O(C(R)2pq(1/ε2) log4(1/ε)
(n2λ(n) log(n/ε)/ε4 + n2 log(nγ) log(n log γ))) time.

5 Conclusion

In this paper, we discussed three versions of the Fréchet distance problem in
weighted regions and presented an approximation algorithm for each version.
First, we discussed the non-geodesic Fréchet distance problem in planar weighted
regions. We showed that we can approximate the Fréchet distance by using a
parameter space, D, where each leash is associated with a point in D, and
constructing a discrete graph G from D. We then discussed two geodesic Fréchet
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distance problems, in planar weighted regions and in 1 or ∞ weighted regions in
R3, and showed that in both cases, by adding additional vertices to the polygonal
curves, the discrete Fréchet distance can be used to approximate the continuous
Fréchet distance.
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distance. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (to appear,
2009)
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Abstract. We consider some well-known families of two-player zero-sum
perfect-information stochastic games played on finite directed graphs.
The families include stochastic parity games, stochastic mean payoff
games, and simple stochastic games. We show that the tasks of solv-
ing games in each of these classes (quantitiatively or strategically) are
all polynomial time equivalent. In addition, we exhibit a linear time algo-
rithm that given a simple stochastic game and the values of all positions
of that game, computes a pair of optimal strategies.

1 Introduction

We consider some well-known families of two-player zero-sum perfect-information
stochastic games played on finite directed graphs.

Simple stochastic games were introduced to the algorithms and complexity
community by Condon [5], who was motivated by the study of randomized Turing
machine models. A simple stochastic game is given by a finite directed graph G =
(V,E), with the set of vertices V also called positions and the set of arcs E also
called actions. There is a partition of the positions into V1 (positions belonging
to Player 1), V2 (positions belonging to Player 2), VR (coin-toss positions), and
a special terminal position 1. Positions of VR have exactly two outgoing arcs,
the terminal position 1 has none, while all positions in V1, V2 have at least one
outgoing arc. Between moves, a pebble is resting at some vertex u. If u belongs
to a player, this player should strategically pick an outgoing arc from u and move
the pebble along this edge to another vertex. If u is a vertex in VR, nature picks
an outgoing arc from u uniformly at random and moves the pebble along this
arc. The objective of the game for Player 1 is to reach 1 and should play so as
to maximize his probability of doing so. The objective for Player 2 is to prevent
Player 1 from reaching 1.

Stochastic terminal-payoff games is the natural generalization of Con-
don’s simple stochastic games where we allow each vertex in VR to have more
than two outgoing arcs and an arbitrary rational valued probability distribution
on these, and several terminals with different payoffs, positive or negative. In a
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stochastic terminal-payoff game, the outcome of the game is the payoff of the
terminal reached, with the outcome being 0 if play is infinite. The objective for
Player 1 is to maximize the expected outcome while the objective for Player 2
is to minimize it.

Stochastic parity games were introduced by Chatterjee, Jurdziński, and
Henzinger at SODA’04 [4] and further studied in [3,2]. They are a natural gen-
eralization of the non-stochastic parity games of McNaughton [15], the latter
having central importance in the computer-aided verification community, as solv-
ing them is equivalent to model checking the μ-calculus [6]. As for the case of
simple stochastic games, a stochastic parity game is given by a directed graph
G = (V,E) with the same partition of the vertices into V1, V2 and VR as for
the case of simple stochastic games and terminal-payoff games. Also, a pebble is
moved from vertex to vertex under the same rules as in these games. However,
now, the players are not concerned with reaching or avoiding a particular po-
sition. Instead, each vertex is assigned an integral priority. The play continues
forever. If the highest priority that appears infinitely often during play is odd,
Player 1 wins the game; if it is even, Player 2 wins the game.

Stochastic mean-payoff games and the related stochastic discounted-
payoff games were first studied in the game theory community by Gillette
[7] as the perfect information special case of the stochastic games of Shapley
[16]. A stochastic mean-payoff or discounted-payoff game G is given by a finite
set of positions V , partitioned into V1 (positions belonging to Player 1) and V2
(positions belonging to Player 2). To each position u is associated a finite set
of possible actions. To each such action is associated a real-valued reward and
a probability distribution on positions. At any point in time of play, the game
is in a particular position i. The player to move chooses an action strategically
and the corresponding reward is paid by Player 2 to Player 1. Then, nature
chooses the next position at random according to the probability distribution
associated with the action. The play continues forever and the sum of rewards
may therefore be unbounded. Nevertheless, one can associate a finite payoff to
the players in spite of this, in more ways than one (so G is not just one game,
but really a family of games): For a stochastic discounted-payoff game, we fix
a discount factor β ∈ (0, 1) and define the outcome of the play (the payoff to
Player 1) to be

∑∞
i=0 βiri where ri is the reward incurred at stage i of the game.

We shall denote the resulting game Gβ . For a stochastic mean-payoff game we
define the outcome of the play (the payoff to Player 1) to be the limiting average
payoff lim infn→∞(

∑n
i=0 ri)/(n + 1). We shall denote the resulting game G1. A

natural restriction of stochastic mean-payoff games is to deterministic transitions
(i.e., all probability distributions put all probability mass on one position). This
class of games has been studied in the computer science literature under the
names of cyclic games [9] and mean-payoff games [17]. We shall refer to them as
deterministic mean-payoff games in this paper.

A strategy for a game is a (possibly randomized) procedure for selecting which
arc or action to take, given the history of the play so far. A positional strategy is
the special case of this where the choice is deterministic and only depends on the



114 D. Andersson and P.B. Miltersen

current position, i.e., a pure positional strategy is simply a map from positions
to actions. If Player 1 plays using strategy x and Player 2 plays using strategy y,
and the play starts in position i, a random play P (x, y, i) of the game is induced.
We let ui(x, y) denote the expected outcome of this play (for stochastic terminal-
payoff, discounted-payoff, and mean-payoff games) or the winning probability of
Player 1 (for simple stochastic games and stochastic parity games). A strategy
x∗ for Player 1 is called optimal if for any position i:

inf
y∈S2

ui(x∗, y) ≥ sup
x∈S1

inf
y∈S2

ui(x, y) (1)

where S1 (S2) is the set of strategies for Player 1 (Player 2). Similarly, a strategy
y∗ for Player 2 is said to be optimal if

sup
x∈S1

ui(x, y∗) ≤ inf
y∈S2

sup
x∈S1

ui(x, y). (2)

For all games described here, the references above (a proof of Liggett and Lipp-
man [13] fixes a bug of a proof of Gillette [7] for the mean-payoff case) showed
that both players have positional optimal strategies x∗, y∗. Also, for such optimal
x∗, y∗ and for all positions i, infy∈S2 u

i(x∗, y) = supx∈S1
ui(x, y∗). This number

is called the value of position i. We shall denote it val(i). These facts imply that
when testing whether conditions (1) and (2) hold, it is enough to take the infima
and suprema over the finite set of positional strategies of the players.

In this paper, we consider solving games. By solving a game G, we may refer
to two distinct tasks.

– Quantitatively solving G is the task of computing the values of all positions
of the game, given an explicit representation of G.

– Strategically solving G is the task of computing a pair of optimal positional
strategies for the game, given an explicit representation of G.

To be able to explicitly represent the games, we assume that the discount fac-
tor, rewards and probabilities are rational numbers and given as fractions in
binary or unary. With so many distinct computational problems under consid-
eration, we shall for this paper introduce some convenient notation for them.
We will use superscripts q/s to distinguish quantitative/strategic solutions and
subscripts b/u to distinguish binary/unary input encoding (when applicable).
For instance, Mean

s
b is the problem of solving a stochastic mean-payoff game

strategically with probabilities and rewards given in binary, and Simple
q is the

problem of solving a simple stochastic game quantitatively. We use “�” to ex-
press polynomial-time (Turing) reducibility.

Solving the games above in polynomial time are all celebrated open problems
(e.g., [5,4]). Also, some polynomial time reductions between these challenging
tasks were known. Some classes of games are obviously special cases of others
(e.g., simple stochastic games and stochastic terminal-payoff games), leading to
trivial reductions, but more intricate reductions were also known. In particular,
a recent paper by Chatterjee and Henzinger [2] shows that solving stochastic
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parity games reduces to solving stochastic mean-payoff games. Earlier, Zwick
and Paterson [17] showed that solving deterministic mean-payoff games reduces
to solving simple stochastic games. However, in spite of these reductions and the
fact that similar kinds of (non-polynomial time) algorithms, such as value itera-
tion and strategy iteration (see also Halman [11]) are used to actually solve all of
these games in practice, it does not seem that it was believed or even suggested
that the tasks of solving these different classes of games were all polynomial-time
equivalent. Our first main result is that they are, unifying and generalizing the
previous reductions (and also using them in a crucial way):

Theorem 1. The following tasks are polynomial-time (Turing) equivalent.

– Solving stochastic parity games,
– Solving simple stochastic games,
– Solving stochastic terminal-payoff games with unary payoffs and probabilities,
– Solving stochastic terminal-payoff games with binary payoffs, probabilities,
– Solving stochastic mean-payoff games with unary rewards and probabilities,
– Solving stochastic mean-payoff games with binary rewards and probabilities,
– Solving stochastic discounted-payoff games with binary discount factor, re-

wards and probabilities.

Solving here may mean either “quantitatively” or “strategically”. In particular,
the two tasks are polynomial-time equivalent for all these classes of games.

Note that the equivalence between solving games with unary input encoding and
solving gameswith binary input encoding means that there are pseudopolynomial-
time algorithms for solving these games if and only if there are polynomial-time
algorithms. Note also that a “missing bullet” in the theorem is solving stochastic
discounted-payoff games given in unary representation. It is in fact known that
this can be done in polynomial time (even if only the discount factor is given in
unary), see Littman [14, Theorem 3.4].

Our second main result takes a closer look at the equivalence between quan-
titatively solving the games we consider and strategically solving them. Even
though Theorem 1 shows these two tasks to be polynomial-time equivalent, the
reductions from strategically solving games to quantitatively solving games in
general changes the game under consideration, i.e., strategically solving one game
reduces to quantitatively solving another. In other words, Theorem 1 does not
mean a priori that once a game has been quantitatively solved, we can easily
solve it strategically. However, for the case of discounted-payoff games, we triv-
ially can: An optimal action can be determined “locally” by comparing sums of
local rewards and values. Our second result shows that we (less trivially) can do
such “strategy recovery” also for the case of terminal-payoff games (and therefore
also for simple stochastic games).

Theorem 2. Given a stochastic terminal-payoff game and the values of all its
vertices, optimal positional strategies can be computed in linear time.
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Theorem 2 means that algorithms that efficiently and quantitatively solve simple
stochastic games satisfying certain conditions (such as the algorithm of Gim-
bert and Horn [8], which is efficient when the number of coin-toss vertices is
small) can also be used to strategically solve those games, in essentially the
same time bound. We leave as an open problem whether a similar algorithm
(even a polynomial-time one) can be obtained for stochastic mean-payoff games.

2 Proof of Theorem 1

Figure 1 shows a minimal set of reductions needed to establish all equivalences.
We first enumerate a number of trivial and known reductions and afterwards
fill in the remaining “gaps”. For all games considered here, it is well-known
that quantitatively solving them reduces to strategically solving them: Once the
strategies have been fixed, a complete analysis of the resulting finite-state ran-
dom process can be obtained using linear algebra and the theory of Markov
chains [12]. Also, for the case of stochastic discounted-payoff games, the con-
verse reduction is also easy: A strategy is optimal if and only if in each po-
sition it chooses an action that maximizes the sum of the reward obtained
by this action and the discounted expected value of the next position. Thus,
Discounted

s
b � Discounted

q
b. Of course, each problem with unary input en-

coding trivially reduces to the corresponding binary version. Also, it is obvious
that stochastic terminal-payoff games generalize simple stochastic games, and
the only numbers that appear are 0, 1 and 1

2 , so Simple
q � Terminal

q
u and

Simple
s � Terminal

s
u. Quantitatively solving simple stochastic games easily

reduces to quantitatively solving stochastic parity games, as was noted in the
original work on stochastic parity games [4]. Also, Chatterjee and Henzinger
[2] show that strategically solving stochastic parity games reduces to strate-
gically solving stochastic mean-payoff games. Thus, to “complete the picture”
and establish all equivalences, we only have to show: Mean

s
b � Discounted

s
b,

Discounted
q
b � Simple

q, Terminal
s
b � Mean

s
b and Terminal

q
u � Mean

q
u.

These reductions are provided by the following lemmas.

Lemma 1. Let G be a stochastic discounted-payoff/mean-payoff game with n
positions and all transition probabilities and rewards being fractions with integral
numerators and denominators, all of absolute value at most M . Let β∗ = 1 −
((n!)222n+3M2n2

)−1 and let β ∈ [β∗, 1). Then, any optimal positional strategy
(for either player) in the discounted-payoff game Gβ is also an optimal strategy
in the mean-payoff game G1.

Proof. The fact that some β∗ with the desired property exists is explicit in
the proof of Theorem 1 of Liggett and Lippman [13]. We assume familiarity
with that proof in the following. Here, we derive a concrete value for β∗. From
the proof of Liggett and Lippman, we have that for x∗ to be an optimal po-
sitional strategy (for Player 1) in G1, it is sufficient to be an optimal posi-
tional strategy in Gβ for all values of β sufficiently close to 1, i.e., to satisfy the
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Fig. 1. Reductions used in the proof of Theorem 1

inequalities miny∈S′
2
ui

β(x∗, y) ≥ maxx∈S′
1
miny∈S′

2
ui

β(x, y) for all positions i and
for all values of β sufficiently close to 1, where S′1 (S′2) is the set of positional,
strategies for Player 1 (2) and ui

β is the expected payoff when game starts in po-
sition i and the discount factor is β. Similarly, for y∗ to be an optimal positional
strategy (for Player 2) in G1, it is sufficient to be an optimal positional strategy
in Gβ for all values of β sufficiently close to 1, i.e., to satisfy the inequalities
maxx∈S′

1
ui

β(x, y∗) ≤ miny∈S′
2
maxx∈S′

1
ui

β(x, y). So, we can prove the lemma by
showing that for all positions i and all positional strategies x, y, x′, y′, the sign of
ui

β(x, y) − ui
β(x′, y′) is the same for all β ≥ β∗. For fixed strategies x, y we have

that vi = ui
β(x, y) is the expected total reward in a discounted Markov process

and is therefore given by (see [12])

v = (I − βQ)−1r, (3)

where v is the vector of uβ(x, y) values, one for each position, Q is the matrix of
transition probabilities and r is the vector of rewards (note that for fixed posi-
tional strategies x, y, rewards can be assigned to positions in the natural way).
Let γ = 1−β. Then, (3) is a system of linear equations in the unknowns v, where
each coefficient is of the form aijγ + bij where aij , bij are rational numbers with
numerators with absolute value bounded by 2M and with denominators with
absolute value bounded by M . By multiplying the equations with all denom-
inators, we can in fact assume that aij , bij are integers of absolute value less
than 2Mn. Solving the equations using Cramer’s rule, we may write an entry
of v as a quotient between determinants of n × n matrices containing terms
of the form aijγ + bij . The determinant of such a matrix is a polynomial in γ
of degree n with the coefficient of each term being of absolute value at most
n!(2Mn)n = n!2nMn2

. We denote these two polynomials p1, p2. Arguing sim-
ilarly about uβ(x′, y′) and deriving corresponding polynomials p3, p4, we have
that ui

β(x, y) − ui
β(x′, y′) ≥ 0 is equivalent to p1(γ)/p2(γ) − p3(γ)/p4(γ) ≥ 0,

i.e., p1(γ)p4(γ) − p3(γ)p2(γ) ≥ 0. Letting q(γ) = p1(γ)p4(γ) − p3(γ)p2(γ), we
have that q is a polynomial in γ, with integer coefficients, all of absolute value
at most R = 2(n!)222nM2n2

. Since 1−β∗ < 1/(2R), the sign of q(γ) is the same
for all γ ≤ 1 − β∗, i.e., for all β ≥ β∗. This completes the proof.
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Lemma 2. Mean
s
b � Discounted

s
b.

Proof. This follows immediately from Lemma 1 by observing that the binary
representation of the number β∗ = 1 − ((n!)222n+3M2n2

)−1 has length polyno-
mial in the size of the representation of the given game.

Lemma 3. Discounted
q
b � Simple

q.

Proof. Zwick and Paterson [17] considered solving deterministic discounted-
payoff games, i.e., games where the action taken deterministically determines
the transition taken and reduced these to solving simple stochastic games. It is
natural to try to generalize their reduction so that it also works for stochastic
discounted-payoff games. We find that such reduction indeed works, even though
the correctness proof of Zwick and Paterson has to be modified slightly compared
to their proof. The details follow.

The redution proceeds in two steps: First we reduce to stochastic terminal-
payoff games with 0/1 payoffs, and then to simple stochastic games. We are
given as input a stochastic discounted-payoff game G with discount factor β
and must first produce a stochastic terminal-payoff game G′ whose values can
be used to construct the values for the stochastic discounted-payoff game Gβ .
First, we affinely scale and translate all rewards of G so that they are in the
interval [0, 1]. This does not influence the optimal strategies, and all values are
transformed accordingly. Vertices of G′ include all positions of G (belonging to
the same player in G′ as in G), and, in addition, a random vertex wu,A for
each possible action A of each position u of G. We also add terminals 0 and 1.
We construct the arcs of G′ by adding, for each (position,action) pair (u,A) the
“gadget” indicated in Figure 2. To be precise, if the action has reward r and leads
to positions v1, v2, . . . , vk with probability weights p1, p2, . . . , pk, we include in
G′ an arc from u to wu,A, arcs from wu,A to v1, . . . , vk with probability weights
(1− β)p1, . . . , (1− β)pk, an arc from wu,A to 0 with probability weight β(1− r)
and finally an arc from wu,A to the terminal 1 with probability weight βr.

There is clearly a one-to-one correspondence between strategies in G and in
G′. To see the correspondance between values, fix a strategy profile and consider
any play. By construction, if the expected reward of the play in G is h, the
probability that the play in G′ reaches 1 is exactly βh.

Fig. 2. Reducing discounted-payoff games to terminal-payoff games
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The second step is identical to that of Zwick and Paterson [17]. They describe
how arbitrary rational probability distributions can be implemented using a
polynomial number of coin-toss vertices. Thus, we can transform G′ into an
equivalent simple stochastic game.

Lemma 4. Terminal
s
b � Mean

s
b and Terminal

q
u � Mean

q
u.

Proof. We are given a stochastic terminal-payoff game G and must construct a
stochastic mean-payoff game G′. Positions of G′ will coincide with vertices of
G, with the positions of G′ including the terminals. Positions u belonging to
a player in G belongs to the same player in G′. For each outgoing arc of u,
we add an action in G′ with reward 0, and with a deterministic transition to
the endpoint of the arc of G. Random vertices of G can be assigned to either
player in G′, but he will only be given a single “dummy choice”: If the random
vertex has arcs to v1 and v2, we add a single action in G′ with reward 0 and
transitions into v1, v2, both with probability weight 1/2. Each terminal can be
assigned to either player in G′, but again he will be given only a dummy choice:
We add a single action with reward equal to the payoff of the terminal and with
a transition back into the same terminal with probability weight 1.

There is clearly a one-to-one correspondence between positional strategies in
G and strategies in G′. To see the correspondence between values, fix a strategy
profile for the two players and consider play starting from some vertex. By
construction, if the probability of the play reaching some particular terminal in
G is q, then the probability of the play reaching the corresponding self-loop in
G′ is also q. Thus, the expected reward is the same.

3 Proof of Theorem 2

In this section, we consider a given stochastic terminal-payoff game. Our goal is
an algorithm for computing optimal strategies, given the values of all vertices.
To simplify the presentation, we will focus on strategies for Player 1. Because
of symmetry, there is no loss of generality. In this section, “strategy” means “
positional strategy”. An arc (u, v) is called safe if val(u) = val(v). A safe strategy
is a strategy that only uses safe arcs. A strategy x for Player 1 is called stopping
if for any strategy y for Player 2 and any vertex v with positive value, there is
a non-zero probability that the play P (x, y, v) reaches a terminal.

It is not hard to see that any optimal strategy for Player 1 must be safe and
stopping, so these two conditions are necessary for optimality. We will now show
that they are also sufficient.

Lemma 5. If a strategy is safe and stopping, then it is also optimal.

Proof. Let x be any safe and stopping strategy for Player 1, let y be an arbi-
trary strategy for Player 2, and let v0 be an arbitrary vertex. Consider the play
P (x, y, v0). Denote by qi(v) the probability that after i steps, the play is at v.
Since x is safe,

∀i : val(v0) ≤
∑

v∈V

val(v)qi(v) ≤
∑

v∈T∪V +

val(v)qi(v), (4)
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where T denotes the set of terminal vertices and V + denotes the set of non-
terminal vertices with positive value. Since x is stopping,

∀v ∈ V + : lim
i→∞

qi(v) = 0. (5)

Finally, note that

uv0(x, y) =
∑

t∈T

val(t) lim
i→∞

qi(t) =
∑

v∈T∪V +

val(v) lim
i→∞

qi(v) (by (5))

= lim
i→∞

∑

v∈T∪V +

val(v)qi(v) ≥ val(v0). (by (4))

Therefore, x is optimal.

Using this characterization of optimality, strategy recovery can be reduced to
strategically solving a simple stochastic game without random vertices.

Theorem 2. Given a stochastic terminal-payoff game and the values of all its
vertices, optimal positional strategies can be computed in linear time.

Proof. Construct from the given game G a simple stochastic game G′ as follows:

1. Merge all terminals into one.
2. Remove all outgoing non-safe arcs from the vertices of Player 1.
3. Transfer ownership of all random vertices to Player 1.

Compute an optimal strategy x′ for Player 1 in G′ using linear-time retrograde
analysis [1]. Let x be the interpretation of x′ as a strategy in G obtained by
restricting x′ to the vertices of Player 1 in G. By construction, from any starting
vertex v, Player 1 can ensure reaching the terminal in G′ if and only if x ensures a
non-zero probability of reaching a terminal in G. Let v be any vertex with positive
value in G. Player 1 has a safe strategy that ensures a non-zero probability of
reaching a terminal from v, specifically, the optimal strategy. This implies that
there is a corresponding strategy for Player 1 in G′ that ensures reaching the
terminal from v. It follows that x is stopping, and it is safe by construction.
Therefore, by Lemma 5, it is optimal.

Acknowledgements. We would like to thank Vladmir Gurvich for fruitful collab-
oration and Florian Horn for helpful comments.
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Abstract. A disentanglement puzzle consists of mechanically inter-
linked pieces, and the puzzle is solved by disentangling one piece from
another set of pieces. A cast puzzle is a type of disentanglement puzzle,
where each piece is a zinc die-casting alloy. In this paper, we consider
the generalized cast puzzle problem whose input is the layout of a finite
number of pieces (polyhedrons) in the 3-dimensional Euclidean space.
For every integer k ≥ 0, we present a polynomial-time transformation
from an arbitrary k-exponential-space Turing machine M and its input x
to a cast puzzle c1 of size k-exponential in |x| such that M accepts x if
and only if c1 is solvable. Here, the layout of c1 is encoded as a string
of length polynomial (even if c1 has size k-exponential). Therefore, the
cast puzzle problem of size k-exponential is k-EXPSPACE-hard for every
integer k ≥ 0. We also present a polynomial-time transformation from
an arbitrary instance f of the SAT problem to a cast puzzle c2 such that
f is satisfiable if and only if c2 is solvable.

1 Introduction

Disentanglement puzzles are one of the most fundamental and popular play-
things. They consist of mechanically interlinked pieces, and a puzzle is solved
by disentangling one piece from another set of pieces. Disentanglement puzzles
are classified into two categories, wire puzzles and cast puzzles. A wire puzzle
consists of two or more entangled stiff wires. Wires may or may not be closed
loops, and they have complex shapes. Normally, wire puzzles are solved by dis-
entangling one piece from another set of pieces without cutting or bending the
wires. On the other hand, pieces of cast puzzles are zinc die-casting alloys. So,
people who take them in hands feel their solidness and heaviness. See the official
site [1] for the cast puzzles, produced by Hanayama Co.,Ltd. In this site, cast
puzzles are classified into six levels (i.e., Easiest, Easy, Medium, Fairly hard,
Hard, and Very hard). However, from the point of view of a computer scientist,
they should be classified according to computational complexities (i.e., P, NP,
PSPACE, EXPTIME, 2-EXPTIME, 2-EXPSPACE, and so on).

We will define a cast puzzle as a set of simple polyhedrons. We consider the
generalized cast puzzle problem whose input is the layout of a finite number of
pieces (polyhedrons) in the 3-dimensional Euclidean space. Since all cast puzzles
in this paper are constructed by polynomial-time transformations, the layout of
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a cast puzzle is encoded as a string of length polynomial (even if the cast puzzle
has size k-exponential).

In this paper, for every integer k ≥ 0, we present a polynomial-time transfor-
mation from an arbitrary k-exponential-space Turing machine M and its input x
to a cast puzzle c1 of size k-exponential in |x| such that M accepts x if and only
if c1 is solvable. Therefore, the cast puzzle problem of size k-exponential is k-
EXPSPACE-hard for every integer k ≥ 0. We also present a polynomial-time
transformation from an arbitrary instance f of the SAT problem to a cast puz-
zle c2 such that f is satisfiable if and only if c2 is solvable.

Flake and Baum proved that some PSPACE-complete problem can be reduced
to the Rush hour problem (a sliding block puzzle on a board) [4]. From this result,
it is not difficult to construct a PSPACE-hard cast puzzle by making sure that
the pieces cannot use the third direction. Note that the k-EXPSPACE-hardness
for a set of cast puzzles implies the NP-hardness and PSPACE-hardness for the
same set of cast puzzles. Our NP-hard cast puzzle, transformed from the SAT
problem, can be solved by hand in n+1 steps with n guesses. On the other hand,
a PSPACE-hard cast puzzle constructed by the idea of [4] cannot be solved in
polynomial steps with polynomial guesses unless NP = PSPACE.

There have been a huge amount of literatures on computational complexities
of games and puzzles. For example, Tetris [2], Solitaire [6], Minesweeper [9],
(n × n)-extension of the 15-puzzle [12], and Sokoban (a transport puzzle in a
maze) [3] are known to be NP-hard. As for higher complexity classes, Othello [8]
is known to be PSPACE-hard; Chess [5] and Go [13] are EXPTIME-hard.

2 Definitions and Main Results

In our model, all pieces are defined as simple polyhedrons in the 3-dimensional
Euclidean space E3. The definitions of polygons and polyhedrons are mostly
from [11]. In E2, a polygon is defined by a finite set of segments such that every
segment extreme is shared by exactly two edges and no subset of edges has the
same property. The segments are the edges and their extremes are the vertices
of the polygon. In E3, a polyhedron is defined by a set of plane polygons such
that every edge of a polygon is shared by exactly one other polygon (adjacent
polygon) and no subset of polygons has the same property. The vertices and
the edges of the polygons are the vertices and the edges of the polyhedron, and
the polygons are the facet of the polyhedron. A polyhedron is said to be simple
if there is no pair of non-adjacent facets sharing a point. A simple polyhedron
partitions the space into two disjoint domains, the interior (bounded) and the
exterior (unbounded). In this paper, the term polyhedron is used to denote the
union of the boundary and of the interior.

A cast puzzle is a finite set of simple polyhedrons, called pieces, embedded
in E3. One of the pieces is called the target piece. The input of the cast puzzle
problem is the layout of a finite number of pieces. A cast puzzle is said to be
solvable if the target piece can be disentangled from another set of pieces without
deforming, whittling, or breaking the pieces. In this paper, we assume that, for
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any piece p, no vertex of any other piece is in the interior of p. A vertex of a piece
may touch the surface of another piece. The surface of any piece is frictionless.

The input of the cast puzzle problem must be represented by a string on
the input tape of a Turing machine (TM). So, we consider a cast puzzle such
that each vertex of any piece has integral coordinates. The layout of polyhe-
drons can be represented as a string as follows. Suppose P0 is a polyhedron
such that one of P0’s vertices is on the origin of coordinates. Polyhedron P0 is
represented by a set of P0’s faces f0, f1, . . . , fm−1, where one of f0’s vertices is
on the origin of coordinates. Each face fi is represented by a sequence of fi’s
vertices. Let 〈P0, (x1, y1, z1)〉 denote the polyhedron embedded in E3, obtained
by translating P0 from (x, y, z) to (x′, y′, z′) = (x, y, z) + (x1, y1, z1) (which de-
scribes a transformation where each point is subject to a fixed displacement
(x1, y1, z1)). For example, let P ′0 be a polyhedron fitted inside a unit cube. Set
S = {〈P ′0, (2i, 0, 0)〉 | 0 ≤ i ≤ h(n′) − 1} represents a sequence of h(n′) polyhe-
drons placed at regular intervals, where n′ is an integer, and h is a function of n′.
Note that such well-regulated polyhedrons can be encoded as a string code(S)
over {0, 1} of length O(log n′) when polyhedron P ′0 and function h can be en-
coded as strings of length constant.

Let n be the length of the string representing the layout of a cast puzzle. The
cast puzzle is said to have size s(n) if the convex hull of all pieces is fitted inside
a cuboid of size s1(n) × s2(n) × s3(n) such that s1(n) + s2(n) + s3(n) ≤ s(n).

Let g(k, p(n)) = 2g(k−1,p(n)) and g(0, p(n)) = p(n), where p(n) is an arbitrary
polynomial function. A TM is said to be k-exponential-space bounded if, for every
accepted input x of length n, M halts with an accepting state in g(k, p(n)) space.
The cast puzzle problem of size k-exponential is said to be k-EXPSPACE-hard if
there is a polynomial-time transformation from an arbitrary k-exponential-space
TM M and its input x to a cast puzzle c1 of size k-exponential in |x| such that
M accepts x if and only if c1 is solvable. Since any cast puzzle in this paper
is constructed by a polynomial-time transformation, the layout is encoded as a
string of length polynomial (even if the cast puzzle has size k-exponential).

Theorem 1. For every integer k ≥ 0, there is a polynomial-time transformation
from an arbitrary k-exponential-space TM M and its input x to a cast puzzle c1
of size k-exponential in |x| such that M accepts x if and only if c1 is solvable.

Corollary 1. For every integer k ≥ 0, the cast puzzle problem of size k-
exponential is k-EXPSPACE-hard.

Theorem 2. There is a polynomial-time transformation from an arbitrary in-
stance f of the SAT problem to a cast puzzle c2 such that f is satisfiable if and
only if c2 is solvable.

The proof of Theorem 1 is given in Section 3. For the proof of Theorem 2, see
an unpublished manuscript [7] available as a pdf file.
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3 Transformations from TMs to Cast Puzzles

In this section, we will prove Theorem 1. We show a polynomial-time transfor-
mation from a k-exponential-space TM and its input to the layout of a cast
puzzle.

The definition of a TM is mostly from [10]. A one-tape two-symbol TM is
a system defined by M = (Q,Σ, q0, qm−1, R), where Q = {q0, q1, . . . , qm−1} is
a finite set of states, Σ = {0, 1} is a set of tape symbols, q0 (resp. qm−1) is
the unique initial (resp. final) state, and R is a set of transition rules, where
R ⊆ ((Q − {qm−1}) × Σ × Σ × Q) ∪ ((Q − {qm−1}) × {/} × {−1,+1} × Q).
Each transition rule in R is of the form [qi, a, a

′, qi′ ] or [qi, /, d, qi′ ], where qi ∈
Q − {qm−1}, qi′ ∈ Q; a, a′ ∈ Σ; and d ∈ {−1,+1}. Rule [qi, a, a

′, qi′ ] means
that if M reads symbol a in state qi, then M writes a′ and enters state qi′ .
Rule [qi, /, d, qi′ ] means that if M is in state qi, then M moves the head to
the right (resp. left) when d = +1 (resp. d = −1) and enters state qi′ . Let
α1 = [qi, a, a

′, qi′ ] and α2 = [qj , b, b
′, qj′ ] be two transition rules in R. We say

that α1 and α2 overlap in domain if (qi = qj and a = b) or (qi = qj and (a = /
or b = / )). A rule α is said to be deterministic in R if there is no other rule in R
with which α overlaps in domain. A TM M is called deterministic if every rule
in R is deterministic. In the rest of this paper, all TMs are one-tape two-symbol
deterministic TMs.

(a) (b)
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(c)

1
1
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Fig. 1. (a) A target piece. (b) Lateral view. (c) Top view.
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Fig. 2. (a) A board with a cross-shaped hole. (b) A section view between C and D.
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Fig. 3. (a) A board having corridors, octagonal and quadrilateral spaces. (b) Diagram-
matic sketch of (a). (c) Unimportant octagonal spaces are omitted. (d) A bridge.

We first construct the target piece (see Fig. 1). It is composed of a square
pole of size 1× 1× (l+2), two rectangular poles of size 1× 2× l, and two square
poles of size 1× 1× l. The length l will be fixed later. The four poles of length l
are welded to the pole of length l + 2 so that they form a single polyhedron.

Consider a 3-thick board (see Fig. 2). The board has a cross-shaped hole.
There is a groove on the inside wall of the hole (see Fig. 2(b)) so that the target
piece cannot be taken out from the board. This cross-shaped hole is composed
of horizontal and vertical corridors. In the horizontal corridor, the target piece
can move to the right, and it can go back to the original position. The vertical
corridor connects positions A and B. It should be noted that the target piece
cannot move to position A or B from the current position. (Strictly speaking,
this is not a cross-shaped hole because there is a narrow gap which connects the
hole to the exterior so that the board is a polyhedron.)

Consider a board shown in Fig. 3(a), which has four corridors, three octagonal
space, and one quadrilateral space. Suppose that the target piece is in the right-
upper octagonal space. The target piece can move to position A, take a 90-degree
turn using the octagonal space, and the target piece can reach position C. At this
position, we can take out the target piece from the board. In the following, such
octagonal spaces and corridors are represented as nodes and arcs (see Fig. 3(b)).
A quadrilateral space (position C) is represented as a double circle. (Unimportant
nodes are sometimes omitted as shown in Fig. 3(c).) On this board, there is a
bridge so that the two pieces form a single polyhedron (see Fig. 3(d)).

We illustrate the transformation from a k-exponential-space TM M to a cast
puzzle. There is a polynomial p(n) such that M uses at most g(k, p(n)) cells on
its tape. Each tape cell ci, 1 ≤ i ≤ g(k, p(n)), is simulated by a block shown in
Figs. 4(a) and 4(b). The size of each block depends only on the number of M ’s
states. All blocks are arranged in a row, and they are pierced by two L-shaped
square poles, which are welded to another square pole (see Fig. 4(c)). These
square poles form a single polyhedron. (A groove in Fig. 4(b) is explained later.)

Let Q = {q0, q1, . . . , qm−1} be the set of M ’s states. Recall that tape
symbols are 0 and 1 only. Each block has 2m holes, say, h(q0, 0), h(q0, 1);
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(b)(a) (c)welded

welded
L-shaped square poles

square pole

groove

Fig. 4. (a) A block simulating a cell ci of M . (b) Lateral view. (c) Blocks are pierced
by two L-shaped square poles, which are welded to another square pole.

(a)

h(q0,0)

h(q0,1)

h(q1,0)

h(q1,1)

h(q2,0)

h(q2,1)

(b)

h(q3,0)

h(q3,1)

Fig. 5. (a) A block has a hole h(qi, a) for every pair of qi ∈ Q and a ∈ Σ. (b) Solid (resp.
dotted) arcs correspond to transition rules of the form [qi, a, a′, qi′ ] (resp. [qi, /, d, qi′ ]).

h(q1, 0), h(q1, 1); · · · ;h(qm−1, 0), h(qm−1, 1) (see Fig. 5(a) for a four-state TM).
For every transition rule of the form [qi, a, a

′, qi′ ], a ∈ Σ, we add an arc from
node h(qi, a) to h(qi′ , a′) (see solid arcs in Fig. 5(b)). Furthermore, for every
transition rule of the form [qi, /, d, qi′ ], d ∈ {−1,+1}, we add 2 × 2 dotted arcs
from nodes h(qi, 0), h(qi, 1) in the current block to h(qi′ , 0), h(qi′ , 1) in the right
(resp. left) adjacent block if d = +1 (resp. d = −1) (see dotted arcs in Fig. 5(b)).
All blocks are the same polyhedron except for the first and last blocks. The first
(resp. last) block does not have arcs which is to or from the left (resp. right)
adjacent block.
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Fig. 6. (a) A cast puzzle simulating the configuration of a TM in Fig. 8. (b) A lateral
view from the cross section between K′ and K′′.

Fig. 5(b) is constructed according to a four-state deterministic TM M =
(Q,Σ, q0, q3, R) such that Q = {q0, q1, q2, q3}, Σ = {0, 1}, and

R = {[q0, /,+1, q1], [q1, 0, 1, q0], [q1, 1, 0, q3], [q2, 0, 1, q3], [q2, 1, 0, q0]}. (1)

Fig. 6 illustrates a cast puzzle simulating a configuration of TM M . It is
composed of a sequence of g(k, p(n)) blocks (see also Fig. 5(b)), two boards 1,2
behind them, and g(k, p(n)) sets of cylinders S1, S2, · · · , Sg(k,p(n)). (Due to space
limitation, Fig. 6 contains only three blocks, say, blocks 1,2,3, and three sets of
cylinders S1, S2, S3.) Fig. 6 corresponds the configuration shown in Fig. 8(a).

Fig. 6(b) is a lateral view from the cross section between K′ and K′′. Each of
boards 1,2 is welded to an L-shaped square pole (see Fig. 6(b)). The other end
of the L-shaped square pole is welded to square pole 1, which is further welded
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board

octagonal cylinder

block

Fig. 7. A lateral view of a block and a cylinder from point C of Fig. 6(b)

(a)

q1

(b)
1 0 1

q0

1 1 1

q1

1 1 1
(c)

step t step t+1 step t+2

Fig. 8. Configurations of a TM at steps t, t + 1, and t + 2

to square poles 2,3 and a rectangular pole. It should be noted that boards 1,2
are connected via two L-shaped square poles and a rectangular pole; if board 1
is moved to the right, then board 2 is also moved to the right simultaneously
(see (6) in Fig. 6(a)).

On block i, there is a set of cylinders Si, where Si contains m cylinders.
Those m cylinders are connected by a rod so that they cover all holes in either
{h(qj , 0) | 0 ≤ j ≤ m − 1} or {h(qj , 1) | 0 ≤ j ≤ m − 1}. The other end of the
rod is connected to rectangular solid i, which has two (square) holes 1,2 and
one rectangular hole (see Fig. 6(b)). Square poles 2,3 pierce either holes 1,2 or
hole 2 and the rectangular hole. If square poles 2,3 pierce holes 1,2, then the
set of cylinders close holes {h(qj, 1) | 0 ≤ j ≤ m − 1} (and holes {h(qj, 0) | 0 ≤
j ≤ m − 1} are opened; see S2 in Fig. 6(a)), which implies the tape cell has
symbol 0. Similarly, if square poles 2,3 pierce hole 2 and the rectangular hole,
then the tape cell has symbol 1 (see S1, S3). There is a gap between the left
square poles 2,3 and the right square poles 2,3. The gap distance is the same as
the width of each rectangular solid. Therefore, there exists at most one set of
cylinders which we can move vertically.

The rectangular pole always pieces all rectangular solids. We dig a ditch on
every block (see Fig. 7) and we fit the corresponding set of cylinders into the
ditch so that they cannot move in the horizontal direction. On each board, there
is a monorail which is fitted in the groove of each block so that the block does
not move in the vertical direction.

Since the target piece has height 5 (see Fig. 1(b)), the top and bottom of
the target piece protrude outside the block (see Fig. 2(b)). Therefore, the target
piece must always be between boards 1 and 2. If the target piece reaches one
of the “accepting” holes h(qm−1, 0), h(qm−1, 1), then we can take it out from
the block.

Consider a configuration of the TM M at step t (see Fig. 8(a)). In Fig. 6(a),
the target piece is in the hole h(q1, 0) in the second block, and holes {h(qj, 0) | 0 ≤
j ≤ m − 1} (resp. {h(qj , 1) | 0 ≤ j ≤ m − 1}) are opened in the second block
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Fig. 9. (a) Solid arc from h(q1, 0) to h(q0, 1), and dotted arcs from h(q0, 1) to h(q1, 0)
and h(q1, 1). (b) Detailed drawing of (a).

(resp. in the first and third blocks). From equation (1), there is a solid arc from
hole h(q1, 0) to hole h(q0, 1) (see Figs. 6(a) and 9(a)), and there is a pair of dotted
arcs from h(q0, 1) to h(q1, 0) and h(q1, 1) in the right adjacent block, where the
hole h(q1, 0) is closed. Fig. 9(b) is the detailed drawing of Fig. 9(a).

(1) Suppose that the target piece is in the hole h(q1, 0). (2) We can carry the
target piece forward until it reaches position B (see Fig. 9(b)). At this position,
we can take a 45-degree turn. (3) During the evacuation of the target piece,
we can move the set of cylinders S2 upward. (In Fig. 9(b), cylinder H is just
moving upward.) Since rectangular solid 2 is in the gap of square poles 2,3 (see
Fig. 6(a)), we can freely move S2 vertically (as far as the rectangular pole in
the rectangular hole permits). (4) After the movement of cylinders, the hole
h(q0, 1) at position C is opened, and h(q1, 0) at position A is closed. We can
carry the target piece to position C. At this time, the edges of boards 1,2 are on
borderlines J,J′, respectively. (5) We can carry the target piece to position D by
moving board 2 to the right simultaneously. (6) Square poles 2,3 are connected to
boards 1,2; thus the square hole 2 and the rectangular hole of rectangular solid 2
are pierced by square poles 2 and 3, respectively (see Fig. 6(a)). (7) Then we
take a 90-degree turn at D, a downward movement from D to F, and a 90-degree
turn at F. Again, we carry the target piece to position G by moving board 2 to
the right. Finally, we move board 2 to the right so that cylinders S3 are placed
in the middle between boards 1 and 2, by which square poles 2,3 are pulled out
of rectangular solid 3. Now the set of cylinders S3 can move vertically, and the
target piece can also move according to the solid arc in the third block.

The target piece cannot reach hole h(q1, 0) via dotted arc (5′) because of the
following reason. In general, the set of cylinders Si can move vertically if and
only if the distance between I and J is the same as the distance between I′ and J′

(see Fig. 6(a)). Now we fix the length l of the target piece so that l is strictly
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longer than the distance between I and J. For such an l, the target piece gets
stuck between the cylinder on h(q1, 0) and board 1 (see position G′ in Fig. 9(b)).

Initially, the first n sets of cylinders S1, S2, . . . , Sn are placed according to
the input string x ∈ {0, 1}n, and the remaining Sn+1, Sn+2, . . . are placed so
that holes h(qj , 0) are opened on every block. The target piece is initially in the
hole h(q0, 0) or h(q0, 1) in the first block. The layout of such polyhedrons can be
represented by a string of length polynomial in n. Since TM M is deterministic,
the accepting computation is a sequence of configurations in which the last
configuration is accepting. Such a sequence belongs to a directed accepting tree
such that (i) every node is a configuration, and (ii) the root node is the unique
accepting configuration in the tree. Therefore, M accepts input x if and only if
the initial configuration of M belongs to an accepting tree. Moving the target
piece in our cast puzzle corresponds to walking round nodes in the tree. The
root node of this tree is an accepting configuration if and only if the target piece
can be taken out of a block. By this construction, the TM M accepts x if and
only if the cast puzzle is solvable. This completes the proof of Theorem 1.
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Abstract. The Fermat-Weber center of a planar body Q is a point in the plane
from which the average distance to the points in Q is minimal. We first show
that for any convex body Q in the plane, the average distance from the Fermat-
Weber center of Q to the points of Q is larger than 1

6 · Δ(Q), where Δ(Q)
is the diameter of Q. This proves a conjecture of Carmi, Har-Peled and Katz.
From the other direction, we prove that the same average distance is at most
2(4−√

3)
13 · Δ(Q) < 0.3490 · Δ(Q). The new bound substantially improves the

previous bound of 2
3
√

3
· Δ(Q) ≈ 0.3849 · Δ(Q) due to Abu-Affash and Katz,

and brings us closer to the conjectured value of 1
3 · Δ(Q). We also confirm the

upper bound conjecture for centrally symmetric planar convex bodies.

1 Introduction

The Fermat-Weber center of a measurable planar set Q with positive area is a point in
the plane that minimizes the average distance to the points in Q. Such a point is the
ideal location for a base station (e.g., fire station or a supply station) serving the region
Q, assuming the region has uniform density. Given a measurable set Q with positive
area and a point p in the plane, let μQ(p) be the average distance between p and the
points in Q, namely,

μQ(p) =

∫
q∈Q

dist(p, q) dq

area(Q)
,

where dist(p, q) is the Euclidean distance between p and q. Let FWQ be the Fermat-
Weber center of Q, and write μ∗Q = min{μQ(p) : p ∈ R2} = μQ(FWQ).

Carmi, Har-Peled and Katz [3] showed that there exists a constant c > 0 such that
μ∗Q ≥ c · Δ(Q) holds for any convex body Q, where Δ(Q) denotes the diameter of
Q. The convexity is necessary, since it is easy to construct nonconvex regions where
the average distance from the Fermat-Weber center is arbitrarily small compared to the
diameter. Of course the opposite inequality μ∗Q ≤ c′ · Δ(Q) holds for any body Q
(convexity is not required), since we can trivially take c′ = 1.
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−ε
−1 1

ε

Fig. 1. A flat rhombus Pε, with limε→0 μ∗
Pε

/Δ(Pε) = 1
6

Let c1 denote the infimum, and c2 denote the supremum of μ∗Q/Δ(Q) over all convex
bodies Q in the plane. Carmi, Har-Peled and Katz [3] conjectured that c1 = 1

6 and
c2 = 1

3 . Moreover, they conjectured that the supremum c2 is attained for a circular disk
D, where μ∗D = 1

3 ·Δ(D). They also proved that 1
7 ≤ c1 ≤ 1

6 . The inequality c1 ≤ 1
6 is

given by an infinite sequence of rhombi, Pε, where one diagonal has some fixed length,
say 2, and the other diagonal tends to zero; see Fig. 1. By symmetry, the Fermat-Weber
center of a rhombus is its center of symmetry, and one can verify that μ∗Pε

/Δ(Pε) tends
to 1

6 . The lower bound for c1 has been recently further improved by Abu-Affash and
Katz from 1

7 to 4
25 [1]. Here we establish that c1 = 1

6 and thereby confirm the first of
the two conjectures of Carmi, Har-Peled and Katz.

Regarding the second conjecture, recently Abu-Affash and Katz proved that c2 ≤
2

3
√

3
= 0.3849 . . .. Here we further improve this bound and bring it closer to the con-

jectured value of 1
3 . Finally, we also confirm the upper bound conjecture for centrally

symmetric convex bodies Q.
Our main results are summarized in the following two theorems:

Theorem 1. For any convex body Q in the plane, we have μ∗Q > 1
6 ·Δ(Q).

Theorem 2. For any convex body Q in the plane, we have

μ∗Q ≤ 2(4 −
√

3)
13

·Δ(Q) < 0.3490 ·Δ(Q).

Moreover, if Q is centrally symmetric, then μ∗Q ≤ 1
3 ·Δ(Q).

Remarks. 1. The average distance from a point p in the plane can be defined analogously
for finite point sets and for rectifiable curves. Observe that for a line segment I (a one-
dimensional convex set), we would have μ∗I/Δ(I) = 1

4 . It might be interesting to note
that while the thin rhombi mentioned above tend in the limit to a line segment, the value
of the limit μ∗Pε

/Δ(Pε) equals 1
6 , not 1

4 .

2. In some applications, the cost of serving a location q from a facility at point p is
distκ(p, q) for some exponent κ ≥ 1, rather than dist(p, q). We can define μκ

Q(p) =(∫
q∈Q distκ(p, q) dq

)
/area(Q) and μκ∗

Q = inf{μκ
Q(p) : p ∈ R2}, which is invariant

under congruence. The ratio μκ∗
Q /Δκ(Q) is also invariant under similarity. The proof of

Theorem 1 carries over for this variant and shows that μκ∗
Q /Δκ(Q) > 1

(κ+2)2κ for any
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convex body Q, and limε→0 μκ∗
Pε

/2κ = 1
(κ+2)2κ . For the upper bound, the picture is not

so clear: μ∗Q/Δ(Q) is conjectured to be maximal for the circular disk, however, there
is a κ ≥ 1 such that μκ∗

Q /Δκ(Q) cannot be maximal for the disk. In particular, if D is
a disk of diameter 2 and R is a convex body of diameter 2 whose smallest enclosing
circle has diameter more than 2 (e.g., a regular or a Rouleaux triangle of diameter 2),
then μκ∗

D < μκ∗
R , for a sufficiently large κ > 1. Let o be an arbitrary point in the plane,

and let D be centered at o. Then
∫

q∈D distκ(o, q) dq =
∫ 2π

0

∫ 1
0 rκ · r dr dθ = 2π

κ+2 ,

and so limκ→∞ μκ∗
D ≤ limκ→∞

2
κ+2 = 0. On the other hand, for any region R′ lying

outside of D and for any κ ≥ 1, we have
∫

q∈R′ distκ(o, q) dq ≥ area(R′) > 0. If
R′ = R \D is the part of R lying outside D, then limκ→∞ μκ∗

R ≥ area(R′)/π > 0.

Related work. Fekete, Mitchell, and Weinbrecht [7] studied a continuous version of the
problem for polygons with holes, where the distance between two points is measured
by the L1 geodesic distance. A related question on Fermat-Weber centers in a discrete
setting deals with stars and Steiner stars [5,6]. The reader can find more information
on other variants of the Fermat-Weber problem in [4,10].

2 Lower Bound: Proof of Theorem 1

In a nutshell the proof goes as follows. Given a convex body Q, we take its Steiner
symmetrization with respect to a supporting line of a diameter segment cd, followed
by another Steiner symmetrization with respect to the perpendicular bisector of cd. The
two Steiner symmetrizations preserve the area and the diameter, and do not increase the
average distance from the corresponding Fermat-Weber centers. In the final step, we
prove that the inequality holds for a convex body with two orthogonal symmetry axes.

Steiner symmetrization with respect to an axis. Steiner symmetrization of a convex fig-
ure Q with respect to an axis (line) � consists in replacing Q by a new figure S(Q, �)
with symmetry axis � by means of the following construction: Each chord of Q orthog-
onal to � is displaced along its line to a new position where it is symmetric with respect
to �, see [11, pp. 64]. The resulting figure S(Q, �) is also convex, and obviously has the
same area as Q.

A body Q is x-monotone if the intersection of Q with every vertical line is either
empty or is connected (that is, a point or a line segment). Every x-monotone body Q
is bounded by the graphs of some functions f : [a, b] → R and g : [a, b] → R such
that g(x) ≤ f(x) for all x ∈ [a, b]. The Steiner symmetrization with respect to the
x-axis �x transforms Q into an x-monotone body S(Q, �x) bounded by the functions
1
2 (f(x)− g(x)) and 1

2 (g(x)− f(x)) for x ∈ [a, b]. As noted earlier, area(S(Q, �x)) =
area(Q). The next two lemmas do not require the convexity of Q.

Lemma 1. Let Q be an x-monotone body in the plane with a diameter parallel or
orthogonal to the x-axis, then Δ(Q) = Δ(S(Q, �x)).

Proof. Let Q′ = S(Q, �x). If Q has a diameter parallel to the x-axis, then the diameter
is [(a, c), (b, c)], with a value c ∈ R, g(a) = c = f(a) and g(b) = c = f(b). That is,
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Δ(Q) = b− a. In this case, the diameter of Q′ is at least b− a, since both points (a, 0)
and (b, 0) are in Q′. If Q has a diameter orthogonal to the x-axis, then the diameter is
[(x0, f(x0)), (x0, g(x0))] for some x0 ∈ [a, b], and Δ(Q) = f(x0)−g(x0). In this case,
the diameter of Q′ is at least f(x0) − g(x0), since both points (x0,

1
2 (f(x0) − g(x0)))

and (x0,
1
2 (g(x0) − f(x0))) are in Q′. Therefore, we have Δ(Q′) ≥ Δ(Q).

Let A1 and A2 be two points on the boundary of Q′ such that Δ(Q′) = dist(A1, A2).
Since Q′ is symmetric to the x-axis, points A1 and A2 cannot both be on the upper
(resp., lower) boundary of Q′. Assume w.l.o.g. that A1 = (x1,

1
2 (f(x1) − g(x1))) and

A2 = (x2,
1
2 (g(x2) − f(x2))) for some a ≤ x1, x2 ≤ b.

Δ(Q′) = dist(A1, A2) =

√

(x2 − x1)2 +
(
f(x1) + f(x2) − g(x1) − g(x2)

2

)2

.

Now consider the following two point pairs in Q. The distance between B1 =(x1, f(x1))
and B2 = (x2, g(x2)) is dist(B1, B2) =

√
(x2 − x1)2 + (f(x1) − g(x2))2. Similarly,

the distance between C1 = (x1, g(x1)) and C2 = (x2, f(x2)) is dist(C1, C2) =√
(x2 − x1)2 + (g(x1) − f(x2))2. Using the inequality between the arithmetic and

quadratic means, we have
(
f(x1) + f(x2) − g(x1) − g(x2)

2

)2

≤ (f(x1) − g(x2))2 + (g(x1) − f(x2))2

2
.

This implies that dist(A1, A2) ≤ max(dist(B1, B2), dist(C1, C2)), and so Δ(Q′) ≤
Δ(Q). We conclude that Δ(Q) = Δ(S(Q, �x)). �	
Lemma 2. If Q is an x-monotone body in the plane, then μ∗Q ≥ μ∗S(Q,�x).

Proof. If (x0, y0) is the Fermat-Weber center of Q, then

μ∗Q =

∫ b

a

∫ f(x)
g(x)

√
(x − x0)2 + (y − y0)2 dy dx

area(Q)
.

Observe that
∫ f(x)

g(x)

√
(x− x0)2 + (y − y0)2 dy is the integral of the distances of the

points in a line segment of length f(x)−g(x) from a point at distance |x−x0| from the
supporting line of the segment. This integral is minimal if the point is on the orthogonal
bisector of the segment. That is, we have

∫ f(x)

g(x)

√
(x− x0)2 + (y − y0)2 dy ≥

∫ f(x)

g(x)

√

(x− x0)2 +
(
y − f(x) − g(x)

2

)2

dy

=
∫ 1

2 (f(x)−g(x))

1
2 (g(x)−f(x))

√
(x− x0)2 + y2 dy.

Therefore, we conclude that

μ∗Q =

∫ b

a

∫ f(x)
g(x)

√
(x− x0)2 + (y − y0)2 dy dx

area(Q)

≥

∫ b

a

∫ 1
2 (f(x)−g(x))
1
2 (g(x)−f(x))

√
(x− x0)2 + y2 dy dx

area(S(Q, x))
= μS(Q,�x)((x0, 0)) ≥ μ∗S(Q,�x). �	
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Triangles. We next consider right triangles of a special kind, lying in the first quadrant,
and show that the average distance from the origin to their points is larger than 1

3 .

Lemma 3. Let T a right triangle in the first quadrant based on the x-axis, with vertices
(a, 0), (a, b), and (1, 0), where 0 ≤ a < 1, and b > 0. Then μT (o) > 1

3 .

Proof. We use the simple fact that the x-coordinate of a point is a lower bound to the
distance from the origin.

μT (o) =

∫ 1
a (
∫ b(1−x)/(1−a)
0

√
x2 + y2 dy) dx

b(1 − a)/2
>

∫ 1
a (
∫ b(1−x)/(1−a)
0 x dy) dx

b(1 − a)/2

=
b

1−a

∫ 1
a x(1 − x) dx

b(1 − a)/2
=

2
(1 − a)2

(
x2

2
− x3

3

) ∣
∣
∣
1

a

=
2

(1 − a)2
· (2a3 − 3a2 + 1)

6
=

2
(1 − a)2

· (1 − a)(1 + a− 2a2)
6

=
1

(1 − a)
· (1 + a− 2a2)

3
>

1
3
.

The last inequality in the chain follows from a < 1. The inequality in the lemma is
strict, since

√
x2 + y2 > x for all points above the x-axis. �	

Corollary 1. Let P be any rhombus. Then μ∗P > 1
6 ·Δ(P ).

Proof. Without loss of generality, we may assume that P is symmetric with respect to
both the x- and the y-axis. Let us denote the vertices of P by (−1, 0), (1, 0), (0,−b),
and (0, b), where b ≤ 1. We have Δ(P ) = 2. By symmetry, μ∗P equals the average
distance between the origin (0, 0) and the points in one of the four congruent right
triangles forming P . Consider the triangle T in the first quadrant. By Lemma 3 (with
a = 0), we have μ∗P = μT (o) > 1

3 . Since Δ(P ) = 2, we have μ∗P > 1
6 · Δ(P ), as

desired. �	

Lemma 4. Let T be a triangle in the first quadrant with a vertical side on the line
x = a, where 0 ≤ a < 1, and a third vertex at (1, 0). Then μT (o) > 1

3 .

Proof. Refer to Fig. 2(ii). Let U be a right triangle obtained from T by translating
each vertical chord of T down until its lower endpoint is on the x-axis. Note that
area(T ) = area(U). Observe also that the average distance from the origin decreases
in this transformation, namely μT (o) ≥ μU (o). By Lemma 3, we have μU (o) > 1

3 , and
so μT (o) > 1

3 , as desired. �	

We now have all necessary ingredients to prove Theorem 1.

Proof of Theorem 1. Refer to Fig. 2. Let Q be a convex body in the plane, and let
c, d ∈ Q be two points at Δ(Q) distance apart. We may assume that c = (−1, 0) and
d = (1, 0), by a similarity transformation if necessary, so that Δ(Q) = 2 (the ratio
μ∗Q/Δ(Q) is invariant under similarities). Apply a Steiner symmetrization with respect
to the x-axis, and then a second Steiner symmetrization with respect to the y-axis. The
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Fig. 2. (i) The subdivision of Q1 for n = 3. Here o = (0, 0), q1 = b = (0, h), q4 = r, d = (1, 0).
(ii) Transformation in the proof of Lemma 4.

resulting body Q′ = S(S(Q, �x), �y) is convex, and it is symmetric with respect to both
coordinate axes. We have Δ(Q′) = Δ(Q) = 2 by Lemma 1, and in fact c, d ∈ Q′. We
also have μ∗Q′ ≤ μ∗Q by Lemma 2.

Let Q1 be the part of Q′ lying in the first quadrant: Q1 = {(x, y) ∈ Q′ : x, y ≥ 0}.
By symmetry, FWQ′ = o and we have μ∗Q′ = μQ′(o) = μQ1(o). Let γ be the portion
of the boundary of Q′ lying in the first quadrant, between points b = (0, h), with
0 < h ≤ 1, and d = (1, 0). For any two points p, q ∈ γ along γ, denote by γ(p, q) the
portion of γ between p and q. Let r be the intersection point of γ and the vertical line
x = 1

3 .
For a positive integer n, subdivide Q1 into at most 2n+ 2 pieces as follows. Choose

n + 1 points b = q1, q2 . . . , qn+1 = r along γ(b, r) such that qi is the intersection of
γ and the vertical line x = (i − 1)/3n. Connect each of the n + 1 points to d by a
straight line segment. These segments subdivide Q1 into n+2 pieces: the right triangle
T0 = Δbod; a convex body Q0 bounded by rd and γ(r, d); and n curvilinear triangles
Δqidqi+1 for i = 1, 2, . . . , n. For simplicity, we assume that neither Q0, nor any of the
curvilinear triangles are degenerate; otherwise they can be safely ignored (they do not
contribute to the value of μ∗Q′ ). Subdivide each curvilinear triangle Δqidqi+1 along the
vertical line through qi+1 into a small curvilinear triangle Si on the left and a triangle
Ti incident to point d on the right. The resulting subdivision has 2n + 2 pieces, under
the nondegeneracy assumption.

By Lemma 3, we have μT0(o) > 1
3 . Observe that the difference μT0(o)− 1

3 does not
depend on n, and let δ = μT0(o)− 1

3 . By Lemma 4, we also have μTi(o) > 1
3 , for each

i = 1, 2, . . . , n. Since every point in Q0 is at distance at least 1
3 from the origin, we also

have μQ0(o) ≥ 1
3 .

For the n curvilinear triangles Si, i = 1, 2, . . . , n, we use the trivial lower bound
μSi(o) ≥ 0. We now show that their total area sn =

∑n
i=1 area(Si) tends to 0 if n

goes to infinity. Recall that the y-coordinates of the points qi are at most 1, and their x-
coordinates are at most 1

3 . This implies that the slope of every line qid, i = 1, 2, . . . , n+
1, is in the interval [−3/2, 0]. Therefore, Si is contained in a right triangle bounded by a
horizontal line through qi, a vertical line through qi+1, and the line qid. The area of this
triangle is at most 1

2 ( 1
3n ·(3

2 ·
1
3n )) = 1/(12n2). That is, sn =

∑n
i=1 area(Si) ≤ 1/12n.

In particular, sn ≤ δ · area(T0) for a sufficiently large n. Then we can write
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μQ1(o) =

∫
p∈Q1

dist(op) dp

area(Q1)
≥ μQ0(o) · area(Q0) +

∑n
i=0 μTi(o) · area(Ti)

area(Q1)

≥
1
3 (area(Q1) − sn) + δ · area(T0)

area(Q1)
≥ 1

3
+

2δ · area(T0)
3 · area(Q1)

>
1
3
.

This concludes the proof of Theorem 1. �	

Remark. A finite triangulation, followed by taking the limit suffices to prove the slightly
weaker, non-strict inequality: μ∗Q ≥ 1

6 ·Δ(Q).

3 Upper Bounds: Proof of Theorem 2

Let Q be a planar convex body. Let ∂Q denote the boundary of Q, and let int(Q) denote
the interior of Q. Let Ω be the smallest circle enclosing Q, and let o be the center of Ω.

Write a = 2(4−
√

3)
13 , and D = Δ(Q). By the convexity of Q, o ∈ Q, as observed in [1].

Moreover, Abu-Affash and Katz [1] have shown that the average distance from o to the
points in Q satisfies

μQ(o) ≤ 2
3
√

3
·Δ(Q) < 0.3850 ·Δ(Q).

Here we further refine their analysis and derive a better upper bound on the average
distance from o:

μQ(o) ≤ 2(4 −
√

3)
13

·Δ(Q) < 0.3490 ·Δ(Q).

Since the average distance from the Fermat-Weber center of Q is not larger than that
from o, we immediately get the same upper bound on c2. We need the next simple
lemma established in [1]. Its proof follows from the definition of average distance.

Lemma 5. [1]. Let Q1, Q2 be two (not necessarily convex) disjoint bodies in the plane,
and p be a point in the plane. Then μ(Q1∪Q2)(p) ≤ max(μQ1(p), μQ2 (p)).

By induction, Lemma 5 yields:

Lemma 6. Let Q1, Q2, . . . , Qn be n (not necessarily convex) pairwise disjoint bodies
in the plane, and p be a point in the plane. Then

μ(Q1∪...∪Qn)(p) ≤ max(μQ1(p), . . . μQn(p)).

We also need the following classical result of Jung [9] (also available in [8]).

Theorem 3. (Jung [9]). Let S be a set of diameter Δ(S) in the plane. Then S is con-
tained in a circle of radius 1√

3
·Δ(S).
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Lastly, observe that the average distance from the center of a circular sector of radius r
and center angle α to the points in the sector is

∫ r

0 αx2 dx
∫ r

0 αx dx
=

αr3/3
αr2/2

=
2r
3
. (1)

We now proceed with the proof of Theorem 2. We distinguish two cases: Case 1: o ∈
∂Q, and Case 2: o ∈ int(Q). Assume that we are in the first (easy) case. Then Q is
contained in a halfdisk Θ of Ω (with the same diameter D), and o is the midpoint of the
this diameter. Then by (1), it follows that μQ(o) ≤ 1

3 ·D.
Next we assume that we are in the second case, with o lying in the interior of Q. Let

ε > 0 be sufficiently small. For a large positive integer n, subdivide Ω into n congruent
circular double sectors (wedges) W1, . . . ,Wn, symmetric about o (the center of Ω),
where each sector subtends an angle α = π/n. Consider a double sector Wi = Ui ∪Vi,
where Ui and Vi are circular sectors of Ω. Let Xi ⊆ Ui, and Yi ⊆ Vi be two minimal
circular sectors centered at o and containing Ui∩Q, and Vi∩Q, respectively: Ui∩Q ⊆
Xi, and Vi∩Q ⊆ Yi. Let xi and yi be the radii of Xi and Yi, respectively. Let X ′i ⊆ Xi,
and Y ′i ⊆ Yi be two circular subsectors of radii (1 − ε)xi and (1 − ε)yi, respectively.
Since o ∈ int(Q), we can select n = n(Q, ε) large enough, so that for each 1 ≤ i ≤ n,
the subsectors X ′i and Y ′i are nonempty and entirely contained in Q. That is, for every
i, we have

X ′i ∪ Y ′i ⊆ Wi ∩Q ⊆ Xi ∪ Yi. (2)

It is enough to show that for any double sector W = Wi, we have

lim
ε→0

μ(W∩Q)(o) ≤ aD,

since then, Lemma 6 (with Wi being the n pairwise disjoint regions) will imply that
μQ(o) ≤ aD, concluding the proof of Theorem 2. For simplicity, write x = xi, and
y = yi. Obviously the diameter of W ∩ Q is at most D, hence x + y ≤ D. We can
assume w. l. o. g. that y ≤ x, so by Theorem 3 we also have x ≤ 1√

3
· D. For easy

reference, we summarize our constraints:

0 < y ≤ x ≤ 1√
3
·D and x + y ≤ D. (3)

By the definition of average distance, we can write

μ(W∩Q)(o) =

∫
p∈(W∩Q) dist(op) dp

area(W ∩Q)

≤
α · x2

2 · 2x
3 + α · y2

2 · 2y
3

α(1 − ε)2 ·
(

x2

2 + y2

2

)

=
2
3
· x3 + y3

(1 − ε)2 · (x2 + y2)
. (4)

Let

f(x, y) =
2
3
· x

3 + y3

x2 + y2 , and g(x, y, ε) =
2
3
· x3 + y3

(1 − ε)2 · (x2 + y2)
.
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Clearly for any feasible pair (x, y), we have

lim
ε→0

g(x, y, ε) = f(x, y).

It is a straightforward calculus exercise to show that under the constraints listed in (3),
f(x, y) is maximized for:

x0 =
D√
3
, and y0 =

(
1 − 1√

3

)
D.

By substituting these values for x and y, and letting ε tend to zero in (4), we obtain

μQ(o) ≤ lim
ε→0

g(x0, y0, ε) = f(x0, y0) =
2(4 −

√
3)

13
·D,

as required.
Assume now that Q is centrally symmetric with respect to point q. We repeat the

same argument. It is enough to observe that: (i) the center of Ω coincides with q, that
is, o = q; and (ii) x = y ≤ 1

2 · D for any double sector W . The average distance
calculation yields now

μ(W∩Q)(o) ≤
2x3

3(1 − ε)2 · x2 =
2x

3(1 − ε)2
≤ D

3(1 − ε)2
,

and by taking the limit when ε tends to zero, we obtain

μQ(o) ≤ D

3
,

as required. The proof of Theorem 2 is now complete.

4 Applications

1. Carmi, Har-Peled and Katz [3] showed that given a convex polygon Q with n vertices,
and a parameter ε > 0, one can compute an ε-approximate Fermat-Weber center q ∈ Q
in O(n+1/ε4) time such that μQ(q) ≤ (1+ε)μ∗Q. Abu-Affash and Katz [1] gave a sim-
ple O(n)-time algorithm for computing the center q of the smallest circle enclosing Q,
and showed that q approximates the Fermat-Weber center of Q, with μQ(q) ≤ 25

6
√

3
μ∗Q.

Our Theorems 1 and 2, combined with their analysis, improves the approximation ratio
to about 2.09:

μQ(q) ≤ 12(4 −
√

3)
13

μ∗Q.

2. The value of the constant c1 (i.e., the infimum of μ∗Q/Δ(Q) over all convex bod-
ies Q in the plane) plays a key role in the following load balancing problem intro-
duced by Aronov, Carmi and Katz [2]. We are given a convex body D and m points
p1, p2, . . . , pm representing facilities in the interior of D. Subdivide D into m con-
vex regions, R1, R2, . . . , Rm, of equal area such that

∑m
i=1 μpi(Ri) is minimal. Here
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μpi(Ri) is the cost associated with facility pi, which may be interpreted as the average
travel time from the facility to any location in its designated region, each of which has
the same area. One of the main results in [2] is a (8+

√
2π)-factor approximation in the

case that D is an n1 × n2 rectangle for some integers n1, n2 ∈ N. This basic approxi-
mation bound is then used for several other cases, e.g., subdividing a convex fat domain
D into m convex regions Ri.

By substituting c1 = 1
6 (Theorem 1) into the analysis in [2], the upper bound for

the approximation ratio improves from 8 +
√

2π ≈ 10.5067 to 7 +
√

2π ≈ 9.5067.
It can be further improved by optimizing another parameter used in their calculation.
Let S be a unit square and let s ∈ S be an arbitrary point in the square. Aronov et
al. [2] used the upper bound μS(s) ≤ 2

3

√
2 ≈ .9429. It is clear that maxs∈S μS(s)

is attained if s is a vertex of S. The average distance of S from such a vertex, say v,
is μS(v) = 1

3

(√
2 + ln(1 +

√
2)
)
≈ .7652, and so μS(s) ≤ 1

3

(√
2 + ln(1 +

√
2)
)
,

for any s ∈ S. With these improvements, the upper bound on the approximation ratio
becomes 7 +

√
π

2

(√
2 + ln(1 +

√
2)
)
≈ 9.0344.
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Abstract. The turnpike problem is one of the few “natural” problems
that are neither known to be NP-complete nor solvable by efficient al-
gorithms. We seek to study this problem in a more general setting.
We consider the generalized problem which tries to resolve set A =
{a1, a2, · · · , an} from pairwise function values {f(ai, aj)|1 ≤ i, j ≤ n}
for a given bivariate function f . We call this problem the Number Re-

construction problem. Our results include efficient algorithms when f
is monotone and non-trivial bounds on the number of solutions when f
is the sum. We also generalize previous backtracking and algebraic al-
gorithms for the turnpike problem such that they work for the family
of anti-monotone functions and linear-decomposable functions. Finally,
we propose an efficient algorithm for the string reconstruction problem,
which is related to an approach to protein reconstruction.

1 Introduction

Given a set of n numbers, it is easy to compute their pairwise distances. The
reverse problem of reconstructing all possible sets of n numbers for a given
unordered set of

(
n
2

)
distances is known as the turnpike problem. This problem

dates back to the origins of X-ray crystallography in the 1930’s [11,12,13] and
later arises in restriction site mapping of DNA, where it is known as the Partial
Digest Problem, and in the area of computational geometry [15].

Rosenblatt and Seymour [14] studied a related concept called homometric sets.
Two sets are homometric if they provide the same unordered set of pairwise dis-
tances. They introduced a generating function technique and proved two sets are
homometric if and only if their generating functions have a certain relationship.
We will give more details in Section 2.

Based on the generating function technique, Skiena, Lemke and Smith [8]
studied the number of different solutions for a turnpike instance. Let H(n) denote
the largest number of different homometric sets of size n. They proved that
there exist infinitely many n such that H(n) ≥ nα/2, where α ≈ 0.8107144,
and for any n, H(n) ≤ nβ/2, where β ≈ 1.2324827. Hence, the number of
solutions is bounded by polynomials of the input size. They proved that the
turnpike problem in arbitrary dimension is strongly NP-complete. Skiena et al.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 142–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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also proposed two non-trivial algorithms for solving the problem. The first one
is a combinatorial algorithm, known as the backtracking algorithm, that solves
any turnpike instance in O(2nn log n) time. Later, Zhang [19] showed that the
backtracking algorithm indeed requires exponential time in the worst case, and
Skiena et al. [8] proved that the backtracking algorithm works reasonably well on
average if the input is drawn from a certain distribution. The second algorithm
is a pseudopolynomial algorithm based on the generating function technique and
polynomial factorization. The running time of this algorithm is polynomial in
the maximum distance.

While hardness of the original turnpike problem remains open, there have
been many successes in the study of variants. The Double Digest Problem [7]
and the Simplified Partial Digest Problem [1,2], originated from other methods
for reconstructing the restriction site locations of enzymes from DNA fragments
and are both known to be NP-complete. Cieliebak et al. [4,3] studied four types
of error that the turnpike problem may possibly encounter in real experiments.
They proved that solving the turnpike problem with any of these errors is NP-
complete. Pandurangan and Ramesh [10] explored a variant known as labeled
partial digest. In this variant, both ends are labeled. So in addition to the pair-
wise distances, we are also given the set of lengths of segments at least one of
whose endpoints is one of the two ends. They proposed an efficient and robust
algorithm for this problem that runs in O(n4) time and tolerates an absolute
error up to O(mini di/n), where {di} are the lengths of segments.

In this paper, we consider the more general Number Reconstruction prob-
lem. Suppose there are n unknown integers a1, a2, · · · , an and a bivariate function
f . Given an unordered set of n2 function values f(ai, aj), 1 ≤ i, j ≤ n, the goal
is to reconstruct a1, a2, · · · , an from the given set of values. We will use Recf to
denote this problem. The turnpike problem is clearly the special case when f is
the difference function. We consider the following questions for a given function
f . Can we solve Recf efficiently? Can we solve Recf uniquely? If not, what is
the upper and lower bound on the number of possible solutions for any given
instance? We seek to study this problem for a large family of functions f as an
intermediate step toward resolving the complexity of turnpike problem.

Since the function values f(ai, ai) are trivially known in the turnpike case,
we are also interested in a variant where we are only given an unordered set of
n(n − 1) function values f(ai, aj), 1 ≤ i 
= j ≤ n. Again, the goal is to find
efficient algorithms reconstructing a1, a2, · · · , an from the given values as well
as bounding the number of solutions. We will use Rec

∗
f to denote this problem.

We call this setting the incomplete information setting and refer to the original
setting as the full information setting.

Our Contribution. We study the case when f is the sum and more generally
when f is monotone. In this case, we give efficient algorithms for both the full
information setting and the incomplete information setting. Furthermore, we
show non-trivial bounds on the number of solutions for the case when f is the
sum in incomplete information setting. We then generalize our algorithm such
that it can even solve the case when f is a multi-variate function. We also
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generalize previous turnpike algorithms to more general families of functions
f , namely anti-monotone or linear-decomposable functions. Finally, we resolve
an open problem proposed in [6] by giving an efficient algorithm for the string
reconstruction problem (known as general reconstruction in [6]) that is related
to a new approach to protein reconstruction. Our algorithm relies on a reduction
to the turnpike problem and polynomial factorization.

2 Preliminaries and Notations

2.1 Homometric Sets

In this paper, we abuse the notion of homometric and say that two sets of integers
{a1, a2, · · · , an} and {b1, b2, · · · , bn} are homometric if they give the same set
of pairwise function values, that is, {f(ai, aj)|1 ≤ i, j ≤ n} = {f(bi, bj)|1 ≤
i, j ≤ n}. If two homometric sets are distinct, then we say they are incongruent
homometric sets. Here the meaning of distinct varies for different functions f .
For example, in the turnpike problem we say two sets are distinct if and only if
they are not the same under shifting and mirroring since these two operations
trivially preserve the set of pairwise differences. For the case when f is the sum
function, two sets are distinct simply means the sets are not equal.

2.2 Generating Function Technique
We will use the following generating functions. Given a set of integers A =
{a1, a2, · · · , an}, let PA(x) denote the generating function

∑n
i=1 xai . Let D de-

note the set of pairwise differences of a1, a2, · · · , an, that is, {ai−aj |1 ≤ i, j ≤ n}.
We get that PD(x) = PA(x)PA(1/x). Suppose we now consider f to be the sum.
Let S denote the set of pairwise sums of a1, a2, · · · , an. We get that PS(x) =
P 2

A(x). Rosenblatt and Seymour [14] proved that two sets A, B are homometric
with respect to the turnpike problem if and only if there exists two polynomials
Q, R and integer u such that PA(x) = Q(x)R(x) and PB(X) = xuQ(x)R(1/x).

In this paper, we will use the generating function technique to study the
number of solutions when f is the sum function. We also show that the generating
function technique and polynomial factorization indeed capture the structure of
Number Reconstruction for a large family of functions f .

2.3 Measures of Polynomials

We will use the following measures of polynomials. Suppose P (x) = c0 + c1x +
· · · + cdx

d is a polynomial whose roots are α1, α2, · · · , αn. The Mahler Mea-
sure [18] of this polynomial M(P ) is M(P ) = cd

∏m
i=1 max{1, |αi|}. The L2

norm of the polynomial P is L2(P ) = (
∑d

i=0 c2
i )

1/2. We have that M(P1P2) =
M(P1)M(P2) and M(P ) ≤ L2(P ) for any polynomial P .

2.4 Some Notation

With a little abuse of notation, we use f(A) to denote the set {f(ai, aj)|1 ≤
i, j ≤ n} for a given bivariate function f and a set A = {a1, a2, · · · , an}. We
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shall use f∗(A) to denote the set {f(ai, aj)|1 ≤ i 
= j ≤ n}. The notations can
be naturally generalized to multi-variate functions f .

We let Diff denote the difference function and let Add denote the sum
function. We will use Hf (n) to denote the maximum number of incongruent
homometric sets for any instance of Number Reconstruction problem with
function f and n integers in the full information setting. We define H∗f (n) simi-
larly for the incomplete information setting.

We say a function f(x, y) is monotone if and only if for all x ≥ x′, y ≥ y′,
f(x, y) ≥ f(x′, y′). We say a function f(x, y) is anti-monotone if and only if for
all x ≥ x′, y ≤ y′, f(x, y) ≥ f(x′, y′) (Or f(x, y) ≤ f(x′, y′) for all x ≥ x′ and
y ≤ y′. But they are equivalent if one switches the two dimensions of f . Thus we
can without loss of generality discuss only the former case). Strict monotonicity
and strict anti-monotonicity can be defined straightforwardly.

We say a function f(x, y) is linear decomposable if there exist univariate func-
tions h and g such that f(x, y) = h(x)+g(y). We note that the turnpike problem
and the special case of sum are both linear decomposable.

We use PO to denote the set of problems which can be solved in polynomial
time given access to oracle O.

3 Reconstructing Numbers from Pairwise Sums

3.1 Full Information Setting

Suppose f is sum and we consider the Number Reconstruction problem in
the full information setting. In this setting, we can reconstruct a1, a2, · · · , an

both uniquely and efficiently as illustrated in Algorithm 1.

Algorithm 1. Sum Function, Full Information
1: Sort S = {ai + aj |1 ≤ i, j ≤ n}.
2: for all 1 ≤ i ≤ n do
3: Solve ai from the equation a1 + ai = maxs∈S s.
4: if {ai + aj |1 ≤ j ≤ i} ⊆ S then
5: Let S = S \ {ai + aj |1 ≤ j < i}.
6: else
7: No solution for this instance.
8: end if
9: end for

The key observation is that, if we assume without loss of generality that
a1 ≥ a2 ≥ · · · ≥ an, then a1 + ai+1 is the largest pairwise sum in S once we
have solved for a1, a2, · · · , ai and removed the set {aj + ak|1 ≤ j, k ≤ i} from
the set S of pairwise sums, and at the first step a1 + a1 is the largest pairwise
sum. It follows from the algorithm that the solution is unique (if exists) for any
given instance. The running time of the algorithm is O(n2) since steps 4-6 in the
algorithm require at most O(n) time.
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3.2 Incomplete Information Setting

Now we consider reconstructing numbers from pairwise sums in the incomplete
information setting. We can also find all solutions (if one exists) efficiently in
this setting as in Algorithm 2. However, there may be multiple solutions for a
single instance. For example, {6, 3, 2, 1} and {5, 4, 3, 0} are both valid solutions
to the instance {9, 8, 7, 5, 4, 3}.

The correctness of the algorithm is based on the following observations. Since
f(x, y) is monotone increasing in both dimensions, we have f(a1, a2) ≥ f(a1, a3)≥
· · · ≥ f(a1, an) and f(a2, a3) ≥ f(ai, aj) for any i, j ≥ 2 if we assume without
loss of generality that a1 ≥ a2 ≥ · · · ≥ an. So there exists some 3 ≤ k ≤ n
such that f(a1, a2) ≥ f(a1, a3) ≥ · · · ≥ f(a1, ak) ≥ f(a2, a3) are the k largest
pairwise sums. Hence we can guess the correct value of k and then solve the
values of a1, a2, · · · , ak and finally resolve the value of ak+1, · · · , an one by one.
The running time of this algorithm if O(n3).

Algorithm 2. Sum Function, Incomplete Information
1: Sort the set S = {ai + aj : 1 ≤ i < j ≤ n, i �= j}.
2: Suppose S = {s1, s2, · · · , sN} such that s1 ≥ s2 ≥ · · · ≥ sN and N =

(
n
2

)
.

3: for all 3 ≤ k ≤ n do
4: Solve a1, a2, · · · , ak from equations a1 + ai = si−1, 2 ≤ i ≤ k, and a2 + a3 = sk.
5: for all k + 1 ≤ � ≤ n do
6: if {ai + aj : 1 ≤ i < j < �} ⊆ S then
7: Let S∗ = S \ {ai + aj : 1 ≤ i < j < �}.
8: Solve a� from the equation a1 + a� = maxs∈S∗ s.
9: else

10: No solution for the current value of k.
11: end if
12: end for
13: end for

Now let us consider the upper and lower bound on the number of solutions.

Theorem 1. The following facts hold: (1) For any n > 2, H∗
Add

(n) ≤ n − 2.
(2) For any n > 2 and n is a power of 2, H∗

Add
(n) ≥ 2.

Proof. The first part of the theorem directly follows from Algorithm 2. Now we
prove by induction that H∗

Add
(2k) ≥ 2 for any k ≥ 2. The base case is true

because {6, 3, 2, 1} and {5, 4, 3, 0} are incongruent homometric sets. Suppose
H∗

Add
(2k−1) ≥ 2 for some k > 2. There exists incongruent homometric sets

A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bm} such that m = |A| = |B| = 2k−1.
Let u be a large number such that u > |ai − bj | for any 1 ≤ i, j ≤ m. Consider
C = (A + u) ∪ B and D = (B + u) ∪ A, where we use X + u to denote the set
{x + u|x ∈ X}. It is easy to verify that C and D are incongruent homometric
sets and |C| = |D| = 2k. �



Reconstructing Numbers from Pairwise Function Values 147

Theorem 2. The number of incongruent homometric sets H∗
Add

(n) is larger
than 1 if and only if n is a power of 2.

Proof. (⇐) The statement is trivially true when n = 1, 2. If n is a power of 2
and n > 2, by Theorem 1 we know that H∗

Add
(n) ≥ 2.

(⇒) Consider the following algebraic approach. Recall that given a set C =
{c1, c2, · · · , cn}, PC(x) is the generating function xc1 + xc2 + · · ·+ xcn . Suppose
A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn} are two incongruent homometric
sets. We use S to denote the set of pairwise sums {ai + aj |1 ≤ i 
= j ≤ n}
= {bi + bj|1 ≤ i 
= j ≤ n}. We have PS(x) =

∑
i�=j xai+aj = 2

∑
i<j xai+aj =

PA(x)2 − PA(x2) and PS(x) =
∑

i�= xbi+bj = 2
∑

i<j xbi+bj = PB(x)2 − PB(x2).
So we get that PA(x)2 −PA(x2) = PB(x)2 −PB(x2). Hence we have PA(x2)−

PB(x2) = PA(x)2−PB(x)2 = [PA(x)−PB(x)][PA(x)+PB(x)]. Note that PA(1) =
PB(1) = n and hence PA(1) − PB(1) = 0. We have that (x − 1) divides
PA(x) − PB(x). Assume that (x − 1)k| [PA(x) − PB(x)] and (x − 1)k+1 
 |
[PA(x) − PB(x)], then we may assume that PA(x) − PB(x) = (x − 1)kh(x) and
h(1) 
= 1. We have (x2 − 1)kh(x2) = (x − 1)kh(x) [PA(x) + PB(x)]. Therefore
(x+1)kh(x2) = h(x) [PA(x) + PB(x)]. Note that PA(1)+PB(1) = 2n and h(1) 
=
0. Let x = 1 and we have n = 2k−1. �

4 The General Number Reconstruction Problem

In this section, we generalize Algorithm 1 and 2, the backtracking algorithm,
and the polynomial factorization approach for more general Number Recon-

struction problems.

4.1 Monotone Functions

Note that in Algorithm 1 and 2 the key observation only rely on the fact that
sum is a monotone function. We now generalize the idea in these two algorithms
and propose analogous oracle algorithms for general monotone functions.

Incomplete Information Setting. Let us first consider the incomplete information
setting. We shall discuss the case that f is symmetric and the case that f is
asymmetric separately here. We also note that algorithms that resolve both
cases simultaneously can be easily achieved by assuming a more powerful oracle
and properly merging the algorithms we propose.

Now we study the case when f is symmetric. In this case, In order to recon-
struct the numbers from the given values, we need to be able to answer some
basic queries. We shall use Sf to denote an oracle that can answer the following
two types of queries: (1) Given f(x, y) and x, solve y; (2) Given f(x, y), f(y, z),
f(z, x), solve x, y, z. Assuming one can resolve the above queries efficiently is
reasonable because of the following fact.

Lemma 1. If f(x, y) is strictly monotone, then: (1) Given f and x, there is a
unique y (if exists) such that f(x, y) = f ; (2) Given f1, f2 and f3, there is a
unique triplet x, y, z (if exists) such that f(x, y) = f1, f(y, z) = f2, f(z, x) = f3.
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Proof. We prove both statement by contradiction. Suppose there exists two dis-
tinct y1 and y2 such that f(x, y1) = f , and f(x, y2) = f . Without loss of gen-
erality, we may assume that y1 > y2. From the strictly monotonicity we get
that f = f(x, y1) > f(x, y2) = f , a contradiction. Now suppose there exist
two distinct triples x1, y1, z1 and x2, y2, z2 such that f(x1, y1) = f(x2, y2) = f1,
f(y1, z1) = f(y2, z2) = f2, f(z1, x1) = f(z2, x2) = f3. Since two triples are
distinct, without loss of generality we assume x1 
= x2 and thus we may fur-
ther assume x1 > x2. If y1 ≥ y2 then from the strictly monotonicity we get
f(x1, y1) > f(x2, y2), which contradicts our assumption. So y1 < y2. Similarly
z1 < z2. But now we get f2 = f(y1, z1) < f(y2, z2) = f2, a contradiction. �

Theorem 3. Suppose f is a symmetric and monotone function, then we have
Rec

∗
f ∈ PSf and H∗f (n) ≤ n − 2 for all n > 2.

This theorem follows from Algorithm 3. A similar idea can be used for asymmet-
ric monotone functions. In this case, we need strict monotonicity of function f .
Again, we need to assume that some basic queries can be solved efficiently. But
the second type of query is different from the symmetric case. The oracle Af

answers two types of queries: (1) Given f(x, y) and x, solve y; or given f(x, y)
and y, solve x; (2) Given f(x, y) and f(y, x), solve x and y.

Algorithm 3. Symmetric Monotone Functions, Incomplete Information
1: Sort the set S = {f(ai, aj)|1 ≤ i < j ≤ n}.
2: Suppose S = {s1, s2, · · · , sN} such that s1 ≥ s2 ≥ · · · ≥ sN and N =

(
n
2

)
.

3: for all 3 ≤ i ≤ n do
4: Solve a1, a2, a3 given f(a1, a2) = s1, f(a1, a3) = s2, and f(a2, a3) = si.
5: for all 4 ≤ j ≤ i do
6: Solve aj given f(a1, aj) = sj−1 and a1.
7: end for
8: for all i < j ≤ n do
9: if {f(ak, a�)|1 ≤ k < � < j} ⊆ S then

10: Let S∗ = S \ {f(ak, a�)|1 ≤ k < � < j}.
11: Solve aj given f(a1, aj) = maxs∈S∗ s and a1.
12: else
13: No solution for this value i, go to next i.
14: end if
15: end for
16: end for

One may notice that the second type of query may be unsolvable in some in-
stances even if we assume strict monotonicity. However, if we consider the base
case when n = 2, it is of exactly the same form as the second type of queries. So
it is reasonable to assume one can efficiently solve at least the base case.

We shall defer the proof of the following theorem to the full version.
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Theorem 4. Suppose f is an asymmetric and monotone function, then we have
Rec

∗
f ∈ PAf and H∗f (n) ≤ 2n − 2 for all n > 2.

Therefore, the Number Reconstruction problem with any monotone function
can be solved in polynomial time under some reasonable assumptions. Now we
turn to the case with monotone functions in full information setting.

Full Information Setting. In the full information setting, we propose Algorithm
4 and we need an oracle Ff that can answer two types of queries: (1) Given
f(x, x), solve x; (2) Given f(x, y) and x, solve y; or given f(x, y) and y, solve
x. Again, we argue that these two types of queries are reasonable because the
solution uniquely exists if we assume strict monotonicity.

Theorem 5. Suppose f is an monotone function, then we have Recf ∈ PFf

and Hf (n) = 1 for all n.

Remark 1. We note that the above algorithms can be easily modified to solve
the multi-variate version of Number Reconstruction problems, in which
case we want to resolve set A = {a1, a2, · · · , an} from the function values
{f(ai1 , ai2 , · · · , aik

)|1 ≤ i1, i2, · · · , ik ≤ n}. We can define the problem for in-
complete information setting similarly.

4.2 Anti-monotone Functions

Recall that we say a function f(x, y) is anti-monotone if and only if for any
x ≥ x′, y ≤ y′, f(x, y) ≥ f(x′, y′). Thus assuming that a1 ≥ a2 ≥ · · · ≥
an, we have the following: (1) f(a1, an) = maxi,j f(ai, aj); (2) Given a sub-
set A′ = {a1, · · · , ai, aj · · · , an} ⊆ A = {a1, a2, · · · , an} such that i < j − 1,
max{f(a1, aj−1), f(ai+1, an)} = max{f(ak, a�)|ak /∈ A′ ∨ a� /∈ A′}. Given these
two properties, we have that the backtracking algorithm solves the Number Re-

construction problem for any anti-monotone functions in O(2nn logn) time.

4.3 Linear Decomposable Functions

Now we consider decomposable functions f(x, y) of the form f(x, y) = h(x) +
g(y). Let F denote that set {f(ai, aj)|1 ≤ i, j ≤ n} and let H and G denote
the sets {h(ai)|1 ≤ i ≤ n} and {g(aj)|1 ≤ j ≤ n} respectively. We have that
PF (x) =

∑
1≤i,j≤n xf(ai,aj) =

∑
1≤i,j≤n xh(ai)+g(aj) = PH(x)PG(x).

One can solving the Number Reconstruction problem in two steps: (1)
factorize a polynomial PF of n2 terms (we count the same term multiple times
if the coefficient is larger than one) into the product of two polynomials P ′H and
P ′G of n terms each (2) check whether PH(x) = xuP ′H(x) and PG(x) = x−uP ′G(x)
give a feasible solution for each u. Suppose PF = xf1 +xf2 + · · ·+xfn2 such that
f1 ≥ f2 ≥ · · · ≥ fn2 . A naive way of factorizing is the following algorithm which
capture the spirit of the backtracking algorithm:
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Algorithm 4. Monotone Functions, Full Information
1: Sort the set S = {f(ai, aj)|1 ≤ i, j ≤ n}.
2: for all 1 ≤ i ≤ n do
3: Solve ai given f(a1, ai) = maxs∈S s.
4: if f(ai, a1) /∈ S then
5: Solve ai given f(ai, a1) = maxs∈S s.
6: end if
7: if {f(ai, ai)} ∪ {f(ai, aj)|1 ≤ j < i} ∪ {f(aj , ai)|1 ≤ j < i} ⊆ S then
8: Let S∗ = S \ ({f(ai, ai)} ∪ {f(ai, aj)|1 ≤ j < i} ∪ {f(aj , ai)|1 ≤ j < i}).
9: else

10: No solution for this value i, go to next i.
11: end if
12: end for

– Without loss of generality, let P ′H(x) = xf1 and P ′G(x) = 1 initially.
– Guess whether P ′H or P ′G contribute the next term xfi of highest degree in

PF (x)−P ′H (x)P ′G(x). In the first case, let P ′H(x) = P ′H(x)+xfi . In the latter
case, let P ′G(x) = P ′G(x) + xfi−f1 .

– Repeat until PF (x) = P ′H(x)P ′G(x). If any contradiction is found (some
negative term in the polynomial PF (x) − P ′H(x)P ′G(x)) then backtrack.

It is clear that the above algorithm is another version of backtracking algorithm.
So the Number Reconstruction problem for any decomposable function can
be solved in O(2nn logn) time.

The polynomial factorization approach which obtains pseudopolynomial algo-
rithm for the turnpike problem can also be applied here. However, it is not clear
that this approach still gives pseudopolynomial running time. The polynomial
factorization approach proceeds in two steps: (1) factorize the polynomial PF

into the product of some irreducible polynomials and (2) for each feasible par-
tition of these irreducible polynomials into two subsets, let PH be the product
of polynomials in one subset and let PG be the product of polynomials in the
other subset, then check if PH and PG give a feasible solution. Factorizing the
polynomial PF can be done in polynomial time (in D = max1≤i,j≤n f(ai, aj)).

Further Discussion on the Factoring Approach. To bound the running time of
this approach we still need to bound the number of irreducible factors one need
to consider when finding feasible PH and PG. For the turnpike problem one only
need to consider non-reciprocal factors and Smyth [17] proved that M(P ) ≥
M(x3−x+1) ≈ 1.324 for any non-reciprocal polynomial P . Note that M(PF ) ≤
L2(PF ) = n. We get that the number of non-reciprocal irreducible factors of PF

is bounded by O(log n). However, we need to consider all irreducible factors for
the general Number Reconstruction problem. Under Lehmer’s conjecture on
Mahler Measure Problem [9] that M(P ) ≥ M(x10 +x9−x7−x6−x5−x4−x3 +
x+1) ≈ 1.176, we can bound the number of non-cyclotomic factors by O(log n).
If we can further bound the number of cyclotomic factors of PF by O(log D),
then the factoring approach solves the Number Reconstruction problem in
pseudopolynomial time for linear decomposable function f .
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5 Reconstructing Strings

Here we consider a string reconstruction problem that arises in reconstructing
protein sequences [6]. Suppose there is an alphabet Σ and a string s ∈ Σn. The
profile of a string is a vector consisting of the number of occurrences of each
symbol in Σ. Given an unordered set of

(
n+1

2

)
profiles, one for each substring of

s, the goal is to reconstruct the string s.

5.1 An Efficient Algorithm for Binary Alphabet

We first consider the case when the alphabet is the binary set B = {σ0, σ1}.
It is clear that this problem is closely related to the turnpike problem in the
following sense. If we let the symbol σ0 represent a segment of length 0 and let
the symbol σ1 represent a segment of length 1. We can easily translate the given
set of number of σ0’s and σ1’s in the substrings into the set of

(
n+1

2

)
pairwise

differences of n + 1 integers. Moreover, the largest pairwise difference is at most
n. We note that not every turnpike solution correspond to a feasible solution
for the string reconstruction instance. We can verify the turnpike solutions in
polynomial time since the number of solution is polynomial in input size. An
alternative approach is to let σ0 and σ1 represent segments of length 1 and n+1
respectively. In this approach, all turnpike solutions lead to a valid string for the
original problem. Therefore, we can solve RecB in polynomial time.

5.2 General Alphabet

For the string reconstruction problem with general alphabet, we can reconstruct
the string bit by bit. Given a general alphabet Σ, let k = �log |Σ|�. Then without
loss of generality, we may assume that Σ ⊆ Bk. So we reconstruct the ith bit
of each symbol in the string using the above algorithm for binary alphabet for
1 ≤ i ≤ k. Therefore we can solve RecΣ in time polynomial in n and log |Σ|.
We note that Das et al. [6] proposed a different reduction from general alphabet
to binary alphabet. Our reduction improves the dependence on |Σ|.

Acknowledgement. We would like to thank Alon Orlitsky for suggesting to us
the string reconstruction problem.
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Abstract. We study the following question, communicated to us by
Miklós Ajtai: Can all explicit (e.g., polynomial time computable) func-
tions f : ({0, 1}w)3 → {0, 1}w be computed by word circuits of constant
size? A word circuit is an acyclic circuit where each wire holds a word
(i.e., an element of {0, 1}w) and each gate G computes some binary op-
eration gG : ({0, 1}w)2 → {0, 1}w , defined for all word lengths w. We
present an explicit function so that its w’th slice for any w ≥ 8 cannot
be computed by word circuits with at most 4 gates. Also, we formally
relate Ajtai’s question to open problems concerning ACC0 circuits.

1 Introduction

A word is a bit string of length w, where w is a parameter called the word length.
We define a word circuit to be an acyclic circuit where each wire holds a word and
each gate G computes some binary operation gG : ({0, 1}w)2 → {0, 1}w, defined
for all word lengths w. A word circuit with k input wires computes a function
g : ({0, 1}w)k → {0, 1}w in the natural way. Consider some ternary operation
on words f : ({0, 1}w)3 → {0, 1}w defined for all word length w = 1, 2, 3, . . .. We
say that f is decomposable if f can be computed by a constant size word circuit.
Otherwise, f is called non-decomposable. For instance, identifying {0, 1}w with
{0, 1, 2, . . . , 2w − 1}, the function f(x, y, z) = x+ y + z mod 2w is decomposable,
as f(x, y, z) = g(g(x, y), z), where g(x, y) = x + y mod 2w. It is much harder to
give examples of natural functions that are provably non-decomposable. How-
ever, a simple counting argument (for details, see Section 2) shows that functions
f : ({0, 1}w)3 → {0, 1}w exist so that any word circuit computing the slice of
the function corresponding to word length w has size at least roughly 2w. In
particular, such an f is non-decomposable. Standard arguments translate this
non-constructive existence result into a function computable in EXPSPACE

with this property. The main question we investigate is the following: Are all
polynomial time computable functions f : ({0, 1}w)3 → {0, 1}w decomposable?
This question was communicated to us by Miklós Ajtai (personal communica-
tion). We believe that the question should be resolved in the negative. That is, we
conjecture the existence of ternary polynomial time computable functions that
can not be expressed using a constant number of binary functions. The present

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 153–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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paper leaves the question unresolved, but we prove some weaker statements and
present reductions suggesting that the question might be difficult to resolve.
Before presenting these, we briefly explain how the question is motivated. The
question can be viewed as a discrete analogue of Hilbert’s 13th problem. In fact,
according to personal communication with Miklós Ajtai, a version of the ques-
tion (where “computable in polynomial time” was replaced with the less tangible
“natural”) has circulated in the combinatorics community with this motivation.
Also, the question is arguably one of the simplest questions one can ask about
the word circuit model. The study of word circuits in general may be motivated
by their relationship to network coding. Concretely, Adler et al. considers the
transposition problem t : ({0, 1}w)w → ({0, 1}w)w where t(M) = MT when the
input and output are interpreted as matrices. They conjecture that any “obliv-
ious I/O machine” computing t requires Ω(w logw) I/O’s and show that this
conjecture is implied by the central “undirected k-pairs conjecture” of network
coding. It is easy to see that their conjecture is exactly equivalent to conjecturing
that any word circuit computing t has size Ω(w logw). It seems likely (though we
admit to having no formal argument for this) that one should first understand
apparently very simple questions about word circuits such as our main question
concerning 3-input functions, before one can make progress on questions such as
the undirected k-pairs conjecture.

Our results are the following. We show (in Section 2) that there exists a
function f : ({0, 1}w)3 → {0, 1}w that requires word circuits of size (1−o(1))2w.
We match this with an upper bound: All functions f : ({0, 1}w)3 → {0, 1}w

can be computed by a word circuit of size (2 + o(1))2w. As our main technical
result, we show (in Section 3) that there exists an explicit (polynomial time
computable) function F : ({0, 1}w)3 → {0, 1}w so that for all w ≥ 8, the w’th
slice of F cannot be computed by a word circuit of size 4. Finally, we show (in
Section 4) that resolving our main question in the negative (i..e, proving non-
constant lower bounds on word circuit size for ternary functions) is likely to be
somewhat hard, by relating it to open problems in Boolean circuit complexity.
More precisely, while non-linear bounds on the number of wires of ACC

0 circuits
are known for explicit functions [2], no such lower bounds are currently known
for the number of gates for explicit functions, even multi-output functions. We
show that if a Boolean function f : {0, 1}3w → {0, 1}w has an ACC

0 circuit of
size (i.e., number of gates) O(w), then f , viewed as a function mapping three
words to one word, is decomposable. Thus, resolving our main question in the
negative would lead to new ACC

0 lower bounds.

2 The Complexity of the Hardest Ternary Function

Proposition 1. There exists a function f : ({0, 1}w)3 → {0, 1}w so that no
word circuit of size smaller than (1 − o(1))2w computes f .

Proof. We phrase the standard counting argument using Kolmogorov complexity
lingo for readability: A word circuit of size s can be described using s(2 log2(s+
3) + w22w) bits (the first term accounts for describing the wiring of inputs to
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the gates, the second for describing the binary function of the gate). A random
ternary function has no description shorter than w23w bits. Thus, if s is an upper
bound on the word circuit size of all functions, we have

s(2 log2(s + 3) + w22w) ≥ w23w

or s ≥ (1 − o(1))2w.

This lower bound is matched within a constant factor by the following upper
bound.

Theorem 1. Every function f : ({0, 1}w)3 → {0, 1}w is computed by a word
circuit of size at most (2 + o(1))2w.

Proof. Let the names of the three input variables be x, y, z. Partition the set
{0, 1}w × {0, 1}w into m = � 22w

2w−1� sets P1, . . . , Pm, each of size at most 2w − 1.
For all i, fix injections πi : Pi → {0, 1}w \ {0w}, and define gates g1, . . . , gm and
h1, . . . , hm as follows, letting g0 denote x.

hi(y, z) =

{
πi(y, z) if (y, z) ∈ Pi

0w if (y, z) /∈ Pi

gi(gi−1, hi) =

{
f(gi−1, π

−1
i (hi)) if hi 
= 0w

gi−1 if hi = 0w

The output of the circuit is the gate gm. It is readily verified that the circuit
computes the function f correctly, and the size of the circuit is 2m = (2+o(1))2w.

We consider it an interesting open problem to get bounds tight within a low
order term, similar to the bounds known for Boolean circuits. Note that the
word circuit constructed in our upper bound proof is actually a formula. Thus,
there is at most a difference of a factor of roughly two between the maximum
possible word formula size and the maximum possible word circuit size. Again,
this contrasts the case of Boolean circuits and formulas, where the hardest n-
bit function has circuit size ≈ 2n/n and formula size ≈ 2n/ logn by results of
Lupanov [3,4] (see, e.g., Wegener [5] for an exposition).

3 An Explicit Lower Bound

In this section, we prove our main technical result:

Theorem 2. There exists a polytime computable function F : ({0, 1}w)3 →
{0, 1}w so that for all w ≥ 8, the w’th slice of F cannot be computed by a word
circuit of size 4.

The section is organized as follows. First we present some structural theorems
about word circuits in general and word circuits of size at most 4 in particular.
Next, we define the function F and establish certain properties of F . Finally,
we combine the two groups of statements to complete the proof that no word
circuit of size at most 4 computes F .
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Definition 1. Let C be a word circuit. We say a gate g is redundant if either
of the following holds.

1. One of the inputs of g is a gate g∗ and the other input of g is an input of g∗.
2. The inputs of g are gates g1 and g2 that have the exact same set of inputs.

A word circuit is called redundancy free if it does not contain any redundant
gates.

Claim 3. Let C be a word circuit that contains a redundant gate. There exists
a redundancy free circuit C∗ of size at most the size of C that computes the same
function C does.

Proof. We replace a redundant gate g of the first kind, computing g(u, g∗(u, v))
with a gate g′ computing g′(u, v) = g(u, g∗(u, v)). We replace a redundant gate
g of the second kind, computing g(g1(u, v), g2(u, v)) with a gate g′ computing
g′(u, v) = g(g1(u, v), g2(u, v)). If C turns out to be again redundant, we repeat
this transformation. This process is easily seen to eventually terminate as each
transformation structurally simplifies the circuit.

Definition 2. Let C be a word circuit. If there exists a variable in C that is
connected to the output of the circuit by a unique path, we say C is weak. We
also refer to such a variable as a weak variable. In general, a weak circuit may
have more than one weak variable. In such a case we pick one of them arbitrarily
to be the weak variable. A gate in C is called a weak gate if it is on the path
connecting the weak variable to the output. Each one of the weak gates has an
input that is not on the path connecting the weak variable to the output. We
refer to this input as the control input of the gate.

Lemma 1. Let C be a redundancy free word circuit of size exactly 4, that com-
putes a function that depends on all 3 inputs. Then C is weak and satisfies one
of the following.

1. There exist functions Y1, Y2 on the non-weak inputs so that the control input
of each weak gate is one of Y1, Y2.

2. The control input of all but at most one of the weak gates is one of the
non-weak input variables.

Proof. Let C be a redundancy free word circuit of size 4. Since every gate takes
2 inputs the circuit contains 8 wires. Except for the output gate, all gates as well
as the input variables must have an outgoing wire, thus accounting for 6 of the
wires. If an internal gate has 3 outgoing wires, the last wires are accounted for
and we must have a redundancy of the first kind. We are left with the following
3 cases.

1. There is an input variable that has 3 outgoing wires. In this case all gates
have 1 outgoing wire and hence there is a unique path from the other 2 input
variables to the output gate.
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Fig. 1. All redundancy free circuits of size 4. The paths from weak variables are
bold/dashed.

2. There are two input variables that have 2 outgoing wires. Here again all
gates have 1 outgoing wire, hence there is a unique path from the last input
variable to the output gate.

3. There is one input variable that has 2 outgoing wires and a gate g having 2
outgoing wires. If one of the other input variables does not have a path to
g, then it will have a unique path to the output. If both of the other input
variables had a path to g, then they had to be directly connected to g, as
otherwise the circuit would be redundant. But then all of the last 3 gates
would depend only on g and the third input variables, meaning that the
circuit would be redundant.

In all cases we identify a weak variable, and hence C must be weak. The gates
that are not on the path from the weak input variable to the output must depend
solely on the other 2 input variables. We can have either 2 or 1 of these. When
C contains 2 non-weak gates, both of the weak gates must take these as inputs
and we have the first case of the statement. When C has a 1 non-weak gate, it
is either connected to 2 or 1 weak gates in which case we have the first or the
second case of the statement, respectively.

The above proof identifies several classes of circuits of size more than 4 that are
not weak. For instance all 3 input variables may have 2 outgoing wires. All the
redundancy free circuits of size 4 (up to relabeling) are shown in Figure 1. The
first case of Lemma 1 occurs for circuits (a) and (g), whereas the second case
occurs for the remaining circuits.

Remark. From here on, we assume w ≥ 8.
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Definition 3. We define F : ({0, 1}w)3 → {0, 1}w as follows

1. If αi = αj = 0w for distinct i, j then F (α0, α1, α2) = 0w.
2. If αi = 0w and αj , αk 
= 0w for distinct i, j, k then F (α0, α1, α2) = α�

j ·
α−�

k , where � = 1 if k − j ≡ 1 (mod 3) and � = −1 otherwise. Here, the
multiplication is over GF(2w), i.e., we identify {0, 1}w with GF(2w).

3. If α0, α1, α2 are distinct and all different from 0 then if there exists � ∈
{0, 1, 2} such that α0+α1+α2 ∈ {8�+1, . . . , 8�+8} we set F (α0, α1, α2) = α�

and otherwise F (α0, α1, α2) = α0 + α1 + α2. Here, the addition is modulo
2w, i.e., we identify {0, 1}w with Z/2wZ.

4. If α0, α1, α2 are not 0 and αi = αj then if αk < αi we set F (α0, α1, α2) = 1
and otherwise F (α0, α1, α2) = 1 + αk − αi. Here, the arithmetic and the
inequalities are defined by identifying {0, 1}w with {0, 1, 2, . . . , 2w − 1}.

Before analyzing the properties of F , we introduce some useful concepts. We
let the variables of F be denoted X0, X1, X2. For α, β, γ ∈ {0, 1}w and distinct
i, j, k ∈ {0, 1, 2} we let F�Xi=α,Xj=β(γ) be the value of F when Xi = α,Xj = β
and Xk = γ. For α, β ∈ {0, 1}w and distinct i, j ∈ {0, 1, 2} we let F�Xi=α,Xj=β be
the function we get from F over the last variable Xk when Xi = α,Xj = β. For
any function T and S that is a subset of T ’s domain we let T (S) = {T (γ) : γ ∈
S}. When S is the domain of T we abuse notation and write |T | instead of |T (S)|.
Let T : {0, 1}w → {0, 1}w. For α ∈ {0, 1}w, let T−1(α) = {β : T (β) = α}. We
let M(T ) be the (2w +1)-tuple M(T )� = |{α : |T−1(α)| = �}| for � ∈ {0, . . . , 2w}
and we let Mask(F, i, j) = {M(F�Xi=α,Xj=β) : α, β ∈ {0, 1}w}. Also, F may be
replaced by a circuit C in all the above notation.

Claim 4. For every distinct i, j ∈ {0, 1, 2} and distinct α, β ∈ {1, . . . , 2w − 1}
the following are satisfied:

– |F�Xi=0,Xj=0| = 1.
– |F�Xi=α,Xj=0| = 2w.
– |F�Xi=α,Xj=β | ≥ 2w − 26.
– |F�Xi=α,Xj=α| = 2w − α.
– Let S be the set of all (γ, δ), where γ, δ ∈ {0, 1}w and |F�Xi=γ,Xj=δ| < 2w−25.

Then, |S| < 2w.

Proof. The first two equalities follow from the definition of F . Let S be the
set of all γ ∈ {0, 1}w satisfying γ 
∈ {0, α, β} and α + β + γ 
∈ {1, . . . , 24}.
Obviously, |S| ≥ 2w − 26. By the definition of F for every γ ∈ S we have that
F�Xi=α,Xj=β(γ) = α + β + γ and hence |F�Xi=α,Xj=β | ≥ |F�Xi=α,Xj=β(S)| ≥
2w − 26. By Condition 4 of Definition 3 we have that |F�Xi=α,Xj=α| = 2w − α
for every α ∈ {1, . . . , 2w − 1}.

From this, we also have that |F�Xi=γ,Xj=δ| < 2w − 25 only if γ = δ and
either γ = 0 or γ > 25. Hence the set of all (γ, δ),where γ, δ ∈ {0, 1}w and
|F�Xi=γ,Xj=δ| < 2w − 25, has less than 2w members.

Claim 5. |Mask(F, i, j)| > 2w for every distinct i, j ∈ {0, 1, 2}.
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Proof. To prove the claim we show that Mask(F, i, j) contains more than 2w

different tuples. Condition 1 of Definition 3 asserts that M(F�Xi=0,Xj=0) is zero
on all coordinates except for M(F�Xi=0,Xj=0)2w = 1. Condition 2 asserts that
M(F�Xi=0,Xj=1) is zero on all coordinates except for M(F�Xi=0,Xj=1)1 = 2w.
Condition 4 asserts that for every α ∈ {1, . . . , 2w − 1} we have M(F�Xi=α,Xj=α)
is zero on all coordinates except for M(F�Xi=α,Xj=α)1 which is equal to 2w−α−1
and M(F�Xi=α,Xj=α)α+1 which is 1. This constitutes at least 2w different tuples.
We next show that there is at least one more tuple that we have not described yet.

For every α ∈ {8i + 1, . . . , 8i + 8} we have that F�Xi=1,Xj=2(α) = 1 and
for every α ∈ {8j + 1, . . . , 8j + 8} we have that F�Xi=1,Xj=2(α) = 2. Conse-
quently, one of the following is true: there exists a coordinate k > 1 such that
M(F�Xi=1,Xj=2)k > 1, or, there exists two distinct coordinates k1, k2 > 1 such
that M(F�Xi=1,Xj=2)k1 ≥ 1 and M(F�Xi=1,Xj=2)k2 ≥ 1. Note that in both cases
M(F�Xi=1,Xj=2) is different from all the other tuples mentioned above.

Claim 6. F�Xi=α,Xj=β 
= F�Xi=γ,Xj=δ for every distinct i, j ∈ {0, 1, 2} and
α, β, γ, δ ∈ {0, 1}w such that (α, β) 
= (γ, δ).

Proof. Let i, j be distinct members of {0, 1, 2} and let α, β, γ, δ ∈ {0, 1}w such
that (α, β) 
= (γ, δ). Let � = 1 if i − j ≡ 1 (mod 3) and otherwise � = −1.
We prove the claim by showing that there exists κ such that F�Xi=α,Xj=β(κ) 
=
F�Xi=γ,Xj=δ(κ). This directly implies the claim.

1. Assume that α = β = 0. Consequently at least one of γ, δ differs from
0. Hence, by Condition 4 and Condition 2 of Definition 3 we get that
F�Xi=γ,Xj=δ(max{γ, δ}) = 1. By Condition 1 of Definition 3 we get that
F�Xi=α,Xj=β(max{γ, δ}) = 0.

2. Assume that exactly one of α, β is different from 0 and at least one of γ, δ
is different from 0 (due to symmetry the case that γ = δ = 0 was dealt with
previously). Without loss of generality assume α = 0 and β 
= 0.
– Assume that γ = 0 and δ 
= 0. Thus, β 
= δ and hence Condition 2 of

Definition 3 asserts that F�Xi=γ,Xj=δ(β) 
= 1 and F�Xi=α,Xj=β(β) = 1.
– Assume that γ 
= 0 and δ = 0 and β 
= γ−1. Then by Condition 2 of

Definition 3 we get that F�Xi=α,Xj=β(1) = β� 
= γ−� = F�Xi=γ,Xj=δ(1).
– Assume that γ 
= 0 and δ = 0 and β = γ−1 = η. Let κ be such that κ 
=

κ−1. Now by Condition 2 of Definition 3 we get that F�Xi=α,Xj=β(κ) =
η�κ� 
= η�κ−� = F�Xi=γ,Xj=δ(κ).

– Assume that γ, δ 
∈ {0}. Thus γ�δ−� 
= 0 and hence Condition 2 of
Definition 3 asserts that F�Xi=γ,Xj=δ(0) 
= 0. Condition 1 of Definition 3
asserts that F�Xi=α,Xj=β(0) = 0.

3. Assume that α = β 
= 0 and γ, δ 
∈ {0} (due to symmetry the case that at
least one of γ, δ is 0 was dealt with previously).
– Assume that γ = δ. Thus α 
= γ and hence Condition 4 of Definition 3

implies that F�Xi=γ,Xj=δ(max{α, γ}) 
= F�Xi=α,Xj=β(max{α, γ}), since
it asserts that one side of the inequality is 1 and the other side is strictly
greater than 1.



160 K.A. Hansen, O. Lachish, and P.B. Miltersen

– Assume that γ 
= δ. Then Condition 2 of Definition 3 implies that
F�Xi=γ,Xj=δ(0) 
= 1 and F�Xi=α,Xj=β(0) = 1.

4. Assume that α 
= β, γ 
= δ and α, β, γ, δ 
∈ {0} (All other cases have already
been dealt with).
– Assume α+β = γ+δ. This implies that α 
= γ. Choose κ 
∈ {0, α, β, γ, δ}

such that α + β + κ ∈ {8i + 1, . . . , 8i + 8}. Then by Condition 3 of
Definition 3 we have that F�Xi=α,Xj=β(κ) = α 
= γ = F�Xi=γ,Xj=δ(κ).

– Assume α + β 
= γ + δ. Then as 2w > 54 there exists κ such that
Condition 3 of Definition 3 asserts that F�Xi=α,Xj=β(κ) = α + β + κ 
=
γ + δ + κ = F�Xi=γ,Xj=δ(κ).

Lemma 2. Let C be a weak circuit for which there exist functions Y1, Y2 such
that the control input of each weak gate is equivalent to one of Y1, Y2. If C
computes F , then C has depth at least 2w−5.

Proof. Let the input variables be X0, X1, X2 and let the weak variable be X0.
Assume for the sake of contradiction that C has depth strictly less than 2w−5.

For each i ∈ {1, 2} let Gi be the set of all weak gates g such that Yi is equivalent
to the control input of g. Observe that Claim 4 asserts that |F�X1=0,X2=0| = 1.
Hence as the depth of C is less than 2w−5 we conclude that there exists i ∈ {1, 2}
and a gate g ∈ Gi such that |g�Yi(0,0)| < 2w − 25. Let S be the set of all
(α, β) such that Yi(α, β) = Yi(0, 0). Now as |g�Yi(0,0)| < 2w − 25 we have that
|C�X1=α,X2=β | < 2w − 25 for every (α, β) ∈ S. Hence, |S| < 2w by Claim 4.

We now show that we can also derive that |S| = 2w. That is, we get the
required contradiction. Let α, β, γ, δ ∈ {0, 1}w be such that (α, β) 
= (γ, δ). By
Claim 6 we have that F�X1=α,X2=β 
= F�X1=γ,X2=δ and thus (Y1(α), Y2(β)) 
=
(Y1(γ), Y2(δ)). Thus, (Y1(X1, X2), Y2(X1, X2)) is a bijection of (X1, X2) and
therefore |S| = 2w.

Lemma 3. Let C be a weak circuit such that the control input of all but at
most one of the weak gates is equivalent to one of the non-weak variables. Then,
C does not compute F .

Proof. Let the input variables be X0, X1, X2 and let the weak variable be X0.
Assume for the sake of contradiction that C computes F . Thus, |Mask(C, 1, 2)| >
2w by Claim 5. We shall get the required contradiction by showing that we can
also derive that |Mask(C, 1, 2)| ≤ 2w.

By Claim 4 we have that |C�X1=α,X2=β | = 2w if either α = 0 or β = 0 but
not both. Thus, |g�Y =α| = 2w for every weak gate g whose control input Y is
equivalent to one of X1, X2. Assume there does not exist a weak gate g whose
control input Y is neither equivalent to X1 nor to X2. Then, |Mask(C, 1, 2)| =
1 because the output of C is a permutation of X0 regardless for any values
assigned to X1, X2. Assume that t is a weak gate, whose control input Y is
neither equivalent to X1 nor to X2. Recall that t can be the only such gate and
hence |Mask(C, 1, 2)| = |{M(g�Y =α) : α ∈ {0, 1}w}| ≤ 2w.
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From Lemma 1, Lemma 2 and Lemma 3 we conclude:

Corollary 1. Any redundancy free word circuit that computes F for any fixed
w ≥ 8 must be of size at least 5.

Finally by applying Claim 3 we get the statement of the main Theorem.

4 Converting ACC0 Circuits to Word Circuits

Our simulation of ACC
0 circuits by word circuits can be regarded as a simple

application of a technique from the word RAM literature [1]: word parallelism,
i.e., the technique of using a gate operating on words as a miniature vector
processor. The technique works for ACC

0 circuits as the intermediate results
needed in the simulation of such a circuit have bounded bit-size and can therefore
be compactly represented within a word. In contrast, for slightly more powerful
circuit classes (such as TC

0), we do not know a simulation that converts non-
trivial circuits into constant size word circuits.

Lemma 4. Let k and m be positive integers so that km ≤ w. Let +(1), +(2), . . . ,
+(m) be associative and commutative operations on K = {0, 1}k. For some con-
stant a, embed the domain Km into {0, 1}w and the domain Kma into ({0, 1}w)a

by identifying consecutive blocks of bits with elements of K. Let sets S1, . . . , Sm ⊆
{1, 2, . . . ,ma} be given. Consider a function g : Kma → Km defined in the fol-
lowing way: g(x1, x2, . . . , xma) = (

∑(1)
i∈S1

xi, . . . ,
∑(m)

i∈Sm
xi) where

∑(j) is sum-
mation with respect to +(j). Then g has a word circuit of size a− 1.

Proof. The word circuit is a tree (i.e., a formula) consisting of gates comput-
ing pointwise addition of two elements of Km, with the j’th entries added with
respect to the operation +(j). At the bottom of the tree we have for each seg-
ment of inputs xi, xi+1, . . . , xi+m−1 corresponding to a word a unary gate map-
ping this word into a word representing an element of Km whose j’th entry is∑(j)

�∈{i,i+1,...,i+m−1}∩Sj
x�. These unary gates feed into the pointwise addition

gates of the tree. The correctness of the construction is immediate. To make the
size of the circuit exactly a− 1, we merge the unary gates with their immediate
successors in the circuit.

Theorem 7. Let a family of ACC0 circuits computing a family of functions
g : {0, 1}3w → {0, 1}w, w ≥ 2k be given so that the w’th circuit contains aw gates,
has depth d and so that all counting gates count modulo some integer less than
2k. Then, viewed as a function mapping three words to one, g is decomposable
and has a word circuit of size less than (d(d + 1)/2)(2ka + 1)2 + 4ka + 2.

Proof. Let m = �w/k�. Divide the circuit into d layers so that each layer gets
inputs from (possibly all) previous layers. Layer 0 is the layer of input bits.
Add dummy gates so that each layer contains exactly � = m�aw/m� gates.
The expanded representation of the bits computed by a layer is the string of
words defined as follows: Divide the bits computed by the gates in the layer into
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�/m = �aw/m� ≤ aw/m + 1 ≤ 2ka + 1 words. This gives us m bits per word,
allowing us to embed each bit into the domain {0, 1}k, representing 0 as 0k and
1 and 1k.

The expanded representation of layer 0 is easily seen to be computable by a
word circuit of size at most 2ka + 1 (one gate computes each word in the repre-
sentation). By Lemma 4, assuming the computation of previous layers has been
handled, the computation of one of the words of the expanded representation of
layer j can be done by a word circuit of size at most j(2ka+1)− 1. That is, the
computation of the entire j’th layer can be simulated by a word circuit of size
less than j(2ka + 1)2. So, the entire ACC0 circuit can be simulated by a word
circuit of size less than 1

2d(d+1)(2ka+1)2. Finally, a simple word circuit of size
at most 2ka + 1 converts the expanded representation of the output bits of the
output layer into a single word.

This almost finishes the proof, up to one subtle point which was not relevant
in this paper until now and hence ignored: To be decomposable, a function much
be computed on its entire infinite domain ∪w({0, 1}w)3 by one word circuit, not
just by a family of constant sized ones. That is, we should worry whether we
are using differently structured constant sized circuits for different word lengths.
However, by inspecting the construction, we find that the structure of the circuit
is in fact exactly the same for every word length. Indeed, this was our reason for
adding the seemingly wasteful dummy gates.
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Abstract. Given a set I of n intervals, a stabbing query consists of a
point q and asks for all intervals in I that contain q. The Interval Stab-
bing Problem is to find a data structure that can handle stabbing queries
efficiently. We propose a new, simple and optimal approach for different
kinds of interval stabbing problems in a static setting where the query
points and interval ends are in {1, . . . , O(n)}.

Keywords: interval stabbing, interval intersection, static, discrete, point
enclosure.

1 Introduction

Interval stabbing, also known as the one-dimensional point enclosure problem is
one of the most fundamental problems in computational geometry and has been
studied for decades. Let la be the left endpoint and ra be the right endpoint of
an interval a. We address the following static setting:

Let I be a given set of n intervals with la, ra ∈ Q := {1, ..., O(n)} for every
a ∈ I. An interval a ∈ I is stabbed by a point q ∈ Q if q ∈ a. We want to construct
simple and lightweight data structures that answer the following queries on I
efficiently:

1. Interval Stabbing Problem: Given a query point q ∈ Q, report all intervals
in I that are stabbed by q.

2. Interval Intersection Problem: Given a query interval [lq, rq] with lq, rq ∈ Q,
report all intervals i ∈ I with [li, ri] ∩ [lq, rq] �= ∅.

3. Interval Cover Problem: Given an interval q ∈ I, report all intervals in I
that contain the interval q.

4. Multiple Query Problems: These problems extend each of the problems 1-3
by allowing multiple queries q1 < . . . < qt, ∀i : qi ∈ Q, at the same time. The
query points have to be given as a sorted list while the output consists of the
intervals that are stabbed by at least one qi (without double occurences).

We demand in addition that the intervals in each output are reported in lexico-
graphical order. In general, queries do not admit a worst-case running time better
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than O(n), since the output itself can be that large. But for many inputs the
output will be much smaller. Therefore, it is reasonable to consider the output-
sensitive complexity for queries, where the running time is given with respect to
the input size and the output size k. We assume the uniform cost model, thus k
is the number of intervals in the output. Clearly, every data structure needs to
store all intervals and, thus, needs at least Ω(n) space and preprocessing time to
be built. The query time is at least Ω(1+k) (or Ω(t+k) for problems of type 4),
the 1 (or t) coming from queries in Q that are not covered by any interval.

We will only focus on solutions that reach that bounds, i. e., that solve prob-
lems 1-4 in asymptotic optimal space and time. Therefore common interval data
structures like interval trees [6,8], segment trees [4] and priority trees [9] cease to
apply, as each of them needs a preprocessing time of Ω(n logn) and query times
of at least Ω(logn+k). Alstrup, Brodal and Rauhe [1] describe a data structure,
based on results in [7], that can be used for solving the problems optimally. The
idea is to interpret every interval a ∈ I as a point (la, ra) in the integer grid
n × n and then model the given problem by three-sided range queries in this
grid, i. e., by rectangular range queries with one side going to ∞ or −∞. Each
three-sided range query can be performed in time O(1 + k) by computing itera-
tively nearest common ancestors in a cartesian tree as shown by Gabow, Bentley
and Tarjan [7]. However, this procedure seems far too involved for the type of
problems we look at and comes with a significant implementation overhead.

The essence of this paper is a direct, new approach that solves all problems
optimally and does not rely on computing nearest common ancestors, thus has
considerably less overhead. Problems 1 and 2 can as well be solved by the filtering
search data structure due to Chazelle [5] in the same asymptotic time and space
requirements. However, filtering search does not solve Problems 3 and 4 and
experiments show that our data structure performs faster than filtering search
in practice. That can be explained with the lower number of comparisons needed
for one query in the theoretical worst case: Our data structure needs 3k point-
to-q comparisons instead of 8k comparisons for Chazelle’s data structure.

We assume all given intervals a to be closed, but, if necessary, open and half
open intervals may be easily modeled by increasing la and/or decreasing ra by
one in advance. Let la and ra be the endpoints (or shorter ends) of an interval
a ∈ I and let la be the left endpoint and ra be the right endpoint.

If the query range Q is not {1, ..., O(n)} there are techniques that reduce
problems to work within a small integer range [1,7]. E. g., any universe can be
reduced to the integer range {2, ..., 4n} by first sorting the ≤ 2n interval ends and
then assigning to each one two times its rank. This leaves a gap between every
pair of consecutive interval ends. Then a binary search transforms any stabbing
query q ∈ Q to a query in {2, ..., 4n}, reflecting its relative position in Q, either
at an interval end or a gap. This goes along with a blow-up of the preprocessing
time to O(n log n) and query time to O(log(n) + k) for problems 1-3 and to
O(min(t log(n), n) + k) for problems of type 4. If the model of computation is
the unit-cost word RAM and all query points fit in a constant number of words,
much faster algorithms for sorting and predecessor searching of query points can



Interval Stabbing Problems in Small Integer Ranges 165

be applied (Andersson et al. [2], Beame and Fitch [3], although these results are
not needed for the restricted universe we consider here.

2 The Data Structure

Fig. 1. The intervals e1, e2 and h1 are
removed from I in advance, because
Smaller(e) = {e1, e2} and Smaller(h) =
{h1}. Only intervals a and b cover d and
Parent(d) = b. Moreover, c overlaps d, e,
f , g and e1 but d does not overlap c.

We identify intervals with their left and
right endpoints and sort all intervals ac-
cording to the lexicographic order < ⊆
N × N , i. e., for two intervals a and b
holds a < b if la < lb or (la = lb ∧ ra ≤
rb). The computation time of this lexi-
cographic list is O(n) by using (stable)
bucket sort for the right endpoints fol-
lowed by a bucket sort for the left end-
points, since all interval ends are by def-
inition in Q.

Intervals that share right endpoints
will integrate well in our data structure,
thus the frequently used input transfor-
mation to intervals with completely dis-
tinct ends is not necessary. To get rid
of intervals sharing their left endpoint l
(for every l), we apply the following preprocessing: All the intervals with left end-
point l, except one such longest interval a, are stored in a list called Smaller(a)
(see Figure 1). These lists are sorted by length in descending order, get a link
to a, and every element in them is removed from I (i. e., from now on I does
not contain intervals in Smaller(a) and n is redefined to |I| afterwards). This
establishes < to be a strict total order on I relying only on left endpoints. Later,
a simple trick will deal with the omitted intervals Smaller(a).

Two intervals a, b ∈ I intersect if a∩b �= ∅. Otherwise, they are called disjoint.
We say that interval a overlaps interval b if la < lb ≤ ra < rb. Moreover, let a be
covered by b (and b cover a) if a ⊆ b. Let the rightmost interval in a non-empty
subset of I be the interval with the maximal left endpoint. Note that this is
well-defined as the left endpoint is unique in I. Then Parent(a) is defined as the
rightmost among all intervals that cover a (see Figure 1). If a is not covered by
any interval, Parent(a) := ∅.
Proposition 1. For two intervals a, b ∈ I with a < b exactly one of the following
statements holds:

– a and b are disjoint
– a is covering b
– a overlaps b.

We attach each interval a to Parent(a), yielding a forest F with intervals as
nodes and the Parent-function as edges. Let rooti denote the root of a maximal
tree Ti in F . We construct a spanning tree S = (V,E) by augmenting the forest
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with a special dummy node root (representing the interval Q) and attaching the
roots of all trees Ti to it (see Figure 2).

Fig. 2. The spanning tree S of the example
in Figure 1. Black nodes indicate intervals
stabbed by q.

Let S be ordered by sorting the
children of each node according to
their left endpoints. The children of
a node v ∈ V are stored in a doubly
linked list, denoted by Children(v).
Every entry in Children(v) is a sib-
ling of each other entry. We call
the sibling immediately to the left
(right) of an entry the left sibling
(right sibling). In a tree, a node w
is an ancestor of a node v, if w is
contained in the path from v to the
root (including the node v).

3 The Interval Stabbing Problem

We show how to solve Problem 1 using the spanning tree S and extend this result
later to problems 2-4. First, imagine that all pairs of intervals in I would either
be disjoint or cover each other. In this restricted case it suffices to precompute
the rightmost stabbed interval Start(q) for every q ∈ Q, if it exists. If a query
q arises, let Ts be the tree in F that contains Start(q) and P be the path from
Start(q) to roots in Ts. Then we can get all k stabbed intervals by traversing P
in time O(1 + k), since Start(q) must be the smallest stabbed interval and all
other stabbed intervals have to be ancestors of it in Ts.

However, in general intervals may overlap and stabbed ones can even be con-
tained in different trees of F . We partition V (S) into four classes subject to P
(see Figure 2). A node v ∈ V (S) is in class

– A, if v is in P or the dummy node
– B, if v has a sibling w in P with lw > lv
– C, if lv > q
– D, otherwise

Lemma 1. For every v ∈ V (S) the stabbed children of v are adjacent
in Children(v).

Proof. We assume to the contrary that there is at least one child b ∈ I that is
not stabbed between two stabbed children a and c. Since siblings cannot cover
each other and a and c cannot be disjoint a must overlap c. Then a∩ c contains
the query point and b is stabbed as well, since lb < lc and rb > ra. ��
Given a query point q, we first show how to obtain all stabbed intervals in the
sets A, B and C efficiently with a traversal starting at Start(q). If Start(q) is
not stabbed, no interval can be stabbed and the query time is O(1). Otherwise,
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all intervals in A must contain q and we traverse them. The stabbed intervals in
B can then be easily computed with Lemma 1 by iteratively traversing to the
left sibling for each node in P until the list ends or a node was not stabbed. No
interval in C can be stabbed because their left endpoints are greater than q by
definition, so only class D remains.

Lemma 2. Every stabbed node v ∈ D has a stabbed ancestor in B.

Proof. With v all ancestors of v are stabbed and at least one of them is contained
in A, since the dummy node is in A. Let w be the ancestor that is not in A but
has a parent z in A. If z �= Start(q) then w is a stabbed sibling left of a node in
P and therefore in B and the claim follows. Otherwise, z = Start(q) contradicts
v ∈ D, since all intervals in the subtree of z have a greater left endpoint than
z has. ��
Lemma 3. If v ∈ D has a right sibling w and is stabbed, w is stabbed as well.

Proof. According to Lemma 2, there is a stabbed ancestor of v and w in B. Then
the right sibling z of this ancestor exists, is either in A or B and is stabbed. By
construction of the spanning tree lv < lw < lz must hold and the query point q
is in v ∩ z. Since v ∩ z ⊆ w, the point q has to stab w as well. ��
Lemmas 2 and 3 lead immediately to a recursive characterization of all stabbed
nodes in D. Let U(v) for a node v ∈ D be the sequence of nodes from v to the
first node in B where each successor is the right sibling, if it exists, and otherwise
the parent.

Corollary 1. The node v ∈ D is stabbed if and only if all nodes of U(v) are
stabbed.

Corollary 1 allows us to compute all stabbed nodes in D by traversing paths
back from stabbed nodes in B.

Definition 1. The rightmost path R(v) of a node v ∈ V (S) is empty if v has
no left sibling or its left sibling w is not stabbed. Otherwise, R(v) is the path
from w to the rightmost stabbed node in the subtree of w in S.

Note that R(v) contains only stabbed intervals and can be constructed by it-
eratively taking the last child, starting with w. We are now in a position to
compute all stabbed nodes by traversing P from the bottom up and recursively
computing and traversing R(v) from the bottom-up for each visited node v (see
Algorithm 1). All stabbed nodes in A and B are found, since the computation of
rightmost paths considers left children and continues with them at some point,
if they are stabbed. The same holds for stabbed nodes in D, since Corollary 1
ensures that all stabbed nodes in C are reachable by a sequence of rightmost
paths that start with a stabbed node in B.

We can find all k stabbed intervals in O(1 + k) time, because checking an
interval to be stabbed by q, computing Start(q) and traversing to the parent,
left sibling or last child can be done in constant time.
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Algorithm 1. Traverse (v ∈ V (S), stack O, q ∈ Q)
1: Push v to stack O � for output purposes
2: while next interval w in Smaller(v) exists and q ∈ w do
3: Push w to stack O
4: Compute the rightmost path R(v)
5: for all nodes w in R(v) (from the bottom up) do
6: Traverse(w,O, q)

It only remains to show how to deal with the intervals in the Smaller-lists
and ensure that the output is sorted in lexicographic order. Each time we reach
a node v with Smaller(v) �= ∅, we traverse that list until the end or the first
non-stabbed node was found. This way we do not visit intervals that are not
stabbed and, thus, preserve the running time of O(1 + k) for each query. We use
the following lemma to verify that the output is sorted in lexicographic order.

Lemma 4. A preorder traversal on root returns all intervals of S sorted by their
left endpoints.

Proof. All children of a node v ∈ V (S) are sorted and have left endpoints strictly
greater than lv for v �= root. Let w be the right sibling of v. Then, due to the
definition of Parent, every interval in the subtree on v has a left endpoint of
strictly less than lw. Recursively collecting the actual node and traversing the
children from left to right returns the intervals sorted by their left endpoints. ��
The traversal of S starts with the stabbed interval Start(q) that has the max-
imal left endpoint and visits subsequent intervals containing q in a postorder
traversal that prefers right children to left children. As this postorder reverses
the preorder traversal and the output of the preorder traversal is sorted in in-
verse lexicographic order with Lemma 4, we need to reverse the order of intervals
found. This is done by using a stack (see Algorithm 2).

All preprocessing steps, i. e., computing the Parent and Start pointers can be
done with one sweep line procedure in time O(n) by maintaining a list of stabbed
intervals for each q ∈ Q (see the pseudocode description in Algorithm 3). For
each stabbed interval v of a query, we check at most three subsequent intervals
on containing q, the left sibling of v, the last child of v and the successor in

Algorithm 2. Stabbing query (q ∈ Q)
1: Stack O = ∅ � O for output purposes
2: if Start(q) = ∅ then STOP � q stabs no interval
3: Compute the path P from Start(q) to roots
4: for all nodes v in V (P ) (from the bottom up) do
5: Traverse(v,O, q)
6: while O �= ∅ do � reverse list of stabbed intervals
7: Append pop(O) to output
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Algorithm 3. Preprocessing
1: List L = ∅; create dummy node root
2: ∀q ∈ Q, a ∈ I : create pointers to intervals Start(q) and Parent(a)
3: ∀q ∈ Q : compute lists Smaller(q); update I
4: for all a ∈ I in lexicographic order do � build event structure
5: Append a to Event(ra) � event list of intervals on ra
6: Append a to Event(la)
7: for q = 1 to N do � sweep line
8: If L �= ∅, store the last element in L as Start(q), else Start(q) := NULL
9: for all intervals a ∈ Event(q) in reverse order do

10: if la = q then
11: Append a to L and save a link to its position
12: else � ra = q
13: if a has a predecessor b in L then
14: Store b as Parent(a) and append a to Children(b)
15: else
16: Store root as Parent(a) and append a to Children(root)
17: Remove a from L

Smaller(v). However, we need only to compare the right endpoints of those
intervals with q, since Lemma 4 ensures that lv ≤ q holds.

Theorem 1. All k intervals stabbed by a query point q can be found sorted in
lexicographic order in query time O(1 + k) and with at most 3k comparisons
with q (2k comparisons if all left endpoints in I are pairwise distinct). The
preprocessing time and space requirement is O(n).

4 Variants of the Problem

We discuss the problems 2-4. The Interval Intersection Problem differs from the
Interval Stabbing Problem only in having a query interval [lq, rq] instead of a
query point. Let an interval be stabbed if its intersection with [lq, rq] is non-
empty. Then Lemmas 1, 2, 3 and Corollary 1 remain valid and we can still use
the data structure of the Interval Stabbing Problem to get all stabbed intervals.
The traversal starts with the intervals containing rq, recurses to their rightmost
paths and stops at intervals that are not stabbed. These lie with Lemma 4
completely left of lq and are not part of the output. Testing a visited interval a
on being stabbed can be done with one comparison by checking ra ≥ lq, leading
to a O(1 + k) query time in total.

For the Interval Cover Problem an interval q ∈ I is given. We set Start(q) = q,
because there is no interval with a higher left endpoint covering q. Since ancestors
cover q if one of their children does, we can build the path P and partition V (S)
subject to P as in the Interval Stabbing Problem. When we replace the property
stabbed with covering q on intervals, the Lemmas 1, 2, 3 and Corollary 1 still
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hold. Every visited interval a can be tested on covering q by checking ra ≥ rq,
which gives a query time of O(1 + k).

We show that the Multiple Interval Stabbing Problem in 4 allows for a query
time of O(t + k), the other problems in 4 can then be solved using the same
technique. If every interval in the output would be stabbed by only one value qi,
1 ≤ i ≤ t, the problem could be solved in time O(t+ k) by applying the queries
q1, . . . , qt subsequently. In general that is not the case and we have to ensure
that the traversals of different query points do not both visit a node.

Assume that we start with the traversal of the rightmost query point qt and
compute recursively rightmost paths. Then with Lemma 4 the sequence of left
endpoints of visited intervals is strictly monotone decreasing. For every visited
interval a we check in advance if la ≤ qt−1 holds and if so, replace the current
query point qt with the maximal query point qj ≥ la, j < t. If now a or any
subsequent interval is stabbed by qt, it will also be stabbed by qj and we can
perform all comparisons with qj instead of qt. If a traversal of qi, i > 1, ends
without switching to qi−1 we invoke the traversal on the next query point qi−1.
Since the list q1, . . . , qt is ordered, the additional expense to update the query
point is bounded by t constant time comparisons, which gives a total query time
of O(t + k).

Corollary 2. The k intervals in the output of problems 2 and 3 can be found
sorted in lexicographic order in query time O(1 + k) and with at most 3k com-
parisons with q (2k comparisons if all left endpoints in I are pairwise distinct).
For problems of type 4 a query can be done in time O(t + k) with at most 4k
comparisons with values in {q1, . . . , qt}. For all problems the preprocessing time
and space requirement is O(n).

5 Experimental Analysis

We implemented Chazelle’s data structure [5] with various window sizes (δ = 1.2,
1.5, 2, 3, 5) for the Interval Stabbing Problem and compared the running times to
our approach on Problem 1. However, δ = 2 gave the best results in both prepro-
cessing and query times and we will focus on that parameter, since δ < 2 did not
lead to observable better query times but to a considerably worse preprocessing
time instead (see Figure 3). Both data structures use identical representations
for intervals, lists and stacks and work under the same conditions as much as
possible. All tests are performed on a 1.86 GHz CPU and 2GB RAM using the
MS compiler 9.0 with optimization level O2. The source code is available online:
http://page.mi.fu-berlin.de/jeschmid/pub.

The input consists of various n from 10000 to 1000000, Q := {1, . . . , 5n}
(other constants than 5 led to similar results) and either random intervals with
uniformly distributed interval ends in Q or short random intervals. Short ran-
dom intervals have an exponentially distributed length with expected value 1000,
while their left endpoints and all query points are uniformly distributed on Q.

http://page.mi.fu-berlin.de/jeschmid/pub
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Fig. 3. Different values for the window size δ in Chazelle’s data structure (short random
intervals).

(a) Preprocessing (random intervals) (b) Preprocessing (short random intervals)

(c) Query times (random intervals) (d) Query times (short random intervals)

Fig. 4. Comparison of preprocessing and query times
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The exponential distribution is generated with inverse transform sampling on a
uniform distribution. Both query and preprocessing times are averaged over 20
instances for each n with up to 10000 queries per instance.

The preprocessing times of both data structures in practice reflect the theo-
retical linear bound of Θ(n), except for small n (see Figures 4(a) and 4(b)). In

Fig. 5. Point-to-q comparisons

both figures, our approach per-
forms faster, although on short
random intervals the advantage is
marginal. Since query times are
primarily dependent on the out-
put length, we measure the aver-
age computation time needed for
one interval in the output. Theo-
retically, each query time should
be constant, although the mem-
ory hierarchy can increase the
time in practice when n grows.
For large n, the query times of
our data structure are signifi-
cantly faster than Chazelle’s for
both input types (see Figures 4(c) and 4(d)).

Figure 5 shows how many point comparisons with q are made on average
for each interval in the output. Both data structures need about half of the
comparisons of the theoretical worst case (3 point-to-q comparisons for our data
structure, 8 point-to-q comparisons for Chazelle’s data structure).

References
1. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range

searching. In: FOCS 2000, pp. 198–207 (2000)
2. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? In:

STOC 1995, pp. 427–436 (1995)
3. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem. In: STOC 1999:

Proceedings of the 31st annual ACM symposium on Theory of computing, pp. 295–
304. ACM, New York (1999)

4. Bentley, J.L.: Solutions to Klee’s rectangle problems. Tech. report, Carnegie-Mellon
Univ., Pittsburgh, PA (1977)

5. Chazelle, B.: Filtering search: A new approach to query answering. SIAM J. Com-
put. 15(3), 703–724 (1986)

6. Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries. Tech.
Report F59, Inst. Informationsverarb, Tech. Univ. Graz (1980)

7. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geome-
try problems. In: STOC 1984: Proceedings of the 16th annual ACM symposium on
Theory of computing, pp. 135–143 (1984)

8. McCreight, E.M.: Efficient algorithms for enumerating intersecting intervals and
rectangles. Tech. Report CSL-80-9, Xerox Palo Alto Res. Center, CA (1980)

9. McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–276
(1985)



Online Sorted Range Reporting

Gerth Stølting Brodal1, Rolf Fagerberg2, Mark Greve1,
and Alejandro López-Ortiz3
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Abstract. We study the following one-dimensional range reporting
problem: On an array A of n elements, support queries that given two
indices i ≤ j and an integer k report the k smallest elements in the sub-
array A[i..j] in sorted order. We present a data structure in the RAM
model supporting such queries in optimal O(k) time. The structure uses
O(n) words of space and can be constructed in O(n log n) time. The data
structure can be extended to solve the online version of the problem,
where the elements in A[i..j] are reported one-by-one in sorted order, in
O(1) worst-case time per element. The problem is motivated by (and is
a generalization of) a problem with applications in search engines: On a
tree where leaves have associated rank values, report the highest ranked
leaves in a given subtree. Finally, the problem studied generalizes the
classic range minimum query (RMQ) problem on arrays.

1 Introduction

In information retrieval, the basic query types are exact word matches, and combi-
nations such as intersections of these. Besides exact word matches, search engines
may also support more advanced query types like prefix matches on words, gen-
eral pattern matching on words, and phrase matches. Many efficient solutions for
these involve string tree structures such as tries and suffix trees, with query algo-
rithms returning nodes of the tree. The leaves in the subtree of the returned node
then represent the answer to the query, e.g. as pointers to documents.

An important part of any search engine is the ranking of the returned
documents. Often, a significant element of this ranking is a query-independent
pre-calculated rank of each document, with PageRank [1] being the canonical
example. In the further processing of the answer to a tree search, where it is
merged with results of other searches, it is beneficial to return the answer set
ordered by the pre-calculated rank, and even better if it is possible to generate
an increasing prefix of this ordered set on demand. In short, we would like a
� Center for Massive Data Algorithmics, a Center of the Danish National Research
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functionality similar to storing at each node in the tree a list of the leaves in its
subtree sorted by their pre-calculated rank, but without the prohibitive space
cost incurred by this solution.

Motivated by the above example, we consider the following set of problems,
listed in order of increasing generality. For each problem, an array A[0..n − 1]
of n numbers is given, and the task is to preprocess A into a space-efficient
data structure that efficiently supports the query stated. A query consists of two
indices i ≤ j, and if applicable also an integer k.

Sorted range reporting:
Report the elements in A[i..j] in sorted order.

Sorted range selection:
Report the k smallest elements in A[i..j] in sorted order.

Online sorted range reporting:
Report the elements in A[i..j] one-by-one in sorted order.

Note that if the leaves of a tree are numbered during a depth-first traversal,
the leaves of any subtree form a consecutive segment of the numbering. By
placing leaf number i at entry A[i], and annotating each node of the tree by the
maximal and minimal leaf number in its subtree, we see that the three problems
above generalize our motivating problems on trees. The aim of this paper is
to present linear space data structures with optimal query bounds for each of
these three problems. We remark that the two last problems above also form
a generalization of the well-studied range minimum query (RMQ) problem [2].
The RMQ problem is to preprocess an array A such that given two indices i ≤ j,
the minimum element in A[i..j] can be returned efficiently.
Contributions: We present data structures to support sorted range reporting
queries in O(j − i + 1) time, sorted range selection queries in O(k) time, and
online sorted range reporting queries in worst case O(1) time per element re-
ported. For all problems the solutions take O(n) words of space and can be
constructed in O(n log n) time. We assume a unit-cost RAM whose operations
include addition, subtraction, bitwise AND, OR, XOR, and left and right shift-
ing and multiplication. Multiplication is not crucial to our constructions and can
be avoided by the use of table lookup. By w we denote the word length in bits,
and assume that w ≥ log n.
Outline: In the remainder of this section, we give definitions and simple con-
structions used extensively in the solution of all three problems. In Section 2, we
give a simple solution to the sorted range reporting problem which illustrates
some of the ideas used in our more involved solution of the sorted range selec-
tion problem. In Section 3, we present the main result of the paper which is
our solution to the sorted range selection problem. Building on the solution to
the previous problem, we give a solution to the online sorted range reporting
problem in Section 4.

We now give some definitions and simple results used by our constructions.
Essential for our constructions to achieve overall linear space, is the standard

trick of packing multiple equally sized items into words.
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Lemma 1. Let X be a two-dimensional array of size s × t where each entry
X [i][j] consists of b ≤ w bits for 0 ≤ i < s and 0 ≤ j < t. We can store this
using O(stb + w) bits, and access entries of X in O(1) time.

We often need an array of s secondary arrays, where the secondary arrays have
variable lengths. For this, we simply pad these to have the length of the longest
secondary array. For our applications we also need to be able to determine the
length of a secondary array. Since a secondary array has length at most t, we need
�log t�+ 1 bits to represent the length. By packing the length of each secondary
array as in Lemma 1, we get a total space usage of O(stb+s log t+w) = O(stb+w)
bits of space, and lookups can still be performed in O(1) time. We summarize
this in a lemma.

Lemma 2. Let X be an array of s secondary arrays, where each secondary
array X [i] contains up to t elements, and each entry X [i][j] in a secondary
array X [i] takes up b ≤ w bits. We can store this using O(stb + w) bits of space
and access an entry or length of a secondary array in O(1) time.

Complete binary trees: Throughout this paper T will denote a complete binary
tree with n leaves where n is a power of two. We number the nodes as in binary
heaps: the root has index 1, and an internal node with index x has left child 2x,
right child 2x + 1 and parent �x/2�. Below, we identify a node by its number.

We let Tu denote the subtree of T rooted at node u, and h(Tu) the height of
the subtree Tu, with heights of leaves defined to be 0. The height of a node h(u)
is defined to be h(Tu), and level � of T is defined to be the set of nodes with
height �. The height h(u) of a node u can be found in O(1) time as h(T )− d(u),
where d(u) is the depth of node u. The depth d(u) of a node u can be found by
computing the index of the most significant bit set in u (the root has depth 0).
This can be done in O(1) time and space using multiplications [3], or in O(1)
time and O(n) space without multiplications, by using a lookup table mapping
every integer from 0 . . . 2n− 1 to the index of its most significant bit set.

To navigate efficiently in T , we explain a few additional operations that can be
performed in O(1) time. First we define anc(u, �) as the �’th ancestor of the node
u, where anc(u, 0) = u and anc(u, �) = parent(anc(u, � − 1)). Note that anc(u, �)
can be computed in O(1) time by right shifting u � times. Finally, we note that
we can find the leftmost leaf in a subtree Tu in O(1) time by left shifting u h(u)
times. Similarly we can find the rightmost leaf in a subtree Tu in O(1) time by left
shifting u h(u) times, and setting the bits shifted to 1 using bitwise OR.

LCA queries in complete binary trees: An important component in our con-
struction is finding the lowest common ancestor (LCA) of two nodes at the same
depth in a complete binary tree in O(1) time. This is just anc(u, �) where � is
the index of the most significant bit set in the word u XOR v.

Selection in sorted arrays: The following theorem due to Frederickson and John-
son [4] is essential to our construction in Section 3.4.

Theorem 1. Given m sorted arrays, we can find the overall k smallest elements
in time O(m + k).
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Proof. By Theorem 1 in [4] with p = min(m, k) we can find the k’th smallest
element in time O(m + p log(k/p)) = O(m + k) time. When we have the k’th
smallest element x, we can go through each of the m sorted arrays and select
elements that are ≤ x until we have collected k elements or exhausted all lists.
This takes time O(m + k). �	

2 Sorted Range Reporting

In this section, we give a simple solution to the sorted range reporting problem
with query time O(j − i + 1). The solution introduces the concept of local rank
labellings of elements, and shows how to combine this with radix sorting to
answer sorted range reporting queries. These two basic techniques will be used
in a similar way in the solution of the more general sorted range selection problem
in Section 3.

We construct local rank labellings for each r in 0 . . . �log logn� as follows (the
rank of an element x in a set X is defined as |{y ∈ X | y < x}|). For each
r, the input array is divided into �n/22r� consecutive subarrays each of size 22r

(except possibly the last subarray), and for each element A[x] the r’th local rank
labelling is defined as its rank in the subarray A[�x/22r�22r

..(�x/22r�+1)22r−1].
Thus, the r’th local rank for an element A[x] consists of 2r bits. Using Lemma 1
we can store all local rank labels of length 2r using space O(n2r +w) bits. For all
�log logn� local rank labellings, the total number of bits used is O(w log logn +
n logn) = O(nw) bits. All local rank labellings can be built in O(n logn) time
while performing mergesort on A. The r’th structure is built by writing out the
sorted lists, when we reach level 2r. Given a query for k = j− i+1 elements, we
find the r for which 22r−1

< k ≤ 22r

. Since each subarray in the r’th local rank
labelling contains 22r

elements, we know that i and j are either in the same or in
two consecutive subarrays. If i and j are in consecutive subarrays, we compute
the start index of the subarray where the index j belongs, i.e. x = �j/22r�22r

.
We then radix sort the elements in A[i..x−1] using the local rank labels of length
2r. This can be done in O(k) time using two passes by dividing the 2r bits into
two parts of 2r−1 bits each, since 22r−1

< k. Similarly we radix sort the elements
from A[x..j] using the labels of length 2r in O(k) time. Finally, we merge these
two sorted sequences in O(k) time, and return the k smallest elements. If i and
j are in the same subarray, we just radix sort A[i..j].

3 Sorted Range Selection

Before presenting our solution to the sorted range selection problem we note
that if we do not require the output of a query to be sorted, it is possible to get
a conceptually simple solution with O(k) query time using O(n) preprocessing
time and space. First build a data structure to support range minimum queries
in O(1) time using O(n) preprocessing time and space [2]. Given a query on
A[i..j] with parameter k, we lazily build the Cartesian tree [5] for the subarray
A[i..j] using range minimum queries. The Cartesian tree is defined recursively by
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choosing the root to be the minimum element in A[i..j], say A[x], and recursively
constructing its left subtree using A[i..x−1] and its right subtree using A[x+1..j].
By observing that the Cartesian tree is a heap-ordered binary tree storing the
elements of A[i..j], we can use the heap selection algorithm of Frederickson [6]
to select the k smallest elements in O(k) time. Thus, we can find the k smallest
elements in A[i..j] in unsorted order in O(k) time.

In the remainder of this section, we present our data structure for the sorted
range selection problem. The data structure supports queries in O(k) time,
uses O(n) words of space and can be constructed in O(n log n) time. When
answering a query we choose to have our algorithm return the indices of the
elements of the output, and not the actual elements. Our solution consists of
two separate data structures for the cases where k ≤

⌊
logn/(2 log logn)2

⌋
and

k >
⌊
log n/(2 log logn)2

⌋
. The data structures are described in Sections 3.3 and

3.4 respectively. In Sections 3.1 and 3.2, we present simple techniques used by
both data structures. In Section 3.1, we show how to decompose sorted range
selection queries into a constant number of smaller ranges, and in Section 3.2 we
show how to answer a subset of the queries from the decomposition by precom-
puting the answers. In Section 3.5, we describe how to build our data structures.

3.1 Decomposition of Queries

For both data structures described in Sections 3.3 and 3.4, we consider a complete
binary tree T with the leaves storing the input array A. We assume without loss
of generality that the size n of A is a power of two. Given an index i for 0 ≤ i < n
into A we denote the corresponding leaf in T as leaf[i] = n + i. For a node x
in T , we define the canonical subset Cx as the leaves in Tx. For a query range
A[i..j], we let u = leaf[i], v = leaf[j], and w = LCA(u, v). On the two paths from
the two leaves to their LCA w we get at most 2 logn disjoint canonical subsets,
whose union represents all elements in A[i..j], see Figure 1(a).

For a node x we define the sets R(x, �) (and L(x, �)) as the union of the
canonical subsets of nodes rooted at the right (left for L) children of the nodes on
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(a) The shaded parts and the leaves
u and v cover the query range.
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(b) Decomposition of a query range into four
smaller ranges by cutting the tree at level L.

Fig. 1. Query decomposition
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the path from x to the ancestor of x at level �, but excluding the canonical subsets
of nodes that are on this path, see Figure 1(a). Using the definition of the sets
R and L, we see that the set of leaves strictly between leaves u and v is equal to
R(u, h(w)−1)∪L(v, h(w)−1). In particular, we will decompose queries as shown
in Figure 1(b). Assume L is a fixed level in T , and that the LCA w is at a level
> L. Define the ancestors u′ = anc(u, L) and v′ = anc(v, L) of u and v at level L.
We observe that the query range, i.e. the set of leaves strictly between leaves u
and v can be represented as R(u, L)∪R(u′, h(w)−1)∪L(v′, h(w)−1)∪L(v, L).
In the case that the LCA w is below or at level L, the set of leaves strictly
between u and v is equal to R(u, h(w) − 1) ∪ L(v, h(w) − 1).

Hence to answer a sorted range selection query on k elements, we need only
find the k smallest elements in sorted order of each of these at most four sets,
and then select the k overall smallest elements in sorted order (including the
leaves u and v). Assuming we have a sorted list over the k smallest elements for
each set, this can be done in O(k) time by merging the sorted lists (including
u and v), and extracting the k smallest of the merged list. Thus, assuming we
have a procedure for finding the k smallest elements in each set in O(k) time,
we obtain a general procedure for sorted range queries in O(k) time.

The above decomposition motivates the definition of bottom and top queries
relative to a fixed level L. A bottom query on k elements is the computation
of the k smallest elements in sorted order in R(x, �) (or L(x, �)) where x is a
leaf and � ≤ L. A top query on k elements is the computation of the k smallest
elements in sorted order in R(x, �) (or L(x, �)) where x is a node at level L.
From now on we only state the level L where we cut T , and then discuss how
to answer bottom and top queries in O(k) time, i.e. implicitly assuming that we
use the procedure described in this section to decompose the original query, and
obtain the final result from the answers to the smaller queries.

3.2 Precomputing Answers to Queries

We now describe a simple solution that can be used to answer a subset of possible
queries, where a query is the computation of the k smallest elements in sorted
order of R(x, �) or L(x, �) for some node x and a level �, where � ≥ h(x). The
solution works by precomputing answers to queries. We apply this solution later
on to solve some of the cases that we split a sorted range selection query into.

Let x be a fixed node, and let y and K be fixed integer thresholds. We now
describe how to support queries for the k smallest elements in sorted order of
R(x, �) (or L(x, �)) where h(x) ≤ � ≤ y and k ≤ K. We precompute the answer
to all queries that satisfy the constraints set forth by K and y by storing two
arrays Rx and Lx for the node x. In Rx[�], we store the indices of the K smallest
leaves in sorted order of R(x, �). The array Lx is defined symmetrically. We
summarize this solution in a lemma, where we also discuss the space usage and
how to represent indices of leaves.

Lemma 3. For a fixed node x and fixed parameters y and K, where y ≥ h(x), we
can store Rx and Lx using O(Ky2 +w) bits of space. Queries for the k smallest



Online Sorted Range Reporting 179

elements in sorted order in R(x, �) (or L(x, �)) can be supported in time O(k)
provided k ≤ K and h(x) ≤ � ≤ y.

Proof. By storing indices relative to the index of the rightmost leaf in Tx, we
only need to store y bits per element in Rx and Lx. We can store the two arrays
Rx and Lx with a space usage of O(Ky2+w) bits using Lemma 2. When reading
an entry, we can add the index of the rightmost leaf in Tx in O(1) time. The k
smallest elements in R(x, �) can be reported by returning the k first entries in
Rx[�] (and similarly for Lx[�]). �	

3.3 Solution for k ≤ ⌊
log n/(2 log log n)2

⌋

In this section, we show how to answer queries for k ≤
⌊
logn/(2 log logn)2

⌋
.

Having discussed how to decompose a query into bottom and top queries in
Section 3.1, and how to answer queries by storing precomputed answers in Sec-
tion 3.2, this case is now simple to explain.

Theorem 2. For k ≤
⌊
logn/(2 log logn)2

⌋
, we can answer sorted range selec-

tion queries in O(k) time using O(n) words of space.

Proof. We cut T at level 2�log logn�. A bottom query is solved using the con-
struction in Lemma 3 with K =

⌊
logn/(2 log logn)2

⌋
and y = 2�log logn�. The

choice of parameters is justified by the fact that we cut T at level 2�log logn�,
and by assumption k ≤

⌊
logn/(2 log logn)2

⌋
. As a bottom query can be on

any of the n leaves, we must store arrays Lx and Rx for each leaf as de-
scribed in Lemma 3. All Rx structures are stored in one single array which
is indexed by a leaf x. Using Lemma 3 the space usage for all Rx becomes
O(n(w +

⌊
logn/(2 log logn)2

⌋
(2�log logn�)2) = O(n(w + logn)) = O(nw) bits

(and similarly for Lx). For the top query, we for all nodes x at level 2�log logn�
use the same construction with K =

⌊
logn/(2 log logn)2

⌋
and y = logn. As we

only have n/22�log log n� = Θ(n/(logn)2) nodes at level 2�log logn�, the space us-
age becomes O( n

(log n)2 (w +
⌊
logn/(2 log logn)2

⌋
(log n)2)) = O(n(w + logn)) =

O(nw) bits (as before we store all the Rx structures in one single array, which is
indexed by a node x, and similarly for Lx). For both query types the O(k) time
bound follows from Lemma 3. �	

3.4 Solution for k >
⌊
log n/(2 log log n)2

⌋

In this case, we build O(log logn) different structures each handling some range
of the query parameter k. The r’th structure is used to answer queries for
22r

< k ≤ 22r+1
. Note that no structure is required for r satisfying 22r+1 ≤⌊

logn/(2 log logn)2
⌋

since this is handled by the case k ≤
⌊
logn/(2 log logn)2

⌋
.

The r’th structure uses O(w+n(2r +w/2r)) bits of space, and supports sorted
range selection queries in O(22r

+k) time for k ≤ 22r+1
. The total space usage of

the O(log logn) structures becomes O(w log log n + n logn + nw) bits, i.e. O(n)
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words, since r ≤ �log logn�. Given a sorted range selection query, we find the
right structure. This can be done in done in o(k) time. Finally, we query the r’th
structure in O(22r

+ k) = O(k) time, since 22r ≤ k.
In the r’th structure, we cut T at level 2r and again at level 7 · 2r. By gen-

eralizing the idea of decomposing queries as explained in Section 3.1, we split
the original sorted range selection query into three types of queries, namely bot-
tom, middle and top queries. We define u′ as the ancestor of u at level 2r and
u′′ as the ancestor of u at level 7 · 2r. We define v′ and v′′ in the same way
for v. When the level of w = LCA(u, v) is at a level > 7 · 2r, we see that the
query range (i.e. all the leaves strictly between the leaves u and v) is equal to
R(u, 2r)∪R(u′, 7 ·2r)∪R(u′′, h(w)−1)∪L(v′′, h(w)−1)∪L(v′, 7 ·2r)∪L(v, 2r).
In the case that w is below or at level 7 · 2r, we can use the decomposition as in
Section 3.1. In the following we focus on describing how to support each type of
query in O(22r

+ k) time.
Bottom query: A bottom query is a query on a leaf u for R(u, �) (or L(u, �))
where � ≤ 2r. For all nodes x at level 2r, we store an array Sx containing the
canonical subset Cx in sorted order. Using Lemma 1 we can store the Sx arrays
for all x using O(n2r +w) bits as each leaf can be indexed with 2r bits (relative
to the leftmost leaf in Tx). Now, to answer a bottom query we make a linear pass
through the array Sanc(u,2r) discarding elements that are not within the query
range. We stop once we have k elements, or we have no more elements left in
the array. This takes O(22r

+ k) time.
Top query: A top query is a query on a node x at level 7 · 2r for R(x, �) (or
L(x, �)) where 7 · 2r < � ≤ logn. We use the construction in Lemma 3 with
K = 22r+1

and y = logn. We have n/(27·2r

) nodes at level 7 · 2r, so to store all
structures at this level the total number of bits of space used is

O
( n

27·2r (w + 22r+1
(logn)2)

)
= O

(
n
w

2r
+

n

25·2r (logn)2
)

= O

(

n
w

2r
+

n
⌊
logn/(2 log logn)2

⌋5/2 (logn)2
)

= O
(
n
w

2r

)
,

where we used that
⌊
log n/(2 log logn)2

⌋
< k ≤ 22r+1

. By Lemma 3 a top query
takes O(k) time.

Middle query: A middle query is a query on a node z at level 2r for R(z, �) (or
L(z, �)) with 2r < � ≤ 7 · 2r. For all nodes x at level 2r, let minx = minCx. The
idea in answering middle queries is as follows. Suppose we could find the nodes
at level 2r corresponding to the up to k smallest minx values within the query
range. To answer a middle query, we would only need to extract the k overall
smallest elements from the up to k corresponding sorted Sx arrays of the nodes,
we just found. The insight is that both subproblems mentioned can be solved
using Theorem 1 as the key part. Once we have the k smallest elements in the
middle query range, all that remains is to sort them.

We describe a solution in line with the above idea. For each node x at levels
2r to 7 · 2r, we have a sorted array Mr

x of all nodes x′ at level 2r in Tx sorted
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with respect to the minx′ values. To store the Mr
x arrays for all x, the space

required is O( n
22r · 6 · 2r) = O( n

2r ) words (i.e. O(n w
2r bits), since we have n

22r

nodes at level 2r, and each such node will appear 7 · 2r − 2r = 6 · 2r times in an
Mr

x array (and to store the index of a node we use a word).
To answer a middle query for the k smallest elements in R(z, �), we walk �−2r

levels up from z while collecting the Mr
x arrays for the nodes x whose canonical

subset is a part of the query range (at most 6 · 2r arrays since we collect at
most one per level). Using Theorem 1 we select the k smallest elements from
the O(2r) sorted arrays in O(2r + k) = O(k) time (note that there may not
be k elements to select, so in reality we select up to k elements). This gives
us the k smallest minx′ values of the nodes x′1, x

′
2, . . . , x

′
k at level 2r that are

within the query range. Finally, we select the k overall smallest elements of the
sorted arrays Sx′

1
, Sx′

2
, . . . , Sx′

k
in O(k) time using Theorem 1. This gives us the

k smallest elements of R(z, �), but not in sorted order. We now show how to sort
these elements in O(k) time. For every leaf u, we store its local rank relative
to Cu′′ , where u′′ is the the ancestor of u at level 7 · 2r. Since each subtree Tu′′

contains 27·2r

leaves, we need 7 · 2r bits to index a leaf (relative to the leftmost
leaf in Tu′′). We store all local rank labels of length 7 · 2r in a single array, and
using Lemma 1 the space usage becomes O(n2r + w) bits. Given O(k) leaves
from Cx for a node x at level 7 · 2r, we can use the local rank labellings of the
leaves of length 7 · 2r bits to radix sort them in O(k) time (for the analysis we
use that 22r

< k). This completes how to support queries.

3.5 Construction

In this section, we show how to build the data structures in Sections 3.3 and 3.4
in O(n logn) time using O(n) extra words of space. The structures to be created
for node x are a subset of the possible structures Sx, Mr

x, Rx[�], Lx[�] (where
� is a level above x), and the local rank labellings. In total, the structures to
be created store O(n log n

log log n ) elements which is dominated by the number of
elements stored in the Rx and Lx structures for all leaves in Section 3.3. The
general idea in the construction is to perform mergesort bottom up on T (level-
by-level) starting at the leaves. The time spent on mergesort is O(n log n), and
we use O(n) words of space for the mergesort as we only store the sorted lists
for the current and previous level. Note that when visiting a node x during
mergesort the set Cx has been sorted, i.e. we have computed the array Sx. The
structures Sx and Mr

x will be constructed while visiting x during the traversal
of T , while Rx[�] and Lx[�] will be constructed at the ancestor of x at level �. As
soon as a set has been computed, we store it in the data structure, possibly in a
packed manner. For the structures in Section 3.3, when visiting a node x at level
� ≤ 2�log logn� we compute for each leaf z in the right subtree of x the structure
Rz[�] = Rz[�− 1] (where Rz[0] = ∅), and the structure Lz[�] containing the (up
to)

⌊
logn/(2 log logn)2

⌋
smallest elements in sorted order of Lz[�−1]∪S2x. Both

structures can be computed in time O(
⌊
logn/(2 log logn)2

⌋
). Symmetrically, we

compute the same structures for all leaves z in the left subtree of x. In the case
that x is at level � > 2�log logn�, we compute for each node z at level 2�log logn�
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in the right subtree of x the structure Rz [�] = Rz[�−1] (where Rz [2�log logn�] =
∅), and the structure Lz[�] containing the

⌊
logn/(2 log logn)2

⌋
smallest elements

in sorted order of Lz[� − 1] ∪ S2x. Both structures can be computed in time
O(

⌊
logn/(2 log logn)2

⌋
). Symmetrically, we compute the same structures for

all nodes z at level 2�log logn� in the left subtree of x. For the structures in
Section 3.4, when visiting a node x we first decide in O(log logn) time if we need
to compute any structures at x for any r. In the case that x is a node at level
2r, we store Sx = Cx and Mr

x = minCx. For x at level 2r < � ≤ 7 · 2r we store
Mr

x = Mr
2x ∪Mr

2x+1. This can be computed in time linear in the size of Mr
x.

In the case that x is a node at level 7 · 2r, we store the local rank labelling for
each leaf in Tx using the sorted Cx list. For x at level � > 7 · 2r, we compute
for each z at level 7 · 2r in the right subtree of x the structure Rz [�] = Rz[�− 1]
(where Rz[7 · 2r] = ∅), and the structure Lz[�] containing the 22r+1

smallest
elements in sorted order of Lz[�− 1] ∪ S2x. Both structures can be computed in
time O(22r+1

). Symmetrically, we compute the same structures for all nodes z at
level 7 · 2r in the left subtree of x. Since all structures can be computed in time
linear in the size and that we have O(n log n

log log n ) elements in total, the overall
construction time becomes O(n log n).

4 Online Sorted Range Reporting

We now describe how to extend the solution for the sorted range selection prob-
lem from Section 3 to a solution for the online sorted range reporting problem.
We solve the problem by performing a sequence of sorted range selection queries
Qy with indices i and j and k = 2y for y = 0, 1, 2, . . .. The initial query to the
range A[i..j] is Q0. Each time we report an element from the current query Qy,
we spend O(1) time building part of the next query Qy+1 so that when we have
exhausted Qy, we will have finished building Qy+1. Since we report the 2y−1

largest elements in Qy (the 2y−1 smallest are reported for Q0, Q1, . . . , Qy−1), we
can distribute the O(2y+1) computation time of Qy+1 over the 2y−1 reportings
from Qy. Hence the query time becomes O(1) worst-case per element reported.
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Abstract. We present new data structures for approximately counting
the number of points in an orthogonal range. There is a deterministic
linear space data structure that supports updates in O(1) time and ap-
proximates the number of elements in a 1-D range up to an additive term
k1/c in O(log log U · log log n) time, where k is the number of elements
in the answer, U is the size of the universe and c is an arbitrary fixed
constant. We can estimate the number of points in a two-dimensional or-
thogonal range up to an additive term kρ in O(log log U +(1/ρ) log log n)
time for any ρ > 0. We can estimate the number of points in a three-
dimensional orthogonal range up to an additive term kρ in O(log log U +
(log log n)3 + (3v) log log n) time for v = log 1

ρ
/ log 3

2 + 2.

1 Introduction

Range reporting and range counting are two variants of the range searching
problem. In the range counting problem, the data structure returns the number
of points in an arbitrary query range. In the range reporting problem the data
structure reports all points in the query range. Both variants were studied ex-
tensively and in many cases we know the matching upper and lower bounds for
those problems for dimension d ≤ 4. Answering an orthogonal range counting
query takes more time than answering the orthogonal range reporting query in
the same dimension. This gap cannot be closed because of the lower bounds for
the range counting queries: while range reporting queries can be answered in
constant time in one dimension and in almost-constant time in two and three
dimensions (if the universe size is not too big)1, range counting queries take
super-constant time in one dimension and poly-logarithmic time in two and
three dimensions.

Approximate range counting queries help us bridge the gap between range
reporting and counting: instead of exactly counting the number of points (el-
ements) in the query range, the data structure provides a good estimation.
There are data structures that approximate the number of points in a one-
dimensional interval [4,19] or in a halfspace [7], [15], [2], [8] up to a constant
1 For simplicity, we consider only emptiness queries. In other words, we ignore the

time needed to output the points in the answer: if range reporting data structure
supports queries in O(f(n)+ k) time, we simply say that the query time is O(f(n)).
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factor: given a query Q, the data structure returns the number k′ such that
(1 − ε)k ≤ k′ ≤ (1 + ε)k, where k is the exact number of points in the an-
swer and ε is an arbitrarily small positive constant. In this paper we consider
the following new variant of approximate range counting: If k is the number
of points in the answer, the answer to a query Q is an integer k′ such that
k − εkα ≤ k′ ≤ k + εkα for some constant α < 1. Thus we obtain better esti-
mation for the number of points in the answer for large (superconstant) values
of k. On the other hand, if the range Q is empty, then k′ = 0. We present data
structures that approximate the number of points in a d-dimensional orthogonal
range for d = 2, 3. We also describe a dynamic one-dimensional data structure.

Dynamic 1-D Data Structure. A static data structure that answers 1-D re-
porting queries in O(1) time is described in [4]. In [4] the authors also describe
a static data structure that approximates the number of points in a 1-D range
up to an arbitrary constant factor in constant time. Pǎtraşcu and Demaine [24]
show that any dynamic data structure with polylogarithmic update time needs
Ω(log n/ log logU) time to answer an exact range counting query; henceforth
U denotes the size of the universe. The dynamic randomized data structure of
Mortensen [19] supports approximate range counting queries in O(1) time and
updates in O(logε U) time; see [19] for other trade-offs between query and update
times. In this paper we present a new result on approximate range counting in 1-D:

– There is a deterministic data structure that can answer one-dimensional
approximate range counting queries using the best known data structure
for predecessor queries, i.e. dynamic data structure supports range re-
porting queries in O(dpred(n,U)) time, where dpred(n,U) is the time to
answer a predecessor query in the dynamic setting; currently dpred(n,U) =
O(min(log logU · log logn,

√
logn/ log logn)) [6]. We show that we can ap-

proximate the number of points in the query range up to an additive factor
k1/c, where k is the number of points in the answer and c is an arbitrary
constant, in O(dpred(n,U)) time. We thus significantly improve the preci-
sion of the estimation; the query time is still much less than the lower bound
for the exact counting queries in the dynamic scenario.

Using the standard techniques, we can extend the results for one-dimensional ap-
proximate range counting to an arbitrary constant dimension d. There is a data
structure that approximates the number of points in a d-dimensional range up
to an additive term kc for any c > 0 in O(log logn(logn/ log logn)d−1) time and
supports updates in O(logd−1+ε n) time. For comparison, the fastest known dy-
namic data structure [18] supports emptiness queries in O((log n/ log logn)d−1)
time. Dynamic data structures are described in section 2.

Approximate Range Counting in 2-D and 3-D. We match or almost match
the best upper bounds for 2-D and 3-D emptiness queries. Best data structures
for exact range counting in 2-D and 3-D support queries in O(log n/ log logn)
and O((log n/ log logn)2) time respectively [14].
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– If all point coordinates do not exceed n, we can approximate the number of
points in a two-dimensional query rectangle up to an additive term kρ for
an arbitrary parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.

– If all point coordinates do not exceed n, we can approximate the number
of points in three-dimensional query rectangle up to an additive term kρ in
O((log logn)3 + (3v) log logn) time for an arbitrary parameter ρ, 0 < ρ < 1,
and v = log 1

ρ/ log 3
2 + 2.

The parameter ρ is not fixed in advance, i.e. the same data structures can be used
for answering queries with arbitrary precision. If point coordinates are arbitrary
integers, then the query time of the above data structures increases by an additive
term O(min(log logU,

√
logn/ log log n)). Data structure for range counting in

2-D and 3-D are described in section 3. In section 3.1 we describe space-efficient
variants of two- and three-dimensional data structures that estimate the number
of points in a range up to an additive error kc for some fixed constant c.

Our results for approximate range counting queries are valid in the word RAM
model. Throughout this paper ε denotes an arbitrarily small constant.

2 Dynamic Approximate Range Counting

We show that in the dynamic scenario answering one-dimensional counting
queries with an additive error k1/c can be performed as efficiently as answer-
ing predecessor queries. The best known deterministic data structure supports
one-dimensional emptiness queries in O(dpred(n,U)) time, where dpred(n,U) =
min(

√
logn/ log logn, log logU · log logn) is the time needed to answer a prede-

cessor query in dynamic scenario [5], [6].

Theorem 1. For any fixed constant c > 1, there exists a linear space data struc-
ture that supports approximate range counting queries with additive error k1/c

in O(dpred(n,U)) time, deletions in O(log logn) amortized time, and insertions
in O(dpred(n,U)) amortized time.

Proof : First we observe that if the query interval contains less than (log logn)c

points for an arbitrary constant c, k = |P ∩ [a, b]| ≤ (log logn)c, then we can
use a simple modification of the standard binary tree solution: the set P is
divided into groups of (log logn)c consecutive elements, i.e., |Gi| = (log logn)c

and every element in Gi is smaller than any element in Gi+1. Using a dynamic
data structure for predecessor queries we can find in O((dpred(n,U)) time the
successor a′ of a in P and the predecessor b′ of b in P . If a and b belong to the
same group Gi, then we can count elements in [a, b] in O(log log logn) time using
the standard binary range tree solution. If a′ and b′ belong to two consecutive
groups Gi and Gi+1, then we count the number of elements e ∈ Gi, e ≥ a, and
the number of elements e′ ∈ Gi+1, e′ ≤ b. If a′ belongs to a group Gi and b′

belongs to a group Gj so that j > i+1, then [a, b] contains more than (log logn)c

elements. We also assume w.l.o.g. that c > 2.
We maintain the exponential tree [5], [6] for the set P . The root node has

Θ(n1/c) children, so that each child node contains between n(c−1)/c/2 and
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2n(c−1)/c points from P . In a general case, if a node v contains nv points
of P , then node v has Θ(n1/c

v ) children, so that each child contains between
n

(c−1)/c
v /2 and 2n(c−1)/c

v points from P . The exponential tree can be maintained
as described in [5], so that insertions and deletions are supported in O(log logn)
time. Additionally in every node v we store the approximate number of elements
in any consecutive sequence of children of v, denoted by cv(i, j): for any i < j,
nvi + nvi+1 + . . . + nvj − n

3/c
v /2 ≤ cv(i, j) ≤ nvi + nvi+1 + . . . + nvj + n

3/c
v /2.

When n
3/c
v /2 elements are inserted into a node v or deleted from v, we set

cv(i, j) = nvi + nvi+1 + . . . + nvj for all i < j. Recomputing cv(i, j) for a node v

takes O(n2/c
v ) time. Since insertion or deletion results in incrementing or decre-

menting the value of nv in O(log log n) nodes v, recomputing cv(i, j) incurs
an amortized cost O(log logn). Thus amortized cost of a delete operation is
O(log logn). When we insert a new point, we also have to find its position in the
exponential tree; therefore an insertion takes O(dpred(n,U)) time.

We store O(n2/c
v ) auxiliary values in each node v; hence, we can show that

the space usage is O(n) in exactly the same way as in [5,6].
Given an interval [a, b], we find b′ = pred(b, P ) and a′ = succ(a, P ) and

identify the leaves of the exponential tree in which they are stored. The lowest
common ancestor q of those leaves can be found in O(log logn) time because
the height of the tree is O(log logn). If a′ and b′ are stored in the i-th and
the j-th children of q and i + 1 < j, then all elements stored in qi+1, . . . , qj−1
belong to [a, b] and we initialize a variable count to cv(i + 1, j − 1). Otherwise
count is set to 0. Then, we traverse the path from q to a′ and in every visited
node v we increment count by cv(iv + 1, rv), such that a′ is in the iv-th child
of v, and rv is the total number of v’s children. Finally, we traverse the path
from q to b′ and in every visited node v we increment count by cv(1, iv − 1),
such that b′ is in the iv-th child of v, Suppose that the variable count was
incremented by sv > 0 when a node v was visited. Let kv be the exact number
of elements in all children of v whose ranges are entirely contained in v. Then,
kv−n

3/c
v ≤ sv ≤ kv+n

3/c
v . Since kv ≥ n

(c−1)/c
v , kv−k

3/(c−1)
v ≤ sv ≤ kv+k

3/(c−1)
v .

Clearly, the total number of points equals to the sum of kv for all visited nodes v.
The search procedure visits less than ch log logn nodes for a constant ch. Hence,
k − k3/(c−1) log logn ≤ count ≤ k + k3/(c−1) log logn for k = |P ∩ [a, b]|. Since
log logn ≤ k1/(c−1), k − k4/(c−1) ≤ count ≤ k + k4/(c−1). We obtain the result
of the Theorem by replacing c with c′ = max(5c, 5) in the above proof. �

Our dynamic data structure can be extended to d dimensions using the standard
range tree [10].

Theorem 2. For any fixed constant c > 1, there exists a data structure that sup-
ports d-dimensional approximate range counting queries with additive error k1/c

in O(log logn(logn/ log logn)d−1) time and updates in O(logd−1+ε n) amortized
time.
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Proof : This result can be obtained by combining the standard range tree tech-
nique (node degree in a range tree is O(logε′

n) for an appropriate constant
ε′ = ε/(d − 1)) with the data structure for one-dimensional approximate range
counting of Theorem 1. Details will be given in the full version of this paper. �

3 Approximate Range Counting in 2-D and 3-D

A point p dominates a point q if each coordinate of p is greater than or equal
to the corresponding coordinate of q. The goal of the (approximate) dominance
counting query is to (approximately) count the number of points in P that
dominate q. The dominance query is equivalent to the orthogonal range query
with a restriction that query range Q is a product of half-open intervals. We start
this section with a description of the data structure that estimates the number
of points in the answer to a 2-D dominance query up to a constant factor. We
can obtain a data structure for general orthogonal range counting queries using
a standard technique. Then, we show that queries can be answered with higher
precision without increasing the query time. Finally, we describe a data structure
for approximate range counting in 3-D. For simplicity, we only consider the case
when all point coordinates are bounded by n. We can obtain the results for the
case of arbitrarily large point coordinates by a standard reduction to rank space
technique [13]: the space usage remains linear and the query time increases by
pred(n,U) - the time needed to answer a static predecessor query.

Theorem 3. There exists a linear space data structure that answers approx-
imate two-dimensional dominance range counting queries on n × n grid in
O(log logn) time.

A t-approximate boundary, introduced by Vengroff and Vitter [26] is a polyline
M consisting of O(n/t) axis-parallel segments that partitions the space2, so
that every point M is dominated by at most 2t and at least t points of P . This
notion can be straightforwardly extended to a tα-boundary Mα: Mα partitions
the space into two parts, and every point Mα is dominated by at most α · t and
at least t points of P . We can construct a tα-boundary with the same algorithm
as in [26]. Let p be a point with coordinates (0, 0). We move p in the positive x
direction until p is dominated by at most αt points. Then, we repeat the following
steps until the x-coordinate of p equals to 0: a) move p in +y direction as long as
p is dominated by more than t points of P b) move p in the −x direction until p
is dominated by αt points of P . The path traced by p is a tα-boundary. Inward
corners are formed when we move p in +y direction, i.e. inward corners mark the
beginning of step a) resp. the end of step b). Inward corners of M have a property
that no point of M is strictly dominated by an inward corner and for every point
m ∈ M that is not an inward corner, there is an inward corner mi dominated by
m. There are O(n/t) inward corners in a tα-approximate boundary because for
every inward corner c = (cx, cy) there are (α − 1)t points that dominate c and

2 In this section we assume that all points have positive coordinates.
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do not dominate inward corners whose x-coordinates are larger than cx. Our
data structure consists of logα n tα-approximate boundaries M1,M2, . . . ,Ms

such that Mi is an αi-approximate boundary of P , i.e. every point on Mi is
dominated by at least αi and at most αi+1 points of P . If a point p ∈ Mi is
dominated by a query point q, then q is dominated by at most αi+1 points of P .
If q dominates a point on Mi, then it also dominates an inward corner of Mi.
Hence, we can estimate the number of points that dominate q up to a constant
α by finding the minimal index j such that q dominates an inward corner of Mj .
Since q is dominated by a point of Mj−1, q is dominated by k ≥ αj−1 points of
P . On the other hand, k ≤ αj+1 because a point of Mj is dominated by q.

We can store inward corners of all boundaries Mi in a linear space data
structure so that for any point q the minimal index j, such that some point
on Mj is dominated by q, can be found in O(log logn) time. We denote by
predx(a, S) the point p = (px, py) ∈ S, such that px = pred(a, Sx) where Sx

is the set of x-coordinates of all points in S. For simplicity, we sometimes do
not distinguish between a boundary Mi and the set of its inward corners. Let
q = (qx, qy). Let ci = (cx, cy) be the inward corner on a boundary Mi whose
x-coordinate cx precedes qx, ci = predx(qx,Mi). For any other inward corner
c′i = (c′x, c′y) on Mi, c′y > cy if and only if c′x < cx because the y-coordinates of
inward corners decrease monotonously as their x-coordinates increase. Hence, q
dominates a point on Mi if and only if qy ≥ cy. Thus given a query point q, it
suffices to identify the minimal index j, such that the y-coordinate of the inward
corner cj ∈ Mj that precedes qx is smaller than or equal to qy. The x-axis is
subdivided into intervals of size logn. For each interval Is the list Ls contains
indexes of boundariesMi such that the x-coordinate of at least one inward corner
of Mi belongs to Is. For a query point q with qx ∈ Is and for every j ∈ Ls,
we can find the inward corner preceding qx with respect to its x-coordinate,
predx(qx,Mj), in O(1) time because x-coordinates of all relevant inward corners
belong to an interval of size logn. Hence, we can find the minimal index js ∈ Ls,
such that q dominates a point on Mjs in O(log logn) time by binary search
among indexes in Ls. For the left bound as of an interval Is = [as, bs] and for
all indexes j = 1, . . . , logα n, the list As contains the inward corner cj , such that
cj = predx(as,Mj). By binary search in As we can find the minimal ja such that
q dominates the inward corner cja ∈ As. Clearly j = min(ja, js) is the minimal
index of a boundary dominated by q.

Theorem 4. There exists a O(n log2 n) space data structure that supports two-
dimensional approximate range counting queries on n × n grid in O(log logn)
time.

The next Lemma will enable us to obtain a better estimation of the number of
points.

Lemma 1. There exists a O(n logn) space data structure that supports two-
dimensional approximate range counting queries on n× n grid with an additive
error nρ in O((1/ρ) log logn) time for any ρ, 0 < ρ < 1.
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Proof : We divide the grid into x-slabs Xi = [xi−1, xi] × [1, n] and y-slabs Yj =
[1, n]× [yj−1, yj], so that each slab contains n1/2 points. For every point (xi, yj),
0 ≤ i, j,≤ n1/2 we store the number of points in P that dominate it. There is
also a recursively defined data structure for each slab. The total space usage is
s(n) = O(n) + 2n1/2s(n1/2) and s(n) = O(n log n).

We can easily obtain an approximation with additive error 2n1/2 using the first
level data structure: for a query q = (qx, qy) we identify the indexes i and j, such
that xi−1 ≤ qx ≤ xi and yj−1 ≤ qy ≤ yj, i.e. we identify the x-slab Xi and the
y-slab Yj that contain q. Indexes i and j can be found in O(log logn) time. Let
c(x, y) be the number of points that dominate a point p = (x, y); let c(x, y,Xi)
(c(x, y, Yj)) be the number of points in the slab Xi (Yj) that dominate p = (x, y).
Then c(qx, qy) = c(xi, yj) + c(xi, qy, Yj) + c(qx, qy, Xi). Since c(xi, qy, Yj) ≤ n1/2

and c(qx, qy, Xi) ≤ n1/2, the value of c(xi, yj) is an approximation of c(qx, qy)
with an additive error 2n1/2. Using recursive data structures for slabs Xi and
Yj we can estimate c(qx, qy, Xi) and c(xi, qy, Yj) with an additive error 2n1/4

and estimate c(qx, qy) with an additive error 4n1/4. If the recursion depth is v
(i.e. if we apply recursion v times), then the total number of recursive calls is
O(2v) and we obtain in O((2v) log log n) time an approximation with additive
error 2v · n1/2v

for any positive integer v.
We set recursion depth v = �log(1/ρ)� + 2. Then, v + (1/2v) logn ≤

(ρ/4) logn + log(1/ρ) = (ρ/4 + log(1/ρ)
log n ) logn < ρ logn. Hence, nρ > 2vn1/2v

.
Therefore, if recursion depth is set to v, then our data structure provides an
answer with additive error nρ. �

Theorem 5. There exists a O(n log2 n) space data structure that supports two-
dimensional dominance counting queries on n×n grid with an additive error kρ

for an arbitrary parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.
There exists a O(n log4 n) space data structure that supports two-dimensional
range counting queries on n× n grid with an additive error kρ for an arbitrary
parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.

Proof : As in Theorem 3 we construct t-boundaries M1, . . . ,Mlog n, such that
Mi is a 2i-approximate boundary, i.e. each point on Mi is dominated by at least
2i and at most 22i points of P . For each inward corner ci,j of every Mj, we store
a data structure Di,j that contains all points that dominate ci,j and supports
approximate counting queries as described in Lemma 1. For a fixed j, there are
O( n

2j ) data structures Di,j , and each Di,j contains O(2j) points. Hence, all data
structures Di,j use O(n log2 n) space.

As described in Theorem 4, we can find in O(log logn) time the minimal index
j, such that Mj is dominated by the query point q and an inward corner ci,j ∈
Mj dominated by q. Then, we use the data structure Di,j to obtain a better
approximation. Since Di,j contains O(k) points, by Lemma 1 Di,j estimates the
number of points that dominate q with an additive error kρ in O((1/ρ) log logn)
time. We can extend the result for dominance counting to the general three-
dimensional counting using the standard technique from range reporting [12,25];
see also the proof of Theorem 4. �
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Lemma 2. There exists a O(n log3 n) space data structure that supports three-
dimensional approximate range counting queries on n×n×n grid with an additive
error nρ in O(3v log logn) time for any ρ, 0 < ρ < 1, and for v = log 1

ρ/ log 3
2 +2.

Proof : We divide the grid into x-, y-, and z-slabs, Xi = [xi−1, xi]× [1, n]× [1, n],
Yj = [1, n] × [yj−1, yj] × [1, n], Zd = [1, n] × [1, n] × [zd−1, zd], so that each slab
contains n2/3 points. For each point (xi, yj , zd) we store the number of points in
P that dominate it. There is also a recursively defined data structure for each
slab. The total space usage is s(n) = O(n)+3n1/3s(n2/3) and s(n) = O(n log3 n).

For a query q = (qx, qy, qz) we identify the x-, y-, and z-slabs Xi, Yj , and Zd

that contain q. By the same argument as in Lemma 1, the number of points that
dominate (xi, yj , zd) differs from the number of points that dominate q by at
most 3n2/3. We can estimate the number of points that dominate q and belong
to one of the slabs Xi, Yj , and Zd using recursively defined data structures. If
the recursion depth is v, then we obtain in O(3v log logn) time an approximation
with additive error 3v ·n(2/3)v

for any positive integer v. The result of the Lemma
follows if we set v = log 1

ρ/ log 3
2 + 2. �

Theorem 6. There exists a O(n log4 n) space data structure that supports ap-
proximate dominance range counting queries on n× n× n grid with an additive
error kρin O((log logn)3 + 3v log logn) time for any ρ, 0 < ρ < 1, and for
v = log 1

ρ/ log 3
2 + 2.

There exists a O(n log7 n) space data structure that supports approximate
range counting queries on n × n × n grid with an additive error kρ in
O((log logn)3+3v log logn) time for any ρ, 0 < ρ < 1, and for v=log 1

ρ/ log 3
2+2.

Proof : Instead of counting points that dominate q we count points dominated
by q. Both types of queries are equivalent. Hence, the data structure of Lemma 2
can be used to approximately count points dominated by q.

A downward corner of a point p consists of all points dominated by p. We
define an approximate t-level as a set of downward corners L, such that (1)
any point p that dominates at most t points of P is contained in some r ∈ L
(2) any downward corner r ∈ L contains at most α · t points of P . Afshani [1]
showed that for an arbitrary constant α there exists an approximate t-level of
size O(n

t ). We can assume that no r ∈ L dominates r′ ∈ L in an approximate
t-level L: if r dominates r′, then the downward corner r′ can be removed from L.
Identifying an inward corner r ∈ L that dominates a query point q (or answering
that no r ∈ L dominates q) is equivalent to answering a point location query in
a rectangular planar subdivision [26,21] and takes O((log logn)2) time.

Our data structure consists of approximate levels M1,M2, . . . ,Mlog n, such
that Mi is a 2i-approximate level and the constant α is chosen to be 2. For every
downward corner ri,j ∈ Mj , we store all points dominated by ri,j in a data struc-
ture Di,j; Di,j contains O(2j) points and supports counting queries with additive
error O(2ρj) by Lemma 2. All data structures Di,j use O(n log4 n) space.

We can find a minimal j, such that Mj dominates q in O((log logn)3) time
by binary search. Let ri,j be the downward corner that dominates q. We can
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use the data structure Di,j to estimate the number of points that are dominated
by q with an additive error kρ; by Lemma 2 this takes O(3v log logn) time for
v = log 1

ρ/ log 3
2 + 2.

We can extend the result for dominance counting to the general three-
dimensional counting using the standard technique [12,25]; see also the proof
of Theorem 4. �

3.1 Space-Efficient Approximate Range Counting in 2-D and 3-D

If we are interested in counting with an additive error kc for some predefined
constant c > 0, then the space usage can be significantly reduced. The two-
dimensional data structure uses O(n log2 n) space (O(n) space for dominance
counting), and the three-dimensional data structure uses O(n log3 n) space (O(n)
space for dominance counting). The main idea of our improvement is that in the
construction of Lemma 1 (resp. Lemma 2) each slab contains n1/2+ε points
(n2/3+ε points) for some ε > 0 and there is a constant number of recursion
levels. Proofs of Theorem 7 and Theorem 8 can be found in the full version of
this paper [22].

Theorem 7. For any fixed constant c < 1, there exists a O(n) space data struc-
ture that supports two-dimensional dominance counting queries on n × n grid
with an additive error kc in O(log logn) time.

For any fixed constant c < 1, there exists a O(n log2 n) space data structure
that supports two-dimensional range counting queries on n × n grid with an
additive error kc in O(log logn) time.

Theorem 8. For any fixed constant c < 1, there exists a O(n) space data struc-
ture that supports approximate dominance range counting queries on n× n× n
grid with an additive error kc in O((log logn)3) time.

For any fixed constant c < 1, there exists a O(n log4 n) space data structure
that supports approximate range counting queries on n × n × n grid with an
additive error kc in O((log logn)3) time.
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Abstract. We consider the problem of maintaining dynamically a set
of points in the plane and supporting range queries of the type [a, b] ×
(−∞, c]. We assume that the inserted points have their x-coordinates
drawn from a class of smooth distributions, whereas the y-coordinates are
arbitrarily distributed. The points to be deleted are selected uniformly
at random among the inserted points. For the RAM model, we present
a linear space data structure that supports queries in O(log log n + t)
expected time with high probability and updates in O(log log n) expected
amortized time, where n is the number of points stored and t is the size
of the output of the query. For the I/O model we support queries in
O(log logB n + t/B) expected I/Os with high probability and updates in
O(logB log n) expected amortized I/Os using linear space, where B is the
disk block size. The data structures are deterministic and the expectation
is with respect to the input distribution.

1 Introduction

We consider the dynamic 3-sided range reporting problem in the plane. That is,
to design a data structure that supports insertions and deletions of points, and
supports range reporting queries of the type [a, b]× (−∞, c], i.e. report all points
contained in the query rectangle with one side unbounded. The more general
orthogonal range searching problem finds applications in databases and is used
as a subroutine for solving general geometric problems. A survey can be found
at [1]. In particular, multidimensional instances can be decomposed into two
dimensional subproblems, where 3-sided queries are of major importance [2].

Previous results. In the internal memory, the most commonly used data struc-
ture for supporting 3-sided queries is the priority search tree of McCreight [3].
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It supports queries in O(log n + t) worst case time, insertions and deletions of
points in O(log n) worst case time and uses linear space, where n is the number
of points and t the size of the output of a query. It is a hybrid of a binary heap
for the y-coordinates and of a balanced search tree for the x-coordinates.

In the RAM model, the only dynamic sublogarithmic bounds for this problem
are due to Willard [4] who attains O (logn/ log logn) worst case or O(

√
logn)

randomized update time and O (logn/ log logn + t) query time using linear space.
In the I/O model, Arge et al. [5] proposed an indexing scheme that consumes
O(n/B) space, supports updates in O(logB n) amortized I/Os, and 3-sided range
queries in O(logB n + t/B) I/Os, where B denotes the block size. Both data
structures pose no assumptions on the input distribution.

Our results. We consider the case where the x-coordinates of inserted points
are drawn from a smooth probabilistic distribution, and the y-coordinates are
arbitrarily distributed. Moreover, the deleted points are selected uniformly at
random among the points in the data structure and queries can be adversarial.
The assumption on the x-coordinates is broad enough to include distributions
used in practice, such as uniform, regular and classes of non-uniform ones [6, 7].

We present two linear space data structures, for the RAM and the I/O model
respectively. In the former model, we achieve a query time of O(log logn + t)
expected with high probability and update time of O(log log n) expected amor-
tized. In the latter model, the I/O complexity is O(log logB n + t/B) expected
with high probability for the query and O(logB log n) expected amortized for
the updates. In both cases, our data structures are deterministic and the expec-
tation is derived from a probabilistic distribution of the x-coordinates, and an
expected analysis of updates of points with respect to their y-coordinates.

2 Preliminaries

Weight Balanced Exponential Tree. The exponential search tree is a tech-
nique for converting static polynomial space search structures for ordered sets
into fully-dynamic linear space data structures. It was introduced in [8, 9, 10]
for searching and updating a dynamic set U of n integer keys in linear space and
optimal O(

√
logn/loglogn) time in the RAM model. Effectively, to solve the dic-

tionary problem, a doubly logarithmic height search tree is employed that stores
static local search structures of size polynomial to the degree of the nodes.

Here we describe a variant of the exponential search tree that we dynamize us-
ing a rebalancing scheme relative to that of the weight balanced search trees [11].
In particular, a weight balanced exponential tree T on n points is a leaf-oriented
rooted search tree where the degrees of the nodes increase double exponentially
on a leaf-to-root path. All leaves have the same depth and reside on the lowest
level of the tree (level zero). The weight of a subtree Tu rooted at node u is defined
to be the number of its leaves. If u lies at level i ≥ 1, the weight of Tu ranges
within

[ 1
2 · wi + 1, 2 · wi − 1

]
, for a weight parameter wi = cci

21 and constants
c2 > 1 and c1 ≥ 23/(c2−1) (see Lem. 1). Note that wi+1 = wc2

i . The root does not
need to satisfy the lower bound of this range. The tree has height Θ(logc2

logc1
n).
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The insertion of a new leaf to the tree increases the weight of the nodes on the
leaf-to-root path by one. This might cause some weights to exceed their range
constraints (“overflow”). We rebalance the tree in order to revalidate the con-
straints by a leaf-to-root traversal, where we “split” each node that overflowed.
An overflown node u at level i has weight 2wi. A split is performed by creating
a new node v that is a sibling of u and redistributing the children of u among u
and v such that each node acquires a weight within the allowed range. In partic-
ular, we scan the children of u, accumulating their weights until we exceed the
value wi, say at child x. Node u gets the scanned children and v gets the rest.
Node x is assigned as a child to the node with the smallest weight. Processing the
overflown nodes u bottom up guarantees that, during the split of u, its children
satisfy their weight constraints.

The deletion of a leaf might cause the nodes on the leaf-to-root path to “un-
derflow”, i.e. a node u at level i reaches weight 1

2wi. By an upwards traversal
of the path, we discover the underflown nodes. In order to revalidate their node
constraints, each underflown node chooses a sibling node v to “merge” with.
That is, we assign the children of u to v and delete u. Possibly, v needs to
“split” again if its weight after the merge is more than 3

2wi (“share”). In either
case, the traversal continues upwards, which guarantees that the children of the
underflown nodes satisfy their weight constraints. The following lemma, which
is similar to [11, Lem. 9], holds.

Lemma 1. After rebalancing a node u at level i, Ω(wi) insertions or deletions
need to be performed on Tu, for u to overflow or underflow again.

Proof. A split, a merge or a share on a node u on level i yield nodes with
weight in

[3
4wi − wi−1,

3
2wi + wi−1

]
. If we set wi−1 ≤ 1

8wi, which always holds
for c1 ≥ 23/(c2−1), this interval is always contained in [58wi,

14
8 wi]. �	

Range Minimum Queries. The range minimum query (RMQ) problem asks
to preprocess an array of size n such that, given an index range, one can report
the position of the minimum element in the range. In [12] the RMQ problem is
solved in O(1) time using O(n) space and preprocessing time.

Dynamic External Memory 3-sided Range Queries for O(B2) Points.
[5, Lem. 1] A set of K ≤ B2 points can be stored in O(K/B) blocks, so that
3-sided queries need O(t/B + 1) I/Os and updates O(1) I/Os, for output size t.

Smooth Distribution and Interpolation Search Structures. Informally,
a distribution defined over an interval I is smooth if the probability density
over any subinterval of I does not exceed a specific bound, however small this
subinterval is (no “sharp peaks” exist).

Formally, given two functions f1 and f2, a density function μ = μ[a, b](x)
is (f1, f2)-smooth [13, 6] if there exists a constant β, such that for all c1, c2, c3
where a ≤ c1 < c2 < c3 ≤ b, and for all integers n and Δ = (c3 − c1)/f1(n),
it holds that

∫ c2

c2−Δ
μ[c1, c3](x)dx ≤ β·f2(n)

n , when μ[c1, c3](x) = 0 for x < c1

or x > c3, and μ[c1, c3](x) = μ(x)/p for c1 ≤ x ≤ c3, where p =
∫ c3

c1
μ(x)dx.
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The IS-tree [13, 14] is a dynamic data structure based on interpolation search
that consumes linear space and can be updated in O(1) time when the update po-
sition is given. Furthermore, the elements can be searched in O(log2 n) worst case
time, or O(log logn) time expected with high probability when they are drawn
from an (nα, n1/2)-smooth distribution, for constant 1/2<α<1. Its externaliza-
tion, the ISB-tree [15], consumes linear space and can be updated in O(1) I/Os
for given update position. It supports searches in O(logB n) I/Os worst case, or
O(logB logn) I/Os expected with high probability when the elements are drawn
from an (n/(log logn)1+ε, n1/B)-smooth distribution, for constant ε>0.

3 The Internal Memory Data Structure

Our internal memory construction for storing n points in the plane consists of
an IS-tree storing the points in sorted order with respect to the x-coordinates.
On the sorted points, we maintain a weight balanced exponential search tree T
with c2 = 3/2 and c1 = 26. Thus its height is Θ(log logn). In order to use T
as a priority search tree, we augment it as follows. The root stores the point
with overall minimum y-coordinate. Points are assigned to nodes in a top-down
manner, such that a node u stores the point with minimum y-coordinate among
the points in Tu that is not already stored at an ancestor of u. Note that the
point from a leaf of T can only be stored at an ancestor of the leaf and that
the y-coordinates of the points stored at a leaf-to-root path are monotonically
decreasing (Min-Heap Property). Finally, every node contains an RMQ-structure
on the y-coordinates of the points in the children nodes and an array with
pointers to the children nodes. Every point in a leaf can occur at most once in
an internal node u and the RMQ-structure of u’s parent. Since the space of the
IS-tree is linear [13, 14], so is the total space.

3.1 Querying the Data Structure

Before we describe the query algorithm of the data structure, we will describe
the query algorithm that finds all points with y-coordinate less than c in a
subtree Tu. Let the query begin at an internal node u. At first we check if the
y-coordinate of the point stored at u is smaller or equal to c (we call it a member
of the query). If not we stop. Else, we identify the tu children of u storing points
with y-coordinate less than or equal to c, using the RMQ-structure of u. That
is, we first query the whole array and then recurse on the two parts of the array
partitioned by the index of the returned point. The recursion ends when the
point found has y-coordinate larger than c (non-member point).

Lemma 2. For an internal node u and value c, all points stored in Tu with
y-coordinate ≤c can be found in O(t + 1) time, when t points are reported.

Proof. Querying the RMQ-structure at a node v that contains tv member points
will return at most tv +1 non-member points. We only query the RMQ-structure
of a node v if we have already reported its point as a member point. Summing
over all visited nodes we get a total cost of O (

∑
v(2tv + 1))=O(t + 1). �	
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In order to query the whole structure, we first process a 3-sided query [a, b] ×
(−∞, c] by searching for a and b in the IS-tree. The two accessed leaves a, b
of the IS-tree comprise leaves of T as well. We traverse T from a and b to the
root. Let Pa (resp. Pb) be the root-to-leaf path for a (resp. b) in T and let
Pm = Pa ∩ Pb. During the traversal we also record the index of the traversed
child. When we traverse a node u on the path Pa − Pm (resp. Pb − Pm), the
recorded index comprises the leftmost (resp. rightmost) margin of a query to
the RMQ-structure of u. Thus all accessed children by the RMQ-query will
be completely contained in the query’s x-range [a, b]. Moreover, by Lem. 2 the
RMQ-structure returns all member points in Tu.

For the lowest node in Pm, i.e. the lowest common ancestor (LCA) of a and
b, we query the RMQ-structure for all subtrees contained completely within a
and b. We don’t execute RMQ-queries on the rest of the nodes of Pm, since they
root subtrees that overlap the query’s x-range. Instead, we merely check if the
x- and y-coordinates of their stored point lies within the query. Since the paths
Pm, Pa−Pm and Pb−Pm have length O(log logn), the query time of T becomes
O(log logn+ t). When the x-coordinates are smoothly distributed, the query to
the IS-Tree takes O(log logn) expected time with high probability [13]. Hence
the total query time is O(log logn + t) expected with high probability.

3.2 Inserting and Deleting Points

Before we describe the update algorithm of the data structure, we will first prove
some properties of updating the points in T . Suppose that we decrease the y-
value of a point pu at node u to the value y′. Let v be the ancestor node of u
highest in the tree with y-coordinate bigger than y′. We remove pu from u. This
creates an “empty slot” that has to be filled by the point of u’s child with smallest
y-coordinate. The same procedure has to be applied to the affected child, thus
causing a “bubble down” of the empty slot until a node is reached with no points
at its children. Next we replace v’s point pv with pu (swap). We find the child
of v that contains the leaf corresponding to pv and swap its point with pv. The
procedure recurses on this child until an empty slot is found to place the last
swapped out point (“swap down”). In case of increasing the y-value of a node
the update to T is the same, except that pu is now inserted at a node along the
path from u to the leaf corresponding to pu.

For every swap we will have to rebuild the RMQ-structures of the parents of
the involved nodes, since the RMQ-structures are static data structures. This
has a linear cost to the size of the RMQ-structure (Sect. 2).

Lemma 3. Let i be the highest level where the point has been affected by an
update. Rebuilding the RMQ-structures due to the update takes O(wc2−1

i ) time.

Proof. The executed “bubble down” and “swap down”, along with the search
for v, traverse at most two paths in T . We have to rebuild all the RMQ-
structures that lie on the two v-to-leaf paths, as well as that of the parent
of the top-most node of the two paths. The RMQ-structure of a node at level j



198 G.S. Brodal et al.

is proportional to its degree, namely O (wj/wj−1). Thus, the total time becomes
O
(∑i+1

j=1wj/wj−1
)

= O
(∑

i
j=0w

c2−1
j

)
= O

(
wc2−1

i

)
. �	

To insert a point p, we first insert it in the IS-tree. This creates a new leaf
in T , which might cause several of its ancestors to overflow. We split them
as described in Sec. 2. For every split a new node is created that contains no
point. This empty slot is filled by “bubbling down” as described above. Next, we
search on the path to the root for the node that p should reside according to the
Min-Heap Property and execute a “swap down”, as described above. Finally, all
affected RMQ-structures are rebuilt.

To delete point p, we first locate it in the IS-tree, which points out the corre-
sponding leaf in T . By traversing the leaf-to-root path in T , we find the node in
T that stores p. We delete the point from the node and “bubble down” the empty
slot, as described above. Finally, we delete the leaf from T and rebalance T if
required. Merging two nodes requires one point to be “swapped down” through
the tree. In case of a share, we additionally “bubble down” the new empty slot.
Finally we rebuild all affected RMQ-structures and update the IS-tree.

Analysis. We assume that the point to be deleted is selected uniformly at
random among the points stored in the data structure. Moreover, we assume
that the inserted points have their x-coordinates drawn independently at random
from an (nα, n1/2)-smooth distribution for a constant 1/2<α<1, and that the
y-coordinates are drawn from an arbitrary distribution. Searching and updating
the IS-tree needs O(log logn) expected with high probability [13, 14], under the
same assumption for the x-coordinates.

Lemma 4. Starting with an empty weight balanced exponential tree, the amor-
tized time of rebalancing it due to insertions or deletions is O(1).

Proof. A sequence of n updates requires at most O(n/wi) rebalancings at level i
(Lem. 1). Rebuilding the RMQ-structures after each rebalancing costs O

(
wc2−1

i

)

time (Lem. 3). Summing over all levels, the total time becomes O(
∑height(T )

i=1
n
wi

·
wc2−1

i ) = O(n
∑height(T )

i=1 wc2−2
i )= O(n), when c2<2. �	

Lemma 5. The expected amortized time for inserting or deleting a point in a
weight balanced exponential tree is O(1).

Proof. The insertion of a point creates a new leaf and thus T may rebalance,
which by Lemma 4 costs O(1) amortized time. Note that the shape of T only
depends on the sequence of updates and the x-coordinates of the points that
have been inserted. The shape of T is independent of the y-coordinates, but the
assignment of points to the nodes of T follows uniquely from the y-coordinates,
assuming all y-coordinates are distinct. Let u be the ancestor at level i of the leaf
for the new point p. For any integer k ≥ 1, the probability of p being inserted at u
or an ancestor of u can be bounded by the probability that a point from a leaf
of Tu is stored at the root down to the k-th ancestor of u plus the probability that
the y-coordinate of p is among the k smallest y-coordinates of the leaves of T . The
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first probability is bounded by
∑height(T )

j=i+k
2wj−1
1
2 wj

, whereas the second probability

is bounded by k
/ 1

2wi. It follows that p ends up at the i-th ancestor or higher with

probability at most O
(∑height(T )

j=i+k
2wj−1
1
2 wj

+ k
1
2 wi

)
= O

(∑height(T )
j=i+k w1−c2

j−1 + k
wi

)
=

O
(
w1−c2

i+k−1 + k
wi

)
= O

(
w

(1−c2)ck−1
2

i + k
wi

)
= O

(
1

wi

)
for c2 = 3/2 and k = 3. Thus

the expected cost of “swapping down” p becomes O
(∑height(T )

i=1
1

wi
· wi+1

wi

)
=

O
(∑height(T )

i=1 wc2−2
i

)
= O

(∑height(T )
i=1 c

(c2−2)ci
2

1

)
= O(1) for c2 < 2.

A deletion results in “bubbling down” an empty slot, whose cost depends on
the level of the node that contains it. Since the point to be deleted is selected
uniformly at random and there are O (n/wi) points at level i, the probabil-
ity that the deleted point is at level i is O (1/wi). Since the cost of an up-
date at level i is O (wi+1/wi), we get that the expected “bubble down” cost is
O
(∑height(T )

i=1
1

wi
· wi+1

wi

)
= O(1) for c2 < 2. �	

Theorem 1. In the RAM model, using O(n) space, 3-sided queries can be sup-
ported in O(log logn + t/B) expected time with high probability, and updates in
O(log logn) time expected amortized, given that the x-coordinates of the inserted
points are drawn from an (nα, n1/2)-smooth distribution for constant 1/2<α<1,
the y-coordinates from an arbitrary distribution, and that the deleted points are
drawn uniformly at random among the stored points.

4 The External Memory Data Structure

We now convert our internal memory into a solution for the I/O model. First
we substitute the IS-tree with its variant in the I/O model, the ISB-Tree [15].
We implement every consecutive Θ(B2) leaves of the ISB-Tree with the data
structure of Arge et al. [5]. Each such structure constitutes a leaf of a weight
balanced exponential tree T that we build on top of the O(n/B2) leaves.

In T every node now stores B points sorted by y-coordinate, such that the max-
imum y-coordinate of the points in a node is smaller than all the y-coordinates of
the points of its children (Min-Heap Property). The B points with overall small-
est y-coordinates are stored at the root. At a node u we store the B points from
the leaves of Tu with smallest y-coordinates that are not stored at an ancestor of
u. At the leaves we consider the B points with smallest y-coordinate among the
remaining points in the leaf to comprise this list. Moreover, we define the weight
parameter of a node at level i to be wi=B2·(7/6)i

. Thus we get wi+1=w7/6
i , which

yields a height of Θ(log logB n). Let di= wi

wi−1
=w1/7

i denote the degree parameter
for level i. All nodes at level i have degree O(di). Also every node stores an array
that indexes the children according to their x-order.

We furthermore need a structure to identify the children with respect to their
y-coordinates. We replace the RMQ-structure of the internal memory solution
with a table. For every possible interval [k, l] over the children of the node, we
store in an entry of the table the points of the children that belong to this
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interval, sorted by y-coordinate. Since every node at level i has degree O(di),
there are O(d2

i ) different intervals and for each interval we store O(B ·di) points.
Thus, the total size of this table is O(B · d3

i ) points or O(d3
i ) disk blocks.

The ISB-Tree consumes O(n/B) blocks [15]. Each of the O(n/B2) leaves of T
contains B2 points. Each of the n/wi nodes at level i contains B points and a ta-
ble with O(B ·d3

i ) points. Thus, the total space is O
(
n+

∑height(T )
i=1 n·B·d3

i /wi

)
=

O
(
n+

∑height(T )
i=1 n·B

/(
B2· 76

i) 4
7
)

= O(n) points, i.e. O(n/B) disk blocks.

4.1 Querying the Data Structure

The query is similar to the internal memory construction. First we access the
ISB-Tree, spending O(logB logn) expected I/Os with high probability, given
that the x-coordinates are smoothly distributed [15]. This points out the leaves
of T that contain a, b. We perform a 3-sided range query at the two leaf struc-
tures. Next, we traverse upwards the leaf-to-root path Pa (resp. Pb) on T , while
recording the index k (resp. l) of the traversed child in the table. That costs
Θ(log logB n) I/Os. At each node we report the points of the node that belong
to the query range. For all nodes on Pa − Pb and Pb − Pa we query as follows:
We access the table at the appropriate children range, recorded by the index k
and l. These ranges are always [k + 1,last child] and [0, l − 1] for the node that
lie on Pa −Pb and Pb −Pa, respectively. The only node where we access a range
[k + 1, l− 1] is the LCA of the leaves that contain a and b. The recorded indices
facilitate access to these entries in O(1) I/Os. We scan the list of points sorted by
y-coordinate, until we reach a point with y-coordinate bigger than c. All scanned
points are reported. If the scan has reported all B elements of a child node, the
query proceeds recursively to that child, since more member points may lie in
its subtree. Note that for these recursive calls, we do not need to access the B
points of a node v, since we accessed them in v’s parent table. The table entries
they access contain the complete range of children. If the recursion accesses a
leaf, we execute a 3-sided query on it, with respect to a and b [5].

The list of B points in every node can be accessed in O(1) I/Os. The con-
struction of [5] allows us to load the B points with minimum y-coordinate in a
leaf also in O(1) I/Os. Thus, traversing Pa and Pb costs Θ(log logB n) I/Os worst
case. There are O(log logB n) nodes u on Pa−Pm and Pb−Pm. The algorithm re-
curses on nodes that lie within the x-range. Since the table entries that we scan
are sorted by y-coordinate, we access only points that belong to the answer.
Thus, we can charge the scanning I/Os to the output. The algorithm recurses on
all children nodes whose B points have been reported. The I/Os to access these
children can be charged to their points reported by their parents, thus to the
output. That allows us to access the child even if it contains only o(B) member
points to be reported. The same property holds also for the access to the leaves.
Thus we can perform a query on a leaf in O(t/B) I/Os. Summing up, the worst
case query complexity of querying T is O(log logB n + t

B ) I/Os. Hence in total
the query costs O(log logB n + t

B ) expected I/Os with high probability.
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4.2 Inserting and Deleting Points

Insertions and deletions of points are in accordance with the internal solution.
For the case of insertions, first we update the ISB-tree. This creates a new leaf
in the ISB-tree that we also insert at the appropriate leaf of T in O(1) I/Os [5].
This might cause some ancestors of the leaves to overflow. We split these nodes,
as in the internal memory solution. For every split B empty slots “bubble down”.
Next, we update T with the new point. For the inserted point p we locate the
highest ancestor node that contains a point with y-coordinate larger than p’s.
We insert p in the list of the node. This causes an excess point, namely the one
with maximum y-coordinate among the B points stored in the node, to “swap
down” towards the leaves. Next, we scan all affected tables to replace a single
point with a new one.

In case of deletions, we search the ISB-tree for the deleted point, which points
out the appropriate leaf of T . By traversing the leaf-to-root path and loading the
list of B point, we find the point to be deleted. We remove the point from the
list, which creates an empty slot that “bubbles down” T towards the leaves. Next
we rebalance T as in the internal solution. For every merge we need to “swap
down” the B largest excess points. For a share, we need to “bubble down” B
empty slots. Next, we rebuild all affected tables and update the ISB-tree.

Analysis. Searching and updating the ISB-tree requires O(logB log n) expected
I/Os with high probability, given that the x-coordinates are drawn from an
(n/(log logn)1+ε, n1/B)-smooth distribution, for constant ε>0 [15].

Lemma 6. For every path corresponding to a “swap down” or a “bubble down”
starting at level i, the cost of rebuilding the tables of the paths is O

(
d3

i+1
)

I/Os.

Proof. Analogously to Lem. 3, a “swap down” or a “bubble down” traverse at
most two paths in T . A table at level j costs O(d3

j ) I/Os to be rebuilt, thus all
tables on the paths need O

(∑i+1
j=1d

3
j

)
= O

(
d3

i+1

)
I/Os. �	

Lemma 7. Starting with an empty external weight balanced exponential tree,
the amortized I/Os for rebalancing it due to insertions or deletions is O(1).

Proof. We follow the proof of Lem. 4. Rebalancing a node at level i requires
O
(
d3

i+1+B·d3
i

)
I/Os (Lem. 6), since we get B “swap downs” and “bubble downs”

emanating from the node. The total I/O cost for a sequence of n updates is
O
(∑height(T )

i=1
n
wi

·(d3
i+1+B·d3

i )
)
=O

(
n·
∑height(T )

i=1 w−1/2
i +B·w−4/7

i

)
=O(n). �	

Lemma 8. The expected amortized I/Os for inserting or deleting a point in an
external weight balanced exponential tree is O(1).

Proof. By similar arguments as in Lem. 5 and considering that a node contains B
points, we bound the probability that point p ends up at the i-th ancestor or
higher by O(B/wi). An update at level i costs O(d3

i+1)=O(w1/2
i ) I/Os. Thus

“swapping down” p costs O
(∑height(T )

i=1 w1/2
i · B

wi

)
=O(1) expected I/Os. The same

bound holds for deleting p, following similar arguments as in Lem. 5. �	
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Theorem 2. In the I/O model, using O(n/B) disk blocks, 3-sided queries can be
supported in O(log logB n+t/B) expected I/Os with high probability, and updates
in O(logB logn) I/Os expected amortized, given that the x-coordinates of the
inserted points are drawn from an (n/(log logn)1+ε, n1/B)-smooth distribution
for a constant ε > 0, the y-coordinates from an arbitrary distribution, and that
the deleted points are drawn uniformly at random among the stored points.
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Abstract. We present the first adaptive data structure for two-dimen-
sional orthogonal range search. Our data structure is adaptive in the sense
that it gives improved search performance for data with more inherent
sortedness. Given n points on the plane, the linear-space data structure
can answer range queries in O(log n+k+m) time, where m is the number
of points in the output and k is the minimum number of monotonic chains
into which the point set can be decomposed, which is O(

√
n) in the worst

case. Our result matches the worst-case performance of other optimal-
time linear-space data structures, or surpasses them when k = o(

√
n).

Our data structure can also be made implicit, requiring no extra space
beyond that of the data points themselves, in which case the query time
becomes O(k log n + m). We present a novel algorithm of independent
interest to decompose a point set into a minimum number of untangled,
same-direction monotonic chains in O(kn + n log n) time.

1 Introduction

Applications in geographic information systems, among others, require struc-
tures that can store and retrieve spatial data efficiently in both space and time.
In this work we describe a data structure and algorithm for two-dimensional or-
thogonal range search, which is a commonly-encountered spatial data retrieval
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problem. Our data structure is adaptive, giving improved query performance for
data with more inherent sortedness; and can be implicit, requiring no added
storage space beyond that of the data points themselves.

The problem of two-dimensional orthogonal range search can be defined as
follows: let P = {p1, p2, . . . , pn} be a set of n points in the plane, and let
r = [x1, x2] × [y1, y2] be a query range. The orthogonal range search problem
asks for all points pi ∈ P such that x1 ≤ x(pi) ≤ x2 and y1 ≤ y(pi) ≤ y2, where
x(pi) and y(pi) denote the x and y coordinate values of point pi, respectively.
An orthogonal range search data structure preprocesses the set P in order to
efficiently answer arbitrary range queries; a natural goal is to balance the con-
flicting objectives of minimizing both the space required by the data structure
and the time required to answer queries.

Our basic data structure’s worst-case query time is O(k logn + m), where n
is the number of points in the point set; m the number of points in the output;
and k the minimum number of monotonic chains into which the point set can be
decomposed, which is O(

√
n) in the worst case. Applying fractional cascading [4]

reduces the query time to O(log n + k + m) at the cost of implicitness.
We require that the monotonic chains should be untangled. That is, when

successive vertices are connected by line segments, the chains should not intersect
each other. This requirement does not increase the minimal number of chains.
We present a novel algorithm for finding a minimal set of untangled chains
(all monotonic in the same direction) in O(kn + n logn) time; this untangling
algorithm is of independent interest.

2 Previous Work

Any set of n points can be split into some number k of chains in which the
y coordinate is monotonically increasing or decreasing as the x coordinate in-
creases. When all chains must be ascending (or all descending), the problem of
finding a minimal chain decomposition is well-studied. With worst-case data the
minimal number of chains may be Θ(n), even given a choice of ascending or de-
scending chains. Supowit gives an algorithm for it with worst-case running time
Θ(n log n) [12], which is optimal [3]. If chains of both types are allowed, then
minimizing the number of chains is NP-hard [5]. However, an algorithm of Fomin,
Kratsch, and Novelli acheives a constant-factor approximation of the minimal
number of chains in O(n3) time [6]. An algorithm of Yang, Chen, Lu, and Zheng
generates a decomposition into at most �

√
2n + 1/4− 1/2� chains of both types

(which is the minimal number for worst-case data) in O(n3/2) time [14]. They
do not prove any guaranteed approximation factor when the minimal number of
chains is smaller than O(

√
n), but comment that in practical experiments their

algorithm often achieves very close to the constant-factor approximation value.
The two-dimensional orthogonal range search problem has received consider-

able attention, and several efficient data structures exist. For instance, R-trees [7]
are a multidimensional extension of B-trees. An R-tree is a height-balanced tree,
where each tree node represents a region of the underlying space. Thus, the data
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structure divides the space with hierarchically nested (and possibly overlapping)
minimum bounding rectangles. The search algorithm descends the tree, recurs-
ing into every subtree whose bounding rectangle overlaps the query. In the worst
case a search could be forced to examine the entire tree in O(n) time, even when
the query rectangle is empty. However, R-trees are simple to implement, use
linear space, tend to perform much better in practice than the theoretical worst
case, and are popular as a result.

Range trees [9] support multidimensional range queries by generalizing bal-
anced binary search trees to multiple dimensions. The data points are indexed
along one dimension in a standard balanced binary search tree. At each node
v of that tree, we collect all the descendants of v and store a new balanced
binary search tree storing all those points indexed along the second dimension.
A rectangle query descends the first tree to do a one-dimensional range search
in O(log n) time, then searches along the other dimension for an overall time of
O(log2 n+m). More advanced techniques, like fractional cascading [4], allow the
two-dimensional search time to be reduced to O(log n + m); and the technique
can also be extended to higher dimensions at some cost in search time.

Alternative solutions exist that require linear space like R-trees but improve
on the worst-case search time. Kanth shows that O(

√
n + m) worst-case search

time is optimal for non-replicating (or linear-space) data structures [8]. Bentley
achieves it with kd-trees [2], which recursively divide a k-dimensional space with
hyperplanes. Munro describes an implicit kd-tree, with optimal search time and
no storage used beyond that of the points themselves [10]. Arge describes priority
R-trees, or PR-trees [1], also with O(

√
n + m) worst-case search time. In a

recent result, Nekrich [11] presents a data structure that uses linear space with
search time O(log n+m logε n), trading suboptimal performance in m for better
performance in n. See Table 1 for a comparison of methods.

To summarize, R-trees are practical, but do not provide worst-case guarantees
at search time, and range trees have an impractical O(n log n) space requirement.
There are alternative solutions requiring linear space and providing better search
time. However, none of these can profit from “easy” data. Here we present an
adaptive data structure. When the data can be decomposed into a small num-
ber of monotonic chains, our search performance improves. If the number of

Table 1. Summary of orthogonal range query results; n is the number of points in the
database, m is the number of points returned, and k is the number of chains

Data structure Worst-case search time Space

R-trees [7] O(n) O(n)
kd-trees [2,10] O(

√
n + m) implicit

PR-trees [1] O(
√

n + m) O(n)
Range trees [9] O(log n + m) O(n log n)
Nekrich [11] O(log n + m logε n) O(n)
This paper O(log n + k + m) O(n)
This paper O(k log n + m) implicit
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chains k = o(
√
n), we surpass the performance of optimal-time linear-space data

structures [1,2,8,10].

3 Finding Untangled Chains

In the next section we describe an adaptive algorithm and data structure for
two-dimensional orthogonal range search on data decomposed into a union of
monotonic chains. The data structure performs better when there are fewer
chains. Furthermore, we can search more efficiently by assuming that the chains
are untangled: successive data points can be connected with line segments with
no segments intersecting. That raises the question of how to find an optimal
untangled chain decomposition, which we resolve in this section. To conserve
space we omit proofs in this section, as they are mainly based on exhaustive
case analysis.

Although our data structure asks for an optimal decomposition into chains
with both ascending and descending monotonic chains allowed, it actually func-
tions by splitting the points into the two directions as a preprocessing step and
then considering the two directions separately; chains are only required to be un-
tangled with respect to other chains of the same type. The untangling problem of
interest to us, then, is how to decompose a set of points into a minimal number
of untangled chains all in one direction (without loss of generality, descending).
Also assume that points in the input set are in general position.

It is easy to see that removing a single tangle between two chains does not
change the number of chains, so the minimum number of untangled chains is the
same as the minimum number of possibly-tangled chains.

However, finding tangles to remove requires search, and each untangling move
could introduce many new tangles, resulting in an expensive untangling proce-
dure. Van Leeuwen and Schoone show that such a process must terminate after
O(n3) moves [13]. They describe an O(n2) exhaustive search to find each tangle,
for an overall time of O(n5). We describe an algorithm for finding a minimal
number of chains in O(n log n + kn) time where k is the number of chains.

3.1 Untangling Monotonic Chains

Given two points pi, pj ∈ P , we say that the edge or line segment (pi, pj) is
valid if x(pi) ≤ x(pj) and y(pj) ≤ y(pi). We also say that points pi and pj

are compatible if (pi, pj) or (pj , pi) is valid. A chain is a sequence of edges
C = {(p1, p2), (p2, p3), . . . , (pn−1, pn)} where each one is valid. We will often
refer to a point p ∈ C for some chain C, which means that p is an endpoint
of some edge in C. A sub-chain S of C is a contiguous subset of the edges
{(pk, pk+1), . . . , (pk+�−1, pk+�)}, where k + � ≤ n. We call � the length of S.

Supowit [12] proposed an algorithm, Algorithm 1, for decomposing points into
a minimal number of possibly-intersecting same-direction monotonic chains. Let
A be a chain and miny(A) = min{y|(x, y) ∈ A}. Let P = {p1, p2, . . . , pn} be the
data points sorted by increasing x-coordinate.
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Algorithm 1. Minimum number of descending chains
1: S ← ∅
2: for i = 1 . . . n do
3: let S′ = {A ∈ S, miny(A) ≥ y(pi)}
4: if S′ �= ∅ then
5: let A0 = argminA{miny(A),A ∈ S′}
6: append pi to A0

7: else
8: add pi as a chain to S
9: return S

If an edge in one chain intersects an edge in another chain, we call the inter-
section a tangle and the chains tangled with each other. Let L(P ) be the set of all
valid edges and L∗(P ) be the set of edges created by running Algorithm 1 on P .
Then for any edge (pi, pj), define H+(pi, pj) to be the open half-plane bounded
by the line through pi and pj and containing the point (x(pi) + 1, y(pi) + 1),
and H−(pi, pj) symmetrically. Now we can show that all tangles in the output
of Algorithm 1 are of a special kind.

Definition 1. Suppose we have two chains C2 and C1 with edges (q1, q2) ∈ C2
and (p1, p2), . . . , (p�−1, p�) ∈ C1 such that p1 ∈ H−(q1, q2), p� ∈ H−(q1, q2),
and pi ∈ H+(q1, q2) for all 1 < i < �. We call such a tangle a “valid”-tangle
(abbreviated as v-tangle). Fig. 1 shows examples. We call (q1, q2) the upper part
of the v-tangle, and (p1, p2), . . . , (p�−1, p�) the lower part.

S

a

q2

C1

C2

p1

p�

q1
a

S

b

bc

c

d

d
p2

p�−1

Fig. 1. (Left) Valid tangles (v-tangles) generated by Algorithm 1. (Right) Two exam-
ples of tangles that cannot be generated by Algorithm 1.

Lemma 1. All tangles created by Algorithm 1 are v-tangles.

Since only v-tangles are possible in the output of Algorithm 1, there is an in-
tuitive ordering on the set of chains. Suppose we run Algorithm 1 on P and it
generates k chains. We can create a set of k points Q = {q1, . . . , qk} such that
x(qi) < x(qi+1), no two points in Q are compatible with each other, but every
point in Q is compatible with every point in P , Then, if we execute Algorithm 1
again on P ∪Q, each qi will be added to a single chain Ci, and we can order the
chains based on these points. We will assume we have such a set at the beginning
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S
s

q

r

a

b

Ci

Cj

A

B

Fig. 2. Illustration of cases considered in Lemma 2

of the chains and another at the end in order to avoid special boundary cases.
Thus, given two chains Ci and Cj , we can refer to Cj as the upper chain if j > i.
The uppermost chain is Ck.

With this ordering in mind, we now discuss how to untangle a v-tangle. The
following lemma illustrates that untangling a v-tangle does not create new tan-
gles involving upper chains.

Remark 1. Given a v-tangle, as shown in Fig. 1, we can untangle it by using
the dotted lines as edges. This is just moving S to be part of C2. As we just
explained, it does not matter how the points change and move around chains,
chain Ci is the one that would contain qi.

Lemma 2. Consider two tangled chains Ci and Cj as in Fig. 2. By removing a
v-tangle, where Cj is above Ci, we cannot generate new tangles involving chains
above Cj.

Consider Algorithm 2. Each iteration of the outer for loop ensures that chain Ci

is not tangled with any chains below, C1, . . . , Ci−1.

Algorithm 2. Untangled-Chains(P)
1: Run Algorithm 1 on P to get chains C1, . . . , Ck where Ck is the uppermost chain.
2: for i = k down to 1 do
3: for j = i − 1 down to 1 do
4: Find and untangle all v-tangles between Ci and Cj

To find the tangles we just traverse both chains in order of increasing x-
coordinates of their points, so the process take time proportional to the sum of
the lengths of the chains. Our method of untangling also has the following useful
invariant properties.

Lemma 3. Consider the set of points R in chains C1, . . . , Ci−1 after untangling
Ci, . . . , Ck. If we run Algorithm 1 with input R, the resulting set of chains is
exactly C1, . . . , Ci−1.
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C1

C3

C2

C1

C2

C3

Fig. 3. Untangling chains in an arbitrary order may cause tangles which are not v-
tangles. For example, untangling C1 and C3 results in such a situation. The arrow
points to a new tangle that is not a v-tangle.

Lemma 4. After we have untangled Ci with chains Ci−1, . . . , C1, no subsequent
untangling operations occurring among chains C1, . . . , Ci−1 can cause a new tan-
gle to form with Ci.

The previous results allow for the possibility that during the untangling of Ci,
we could (temporarily) create non-v-tangles involving Ci. In fact, such tangles
are possible if the order in which the untangling is done is arbitrary, which can
be seen in Fig. 3. However, since Algorithm 2 untangles the chains in descending
order, this situation cannot occur.

What remains to be shown is that in the process of untangling the upper
chain Ci from the chains C1, . . . , Ci−1, when untangling a v-tangle, any other
v-tangles involving Ci either disappear or remain being a v-tangle.

Lemma 5. Suppose a v-tangle between Ci and Cj is removed by Algorithm 2,
where Cj is the upper chain. Any tangles between Cj and C� where � < j may
have been altered. However, the remaining tangles are still v-tangles.

Now we state our main theorem about the untangling process:

Theorem 1. A set of n points in the plane can be decomposed into a minimal
set of chains without tangles in O(n log n + kn) time, where k is the number of
chains.

4 Adaptive Orthogonal Range Search

First, observe that if the data points form a single monotonic chain, then the
answer to any query must be a contiguous interval of the ordered list of points,
and we can find it with a binary search. We can store such a data set in O(n)
space and answer queries in O(log n + m) time, where n is the number of data
points and m is the number of points returned by the query.

Now assume that as a preprocessing step the data points have been decom-
posed into a minimal number k of monotonic chains. A truly optimal decom-
position would require solving an NP-hard problem, but we can come within a
constant factor in O(n3) time with the algorithm of Fomin, Kratsch, and Nov-
elli, and that is good enough to preserve the asymptotic search time of our data
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structure [6]. The O(n3/2) partitioning algorithm of Yang, Chen, Lu, and Zheng
offers no guarantee of a minimal decomposition, but appears to come close in
practice and may be preferable in real applications [14]. In either case, once we
have a decomposition of the data points into chains, we separate the ascending
and descending chains, and treat the two directions separately, building a data
structure for each and running every query on both.

The two-direction minimization algorithms are used only to decide for each
point whether it will go into the ascending or descending structure. Having made
that decision, we run the algorithm of the previous section to find a minimal set
of untangled chains for each direction; doing so cannot increase the number of
chains further.

Without loss of generality, we describe the data structure for descending
chains here. The ascending case is symmetric. Let {C1, C2, . . . , Ck} be the set of
untangled descending chains, and let �i be the length of Ci. Let r = [x1, x2] ×
[y1, y2] be the query range.

We first find the set of chains that intersect r. If we store the chains ordered
from left to right as described in the previous section, we can find the first
chain to pass above the point (x1, y1) and the last chain to pass below the point
(x2, y2), and know that all chains intersecting the query range must be between
those two chains in the ordering. Evaluating whether a point is above or below
a chain can be accomplished by a simple binary search over the points in the
chain in O(log n) time, so with two binary searches over the chains we can find
the start and end of the range of chains that might intersect r, in O(log k logn)
time. Let k′ ≤ k be the number of chains in that subset.

For each of the k′ chains that might intersect r, we can do two more binary
searches to find the start and end of the interval of data points within the
chain, that are actually included in the query range. Note that because of the
monotonicity of the chains, this must be a contiguous interval. The time to do
these searches is O(log �i) for each of the k′ chains, and since

∑
�i = n, the time

for this step is O(k′ log(n/k′)).
The number of points m returned by the query also places a lower bound on

the running time simply because we must spend time writing them out. Adding
up the times gives the following lemma:

Lemma 6. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in O(log k logn+k′ log(n/k′)+
m) time, where m is the number of points returned and k′ ≤ k depends on the
query.

Observe that the above solution involves performing binary searches for the
same keys in separate ordered lists. Thus, we can use the technique of fractional
cascading [4] to speed up the query time and achieve the following result:

Theorem 2. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in either O(log n+k+m) time
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or O(log k logn + k′ + m) time, where m is the number of points returned and
k′ ≤ k depends on the query.

Proof. To check whether the query rectangle [x1, x2]× [y1, y2] intersects a given
chain Ci, it is sufficient to perform binary searches on the list of x-coordinates
(or y-coordinates) of the points on Ci using x1 and x2 (or y1 and y2) as search
keys. This also finds which edge, if any, of Ci intersects each edge of the query
rectangle. Therefore, we can report the points on Ci that are located in the query
range in O(log n + ki) time, where ki is the number of such points.

Then to answer orthogonal range search queries using our data structure, we
can perform two binary searches on the list of x-coordinates of the points on each
chain, and two binary searches on the list of y-coordinates for each chain. Thus,
we can store the sorted lists of x-coordinates and y-coordinates corresponding
to the monotonically increasing chains separately, and use the technique of frac-
tional cascading [4] to speed up the query time without increasing the asymptotic
space cost of our data structure. We augment the data structure for the mono-
tonically decreasing chains using the same approach. This yields a data structure
of linear space that supports orthogonal range search in O(log n + k + m) time.

The other result in the theorem can be achieved by locating the start and the
end of the range of chains that might intersect the query rectangle, and then
using fractional cascading to compute the answer starting from the uppermost
chain in this range. �	

The O(n3) preprocessing time may be improved to O(n3/2) (matching the un-
tangling step) in practical cases when the partitioning algorithm of Yang, Chen,
Lu, and Zheng gives acceptable results [14]. We can also make the data structure
of Lemma 6 implicit:

Corollary 1. A set of n points in the plane can be arranged as an array of n
coordinate pairs so that any orthogonal range query over this point set can be
answered in O(log k logn + k′ log(n/k′) + m) time with O(1) working space.

5 Conclusions

We have presented a new data structure for two-dimensional orthogonal range
search that is adaptive to the minimum number of monotonic chains that the
input points can be partitioned into. For data which is considered easy in this
sense, our data structure outperforms existing alternatives, either in query time
or space requirements. Furthermore, we show that our structure can be made
implicit, requiring only constant space in addition to the space required to encode
the input points.

As a contribution of independent interest, we show how to partition a set of
two-dimensional points into a minimal number of untangled monotonic chains.
This decomposition is a key element of our data structure, and could also be
useful in other geometric applications.
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Abstract. In this paper we consider the problem of efficiently constructing
geodesic t-spanners. We consider finding sparse spanners on the surface of a 3
dimensional polyhedron allowing for steiner vertices. If Steiner vertices are not
allowed, then we establish lower bounds on the maximum node degree, depend-
ing on the spanning ratio t and also the total number of vertices of the polyhedron
surface. We also consider the case of the surface of a convex polytope P with V
vertices. Using its vertex set P and Steiner points, we can construct a t-spanner
with a constant degree and weight O(MST (U)), where MST (U) is the mini-
mum spanning tree on the set U of vertices on convex polytope.

1 Introduction

Given an edge weighted graph G = (V,E,w), where V is the set of vertices,E is the set
of edges, and w is a weight function with w(e) be the weight of an edge e, let dG(u, v)
denote the shortest distance from node u to node v in graph G; let ω(G) be the sum of
the edge weights of edges in G. A subgraph H = (V,E′, w) of G, where E′ ⊆ E, is
called a t-spanner of graph G, if for any pair of nodes u and v, dH(u, v) ≤ t · dG(u, v).
The minimum t such that H is a t-spanner of G is called the stretch factor of H with
respect to G. An Euclidean graph is a graph where the weight of every edge (u, v) is
the Euclidean distance ‖uv‖ between its end-nodes. Given a geometric region Ω and a
set V of points in Ω, a geodesic graph is a graph where the weight of each edge (u, v)
with u, v ∈ V , is the geodesic distance from u to v in the region Ω.

For the case of geodesic spanners, our domain will be a 3-dimensional simplicial
polygonal surface P that is formed of m = O(n) triangles, and a set V of n nodes
on the surface P . While spanner construction has been well studied in general graphs
and in Euclidean spaces, this is the first study of constructing geodesic spanners on
a simplicial polygonal surface with some additional properties such as minimizing the
node degree and/or total edge length. Notice that a O(n3 logn) time construction of a t-
spanner (without degree or weight bounds) for a polyhedral surface using Steiner points
was implicitly studied in [10]. Another previous study of spanners involving geodesic
distances in a 2-dimensional planar domain with obstacles can be found in [8]. Geodesic
spanner graphs on the surface of the convex polyhedron P approximate the complete
geodesic graph on a set of nodes, U on P . The edges (u, v) have weight correspond-
ing to the geodesic shortest distance between u and v. In order to construct a spanner,
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we note that distances on the surface of a polyhedron could be stretched due to the
folds of the surface. To capture this effect we define geodesic dilation factor to measure
the difference between the distance on the geodesic surface and the Euclidean distance
between two points. We consider both non-convex and convex three dimensional poly-
topes (simplicial 2-complex) in this paper.

A greedy algorithm has been used to construct spanners for various graphs [5,13,6,7,
3]. Peleg and Schaffer [12] showed that, for any t > 1, there exists a graph G = (V,E)
with |V | = n and an edge weight, such that any t-spanner of this graph needs at least
n1+ 1

t+2 edges. Thus there are weighted graphs such that any t-spanner has weight at
least Ω(n

1
t+2ω(MST)) by letting the weight of each edge be 1. Althofer [1] proved

that the greedy method produces a sparse t-spanner with at most n1+ 2
t−1 edges; and

Regev [14] showed that more precisely it has at most n1+ 2
�k� + n edges if �k� is even,

and at most n1+ 2
�k	 + n edges if �k� is odd. For arbitrary weighted graphs, Chandra

et al. [3] showed that the greedy algorithm constructs a t-spanner of weight at most

(3+ 16t
ε2 )n

2+ε
t−1−ε ·ω(MST) for every t > 1 and any ε > 0. Regev [14] proved that the t-

spanner constructed by the greedy algorithm has weight at most 2e2 lnn·n 2
t−1 ·ω(MST)

when t ∈ [3, 2 logn + 1], and has weight at most (1 + 4 log2 n+2 log n
t+1−log n ) · ω(MST) when

t > 2 logn + 1, by studying the girth of the constructed t-spanner.
For geodesic spanners, we introduce geodesic cones and partition the space into

geodesic cones. Using this space partition we get the following results: We develop an
algorithm for computing a spanner graph for a set of nodes U ⊆ P on a 3-D polyhedral
surface P . Here P is the set of vertices of P . We construct a sparse t-spanner with
Steiner vertices from P with O(γ(P)n/ε) edges in time O(n2/ε+n3), where n = |P |
and ε > 0 is any small constant. Since this is the first result for constructing t-spanners
for geodesic graphs, we have not attempted to optimize the time complexity. Here γ(P)
is the dilation factor (defined later) of the polyhedron. We also prove that, there is a
polyhedral surface P and nodes’ placement of U , such that the maximum node degree
of any t-spanner, when no Steiner vertices are used in the spanner, is at least Ω(n1/t),
for t > 1. When t < 3, we show by example that the maximum node degree of any
t-spanner without using Steiner nodes for this example is at least γ(P). Notice that in
the worst case, γ(P) = Θ(n). We also show that traditional greedy methods cannot
build a t-spanner with degree bound o(n), for any t > 1.

For a surface P of a convex polyhedron, by using Steiner vertices, we develop an
algorithm to compute a t-spanner for a set of nodes U on the surface P with a constant
maximum degree and weight O(MST (U)), where MST (U) is the geodesic minimum
spanning tree on the set U of nodes on convex polytopes, where the distance between
two nodes is the geodesic distance between them.

2 Geodesic Spanners for Arbitrary Polyhedral Surfaces

2.1 Terminology

Assume that we are given a triangulated polyhedral surface P in three-dimension. Let
P be the set of all vertices and F be the set of all faces of P . Let U be a set of nodes
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on P . In this paper, we always assume that U ⊆ P . For any two nodes u, v ∈ U , we let
ΠP(u, v) be the shortest geodesic path on P between u and v; and let dP (u, v) denote
the geodesic distance between u and v on P . In general, given an edge weighted graph
G and u, v ∈ G, let dG(u, v) be the shortest distance between nodes u and v in G.

In this paper, we will focus on constructing spanners for the complete weighted graph
KP(U,E) on the nodes in U with weight function, dP : E → R+. A graph H =
(V,E), with U ⊆ V , is a geodesic t-spanner for U if dH(u, v) ≤ t ·dP(u, v) for every
pair of nodes u, v ∈ U . Here the weight of each edge xy in H is the geodesic distance
dP(x, y) between x and y on the surface P . The geodesic t-spanner H is said to use
Steiner vertices if U ⊂ V . The geodesic t-spanner H is said to be on U (or without
using Steiner vertices) if V = U . The geodesic t-spanner H is said to have size η if it
has at most η nodes and edges. A geodesic minimum spanning tree of a set of vertices
U on a surface P is the minimum spanning tree of graph KP(U,E).

Our algorithm to construct a geodesic t-spanner for KP(U,E) utilizes a new concept
called geodesic cones. Given a point u and a region R, we let Pu(R, d) be the set of
all points p in region R that are at geodesic distance dP(u, p) = d from node u. For
example, when R is a 2-D plane R2, then Pu(R, d) is a circle centered at u with radius d.
Geometric cones have been used widely to produce t-spanners in Euclidean space. An
important property of the geometric cone C, which was used in obtaining t-spanners,
is that for any two points p1, p2 of Pu(C, d), ‖p1 − p2‖ ≤ εd for a small constant
0 < ε < 1. For example, for 2D geometric cones with angle θ, for any two points p1,
p2 ∈ Pu(C, d), ‖p1 − p2‖ ≤ 2 sin( θ

2 ) · d.

Definition 1 (pairwise-ε-neighbor property). Given a surface P and the distance
metric dP , a set of points X is said to satisfy the pairwise-ε-neighbor property with
respect to a node u if, for any two points p1, p2 ∈ Pu(X, d), we have dP(p1, p2) ≤ ε ·d.

Given a surface P , a set X of points on P is called an ε-geodesic cone with respect
to (w.r.t.) a node u, termed C(u) , if the following two conditions are satisfied:
1. Pu(X, d) satisfies the pairwise-ε-neighbor property with respect to a node u, and
2. if x ∈ X , then all points on a geodesic shortest path dP(u, x) are in X .

Most of our results rely on constructing some special cone partition (or more precisely,
cone covering) of space around every node in P . Notice that here a geodesic cone
could be in a finite region. For any node u in the polyhedral surface P , let F(u) =
{F1(u), F2(u), · · · , Fp(u)} be the p triangular faces incident onto node u. For each
face Fi(u) = $xuy of F(u), let δi(u) be the radian value of the internal angle ∠xuy.
Let δ(u) =

∑
Fi(u)∈F(u) δi(u).

Definition 2 (Dilation Factor). The dilation factor γ(u) of a node u in the polyhedral

surface P is defined as γP(u) =
∑

i δi(u)
2π . We omit the subscript P if it is clear from

the context. The geodesic dilation factor, γ(P), of the polyhedral surface P , is defined
as γ(P) = maxu∈P γ(u).

The dilation factor is a measure of the change in length of a “circle” on the surface
of the polytope as compared to its length on a planar surface. When the surface P is
planar, e.g. a single planar face, its geodesic dilation factor is γP = 1. In general the
dilation factor of a surface could be large and depends on the structure of the surface.
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To determine geodesic shortest paths we will use the properties of these paths as
defined in Mitchell et al. [11].

2.2 Constructing t-Spanner Using Steiner Vertices

In this section, given a polyhedral surface P with a set of vertices P , a set of nodes
U ⊆ P and a parameter t > 1, we first present a method to construct a t-spanner
H = (V,E) using some Steiner vertices, i.e., U ⊆ V . Notice that here we will focus
on the case V ⊆ P , i.e., Steiner vertices must be a subset of P , where P is the set of
vertices used to define the polyhedral surface.

If we can use arbitrary Steiner nodes, we can easily get a t-spanner with the maxi-
mum degree bound 3. Thus, in the rest of the paper, we always assume that the Steiner
vertices in a t-spanner are restricted to the set P of vertices of the polytope. Observe
that when we compute the shortest geodesic path between a pair of nodes u and v, the
path found, often uses multiple line segments from different faces of the surface P . We
would like to clarify that the end-points of these segments are not considered as Steiner
nodes in this paper, although they are not from P .

Our method is to partition the space near every vertex u ∈ P by some ε-geodesic
cones. Consider a vertexu ∈ P and all the triangular faces, FP(u)={F1(u), F2(u), · · · ,
Fp(u)}, where Fi(u) is a triangle viuvi+1, where vp+1 is v1. We define �δ(u)/ε� cones
CP(u) = {C1(u), C2(u), · · · , C�δ(u)/ε�(u)}, where each of the cones has an angle at
most ε < π/3, where t(ε) = 1

1−2 sin ε
2

is the spanning ratio that can be achieved by

the first phase of our method. For the set of faces F(u), imagine that we cut the faces
F1(u) and Fp(u) along the segment uv1 and “unfold” all faces in F(u) sequentially
on F1(u), using successively the edges uvi, i = 1 . . . p − 1. To construct the required
cones we desire to construct rays with apex u on the faces F(u) such that when we un-
fold these faces, the angle between any two consecutive rays on the unfolded plane is at
most ε. Using the unfolding, the cones in C(u) are produced in the unfolded 2-d space
by dividing the surrounding unfolded region δ(u) (which could have angle arbitrarily
larger than 2π for non-convex polyhedron, and smaller than 2π for convex polyhedron)
using planar cones (sectors) with an angle at most ε, i.e., a cone, when unfolded, has a
shape of a sector. Observe that here a cone Ci(u) may contain several triangular faces
of F(u) inside. We can then fold the faces back and this will give us �δ(u)/ε� rays: two
consecutive rays define a cone. It is easy to show that (1) for any point x from F(u),
dP(x, u) = d(x, u); (2) for any two points x and y from F(u) that fall inside the same
cone and dP(x, u) < dP(y, u), we have dP(x, u) + t(ε) · dP(x, y) ≤ t(ε) · dP(y, u)
for t(ε) = 1

1−2 sin ε
2

when ε < π/3.

Note that here a cone Ci(u) only contains points from F(u) now. We later will show
how to extend the cones to other triangular faces on P by propagating each cone.

We next present our method to construct a geodesic t-spanner, without using Steiner
vertices, in phases:

1. Phase 1: t(ε1)-Spanner Construction. First, for every node u ∈ U , we construct
a geodesic cone partition, ΛP(u). The cone partition is achieved by a propagation
method which develops the cones starting with � δ(u)

ε1
� cones CP(u) on the faces

F(u) containing u. The process is detailed in procedure PropagateCones(u)
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for each node u ∈ U . The process is also repeated for Steiner vertices S of the
polyhedron encountered during the cone expansion from nodes in U , i.e., we run
procedure PropagateCones(u) for every node u of S and update S accordingly:
adding the encountered node v ∈ P to S if v 
∈ U . These new vertices are termed
Steiner vertices, denoted as S. Let U ′ be the union of U and S.

For each ε-geodesic cone with apex node u, we add a (directed) edge uv if v is
the closest node from P , i.e., first encountered node in P . This phase results in a
graph H ′(U ∪ S,A′) where A′ is the set of edges added. We will prove that H ′ is
a t(ε1)-spanner for U .

2. Optional Phase 2: Further Degree Reduction. The process described in this para-
graph is used to possibly further reduce the node degree. Again, we partition the
space around each node v, by cones of angle at most ε2.

Repeat the following step for each node v ∈ U ∪ S. In H ′(U ∪ S,A′), for
each node v, let I(v) be the set of incoming neighbors of node v. For all nodes in
I(v), build a tree rooted at node v. Let I0(v) be the set of nodes that already has
been processed. Initially, I0(v) = {v}. A directed edge (u, v), where u ∈ I(v), is
retained if u is the closest node in some cone of node v, and we add u to the set
I0(v). For each newly added node u in I0(v), recursively add directed edges xu
where x 
∈ I0(v) is the closest node to u in some cone of u.
Let the final structure be H ′(U ∪ S,E′).

3. Optional Phase 3: Further Edge Reduction. In this phase, edges in H ′(U∪S,A′)
(or H ′(U ∪ S,E′)) are pruned to create the graph H(U ∪ S,E) as follows: (1)
Sort the edges A′ in H ′(U ∪ S,A′) in decreasing order of the geodesic length,
e1, e2 . . . em′ . Let E = A′. (2) Eliminate edge ei from E if the edges in E \ ei

provide a path of length at most t · dP(u, v) for every pair of nodes u and v from
U , where t > 1 is the spanning ratio. (3) Eliminate unnecessary Steiner vertices,
where a Steiner vertex is unnecessary if it is not on the shortest path in H between
any pair of nodes in U .

The construction of the Geodesic Cone partition is given in Algorithm 1.
Observe that, in Algorithm 1, clearly point x(f(C, u)) has only two choices: either

it is some node v from P defining the original polyhedral surface, or it is inside some
segment vw where uvw is a face incident on u. Note that even if cone C contains
multiple triangular faces of F(u) inside, it is still possible that x(f(C, u)) is not one of
the vertices in faces F(u). Additionally, in Algorithm 1, the sequence FU of unfolding
is not necessarily unique, and we have to test all necessary sequences of unfolding.
After we unfold a triangle vwz, we should unfold both triangle vyz along the edge vz,
and the triangle zwq along the edge zw to find the closest vertex from P that is inside
the (extended) cone C. Here, either the vertex y or the vertex q, or both could be closer
to u than the vertex z. The actual unfolding of faces will use the continuous Dijkstra
method [11] as follows to define the procedure Unfold. For each cone C and each
vertex u, we maintain an event heap: the event is the edge e of face f that has a point,
denoted as x(f, c), that is closest to the node u. When we unfold a face f represented by
three vertices u, v, w along some edge, e = (u, v), it will possibly introduce two new
edges e1 and e2. We then add these two new edges to the heap based on the distance
dP(ei, u) to node u. We also add the distance to the vertex w. The top element of the



218 S. Kapoor and X.-Y. Li

Algorithm 1. PropagateCones(u)
.

1: Let CP(u) be �δ(u)/ε1� cones around u on the faces f ∈ F(u) containing u (each
cone has an angle at most ε1).

2: for each cone C in CP(u) do
3: For each face f = uvw inside the cone C, let uv′w′ be the portion of the face

that is completely contained inside C. Notice that here v′w′ could be a segment
of vw. Let x(f) be the point on the segment v′w′ that is closest from u, i.e.,
dP(x(f), u) = d(x(f), u) ≤ d(y, u) for any point y on the segment v′w′.
Let d = minf intersected by cone C,f∈F(u) dP(u, x(f)). Let f(C, u) (or simply f if
no confusion) be the face that has the point x(f) such that dP(u, x(f)) is mini-
mized among all faces intersected by C, i.e., dP(u, x(f(C, u))) = d.

4: if x(f(C, u)) is a vertex v from P then
5: Add v to S and add a directed edge (u, v) to the structure H ′(U ∪ S,A′).
6: If v is not marked processed, run procedure PropagateCones(v).
7: else
8: Let e be the edge that contains the point x(f(C, u)) and f be the face f(C, u).

Extend cone C across face f , adjacent along e and unfolded onto the sequence
FU of unfolded faces by procedure Unfold. Note: In this procedure we keep
unfolding faces until the closest point to u among all points on segments defin-
ing polyhedral surface P , say x(C, d), is a vertex z from P . Then add an edge
uz and update geodesic distance to z.

9: end if
10: end for
11: Mark node u processed.

heap is always the edge or vertex that is closest to the vertex u. Let e be the element
in the top of the heap. We process the top event represented by e by unfolding the face
adjacent to e as defined above. If the top element of the heap is a vertex v of P such
that the distance dP(u, v) ≤ dP(u, e′) for every element e′ in the heap, the procedure
returns v.

We can prove: By choosing ε1 = ε2 = ε for some small value ε, we have the
following lemma.

Lemma 1. The graph H ′(U ∪ S,E′) after degree-reduction procedure is a t-spanner
with a maximum node degree O(min(n, (γ(P)/ε)2)) where t = ( 1

1−2 sin(ε/2) )
2.

Lemma 2. Our algorithm constructs a t-spanner H(U ∪ S,E) in O(n2/ε + n3) time.

We can construct an example surface and nodes placement (see Figure 1 for illustration)
such that for some small enough t, a t-spanner (for some constant t) will have the
maximum degree Ω(γ(P)) where γ(P) = Θ(n) is the dilation factor of the surface.
The basic idea of the example is as follows: There is a set U of n nodes u1, u2, · · · ,
un. There are two triangular faces uiu0vi and viu0ui+1 between ui and ui+1 such that
the geodesic distance between ui and ui+1 is larger than (t − 1) · d + η, for t < 3,
i ∈ [1, n − 1], for a small constant η > 0. Actually, we can place these two triangular
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faces uiu0vi and viu0ui+1 such that the geodesic distance between ui and ui+1 is 2d−δ
for any 0 ≤ δ < 2d. A node u0 at distance d from these nodes will then have to be
connected directly to all these nodes to ensure that it is a t-spanner. Observe that, when
t ≥ 3, the preceding example does not imply that we have to connect u0 with every
node ui, i ≥ 1. This is because the geodesic distance between ui and uj is at most
dP(ui, u0) + dP(u0, uj) ≤ 2d. In this case, we can omit some edges u0ui without
violating the t-spanner property for t ≥ 3.

viu0

ui

ui+1

Fig. 1. An example of a surface and the
set of nodes U = {u0, u1, · · · , un}. Here
u0vi defines a valley between u0ui and
u0ui+1, d = dP(ui, u0).

We further study reducing the weight
of the structure. Chandra et al. [3] proved
that for any metric space M , and every
n-vertex complete graph G on this met-
ric, if (1) there is an O(g(n)) time algo-
rithm that builds a t-spanner for G with
O(f(n)) edges, where f(m)/2 ≥ f(m/2)
and g(m)/2 ≥ g(m/2) for any m > 0,
and (2) there exists an O(h(n)) time algo-
rithm that can build a spanning tree T for G
with weight O(1)ω(MST), then there exists
an O(max(g(n), h(n), n logn)) time method
which builds a (t + ε)-spanner with O(f(n))
edges and weight O(f(n)

n logn)ω(MST). No-
tice that for geodesic metric, we have meth-
ods with f(n) = O(γ(P)n) and g(n) =
O(n3 + n2/ε). Our method for constructing
a structure H ′ implies the following lemma.

Theorem 1. A geodesic t-spanner can be constructed for any polyhedral surface P
such that the total weight of the structure is O(γ(P) logn)ω(MST). The construction
requires g(n) = O(n2/ε) time.

Observe that with the optional degree-reduction phase 2, the running time of the
method becomes g(n) = O(n3 + n2/ε). Notice that the method by Chandra [3]
cannot preserve the degree bound of the final structure. We leave it as a future
work to design a t-spanner structure with bounded degree O(γ(P)), and total weight
O(γ(P) logn)ω(MST), or study whether it is possible to construct a t-spanner with
weight O(γ(P) + logn) ω(MST).

2.3 Geodesic Spanners without Using Steiner Vertices

We now study, given the polyhedral surface P (and its set of vertices P ), a set of nodes
U ⊆ P , and a number t > 1, how to construct a t-spanner H = (U,E) without us-
ing Steiner vertices. Our objective is to construct a t-spanner with small node degree
and small total edge weight. A more general question is following: given a complete
weighted graph G with positive edge weights satisfying the triangular inequality, con-
struct a t-spanner H ⊆ G with small maximum degree and small total edge weight
ω(H). Surprisingly, we could not find any results, except [9], in the literature that pro-
vide any degree bound on a t-spanner for an arbitrarily weighted graph.
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We first show by example that, for any algorithm that constructs a t-spanner, there are
inputs such that the constructed t-spanner will have a maximum degree at least Ω(n

1
t )

for nodes placed on a surface, where n is the size of U .

Lemma 3. For any t > 1, there is a surface P on a set of nodes P , and a set of nodes
U ⊆ P , such that the maximum node degree in any t-spanner H = (U,E) without
using Steiner vertices is at least (n

2 )
1
t , where n = |U |. For any t > 1, there is a surface

P on a set of nodes P , and a set of nodes U ⊆ P , such that the weight of any t-spanner
is at least n

1
t+2 /2 times of MST.

When t < 3, the placement the triangles uiu0vi, 1 ≤ i ≤ n−1, and triangles viu0ui+1,
1 ≤ i ≤ n− 1, ensures that the geodesic distance dP (ui, ui+1) is 2dP(u0, ui)− δ (for
small 0 < δ < (3 − t)dP(u0, ui)) and dP(u0, ui) = dP(u0, uj) for i 
= j. Thus, we
have to connectu0 to every nodeui since dP(u0, uj)+dP(uj, ui) ≥ 3dP(u0, ui)−δ >
tdP(u0, ui) for every node uj and t < 3.

Lemma 4. For any t with 1 < t < 3, there is a surface P on a set of nodes P , and a
set of nodes U ⊆ P , such that the maximum node degree in any t-spanner H = (U,E),
without using Steiner vertices or all Steiner vertices are restricted to P , is at least
γ(P) = Θ(n), where n = |U |.

Thus, generally, to get a t-spanner, which does not use any Steiner vertices or can only
use Steiner vertices from P , with a maximum node degree o(n), we must focus on
t ≥ 3. In this case, Lemma 3 shows that the maximum degree is at least Ω(n

1
t ).

3 Geodesic Spanners for Convex Polytopes

In this section, we study constructing geodesic spanners for a set of nodes on a convex
polytope, and the distance is measured by geodesic distance. Our approach is to ap-
proximate a convex polytope by a constant number of 2D planar patches, similar to [4].

Let P be a convex polytope, with a set of polygonal faces F . For any subset F ⊆ F
of faces, let N (F ) = {Nf | f ∈ F} be the set of normals to the faces where Nf is the
normal to face f . Consider the angular representation of the normals: each normal N is
represented by a pair (θN , φN ) in the Spherical coordinates system, where θN , φN ∈
[0, 2π] are the angle of the normal vector from the z-axis (called the colatitude or zenith)
and the angle from the x-axis. The basic idea of our method for building the spanner is
to partition the convex polygonal surface P into a constant number of convex patches
such that each patch is almost flat (i.e., the difference between the normals of any two
faces in the patch is a small constant). Note that the patches we construct may overlap.

Definition 3. A δ-patch of P is a set of faces, F ⊆ F such that (1) F forms a continu-
ous region; (2) the patch is flat, i.e., Ψ(F ) = supf,g∈F max

(
|θNf

− θNg |, |φNf
−φNg

∣∣)
≤ δ, i.e., the difference between any two normals is bounded by a constant.

A δ-partition of P , denoted as ΔP , is a partition of the set of faces F such that each
partition is a δ-patch. Here a δ-patch is not necessarily convex.
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Definition 4. A δ-planar projection, Ξ(F ) of a δ-patch F is the projection of points in
F onto a plane, P , with normal NP such that NP ∈ N (F ).

A linear convex patch G is a connected closed subset of points with a piecewise linear
boundary such that its δ-planar projection Ξ(G) is convex.

Definition 5. A convex extension E(F ) of a δ-patch F is a minimal piece-wise linear
convex patch, a collection of polygonal faces, that contains F with the property that
Ψ(E(F )) − Ψ(F ) ≤ ε.

It is not difficult to show that the following property holds for a convex surface P .

Property 1. Low-distortion projection property: Let u and v be two points on a δ-patch,
F . Then dP(u, v) ≥ d(u, v) ≥ dP(u, v)/(1 + 2 · δ) where d(u, v) is the Euclidean
distance between u and v on Ξ(F ) and dP(u, v) is the geodesic distance on F .

3.1 Algorithm

Our method for constructing a spanner for convex polytope is as follows:
1. Find a δ-partition, denoted as ΔP = {F1, F2, · · ·Fp}, of P . Here Fi ⊆ F is a

subset of faces that form a δ-patch. Then we construct a convex-extension E(ΔP)
as follows. For each δ-patch Fi in the δ-partition, we perform the following steps:
(a) Find a δ-planar projection, Ξ(Fi) of Fi to some plane with a normal N ∈

N(Fi).
(b) Find the convex hull CH(Ξ(Fi)) of Ξ(Fi).
(c) Find the inverse of the projection, i.e., find E(Ξ(Fi)) such that its δ-planar

projection is CH(Ξ(Fi)).
2. For every δ-patch in ΔP do the following

(a) For each u ∈ UF , construct a ε-cone partition of the surface as in the previous
section 2. Let C(u) be the cone partition produced. Note that since the differ-
ence between normals is small, a simple method of projecting cone partitions
of a plane suffices in this case.

(b) Let UF be the set of all nodes in F For node u ∈ F , let I(u) be the set
of the intersection segments of all cones with the boundary ∂E(F ). In each
intersection region C ∩ ∂E(F ) where C ∈ C(u), we add a Steiner point if
the cone C that created the region contains a shortest path from the apex, say
u, of the cone to some other node v 
∈ UF , i.e., outside of the δ-patch. Note
that this Steiner point is also added to the neighboring δ-patch, which the cone
C intersects. Let the set of added Steiner points be SF (u). Let the set of all
Steiner points on F be SF = ∪u∈UF SF (u).

(c) Find a projection Ξ(F ) of F to some hyperplane perpendicular to the normal
of a face in F .

(d) Find an Euclidean t-spanner graph HF (Ξ(VF ), Ξ(AF )) of a constant maxi-
mum degree and of weight O(MST (VF )) for the set of vertices, Ξ(VF ), in
Ξ(F ) where VF = UF ∪SF . Ξ(AF ) is the set of edges created in the spanner
graph. This can be done by several methods in the literature [2].
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3. Let the spanner be H(U,A) = ∪F∈ΔP HF (VF , AF ), where each edge (u, v) in AF

corresponds to an edge (Ξ(u), Ξ(v)) and is weighted by shortest geodesic distance
between u and v.

It remains to determine a δ-partition and the convex extensions. Given the range of
angles θ and φ we do the following

1. Partition the domain [0, 2π] of θ and φ equally into 2π/ε ranges of size ε, indexed
by (i, j), 1 ≤ i, j ≤ 2π/ε which indicates that θ ∈ [(i − 1) · ε, i · ε] and φ ∈
[(j − 1) · ε, j · ε].

2. For every tuple of ranges (i, j) let F = ∪f such that θNf
∈ [(i − 1) · ε, i · ε] and

φNf
∈ [(j − 1) · ε, j · ε].

The preceding approach clearly creates a constant number of δ-patches because of the
monotonicity of the normals for a convex polytope. The δ-patch F is obtained from the
convex hull of points on F on the polyhedron P . Note that our spanner uses Steiner
points.

Theorem 2. H(V,A) is a t-spanner and requires O((1/ε)2(n2 logn+TE(n))) steps to
constuct where TE(n) is the time required by any algorithm to compute a 2-dimensional
t-spanner.

Notice that TE(n) = O(n log n) for any d-dimensional nodes. We also observe that
our method of constructing t-spanner also works for any d-dimensional convex surface
(where the cone must be small enough with an angle O(ε) with (1 + ε)d < t).
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Abstract. We study the problem of approximating a set of weighted
planar points by a step function, and the problems of approximating
non-weighted and weighted planar points by a (more general) piecewise
linear function. We either improve the previously best-known results or
give the first-known results for these problems. Our algorithms are based
on interesting and nontrivial geometric techniques and data structures,
which may find other applications. Further, we present the first-known
results for the 3-D versions of the step function approximation problem.

1 Introduction

Approximating a set of points by a functional curve or surface in the d-D space
is a fundamental topic in computational geometry. It finds applications in many
areas, such as cartography, GIS, machine learning, image processing, database,
etc. Different error metrics, constraints, and objective functions give rise to a
large number of variations of the problem. For each variation, based on the opti-
mization criteria, two problem versions, min-# and min-ε, are often considered
in the literature. The definitions of the problems we study are given as follows.

Let P = {p1, p2, . . . , pn} be the input point set, with pi = (xi, yi, zi) (in the
2-D case, every zi = 0). The vertical distance between any point pi ∈ P and an
approximating functional curve (or surface) f is defined as d(pi, f) = |yi−f(xi)|
in 2-D and |zi−f(xi, yi)| in 3-D. The uniform metric of error, also known as the
L∞ or Chebychev metric, is defined as e(P, f) = maxpi∈P d(pi, f). All problems
in this paper use the uniform metric. The size of f is the total number of line
segments in 2-D (or faces in 3-D) of f . Formally, the min-# and min-ε problem
versions are defined as follows.

min-#: Given an error tolerance ε ≥ 0, find an approximating function f under
the specified constraints such that e(P, f) ≤ ε and the size of f is minimized.
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Fig. 1. (a) A step function. (b) A piecewise linear function.

min-ε: Given an integer k > 0, find an approximating function f under the
specified constraints such that the size of f is no bigger than k and the error
e(P, f) is minimized.

Depending on different constraints on f , there are several problem variations.

Planar points approximation by a step function. Given P in 2-D, the
sought f is a step function, represented by a sequence of horizontal segments
(see Fig. 1(a)). This problem is motivated by query optimizations and his-
togram constructions in database management systems [12,13,14,17,18]. In
the paper, we use SF to denote this problem.

Planar points approximation by a piecewise linear function. Given P
in 2-D, f is piecewise linear and any two consecutive line segments of f
need not be joined (see Fig. 1(b)). This problem often arises in regression
analysis and also in the histogram construction but in the steaming model
[2]. Denote this problem by PF.

Weighted versions. Each point pi ∈ P has a weight ui ≥ 0 and d(pi, f) is
defined as ui ·|yi−f(xi)|. The weighed versions are motivated by applications
with data of non-uniform significance [13]. Denote the weighted versions of
SF and PF by WSF and WPF, respectively.

3-D versions. A step function in 3-D can be represented by a rectilinear surface
consisting of rectangular faces parallel to the xy-plane, such that any line
parallel to the z-axis intersects at most one such face. Denote the 3-D versions
of SF and WSF by SF3 and WSF3, respectively.

The min-# versions of all above 2-D problems have been solved in linear time,
and so has the min-ε version of SF. In this paper, we study the min-ε versions
of the other three 2-D problems, i.e., WSF, PF, and WPF, as well as the min-#
and min-ε versions of the two 3-D problems. By the way, our work on other
extended problem variations is given in a companion paper [6].

To simplify the exposition, we assume all input points are in non-degenerate
positions. Namely, no two points in P have the same x-coordinate in the 2-D
problems and no two points in P have both the same x-coordinate and the
same y-coordinate in the 3-D problems. In all 2-D problems, unless otherwise
stated, we assume that the input points, P = {p1, p2, . . . , pn}, are already given
sorted in increasing x-coordinates. We use Pij (i ≤ j) to denote the subset of
consecutive points pi, pi+1, . . . , pj and use wij to denote the minimum error for
approximating all points in Pij by one line segment under the corresponding
function constraints.
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1.1 Related Work

The SF problem was studied in [7], which solved the min-# version in O(n)
time and gave an O(n2 logn) time min-ε algorithm. Later on, the min-ε SF
solution was improved in [13,22,26], and was eventually solved optimally in O(n)
time in a recent paper [9]. The algorithm in [9] is based on a more general
formulation on the path partition problem [10]. The WSF min-# problem was
solved in O(n) time [18]. Its min-ε version was solved in O(n log n + k2 log6 n)
time [13] and O(n log4 n) time [9], respectively; both these min-ε algorithms use
a data structure developed in [13] to compute each wij in O(log4 n) time, after
O(n log n) time preprocessing.

The WPF min-# problem can be modeled as the straight line fitting problem
(i.e., determining the minimum number of straight lines piercing each of n given
data ranges), which was solved optimally in O(n) time [24]. As a special case of
WPF, the PF min-# problem can also be solved in linear time. No previous work
specifically on the min-ε problems of either PF or WPF is found. However, for a
problem related to PF, called the polygonal fitting problem, any two consecutive
line segments of the approximating curve are required to be joined at their ends.
This problem and its variations have been studied extensively. An O(n) time
min-# algorithm and an O(n2 logn) time min-ε algorithm were first given [15].
The min-ε algorithm was improved to O(n2) time [27] and further to O(n log n)
time [11]. The results on a more restricted case, in which the vertices of the
approximating curve are constrained to be a subset of the input point set or the
set of vertices of the input curve, can be found in [25].

SF3 and WSF3 can be modeled as certain variants of the rectangle tiling
problem [1,19]. But we are not aware of any previous work on such tiling variants.

1.2 Our Contributions

We develop two high-level algorithmic frameworks for the min-ε versions of the
three 2-D problems, WSF, PF, and WPF. Each framework, which consists of
a set of computational components, is applied to every problem. For each indi-
vidual problem, based on its specific geometric properties, we design different
data structures and procedures for carrying out the major components of the
corresponding algorithmic framework. Our data structures may be of indepen-
dent interest and find other applications. Specifically, we solve the WSF min-ε
problem in O(min{n log2 n, n logn + k2 log2 n

k log2 n}) time, which improves the
O(n log4 n) time result in [9] and the O(n log n + k2 log6 n) time result in [13];
for the PF and WPF min-ε problems, we give their first-known results: The
two problems are solved in O(min{n logn, n+k2 log2 n

k logn log logn}) time and
O(min{n log3 n, n logn + k2 log2 n

k log3 n}) time, respectively.
For the 3-D problems, we prove that both the min-# and min-ε versions of

SF3 and WSF3 are NP-hard. We also prove that the min-ε problems of both SF3
and WSF3 cannot be approximated with a factor smaller than 1.5 in polynomial
time (unless P = NP). Furthermore, we present polynomial time 2-approximation
min-# algorithms for SF3 and WSF3. Due to the space limit, our results on the
3-D problems are in the full paper [5].
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2 Algorithmic Frameworks

In this section, we present the two high-level algorithmic frameworks F1 and F2.
The first framework F1 is a general formulation of the path partition algorithm

[9,10]. Let θ(i, j) be a function for any two integers i and j with 1 ≤ i ≤
j ≤ n such that θ(i, j) ≥ 0, and θ(i, j) = 0 when i = j. Define the problem
of MIN-MAX PARTITION(θ) as follows: Partition the (integer) interval I =
[1, 2, . . . , n] into k subintervals I1, . . . , Ik, where each subinterval Ii consists of
consecutive integers from li−1 + 1 to li (with l0 = 1 and lk = n), such that
max1≤i≤k θ(li−1 + 1, li) is minimized. Suppose θ has the following properties:
(1) θ is non-decreasing, that is, θ(i, j) ≤ θ(i′, j′) for 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n,
and (2) after an O(π(n)) time preprocessing, for any integer pairs i ≤ j, θ(i, j)
can be computed in q(n) time. Then based on the results in [9], the MIN-MAX
PARTITION(θ) problem can be solved in O(π(n)+n ·q(n)) time. For each of the
three 2-D problems, if we let θ(i, j) = wij , then it is easy to see that θ(i, j) = 0
when i = j and θ is non-decreasing. Therefore, the following lemma holds.

Lemma 1. For each of the three 2-D problems, if there is a data structure for
queries wij with time bounds O(π(n), q(n)), then its min-ε version can be solved
in O(π(n) + n · q(n)) time.

The second framework F2 relies on parametric search, in which we use an im-
proved (after preprocessing) min-# algorithm as the “‘master” algorithm. We
give our improved min-# algorithm in Lemma 2, and then present F2. For the
time bound below, note that O(k log n

k ) ≤ O(n) for any k ≤ n.

Lemma 2. For any min-# problem, if there is a data structure of O(π(n), q(n))
time for queries wij, then it is solvable in O(q(n) · k∗ log n

k∗ ) time, where k∗ is
the size of the sought optimal approximating function for the given error ε.

Proof. For the given error tolerance ε, by using the wij query as the “probing”
mechanism, our min-# algorithm determines for any point pi, the rightmost
point pj such that i ≤ j and wij ≤ ε (i.e., the points from pi to pj can be
approximated by one line segment under the specified constraints). Then the
algorithm, starting at p1, repeatedly finds the next line segment in a greedy
fashion. If the i-th segment (1 ≤ i ≤ k∗) approximates ni points, then computing
that segment takes O(q(n) log ni) time by using exponential search. Hence, the
min-# algorithm runs in O(q(n)

∑k∗

i=1 logni) time, which is O(q(n) · k∗ log( n
k∗ ))

due to the fact that
∑k∗

i=1 logni ≤ k∗ log( n
k∗ ).

Our parametric search uses the above min-# algorithm as the master algorithm.
Given k > 0, our goal is to compute the smallest error ε∗. Suppose in the
master min-# algorithm, the current line segment starts at pi. When sweeping
rightwards, for any encountered point pj (i < j), we need to decide whether
pj can be approximated by the current line segment based on the size relation
between wij and ε∗ (e.g., wij ≤ ε∗ or not). Although the value of ε∗ is not yet
known, we can use an indirect way to determine this size relation, as follows.
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Given an error ε, let F (ε) denote the size of an optimal function under the
specified constraints to approximate P . The size relation between wij and ε∗

can be decided by the values of k and F (wij). If F (wij) > k, then it must be
wij < ε∗. If F (wij) ≤ k, however, then either wij = ε∗ or wij > ε∗ holds. If
wij = ε∗, then the algorithm can stop with ε∗ = wij ; otherwise, pj should not
be approximated by the current line segment and a new segment should start at
pj . To determine whether wij = ε∗ or wij > ε∗, we use the lemma below with
the proof omitted.

Lemma 3. An error ε is ε∗ if and only if F (ε) ≤ k and F (ε − δ) > k for any
δ > 0.

Given an error ε, to compute the value of F (ε), we resort to our improved min-#
algorithm in Lemma 2. To determine whether F (ε − δ) > k for any δ > 0, we
only need to modify the min-# algorithm in Lemma 2 slightly: It computes an
approximating function f with e(P, f) < ε instead of e(P, f) ≤ ε. Furthermore,
since we only need to know the size relation between F (ε) (resp., F (ε− δ)) and
k, both algorithms can stop whenever the current number of line segments is
larger than k. Thus, after wij is computed in O(q(n)) time, we can determine
the size relation between wij and the unknown ε∗ in O(q(n) · k log n

k ) time. As
the analysis in Lemma 2, using exponential search, our min-ε algorithm takes
O(q(n)k2 log2 n

k ) time to obtain the optimal solution.

Lemma 4. For each of the three 2-D problems, if there is a data structure for
the wij queries with time bounds O(π(n), q(n)), then its min-ε version can be
solved in O(π(n) + q(n)k2 log2 n

k ) time.

3 Data Structures for Major Computational Components

In this section, we present our data structures for the major components for
each 2-D problem, i.e., the 2-D sublist LP queries for WSF, the 3-D sublist LP
queries for WPF, and the vertical hull width queries for PF.

3.1 2-D Sublist LP Queries for Problem WSF

For WSF, the data structure for each wij query in [13] (also used in [9]) takes
O(log4 n) time after an O(n log n) time preprocessing. We develop an improved
data structure with O(n log n, log2 n) time. As a result, both the min-ε algorithms
in [9,13] are improved by a factor of O(log2 n) time.

We model this query problem in a more “natural” way. Let each point pt =
(xt, yt) ∈ P with a weight ut ≥ 0. For a point set Pij , we first show that our goal
is to find an approximating function y = y∗ such that maxi≤t≤j(ut|yt − y∗|) is
minimized and that the sought wij is the minimized value of maxi≤t≤j(ut|yt −
y∗|). Suppose we use a function y = y′ to approximate Pij and ε is its error.
Then for each point pt = (xt, yt) with weight ut in P , we have two constraints:
ut(yt − y′) ≤ ε and −ut(yt − y′) ≤ ε. Consider a 2-D coordinate plane P with
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Fig. 2. (a) The black point is p∗. (b) A query (i, j). (c) L intersecting convex chains.

the y′ value as its x-axis and the ε value as its y-axis. Then each point in P
gives rise to two halfplanes in the plane P . It is easy to see that if p∗ = (y∗, ε∗)
is the lowest point in the common intersection of the 2(i − j + 1) halfplanes
for Pij , then y = y∗ is the optimal approximating function and wij = ε∗. In the
example of Fig. 2(a), each point of P is associated with a “cone” that is bounded
by two halflines (the parts below the x-axis are not drawn), i.e., defined by the
two constraints for that point. Thus, we are considering the following problem:
Given a set of upper halfplanes H = {hi | 1 ≤ i ≤ n} in the plane in an arbitrary
order, compute the lowest point p∗ in the common intersection of all halfplanes
in Hij = {ht | i ≤ t ≤ j} specified by a query q(i, j). We call it the 2-D sublist
LP query problem. Clearly, answering such a 2-D sublist LP query also answers
the query wij for WSF. An interesting technique, which we refer to as binary
search on sorted arrays, is used repeatedly in this paper. The following result
can be obtained by using similar techniques as in [21].

Lemma 5. Given m arrays Ai, 1 ≤ i ≤ m, each containing O(n) elements in
sorted order, a sought element δ in A = ∪m

i=1Ai can be determined in O((m +
T ) log(nm)) time, where O(T ) is the time taken by one call to a decision proce-
dure Π which, given any value a, can report a ≤ δ or a > δ.

For ease of presentation, we first give a basic data structure in Lemma 6 with time
bounds O(n log n, log3 n), and then apply the technique of fractional cascading
[4] for further improvement.

Lemma 6. After O(n log n) time preprocessing, any wij can be computed in
O(log3 n) time.

Proof. For the given halfplane set H , we build a complete binary tree T whose
i-th leaf stores the halfplane hi. Each internal node v of T is associated with the
(convex) common intersection chain Cv that bounds the common intersection of
all halfplanes stored at the leaves of the subtree rooted at v. Each Cv is stored
in an array Av in increasing x-coordinates. Thus, in a bottom-up fashion, T can
be built in O(n log n) time and space.

To answer a query q(i, j), we first locate the lowest common ancestor (LCA)
w of leaves i and j in T in O(1) time [16]. By following the paths in T from w to
i and to j, we can obtain O(log n) arrays representing O(log n) common inter-
section chains which together define the common intersection of all hyperplanes
in Hij (in Fig. 2(b), the arrays we need are stored at the black nodes). Denote
the sets of these O(log n) chains and arrays by C(i, j) and A(i, j), respectively.
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Since the elements in each array of A(i, j) are in increasing x-coordinate order,
to find p∗, we perform a binary search on these sorted arrays of A(i, j) (for
l = O(log n) chains), using Lemma 5. The decision procedure Π for this LP
problem works as follows. For a given value δ, Π first computes, for every chain
Ct ∈ C(i, j) (1 ≤ t ≤ l), the intersection point qt of Ct and the vertical line L:
x = δ. Using the point set Q = {q1, . . . , ql} and the local information around
each point qt on Ct, we can decide (as in [8]), in O(l) time, whether p∗ is at
the highest point in Q, and if not, p∗ lies on which side of the line L. Figure
2(c) gives an example in which p∗ lies to the right of L. If a binary search is
performed on each Ct to locate the point qt, then computing the set Q takes
O(l logn) = O(log2 n) time, which is the dominating time of the procedure Π .

Using the above procedure Π , p∗ can be obtained from the chains Ct by
applying Lemma 5. When the chains Ct have altogether O(log n) edges left, we
simply use a linear time LP algorithm [8] to find p∗, in O(log n) time.

Because there are O(log n) sorted arrays At, |A(i, j)| = O(n), and the time
of the procedure Π is O(T ) = O(log2 n), computing p∗ (and thus wij) takes
O((T + logn) logn) = O(log3 n) time.

To improve the query time, an immediate target is the O(log2 n) time decision
procedure Π on the O(log n) sorted chains Ct. Here, the dominating cost is at
computing, for each chain Ct, its intersection with a vertical line L. A useful
property is that the O(log n) chains Ct are organized along two ancestor-to-
descendant paths in the tree T . This allows us to cast the computation of the
intersections between L and the Ct’s as an iterative search problem and thus
handle it by the fractional cascading technique [4]. In the tree T of Lemma 6,
a sorted array (for a Ct) is associated with each internal node. Using T as a
catalog graph defined in [4] (of a total size O(n log n)) with a locally bounded
degree 3, by Theorem 2 in [4], we can build a data structure on T in O(n log n)
time and space which enables us to search for the intersection between L and
the first chain (say) C1 in O(log n) time, and the subsequent intersections in
O(1) time per chain. Therefore, all intersections between L and the O(log n)
Ct’s are obtained in O(log n) time. Consequently, the time bound of the decision
procedure Π becomes O(T ) = O(log n). This gives us the following result.

Theorem 1. The time complexity of our data structure for the 2-D sublist LP
queries is O(n log n, log2 n).

By combining Theorem 1 with Lemmas 1 and 4, we have the following result.

Theorem 2. Given k > 0, the min-ε version of WSF can be solved in O(n log2 n)
time by the framework F1, and in O(n logn+k2 log2 n log2 n

k ) time by the frame-
work F2, respectively.

3.2 3-D Sublist LP Queries for Problem WPF

For WPF, after a similar modeling as in the 2-D case, the problem of computing
wij ’s can be modeled to the following problem: Given a set of upper halfspaces,
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H = {hi | 1 ≤ i ≤ n}, in 3-D in an arbitrary order, a query q(i, j) finds the lowest
point p∗ in the common intersection of all halfspaces in Hij = {ht | i ≤ t ≤ j}.
We call this the 3-D sublist LP query problem, and derive a data structure for
answering each query in O(log3 n) time with an O(n log n) time preprocessing.
Note that this problem can be viewed an extension of the 2-D sublist LP query
problem, but the techniques of the solution are much more sophisticated.

The first step of our preprocessing is to build a complete binary tree T for
the halfspace set H , whose i-th leaf stores hi and each internal node v stores
a convex polyhedron Sv that bounds the common intersection of all halfspaces
stored at the leaves of the subtree rooted at v. We use the doubly-connected-
edge-list (DCEL) data structure [23] to represent each Sv. T is built in the
bottom-up fashion. At an internal node v, from the two DCEL’s representing
the two polyhedra stored at v’s two children, using Chazelle’s algorithm [3], we
compute the DCEL representing the common intersection of these two polyhedra
in linear time. Since |Sv| = O(m), where m is the number of leaves of the subtree
rooted at v, all Sv’s in T can be constructed in totally O(n log n) time. Further,
to facilitate our query procedure, for Sv stored at each node v, in addition to its
DCEL, we also represent it by Kirkpatrick’s hierarchical data structure for point
location [20], denoted by KHv. We triangulate each face of Sv (and also KHv)
in O(|Sv |) time. Note that each KHv consists of O(log |Sv|) levels of triangular
subdivisions [20]. Since every KHv can be produced from Sv in O(|Sv |) time
[20], the total time for building the entire tree T is O(n logn).

Given a query q(i, j), let w be the LCA of the leaves i and j in T . By following
the paths from w to i and to j in T (see Fig. 2(b)), we obtain O(log n) nodes
such that the common intersection C of the polyhedra stored at these nodes is
the common intersection of all halfspaces in Hij . Our goal is to find the lowest
point p∗ in the common intersection C of these O(log n) polyhedra.

Denote by S the set of these O(log n) polyhedra and let h(n) = |S|. For each
polyhedron Si in S, we also use Si to denote its corresponding data structure
KHi. Let g(n) = O(log n). For every Si, denote its j-th level subdivision by Sij ,
1 ≤ j ≤ g(n). Then Si,g(n) = Si and |Si1| = O(1). Divide the level sequence of
Si into level blocks such that each block consists of (log logn − log log logn)/4
consecutive levels. The number of level blocks is l(n) = 4g(n)

log log n−log log log n . For
every Si, denote each its block by BLij , 1 ≤ j ≤ l(n). Clearly, Si1 ∈ BLi1
and Si,g(n) ∈ BLi,l(n). It follows from [20] that every triangle at the lowest
level (i.e., the level with the smallest index) of the j-th block can intersect at
most I(n) = d

1
4 (log log n−log log log n) triangles at the lowest level of the (j + 1)-

th block, where d is a constant whose value is upper bounded by 11. Thus
I(n) = O(2log log n−log log log n) = O( log n

log log n ).
We briefly describe the basic idea of the query procedure, and leave the details

in the full paper [5]. Starting from the first block BLi1 of every Si, in each
iteration, our idea is to find, at the lowest level of each block BLij , O(1) triangles
to one of which the sought point p∗ belongs. Of course, we must do so without
knowing where p∗ actually locates. Here we say p∗ belongs to a triangle t or
t contains p∗ if the projection of p∗ is in the projection of t on the xy-plane.
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After O(l(n)) iterations, for every Si in S, we reach the last level Si,g(n), which
is Si itself, and obtain O(1) triangles in Si containing p∗. In other words, we
find O(log n) triangles from all Si’s of S such that p∗ is the lowest point in the
common intersection of the halfspaces for these triangles. By applying the linear
time 3-D LP algorithms [8], we then determine p∗ in O(log n) time.

Theorem 3. For the 3-D sublist LP query problem, there is a data structure that
can answer each query in O(log3 n) time with an O(n logn) time preprocessing.

Theorem 4. Given k > 0, the min-ε version of WPF can be solved in O(n log3 n)
time by the framework F1, and in O(n logn+k2 log2 n

k log3 n) time by the frame-
work F2, respectively.

3.3 Vertical Hull Width Queries for Problem PF

Due to the space limit, we only give the following results and leave all the details
in our full paper [5].

Theorem 5. There exist data structures for the vertical hull width query prob-
lem with time bounds O(n log logn, logn) and O(n, log n log logn), respectively.

Theorem 6. Given k > 0, the min-ε version of PF can be solved in O(n log n)
time by framework F1, and in O(n + k2 log2 n

k log n log logn) time by F2.
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Abstract. In this paper, we study the violation versions of the planar
points approximation problems, which deal with outliers in the input
points. We present efficient algorithms for both the step function and the
more general piecewise linear function cases, and for both non-weighted
and weighted points. Most of our results are first-known. Our algorithms
are based on interesting and nontrivial geometric techniques and data
structures, which may find other applications.

1 Introduction

Approximating a set of points by a functional curve in the plane is a funda-
mental topic in mathematics and computational geometry. It finds applications
in many areas, such as cartography, geographic information systems, machine
learning, image processing, database, etc. Different error metrics, constraints,
and objective functions give rise to a large number of variations of the problem.
For each variation, based on the optimization criteria, two problem versions,
min-# and min-ε, are often considered in the literature. The formal definitions
of the problems we study in this paper is give below.

Let P = {p1, p2, . . . , pn} be the input point set in the plane, with pi = (xi, yi).
The vertical distance between any point pi and an approximating functional
curve f is defined as d(pi, f) = |yi − f(xi)|. The uniform metric of error, also
known as the L∞ or Chebychev metric, is defined as e(P, f) = maxpi∈P d(pi, f).
All problems in this paper use the uniform metric. The size of f is the total
number of line segments of f . The min-# and min-ε versions are defined below.

min-#: Given an error tolerance ε ≥ 0, find an approximating function f under
the specified constraints such that e(P, f) ≤ ε and the size of f is minimized.

min-ε: Given an integer k > 0, find an approximating function f under the
specified constraints such that the size of f is no bigger than k and the error
e(P, f) is minimized.
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Fig. 1. (a) A step function. (b) A piecewise linear function.

Depending on different constraints on f , there are several problem variations.

Planar points approximation by a step function. Given P , the sought f
is a step function, represented by a sequence of horizontal segments (see
Fig. 1(a)). This problem is motivated by query optimizations and histogram
constructions in database management systems [15,16,17,18,19]. In the pa-
per, we use SF to denote this problem.

Planar points approximation by a piecewise linear function. Given P ,
f is piecewise linear and any two consecutive line segments of f need not be
joined (see Fig. 1(b)). This problem often arises in regression analysis and
also in the histogram construction but in the steaming model [3]. Denote
this problem by PF.

Weighted versions. Each point pi ∈ P has a weight ui ≥ 0 and d(pi, f) is
defined as ui ·|yi−f(xi)|. The weighed versions are motivated by applications
with data of non-uniform significance. Denote the weighted versions of SF
and PF by WSF and WPF, respectively.

Violation versions. When approximating P with f , at most g points of P
are allowed to violate the error tolerance and these points are called out-
liers. For example, if P ′ is the set of violation points with |P ′| ≤ g, then
e(P, f) = maxpi∈P\P ′ d(pi, f). This problem is motivated by applications
in statistics, machine learning, data mining, databases, etc, where outliers
must be reduced. Denote the violation versions of SF, PF, WSF, and WPF
by VSF, VPF, VWSF, and VWPF, respectively.

All the non-violation problems, i.e., SF, WSF, PF, and WPF, are discussed in
a companion paper [7]. In this paper, we study the min-# and min-ε versions of
all the violation problems, i.e., VSF, VWSF, VPF, and VWPF.

To simplify the exposition, we assume all input points are in non-degenerate
positions. Namely, no two points in P have the same x-coordinate in all problems.
Unless otherwise stated, we assume that the input points, P = {p1, p2, . . . , pn},
are already given sorted in increasing x-coordinates. We use Pij (i ≤ j) to denote
the subset of consecutive points pi, pi+1, . . . , pj.

1.1 Related Work

The previous and related work on the min-# and min-ε versions of all non-
violation problems, i.e., SF, WSF, PF, and WPF, is discussed in our companion
paper [7]. The paper [7] also gives some new results on the above problems.
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For the violation problems, VSF was studied in [11], with an O(ng2) time min-
# algorithm and an O(ng2 logn) time min-ε algorithm. The min-# algorithm
is based on dynamic programming. Using an implicit matrix with sorted rows
and sorted columns that contains all possible errors, its min-ε version was solved
by applying the technique of binary search in such a matrix [12,13], which uses
the min-# algorithm as a decision procedure. We are not aware of any previous
work on other violation problems.

1.2 Our Contributions

We develop two high-level algorithmic frameworks, F1 and F2, for the min-# and
min-ε versions of all four problems, i.e., VSF, VWSF, VPF, and VWPF. Each
algorithmic framework, which consists of a set of computational components, is
applied to every violation problem. For each individual problem, based on its
specific geometric properties, we design different data structures and procedures
for carrying out the major components in the corresponding framework. Some
data structures may be of independent interest and find other applications.

The min-# algorithmic framework F1 solves the problems VWSF, VPF and
VWPF in O(ng2), O(ng4 log2 n) and O(ng4 log2 n) time, respectively. Note that
our VWSF min-# solution matches the one for VSF in [11]. The min-ε algorith-
mic framework F2 solves the problems VSF, VPF and VWPF in
O(ng3k log(log∗ n)), O(ng2kW ) and O(ng2kW ) time, respectively, where W =
(n log g+g3nδ) for any constant δ > 0. Thus, when kg log(log∗ n) = o(log n) (e.g.,
when k and g are constant), our VSF min-ε algorithm is better than the one in
[11]. For VWSF, due to its special geometric properties, we derive a more efficient
min-ε algorithm than simply applying F2, with running time O(n2 + ng2 logn).
Additionally, for the min-ε problem of VWPF (and also for VPF), based on
geometric observations and the approach of binary search on sorted arrays [7],
we give a new algorithm with time complexity O(ngW logn). Note that all our
solutions are first-known for the corresponding problems except the VSF min-ε
problem.

2 The min-# Algorithms

In this section, we discuss our min-# algorithms. We first give the high-level
algorithmic framework F1, and then present the techniques for dealing with its
major components for each problem.

2.1 High-Level Algorithmic Framework F1

Given an error tolerance ε and a number g of allowed violations, our framework
F1 is based on dynamic programming. Let N(i, t) (1 ≤ i ≤ n, 0 ≤ t ≤ g) denote
the minimum number of segments for approximating the points in Pin with at
most t violations. Our goal is to compute N(1, g). Let riq be the largest index,
riq ≥ i, such that all points from pi to priq can be approximated by one segment
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with q violations. Then N(i, t) = 1 + min0≤q≤t{N(riq + 1, t− q)}, i.e., for Pin,
we use one segment with q violations to approximate the points from pi to priq

and use N(riq + 1, t − q) segments to approximate the points in Priq+1,n with
t− q violations. The lemma below is based on the above dynamic programming.

Lemma 1. For any problem, if all riq’s, 1 ≤ i ≤ n, 0 ≤ q ≤ g, can be computed
in O(T ) time, then the min-# version can be solved in O(T + ng2) time.

To compute all riq’s, we develop a high-level procedure which can be applied to
all problems. First of all, note that for every q, 0 ≤ q ≤ g, ri−1,q ≤ riq holds
for any 1 ≤ i ≤ n. For each q, our algorithm computes all riq ’s, 1 ≤ i ≤ n, by
scanning the points from left to right; after all riq ’s are computed, we continue
with q + 1. For each q, suppose ri−1,q has been computed; to compute riq, we
scan rightwards from the point pj , j = ri−1,q +1. For each pj , let Sijq denote the
point set Pij and call it a feasible set if all points in Sijq can be approximated by
one segment with q violations. Computing riq is to determine the largest feasible
Sijq . For each Sijq , to determine efficiently whether it is a feasible set, we use
a fully dynamic data structure that supports both deletions and insertions to
maintain a point set. Initially (i.e., after ri−1,q is just computed), we let j = ri−1,q

and Sijq = Si−1,j,q \ {pi−1}, implying that pi−1 should be deleted from Si−1,j,q.
For each newly scanned point pj+1, we insert it into Sijq. After each insertion,
we need to determine whether the new set Si,j+1,q is feasible. If it is feasible,
then we continue with the next point; otherwise, we delete the newly inserted
point pj+1 from the current set and Sijq is the largest feasible set (i.e., riq = j).
In summary, our dynamic data structure should support: (1) Deletion (delete a
point from the current set); (2) insertion (insert a new point into the current
set); (3) feasibility test (determine whether the current set is feasible).

To analyze the running time of the above framework, for each q, 0 ≤ q ≤ g,
when computing all riq’s for 1 ≤ i ≤ q, we scan the points of P from left to
right. It is easy to see that the number of deletions, insertions, and feasibility
tests is totally O(n). By Lemma 1, we have the following result.

Lemma 2. For any problem, if there is a data structure that supports deletion,
insertion, and feasibility test in O(D), O(I), and O(F ) time each, respectively,
then all riq’s, 1 ≤ i ≤ n, 0 ≤ q ≤ g, can be computed in O(ng(D + I +F )) time,
and its min-# is solvable in O(ng(g + D + I + F )) time.

2.2 Problem VWSF

Given Sijq , for any point pt = (xt, yt) in Sijq with weight ut, there is a y-interval
[yt − ε/ut, yt + ε/ut] such that pt can be approximated if and only if the y-
coordinate of the approximating segment is in that interval. We call the value
yt − ε/ut (resp., yt + ε/ut) the lower end (resp., upper end) of the y-interval for
pt, denoted by le(pt) (resp., ue(pt)). Our data structure for Sijq consists of four
arrays Uij , Lij , IUij , and ILij (all indices start from 0), in addition to a range-
minima and a range-maxima data structure [14]. Precisely, the array Uij (resp.,
Lij) stores the q+1 points with the smallest upper (resp., largest lower) ends in
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Sijq in increasing y-coordinates. Some points may be in both Uij and Lij . The
array IUij (resp., ILij) stores the sorted indices of the points in Uij (resp., Lij).
In addition, we build, in O(n) time, a range-minima (resp., range-maxima) data
structure on the upper (resp., lower) ends of all points in P .

Lemma 3. For any point set Sijq, the data structure can support insertion,
deletion, and feasibility test in O(q) time each.

Proof. The feasibility test is hinged on the following claim: Sijq is a feasible set
if and only if there is an integer t, 0 ≤ t ≤ q, such that the (t + 1)-th smallest
value Uij [t] of (the sorted) Uij is no smaller than the (t + 1)-th smallest value
Lij [t] of Lij . Refer to our full paper [6] for the proof of the claim.

To insert a new point pj+1 into Sijq , if the number of elements in Uij is less
than q + 1, then we simply insert pj+1 into the right place of Uij (so that Uij is
still in sorted order). If not, we first determine whether there is a point in Uij

whose upper end is larger than that of pj+1. If no, then pj+1 is not inserted.
If yes, then we delete the point with the largest upper end (i.e., Uij [q]) and
insert pj+1 into the right place of Uij . Whenever Uij is updated, IUij is updated
accordingly. We process the arrays Lij and ILij in a similar way. Since the sizes
of these arrays are at most q + 1, an insertion takes O(q) time.

To delete a point pt from Sijq , for the array Uij , if pt 
∈ Uij , then nothing is
done. Otherwise, we delete it from Uij in O(q) time. We also need to find (before
removing pt from Uij) the point, say, pz, in Sijq \ Uij with the smallest upper
end, and insert it to the right place of Uij . To do so, we resort to the array
IUij and the range-minima data structure. Recall that IUij contains the sorted
indices of all points in Uij . Thus by IUij , we can locate q + 2 consecutive point
intervals [i, IUij[0]), · · · , (IUij [a], IUij [a + 1]), · · · , (IUij [q], j], 0 ≤ a ≤ q − 1,
such that the union of these intervals is Sijq \Uij . Using the range-minima data
structure for the upper ends of all points in P , we can obtain the point with
the smallest upper end in each such point interval. Then the sought pz is the
one with the smallest upper end among the q + 2 points obtained from these
q + 2 point intervals. Since each range-minima query takes O(1) time, the total
deletion time is O(q). Whenever Uij is updated, IUij is updated as well. The
arrays Lij and ILij can be processed in a similar way.

The above lemma, together with Lemma 2, leads to the following result.

Theorem 1. There is a min-# algorithm for VWSF with running time O(ng2).

2.3 Problems VPF and VWPF

Given ε > 0, to determine whether Sijq is a feasible set, we model the problem
in the following way. Suppose we use a function y = a ·x+b to approximate Sijq .
Each non-violation point pt = (xt, yt) ∈ Sijq with weight ut corresponds to two
constraints ut(yt−(axt +b)) ≤ ε and ut(yt−(axt +b)) ≥ −ε. Note that given any
approximating function of Sijq , for any point in Sijq, the function can violate
at most one constraint corresponding to the point. Therefore, we can determine
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whether Sijq is a feasible set by the general 2-D LP with q violations [4,5,10,20],
for which a and b are LP variables and the 2|Sijq| constraints corresponding
to all points in Sijq are the LP constraints. The best-known deterministic time
bounds for this LP problem are O(n log q+q3 log2 n) [4] and O(n logn+nq) [10].
If we computes each riq separately, the running time for computing all O(ng)
riq’s is Ω(n2g). Since usually g << n, we have a more efficient solution below.

After a dynamic convex hull data structure is built, by the algorithm in [20],
each feasibility test can be done in O(q3 log2 n) time. To handle each point inser-
tion or deletion, we only need to update the convex hull. By using the dynamic
data structure in [21] to maintain the convex hull of Sijq , each insertion and
deletion can be handled in O(log2 n) time with O(n log n) time preprocessing.
By Lemma 2, we have the following.

Theorem 2. The min-# algorithms for VPF and VWPF run in O(ng4 log2 n)
time.

3 The min-ε Algorithms

In this section, we first give the algorithmic framework F2, and then present
the techniques for its major components for each problem. Due to their special
geometric properties, for VPF and VWPF, we come up with another algorithm.
For VWSF, we have a more efficient algorithm than simply applying F2.

3.1 High-Level Algorithmic Framework F2

Our framework F2 is based on dynamic programming which involves three vari-
ables. To solve the problem efficiently, we find a way to transform the three-
variable version to a set of two-variable cases whose matrices in question are
proved to be totally monotone. Thus the linear time row minima algorithm in
[1,2] is applicable to produce more efficient solutions.

Given k > 0 and g > 0, let E(j, l, t) (1 ≤ j ≤ n, 1 ≤ l ≤ k, 0 ≤ t ≤ g) denote
the minimum error for approximating the points in P1j using l segments with
t violations. We have E(j, l, t) = min

1<i≤j,0≤q≤t
{max{E(i − 1, l − 1, t − q), wijq}},

which means that we use l−1 segments to approximate P1,i−1 with t−q violations
and use one segment to approximate Pij with q violations. Our goal is to obtain
E(n, k, g). Suppose computing each wijq takes O(W ) time. A straightforward
approach for this dynamic programming takes O(kn2g2W ) time.

We transform this 3-D dynamic programming problem to k 2-D sub-problems
as follows. In computing E(n, k, g), if the value of a variable is fixed, then it
becomes a 2-D problem. More precisely, for each l, 1 < l ≤ k, we first compute
the O(ng) values of E(j, l − 1, t) for all 1 ≤ j ≤ n and 0 ≤ t ≤ g, and then
continue with computing E(j, l, t) (for all 1 ≤ j ≤ n and 0 ≤ t ≤ g). The reason
for us to do so is that some geometric observations can be used to help handle
the 2-D sub-problems more efficiently. To make this idea more clear and speedup
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the computation, we redefine the dependency relations among the E(j, l, t)’s into
two parts, as follows.

Let F (j, l, q, t) = min1<i≤j{max{E(i−1, l−1, t− q), wijq}}. Thus E(j, l, t) =
min0≤q≤t{F (j, l, q, t)}. Initially, we let E(j, 1, t) = w1jt for 1 ≤ j ≤ n, 0 ≤ t ≤ g
(note that, as to be shown below, the time for computing these O(ng) values is
much smaller than the total running time of the algorithm). For each 1 < l ≤ k,
suppose the values E(j, l − 1, t) for all 1 ≤ j ≤ n, 0 ≤ t ≤ g have been obtained.
To compute E(j, l, t), for each t and for any 1 ≤ j ≤ n, if t = 0, then it is easy
to see that E(j, l, 0) = F (j, l, 0, 0); else, E(j, l, t) = min0≤q≤t{F (j, l, q, t)}. For
each q, 0 ≤ q ≤ t, if the n values F (j, l, q, t) for all 1 ≤ j ≤ n can be computed,
say, in O(F ) time, then E(j, l, t) for each t and all 1 ≤ j ≤ n can be computed
in O(g(F + n)) time (note that t ≤ g). Therefore, the total running time of the
algorithm is O(kg2(n + F )). Thus, our remaining task, for any two fixed values
q and t with 0 ≤ q ≤ t, is to derive an algorithm for computing F (j, l, q, t) for
all 1 ≤ j ≤ n in O(F ) time.

For two fixed values q and t, 0 ≤ q ≤ t, let M be an (n−1)×(n−1) matrix such
that each element M(j, i) = max{E(i, l−1, t−q), wi+1,j+1,q} if 1 ≤ i ≤ j ≤ n−1
and M(j, i) = +∞ otherwise. Clearly, for j > 1, the value of F (j, l, q, t) is the
row minima of the (j − 1)-th row of M (when j = 1, F (j, l, q, t) = 0). Hence,
the task of computing F (j, l, q, t) for all 1 ≤ j ≤ n is reduced to finding all row
minima of M . Here, M is represented implicitly (i.e., we compute only those
elements of M that are actually needed by our algorithm). Suppose computing
each wijq takes O(W ) time. Then a naive approach for finding all row minima of
M takes O(n2W ) time. A more efficient solution exploits the monotone property
of the matrix M , as shown in the lemma below. A matrix is said to be minimum
monotone if the minimum value in its i-th row lies below or to the right of the
minimum value in its (i− 1)-th row (if a row has several minima, then we take
the rightmost one), and is totally minimum monotone if its every 2×2 submatrix
is minimum monotone [1,2].

Lemma 4. The matrix M is totally minimum monotone.

Proof. Suppose M is not totally minimum monotone. Then there must exist a
2 × 2 submatrix M [j, j + h1; i − h2, i] with h1 > 0 and h2 > 0, such that (1)
M(j, i− h2) ≥ M(j, i), and (2) M(j + h1, i− h2) < M(j + h1, i).

Note that E(i−h2, l−1, t−q) ≤ E(i, l−1, t−q). We claim E(i−h2, l−1, t−q) 
=
E(i, l − 1, t − q) since otherwise, due to (2), it must be wi−h2+1,j+h1+1,q <
wi+1,j+h1+1,q, which cannot be true. Because E(i−h2, l−1, t−q) < E(i, l−1, t−
q), due to (1), we have wi−h2+1,j+1,q ≥ E(i, l−1, t−q). Since wi−h2+1,j+h1+1,q ≥
wi+1,j+h1+1,q, due to (2), we have wi−h2+1,j+h1+1,q < E(i, l − 1, t − q). Thus
we can obtain wi−h2+1,j+1,q > wi−h2+1,j+h1+1,q, a contradiction to the fact.
Therefore, M is a totally minimum monotone matrix.

Based on Lemma 4, the linear time row minima algorithms in [1,2] can be applied
to solve our row minima problem on M in O(F ) = O(nW ) time (instead of
O(n2W ) time). Hence, we have the following result.
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Lemma 5. The min-ε version of any problem can be solved in O(ng2kW ) time,
where W is the time to compute each wijq.

3.2 Problem VSF and q-Range-Minima Data Structure

For VSF, to compute wijq , suppose we have two sorted arrays L[0 . . . q] and
U [0 . . . q], where L stores the y-coordinates of the lowest q + 1 points in Pij in
increasing order and U stores the y-coordinates of the highest q+1 points in Pij

in decreasing order. Then it is easy to see that wijq = min0≤i≤q{U [i]−L[q− i]}.
Thus the key issue is to obtain these two arrays L and U .

We design a data structure, called q-range-minima, on a given array A[1 . . . n]
(not in any sorted order), which reports the q smallest elements, in sorted order,
in the subarray A[i . . . j] specified by a query (i, j). It is easy to see that if we
build a g-range-minima data structure on the y-coordinates of all points in P ,
then the array L for any Pij and q (0 ≤ q ≤ g) can be obtained by a query.
Likewise, we can define a q-range-maxima data structure similarly and use it to
compute U . We only give the q-range-minima below and the q-range-maxima can
be derived similarly. Clearly, the q-range-minima generalizes the range-minima
[14], and may find more applications.

A straightforward method can answer each q-range-minima query in O(q log q)
time by utilizing the range-minima data structure [14]. We give a better solution.
Define φ(i, n) = log · · · log

︸ ︷︷ ︸
i times

n. The performance of our data structure is summa-

rized in the next theorem, where Γ (q, n,m) = min{i ≥ 1 | φ(i, n) ≤ O(qm)}
with m ≥ 0. Note that due to qm ≥ 1, we have Γ (q, n,m) ≤ log∗ n.

Theorem 3. Given an array of n elements in arbitrary order, with O(n log q ·
(log q + qm)) time preprocessing, we can answer any q-range-minima query in
O(q log(Γ (q, n,m))) time. Particularly, we answer each query in O(q log(log∗ n))
time with O(n log2 q) time preprocessing (by setting m = 0).

Due to the space limit, the proof of the above theorem is in our full paper [6].
According to Theorem 3, by setting m = 2, we can compute each wijq for VSF
in O(g log(Γ (g, n, 2))) time with an O(ng2 log g) time preprocessing. By Lemma
5, we have the following result.

Theorem 4. The VSF min-ε algorithm runs in O(ng3k log(Γ (g, n, 2))) time.

Note that when g ≥
√

φ(O(1), n) (e.g., g ≥
√

log log log log logn), Γ (g, n, 2) =
O(1). When gk log(Γ (g, n, 2)) = o(log n) (e.g., when k and g are constant), the
result in Theorem 4 is better than the VSF min-ε algorithm in [11].

3.3 Problems VPF and VWPF

For VWPF, to compute each wijq , we need a geometric modeling. Suppose we
use a linear function y = a · x + b to approximate all the points in Pij with q
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violations. For each point pt ∈ Pij with weight ut, we create two (upper) half-
spaces ut(yt−(axt+b)) ≤ ε and −ut(yt−(axt+b)) ≤ ε in a 3-D coordinate space
S with a as the x-axis, b as the y-axis, and ε as the z-axis. Denote by H the set
of 2|Pij | half-spaces created based on the points in Pij . Let p′ = (a′, b′, ε′) be the
lowest point (in terms of z-axis) in the common intersection of all half-spaces in
H . Then, ε′ is the minimum error to approximate Pij by one segment without
any violation and the corresponding approximation function is y = a′x + b′.
Note that the any point higher than the xy plane in the space S cannot lie
outside of both half-spaces created based on the same point in Pij . Therefore, if
p∗ = (a∗, b∗, ε∗) is the lowest point in the common intersection of at least |H |−q
half-spaces in H (i.e., the lowest point on the q-level of the plane arrangement
of H), then ε∗ is the minimum error to approximate Pij by one segment with
q violations (i.e., wijq = ε∗) and the corresponding approximation function is
y = a∗x + b∗. To compute p∗ is essentially the 3-D feasible LP with q violation
problem [5,20]. By applying the algorithm in [20], we can compute each wijq in
O(n log q + q3nδ) time for any constant δ > 0. By lemma 5, F2 can solve the
min-ε problem O(ng2k(n log g + g3nδ)) time.

Based on geometric observations, we have another min-ε algorithm for VWPF,
which is comparable to the framework F2. Let ε∗ be the error of an optimal
solution for the min-ε problem. Let S be the set of the values wijq for all 1 ≤
i ≤ j ≤ n and 0 ≤ q ≤ g. It must be ε∗ ∈ S. Let Aiq[1 . . . n] be an array,
in which each element Aiq[j] = wijq if i ≤ j and Aiq[j] = 0 otherwise. Then
S = ∪n

i=1 ∪g
q=0 Aiq and each Aiq, for any 1 ≤ i ≤ n and 0 ≤ q ≤ g, is a

sorted array. Given an error wijq , by using the min-# algorithm in Theorem 2,
we can determine the size relation between ε∗ and wijq in O(ng4 log2 n) time.
There are O(ng) sorted arrays of size O(n) each. These sorted arrays can be
represented implicitly. By the approach of binary search on sorted arrays [7],
we can find ε∗ in S in O((ngW + ng4 log2 n) logn) = O(ngW logn) time, where
W = O(n log g + g3nδ). In summary, we have the following result.

Theorem 5. The min-ε versions for VPF and VWPF can be solved in O(ngW ·
min{kg, logn}) time, where W = O(n log g + g3nδ) for any constant δ > 0.

3.4 Problem VWSF

Due to the space limit, the proof of the following result is in [6].

Theorem 6. The min-ε version of VWSF can be solved in O(n2 + ng2 logn)
time.
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Abstract. In this paper we consider the problem of computing a map
of geometric minimal cuts (called MGMC problem) induced by a planar
rectilinear embedding of a subgraph H = (VH , EH) of an input graph
G. We first show that unlike the classic min-cut problem on graphs, the
number of all rectilinear geometric minimal cuts is bounded by a low
polynomial, O(n3). Our algorithm for identifying geometric minimum
cuts runs in O(n3 log n(log log n)3) time in the worst case which can be
reduced to O(n log n(log log n)3) when the maximum size of the cut is
bounded by a constant, where n = |VH |. Once geometric minimal cuts
are identified we show that the problem can be reduced to computing
the L∞ Hausdorff Voronoi diagram of axis aligned rectangles. We present
the first output-sensitive algorithm to compute this diagram which runs
in O((N + K) log2 N log log N) time and O(N log2 N) space, where N is
the number of rectangles and K is the complexity of the diagram.

1 Introduction

In this paper, we consider the following problem (called Map of Geometric Min-
imal Cuts or MGMC problem): Given a graph G = (V,E) and a planar embed-
ding of a subgraph H = (VH , EH) of G, compute a map M of the embedding
plane P of H so that for every point p ∈ P , the cell in M containing p is as-
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in H that overlap a given geometric shape S in P and whose removal from G
disconnects G. In this paper we consider the case where geometric cuts are in-
duced by axis-aligned rectangles and distances are measured in the L∞ metric.
The main objective of the MGMC problem is to compute the map M of all ge-
ometric minimal (or canonical) cuts (the exact definition of geometric minimal
cuts will be given in next section) of the planar embedding of H .

The MGMC problem is motivated by the VLSI critical area computation
problem as explained in [6]. The critical area problem for various types of faults
can be reduced to different variants of Voronoi diagrams that lead to accurate
critical area extraction (see e.g. [11,10,4]). A VLSI net can be modeled as a
graph G = (V,E) with a subgraph embedded on every conducting layer. A
subgraph H = (VH , EH) on a layer X is vulnerable to random defects associated
with layer X . Defects on layer X may create cuts on graph G that result in
disconnecting the net N . The Voronoi framework for critical area extraction
asks for a subdivision of layer X into regions that reveal for every point p the
radius of the smallest disk centered at p inducing a cut of G. Open questions
regarding the MGMC problem were posted in [6], some of which get addressed
in this paper. The MGMC problem can also find applications in other networks,
such as transportation networks.

In this paper we present a novel approach to solving the L∞ MGMC problem
for a rectilinear embedding of H based on a mix of geometric and graph algorithm
techniques, that complements the one taken in [6]. All edges in H are assumed
to be rectilinear in P . We first classify geometric cuts into two classes: 1-D cuts
and 2-D cuts, and show that the number of all possible geometric 1-D and 2-D
minimal cuts is O(n2) and O(n3) respectively. Directly computing the geometric
minimal cuts could take O(n3(N+M)) time, where n = |VH |, N = |V |, and M =
|E|. Based on interesting observations and dynamic connectivity data structures,
we show that the worst case complexity can be reduced to O(n3 logn(log logn)3).
We also consider the case in which the inducing rectangle of a cut has a constantly
bounded edge length. For this case, we show that the time complexity of our
algorithm can be significantly improved to O(n logn(log logn)3) time. Once all
geometric minimal cuts are identified, we show that the solution to the MGMC
problem can be obtained by computing their Hausdorff Voronoi diagram.

We also revisit the plane sweep construction of the L∞ Hausdorff Voronoi di-
agram of a set of rectangles. The Hausdorff Voronoi diagram of point clusters in
the plane has been studied in [9,8,4,5,12,13]. We present the first output-sensitive
algorithm which runs in O((N + K) log2 N log logN) time and O(N log2 N)
space, where N is the number of rectangles and K is the complexity of the Haus-
dorff Voronoi diagram. One of the data structures used in the solution can also
be used to speed up a query posted in [4] to achieve an optimal O(N logN) con-
struction time for the case of N noncrossing rectangles, and an O(N+M ′) logN)
algorithm in general, where M ′ is the number of crossing pairs of rectangles. K
can be Θ(N + M ′) in the worst case.
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2 Geometric Cuts

Let G = (V,E) be the undirected graph in an MGMC problem and H =
(VH , EH) be its planar subgraph embedded in the plane P with |V | = N ,
|E| = M , |VH | = n, and |EH | = m. Due to the planarity of H , m = O(n).
In this paper, we assume that all edges in H are either horizontal or vertical
straight line segments. A pair of vertices u and v in a graph is connected if there
is a path in this graph from u to v. Otherwise, they are disconnected. A graph
is connected if every pair of its distinct vertices is connected. Without loss of
generality (WLOG), we assume that G is connected. A cut C of G is a subset
of edges in G whose removal disconnects G. A cut C is minimal if removing any
edge from C no longer forms a cut.

Definition 1. Let R be a connected region in P , and C = R ∩ H be the set
of edges in H intersected by R. C is called a geometric cut induced by R if the
removal of C from G disconnects G.

When there is no ambiguity of the region R, we often call the cut induced by
R as a geometric cut for simplicity. For a given cut C, its minimum inducing
region R(C) is the minimum axis-aligned rectangle which intersects every edge
of C For some geometric cut C, its R(C) could be degenerated into a horizontal
or vertical line segment, or even a single point. It is easy to see that if R(C) is
not degenerated, it is unique.

Definition 2. A geometric cut C is called a 1-D geometric cut (or a 1-D cut) if
R(C) is a segment. If R(C) is an axis-aligned rectangle, then C is called a 2-D
geometric cut (or a 2-D cut).

Definition 3. A geometric cut C is a geometric minimal cut if the set of edges
intersected by any rectangle shrinking from R(C) is no longer a cut.

Lemma 1. Let C be any geometric minimal cut. If C is a 1-D cut, then each
endpoint u of R(C) is incident with either an endpoint of an edge e in H with
the same orientation as R(C) and e ∩R(C) = u or an edge in H with different
orientation as R(C) (see Figure 1 (a)). If C is a 2-D cut, each bounding edge
s of R(C) is incident with either an endpoint v of an edge e in H of different
orientation with s and R(C) ∩ e = v or an edge in H with the same orientation
as s (see Figure 1(b); Note that s could be incident with multiple edges).

3 Identifying Geometric Minimal Cuts

To compute the map M of geometric minimal cuts, we first identify all possible
geometric minimal cuts and then construct a Hausdorff Voronoi diagram of their
minimum inducing regions. There are three major problems: (1) How to find all
1-D minimal cuts; (2) How to find all 2-D minimal cuts; (3) How to efficiently
construct the Hausdorff Voronoi diagram. This section focuses on problems (1)
and (2). Next section deals with problem (3).
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3.1 Computing 1-D Geometric Minimal Cuts

As discussed in last section, a 1-D geometric minimal cut can be induced by
either horizontal or vertical segments. The following lemma upper bounds the
total number of 1-D geometric minimal cuts.

Lemma 2. There are O(n2) 1-D geometric minimal cuts in H.

To compute the O(n2) 1-D geometric minimal cuts, the straightforward way will
lead to a total of O(n3(N + M)) time. To speed up the computation, we first
simplify the graph G. We observe that the cuts involve only the edges in H . The
connectivity in G \ EH will not be affected no matter which subset of edges in
H is removed. To make use of this invariant, we first compute the connected
components of G \ EH . For each connected component CC, we contract it into
a supernode vCC . For each vertex u ∈ H ∩ CC, we add an edge (u, vCC). Let
the resulting graph be G′ = (V ′, E′) (called contracted graph). The following
lemma gives some properties of this graph.

Lemma 3. The number of vertices in G′ is |V ′| = O(n) and the number of
edges in G′ is |E′| = O(n). Furthermore, a subset of edges in H is a cut of G if
and only if it is a cut of G′.

From the above lemma, we know that the size of G′ could be much smaller than
G. Thus the time needed for answering a cut query is significantly reduced from
O(N + M) to O(n).

Converting Cut Queries to Connectivity Queries: As discussed previ-
ously, to compute all 1-D geometric minimal cuts we have to check O(n3) pos-
sible subsets of edges in H . Many of them are quite similar (i.e., differ only by
one or a small number of edges). Our main idea is to further decompose each cut
queries into a set of connectivity queries with each connectivity query involving
only one edge.

Connectivity Query: Most fully dynamic connectivity data structures support
the following three operations: (1) Insert(e), (2) Delete(e), and (3) Connectivity
(u, v), where the Insert(e) operation inserts edge e into G, the Delete(e) oper-
ation removes edge e from G, and the Connectivity(u, v) operation determines
whether u and v are connected in the current graph G. Extensive research has
been done on this problem and a number of results were obtained. In [2], Thorup
et al. gave a simple and interesting solution for this problem which answers each
connectivity query in O(log n) time and takes O(log2 n) time for each update.
Later Thorup gave a near optimal solution for this problem [7] which answers
each connectivity query in O(log n/ log log logn) time and completes each inser-
tion or deletion operation in O(log n(log log n)3) expected amortized time.

In this paper we use the data structure in [7] for our problem. In practice (e.g.,
critical area computation), the simpler algorithm in [2] may be more practical.
When the choice of the connectivity data structure is unclear, we use MaxQU to
represent the maximum time of the connectivity query and the update operation.
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Fig. 1. (a) 1-D cuts C1, C2, C3 with C3 being the mini-
mal cut. (b) A 2-D cut bounded by 4 edges.
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Enumerating 1-D Geometric Minimal Cuts in a Slab: To make use of the
connectivity data structure, we first consider the problem of identifying 1-D geo-
metric minimal cuts in a vertical slab S with k edges (see Figure 2). Clearly, there
are O(k2) possible 1-D geometric cuts and O(k) 1-D geometric minimal cuts. To
find out the O(k) minimal cuts from O(k2) possible locations, we first sort edges
based on the y coordinates, and let e1 = (u1, v1), e2 = (u2, v2), · · · , ek = (uk, vk)
be the k edges. We build a fully dynamic connectivity data structure FDC(G′)
for the contracted graph G′, and then run the algorithm for a slab (called
1DSlab). The main steps of 1DSlab are the follows.

1. Let r be the index of the next to-be-deleted edge. Initially r = 1.
2. Starting from er, repeatedly delete edges of S from G′ according to their

sorted order and store them in a queue Q. For each deleted edge ei, query
FDC(G′) the connectivity of ui and vi. Stop the deletion after encountering
the first edge ej whose two endpoints uj and vj are disconnected or the last
edge. In the latter case, insert all deleted edges back and stop.

3. Insert the deleted edges in Q back in the same order as they are deleted and
updating FDC(G′). After inserting each edge ei, query the connectivity of
the two endpoints of ej , uj and vj .

4. If uj and vj are disconnected, add a forward pointer from ei to ej and insert
edges in Q back to G′.

5. If uj and vj are connected, add a forward pointer from ei to ej , set r = j+1,
and repeat Steps 2 to 5 until encountering the last edge ek. In this case, insert
all remaining edges in Q back to G′ and FDC(G′).

6. Reverse the order of the k edges and repeat the above procedure. In this
step the added pointers are backward pointers.

7. For each edge ej , find the nearest edge ei which has a forward pointer to ej

and the nearest edge e′i with a backward pointer to ej . Output the set of
edges between ei and ej (including ei and ej) and the set of edges between
ej and e′i (including ej and e′i) as two 1-D geometric minimal cuts.

Theorem 1. The 1DSlab algorithm generates all 1-D geometric minimal cuts
in the slab S in O(kMaxQU) time, where MaxQU is the maximum of the query
time and the updating time of the FDC(G′) data structure.
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Generating 1-D Geometric Minimal Cuts: To generate all possible 1-D
geometric minimal cuts, a straightforward way of using 1DSlab is to partition
the plane P into O(n) slabs and apply the 1DSlab algorithm in each slab. This
will lead to a O(n2MaxQU)-time solution. A more output sensitive solution is
to use the following plane sweep algorithm.

In the plane sweep algorithm, a vertical sweeping line L is used to sweep
through all edges in H to generate those 1-D geometric minimal cuts induced by
vertical segments. Similarly we can generate those 1-D geometric minimal cuts
induced by horizontal segments by sweeping a horizontal line. For the vertical
sweeping line algorithm, the event points are the set VH of endpoints in H .
At each event point, the set of edges intersecting the sweeping line L forms a
slab. However, instead of applying the 1DSlab algorithm to the whole set of
intersecting edges. We work only on a subset of edges. Let u be the event point.
If u is the left endpoint of an edge e, then e is the new edge just encountered by
L. Thus we need only to identify all 1-D geometric minimal cuts which contain
e. If u is the right endpoint of e, we need to check those cuts containing e to see
whether they are still geometric minimal cuts. Also we need to check whether
new cuts can be generated.

Theorem 2. All 1-D geometric minimal cuts of H can be found in O(n ×
MaxC ×MaxQU) time, where MaxC is the maximum size of a 1-D geometric
minimal cut.

3.2 Computing 2-D Geometric Minimal Cuts

To compute 2-D geometric minimal cuts, we first observe that a 1-D geometric
minimal cut is a degenerated version of a 2-D geometric minimal cut. The only
difference is that the minimum inducing region of a 1-D cut has two opposite
sides degenerated to points. Thus if we conceptually “contract” two opposite
sides of the minimum inducing region R(C) of a 2-D cut C into “points”, we
can apply the plane sweep algorithm for 1-D cuts to generate 2-D cuts.

To implement this idea, we use two parallel sweeping lines L1 and L2 (called
primary and secondary sweeping lines) to bound the “contracted” sides of R(C).
By Lemma 1, we know that each 2-D geometric minimal cut is bounded by the
endpoints (or edges) of up to four edges. This suggests that the possible locations
of L1 and L2 are the endpoints of the input edges. Similar to the plane sweep
algorithm for 1-D cuts, we sweep the edges in H twice, one vertically and the
other horizontally.

Lemma 4. There are at most O(n3) 2-D geometric minimal cuts in H.

To analyze the running time, we notice that L1 stops at O(n) location. For
each fixed location of L1, L2 sweeps all edges not yet encountered by L1 which
can be O(n) edges. For each vertical region bounded by L1 and L2, it takes
O(MaxC ×MaxQU) time (by Lemma 2). Thus we have the following theorem.

Theorem 3. All 2-D geometric minimal cuts in H can be found in O(n2 ×
MaxC ×MaxQU) time.
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4 Generating Map of Geometric Minimal Cuts

Given a set C of geometric minimal cuts of H , the Hausdorff Voronoi diagram of
C is a partition of the embedding plane P of H into regions (or cells) so that the
Hausdorff Voronoi cell of a cut C ∈ C is the union of all points whose Hausdorff
distance to C is closer than to any other cut in C.

In our MGMC problem, we have two types of objects, the minimum inducing
regions of 1-D geometric minimal cuts and the minimum inducing regions of
2-D geometric minimal cuts. We are able to show that the Hausdorff Voronoi
diagram of the two types of cuts can be constructed by propagating waves from
the minimum inducing regions (details are omitted).

Lemma 5. Let C be a 1-D or 2-D geometric minimal cut. At any moment, the
wavefront of C is either empty or an axis-aligned rectangle. Furthermore, the
wavefront in 3D is a facet cone apexed at a segment and with each facet forming
a 45 degree angle with the xy plane.

Lemma 6. The Hausdorff Voronoi diagram can be obtained by projecting the
lower envelope of the 3D facet cones to the xy plane.

4.1 Properties and Plane Sweep Approach

Since every facet of a 3D facet cone forms a 45-degree angle with the xy plane
and apexed at either a horizontal or vertical segment, the intersection of Q and
a cone ∂W (C) is either a V -shape curve (i.e., consisting of a 45-degree ray and
a 135-degree ray on Q) or a U -shape curve (i.e., consisting of a 45-degree ray, a
segment parallel to L, and a 135-degree ray).

The following difference fails the fortune’s algorithm [1]. (1) When a cone is
first encountered by Q, its corresponding initial V or U -shape curve may not
necessarily be part of the beach line. (2) The initial V or U -shape curve may
affect a number of curves in the beach line. (3) Once a V shape moves away
from the beach line, it may re-appear in the beach line in a later time.

Definition 4. A 3D facet cone ∂W (C) is a U -cone (or V -cone) if its apex
segment sC is parallel to the y (or x) axis.
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First we consider U cones. Let ∂W (C) be any U cone with apex segment sC , and
v1 and v2 be the two endpoints of sC . When the sweep plane Q first encounters
∂W (C), it introduces a U -shape curve Cu to Q. Let rl, rr , and sm be the left
and right rays and the middle segment of Cu respectively. Initially sm is the
apex segment sC , and rl and rr are the two edges of facet cone. When Q (or L)
moves, Cu grows and always maintains its U -shape.

Lemma 7. Let ∂W (C), Cu, rl, rr and sm be defined as above. When Q moves
in the direction of the x axis, Cu is always a U -shape curve. The supporting
lines of rl and rr remain the same on Q, and the two endpoints of sm (the fixed
points of rl and rr) moves upwards in unit speed along the two supporting lines.

For an arbitrary V cone ∂W (C′), let sC′ be its apex segment, and v′1 and v′2 be
its two endpoints (or left and right endpoints). When Q first touches ∂W (C′)
at v′1, it generates a V -shape curve C′v. C′v remains a V -shape curve before
encountering v′2. After that, C′v becomes a U -shape curve.

Lemma 8. Let rl and rr be the two rays of C′v, and sm be the middle segment of
the U -shape curve C′v after Q visiting v′2. During the whole sweeping process, the
supporting lines of rl and rr are fixed lines on Q. C′v remains the same V -shape
curve on Q before encountering v′2. sm moves upwards in unit speed along the
supporting lines of rl and rr after Q encounters v′2.

Lemma 9. Let ∂W (C1) be either a U or V cone and ∂W (C2) be a V cone
with its left endpoint v1 of sC2 being inside of ∂W (C1) and its right endpoint
v2 being outside of ∂W (C1). If ∂W (C2) is not entirely contained by the union
∪Ci∈C;Ci �=C2∂W (Ci), the V -shape curve C2 introduced by ∂W (C2) will be hidden
by the beach line at the beginning and then becomes part of the beach line later.
This is the only case in which a hidden U or V -shape curve could appear in the
beach line.

In the above lemma, the point vi indicates that when Q sweeps it, the beach
line is having a topological structure change. This indicates that in our problem
there is a new type of event points.

Now we discuss our ideas for constructing the Hausdorff Voronoi diagram
HV D(C). First we consider the bisector of two rectangles (or cuts). Let C1 and
C2 be two axis aligned rectangles in C. The bisector of C1 and C2 is a line or a
segment with two rays. In the latter case, each bisector contributes two vertices
to the Hausdorff Voronoi diagram. Hence the Hausdorff Voronoi diagram consists
of two types of vertices: (a) The intersection points of the bisectors and (b) the
vertices of the bisectors.

Lemma 10. Let C be a set of N rectangles. The edges of HV D(C) are either
segments or rays, and the vertices of the HV D(C) are either the vertices of
bisectors or the intersections of bisectors.

To obtain a plane sweep algorithm, we need to design data structures to maintain
the beach line and the event points. In our problem, the beach line is the lower
envelope of the set of V and U -shape curves, and is a y-monotone polygonal
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curve C2 appears in the beach line.

curve. For non-disjoint 3D cones, the complexity of the beach line may not be
linear in the number of the rectangles in C. Figure 5(b) shows a newly generated
U -shape curve intersecting the beach line a number of times and contributing
multiple edges to the beach line. Consequently, the complexity of the HV D(C)
is not linear. The following lemma is a straightforward adaptation of Theorem
1 in [5] for the L∞ metric.

Lemma 11. The size K of the L∞ Hausdorff Voronoi diagram of N rectangles
is O(N +M ′), where M ′ is the number of intersecting rectangle pairs. The bound
is tight in the worst case.

4.2 Events

For event points, we need to detect all events that cause the beach line to have
topological structure changes. More specifically, we have to identify all the mo-
ments when a U or V -shape curve is inserted to or deleted from the beach line.
There are two ways that a curve could appear in the beach line: (A) a newly
generated U or V -shape curve becomes part of the beach line, site events and
(B) a hidden V -shape curve appears in the beach line. For (B), it occurs when
an unhidden portion of the bottom segment sm of a U -shape curve C1 moves
upwards and encounters the apex point of a hidden V -shape curve C2. We call
this kind of events as V events (see Figure 6).There are also two ways for a curve
or a portion of a curve to disappear from the beach line: (C) A curve (or part of
the curve) is hidden by a newly generated curve, and (D) a U -shape curve (or
part of the U -shape curve) moves out of the beach line.For (D), the disappearing
U -shape curve C (or its unhidden portion) is caused the upwards movement of
the bottom segment of C.Thus we have in total four types of events, site events,
circle events, U events, and V events.

4.3 Data Structures and Algorithm

To construct HV D(C), we use doubly-connected edge lists to store HV D(C).
We also need two data structures for the sweep line algorithm: an event queue
and a sweep plane status structure representing the beach line.

The status structure for the beach line consists of three balanced binary search
trees T , Tπ/4, and T3π/4. T stores the y-monotone polygonal curve of the beach
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Fig. 7. A dominating region is converted to a 3D box in 3D space for MD

line. Tπ/4 is used to maintain the orders (along the norm direction) of the 45-
degree rays of all U or V -shape curves which appear in the beach line. Similarly,
T3π/4 maintains the orders of the 135-degree rays of U or V -shape curves which
appear in the beach line. We can locate the positions in the beach line for the
apex points of each newly encountered cone at a site event in O(logN) time, and
update the beach line in O(k logN) time, where k is the number breakpoints
destroyed and created after inserting the newly encountered U or V -shape curve
into the beach line.

The event queue Q is implemented by a priority queue, where the priority of
an event is the x coordinate of the corresponding event point.

To efficiently detect all possible V events, our main idea is not to maintain the
arrangement, but rather to use the properties of V events to convert the problem
into a query problem in 3D. Our idea is to process the apex points of all V -shape
curves into a 3D dynamic range search tree data structure MD [3]. The three
dimensions of MD are the orthogonal directions of the 45, 135 degrees lines in
the sweep plane Q and the orthogonal direction of the bottom segment (or the
y axis). In this way, we map the apex point of each hidden V -shape curve into a
point and convert the dominating region (see the shaded region in Figure 7) of
each unhidden portion of a U -shape curve into a 3D (possibly unbounded) box in
the newly orthogonized space. By a 3D range query in MD, for each dominating
region R we can find the closest apex point (among all hidden V -shape curves
whose apex points fall in R) to the unhidden portion of the bottom segment of
a U -shape curve. This takes O(log2 N log logN) time [3].

With these data structures, we are able to show that all events can be effi-
ciently handled (details are left for full paper).

Theorem 4. The L∞ Hausdorff Voronoi diagram HV D(C) of a set C of axis
aligned rectangles can be constructed by a plane sweep algorithm in O((N +
K) log2 N log logN) time, where N = |C| and K is the complexity of the Haus-
dorff Voronoi diagram.
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Abstract. We introduce a new probing problem: what is the minimum
number of cameras at fixed positions necessary and sufficient to recon-
struct any strictly convex polygon contained in a disk of radius 1 if
cameras only see the silhouette of the polygon? The optimal number
only depends on the largest angle α of the polygon. If no two camera
tangents overlap, � 3π

π−α
� cameras are necessary and sufficient. Otherwise,

approximately � 4π
π−α

� cameras are sufficient. Reconstruction only takes
time linear in the number of cameras. We also give results for the 3D
case.

1 Introduction

Geometric probing is concerned with determining or verifying the shape of an
object by measurements, or probes. Shape-based probing is about determining
the shape of an unknown object [16], while model-based probing is about iden-
tifying a given object from a known collection of objects [5]. Finger probes [2],
line probes [10], silhouette probes [13], and x-ray probes [11] have been stud-
ied, for reconstruction of convex objects; non-convex objects can partially be
reconstructed [1].

Silhouette probes assume a viewpoint at infinity, but they can also be defined
for viewpoints closer to the object, in which case we speak of camera probes
(e.g., see [9]). A camera probe is the silhouette of the object seen against a
bright background. Note that we cannot see any details of the object in the
interior of the silhouette, we only see its boundary edges. Now we ask:: how
many cameras at fixed positions are necessary and sufficient to fully reconstruct
any given object from its silhouettes? Note that we first fix the camera positions
and then take silhouette probes of the object to be reconstructed.

Since a camera can only see a cone defined by the two tangents at the object,
the viewing cone (see Fig. 1), we cannot reconstruct curved objects from a finite
number of camera probes. Therefore, we only consider simple strictly convex
polygons (or polyhedrons in 3D). We assume the polygon is placed anywhere
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in a disk T of radius 1, and the cameras are positioned along the boundary of
T . Each tangent of a viewing cone touches a strictly convex polygon in a vertex
or edge. If a second tangent touches the same vertex, we can reconstruct its
coordinates as the intersection point of the two tangents. Unfortunately, in a
scene with many cameras and tangents, not every pair of tangents will intersect
in a vertex of the polygon. The camera placement problem asks to determine
the fixed positions for a minimum number of cameras around T such that we
can reconstruct any strictly convex polygon in T , i.e., determine its number of
vertices and compute their coordinates.

We need at least m cameras to reconstruct an m-gon from camera probes,
because each camera can only see two vertex tangents of the m-gon, and we need
two tangents at a vertex to compute its coordinates. One problem is that the
cameras do not know whether their tangents touch at the same vertex. As it turns
out, a stronger constraint comes from the largest angle α of the polygon. Under a
weak general position assumption that no camera tangent to P contains another
camera we show a tight bound of � 3π

π−α�, which is at least � 3
2m� in an m-gon

(see Lemma 10), on the number of cameras needed to reconstruct any polygon
with maximum angle α. If we want to reconstruct polygons in arbitrary position,
then the bounds get slightly worse: � 4π

π−α� evenly spaced cameras are sufficient to
reconstruct any P . The distance between two cameras can be slightly increased
in case the number of cameras is odd, but the exact value of the maximum
distance can only be computed numerically.

For the three-dimensional version of the problem, we cannot hope to find
tight bounds because we would have to solve quite irregular packing problems
of cameras on a sphere, and such problems tend to be notoriously difficult [3].
Instead, we give some rough bounds.

There may be some applications for this research. For example, stereo-vision is
concerned with the reconstruction of 3D objects from 2D data [17], which are of-
ten just silhouette or camera probes [8]. In computational medicine it is important
to reconstruct the coronary arterial tree from angiograms (i.e., camera probes).
Karl et al. [6] showed that three silhouettes are sufficient to reconstruct any ellip-
soid, and artery reconstruction is very similar to ellipsoid reconstruction [7]. The
gait recognition problem is the problem to identify a person from a database of
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gait sequences by watching the silhouette of the person walking around [15]. De-
termining the best walking route for snapshots from a singe camera is equivalent
to determining the best camera positions for many cameras.

The camera placement problem differs from traditional probing problems in
two ways: The camera positions are fixed a priori, while in previous works the
position or direction of later probes usually depends on the outcome of earlier
probes; and the optimal number of probes (camera positions) is not a function
of the number of vertices of the polygon, but of the largest angle of the polygon.

2 Definitions

Let T be a disk of radius 1 in the plane with center O, and let S denote the circle
bounding T ; see Fig. 2. A cone with apex in T intersects S in a cone arc. We
usually denote a cone arc by its length δ (note that a cone of angle δ centered at
O cuts out a cone arc of length δ). We usually denote the complementary angle
of α by β = π−α. A double cone with apex v in T intersects S in two cone arcs.

Somewhere in T is placed a simple strictly convex m-gon P , but m is not
known. Cameras can be placed anywhere on S. A camera at point A can only see
the minimum cone with apex A containing P . That is, the camera only knows
two tangents to P but no information about the vertices where the tangents
touch P , or any other parts of P . The vertex touched by a tangent is visible
to the camera, and the camera sees the vertex (though the camera does not
know the coordinates of the vertex). If the tangent touches P in an edge of P ,
we say the camera sees the edge. Each vertex v of P induces a double cone
containing P (by extending the two edges incident to v) and a complementary
double cone not containing P (defined by the complementary angle at v), whose
two complementary cone arcs define the safe region of v.

A vertex v of P can be reconstructed if we can determine its coordinates, i.e.,
at least two tangents meet in v and we can somehow infer that this intersection
point must belong to P . P can be reconstructed if every vertex of P can be
reconstructed. The camera placement problem is the problem of determining the
minimum number of cameras and their placements on S such that any simple
strictly convex polygon P in T with maximum angle α can be reconstructed.

Any cone in T of angle β
2 with apex on S has a cone arc of length β. In Fig. 2,

w sees the arc AB from an angle of β = 1
2 (β1 +β2). The next lemma generalizes

this fact to any cone inside T .

Lemma 1. Any double cone of angle β with apex somewhere in T has two cone
arcs of total length 2β. �	

Corollary 2. For any two non-overlapping arcs β1 and β2 of total length β1 +
β2 = 2β there exists a double cone of angle β whose cone arcs are β1 and β2. �	

The following lemma is self-evident, see Fig. 2.

Lemma 3. A camera can see vertex v of P if and only if it is placed in the safe
region of v. �	
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P is in general position if no vertex of P lies on a line segment connecting two
cameras. We denote the intersection of all camera cones by PC ; clearly, P ⊆ PC .

Lemma 4. PC is a polygon with at most 2m vertices. �	

Note that we do not need P = PC to reconstruct P if we assume general position
and a sufficient number of cameras.

Lemma 5. If three or more camera tangents to P intersect in a common point
v and P is in general position, then v must be a vertex of P . �	

Let kα denote the minimum number of cameras necessary to solve the camera
placement problem for polygons of maximum angle α. Let αk denote the largest
angle such that any polygon with maximum angle αk can be reconstructed by
a set of k cameras. If we consider evenly spaced arrangements of cameras on
S, then let γα denote the maximum arc length between two successive cameras
such that any strictly convex n-gon of maximum angle α can be reconstructed.
Whenever we speak about evenly spaced camera arrangements it is understood
that exactly one pair of neighboring cameras may have a smaller distance. As we
will see below, there is no advantage in placing cameras other than evenly spaced.
Let k̂α, α̂k, and γ̂α denote these quantities for polygons in general position.

3 The Camera Placement Problem in 2D

We first consider the case of polygons in general position, and then extend the
analysis to the case of arbitrary position. We only consider polygons with largest
angle α, where 0 < α < π. Note that α ≥ m−2

m · π for m-gons. Intuitively, an
optimal camera placement for polygons in general position should be evenly
spaced, but this cannot easily be argued for the arbitrary position case.

Theorem 6. For polygons in general position we have k̂α = � 3π
π−α�, α̂k = π ·

(1 − 3
k ), and γ̂α = 2

3 (π − α).

Note that it is sufficient to prove the bounds for k̂α and γ̂α, then the bound
for α̂k follows immediately. Let 0 < α < π be a given angle. Consider a camera
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placement consisting of k cameras such that every polygon P with largest angle
α can be reconstructed. Let M = {c0, . . . , ck−1} be the positions (in polar co-
ordinates) of the cameras in counterclockwise order around S. Let dist(i, j) be
the length of the arc in counterclockwise direction between ci and cj (all index
operations are modulo k). The next lemma implies γ̂α ≤ 2

3 (π − α).

Lemma 7. dist(i, i + 3) ≤ 2β, for all i = 0, . . . , k − 1. �	

Next we show k̂α ≥ � 3π
π−α� (use b = 3 and z = 2

3β).

Lemma 8. Let b ≥ 1. If an arrangement of k cameras satisfies dist(i, i+b) ≤ bz,
for all i = 0, . . . , k − 1, then there are at least k ≥ � 2π

z � cameras. �	

Let A be an arrangement of evenly spaced cameras around S at distance 2
3 (π−α).

The next lemma implies γ̂α ≥ 2
3 (π − α) and k̂α ≤ � 3π

π−α�.

Lemma 9. Every vertex of P is visible to at least two cameras in A. �	

Lemma 10. At least one vertex of P is visible to three or more cameras in A
and can therefore be reconstructed.

Proof. Since α ≥ m−2
m ·π for an m-gon P , A contains at least k = � 3π

π−α� ≥ � 3
2m�

cameras that see a total of at least 3m vertices (with multiplicity). �	

Lemma 11. If a camera in A sees an edge e of P , both endpoints of e are visible
to at least three cameras and can therefore be reconstructed. �	

Now we will explain how we can reconstruct any polygon P of maximum angle α
in general position. Assume P has m ≥ 3 vertices (we do not need to know m to
reconstruct P ). By Lemma 4, PC is at most a 2m-gon. If P is in general position,
then the vertices of P must be vertices of PC . If a camera can see an edge e of
P , we can reconstruct both endpoints by Lemma 11. We can reconstruct all
vertices of P not incident to such an edge by choosing every second vertex from
PC , starting at an arbitrary endpoint of an edge visible to a camera. This is
because every edge of PC touches P and therefore it is not possible that two
consecutive vertices of PC are not vertices of P . If no such edge exists, then PC

must be exactly a 2m-gon. Since we can reconstruct at least one vertex v of P by
Lemma 10, we can reconstruct P by choosing every second vertex of PC starting
at v. This finishes the proof of Thm. 6. �	

We now consider polygons in arbitrary position. Let P be an m-gon in T with
largest angle at most α. If we use the camera arrangement A above, it is still
true that every vertex is visible to at least two cameras. However, it may happen
that a vertex v of P is not a vertex of PC , because it may be lying somewhere
in the middle of an edge of PC . This can happen if v is lying exactly on the
line segment connecting two cameras. In this case, we cannot reconstruct v from
these two tangents.

To reconstruct v, we need a third camera that can see v. It is straightforward to
generalize Lemmas 7 and 9 to the requirement that every double cone of angle
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β must contain at least three cameras (instead of two). The average distance
between two consecutive cameras on S then decreases from 2

3 (π−α) to 2
4 (π−α).

Thus, if we place the cameras at distance π−α
2 around S, we can reconstruct P .

Theorem 12. For polygons in arbitrary position, we have kα ≤ � 4π
π−α�, αk ≥

π · (1 − 4
k ), and γα ≥ π−α

2 . �	

However, these bounds are not tight because it is not necessary that any double
cone of total arc length 2(π−α) must contain at least three cameras, only those
complementary double cones of polygon vertices lying on the connecting line
segment of two cameras. This weaker constraint allows us to place the cameras
at a slightly greater distance around S if we have an odd number of cameras
(the bounds are tight if the number of cameras is even). We first study the case
of evenly spaced cameras, where the worst case happens if a vertex lies on the
line connecting two antipodal cameras (see Fig. 4). We will show below that γα

is slightly larger than π−α
2 if k is odd.

Theorem 13. If k is even, then the bounds in Thm. 12 are tight. If k is odd,
then αk is at least as large as the unique solution α of the equation sin(α+γ)

sin α =
cos γ

4
cos 3γ

4
· sin γ

2
sin γ , where γ = 2π

k is the arc distance between two cameras on the disk.

Proof. Fig. 5 shows some cameras, A, . . . , F , evenly spaced at distance γ on S.
We may assume w.l.o.g. that E lies in the right hemisphere of the diameter BO.
In this case, AO must hit S somewhere strictly between E and D. Let ε be the
arc AF . The figure shows what turns out to be the worst case, namely B being
antipodal to the midpoint of arc EF .

Let G be the intersection of BE and CF . We claim that the angle δ = � AGF
is the largest angle such that any polygon vertex v of angle δ′ ≤ δ with tangent
BE can be seen by a third camera, i.e., the complimentary double cone W
at v of angle β′ = π − δ′ ≥ π − δ contains a third camera. By symmetry,
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γ γ
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Fig. 5. Odd number of cameras in
Thm. 13

P
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Fig. 6. Unsafe region in 3D: A camera
in Capv or Capv cannot see v
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Table 1. A numerical evaluation of αk (in radians). For even k, Thm. 12 provides tight
bounds. For odd k, Thm. 13 provides a better bound.

k 5 6 7 20 21 50 51 100 101

Thm. 12 0.628 1.047 1.346 2.513 2.543 2.890 2.895 3.016 3.017

Thm. 13 0.942 1.249 1.483 2.521 2.550 2.891 2.896 3.016 3.017

� AHF = δ, where H is the intersection of BE and AD. It is easy to see that
� AXF for a point X on BE is maximized somewhere in the middle of BE
(actually somewhere between G and H), and then monotonically decreases when
we start moving either in direction to B or to E.

If v lies between G and H , then W must contain at least one of A and F
because � AvF ≥ δ ≥ δ′. If v lies between GH and E, then W must contain at
least one of A and C because � AvC < π − δ ≤ β′. Similarly, if v lies between
H and B, then W must contain at least one of F and D. On the other hand, a
vertex v of angle larger than δ can be placed at G such that its safe region W
contains no cameras besides B and E.

In triangle AGF , we have a
sin δ = c

sin γ and a = 2 sin ε
2 . In triangle ABG, we

have c
sin( ε+γ

2 )
= b

sin(π−δ−γ) and b = 2 sin γ
2 . Thus, sin(δ+γ)

sin δ = sin ε+γ
2

sin ε
2

· sin γ
2

sin γ which
has a unique solution δ for each fixed γ. Since δ is growing monotonically as a
function of γ, there is also a unique solution γ for each fixed δ. Further, δ as
a function of ε for fixed γ, is strictly monotone increasing. Thus, the maximum
value of δ that covers all cases corresponds to the smallest possible ε = π − 3

2γ
(corresponding to the scenario depicted in Fig. 5 with E as close as possible to
the antipodal point of B). �	

Unfortunately, there is no closed formula for the α in Thm. 13. We have therefore
listed a few values of αk in Table 1. In the proof of the Theorem we assumed
that cameras are evenly spaced. We believe that this gives the worst case bound
for αk.

Computing PC naively seems to need Ω(k2) time. We will now show how to
reconstruct P in time O(k). Remember that each camera sees a cone defined
by two tangents to P . When we look from the camera into the interior of S,
we get an orientation and can distinguish between a left and right tangent. Let
P �

C (P r
C) be the intersection of all half-planes corresponding to the left (right)

camera tangents. Each vertex of P �
C (P r

C) is the intersection point of the left
(right) tangents of two or more consecutive cameras on S. Thus, we can compute
P �

C and P r
C in time O(k). Since P �

C and P r
C are strictly convex polygons with at

most k vertices, we can compute their intersection PC in O(k) time [12]. Since
every intersection point of three tangents is a vertex of P , we find these vertices
without extra cost while computing PC .
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4 The Camera Placement Problem in 3D

Let P be a strictly convex polyhedron contained in a ball T of radius 1 with
surface S. We assume that P is in general position, i.e., every tangent plane to
P contains at most one camera. A camera can see a polygonal silhouette of P .
Two planes intersecting in a line � induce two double wedges with base �. If �
passes through the interior of T , the intersection of each wedge with S is a lune.
Correspondingly, a double wedge induces a double lune. The angle of a lune or
double lune is the angle between its two defining planes. A lune is spherical if
its base contains the center O of T .

A cone is defined as the intersection of three or more half-spaces induced by
planes meeting in a single point, the apex of the cone. Since a plane intersects
S in a circle on S (a spherical circle if the plane contains the center O), a cone
with apex v inside T intersects S in a polygon Capv, called the cap of the cone.
If v is a vertex of P , its incident faces induce two cones, one cone containing
P and the other one its complementary cone. Let Capv and Capv denote the
corresponding caps (see Fig. 6). Similarly as in the two-dimensional case, we
define the safe region of v as S − (Capv ∪ Capv). If v is a vertex of P , then the
planes supporting any two of the faces incident to v define two double lunes.
As in the two-dimensional case, we call the double lune not containing P the
complementary double lune at v. Note that the safe region of v is exactly the
union of all complementary double lunes at v. Lemma 3 also holds in 3D, see
Fig. 6. P is an α-polyhedron if the angle between any two faces (the dihedral
angle) sharing a common edge of P is at most α.

Lemma 14. If any double lune on S of angle at least π − α contains at least
one camera in its interior, then any vertex of any α-polyhedron P in T is visible
to at least two cameras.

Proof. Let v be a vertex of P incident to m ≥ 3 faces. Let h1, . . . , hm be the
corresponding planes in cyclical order around v. If we consider the m comple-
mentary double lunes at v induced by hi and hi+1, for i = 1, . . . ,m (where
hm+1 = h1), we see that they partially overlap, but no point in their union can
be contained in all m double lunes. Since P is an α-polyhedron, every comple-
mentary double lune at v has angle at least π−α and therefore contains at least
one camera, We conclude that the m complementary double lunes contain at
least two cameras that can see v (by Lemma 3). �	

The surface area of lunes does not behave like arc length of cones in 2D. There is
no equivalent of Lemma 1 in 3D; the surface area of a double cone cap depends
on the position of the apex within T .

We can then define PC as the intersection of all half-spaces induced by tan-
gent planes to P . Actually, we only need to consider those tangent planes that
contain an edge of P . In contrast to the two-dimensional case (Lemma 4), PC

may have quadratic size. To reconstruct a vertex v of P , we must find three
linearly independent planes tangent to P at v. The three-dimensional equivalent
of Lemma 5 states that any intersection point of four or more camera tangent
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Table 2. Numerically computed values of kα

α 0.6799 0.9274 1.2311 1.3606 1.4615 1.5404 1.6650 2.1076 2.5028 2.6902

kα 4 5 6 7 8 9 10 20 50 100

planes must already be a vertex of P . However, in connection with Lemma 14
we can get a better criterion for P being reconstructable.

Lemma 15. We can reconstruct a vertex v of P in general position if it is visible
to at least two cameras.

Proof. Let v be a vertex of P . We need three linearly independent planes tangent
to v to reconstruct the coordinates of v. Each camera can see v and either two
edges of P incident to v or a line containing an edge incident to v. Thus we can
construct v. �	

To obtain good lower bounds for kα, we would need good bounds on dense camera
packing on a sphere such that any safe region of a vertex contains several camera.
Unfortunately, even much simpler packing problems on the sphere, for example
disk packing, are not fully understood (see, for example, [14]).

So let us turn to upper bounds for kα. By Lemmas 14 and 15, it is sufficient
to find a placement of kα cameras on the unit sphere such that any double lune
of angle at least π−α on S contains at least one camera, To get a rough bound
on kα, we consider the largest spherical cap contained in one of the two lunes of
any double lune of angle at least π−α; twice this radius is called the width of the
lune. Clearly, the worst case is attained when this angle is equal to π − α. The
larger one of the two lunes in a double lune has smallest width if both lunes have
the same width. It is not difficult to see that the double lune should be spherical
to minimize this width. But then the radius rα of the largest circle contained in
the lune, i.e., half its width, is given by rα = sin π−α

2 (note that the surface area
of a spherical lune of angle α is 2α). Thus, to satisfy Lemma 14, it suffices to
find a camera placement on S such that any circle of radius rα contains at least
one camera. That is, we want to find a placement of the cameras with covering
radius rα, which is a well-studied (but not completely solved) problem. The
optimal covering radius for n points on S is asymptotically n−

1
2 . Hardin et al.

[4] have made available placements of up to 130 points on the sphere minimizing
the covering radius, and their numbers seem to indicate that rα ≈ 130π

180
√

kα
. It

follows, kα ≤
(

130·π
180·cos α/2

)2
for large α (in radians). Table 2 shows some of the

values of the upper bound for kα, computed using the values by Hardin et al.
Note that these values are not tight.

We can get better bounds for small α. For example, four cameras are sufficient
to reconstruct any α-polyhedron with α ≤ arccos(1/3) ≈ 1.2309. Let S be the
circumscribing sphere of a regular tetrahedron C. We place the four cameras at
the four vertices of C. Since C has a dihedral angle of arccos(1/3), any vertex of
an α-polyhedron in T can be seen by at least two cameras if α ≤ arccos(1/3).
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Abstract. In an undirected or directed graph, the edge-connectivity
between two disjoint vertex sets X and Y is defined as the minimum
number of edges or arcs that should be removed for disconnecting all
vertices in Y from those in X. In this paper, we discuss several conditions
for a given undirected graph to have an orientation meeting the edge-
connectivity requirements defined on some pairs of vertex sets.

1 Introduction

In this paper, we denote an undirected edge between vertices u and v by uv,
and an arc from u to v by (u, v). An orientation D = (V,A) of an undirected
graph G = (V,E) is a digraph obtained by replacing each edge uv ∈ E with
an arc (u, v) or (v, u). In an orientation problem, we are asked whether G has
an orientation satisfying given connectivity demands. This is a basic problem
in combinatorial optimization, and many beautiful results have been produced
so far. The main purpose of this paper is to discuss possibility to extend those
results with a general concept of the edge-connectivity.

Usually the edge-connectivity is defined on pairs of vertices. On the other
hand, this paper deals with the edge-connectivity defined on pairs of vertex
sets. Let X and Y be non-empty disjoint subsets of V , i.e., X,Y ∈ 2V and
X ∩ Y = ∅. We define the edge-connectivity λG(X,Y ) between X and Y in
an undirected graph G = (V,E) as min{dG(Z) | Z ∈ 2V , X ⊆ Z ⊆ V − Y }
where dG(Z) stands for the number of edges joining vertices in Z and in V −Z.
Equivalently λG(X,Y ) is the edge-connectivity λG′(x, y) between two vertices
x and y in the graph G′ obtained by shrinking X and Y into single vertices x
and y, respectively. For a digraph D, the arc-connectivity λD(X,Y ) from X and
Y is defined as min{δD(Z) | Z ∈ 2V , X ⊆ Z ⊆ V − Y } where δD(Z) stands
for the number of arcs from vertices in Z to those in V − Z. λD(X,Y ) is also
defined as the arc-connectivity λD′(x, y) from x to y in the digraph D′ obtained
by shrinking X and Y into single vertices x and y, respectively.

The connectivity between vertex sets is a useful notion in practice. For ex-
ample, let X be a set of servers providing the same service in a communication
� This work was partially supported by Grant-in-Aid for Scientific Research from the
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network represented by an undirected graph G = (V,E), and suppose that a
vertex v ∈ V − X represents a client of the service. Then λG({v}, X) stands
for the minimum number of links which should be broken for disconnecting the
client from all servers. By such motivation, several optimization problems de-
fined by the edge-connectivity between vertex sets are considered (e.g., graph
augmentation problem [4,5,6], source location problem [1], and minimum cost
subgraph problem [3]).

In this paper, we discuss the existence of orientations that satisfies demands
defined on given pairs of vertex sets. Our question is how large connectivity
undirected graphs should have for obtaining its orientations satisfying the de-
mands? This question can be formulated as finding the smallest C for which the
following conjecture holds.

Conjecture 1. Let G = (V,E) be an undirected graph, and {Xi, Yi} be pairs of
disjoint subsets of V with demand fi ∈ Z for i ∈ {1, . . . , �} (Z denotes the set
of integers). If G satisfies λG(Xi, Yi) ≥ Cfi for each i ∈ {1, . . . , �}, then it has
an orientation D = (V,A) such that min{λD(Xi, Yi), λD(Yi, Xi)} ≥ fi for each
i ∈ {1, . . . , �}.

As examples such as cycles show, C ≥ 2 is necessary for this conjecture to hold.
With respects to the edge-connectivity between two vertices, Nash-Williams gave
the following best possible result.

Theorem 1 (Nash-Williams [7]). Let f :
(
V
2

)
→ Z be a demand function,

where
(
V
2

)
denotes the set of unordered pairs of vertices. Every undirected graph

G has an orientation D such that λD(u, v) ≥ f(u, v) for each u, v ∈ V if
λG(u, v) ≥ 2f(u, v) for each u, v ∈ V . �	

Conjecture 1 is a natural extension of the theorem due to Nash-Williams [7].
One may consider that Conjecture 1 can be derived by applying Theorem 1 to

the graph obtained by shrinking vertex sets in {Xi, Yi | i = 1, . . . , n} into single
vertices. We notice that this is not true by the following two reasons. While we
are assuming Xi ∩ Yi = ∅ for i = 1, . . . , n in the conjecture, there are possibly
intersecting sets belonging to different pairs, i.e., Xi ∩ Xj 
= ∅, Yi ∩ Yj 
= ∅ or
Xi ∩ Yj 
= ∅ may hold for i 
= j. In addition, even if all sets in the given pairs
are disjoint, shrinking a set makes influence on the edge-connectivity of other
pairs. As an example, see Figure 1 illustrating a graph G with pairs {X1, Y1},
{X2, Y2} and {X3, Y3} of subsets of V , and G′ obtained by shrinking X1 and Y1
into single vertices x1 and y1. Although the edge-connectivity of {X2, Y2} is not
changed by the shrinking (λG(X1, Y1) = λG′(X1, Y1) = 4), the edge-connectivity
of {X3, Y3} is (λG(X3, Y3) = 4 and λG′(X3, Y3) = 5).

In this paper, we prove Conjecture 1 with C = max{2(|Xi| + |Yi| − 1) |
i = 1, . . . , �}. We also give upper- and lower-bounds on the difference between
min{λD(Xi, Yi), λD(Yi, Xi)} and λG(Xi, Yi) (Section 2). We also consider a spe-
cial case where the demand is defined on the rooted edge-connectivity. Namely, G
has the root r ∈ V and Xi = {r} for all i ∈ {1, . . . , �}. In this case, Conjecture 1
can be stated as follows.
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X1

X2X2

X3X3

Y1

Y2Y2

Y3Y3

G G′

x1

y1

Fig. 1. An undirected graph and pairs of vertex subsets

Conjecture 2. Let G = (V,E) be an undirected graph, r ∈ V , Xi ⊆ V − r for
i ∈ {1, . . . , �}, and fi ∈ Z for i ∈ {1, . . . , �}. If G satisfies λG(r,Xi) ≥ Cfi for each
i ∈ {1, . . . , �}, then it has an orientation D = (V,A) such that λD(r,Xi) ≥ fi

for each i ∈ {1, . . . , �}.

An affirmative answer to Conjecture 1 implies that to Conjecture 2 with the
same ratio C. Moreover, C = 2 remains best possible also to Conjecture 2.
In Section 3, we prove Conjecture 2 with C = �. Note that all the positive
results for the conjectures are algorithmic. That is to say, if a given undirected
graph satisfies the conditions specified in the conjectures, we can compute an
orientation satisfying the demand.

In the remainder of this introduction, let us review the difficulty of our prob-
lems from the view points of demand functions. We say that a digraph D = (V,A)
covers a demand function h : 2V → Z if ρD(X) ≥ h(X) for all non-empty X ⊂ V
where ρD(X) denotes the number of arcs from vertices in V −X to those in X .

If subsets X and Y of V satisfy X − Y, Y −X,X ∩ Y, V − (X ∪ Y ) 
= ∅, then
X and Y are called intersecting. A set function h : 2V → Z is called intersecting
G-supermodular if h(X)+h(Y ) ≤ h(X∪Y )+h(X∩Y )+dG(X,Y ) holds for each
intersecting X,Y ∈ 2V where dG(X,Y ) denotes the number of edges in G joining
vertices in X−Y and in Y −X . If h satisfies h(X)+h(Y ) ≤ h(X∪Y )+h(X∩Y )
for each intersecting X,Y ∈ 2V , then h is called intersecting supermodular.

The following theorem is due to Frank [2].

Theorem 2 (Frank [2]). Let G be an undirected graph and h be an intersecting
G-supermodular function (with possible negative values). There is an orientation
of G covering h if and only if dG(P) ≥

∑t
i=1 h(Vi) holds for every subpartition

P = {V1, . . . , Vt} of V where dG(P) denotes the number of edges in G entering
at least one member of P. �	

This theorem is so general that it includes several known orientation theorems.
However, our setting is not included by this because the edge-connectivity be-
tween vertex sets is not captured by intersecting G-supermodular functions. In
Section 3, we observe that if Theorem 2 can be extended to skew-supermodular
demand functions (defined in Section 3), then Conjecture 2 can be proven with
C = 2.
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This paper is organized as follows. Section 2 proves several results related to
Conjecture 1. Section 3 discusses Conjecture 2. Section 4 concludes this paper
by mentioning relationship between our results and previous works about tree
packing theorems.

2 Orientation Preserving Local Edge-Connectivity

In [3], Fukunaga and Nagamochi gave a useful relationship between the edge-
connectivity between vertices and that between vertex sets.

Lemma 1 (Fukunaga, Nagamochi [3]). Let {X,Y } be a pair of disjoint
subsets of V . If λG(X,Y ) ≥ k(|X |+ |Y | − 1), then there exists a pair of vertices
x ∈ X and y ∈ Y such that λG(x, y) ≥ k. �	

From this fact, we can derive an answer to Conjecture 1 with C = 2 max{|Xi|+
|Yi| − 1 | 1 ≤ i ≤ �} as follows.

Theorem 3. Let G = (V,E) be an undirected graph, and {X1, Y1}, . . . , {X�, Y�}
be pairs of disjoint subsets of V with demand fi ∈ Z for i ∈ {1, . . . , �}. If G
satisfies λG(Xi, Yi) ≥ 2(|Xi| + |Yi| − 1)fi for each i ∈ {1, . . . , �}, then it has an
orientation D such that min{λD(Xi, Yi), λD(Yi, Xi)} ≥ fi for each i ∈ {1, . . . , �}.

Proof. Since λG(Xi, Yi) ≥ 2(|Xi|+ |Yi|−1)fi holds, there exists a pair of vertices
xi ∈ Xi and yi ∈ Yi such that λG(xi, yi) ≥ 2fi by Lemma 1. The orientation
D of G given by Theorem 1 satisfies min{λD(xi, yi), λD(yi, xi)} ≥ fi for each
i ∈ {1, . . . , �}. Since λD(Xi, Yi) ≥ λD(xi, yi) and λD(Yi, Xi) ≥ λD(yi, xi), D is
a required orientation. �	

It is easy to check that Conjecture 1 with C = 2 holds for Eulerian graph G.
By this fact, we can give another bound following the approach taken by Nash-
Williams [7] for proving Theorem 1. We let O(G) stand for the number of vertices
each of which has odd degree in G.

Theorem 4. Let G = (V,E) be an undirected graph, and {X1, Y1}, . . . , {X�, Y�}
be pairs of disjoint subsets of V . Then G has an orientation D that satis-
fies λD(Xi, Yi) ≥ �λG(Xi, Yi)/2� − O(G)/2 and λD(Yi, Xi) ≥ �λG(Xi, Yi)/2� −
O(G)/2 for each i ∈ {1, . . . , �}.

Proof. Observe that if O(G) = 0, then a digraph D obtained by orienting G along
its Eulerian trail or path satisfies λD(Xi, Yi) ≥ λG(Xi, Yi)/2 and λD(Yi, Xi) ≥
λG(Xi, Yi)/2 for all i ∈ {1, . . . , �}.

Let us consider the case where O(G) > 0. Augment G by adding a perfect
matching M on the vertices of odd degrees in G. Then the obtained undirected
graph G+M is Eulerian (i.e., O(G+M) = 0). Hence G+M has an orientation D′

that satisfies λD′(Xi, Yi) ≥ λG+M (Xi, Yi)/2 and λD′(Yi, Xi) ≥ λG+M (Xi, Yi)/2
for all i ∈ {1, . . . , �} as mentioned above. Define D as the digraph obtained
by removing arcs corresponding to M from D′. Then D is an orientation of
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G. Since |M | = O(G)/2, λD(Xi, Yi) ≥ λD′ (Xi, Yi) − O(G)/2 and λD(Yi, Xi) ≥
λD′(Xi, Yi) − O(G)/2 for all i ∈ {1, . . . , �}. Since G + M is Eulerian, every cut
has even capacity. It means that λG+M (Xi, Yi) is even for all i ∈ {1, . . . , �}. Thus
λG+M (Xi, Yi) ≥ 2�λG(Xi, Yi)/2� holds.

From these facts, we can derive

λD(Xi, Yi) ≥ λD′(Xi, Yi) −O(G)/2
≥ λG+M (Xi, Yi)/2 −O(G)/2 ≥ �λG(Xi, Yi)/2� −O(G)/2

and

λD(Yi, Xi) ≥ λD′(Yi, Xi) −O(G)/2
≥ λG+M (Xi, Yi)/2 −O(G)/2 ≥ �λG(Xi, Yi)/2� −O(G)/2

hold for all i ∈ {1, . . . , �}. �	

We also have a negative result for Conjecture 1.

Theorem 5. Define {X1, Y1}, . . . , {X�, Y�} as all partitions of V into two non-
empty subsets ( i.e., {Xi | i = 1, . . . , �} = {X ∈ 2V | 0 < |X | < |V |/2} and
Yi = V −Xi). Then G has no orientation D that satisfies

min{λD(Xi, Yi), λD(Yi, Xi)} > λG(Xi, Yi)/2 −O(G)/4 (1)

for all i ∈ {1, . . . , �}.

Proof. To contrary, suppose that G has an orientation D that satisfies (1) for
all i ∈ {1, . . . , �}.

Let us consider the case where at least O(G)/2 vertices in D have the in-
degrees larger than the out-degrees Let X denote the set of those vertices in G,
and E(X) denote the set of edges in G whose both end vertices are in X . Then
X satisfies

ρD(X) =
∑

v∈X

ρD(v) − E(X) ≥
∑

v∈X

(δD(v) + 1) − E(X) ≥ δD(X) + O(G)/2.

On the other hand, ρD(X)+δD(X) = dG(X). By these facts, δD(X) ≤ dG(X)/2−
O(G)/4 holds. Hence we have λD(X,V −X) = δD(X) ≤ dG(X)/2 −O(G)/4 =
λG(X,V −X)/2 −O(G)/4, a contradiction.

If D has at least O(G)/2 vertices having the out-degrees larger than the in-
degrees, then consider the digraph D′ obtained by reversing all arcs in D. By
applying the above argument to D′, we have a contradiction also in this case. �	

Theorem 5 implies that Conjecture 1 does not hold for C < min{4/(2 − O(G)/
λG(Xi, Yi)) | 1 ≤ i ≤ �} in general.
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3 Orientation Preserving Rooted Edge-Connectivity

Let G = (V,E) be an undirected graph with a root r ∈ V , vertex subsets
X1, . . . , X� ⊆ V − r and demands f1, . . . , f� ∈ Z. In this section, we discuss suffi-
cient conditions for G = (V,E) to have an orientation D such that λD(r,Xi) ≥ fi

for all i ∈ {1, . . . , �}. Since this connectivity demand is weaker than that dis-
cussed in Section 2, Theorems 4 and 5 also tell necessary conditions. In addition
to these, we can obtain another condition as a benefit of weakening the demand.

Theorem 6. Let r ∈ V and X1, . . . , X� ⊆ V − r. An undirected graph G =
(V,E) has an orientation D = (V,A) such that λD(r,Xi) ≥ fi for all i ∈
{1, . . . , �} if G satisfies λG(r,Xi) ≥ ifi for all i ∈ {1, . . . , �}.

Proof. Let Mi = (V,Ei, Ai), i ∈ {1, . . . , �} denote mixed graphs obtained from
G by orienting some of its edges. We let Gi denote the undirected graph (V,Ei),
and Di denote the digraph (V,Ai). For proving Theorem 6, we show that it is
possible to construct M1, . . . ,M� inductively so that they satisfy

λDi(r,Xj) ≥ fj for j ∈ {1, . . . , i} (2)

and

δDi(Y ) ≤ iρDi(Y ) for Xj ⊆ Y ⊆ V − r with some j ∈ {i + 1, . . . , �}. (3)

Figure 2 shows an example of M1, . . . ,M�. Notice that a required orientation of
G can be obtained from M� by orienting the edges in E� arbitrarily.

G M1

M2M3

r r

rr

X1 X1

X1X1

X2 X2

X2X2

X3 X3

X3X3

Fig. 2. Construction of Mi, i ∈ {1, . . . , �} from G
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First, let us show how to construct M1. Since λG(r,X1) ≥ f1, G contains at
least f1 edge-disjoint paths between r and X1. Orient the edges in those paths
from r to X1. Then the obtained mixed graph satisfies the conditions (2) and
(3) for i = 1. In fact, the first condition λD1 (r,X1) ≥ f1 obviously holds. The
second condition δD1(Y ) ≤ ρD1(Y ) also holds because each e ∈ δD1(Y ) is a part
of a directed path from r 
∈ Y .

Now suppose that we have Mi for some 1 ≤ i < �. We show how to construct
Mi+1 from Mi. Let M ′ = (V ′, E′, A′) be the mixed graph obtained from Mi by
shrinking Xi+1 into a single vertex x and deleting generated loops. We let G′ and
D′ denote the undirected graph (V ′, E′) and the digraph (V ′, A′), respectively.
Define a set function h : 2V ′ → Z so that

h(Y ) =

⎧
⎪⎨

⎪⎩

fi+1 − ρD′(Y ) if x ∈ Y and r 
∈ Y ,
−fi+1 − ρD′(Y ) if x 
∈ Y and r ∈ Y ,
−ρD′(Y ) otherwise.

Then we have a good property of h as follows.

Claim. Function h is intersecting supermodular.

Proof. It is easy to prove that −ρD′ is intersecting supermodular. Hence it suf-
fices to show that h′ := h + ρD′ is intersecting supermodular. Let Y, Z ∈ 2V ′

such that Y ∩ Z 
= ∅. In the following, we observe that

h′(Y ) + h′(Z) ≤ h′(Y ∩ Z) + h′(Y ∪ Z) (4)

always holds.
Let h′(Y ) = h′(Z) = fi+1. In this case, x ∈ Y ∩Z, Y ∪Z and r 
∈ Y ∩Z, Y ∪Z

hold, which imply h′(Y ∩ Z) = h′(Y ∪ Z) = fi+1. Hence (4) holds.
Let h′(Y ) = −fi+1 and h′(Z) = fi+1. In this case, h′(Y ∩ Z) = 0 because

x, r 
∈ Y ∩ Z, and h′(Y ∪ Z) = 0 because x, r ∈ Y ∪ Z. Hence (4) holds.
Let h′(Y ) = 0 and h′(Z) = k. If x, r ∈ Y , then x ∈ Y ∩ Z, r 
∈ Y ∩ Z and

x, r ∈ Y ∪ Z hold, which implies that h′(Y ∩ Z) = fi+1 and h′(Y ∪ Z) = 0. If
x, r 
∈ X , then x, r 
∈ Y ∩ Z, x ∈ Y ∪ Z and r 
∈ Y ∪ Z hold, which implies that
h′(Y ∩ Z) = 0 and h′(Y ∪ Z) = fi+1. In both cases, (4) holds.

Let h′(Y ) = 0 and h′(Z) = −fi+1. If x, r ∈ Y , then x 
∈ Y ∩Z, r ∈ Y ∩Z and
x, r ∈ Y ∪ Z hold, which implies that h′(Y ∩ Z) = −fi+1 and h′(Y ∪ Z) = 0. If
x, r 
∈ Y , then x, r 
∈ Y ∩ Z, x 
∈ Y ∪ Z and r ∈ Y ∪ Z hold, which implies that
h′(Y ∩ Z) = 0 and h′(Y ∪ Z) = −fi+1. In both cases, (4) holds.

Finally, let h′(Y ) = h′(Z) = 0. If x, r ∈ Y, Z, then x, r ∈ Y ∩ Z, Y ∪ Z, and
hence h′(Y ∩Z) = h′(Y ∪Z) = 0 holds. If x, r ∈ Y and x, r 
∈ Z, then x, r 
∈ Y ∩Z
and x, r ∈ Y ∪ Z, and hence h′(Y ∩ Z) = h′(Y ∪ Z) = 0 holds. If x, r 
∈ Y, Z,
then x, r 
∈ Y ∩ Z, Y ∪ Z, and hence h′(Y ∩ Z) = h′(Y ∪ Z) = 0 holds. In any
cases, (4) holds. �	

Recall that intersecting supermodular set functions on V ′ are intersecting G′-
supermodular. Hence we can apply Theorem 2 for obtaining the following fact.
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Claim. G′ has an orientation covering h.

Proof. Let Y ⊆ V ′. We first see that dG′(Y ) ≥ 2h(Y ) holds. It suffices to consider
the case where x ∈ Y and r 
∈ Y . Notice that dG(Y ) = dG′(Y )+ρD′(Y )+δD′(Y ).
Since λG(r,Xi+1) ≥ (i+1)fi+1, dG(Y ) ≥ (i+1)fi+1 holds by Menger’s theorem.
By these and condition (3), we have

dG′(Y ) + (i + 1)ρD′(Y ) ≥ dG′(Y ) + ρD′(Y ) + δD′(Y ) ≥ (i + 1)fi+1.

Hence dG′(Y ) ≥ (i + 1)(fi+1 − ρD′(Y )) = (i + 1)h(Y ) ≥ 2h(Y ).
Let P = {V1, . . . , Vt} be a subpartition of V ′. It then satisfies dG′(P) ≥∑t
j=1 dG′(Vj)/2 ≥

∑t
j=1 h(Vj). This means that G′ satisfies the condition pre-

sented in Theorem 2. Therefore G′ has an orientation covering h. �	

Let D′′ denote the orientation of G′ covering h. Then λD′+D′′(r, x) ≥ fi+1 since
each Y ⊆ V ′ with x ∈ Y and r 
∈ Y satisfies ρD′+D′′(Y ) = ρD′(Y ) + ρD′′(Y ) ≥
ρD′(Y ) + h(Y ) ≥ fi+1. Choose fi+1 edge-disjoint directed paths from r to x in
D′+D′′, and call them by P1, . . . , Pfi+1 , respectively. We denote the set of edges
both in Ei and in P� by E(P�). Define Mi+1 as the mixed graph obtained by
orienting the edges in E(P�) with some � ∈ {1, . . . , fi+1} from r to x. In the
following, we see that the constructed Mi+1 satisfies conditions (2) and (3).

For each j ∈ {1, . . . , i}, λDi+1(r,Xj) ≥ fj holds because Ai ⊆ Ai+1 and Mi

satisfies (2). Moreover, λDi+1(r,Xi+1) ≥ fi+1 holds since Di+1 contains fi+1
edge-disjoint directed paths from r to Xi+1. Hence Mi+1 satisfies (2).

Let Y ∈ 2V such that Xj ⊆ Y ⊆ V − r with some j ∈ {i + 2, . . . , �}. Notice
that each edge entering Y in Ai+1 −Ai is a part of a directed path from r to x
in D′′, where r 
∈ Y . Hence δDi+1(Y ) − δDi(Y ) ≤ ρDi+1(Y ) holds. By this fact
and the assumption that Mi satisfies (3), it holds that

δDi+1(Y ) = δDi+1(Y )−δDi(Y )+δDi(Y ) ≤ ρDi+1(Y )+iρDi(Y ) ≤ (i+1)ρDi+1(Y ).

Therefore Mi+1 satisfies (3). This completes the proof of Theorem 6. �	

Combining Theorem 3, Theorem 6, and discussion at the beginning of this section
presents an answer to Conjecture 2.

Corollary 1. Let G = (V,E) be an undirected graph, r ∈ V , Xi ⊆ V − r for i ∈
{1, . . . , �}, and fi ∈ Z for i ∈ {1, . . . , �}. Moreover, let C = min{�,max{2|Xi| |
i = 1, . . . , �}}. If G satisfies λG(r,Xi) ≥ Cfi for each i ∈ {1, . . . , �}, then it has
an orientation D = (V,A) such that λD(r,Xi) ≥ fi for each i ∈ {1, . . . , �}. �	

In the remainder of this section, we show that the orientation problem with
arc-connectivity demands from r to Xi, i ∈ {1, . . . , �} can be reduced to the
orientation problem in mixed graphs with rooted edge-connectivity demands.
Given graph G = (V,E) with r ∈ V and X1, . . . , X� ⊆ V − r, augment G with
a new vertex xi for each i ∈ {1, . . . , �} and fi parallel arcs from each v ∈ Xi

to xi. Let M denote the obtained mixed graph (see Figure 3). If we can orient
the undirected edges in M so that the resultant digraph D satisfies λD(r, xi) ≥ fi
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rr

X1

X2

X3

x1

x2
x3

G M

Fig. 3. Transformation from G to M

for i ∈ {1, . . . , �}, then it gives an orientation D′ of G such that λD′(r,Xi) ≥ fi

for i ∈ {1, . . . , �}.
Unfortunately we do not know how to solve this orientation problem. If the

connectivity demand is defined from r to x for all x ∈ V − r, then Theorem 2
gives a necessary and sufficient condition. However, in the above problem, the
connectivity demand is defined only from r to xi, i ∈ {1, . . . , �}. This demand
can not be formulated by G-supermodular functions, but by skew supermodular
functions. If Theorem 2 can be extended to skew supermodular functions, then
it gives a proof for Conjecture 2 with C = 2.

4 Concluding Remarks

As a concluding remark, let me mention relationship between rooted k-arc-
connectivity and tree packings.

For an undirected graph G = (V,E) with a root r ∈ V and subsets Xi,
i ∈ {1, 2, . . . , �} of V − {r}, a group Steiner tree is defined as a tree T in G that
connects r and Xi, i ∈ {1, 2, . . . , �} each other. The packing number of group
Steiner trees is defined as the maximum number of edge-disjoint group Steiner
trees contained by G. Notice that if the packing number is at least k, then G
has obviously an orientation D that satisfies λ(r,Xi) ≥ k for all i ∈ {1, . . . , �}.
We do not know whether its converse holds or not.

In [3], Fukunaga and Nagamochi have shown that the packing number is at
least k if G satisfies λG(r,Xi) ≥ 2k|Xi| for all i ∈ {1, . . . , �}. Based on this
observation, they have presented an approximation algorithm for the minimum
group Steiner tree problem, which is a problem of computing a minimum cost
group Steiner tree1. The approximation factor of their algorithm heavily depends
on the gap between the edge-connectivity in G and the packing number. Hence
it is important to improve this gap.

Notice that the gap presented by Fukunaga and Nagamochi [3] coincides with
Theorem 3. A natural question is whether Theorem 6 can be strengthen in
order to obtain another gap between the edge-connectivity in G and the packing
number. This question is formulated as the following conjecture.
1 Fukunaga and Nagamochi [3] have actually solved a problem including the group

Steiner tree problem by the above-mentioned approach.
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Conjecture 3. Let G = (V,E) be an undirected graph with a root r ∈ V and
subsets X1, . . . , X� ⊆ V − r. If λG(r,Xi) ≥ �k for all i ∈ {1, . . . , �}, then G
contains k edge-disjoint group Steiner trees. �	

Even if this conjecture is proven, it would not present an approximation algo-
rithm better than known algorithms. Nevertheless the packing of group Steiner
trees itself deserves attention.
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Abstract. We present a polynomial time algorithm that for any graph
G and integer k ≥ 0, either finds a spanning tree with at least k internal
vertices, or outputs a new graph GR on at most 3k vertices and an integer
k′ such that G has a spanning tree with at least k internal vertices if and
only if GR has a spanning tree with at least k′ internal vertices. In other
words, we show that the Maximum Internal Spanning Tree problem
parameterized by the number of internal vertices k has a 3k-vertex kernel.
Our result is based on an innovative application of a classical min-max
result about hypertrees in hypergraphs which states that “a hypergraph
H contains a hypertree if and only if H is partition connected.”

1 Introduction

In the Maximum Internal Spanning Tree problem (MIST), we are given a
graph G and the task is to find a spanning tree of G with a maximum number of
internal vertices. MIST is a natural generalization of the Hamiltonian Path

problem because an n-vertex graph has a Hamiltonian path if and only if it has
a spanning tree with n − 2 internal vertices.

In this paper we study a parameterized version of MIST. Parameterized deci-
sion problems are defined by specifying the input (I), the parameter (k), and the
question to be answered. A parameterized problem that can be solved in time
f(k)|I|O(1), where f is a function of k alone is said to be fixed parameter tractable
(FPT). The natural parameter k for MIST is the number of internal vertices in
the spanning tree and the parameterized version of MIST, p-Internal Span-

ning Tree or p-IST for short, is for a given graph G and integer k, decide if G
contains a spanning tree with at least k internal vertices. It follows from Robert-
son and Seymour’s Graph Minors theory that p-IST is FPT [10]. Indeed, the
property of not having a spanning tree with at least k internal vertices is closed
under taking minors, and thus such graphs can be characterized by a finite set of
forbidden minors. One of the consequences of the Graph Minors theory is that
every graph property characterized by a finite set of forbidden minors is FPT,
and thus p-IST is FPT. These arguments are however not constructive. The first
constructive algorithm for p-IST is due to Prieto and Sloper [12] and has run-
ning time 24k log k · nO(1). Recently this result was improved by Cohen et al. [2]

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 275–282, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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who solved a more general directed version of the problem in time 49.4k · nO(1).
In this paper we study p-IST from the kernelization viewpoint.

A parameterized problem is said to admit a polynomial kernel if there is a
polynomial time algorithm (where the degree of the polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance to an
instance whose size is bounded by a polynomial p(k) in k, while preserving the
answer. This reduced instance is called a p(k) kernel for the problem. Let us
remark that the instance size and the number of vertices in the instance may
be different, and thus for bounding the number of vertices in the reduced graph,
the term p(k)-vertex kernel is often used. While many problems on graphs are
known to have polynomial kernels (parameterized by the solution size), there
are not so many O(k), or linear-vertex kernels known in the literature. Notable
examples include a 2k-vertex kernel for Vertex Cover [3], a k-vertex kernel
for Set Splitting [6], and a 6k-vertex kernel for Cluster Editing [5].

No linear-vertex kernel for p-IST was known prior to our work. Prieto and
Sloper [11] provided an O(k3)-kernel for the problem and then improved it to
O(k2) in [12]. The main result of this paper is that p-IST has a 3k-vertex ker-
nel. The kernelization of Prieto and Sloper is based on the so-called “Crown
Decomposition Method” [1]. Here, we use a different method, based on a min-
max characterization of hypergraphs containing hypertrees by Frank et al. [4].
As a corollary of the new kernelization, we obtain an algorithm for solving p-IST

running in time 8k · nO(1).
The paper is organized as follows. In Section 2, we provide necessary defini-

tions and facts about graphs and hypergraphs. In Section 3, we give the kernel-
ization algorithm. Section 4 is devoted to the proof of the main combinatorial
lemma, which is central to the correctness of the kernelization algorithm.

2 Preliminaries

2.1 Graphs

Let G = (V, E) be an undirected simple graph with vertex set V and edge set E.
For any nonempty subset W ⊆ V , the subgraph of G induced by W is denoted
by G[W ]. The neighborhood of a vertex v in G is NG(v) = {u ∈ V : {u, v} ∈ E},
and for a vertex set S ⊆ V we set NG(S) =

⋃
v∈S NG(v) \ S. The degree of

vertex v in G is dG(v) = |NG(v)|. Sometimes, when the graph is clear from the
context, we omit the subscripts.

2.2 The Hypergraphic Matroid

Let H = (V, E) be a hypergraph. A hyperedge e ∈ E is a subset of V . A subset
F of hyperedges is a hyperforest if | ∪ F ′| ≥ |F ′| + 1 for every subset F ′ of F ,
where ∪F ′ denotes the union of vertices contained in the hyperedges of F ′. This
condition is also called the strong Hall condition, where strong stands for the
extra plus one added to the usual Hall condition. A hyperforest with |V |−1 edges
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is called a hypertree. Lorea proved (see [4] or [7]) that MH = (E,F), where F
consists of the hyperforests of H , is a matroid, called the hypergraphic matroid.
Observe that these definitions are well-known when restricted to graphs.

Lovász proved (see [8]) that F is a hyperforest if and only if every hyperedge
e of F can be shrunk into an edge e′ (that is, e′ ⊆ e contains two vertices of e)
in such a way that the set F ′ consisting of these contracted edges forms a forest
in the usual sense, that is, forest of a graph. Observe that if F is a hypertree
then its set of contracted edges F ′ forms a spanning tree on V .

The border of a partition P = {V1, . . . , Vp} of V is the set δ(P) of hyperedges
of H which intersect at least two parts of P . A hypergraph is partition-connected
when |δ(P)| ≥ |P| − 1 for every partition P of V . The following theorem can be
found in [4, Corollary 2.6].

Theorem 1. H contains a hypertree if and only if H is partition-connected.

The proof of Theorem 1 can be turned into a polynomial time algorithm, that
is, given a hypergraph H = (V, E) we can either find a hypertree or find a
partition P of V such that |δ(P)| < |P| − 1 in polynomial time. For the sake of
completeness, we briefly mention a polynomial time algorithm to do this, though
the running time may be easily improved. Recall that MH = (E,F), where F
consists of the hyperforests of H , is a matroid and hence we can construct a
hypertree, if one exists, greedily. We start with an empty forest and iteratively
try to grow our current hyperforest by adding new edges. When inspecting a
new edge we either reject or accept it in our current hyperforest depending on
whether by adding it we still have a hyperforest. The only question is to be
able to test efficiently if a given collection of edges forms a hyperforest. In other
words, we have to check if the strong Hall condition holds. This can be done in
polynomial time by simply running the well-known polynomial time algorithm
for testing the usual Hall condition for every subhypergraph H \ v, where v is a
vertex and H \ v is the hypergraph containing all hyperedges e \ v for e ∈ E.

We can also find a contraction of the edges of a hypertree into a spanning
tree in polynomial time. For this, consider any edge e of the hypertree with
more than two vertices (if none exist, we already have our tree). By a result
of Lovász [8] mentioned above, one of the vertices v ∈ e can be deleted from e
in such a way that we still have a hypertree. Hence we just find this vertex by
checking the strong Hall condition for every choice of e \ v where v ∈ e. This
implies that we need to apply the algorithm to test the strong Hall condition at
most |V | times to obtain the desired spanning tree. Consequently, there exists
a polynomial time algorithm which can find a contracted spanning tree out of a
partition-connected hypergraph.

We now turn to the co-NP certificate, that is, we want to exhibit a partition P
of V such that |δ(P)| < |P|−1 when H is not partition-connected. The algorithm
simply tries to contract every pair of vertices in H = (V, E) and checks if the
resulting hypergraph is partition-connected. When it is not, we contract the two
vertices, and recurse. We stop when the resulting hypergraph H ′ is not partition-
connected, and every contraction results in a partition-connected hypergraph.
Observe then that if a partition P of H ′ is such that |δ(P)| < |P|− 1 and P has
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a part which is not a singleton, then contracting two vertices of this part results
in a non partition-connected hypergraph. Hence, the singleton partition is the
unique partition P of H ′ such that |δ(P)| < |P| − 1. This singleton partition
corresponds to the partition of H which gives our co-NP certificate.

3 Kernelization Algorithm

Let G = (V, E) be a connected graph on n vertices and k ∈ N be a parameter.
In this section we describe an algorithm that takes G and k as an input, and
in time polynomial in the size of G either solves p-IST, or produces a reduced
graph GR on at most 3k vertices and an integer k′ ≤ k, such that G has a
spanning tree with at least k internal vertices if and only if GR has a spanning
tree with at least k′ internal vertices. In other words, we show that p-IST has a
3k-vertex kernel.

The algorithm is based on the following combinatorial lemma, which is in-
teresting on its own. For two disjoint sets X, Y ⊆ V , we denote by B(X, Y )
the bipartite graph obtained from G[X ∪ Y ] by removing all edges with both
endpoints in X or Y .

Lemma 1. If n ≥ 3, and I is an independent set of G of cardinality at least
2n/3, then there are nonempty subsets S ⊆ V \ I and L ⊆ I such that

(i) N(L) = S, and
(ii) B(S, L) has a spanning tree such that all vertices of S and |S| − 1 vertices

of L are internal.

Moreover, given a graph on at least 3 vertices and an independent set of car-
dinality at least 2n/3, such subsets can be found in time polynomial in the size
of G.

The proof of Lemma 1 is postponed to Section 4. Now we give the description
of the kernelization algorithm and use Lemma 1 to prove its correctness. The
algorithm consists of the following reduction rules.

Rule 1. If n ≤ 3k, then output graph G and stop. In this case G is a 3k-vertex
kernel. Otherwise proceed with Rule 2.

Rule 2. Choose an arbitrary vertex v ∈ V and run a DFS (depth first search)
from v. If the DFS tree T has at least k internal vertices, then the algorithm
has found a solution and stops. Otherwise, because n > 3k, T has at least
2n/3+2 leaves, and since all leaves but the root of the DFS tree are pairwise
nonadjacent, the algorithm has found an independent set of G of cardinality
at least 2n/3. Proceed with Rule 3.

Rule 3 (reduction). Find nonempty subsets of vertices S, L⊆V as in Lemma 1.
Add a vertex vS and make it adjacent to every vertex in N(S) \ L and add
a vertex vL and make it adjacent to vS . Finally, remove all vertices of S ∪L.
Let GR = (VR, ER) be the new graph and k′ = k − 2|S| + 2. Go to Rule 1
with G := GR and k := k′.
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To prove the soundness of Rule 3, we need the following lemma. Here, S and L
are as in Lemma 1. If T is a tree and X a vertex set, we denote by iT (X) the
number of vertices of X that are internal in T .

Lemma 2. If G has a spanning tree with k internal vertices, then G has a
spanning tree with at least k internal vertices in which all the vertices of S and
exactly |S| − 1 vertices of L are internal.

Proof. Let T be a spanning tree of G with k internal vertices. Denote by F the
forest obtained from T by removing all edges incident to L. Then, as long as 2
vertices of S are in the same connected component in F , remove an edge from
F incident to one of these two vertices. Now, obtain the spanning tree T ′ by
adding the edges of a spanning tree of B(S, L) to F in which all vertices of S
and |S| − 1 vertices of L are internal (see Lemma 1). Clearly, all vertices of S
and |S| − 1 vertices of L are internal in T ′. It remains to show that T ′ has at
least as many internal vertices as T .

Let U := V \ (S ∪ L). Then, we have that iT (L) ≤
∑

u∈L dT (u) − |L| as
every vertex in a tree has degree at least 1 and internal vertices have degree at
least 2. We also have iT ′(U) ≥ iT (U) − (|L| + |S| − 1 −

∑
u∈L dT (u)) as at most

|S|−1− (
∑

u∈L dT (u)−|L|) edges incident to S are removed from F to separate
F \ L into |S| connected components, one for each vertex of S. Thus,

iT ′(V ) = iT ′(U) + iT ′(S ∪ L)

≥ iT (U) − (|L| + |S| − 1 −
∑

u∈L

dT (u)) + iT ′(S ∪ L)

= iT (U) + (
∑

u∈L

dT (u) − |L|) − |S| + 1 + iT ′(S ∪ L)

≥ iT (U) + iT (L) − |S| + 1 + iT ′(S ∪ L)
= iT (U) + iT (L) − (|S| − 1) + (|S| + |S| − 1)
= iT (U) + iT (L) + |S|
≥ iT (U) + iT (L) + iT (S)
= iT (V ).

This finishes the proof of the lemma. �	

Lemma 3. Rule 3 is sound, |VR| < |V |, and k′ ≤ k.

Proof. We claim first that the resulting graph GR = (VR, ER) has a spanning
tree with at least k′ = k − 2|S| + 2 internal vertices if and only if the original
graph G has a spanning tree with at least k internal vertices. Indeed, assume
G has a spanning tree with � ≥ k internal vertices. Then, let B(S, L) be as in
Lemma 1 and T be a spanning tree of G with � internal vertices such that all
vertices of S and |S| − 1 vertices of L are internal (which exists by Lemma 2).
Because T [S ∪ L] is connected, every two distinct vertices u, v ∈ NT (S) \ L are
in different connected components of T \ (L∪S). But this means that the graph
T ′ obtained from T \ (L∪S) by connecting vS to all neighbors of S in T \ (S∪L)
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is also a tree in which the degree of every vertex in NG(S)\L is unchanged. The
graph T ′′ obtained from T ′ by adding vL and connecting vL to vS is also a tree.
Then T ′′ has exactly � − 2|S|+ 2 internal vertices.

In the opposite direction, if GR has a tree T ′′ with � − 2|S| + 2 internal
vertices, then all neighbors of vS in T ′′ are in different components of T ′′ \ {vS}.
By Lemma 1 we know that B(S, L) has a spanning tree TSL such that all the
vertices of S and |S|−1 vertices of L are internal. We obtain a spanning tree T of
G by considering the forest T ∗ = T ′′ \ {vS , vL} ∪ TSL and adding edges between
different components to make it connected. For each vertex u ∈ NT ′′(vS) \ {vL},
add an edge uv to T ∗, where uv is an edge of G and v ∈ S. By construction we
know that such an edge always exists. Moreover, the degrees of the vertices in
NG(S) \L are the same in T as in T ′′. Thus T is a spanning tree with � internal
vertices.

Finally, as |S| ≥ 1 and |L ∪ S| ≥ 3, we have that |VR| < |V | and k′ ≤ k. �	

Thus Rule 3 compresses the graph and we conclude with the following theorem.

Theorem 2. p-IST has a 3k-vertex kernel.

Corollary 1. p-IST can be solved in time 8k · nO(1).

Proof. Obtain a 3k-vertex kernel for the input graph G in polynomial time using
Theorem 2 and run the 2nnO(1) time algorithm of Nederlof [9] on the kernel. �	

4 Proof of Lemma 1

In this section we provide the postponed proof of Lemma 1. Let G = (V, E) be
a connected graph on n vertices, I be an independent set of G of cardinality at
least 2n/3 and C := V \ I.

Let Y be a subset of V . A subset X ⊆ (V \ Y ) has Y -expansion c, for some
c > 0, if for each subset Z of X , |N(Z)∩Y | ≥ c · |Z|. We first find an independent
set L ⊆ I whose neighborhood has L-expansion 2. For this, we need the following
result.

Lemma 4 ([13]). Let B be a nonempty bipartite graph with vertex bipartition
(X, Y ) with |Y | ≥ 2|X | and such that every vertex of Y has at least one neighbor
in X. Then there exist nonempty subsets X ′ ⊆ X and Y ′ ⊆ Y such that the
set of neighbors of Y ′ in B is exactly X ′, and such that X ′ has Y ′-expansion 2.
Moreover, such subsets X ′, Y ′ can be found in time polynomial in the size of B.

By using Lemma 4, we find nonempty sets of vertices S′ ⊆ C and L′ ⊆ I such
that N(L′) = S′ and S′ has L′-expansion 2.

Lemma 5. Let G = (V, E) be a connected graph on n vertices, I be an inde-
pendent set of G of cardinality at least 2n/3 and C := V \ I. Furthermore let
S′ ⊆ C and L′ ⊆ I such that N(L′) = S′ and S′ has L′-expansion 2. Then there
exist nonempty subsets S ⊆ S′ and L ⊆ L′ such that
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– B(S, L) has a spanning tree in which all the vertices of L have degree at most
2,

– S has L-expansion 2, and
– N(L) = S.

Moreover, such sets S and L can be found in time polynomial in the size of G.

Proof. The proof is by induction on |S′|. If |S′| = 1, the lemma holds with
S := S′ and L := L′. Let H = (S′, E′) be the hypergraph with edge set E′ =
{N(v) | v ∈ L′}. If H contains a hypertree, then it has |S′| − 1 hyperedges and
we can obtain a tree TS′ on S′ by contracting edges. We use this to find a subtree
T ′ of B(S′, L′) spanning S′ as follows: for every edge e = uv of TS′ there exists
a hyperedge corresponding to it and hence a unique vertex, say w, in L′; we
delete the edge e = uv from TS′ and add the edges wu and wv to TS′ . Observe
that the resulting subtree T ′ of B(S′, L′) has the property that every vertex in
T ′ which is in L′ has degree 2 in it. Finally, we extend T ′ to a spanning tree
of B(S′, L′) by adding the remaining vertices of L′ as pending vertices. All this
can be done in polynomial time using the algorithm in Section 2.2. Thus S′ and
L′ are the sets of vertices we are looking for. Otherwise, if H does not contain a
hypertree, then H is not partition-connected by Theorem 1. Then we can find a
partition P = {P1, P2, . . . , P�} of S′ such that its border δ(P) contains at most
� − 2 hyperedges of H in polynomial time. Let bi be the number of hyperedges
completely contained in Pi, where 1 ≤ i ≤ �. Then there is j, 1 ≤ j ≤ �, such
that bj ≥ 2|Pj |. Indeed, otherwise |L′| ≤ (�−2)+

∑�
i=1(2|Pi|−1) < 2|S′|, which

contradicts the choice of L′ and S′ and the fact that S′ has an L′-expansion
2. Let X := Pj and Y := {w ∈ L′| N(w) ⊆ Pj}. We know that |Y | ≥ 2|X |
and hence by Lemma 4 there exists a S∗ ⊆ X and L∗ ⊆ Y such that S∗ has
L∗-expansion 2 and N(L∗) = S∗. Thus, by the induction assumption, there exist
S ⊆ S∗ and L ⊆ L∗ with the desired properties. �	

Let S and L, be as in Lemma 5. We will prove in the following that there exists
a spanning tree of B(S, L) such that all the vertices of S and exactly |S| − 1
vertices of L are internal. Note that there cannot be more than 2|S|− 1 internal
vertices in a spanning tree of B(S, L) without creating cycles. By Lemma 5, we
know that there exists a spanning tree of B(S, L) in which |S| − 1 vertices of L
have degree exactly 2.

Consider the bipartite graph B2 obtained from B(S, L) by adding a copy Sc

of S (each vertex in S has the same neighborhood as its copy in Sc and no vertex
of Sc is adjacent to a vertex in S). As |L| ≥ |S ∪Sc| and each subset Z of S ∪Sc

has at least |Z| neighbors in L, by Hall’s theorem, there exists a matching in
B2 saturating S ∪ Sc. This means that in B(S, L), there exist two edge-disjoint
matchings M1 and M2, both saturating S. We refer to the edges from M1 ∪M2
as the favorite edges.

Lemma 6. B(S, L) has a spanning tree T such that all the vertices of S and
|S| − 1 vertices of L are internal in T .
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Proof. Let T be a spanning tree of B(S, L) in which all vertices of L have degree
at most 2, obtained using Lemma 5. As T is a tree, exactly |S| − 1 vertices of L
have degree 2 in T . As long as a vertex v ∈ S is not internal in T , add a favorite
edge uv to T which was not yet in T (u ∈ L), and remove an appropriate edge
from the tree which is incident to u so that T remains a spanning tree. Vertex
v becomes internal and the degree of u in T remains unchanged. As u is only
incident to one favorite edge, this rule increases the number of favorite edges in
T even though it is possible that some other vertex in S would have become a
leaf. We apply this rule until no longer possible. We know that this rule can only
be applied at most |S| times. In the end, all the vertices of S are internal and
|S| − 1 vertices among L are internal as their degrees remain the same. �	
To conclude with the proof of Lemma 1, we observe that S ⊆ C, L ⊆ I and
N(L) = S by the construction of S and L, and by Lemma 6, B(S, L) has a
spanning tree in which all the vertices of S and |S|−1 vertices of L are internal.
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Abstract. In this paper we consider bi-criteria geometric optimization
problems, in particular, the minimum diameter minimum cost spanning
tree problem and the minimum radius minimum cost spanning tree prob-
lem for a set of points in the plane. The former problem is to construct
a minimum diameter spanning tree among all possible minimum cost
spanning trees, while the latter is to construct a minimum radius span-
ning tree among all possible minimum cost spanning trees. The graph-
theoretic minimum diameter minimum cost spanning tree (MDMCST)
problem and the minimum radius minimum cost spanning tree (MRM-
CST) problem have been shown to be NP-hard. We will show that
the geometric version of these two problems, GMDMCST problem and
GMRMCST problem are also NP-hard. We also give two heuristic algo-
rithms, one MCST-based and the other MDST-based for the GMDMCST
problem and present some experimental results.

1 Introduction

Given a connected, undirected and weighted graph G = (V,E) where each edge
is associated with a nonnegative real number, referred to as the cost, a spanning
tree of G whose total cost is minimum among all possible spanning trees is called
a minimum cost spanning tree (MCST) of G or simply minimum spanning tree
(MST). There are two algorithms commonly used, Prim’s algorithm [8] and
Kruskal’s algorithm [7] for constructing a minimum spanning tree. Note that
the MST may not be unique if two or more edges have the same cost. Given
a tree T in which each edge has a cost representing the length of the edge,
the eccentricity of a vertex v in T is defined to be the total length of the path
from v to the farthest vertex uv in T , denoted by ecc(v). The longest path from
vertex v to uv in T whose ecc(v) is the maximum among all v in T is referred
to as the diameter of T , and the total cost of the diameter of T is denoted
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D(T ). Note that there exist at least two extreme vertices in T such that their
eccentricity is the maximum. The vertex v that attains the minimum ecc(v) for
all v in T is called the center of T , and the minimum ecc(v) is referred to as the
radius of T , denoted R(T ). If the costs of edges of T are positive, then either we
have a unique center vertex or at most two vertices for which the eccentricity is
the minimum.

A spanning tree of a graph G(V,E) that minimizes its diameter is called
the minimum diameter spanning tree. The geometric version of this problem
(GMDST) is defined as follows. Given a set P of n points in the plane in which
the cost of an edge connecting any two points is the Euclidean distance between
them, find a spanning tree of P such that its diameter is the minimum among
all possible spanning trees. Given a graph G(V,E) and a source vertex or center
v ∈ V , the spanning tree that minimizes ecc(v) is called the minimum radius
spanning tree. The geometric version of this problem (GMRST) is defined sim-
ilarly. In [5], Ho, et al. described an algorithm for finding the GMDST of a set
of n points in O(n3) time. They proved that there always exists a GMDST such
that it either has a center point, called monopole, and the rest of points are
directly connected to the center point, or has a center edge with two points,
called dipole, and the rest of the points are connected to one of the endpoints of
the center edge. They further showed that the above results can be extended to
any graph in which the edge costs satisfy the triangle inequality. In [3], Hassin
and Tamir showed that the graph-theoretic version of the minimum diameter
spanning tree (MDST) problem, where the edge costs do not necessarily satisfy
the triangle inequality, is reducible to the absolute 1-center problem introduced
by Hakimi [2]. The absolute 1-center problem can be solved in O(mn + n2logn)
time [6], where m and n denote respectively the numbers of edges and of vertices
of G. Chan [10] improved the bound of GMDST problem in d-dimensional space
Rd. He described a semi-online model that computes GMDST of an n-point set
P ⊂ Rd within Õ(n3− 1

(d+1)(d/2+1) ) time by maintaining a dynamic data structure.
(The Õ notation hides factors that are o(nε) for any fixed ε > 0.) In other words,
the GMDST of an n-point set P in the plane can be found within Õ(n17/6) time.
The time bound of the GMDST problem is still very close to the cubic time.

In this paper we consider the geometric versions of these two related bi-criteria
problems, the MDMCST problem and the MRMCST problem. The MDMCST
problem is to construct a MDST among all possible MCSTs and the MRM-
CST problem is to construct for a given center a MRST among all possible
MCSTs. The graph-theoretic version of both problems have been shown to be
NP-hard [4,5]. We will show that the geometric versions of both minimum di-
ameter minimum cost spanning (GMDMCST) problem and minimum radius
minimum cost spanning (GMRMCST) problem are NP-hard. We then give two
heuristic algorithms, called MCST-based algorithm and MDST-based algorithm
for the GMDMCST problem and present some experimental results.

The rest of the paper is organized as follows. In Section 2 we show that
the GMDMCST and GMRMCST problems are NP-hard. In Section 3 we give
MCST-based and MDST-based heuristic algorithms for the GMDMCST
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problem. In Section 4 we give the implementation results of these two kinds
of heuristic algorithm on the Algorithm Benchmark System (ABS) [11] and con-
clude with an analysis and some remarks.

2 NP-Hardness of the GMDMCST and GMRMCST

Given a connected undirected graph G(V,E) with nonnegative edge costs, we
consider the set of all minimum cost spanning trees of G. In the following we will
simply refer to minimum cost spanning tree as minimum spanning tree, when
the cost measure is understood. In [9], Seo defined the minimum spanning tree
intersection graph (MSTIG) which is the intersection of all the MST’s, and the
minimum spanning tree union graph (MSTUG) which is the union of all the
MST’s. The edges in MSTIG are called the essential edges and those in MSTUG
but not in MSTIG are called the optional edges.

Given a set P of n points in the plane in which the cost of an edge connecting
any two points is the Euclidean distance between them, Seo [9] gave an algorithm
that runs in O(n2 logn) time for finding the MSTIG(G) and MSTUG(G) and
coloring all edges in G according the following coloring rule. The essential edges
are colored blue, the optional edges are colored green and the edges not in the
MSTUG are colored red. Thus all the edges of a graph G will be partitioned into
three classes, each assigned a distinct color. The MSTUG will be a connected
graph, and the MSTIG will be a forest unless the MST is unique. The subtrees
in the forest of MSTIG that consist solely of essential edges are called blue trees.

In this section, we show that the decision version of the optimization GMRM-
CST problem, the so-called the geometric bounded radius bounded cost spanning
tree (GBRBCST) problem, is NP-complete. We first show that the PARTITION
problem, a well-known NP-complete problem [1], is polynomially reducible to the
GBRBCST problem, and then show that the GBRBCST problem is polynomi-
ally reducible to the GBDBCST problem, and finally show that the GBRBCST
and GBDBCST problems are respectively polynomially reducible to the GM-
RMCST and GMDMCST problems.

The PARTITION problem is defined as follows. Given a finite set W and a
size s(w) ∈ Z+ for each w ∈ W , decide if there exists a subset W ′ ⊆ W such
that

∑
w∈W ′ s(w) =

∑
w∈W−W ′ s(w)?

The GBRBCST is defined as follows. Given a point set P in the plane, a center
s and two positive values R and C, decide if there exists a Euclidean spanning
tree T such that the distance, ecc(s), from s to the farthest site along the tree is
bounded above by R and that the total cost of the tree is bounded above by C?

Theorem 1. The GBRBCST problem is NP-complete.

Proof. GBRBCST is obviously in NP. For simplicity we assume that an instance
of PARTITION is a multiset of positive integers (with repetition permitted)
sorted in nondecreasing order, i.e., w1, w2, . . . , wn where wi ≤ wi+1 for i =
1, ..., n − 1. We shall construct an instance of GBRBCST based on the input
instance of PARTITION. The construction (see Fig. 1) is as follows. Let ISqr+(k)
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and ISqr−(k) be imaginary squares corresponding to wk such that each side is
of length 2wk. The top right (TR) corner of ISqr+(i) and the bottom left(BL)
corner of ISqr+(i + 1) are coincident, while BL(ISqr−(i)) and TR(ISqr−(i + 1))
are coincident. Suppose that BL(ISqr+(1)) and TR(ISqr−(1)) are located at
the origin s. For k > 1, BL(ISqr+(k)) = TR(ISqr+(k − 1)) has coordinates
(2
∑k−1

i=1 wi, 2
∑k−1

i=1 wi), while TR(ISqr−(k)) = BL(ISqr−(k−1)) has coordinates
(−2

∑k−1
i=1 wi,−2

∑k−1
i=1 wi). The bottom and left sides of each ISqr+(k) or each

ISqr−(k) are parallel to x− and y−coordinate axes, respectively. Figure 2 shows
a more detailed positioning of the points in a square of dimension w×w. There
are three types of points in our construction.

1. For each pair of imaginary squares ISqr+(k) and ISqr−(k), there is one basic
TYPE1 point p at (2

∑k
i=1 wi,−2

∑k
i=1 wi) shown in Fig. 2 on a matching

path connecting ISqr+(k) and ISqr−(k), where the matching path consists
of an upward vertical line from p to meet the right side of ISqr+(k) and a
leftward horizontal line from p to meet the bottom side of ISqr−(k). Extra-
neous TYPE1 points on this matching path are added so that they equally
divide the vertical and horizontal line segments h, p and h′, p in Fig. 2, into
� (4

∑k
i=1 wi)−wk

0.5wk
� + 1 edges, respectively. The divided edges will be of length

strictly less than 0.5wk. Since wi’s are sorted in nondecreasing order, the
number of TYPE1 extra points for each k is bounded by O(n). Hence there
will be O(n2) TYPE1 points.

2. Now consider TYPE2 points. For each ISqr, there will be 10 basic points
(e.g. a,b,c,d,e,f ,g,h,i and j for ISqr+(k) in Fig. 2) and 10 extra dividing
points (e.g. in the middle of 5 edges (c,d),(d,e),(e,f),(g,j) and (i,j), 3 points
equally dividing (a,b), and 2 points equally dividing (b,c), as shown). These
dividing points are introduced to ensure that the distance of any divided
segment in the corresponding ISqr is strictly less than 0.5wk. Similarly we
have 20 points for ISqr−(k). Note that the distances between points c and
h, between points h and i, and between points f and g in ISqr+(k) (or
correspondingly those between points c′ and h′, between points h′ and i′,
and between points f ′ and g′ in ISqr−(k)) are 0.5wk. Figure 2 shows the
x and y-coordinates of basic TYPE2 points in ISqr+(k) and ISqr−(k); the
subscript k is omitted from the figure. Note that points f and g are shifted
so that the distance between points f and i is strictly greater than 0.5wk.
Points f ′ and g′ are shifted similarly.

3. Finally there are TYPE3 points, t1, t2, t3, t4 and other auxiliary points.
Points t1 and t2 have x- and y- coordinates ((2 + 4.5

√
2)
∑n

i=1 wi, (2 +
4.5

√
2)
∑n

i=1 wi) and (−(2+4.5
√

2)
∑n

i=1 wi,−(2+4.5
√

2)
∑n

i=1 wi), respec-
tively. The distances between points jn and t1, and between points j′n and t2
are equal to 9

∑n
i=1 wi. Note that this distance is longer than the length of

any matching path. The length of the matching path (hk, pk, h
′
k) for ISqr(k)

is 8
∑k

i=1 wi − 2wk. The shortest distance from s to t1 (and to t2) in a mini-
mum spanning tree is 13

∑n
i=1 wi. Points t3 and t4 form an isosceles triangle

with the apex s. The line segments s, t3 and s, t4 are of length 13.5
∑n

i=1 wi.
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The slopes of s, t3 and s, t4 are -4 and -1/4, respectively. The auxiliary points
on s, t3 are those with y-coordinates (2

∑k
i=1 wi) and (2

∑k
i=1 wi − wk) for

1 ≤ k ≤ n. On the other hand, the auxiliary points on s, t4 are those with
x-coordinates (−2

∑k
i=1 wi) and (−2

∑k
i=1 wi + wk). The slopes of s, t3 and

s, t4 are selected so that the closest point from any auxiliary point must be
s, t3, t4, or another auxiliary point on the same slope.

Let C be equal to the cost of the minimum spanning tree and R be equal to

13
n∑

i=1

wi +
1
2
S = 13.5

n∑

i=1

wi.

We now show that the instance of PARTITION has a solution if and only if the
constructed instance of the GBRBCST problem has answer YES.

Let the solution be denoted by T ∗. Note that all the edges shown as solid lines
in Fig. 1 must belong to T ∗, i.e., they are essential edges, and that those shown
as dashed lines may or may not belong to T ∗, i.e., they are optional edges. Let L1
and L2 denote the path length from s to t1 and from s to t2 in T ∗, respectively.
An imaginary square is said to be straight, crooked, or bad if it satisfies the
following constraints. If both (c�, h�) and (h�, i�) of ISqr+(�) (or correspondingly
(c′�, h

′
�) and (h′�, i

′
�) of ISqr−(�)) are in T ∗, then ISqr+(�) (or correspondingly

ISqr−(�)) is said to be straight. If only (f�, g�) of ISqr+(�) (or correspondingly
(f ′�, g

′
�) of ISqr−(�)) is in T ∗, then ISqr+(�) (resp. ISqr−(�)) is said to be crooked.

An imaginary square which is neither straight nor crooked is said to be bad.
By Lemma 5, we can obtain from T ∗ a solution to the PARTITION problem by
assigning w� to W ′ if ISqr+(�) is crooked and assigning w� to W −W ′ if ISqr+(�)
is straight, for � = 1, 2, . . . , n. This completes the proof that the GBRBCST
problem is NP-complete.

According to the construction of an instance of GBRBCST above, we have the
following lemmas. Due to the page limit, some proofs are omited.

Lemma 1. L1 + L2 ≤ 27
∑n

i=1 wi.

Lemma 2. Each pair of imaginary squares ISqr+(�) and ISqr−(�) contributes
8w� to L1 + L2 if both of them are straight,
9w� to L1 + L2 if one of them is straight and the other one is crooked,
10w� to L1 + L2 if both of them are crooked, and
≥ 14w� L1 + L2 if at least one of them is bad.

Lemma 3. For each pair of imaginary squares ISqr+(�) and ISqr−(�), at least
two and at most four of the six optional edges (c�, h�), (h�, i�), (f�, g�), (c′�, h

′
�),

(h′�, i
′
�) and (f ′�, g

′
�) are in T ∗.

Lemma 4. For each pair of imaginary squares ISqr+(�) and ISqr−(�), at most
one of them is straight.

Lemma 5. For each pair of imaginary squares ISqr+(�) and ISqr−(�), exactly
one of them is straight and the other one is crooked.
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(2w1,-2w1)

(2(w1+w2+w3),-2(w1+w2+w3))

(2(w1+w2),-2(w1+w2))

Fig. 1. MSTUG/MSTIG constructed from an instance of PARTITION

Lemma 6. Given a graph G, suppose that the optional edges in MSTUG(G)
are partitioned into lmax equivalence classes K1, K2, . . ., Klmax such that the
edges in the same class have an identical weight and the weight of an edge in
Ki is strictly less than that in Kj if and only if i < j. Let NOi(T ) denote the
number of optional edges in Ki that are contained in the MST T . Then, for any
pair of MST’s T and T ′, NOi(T ) = NOi(T ′) for 1 ≤ i ≤ lmax.

Theorem 2. The GBDBCST problem is NP-complete.

Proof. Let D = 2R. Then the previous construction can be used to prove that
the GBRBCST problem is polynomially reducible to the GBDBCST problem.

Theorem 3. The GMRMCST and the GMDMCST problems are NP-hard.

Proof. It is obvious that the GBRBCST problem and the GBDBCST problem
are polynomially reducible to the GMRMCST problem and the GMDMCST
problem, respectively.

3 Heuristic Algorithms for GMDMCST

In this section, we assume that MSTIG(G) and MSTUG(G) have been computed
and will be used as the input of our heuristic algorithms [9]. Let BTi denote a
blue-tree in MSTIG(G). We define the pseudo-center, denoted pc(BTi), of BTi

to be the point on an edge or a vertex in BTi such that the distances from the
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two extremes of the diameter D(BTi) to pc(BTi) are the same. It is trivial to
see that ecc(pc(BTi)) = D(BTi)/2.

The crux of this problem lies in the selection of optional edges to be included
in GMDMCST so that the resulting diameter of the MST is minimized. We shall
adopt different strategies in our heuristic algorithms to select optional edges. The
following properties and operations are needed for our heuristics. For each blue
tree BTi, we will maintain diameter D(BTi), pseudo-center pc(BTi), and the
distance, denoted �(v), from v to pc(BTi) for each vertex v in BTi. When we
select an optional edge e = (u, v) concatenating two blue trees, BTi and BTj, we
will create a new blue tree BTi,j, which is the union of BTi, BTj and the optional
edge e. D(BTi,j) = max{D(BTi), D(BTj), c(e) + �(u) + �(v) + ecc(pc(BTi)) +
ecc(pc(BTj))}, where c(e) denotes the cost of edge e.

We now start to develop our heuristic algorithms for GMDMCST. Both kinds
of our heuristic algorithm for GMDMCST use the greedy method. The general
idea is as follows: We greedily select an optional edge concatenating two blue
trees so that the new blue tree has a minimum diameter until all the blue trees are
connected to become a single MST. Note that we can easily modify our heuristic
algorithm for GMDMCST to become a heuristic algorithm for GMRMCST by
using a different greedy criterion which is to greedily select an optional edge
concatenating two blue trees so that the new blue tree has a minimum radius.

3.1 The MST-Based Heuristic

In this subsection, we use the ideas of the Prim’s and Kruskal’s MST algorithm
to develop our MST-based heuristic algorithm.

ISqr-

ISqr+

t1

t2

t3

t4

a b

c
d

e f

g

h

i

j

s

aí

b’c’

d’e’

f’

g’

h’i’j’

e:(w,1.5w)d:(w,w)c:(1.5w,w)b:(1.5w,0)a: (0,0) 

f:(1.375w,1.5w) g:(1.375w,2w) h:(2w,w) i:(2w,1.5w) j:(2w,2w)

aí:(0,0)

f’:(-1.5w,-1.375w) g’:(-2w,-1.375w) h’:(-w,-2w) i’(-1.5w,-2w)

e’:(-1.5w,-w)c’:(-w,-1.5w) d’:(-w,-w)b’:(0,-1.5w)

(Base Point: TR(ISqr-))

(Base Point: BL(ISqr+))

Origin (0,0)

Basic Points

Extra Points

j’:(-2w,-2w)

ISqr’s

Essential Lines

Optional Edgesp

Relative Coordinates of TYPE II Basic Points

Fig. 2. The detailed picture for ISqr’s in Figure 1
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3.1.1 Prim-Like Heuristic
We start with a randomly selected blue tree BTs among all blue trees in
MSTIG(G) and consider the optional edges that are incident to BTs with the
minimum cost. Let e = (u, v) be one of the optional edges with the minimum
cost that is incident to BTs, where u ∈ BTs and v ∈ BTj for some j 
= s.

D(BTs) = max{D(BTs), D(BTj), c(e) + �(u) + �(v) + (D(BTs) + D(BTj))/2}.
We greedily select among all optional edges with the minimum cost that are

incident to BTs the optional edge e that gives the minimum diameter according
to the formula above. After selecting this optional edge e, we obtain a new blue
tree BTs by concatenating these two blue trees.

3.1.2 Kruskal-Like Heuristic
Let e = (u, v) be one of the optional edges with the minimum cost, where u ∈ BTi

and v ∈ BTj . We will concatenate BTi and BTj to be a new blue tree for which
δ(e) is minimum, where δ(e) = D(BTi,j) − (D(BTi) + D(BTj)).

3.2 The MDST-Based Heuristic

3.2.1 k-Center Heuristic
In [5], Ho et al. proved that there exists a GMDST of a set of n points which
is monopolar or dipolar. The idea of k-center heuristic is to extend monopolar
and dipolar spanning trees to k-polar. Let b be the total number of blue trees in
MSTIG(G). If each combination contains k distinct blue trees in MSTIG(G), it
has total C(b, k) distinsct combinations. For each combination π of k blue trees
BTπ(1), BTπ(2), . . . , BTπ(k), we will partition the set of remaining blue trees into
k subsets S1, S2, . . . , Sk by some greedy criteria, connect each blue tree in Si

to BTπ(i) for each 1 ≤ i ≤ k and then connect BTπ(1), BTπ(2), . . . , BTπ(k) by
Kruskal-like heuristic to obtain a minimum spanning tree BTπ. The k-center
heuristic will consider all combinations of k blue trees as possible k-poles, and
select one such that its resulting minimum spanning tree has the minimum
diameter.

Note that we can apply the Prim-like heuristic algorithm to implement the
1-center heuristic algorithm. We can implement the 1-center heuristic by calling
the Prim-like heuristic b times, each starts with blue tree BTi, where 1 ≤ i ≤ b,
and then select the MST with the minimum diameter. The k-center heuristic
can also be viewed as a combination of Prim-like heuristic and Kruskal-like
heuristic. For each combination π of k blue trees BTπ(1), BTπ(2), . . . , BTπ(k), we
first connect all blue trees in Si to BTπ(i) by Prim-like heuristic and then connect
blue trees BTπ(1), BTπ(2), . . . , BTπ(k) by Kruskal-like heuristic.

4 Implementation

The MST-based heuristic algorithm and the MDST-based heuristic algorithm
have been implemented on the ABS. Tables 1 and 2 summarize the experimental
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Table 1. The experimental results for MST-based heuristic algorithms

MST PRIM MST KRUSCAL
n m mopt mBT avg. d. avg. t. avg. d. avg. t.

50 50 3.05 2.50 1265.028 0.0002 1263.837 0.0002
100 50 10.06 5.93 1437.457 0.0002 1431.074 0.0002
150 50 21.77 11.60 1509.909 0.0006 1496.996 0.0002
200 50 33.78 17.41 1584.962 0.0008 1555.767 0.0004
250 50 50.17 25.09 1646.061 0.0007 1596.836 0.0003
300 50 65.91 32.60 1639.306 0.0006 1608.231 0.0004
350 50 82.21 40.70 1693.195 0.0011 1631.054 0.0007
400 50 102.79 51.16 1655.356 0.0005 1598.080 0.0011

Table 2. The experimental results for MDST-based heuristic algorithms

MDST 1C MDST 2C MDST 3C MDST 4C MDST 5C
n m mopt mBT avg. d. avg. t. avg. d. avg. t. avg. d. avg. t. avg. d. avg. t. avg. d. avg. t.

50 50 3.05 2.50 1262.6 0.0001 1262.0 0.0001 1262.4 0.0001 1262.4 0.0001 1263.3 0.0002
100 50 10.06 5.93 1424.4 0.0006 1423.7 0.0011 1424.3 0.0011 1426.4 0.0015 1428.6 0.0018
150 50 21.77 11.60 1463.8 0.0009 1459.3 0.0044 1457.2 0.0135 1456.2 0.0381 1454.8 0.0847
200 50 33.78 17.41 1527.0 0.0016 1520.9 0.0142 1507.8 0.0785 1505.2 0.3383 1504.6 1.1756
250 50 50.17 25.09 1560.5 0.0048 1537.1 0.0446 1520.9 0.3563 1509.9 2.1918 1504.7 10.7995
300 50 65.91 32.60 1530.0 0.0077 1513.1 0.1066 1487.7 1.1158 1474.2 9.0257 1466.9 59.0691
350 50 82.21 40.70 1553.0 0.0127 1512.0 0.2253 1486.4 2.9002 1467.4 28.6890 1454.2 230.5542
400 50 102.79 51.16 1534.0 0.0217 1495.7 0.4741 1464.2 7.5041 1444.8 91.5174 1425.9 516.9337

results. Columns 1 - 2 indicate the total number of input vertices (n) and the size
of grid (m × m) respectively. Columns 3 - 4 contain the average number of op-
tional edges (mopt) and the average number of the blue trees (mBT ) for the input
instances. The other columns contain the average diameter (avg. d.) and average
running times ( avg. t.) of the Prim-like heuristic algorithm (MST PRIM), the
Kruskal-like heuristic algorithm (MST KRUSCAL) and the k-center heuristic al-
gorithms (1-center (MST 1C), 2-center (MST 2C) , 3-center (MST 3C), 4-center
(MST 4C), 5-center (MST 5C)), respectively. We generate the test instances with
input size from 50, 100, 150, . . . , 400 vertices on a 50 × 50 grid. For each input
size we randomly generate 1000 test instances and then execute all heuristic algo-
rithms for every test instance. In general, we see the MDST-based heuristics are
better than the MST-based heuristics, but they spend more time. As far as the
MST-based heuristics are concerned, the Kruskal-like heuristic is better than the
Prim-like heuristic. We also see that the 2-center heuristic obtains the smallest
diameter for smaller input size 50 and 100, and the 5-center heuristic yields the
smallest diameter spanning tree when the input size is larger than or equal to 150.
It seems that the number of centers in an optimal MDMCST increases as the input
size (or the size of blue trees) increases.
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5 Conclusion

In this paper, we have considered two related bi-criteria problems GMDMCST
and GMRMCST and shown that they both are NP-hard. We have presented two
kinds of heuristic algorithms for the GMDMCST problem, called MST-based
algorithm and MDST-based algorithm. The MST-based heuristic algorithm in-
cludes Prim-like heuristic algorithm and Kruskal-like heuristic algorithm. We
have also introduced a k-center heuristic algorithm, which is an MDST-based
heuristic algorithm. The time complexity of the Prim-like heuristic algorithm
and the Kruskal-like heuristic algorithm both are O(n2 +moptmBT ), where n is
the number of vertices, mBT is the number of blue trees and mopt is the number
of the optional edges. The time complexity of k-center heuristic algorithm is
O(nk(n2 + moptmBT + mopt logmopt)).

So far, we have not been able to find any approximation algorithm for the
GMDMCST. This is an interesting problem for further research. Our benchmark
results give us a hint to find an approximation algorithm by approximating the
number of centers in an optimal MDMCST.
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Abstract. For a graph and a set of vertex pairs {(s1, t1), . . . , (sk, tk)},
the k disjoint paths problem is to find k vertex-disjoint paths P1, . . . , Pk,
where Pi is a path from si to ti for each i = 1, . . . , k. In the corresponding
optimization problem, the shortest disjoint paths problem, the vertex-
disjoint paths Pi have to be chosen such that a given objective function is
minimized. We consider two different objectives, namely minimizing the
total path length (minimum sum, or short: min-sum), and minimizing
the length of the longest path (min-max), for k = 2, 3.

min-sum: We extend recent results by Colin de Verdière and Schrijver
to prove that, for a planar graph and for terminals adjacent to at most
two faces, the Min-Sum 2 Disjoint Paths Problem can be solved in poly-
nomial time. We also prove that, for six terminals adjacent to one face
in any order, the Min-Sum 3 Disjoint Paths Problem can be solved in
polynomial time.

min-max: The Min-Max 2 Disjoint Paths Problem is known to be NP-
hard for general graphs. We present an algorithm that solves the problem
for graphs with tree-width 2 in polynomial time. We thus close the gap
between easy and hard instances, since the problem is weakly NP-hard
for graphs with tree-width at least 3.

1 Introduction

The vertex-disjoint paths problem is one of the classic problems in algorith-
mic graph theory and combinatorial optimization, and has many applications,
for example in transportation networks, VLSI-design [5,14], or routing in net-
works [12,20]. The input of the vertex-disjoint paths problem is a graph G =
(V,E) and k pairs of vertices (s1, t1), . . . , (sk, tk), for which the algorithm has
to find k pairwise vertex-disjoint paths connecting si and ti, if they exist. Paths
are called vertex-disjoint if they have no vertices in common (except, possibly,
at the end points).

In the optimization version of the problem, we are interested in short vertex-
disjoint paths. We may want to minimize the total length (minimum sum) or

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 293–302, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



294 Y. Kobayashi and C. Sommer

the length of the longest path (min-max objective function). A more formal
description of the problem is as follows.

Min-Sum k Disjoint Paths Problem (Min-Max k Disjoint Paths
Problem)
Input: A graph G = (V,E), k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk) in G
(which are sometimes called terminals), and a length function l : E → R+.
Output: Vertex-disjoint paths P1, . . . , Pk in G such that Pi is from si to ti for
i = 1, 2, . . . , k, minimizing

∑k
i=1 l(Pi) (or minimizing maxi l(Pi)), where l(Pi) =∑

e∈E(Pi) l(e).

1.1 Related Work

If k is part of the input, the vertex-disjoint paths problem is one of Karp’s
NP-hard problems [8], and it remains NP-hard even if G is constrained to be
planar [11]. If k is a fixed number, k pairwise vertex-disjoint paths can be found in
polynomial time in directed planar graphs [17] and in directed acyclic graphs [4],
whereas the problem in general directed graphs is NP-hard even if k = 2 [4].
It is known that the disjoint paths problem in undirected graphs is solvable in
polynomial time when k = 2 [18,19,22]. Perhaps the biggest achievement in this
area is Robertson and Seymour’s polynomial-time algorithm for the problem in
undirected graphs when k is fixed [15].

The optimization problem is considerably harder. The problem of finding
disjoint paths minimizing the total length is wide open and only a few cases
are known to be solvable in polynomial time (see also Table 1). First, finding k
disjoint s-t paths (i.e., s1 = · · · = sk = s and t1 = · · · = tk = t) with minimum
total length (min-sum) is still possible in polynomial time, since it reduces to
finding the standard minimum cost flow [21]. The min-sum problem is solvable in
linear time for graphs with bounded tree-width [16]. For the following two cases,
the min-sum problem can also be reduced to the minimum cost flow problem
and can thus be solved in polynomial time:

– All sources (or sinks) coincide, that is, s1 = · · · = sk (or t1 = · · · = tk,
respectively).

– The graph is planar, all terminals are incident with a common face, and their
cyclic order is s1, . . . , sk, tk, . . . , t1 (called well-ordered).

Another special case of the min-sum problem has recently been solved by Colin
de Verdière and Schrijver [2]. They showed the following:

Theorem 1 (Colin de Verdière and Schrijver [2]). If a given directed or
undirected graph G is planar, all sources are incident to one face S, and all sinks
are incident to another face T 
= S, then we can find k vertex-disjoint paths in
G with minimum total length in O(kn logn) time.

If the length of the longest path is to be minimized (min-max), the problem seems
to be harder than the min-sum problem. The problem of finding two s-t paths
minimizing the length of the longer path is NP-hard for an acyclic directed
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Table 1. Results for the Min-Sum Disjoint Paths Problem

Conditions Complexity

k = 2 directed NP-hard
directed, planar, one face OPEN
undirected OPEN
undirected, planar, two faces P (Theorem 2)

k = 3 undirected, planar, one face P (Theorem 5)
k: fixed undirected OPEN
k: general undirected NP-hard

s1 = · · · = sk and/or t1 = · · · = tk P (Min-cost flow)
planar, one face, well-ordered P (Min-cost flow)
planar, S �= T faces P [2]
bounded tree-width O(n) [16]

Table 2. Results for the Min-Max Disjoint Paths Problem

Conditions Complexity

k = 2 directed, acyclic, s1 = s2, t1 = t2 NP-hard [7]
pseudo-polynomial [10]

directed, s1 = s2, t1 = t2 2-approx. [10]
directed strongly NP-hard [10]
undirected, tree-width ≥ 3, planar NP-hard ([24] and Theorem 6)
undirected, tree-width ≤ 2 P (Theorem 7)

graph [7], but 2-approximable [10] using the min-sum version. Moreover, the
problem is strongly NP-hard for general directed graphs when s1, s2, t1, and t2
are distinct [10]. For an overview, see Table 2.

Yet another variant of the objective function for the problem of finding two
disjoint paths for one pair of terminals is the following: Before summing up the
path lengths, the length of the longer path is multiplied by a factor α ∈ (0, 1),
which parameterizes the cost function. α = 1 would yield the min-sum variant
and α = 0 would yield the so-called ‘min-min’ variant, in which the length of the
shorter path is to be minimized, which is NP-hard [23]. For α ∈ (0, 1) there is an
approximation algorithm with ratio 1+α

2α , which, for directed graphs, is claimed
to be optimal unless the polynomial hierarchy collapses completely [25]. If the
length of the shorter path is multiplied by α ∈ (0, 1), there is an approximation
algorithm with ratio 2

1+α , which is claimed to be tight as well [24].

1.2 Contribution

We extend the min-sum results of Colin de Verdière and Schrijver [2] for undi-
rected graphs and k = 2 as follows: the two disjoint faces F1, F2 may be ‘mixed’
such that
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– s1, s2, t1 are incident to F1 and t2 is incident to F2 (Theorem 3),
– s1, t1 are incident to F1 and s2, t2 are incident to F2 (Theorem 4).

Our algorithms consist of non-trivial reductions to Theorem 1. By combining
Theorem 1 with our new results, flow reductions, and trivially infeasible inputs,
we obtain the following theorem.

Theorem 2. Let G = (V,E) be an undirected planar graph, and let F1 and F2
be its faces. If each terminal is on one of the boundaries of F1 and F2, then the
Min-Sum 2 Disjoint Paths Problem in G is solvable in polynomial time.

We also give a polynomial-time algorithm for the Min-Sum Disjoint Paths Prob-
lem when k = 3 and all terminals are incident to one face (Theorem 5). Our
contribution is to give an algorithm for the case when the terminals are not well-
ordered, by a non-trivial reduction to Theorem 1. For a summary, see Table 3.

Table 3. min-sum results in planar undirected graphs

one face two faces

k = 2 flow Theorems 1, 3, 4
k = 3 flow, Theorem 5 OPEN

For the Min-Max 2 Disjoint Paths Problem, we draw the line between tractable
and hard problems: We prove weak NP-hardness of the Min-Max 2 Disjoint
Paths Problem for planar graphs with tree-width 3 using a reduction from the
Partition problem (Theorem 6). We later learned that the reduction was used
independently in almost the same manner in [24] already, without an explicit
link to the tree-width and the min-max variant. For graphs with tree-width 2 (in-
cluding series-parallel graphs and outer-planar graphs), we provide a polynomial-
time algorithm (Theorem 7). The same algorithm also works for the Min-Min 2
Disjoint Paths Problem and the α-variants from [24,25].

For both the min-sum and the min-max versions and for the variants with cost
functions parameterized by α as defined in [24,25], we give a pseudo-polynomial-
time algorithm for graphs with bounded tree-width (Theorem 8). The algorithm
runs in polynomial time for the min-sum objective function [16].

Due to space constraints, most proofs are given in [9].

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and
let n = |V | denote the number of vertices. Since we consider vertex-disjoint
paths, in what follows, we may assume that the graph has no multiple edges
and no self-loops. An edge connecting u, v ∈ V is denoted by uv, whereas (u, v)
represents the arc from u to v in a directed graph. For a subgraph H of G, the
vertex set and the edge set of H are denoted by V (H) and E(H), respectively.
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Let δ(v) denote the set of edges incident to v ∈ V . For U ⊆ V , let G[U ] be the
subgraph of G = (V,E) induced by U , that is, its vertex set is U and its edge
set consists of all edges in E with both ends in U . A graph G is planar if it
can be embedded in a plane Σ such that no edges intersect, except at their end
points. To simplify notation, we do not distinguish between a vertex of G and
the point of Σ used in the embedding to represent the vertex, and we do not
distinguish between an edge and the curve on Σ representing it. A region is a
subset of Σ, and for a region R, let G[[R]] denote the subgraph of G consisting
of the vertices and the edges in R. For a face F of a planar graph, let ∂F denote
the boundary of F . A planar graph is outer-planar if it allows for a planar
embedding such that all its vertices are on the outer face. A path P , which is
denoted by P = (v1, v2, . . . , vl), is a subgraph consisting of vertices v1, . . . , vl

and edges e1 = v1v2, . . . , el−1 = vl−1vl. When v1 = vl, it is called a cycle. A
path (or a cycle) is simple if vi 
= vj for distinct i, j (except for v1 = vl). For
a simple path P = (v1, v2, . . . , vl), let P [vi,vj ] denote the path (vi, vi+1, . . . , vj),
and it is called a subpath of P . For a length function l : E → R+, the length
of a path P is denoted by l(P ), and for a pair of vertices u, v ∈ V , let dG(u, v)
denote the length of a shortest path connecting u and v in G.

The tree-width of a graph was introduced by Halin [6], but it went unnoticed
until it was rediscovered by Robertson and Seymour [13] and, independently, by
Arnborg and Proskurowski [1]. The tree-width of a graph is defined as follows.

Definition 1. Let G be a graph, T a tree and let V = {Vt ⊆ V (G) | t ∈ V (T )}
be a family of vertex sets of G indexed by the vertices t of T . The pair (T,V) is
called a tree-decomposition of G if it satisfies the following three conditions:

– V (G) =
⋃

t∈T Vt

– for every edge e ∈ G there exists a t ∈ T such that both ends of e lie in Vt

– If t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′, then Vt ∩
Vt′′ ⊆ Vt′ .

The width of (T,V) is the number max{|Vt| − 1 | t ∈ T } and the tree-width
tw(G) of G is the minimum width of any tree-decomposition of G.

The tree-width is a good measure of the algorithmic tractability of graphs. It is
known that a number of hard problems on graphs, such as “Hamiltonian cycle”
and “chromatic number”, can be solved efficiently when the given graph has
small tree-width [1]. A graph has tree-width 1 if and only if it is a forest, and
families of graphs with tree-width at most 2 include outer-planar graphs and
series-parallel graphs.

3 Min-Sum Objective Function

In this section, we deal with the Min-Sum k Disjoint Paths Problem for k = 2, 3.
To simplify the arguments, we use a perturbation technique such that all shortest
paths are unique (see [3]). For E = {e1, e2, . . . , em} and l : E → R+, we use a
new length function l′ : E → R+ defined by l′(ei) = l(ei)+ εi for each i, where ε



298 Y. Kobayashi and C. Sommer

is an infinitely small positive number. Then, each path has a different length. In
particular, the Min-Sum k Disjoint Paths Problem has a unique optimal solution
if it has a feasible solution. In what follows, in this section, we simply denote
the perturbed length function by l.

3.1 Min-Sum 2 Disjoint Paths Problem

In this section, we prove Theorem 2, which we restate here.

Theorem. Let G = (V,E) be an undirected planar graph, and let F1 and F2 be
its faces. If every terminal is on ∂F1 ∪ ∂F2, then the Min-Sum 2 Disjoint Paths
Problem in G is solvable in polynomial time.

Proof. The four terminals s1, s2, t1, and t2 may lie on two faces as follows:

– s1, s2, t1, and t2 are incident to F1 (min-cost flow [21] or trivially infeasible),
– s1, s2 are incident to F1 and t1, t2 are incident to F2 (Theorem 1 due to [2]),
– s1, s2, t1 are incident to F1 and t2 is incident to F2 (Theorem 3), or
– s1, t1 are incident to F1 and s2, t2 are incident to F2 (Theorem 4).

The remaining cases (e.g. the case with s2 alone on one face) are symmetric for
undirected graphs. �	

Theorem 3. Let G = (V,E) be an undirected planar graph, and F1 and F2 be
its faces. If three terminals are on ∂F1 and the remaining terminal is on ∂F2,
then the Min-Sum 2 Disjoint Paths Problem in G is solvable in O(n3 logn) time.

Proof. Let s1, s2, t1 ∈ ∂F1 and t2 ∈ ∂F2 be terminals. Let P be the shortest
path connecting s1 and t2. The basic idea of the algorithm is to, for all pairs of
vertices u, v on P , transform the original problem to an instance of the problem
that can be solved using the algorithm by Colin de Verdière and Schrijver. The
transformation is described in Lemma 2. In Lemma 1 we prove that the solution
remains optimal.

Lemma 1. Suppose that a pair of paths (P1, P2) is the unique optimal solution
of the Min-Sum 2 Disjoint Paths Problem. Let u be the vertex in V (P1) ∩ V (P )
closest to t2 in the ordering along P , and let v be the vertex in V (P2)∩V (P [u,t2])
closest to u in the ordering along P (Fig. 1). Then, P [v,t2] is a subpath of P2.

Proof. Suppose that P [v,t2] is not a subpath of P2, and define P ′2 = P
[s2,v]
2 ∪

P [v,t2]. By definition of u and v, P1 and P ′2 are disjoint. Since P is the short-
est path, every subpath P [a,b] is the shortest path between a and b, thus,
l(P [v,t2]) < l(P [v,t2]

2 ), which implies that l(P ′2) < l(P2). Here we use the fact
that the shortest path is unique. Then, (P1, P

′
2) is a shorter solution, which con-

tradicts the optimality of (P1, P2). �	

Lemma 2. For distinct vertices u, v on P such that u is closer to s1 than v,
in O(n logn) time, we can either find two simple disjoint paths P1 and P2 min-
imizing the total length l(P1) + l(P2) such that
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s2

s1 t1

t2

P

v

u
P1

P2

F1

Fig. 1. Definitions of P , u, and v

1. Pi connects si and ti for i = 1, 2,
2. u ∈ V (P1) and V (P1) ∩ V (P ) ⊆ V (P [s1,u]), and
3. P2 ∩ P [u,t2] = P [v,t2],

or conclude that such P1 and P2 do not exist.

Proof. Delete all vertices in V (P [u,t2]) \ {u, v, t2}. This yields a graph G′. Note
that u and v are on the boundary of the same face F ′ in G′, because all internal
vertices of P [u,v] have been removed.

We find three paths Q1, Q2, and Q3 in G′ minimizing the total length such
that

– Q1 connects s1 and u, Q2 connects t1 and u, Q3 connects s2 and v,
– V (Q2) ∩ V (Q3) = V (Q3) ∩ V (Q1) = ∅, and V (Q1) ∩ V (Q2) = {u}.

In order to apply Theorem 1, we divide u into two distinct vertices and con-
struct a digraph as follows. Let v1, v2, . . . , vp be the vertices in G′ adjacent to
u such that v1, vp ∈ ∂F ′ and uv1, uv2, . . . , uvp are incident to u in this order.
Let D1 = (V1, E1) be the digraph obtained from G − u by replacing each edge
with two parallel arcs of opposite direction. Define a digraph D2 = (V2, E2) (see
Fig. 2) by

V2 = V1 ∪ {w1, w2, . . . , wp, u1, u2},

E2 = E1 ∪
p⋃

i=1

{(vi, wi)} ∪
p−1⋃

i=1

{(wi, wi+1), (wi+1, wi)} ∪ {(w1, u1), (wp, u2)}.

Define a new length function l′ : E2 → R+ as

l′(e) =

⎧
⎪⎨

⎪⎩

l(xy) if e = (x, y) or (y, x) for xy ∈ E,
l(viu) if e = (vi, wi),
0 otherwise.

By finding three disjoint paths Q′1, Q
′
2, Q

′
3 with minimum total length such that

Q′1 is from s1 to u1 (or u2, respectively), Q′2 is from t1 to u2 (or u1, respectively),
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u

u1 u2

v1

v2

vp
vpv1

v2

w2

w1 wp

Fig. 2. Construction of D2

and Q′3 is from s2 to v, we can obtain the desired paths Q1, Q2, and Q3. This
can be done in O(n logn) time by Theorem 1.

Then, P1 = Q1 ∪ Q2 and P2 = Q3 ∪ P [v,t2] are the desired disjoint paths
in G. �	

By Lemma 1, we can find the optimal solution of the Min-Sum 2 Disjoint Paths
Problem by executing the procedure described in Lemma 2 for each pair of
vertices u and v on the shortest path between s1 and t2. This concludes the
proof of Theorem 3. �	

Theorem 4. Let G = (V,E) be an undirected planar graph, and F1 and F2 be
its faces. If s1, t1 ∈ ∂F1 and s2, t2 ∈ ∂F2 are terminals, then the Min-Sum 2
Disjoint Paths Problem in G is solvable in O(n3 log n) time.

3.2 Min-Sum 3 Disjoint Paths Problem

Theorem 5. Let G = (V,E) be an undirected planar graph and let F be its face.
If all six terminals are on ∂F , then the Min-Sum 3 Disjoint Paths Problem in
G is solvable in O(n4 logn) time.

4 Min-Max Objective Function

For graphs with tree-width 2 (including series-parallel graphs and outer-planar
graphs), we provide a polynomial-time algorithm for the Min-Max 2 Disjoint
Paths Problem. This closes the gap between tractable and hard instances due to
the following theorem (and its proof in [24]).

Theorem 6 ([24]). The Min-Max 2 Disjoint Paths Problem is (weakly) NP-
hard for planar graphs with tree-width at least 3.

Theorem 7. The Min-Max 2 Disjoint Paths Problem for graphs with tree-width
at most 2 can be solved in time O(n3).

For fixed k, we also give a pseudo-polynomial-time algorithm for the Min-Max
k Disjoint Paths Problem in bounded tree-width graphs. As shown in Theo-
rem 6, the Min-Max k Disjoint Paths Problem is NP-hard even if k = 2 and
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the tree-width of the input graph is at most three, whereas the Min-Sum k Dis-
joint Paths Problem can be solved in polynomial time in bounded tree-width
graphs [16]. Note that this technique also works for the weighted versions intro-
duced in [24,25].

Theorem 8. Let G = (V,E) be a graph whose tree-width is bounded by a fixed
constant, and let � : E → Z+ be an integer-valued length function. Then, for
fixed k, the Min-Max k Disjoint Paths Problem can be solved in time polynomial
in |V | and �(E).

Acknowledgement

The authors thank the anonymous reviewers for careful reading of the manuscript.
The first author is supported by JSPS Research Fellowships for Young Scien-

tists. His work was partially supported by the Global COE Program “The re-
search and training center for new development in mathematics”, MEXT, Japan.

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)
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Abstract. Given an n-node undirected simple graph G and a positive
integer k, the k-connectivity labeling problem for G seeks short labels for
the nodes of G such that whether any two nodes are k-connected in G
can be determined merely by their labels. For k = 1, an optimal solution
to the problem is to give each node in the same connected component
of G a common �log2 n�-bit label, uniquely chosen for this connected
component. For k ≥ 2, Katz, Katz, Korman, and Peleg gave the first
nontrivial solution to the problem, requiring O(2k log n) bits per node.
The best previously known solution, due to Korman, requires O(k2 log n)
bits per node. We give the first asymptotically optimal solution to the
problem, requiring only (2k − 1) �log2 n� bits per node, which matches a
lower bound Ω(k log n) proved by Katz, Katz, Korman, and Peleg.

1 Introduction

Let G be an n-node undirected simple graph. Let k be a positive integer. Let
V (G) consist of the nodes of G. For any node subset S of G, let G\S denote the
subgraph of G induced by V (G)\S. Let |S| denote the cardinality of set S. Two
nodes u and v are k-connected in G if u and v are connected in G\S for any node
subset S of G with {u, v} ∩ S = ∅ and |S| ≤ k − 1. We study the k-connectivity
labeling problem for G, which seeks a compact labeling L for the nodes of G
such that whether any two nodes u and v are k-connected in G or not can be
determined merely by the labels L(u) and L(v) of nodes u and v. For k = 1, an
optimal solution to the problem is an L such that, for each node u in the i-th
connected component of G, L(u) is the �log2 n�-bit binary encoding of i. Clearly,
nodes u and v are 1-connected in G if and only if L(u) = L(v). For k ≥ 2, Katz,
Katz, Korman, and Peleg [1, 2] gave the first nontrivial solution, which requires
2k�log2 n� (respectively, (2k−1+1)�log2 n�) bits per node for k ≥ 4 (respectively,
2 ≤ k ≤ 3). Using an encoding technique of Alstrup and Rauhe [3] for graphs
with bounded arboricity, Korman [4, 5] gave the best previously known solution,
which requires (k(k−1)

2 + 1)�log2 n� + O(log∗ n) bits per node. We give the first
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known asymptotically optimal solution to the problem, as summarized in the
following theorem.

Theorem 1. For any positive integer k and any n-node graph G, there is a
solution L to the k-connectivity labeling problem for G such that the label L(u)
of each node u in G has at most (2k−1)�log2 n� bits. Moreover, the time required
by our solution to determine whether any two nodes u and v are k-connected in
G is linear in the sum of the numbers of bits in L(u) and L(v).

The number of bits per node required by our solution matches a lower bound
Ω(k logn) proved by Katz et al. [1, 2]. The time required to determine whether
two nodes u and v are k-connected in G by using L(u) and L(v) is also optimal.

1.1 Overview of Our Techniques

Let H(G) denote the graph on V (G) where any nodes u and v are adjacent in
H(G) if and only if u and v are k-connected in G. Adopting the same approach
of all previous work [1, 2, 4, 5], our solution is actually an adjacency labeling
L of H(G), i.e., whether any two nodes u and v are adjacent in H(G) can be
determined merely by the labels L(u) and L(v) of u and v. A graph H is closed
under k-connectivity if any two k-connected nodes u and v in H are adjacent in
H . The following lemma ensures that it suffices to solve the adjacency labeling
problem for a graph H that is closed under k-connectivity.

Lemma 1 (Katz, Katz, Korman, and Peleg [1, 2]). For any graph G, we
have that H(G) is closed under k-connectivity.

The rest of the paper assumes k ≥ 2 and lets H be an n-node graph that is closed
under k-connectivity. For any subgraph K of H , let N(K) consist of the nodes u
of V (H)\V (K) that is adjacent to some node v in V (K). A subgraph K of graph
H is a clique of H if K is complete, i.e., any two nodes of K are adjacent in K.
A key step in our solution, to be shown in Lemma 2 of Section 2, is to identify
a clique K of H with |K| ≥ 1 and |N(K)| ≤ 2k − 3. The (2k − 1)�log2 n�-bit
label L(u) of each node u of in K consists of the following three parts:

– A unique �log2 n�-bit node identifier L1(u) for u.
– A unique �log2 n�-bit clique identifier L2(u) for K.
– A set L3(u) of 2k − 3 node identifiers, one for each neighbor of u in V (H) \

V (K).

After determining L(u) for each node u in K, we delete V (K) from H and
repeat the above procedure of (a) identifying a clique K of H with |K| ≥ 1 and
|N(K)| ≤ 2k − 3 and (b) determining L(u) for each node u in K until H is
empty. We show, in Lemma 5 of Section 3, that nodes u and v are adjacent in
H if and only if L2(u) = L2(v), L1(v) ∈ L3(u), or L1(u) ∈ L3(v).
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1.2 Related Work

Algorithms assigning informative labels to graph nodes are usually called infor-
mative labeling schemes. This paper and its previous work [2, 6] study the labels
containing the information of node connectivity. Besides, there are various types
of information such as adjacency [3, 7–9], distance [10–19], flow and edge con-
nectivity [2, 3, 6], and queries on trees [20–31]. Other papers work on dynamic
labeling schemes [32–35]. Gavoille and Peleg [36] had a comprehensive survey on
labeling schemes.

The remainder of the paper is organized as follows. Section 2 shows how to
identify a clique K of H with |N(K)| ≤ 2k − 3. Section 3 gives our adjacency
labeling L for H and proves Theorem 1. Section 4 gives the conclusion.

2 Finding a Clique with a Bounded Number of Neighbors

This section proves the following lemma.

Lemma 2. There is a clique K of H with |V (K)| ≥ 1 and |N(K)| ≤ 2k − 3.

2.1 Preliminaries

Lemma 3. If S is a node subset of H, then H \ S remains closed under k-
connectivity.

Proof. Let u and v be two nodes of H \S that are k-connected in H \S. Clearly,
u and v are k-connected in H . Since H is closed under k-connectivity, we know
(u, v) ∈ H . Therefore, (u, v) ∈ H \ S. The lemma is proved. �	

For any two non-adjacent nodes u and v of H , we say that (S,X, Y ) is a (k, u, v)-
partition of H if S, X , and Y are disjoint node subsets of H such that

– S ∪X ∪ Y = V (H),
– X contains exactly one of u and v,
– Y contains exactly one of u and v,
– |S| ≤ k − 1, and
– any node x of X is not adjacent to any node y of Y in H .

An illustration for a (k, u, v)-partition is shown in Figure 1.

Lemma 4. For any two non-adjacent nodes u and v of H, there is a (k, u, v)-
partition of H.

Proof. Since H is closed under k-connectivity, (u, v) /∈ H implies that u and v
are not k-connected in H . That is, there is a node set S of H with |S| ≤ k − 1
and S ⊆ V (H) \ {u, v} such that u and v are not connected in H \ S. Let X
consist of the nodes in the connected component of H \ S that contains u. Let
Y = V (H) \ (X ∪ S). One can verify that (S,X, Y ) is a (k, u, v)-partition of H .

�	
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X S Y

vu

Fig. 1. An illustration for a (k, u, v)-partition

Algorithm 1
Input: A graph H that is closed under k-connectivity.
Output: A clique in H .

1: Let all nodes of H be white.
2: while the white nodes in H do not form a clique do
3: Let u and v be two non-adjacent white nodes of H .
4: Let (S, X, Y ) be a (k, u, v)-partition of H such that the number of red nodes in

X is no more than that in Y .
5: Let all nodes in S be red.
6: Let H = H \ Y .
7: end while
8: Return the clique formed by the white nodes in H .

2.2 Proving Lemma 2

Proof. We prove the lemma by showing that the output of Algorithm 1 satisfies
the lemma. We first show that Algorithm 1 is well defined. Since the condition
of the while-loop implies the existence of u and v, Step 3 is well defined. Ob-
serve that H can be changed only at Step 6, it follows from Lemma 3 that H
remains closed under k-connectivity throughout the execution of Algorithm 1.
By Lemma 4, Step 4 is well defined. Since Step 6 deletes at least one node from
H , the while-loop terminates in at most n iterations.

Let K be the output of Algorithm 1. We next show |K| ≥ 1. By Step 4,
(S,X, Y ) is a (k, u, v)-partition of H . Therefore, only one of u and v belongs to
Y . That is to say, exactly one of u and v remains in H after Step 6 deletes Y
from H . Since both u and v are white, H contains at least one white node at
the end of each iteration of the while-loop.

It remains to show |N(K)| ≤ 2k−3. By Step 4, (S,X, Y ) is a (k, u, v)-partition
of H , implying that any node in X is not adjacent to any node in Y . By Step 5,
all white nodes belong to X at the end of each iteration. Therefore, at the end of
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Algorithm 2
1: Let j = 0.
2: Let H0 = H .
3: while Hj is not empty do
4: Let Kj be a clique of Hj ensured by Lemma 2.
5: Let Hj+1 = Hj \ V (Kj).
6: Let j = j + 1.
7: end while

K1 K2

H1

H2

H3

K0

Fig. 2. An illustration for Kj and Hj . The whole graph H is H0.

Algorithm 1, any node in K is not adjacent to any previously deleted nodes of H .
Therefore, it suffices to prove that at the end of each iteration of the while-loop,
the number of red nodes in H is at most 2k−3. Since k ≥ 2 implies 2k−3 ≥ k−1,
it follows from the definition of (k, u, v)-partition of H that the statement holds
if the while-loop executes for at most one iteration. Consider the situation that
the while-loop executes for at least two iterations. Assume for contradiction that
i ≥ 2 is the smallest index such that the number of red nodes is at least 2k − 2
at the end of the i-th iteration. By |S| ≤ k − 1, as ensured by Lemma 4, Step 5
changes the color of at most k− 1 white nodes to red. Therefore, the number of
red nodes in X is at least k − 1. Thus, the number of red nodes in Y is also no
less than k− 1. Since the colors of the nodes in X ∪ Y do not change in the i-th
iteration, H has at least 2k − 2 red nodes at the end of the (i− 1)-st iteration,
contradicting the definition of i. The lemma is proved. �	

3 Our Optimal Labeling

This section gives our adjacency labeling L for H . For each node u of H , let L(u)
be the concatenation of L1(u), L2(u), and L3(u) which are defined as follows.
First of all, if u is the i-th node of H , then let L1(u) be the �log2 n�-bit binary
representation of non-negative integer i. To define L2(u) and L3(u), we perform
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Algorithm 2 to obtain Hj and Kj for each j ≥ 0. An illustration is shown in
Figure 2. For each node u in Kj , let L2(u) be the �log2 n�-bit binary represen-
tation of non-negative integer j. If u ∈ V (Kj), let L3(u) be the concatenation
of L1(v) for all nodes v in V (Hj) \ V (Kj) that is adjacent to u in Hj . We write
L1(v) ∈ L3(u) to signify that L1(v) belongs to list L3(u).

Lemma 5

1. For each node u of H, L(u) has at most (2k − 1)�log2 n� bits.
2. For any two nodes u and v of H, we have that (u, v) ∈ H if and only if

L2(u) = L2(v), L1(u) ∈ L3(v), or L1(v) ∈ L3(u).

Proof. By Step 5 of Algorithm 2 and Lemma 3, each Hj is closed under k-
connectivity. By Lemma 2, Step 4 of Algorithm 2 is well defined. Therefore,
Algorithm 2 is well defined. By Lemma 2, each Kj obtained by Step 4 of Al-
gorithm 2 is non-empty. Therefore, Algorithm 2 halts in at most n iterations of
the while-loop. Observe that V (Kj) with j ≥ 0 form a partition of V (H). That
is, each node of H belongs to exactly one Kj .

Statement 1. Suppose that node u belongs to Kj . By Lemma 2, u has at most
2k−3 neighbors in Hj . Therefore, L3(u) has at most (2k−3)�log2 n� bits. Since
each of L1(u) and L2(u) has �log2 n� bits, the statement is proved.

Statement 2. The if-direction is straightforward from the definitions of L(u)
and L(v). We show the other direction. Suppose that u and v are adjacent in
H . Let i and j be the indices such that u ∈ Ki and v ∈ Kj . If i = j, then
L2(u) = L2(v). If i < j, then L1(v) ∈ L3(u). If i > j, then L1(u) ∈ L3(v). The
statement is proved. �	

3.1 Proving Theorem 1

Proof. Straightforward by Lemmas 1 and 5. �	

4 Concluding Remarks

This paper presents an asymptotically optimal solution to the k-connectivity
labeling problem. It would be of interest to further reduce the number of bits
per node, or to solve this problem on directed graphs.
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Abstract. A number of approaches, including cognitive radios, dynamic spec-
trum allocation, and spectrum auction, have been proposed and used to improve
the spectrum usage. A natural characteristic of spectrum usage is that requests for
spectrums often come in an online fashion. Thus, it is imperative to design effi-
cient and effective online dynamic spectrum allocation methods. Another chal-
lenge is that the secondary users are often selfish and prefer to maximize their
own benefits. In this paper, we address these two challenges by proposing SOFA,
strategyproof online frequency allocation method. In our protocol, a frequency
will be shared among a number of users, and secondary users are required to
submit the spectrum bid α time slots before its usage. Upon receiving an online
spectrum request, our protocol will decide whether to grant its exclusive usage,
within γ time slots. Assume that existing spectrum usage can be preempted with
some penalty. For various possible known information, we analytically prove that
the competitive ratios of our methods are within small constant factors of the op-
timum online method. Furthermore, in our mechanisms, no selfish users will gain
benefits by bidding lower than its willing payment.

1 Introduction

With the recent fast growing spectrum-based services and devices, the remaining spec-
trum available for future wireless services is being exhausted. The current fixed spec-
trum allocation scheme leads to significant spectrum white spaces where many allocated
spectrum blocks are used only in certain geographical areas and/or in brief periods of
time. A huge amount of precious spectrum, perfect for wireless communications that is
worth billions of dollars, sit there silently.

Subleasing is widely regarded as a potential way to share spectrum. Previous studies
(e.g., [15, 20, 19]) mainly assume that the information of all requests is known before
making allocation. This is true in some cases, but not true generally. In most applica-
tions, spectrum bidding requests often arrive online and the central authority (typically
a primary user) needs to quickly make a decision whether the requests are granted or
not. In this paper, we study this online model and propose online algorithms. We an-
alytically study competitive ratios of our algorithms. The competitive ratio of online
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algorithm is defined as the ratio between its performance and the performance of the
optimal offline algorithm for every possible input. To the best of our knowledge, we are
the first to study online spectrum allocation with cancelation and preemption penalty.

The main contributions of this paper are as follows. We show that best competitive ra-
tio achievable depends on penalty factor β and there are three regimes. For each regime,
we design algorithm with competitive ratio that matches the upper bound asymptoti-
cally. We also design efficient auction mechanism. In our mechanism, to maximize its
profit, no secondary user will bid lower than its actual valuation.

The rest of the paper is organized as follows. In Section 2, we define in detail the
problems to be studied. In Section 3, we present upper bounds of any online meth-
ods. We then present our solutions in Section 4 and analytically prove the performance
bounds. We present our mechanisms to deal with selfish users in Section 5. Finally we
review the related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

2.1 Network Model

Consider a wireless network system consists of some primary users and a central au-
thority who decides spectrum assignment on behalf of primary users. Some secondary
users V = {v1, v2, · · · , vn} want to lease the right to use a channel in some region for
some time period. We consider a simple scenario where only one channel is available.

Secondary users may reside at different geometry locations. Whether a secondary
user’s request conflict with others depends on their locations and time requirement. This
location-dependent conflict can be modeled by a conflict graph H = (V , E), where two
nodes vi and vj form an edge (vi, vj) if and only if they conflict with each other. We
will first study a simple case where the conflict graph is a complete graph.Then we will
show that our methods still have asymptotically optimum performance guarantees as
long as the conflict graph is growth-bounded by a polynomial function. A graph H is
growth-bounded by a function f , if for any node v ∈ H and any integer k > 0, the
number of independent nodes within k-hops of v is at most f(k).

2.2 Problem Formulation

A user from V = {v1, v2, · · · , vn} could ask for the usage of spectrum at different time
while time is slotted. Each request ei = (v, bi, ai, si, ti) is claimed by a secondary user
v at time ai, bids bi for the usage of the channel from time si to time si + ti. For most of
our discussions we will omit the user v when it is clear from the context, or not needed
in the notation. In other words, ei = (bi, ai, si, ti) denotes the ith request. Obviously,
ai ≤ si for all requests, which means requests can only bid for the future usage of
channel. Each user will ask for at most Δ timeslots. We call Δ the time ratio.

To improve the spectrum usage and revenue, the central authority can post a require-
ment that all bids must be submitted in advance of a certain time slots. In this paper, we
assume that for every spectrum bid ei, si − ai ≥ α for a given value α. Hereafter, we
call α the advance factor. Intuitively, a larger advance factor α will give more advan-
tage to the central authority. We later will show that the performances of our methods
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do not depend on α as long as α ≥ γ. Our system also put some condition on the cen-
tral authority. The central authority should make a decision within no more than γ time
slots. We call γ delay factor. γ ≤ α makes the system meaningful. If a request has been
rejected, it will never be reconsidered and accepted later.

When a request is accepted, the secondary user who issued the request will be granted
the usage of channel at the price of what he bids when the first price auction is used here.
When current usage of channel is terminated, penalty should be paid to compensate the
preemption. The penalty μ(b, �, t) is linear to the unfinished time � ≤ t of that request
e(v, b, a, s, t), i.e., μ(b, �, t) = β �

t b for a constant β ≥ 0. Notice that the cancelation is
modeled as � = t if the spectrum usage was not started at all. Here the constant β ≥ 0
is the penalty factor.

As we stated before, all requests arrive on the fly, thus any information about the
future, e.g., the distribution of future bids, the arrival time, the start time and the required
time duration are unknown. The objective is to find an allocation which maximizes the
total net profit, i.e., the total profit minus the total penalties caused by preemption. As
we will see later that the performance of our methods and the lower bounds on the
performance is affected by penalty factor β, advance factor α and delay factor γ. For
certain parameters β, α and γ, we call it (β, α, γ) problem in this paper.

3 Performance Upper Bounds

3.1 Upper Bounds for (β = 1, γ, α) Problem

We first show the performance lower bound when the penalty factor β = 1. There are
two different cases. γ = o(Δ) or γ = Ω(Δ).
1. When γ = o(Δ), i.e., lim γ

Δ = 0, we first show that there is no online algo-

rithm with competitive ratio more than 3
√

2(γ + 1)Δ−
1
3 , then improve this bound

to
√

2(γ + 1)Δ−
1
2 .

2. When γ = Ω(Δ), we show that (1, α, γ) problem cannot have a competitive ratio
1 − ε for an arbitrary ε > 0.

Due to space limit, in this section and following sections, long proofs are omitted. To
check the poofs, please see our technical report [21].

Theorem 1. There is no online algorithm with a competitive ratio more than
3
√

2(γ + 1)Δ−
1
3 for (β = 1, γ, α) problem when γ = o(Δ).

Theorem 2. There is no online algorithm with competitive ratio more than 1
c for (β =

1, γ, α) problem, where
√

2(γ + 1)Δ−
1
2 < 1

c ≤ 3
√

2(γ + 1)Δ−
1
3 for (β = 1, γ, α)

problem when γ = o(Δ).

Theorem 3. There is no online algorithm with a competitive ratio ≥ 1 − ε for an
arbitrary small ε > 0, for (β = 1, γ, γ) problem when γ = Ω(Δ).

All theorems in this section are proved by contradiction using adversary model. The
adversary generates a set of requests in an online fashion based on the previous decision
of online algorithm. The goal of the adversary is to make the competitive ratio of that
online algorithm as bad as possible.
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3.2 Upper Bounds for (β > 1, γ, α) Problem

For (β > 1, γ, α) problem, we show that there is no online algorithm with competitive
ratio more than O((γ + 1)Δ−1) when γ = o(Δ); no online algorithm with competitive
ratio more than 1 − ε for an arbitrary ε > 0 when γ = Ω(Δ).

Theorem 4. There is no online algorithm with competitive ratio more than
2β(γ+1)
(β−1)2 Δ−1 for (β > 1, γ, α) problem, when γ = o(Δ).

From the analysis in this section, we can see that the performance lower bounds do not
depend on the advance factor α. In other words, no matter how many time slots the
secondary users claim their requests in advance, the theoretical lower bounds will not
be improved asymptotically if the delay factor γ does not change.

4 Online Spectrum Allocation Methods

4.1 Asymptotically Optimal Method for (β = 1, γ, α) Problem

Let Ra(t) be all requests submitted before time t. Based on the processing delay re-
quirement, we know that all requests in Ra(t) must be submitted during [t− γ, t), and
the requested starting time of these requests must be during [t− γ + α, t + α]. Among
all requests in Ra(t), let R(t) ⊆ Ra(t) be all requests whose starting times are during
[t, t + γ]. Recall that γ ≤ α. Our method only make decisions at time t using the infor-
mation from R(t), although a superset of requests Ra(t) is known. We will show that
our method can achieve a competitive ratio that is already asymptotically optimum.

For the set of currently known requests R(t), we will find some subsets using dy-
namic programming to optimize some objective functions. Our method will then make
decisions on whether to admit these subsets of requests under some conditions involv-
ing the currently running spectrum usages. We intorduce some notations first.

Definition 1. Candidate Requests Set: A strong candidate requests set at time t, de-
noted as C1(t), is a subset of requests from R(t) that has the largest total bids if C1(t)
is allowed to run without preemption from time t−γ+α to timeslots at most t+α+Δ.
We abuse the notation little bit here by also letting C1(t) denote the profit made by C1(t).

For set C1(t), let P(C1(t), t′) denote the profit made from C1(t) if these requests are
admitted and then possibly being preempted at a time-slot t′ ∈ [t− γ + α, t + α + Δ].

A weak candidate requests set at time t, denoted as C2(t), is a subset of requests
from R(t) that has the largest total bids if C2(t) is allowed to run during time interval
[t− γ + α, t + α] (thus, these requests may be preempted by some requests started on
time-slot t + α + 1). We abuse the notation little bit here by also letting C2(t) denote
the profit made by C2(t).

In the rest of paper, we always use C1(t) (C2(t), respectively) to denote the strong (weak,
respectively) candidate requests set at time t. C1(t) and C2(t) can be solved by dynamic
programming in O(n3) time where n is the total number of requests.

At each time t, algorithm G should decide whether a request that arrived at time slot
t − γ will be accepted immediately. Starting time of such requests are in the interval
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[t, t+α− γ]. Since γ ≤ α, at time t, we should know all requests whose start times are
from t to t+γ. Algorithm G takes the following inputs: a constant parameter c1 > 1, an
adjustable control parameter c2 > 0, delay requirement γ, advance factor α, time ratio
Δ, Ra(t), R(t), C1(t), and C2(t). It works as follows.

Given Ra(t), if the channel will be empty at time t − γ + α, we find the strong
candidate requests set C1(t) with the maximum overall profit. We accept the request in
C1(t) with starting time t− γ + α, and we say that the channel is being used by candi-
date requests set C1(t). In other words, here we treat C1(t) as a large virtual spectrum
request, although at current time slot t we only admit the first spectrum request from
C1(t) while leave the admission decisions on other requests in C1(t) pending. Whether
these pending “admitted” requests will be actually admitted depend on future coming
requests. If future requests are better, we will preempt this virtual request C1(t), thus,
some of those pending admissions will not be issued at all.

If the channel will be used by a weak candidate requests set C2(t) at time t− γ + α
and this candidate requests set weakly preempted (exact definitions will be given later)
some other candidate requests set before, all requests from Ra(t) submitted at time
t − γ will not be admitted. Otherwise, assume the request to be run at time t − γ + α
is ej from some virtual candidate requests C1(t1), we find the candidate requests set
C1(t). The first request ei ∈ C1(t) such that si = t − γ + α will be accepted only if
C1(t) ≥ c1 · C1(t1). In other words, we use a strong request C1(t) to replace another
request C1(t1). We call it a Strong-Preemption. If strong-preemption cannot be applied,
we find the candidate requests set C2(t). The request ei ∈ C2(t) such that si = t−γ+α
will be accepted only if C2(t)+P(C1(t1), t−γ+α) ≥ c2 ·C(t1). In other words, we use
a weak candidate requests set C2(t). to replace another virtual weak candidate requests
set C1(t1). We call it a Weak-Preemption. In this case, all requests in C2(t) will be
accepted and the last request will be terminated at time t + α + 1 automatically.

If the weak-preemption cannot be applied also, we accept the request in the previ-
ously used candidate requests set C(t1), whose start time is t − γ + α (if there is any)
or continue the request ej that will continue run through the time slot t− γ + α.

In following analysis, we show that algorithm G is asymptotically optimal if we
choose constant c1 and control parameter c2 carefully. To analyze the performance of
our method, we first give a definition candidate sequence.

Definition 2. Candidate Sequence: An candidate sequence is a sequence of candidate
requests sets C1(ti), C1(ti+1), · · · , C1(tj−1), C2(tj) or C1(ti), C1(ti+1), · · · , C1(tj−1),
C1(tj) which satisfies all of following three conditions.
1. C1(ti) does not preempt another candidate requests set;
2. C1(ti+1) strongly preempts C1(ti), C1(ti+2) strongly preempts C1(ti+1), · · · ,

C1(tj−1) strongly preempts C1(tj−2);
3. C2(tj) weakly preempts C1(tj−1); or C1(tj) strongly preempts C1(tj−1) and is not

preempted by another requests set.

Here we use the indices of the first and last candidate requests set to denote a candidate
sequence, e.g. S(ti, tj). According to the definition, we can decompose the solution
of algorithm G into multiple candidate sequences. Notice that each spectrum request
e will appear in exactly one candidate sequence. We use G(S(ti, tj)) to denote the
profit made on candidate sequence S(ti, tj) by algorithm G. And we use OPT[ti, tj ]
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Algorithm 1. Online Spectrum Allocation G
Input: A constant parameter c1 > 1, an adjustable control parameter c2 > 0, γ, α, Δ, Ra(t),
R(t), C1(t), and C2(t).
Current candidate requests set C from time t′ < t. Here C = C1(t

′) if C1(t
′) strongly preempted

others, or C = C2(t
′) if C2(t

′) strongly preempted others.
Output: whether requests submitted at time t − γ will be admitted and new current candidate
requests set C.

1: if C = C2(t
′) then

2: if t − t′ ≥ γ then
3: C = ∅;
4: else
5: Accept request ei ∈ C2(t) such that si = t − γ + α.
6: if C = C1(t

′) or ∅ then
7: if C1(t) ≥ c1 · C1(t

′) then
8: C = C1(t);
9: Accept request ei ∈ C1(t) such that si = t − γ + α.

10: else if C2(t) + P(C1(t
′), t) ≥ c2 · C1(t) then

11: C = C2(t);
12: Accept request ei ∈ C2(t) such that si = t − γ + α.
13: else
14: Accept request ei ∈ C1(t

′) such that si = t − γ + α.

to denote the profit made by optimal offline algorithm on the requests whose starting
times are in interval [ti, tj ].

Lemma 1. For each candidate sequence S(si, sj) in the solution given by algorithm
G, we have

G(S(si, sj)) ≥ min(c1, c2)C1(sj−1)

Proof. C1(sj) either strongly preempted C1(sj−1) or weakly preempted C1(sj−1). In
first case, G makes at least C1(sj) ≥ c1 · C1(sj−1)). otherwise, G makes at least
P(C1(si−1), sj) + C2(sj) ≥ c2 · C1(sj−1). So our lemma holds for either case.

Lemma 2. For each candidate sequence S(si, sj) in the solution given by algorithm
G, for each i ≤ k < j, we have

OPT[sk, sk+1] ≤ (c1 + c2 +
c2√

(γ + 1)/Δ
)C1(sk)

Lemma 3. For each candidate sequence S(si, sj) in the solution given by algorithm
G, we have

OPT[si, sj ] ≤ (c1 + 1 +
1

c1 − 1
)(c1 + c2 +

c2√
(γ + 1)/Δ

)C1(sj−1)

Proof. Obviously OPT[si, sj ] =
∑j−1

k=i OPT[sk, sk+1]. From Lemma 2, we have
OPT[si, sj] ≤ (c1 + c2 + c2√

(γ+1)/Δ
)
∑j−1

k=i C1(sk). Based on the condition of strong-

preemption, we have C1(sk) ≥ c1 · C1(sk−1) for all i ≤ k ≤ j. The lemma then
follows.
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Theorem 5. Algorithm G is Θ(
√
γ + 1Δ−

1
2 )-competitive when γ = O(Δ).

Notice that algorithm G is Θ(1)-competitive when γ = ω(Δ), which is also asymptot-
ically optimal. Let n(t) be the cardinality of ea(t). We also have following theorem.

Theorem 6. Algorithm 1 takes O(n(t)3) to make decisions at a time instant t. Algo-
rithm 1 takes O((γ + Δ)n3) to make decisions on all n online requests.

4.2 Asymptotically Optimal Method for (β > 1, γ, α) Problem

In this subsection, we propose a greedy algorithm H for (β > 1, γ, α) Problem, where
H is asymptotically optimal.

Algorithm 2. Online Spectrum Allocation H
Input: A constant parameter c > 1+β, γ, α, Δ, Ra(t), R(t), C1(t). Previous current candidate
requests set C = C1(t

′) where t′ < t. Here C1(t
′) may be empty.

Output: whether requests submitted at time t − γ will be admitted and new current candidate
requests set C.

1: if C1(t) ≥ c · C1(t
′) then

2: C = C1(t);
3: Accept request ei ∈ C1(t) such that ai = t − γ.
4: else
5: Accept request ei ∈ C1(t

′) such that ai = t − γ.

Theorem 7. Algorithm H is (c−β−1)
c2

γ+1
Δ+γ+1 competitive.

Theorem 8. Method H is at least a
4(1+a)(1+β) -competitive (by choosing c = 2(1+β)),

when γ = aΔ− 1.

4.3 General Conflict Graphs

Our algorithms can be easily extended for the case where the conflict graph has a
bounded growth. The details are omitted due to space limit. Assume the bounded one-
hop independent number of conflict graph H is λ. We have following theorem.

Theorem 9. Algorithm G′ is Θ(
√
γ + 1Δ−

1
2 )-competitive for β = 1.

5 Dealing with Selfish Users

When each secondary user declares his request, he may lie on the bid, and time re-
quirement. We need to design rules such that each secondary user has incentives to
declare his request truthfully. Each secondary user i has its own private informa-
tion ti, including bi, ai, and ti. Let ai = (b′i, a

′
i, t
′
i) be the value he will report.
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For each vector of actions a = (a1, a2, · · · , an), a mechanism M = (A, P ), com-
putes a spectrum allocation A(a) = (A1(a),A2(a), · · · ,An(a)) and a payment vec-
tor p(a) = (p1(a), p2(a), · · · , pn(a)). Each user i will be allocated Ai(a) and be
charged pi(a).

Assume that no user will delay his/her spectrum request and a user will not lie about
ti and si. Consider a user i, assume the bids of all other users remain the same. Let
bi be the minimum bid that i has to bid to get admitted when its spectrum request is
to be processed at γ timeslots later. Let bi be the minimum bid that i has to bid to get
admitted and not get preempted later. Clearly, bi ≤ bi. bi and bi can be computed in
polynomial time since all other bid values are known. Then the final profit of user i is

utility(i) = f · bi − pi + μ(b′i, �
′
i, ti).

Here if i is rejected, we have f = 0, pi = 0, and μ(b′i, �
′
i, ti) = 0; if i is admitted and

later preempted, f = 1 − β
�′

i

ti
and μ(b′i, �

′
i, ti) = β

�′
i

ti
b′i, where �′i is the unserved time

of its spectrum request; if i is admitted and not preempted, f = 1 and μ(b′i, �
′
i, ti) = 0.

The payment pi is always the upfront charge from i for being admitted.
It is a forklore result that the allocation method in a mechanism must have the mono-

tone property. Here an allocation method A is monotone if a user i is granted the spec-
trum usage under A with a bid ei = (bi, ai, ti), then user i will still be granted under
A if he increases bi, and/or decreases ti. First, our method (Algorithm 1) does have the
monotone property. In our algorithm, we need to find strong candidate requests set, and
weak candidate requests set by dynamic programming which can be shown as mono-
tone. Thus, we can design a mechanism using our algorithms (G and H) as allocation
methods as follwoing

{
Use Algorithm G or H as allocation method

charge an admitted user i a payment pi = bi

Theorem 10. In our mechanism using Algorithm G or H as the spectrum allocation
method, to maximize its profit, every secondary user will not bid a price lower than its
actual value.

Observe that, in our scheme, the only scenario that a secondary user can gain benefit is
when bi ∈ (bi, bi) and it bids a value b′i ∈ (bi, bi).

6 Literature Reviews

The allocation of spectrums is essentially combinatorial allocation problem, which have
been well studied [14,1]. Yuan et al. [18] used time-spectrum block to model spectrum
reservation in cognitive radio networks, and presented both centralized and distributed
protocols. Li et al. [15] designed efficient methods and truthful mechanism for various
dynamic spectrum assignment problems. Zhou et al. [19] propose a truthful and efficient
dynamic spectrum auction system to serve many small players. In [20], Zhou and Zheng
designed truthful double spectrum auctions where multiple parties can trade spectrum.
All these results are based on offline models.
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Our problem is also similar to online job scheduling problems. Various online
scheduling problems focus on optimizing different objective functions. The most com-
mon objective function is makespan, which is the length of the schedule. Suppose that
given m identical machines, jobs arrive one by one and no preemption is allowed. A
number of results have been proved to improve the upper bounds [12, 7] and lower
bounds [11]. Closing the gap between the best lower bound (1.88 [11]) and the upper
bound (1.9201 [7]) is an open problem. All these results assume that preemption is
not allowed and they focus on minimizing makespan. Many authors [16,8] also investi-
gated the case where preemption is allowed without penalty. Online scheduling problem
in which we pay penalty for rejecting jobs was first studied in [3] by Bartal et al. and
improved later in [10] by Hoogeveen et al..

For the model with deadline, it is usually impossible to finish all jobs. Thus, an-
other model aims to maximize the profit. In 1991, Baruah et al. [4] proved that no
online scheduling algorithm can make profit more than 1

(1+
√

D)2
times the optimal. Ko-

ren et al. [13] gave an algorithm matching the lower bound [4]. Hoogeveen et al. [9]
gave a 1

2 -competitive algorithm which maximizes the number of early jobs where pre-
emption with no penalty is allowed. Chrobak et al. [5] gave a 2

3 -competitive algorithm
which maximizes the number of jobs that have uniform length in the preemption-restart
model.

The work that is most similar to our work is a recent result by Constantin et al. [6]
in 2009. They proposed and studied a simple model for auctioning ad slot reservations
in advance. A seller will display a set of slots at some point T in the future. Until T ,
bidders arrive sequentially and place a bid on the slots they are interested in. The seller
must decide immediately whether or not to grant a reservation. Their model allows the
seller to cancel at any time any reservation made earlier with a penalty proportional to
the bid value. The major difference between our model and their model is that, in their
model, they only auction a set of ad slots for a fixed time-slot T , while in our model,
the bidders could bid the spectrum usage starting from any time-slot, and lasting for an
arbitrary duration. We also consider preemption during the spectrum usage.

7 Conclusions

In this paper, we studied online spectrum allocation for wireless networks. For a number
of variants, we designed efficient online scheduling algorithms and analytically showed
that the competitive ratios of our methods are within small constant factors of the op-
timum. Especially, when γ is around the maximum requested time duration Δ, our
algorithm results in a profit that is almost optimum. We also conducted extensive simu-
lations to study the performances of our methods and our results show that they perform
extremely well in practice.

We showed that no user will bid lower than its willing payment under our mecha-
nism. We would like to study the Nash Equilibriums of our mechanism and investigate
the price of anarchy of our mechanism. It remains open to design a mechanism in which
every secondary user cannot gain benefit by bidding untruthfully. It is also interesting to
extend our mechanism to deal the case when we know more information about requests,
such as the distributions of bids, timeslots requested, and arrival times.
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Abstract. In this paper, we study the bounded space variation, es-
pecially 1-bounded space, of 2-dimensional bin packing. A sequence of
rectangular items arrive over time, and the following item arrives after
the packing of the previous one. The height and width of each item are
no more than 1, we need to pack these items into unit square bins of size
1 × 1 and our objective is to minimize the number of used bins. Once
an item is packed into a square bin, the position of this item is fixed
and it cannot be shifted within this bin. At any time, there is at most
one active bin; the current unpacked item can be only packed into the
active bin and the inactive bins (closed at some previous time) cannot
be used for any future items. We first propose an online algorithm with a
constant competitive ratio 12, then improve the competitive ratio to 8.84
by the some complicated analysis. Our results significantly improve the
previous best known O((log log m)2)-competitive algorithm[10], where m
is the width of the square bin and the size of each item is a × b, where
a, b are integers no more than m. Furthermore, the lower bound for the
competitive ratio is also improved to 2.5.

1 Introduction

Bin packing [1–5, 7–22] is one of the fundamental problems in theoretical com-
puter science. The field of bin packing has been studied for more than thirty
years and many problems still remain open.

In the bin packing problem, a sequence of items are packed into bins, the
packed items in a bin do not overlap and all placed within a bin. The objective
is to minimize the number of used bins. The size of each item should be no more
than the size of a bin. Most of previous results have considered the unbounded
space variation, i.e., each bin can be used for packing the coming item if this bin
has enough space. In the unbounded space variation, each item can be packed into
any bins. But in many applications, the number of active bins is always bounded
by a constant, so, bounded space variation is valuable, too. In the bounded space
variation, the current item can be only packed into the active bins. Once the
active bins cannot accommodate the coming item, we have to close an active bin
and a new bin will be opened and labeled with active.
� Supported by HK RGC grant HKU-7113/07E.
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It is an interesting problem that the number of active bin is only one (1-
bounded space), i.e., each item can be packed either in the only active bin or
in a new bin. This variant is motivated from grid computing, in which there
is a cluster of computers arranged on a grid. Each job requests for a subgrid
of a × b computers, whose orientation is not important (as long as a subgrid
of a × b computers are assigned) and where the assignment in the grid cannot
be changed. There is only one grid machine and the jobs come online. So we
try to pack as many jobs as possible in this fixed size grid. When these jobs
are finished, the grid can be used for another set of jobs. In this variant of bin
packing problem, each item is rectangular in shape and its width and height are
no more than 1. Items must be packed into square bins of size 1× 1. Again, the
target is to minimize the number of square bins used. For example, as shown
in Fig. 1(a), there are 5 items to be packed into bins of size 1 × 1, item A, B,
C and D are of the same size 0.75 × 0.25, while item E is of size 0.5 × 0.5. In
the optimal solution, these five items can be packed into one bin (Fig. 1(b)), if
we do not pack them carefully, the number of used bin may be more than one
(Fig. 1(c)).

C DBA

E

A

C B C D

D

B

E

E

A

(a) five items A, B, C, D, and E

(b) optimal packing into one 4 × 4 grid (c) non-optimal packing into two 4 × 4 grids

Fig. 1. Example of optimal packing and non-optimal packing

The focus in this paper is the online variant of 1-bounded space 2-dimensional
bin packing, where the items arrive over time, and when packing the current item,
we have no information about the future items and the position of the packed
items in the bin cannot be changed.

To evaluate an online algorithm for bin packing, we use the asymptotic com-
petitive ratio defined as follows. Consider an online algorithm A and an optimal
offline algorithm OPT . For any sequence S of items, let A(S) be the cost (number
of square bins used) incurred by algorithm A and let OPT (S) be the correspond-
ing optimal cost from OPT . Then the asymptotic competitive ratio for algorithm
A is:

R∞A = lim
k→∞

sup
S

{ A(S)
OPT (S)

|OPT (S) = k}.
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Bin packing has been well-studied. For the online one-dimensional case, John-
son et al. [14] showed that the First Fit algorithm (FF) has an asymptotic
competitive ratio of 1.7. Yao [22] improved algorithm FF with a better upper
bound of 5/3. Lee and Lee [15] introduced the class of Harmonic algorithms, and
showed that an asymptotic competitive ratio of 1.63597 was achieved. Ramanan
et al. [19] further improved the upper bound to 1.61217. The best known upper
bound so far is from the Super Harmonic algorithm by Seiden [20] whose asymp-
totic competitive ratio is at most 1.58889. As for lower bound results, Yao [22]
showed that no online algorithm has asymptotic competitive ratio less than 1.5.
The best known lower bound to date is 1.54014 [21].

As for two-dimensional online bin packing, the best lower bound up to now
is 1.907 [3], while the best known upper bound is 2.5545 [11]. We also briefly
overview the offline results on two-dimensional bin packing. Chung et. al. [5]
showed an approximation algorithm with an asymptotic performance ratio of
2.125. Caprara [4] improved the upper bound to 1.69103. Very recently Bansal
et al. [2] derived a randomized algorithm with asymptotic performance ratio of
at most 1.525. As for the offline lower bound results, Bansal et al. [1] showed
that the two-dimensional bin packing problem does not admit any asymptotic
polynomial time approximation scheme. For the special case where items are
squares, there are also many results [8, 9, 12, 13, 16–18].

For bounded space online algorithms, Csirik and Johnson [6] presented an
1.7-competitive algorithm (K-Bounded Best Fit algorithms (BBFK)) for one
dimensional bin packing while the number of active bins K ≥ 2; Epstein et
al. [7] gave a 1.69103d-competitive algorithm with (2M − 1)d active bins, where
M ≥ 1/(1− (1 − ε)1/(d+2))− 1, ε > 0 and d is the dimension of the bin packing
problem. For the 1-bounded space variant, Fujita [10] gave an O((log log m)2)-
competitive algorithm, where m is the width of the square bin and the size of
each item is a× b, where a, b are integers no more than m. He also proved that
the competitive ratio for the 1-bounded space variant is at least 23/11.

The remainder of this paper is organized as follows. Section 2 gives some
preliminary background of this problem, and the formal definition of the problem
we address. In Section 3, we propose a 12-competitive algorithm, and in Section
4, we give a more complicated analysis and further improve the competitive ratio
to 8.84. In Section 5, we show a lower bound of 2.5 for the competitive ratio of
any algorithm for the 1-bounded space variant. Section 6 concludes this paper
and gives some future research on this problem.

2 Preliminary

Let S = {r1, r2, ..., rn} denote the sequence of rectangle items, and let xi and
yi be the width and height of item ri, respectively, where xi and yi are positive
and no more than 1. The size of square bin for packing these items is 1× 1. The
occupied space (or occupation) of item ri is the product of xi and yi, i.e., xiyi,
and the occupied space (or occupation) of a packing in a bin is the total occupied
space of items in it. The bin packing problem is to pack all the items into bins
without overlaps and the target is to minimize the number of bins used.
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Fujita [10] proved that the competitive ratio for 1-bounded space version is
2m if rotation of items is not allowed. But an interesting problem is: can we
have a better algorithm with a smaller competitive ratio if rotation of items is
allowed? In this paper, we consider the 1-bounded space variant and rotation of
items is allowed. Thus, we may assume that the width of each item is no less
than its height, i.e., xi ≥ yi.

In Fujita’s algorithm [10], items are classified into three types {A : m/2 <
x ≤ m}, {B : m/ log2 m < x ≤ m/2} and {C : 0 < x ≤ m/ log2 m} (assuming
x ≥ y), and the square bin is partitioned into three disjoint parts. The packing
strategies for each type are different and packing particular type of items in
distinct part of a bin is based on the partition of the square bin. The worst case
of the algorithm happens in handling the type B items, where the packing area
is further partitioned into strips of equal height m/ log log m. Items with height
less than m/ log log m are packed within strips using a greedy approach. If the
height of the newly arrived type B item is larger than m/ log log m, the current
active bin will be closed and a new bin will be opened for the unpacked item.
Thus, the occupied space in the closed bin and the new created bin is at least
(m/ log log m)2, which leads to an O((log log m)2)-competitive algorithm. The
packing of type A items is also based on a greedy approach, and the occupied
space is at least O(m2/ log log m). Thus, in the worst case, most area in the
closed bin is wasted.

To efficiently use the area of each bin, we also classify the items into three
types according to their width, and each bin is partitioned into two parts U and
L. Items with larger or medium widths are packed into part U of the bin, and
the narrow items are packed into part L of the bin. By setting the proper sizes
of U and L, we can prove that the occupied space in each bin is never too small,
and is at least a constant portion of the entire bin. The detailed description and
analysis of our strategies will be given in Section 3 and 4.

3 Constant-Competitive Algorithm

Classify the rectangular items into three classes A, B and C, such that

A = {(x, y)|x ≥ 1/2},
B = {(x, y)|1/6 ≤ x < 1/2}, and
C = {(x, y)|x < 1/6}.

For simplicity, let A-item denote an item belonging to class A, similarly for
B-item and C-item.

Each square bin is partitioned into two parts: the upper part U and the lower
part L, let u and l denote the heights of U and L respectively (Fig. 2).

In our packing strategy, A-items and B-items are packed into the upper part
U , and C-items into the lower part L. If an item a cannot be packed into the
corresponding part according to the strategy, we close the current active bin
then open a new bin to pack item a.

Next, we will describe how to pack items into each part.
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1

1

u

l

U

L

Fig. 2. Partition the bin into upper part U and lower part L

3.1 Packing Items in Upper Part U

Firstly, we consider the packing of A-items and B-items into the upper part U .
The A-items are packed by a top-down order in U , and the vertical symmetry

axis of each item aligns with the vertical symmetry axis of the square bin. The
B-items are packed by a bottom-up order in both left and right side of U while
balancing the height of both sides, i.e., the new B-item is packed into the side
of smaller height. If packing a new item leads to an overlap with other items,
we close this bin and open a new square bin for this new item. For example, the
current configuration of upper part U is shown in Fig. 3, the height of packed
A-items is y, the left and right side of packed B-items are of height y1 and
y2 respectively. Note that the width of each packed item in U is no less than
its height, it is easy to show that the current occupied space in U is at least
(y/2 + y1/6 + y2/6). W.l.o.g., assume y1 ≥ y2, we will try to pack a new B-item
on the right side of U .

The following lemma shows that about 1/3 of the space in U of any inactive
bins are occupied by the items if the inactive bins are due to the arrival of either
A- or B- items. Intuitively, any horizontal strip of U is either covered by A-
items or B-items. As the width of A-item ≥ 1/2 and the total width of B-items
is 2 · 1/6 = 1/3. So no less than 1/3 of the space will be covered by the A- or
B-items. Note that, in the worst case, the B-items at the left and right side
might not be of equal height, some of the horizontal strip can only be covered
by one B-item and thus the occupied space can be strictly less than 1/3.

u

y1

y

y2

central axle

A-items

B-items B-items

Fig. 3. Packing items into the upper part U
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Lemma 1. When the packing strategy cannot satisfy a newly arrived item a in
the upper part U , the occupied space in U and the item a is at least u/3− 1/36.

The value (u/3 − 1/36) is a lower bound of the occupied space of the packed
items in U and the current unpacked item a. But we have to open a new bin for
the unpacked item a, otherwise, overlap will appear. Thus, the average occupied
space of the active bin and the bin to be opened next is at least half of the above
value, i.e., (u/6 − 1/72).

3.2 Packing Items in Lower Part L

Now we consider how to pack the C-items into the lower part L.
We further partition the C-items into subclasses C0, C1, C2, ..., an item x× y

belongs to subclass Ci if 2−i−1/6 < x ≤ 2−i/6. Let wi denote the maximal
possible width of items from subclass Ci. Thus, w0 = 1/6, w1 = 1/12, ... Based
on this partition, the lower part L can be partitioned into columns of width
wi (i > 0). Each item belonging to subclass Cj will be packed into a column
of width wj . Let fl be the width of free space in right right part of L. When
handling an item from subclass Ci, a new column of width wi will be created
if the existed columns of width wi cannot satisfy this item. If the lower part L
has not enough space to create a new column, i.e., fl < wi, we close the current
active bin and open a new square bin for the current unpacked item.

For example, assume that the current configuration of the lower part L is
shown in Fig. 4, there are three columns for subclass Ci and three columns for
subclass Cj . If a new item of subclass Ci comes, it can be packed into the third
column for Ci from left. If a new item of subclass Cj comes, the three columns
for Cj are all full, we have to create a new column for Cj so as to allocate the
new item, and the width of free space is decreased by wi. If the free space cannot
satisfy the creation of new columns, i.e., fl < wi, this square bin will be closed
and a new one will be opened.

l free space

Ci Cj Ci Cj Ci Cj
fl

Fig. 4. Packing items into the lower part L

Lemma 2. The occupied space in L is at least (l/3− 1/18) if L cannot accom-
modate a C-item.

Based on the above two lemmas and note that u + l = 1, we can have the
following conclusion.
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Theorem 1. The above described strategy is 12-competitive for 1-bounded space
2-dimensional bin packing when u = 7/12 and l = 5/12.

Proof. From the above analysis, we have the following two facts:

(1) The average occupied space in U is at least (u/6− 1/72) if U cannot satisfy
an item from class A or B. (Lemma 1)

(2) The average occupied space in L is at least (l/3 − 1/18) if L cannot satisfy
an item from class C. (Lemma 2)

Thus, the average occupied space of each bin is at least min{(u/6−1/72), (l/3−
1/18)}. Since u + l = 1, min{(u/6 − 1/72), (l/3− 1/18)} ≥ 1/12 when l = 5/12
and u = 7/12.

Therefore, the average occupied space of each bin is at least 1/12 of the total
bin, and our strategy is 12-competitive. �	

4 Further Improvement

In this section, we will give a more complicated analysis for the previous strategy
and show that the algorithm is more competitive by modifying the values of u
(the height of upper part) and l (the height of lower part).

For a given sequence of items, suppose the number of bins used by the packing
strategy is n, let oi

A, oi
B and oi

C be the occupied space of A-, B- and C- items
in the i-th bin respectively. Define U as the set of bins which cannot satisfy the
next A- or B- item. Define L as the set of bins which cannot satisfy the next
C-item. It is easy to see that U and L are disjoint sets, and |U|+ |L|+1 = n since
the last bin does not belong to either U or L. The average occupation for all
bins is

∑n
i=1(o

i
A + oi

B + oi
C)/n. When n is very large, we can regard this average

occupation as
∑n

i=1(o
i
A + oi

B + oi
C)/(|U| + |L|). It is easy to see that

∑n
i=1(o

i
A + oi

B + oi
C)

|U| + |L| ≥ min{
∑n

i=1(o
i
A + oi

B)
|U| ,

∑n
i=1(o

i
C)

|L| } (1)

Now we compute the lower bounds for these two terms in the right part of
above inequality.

Firstly, we consider the first term
∑n

i=1(o
i
A + oi

B)/|U| in inequality 1.
Let pi

A and qi
A be the disjoint occupations of A-items in the i-th bin, explicitly,

pi
A and qi

A are the half occupied space of A-items in the i-th bin. For example, if
there is an A-item of height h in a bin, pi

A and qi
A are at least h/4. Similarly, let

pi
B and qi

B be the disjoint occupations of B-items in the i-th bin. Denote qi
B be

the half occupied space of either left side or right side with larger occupied space,
and pi

B be the remaining occupations of B-items in the i-th bin. For example,
in the configuration shown in Fig. 3, if the occupied space in the right side with
height y2 is larger than the occupied space in the left side, qi

B is equal to the
value of half occupied space of the right side, which is at least y2/12. Note that
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the side with higher height may not be the side with larger occupied space. Thus,
we have
∑n

i=1(o
i
A + oi

B)
|U| =

∑n
i=1(p

i
A + qi

A + pi
B + qi

B)
|U| ≥ min

i∈U
{pi

A + pi
B + qi+1

A + qi+1
B }

Similar to Section 3, we have the following lemma.

Lemma 3. mini∈U{pi
A + pi

B + qi+1
A + qi+1

B } ≥ u/4 − 1/32.

Then, we consider the second term
∑n

k=1(o
k
C)/|L| in inequality (1).

Note that
∑n

k=1(o
k
C)/|L| ≥ mink∈L{ok

C}, and we can compute the lower bound
of ok

C , as shown in Lemma 4.

Lemma 4. ok
C ≥ l/3 − 1/36 for any k ∈ L.

Now we give the upper bound of competitive ratio of our strategy.

Theorem 2. The strategy is 8.84-competitive for 1-bounded space 2-dimensional
bin packing when u = 0.5773 and l = 0.4227. Furthermore, this strategy is tight.

Proof. From Lemma 3 and Lemma 4, we have the following two facts:

(1) The first term of Inequality 1 is at least u/4 − 1/32. (Lemma 3)
(2) The second term of Inequality 1 is at least l/3 − 1/36. (Lemma 4)

Balancing these two values, we can achieve the balanced average occupation
0.1131 for all bins when u = 0.5774 and l = 0.4226. That means the average
occupation in each bin is at least 0.1131 of the total bin. Thus, our strategy is
8.84-competitive.

For the worst case analysis of this strategy, consider the packing in upper part
U . A sequence of items (X, Y, X, Y, X, Y, ...) arrive over time. Item X belongs to
class B and item Y belongs to class A. The size of X is 0.25×0.25, while the size
of Y is 0.5×(0.3274+ε), where ε is a very small value. According to the strategy,
X and Y cannot be packed into the same bin. Thus, the amortized occupation
in each bin is (0.252 + 0.5 · (0.3274 + ε))/2 = 0.1131 + 0.25ε. Therefore, we can
say the strategy is tight. �	

5 Lower Bound for 1-Bounded Space Algorithms

In this section, we will show that the lower bound of competitive ratio for any
1-bounded space algorithm is 2.5, which improves the previous bound 23/11.

Consider the input sequence of rectangle items:

(A1, B1, A2, B1, ...A2k+2, B1, X1, X2, X3, k · B2, Y1, Y2, 2k · C).

The size of item Ai is (1/3 + ai, 2/3 + x). The size of B1 and B2 are (1/3 −
ε, 1/3 − ε) and (1/3 + 2ε, 1/3 + 2ε) respectively. The size of item C is (1/3 +
ε/2, 1/3− x). The sizes of X1, X2, X3, Y1 and Y2 are (1/3 + ε− a2k+2, 2/3+ x),
(1/3 − ε, 2/3 + ε + x), (1/3 − x, 1), (1/3 − 4ε, 1) and (2/3 + 4ε, 1/3− ε).
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The sizes of these rectangle items must satisfy the following constraints.

1. a1 = εa, a2i = (i + 1)εa, and a2i+1 = −iεa − δa for i > 0,
2. δa > 2ε > 0
3. εa > δa + ε,
4. x > ε > 0,
5. ai, δa, ε, εa, x % 1, i.e., compared with the size of the bin, the values of these

parameters are very tiny.

Lemma 5. For any online packing strategy, the number of used bins for the
input sequence is at least 2.5k + 2.

Lemma 6. The optimal solution for packing the above input sequence uses k+3
bins.

From the above analysis, we have the following conclusion.

Theorem 1. The lower bound of competitive ratio for 1-bounded space online
algorithm is 2.5.

6 Concluding Remarks

In this paper, we focus on the 1-bounded space 2-dimensional bin packing, and
give a constant competitive algorithm, significantly improve the previous result.
The lower bound of competitive ratio is also improved. In the following research,
there are mainly three directions:

(1) A big gap still remains between the upper bound 8.84 and lower bound 2.5.
Our future research will focus on how to close this gap.

(2) In previous results on bounded space variation, the number of active bins
is always a big constant. We may study the variation with small number
of active bins. For example, if the number of active bins is 2 or 3, can we
significantly improve the competitive ratio?

(3) In online bin packing problem, the performance is often evaluated by com-
paring with the optimal offline algorithm, which does not consider the order
of items arrive over time. It will make more sense if we compare with the
optimal algorithm abiding by the order of arrival items.
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Abstract. In this paper, we investigate to what extent the solution
quality of online algorithms can be improved by allowing the algorithm
to extract a given amount of information about the input. We consider
the recently introduced notion of advice complexity where the algorithm,
in addition to being fed the requests one by one, has access to a tape of
advice bits that were computed by some oracle function from the com-
plete input. The advice complexity is the number of advice bits read. We
introduce an improved model of advice complexity and investigate the
connections of advice complexity to the competitive ratio of both deter-
ministic and randomized online algorithms using the paging problem, job
shop scheduling, and the routing problem on a line as sample problems.
We provide both upper and lower bounds on the advice complexity of
all three problems.

Our results for all of these problems show that very small advice
(only three bits in the case of paging) already suffices to significantly
improve over the best deterministic algorithm. Moreover, to achieve the
same competitive ratio as any randomized online algorithm, a logarith-
mic number of advice bits is sufficient. On the other hand, to obtain
optimality, much larger advice is necessary.

1 Introduction

Many problems such as routing, scheduling, or the paging problem work in so-
called online environments and their algorithmic formulation and analysis de-
mand a model in which an algorithm that deals with such a problem knows
only a part of its input at any specific point during runtime. These problems
are called online problems and the respective algorithms are called online algo-
rithms. In such an online setting, an online algorithm A has a huge disadvantage
compared to offline algorithms (i. e., algorithms knowing the whole input already
at the beginning of their computation) since A has to make decisions at any time
step i without knowing what the next chunk of input at time step i + 1 will be.
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As A has to produce a part of the final output in every step, it cannot revoke
decisions it has already made. These decisions can only be made by merely tak-
ing input chunks from time steps 1 to i into account and maybe applying some
randomization.

The output quality of such an online algorithm is often analyzed by the well-
established competitive ratio introduced by Sleator and Tarjan in [9]. Informally
speaking, the output quality of an online algorithm A is measured by comparing
it to an optimal offline algorithm. For an online problem P , let Opt(I) denote
an optimal offline solution for a certain input I of P . By A = A(I) we denote
the solution (i. e., the sequence of answers) computed by A on I, and we denote
its cost (or, for maximization problems, gain) as C(A(I)). Then, for some c ≥ 0,
A is called c-competitive if there exists some constant α ≥ 0 such that, for any
such input sequence I, C(A(I)) ≤ c · C(Opt(I)) + α, and it is called strictly c-
competitive, if α = 0. An online algorithm is optimal if it is 1-competitive with
α = 0. As a rather powerful tool, randomness is often employed in the design
of online algorithms. The computations (sometimes also called decisions) of a
randomized online algorithm R hereby heavily depend on a sequence of random
bits often viewed as the content of a random tape accessible by R. For a fixed
content of the random tape, R then behaves deterministically and achieves a
certain competitive ratio. The expected value of the competitive ratio over all
possible contents of the random tape is then used to measure the quality of a
randomized online algorithm.

On the downside, it seems rather unfair to compare online and offline algo-
rithms since there is simply no reasonable application of an offline algorithm in
an online environment. Therefore, offline algorithms are in general more power-
ful than online algorithms. Hence, we are interested not only in comparing the
output quality of A to that of an optimal offline algorithm B, but we want to
investigate what amount of information A really lacks. Surprisingly (and as al-
ready discussed in [6]), there are problems where only one straightforward piece
of information (i. e., one bit) is needed for allowing A to be as good as B, e. g., the
problem SkiRental, see [2,6]. Clearly, this does not hold in general and thus
we are interested in a formal framework allowing us to classify online problems
according to how much information about the future input is needed for solving
them optimally or with a specific competitive ratio. One way of measuring the
amount of information needed for an online algorithm to be optimal is called
advice complexity and was proposed in [6]. This model of advice complexity can
be viewed as a cooperation of a deterministic online algorithm A and an oracle
O, which may passively communicate with A. The oracle O, which has unlimited
computational power, sees the whole input of A in advance and writes bitwise
information needed by A onto an advice tape before A reads any input. Then, A
can access the bits from the advice tape in a sequential manner, just as a ran-
domized algorithm would use its random tape. The advice complexity of A on an
input I is now defined as the number of advice bits A reads while processing this
input. As usual, we consider the advice complexity as a function of the input
size n by taking the maximum value over all inputs of length at most n.
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Note that, by our definition, the oracle has no possibility to explicitly indicate
the end of the advice. This eliminates the ability of the oracle to encode some
information into the length of the advice string, as it was the case in [6]. As a
result, our model is cleaner and more consistent with other complexity measures
like, e. g., the number of random bits required for randomized algorithms. Be-
sides asking for the amount of advice that is necessary to compute an optimal
solution, we also deal with the question whether some small advice might help
to significantly reduce the competitive ratio.

A similar model to that of [6] has been very recently used in [7]. There, the
oracle can send an advice message of fixed size to the online algorithm together
with every request. This model, however, is suitable only for online problems
that cannot be solved efficiently with small advice per request, as it is the case
for the problems considered in [7] (metrical task systems, k-server problem).
Since all three problems we consider here can be easily solved with 1 advice bit
per request, this model is not applicable in our case.

After providing the formal definition of our model and some general obser-
vations in Section 2, we analyze the advice complexity of three different online
problems: paging (in Section 3), disjoint path allocation (in Section 4), and job
shop scheduling (in Section 5). For all three problems, we provide both up-
per and lower bounds on the trade-off between the advice complexity and the
competitive ratio. Our results exhibit a somewhat similar behavior for all three
problems: While large advice is necessary to achieve an optimal solution, signif-
icantly smaller advice suffices to be on par with the best randomized algorithm.
E. g., an optimal solution for paging requires 1 bit per request, but with O(log k)
bits (where k is the size of the buffer) it is possible to achieve ratio asymptoti-
cally equal to the best known randomized algorithm. Furthermore, it is usually
the case that very small advice suffices to significantly improve the competitive
ratio over the best deterministic algorithm. E. g., two bits of advice for whole
input are sufficient to improve the ratio from k to k/2 + O(1) for paging.

Due to space limitations, this extended abstract does not contain all proofs.
All details missing in this paper can be found in the technical report [3].

2 Preliminaries

Often, randomization is used in the design of online algorithms. Formally, ran-
domized online algorithms can compute the answers from the previous requests,
as well as from the content of a random tape φ, i. e., an infinite binary se-
quence where every bit is chosen uniformly and independently at random. By
C(R(I)), we denote the random variable expressing the cost of the solution com-
puted by R on I. R is c-competitive (against an oblivious adversary) if there
exists a constant α such that, for each input sequence I, the expected value
E[C(R(I))] ≤ c · C(Opt(I)) + α. Our work focusses on a model where the algo-
rithm can use some information, called advice, about the future input.

Definition 1. An online algorithm A with advice computes the output sequence
Aφ = Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where
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φ is the content of the advice tape, i. e., an infinite binary sequence, and I =
(x1, . . . , xn). Algorithm A is c-competitive with advice complexity s(n) if there
exists a constant α such that, for every n and for each input sequence I of length
at most n, there exists some φ such that C(Aφ(I)) ≤ c · C(Opt(I)) + α and at
most s(n) bits of φ have been accessed during the computation of Aφ(I). If α = 0,
then A is strictly c-competitive with advice complexity s(n).

For the ease of notation, for both randomized online algorithms and online al-
gorithms with advice, if φ is clear from the context, we write A(I) instead of
Aφ(I). If A accesses b bits of the advice tape during some computation, we say
that b advice bits are communicated to A, or that A uses b bits of advice. The
advice complexity of A gives an upper bound on the number of communicated
advice bits, depending on the size n of the input. Note that, if some randomized
online algorithm achieves a competitive ratio of r using b random bits, the same
competitive ratio r can be achieved by an online algorithm with advice using b
advice bits. We use log(x) to denote the logarithm of x with base two.

For proving upper bounds, we sometimes use the following idea. The oracle
needs to communicate some n-bit string to the algorithm, but this string always
contains only few ones or few zeros, allowing for the following efficient encoding.

Lemma 1. Consider an online algorithm A with advice, achieving competitive
ratio r while using some n-bit advice string that contains at most n/t zeros or
at least n − n/t zeros, where t ≥ 2 is a fixed constant. Then, it is possible to
design an improved online algorithm B that knows the parameter t and achieves
an advice complexity of

s(n) = min
{

n log
(
t/(t − 1)

t−1
t

)
,
n log n

t

}
+ 3 logn + O(1).

3 Paging

To use computer memory as efficiently as possible, the well-known technique of
paging is widely used. Formally, we define paging problem as follows.

Definition 2 (Paging Problem). The input is a sequence of integers repre-
senting requests to logical pages I = (x1, . . . , xn), xi > 0, xi 
= xi+1. An online al-
gorithm A maintains a buffer (content of the physical memory) B = {b1, . . . , bK}
of K integers, where K is a fixed constant known to A. Before processing the first
request, the buffer gets initialized as B = {1, . . . , K}. Upon receiving a request
xi, if xi ∈ B, then yi = 0. If xi 
∈ B, then a page fault occurs, and the algorithm
has to find some victim bj, i. e., B := B \ {bj} ∪ {xi}, and yi = bj. The cost of
the solution A = A(I) is the number of page faults, i. e., C(A) = |{yi : yi > 0}|.

The paging problem (or Paging for short) has been extensively studied (see
[2]). It is known that every deterministic algorithm is at least K-competitive,
and there exist K-competitive deterministic algorithms. A simple upper bound
on the advice complexity of an optimal algorithm follows from [6, Lemma 3.1].
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Fact 1. For Paging, there is an optimal online algorithm with advice complex-
ity n + K and a 1-competitive online algorithm with advice complexity n.

A lower bound for the competitive ratio of any randomized paging algorithm was
proven in [2]: every randomized algorithm is at least HK-competitive, where HK

is the K-th harmonic number, i. e., HK =
∑K

i=1
1
i . The lower bound is almost

tightly matched by randomized marking algorithm1: the randomized marking
algorithm is HK-competitive, if the logical pages are chosen from a set of cardi-
nality K + 1, and they are 2HK-competitive in general.

Constant Competitive Ratio. From Fact 1, we can see that using one bit
of advice per request is sufficient to obtain an optimal paging algorithm. In
the next theorem, we show that it is possible to obtain paging algorithms with
good competitive ratios using smaller advice. More precisely, we show an upper
bound on the advice complexity depending on the competitive ratio, indicating
that using an amortized constant amount of bits per request s(n)/n < 1 is
enough to achieve a constant competitive ratio.

Theorem 1. For each constant r ≥ 1, there exists an r-competitive algorithm
with advice complexity s(n) = n log

(
(r + 1)/

(
rr/(r+1)

))
+ 3 log n + O(1).

The proof of Theorem 1 is presented in [3]. As a corollary, note that it is
possible to obtain a constant competitive ratio with an amortized constant
number of bits of advice per request. This number of bits can be arbitrar-
ily close to 0 at the expense of a very high competitive ratio; on the other
hand, a competitive ratio arbitrarily close to 1 is reachable with the number
of bits per request approaching 1. More precisely, for each constant r ≥ 1,
there exists an r-competitive algorithm with advice complexity s(n) such that
limn→∞(s(n)/n) = log

(
(r + 1)/

(
rr/(r+1)

))
.

Next, we show a lower bound on the advice complexity required to obtain a
constant competitive ratio, more precisely, we express the minimal number of
advice bits per request required to obtain an r-competitive algorithm.

Theorem 2. Let r be any constant such that 1 ≤ r ≤ 1.25. For any paging
algorithm A with advice complexity s(n) and competitive ratio r it holds that
s(n)

n ≥ 1
2K−2 [1 + log(3 − 2r)− (2r − 2) log

(
1

2r−2 − 1
)]

−O
( 1

n

)
. The constant

of the O(1/n) depends on K and the parameters r, α of A.

The core idea of the proof of Theorem 2 is to consider a certain (sufficiently large)
class of inputs arranged into a complete tree. If the advice is small enough, there
must be many inputs processed with the same advice. This makes it possible to
prove that A must behave inefficiently on at least one of them, by exploiting the
tree structure of the inputs. For a detailed proof, see [3].

1 In general, a marking algorithm (see [2]) starts with all pages unmarked, and upon
a hit marks the requested page. If there is no unmarked page upon a page fault, all
pages in the memory are unmarked and a new phase begins.
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To obtain an optimal algorithm, large advice is necessary. Similar arguments
as in Theorem 2 yield a lower bound on the advice complexity of s(n)

n ≥ 1 −
log(K−1)+C

4(K−1) −O
( 1

n

)
, for some constant C, converging to 1 bit per request with

growing cache size K. Thus, the upper bound from Fact 1 is tight for large K.

Small advice. We now analyze the case where the algorithm is allowed to use
only a constant number of advice bits for the whole input. We show that, even
in this very restricted case, the competitive ratio can be significantly improved
with respect to the best deterministic algorithm. We start with upper bounds
on the advice complexity, and complement them later with a lower bound.

Theorem 3. Consider the class of inputs with a buffer of size K, and let c < K
be a power of 2. There is an algorithm with oracle size log c for Paging on this
class of inputs with competitive ratio r ≤ 3 log c + (2(K + 1)/c) + 1.

For the proof, we construct c deterministic marking algorithms. Their executions
are naturally divided into phases, and the construction makes sure that, in each
phase, the algorithms induce many different behaviors. A careful choice of page
replacement strategies enables to use an accounting scheme to bound the overall
number of faults occurring in all algorithms during a phase. The proof is finished
by arguing that there must be an algorithm with at most 1/c-th fraction of them,
and comparing this amount with a trivial general lower bound. A detailed proof
can be found in [3].

The presented results show that even very small advice can be used efficiently.
For example, providing just two bits of advice per whole input instance reduces
the competitive ratio from K (i. e., the best deterministically achievable ratio)
to K/2 + O(1). Additionally, log K bits of advice (i. e., making c equal to the
largest power of 2 smaller than K) can be used to achieve the competitive ratio
3 logK +O(1) which is asymptotically equal (albeit the constant is worse) to the
best possible ratio of HK =

∑K
i=1

1
i for a randomized algorithm without advice.

Next, we complement the result of Theorem 3 by presenting a lower bound
on the competitive ratio for paging algorithms with constant advice complexity.

Theorem 4. Consider the class of inputs with K + 1 possible pages, where K
is the size of the buffer, and let c be a power of 2. Any deterministic algorithm
A with advice complexity s(n) = log c has competitive ratio at least K/c.

The main proof idea is to consider all inputs of certain length arranged into a
complete K-ary tree. Then, it is either possible to find an input with many faults
in the beginning of the computation, or to select an input prefix such that some
advice is not used for any extension of this prefix, and to continue by induction.

4 Disjoint Path Allocation

We consider a special type of network topology where the entities of a network
are connected by one line (i. e., a bus network). The network is a path P and all
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Fig. 1. A sample input from the class I3 and its representation as tree T of height h

connections in P have a capacity of one. For the disjoint path allocation problem
(DisPathAlloc, described in [2]), additionally a set of subpaths of P is given.
Each subpath (vi, . . . , vj) models a call request, i. e., a request to establish a
permanent connection between the two endpoints vi and vj . If such a request is
satisfied, no inner entity of the path is able to be part of any other call. Therefore,
a disjoint path allocation is simply a set of edge-disjoint subpaths of P .

Definition 3 (Disjoint Path Allocation Problem). Given a path P =(V, E),
where V = {v0, . . . , vL} is a set of entities, and a set P of subpaths of P where
|P| = n, DisPathAlloc is the problem of finding a maximum set P ′ ⊆ P of
edge-disjoint subpaths of P .

Here, we deal with an environment in which the subpaths P1, . . . , Pn ∈ P arrive
in an online fashion. We assume that L = |V |−1 is known to the online algorithm
in advance, but that this is not the case for n. For the ease of presentation,
let (vi, vj) denote the path (vi, vi+1, . . . , vj). The cost function C(A(I)) denotes
the number of requests satisfied by A on input I. Since DisPathAlloc is a
maximization problem, an algorithm A solving it is c-competitive if C(Opt(I)) ≤
c ·C(A(I)) + α for some constant α and every input I and strictly c-competitive
if α = 0. The competitive ratio can be measured in terms of n as well as in
terms of L. We focus on the former case, the latter is discussed in [3]. It is not
difficult to check that any deterministic online algorithm A is no better than
strictly (n − 1)-competitive and strictly L-competitive. These bounds are tight,
since they are reached by a simple greedy algorithm.

The Class I of Inputs. For some of the following proofs, we consider input
instances as depicted in Fig. 1 for any even n. For every h, we define the class
Ih (and I =

⋃
h∈N

Ih) as follows. Every element of Ih consists of h + 1 levels.
Level 1 consists of two disjoint consecutive requests, splitting the line network
into two parts of the same size. After that, two disjoint consecutive requests on
level i+1 do the same with one of the intervals from level i. This is iterated until
two requests of size 1 appear on level h + 1. Fig. 1, for instance, shows an input
from I3. It is obvious that any optimal algorithm satisfies exactly one request
on each of the first h levels, allowing it to satisfy both requests on level h + 1.

Clearly, we may represent an optimal solution, for any input sequence as de-
scribed above, by a path from the root to a leaf in a complete binary tree T
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of height h with its root on a notional level 0 (see Fig. 1). The 2h leaves of T
represent the 2h different inputs of the class Ih. Let OPT denote a path corre-
sponding to some input instance ∈ Ih. We may say that an optimal algorithm
Opt makes moves according to this path. For an arbitrary online algorithm A
that satisfies one request on level i, we say that A makes the correct decision on
this level if it also acts according to OPT . However, if A satisfies one interval
not according to this path OPT or satisfies both requests, we say that A makes
a wrong decision on level i. In this case, we say that A is out (after level i).
Moreover, for every i and an input instance Ih ∈ Ih, let Ci(A(Ih)) denote the
overall number of requests satisfied by A up to level i. If A is out after level i, this
means that, for every j ≥ i, Cj(A(Ih)) = Ci(A(Ih)) (and obviously, therefore,
C(A(Ih)) = Ci(A(Ih))). Let correct(A) [wrong(A)] denote the set of time steps
in which A makes the correct [wrong] decision. Since making the wrong decision
can only happen once (because the algorithm is out afterwards), the overall gain
of A is C(A(Ih)) ≤ |correct(A)|+ 2 · |wrong(A)| ≤ |correct(A)|+ 2, which directly
implies that, for an optimal algorithm Opt, C(Opt(Ih)) = h + 2.

Advice Complexity Bounds. DisPathAlloc is a hard online problem even
for randomized algorithms. A lower bound of Ω(n) on the competitive ratio has
been proven in [5, Theorem 9] and [3] independently. We now investigate how
many advice bits are needed for an online algorithm A to yield optimality.

Theorem 5. For any online algorithm with advice for DisPathAlloc, at least
n+2
2r − 2 bits of advice are required to achieve a strict competitive ratio of r.

Note that, by setting r = 1, we immediately get a lower bound of bopt = n−2
2

advice bits for achieving an optimal solution. On the other hand, it is not difficult
to construct an online algorithm with advice for DisPathAlloc whose advice
complexity is only a factor of log n away from this lower bound for large r, and
is asymptotically tight for constant r: Consider an algorithm A that reads one
bit of advice per request, and satisfies the request if and only if this bit is one.
Communicating an advice string with at most n/r ones is sufficient to achieve a
competitive ratio r. Hence, Lemma 1 for t := r implies the following theorem.

Theorem 6. For every r, there exists an r-competitive online algorithm for
DisPathAlloc with advice complexity

s(n) = min
{

n log
(
r/(r − 1)(r−1)/r

)
, (n log n)/r

}
+ 3 log n + O(1).

The previous theorem also shows that advice complexity O(log2 n) is sufficient to
obtain a competitive ratio asymptotically better than any randomized algorithm
is able to achieve.

5 Job Shop Scheduling

We consider a special case of job shop scheduling with two jobs consisting of n
unit-length tasks each, which have to be processed on the same n machines, each
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task on a different one, but possibly in a different order within the two jobs. Two
tasks requiring the same machine in one time step causes a delay in the schedule
and the goal in this problem JSSchedule is to minimize the number of these
delays. This problem can be modelled as finding a shortest path in an (n × n)-
grid from the upper left to the lower right corner, where also diagonal steps are
allowed, except for some grid cells which are blocked by obstacles modelling tasks
competing for the same machine. For the details of the problem description, we
refer to [3,8]. Full proofs of the results from this section can be found in [3].

Lemma 2. For every instance of JSSchedule, there exists an optimal solution
A which, as long as it does not arrive at the right or bottom border of the grid,
always moves diagonally if no obstacle is in its way.

Consider the optimal solution for an arbitrary instance, and assume that it
makes d diagonal moves, h moves to the right, and v = h moves downwards.
The cost of this solution is d + 2h = n + h, since d + h = n. According to [8],
for every instance of JSSchedule, there exists an optimal solution with cost
at most n + �√n� and therefore h ≤ �√n�. Furthermore, using Lemma 2, it is
easy to see that there exists an online algorithm A with advice needing at most
2h ≤ 2�

√
n� advice bits: Algorithm A simply acts according to Lemma 2. Only

at time steps where a diagonal move is not possible due to an obstacle, it has
to read one bit from the advice tape indicating whether to move downwards or
to the right. As a corollary, for every instance of JSSchedule, there exists an
optimal online algorithm A with advice complexity s(n) = 2�

√
n�. On the other

hand, this upper bound is asymptotically tight, as claimed by the following lower
bound on the number of advice bits necessary to compute an optimal solution.

Theorem 7. Any online algorithm A with advice for JSSchedule needs advice
complexity s(n) = Ω(

√
n) to achieve optimality.

While an optimal solution of JSSchedule requires large advice, much shorter
advice is sufficient to achieve a solution with competitive ratio close to 1. In
[8], a randomized algorithm for JSSchedule with a competitive ratio of O(1 +
1/

√
n) is presented which easily implies that there is an online algorithm for

JSSchedule with advice complexity s(n) ≤ 1+log(n) that achieves competitive
ratio O(1 + 1/

√
n).

6 Conclusion

Our results suggest the hypothesis that logarithmic advice complexity is suffi-
cient to achieve the competitive ratio of the best randomized algorithm for any
online problem. This claim, however, cannot be proven in full generality. In fact,
we can construct an online problem where the number of required advice bits
is as high as the number of random bits in order to keep up with randomized
algorithms.
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Consider the following problem, where the online algorithm has to guess a
sequence of n bits. If all bits are guessed correctly, the algorithm is greatly re-
warded, otherwise, the cost of the solution is zero. For this problem, we can
construct a very simple randomized algorithm that has a positive number as
expected gain whereas it is easy to show that any deterministic algorithm needs
a linear number of advice bits for having a gain greater than zero. Unfortunately,
this situation is quite artificial: if an algorithm with advice A outperforms a ran-
domized algorithm R, then A is exponentially better than R, too. Nevertheless,
this situation shows that, in general, the advice complexity is somehow orthog-
onal to randomization. It remains as an open problem to find more connections
between these complexity measures, e. g., to somehow characterize classes of
online problems where small advice is sufficient to keep up with randomized
algorithms. Furthermore, it might be interesting to consider randomized online
algorithms with advice.

Acknowledgments

The authors would like to thank Juraj Hromkovič for many helpful discussions on
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Abstract. The (offline) maximization (resp., minimization) knapsack
problem is given a set of items with weights and sizes, and the capacity
of a knapsack, to maximize (resp., minimize) the total weight of selected
items under the constraint that the total size of the selected items is
at most (resp., at least) the capacity of the knapsack. In this paper, we
study online maximization and minimization knapsack problems with
limited cuts, in which 1) items are given one by one over time, i.e., after
a decision is made on the current item, the next one is given, 2) items
are allowed to be cut at most k (≥ 1) times, and 3) items are allowed to
be removed from the knapsack.

We obtain the following three results.

(i) For the maximization knapsack problem, we propose a (k + 1)/k-
competitive online algorithm, and show that it is the best possible,
i.e., no online algorithm can have a competitive ratio less than (k +
1)/k.

(ii) For the minimization knapsack problem, we show that no online
algorithm can have a constant competitive ratio.

(iii) We extend the result (i) to the resource augmentation model, where
an online algorithm is allowed to use a knapsack of capacity m (> 1),
while the optimal algorithm uses a unit capacity knapsack.

1 Introduction

The knapsack problem is one of the most classical and studied problems in
combinatorial optimization and has a lot of applications in the real world [9]. The
(classical) knapsack problem is given a set of items with weights and sizes, and
the capacity value of a knapsack, to maximize the total weight of selected items
in the knapsack satisfying the capacity constraint. This problem is also called
the maximization knapsack problem (Max-Knapsack). Many kinds of variants
and generalizations of the knapsack problem have been investigated so far [9].
Among them, the minimization knapsack problem (Min-Knapsack) is one of the
most natural ones (see [1,2,3,4] and [9, pp. 412-413]), that is given a set of items
associated with weights and sizes, and the size of a knapsack, to minimize the
total weight of selected items that cover the knapsack. In this paper, we study
online maximization and minimization knapsack problems with limited cuts, in
which i) items are given one by one over time, i.e., after a decision is made on

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 341–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the current item, the next one is given, ii) items are allowed to be cut at most
k (≥ 1) times, and iii) items are allowed to be removed from the knapsack (but
once they are removed, they cannot be used partially again).

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack
are both NP-hard, and admit fully polynomial time approximation schemes (FP-
TASs) [1,4,9]. As for the online maximization knapsack problem, it was first stud-
ied on average case analysis by Marchetti-Spaccamela and Vercellis [11]. They
proposed a linear time approximation algorithm such that the expected differ-
ence between the optimal and the approximation solution value is O(log3/2 n)
under the condition that the capacity of the knapsack grows proportionally to
n, the number of items. Lueker [10] further improved the expected difference
to O(log n) under a fairly general condition on the distribution. Iwama and
Taketomi [7] studied the problem on worst case analysis. They obtained a 1.618-
competitive algorithm for the online Max-Knapsack under the removable condi-
tion, if each item has its size equal to its profit. Here the removable condition
means that it is allowed to remove some items in the knapsack in order to accept
a new item. They also showed that this is the best possible by providing a lower
bound 1.618 for this case. For the general case, Iwama and Zhang [8] showed that
no algorithm for online Max-Knapsack has a bounded competitive ratio, even if
the removal condition is allowed. Recently, Han and Makino [6] obtained an up-
per bound 8 and a lower bound 2 for minimization knapsack problem. Iwama and
Zhang [8] presented the competitive ratio for the online Max-Knapsack problem
with resource augmentation. Noga and Sarbua [12] studied an online partially
fractional knapsack problem with resource augmentation, in which items are al-
lowed to be cut at most once (i.e., k = 1), only before they are packed into the
knapsack, whereas in our model items are allowed to be cut any time (but at
most k (≥ 1) times). They gave an upper bound 2/m and proved the bound is
the best possible, where m ≥ 1 is the capacity of the knapsack used by online al-
gorithms while the optimal offline algorithm uses a unit capacity knapsack. The
online knapsack problem of using extra a bin and allowing to exchange items
between two bins was studied by Horiyama, Iwama and Kawahara [5].

Our contributions: For the online maximization knapsack, we propose a sim-
ple greedy online algorithm, in which whenever a cut is necessary on an item,
we almost cut off the fraction of size 1

k+1 from the item. We show that our
greedy algorithm is k+1

k -competitive, and it is the best possible by giving a
lower bound of the cometitive ratio. We extend this result to to the model with
resource augmentation. In the resource augmentation model, we show that the
online maximization knapsack problem is max{1, k+1

m(k+1)−1}-competitive (i.e.,
we present a max{1, k+1

m(k+1)−1}-competitive algorithm and show that it is the
best possible). When k = 1 and 1 ≤ m < 2, the competitive ratio 2

2m−1 in our
model is smaller than the ratio 2

m in the partial cut model discussed in [12]. This
implies that our model for k = 1 is more powerful than the model given in [12].
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Table 1. The current results on online Max-Knapsack with resource augmentation

Max-Knapsack k = 0 k = 1 in the partial cut model k ≥ 1 in our model

Lower Bound 1/(m − 1) [8] 2/m [12] (k +1)/(m (k +1)–1)

Upper Bound 1/(m − 1) [8] 2/m [12] (k +1)/(m (k +1)–1)

For the minimization knapsack problem, we show that no online algorithm can
have a constant competitive ratio, i.e., our cut condition does not help solving
the problem.

Table 1 summarizes the current results on online Max-Knapsack with resource
augmentation, where the bold letters represent the results obtained in this paper,
m (≥ 1) denotes the capacity used by online algorithms and k denotes the number
of limited cuts to be allowed.

2 Preliminaries

In this section, we formally define our problems and review the basic concepts
for the online algorithms.

Problem Max-Knapsack (resp., Min-Knapsack)
Input: A set of items L = {a1, . . . , an} associated with weight w : L → R+
and size s : L → R+.
Output: A set of items F ⊆ L that maximizes w(F ) subject to s(F ) ≤ 1
(resp., that minimizes w(F ) subject to s(F ) ≥ 1).

Here, for a set U ⊆ L, let w(U) =
∑

u∈U w(u) and s(U) =
∑

u∈U s(u), and we
assume w.l.o.g. that the size of the knapsack is 1. The fractional version of the
Max-Knapsack (resp., Min-Knapsack) is given as follows: max

∑
u∈L w(u)x(u)

s.t.
∑

u∈L s(u)x(u) ≤ 1 and 0 ≤ x(u) ≤ 1 (u ∈ L) (resp., min
∑

u∈L w(u)x(u)
s.t.

∑
u∈L s(u)x(u) ≥ 1 and 0 ≤ x(u) ≤ 1 (u ∈ L)).

In our online model, the objective is the same with the offline version. But the
input is given over time. Namely, the knapsack of size 1 is known beforehand,
and after a decision is made on the current item at, the next one at+1 is given.
Besides this, our model satisfies the removal and cut conditions.

Removal condition: The items in the knapsack are allowed to be removed,
where the items removed cannot be used again.

Cut condition: The current item and the items in the knapsack are allowed to
be cut, where the part of the item cut off cannot be used again, and during
the whole process, each item can be cut at most k (≥ 1) times. Here k is a
given positive integer.

By the cut condition, the knapsack keeps a set of fractional items, and hence
our problems can be regared as the online fractional knapsack problems, rather
than online 0-1 knapsack problems.
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We analyze online algorithms by using one of the standards: the competitive
ratio. Given an input sequence L and an online algorithm A, for the maximization
problem, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

OPT (L)
A(L)

,

and for the minimization problem, the competitive ratio of algorithm A is defined
as follows:

RA = sup
L

A(L)
OPT (L)

,

where OPT (L) and A(L) denotes the weights obtained by an optimal algorithm
and the algorithm A, respectively.

3 Online Maximization Knapsack with Limited Cuts

3.1 A Simple Greedy Algorithm A

The main ideas of our algorithm are as follows: when a new item is arrived, we
apply a greedy algorithm to select items from the knapsack together with the
new item. If the total size of the resulting items is greater than the capacity of
the knapsack, then we cut the less efficient item, say b in the knapsack. Let s(b)
be the size of item b. The rule of cutting is below: if s(b) > 1 (the capacity of
the knapsack) then we cut a fraction from b such that the remaining size s(b)
is exactly k

k+1 , else cut a fraction of size min{ 1
k+1 , s(b)} from item b. Then we

repeatedly cut off item b, until the total size becomes at most the capacity of
the knapsack.

Let L = {a1, a2, ..., an} be the online input. Assume that items a1, ..., ai−1
have been dealt by our algorithm. Let Bi−1 be the set of items in the knapsack.
The execution of our algorithm on item ai is the following.

Theorem 1. The competitive ratio of algorithm A is k+1
k .

Proof. It is not difficult to see that if an item originally has size at most 1 we
never cut the item more than k item before it is totally removed, if an item
originally has size larger than 1, this is also true since after the first cutting on
the item the remaining size of the item is eactly k

k+1 .
So next we need to prove that for all 1 ≤ i ≤ n,

OPT (Li)
A(Li)

≤ k + 1
k

,

where Li = {a1, a2, ..., ai} is the input just after time i, OPT (Li) and A(Li) are
the total weights by an offline optimal and our online algorithms, respectively.

Just after time i, let Bi be the set of pieces in the knapsack. And let Ri be the
set of pieces which have been discarded by algorithm A. Observe that algorithm
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Algorithm: A

1. B
′
i := Bi−1 ∪ {ai}, if s(B

′
i) ≤ 1 then accept item ai, else

(a) Rename all the items in B′
i as b1, b2, ... such that w(b1)/s(b1) ≥

w(b2)/s(b2) ≥ · · · , where w(bj) and s(bj) respectively denote the weight
and size of fractional item bj .

(b) Find a smallest index x such that
∑x

h=1 s(bh) > 1, remove all the items

with index larger than x in B
′
i .

(c) If
∑x−1

h=1 s(bh) ≥ k
k+1 , then remove item bx. Else repeatedly chop off bx by

the following way until the total size in B′
i becomes at most 1: if s(bx) ≤ 1

chop off by a fraction of size 1
k+1 from item bx else chop off by a fraction

such that the remaining size of item bx is exactly k
k+1 .

2. Update set Bi.

A always uses a greedy policy to select items. If both Ri and Bi are not empty,
for any two pieces q ∈ Ri and p ∈ Bi, we have

w(p)
s(p)

≥ w(q)
s(q)

, (1)

where w(p) (resp., w(q)) is the weight of fractional item p (resp., q) and s(p)
(resp., s(q)) is the size of fractional item p (resp., q). Moreover if Ri is not empty,
we have

s(Bi) ≥
k

k + 1
, (2)

where s(Bi) is the total size in set Bi.
If Ri is empty, then we have

A(Li) = w(Bi) = OPT (Li),

otherwise by (1) and (2), we immediately have

A(Li) = w(Bi) ≥ (1 − 1
k + 1

)OPT (Li).

Hence this theorem holds. �	

3.2 A Tight Lower Bound for the Competitive Ratio of the
Maximum Knapsack

Surprisingly, the upper bound 1+k
k by online algorithm A is the best we can do,

i.e., there exists no online algorithm with a competitive ratio less than 1+k
k . We

prove this in this subsection.
Assume there is an online algorithm with a competitive ratio c, which is less

than 1+k
k . Then the main ideas are as below:
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1. We force the online algorithm to accept a large item with a low density and
a unit size.

2. Sequentially, small items follow and their densities gradually increase, after
some steps the online algorithm has to cut the large item to save space for
small items otherwise its competitive ratio reaches to 1+k

k ; and more if the
large item is cut then the size of the fraction cut off has to be less than 1

k+1 ,
otherwise the competitive ratio is as least 1+k

k ;
3. We keep doing the above operation k times, i.e., the online algorithm cuts

the large item k times and every time a portion of size less than 1
k+1 is cut

off.
4. We finally continue to give new small items and increase their densities, then

the online algorithm rejects the large item or does not, in both cases, we can
prove that the online algorithm has a competitive ratio larger than c.

Theorem 2. No online algorithm has a competitive ratio smaller than 1+k
k .

Proof. Assume there is an online algorithm A with a competitive ratio c = 1+k
k+r <

1+k
k , where r > 0. We prove that there is an input L such that OPT (L)/A(L) >

c. The ideas to construct the list L are similar with the ones in [8].
In the input L, there are two kinds of sizes 1 and ε, i.e., large and small, where

ε > 0 is a sufficiently small and such that ε < r
3(k+1) and 1

kε is an integer. The
input L is formed by phases. In phase 0, there is only a large item (1, 1). For any
i > 0, each phase i has 1/ε items and each item has size ε and weight ε + iε2.
Namely, the input L is below:

(1, 1)
(ε + ε2, ε), (ε + ε2, ε), ..., (ε + ε2, ε)

(ε + 2ε2, ε), (ε + 2ε2, ε), ..., (ε + 2ε2, ε)
...

(ε + iε2, ε), (ε + iε2, ε), ..., (ε + iε2, ε)
...

Note that the information of the input L is gradually known to the online al-
gorithm A and the input can stop at any step if the online algorithm performs
poorly. Moreover online algorithm A does not know the future information of L
and it can only use the information known so far.

We are going to prove that if there is a cut by the online algorithm A, then
the size of the portion cut off is less than 1/(k+1). Let OPT (i, j) be the optimal
value just after the j-th item of phase i is given, where 1 ≤ j ≤ 1

ε and i ≥ 1. It
is not difficult to see

OPT (i, j) = (
1
ε
− j)(ε + (i− 1)ε2) + j(ε + iε2) = 1 + ε(i− 1) + jε2. (3)

Lemma 1. In order to achieve c-competitive, from phase 0 to phase 1
εk , algo-

rithm A has to cut the large item or discard it from the knapsack. If the algorithm
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A cuts the large item, then at the first cutting, the portion cut off has size smaller
than 1

k+1 .

Proof. By (3), we have OPT (i, 1
ε ) = 1+k

k , where i = 1
εk . If the algorithm A does

not cut or discard the large item after phase 1
εk , then any small item cannot be

accepted in the knapsack. Hence the competitive ratio of algorithm A is at least
k+1

k > c.
Assume that the online algorithm A makes the first cutting on the large item

just after the j-th item of phase i is known, where 1 ≤ j ≤ 1
ε and i ≥ 0. If

i = 0, it is not difficult to see that algorithm A cannot cut off a portion with
size at least 1

k+1 at phase 0. If so, we stop this input at phase 0 and the online
algorithm A has a competitive larger than c. Next we consider the case i ≥ 1.
By (3), during phase i the optimal value OPT (L) ≥ 1 + ε(i− 1). If the fraction
cut off has size at least 1

k+1 then we stop the input as this step and the weight
A(L) by online algorithm A is at most 1− 1

k+1 + ε + iε2. Hence the competitive
ratio of algorithm A is at least

1 + ε(i− 1)
1 − 1

k+1 + ε + iε2
>

1
k

k+1 + 2ε
=

k + 1
k + 2ε(k + 1)

>
k + 1
k + r

,

where the first inequality holds from ε + iε2 < 2ε(1 + ε(i − 1)) for ε < 1 and
i ≥ 1, the last one holds from 3ε(k + 1) < r.

Hence this lemmas holds. �	
Lemma 2. Assume the large item has been cut j < k times before phase i0 ≥ 0
and its remaining size in the knapsack is x ≥ 1

k+1 . If there exists an integer
i > i0 such that

OPT (i− 1, 1
ε )

x + (1 − x) ε+iε2

ε

≥ k + 1
k

,

then algorithm A has to cut the large item or discard it from the knapsack before
phase i. If the algorithm A makes its (j + 1)-th cutting on the large item, then
the size of the portion cut off is smaller than 1

k+1 .

Proof. After the j-th cutting, if the online algorithm A does not cut the large
item or discards it, then during phase i we have

A(L) ≤ x + (1 − x)
ε + iε2

ε
.

Due to OPT (L) > OPT (i− 1, 1
ε ), then the competitive ratio of algorithm A is

at least
OPT (i− 1, 1

ε )

x + (1 − x) ε+iε2

ε

≥ k + 1
k

.

Assume that the online algorithm A cuts the large item at the (j + 1)-th time
during phase h, where 0 < h ≤ i. If the size of the fraction cut off is at least

1
k+1 , then we stop the input as this step. In this case, we have

OPT (L) > OPT (h− 1,
1
ε
) = 1 + (h− 1)ε,
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and
A(L) ≤ x− 1

k + 1
+ (1 − x + ε)(1 + hε),

since the large item has size x and the space for small items is upper bounded
by (1−x) before the cutting, and the input stops immediately after the cutting,
hence there is at most one small item accepted after cutting, totally, the size of
all the small items accepted is at most (1−x+ ε). We know each small item has
its density at most 1 + hε. So the competitive ratio of algorithm A is at least

1 + (h− 1)ε
x− 1

k+1 + (1 − x + ε)(1 + hε)
≥ 1 + (h− 1)ε

x− 1
k+1 + (1 + ε)2(1 + (h− 1)ε) − x(1 + hε)

≥ 1
− 1

k+1 + (1 + ε)2
>

1
1 − 1

k+1 + 3ε
=

k + 1
k + 3ε(k + 1)

>
k + 1
k + r

= c,

where the first inequality holds from (1 + hε) ≤ (1 + ε)(1 + (h − 1)ε) and the
second inequality follows from −1/(k+1)−xhε

1+(h−1)ε < − 1
k+1 for any h > 0, ε < 1 and

x ≥ 1
k+1 .

Hence this lemma holds. �	

Again, let x be the remaining size of the large item in the knapsack after the
previous cutting. If x > 1

k+1 , there always exists an i such that the condition in
Lemma 2 holds, i.e.,

OPT (i− 1, 1
ε )

x + (1 − x) ε+iε2

ε

≥ 1 + (i− 1)ε
x + (1 − x)(1 + iε)

by (3)

=
1 + (i− 1)ε
1 + iε− xε

≥ k + 1
k

,

where the last inequality holds directly from i ≥ 1
ε · 1+kε

(k+1)x−1 .
Then by induction, we can see that the condition in Lemma 2 always holds

before the large item has been cut k times.
By Lemmas 1 and 2, every time when the algorithm A cuts the large item, it

cuts a portion of size less than 1/(k+1). Assume that the large item is discarded
at size x. Therefore x > 1− k × 1

k+1 = 1
k+1 . Once the large item is discarded at

phase i > 0, we stop the input L. At this step, A(L) ≤ (1 − x + ε)(1 + iε) and
OPT (L) ≥ 1 + (i− 1)ε. Then the competitive ratio of algorithm A is at least

1 + ε(i− 1)
(1 − x + ε)(1 + iε)

≥ 1
(1 − x + ε)(1 + ε)

≥ 1
(1 + 3ε) − x(1 + ε)

>
k + 1

k + 3ε(k + 1)
>

k + 1
k + r

= c,

where the second inequality holds from (1+ ε)2 ≤ 1+3ε and the third one holds
from x > 1

k+1 and ε > 0.
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After k times cutting, if the large item keeps staying in the knapsack after
phase i > 1

ε (1
r−1), we stop the input L just after phase i. Then by (3) OPT (L) >

1
r and A(L) is at most (1−x)OPT (L)+x. Therefore, the competitive ratio after
phase i is at least

OPT (L)
(1 − x)OPT (L) + x

≥ 1
(1 − x) + x/OPT (L)

≥ 1
1 − x(1 − 1/OPT (L))

>
1

1 − 1−1/OPT (L)
k+1

=
1 + k

k + 1 − (1 − 1/OPT (L))
>

k + 1
k + r

= c,

where the third inequality follows from x > 1
k+1 and OPT (L) > 1.

Hence, there exists an input L such that OPT (L)/A(L) > c, i.e., there is not
an online algorithm with the competitive ratio strictly smaller than k+1

k . �	
Remarks: In the model [12], the “cutting” is only allowed before packing, namely,
when an item has been packed, it is not allow to cut it. In our model, there is
not this restriction and we are allowed to cut items any time. So, our model is
a generalization of the model in [12]. When k = 1, our upper and lower bounds
are the same as the results in [12].

4 Resource Augmentation for the Online Maximization
Knapsack with Limited Cuts

In this section, we study resource augmentation for the online maximization
knapsack with limited cuts, in which the online algorithm uses a knapsack with
capacity m ≥ 1, while the offline algorithm uses a knapsack with capacity 1. We
provide the competitive ratio in this model.

4.1 A Simple Greedy Algorithm

Let L = {a1, a2, ..., an} be the online input. Assume that items a1, ..., ai−1 have
been dealt by our algorithm. Let Bi−1 be the set of items in the knapsack. The
execution of our algorithm on item ai is the following.

Observe that if there are some pieces of items discarded, then the total size
in the knapsack is at least m− 1

k+1 . Due to the greedy police used in the above
algorithm, we have the density of any item in the knapsack is not lower than
the density of any item discarded. Then by the similar approach with Theorem
1, we have the following theorem.

Theorem 3. The competitive ratio of algorithm B is max{1, k+1
m(k+1)−1}.

4.2 A Tight Lower Bound

In this subsection, we prove that the ratio max{1, k+1
m(k+1)−1} is the best possible

ratio we can do, i.e., there is not an online algorithm with a competitive ratio
strictly less than this ratio. The main ideas are the same with the model without
resource augmentation. Here we only consider the non-trivial case 1 ≤ m < k+2

k+1
here. The details of the proof are in Appendix.
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Algorithm: B for Resource Augmentation

1. B
′
i := Bi−1 ∪ {ai}, if s(B

′
i) ≤ m then accept item ai, else

(a) Rename all the items in B′
i as b1, b2, ... such that w(b1)/s(b1) ≥

w(b2)/s(b2) ≥ · · · , where w(bj)(s(bj)) is the weight(size) of item bj .

(b) Find a smallest index x such that
∑x

h=1 s(bh) > m, remove all the items

with index larger than x in B
′
i .

(c) If
∑x−1

h=1 s(bh) ≥ m − 1
k+1 , then remove item bx. Else repeatedly chop off

bx by the following way until the total size in B′
i becomes at most m: if

s(bx) ≤ 1 chop off by a fraction of size 1
k+1 from item bx else chop off by

a fraction such that the remaining size of item bx is exactly k
k+1 .

2. Update set Bi.

Theorem 4. No online algorithm has a competitive ratio smaller than k+1
m(k+1)−1 .

5 Online Minimization Knapsack with Limited Cuts

In this section, we consider the minimization version of knapsack problem, in
which we are asked to select a subset of items to cover the knapsack such that
the total weight of selected items is minimized.

Theorem 5. No online algorithm has a constant competitive ratio for the min-
imization knapsack problem with limited cuts.
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Online Paging for Flash Memory Devices�
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Abstract. We propose a variation of online paging in two-level memory
systems where pages in the fast cache get modified and therefore have
to be explicitly written back to the slow memory upon evictions. For
increased performance, up to α arbitrary pages can be moved from the
cache to the slow memory within a single joint eviction, whereas fetch-
ing pages from the slow memory is still performed on a one-by-one basis.
The main objective in this new α-paging scenario is to bound the num-
ber of evictions. After providing experimental evidence that α-paging
can improve the performance of flash-memory devices in the context
of translation layers we turn to the theoretical connections between α-
paging and standard paging. We give lower bounds for deterministic and
randomized α-paging algorithms. For deterministic algorithms, we show
that an adaptation of LRU is strongly competitive, while for the ran-
domized case we show that by adapting the classical Mark algorithm we
get an algorithm with a competitive ratio larger than the lower bound
by a multiplicative factor of approximately 1.7.

1 Introduction

In recent years flash memory is becoming increasingly popular as a viable storage
support, especially for mobile computing. Flash memory devices are lighter, more
shock-resistant, and consume less power than traditional hard-disks. For these
reasons, flash memory is an appealing solution for end-user storage, partly even
replacing traditional hard-disks. Motivated by the fact that, unlike traditional
hard-disks, flash memory achieves the best performance when writes are done
in blocks of size larger than the read block sizes [1], in this paper we consider
paging algorithms for these devices. The key difference to traditional paging is
that when a page fault occurs and the memory is full, instead of evicting only
one page, up to α pages can be jointly evicted before the new page is loaded, for
some fixed parameter α ≥ 1. The goal is to minimize the number of evictions.

Flash memory. Flash memory consists of an array of memory cells, divided
into a number of blocks of α consecutive pages, where each page is a group of
consecutive memory cells. Reading and writing are done on a page basis, but
overwriting single pages is usually not possible. Instead, overwriting is done by
erasing a whole block and then writing the new data. Since each block can sustain
� Partially supported by the DFG grant ME 3250/1-1, and by MADALGO – Center for

Massive Data Algorithmics, a Center of the Danish National Research Foundation.
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only a limited number of erase operations, typical flash memory devices include
a wear-leveling mechanism that ensures an even usage of the blocks in time.

Because erase operations are slow, in applications that modify (i.e., overwrite)
pages on disk in an unstructured way hardly any performance gain is obtained
when replacing hard-disks by flash memory. Frequently, this problem can be
resolved using an additional intermediate software-layer, i.e. different than the
wear-leveling mechanism, that bundles up to α write requests (pages) and writes
them jointly to new consecutive locations, thus exploiting the improved perfor-
mance when writing in larger blocks. To subsequently find the respective data
under their new locations on the flash-device, an internal-memory translation-
table for page locations has to be maintained, too. Also, occasionally device
space needs to be reclaimed by compressing blocks with respect to outdated
pages. Such software translation-layers can be found both in algorithmic re-
search (e.g. [1]) and commercial products (e.g. EasyCo’s Managed Flash Tech-
nology [2]). Instead of actually transferring data blocks back and forth between
main memory and flash device it is even more efficient to buffer as many blocks
as possible in internal-memory. This is classically done using paging algorithms.
Motivated by the asymmetry between reads and writes in flash devices, we adapt
classical paging by having evictions done in groups of up to α pages.

Most other previous algorithmic works for flash memory focused on memory
management and wear-leveling, i.e. another block re-mapping within the flash
device to avoid a premature block wear-out, and flash-tailored file-systems (see
e.g. [3] for an overview). Typically the software translation-layer with its write-
page bundling has a positive effect with respect to efficiency. Recently, thorough
benchmarks for flash memories were conducted [4,5], and based on their findings
computational models exploiting the characteristics of these devices were pro-
posed [1]. Other works use flash memory for model checking [6], route planning
on mobile devices [7,8], or on flash-aware R-trees and dictionaries [9,10,11].

Paging algorithms. Online algorithms are not provided with the input in ad-
vance and therefore must serve input requests as they arrive. To measure the
efficiency of such algorithms, Sleator and Tarjan [12] considered comparing their
cost against the cost of an optimal offline algorithm, i.e. an algorithm that knows
the input sequence in advance and processes it optimally. The resulting mea-
sure, denoted later competitive ratio [13], states that an online algorithm A is
c-competitive if A(σ) ≤ c · OPT (σ) + b for any input sequence σ, where b is
a constant, and A(σ) and OPT (σ) are the costs of A and an optimal offline
algorithm respectively (if A is randomized, A(σ) is the expected cost of A).

Over the last decades, paging has been extensively studied in a variety of
settings. In classical paging, we are provided with a two-level memory, a fast
memory that can hold up to k pages and a disk that can store infinitely many
pages. Given as input a sequence of pages, an algorithm must decide which
pages to store in the memory so that it incurs as few page faults as possible,
where a page fault occurs when some page does not reside in the memory when
requested. In [12] it was proved that the competitive ratio of any deterministic
algorithm is at least k, and that popular algorithms such as FIFO and LRU
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match this bound. Fiat et al. [14] proved a competitive ratio of at least Hk for
any randomized paging algorithm, where Hk =

∑k
i=1 1/i is the k-th harmonic

number. They gave an algorithm, denoted Mark, which is (2Hk−1)-competitive.
This bound was further improved in [15], where a Hk-competitive algorithm
was proposed. More recently, Achlioptas et al. [16] gave another Hk-competitive
algorithm which is more practical. For a detailed view on paging algorithms, we
refer the interested reader to comprehensive surveys [17,18].

Our results. We propose α-paging as an adaptation of classical paging to im-
prove the practical behavior of flash memory devices in the context of software
translation layers like EasyCo’s Managed Flash Technology. It is similar to clas-
sical paging, except that arbitrary sets of up to α pages are jointly evicted. Since
in practice writes are typically more expensive than reads, we count the number
of such joint evictions instead of page faults. More specifically, we are provided
with a fast memory that can hold k pages and a slow memory which can hold
infinitely many pages. The input consists of a sequence σ of pages to be served
by the algorithm. For some request of page p, if it is not in the memory we say
that a page fault occurs. Evicting pages from the fast to the slow memory is done
in groups of at most α arbitrary pages. Therefore, each eviction increases the
amount of free slots in the memory by up to α. As previously specified, the cost
of the algorithm is given by the number of evictions performed. More generally,
at any step, jointly evicting x pages costs �x/α�.

We show that in our model it is easy to adapt classical paging algorithms,
such as the optimal offline MIN [19], LRU, and Mark [14]. However, due to
the fact that up to α pages are jointly evicted instead of only one, competitive
ratios achieved by these algorithms are different and their analysis becomes sig-
nificantly more involved. We prove lower bounds on the competitive ratio for
randomized and deterministic online algorithms. In particular, the competitive
ratios of deterministic and randomized algorithms cannot be smaller than k/α
and (Hk+α−1 −Hα−1)/(H2α−1 −Hα−1) respectiviely, which are generalizations
of the respective lower bounds for α = 1. We show that, like in classical pag-
ing, our adaptation of LRU matches the deterministic lower bound. For our
randomized version of Mark we prove that it achieves a competitive ratio of
((Hk −H2α−1)/(H3α−1 −H2α−1)) + 3. For large enough values of k and α this
bound is by a factor of about 1.7 larger than the lower bound, whereas the
classical Mark has a competitive ratio twice the lower bound.

2 α-Paging

We first give empirical results motivating α-paging, then we discuss generic prop-
erties of α-paging algorithms as generalizations of classical paging algorithms.

Motivation. We conduct experiments to demonstrate the practical relevance of
writing in large blocks of data. We perform random writes in a very large array
(about 1.5 the size of the memory) in two different settings. In the first one we
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Fig. 1. Running times (in seconds) for buffered and non-buffered random writes on
SSDs, when reading in blocks of 128 KB (left) and 4 KB(right)

write the modified page immediately, whereas in the second one we employ a
translation layer, as in [1], which groups modified pages and writes them on the
disk as a large block. This way, any pages can be grouped together in neighboring
physical locations on the flash disk, regardless of the addresses from where they
were loaded in memory. We measure the running time when varying the amount
of random writes. Data is read in blocks of sizes 128KB and 4KB respectively,
and written back to the flash disk in blocks of size 4MB when buffered. We note
that for the disk used the best performance is achieved when the block size for
reading is 128KB, and writing in blocks of 4MB also yields good performance.

The results of our experiments are shown in Figure 1. We note that in
both cases writing large buffers, corresponding to evicting many pages at once,
achieves significantly better performance than when writing data non-buffered.
The improvements in running times are of about 250% and 1800% when the
read-block size is 128KB and 4KB respectively. This confirms that evicting large
blocks, i.e. groups of pages, yields significant performance improvements.

α-paging and classical paging. We note that α-paging is a generalization of clas-
sical paging. Every paging algorithm in the classical model is a valid α-paging
algorithm and vice versa, by performing identical page replacements in both
models. We denote by Aα(σ) the cost of some algorithm A when processing the
request sequence σ in the α-paging model (note that α = 1 corresponds to classi-
cal paging). Since an eviction in the α-model corresponds to at most α evictions
in the classical model, we have that Aα(σ) ≤ A1(σ) ≤ α ·Aα(σ). This inequality
also holds for the cost of the optimal offline algorithm denoted by OPTα(σ),
which adapts its decisions to the value of α. Given a c-competitive online algo-
rithm A in the α-model for fixed α ≥ 1, we obtain that A has a competitive
ratio of at most α · c in the classical model:

A1(σ)
OPT 1(σ)

≤ α ·Aα(σ)
OPT 1(σ)

≤ α · Aα(σ)
OPTα(σ)

≤ αc .

Lemma 1. If c is a lower bound on the competitive ratio in classical paging then
c/α is a lower bound on the competitive ratio in α-paging.
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We observe that, similarly to the case of classical paging, we can restrict ourselves
to lazy algorithms. We call an α-paging algorithm lazy, if it performs an eviction
only when the memory is full, and a page fault occurs; in this case it evicts at
most α pages. Lemma 2 can be proved using a step-by-step modification of a
general algorithm into a lazy one [20].

Lemma 2. For any α-paging algorithm A, a lazy algorithm B exists such that
Bα(σ) ≤ Aα(σ) for every input sequence σ.

3 Lower Bounds

Recall that, for the competitive ratio of online paging algorithms, lower bounds
of k and Hk were given in the deterministic [12] and randomized [14] settings,
respectively. We generalize these bounds for α-paging algorithms. For determin-
istic α-paging, the result in Corollary 1 follows immediately from Lemma 1.

Corollary 1. Every deterministic online algorithm for α-paging has a compet-
itive ratio of at least k/α.

For randomized α-paging, using the result in Lemma 1 yields a lower bound of
Hk/α. In Lemma 3 this bound is significantly improved.

Lemma 3. Every randomized online α-paging algorithm has a competitive ratio
of at least (Hk+α−1 −Hα−1)/(H2α−1 −Hα−1).

Proof. Let cr be the claimed lower bound. By Yao’s minimax principle for cost
minimization problems [18], it suffices to prove that there exists a set of request
sequences and a probability distribution over these inputs, such that the expected
cost of any deterministic online algorithm is at least cr times more than the
expected cost of an optimal offline algorithm.

Consider input sequences that first request pages (1, . . . , k + 1) followed by n
requests to pages in {1, . . . , k+α}, drawn uniformly at random. For such inputs
we prove [20] that the expected number of requests between two evictions is
(k+α)(H2α−1−Hα−1) and (k+α)(Hk+α−1−Hα−1) for any deterministic online
algorithm and for optimal offline algorithms respectively. The proof follows.

4 Deterministic α-Paging

In this section we discuss deterministic α-paging algorithms. We give in Lemma 4
a lower bound on the number of evictions done by any offline algorithm.

Lemma 4. Consider an arbitrary input sequence σ that we split into intervals
I0, . . . , Il, so that Ij contains k pairwise distinct pages and is maximal with
respect to this property, for all j = 0, . . . , l − 1. Then any offline algorithm
performs at least l evictions.
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Proof. Let A be an algorithm and Ij1 , . . . , Ijn be all intervals where A performs
no eviction. We first prove that for each pair (Iji , Iji+1) there exists an interval
Ix′ , with ji < x′ < ji+1, such that A performs at least two evictions while
processing Ix′ . Assume that there exists some pair (Iji , Iji+1 ), such that each
interval Ix performs one eviction, for all x, with ji < x < ji+1. Since Iji does no
eviction, after its processing the memory is full and contains all pages requested
in Iji . If some interval Ix starts with a full memory containing all pages in Ix−1,
then the first page in Ix triggers an eviction, since by definition it is not requested
in Ix−1. If there occurs no other eviction in Ix, after processing Ix the memory is
full and contains all pages requested in Ix, since Ix contains k pairwise distinct
pages. Therefore, if all Ix, with ji < x < ji+1, perform only one eviction, then
the first request in Iji+1 causes an eviction, which is a contradiction. Therefore,
between two intervals where A performs no evictions there exists one interval
where it performs at least two evictions and this concludes the proof.

We propose an adaptation of the optimal offline algorithm MIN [19] from the
classical paging, that we denote α-MIN, and prove that it achieves optimality
also in α-paging. Upon a page request that is not in the memory, the MIN
algorithm evicts the page whose first request occurs furthest away in the future.
Similarly, upon a page fault when the memory is full, α-MIN evicts the α pages
whose first requests occur furthest away in the future.

Lemma 5. The α-MIN algorithm is optimal for α-paging.

Due to space limitations, the proof of Lemma 5 is included in [20]. Like in the
classic case, we modify an optimal algorithm step by step to eventually obtain
α-MIN. Similarly to MIN, we adapt the classical LRU to the α-paging setting
and obtain α-LRU which, when the memory is full and the requested page is
not in memory, evicts the α least recently requested pages from the memory. We
show that this algorithm achieves a competitive ratio of k/α, which is optimal.

Lemma 6. α-LRU is k/α-competitive.

Proof. We split the input sequence into consecutive intervals (I0, . . . , Il), each
of them being maximal in requesting k pairwise distinct pages, except for Il.
We first prove that for each Ij , with 1 ≤ j < l, α-LRU performs at most k/α
evictions. The first k − α pairwise distinct page requests do not evict any page
previously requested in Ij , since there exist α pages requested less recently. These
k−α pages cause at most k/α−1 evictions. If the remaining α pairwise distinct
pages cause an eviction, then the memory contains only pages requested in Ij

after this eviction, and thus no further eviction is possible in Ij . We conclude that
while processing Ij α-LRU performs at most k/α evictions. Since by Lemma 4
any optimal offline algorithm performs amortized one eviction for Ij , we conclude
that α-LRU is k/α-competitive.

5 Randomized α-Paging

We introduce an adaptation of the classical Mark algorithm, denoted α-Mark.
Similarly to Mark, α-Mark keeps track of an interval splitting where each interval
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consists of exactly k pairwise distinct page requests. Additionally, α-Mark assigns
priorities to pages, and pages are evicted based on these priorities.

α-Mark. Each page p is marked upon request. Assume that p causes a page
fault, and the memory is full, containing x unmarked pages. If x ≥ 1, then α-
Mark evicts the subset of min{x, α} unmarked pages with lowest priorities. In
case x = 0, all pages get unmarked and are assigned k pairwise different priorities
uniformly at random before choosing the pages to be evicted.

The analysis is based on interval splitting, where an interval ends just before
all pages get unmarked. The key difference in analyzing the performance of Mark
and α-Mark in such an interval is that the probability that some page p causes
a page fault is determined solely by the input for classical Mark, whereas in the
case of α-Mark it depends also on the random decisions before the request of
p. Additionally, page faults can increase and decrease the probability of future
page faults in an interval, such that an important simplifying assumption about
the structure of the intervals (see Lemma 7) is not obvious like for classical
Mark. We prove this assumption by using priorities instead of choosing a set of
unmarked pages uniformly at random to be evicted.

Intervals. Suppose that the algorithm splits the input into the consecutive inter-
vals I1, · · · , Il, each containing k pairwise distinct pages, maximal with respect
to this property. We call the pages requested in Ij but not in Ij−1 new pages
and denote their number by nj . Pages requested in Ij−1 are called old pages.
In Ij exactly oj = k − nj old pages are requested. When Ij starts, the memory
contains all old pages, all of them are unmarked and have distinct priorities.

Lemma 7. Let nj be the number of pairwise distinct new pages requested in Ij.
The expected number of evictions done by α-Mark in Ij does not decrease if we
assume that:

– every page is requested only once in Ij ;
– all nj new pages are requested before all the old pages.

Proof. The first claim follows immediately, since a second request of a page
changes neither the number of evictions nor the state of the algorithm. To prove
the second assumption we fix the priorities assigned to old pages at the beginning
of each interval and obtain a deterministic algorithm D. It can be shown that D
maximizes its cost if all new pages are requested before the old pages in Ij [20].

Expected cost of α-Mark. For some input σ, we bound the expected number of
evictions done by α-Mark in an interval Ij , (j ≥ 1).

Lemma 8. Consider an interval Ij , j ≥ 1, in which nj new pages are requested,
and let mj = �nj/α�. The expected number of evictions done by α-Mark in Ij is
at most

mj + 1 +
Hk −Hnj−1

Hnj+α−1 −Hnj−1
.
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Proof. By Lemma 7, we assume that Ij consists of nj requests of new pages
followed by oj = k−nj old page requests, and every page is requested only once
in Ij . The new pages cause mj evictions and all further evictions are caused by
old pages.

We denote by S(h) a state that occurs immediately after an eviction caused
by an old page, where h is the number of old pages not yet requested (including
the nj old pages which are not requested at all) in Ij . Let y be the number of
old pages not in memory for some S(h). We have that y = nj +α− 1, since the
memory contains nj new pages, and α − 1 free slots (as well as k − h marked,
and h− nj − α + 1 unmarked old pages).

For S(h), let (p1, p2, . . . , ph) be the old pages not yet requested in the order
they appear in Ij ; the pages not requested at all in Ij are at the end in arbitrary
order. If pi causes the next eviction then S(h − i) occurs immediately after
processing pi. Let E(h) be the expected number of evictions from state S(h)
until the end of Ij , and let pb(i) be the probability that page pi causes the next
eviction. We have that:

nj ≤ h ≤ nj + α− 1 : E(h) = 0 , (1)

h > nj + α− 1 : E(h) =
h−nj∑

i=α

pb(i) · (1 + E(h− i)) . (2)

The base case is correct because there are α−1 empty locations in the memory
and at most α− 1 pages are requested until the end of Ij . For the recursive part
we note that pages pi, with i < α, cannot cause an eviction because α− 1 page
faults must fill the memory before an eviction could take place. On the other
hand, pages pi, with i > h− nj, are not requested at all in Ij and thus cannot
cause evictions.

The next eviction is caused by pi iff the y old pages not in memory at S(h)
contain pi, moreover exactly α−1 pages from (p1, p2, . . . , pi−1), and y−α pages
from (pi+1, . . . , ph). The total number of subsets of size y chosen from (p1, . . . , ph)
with this property is

(
i−1
α−1

)
·
(1
1

)
·
(

h−i
y−α

)
. Since all not yet requested pages have

the same probability not to reside in memory, we get pb(i) =
(

i−1
α−1

)(
h−i
y−α

)
/
(
h
y

)
.

For h > nj + α− 1, using y = nj + α− 1 and
∑

pb(i) ≤ 1, we obtain:

E(h) ≤ 1 +
1

(
h

nj+α−1

)
h−nj∑

i=α

(
i− 1
α− 1

)
·
(

h− i

nj − 1

)
· E(h− i) .

Surprisingly, we found [20] that the function f(h), defined as

f(h) =
Hh −Hnj−1

Hnj+α−1 −Hnj−1
,

satisfies nearly the same recurrence:

f(h) = 1 +
1

(
h

nj+α−1

)
h−nj+1∑

i=α

(
i− 1
α− 1

)
·
(

h− i

nj − 1

)
· f(h− i) .
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By induction it can be proven that f(h) ≥ E(h) for all h, nj ≤ h ≤ k− 1. Since
the new pages in Ij cause mj evictions, and the expected number of evictions
caused by old pages is at most 1 + f(k − 1) ≤ 1 + f(k), the proof concludes.

Competitive ratio. Let σ be the input sequence, (I0, I1, . . . , Il) the interval split-
ting, and consider nj, the number of new pages requested in some interval Ij

(j ≥ 1), with mj = �nj/α�.
Lemma 9. Let OPT (σ) be the number of evictions done by an optimal offline
algorithm when processing σ. Then, OPT (σ) ≥ max

{
1
2

∑l
j=1 mj, l

}
.

Proof. By Lemma 4, OPT does at least l evictions. For some j > 1, the inter-
vals Ij and Ij−1 contain k + nj pairwise distinct pages, thus at least nj of them
are filled in memory slots resulted by evictions during Ij−1 and Ij . Therefore, the
number of evictions in these two intervals is at least mj . We get the following:

OPT (σ) ≥
∑

j odd,j≥1

mj, OPT (σ) ≥
∑

j even,j≥1

mj .

Since max{a, b} ≥ 1
2 (a + b), we obtain that OPT (σ) ≥ 1

2

∑
j≥1 mj .

Theorem 1. The competitive ratio of α-Mark is at most

3 +
Hk −H2α−1

H3α−1 −H2α−1
.

Proof. Let Mj be the upper bound from Lemma 8 on the expected number of
evictions done by α-Mark in interval Ij :

Mj = mj + 1 + F (nj), F (nj) =
Hk −Hnj−1

Hnj+α−1 −Hnj−1
.

We can assume w.l.o.g., that nj = mj · α, since it has no influence on the
lower bound for OPT in Lemma 9, while in the upper bound for α-Mark Mj is
increasing in nj .

If 1
2 ·
∑l

j=1 mj < l, then when incrementing some mj the sum
∑

Mj increases.
However, this does not affect the lower bound of OPT and thus we can assume
that

∑l
j=1 mj ≥ 2l. Let m =

∑l
j=1 mj . For fixed m ≥ 2l, if the upper bound on

the number of evictions done by α-Mark is maximal, then mj ≥ 2 for all j [20].
Denoting C the competitive ratio of α-Mark, we have:

C ≤
∑l

j=1 Mj

1
2

∑l
j=1 mj

≤ 3 + 2

∑l
j=1 F (mj · α)
∑l

j=1 mj

≤ 3 + 2 max
j

{
F (mj · α)

mj

}
.

Since F (x·α)
x is decreasing in x, and mj ≥ 2, we get C ≤ 3 + Hk−H2α−1

H3α−1−H2α−1
.

By Lemma 3, for large enough k and α, approximating Hx ≈ lnx+γ, γ ≈ 0.57,
any randomized algorithm has a competitive ratio Clb ≥ ln(k/α + 1)/ ln(2).
Similarly, the competitive ratio of α-Mark satisfies C ≤ ln(k/α)/ ln(1.5), and
thus the gap between the upper bound and the lower bound is approximately
ln 2/ ln(1.5) ≈ 1.7, as opposed to a tight factor of 2 in the case of classical Mark.



Online Paging for Flash Memory Devices 361

References

1. Ajwani, D., Beckmann, A., Jacob, R., Meyer, U., Moruz, G.: On computational
models for flash memory devices. In: Proc. 8th International Symposium on Ex-
perimental Algorithms, pp. 16–27 (2009)

2. EasyCo: Managed flash technology, http://www.easyco.com/mft/
3. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-

puting Surveys 37(2), 138–163 (2005)
4. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance of

flash memory storage devices and its impact on algorithm design. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 208–219. Springer, Heidelberg (2008)

5. Bouganim, L., Jónsson, B.P., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: Proc. 4th biennial conference on innovative data systems (CIDR) (2009)

6. Barnat, J., Brim, L., Edelkamp, S., Sulewski, D., Šimeček, P.: Can flash memory
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Abstract. We give a simple framework as an alternative to the cele-
brated shifting strategy of Hochbaum and Maass [J. ACM, 1985] which
has yielded efficient algorithms with good approximation bounds for nu-
merous optimization problems in low-dimensional Euclidean space. Our
framework does not require the input graph/metric to have a geomet-
ric realization – it only requires that the input graph satisfy some weak
property referred to as growth boundedness. We show how to obtain poly-
nomial time approximation schemes (PTAS) for maximum (weighted)
independent set problem on this graph class. Via a more sophisticated
application of our framework, we also show how to obtain a PTAS for
the maximum (weighted) independent set for intersection graphs of (low-
dimensional) fat objects that are expressed without geometry.

1 Introduction

In their seminal work, Hochbaum and Maass [8] introduced a divide-and-conquer
paradigm which is referred to as the shifting strategy. They applied their strategy
to obtain PTAS for several covering and packing problems on instances in low-
dimensional Euclidean space [8]. Simply put, the strategy first decomposes the
original instance into several instances of “bounded width” [8]; each instance
is amenable to “good”, efficient solutions. The solutions to the instances are
combined to obtain a feasible solution to the original instance, for the given
decomposition. For any given ε > 0, the strategy considers O( 1

ε2 ) distinct de-
compositions and returns the best solution over the decompositions considered.
It can be shown (depending on the problems they solve) that the cost of the
returned solution is within a factor of (1 + ε) of an optimal one. The celebrated
strategy has enjoyed success for a number of problems since their inception [6,5].

The shifting strategy [8] has required three ingredients: (R1) the input be
expressed with geometry; (R2) the nature of the optimization problem be such
that for some decomposition (into clusters of bounded diameter) of the input
instance, the “interaction” between clusters be highly limited, that is, the prob-
lem be “separable” with respect to the objective; and (R3) the problem admit
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a reasonably good and efficient approximation for clusters in the decomposition.
Note that (R1) pertains to the representation of the input, while (R2) and
(R3) are properties of the objective function, and possibly of the input repre-
sentation. This observation leads to this question which is the main motivation
behind this work: how can one employ a strategy akin to the shifting strategy
on combinatorial objects for which geometric representation exists, but is not
part of the input? Our question is related to a line of research that bypasses
the costly and potentially erroneous embedding step and attempts to solve the
problems directly on the input metric/graph using special properties which are
weaker than the properties of Euclidean spaces [11,10]; our work can be seen as
being part of this line of research and is largely inspired by the work of Talwar
[11] who gave a decomposition scheme for doubling metrics which he used to
obtain approximation algorithms for various problems on such metrics.

Techniques and Results: We give a simple framework as an alternative to the
shifting strategy [8]. Our framework does not require the input graph/metric
to be geometric – it only requires that the input graph satisfy a weak property
called polynomially bounded growth in literature [10]; intersection graphs of fat
objects in low-dimensional Euclidean space satisfy this property. Graphs that
have this property are called growth bounded graphs; we define this concept later.
At the core of the framework is a probabilistic decomposition scheme that is an
adaptation of Talwar’s split-tree decomposition [11] but has some key differences:
our decomposition scheme applies to metrics whose doubling dimension is not
necessarily bounded. For example, the hop metric induced by growth bounded
graphs does not have doubling dimension bounded by a constant [7]. Hence,
an adaptation of Talwar’s technique yielding good approximations for unrelated
problems on unrelated graph classes is surprising.

Our scheme is akin to the shifting strategy in the sense that it has similar de-
sirable properties for instances where (R1) can be relaxed without being required
to relax (R2) and (R3). Our technique requires very little randomness and can
be readily derandomized using the technique of deterministic coin tossing (see
Talwar [11], for example). We only present the randomized variant.

As an application, in Section 2 we obtain a PTAS for the maximum weighted
independent set problem on growth bounded graphs. We can also obtain PTAS
for minimum vertex cover, minimum dominating set problems on these graphs,
and a (2 + ε) approximation for minimum weighted clique partition on UDGs;
we defer a full treatment of these problems to a longer version of this article.
These graphs are expressed in standard form, say as adjacency matrix.

In Section 3, we use this scheme to obtain a PTAS for the maximum weighted
independent set problem on the intersection graph of low-dimensional fat ob-
jects1 expressed without geometry, by way of a sophisticated use of the shifting
strategy. Prior solutions for this problem have required use of geometry which
were independently discovered by Erlebach et al. [5] and Chan [2]. Erlebach et
al. [5] asked if it is possible to obtain a PTAS in the case when the geomet-
ric representation is not given. We answer this question in the affirmative; we

1 For simplicity, we only present the case of disks in the Euclidean plane.
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obtain a PTAS for the weighted independent set problem on low-dimensional
ball graphs without the use of geometry. Instead of a geometric representation
of the ball graph, we assume that some, albeit unknown, embedding exists in
low-dimensional Euclidean space. We only require access to edge lengths and
radii corresponding to balls centered at the input points with respect to some
(unknown) realization. The UDG recognition problem is NP-complete even if
all edge-lengths are known [1], and if the graph is a-priori known to be a UDG,
Kuhn et al. [9] show that realizing the UDG is APX-hard. So, from a complexity
theoretic perspective, having access to edge-lengths and radii with respect to an
unknown realization is likely to be a significant weakening of the requirement
that the input be a geometric representation. At the same time, a review of
literature on wireless networks suggests that obtaining reasonable estimates on
distances between nearby nodes is feasible (see [4,1], for example).

Related Work: Nieberg et al. invented techniques that yield PTAS for max-
imum (weighted) independent set, and minimum dominating set problems on
growth bounded graphs, of which UDG is a subclass [10]. PTAS for such prob-
lems existed on subclasses of graphs e.g. intersection graphs of unit disks, fat
objects, etc. [8,5,2], but they relied on geometric input. Until the work of Nieberg
et al. [10], it was not known how to remove this reliance on geometry. Their tech-
niques are not known to extend beyond growth bounded graphs [10].

Chan and Har-Peled [3] show that a simple local search on admissible ob-
jects, that is, a collection of geometric objects in the plane such that the set
difference between any pair is connected, yields a PTAS for the unweighted case;
they assume that the input is expressed in standard form. For the case of fat
objects in low-dimensional space, they also show that their local search algo-
rithm yields a PTAS [3]. Unfortunately, their technique does not generalize to
the weighted case. They [3] also give a O(1)-approximation to the maximum
weighted independent set problem on pseudodisks expressed in standard form.

Preliminaries: Let G = (V,E), |V | = n, be a given graph. For any subgraph
H of G, let V (H) denote the set of vertices of H , but for simplicity, we refer to a
vertex u ∈ H to mean u ∈ V (H). For any subgraph H of G and a pair of vertices
u, v ∈ H , let dH(u, v) denote the length of the shortest path from u to v in H ; if
the graph is edge-weighted, � : E �→ R≥0, then dH(u, v) is the shortest weighted
path between the two in H . When the context is clear, we simply refer to d(u, v)
to mean dH(u, v), for convenience. For a vertex u ∈ H, r ≥ 0, let BH(u, r) =
{v ∈ H : dH(u, v) ≤ r}. When the context is clear, we refer to it as B(u, r), for
convenience. For a vertex v ∈ G and S ⊂ G, let d(v, S) = min{d(v, w) : w ∈ S}.

G is f -growth bounded if for every v ∈ G and r ≥ 0, every independent set of
B(v, r) has size at most f(r) for function f which only depends on r. If f(r) is
a polynomial in r, then we say that G is a growth bounded graph (GBG).

For a graph G, an r-cover of V is a subset S ⊂ V such that for any vertex v ∈
V , d(v, S) ≤ r. A set S is called an r-packing if for any pair u, v ∈ S, d(u, v) ≥ 2r.
A set S ⊂ V is called an r-net in V , if S is an r-cover and an r

2 -packing. An
r-net can be constructed greedily since any minimal r-cover is an r-net [11].

Let OPT denote an optimal solution and opt = wt (OPT), its value.
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2 Random-Shifting Framework for GBGs

Here, we present the details of the framework which is analogous to the random
shifting technique. Recall, the idea behind the grid-shifting strategy [8] is to first
draw a crude partition of the Euclidean space via the use of a random grid to
create a crude decomposition of the instance into multiple subproblems, from a
distribution of crude partitions. The granularity of the grid depends inversely
upon an input parameter ε > 0. This step is followed by solving the optimization
problem on those subproblems exactly. The final step combines the solutions
from the subproblems to yield a feasible solution to the original instance.

Without geometry, it suffices to draw a random decomposition of the instance
which has roughly the same properties that a random grid-shifting has in the ge-
ometric setting. We seek a decomposition of the input instance into subproblems
whose diameter is also inversely related to the input parameter, ε > 0.

Sample a random decomposition of the graph in the following manner: Pick
an arbitrary 1

ε -net, S of V , and choose a random permutation π over S. Also
choose a radius, r, independently and uniformly at random from an interval of
length Θ(1

ε ) such that r ∈ Θ(1
ε ). Vertices in S are processed in the order π to

construct a random partition of G. Construct the ith. cluster to be the set of all
remaining vertices that are at a distance at most r of si in the hop metric. Once
the vertex set is partitioned into C, solve the optimization problem P on each
Ci ∈ C. We describe the decomposition algorithm more precisely in Algorithm 1.
The following lemma follows from the definition of r-net and that G is GBG.

Algorithm 1. Random-Shift(V, ε)
1: Let S denote a 1

ε
-net of V ;

2: Let π(S) denote a random permutation of points in S i.i.d;
3: Let r be a random number in

{
� 1

2ε
�, � 1

2ε
� + 1, . . . , � 1

ε
�
}

drawn uniformly;
4: R ← V ; C ← ∅;
5: for all si ∈ π(S) do
6: Ci = {u ∈ R : d(u, si) ≤ r};
7: C ← C ∪ Ci; R ← R \ Ci;
8: Solve problem P on every Cv ∈ C;
9: Combine the solutions Sv for every Cv to get a feasible solution for G of P ;

Lemma 1. S ⊂ V be a r-net. For u ∈ V , B(u, r) contains rO(1) points of S.

2.1 PTAS for Maximum Weighted Independent Set on GBGs

Here, we are given a vertex weighted GBG. Let wt: 2V �→ R≥0 denote the weight
function. The objective is to find an independent set of vertices of maximum
weight. This problem is NP-hard. We show how to obtain a PTAS by imple-
menting steps “8” and “9” in Algorithm 1. The main idea mimics the PTAS
which uses the random grid shifting strategy: (i) delete the subset of vertices
that form the cluster boundaries; (ii) solve the subproblems optimally within
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each cluster, with the boundary vertices removed; and (iii), return the union of
the solutions to the subproblems. Clearly, step (iii) yields a feasible solution for
the original instance. We will show that in step (i), with reasonably high proba-
bility, only a small fraction of opt which depends only on ε, will be deleted. Since
the diameter of each cluster in the decomposition is O(1/ε), it follows, by defi-
nition of GBGs, that any optimal solution of any subproblem has size O(1/ε2);
one can guess an optimal solution for the subproblem in nO(1/ε2) time. This will
show that step (iii) yields a solution of weight at least (1 +O(ε· log 1/ε)) of opt,
with reasonably high probability. In the next lemma, we bound the probability
of a fixed vertex falling at the boundary of some cluster.

Lemma 2. Probability that a fixed u lies at the boundary of C is O(ε· log 1
ε ).

Proof. For u to lie at the boundary of the partition, C, u has to lie at the bound-
ary of some cluster. For u to lie at the boundary of a cluster, the corresponding
cluster has to be at a distance at most 1/ε from u. According to Lemma 1,
there are O(1/ε) clusters of interest with respect to u; for other clusters, the
probability of u lying at their boundaries is 0. Let t denote the number of such
interesting clusters. Let q1, q2, . . . , qt be the ordering of vertices in S according to
increasing order of distance from u, breaking ties arbitrarily. We say that π(si)
settles u if i is the first index for which u belongs to Ci. Note that exactly one
point in S settles u. We say that π(si) hits u if π(si) settles u, and the distance
of u is exactly r from si. The probability that u is hit by C is:

∑

i

Pr[π(si) hits u] =
∑

j

Pr[qj hits u]

The event that qj hits u requires the occurrence of two events: E1, the event that
rj is exactly d(u, qj), and E2, the event that qj appears before q1, q2, . . . , qj−1 in
the ordering π(S). Using independence of E1 and E2,

Pr[qj hits u] ≤ Pr[E1]·Pr[E2|E1] = Pr[E1]·Pr[E2] ≤
1

1/2ε
· 1
j

=
2ε
j

So, the probability that u is hit by C is,
∑

j

Pr[qj hits u] ≤ 2ε
∑

j

1
j
≤ c0ε· log

1
ε

Applying Markov’s inequality and union bound we see the following:

Corollary 1. With constant probability, disks weighing O(ε log 1
ε · opt) are

deleted.

We independently sample O(log n) partitions, removing the vertices which be-
long to the boundary of each C, solving the problem exactly on each of the
clusters with the boundary removed, and take as the union of the solutions as
the solution to the instance. Return, as the final answer, a heaviest solution over
the O(log n) trials. We conclude this section with the following:

Theorem 1. Given a vertex weight GBG in standard form and ε > 0, there is
a randomized poly-time algorithm which constructs a maximum weighted inde-
pendent set whose weight is at least a fraction (1 + ε log 1

ε ) of opt, w.h.p.
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3 Weighted Independent Set for Disk Graphs

We give a more sophisticated use of our random shifting strategy under slightly
stronger assumptions on the input representation. We consider the problem of
finding a maximum weighted independent set on a vertex weighted disk graph
in the Euclidean plane expressed without geometry. We obtain a PTAS for the
problem, which answers a question of Erlebach et al. [5]. Our main idea is that
using a variant of the probabilistic decomposition scheme, one can mimic the
algorithm of Erlebach et al. [5], even if the input does not come with a geometric
representation of the graph. Instead, we assume that all edge-lengths, and disk
radii rad: V �→ R≥0 are known with respect to some unknown realization. As
noted earlier, this is a significant weakening of the assumption that the input be
expressed with geometry, that is, Euclidean coordinates and radii corresponding
to disks. Given that our algorithm closely mimics theirs, it is worthwhile to see
the algorithm in a geometric setting – we refer the reader to their work [5].

The discussion of our PTAS without geometry is split in two parts: (i) random
shifting to construct a hierarchical decomposition of the original instance, and (ii)
use of dynamic programming to solve the subproblems optimally. The random
shifting is similar to the scheme described in Section 2: we choose a random
permutation of the vertex set, and a random number r in the range [1/2, 1], as
the basis for the random partition. The approach is faithful to that of Erlebach
et al. [5], rather than Chan’s [2]. We use the terms disk/vertex interchangeably
even though we do not have access to a realization. Details follow: We give some
high-level idea before describing the details of Partition and DeleteBoundary.
Let rm = minv{rad (v)} and L = �logε rm�. Partition the disks into L levels
by their radii: a disk u belongs to level l if εl+1 < rad (u) ≤ εl; let l(u) denote
the level of u. Construct a level 0 clustering by first constructing a 1

ε -net S0 of
the vertex set. Note that we are no longer using just a hop-metric – our graph
is edge-weighted. Denote the weighted distance between u and v by d(u, v).
Process vertices in S0 in the order as they appear in the random permutation,
say, (s0

1, s
0
2, . . .). Next, assign all (unassigned) vertices that are within (weighted)

distance at most r· 1
ε from s0

1, to s0
1. Then, assign all unassigned vertices at

distance up to r· 1
ε from s0

2, to s0
2, and so on, to construct a level 0 partition

into clusters. Next, construct a finer partition (by a factor of ε) of vertices in
each of the clusters by using a finer net, and so on, recursively, up to depth
L. We give details of the recursive procedure, Partition, which returns a
hierarchical partition of the input. Next, we create subproblems based on this

Algorithm 2. Random-Shift(V, ε)
1: C ← ∅
2: Let π(V ) denote a random permutation i.i.d.
3: Let r ∈ [1/2, 1) be a random number i.i.d.
4: C ← Partition(V, ε, π, r, 0)
5: DeleteBoundary(C, r, 0)
6: SolveSubproblemsOptimally(C, r, 0)
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Algorithm 3. Partition(V, ε, π, r, l)

1: Let S be a
( 1

ε

)−l+1
-net of V .

2: R ← V
3: for all si ∈ π(S) do

4: Cl
i ← {u ∈ R : d(u, si) ≤ r·

( 1
ε

)−l+1}
5: R ← R \ Cl

i

6: Call Partition(Cl
i , ε, π, r, l + 1) recursively so long as l < L.

partitioning by deleting points from the boundary of the clusters. This will result
in subproblems, which we will solve optimally using dynamic programming. We
decompose this hierarchical clustering by deleting vertices of level at least l that
are “near” the cluster boundary corresponding to level l clusters. In this context,
u being “near” the boundary means either (i) the sum of the distance u to its
cluster center and rad (u) is more than the boundary defined by the cluster;
or (ii) u has a neighbor in a different cluster with center s′ and that d(s′, u) is
more than the distance of s′ to its cluster boundary, but d(s′, u) − rad (u) is
less than the distance of s′ to its cluster boundary. This defines a probabilistic
decomposition of the input. We give details of this procedure, DeleteBoundary,
which deletes, on average, vertices that contribute at most an ε factor of an
optimal (weighted) independent set because the chance of a fixed vertex getting
deleted is small.

Algorithm 4. DeleteBoundary(C, r, l)
1: for all level l clusters Cl

i do

2: Let Bl
i = {u ∈ Cl

i : d(u, si) ≤ r·
( 1

ε

)−l+1
< d(u, si) + rad (u) , l(u) ≥ l}

3: Let Bl
j = {u ∈ Cl

j : ∃si, d(u, si) − rad (u) ≤ r·
( 1

ε

)−l+1
< d(u, si), l(u) ≥ l}

4: for all u ∈ Bl
i ∪ Bl

j do
5: if u ∈ Bl

i then
6: Cl

i ← Cl
i \ u

7: else
8: Cl

j ← Cl
j \ u

9: Call DeleteBoundary(C, r, l + 1) recursively so long as l < L.

Lemma 3. For a fixed vertex u having level l(u), Pr
[

u is cut by
DeleteBoundary

]
∈

O
(

ε
1−ε · log 1

ε

)

Proof.

Pr
[

u is cut by
DeleteBoundary

]
= Pr

⎡

⎣
l(u)∨

l=0

level l
cluster
cuts u

⎤

⎦ ≤
l(u)∑

l=0

Pr
[

level l
cluster
cuts u

]
(1)

Let us now bound the probability that a level l cluster cuts u. In order to show
this, let us first reorder all the

( 1
ε

)−l+1
-net vertices of cluster Cl

i , say Sl
i, according
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to their distance from u. Let this ordering be q1, q2, . . .. So, the probability that u

is cut by a level l cluster is,
∑

i

Pr [π(si) cuts u] =
∑

j

Pr [qj cuts u] .

In order for qj to cut u, two events must take place: (i) E1, all closer
( 1

ε

)−l+1-

net vertices appear later in permutation π, and (ii) E2, r·
( 1

ε

)−l+1 falls in the
right range from qj so as to cut the ball of radius rad (u) centered at u. Due to
mutual independence of the two events, Pr [qj cuts u] ≤ 2·εl(u)

1
2·ε−l+1

· 1
j = 4·εl(u)−l+1

j .

So, Pr
[

level l
boundary

cuts u

]
≤
∑

j

Pr [qj cuts u] ≤ c0· εl(u)−l+1· log
1
ε
, where, the last in-

equality follows from the fact that the maximum number of
( 1

ε

)−l+1-net vertices

in Cl
i is

( 1
ε

)O(1), and c0 ∈ O(1). This fact, combined with (1) implies that,

Pr
[

u is cut by
DeleteBoundary

]
≤ c0· εl(u)+1· log

1
ε
·

l(u)∑

l=0

(
1
ε

)l

≤ c0·
ε

1 − ε
· log

1
ε

Corollary 2. For an instance of weight independent set on disk graphs,
0 < ε ≤ 1/2, with constant probability DeleteBoundary deletes weighing
O
(

ε
1−ε · log 1

ε · opt
)
.

We sample O(log n) random partitions, C, deleting disks that hit the boundary
of the hierarchical clusters, resulting in a number of independent subproblems.
Assuming that the subproblems can be solved optimally, it follows that:

Theorem 2. For every fixed 0 < ε ≤ 1/2, there is a randomized polynomial
time algorithm which, given a vertex weighted disk graph (without geometry), a
set of edge-lengths, and radii for the vertices, constructs a weighted independent
set whose weight is at least a fraction

(
1 + O( ε

1−ε log 1
ε )
)

of opt, w.h.p.

Solving Sub-problem Instances Optimally Using Dynamic Programming: Let D
denote the set of disks that are obtained after DeleteBoundary deletes disks
from the original instance. In this section, we show that maximum weighted
independent set problem for D can be solved exactly in time polynomial in n by
using edge-lengths and radii corresponding to the vertex set with respect to some
(unknown) embedding, using dynamic programming. This will prove Theorem 2.

Call a level l cluster, Cl
i , an l-cluster. Call a l-cluster Cl

i relevant if it contains
at least one level l vertex (disk) u, that is, εl+1 < rad (u) ≤ εl. For a l-cluster Cl

i

and l′-cluster Cl′

j , l′ > l, say Cl
i contains Cl′

j if before DeleteBoundary deletes
disks that are cut by the boundary of clusters of levels higher than l, Cl′

j ⊂ Cl
i .

For a relevant l-cluster Cl
i and a relevant l′-cluster Cl′

j , l′ > l, call Cl′

j a child
or child cluster of Cl

i (and Cl
i is a parent of Cl′

j ) if Cl′

j is contained in Cl
i and if

there is no relevant l′′-cluster that is contained in Cl
i , and contains Cl′

j .
The hierarchical clustering obtained by deleting disks that hit cluster bound-

aries, satisfies two conditions summarized below. The following lemma is obvious.
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Lemma 4. For 0 ≤ l < L, every (l + 1)-cluster is contained in some l-cluster.

Lemma 5. Let Cl
i be some l-cluster and I be a set of independent disks such

that for every disk u ∈ I, l(u) ≤ l, and u has a neighbor in Cl
i . There is a

constant cε (depending only on ε) such that |I| ≤ cε.

Proof. By our assumption, Cl
i has a realization in the Euclidean plane. Therefore,

Cl
i is fully contained in a disk of radius O(εl−1). Let us fix a realization and call

the bounding disk D. The smallest radius disk that has a neighbor in Cl
i must

have radius at least εl+1 and must be centered at a distance O(εl+1) from D’s
boundary, with respect to the realization. So, the area occupied by any disk in
I must be Ω(ε2(l+1)). Now, extend the radius of D by εl+1 and call this larger
disk D′. The area of D′ is O((εl−1 + εl+1)2) and each disk of I occupies an
area Ω(ε2(l+1)) of D′; the larger disks of I only occupy a larger area. By using
standard packing arguments, it can be seen that |I| is O(ε−4).

For every relevant cluster Cl
i , denoted C for convenience, a table, TableC , is

maintained. Each entry corresponds to an independent set I of disks u such
that rad (u) > εl (the large disks) which have a neighbor in C. By Lemma 5,
|I| ≤ cε. Hence, the combinatorial complexity of all subsets of independent large
disks u that have a neighbor in C is polynomial in n. So, the size of TableC

is polynomial in n. For every such set I, TableC(I) is a maximum weighted
independent set of disks of level at least l that are also independent of I, and
are contained in the l-cluster C. For a fixed choice I of independent disks of
level less than l, we enumerate over all independent subsets X of disks of level
l that are also independent of I and are contained in C. We then extend the
union of the optimal solutions for child clusters contained in C for the subset of
disks of I ∪X that have neighbors in them by X . The best solution amongst all
extensions is the solution for TableC . We describe details of how to compute a
particular table corresponding to a l-cluster C. Once the tables for all relevant
clusters are computed, the final solution corresponding to D is the union over
all clusters C that do not have a parent, of TableC(∅). Next, we show that the
solution returned is an optimal solution for D, and that this solution is computed
in time polynomial in n. The proof of the following lemma is similar to [5].

Algorithm 5. ComputeTable(l, ε, C,D)
1: TableC ← ∅
2: Let R be the set of vertices (disks) in D having level at most l that have a neighbor

in C
3: for all J ⊆ R, J is independent, |J | ≤ cε do
4: Let X be the subset of J having level l
5: for all C′, C′ is a child of C do
6: Let I ′ be the set of disks in J that have a neighbor in C′

7: X ← X ∪ TableC′(I ′)
8: I ← J \ X
9: if TableC(I) is undefined OR wt (X) > wt (TableC(I)) then

10: TableC(I) ← X
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Lemma 6. For a relevant l-cluster C and any independent set I belonging to
level less than l such that each have a neighbor in C, I∪TableC(I) is independent
and wt (TableC(I)) is most over all independent sets of C that are independent
of I.

Every disk in D is contained in some relevant cluster C that does not have a
parent and that all such relevant clusters are independent of each other. So, the
union of TableC(∅) over all such clusters returns a heaviest independent set of
D. We conclude with the following lemma whose proof is similar to [5].

Lemma 7. For any fixed ε > 0, the algorithm runs in time polynomial in n.

4 Extensions and Concluding Remarks

Our PTAS can be extended to d-dimensional case. In addition, we do not specifi-
cally require that the objects be Euclidean balls – it suffices for the objects to be
fat. We would require that radii corresponding to these objects refer to the ra-
dius of a minimum enclosing ball, for example, and the edge-lengths correspond
to inter-point distances of the ball centers for objects that overlap.

Acknowledgments. We thank Matt Gibson, Sriram Pemmaraju, Mohammad
Salavatipour, Zoya Svitkina, and Kasturi Varadarajan for helpful discussions.
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Abstract. Dynamic Voltage Scaling techniques allow the processor to
set its speed dynamically in order to reduce energy consumption. It was
shown that if the processor can run at arbitrary speeds and uses power
sα when running at speed s, the online heuristic AVR has a compet-
itive ratio (2α)α/2. In this paper we first study the online heuristics
for the discrete model where the processor can only run at d given
speeds. We propose a method to transform online heuristic AVR to
an online heuristic for the discrete model and prove a competitive ra-

tio 2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1, where δ is the maximum ratio between

adjacent non-zero speed levels. We also prove that the analysis holds
for a class of heuristics that satisfy certain natural properties. We fur-
ther study the throughput maximization problem when there is an up-
per bound for the maximum speed. We propose a greedy algorithm
with running time O(n2 log n) and prove that the output schedule is 3-

approximation of the throughput and (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of

the energy consumption.

1 Introduction

Energy efficiency currently becomes one of the major concerns in system de-
signs. Portable electronic devices, which are typically powered by batteries, rely
on energy efficient schedules to increase the battery lifetime; while non-portable
systems need energy efficient schedules to reduce the operating cost. An impor-
tant strategy to achieve energy saving is via dynamic voltage scaling (DVS),
which enables a processor to operate at a range of voltages and frequencies. Be-
cause energy consumption is at least a quadratic function of the voltage (hence
CPU frenquency/speed), it saves energy by executing jobs as slowly as possible
while still satisfying the required property like feasibility where all the jobs are
required to be finished by their deadlines. The associated scheduling problem is
referred to as min-energy feasibility DVS scheduling.

A theoretical study of min-energy feasibility DVS scheduling was initiated by
Yao, Demers and Shenker[1]. They formulated the optimization problem and
� This work was supported by a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China [Project No. CityU 116907].
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gave an O(n3) algorithm YDS for computing the optimal schedule, which is
later improved to O(n2 logn) in [2]. In their formulation, each job ji has an
arrival time ai, a workload Ri, and a deadline bi. If job ji is executed at speed s,
then it needs Ri/s time to finish. They also assumed a speed to power function
P (s) = sα, where α ≥ 2 is a system constant (usually α = 3 if the cubic-root rule
holds). Their model allows the processor speed to be set at any real value and
therefore is referred to as the continuous model. An online heuristic AVR was
proposed in [1] and proved to be (2α)α/2-competitive in energy consumption.
Bansal et.al. [3] further investigated the online heuristics for the model proposed
in [1] and proved that the heuristic OA has a tight competitive ratio of αα for all
job sets. They also gave a new online heuristic which is the best possible heuristic
for a wide range of power functions. Quan and Hu [4] considered scheduling jobs
with fixed priorities and characterized the optimal schedule. Yun and Kim [5]
later on showed the NP-hardness of computing the optimal schedule and also
provided an FPTAS for this problem.

In practice, processors can run at only a finite number of preset speed levels.
One can capture the discrete nature of the speed scale with a corresponding
discrete model. Ishihara and Yasuura [6] initiated the research on discrete DVS
problem and solved the case when the processor is only allowed to run at two
different speeds. Kwon and Kim [7] extended that to the general discrete DVS
model where the processor is allowed to run at speeds chosen from a finite speed
set. They gave an algorithm for this problem based on the YDS algorithm in [1].
Recently, It was shown in [8] that the optimal schedule for the discrete model can
be computed in O(dn log n) time where d is the number of speed levels. Compared
to numerous analyses for online heuristics proposed for the continuous model,
few works exist that design or analyze online heuristics for the discrete model
which is more practical. We propose in this paper a systematic way to transform
online heuristics for the continuous model to online heuristics for the discrete
model with only a small increase in the competitive ratio.

Another practical constraint on the processor is the maximum speed limit,
which sometimes makes it impossible for the processor to finish all jobs within
their timing constraints. In this bounded speed model, a useful objective is to
maximize the throughput of the whole system. In real time scheduling where
the processor cannot change the execution speed, the throughput maximization
problem where preemptions are not allowed is studied in [9][10][11]. [12] and [13]
considered preemptive scheduling. It was shown in [12] that the best possible
online scheduling algorithm is 4-competitive on throughput without considering
energy and [13] proposed an online heuristic which is 14-competitive in through-
put and O(1)-competitive in energy consumption. We also refer the readers to a
recent survey on research in power/temperature management [14].

In this paper, we assume that preemption is allowed in job execution ,i.e., a
job can be interrupted when being executed and resumed afterwards. We first
investigate online heuristics for the discrete model where the allowed speed set
{s1, s2, . . . , sd} satisfies s1 > s2 > . . . > sd > 0. By suitably adjusting the speed
used in AVR to adjacent allowed speed levels, we design an online heuristic AVR′d
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for the discrete model and prove it to be ( 2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1)-competitive
where δ = max

1≤i≤d−1
si

si+1
. We also identify a class of heuristics which can be

modified in a similar way from the continuous model to the discrete model with
their competitive ratios increased by a factor of (α−1)α−1(δα−1)α

αα(δ−1)(δα−δ)α−1 . The similar
idea of adjusting speed to adjacent speed levels is widely known and proved
to increase the competitive ratio by δα for throughput maximization algorithm
proposed in [13]. Notice that our increased ratio is (δ+1)2

4δ when α = 2 which
improves upon δα almost by a factor of 4δ. Then we study the throughput
maximization problem for the continuous model in the overloaded setting where
the processor can only vary its speed between 0 and a maximum speed smax.
With this practical speed restriction, the processor sometimes can not finish all
the jobs by their deadlines even if it always runs at smax. We aim to find schedules
which can minimize energy consumption while maximizing the throughput. The
throughput is the total workload of the jobs completed by their deadlines. It
is NP-hard to find schedules that maximize throughput since KNAPSACK is
a special case when all deadlines are equal and all arrival times are equal. We
propose a greedy algorithm to approximately maximize the throughput while
also approximately minimizing the energy consumption. By using the properties
of s-schedules defined in [8] and properties proved in the study of online heuristics
for the discrete model, we prove that the greedy algorithm outputs a schedule
which is 3-approximation of throughput and (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of
energy consumption.

The remainder of the paper is organized as follows. We give the problem
formulation and review some basic properties of the optimal schedules in Section
2. Section 3 describes a (2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1)-competitive online heuristic
for the discrete model and extends the result to a class of online heuristics.
We then study the offline throughput maximization problem in Section 4 and
propose a greedy algorithm to compute a schedule that is 3-approximation in
throughput and (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation in energy consumption. Some
concluding remarks are given in Section 5. Due to space limit, we omit some
proofs in this version.

2 Models and Preliminaries

A job set J = {j1, j2, . . . , jn} over [0, 1] is given where each job jk is characterized
by three parameters: arrival time ak, deadline bk, and workload Rk. Here work-
load means the required number of CPU cycles. We also refer to [ak, bk] ⊆ [0, 1]
as the interval of jk, and assume without loss of generality that ∪k[ak, bk] = [0, 1]
(or J spans [0, 1]). A schedule S for J is a pair of functions (s(t), job(t)) which
defines the processor speed and the job being executed at time t respectively.
Both functions are assumed to be piecewise continuous with finitely many dis-
continuities. A feasible schedule must give each job its required workload between
its arrival time and deadline with perhaps intermittent execution. We assume
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that the power P , or energy consumed per unit time, is P (s) = sα (α ≥ 2)
where s is the processor speed. The total energy consumed by a schedule S is
E(S) =

∫ 1
0 P (s(t))dt. The goal of the min-energy feasibility scheduling problem

is to find a feasible schedule that minimizes E(S) for any given job set J . We
refer to this problem as the continuous DVS scheduling problem.

In the discrete version of the problem, we assume that the processer can run at
d speed levels s1 > s2 > . . . > sd. The goal is to find a minimum-energy schedule
for a job set using only these speeds. We refer to this problem as Discrete DVS
scheduling problem if the highest speed s1 is always fast enough to guarantee a
feasible schedule for the given jobs.

For the continuous DVS scheduling problem, the optimal schedule Sopt is
characterized by using the notion of a critical interval for J , which is an interval
I in which a group of jobs must be scheduled at maximum constant speed g(I) in
any optimal schedule for J . The algorithm proceeds by identifying such a critical
interval I, scheduling those ‘critical’ jobs at speed g(I) over I, then constructing
a subproblem for the remaining jobs and solving it recursively. The details are
given below.

Definition 1. For any interval I ⊆ [0, 1], we use JI to denote the subset of jobs
in J whose intervals are completely contained in I. The intensity of an interval
I is defined to be g(I) = (

∑
jk∈JI

Rk)/|I|.

An interval I∗ achieving maximum g(I) over all possible intervals I defines a
critical interval for the current job set. It is known that the subset of jobs JI∗

can be feasibly scheduled at speed g(I∗) over I∗ by the earliest deadline first
(EDF) principle. That is, at any time t, a job which is waiting to be executed
and having earliest deadline will be executed during [t, t + ε]. The interval I∗ is
then removed from [0, 1]; all the remaining job intervals [ak, bk] are updated to
reflect the removal, and the algorithm recurses. We denote the optimal schedule
which guarantees feasibility and consumes minimum energy in the continuous
model as OPT.

3 Online Heuristics for Discrete Model

In [1], two on-line heuristics AVR (Average Rate) and OA (Optimal Available)
were introduced for the case that jobs arrive one after another. We define these
two heuristics as follows.

At any time t, the heuristic AVR runs the earliest deadline job using the speed∑
J(t)

Rk

bk−ak
where J(t) is the set of jobs with ak ≤ t ≤ bk. In other word, AVR

always uses the speed equal to the summation of the average workload of all the
available jobs.

At any time t, the heuristic OA always assume that the current available jobs
are the only jobs to be scheduled. It calculates an optimal offline schedule for all
these jobs and schedules them accordingly. Whenever a new job arrives, it will
do a recalculation.
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The heuristic AVR was shown to have a competitive ratio of at most (2α)α/2
in [1]; recently a tight competitive ratio of αα was proven for OA in [3]. Both
of these results are for the continuous model where the speed can be set at an
arbitrary value. In this paper, we design online heuristics for the discrete model
where only a finite number of speeds are allowed for the processor but the highest
speed is larger than the maximum speed needed by the online heuristic for the
given job set in the continuous model.

We first consider a simple case. Suppose s1 > s > s2 and we have an execution
interval of speed s which lasts for a time period of length t. Denote the energy
consumption on this execution interval as Ec. Then, we adjust the speed s to s1
and s2 with appropriate proportion of time t1 and t2 in the execution interval
so that the total workload executed remains the same, i.e., st = s1t1 + s2t2 and
t = t1 + t2. We denote the energy consumption by the new schedule as Ed. We
give an upper bound of Ed in Lemma 1.

Lemma 1. If P (s) = sα and s1/s2 ≤ δ, then Ed ≤ (α−1)α−1(δα−1)α

αα(δ−1)(δα−δ)α−1 Ec.

Note that in order to make the lemma hold for all the adjustment, we implicitly
need the assumption s > sd which means that sd should be small enough. How-
ever, for s < sd, if we round s to 0 and sd, this part of energy will be less than
the energy consumption of any schedule that finishes all the jobs using the given
speed set observed by [13]. We define AV Rd as the schedule which adjusts each
speed in AVR into proportioned execution of two adjacent speed levels. Notice
that AV Rd is an offline schedule because online schedulers do not know when a
new job will arrive and therefore do not know when the current piece of constant
speed execution will end, which makes the accurate adjustment impossible. By
the definition of AV Rd, we have the following property by Lemma 1.

Corollary 1. E(AVRd) ≤ (α−1)α−1(δα−1)α

αα(δ−1)(δα−δ)α−1E(AVR) + E(OPT ), where δ =
max

1≤i≤d−1
si

si+1
.

We know that in AVR online heuristic, whenever an arrival time or a deadline
is met, the scheduler will possibly adopt a different execution speed, i.e., it will
recalculate the execution speed. The online heuristic we design for the discrete
model tries to capture the same idea. The only difference is that some speeds
are not allowed in the discrete model. Therefore, speed adjustment is needed
to satisfy the speed requirement. We describe the online scheduling algorithm
AVR′d for the discrete model as follows. Whenever an arrival time or a deadline
is met, the speed curve adopted by AVR is calculated. Then every speed is
adjusted to adjacent speed levels according to the right proportion. For the
contiguous time period which is originally assigned the same speed by AVR, the
heuristic AVR′d executes the higher speed portion first and then the lower. If
some job’s arrival at time a interrupts this proportioned schedule, the scheduler
just recalculates the new speed using AVR for the remaining jobs in the job set
J under AVR′d. This remaining job set is denoted as Ja,remain. The arrival time
of the job whose arrival time is earlier than a will be adjusted to a if it is not
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finished by a and the workload of the jobs will also be updated reflecting the
previous execution. Notice that AVR′d is different from AVRd because it is not
a simple offline adjustment of AVR. We prove the following lemma:

Lemma 2. E(AVR′d) ≤ E(AVRd).

We further combine Corollary 1 and Lemma 2 to derive the following theorem
on the performance of AVR′d when the power function is P (s) = sα.

Theorem 1. E(AV R′d) ≤ (2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1)E(OPT ), where δ =
max

1≤i≤d−1
si

si+1
.

Let [0, a] be the first non-trivial stable interval and s be the speed calculated by
the heuristic H at time 0 for [0, a] where si > s ≥ si+1. Define Ja,remain similarly
as above and let the speed functions of the heuristic H for J and Ja,remain in
[a, 1] be sH and sHr respectively. Lemma 2 can be extended to a class of online
heuristics besides AVR which satisfy the following two properties.

1) Monotone Property: sH(t) ≥ sHr (t) for a ≤ t ≤ 1.
2) Separation Property: there exists b ≤ 1 where sHr (t) ≥ si+1 for a ≤ t ≤ b

and sH(t) = sHr (t) for b < t ≤ 1.
Therefore, we have the following theorem.

Theorem 2. If H is a c-competitive online heuristic for the continuous model
which satisfies Monotone Property and Separation Property, then the heuristic
H ′d for the discrete model which adjusts the calculated speed to adjacent speed lev-
els and executes the higher speed part first is ( c(α−1)α−1(δα−1)α

αα(δ−1)(δα−δ)α−1 + 1)-competitive.

4 Minimizing Energy While Maximizing Throughput

In most systems, the processor can only vary its speed between 0 and a maxi-
mum speed smax. Because the speed is bounded from above, the processor may
be overloaded with jobs and no scheduling algorithms can finish all the jobs be-
fore their deadlines. In this section, we investigate the continuous model with a
speed limit and investigate the offline throughput maximization problem in this
overloaded setting where preemptions are allowed. Throughput is defined to be
the total workload of the jobs completed by their deadlines. We propose a greedy
algorithm which produces a schedule that is 3-approximation to the maximum
throughput, while at the same time achieves (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation with
respect to energy consumption.

A tool called s-schedule was introduced in [8] which can provide useful infor-
mation regarding the optimal speed function for J without explicitly computing
it. The properties of the s-schedule are also crucial in our proof of approxima-
tion ratios for the greedy algorithm. For easy reference, we give the relevant
definitions and properties below.
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Definition 2. For any constant s, the s-schedule for J is an EDF schedule
which uses constant speed s in executing any jobs of J . It will give up a job when
the deadline of the job has passed. In general, s-schedules may have idle periods
or unfinished jobs.

Definition 3. In a schedule S, a maximal subinterval of [0, 1] devoted to ex-
ecuting the same job jk is called an execution interval for jk (with respect to
S). Denote by Ik(S) the union of all execution intervals for jk with respect to
S. Execution intervals with respect to the s-schedule will be called s-execution
intervals.

It is easy to see that the s-schedule for n jobs contains at most 2n s-execution
intervals, since the end of each execution interval (including an idle interval)
corresponds to the moment when either a job is finished or a new job arrives.
Also, the s-schedule can be computed in O(n log n) time by using a priority
queue to keep all jobs currently available, prioritized by their deadlines. Denote
the s-schedule of J by SJ . Next we prove a basic property of s-schedules.

Lemma 3. Given a job set J , for any J ′ ⊆ J , we have |
⋃

jk∈J′ Ik(SJ )| ≤
|
⋃

jk∈J′ Ik(SJ′)|.

In the following, we will use a slightly different result for s-partition introduced
in [8] and summarize it into the following lemma.

Lemma 4. The job set J can be partitioned into two job sets J≤s and J>s in
O(n log n) time, where jobs in J≤s require speeds no larger than s in OPT while
jobs in J>s require speeds larger than s in OPT.

Recall that OPT is the min-energy schedule without speed limit. We use optT
to denote the optimal schedule with speed upper bounded by smax, and optT
maximizes the throughput first and then minimizes the energy subject to this
throughput. Given a job set, we first remove all the jobs whose average workload
is more than smax because these jobs will not contribute to the throughput even
in optT . We denote the remaining job set as J . Then, we generate an smax-
schedule for J . By Lemma 4, we can identify critical intervals whose speeds are
larger than smax. We denote the union of those intervals as I. According to
the way critical intervals are chosen, there is a schedule where each job jk with
[ak, bk] ∩ I 
= [ak, bk] can be finished by its deadline using execution speed at
most smax and is only executed outside I. We denote the set of jobs satisfying
the above requirement as J2. We know that all the jobs in J2 can contribute to
the throughput without affecting the feasibility of jobs in J1 = J\J2. Therefore,
we only consider jobs in J1 in the following discussion.

Let t = |I|. We propose a greedy algorithm which achieves at least 1
3 t · smax

throughput within I as follows.
The intervals T ∗k is obtained from Tk in the following way. If |Tk| = Rk

smax
, then

let T ∗k be Tk; otherwise, give all the time in Tk to T ∗k and then add more time
to T ∗k in a backward manner starting from bk until |T ∗k | = Rk

smax
. For example, if

Tk = [0, 1], [4, 5], bk = 6 and Rk

Smax
= 4, then T ∗k = [0, 1], [3, 6].
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Algorithm 1. Greedy Algorithm
1. J∗ = ∅ and Jh = J1.
2. I = ∪ji∈J1 [ai, bi].
repeat

3. J∗ = J∗ ∪ jk, where jk ∈ Jh and Rk ≥ Ri for all ji ∈ Jh.
4. Compute the smax-schedule for Jh and denote the time intervals allocated to
jk as Tk.
5. Assign time intervals T ∗

k to jk (The way to choose T ∗
k is explained below).

6. I = I\T ∗
k .

7. Update the job arrival times and deadlines after removing T ∗
k from I (by treating

time in T ∗
k as non-existent).

8. Remove from Jh the job jk and the jobs whose average workload are larger than
smax after the update.
9. Compute the smax-partition for Jh on I using Lemma 4 and move the jobs in
J≤smax

h from Jh to J∗.
until Jh �= ∅.
10. Compute the optimal schedule S∗ for J∗ ∪ J2.

The set J∗ ∪ J2 is the subset of jobs we choose to execute in the schedule.
The feasibility of S∗ using speeds at most smax is guaranteed by the choice of
jobs into J∗.

We can prove that jobs in J∗ have a total workload at least 1
3 t · smax by

proving the following lemma.

Lemma 5. Given a set Jh of n jobs, where the average workload of every job
is no more than smax and OPT always uses speeds higher than smax, the total
workload R of the jobs added to J∗ in the first iteration of Algorithm 1 is at
least 1

3 (t− t′)smax where t represents the length of the union of jobs in Jh at the
beginning of the iteration and t′ represents the length of the union of jobs in Jh

at the end of the iteration.

Proof. First, it is easy to see that when Step 6 is finished, the smax-schedule
for Jh\jk on I (we denote this schedule as S′ in the following proof) runs at
non-zero speed for a total period of t− Rk

smax
. We next prove that smax-schedule

for Jh computed in Step 9 runs at non-zero speed for a total period of at least
t− 3 Rk

smax
. Notice that in Step 8, if a job ji is removed from Jh, then its interval

[ai, bi] should intersect with T ∗k , otherwise its average workload will not change
after we remove T ∗k from I. Furthermore, [ai, bi] should intersect with the last
interval in T ∗k . Because if bi > bk, then [ai, bi] has to intersect the last interval
in T ∗k , otherwise it will not intersect T ∗k ; if bi ≤ bk, then [ai, bi] only intersecting
non-last intervals in T ∗k means that in the smax-schedule for Jh (with jk in), the
job ji can finish all its workload before the earliest intersection point; otherwise,
the intersecting part with the non-last intervals in T ∗k , which is also intervals
in Tk will not be used to execute jk because ji has a higher priority than jk,
therefore removing T ∗k will not make the average workload of ji be larger than
smax. Furthermore, it is easy to see that |[ai, bi]\T ∗k | ≤ Ri

smax
≤ Rk

smax
. Based on

the above analysis, we know that the jobs removed from Jh in Step 8 occupy a
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time period with length at most 2 Rk

smax
(it is the time in I\T ∗k starting from both

sides of the last interval of T ∗k with length at most Rk

smax
on each side), which

implies that the remaining jobs in Jh after Step 8 will be executed for a period
of at least t−3 Rk

smax
in schedule S′. Therefore, smax-schedule for Jh computed in

Step 9 runs at non-zero speed for a total period of at least t− 3 Rk

smax
by Lemma

3. In Step 9, by moving more jobs from Jh to J∗, we increase the workload in
J∗ by at least tr · smax where tr is the execution time of those jobs in smax-
schedule for Jh computed in Step 9. Notice that the removal of jobs in Step 9
will not affect the smax-schedule for the remaining jobs in Jh by the definition of
critical intervals. From the above analysis, we have the following two relations:
t′ + tr ≥ t− 3 Rk

smax
and R

smax
≥ Rk

smax
+ tr. The lemma then follows. �

We can interpret Lemma 5 in the following way. Picking the job jk with the
maximum Rk value will reduce the useful s-execution time by at most 3 Rk

smax
.

We remark that T ∗k cannot be chosen arbitrarily within [ak, bk]. For example,
if we choose T ∗k to be [ak, ak + Rk

smax
], then picking the job jk may reduce the

useful s-execution time by 4 Rk

smax
because the time in Ik(SJh

) (smax-execution
intervals of jk ) may not overlap with any other job in Jh and therefore cannot
be used to execute other jobs in the smax-schedule.

Lemma 6. The jobs in J∗ have a total workload at least 1
3 t · smax and can be

feasibly scheduled using speeds at most smax.

The above lemma directly shows that Algorithm 1 is 3-approximation in through-
put compared to optT because optT can at most select t · smax workload from
J1 to execute. Next, we show that the energy consumption of S∗ is at most
(α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 times that of optT .

Lemma 7. The schedule S∗ is (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of energy con-
sumption compared to optT .

We summarize the above results into the following theorem.

Theorem 3. Algorithm 1 generates a schedule S∗ in O(n2 logn) time which
is 3-approximation of throughput and (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of energy
consumption compared to optT .

The running time of Algorithm 1 is O(n2 logn) because every step inside the
loop takes O(n logn) time and the computation of S∗ takes O(n2 logn) time [2].

5 Conclusion

In this paper, we first investigate online heuristics for the discrete model.
By suitably adjusting the speeds used in AVR to adjacent speed levels, we
design an online heuristic AVR′d for the discrete model and prove it to be
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(2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1)-competitive where P (s) = sα and δ is the maxi-
mum ratio between adjacent non-zero speed levels. We also identify a class of
heuristics which can be modified in a similar way from the continuous model to
the discrete model with their competitive ratios increased by a constant factor
(α−1)α−1(δα−1)α

αα(δ−1)(δα−δ)α−1 with an extra addition of 1. Then we study the throughput
maximization problem for the preemptive continuous model in the overloaded
setting where the maximum speed of the processor is upper bounded by smax.
We propose a greedy algorithm to approximately maximize throughput while
also approximately minimizing the energy consumption. By using the properties
of s-schedule defined in [8] and properties proved in the study of online heuristics
for the discrete model, we prove that the greedy algorithm is 3-approximation
of throughput and (α−1)α−1(3α−1)α

2αα(3α−1−1)α−1 -approximation of energy consumption.
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Abstract. This paper presents improved approximation algorithms and
inapproximability results for min-max path cover problems with service
handling time, which have wide applications in practice when the latest
service completion time for customers is critical. We study three variants
of this problem, where paths must start (i) from a given depot, (ii) from
any depot of a given set, and (iii) from any vertex of the given graph,
respectively. For these three variants, we are able to achieve approxima-
tion ratios of 3, (4 + ε), and (5 + ε), respectively, for any ε > 0. We have
further shown that approximation ratios less than 4/3, 3/2, and 3/2 are
impossible for them, respectively, unless NP = P.

Keywords: approximation algorithm, inapproximability, min-max vehi-
cle routing, path covers.

1 Introduction

Consider a complete undirected graph G = (V,E), where each vertex in V
represents a customer to be served. For each edge (u, v) ∈ E, an edge weight
w(u, v) is given to represent the traveling time, which forms a metric. Given an
integer k > 0, the min-max path cover problem (PCP) is to decide a path set
P = {P1, P2, ..., Pk}, for k vehicles to serve all vertices of V . Its objective is to
minimize the latest service completion time of vertices, which can be represented
by the maximum total edge weight of any path, i.e., max1≤i≤k w(Pi).

The min-max PCP has many applications in practice, especially when the
latest service completion time of customers is critical, such as to deliver aid-
suppliers through a humanitarian relief chain for a large-scale emergency [3], and
to plan nurse service for patients [5]. However, most previous literatures on the
min-max PCP [3,1] ignore the service handling times, which can be represented
by vertex weights h(v) for all v ∈ V . Since service handling times in many
cases contribute to the latest service completion time significantly, h(v) should
be taken into considerations in the studies on the min-max PCP. We are thus
motivated to study the min-max PCP with service handling time (PCPSHT).
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For any subgraph Q of G, we use V (Q) and E(Q) to represent the vertex and
the edge sets of Q, respectively, and use w(Q) and h(Q) to denote the total edge
weight and the total vertex weight of Q, respectively. For any path set P, its
latest service completion time, referred to as the cost of P, can be represented
by cost(P) defined in below:

cost(P) = max
Pi∈P

{w(Pi) + h(Pi)} (1)

Accordingly, the PCPSHT aims to minimize cost(P), such that P contains k
paths that cover each vertex in V for at least once. Since the classical traveling
salesman path problem, as its special case (with k = 1), is NP-hard, the min-max
PCPSHT is also NP-hard [7] for any k ≥ 1.

In this paper, we design approximation algorithms and derive inapproxima-
bility results for the following three variants of the min-max PCPSHT.

– In the first case, the k vehicles must start from a given depot r ∈ V , which
is so called a min-max PCPSHT with a single depot (PCPSHT-SD), whose
instance is represented by (G, k, r, w, h).

– In the second case, the decision maker needs to choose depots from a given
depot set R ⊆ V , for the k vehicles. Each vehicle must start from a depot
in the depot set. We call this case as a min-max PCPSHT with a depot set
(PCPSHT-DS), whose instance is represented by (G, k,R,w, h).

– In the third case, which is a special case of the second case, the depot set
R = V . Thus, every vertex can be a depot of a vehicle, implying that the
depot assignment to vehicles can be ignored. We call this case as a min-max
PCPSHT with no depots (PCPSHT-ND), whose instance is represented by
(G, k, w, h).

Related Work. As we have mentioned, most literatures on the min-max PCP
ignore the service handling times. [3] derived a lower bound on the optimum
objective value of the min-max PCP with a single depot. Based on this, a 4-
approximation algorithm can be easily obtained. For the min-max PCP with no
depots, [1] has devised a (4 + ε)-approximation algorithm.

Some related literatures study the min-max tour (or tree) cover problems,
where their feasible solution is a set of k tours (or trees) [2,8,9,11,10]. For exam-
ple, [6] proposed an approximation algorithm for k traveling salesmen problem
(k-TSP), which is equivalent to the min-max tour cover problem with a single
depot. They applied the classical Christofides’ heuristic [4] to solve the traveling
salesman problem first, and then split the approximated solution almost evenly
into k segments. By connecting the given depot to the two endpoints of each seg-
ment, respectively, they obtained a tour cover, which achieved an approximation
ratio of (5/2 − 1/k).

For the min-max tree cover problem, [5] devised a (4 + ε)-approximation al-
gorithm for its variant with a depot set. Although service handling times were
ignored, an additional side constraint that forced each tree to be assigned to
a distinct depot must be satisfied. By doubling edges of an approximated tree
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cover, one can directly obtain a (8 + ε)-approximation algorithm for the corre-
sponding variant of the min-max PCP.

In contrast to approximation algorithms, inapproximability results for the
min-max PCPSHT and its related problems are almost unknown.

Our Results. Our main results and their significance are the following:

1. We develop a 3-approximation algorithm for the min-max PCPSHT-SD,
which improves the best approximation ratios even for its special case, the
min-max PCP with a single depot, whose existing best ratio is 4 [3].

2. We develop a (4 + ε)-approximation algorithm for the min-max PCPSHT-
ND, for any ε > 0, which has achieved the best result even for its special
case, the min-max PCP with no depots. Based on this algorithm, we develop
a (5 + ε)-approximation algorithm for the min-max PCPSHT-DS.

3. We derive the first inapproximability results for the min-max PCPSHT.

Organization. In Section 2, a tour splitting procedure under revised edge
weights is introduced. Based on this, we develop approximation algorithms for
the PCPSHT-SD, the PCPSHT-ND, and the PCPSHT-DS, in Sections 3, 4, and
5, respectively, with analysis of their approximation ratios, and inapproximabil-
ity results. Finally, some concluding remarks are provided in Section 6.

2 Preliminary

For any instance I of the three variants of the min-max PCPSHT, let P∗ =
{P ∗1 , . . . , P ∗k } denote its optimum solution. Thus the optimum objective value,
denoted by opt(I), can be represented by opt(I) = cost(P∗). We use T ∗ to denote
the minimum spanning tree of the given graph G.

To develop approximation algorithms for three variants of the PCPSHT, we
need to devise a tour splitting procedure first, as shown in Algorithm 1, which
extends the work of [6] by taking service handling times into the consideration.

Algorithm 1 (Tour Splitting Procedure)
Input: A tour C, a starting point vs ∈ V (C), an integer k, and a bound vector

B = (B1, . . . , Bk−1), where Bi ≤ w′(C), for all i ≤ k − 1.
Output: A set S of k segments of C.

1. For each edge (u, v) ∈ E(C), revise the edge weight as w′(u, v) = w(u, v) +
h(u)+h(v). For each segment S of C, let w′(S) denote its total revised edge
weight, equal to

∑
e∈E(S) w

′(e).
2. From the starting point vs, for each i, 1 ≤ i ≤ k−1, find the last vertex vπ(i)

along the tour such that the segment (vs . . . vπ(i)) satisfies w′(vs . . . vπ(i)) ≤
Bi, and denote the next vertex along the tour as vπ′(i).

3. Obtain a set S of k segments: S1 = (vs . . . vπ(1)), . . . , Si = (vπ′(i−1) . . . vπ(i)),
. . ., and Sk = (vπ′(k−1) . . . vs).
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Algorithm 1 has a polynomial time complexity, and holds the following prop-
erties, which are used to derive approximation ratios for algorithms in Sections
3, 4, and 5. First, under the revised edge weights w′, we have:

w′(C) = w(C) + 2h(C). (2)

Secondly, for the segment set S returned by Algorithm 1, its cost(S) (under
w and h) has the following upper bound, as shown in Lemma 1.

Lemma 1. For Algorithm 1, the segment set S that it returns satisfies:

cost(S) = max
1≤i≤k

{w(Si) + h(Si)} ≤ max
1≤i≤k

(Bi −Bi−1), (3)

where B0 = 0, Bk = w′(C), and B = (B1, ..., Bk−1) is the given bound vector.

Proof. According to Algorithm 1, it can be verified that w′(S1) ≤ B1 − B0
and w′(Sk) ≤ w′(C) − Bk−1. For 2 ≤ i ≤ k − 1, by w′(vs . . . vπ(i)) ≤ Bi and
Bi−1 ≤ w′(vs . . . vπ′(i−1)), we have w′(Si) ≤ Bi −Bi−1. Thus, for 1 ≤ i ≤ k,

w′(Si) ≤ Bi −Bi−1. (4)

Moreover, for each Si, where 1 ≤ i ≤ k, let xi and yi denote the two endpoints
of Si. It can be observed that w′(Si) = w(Si) + 2h(Si)− h(xi)− h(yi), and that
h(xi) + h(yi) ≤ h(Si). Thus, w(Si) + h(Si) ≤ w′(Si), implying w(Si) + h(Si) ≤
Bi −Bi−1 for 1 ≤ i ≤ k due to (4). From this, (3) can be obtained directly. �	

3 PCPSHT-SD

3.1 Algorithm for the PCPSHT-SD

We develop Algorithm 2 for the PCPSHT-SD, which achieves an approximation
ratio of 3 as shown in Theorem 1.

Algorithm 2 (PCPSHT-SD)
Input: Instance I = (G, k, r, w, h) of the PCPSHT-SD
Output: Feasible solution P to I.

1. Find a minimum spanning tree T ∗ of G, and double all edges of T ∗ to induce
a tour C that covers all vertices of V .

2. Apply Algorithm 1 on (C, vs, k,B) to split C into k segments, where the
starting point vs equal to r, and the bound vector B has Bi = (i/k)w′(C)
for 1 ≤ i ≤ k − 1.

3. For i = 1, . . . , k, join r to one end endpoint of Si, to construct a path Pi.
Return the path set P = {P1, . . . , Pk}.

To analyze the approximation ratio of Algorithm 2, we prove the following
lower bound on opt(I) for any PCPSHT-SD instance I.
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Lemma 2. For any instance I = (G, k, r, w, h) of the PCPSHT-SD,

opt(I) ≥ max{w(T ∗) + h(G)
k

,max
v∈V

{h(r) + w(r, v)}}, (5)

Proof. For the optimal solution P∗ to instance I, since
⋃k

i=1 P ∗i spans all vertices
of V , we have

∑k
i=1 w(P ∗i ) ≥ w(T ∗), which implies

∑k
i=1[w(P ∗i ) + h(P ∗i )] ≥

w(T ∗) + h(G). Therefore, there must exist P ∗i ∈ P∗ with w(P ∗i ) + h(P ∗i ) ≥
[w(T ∗) + h(G)]/k. Thus, opt(I) ≥ [w(T ∗) + h(G)]/k.

Let v∗ denote a vertex with h(r)+w(r, v∗) = maxv∈V {h(r)+w(r, v)}. There-
fore, there must exist P ∗j ∈ P∗ with {r, v∗} ⊆ V (P ∗j ). Since w is a metric,
w(P ∗j ) + h(P ∗j ) ≥ w(r, v∗) + h(r) = maxv∈V {h(r) + w(r, v)}, which implies that
opt(I) ≥ maxv∈V {h(r) + w(r, v)}. �	

From Lemma 2, we can establish the following theorem, which implies that
Algorithm 2 is a 3-approximation algorithm.

Theorem 1. Algorithm 2 achieves an approximation ratio of 3 in polynomial
time for the min-max PCPSHT-SD.

Proof. It is easy to verify the polynomial time complexity for Algorithm 2. In
the following, we prove its approximation ratio of 3.

Let B0 = 0, and Bk = w′(C). From Algorithm 2, by Lemma 1, we obtain
cost(S) ≤ w′(C)/k. This implies that for i = 1, . . . , k, the total weight of each
path Pi ∈ P , which connects r to Si, must satisfy: w(Pi) + h(Pi) ≤ w′(C)/k +
maxv∈V {h(r) + w(r, v)}.

Moreover, since w(C) ≤ 2w(T ∗), by (2) we have w′(C)/k ≤ [2w(T ∗)/k +
2h(G)]/k. Thus, by Lemma 1, we obtain cost(P) ≤ 3opt(I). Hence, Algorithm 2
achieves an approximation ratio of 3. �	

3.2 Inapproximability Result for PCPSHT-SD

We establish an inapproximability result for PCPSHT-SD as follows.

Theorem 2. Unless NP = P, there is no polynomial-time (4/3 − ε)-
approximation algorithm for the PCPSHT-SD, for any ε > 0, even if h(v) = 0
for all v ∈ V .

Proof. Suppose there exists a (4/3 − ε)-approximation algorithm for ε > 0 for
the PCPSHT-SD with h(v) = 0 for all v ∈ V . We are going to show that
this algorithm can be used to solve the following problem of three dimensional
matching (3DM), a well known NP-complete problem, in polynomial time, which
contradicts to NP 
= P.

We first introduce the problem of 3DM [7]. Given a set M ⊆ W × X × Y
with |M | = m, where W , X and Y are disjoint sets with the same number of
n elements. 3DM is to decide whether M contains an exact matching M ′ ⊆ M
such that |M ′| = n and no two elements of M ′ agree in any coordinate.
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Fig. 1. A component for each tuple Mi = (w, x, y) ∈ M used in transforming the 3DM
to the PCPSHT-SD with handling times all equals to zeros

Given any 3DM instance, consider an instance I = (G, k, r, w, h), defined as
follows, of the PCPSHT-SD with handling times all equal to zeros. As shown in
Figure 1, we use a local replacement to substitute any tuple Mi = (w, x, y) ∈ M ,
where 1 ≤ i ≤ m, with a component of a complete graph G = (V,E) with edge
weights w. We define V = {r}∪W ∪X ∪Y ∪m

i=1 {qi,j : 1 ≤ j ≤ 6} with h(v) = 0
for all v ∈ V . For each edge shown in the Figure 1, we set its edge weight to be
1, and for other edges of G, we set their edge weights all equal to 2. It is easy to
verify that w forms a metric. Finally, we set k = n + 2m.

We are now going to show that the 3DM instance has an exact matching if
and only if the (4/3 − ε)-approximation algorithm for the PCPSHT-SD returns
a feasible solution to instance I with cost at most 3.

On one hand, if the 3DM has an exact matching M ′, then a feasible solution
P to I can be obtained by including three paths, (rxqi,3qi,6), (rqi,1qi,2w), and
(rqi,4qi,5y), for each Mi = (w, x, y) ∈ M ′, and including two paths, (rqi,1qi,2qi,3),
and (rqi,4qi,5qi,6), for each Mi = (w, x, y) ∈ M\M ′. Thus, we have |P| = 3|M ′|+
2(|M | − |M ′|) = k. Since M ′ is an exact matching for the 3DM instance, each
vertex of V \ {r} must be covered by a unique path in P. Notice that each path
in P contains the depot r, and has a total weight of 3. We know P is a feasible
solution to instance I with cost exactly equal to 3. Thus, opt(I) ≤ 3. Since the
edge and vertex weights are integers, and since ε > 0, the (4/3−ε)-approximation
algorithm must return a feasible solution to instance I with cost at most 3.

On the other hand, if the (4/3−ε)-approximation algorithm returns a feasible
solution P , to instance I of the PCPSHT-SD, with cost(P) ≤ 3, then since the
weight of each edge is either 1 or 2, each path of P must contain at most four
vertices of V , and start from the depot r. Moreover, since |V − {r}| = 6m + 3n,
and since k = 2m+n, each path of P must contain exact four vertices (including
r) with each edge having weight equal to one, and no two paths of P can share
the same vertex in V − {r}.

Therefore, for each Mi = (w, x, y) ∈ M , as shown in Figure 1, qi,4 must be
covered by either the path (rqi,4qi,5y) or the path (rqi,4qi,5qi,6), but not both.
This implies that exact one of the two paths must be in P. We therefore construct
M ′ by including those Mi = (w, x, y) ∈ M with (rqi,4qi,5y) ∈ P, for 1 ≤ i ≤ m.
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To prove that M ′ is an exact matching for the 3DM, consider any element
Mi = (w, x, y) ∈ M . If Mi ∈ M ′, then (rqi,4qi,5y) ∈ P, which implies that the
path (rxqi,3qi,6) must be in P to cover qi,6, and that the path (rqi,1qi,2w) must
be in P to cover qi,1. Thus, since no two paths of P can share the same vertex
in V −{r}, no elements in M other than Mi can match w, x, or y. Therefore, no
two elements of M ′ can agree in any coordinate. Furthermore, if Mi ∈ M \M ′,
then (rqi,4qi,5qi,6) ∈ P, which implies that the path (rqi,1qi,2qi,3) must be in P
to cover qi,1 and qi,3. Thus, we obtain |P| = 3|M ′| + 2(|M | − |M ′|), implying
|M ′| = |P| − 2|M | = k − 2m = n. Therefore, M ′ is an exact matching. �	

4 PCPSHT-ND

4.1 Algorithm for the PCPSHT-ND

Algorithm 3 for the PCPSHT-ND is also based on the Tour Splitting Procedure
(Algorithm 1). Given a bound λ for opt(I) of any PCPSHT-ND instance I,
as shown in Lemma 3, Algorithm 3 either returns “λ is too small” (implying
λ < opt(I)), or returns a feasible solution P with cost at most 4λ, in polynomial
time. Since opt(I) is bounded by the interval [0, 2w(T ∗) + h(G)], we can apply
a binary search to obtain a closed value λ, such that Algorithm 3 will return a
feasible solution with cost at most 4λ, and that for any ε > 0, Algorithm 3 will
return and guarantee that (λ − ε) is too low. Thus, a polynomial time (4 + ε)-
approximation algorithm can be obtained.

Algorithm 3 (PCPSHT-ND)
Input: Instance I = (G, k, w, h) of the PCPSHT-ND, and λ > 0
Output: Feasible solution P to I.

1. Remove all the edges with weights greater than λ. Let G′ denote the remaining
graph, and G1, G2, ..., Gm denote the connected components of G′.

2. For 1 ≤ i ≤ m, find a minimum spanning tree T ∗i of Gi, and double all edges
of T ∗i to induce a tour Ci that covers all vertices of Gi.

3. For 1 ≤ i ≤ m, apply Algorithm 1 on (Ci, si, ki,Bi), where si is any vertex
of Ci, and ki equals �w′(Ci)/4λ�, and Bi = (4λ, . . . , 4iλ, . . . , 4(ki − 1)λ), to
split Ci into ki segments denoted by Si,j for 1 ≤ j ≤ ki.

4. If
∑m

i=1 ki > k, return “λ is too small”. Otherwise, return a path set P =
{Si,j : 1 ≤ i ≤ m, 1 ≤ j ≤ ki}.

Lemma 3. Given any instance I of the PCPSHT-ND, and given any λ > 0,
Algorithm 3 runs in polynomial time. If Algorithm 3 returns “λ is too small’,
then λ < opt(I); otherwise, the path cover P that Algorithm 3 returns is a feasible
solution to I with cost(P) ≤ 4λ.

Proof. The polynomial time complexity of Algorithm 3 is easy to be verified.
If Algorithm 3 returns “λ is too small”, then

∑
i ki > k. To prove opt(I) > λ

by contradiction, suppose opt(I) ≤ λ, which implies that there exists an optimal
solution P∗ to I, containing at most k paths, with cost(P∗) ≤ λ. Thus there is
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no path in P∗ that contains an edge whose two endpoints belong to two different
connected components of G′, where G′ is the remaining graph, as defined in Step
1, obtained by removing edges with weights greater than λ from G. Hence, for
1 ≤ i ≤ m, let k∗i denote the number of paths in P∗ that belong to the connected
component Gi of G′. From these k∗i paths, we can connect all vertices of Gi by
adding at most (k∗i − 1) edges of Gi, whose edge weights must be less than or
equal to λ. Since each path of P∗ has a total weight less than or equal to λ, we
obtain that w(T ∗i ) ≤ k∗i λ + (k∗i − 1)λ− h(T ∗i ).

By λ > 0, we have k∗i ≥ �w(T ∗i ) + h(T ∗i )]/(2λ)�. By Step 2 of Algorithm 3,
w(Ci) ≤ 2w(T ∗i ), which implies w′(Ci) ≤ 2[w(T ∗i ) + h(T ∗i )] by (2). Hence,

k∗i ≥ �w′(Ci)/(4λ)�. (6)

Since
∑m

i=1 ki > k and ki = �w′(Ci)/(4λ)�, we obtain
∑m

i=1 k∗i > k, implying
|P∗| > k, leading to a contradiction. Thus, opt(I) ≤ λ

Otherwise, Algorithm 3 returns a path set P. According to Step 2 of
Algorithm 3, we have ∪m

i=1V (Ci) = V . According to Lemma 1, we have
∪ki

j=1V (Si,j) = Ci for 1 ≤ i ≤ m. Thus, by Step 4 of Algorithm 3, P must
cover all vertices of V . Furthermore, each path Si,j ∈ P, where 1 ≤ i ≤ m
and 1 ≤ j ≤ ki is a segment split from Ci by Algorithm 1 in Step 2. By
Lemma 1, since Bi = (4λ, . . . , 4iλ, . . . , 4(ki−1)λ), we obtain w(Si,j)+h(Si,j) ≤
max{4λ,w′(Ci) − 4(ki − 1)λ}. By the definition of ki, w′(Ci) − 4(ki − 1)λ ≤
4kiλ−4(ki−1)λ ≤ 4λ, which implies w(Si,j)+h(Si,j) ≤ 4λ. Hence, cost(P) ≤ 4λ.

�	

From Lemma 3, we can directly obtain a (4 + ε)-approximation algorithm by a
binary search, for any ε > 0, due to the arguments in beginning of this section.

Theorem 3. For any ε > 0, there exists a polynomial time (4+ε)-approximation
algorithm for the PCPSHT-ND.

4.2 Inapproximation Result for PCPSHT-ND

In the following content, theorem 4 presents the inapproximability result for the
PCPSHT-ND:

Theorem 4. Unless NP = P, there is no polynomial time (3/2 − ε)-
approximation algorithm for the PCPSHT-ND, for any ε > 0, even if h(v) = 0
for all v ∈ V .

Proof. Suppose there exists a (3/2−ε)-approximation algorithm for ε > 0 for the
PCPSHT-ND with h(v) = 0 for all v ∈ V . Similar to the proof of Theorem 2, we
are going to show that this algorithm can be used to solve the 3DM in polynomial
time, which contradicts to NP 
= P.

Given any 3DM instance (W,X, Y,M), let us consider an instance I =
(G, k, w, h), defined as follows, of the PCPSHT-ND with h(v) = 0 for all v ∈ V ,
as shown in Figure 2, for each edge shown in the Figure 2, we set its edge weight
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Fig. 2. A component for each tuple Mi = (w, x, y) ∈ M used in transforming the 3DM
to the PCPSHT-ND with handling times all equals to zeros

to be 1, and for other edges of G, we set their edge weights all equal to 2. It is
easy to verify that w forms a metric. Finally, we set k = n + 3m.

We are now going to show that the 3DM instance has an exact matching if
and only if the (3/2− ε)-approximation algorithm for the PCPSHT-ND returns
a feasible solution to instance I with cost at most 2.

On one hand, if the 3DM instance has an exact matching M ′, then a feasible
solution P to I can be obtained by including four paths, (wqi,8qi,7), (yqi,5qi,4),
(xqi,2qi,1), and (qi,3qi,6qi,9), for each Mi = (w, x, y) ∈ M ′, and including three
paths, (qi,1qi,2qi,3), (qi,4qi,5qi,6), and (qi,7qi,8qi,9), for each Mi = (w, x, y) ∈
M\M ′. Similarly to Theorem 2, we can verify that the (3/2− ε)-approximation
algorithm returns a feasible solution with cost at most 2.

On the other hand, if the (3/2−ε)-approximation algorithm returns a feasible
solution P, to instance I, with cost(P) ≤ 2, we can M ′ by including those
Mi = (w, x, y) ∈ M with (yqi,5qi,4) ∈ P, for 1 ≤ i ≤ m. Similarly to the proof of
Theorem 2, it can be verified that such M ′ is an exact matching. �	

5 PCPSHT-DS

For an instance I of the PCPSHT-DS, we can extent Algorithm 3 by connecting
each path to its nearest depot in the depot set to obtain a feasible solution. It
can be verified that, for any vertex v, minr∈R{w(r, v)+h(r)} ≤ opt(I). Similarly
to Theorem 3, we can obtain that the approximation ratio of the algorithm to
the PCPSHT-DS is (5 + ε), for any ε > 0.

Since the PCPSHT-ND is a special instance of the PCPSHT-DS, the approx-
imation hardness of the PCPSHT-DS is at least 3/2.

6 Concluding Remarks

In this paper, we have presented improved approximation algorithms and inap-
proximability results for three variants of the min-max path cover problem with
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service handling time. Our future research may include to reduce the gap between
approximation ratios and inapproximability results for different variants of the
PCPSHT. An alternative direction is to develop approximation algorithms for
problems similar to the PCPSHT, but with more complicated side constraints,
such as the vehicle capacity constraint.
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Abstract. Given a polygon and a visibility range, the Myopic Watch-
man Problem with Discrete Vision (MWPDV) asks for a closed path P
and a set of scan points S, such that (i) every point of the polygon is
within visibility range of a scan point; and (ii) path length plus weighted
sum of scan number along the tour is minimized. Alternatively, the bi-
criteria problem (ii’) aims at minimizing both scan number and tour
length. We consider both lawn mowing (in which tour and scan points
may leave P ) and milling (in which tour, scan points and visibility must
stay within P ) variants for the MWPDV; even for simple special cases,
these problems are NP-hard.

We sketch a 2.5-approximation for rectilinear MWPDV milling in grid
polygons with unit scan range; this holds for the bicriteria version, thus
for any linear combination of travel cost and scan cost. For grid polygons
and circular unit scan range, we describe a bicriteria 4-approximation.
These results serve as stepping stones for the general case of circular scans
with scan radius r and arbitrary polygons of feature size a, for which
we extend the underlying ideas to a π( r

a
+ r+1

2 ) bicriteria approximation
algorithm. Finally, we describe approximation schemes for MWPDV lawn
mowing and milling of grid polygons, for fixed ratio between scan cost
and travel cost.

1 Introduction

Covering a given polygonal region by a small set of disks or squares is a problem
with many applications. Another classical problem is finding a short tour that
visits a number of objects. Both of these aspects have been studied separately,
with generalizations motivated by natural constraints.

In this paper, we study the combination of these problems, originally moti-
vated by challenges from robotics, where accurate scanning requires a certain
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(a)

(b) (c)

Fig. 1. (a) An MWPDV solution with a minimum number of scans; (b) an MWPDV
solution with a minimum tour length. (c) A minimum guard cover may involve scan
points that are not from an obvious set of candidate points.

amount of time for each scan; obviously, this is also the case for other surveil-
lance tasks that combine changes of venue with stationary scanning. The crucial
constraints are (a) a limited visibility range, and (b) the requirement to stop
when scanning the environment, i.e., with vision only at discrete points. These
constraints give rise to the Myopic Watchman Problem with Discrete Vision
(MWPDV), the subject of this paper.

For a scan range that is not much bigger than the feature size of the poly-
gon, the MWPDV combines two geometric problems that allow approximation
schemes (minimum cover and TSP). This makes it tempting to assume that
combining two approximation schemes will yield a polynomial-time approxima-
tion scheme (PTAS), e.g., by using a PTAS for minimum cover (Hochbaum and
Maass [11]), then a PTAS for computing a tour on this solution. As can be seen
from Figure 1 (a) and (b), this is not the case; moreover, an optimal solution
depends on the relative weights of tour length and scan cost. This turns the task
into a bicriteria problem; the example shows that there is no simultaneous PTAS
for both aspects. As we will see in Sections 3 and 4, a different approach allows
a simultaneous constant-factor approximation for both scan number and tour
length, and thus of the combined cost. We show in Section 7, a more involved
integrated guillotine approach allows a PTAS for combined cost in the case of a
fixed ratio between scan cost and travel cost.

A different kind of difficulty is highlighted in Figure 1 (c): For a visibility
range r that is large compared to the feature size a, it may be quite hard to
determine a guard cover of small size. In fact, there is no known constant-factor
approximation for minimum guard cover in general polygons; currently, the best
result is an O(logOPT )-approximation by Efrat and Har-Peled [7]. In addition,
the optimal solution may change significantly with the relative weights between
tour length: If tour length dominates the number of scans, an optimal tour can
be forced to follow the row of niches on the right. We will show in Section 6 how
to obtain a constant-factor approximation for bounded value r

a .

Related Work. Closely related to practical problems of searching with an au-
tonomous robot is the classical theoretical problem of finding a shortest watch-
man tour; e.g., see [4,5]. Planning an optimal set of scan points (with unlimited
visibility) is the art gallery problem [14]. Finally, visiting all grid points of a given
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set is a special case of the classical Traveling Salesman Problem (TSP); see [12].
Two generalizations of the TSP are the so-called lawn mowing and milling prob-
lems: Given a cutter of a certain shape, e.g., an axis-aligned square, the milling
problem asks for a shortest tour along which the (center of the) cutter moves,
such that the entire region is covered and the cutter stays inside the region at all
times. Clearly, this takes care of the constraint of limited visibility, but it fails
to account for discrete visibility. At this point, the best known approximation
method for milling is a 2.5-approximation [2]. Related results for the TSP with
neighborhoods (TSPN) include [6,13]; further variations arise from considering
online scenarios, either with limited vision [3] or with discrete vision [10,8], but
not both. Finally, [1] consider covering a set of points by a number of scans, and
touring all scan points, with the objective function being a linear combination
of scan cost and travel cost; however, the set to be scanned is discrete, and scan
cost is a function of the scan radius, which may be small or large.

For an online watchman problem with unrestricted but discrete vision, Fekete
and Schmidt [10] present a comprehensive study of the milling problem, including
a strategy with constant competitive ratio for polygons of bounded feature size
and with the assumption that each edge of the polygon is fully visibly from
some scan point. For limited visibility range, Wagner et al. [15] discuss an online
strategy that chooses an arbitrarily uncovered point on the boundary of the
visibility circle and backtracks if no such point exists. For the cost they only
consider the length of the path used between the scan points, scanning causes
no cost. Then, they can give an upper bound on the cost as a ratio of total area
to cover and squared radius.

Our Results. On the positive side, we give a 2.5-approximation for the case
of grid polygons and a rectangular range of unit-range visibility, generalizing
the 2.5-approximation by Arkin, Fekete, and Mitchell [2] for continuous milling.
The underlying ideas form the basis for more general results: For circular scans
of radius r = 1 and grid polygons we give a 4-approximation. Moreover, for
circular scans of radius r and arbitrary polygons of feature size a, we extend the
underlying ideas to a π( r

a + r+1
2 )-approximation algorithm. All these results also

hold for the bicriteria versions, for which both scan cost and travel cost have
to approximated simultaneously. Finally, we present a PTAS for MWPDV lawn
mowing, and sketch a PTAS for MWPDV milling, both for the case of fixed ratio
between scan cost and travel cost.

2 Notation and Preliminaries

We are given a polygon P . In general, P may be a polygon with holes; in Sections
3, 4 and 5, P is an axis-parallel polygon with integer coordinates.

Our robot, R, has discrete vision, i.e., it can perceive its environment when
it stops at a point and performs a scan, which takes c time units. From a scan
point p, only a ball of radius r is visible to R, either in L∞- or L2-metric. A set
S of scan points covers the polygon P , if and only if for each point q ∈ P there
exists a scan point p ∈ S such that q sees p (i.e., qp ⊂ P ) and |qp| ≤ r.
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We then define the Myopic Watchman Problem with Discrete Vision (MW-
PDV) as follows: Our goal is to find a tour T and a set of scan points S(T ) that
covers P , such that the total travel and scan time is optimal, i.e., we minimize
t(T ) = c · |S(T )| + L(T ), where L(T ) is the length of tour T . Alternatively, we
may consider the bicriteria problem, and aim for a simultaneous approximation
of both scan number and tour length.

3 NP-Hardness

Even the simplest and extreme variants of MWPDV lawn mowing are still gen-
eralizations of NP-hard problems; proofs are omitted.

Theorem 1. (1) The MWPDV is NP-hard, even for polyominoes and small or
no scan cost, i.e., c % 1 or c = 0.

(2) The MWPDV is NP-hard, even for polyominoes and small or no travel
cost, i.e., c & 1 or t(T ) = |S|.

4 Approximating Rectilinear MWPDV Milling for
Rectangular Visibility Range

As a first step (and a warmup for more general cases), we sketch an approxima-
tion algorithm for rectilinear visibility range in rectilinear grid polygons.

Our approximation proceeds in two steps; details can be found in [9].

(I) Construct a set of scan points that is not larger than 2.5 times a minimum
cardinality scan set.

(II) Construct a tour that contains all constructed scan points and that does
not exceed 2.5 times the cost of an optimum milling tour.

First we describe how to construct a covering set of scan points:

1. Let S4e be the “even quadruple” centers of all 2x2-squares that are fully
contained in P , and which have two even coordinates.

2. Remove all 2x2-squares corresponding to S4e from P ; in the remaining poly-
omino P4e, greedily pick a maximum disjoint set S4o of “odd quadruple”
2x2-squares.

3. Remove all 2x2-squares corresponding to S4o from P4e; greedily pick a max-
imum disjoint set S3 of “triple” 2x2-squares that cover 3 pixels each in the
remaining polyomino P4e,4o,

4. Remove all 2x2-squares corresponding to S3 from P4e,4o; in the remaining set
P4e,4o,3 of pixels, no three can be covered by the same scan. Considering edges
between pixels that can be covered by the same scan, pick a minimum set of
(“double” S2 and “single” S1) scans by computing a maximum matching.

Claim 1. The total number of scans is at most 2.5 times the size of a minimum
cardinality scan set.
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Fig. 2. An example for our approximation method: The set of “even quadruple”scans
is shown in gray; the “odd quadruple” scans are light gray. A possible (greedy!) set of
“triple” scan is shown in black, leaving the maximum matching (and the corresponding
“double scans”) shown in dark gray. The leftover single pixels are filled squares. The
ellipse indicates a part that is covered by three scans instead of two: the triple scan
with adjacent single and double scans could be covered by two triple scans.

Claim 2. All scan points lie on a 2.5-approximative milling tour.

The tour consists of (a) a “boundary” part following the contour of the polygon;
(b) a “strip” part that covers the interior; (c) a “matching” part that allows an
Eulerian tour. The cost for (a) and (b) is L(T ∗), while (c) can be bounded by
L(T ∗)/2. Proofs are omitted for lack of space.

Theorem 2. A polyomino P allows a MWPDV with rectangular vision solution
that contains at most 2.5 times the minimum number of scans necessary to scan
the polygon, and has tour length at most 2.5 times the length of an optimum
milling tour.

5 Approximating Rectilinear MWPDV Milling for
Circular Visibility Range

When considering a circular scan range, one additional difficulty are boundary
effects of discrete scan points: While continuous vision allows simply sweeping a
corridor of width 2r, additional cleanup is required for the gaps left by discrete
vision; this requires additional mathematical arguments.

We overlay the polyomino with a point grid as in Figure 3, left, i.e., a diagonal
point grid with L2-distance of

√
2. These are used as scan points; it is relatively

straightforward to prove that this number is within a factor of 4 of the optimum
number of scans.

For the movement between interior scan points and the boundary we use
horizontal strips located on grid lines (and distance 1 to the boundary). As
before, these are combined with a boundary tour. As strip ends do not fully
extend to the boundary of the polygon, we link pairs of strips and connect them
to the left boundary, other scan points are visited by paths of length 2 from the
boundary. This can be achieved at the cost of one additional tour; see Figure 3,
right, for an example.
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Fig. 3. Left: Point grid (light gray) with grid points within a polyomino (black) in
dark gray. Circular visibility ranges of the grid points covering the plane, one square
of side length

√
2 is indicated by a dashed line. Right: A polyomino P with the tour

given by our strategy. Scan points are displayed in black. The horizontal strips of total
length Lstrips are indicated in bold light gray, the tour is in black for the links to the
boundary and between strips (dotted) as well as for connections of points (dash-dotted)
and parts located on the strips are indicated as a continuous line. (The rest of the tour
runs on the boundary.)

Theorem 3. A polyomino P allows a MWPDV solution for a circular visibility
range with r = 1 that is 4-competitive.

6 Approximating General MWPDV Milling for a
Circular Visibility Range

In this section we discuss MWPDV milling for a circular visibility range r in
general polygons. As discussed in Section 1, even the problem of minimum guard
coverage has no known constant-factor approximation; therefore, we consider a
bounded ratio r/a between visibility range and feature size.

Just as in the rectilinear case for a rectilinear scan range, our approximation
proceeds in the two steps (I) and (II), see Section 4.

We start with a description of the second step, which will form the basis for
the placement of scan points. Just as in the rectilinear case, we consider three
parts.

(1) A “boundary” part: We use two “boundary tours” within distance of (at
most) 1

2r and (at most) 3
2r to the boundary, TR1 and TR2 of length LTR1

and LTR2, respectively. With LδB denoting the length of the boundary δB of
B (B ⊂ P is the inward offset region of all points within P that are feasible
placements for the center of a milling cutter), we get:

LTR1 + LTR2 = 2 · LδB ≤ 2 · L(T ∗) (1)

(The length of the three tours differs at the vertices: drawing a line per-
pendicular there from TR2 to TR1 the Intercept Theorem shows that the
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distance to the diagonal through the vertices of all tours on TR1 is twice as
much as on the boundary tour with distance r to the boundary.)
The two “boundary” tours allow us to cover a corridor of width 2r with a
bounded number of scans, while (1) enables us to bound the tour length in
terms of the optimal length.

(2) A “strip” part: For the interior we use strips again: Pint := P\PδB—if
nonempty—can be covered by a set of k1 horizontal strips Σ1

i . The y-
coordinates of two strips differ by multiples of 2r. We can consider another
set of strips, Σ2

i , shifted by r. Then, let Lj
str =

∑kj

i=1 LΣj
i
. Similar to the

argument for L∞, we have L1
str + L2

str ≤ 2 · L(T ∗).
(3) A “matching” part: In order to combine the two “boundary parts” and the

two sets of strips for a tour we add two more set of sections.
• The center lines of the strips have a distance of r to the boundary, thus

they do not yet touch TR1. Consequently, we add 1/2r to each center line
(on each end). For that purpose, we consider the matchings as defined
above. (Consider the endpoints of strips on δBi: every δBi contains an
even number of such endpoints. Hence, every δBi is partitioned into two
disjoint portions, M1(δBi) and M2(δBi). Using the shorter of these two
(M∗(δBi)) for every δBi we obtain for the combined length, LM : LM ≤
Lstr/2 ≤ L(T ∗)/2.) Because two strips are at least a distance of r apart,
the connection to TR1 costs less than 1/2 ·LM ≤ 1/2 ·Lstr/2 ≤ L(T ∗)/4.

• Moreover, we consider the above matchings defined on TR1 and insert
the shorter sections of the disjoint parts, (M1

∗ (δBi)), for every δBi. The
Intercept Theorem in combination with the analogously defined sections
on TR2 enables us to give an upper bound of LM1 ≤ Lstr ≤ L(T ∗).

Starting on some point on TR1, tracing the strips, and the inner “boundary”
TR2 at once when passing it yields a tour; the above inequalities show that
L(T ) ≤ 21/4 · L(T ∗).

Now we only have to take care of (I), i.e., construct an appropriate set of scan
points. For the “boundary” part we place scans with the center points located
on TR1 and TR2 in distance

√
3 · r if possible, but at corners we need to place

scans, so the minimum width we are able to cover with the two scans (on both
tours) is a. For the “strip” part the distance of scans is also

√
3 · r on both strip

sets, exactly the distance enabling us to cover a width of r.
It remains to consider the costs for the scans. We start with the inner part.

Taking scans within a distance of
√

3 · r, we may need the length divided by this
value, plus one scan. We only charge the first part to the strips, the (possible)
additional scans are charged to the “boundary” part, as we have no minimum
length of the strips. The optimum cannot cover more than πr2 with one scan.
Let Lstr = max(L1

str, L
2
str):

|S(T ∗)| ≥ Lstr

πr/2
, |S(T )| ≤ 2Lstr√

3 · r
⇒ |S(T )|

|S(T ∗)| ≤
2Lstr√

3 · r
· πr/2
Lstr

=
π√
3

(2)

Finally, we consider the “boundary”. We assume LδB ≥ 1. So |S(T ∗)| ≥ LδB

πr/2 .
We may need to scan within a distance of a—on two strips—, need additional
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scans and have to charge the scans from the “strip” part, hence, this yields:
|S(T )| ≤ LδB

a/2 + 1 + LδB

r . Consequently, for r ≥ a: |S(T )|
|S(T ∗)| ≤

πr
a + πr

2 + π
2 .

Theorem 4. A polygon P allows a MWPDV solution that contains at most a
cost of max(21

4 , πr
a + πr

2 + π
2 ) times the cost of an optimum MWPDV solution

(for r ≥ a).

Note that Theorem 4 covers the case from Section 5; however, instead of the
custom-built factor of 4 it yields a factor of 2 · π.

7 A PTAS for MWPDV Lawn Mowing

We describe here the following special case, which we generalize in the full paper.
Consider a polyomino P (the “grass”) that is to be “mowed” by a k× k square,
M . At certain discrete set S(T ) of positions of M along a tour T , the mower
is activated (a “scan” is taken), causing all of the grass of P that lies below M
at such a position to be mowed. For complete coverage, we require that P be
contained in the union of k × k squares centered at points S(T ). Between scan
positions, the mower moves along the tour T .

In this “lawn mower” variant of the problem, the mower is not required to be
fully inside P ; the mower may extend outside P and move through the exterior
of P , e.g., in order to reach different connected components of P . Since P may
consist of singleton pixels, substantially separated, the problem is NP-hard even
for k = 1, from TSP.

Here we describe a PTAS for the problem. We apply the m-guillotine method,
with special care to handle the fact that we must have full coverage of P . Since
the problem is closely related to the TSPN [6,13], we must address some of
the similar difficulties in applying PTAS methods for the TSP: in particular, a
mower centered on one side of a cut may be responsible to cover portions of P
on the opposite side of the cut.

At the core of the method is a structure theorem, which shows that we can
transform an arbitrary tour T , together with a set S(T ) of scan points, into a
tour and scan-point set, (TG,S(TG)), that are m-guillotine in the following sense:
the bounding box of the set of k×k squares centered at S(T ) can be recursively
partitioned into a rectangular subdivision by “m-perfect cuts”. An axis-parallel
cut line � is m-perfect if its intersection with the tour has O(m) connected
components and its intersection with the union of k × k disks centered at scan
points consists of O(m) disks or “chains of disks” (meaning a set of disks whose
centers lie equally spaced, at distance k, along a vertical/horizontal line).

The structure theorem is proved by showing the following lemma; the proof
is omitted due to lack of space and can be found in the full version of the paper.

Lemma 1. For any fixed m = �1/ε� and any choice of (T,S(T )), one can add
a set of doubled bridge segments, of total length O(|T |/m), to T and a set of
O(|S(T )|/m) bridging scans to S(T ) such that the resulting set, (TG,S(TG)), is
m-guillotine, with points S(TG) on tour TG and with TG containing an Eulerian
tour of S(TG).
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The algorithm is based on dynamic programming to compute an optimal m-
guillotine network. A subproblem is specified by a rectangle, R, with integer
coordinates. The subproblem includes specification of boundary information for
each of the four sides of R. The boundary information includes: (i) O(m) integral
points (“portals”) where the tour is to cross the boundary, (ii) at most one
(doubled) bridge and one disk-bridge (chain) per side of R, with each bridge
having a parity (even or odd) specifying the parity of the number of connections
to the bridge from within R, (iii) O(m) scan positions (from S(T )) such that a
k × k square centered at each position intersects the corresponding side of R,
(iv) a connection pattern, specifying which subsets of the portals/bridges are
required to be connected within R. We summarize:

Theorem 5. There is a PTAS for MWPDV lawn mowing of a (not necessarily
connected) set of pixels by a k × k square.

The Milling Variant. Our method does apply also to the “milling” variant of the
MWPDV, in which the scans all must stay within the region P , provided that P
is a simple rectilinear polygon. The details are rather involved and not included
here. The main idea is this: Subproblems are defined, as before, by axis-aligned
rectangles R. The difficulty now is that the restriction of R to P means that
there may be many (Ω(n)) vertical/horizontal chords of P along one side of
R. We can ignore the boundary of P and construct an m-bridge (which we can
“afford” to construct and charge off, by the same arguments as above) for T , but
only the portions of such a bridge that lie inside P (and form chords of P ) are
traversable by our watchman. For each such chord, the subproblem must “know”
if the chord is crossed by some edge of the tour, so that connections made inside
R to a chord are not just made to a “dangling” component. We cannot afford
to specify one bit per chord, as this would be 2Ω(n) information. However, in
the case of a simple polygon P , no extra information must be specified to the
subproblem – a chord is crossed by T if and only if the mower (scan) fits entirely
inside the simple subpolygon on each side of the chord. Exploiting this fact, we
are able to modify our PTAS to apply to MWPDV problem within a simple
rectilinear polygon.

Theorem 6. There is a PTAS for MWPDV milling of a simple rectilinear poly-
gon by a k × k square.

8 Conclusion

A number of open problems remain. Is it possible to remove the dependence on
the ratio (r/a) of the approximation factor in our algorithm for general MWPDV
milling? This would require a breakthrough for approximating minimum guard
cover; a first step may be to achieve an approximation factor that depends on
log(r/a) instead of (r/a).

For combined cost, we gave a PTAS for a lawn mowing variant, based on guil-
lotine subdivisions. The PTAS extends to the milling case for simple rectilinear



402 S.P. Fekete, J.S.B. Mitchell, and C. Schmidt

polygons. It is likely that the PTAS extends to other cases too (circular scan
disks, Euclidean tour lengths), but the generalization to arbitrary domains with
(many) holes seems particularly challenging. Our method makes use of a fixed
ratio between scan cost and travel cost; as discussed in Figure 1, there is no
PTAS for the bicriteria version.
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Abstract. Given an undirected and edge-weighted graph G together
with a set of ordered vertex-pairs, called st-pairs, we consider the prob-
lems of finding an orientation of all edges in G: min-sum orientation

is to minimize the sum of the shortest directed distances between all st-
pairs; and min-max orientation is to minimize the maximum shortest
directed distance among all st-pairs. In this paper, we first show that
both problems are strongly NP-hard for planar graphs even if all edge-
weights are identical, and that both problems can be solved in polynomial
time for cycles. We then consider the problems restricted to cacti, which
form a graph class that contains trees and cycles but is a subclass of
planar graphs. Then, min-sum orientation is solvable in polynomial
time, whereas min-max orientation remains NP-hard even for two st-
pairs. However, based on LP-relaxation, we present a polynomial-time
2-approximation algorithm for min-max orientation. Finally, we give
a fully polynomial-time approximation scheme (FPTAS) for min-max

orientation on cacti if the number of st-pairs is a fixed constant.

1 Introduction

Consider the situation in which we wish to assign one-way restrictions to (nar-
row) aisles in a limited area, such as in an industrial factory, with keeping reacha-
bility between several sites. Since traffic jams rarely occur in industrial factories,
the distances of routes between important sites are of great interest for the
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Fig. 1. (a) Solution for min-sum orientation and (b) solution for min-max orienta-

tion

efficiency. This situation frequently appears in the context of the scheduling of
automated guided vehicles without collision [5]. In this paper, we model the sit-
uation as graph orientation problems, in which we wish to find an orientation so
that the distances of (directed) routes are not so long for given multiple st-pairs.

Let G = (V, E) be an undirected graph together with an assignment of a
non-negative integer, called the weight ω(e), to each edge e in G. Assume that
we are given q ordered vertex-pairs (si, ti), 1 ≤ i ≤ q, called st-pairs. Then, an
orientation of G is an assignment of exactly one direction to each edge in G so
that there exists a directed (si, ti)-path (i.e., a directed path from si to ti) for
every st-pair (si, ti), 1 ≤ i ≤ q. For an orientation G of G and an st-pair (si, ti),
we denote by ω(G, si, ti) the total weight of a shortest directed (si, ti)-path on
G, that is, ω(G, si, ti) = min {ω(P ) | P is a directed (si, ti)-path on G} where
ω(P ) is the sum of weights of all edges in a path P .

We introduce two objective functions for orientations G of a graph G, and
study the corresponding two minimization problems. The first objective is sum-
type, defined as follows: g(G) =

∑
1≤i≤q ω(G, si, ti). Its corresponding problem,

called the min-sum orientation problem, is to find an orientation G of G such
that g(G) is minimum; we denote by g∗(G) the optimal value for G. The second
objective is max-type, defined as follows: h(G) = max{ω(G, si, ti) | 1 ≤ i ≤ q}.
Its corresponding problem, called the min-max orientation problem, is to
find an orientation G of G such that h(G) is minimum; we denote by h∗(G)
the optimal value for G. For the sake of convenience, let g∗(G) = +∞ and
h∗(G) = +∞ if G has no orientation for a given set of st-pairs. Clearly, both
problems can be solved in polynomial time if we are given a single st-pair (s1, t1);
in this case, we simply seek a shortest path between s1 and t1.

Figure 1 illustrates two orientations of the same graph G for the same set
of st-pairs, where the weight ω(e) is attached to each edge e and the direction
assigned to an edge is indicated by an arrow (but the direction is not indicated
if the edge is not used in any shortest directed (si, ti)-path, 1 ≤ i ≤ 3). The
orientation G in Fig.1(a) is an optimal solution for min-sum orientation,
where g∗(G) = g(G) = (1+6+8)+2+(6+5) = 28. On the other hand, Fig.1(b)
illustrates an optimal solution for min-max orientation, in which the st-pair
(s1, t1) has the maximum distance; h∗(G) = max{1+2+9, 4+3+1, 6+5} = 12.

Robbins [7] showed that every 2-edge-connected graph can be directed so
that the resulting digraph is strongly connected. Therefore, a graph G has at
least one orientation for any set of st-pairs if G is 2-edge-connected. Chvátal
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Table 1. Summary of our results

min-sum orientation min-max orientation

planar • strongly NP-hard • strongly NP-hard
graphs • no (2 − ε)-approximation • no (2 − ε)-approximation

cacti O(nq2) • NP-hard even for q = 2
• polynomial-time 2-approximation
• FPTAS for a fixed constant q

cycles O(n + q2) O(n + q2)

and Thomassen [2] showed that it is NP-complete to determine whether a given
unweighted graph can be directed so that the resulting digraph is strongly con-
nected and whose (directed) diameter is 2. This implies that our min-max ori-

entation is NP-hard in general. On the other hand, Hakimi et al. [4] proposed a
quadratic algorithm for the problem of directing a 1-edge-connected graph so as
to maximize the number of ordered vertex-pairs (x, y) having a directed (x, y)-
path. The problem of [4] can be easily reduced to our min-sum orientation.

In this paper, we mainly give the following three results. (Table1 summarizes
our results, where n is the number of vertices in a graph.) The first is to show
that both problems are strongly NP-hard for planar graphs even if all edge-
weights are identical. We remark that the known result of [2] does not imply
NP-completeness for planar graphs. The second is to show that both problems
can be solved in polynomial time for cycles. By extending the algorithm for
cycles, we show that min-sum orientation is solvable in polynomial time for
cacti, whereas min-max orientation remains NP-hard even for cacti with q =
2. (Cacti form a graph class that contains trees and cycles, but is a subclass
of planar graphs.) The third is to give a fully polynomial-time approximation
scheme (FPTAS) for min-max orientation on cacti if q is a fixed constant.

In addition, we give several results on the way to the three main results above.
Firstly, our proof of strong NP-hardness implies that, for any constant ε > 0,
both problems admit no polynomial-time (2−ε)-approximation algorithm unless
P = NP. Secondly, in order to obtain a lower bound and an upper bound on
h∗(G) for a cactus G, we present a polynomial-time 2-approximation algorithm
based on LP-relaxation; we remark that q is not required to be a fixed constant
for this 2-approximation algorithm. We finally remark that our complexity anal-
ysis for min-max orientation on cacti is tight in some sense: the problem is in
P if q = 1, and the problem for cacti cannot be strongly NP-hard if q is a fixed
constant because our third result gives an FPTAS for the problem [6, p. 307].

2 Computational Hardness

In this section, we first show that our two problems are both strongly NP-hard
for planar graphs, and then show that min-max orientation remains NP-hard
even for cacti with q = 2.
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Fig. 2. (a) Flower gadget Fi(M), and (b) planar graph Gφ corresponding to a Boolean
formula φ with three clauses c1 = (u1∨ū2∨u4), c2 = (u2∨u5∨u4) and c3 = (u2∨ū3∨ū5)

Theorem 1. Both min-sum orientation and min-max orientation are
strongly NP-hard for planar graphs even if all edge-weights are identical.

Proof. We show that the planar 3-SAT problem, which is known to be strongly
NP-complete [3,6], can be reduced in polynomial time to min-max orientation.
(The reduction to min-sum orientation is similar.)

In planar 3-SAT, we are given a Boolean formula φ in conjunctive nor-
mal form, say with set U of n variables u1, u2, . . . , un and set C of m clauses
c1, c2, . . . , cm, such that each clause cj ∈ C contains exactly three literals and
the following bipartite graph B = (V ′, E′) is planar: V ′ = U ∪C and E′ contains
exactly those pairs {ui, cj} such that either ui or ūi appears in cj . The planar

3-SAT problem is to determine whether there is a satisfying truth assignment
for φ. Given an instance of planar 3-SAT, we construct the corresponding in-
stance of min-max orientation. We first make a flower gadget Fi(M) for each
variable ui ∈ U , and then construct the whole graph Gφ corresponding to φ.

We first define a flower gadget Fi(M). Let M be a fixed constant (integer) such
that M ≥ 3. The flower gadget Fi(M) = (Vi, Ei) for a variable ui ∈ U consists
of 2m hexagonal elementary cycles, as illustrated in Fig.2(a). (Remember that
m is the number of clauses in φ.) More precisely, Vi = {ak, bk, ck, dk | 1 ≤ k ≤
2m} and Ei = {{ak+1, ak}, {ak, bk}, {bk, ck}, {ck, dk}, {dk, bk+1} | 1 ≤ k ≤ 2m},
where a2m+1 = a1 and b2m+1 = b1. The edge-weights are defined as follows: for
each k, 1 ≤ k ≤ 2m, ω({ak+1, ak}) = ω({bk, ck}) = ω({dk, bk+1}) = M and
ω({ak, bk}) = ω({ck, dk}) = 1. (In Fig.2(a), the weight-M edges are depicted by
thick lines.) Finally, we define the set STi of 12m st-pairs, as follows:

STi ={(ak, dk), (dk, ak), (bk, bk+1), (bk+1, bk), (ck, ak+1), (ak+1, ck) |1 ≤ k ≤ 2m}.

For each k, 1 ≤ k ≤ 2m, the kth hexagonal elementary cycle akbkckdkbk+1ak+1
is called the kth petal Pk; Pk is called an odd petal if k is odd, while is called an
even petal if k is even. We call the edge {ck, dk} in each petal Pk, 1 ≤ k ≤ 2m, an
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external edge of Pk. For the sake of convenience, we fix the embedding of Fi(M)
such that the outer face consists of bk, ck, dk, 1 ≤ k ≤ 2m, which are placed in a
clockwise direction, as illustrated in Fig.2(a).

It is easy to see that Fi(M) has only two optimal orientations for STi: the
one is to direct each odd petal in a clockwise direction and to direct each even
petal in an anticlockwise direction; and the other is the reversed one. In the first
optimal orientation, the external edges {ck, dk} are directed from ck to dk in
all odd petals Pk, while directed from dk to ck in all even petals; we call this
optimal orientation of Fi(M) a true-orientation, which corresponds to assigning
true to the variable ui. On the other hand, the other optimal orientation of
Fi(M) is called a false-orientation, which corresponds to assigning false to ui.
Clearly, h∗(Fi(M)) = 2M + 1.

We now construct the planar graph Gφ corresponding to the formula φ, as
follows. We fix an embedding of the bipartite graph B = (V ′, E′) arbitrarily.
For each variable ui, 1 ≤ i ≤ n, we replace it with a flower gadget Fi(M). For
each clause cj , 1 ≤ j ≤ m, we replace it with a path consisting of three vertices
sj , rj , tj ; let ω({sj, rj}) = ω({rj , tj}) = 2M . We then connect flower gadgets
Fi(M), 1 ≤ i ≤ n, with paths sjrjtj , 1 ≤ j ≤ m, as follows. For each clause
cj , 1 ≤ j ≤ m, let lj1, lj2, lj3 be three literals in cj , and assume without loss
of generality that three flower gadgets corresponding to lj1, lj2, lj3 are placed in
a clockwise direction around the path sjrjtj corresponding to cj . Assume that
ljk is either ui or ūi. Then, we replace the edge of B joining variable ui and
clause cj with a pair of weight-1 edges which, together with an external edge in
Fi(M), forms a path between two vertices chosen from {sj, rj , tj}, according to
the following rules (see Fig.2(b) as an example):

(i) The endpoints of this path are sj and rj if k = 1; rj and tj if k = 2; and
sj and tj if k = 3.

(ii) The external edge is from an even petal if lj1 = ui, lj2 = ui, or lj3 = ūi;
while it is from an odd petal if lj1 = ūi, lj2 = ūi, or lj3 = ui.

(iii) From the viewpoint of variable ui, we choose a distinct external edge for
each clause containing ui, honoring the order of those clauses around ui

and thereby preserving the planarity of the embedding.
Finally, we replace each edge e in Gφ with a path of length ω(e) in which all edges
are of weight 1. (Remember that M is a fixed constant.) Clearly, the resulting
graph Gφ is planar, and can be constructed in polynomial time. The set of all
st-pairs in this instance is defined as follows: (

⋃n
i=1 STi)∪{(sj , tj) | 1 ≤ j ≤ m}.

Therefore, there are (12mn+m) st-pairs in total. This completes the construction
of the corresponding instance of min-max orientation.

Then, deciding whether h∗(Gφ) ≤ 2M + 3 is equivalent to solving planar

3-SAT for φ. (We omit the details due to the page limitation.) �	

From our proof of Theorem 1, we immediately obtain the following corollary.

Corollary 1. For any constant ε > 0, both min-sum orientation and min-

max orientation admit no polynomial-time (2 − ε)-approximation algorithm
for planar graphs unless P = NP.
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A graph G is a cactus if every edge is part of at most one cycle in G [1,8].
Cacti form a subclass of planar graphs. However, we have the following theorem.

Theorem 2. Min-max orientation is NP-hard for cacti even if q = 2.

3 Polynomial-Time Algorithms

The main result of this section is the following theorem.

Theorem 3. Both min-sum orientation and min-max orientation can be
solved in time O(n + q2) for a cycle C, where n is the number of vertices in C.

Proof. Suppose that we are given an edge-weighted cycle C = (V, E) and q st-
pairs (si, ti), 1 ≤ i ≤ q. Note that C has at least one orientation for any set of
st-pairs: simply directing C in a clockwise direction.

For each st-pair (si, ti), 1 ≤ i ≤ q, let cw(i) be the set of all edges in the
directed (si, ti)-path when all edges in C are directed in a clockwise direction,
and let acw(i) be the set of all edges in the directed (si, ti)-path when all edges
in C are directed in an anticlockwise direction. Clearly, for each i, 1 ≤ i ≤ q,
{cw(i), acw(i)} is a partition of E, that is, cw(i)∩acw(i) = ∅ and cw(i)∪acw(i) =
E. We introduce a {0, 1}-variable xi for each st-pair (si, ti), 1 ≤ i ≤ q: if xi = 0,
then the edges in cw(i) are directed in a clockwise direction; if xi = 1, then
the edges in acw(i) are directed in an anticlockwise direction. For two st-pairs
(si, ti) and (sj , tj), it is easy to see that the two corresponding variables xi and
xj have the following constraints (a)–(c):

(a) if cw(i) ∩ acw(j) 
= ∅ and acw(i) ∩ cw(j) 
= ∅, then xi = xj ;
(b) if cw(i) ∩ acw(j) = ∅ and acw(i) ∩ cw(j) 
= ∅, then xi ≤ xj ; and
(c) if cw(i) ∩ acw(j) 
= ∅ and acw(i) ∩ cw(j) = ∅, then xi ≥ xj .

We now construct a constraint graph C in which each vertex vi corresponds
to an st-pair (si, ti) and there is an edge between two vertices vi and vj if and
only if cw(i) ∩ acw(j) 
= ∅ and acw(i) ∩ cw(j) 
= ∅, that is, the corresponding
variables xi and xj have the constraint xi = xj . From an orientation of C, we
can obtain an assignment of {0, 1} to each variable xk, 1 ≤ k ≤ q; clearly, any
two variables satisfy their constraint, and hence two variables xi and xj receive
the same value if their corresponding vertices vi and vj are contained in the
same connected component of C.

Let V = {V1, V2, . . . , Vm} be the partition of the vertex set of C such that each
Vi, 1 ≤ i ≤ m, forms a connected component of C. Then, we define a relation “≤”
on V , as follows: Vi ≤ Vj if and only if there exist two vertices vi ∈ Vi and vj ∈ Vj

such that their corresponding variables xi and xj have the constraint xi ≤ xj .
We show that V is totally ordered under the relation ≤. (However, its proof is
omitted from this extended abstract.) Then, for some index k, 1 ≤ k ≤ m, we
have xi = 0 for all variables xi whose corresponding vertices are contained in
Vj with Vj ≤ Vk; otherwise xi = 1. Therefore, both min-sum orientation and
min-max orientation can be reduced simply to finding such an appropriate
index k on V = {V1, V2, . . . , Vm}. It is now easy to see that both problems can
be solved in time O(n + q2). �	
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By extending Theorem 3, we can easily obtain the following theorem.

Theorem 4. Min-sum orientation can be solved in time O(nq2) for a cactus
G, where n is the number of vertices in G.

4 FPTAS for Min-Max Orientation on Cacti

In contrast to min-sum orientation, min-max orientation remains NP-hard
even for cacti with q = 2. However, in this section, we give an FPTAS for min-

max orientation on cacti if q is a fixed constant.
In Section 4.1 we first present a polynomial-time 2-approximation algorithm

based on LP-relaxation, which gives us both lower and upper bounds on h∗(G)
for a given cactus G. We then show in Section 4.2 that the problem can be solved
in pseudo-polynomial time for cacti. In Section 4.3, we finally give our FPTAS
based on the algorithm in Section 4.2 and using the lower and upper bounds on
h∗(G) obtained in Section 4.1.

It can be easily determined in time O(nq) whether a given cactus G = (V, E)
has an orientation for the given set of st-pairs; we simply check the placements of
st-pairs which pass through each bridge in G. Therefore, we may assume without
loss of generality that G has at least one orientation, and hence h∗(G) 
= +∞.

[Cactus and its underlay tree]
A cactus G can be represented by an underlay tree T , which is a rooted tree and
can be easily obtained from G in a straightforward way. In the underlay tree
T of G, each node represents either a bridge of G or an elementary cycle of G;
and if there is an edge between nodes u and v of T , then bridges or cycles of G
represented by u and v share exactly one vertex in G in common. (A similar idea
can be found in [8, Theorem 11].) Each node v of T corresponds to a subgraph
Gv of G induced by all bridges and cycles represented by the nodes that are
descendants of v in T . Clearly, Gv is a cactus for each node v of T , and G = Gr

for the root r of T . It is easy to see that an underlay tree T of a given cactus G
can be found in linear time, and hence we may assume that a cactus G and its
underlay tree T are given. In Section 4.2, we solve min-max orientation by a
dynamic programming approach based on the underlay tree T of G.

4.1 2-Approximation Algorithm Based on LP-Relaxation

In this subsection, we give the following theorem. It should be noted that the
number q of st-pairs is not required to be a fixed constant in the theorem.

Theorem 5. There is a polynomial-time 2-approximation algorithm for min-

max orientation on cacti.

For each st-pair (si, ti), 1 ≤ i ≤ q, let Ci be the set of elementary cycles
represented by the nodes which are on the path from vsi to vti in the underlay
tree T of a given cactus G, where vsi and vti are the nodes in T containing si

and ti, respectively. Let di be the sum of weights of bridges represented by the
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nodes which are on the path from vsi to vti in T . Clearly, both Ci and di can
be computed in time O(nq) for all st-pairs (si, ti), 1 ≤ i ≤ q.

Consider the following two orientations of G: the one, denoted by Ga, directs
all elementary cycles in G in a clockwise direction; the other, denoted by Gb,
directs all elementary cycles in G in an anticlockwise direction. Clearly, both
Ga and Gb are (feasible) orientations of G. For an st-pair (si, ti), 1 ≤ i ≤ q,
and each elementary cycle c ∈ Ci, we denote by ac

i and bc
i the sums of weights

of the edges which are contained in c and are in the directed (si, ti)-paths on
Ga and Gb, respectively. For each elementary cycle c in G, we call an ordered
index-pair (i, j), 1 ≤ i, j ≤ q, a conflicting pair on c if the directed (si, ti)-
path on Ga and the directed (sj , tj)-path on Gb share at least one edge of c
in common.

For an st-pair (si, ti), 1 ≤ i ≤ q, and each elementary cycle c ∈ Ci, we
introduce two kinds of {0, 1}-variables xc

i and yc
i : if xc

i = 1, then we direct
edges of c so that there is a directed (si, ti)-path which passes through c in a
clockwise direction; if yc

i = 1, then we direct edges of c so that there is a directed
(si, ti)-path which passes through c in an anticlockwise direction.

We are now ready to formulate min-max orientation for a cactus G.

minimize z (1)
subject to xc

i + yc
i = 1, ∀c ∈ Ci, i = 1, . . . , q, (2)

xc
i + yc

j ≤ 1, ∀(i, j) ∈ conflicting pairs on c, ∀c in G, (3)

di +
∑

c∈Ci

(ac
ix

c
i + bc

iy
c
i ) ≤ z, i = 1, . . . , q, (4)

xc
i , yc

i ∈ {0, 1}, ∀c ∈ Ci, i = 1, . . . , q. (5)

Equations (2) and (3) ensure that there are directed (si, ti)-paths for all st-
pairs (si, ti), 1 ≤ i ≤ q. Therefore, according to the values of xc

i and yc
i , we

can find an orientation G of G such that h(G) = z. Thus, minimizing z in Eq.
(1) is equivalent to computing h∗(G) for G. Since the size of the above integer
programming formulation is polynomial in n, its linear relaxation problem can
be solved in polynomial time.

We now propose a polynomial-time 2-approximation algorithm for cacti. Our
algorithm is very simple. We first solve the linear relaxation problem, and obtain
a fractional solution x̄c

i and ȳc
i , whose objective value is z̄. Clearly, h∗(G) ≥ z̄

since h∗(G) is the optimal value for the IP above. We then obtain an integer
solution xc

i and yc
i by rounding the values of x̄c

i and ȳc
i , as follows: xc

i = 1 if
x̄c

i ≥ 0.5, otherwise xc
i = 0; yc

i = 1 if ȳc
i > 0.5, otherwise yc

i = 0. Clearly, xc
i and

yc
i satisfy Eqs. (2), (3) and (5), and hence xc

i and yc
i form a feasible solution for

the IP above; we can thus obtain an orientation of G. Moreover, this algorithm
clearly terminates in polynomial time. Therefore, it suffices to show that the
approximation ratio of this algorithm is 2. Let zA be the objective value for the
solution xc

i and yc
i . Since x̄c

i ≥ 1
2xc

i and ȳc
i ≥ 1

2yc
i , by Eq. (4) we have
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h∗(G) ≥ z̄ = max
{
di +

∑

c∈Ci

(ac
i x̄

c
i + bc

i ȳ
c
i ) | 1 ≤ i ≤ q

}

≥ 1
2

max
{

di +
∑

c∈Ci

(ac
ix

c
i + bc

iy
c
i ) | 1 ≤ i ≤ q

}
=

1
2
zA. (6)

4.2 Pseudo-polynomial-time Algorithm

From now on, assume that the number q of st-pairs is a fixed constant. The main
result of this subsection is the following theorem.

Theorem 6. Min-max orientation can be solved in time O(nU2q) for a cac-
tus G if q is a fixed constant, where U is an arbitrary upper bound on h∗(G) and
n is the number of vertices in G.

As the upper bound U on h∗(G), we will employ the approximation value zA

obtained by the 2-approximation algorithm in Section 4.1; zA can be computed
in polynomial time.

Let G = (V, E) be a given cactus, let v be a node of an underlay tree T
of G, and let Gv be the subgraph of G for the node v. Then, Gv and G \ Gv

share exactly one vertex u in common. Consider an optimal orientation G of
G. (Remember that G has at least one orientation for the given set of st-pairs.)
Then, G naturally induces the “edge-direction” Gv of Gv, which is not always an
orientation for the given set of st-pairs but satisfies the following four conditions:
for each st-pair (si, ti), 1 ≤ i ≤ q,
(a) if both si and ti are in Gv, then a shortest directed (si, ti)-path on G is on

Gv because G is optimal and all edge-weights are non-negative;
(b) if si is in Gv but ti is in G\Gv, then there is a directed (si, u)-path on Gv;
(c) if si is in G \Gv but ti is in Gv, then there is a directed (u, ti)-path on Gv;

and
(d) if neither si nor ti are in Gv, then G has a shortest directed (si, ti)-path

which contains no edge of Gv.
For a q-tuple (x1, x2, . . . , xq) of integers 0 ≤ xi ≤ U , 1 ≤ i ≤ q, an edge-

direction Gv of Gv is called an (x1, x2, . . . , xq)-orientation of Gv if the following
three conditions (a)–(c) are satisfied: for each st-pair (si, ti), 1 ≤ i ≤ q,
(a) if both si and ti are in Gv, then ω(Gv, si, ti) ≤ xi;
(b) if si is in Gv but ti is in G \ Gv, then ω(Gv, si, u) ≤ xi; and
(c) if si is in G \ Gv but ti is in Gv, then ω(Gv, u, ti) ≤ xi.

We then define a set F (Gv) of q-tuples, as follows:

F (Gv) = {(x1, x2, . . . , xq) | Gv has an (x1, x2, . . . , xq)-orientation}.

Our algorithm computes F (Gv) for each node v of T from the leaves to the root
r of T by means of dynamic programming. Since G = Gr, we clearly have

h∗(G) = min
{

max
1≤i≤q

xi | (x1, x2, . . . , xq) ∈ F (Gr)
}

. (7)
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Note that F (Gr) 
= ∅ since G has at least one orientation for the given set of st-
pairs. Therefore, we can always compute h∗(G) by Eq. (7). We omit the details
of our pseudo-polynomial-time algorithm due to the page limitation.

4.3 FPTAS

We finally give the main result of this section, as in the following theorem.

Theorem 7. Min-max orientation admits a fully polynomial-time approxi-
mation scheme for cacti if q is a fixed constant.

As a proof of Theorem 7, we give an algorithm to find an orientation G of
a cactus G with h(G) < (1 + ε)h∗(G) in time polynomial in both n and 1/ε
for any real number ε > 0, where n is the number of vertices in G. Thus, our
approximation value hA(G) for G is h(G), and hence the error is bounded by
εh∗(G), that is,

hA(G) − h∗(G) = h(G) − h∗(G) < εh∗(G). (8)

We now outline our algorithm and its analysis. We extend the ordinary “scal-
ing and rounding” technique [9], and apply it to min-max orientation for a
cactus G = (V, E). For some scaling factor τ > 0, let Gτ be the graph with the
same vertex set V and edge set E as G, but the weight of each edge e ∈ E is de-
fined as follows: ω̄(e) = �ω(e)/τ�. We optimally solve min-max orientation for
Gτ by using the pseudo-polynomial-time algorithm in Section 4.2. We take the
optimal orientation Gτ for Gτ as our approximation solution for G. Then, we can
show that hA(G) − h∗(G) < τ |E|. Intuitively, this inequality holds because the
error occurs at most τ at each edge in Gτ . By Eq. (6) and taking τ = εzA/2|E|,
we have Eq. (8). Since h∗(Gτ ) ≤ |E| + zA

τ = (1 + 2
ε )|E|, by Theorem 6 we can

find the optimal orientation Gτ for Gτ in time O
(
n
(
|E|+ 2|E|

ε

)2q
)

= O
(

n2q+1

ε2q

)
;

since G is a cactus, |E| = O(n).
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Abstract. Let P be an H-polytope in Rd with vertex set V . The ver-
tex centroid is defined as the average of the vertices in V . We first prove
that computing the vertex centroid of an H-polytope, or even just check-
ing whether it lies in a given halfspace, are #P-hard. We also consider
the problem of approximating the vertex centroid by finding a point
within an ε distance from it and prove this problem to be #P-easy by
showing that given an oracle for counting the number of vertices of an H-
polytope, one can approximate the vertex centroid in polynomial time.
We also show that any algorithm approximating the vertex centroid to
any “sufficiently” non-trivial (for example constant) distance, can be
used to construct a fully polynomial-time approximation scheme for ap-
proximating the centroid and also an output-sensitive polynomial algo-
rithm for the Vertex Enumeration problem. Finally, we show that for
unbounded polyhedra the vertex centroid can not be approximated to a

distance of d
1
2−δ for any fixed constant δ > 0.

1 Introduction

An intersection of a finite number of closed halfspaces in Rd defines a polyhedron.
A polyhedron can also be represented as conv(V )+cone(Y ), the Minkowski sum
of the convex hull of a finite set of points V and the cone of a finite set of rays. A
bounded polyhedron is called a polytope. In what follows, we will discuss mostly
polytopes for simplicity and refer to the unbounded case explicitly only towards
the end.

Let P be an H-polytope in Rd with vertex set V . Various notions try to capture
the essence of a “center” of a polytope. Perhaps the most popular notion is that
of the center of gravity of P . Recently Rademacher proved that computing the
center of gravity of a polytope is #P-hard [8]. The proof essentially relies on the
fact that the center of gravity captures the volume of a polytope perfectly and
that computing the volume of a polytope is #P-hard [4]. Note that, polynomial
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algorithms exist that approximate the volume of a polytope within any arbitrary
factor [5]. It is also easy to see that the center of gravity can be approximated
by simply sampling random points from the polytope, the number of samples
depending polynomially on the desired approximation (See Algorithm 5.8 of [5]).

In this paper we study a variant of the notion of “center” defined as the
centroid (average) of the vertices of P . Despite being quite a natural feature of
polytopes, this variant seems to have received very little attention both from
theoretical and computational perspectives. Throughout this paper we will refer
to the vertex centroid just as centroid. The reader should note that in popular
literature the word centroid refers more commonly to the center of gravity. We
nevertheless use the same terminology for simplicity of language. Our motivation
for studying the centroid stems from the fact that the centroid encodes the
number of vertices of a polytope. As we will see, this also makes computing the
centroid hard.

The parallels between centroid and the center of gravity of a polytope mimic
the parallels between the volume and the number of vertices of a polytope.
Computing the volume is #P-complete [4] but it can be approximated quite
well [5]. Accordingly, the problem of computing the corresponding centroid is
hard ([8], Theorem 1) but the volume centroid can be approximated quite well
[5]. On the other hand computing the number of vertices is not only #P-complete
[3,7], it can not be approximated within any factor polynomial in the number
of facets and the dimension. As we will see in this paper, computing the vertex
centroid of an H-polytope exactly is #P-hard. Even approximating the vertex
centroid for unbounded H-polyhedra turns out to be NP-hard. We do not know
the complexity of approximating the vertex centroid of an H-polytope (bounded
case).

The problem of enumerating vertices of an H-polytope has been studied for a
long time. However, in spite of years of research it is neither known to be hard
nor is there an output sensitive polynomial algorithm for it. A problem that
is polynomially equivalent to the Vertex Enumeration problem is to decide if a
given list of vertices of an H-polytope is complete [1]. In this paper we show
that any algorithm that approximates the centroid of an arbitrary polytope to
any “sufficiently” non-trivial distance can be used to obtain an output sensitive
polynomial algorithm for the Vertex Enumeration problem.

The main results of this paper are the following:

(I) Computing the centroid of an H-polytope is #P-hard, and it remains #P-
hard even just to decide whether the centroid lies in a halfspace.

(II) Approximating the centroid of an H-polytope is #P-easy.
(III) Any algorithm approximating the centroid of an arbitrary polytope within

a distance d
1
2−δ for any fixed constant δ > 0 can be used to obtain a

fully polynomial-time approximation scheme for the centroid approxima-
tion problem and also an output sensitive polynomial algorithm for the
Vertex Enumeration problem.
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(IV) There is no polynomial algorithm that approximates the vertex centroid of
an arbitrary H-polyhedron within a distance d

1
2−δ for any fixed constant

δ > 0, unless P = NP .

The first two results in (I) follow easily from the hardness of counting the
number of vertices of an H-polytope. The next result is obtained by repeatedly
slicing the given polytope, in a way somewhat similar to the one used to prove
that computing the center of gravity is #P-hard [8]. The bootstrapping result
in (III) is obtained by taking the product of the polytope with itself sufficiently
many times. Using this result, and building on a construction in [6], we prove
(IV). Namely, we use a modified version of the construction in [6] to show that
it is NP-hard to approximate the centroid within a distance of 1/d, then we
use the result in (III) to bootstrap the hardness threshold to d

1
2−δ for any fixed

constant δ > 0.
We should remark that for the approximation of centroid, we only consider

polytopes (and polyhedra) whose vertices lie inside a unit hypercube. To see
how this assumption can easily be satisfied, notice that a halfspace h can be
added to a polyhedron P such that P ∩ h is bounded and the vertices of P are
preserved in P ∩h. Also, such a halfspace can be found in polynomial time from
the inequalities defining P . Once we have a polytope in Rd, solving 2d linear
programs gives us the width along each coordinate axis. The polytope can be
scaled by a factor depending on the width along each axis to obtain a polytope all
whose vertices lie inside a unit hypercube. In case we started with a polyhedron
P , the scaled counterpart of the halfspace h that was added can be thrown to
get back a polyhedron that is a scaled version of P and all whose vertices lie
inside the unit hypercube. In subsection 2.2 we provide further motivation for
this assumption.

Since all the vertices of the polytope (or polyhedron) lie inside a unit hy-
percube, picking any arbitrary point from inside this hypercube yield a d

1
2 -

approximation of the vertex centroid. Thus, our last result above should be con-
trasted to the fact that approximating the vertex centroid within a distance of
d

1
2 is trivial. Also, even though we discuss only polytopes i.e. bounded polyhedra

in subsections 2.1 and 2.2, the results and the proofs are valid for the unbounded
case as well. We discuss the unbounded case explicitly only in subsection 2.3.

2 Results

2.1 Exact Computation of the Centroid

The most natural computational question regarding the centroid of a polytope
is whether we can compute the centroid efficiently. The problem is trivial if the
input polytope is presented by its vertices. So we will assume that the polytope
is presented by its facets. Perhaps not surprisingly, computing the centroid of
an H-polytope turns out be #P-hard. We prove this by showing that computing
the centroid of an H-polytope amounts to counting the vertices of the same
polytope, a problem known to be #P-hard.
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Proposition 1. Given an H-polytope P ⊂ Rd, it is #P-hard to compute its
centroid c(P).

Proof. Embed P in Rd+1 by putting a copy of P in the hyperplane xd+1 = 1
and making a pyramid with the base P and apex at the origin. Call this new
polytope Q. The facets of Q can be computed efficiently from the facets of P .
Treating the direction of the positive xd+1-axis as up, it is easy to see that the
centroid of the new polytope lies at a height 1− 1

n+1 if and only if the number of
vertices of P is n. Thus any algorithm for computing the centroid can be run on
Q and the number of vertices of P can be read off the (d+ 1)-st coordinate. �	
Suppose, instead, that one does not want to compute the centroid exactly but
is just interested in knowing whether the centroid lies to the left or to the right
of a given arbitrary hyperplane. This problem turns out to be hard too, and it
is not difficult to see why.

Proposition 2. Given an H-polytope P ⊂ Rd and a hyperplane h = {a ·x = b},
it is #P-hard to decide whether a · c(P) ≤ b.

Proof. Consider the embedding and the direction pointing upwards as used in
the proof of Proposition 1. Given an oracle answering sidedness queries for the
centroid and any arbitrary hyperplane, one can perform a binary search on the
height of the centroid and locate the exact height. The number of queries needed
is only logarithmic in the number of vertices of P , which is at most O(�d

2� logm)
if P has m facets. �	

2.2 Approximation of the Centroid

As stated before, even though computing the gravitational centroid of a polytope
exactly is #P-hard, it can be approximated to any precision by random sampling.
Now we consider the problem of similarly approximating the vertex centroid of
an H-polytope. Let dist(x, y) denote the Euclidean distance between two points
x, y ∈ Rd. We are interested in the following problem:

Input: H-polytope P ⊂ Rd and a real number ε > 0.
Output: p ∈ Rd such that dist(c(P ), p) ≤ ε.

We would like an algorithm for this problem that runs in time polynomial
in the number of facets of P , the dimension d and 1

ε . Clearly, such an algo-
rithm would be very useful because if such an algorithm is found then it can
be used to test whether a polytope described by m facets has more than n
vertices, in time polynomial in m,n and the dimension d of the polytope by
setting ε < 1

2

(
1
n − 1

n+1

)
in the construction used in the proof of Theorem 1

This in turn would yield an algorithm that computes the number of vertices
n of a d-dimensional polytope with m facets, in time polynomial in m,n and
d. As stated before, a problem that is polynomially equivalent to the Vertex
Enumeration problem is to decide if a given list of vertices of an H-polytope
is complete [1]. Clearly then, a polynomial-time approximation scheme for the
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centroid problem would yield an output-sensitive polynomial algorithm for the
Vertex Enumeration problem.

Also, the problem of approximating the centroid is not so interesting if we
allow polytopes that contain an arbitrarily large ball, since this would allow
one to use an algorithm for approximating the centroid with any guarantee to
obtain another algorithm with an arbitrary guarantee by simply scaling the input
polytope appropriately, running the given algorithm and scaling back. So we will
assume that the polytope is contained in a unit hypercube in Rd.

Now we prove that the problem of approximating the centroid is #P-easy. We
do this by showing that given an algorithm that computes the number of vertices
of an arbitrary polytope (a #P-complete problem), one can compute the centroid
to any desired precision by making a polynomial (in 1

ε , the number of facets and
the dimension of the polytope) number of calls to this oracle. Notice that in
the approximation problem at hand, we are required to find a point within a
d-ball centered at the centroid of the polytope and of radius ε. We first modify
the problem a bit by requiring to report a point that lies inside a hypercube, of
side length 2ε, centered at the centroid of the polytope. (The hypercube has a
clearly defined center of symmetry, namely its own vertex centroid.) To see why
this does not essentially change the problem, note that the unit hypercube fits
completely inside a d-ball with the same center and radius

√
d

2 . We will call any
point that is a valid output to this approximation problem, an ε-approximation
of the centroid c(P ).

Given an H-polytope P and a hyperplane {a · x = b} that intersects P in
the relative interior and does not contain any vertex of P , define P1 and P2 as
follows:

P1 = P ∩ {x|a · x < b}, P2 = P ∩ {x|a · x ≥ b}.

Let V1 be the common vertices of P1 and P , and V2 be common vertices of P2
and P . The following lemma gives a way to obtain the ε-approximation of the
centroid of P from the ε-approximations of the centroids of V1 and V2.

Lemma 1. Given P, V1, V2 defined as above, let n1 and n2 be the number of
vertices in V1 and V2 respectively. If c1 and c2 are ε-approximations of the cen-
troids of V1 and V2 respectively, then c = n1c1+n2c2

n1+n2
is an ε-approximation of the

centroid c∗ of P.

Proof. Let cij be the j-th coordinate of ci for i ∈ {1, 2}. Also, let c∗i be the actual
centroid of Vi with c∗ij denoting the j-th coordinate of c∗i . Since ci approximates
c∗i within a hypercube of side-length 2ε, for each j ∈ {1, · · · , d} we have

c∗ij − ε ≤ cij ≤ c∗ij + ε.

Also, since c∗ is the centroid of P ,

c∗ =
n1c

∗
1 + n2c

∗
2

n1 + n2
.
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Hence, for each coordinate c∗j of c∗ we have

n1(c1j−ε)+n2(c2j−ε)
n1+n2

≤ c∗j ≤ n1(c1j + ε) + n2(c2j + ε)
n1 + n2

⇒ n1c1j+n2c2j

n1+n2
− ε ≤ c∗j ≤ n1c1j + n2c2j

n1 + n2
+ ε

⇒ cj − ε ≤ c∗j ≤ cj + ε

⇒ c∗j − ε ≤ cj ≤ c∗j + ε. �	

Now to obtain an approximation of the centroid, we first slice the input polytope
P from left to right (say, x1 coordinate) into 1

ε slices each of thickness at most
ε. Using standard perturbation techniques we can ensure that any vertex of the
input polytope does not lie on the left or right boundary of any slice. Any point
in the interior of a slice gives us an ε-approximation of the x1 coordinates of
vertices of P that are contained in that slice. We can compute the number of
vertices of P lying in this slice by subtracting the number of vertices on the
boundary of the slice from the total number of vertices of the slice. This can be
done using the oracle for vertex counting and then using the previous Lemma
along with a slicing along each of the coordinate axes, we can obtain the centroid
of P . Note that for slicing along one axis we only approximate that particular
coordinate of the centroid and hence slicing along each of the axes is necessary
and sufficient. Thus we have the following theorem:

Theorem 1. Given a polytope P contained in the unit hypercube, an ε-
approximation of the centroid of P can be computed by making a polynomial
number of calls to an oracle for computing the number of vertices of a polytope.

Now we present a bootstrapping theorem indicating that any “sufficiently” non-
trivial approximation of the centroid can be used to obtain arbitrary approx-
imations. For the notion of approximation let us revert back to the Euclidean
distance function. Thus, any point x approximating the centroid c within a pa-
rameter ε satisfies dist(x, c) ≤ ε. As before we assume that the polytope P
is contained in the unit hypercube. Since the polytope is thus contained in a
hyperball with origin as its center and radius at most

√
d

2 , any point inside P
approximates the centroid within a factor

√
d. Before we make precise our no-

tion of “sufficiently” non-trivial and present the bootstrapping theorem, some
preliminaries are in order.

Lemma 2. Suppose (x, y), (u, u) ∈ R2d, where x, y, u ∈ Rd, then

||u− x + y

2
|| ≤ ||(u, u) − (x, y)||√

2
,

where || · || is the Euclidean norm.

The proof of the above lemma is easy and elementary, and hence we omit it here.
Next, consider the product of two polytopes. Given d-dimensional polytopes P ,Q
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the product P ×Q is defined as the set {(x, y)|x ∈ P , y ∈ Q}. The facet defining
inequalities of the product of P,Q can be computed easily from the inequalities
defining P and Q.

P ={x|A1x ≤ b1} and Q={y|A2y ≤ b2} ⇒ P×Q={(x, y)|A1x ≤ b1, A2y ≤ b2},

where A1 ∈ Rm1×d1 , A2 ∈ Rm2×d2 , x ∈ Rd1 , y ∈ Rd2 , b1 ∈ Rm1×1, b2 ∈ Rm2×1.
It is easy to see that the number of vertices of P × Q is the product of the

number of vertices of P and that of Q, and the number of facets of P × Q is
the sum of the number of facets of P and that of Q. Moreover, the dimension of
P ×Q is the sum of the dimensions of P and Q.

Observation 1. If c is the centroid of a polytope P then (c, c) is the centroid
of P × P .

Suppose we are given an algorithm for finding ε-approximation of an arbitrary
polytope contained in the unit hypercube. For example, for the simple algorithm
that returns an arbitrary point inside the polytope, the approximation guaran-
tee is

√
d

2 . We consider similar algorithms whose approximation guarantee is a
function of the ambient dimension of the polytope. Now suppose that for the
given algorithm the approximation guarantee is f(d). For some parameter k con-

sider the k-fold product of P with itself

k times
︷ ︸︸ ︷
P × · · · × P , denoted by P k. Using the

given algorithm one can find the f(kd) approximation of P k and using Lemma
2 one can then find the f(kd)√

k
-approximation of P . This gives us the following

bootstrapping theorem:

Theorem 2. Suppose we are given an algorithm that computes a
√

d
g(d) -

approximation for any polytope contained in the unit hypercube in polynomial
time, where g(.) is an unbounded monotonically increasing function. Then, one
can compute an ε-approximation in time polynomial in the size of the polytope
and g−1(

√
d

ε ).

In particular, if we have an algorithm with d
1
2−δ approximation guarantee for

finding the centroid of any polytope for some fixed constant δ > 0, then this al-
gorithm can be used to construct a fully polynomial-time approximation scheme
for the general problem.

2.3 Approximating Centroid of a Polyhedron Is Hard

The reader should note that the analysis of subsections 2.1 and 2.2 remains
valid even for the unbounded case (polyhedra). Even though we do not have any
idea about the complexity of approximating the centroid of a polytope, now we
show that for an arbitrary unbounded polyhedron the vertex centroid can not
be d

1
2−δ-approximated for any fixed constant δ > 0 unless P = NP . To show

this we first prove that for an H-polyhedron P ⊂ Rd the vertex centroid of P
can not be 1

d -approximated in polynomial time unless P = NP . This together
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with Theorem 2 completes the proof for hardness of d
1
2−δ-approximation of the

centroid of an H-polyhedron.
Our proof uses the construction from [6] and its slight modification in [2]. We

give a sketch below. For completeness, we also give the complete construction in
the appendix.

The proof goes as follows: Given a Boolean CNF formula φ, we construct
a graph G(φ) such that G(φ) has a “long” negative cycle if and only if φ is
satisfiable. For a given graph G we define a polyhedron P (G) such that every
negative cycle in G is a vertex of P (G) and vice-versa. From the properties of
the vertex centroid of this class of polyhedra, we then prove that for any formula
φ, 1

d -approximating the vertex centroid of P (G(φ)) would reveal whether φ is
satisfiable or not.

Graph of a CNF formula. Recall that the 3SAT problem is the following
decision problem: Given a CNF Boolean formula φ = C1∧· · ·∧CM on N literals
x1, · · · , xN such that every clause Ci contains exactly 3 literals, is φ satisfiable?

Given a directed graph G = (V,E) and a weight function w : E → R on
its arcs, a directed cycle will be called short if it has only two nodes and long
otherwise. A cycle is negative if the total weight on its arcs is negative. The
following result was established in [6] (see also [2]).

Lemma 3. For any 3-CNF φ with m clauses we can obtain an arc weighted
directed graph G(φ) with the following properties:

(P1) G(φ) has 18m + 1 edges;
(P2) G(φ) has 3m short negative cycles;
(P3) every negative cycle in G(φ) has total weight −1;
(P4) there is a distinguished arc e, such that every long negative cycle in G(φ)

contains e; and
(P5) G(φ) has a long negative cycle if and only if φ is satisfiable.

The polyhedron of negative-weight flows of a graph. Given a directed
graph G = (V,E) and a weight function w : E → R on its arcs, consider the
following polyhedron:

P (G,w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y ∈ RE

∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

(F )
∑

v:(u,v)∈E

yuv −
∑

v:(v,u)∈E

yvu = 0 ∀ u ∈ V

(N)
∑

(u,v)∈E

wuvyuv = − 1

yuv ≥ 0 ∀ (u, v) ∈ E

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

If we think of wu,v as the cost/profit paid for edge (u, v) per unit of flow, then
each point of P (G,w) represents a negative-weight circulation in G, i.e., assigns
a non-negative flow on the arcs, obeying the conservation of flow at each node
of G, and such that total weight of the flow is strictly negative.
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For a subset X ⊆ E, and a weight function w : E �→ R, we denote by w(X) =∑
e∈X we, the total weight of X . For X ⊆ E, we denote by χ(X) ∈ {0, 1}E

the characteristic vector of X : χe(X) = 1 if and only if e ∈ X , for e ∈ E.
The following theorem states that the vertex set V(P (G,w)) of P (G,w) is in
one-to-one correspondence with the negative cycles of the graph G.

Theorem 3 ([2]). Let G = (V,E) be a directed graph and w : E → R be a real
weight on the arcs. Then

V(P (G,w)) =
{

−1
w(C)

χ(C) : C ∈ C−(G,w)
}

. (1)

Since by (P3), in the graph G arising from a 3-CNF formula, every negative
cycle has weight exactly −1, Theorem 3 implies that the vertices of P (G,w) are
exactly the characteristic vectors of the negative cycles of G. By (P5), finding
whether G has any long negative cycle, i.e., a negative cycle containing the
distinguished arc e (cf. (P4)) is NP-complete. By (P1) and (P2), for a 3-CNF
formula with m clauses the constructed graph G has 18m + 1 arcs and 3m
trivial short negative cycles. Consequently, the polyhedron P (G,w) that is finally
obtained has dimension 18m + 1 and 3m trivial vertices corresponding to the
short negative cycles of G.

Now, if there are no long negative cycles then the vertex centroid of P (G,w)
has value 0 in the coordinate corresponding to the edge e. For simplicity, we will
refer to this coordinate axis as xe. On the other hand, if there are K ≥ 1 long
negative cycles in G then in the centroid xe = K

K+3m ≥ 1
3m+1 . This implies that

having an ε-approximation for the centroid of P (G,w) for ε < 1
2(3m+1) would

reveal whether or not P (G,w) has a non-trivial vertex and hence whether or not
G has a long negative cycle. Thus we have the following theorem:

Theorem 4. There is no polynomial algorithm that computes a 1
d -

approximation of the vertex centroid of an arbitrary H-polyhedron P ⊂ Rd,
unless P = NP .

An immediate consequence of Theorem 2 and Theorem 4 is that there is no
polynomial algorithm that computes any “sufficiently non-trivial” approxima-
tion of the vertex centroid of an arbitrary H-polyhedron unless P = NP . More
formally,

Corollary 1. There is no polynomial algorithm that d
1
2−δ-approximates the cen-

troid of an arbitrary d-dimensional H-polyhedron for any fixed constant δ > 0
unless P = NP .

3 Open Problems

Although we can show that for unbounded polyhedra almost any non-trivial
approximation of the vertex centroid is hard, we can not make a similar state-
ment for the bounded case (i.e. polytopes). One interesting variant of Theorem 2
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would be to consider a ball of radius r instead of a halfspace. If containment of
vertex centroid in a ball of radius r can be decided in time polynomial in the
number of inequalities defining the polytope, the dimension and r then one can
perform a sort of random walk inside the polytope and approximate the centroid
in polynomial time. We leave out the details of this random walk since we do
not have a method to check containment inside a ball.
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Abstract. We consider the problem of matching people to jobs, where
each person ranks a subset of jobs in an order of preference, possibly
involving ties. There are several notions of optimality about how to best
match each person to a job; in particular, popularity is a natural and ap-
pealing notion of optimality. However, popular matchings do not always
provide an answer to the problem of determining an optimal match-
ing since there are simple instances that do not admit popular match-
ings. This motivates the following extension of the popular matchings
problem:

– Given a graph G = (A ∪ J , E) where A is the set of people and J
is the set of jobs, and a list 〈c1, . . . , c|J |〉 denoting upper bounds on
the capacities of each job, does there exist (x1, . . . , x|J |) such that
setting the capacity of i-th job to xi, where 1 ≤ xi ≤ ci, for each i,
enables the resulting graph to admit a popular matching.

In this paper we show that the above problem is NP-hard. We show that
the problem is NP-hard even when each ci is 1 or 2.

1 Introduction

In this paper we consider the problem of matching people to jobs, where each
person ranks a subset of jobs in an order of preference possibly involving ties, that
is, preference lists are one-sided. Our input is a bipartite graph G = (A∪J , E)
where A is the set of people and J is the set of jobs, and E = E1 ∪̇ · · · ∪̇ Er

is the set of edges, where Et is the set of edges having rank t. For any a ∈ A,
we say a prefers job i to job j if the rank of edge (a, i) is smaller than the rank
of edge (a, j). The goal is to come up with an optimal matching of people to
jobs. Several notions of optimality like rank-maximality [7], maximum-utility,
Pareto-optimality [1,3,13] have been studied in the literature for matchings with
one-sided preferences. We consider the notion of popularity.

A person a prefers matching M to M ′ if (i) a is matched in M and unmatched
in M ′, or (ii) a is matched in both M and M ′, and a prefers the job that it is
matched to in M as compared to the job that it is matched to in M ′.
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Definition 1. M is more popular than M ′, denoted by M ( M ′, if the number
of people who prefer M to M ′ is higher than those that prefer M ′ to M . A
matching M∗ is popular if there is no matching that is more popular than M∗.

Popular matchings were first introduced by Gardenfors [5] in the context of stable
matchings. The notion of popularity is an attractive notion of optimality since it
is based on relative ranking rather than the absolute ranks used by any person;
also popular matchings can be considered stable in the sense that no majority
vote of people can force a migration to another matching. Unfortunately there
exist simple instances that do not admit any popular matching. Abraham et
al. [2] designed efficient algorithms for determining if a given instance admits a
popular matching and computing one, if it exists.

Our focus in this paper will be on instances that do not admit a popular
matching. Intuitively, the absence of a popular matching in an instance is due
to a small set of jobs being in too much demand by a large number of people.
In such a case, we expect to improve the situation in terms of popularity by
increasing the capacities of some jobs within certain bounds. This solution of
increasing job capacities is appealing when the jobs represent items like books
or DVDs and increasing capacities implies making copies of the relevant item.

Larger capacities need not always help. Note that it is not always the case
that increasing the capacity of a job helps the cause that the resulting graph ad-
mits a popular matching. It was shown in [2] that any popular matching M is a
maximum cardinality matching in the graph G1 = (A∪J , E1)1 and M matches
every person to either one of her top choice jobs or to one of her most preferred
jobs that is non-critical in G1. A vertex u is critical in G1 if every maximum car-
dinality matching in G1 has to match u; otherwise, u is non-critical. Consider an
instance where A = {a1, a2, a3, a4, b} and J = {f1, f2, s1, s2, s3, s4} and the pref-
erence lists of people are described in Figure 1. When the capacity of each job is
1, then the jobs f1 and f2 are critical in (A∪J , E1) and s1, . . . , s4 are non-critical
in this graph. Thus si is the most preferred non-critical vertex in G1 for per-
son ai, for i = 1, . . . , 4 and the matching M = {(a1, f1), (b, f2), (a2, s2), (a3, s3),
(a4, s4)} is a popular matching for this instance.

a1 f1 f2 s1

a2 f1 f2 s2

a3 f1 f2 s3

a4 f1 f2 s4

b f2

Fig. 1.

a1 f1, f
′
1 f2, f

′
2 s1, s

′
1

a2 f1, f
′
1 f2, f

′
2 s2, s

′
2

a3 f1, f
′
1 f2, f

′
2 s3, s

′
3

a4 f1, f
′
1 f2, f

′
2 s4, s

′
4

b f2, f
′
2

Fig. 2.

1 Note that only rank 1 edges, that is, edges (a, j) where j is a top choice job for a
are included in G1.
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Consider the same problem where the capacity of each job is 2. Figure 2
shows the preference lists; we have explicitly included an identical copy j′ of j
to denote a capacity of 2 for each job j. The critical vertices in (A ∪ J , E1)
are now f1 and f ′1 while f2 and f ′2 are now non-critical in (A ∪ J , E1). Thus
f2 and f ′2 become the most preferred non-critical vertices for a1, . . . , a4 - hence
any popular matching has to match each of a1, . . . , a4 to one of {f1, f

′
1, f2, f

′
2}.

Also, b has to be matched to f2 or f ′2 (since a popular matching is a maximum
matching on rank 1 edges). Since there are 5 people and only 4 jobs that they
can be matched to in any popular matching, there exists no popular matching
now. Thus the instance shown in Figure 2 where each job capacity is 2 does not
admit a popular matching while the instance in Figure 1 where each job capacity
is 1 does.

The problem of fixing capacities. Given a graph G = (A ∪ J , E) where
J = {j1, . . . , j|J |} and a list 〈c1, . . . , c|J |〉 of upper bounds on the job capacities,
is there an (x1, . . . , x|J |) such that for each i ∈ {1, . . . , |J |}, setting the capacity
of the i-th job to xi, where 1 ≤ xi ≤ ci, enables the resulting graph to admit a
popular matching.

We assume that G does not admit a popular matching. Our problem is to
determine if by fixing the capacities appropriately, the resulting graph admits a
popular matching. We now define a special case of this problem which we call
the 1-or-2 capacities problem.

The 1-or-2 capacities problem. In this case, each ci is either 1 or 2. Note
that when all the ci’s are 1, this is the standard popular matching problem.
Thus the 1-or-2 capacities problem is a generalization of the popular matching
problem. Here we have a subset K of jobs whose capacities may be increased to
2, while the capacities of the remaining jobs should remain 1. The problem is to
determine if by increasing the capacities of some elements in K from 1 to 2, we
get a graph that admits a popular matching.

Related Work. Subsequent to the work on popular matching algorithms in
[2], Manlove and Sng [10] generalized the algorithms of [2] to the case where
each job ji has an associated capacity ci, the number of people that it can
accommodate. Several other variants of the popular matchings problem were
considered. Some of them include weighted popular matchings considered by
Mestre [12] and random popular matchings considered by Mahdian [9]. In order
to deal with the problem of the input instance not admitting a popular matching,
the following extensions of popular matchings have been considered so far.

Least unpopular matching: The unpopularity margin of a matching M , call
it u(M), is maxM ′ |people who prefer M ′ to M | − |people who prefer M to M ′|.
The least unpopularity margin matching is that matching M with the least value
of u(M). McCutchen [11] showed that computing such a matching is NP-hard.
In [6] Huang et al. gave efficient algorithms to compute matchings with bounded
values of these unpopularity measures in certain graphs.
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Mixed matchings: Very recently, Kavitha et al. [8] considered the problem of
computing a probability distribution over matchings, also called a mixed match-
ing, that is popular. It was shown that every instance admits a popular mixed
matching and a polynomial time algorithm was given to compute such a proba-
bility distribution.

Our contributions. In this paper we consider the problem of fixing capacities
described earlier. We show that this problem is NP-hard. In fact, we show that
the 1-or-2 capacities problem is NP-hard.

2 Preliminaries

We first review the algorithmic characterization of popular matchings given in
[2]. As was done in [2], it will be convenient to add a unique last item �a at the
end of a’s preference list for each person a ∈ A. We will henceforth refer to this
graph as G = (A ∪ J , E).

Recall from Section 1 that it was shown in [2] that any popular matching M
is (i) a maximum cardinality matching in the graph G1 = (A ∪ J , E1), and (ii)
M matches every person to either one of her top choice jobs or to one of her
most preferred jobs that is non-critical in G1.

A maximum matching M in a bipartite graph G1 = (A ∪ J , E1) has the
following important properties: M ∩ E1 defines a partition of A ∪ J into three
disjoint sets: O, U , and E , where O∪U is the set of critical vertices and E is the
set of non-critical vertices. A vertex u ∈ E if there is an even length alternating
path in G1 from an unmatched vertex to u. A vertex u ∈ O if there is an odd
length alternating path in G1 from an unmatched vertex to u. A vertex u ∈ U ,
that is, it is unreachable, if there is no alternating path in G1 from an unmatched
vertex to u. The sets E ,O,U are independent of M ; the following definitions can
be made:

Definition 2. For each a ∈ A, define f(a) to be the elements of O∪U amongst
a’s top choice jobs. Define s(a) to be the set of a’s most-preferred jobs in E.

It was shown in [2] that in any popular matching, every person a has to be
matched to a vertex in f(a) ∪ s(a). The algorithm for solving the popular
matching problem is now straightforward: each a ∈ A determines the sets f(a)
and s(a). An A-perfect matching that is a maximum matching in G1 and that
matches each a to a job in f(a) ∪ s(a) needs to be determined.

3 The 1-or-2 Capacities Problem

Given a graph G = (A ∪ J , E) and a subset K ⊆ J of jobs whose capacity can
be increased from 1 to 2, the problem is to determine if there exist capacities
〈x1, . . . , x|J |〉 where xt = 1 for each job jt ∈ J \ K and xt is either 1 or 2 for
each job jt ∈ K and with these capacities the resulting graph admits a popular
matching.
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To prove that this problem is NP-hard, we reduce the problem of monotone
1-in-3 SAT to the 1-or-2 capacities problem. Monotone 1-in-3 SAT is a vari-
ant of the 3-satisfiability problem (3SAT). Like 3SAT, the input instance is a
collection of clauses, where each clause consists of exactly three variables and
no variable appears in negated form. The monotone 1-in-3 SAT problem is to
determine whether there exists a truth assignment to the variables so that each
clause has exactly one true variable (and thus exactly two false variables). This
problem is NP-hard [14]; in fact the variant of monotone 1-in-3 SAT where each
variable occurs in at most 3 clauses is also NP-hard (refer to [4]). As with other
reductions from the 3SAT problem, our reduction also involves designing small
gadgets which build an instance of the 1-or-2 capacities problem. We first give
an overview of our reduction and then describe these gadgets in detail.

3.1 Overview of the Reduction

Let I be an instance of the monotone 1-in-3 SAT problem with {X1, X2, . . . , Xn}
being the set of variables and {C1, C2, . . . , Cm} being the set of clauses in I.
We must construct from I an instance of the 1-or-2 capacities problem G =
(A ∪ J , E) and a subset K ⊆ J of jobs whose capacities can be increased from
1 to 2. We want the following properties of our input 〈G, K〉:

(i) G (with each job capacity as 1) does not admit a popular matching.
(ii) By increasing the capacities of some jobs in K from 1 to 2 we get an instance

that admits a popular matching iff there exists an assignment with exactly
one variable in each clause of I set to true.

With these observations we design a gadget for every variable in I and another
gadget for every clause in I. Each of these gadgets consists of a set of people and
a set of jobs along with the preference lists of people. A subset of these jobs is
internal to the gadget, that is, such jobs appear only on the preference lists of
people within the gadget. In addition there will be jobs which are public, that
is, such jobs appear on the preference lists of people across several gadgets.

Public jobs. The set of public jobs in our instance G is the set K of jobs whose
capacities may be increased to 2. We now describe how we derive the set of
public jobs from the instance I. For every occurrence of variable Xi in I, we
have a public job in G. That is, if a variable Xi appears in clause Ct we have a
job ut

i in G. Note that since I is an instance of monotone 1-in-3 SAT, no variable
appears in negated form in I.

We denote by cap(j) the capacity status of job j ∈ K: cap(j) = 1 implies that
capacity of job j is set to 1, while cap(j) = 2 implies that capacity of job j is set
to 2. The value of cap(ut

i)’s should capture the truth value of variable Xi, that
is, cap(ut

i) = 1 if Xi = false, whereas cap(ut
i) = 2 if Xi = true.

For us to make the above translation of capacity status of cap(ut
i)’s to the

truth value of Xi, it has to be the case that for any i, all cap(ut
i)’s have the

same value. So if some cap(ut
i) is set to 2, we will need to set cap(u�

i) = 2, for
all � where u�

i ∈ K. Thus the set of jobs corresponding to the all occurrences of



428 T. Kavitha and M. Nasre

variable Xi should simultaneously have the same capacity status. To get such a
control, for every variable Xi in the instance I, we introduce another public job
ui in K. The role of job ui is to enforce the following:

(∗) All jobs corresponding to the occurrences of variable Xi get the same cap(·)
value as ui, that is, cap(ut

i) = cap(ui), for all t where ut
i ∈ K.

It can be seen that, if this property is satisfied, the cap(·) status of ui can be
translated to the truth assignment for variable Xi in the instance I and such an
assignment will be a consistent assignment to the variables of I. With this, we
have completely described all the public jobs (elements of K) in our instance G.
The set K, therefore, consists of 3m + n jobs as shown below.

K = ∪n
i=1{ui} ∪i,t {ut

i : xi appears in Ct} (1)

Note that the instance I requires us to decide the true/false status of variables
{X1, · · ·Xn}. Similarly the instance G requires us to decide the capacity status
for jobs in K. The non-triviality of the 1-or-2 capacities problem lies in the
following: Let j be a job that is a unique rank-1 job for exactly one applicant in
G, then j is critical in G restricted to rank-1 edges. Increasing the capacity of j
by 1 makes j non-critical in the resulting graph restricted to rank-1 edges. This
inturn may change the s-jobs of people in the resulting graph due to which the
resulting graph may start admitting a popular matching.

The preference lists of people in our gadgets therefore ensure that every job
in K is a unique rank-1 job for exactly one person in G. We now describe our
gadgets - one corresponding to each clause and the other corresponding to each
variable.

3.2 Gadget Corresponding to a Clause

Let Ct = (Xi1 ∨ Xi2 ∨ Xi3) be a clause in I. Corresponding to Ct we have a
clause gadget which we denote by Gct . The gadget Gct consists of a set At =
{at,1, . . . , at,11} of 11 people and a set Dt = {pt

1, p
t
2, q

t
0, q

t
1, q

t
2} of 5 internal

jobs. The public jobs that appear in the preference lists of people in Gct are
ui1 , ui2 , ui3 , u

t
i1

, ut
i2

, and ut
i3

.
Figures 3(a), 3(b) and 3(c) show the preference lists of the 11 people at

1, . . . , a
t
11

associated with the clause Ct. Recall that we introduce a last resort job for each
person to ensure that matchings are always A-complete. The �-jobs are these last
resort jobs.

The preference lists are designed such that when each public job has capacity
1, then Gct does not admit a popular matching. Further, any new instance that
admits a popular matching and is obtained by increasing capacities of public
posts in Gct obeys the following two properties:

At least one of ut
i1

, ut
i2

, ut
i3

needs to have capacity 2. As seen in Figure 3(a),
at
4 and at

5 have pt
1 as their top job and qt

2 as their second job – as qt
2 is nobody’s

top choice job, it follows that qt
2 is the most preferred non-critical job of at

4 and
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at
1 pt

1 ut
i1 , ui1 qt

0, q
t
1 �t,1

at
2 pt

1 ut
i2 , ui2 qt

0, q
t
1 �t,2

at
3 pt

1 ut
i3 , ui3 qt

0, q
t
1 �t,3

at
4 pt

1 qt
2 �t,4

at
5 pt

1 qt
2 �t,5

(a)

at
6 pt

2 ut
i1 �t,6

at
7 pt

2 ut
i2 �t,7

at
8 pt

2 ut
i3 �t,8

(b)

at
9 ut

i1 �t,9

at
10 ut

i2 �t,10

at
11 ut

i3 �t,11

(c)

Fig. 3.

at
5. It is easy to see that in any popular matching one of at

4, a
t
5 has to be matched

to pt
1 and the other to qt

2. The role of these 2 people is to ensure that at
1, a

t
2, a

t
3

always get matched to jobs in s(at
1), s(a

t
2), s(a

t
3), respectively.

Jobs ut
i1

, ut
i2

, ut
i3

appear as unique top jobs for at
9, a

t
10 and at

11 respectively
(Figure 3(c)). Further, they do not appear as top jobs for any other person in G.
The preference lists of people in the variable gadget ensure that jobs ui1 , ui2 , ui3

also appear as unique top jobs for exactly one person. Thus, with capacity 1,
all these jobs remain critical on rank 1 edges. Hence s(at

1) = s(at
2) = s(at

3) =
{qt

0, q
t
1}. Thus these 3 people can be matched to only these 2 jobs in any popular

matching, so there exists no popular matching when each job is capacity 1.
We will assume here that the capacities of each of ui1 , ui2 , ui3 is 1 since even

if the capacity of some ui is increased to 2, the gadget Gxi corresponding to the
variable Xi will be designed such that ui with capacity 2 will be used up in Gxi .
Thus at least one of ut

i1
, ut

i2
, ut

i3
should have their capacity set to 2 for all of

at
1, a

t
2, a

t
3 to be matched to jobs in s(at

1), s(a
t
2), s(a

t
3), respectively.

Exactly one of ut
i1 , u

t
i2 , u

t
i3 can have capacity 2. As seen in Figure 3(b) the

3 people at
6, a

t
7, a

t
8 have the same top job pt

2 - when each of ut
i1

, ut
i2

, ut
i3

has its
capacity set to 1, then one of these 3 people gets matched to pt

2 and the other
2 people get matched to their respective last resort jobs (most preferred non-
critical job) in any popular matching. However we know that at least ut

i1
, ut

i2
, ut

i3
has its capacity set to 2 due to people at

1, . . . , a
t
5.

If exactly one among these (say, ut
i1) becomes a non-critical job, then at

6
gets matched to pt

2 while at
7 and at

8 get matched to their respective last resort
jobs. If two or more among ut

i1 , u
t
i2 , u

t
i3 has its capacity set to 2, then while the

corresponding people in at
1, a

t
2, a

t
3 get matched to these jobs, we cannot match

two or more among at
6, a

t
7, a

t
8 to the single job pt

2.
Thus the clause gadget Gct ensures that exactly one of the jobs ut

i1 , u
t
i2 , u

t
i3

has its capacity set to 2.

3.3 Gadget Corresponding to a Variable

Let Xi be a variable in I, then corresponding to Xi we construct a variable
gadget Gxi . The gadget Gxi consists of a set Bi of 4 people {bi

1, b
i
2, b

i
3, b

i
4} in

A and a set Ti of 2 internal jobs {pi, qi}. The public jobs associated with Xi
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bi
1 pi ui, u

t1
i , ut2

i , ut3
i �bi,1

bi
2 pi qi �bi,2

bi
3 pi qi �bi,3

bi
4 ui �bi,4

Fig. 4.

are ui, u
t1
i , ut2

i , ut3
i where t1, t2, t3 are the clauses that the variable Xi occurs

in. Note that we consider the restriction of monotone 1-in-3-SAT where each
variable occurs in at most 3 clauses; therefore it suffices to consider at most
3 clauses in which Xi appears. Figure 4 shows the preference lists of people
bi
1, b

i
2, b

i
3, b

i
4.

The variable gadget for Xi will ensure that property (∗) mentioned in Sec-
tion 3.1 is enforced, that is, the cap(ut

i) values for all values of t are the same.
As promised earlier, we have a person bi

4 who has job ui as her top choice job.
In any popular matching one of bi

2, b
i
3 has to be matched to pi and the other to

qi. Thus bi
1 has to be matched to a job in s(bi

1) in any popular matching. Note
that the jobs ui, u

t1
i , ut2

i , ut3
i are tied as second choice jobs in the preference list

of bi
1. If each of these jobs has capacity 1, then s(bi

1) = {�bi,1}; however if some
of these jobs have their capacities set to 2, then s(bi

1) consists of such jobs.

3.4 Putting It All Together

As mentioned earlier, the graph G that we construct is the union of gadgets
corresponding to variables as well as clauses. We define the sets A and J as:
A = ∪m

t=1At ∪n
i=1 Bi and J = ∪m

t=1Dt ∪n
i=1 Ti ∪ K. The set K is the set of all

public jobs as described earlier in Eqn. (1). The preference lists of the people are
as shown in our gadgets. We note that every job j ∈ K is a unique rank-1 job
for exactly one person in A. We now show how the variable and clause gadgets
co-operate to enforce property (∗) mentioned in Section 3.1.

Lemma 1. If by setting the capacities of each job in K to either 1 or 2, there
exists an instance that admits a popular matching, then cap(ui) = cap(ut

i), for
all t where ut

i ∈ K.

Proof. Let us assume that there exists a t1 such that ut1
i ∈ K and cap(ut1

i ) = 2
and suppose cap(ui) = 1. Recall that the job ut1

i is in K due to the occurrence
of variable Xi in clause Ct1 and ut1

i is the unique top choice job of at1
l for some

l ∈ {9, 10, 11}. This person always gets matched to ut1
i in any popular matching

(since such a matching has to be maximum on rank 1 edges). The job ut1
i also

appears on the preference lists of the following people:

(i)at1
k for some k ∈ {1, 2, 3} (where Xi is the k-th variable in clause Ct) in the

clause gadget Gct1
,

(ii) bi
1 in the variable gadget Gxi ,

(iii) at1
l for some l ∈ {6, 7, 8} in the clause gadget Gct1

.
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Since cap(ut1
i ) = 2, for all these people ut1

i is an s-job. Further, by the design
of our gadgets, while at1

l (for some l ∈ {6, 7, 8}) gets matched to her top choice
job pt

2 in any popular matching, both at1
k and bi

1 have to be matched to their
s-jobs. Clearly, both at1

k (for some k ∈ {1, 2, 3}) and bi
1 cannot be matched to ut1

i .
If ut1

i is matched to bi
1, then the appropriate at1

k does not have an s-job. Hence,
assume ut1

i is matched to at1
k . Then our assumption that the resulting instance

admits a popular matching implies that there exists a t2 such that ut2
i is in K

and cap(ut2
i ) = 2. Since cap(ui) = 1, it is easy to see that a similar argument

forbids the instance to admit an A-complete matching restricted to f and s-jobs.
This contradicts the lemma hypothesis or cap(ui) = 2. Thus we have shown that
if there exists t1 such that cap(ut1

i ) = 2, then cap(ui) = 2.
We now show the other direction, that is, cap(ui) = 2 implies that cap(ut

i) = 2
for all t where ut

i ∈ K. Assume for the sake of contradiction that cap(ui) = 2
and there exists a t1 such that ut1

i ∈ K and cap(ut1
i ) = 1. Note that the job

ut1
i was created because the variable Xi appears in clause Ct1 . Corresponding

to clause Ct1 , we have a clause gadget Gct1
in G. With cap(ui) = 2, there is a

person at1
k for some k ∈ {1, 2, 3} (where Xi is the k-th variable in clause Ct1)

that treats ui as an s-job.
But since bi

1 that belongs to the variable gadget also treats ui as an s-job,
there cannot be an A-complete matching in which both bi

1 and at1
k are matched

to ui. Thus either the resulting graph does not admit a popular matching or
cap(ut1

i ) = 2. We therefore have cap(ui) = cap(ut
i) for all t where ut

i ∈ K. �	

Thus if by setting the capacities of each job in K to 1 or 2, there exists an
instance that admits a popular matching, then the capacity values of jobs in K
always translate to a consistent truth assignment of the variables in I. Lemma 2
(proof omitted, refer to [15]) proves the correctness of our reduction.

Lemma 2. There exists an instance that admits a popular matching by setting
the capacities of each job in K to either 1 or 2 iff there exists a 1-in-3 satisfying
assignment for I.

We can now conclude the following theorem.

Theorem 1. The 1-or-2 capacities problem is NP-hard.

Observe that our reduction constructed a graph G where preference lists included
ties. This raises the question of the complexity of the 1-or-2 capacities problem
when preference lists are strict (that is, no ties are allowed). Our gadgets can
easily be modified to show that this problem is also NP-hard. We omit the proof
of Corollary 1 that states our result for strict preference lists. Refer to [15] for
the proof.

Theorem 2. The 1-or-2 capacities problem is NP-hard for strict preference
lists.

A related problem: The difficulty of the problem of fixing capacities arises
from the problem of deciding which jobs should be critical and which jobs can be
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non-critical in the resulting graph restricted to rank-1 edges. Consider a variant
of the above problem where we only have to maintain an upper bound k on the
total sum of increased capacities of all the jobs, rather an upper bound on the
capacity of each job. That is, here we are given a graph G = (A ∪ J , E) and
an integer k ≥ 0 where we can increase the job capacity of the i-th job from
1 to 1 + Δi for each i and the restriction is:

∑
i Δi ≤ k, in other words, the

sum of increases in capacities is bounded by k. In this problem no job that is
critical in G1 needs to turn non-critical on rank 1 edges of the resulting graph
(after appropriate capacity increases) and thus this problem becomes solvable in
polynomial time. The details can be found in the full version of this paper [15].

Acknowledgment. We thank Sourav Chakraborty for discussions that motivated
this work.
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Abstract. Buhrman, Cleve and Wigderson gave a general communica-
tion protocol for block-composed functions f(g1(x

1, y1), . . . , gn(xn, yn))
by simulating a decision tree computation for f [3]. It is also well-known
that this simulation can be very inefficient for some functions f and
(g1, . . . , gn). In this paper we show that the simulation is actually poly-
nomially tight up to the choice of (g1, . . . , gn). This also implies that
the classical and quantum communication complexities of certain block-
composed functions are polynomially related.

1 Introduction

Decision tree complexity [4] and communication complexity [8] are two con-
crete models for studying computational complexity. In [3], Buhrman, Cleve and
Wigderson gave a general method to design communication protocol for block-
composed functions f(g1(x1, y1), . . . , gn(xn, yn)). The basic idea is to simulate
the decision tree computation for f , with queries of the i-th variable answered by
a communication protocol for gi(xi, yi). In the language of complexity measures,
this result gives

CC(f(g1, . . . , gn)) = Õ(DT(f) · max
i

CC(gi)) (1)

where CC and DT are the communication complexity and the decision tree com-
plexity, respectively. This simulation holds for all the models: deterministic, ran-
domized and quantum1.

It is also well known that the communication protocol by the above simulation
can be very inefficient. For example, if f is the n-bit AND function and all gi’s
are 2-bit AND function, then even the deterministic communication complexity
of f(g1, . . . , gn) is just 1 bit, since Alice can compute and send the AND function
of her bits. This is in sharp contrast to the decision tree complexity of the n-
bit AND function f , which is Θ(n) in the randomized case and Θ(

√
n) in the

quantum case.

1 For the deterministic model, no error correction for each gi is needed, so the Õ can
be changed to O.
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Turning the simulation around, one can also get a lower bound method
for the decision tree complexity by communication complexity. To lower
bound DT(f), we can pick gi’s, then the communication complexity of
CC(f(g1, . . . , gn))/maxi CC(gi) is a lower bound of DT(f). Actually in the same
paper [3], they obtained the almost tight lower bound of Ω̃(n) for the quantum
decision tree complexity of the Parity and Majority functions this way. But be-
cause of the counterexamples as shown in the last paragraph, it is not clear how
tight this lower bound method can be in general.

In this paper, we will show that the simulation is polynomially tight, and
actually this can be achieved by each gi chosen only from {∧,∨}, i.e. 2-bit AND
and OR.

Theorem 1. For Boolean functions f ,

max
gi∈{∧,∨}

RCC(f(g1, . . . , gn)) = Ω(DDT(f)1/3), (2)

max
gi∈{∧,∨}

QCC(f(g1, . . . , gn)) = Ω(DDT(f)1/6). (3)

For monotone functions f , the bounds can be improved to the following. For two
n-bit strings x and y, use x∧n y and x∨n y to denote the bit-wise AND and OR
of x and y, respectively. We drop the subscript when n = 1.

Theorem 2. For monotone Boolean functions f ,

max
g∈{∧n,∨n}

RCC(f(g1, . . . , gn)) = Ω(DDT(f)1/2), (4)

max
g∈{∧n,∨n}

QCC(f(g1, . . . , gn)) = Ω(DDT(f)1/4). (5)

Note that the improvement is two-fold: Besides the better bounds themselves,
the range of inner function g is also restricted to {∧n,∨n}. That is, we require
all gi’s be the same; they are either all AND or all OR functions.

The bounds give the following corollary about the polynomial relation between
quantum and classical communication complexity for composed functions.

Corollary 1. For Boolean functions f ,

max
gi∈{∧,∨}

DCC(f(g1, . . . , gn)) = O

(
max

gi∈{∧,∨}
QCC(f(g1, . . . , gn))6

)
. (6)

If f is monotone, then

max
g∈{∧n,∨n}

DCC(f(g1, . . . , gn)) = O

(
max

g∈{∧n,∨n}
QCC(f(g1, . . . , gn))4

)
. (7)

Related work

1. After the results in the current paper being circulated at Institute for Quan-
tum Computing at University of Waterloo and Centre for Quantum Tech-
nologies at National University of Singapore in May 2009, Sherstov posted a
related paper [11], which does not have our Theorem 1 and Theorem 2, but
shows the following result:
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Theorem 3. (Sherstov, [11]) For Boolean functions f ,

max
g∈{∧n,∨n}

DCC(f(g1, . . . , gn)) = O

(
max

g∈{∧n,∨n}
QCC(f(g1, . . . , gn))12

)
. (8)

The technical ingredient to achieve the above theorem is to observe that the
function contains a subfunction g with size-2 block sensitivity bs2(g) ≥ bs(f),
and then use a theorem by Kenyon and Kutin [7] that s(g) = Ω(

√
bs2(g)).

2. A subsequent work jointly with Jain and Klauck [5] also uses the idea of
embedding Disj (or its complement) in some other function, showing depth-
independent lower bounds for communication complexity of read-once for-
mulas composed with AND and OR.

2 Preliminaries

For an n-bit Boolean function f : {0, 1}n → {0, 1}, a deterministic query algo-
rithm for f accesses the input x only by making queries in the form of “xi =?”.
Each query has cost 1, and all the other computation between queries are free.
A randomized query algorithm is the same except that the algorithm can toss
coins to decide the next variable xi to ask. The quantum query model, formally
introduced in [2], has a working state in the form of

∑
i,a,z αi,a,z|i, a, z〉, where i

ranges over [n], a ranges over {0, 1} and z is the content in the working space. A
quantum query on the input x corresponds to an oracle Ox, a unitary operation
defined by

Ox

(∑

i,a,z

αi,a,z |i, a, z〉
)

=
∑

i,a,z

αi,a,z|i, a⊕ xi, z〉 (9)

A T -query quantum query algorithm works as a sequence of operations

U0 → Ox → U1 → Ox → · · · → UT−1 → Ox → UT (10)

Here Ox is as defined above, and each Ut does not depend on the input x. In
both randomized and quantum query models, we can allow a double-sided error
probability of 1/3. The deterministic, randomized and quantum query complex-
ities, denoted by DDT(f), RDT(f) and QDT(f), are the minimum numbers of
queries we need to make in order to compute the function by a deterministic,
randomized and quantum query algorithm, respectively.

Communication complexity studies the minimum amount of communication
that two or more parties need to compute a given function or a relation of their
inputs. Since its inception in the seminal paper by Yao [13], communication
complexity has been an important and widely studied research area, both be-
cause of the interesting and intriguing mathematics involved in its study, and
also because of the fundamental connections it bears with many other areas
in theoretical computer science. In the standard two-party interactive model,
two parties Alice and Bob, each on receiving an input say x ∈ X and y ∈ Y,
respectively, sending messages back and forth to jointly compute a function f
on input (x, y). Their computation and communication can be deterministic,
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randomized, and quantum. The deterministic, randomized, and quantum com-
munication complexity of f , denoted by DCC(f), RCC(f) and QCC(f), is the least
number of bits (or qubits in the quantum case) needed to be transferred in the
corresponding model, s.t. the protocol gives the correct answer with probability
at least 2/3 for all inputs.

For a string x ∈ {0, 1}n and a set I ⊆ [n], the string x(I) is obtained from x
by flipping all coordinates in I.

Definition 1 (block sensitivity). The block sensitivity bs(f, x) of f on x is
the maximum number b such that there are disjoint sets I1, . . . , Ib for which
f(x) 
= f(xIj ). The block sensitivity of f is bs(f) = maxx bs(f, x). For z ∈ {0, 1},
the z-block sensitivity is bsz(f) = maxx:f(x)=z bs(f, x).

The block sensitivity is one of the complexity measures that are polynomially
related to each other. In particular, it powered is known to be an upper bound
of the deterministic decision tree complexity, as shown in the following theorem
by Beals et. al. [2]. For many other complexity measures and their relations, we
refer the reader to the excellent survey [4].

Theorem 4. 1. DDT(f) = O(bs(f)3).
2. For monotone functions f , DDT(f) = O(bs(f)2).

The function Disjn : {0, 1}n×{0, 1}n is defined as follows: Disjn(x, y) = OR(x1 ∧
y1, . . . , xn ∧ yn). The promise version of the problem, PromiseDisjn, is the same
as Disjn but with the promise that there is at most one i s.t. xi ∧ yi = 1. The
randomized and quantum communication complexity for Disjn and PromiseDisjn
are known as follows.

Theorem 5

RCC(Disjn) ≥ RCC(PromiseDisjn) = Ω(n), (11)

QCC(Disjn) ≥ QCC(PromiseDisjn) = Ω(
√
n). (12)

The original randomized lower bound [6,9,1] was for Disj instead of PromiseDisj.
But the same proof of [1] also carries to the same lower bound for PromiseDisj.
The original quantum lower bound [10,12] was also for Disj, but as mentioned
in [11], the same method in [10] also applies to prove the same lower bound for
PromiseDisj. [11] also explicitly gives a proof for QCC(PromiseDisj) by adapting
the method in [12].

3 Lower Bounds for the Communication Complexity of
Composed Functions

We will actually prove that

Lemma 1. For Boolean functions f ,

max
gi∈{∧,∨}

RCC(f(g1, . . . , gn)) = Ω(bs(f)), (13)

max
gi∈{∧,∨}

QCC(f(g1, . . . , gn)) = Ω(
√

bs(f)). (14)
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If f is monotone, then

max
g∈{∧n,∨n}

RCC(f(g1, . . . , gn)) = Ω(bs(f)), (15)

max
g∈{∧n,∨n}

QCC(f(g1, . . . , gn)) = Ω(
√

bs(f)). (16)

Proof. By the definition of block sensitivity, there are an input z and blocks
I1, . . . , Ib, where b = bs(f), s.t. f is sensitive on z at those blocks. That is,

f(z(I1)) = . . . = f(z(Ib)) 
= f(z). (17)

We will define gi’s s.t. if there is a protocol for f(g1, . . . , gn), then there is a
protocol for PromiseDisjb. The reduction is: on input (x, y) ∈ {0, 1}b × {0, 1}b,
we define an input (x′, y′) ∈ {0, 1}n × {0, 1}n for the function f(g1, . . . , gn) as
follows.

1. For i /∈ ∪b
j=1Ij :

x′i = y′i = zi, gi = ∧ (18)

2. For i ∈ Ij : {
x′i = xj , y′i = yi, gi = ∧, if zi = 0
x′i = x̄j , y′i = ȳi, gi = ∨, if zi = 1

(19)

It is easy to see that for the first case, gi(x′i, y
′
i) = zi ∧ zi = zi. For the second

case, if zi = 0, then

gi(x′i, y
′
i) = xj ∧ yj = (xj ∧ yj) ⊕ zi; (20)

if zi = 1, then

gi(x′i, y
′
i) = x̄j ∨ ȳj = xj ∧ yj = (xj ∧ yj) ⊕ zi. (21)

Thus for each j = 1, 2, . . . , b, it holds that

xj ∧ yj = 1 ⇔ gi(x′i, y
′
i) = z̄i, ∀i ∈ Ij (22)

Therefore,

Distinguishing between x ∧ y = 0 and ∃ unique j, s.t. xj ∧ yj = 1 (23)

⇔ Distinguishing between g(x′, y′) = z and ∃ unique j, s.t. g(x′, y′) = z(Ij)

(24)

Now if we have a protocol to compute f(g1, . . . , gn), then we can use it to
solve the problem in Eq. (24). By the equivalence, this also solves the problem
in Eq. (23), i.e. the PromiseDisjb problem. Since

RCC(PromiseDisjb) = Ω(b), QCC(PromiseDisjb) = Ω(
√
b) (25)

we proved the conclusion for general Boolean function f .
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If f is monotone, then observe that we can assume that each sensitive block
Ij contains all 0’s or all 1’s. Actually, suppose f(z) = 0 and Ij = Ij,0)Ij,1 where
z on Ij,b contains only bits equal to b. Then we can remove Ij,1 and let the Ij,0
be the new block. It is still disjoint with all other blocks, yet by monotonicity,
it has f(z(Ij,0)) ≥ f(z(Ij)) = 1. In this way we can assume that for f(z) = 0, all
sensitive blocks contains only 0’s. Thus using similar reductions, we have

RCC(f(∧, . . . ,∧)) = Ω(RCC(Disjbs0(f))) = Ω(bs0(f)), (26)

QCC(f(∧, . . . ,∧)) = Ω(QCC(Disjbs0(f))) = Ω(
√

bs0(f)). (27)

Note that here because of the monotonicity, we can reduce the problem to Disj in-
stead of PromiseDisj, though this does not give us any stronger bound. Similarly,
we have

RCC(f(∨, . . . ,∨)) = Ω(RCC(Disjbs1(f))) = Ω(bs1(f)), (28)

QCC(f(∨, . . . ,∨)) = Ω(QCC(Disjbs1(f))) = Ω(
√

bs1(f)). (29)

Since bs(f) = max{bs0(f), bs1(f)}, this finishes the proof of the lemma.

Theorem 1 and 2 follow from the above lemma and Theorem 4. Corollary 1 is
also easy:

max
gi∈{∧,∨}

DCC(f(g1, . . . , gn)) (30)

= O(DDT(f)) (by [3]) (31)

= O
(

max
gi∈{∧,∨}

QCC(f(g1, . . . , gn))6
)

(by Theorem 1) (32)

The monotone function case follows similarly.
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Bounds on Contention Management Algorithms
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Abstract. We present two new algorithms for contention management
in transactional memory, the deterministic algorithm CommitRounds
and the randomized algorithm RandomizedRounds. Our randomized al-
gorithm is efficient: in some notorious problem instances (e.g., dining
philosophers) it is exponentially faster than prior work from a worst
case perspective. Both algorithms are (i) local and (ii) starvation-free.
Our algorithms are local because they do not use global synchronization
data structures (e.g., a shared counter), hence they do not introduce ad-
ditional resource conflicts which eventually might limit scalability. Our
algorithms are starvation-free because each transaction is guaranteed to
complete. Prior work sometimes features either (i) or (ii), but not both.
To analyze our algorithms (from a worst case perspective) we introduce
a new measure of complexity that depends on the number of actual con-
flicts only. In addition, we show that even a non-constant approximation
of the length of an optimal (shortest) schedule of a set of transactions is
NP-hard – even if all transactions are known in advance and do not alter
their resource requirements. Furthermore, in case the needed resources
of a transaction varies over time, such that for a transaction the number
of conflicting transactions increases by a factor k , the competitive ratio
of any contention manager is Ω(k) for k <

√
m, where m denotes the

number of cores.

1 Introduction

Designing and implementing concurrent programs is one of the biggest challenges
a programmer can face. Transactional memory promises to resolve a couple of the
difficulties by ensuring correctness and fast progress of computation at the same
time. Transactions have been in use for database systems for a long time. They
share several similarities with transactional memory. For instance, in case of a
conflict (i.e. one transaction demanding a resource held by another) a transaction
might get aborted and all the work done so far is lost, i.e. the values of all accessed
variables will be restored (to the ones prior to the execution of the transaction).

The difficulty lies in making the right decision when conflicts arise. This task
is done by so-called contention managers. They operate in a distributed fashion,
that is to say, a separate instance of a contention manager is available for every
thread, operating independently. If a transaction A stumbles upon a desired re-
source, held by another transaction B, it asks its contention manager for advice.
We consider three choices for transaction A: (i) A might wait or help B, (ii) A
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might abort B or (iii) abort itself. An abort wastes all computation of a transac-
tion and might happen right before its completion. A waiting transaction blocks
all other transactions trying to access any resource owned by it.

Our contributions are as follows: First, we show that even coarsely approxi-
mating the makespan of a schedule is a difficult task. (Informally, the makespan
is the total time it takes to complete a set of transactions.) This holds even in
the absence of an adversary. However, in case an adversary is able to modify
resource requirements such that the number of conflicting transactions increases
by a factor of k, the length of the schedule increases by a factor proportional to
k. Second, we propose a complexity measure allowing more precise statements
about the complexity of a contention management algorithm. Existing bounds
on the makespan, for example, do not guarantee to be better than a sequential
execution. However, we argue that since the complexity measure only depends on
the number of (shared) resources overall, it does not capture the (local) nature
of the problem well enough. In practice, the total number of (shared) resources
may be large, though each single transaction might conflict with only a few other
transactions. In other words, a lot of transactions can run in parallel, whereas
the current measure only guarantees that one transaction runs at a time until
commit. Third, we point out weaknesses of widely used contention managers.
For instance, some algorithms schedule certain sets of transactions badly, while
others require all transactions – also those facing no conflicts – to modify a
global counter or access a global clock. Thus the amount of parallelism declines
more and more with a growing number of cores. Fourth, we state and analyze
two algorithms. Both refrain from using globally shared data. From a worst-case
perspective, the randomized algorithm RandomizedRounds improves on existing
contention managers drastically (exponentially) if for each transaction the num-
ber of conflicting transactions is small. In an extended version of this paper [14]
we also show that to achieve a short makespan (from a worst case perspective)
it is necessary to detect and handle all conflicts early, i.e. for every conflict a
contention manager must have the possibility to abort any of the conflicting
transactions.

2 Related Work

Transactional memory was introduced in the nineties [8,16]. In 2003 the FSTM
system was proposed [6] and also the Dynamic STM (DSTM)[7] for dynamic
data structures was described, which suggests the use of a contention manager
as an independent module. After these milestones, a lot of systems have been
proposed. An overview of design issues from a practical point of view can be
found in [3].

Most proposed contention managers have been assessed by specific bench-
marks only, and not analytically. A comparison of contention managers based
on benchmarks can be found in [12,10]. The experiments yield best performance
for randomized algorithms, which all leave a (small) chance for arbitrary large
completion time. Apart from that, the choice of the best contention manager
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varies with the considered benchmark. Still, an algorithm called Polka [12] ex-
hibits good overall performance for a variety of benchmarks and has been used
successfully in various systems, e.g. [2,10]. In [10] an algorithm called SizeMatters
is introduced, which gives higher priority to the transaction that has modified
more (shared) memory. In an enhanced version of this paper [14] we show that
from a worst-case perspective Polka and SizeMatters may perform exponentially
worse than RandomizedRounds. In [4] the effects of selfishness among program-
mers on the makespan is investigated for various contention managers from a
game theoretic perspective.

The first analysis of a contention manager named Greedy was given in [5],
using time stamps to decide in favor of older transactions. Variants of time-
stamping algorithms had been known previously (also in the field of STM [12]).
However, [5] guaranteed that a transaction commits within bounded time and
that the competitive ratio (i.e. the ratio of the makespan of the schedule defined
by an online scheduler and by an optimal offline scheduler, knowing all trans-
actions in advance) is O(s2), where s is the number of (shared) resources of all
transactions together. The analysis was improved to O(s) in [1]. In contrast to
our contribution, access to a global clock or logical counter is needed for every
transaction which clearly limits the possible parallelism with a growing number
of cores. In [11] a scalable replacement for a global clock was presented using syn-
chronized clocks. Unfortunately, these days most systems come without multiple
clocks. Additionally, there are problems due to the drift of physical clocks.

Also in [1] a matching lower bound of Ω(s) for the competitive ratio of any
(also randomized) algorithm is proven, where the adversary can alter resource re-
quests of waiting transactions. We show that, more generally, if an adversary can
reduce the possible parallelism (i.e., the number of concurrently running trans-
actions) by a factor k, the competitive ratio is Ω(k) for deterministic algorithms
and for randomized algorithms the expected ratio is Ω(min{k,√m}), where m is
the number of cores. In the analysis of [1] an adversary can change the required
resources such that instead of Ω(s) transactions only O(1) can run in parallel,
i.e. all of a sudden Ω(s) transactions write to the same resource. Though, in-
deed the needed resources of transactions do vary over time, we believe that
the reduction in parallelism is rarely that high. Dynamic data structure such as
(balanced) trees and lists usually do not vary from one extreme to the other.
Therefore our lower bound directly incorporates the power of the adversary.

Furthermore, the complexity measure is not really satisfying, since the num-
ber of (shared) resources in total is not correlated well to the actual conflicting
transactions an individual transaction potentially encounters. As a concrete ex-
ample, consider the classical dining philosophers problem, where there are n
unit length transactions sharing n resources, such that transaction Ti demands
resource Ri as well as R(i+1) mod n exclusively. An optimal schedule finishes in
constant time O(1) by first executing all even transactions and afterwards all odd
transactions. The best achievable bound by any scheduling algorithm using the
number of shared resources as complexity measure is only O(n). Furthermore,
with our more local complexity measure, we prove that for a wide variety of
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scheduling tasks, the guarantee for algorithm Greedy is linearly worse, whereas
our randomized algorithm RandomizedRounds is only a factor logn off the op-
timal, with high probability.

We relate the problem of contention management to coloring, where a large
amount of distributed algorithms are available in different models of commu-
nication and for different graphs [9,13,15]. Our algorithm RandomizedRounds
essentially computes a O(max{Δ, logn}) coloring for a graph with maximum
degree Δ.

For further related work in respect to online scheduling, transactional memory
systems and coloring, see [14].

3 Model

A set of transactions ST := {T1, ..., Tn} sharing up to s resources (such as
memory cells) are executed on m processors P1, ..., Pm.1 For simplicity of the
analysis we assume that a single processor runs one thread only, i.e., in total at
most m threads are running concurrently. If a thread running on processor Pi

creates transactions TPi
0 , TPi

1 , TPi
2 , ... one after the other, all of them are executed

sequentially on the same processor, i.e., transaction TPi

j is executed as soon as
TPi

j−1 has completed, i.e. committed.
The duration of transaction T is denoted by tT and refers to the time T

executes until commit without contention (or equivalently, without interruption).
The length of the longest transaction of a set S of transactions is denoted by
tmax
S := maxK∈S tK . If an adversary can modify the duration of a transaction

arbitrarily during the execution of the algorithm, the competitive ratio of any
online algorithm is unbounded: Assume two transactions T0 and T1 face a conflict
and an algorithm decides to let T0 wait (or abort). The adversary could make
the opposite decision and let T0 proceed such that it commits at time t0. Then it
sets the execution time T0 to infinity, i.e., tT0 = ∞ after t0. Since in the schedule
produced by the online algorithm, transaction T0 commits after t0 its execution
time is unbounded. Therefore, in the analysis we assume that tT is fixed for all
transactions T .2 We consider an oblivious adversary that knows the (contention
management) algorithm, but does not get to know the randomized choices of
the algorithm before they take effect.

Each transaction consists of a sequence of operations. An operation can be a
read or write access of a shared resource R or some arbitrary computation. A
value written by a transaction T takes effect for other transactions only after T
commits. A transaction either successfully finishes with a commit after executing
all operations and acquiring all modified (written) resources or unsuccessfully
with an abort anytime. A resource can be acquired either once it is used for
the first time or at latest at commit time. A resource can be read in parallel
1 Transactions are sometimes called jobs, and machines are sometimes called cores.
2 In case the running time depends on the state/value of the resources and therefore

the duration varied by a factor of c, the guarantees for our algorithms (see Section
6) would worsen only by the same factor c.
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by arbitrarily many transactions. A read of transaction A of resource R is vis-
ible, if another transaction B accessing R after A is able to detect that A has
already read R. We assume that conflicts that all reads are visible. In fact, we
prove in [15] that systems with invisible readers can be very slow. To perform a
write, a resource must be acquired exclusively. Only one transaction at a time
can hold a resource exclusively. This leads to the following types of conflicts : (i)
Read-Write: A transaction B tries to write to a resource that is read by another
transaction A. (ii) Write-Write: A transaction tries to write to a resource that
is already held exclusively (written) by another transaction, (iii) Write-Read: A
transaction tries to read a resource that is already held exclusively (write) by an-
other transaction. A contention manager comes into play if a conflict occurs and
decides how to resolve the conflict. It can make a transaction wait (arbitrarily
long), or abort, or assist the other transaction. We do not explicitly consider the
third option. Helping requires that a transaction can be parallelized effectively
itself, such that multiple processors can execute the same transaction in parallel
with low coordination costs. In general, it is difficult to split a transaction into
subtasks that can be executed in parallel. Consequently, state of the art sys-
tems do not employ helping. If a transaction gets aborted due to a conflict, it
restores the values of all modified resources, frees its resources and restarts from
scratch with its first operation. A transaction can request different resources in
different executions or change the requested resource while waiting for another
transaction.

We assume that a transaction notices a conflict once it actually occurs and
a contention manager is called right away, i.e. eagerly.3 A transaction keeps
a resource locked until commit, i.e. no early release. By introducing additional
writes in our examples, any transaction indeed cannot release its resources before
commit.

A schedule shows for each processor P at any point in time whether it executes
some transaction T ∈ ST or whether it is idle. The makespan of a schedule for a
set of transactions ST is defined as the duration from the start of the schedule
until all transactions ST have committed. We say a schedule for transactions ST

is optimal, if its makespan is minimum possible. We measure the quality of a
contention manager in terms of the makespan. A contention manager is optimal,
if it produces an optimal schedule for every set of transactions ST .

4 Lower Bounds

Before elaborating on the problem complexity of contention management, we
introduce some notation related to graph theory and scheduling. We show that
even coarse approximations are NP-hard to compute. In [14] we give a lower
bound of Ω(n) for the competitive ratio of algorithms Polka, SizeMatters and
Greedy, which holds even if resource requirements remain the same over time.

3 Even for “typical” cases neither eager nor lazy conflict handling consistently outper-
forms the other.
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4.1 Notation

We use the notion of a conflict graph G = (S,E) for a subset S ⊆ ST of transac-
tions executing concurrently, and an edge between two conflicting transactions.
The neighbors of transaction T in the conflict graph are denoted by NT and
represent all transactions that have a conflict with transaction T in G. The de-
gree dT of a transaction T in the graph corresponds to the number of neighbors
in the graph, i.e., dT = |NT |. We have dT ≤ |S| ≤ min{m,n}, since at most
m transactions can run in parallel, and since there are at most n transactions,
i.e., |ST | = n. The maximum degree Δ denotes the largest degree of a trans-
action, i.e., Δ := maxT∈S dT . The term tNT denotes the total time it takes to
execute all neighboring transactions of transaction T sequentially without con-
tention, i.e., tNT :=

∑
K∈NT

tK . The time t+NT
includes the execution of T , i.e.,

t+NT
= tNT + tT . Note that the graph G is highly dynamic. It changes due to new

or committed transactions or even after an abort of a transaction. Therefore, by
dT we refer to the maximum size of a neighborhood of transaction T that might
arise in a conflict graph due to any sequence of aborts and commits. If the num-
ber of processors equals the number of transactions (m = n), all transactions
can start concurrently. If, additionally, the resource requirements of transactions
stay the same, then the maximum degree dT can only decrease due to commits.
However, if the resource demands of transactions are altered by an adversary,
new conflicts might be introduced and dT might increase up to |ST |.

4.2 Problem Complexity

If an adversary is allowed to change resources after an abort, such that all
restarted transactions require the same resource R, then for all aborted trans-
actions T we can have dT = min{m,n}. This means that no algorithm can do
better than a sequential execution (see lower bound in [1]).

We show that even if the adversary can only choose the initial conflict graph
and does not influence it afterwards, it is computationally hard to get a rea-
sonable approximation of an optimal schedule. Even, if the whole conflict graph
is known and fixed, the best approximation of the schedule obtainable in poly-
nomial time is exponentially worse than the optimal. The claim follows from a
straight forward reduction to coloring. For the proof we refer to [14].

Theorem 1. If the optimal schedule requires time k, it is NP-hard to compute
a schedule of makespan less than k

log k
25 (for sufficiently large constants), even

if the conflict graph is known and transactions do not change their resource
requirements.

4.3 Power of the Adversary

We show that if the conflict graph can be modified, the competitive ratio is pro-
portional to the possible change of a transaction’s degree. Initially, a contention
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manager is not aware of any conflicts. Thus, it is likely to schedule (many)
conflicting transactions. All transactions that faced a conflict (and aborted)
change their resources on the next restart and require the same resource. Thus
they must run sequentially. The contention manager might schedule transac-
tions arbitrarily – in particular it might delay any transaction for an arbitrary
amount of time (even before it executed the first time). The adversary has con-
trol of the initial transactions and can state how they are supposed to behave
after an abort (i.e. if they should change their resource requirements). During
the execution, it cannot alter its choices. Furthermore, we limit the power of the
adversary as follows: Once the degree of a transaction T has increased by a factor
of k, no new conflicts will be added for T , i.e. all initial proposals by the ad-
versary for resource modifications augmenting the degree of T are ignored from
then on.

The proof of the following theorem can be found in[14].

Theorem 2. If the conflict graph can be modified by an oblivious adversary such
that the degree of any transaction is increased by a factor of k, any determin-
istic contention manager has competitive ratio Ω(k) and any randomized has
Ω(min{k,

√
m}).

5 Algorithms

Our first algorithm CommitRounds (Section 5.1) gives assertions for the response
time of individual transactions, i.e., how long a transaction needs to commit.
Although we refrain from using global data and we can still give guarantees on
the makespan, the result is not satisfying from a performance point of view, since
the worst-case bound on the makespan is not better than a sequential execution.
Therefore we derive a randomized algorithm RandomizedRounds (Section 5.2)
with better performance.

Algorithm Commit Rounds (CommitRounds)

On conflict of transaction T Pi with transaction T Pj :
cmax
Pi

:= max{cmax
Pi

, cmax
Pj

}
cmax
Pj

:= cmax
Pi

if cPi < cPj ∨ (cPi = cPj ∧ Pi < Pj)

then Abort transaction T Pj

else Abort transaction T Pi

end if

After commit of transaction T P :
cmax
P := cmax

P + 1
cP := cmax

P
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5.1 Deterministic Algorithm CommitRounds

The idea of the algorithm is to assign priorities to processors, i.e. a transaction
TP running on a processor P inherits P ’s priority, which stays the same until the
transaction committed. When T commits, P ’s priority is altered, such that any
transaction K having had a conflict with transaction T will have higher priority
than all following transactions running on P . For the first execution of the first
transaction on processor Pi, the variable cmax

Pi
and cPi are initialized with 0. We

refer to the pseudocode of algorithm CommitRounds for details and to [14] for
a more detailed textual description.

Algorithm Randomized Rounds (RandomizedRounds)

procedure Abort(transaction T , K)
Abort transaction K
K waits for T to commit or abort before restarting

end procedure

On (re)start of transaction T :
xT := random integer in [1, m]

On conflict of transaction T with transaction K:
if xT < xK then Abort(T , K)

else Abort(K, T )
end if

5.2 Randomized Algorithm RandomizedRounds

For our randomized algorithm RandomizedRounds a transaction chooses a dis-
crete number uniformly at random in the interval [1,m] on start up and after
every abort. In case of a conflict the transaction with the smaller random num-
ber proceeds and the other aborts. The routine Abort(transaction T , K) aborts
transaction K. Moreover, K must hold off on restarting until T committed or
aborted.

To incorporate priorities set by a user, a transaction simply has to modify the
interval from which its random number is chosen. For example, choosing from
[1, �m

2 �] instead of [1,m] doubles the chance of succeeding in a round.4

6 Analysis

We study two classic efficiency measures of contention management algorithms,
the makespan (the total time to complete a set of transactions) and the response
time of the system (how long it takes for an individual transaction to commit).

4 Any interval yields the same guarantees on the makespan as long as the number of
distinct possible (random) values is at least m, i.e., the maximal number of parallel
running jobs.
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6.1 Deterministic Algorithm CommitRounds

Theorem 3. Any transaction will commit after being in the system for a dura-
tion of at most 2 ·m · tmax

ST
.

Proof. When transaction TPi runs and faces a conflict with a transaction TPj

having lower priority than TPi i.e., cPi < cPj or cPi = cPj and also Pi < Pj , then
TPj will lose against TPi . If not, transaction TPj will have cmax

Pj
≥ cmax

Pi
≥ cPi

after winning the conflict. Thus at latest after time tmax
ST

one of the following
two scenarios will have happened: The first is that TPj has committed and all
transactions running on processor Pj later on will have cPj > cmax

Pj
≥ cmax

Pi
≥ cPi .

The second is that TPj has had a conflict with another transaction TPk for which
will also hold that cmax

Pk
≥ cmax

Pi
after the conflict. Thus after time tmax

ST
either a

processor has got to know cmax
Pi

(or a larger value) or committed knowing cmax
Pi

(or a larger value). In the worst-case one processor after the other gets to know
cmax
Pi

within time tmax
ST

, taking time at most m · tmax
ST

and then all transactions
commit one after the other, yielding the bound of 2 ·m · tmax

ST
.

6.2 Randomized Algorithm RandomizedRounds

To analyze the response time, we use a complexity measure depending on lo-
cal parameters, i.e., the neighborhood in the conflict graph (for definitions see
Section 4.1).

Theorem 4. The time span a transaction T needs from its first start until com-
mit is O(dT · tmax

N+
T

· logn) with probability 1 − 1
n2 .

Proof. Consider an arbitrary conflict graph. The chance that for a transaction T
no transaction K ∈ NT has the same random number given m discrete numbers
are chosen from an interval [1,m] is: p(�K ∈ NT |xK = xT ) = (1 − 1

m )dT ≥
(1 − 1

m)m ≥ 1
e . We have dT ≤ min{m,n} (Section 4.1). The chances that xT is

at least as small as xK of any transaction K ∈ NT is 1
dT +1 . Thus the chance

that xT is smallest among all its neighbors is at least 1
e·(dT +1) . If we conduct

y = 32 · e · (dT + 1) · logn trials, each having success probability 1
e·(dT +1) , then

the probability that the number of successes X is less than 16 · logn becomes
(using a Chernoff bound): p(X < 16 · logn) < e−2·log n = 1

n2

The duration of a trial, i.e., the time until T can pick a new random number, is
at most the time until the first conflict occurs, i.e., the duration tT plus the time
T has to wait after losing a conflict, which is at most tmax

NT
. Thus the duration

of a trial is bounded by 2 · tmax
N+

T

.

Theorem 5. If n transactions S = {TP0 , ..., TPn} run on n processors, then the
makespan of the schedule by algorithm RandomizedRounds is O(maxT∈ST (dT ·
tmax
N+

T

) · logn)+ tlast with probability 1− 1
n , where tlast is the time, when the latest

transaction started to execute.



450 J. Schneider and R. Wattenhofer

Proof. Once all transactions are executing, we can use Theorem 4 to show that
p(∃K ∈ S finishing after O(maxT∈S dT · tmax

N+
T

) · logn) < 1
n . In the proof of The-

orem 4, we showed that for any transaction T : p(T finishes after O(dT · tmax
N+

T

·
logn) < 1

n2 . Since O(dT · tmax
N+

T

· logn) ≤ O(maxT∈S(dT · tmax
N+

T

) · logn) we have

p(T finishes after O(maxT∈S(dT · tmax
N+

T

) · logn) < 1
n2 . The chance that no trans-

action out of all n transactions exceeds the bound of O(maxT∈S(dT ·tmax
N+

T

)· log n)

is (1 − 1
n2 )n ≥ 1 − 1

n .

The theorem shows that if an adversary can increase the maximum degree dT by
a factor of k the running time also increases by the same factor. The bound still
holds if an adversary can keep the degree constantly at dT despite committing
transactions. In practice, the degree might also be kept at the same level due
to new transactions entering the system. In case, we do not allow any conflicts
to be added to the initial conflict graph, the bound of Theorem 5 (and also the
one of Theorem 4) can be improved to O(maxT∈ST (max{dT , logn}·tmax

N+
T

)), with

an analogous derivation as in [15]. As explained in [14] the schedule corresponds
then to a coloring using O(max{Δ, logn}) colors.

Let us consider an example to get a better understanding of the bounds.
Assume we have n transactions starting on n processors having equal length
t. All transactions only need a constant amount of resources exclusively and
each resource is only required by a constant number of transactions, i.e., dT

is a constant for all transactions T – as is the case in the dining philosophers
problem mentioned in Section 2. Then the competitive ratio is O(log n), whereas
it is O(n) for the Greedy, Polka and SizeMatters algorithms as shown in [14].
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Abstract. How do we most quickly fold a paper strip (modeled as a
line) to obtain a desired mountain-valley pattern of equidistant creases
(viewed as a binary string)? Define the folding complexity of a mountain-
valley string as the minimum number of simple folds required to con-
struct it. We show that the folding complexity of a length-n uniform
string (all mountains or all valleys), and hence of a length-n pleat (al-
ternating mountain/valley), is polylogarithmic in n. We also show that
the maximum possible folding complexity of any string of length n is
O(n/ lg n), meeting a previously known lower bound.

1 Introduction

What is the best way to fold an origami model? Origamists around the world
struggle with this problem daily, searching for clever, more accurate, or faster
folding sequences and techniques. Many advanced origami models require sub-
stantial precreasing of a prescribed mountain–valley pattern (getting each crease
folded slightly in the correct direction), and then folding all the creases at once.
For example, in his instructional video for folding the MIT seal Mens et Manus
in “three easy steps” [3], Brian Chan spends about three hours precreasing, then
three hours folding those creases, and then four hours of artistic folding. The
precreasing component is particularly tedious, leading us to a natural algorith-
mic problem of optimal precreasing: what is the fastest way to precrease a given
mountain–valley pattern? Although the standard method of “fold one crease,
unfold, repeat” is usually the most accurate, it might be possible to fold the
paper along some of the desired creases to bring several other desired creases
into alignment, and thereby precrease them all at once.
� Mâıtre de recherches du F.R.S.-FNRS.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 452–461, 2009.
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(a) How fast can we fold this? (b) An origami angel with many pleats,
folded by Takashi Hojyo (reproduced
with his kind permission).

Fig. 1. Pleats

We focus here on a simple kind of one-dimensional precreasing, where the piece
of paper is a long rectangular strip, which can be abstracted into a line segment,
and the creases uniformly subdivide the strip. A mountain-valley pattern is then
simply a binary string over the alphabet {M, V } (M for mountain, V for valley),
which we call a mountain-valley string. Of particular interest in origami is the
pleat, which alternates MV MV MV · · · ; see Figure 1.

Our results. In this paper, we develop surprisingly efficient algorithms for
precreasing a mountain-valley string, especially the pleat.

First, we show how to fold a uniform mountain–valley string MMM · · · of
n mountain creases using just O(lg1+

√
2 n) simple fold operations. These oper-

ations fold only along desired creases, and the last direction that each crease
gets folded is mountain. By combining two executions of this algorithm, we ob-
tain the same bound for pleats. This folding is exponentially faster than both
the standard folding and the best known folding of O(nε) folds [7]. From a
complexity-theoretic perspective, this is the first polynomial-time algorithm for
pleat folding, because the only input is the number n.

Second, we show how to fold an arbitrary mountain–valley string of n creases
using just O(n/ lg n) folds. This algorithm is the first to beat the straightforward
n−1 upper bound by more than a constant factor, and is asymptotically optimal
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[7]. We effectively exploit that every string has some redundancy in it, similar
to how Lempel-Ziv can compress any string into O(n/ lg n) block pointers.

Unfortunately, our algorithms are not about to revolutionize pleat folding
or other practical paper precreasing, because they assume ideal zero-thickness
paper. In reality, folding more than a few layers of paper leads to some inaccuracy
in the creases, called creep in origami circles, and our algorithms require folding
through Θ(n) layers. Nonetheless, our results lead the way for the development
of practical algorithms that limit the number k of layers that can be folded
through simultaneously, with speed increasing as k grows.

From an information-theory perspective, paper folding offers an intriguing new
definition of the algorithmic complexity of a binary string. The folding complex-
ity [7] of a mountain–valley string is the minimum number of folds needed to
construct it. Similar to how Kolmogorov complexity compresses a string down to
instructions for a Turing machine, folding complexity compresses a string down
to instructions for an origamist. Unlike Kolmogorov complexity, however, folding
complexity is computable, though its exact computational complexity (between
P and EXPTIME) remains open. We lack a specific (deterministic) string whose
folding complexity is asymptotically the maximum possible. (The pleat was an
early candidate, now known to be far from the worst case.) Nonetheless, our
results shed some light on the structure of this new measure.

Related work. Uehara [6] posed the problem we tackle here in August 2008. In
March 2009, Ito, Kiyomi, Imahori, and Uehara [7] formalized the problem and
made some partial progress. On the positive side, they showed how to fold any
mountain–valley string using �n/2�+ �lg(n + 1)� folds, a bound we improve on
by a logarithmic factor; and they showed how to fold the uniform string and
hence a pleat using O(nε) folds, for any ε > 0.1 On the negative side, they
showed that almost every mountain–valley string requires Ω(n/ lg n) folds using
an information-theoretic argument. We tighten this lower bound to prove that a
lead constant factor of 1 suffices, reasonably close to our asymptotically matching
upper bound which has a lead constant factor of 4 + ε, for any ε > 0.

About n different mountain–valley strings of length n can be folded using the
absolute minimum number of folds, �lg(n + 1)�. These strings are called paper
folding sequences and have been studied much earlier [8,4,1].

Model. We follow the folding and unfolding model of [7], which in turn is based
on the simple-fold model of Arkin et al. [2] (see also [5, p. 225]).

The paper strip is a one-dimensional line with creases at every integer position.
We are allowed to fold only at those positions, possibly many times, and the
direction of a crease (in {M, V }) at the end of the algorithm is the one that was
folded last. The goal is to achieve a particular string of Ms and V s at the end.
Folding has the effect of superimposing the layers of paper on the right and left
of the crease; see Figure 2. The paper has zero thickness, and thus an arbitrary

1 A somewhat more careful analysis shows that the same algorithm uses 2O(
√

lg n lg lg n)

folds.
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Fig. 2. Folding a mountain or a valley

number of layers can be folded simultaneously. Naturally, when many layers are
folded, every other layer is reversed, and the direction of the crease for these
layers is flipped. Finally we can, at any step, unfold the paper at zero cost, in
the reverse order in which it was folded, and this does not change the directions
of the creases. The complexity of the algorithm is the number of folds. (We do
not count unfold operations, though doing so would increase the cost by only a
constant factor.)

Several variants of this model arise from varying the allowed folding and
unfolding operations. Clearly, a fold can be made simultaneously on several layers
of the folded strip, allowing a form of parallelism. (Without this, we need n folds
for any pattern.) We distinguish between two models for the folding operation.

All-layers fold model: We simultaneously fold all layers of paper under the
crease point.

Some-layers fold model: We simultaneously fold the k successive layers im-
mediately beneath the crease point, for any desired number k.

For upper bounds, we concentrate on the more-restrictive all-layers fold model,
while for lower bounds, we use the more-flexible some-layers fold model. We also
introduce the following three alternatives for the allowed unfolding operations.

All-unfold model: Once we decide to unfold, the paper is unfolded completely.
Reverse-unfold model: We can rewind any number of the last folds as far as

we want.
General-unfold model: For a folded state s, we can obtain another folded

state t by one general unfolding operation, provided s can be obtained from
t by consecutive some-layers simple foldings.

The general-unfold model is the most realistic, but our algorithms require only
the power of the reverse-unfold model, so we focus entirely on that model.

A folding algorithm is end-free if it can be applied to an infinite paper strip,
viewed as a line instead of a line segment, with n equally spaced creases along
it, without creasing anywhere else. We discuss end-free algorithms only, which
is crucial for allowing us to apply an algorithm recursively (effectively ignoring
any surrounding creases).
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2 Folding Pleats

Every mountain-valley pattern with n creases requires at least �lg(n + 1)� folds,
just to get all the creases folded in some direction [7]. The purpose of this section
is to show that the pleat pattern, while seemingly difficult to fold, has a fairly
close upper bound. But first we need to show that the lower bound can be met
for any n (not just of the form 2k − 1):

Lemma 1. A string of n equally spaced creases (unspecified as mountain or
valley) can be folded (and not unfolded) using at most 1 + �lg(n + 1)� simple
folds in the end-free all-layers fold model.

Proof. If the number of segments between creases, n + 1, is 2k for an integer k,
then the folding is the obvious one: fold at the middle crease, k times. Otherwise,
n + 1 = 2k + r for some integers k and 0 ≤ r < 2k. Valley-folding at the rth
crease would place the initial r segments on top of the remaining 2k segments, at
which point we could apply the power-of-2 algorithm. But to make the folding
end-free, we first mountain-fold at the �r/2�th crease, so that these two creases
form a zig-zag and the power-of-2 algorithm creases only where desired.

Theorem 1. The folding complexity of a uniform string and of a pleat of length
n in the all-layers fold, reverse-unfold model is O(lgc n), where c = 1 +

√
2.

Proof. Given an algorithm for folding a uniform sequence of n mountains, we
can apply it twice to obtain the pleat sequence. We therefore concentrate on
finding an algorithm for folding the uniform sequence.

Let T (n) be a monotone upper bound on the number of required folds. Let
w := 2k − 1 for some value k. We suppose that w <

√
n. The exact value of w

will be determined later.
The algorithm is decomposed into three steps.

Step 1. We apply Lemma 1 to fold the strip into �n/w� layers of width w, at a
cost of lg(n/w) + O(1) folds. Then we recurse on these layers, at a cost T (w).
After unfolding, we get sequences of w mountains separated by w + 2 other
creases (because half of the layers were reversed). The rest of the algorithm will
work only with these creases; there are a final n mod w creases which we will
deal with at the end of the algorithm simply by recursing. The overall cost of
this step (both preprocessing and postprocessing) is at most

lg
n

w
+ O(1) + 2T (w) = 2T (w) + O(lg n). (1)

Step 2. We apply Lemma 1 to a scaled version of the creases in order to align
the mountain sequences (possible because the gap between the sequences, w+2,
is odd). See Figure 3(a), where the lemma’s folding is depicted as a zig-zag for
simplicity. This folding costs lg n

2w + O(1) folds. The crease sequences within
the layers are composed of three subsequences, the middle one being the aligned
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(a) Step 2: Extending the moun-
tain sequences.

M M

(b) Step 3: Matching triples. Af-
ter folding a mountain on both
sides, the circled creases become
mountains.

Fig. 3. Folding pleats

mountains, of length w, and the two others being sequences of length �(w +
2)/2� = �w/2� = 2k−1. We call the two others side sequences.

We recurse again on the side sequences, folding mountains on the right,
and valleys on the left. (Here we use the end-free property.) This folding costs
2T (�w/2�) folds, and has the effect of extending the lengths of the mountain se-
quences. Thus, after these recursive calls, we have mountain sequences of length
�3w/2� separated by sequences of length 2k−1 + 1.

Next, we unfold everything and iterate these operations of aligning mountain
sequences and recursing on both side sequences. This is possible because the
distance between the mountain sequences remains odd. The width remains 2w,
so folding still costs lg n

2w + O(1), but the length of the side sequences decreases
by a factor of 2 at every iteration. We iterate until the side sequences have
length 1. At that point, we have mountain sequences of length 2w− 3 separated
by triples of “junk” creases. Overall, the cost of this step is:

lg w ·
(
lg

n

2w
+ O(1)

)
+2

∑

i

T
(⌊w

2i

⌋)
≤ lg w ·

(
lg

n

2w
+ 2T (w)

)
+O(lg n). (2)

Step 3. At the end of the previous step, we are left with sequences of 2w − 3
mountains separated by three junk creases. We can again apply Lemma 1 to
align the junk triples, (possible because the gap between the triples, 2w − 3, is
odd). This folding costs lg n

2w + O(1) folds. Considering the aligned triples, we
now fold a mountain on the left and right creases of the triples; see Figure 3(b).
(More precisely, we fold a mountain on the left, then unfold once, then fold
a mountain on the right, then unfold everything.) This procedure costs two
folds, and creates mountains on the left and right creases of the layers that
are not reversed. Hence, for half the triples, there is now only one junk crease
left. We iterate the above steps on the remaining triples only, reducing by a
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factor of 2 the number of remaining triples at every step. This procedure remains
possible because the remaining triples are separated by an odd number of creases,
and the middle crease lies within one of the original triples. The overall cost is∑

i

(
lg n

2iw + O(1)
)
.

When finished, we are left with all the middle creases of the original triples. By
a simple scaling, this is a subproblem of size n/w that can be solved recursively.
We therefore incur a final, additional cost of T (n/w). Overall, the complexity of
Step 3 is bounded by

T
( n

w

)
+
∑

i

(
lg

n

2iw
+ O(1)

)
≤ T

( n

w

)
+ lg2 n

w
+ O(lg n). (3)

Analysis. Summing the complexities of the three previous steps, we get

T (n) ≤ (2 lg w + 2)T (w) + lg
n

w

(
lg w + lg

n

w

)
+ T

( n

w

)
+ O(lg n) (4)

= (2 lg w + 2)T (w) + O(lg2 n) + T
( n

w

)
. (5)

We suppose that T (n) < lgc n for some constant c > 1. We find a value for w
such that the first term is also O(lg2 n):

(2 lg w + 2)T (w) < lg2 n (6)
2 lgc+1 w + 2 lgc w < lg2 n (7)

w < 2b·lg
2

c+1 n (8)

for some constant b > 1. The recurrence relation for T (n) now becomes:

T (n) ≤ T

(
n

2b·lg
2

c+1 n

)

+ O(lg2 n). (9)

This solves to:
T (n) = O(lg

3c+1
c+1 n). (10)

(The proof is omitted in this version of the paper.)
But we made the hypothesis that T (n) = O(lgc n), yielding

3c + 1
c + 1

= c (11)

c = 1 +
√

2. (12)

�	

3 Folding Arbitrary Sequences

Ito, Kiyomi, Imahori, and Uehara [7] proved that the folding complexity of a
random sequence is Ω(n/ lg n) with high probability. We now refine this result.
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s

Fig. 4. Partitioning the sequences in odd-length chunks. Note that every pair of chunks
is separated by an odd number of creases.

Theorem 2 ([7]). The folding complexity of a random sequence of length n in
the some-layers fold, reverse-unfold model is at least

n

3 + lg n

with high probability.

Proof. We use a counting argument. Suppose that we make k folds (and k un-
folds). We note that, if a sequence of length n is obtained by less than k folds,
we can also obtain the sequence using k folds exactly.

At each fold, there are two choices for the direction of folding (mountain or
valley). There are at most n choices for the set of positions of the folding by
considering the bottom-most layer of a valley folding or the top-most layer of a
mountain folding. Thus we have (2n)k possibilities here.

At each unfolding operation, we may rewind some folding operations. We
will rewind k folding operations in total. Moreover, for any step, the number of
rewind operations so far cannot exceed the number of folding operations. Thus,
there are at most C(k) choices for the unfolding operations, where C(k) is the
kth Catalan number. Note that for large k, C(k) < 4k.

Overall, the number of possible sequence of length n obtained by in at most
k folds is bounded by (2n)kC(k). If we let k = n/(3 + lgn), then, for sufficiently
large values of n, (2n)kC(k) < (2n)k4k = (8n)k = 2n.

Therefore, the number of possible sequences of length n by at most k fold-
ing (and unfolding) operations is less than the number of all sequences of
length n. �	

We give an upper bound that matches this lower bound up to a constant factor.
Given an arbitrary sequence of length n, and an odd number s ≥ 3, we divide
the sequence into chunks of size s, each pair of successive chunks being separated
by one crease. Note that, because s is odd, every pair of chunks is separated by
an odd number of creases (see Figure 4). This will allow us to align any subset
of chunks by folding them on top of each other.

Suppose there are at most k distinct patterns among such chunks, that is,
the subsequence of creases in any chunk belongs to a set of at most k distinct
sequences. We denote by f(n, k, s) the worst-case complexity of folding such a
sequence in the some-layers fold, reverse-unfold model.

Lemma 2.
f(n, k, s) ≤ 4n/s + ks lg n.
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Fig. 5. Two ways to match chunks

Proof. Consider one kind of chunk, and suppose it appears t times. We can fold
a zig-zag to match all the t chunks, so that we can fold them together. Note that
this is always possible, because the distance between any two chunks is odd.
Also note that folding the zig-zag involves some-layers folding operations. The
number of required folds for the zig-zag is exactly t − 1.

When the chunks are folded, we have to fix the creases that may have been
destroyed by the zig-zag. The zig-zag can be folded in at least two different ways
(see Figure 5). By choosing one of them, we can ensure that at most one half of
the zig-zag creases destroy previously folded creases. Hence the zig-zag costs at
most t − 1 + t/2 ≤ 3t/2 folds: t − 1 folds to create it, then t/2 folds to fix the
creases that have been destroyed.

The folding of the chunks themselves costs s folds. But because they are
mapped in alternating directions, only half of them are correctly folded. To fix
this, we can recurse on the remaining half. The overall cost is therefore at most

(3t/2 + s) + (3t/4 + s) + (3t/8 + s) + · · · + (1 + s) < 3t + s lg(3t/2).

Now suppose that there are ti occurrences of the chunk of type i. Note that∑
i ti = n/s. Thus repeating the steps above for each of the k kinds of chunks,

we can fold all the chunks in

k∑

i=1

(
3ti + s lg

3ti
2

)
≤ 3n/s + ks lg n

folds. Finally, we have to take care of the remaining creases separating the
chunks. There are n/s of them. Folding them separately, we obtain

f(n, k, s) ≤ 4n/s + ks lg n. �	

This directly yields a Θ(n/ lg n) upper bound for folding arbitrary sequences.

Theorem 3. The folding complexity of a binary sequence of length n in the
some-layers fold, reverse-unfold model is at most

(4 + ε)
n

lg n
+ o

(
n

lg n

)
,

for any ε > 0.
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Proof. Pick s = (1− ε) lgn, and k = 2s = n1−ε in the formula of Lemma 2, with
ε := ε/(4 + ε). This yields:

4n

(1 − ε) lg n
+ (1 − ε)n1−ε lg2 n = (4 + ε)

n

lg n
+ o

(
n

lg n

)
. �	

Note that the upper and lower bounds are within a factor 4 of each other. It
remains open whether the same upper bound is possible in the all-layers fold
model.
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Abstract. Dynamic voltage scaling technique provides the capability
for processors to adjust the speed and control the energy consumption.
We study the pessimistic accelerate model where the acceleration rate
of the processor speed is at most K and jobs cannot be executed during
the speed transition period. The objective is to find a min-energy (op-
timal) schedule that finishes every job within its deadline. The job set
we study in this paper is aligned jobs where earlier released jobs have
earlier deadlines. We start by investigating a special case where all jobs
have common arrival time and design an O(n2) algorithm to compute the
optimal schedule based on some nice properties of the optimal schedule.
Then, we study the general aligned jobs and obtain an O(n2) algorithm
to compute the optimal schedule by using the algorithm for the common
arrival time case as a building block. Because our algorithm relies on the
computation of the optimal schedule in the ideal model (K = ∞), in
order to achieve O(n2) complexity, we improve the complexity of com-
puting the optimal schedule in the ideal model for aligned jobs from the
currently best known O(n2 log n) to O(n2).

1 Introduction

Energy-efficiency has become the first-class design constraint besides the tradi-
tional time and space requirements. Portable devices (like laptops and PDAs)
equipped with capacity limited batteries are popular in our daily life. Two facts
make the energy problem more important. First, the battery capacity is increas-
ing with a rate less than that of power consumption of the processors. Second,
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the accumulated heat due to energy consumption will reach a thermal wall and
challenge the designers of electronic devices. It is found that, in the CMOS pro-
cessors, the energy consumption can be saved by executing with a lower speed.
Approximately, the speed is a cubic root of the power, which is famous as cube-
root-rule. Dynamic voltage scaling (DVS) technique is widely adopted by modern
processor manufactures, e.g., Intel, AMD, and IBM. It allows the processor to
dynamically adjust its voltage/frequency to control the power consumption. The
first theoretical study was initialed decades ago [14], where the authors make the
standard generalization, a speed to power function P (s) = sα (α ≥ 1). Usually,
α is 2 or 3 according to the cube-root-rule of the processors. From then on, lots
of studies are triggered in this field. It is usually formulated as a dual objective
problem. That is, while conserving the energy, it also needs to satisfy some QoS
metric. When all jobs are required to be completed before deadline, the metric
is called deadline feasibility. There are also works trying to simultaneously mini-
mize the response time of the jobs, namely, flow. A schedule consists of the speed
scaling policy to determine what speed to run at time t and the job selection
policy to decide which job to run at that time.

If the processor can run at arbitrary speeds, then based on how fast the voltage
can be changed, there are two different models.

Ideal Model: It is assumed that the voltage/speed of the processor can be
changed to any other value without any extra/physical cost or delay. This model
provides an ideal fundamental benchmark and has been widely studied.

Accelerate Model: It is assumed that the voltage/speed change has some
delay. In practice, the processor’s acceleration capacity is limited. For example,
in the low power ARM microprocessor system (lpARM) [5], the clock frequency
transition takes approximately 25μs (1350 cycles) from 10MHz to 100MHz.
Within this scope, there are two variations. In the optimistic model, the pro-
cessor can execute jobs during the speed transition time, while in the pessimistic
model, the execution of jobs in the transition time is not allowed [15].

1.1 Related Works

In recent years, there are many works on the impact of DVS technology. It is
not practical to survey all of them, thus we just review the most related papers.

For the ideal model, Yao el. al. first studied the energy-efficient job scheduling
to achieve deadline feasibility in their seminal paper [14]. They proposed an
O(n3) time algorithm YDS to compute the optimal off-line schedule. Later on,
the running time is improved to O(n2 logn) in [12]. Another metric, the response
time/flow, was examined in [13] with bounded energy consumption. It is first
formulated as a linear single objective (energy+flow) optimization problem in
[1]. This was then specifically studied in [4],[9],[6],[2],[3] el. al. under different
assumptions. A good survey can be found in [8].

For the accelerate model, there are little theoretical studies to the best of our
knowledge, except that the single task problem was studied in [7],[15]. In [7], they
showed that the speed function which minimizes the energy is of some restricted
shapes even when considering a single task. They also gave some empirical
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studies based on several real-life applications. In [15], the authors studied both
the optimistic model and pessimistic model, but still for the single task problem.
They showed that to reduce the energy, the speed function should accelerate as
fast as possible from.

1.2 Main Contributions

In this paper, we study the pessimistic accelerate model to minimize the energy
consumption. The QoS metric is deadline feasibility. The input is an aligned job
set J with n jobs, where jobs with earlier arrival times have earlier deadlines. The
processor can execute a job with arbitrary speed but the absolute acceleration
rate is at most K, and the processor has no capability to execute jobs during the
transition of voltage. The objective is to find a min-energy schedule that finishes
all jobs before their deadlines.

We first consider a special case of aligned jobs where all the jobs arrive at
time 0. We call this kind of job set common arrival time instance. We prove that
the optimal schedule should accelerate as fast as possible and the speed curve is
non-increasing. Combining with other properties we observed, we construct an
O(n2) time algorithm to compute the optimal schedule.

Then we turn to the general aligned jobs to study the optimal schedule OPTK .
The algorithm for the common arrival time instance is adopted as an elementary
procedure to compute OPTK . Most of the properties for the common arrival time
instance can be extended to general aligned jobs. By comparing OPTK with the
optimal schedule OPT∞ in the ideal model, we first prove that the speed curves
of OPTK and OPT∞ match during some “peak”s. Then we show that the speed
curve of OPTK between adjacent “peak”s can be computed directly. The whole
computation takes O(n2) time since we improve the computation of OPT∞ for
aligned jobs to O(n2). Our work makes a further step in the theoretical study of
accelerate model and may shed some light on solving the problem for the general
job set.

The organization of this paper is as follows. We review the ideal model and the
pessimistic accelerate model in Section 2. In Section 3, we study the pessimistic
accelerate model and focus on a special but significant case where all jobs are
released at the beginning. We then turn to the general aligned jobs that have
arbitrary release time in Section 4. Finally we conclude the paper in Section 5.

2 Model and Notation

In this section, we review the ideal model proposed in [14] and the pessimistic
accelerate model.

The input job instance we consider in this paper is an aligned job set J =
{J1, J2, . . . , Jn} where each job Ji has an arrival time r(Ji), a deadline d(Ji)
(abbreviated as ri and di respectively), and the amount of workload C(Ji). The
arrival times and the deadlines follow the same order, i.e., r1 ≤ r2 ≤ . . . ≤ rn

and d1 ≤ d2 ≤ . . . ≤ dn.
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In the ideal model, the processor can change its speed to any value instanta-
neously without any delay. The power function is assumed to be P (s) = sα(α ≥
1). A schedule S needs to determine what speed and which job to execute at
time t. We use s(t, S) to denote the speed took by schedule S at time t and
write it as s(t) for short if the context is clear. We use job(t) to represent the
index of the job being executed at time t. Jobs are preemptive. The processor
has the capability to resume the formerly suspended jobs. We take the deadline
feasibility as the QoS metric, i.e., a job is available after its arrival time and
need to be completed before its deadline. A feasible schedule must satisfy the
timing constraint

∫ di

ri
s(t)δ(i, job(t))dt = C(Ji), where δ(i, j) = 1 if i = j and

δ(i, j) = 0 otherwise. The energy consumption is the power integrated over time:
E(S) =

∫
t P (s(t, S))dt. The objective is to minimize the total energy consump-

tion while satisfying the deadline feasibility.
In the pessimistic accelerate model, the processor cannot change the voltage

instantaneously. The acceleration rate is at most K, i.e., |s′(t)| ≤ K. More-
over, no job can be executed during the transition interval s′(t) 
= 0 and there
is always some job being executed when s′(t) = 0 and s(t) > 0. The en-
ergy is the power integrated over the time where s′(t) = 0 and s(t) > 0. So
E =

∫
t|s′(t)=0,s(t)>0 P (s(t, S))dt. With such constraints, a feasible schedule is a

schedule where all jobs are completed before deadline and the speed function
satisfies |s′(t)| ≤ K. The optimal schedule is the one with the minimum energy
consumption among all feasible schedules.

Let ts = mini ri, tf = maxi di. The workload executed in interval [a, b] by
schedule S is denoted as C[a,b](S). If a job J has I(J) = [r(J), d(J)] ⊆ [a, b], we
say J is embedded in interval [a, b]. For simplicity, when we say “the first” time
(or interval), we mean the earliest time (or interval) on the time axis in left-
to-right order. Using the similar definition as [11], we say tu is a tight deadline
(or tight arrival time respectively) in schedule S if tu is the deadline (or arrival
time respectively) of the job that is executed at [tu − Δt, tu] (or [tu, tu + Δt]
respectively) in S where Δt → 0. Due to space limit, we omit most of the proofs
in this version.

3 Optimal Schedules for Job Set with Common Arrival
Time

For the jobs that have common arrival time, we assume w.l.o.g they are available
at the beginning, namely ri = 0 for 1 ≤ i ≤ n.

Definition 1. In a feasible schedule S, we denote the maximal interval where the
jobs run at the same speed as a block. Note that there is an acceleration-interval
(the time used for acceleration) between adjacent blocks because changing the
speeds needs some time, during which no workload is executed.

In the following, we will give some properties of the optimal schedule which help
us design a polynomial algorithm to compute the optimal schedule.
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Lemma 1. There exists an optimal schedule, where the speed function is non-
increasing and will accelerate as fast as possible, i.e., either |s′(t)| = K or
|s′(t)| = 0; and the jobs are completed in EDF (Earliest Deadline First) order
with Ji executed in one speed and only in the lowest speed min

0≤t≤di,s′(t)=0
s(t).

Furthermore, the finishing time t̂ of each block (where limt→t̂− s′(t) = 0 ∧
limt→t̂+ s′(t) = −K) is a tight deadline.

Lemma 2. In the optimal schedule,
1) The first block is the interval (0, dt) which maximizes

∑
J∈Jt

C(J)
dt

where
Jt = {Jj |dj ≤ dt]} and t ∈ {1, . . . , n}, i.e. the maximum speed in the optimal

schedule is s1 = max
i

∑
J∈Ji

C(J)
di

.

2) Suppose block j has speed sj and finishes at Jtj ’s deadline, then the speed in

block j + 1 is sj+1 = max
t

sj−K(dt−dtj
)+

√
(K(dt−dtj

)−sj)2+4K
∑

t
i=tj+1 C(Ji)

2 where

t ∈ {tj + 1, . . . , n}.

Theorem 1. The optimal schedule can be computed by Algorithm 1 at O(n2).

Proof. Algorithm 1 is a direct implementation of Lemma 2. Steps 2-4 computes
the first block. The two loops in Steps 6-10 computes the remaining blocks. By
keeping the information of the summation on the computed jobs, the optimal
schedule can be computed in O(n2) time.

Algorithm 1. CRT schedule
1. t = 0;

2. s1 = max
i

∑ i
j=1 C(Jj)

di
;

3. t = arg max
i

s1 ;

4. Let the block with speed s1 be [0, dt];
5. m = 1;
while t < n do

6. sm+1 = max
t+1≤i≤n

sm−K(di−dt)+
√

(K(di−dt)−sm)2+4K
∑ i

j=t+1 C(Jj )

2 ;

7. t′ = arg max
i

sm+1;

8. Let the block with speed sm+1 be [dt + (sm − sm+1)/K, dt′ ];
9. m = m + 1;
10. t = t′;

end while

4 Optimal Schedules for Aligned Jobs

In this section, we study the optimal schedule for general aligned jobs. Note that
jobs with common arrival time is a special case of aligned jobs. We first extend
some basic properties in Subsection 4.1. We will compute the optimal schedule
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for aligned jobs by adopting Algorithm 1 as a building block. We use OPTK to
denote the optimal schedule where K is the maximum acceleration rate.

In the ideal model, the acceleration rate is infinity K = ∞. We review the
Algorithm YDS in [14] to compute OPT∞. Let w(t1, t2) denote the workload
of the jobs that have release time at least t1 and have deadline at most t2,
i.e. w(t1, t2) =

∑
I(J)⊆[t1,t2] C(J). Define the intensity Itt(t1, t2) of the time

interval [t1, t2] to be w(t1, t2)/(t2 − t1). The algorithm tries every possible pair
of arrival time and deadline to find an interval with largest intensity (called
critical interval), schedule the jobs embedded in the critical interval and then
repeatedly deal with the remaining jobs.

We first show that the optimal schedule for aligned jobs in the ideal model
can be computed in O(n2) time.

Theorem 2. The optimal schedule for aligned jobs in the ideal model can be
computed in O(n2) time.

Given a block blockp, we denote the corresponding interval as
[L(blockp), R(blockp)]. We define virtual canyon to be a block with length
0. Next, we derive some properties of OPTK .

4.1 Basic Properties

Among all the blocks, we define the block [ta, tb] where lim
t→ta

−
s′(t) = K ∧

lim
t→ta

+
s′(t) = 0 and lim

t→tb
−
s′(t) = 0 ∧ lim

t→tb
+
s′(t) = −K to be peak. Reversely, the

block where lim
t→ta

−
s′(t) = −K∧ lim

t→ta
+
s′(t) = 0 and lim

t→tb
−
s′(t) = 0∧ lim

t→tb
+
s′(t) =

K is called canyon.
We say t̂ is down-edge-time if lim

t→t̂−
s′(t) = 0∧ lim

t→t̂+
s′(t) = −K or lim

t→t̂−
s′(t) =

K ∧ lim
t→t̂+

s′(t) = 0. For example, both the start time and finish time of a peak

are down-edge-times.
We have the following lemma for OPTK .

Lemma 3. There is an optimal schedule, where the speed function will accelerate
as fast as possible, i.e., either |s′(t)| = K or s′(t) = 0, and every down-edge-time
is either a tight deadline or a tight arrival time; and jobs are executed in EDF
order; each job J is executed only in one block, and this block is the lowest one
in interval [r(J), d(J)].

4.2 O(n2) Time Algorithm to Compute OPTK

To find the optimal schedule, our method is to identify some special blocks
belonging to OPTK . After enough blocks are selected, the remaining interval of
OPTK can be easily computed. To be more specific, we compare OPTK with
schedule OPT∞, which is the optimal schedule for the special case K = ∞,
namely the ideal model. We observe that the block with the highest speed (we
call it global-peak) of OPTK can be computed first.
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Algorithm 2. Computing a Monotone-interval
Input: OPT∞, Schedule computed by YDS.
[a, b], computed peak (it can be the global-peak or local-peak)
sb, Starting speed at time b.
Output: S[b,t1], a monotone-interval starting from b and its corresponding schedule.
/* Let [tL, tR] be the current interval being handled. Let S be the the
computed schedule for current interval [tL, tR]. slast denotes the lowest
speed in the computed S. blockp+1 is the first un-handled block in OPT∞.*/
1. slast = sb; tL = tR = b; S[b,t1] = φ; S = φ; p = 0;¯̄t = b.
2. In OPT∞, index the blocks from the peak [a, b] as block0, block1, block2, . . . in the
left to right order.
while slast ≥ s(blockp+1) do

/*recover procedure*/
if S �= ∅ then

3. For jobs that are executed in the lowest block of S, recover their arrival
time/deadline to the original value.
4. Reset slast to be the speed of S in time¯̄t;

end if
5. Select blocki to be the block after tR in OPT∞ with i.e. s(blockp+1) > . . . >
s(blocki) and s(blocki) < s(blocki+1); if such a block does not exist, then let
i = p + 1; Reset tR = R(blocki).
6. Set p = i;
/*adjust procedure*/
for every job with I(J) ∩ [tL, tR] �= φ do

7. Adjust r(J) to be max{r(J), tL};
8. Adjust d(J) to be min{d(J), tR};
9. Backup the original value of r(J) and d(J);

end for
/*handle interval [tL, tR] in OPT∞*/
10. Call Algorithm 1 to compute a schedule S for jobs involved in Step 9 ac-
cording to common arrival time tL with starting speed slast.
11. If the blocki found in Step 6 has speed 0, then we make S accelerate with rate
−K after the last time with positive speed and insert a virtual canyon at time tR.
12. Reset slast to be the lowest positive speed in the computed S.
if slast < s(blockp+1) then

13. S[b,t1] = S[b,t1] ∪ S; Return S[b,t1].
else

14. Let ¯̄t be the finish time of the second lowest (including the virtual canyon
inserted in Step 11) block in S.
15. S[b,t1] = S[b,t1]∪ (S restricted in interval [tL ,̄̄ t]).
16. Reset tL =¯̄t.

end if
end while

Lemma 4. OPTK executes the same as OPT∞ in the first critical interval.

After we have fixed the first block (global-peak) of OPTK , a natural question
is whether we can apply the same proof of Lemma 4 to select other blocks. For
example, in the remaining interval of OPT∞, does the block with maximum
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Algorithm 3. Computing the Optimal Schedule between Two Adjacent Peaks
Input:
[a1, b1], [a2, b2], the two adjacent peaks found in Algorithm 4.
S[b1,t1], S[t2,a2], the two schedules computed by Algorithm 2. Choose one of the in-
tersection point as t̄.
Output: schedule of OPTK in interval [b1, a2].
1. For each down-edge-time p on s(t, S[b1,t1]) in [b1, t̄) or on s(t, S[t2,a2]) in (t̄, a2], let
the point with the same speed on the other curve be p′. If there are more than one
such point, let p′ be the one minimizing |pp′|; if there are no such point, we do not
consider line segment originating from p.
2. Sort all the segments pp′ by increasing order of their speed (denoted by Speed(p))
into p1p

′
1, p2p

′
2, . . . , pmp′

m (Duplicate segments are treated as one). The end points
are relabeled so that pi is always on s(t, S[b1,t1]) and p′

i is always on s(t, S[t2,a2]).
3. Find augment segment for each segment pip

′
i as follows. If pi and p′

i are both
down-edge-time, then the augment segment is pip

′
i itself; if pi is a down-edge-time

and p′
i is not, then the augment segment is pip

′ where p′ is the closest down-edge-
time on s(t, S[t2,a2]) with respect to p′

i; the remaining case is similarly defined. We
use qiq

′
i to represent the augment segment of pip

′
i.

for i = 1 to m do
4. Let C =

∑
I(J)∩[qi,q′

i] �=∅ C(J).

if ( C
|pip′

i|
< Speed(pi)) then

5. Let S[t̂1,t̂2] be the schedule that executes all jobs with I(J)∩ [pi, p
′
i] �= φ with

speed s in interval [t̂1, t̂2].(The parameters can be calculated as t̂1 = pi+T ; t̂2 =

p′
i − T ; s = Speed(pi) − 2KT ; T =

Speed(pi)+K|pip′
i|−

√
(Speed(pi)−K|pip′

i
|)2+4KC

4K
)

6. break;
end if

end for
7. The optimal schedule in interval [b1, a2] is (S[b1,t̂1] restricted to [b1, t̂1]) ∪ S[t̂1,t̂2] ∪
(S[t2,a2] restricted to [t̂2, a2]).

intensity have the same schedule as that of OPTK? Although this is not true,
we will show that some other blocks in OPT∞ can be proved to be the same as
OPTK . The key observation is that by appropriately dividing the whole interval
into two sub-intervals, the block with the maximum intensity inside one of the
sub-intervals in OPT∞ can be proved to be the same as OPTK . Our partition
of intervals is based on a monotone-interval defined below.

Definition 2. Given a schedule, we define the sub-interval where the speed
function/curve is strictly non-increasing or non-decreasing to be a monotone-
interval.

Since the speed in OPTK outside the global-peak [a, b] is at most Itt(a, b), there
exists a monotone-interval immediately after time b (non-increasing curve) and
symmetrically before time a (non-decreasing curve). At time b and a, the speeds
are respectively sb = Itt(a, b) and sa = Itt(a, b).

In the following, we will study a schedule S[b,t1] (only specifying speeds
in interval [b, t1]) with monotone-interval [b, t1] (non-increasing speed with
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Algorithm 4. Computing the Optimal Schedule for Aligned Jobs
Input: Aligned job set J
Output: OPTK

1. Compute OPT∞.
2. Let the maximum intensity block in OPT∞ be the global-peak in OPTK .
3. Index the global-peak as an un-handled peak.
while there is a peak [L,R] un-handled do

4. Let OPTK execute jobs the same way as OPT∞ in [L, R].
5. Call Algorithm 2 to compute the monotone-interval starting from R (and also
symmetrically a monotone-interval ending at L).
6. If there are local-peaks in OPT∞ in the un-handled interval on either side of
the monotone-intervals, then index the local-peaks as un-handled peaks.

end while
7. Compute the OPTK for all the intervals between adjacent peaks found in the
previous while loop using Algorithm 3.

s(b, S[b,t1]) = s(b, OPT∞)). Suppose that t1 is the first (earliest) intersection
of the two curves s(t, S[b,t1]) and s(t, OPT∞) with lim

t→t+1

s(t, OPT∞) > 0. We will

compare the speed curve of OPTK with that of S[b,t1].

Definition 3. In interval [b, t1], we say t is a separation-time of OPTK w.r.t
S[b,t1] if their speed curves totally overlap in interval [b, t] and separate at t+Δt
where Δt → 0.

We can show that the schedule S[b,t1] with non-increasing speed output by Algo-
rithm 2 has the following property: let [a2, b2] be the maximum intensity block in
OPT∞ among the remaining interval [t1, tf ], then OPTK has the same schedule
as OPT∞ in interval [a2, b2]. Furthermore, Algorithm 2 runs in O(n2).

Among the un-handled interval (e.g. [t1, tf ]), we define local-peak to be the
peak which has the local maximal intensity in OPT∞. The following lemma
shows that the schedules OPTK and OPT∞ are the same in local-peaks.

Lemma 5. The schedule of local-peaks in OPTK is the same as OPT∞.

Note that there is a monotone-interval respectively before and after the com-
puted global-peak or local-peak. We can repeatedly call Algorithm 2 (a symmet-
ric version of Algorithm 2 can be used to compute a monotone-interval before a
“peak”) until no such peak exists in the un-handled intervals. Then the schedule
of the remaining intervals (all intervals between the adjacent peaks computed in
Algorithm 4) can be uniquely computed as shown in Lemma 6.

Lemma 6. The schedule of OPTK in intervals between two (local-)peaks found
by Algorithm 4 can be computed by Algorithm 3. Notice that in this algorithm,
“down-edge-time” means the corresponding point on the speed curve at the down-
edge-time.

Theorem 3. Algorithm 4 computes OPTK for aligned jobs in O(n2) time.



Min-Energy Scheduling for Aligned Jobs in Accelerate Model 471

5 Conclusion

In this paper, we study the energy-efficient dynamic voltage scaling problem and
mainly focus on the pessimistic accelerate model and aligned jobs. All jobs are
required to be completed before deadlines and the objective is to minimize the
energy. We start by examining the properties for the special case where jobs are
released at the same time. We show that the optimal schedule can be computed in
O(n2). Based on this result, we study the general aligned jobs. The algorithm for
jobs with common arrival time is adopted as an elementary procedure to compute
the optimal schedule for general aligned jobs. By repeatedly computing heuristic
schedules that is non-increasing, we fix some peaks of the optimal schedule first.
This makes the optimal schedule in the remaining interval easier to compute.
The complexity of the algorithm is O(n2) since we improve the computation of
the optimal schedule for aligned jobs in the ideal model to O(n2).
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Abstract. Given a system (V, f, r) on a finite set V consisting of a posi-
modular function f : 2V → R and a modulotone function r : 2V → R,
we consider the problem of finding a minimum set R ⊆ V such that
f(X) ≥ r(X) for all X ⊆ V − R. The problem, called the transversal
problem, was introduced by Sakashita et al. [6] as a natural generalization
of the source location problem and external network problem with edge-
connectivity requirements in undirected graphs and hypergraphs.

By generalizing [8] for the source location problem, we show that the
transversal problem can be solved by a simple greedy algorithm if r is π-
monotone, where a modulotone function r is π-monotone if there exists
a permutation π of V such that the function pr : V × 2V → R associated
with r satisfies pr(u, W ) ≥ pr(v, W ) for all W ⊆ V and u, v ∈ V with
π(u) ≥ π(v). Here we show that any modulotone function r can be
characterized by pr as r(X) = max{pr(v, W ) | v ∈ X ⊆ V − W}.

We also show the structural properties on the minimal deficient sets W
for the transversal problem for π-monotone function r, i.e., there exists
a basic tree T for W such that π(u) ≤ π(v) for all arcs (u, v) in T , which,
as a corollary, gives an alternative proof for the correctness of the greedy
algorithm for the source location problem.

Furthermore, we show that a fractional version of the transversal prob-
lem can be solved by the algorithm similar to the one for the transversal
problem.

1 Introduction

Given a system (V, f, r) on a finite set V consisting of a posi-modular function
f : 2V → R and a modulotone function r : 2V → R with f(∅) ≥ r(∅), we consider
the following problem:

Minimize |R|
subject to f(X) ≥ r(X) for all X ⊆ V −R

R ⊆ V.
(1.1)

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 473–482, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Here f(∅) ≥ r(∅) is necessary for the problem to have a feasible solution. This
problem was first introduced by Sakashita et al. [6] as a generalized frame-
work of the source location problem and external network problem with edge-
connectivity requirements in undirected graphs and hypergraphs [3,5,8]. They
showed that the family of minimal deficient sets of (V, f, r) forms a tree hyper-
graph, and that conversely any tree hypergraph can be represented by minimal
deficient sets of (V, f, r) for some posi-modular function f and some modulotone
function r, where a set X ⊆ V with f(X) < r(X) is called deficient. Note that
Problem (1.1) asks to find a minimum set hitting all deficient sets. By combining
these results with properties shown in [2,3], it follows that Problem (1.1) can
be solved in O(|V |3ρ(|V |)) time, where ρ(|V |) is the time required to check the
feasibility (i.e., a given R ⊆ V satisfies f(X) ≥ r(X) for all X ⊆ V −R), while
it is still open whether the feasibility can be checked in polynomial time. They
also gave a polynomial time algorithm for Problem (1.1) by utilizing a basic tree
for the tree hypergraph, under the assumption that f is submodular and r is
given by either r(X) = max{d1(v) | v ∈ X} for a function d1 : V → R+ or
r(X) = max{d2(u, v) | u ∈ X, v ∈ V − X} for a function d2 : V × V → R+.
We here remark that these assumptions are necessary only for executing the
algorithm in polynomial time. Both of the source location problem and external
network problem satisfy these assumptions, and hence are polynomially solvable.
On the other hand, it was shown by Tamura et al. [8] that the source location
problem can be solved in polynomial time by a much simpler greedy algorithm
without using any basic tree for the tree hypergraph.

Then natural questions arise: (i) is there some relationship between Sakashita
et al.’s algorithm and Tamura et al.’s greedy one? (ii) if so, how can we charac-
terize cases where such a greedy algorithm works? In this paper, we show that
there exists a basic tree for the family of all minimal deficient sets for which
Sakashita et al.’s algorithm can perform in the same way as Tamura et al.’s
algorithm does. In other words, Sakashita et al.’s algorithm includes Tamura
et al.’s one as its special case. Furthermore, we show that this relationship can
be extended to Problem (1.1) in which a modulotone function r has a property
called π-monotonicity.

The π-monotonicity of a modulotone function is defined as follows. An ar-
bitrary modulotone function r can be characterized by using a function pr :
V × 2V → R, which is a slight generalization of similar properties shown in [4].
A modulotone function is called π-monotone if there exists a permutation π of
V such that for all u, v ∈ V and W ⊆ V − {u, v}, π(u) ≥ π(v) if and only
if pr(u,W ) ≥ pr(v,W ). A modulotone function r in the above source loca-
tion problem satisfies r(X) = max{d1(v) | v ∈ X}, X ⊆ V for some function
d1 : V → R+, and hence is π-monotone. Also, Problem (1.1) with a π-monotone
modulotone function includes problems whose requirements are based on a func-
tion q on V ; we will discuss these problems later in Subsection 3.2. We then show
that if r is π-monotone, then there exists a tree hypergraph whose basic tree sat-
isfies π(u) ≤ π(v) for each pair of u and its parent v. This interesting property
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enables that Sakashita et al.’s algorithm [6] can be executed in a simple greedy
manner without computing any basic tree for the tree hypergraph.

Furthermore, we consider a fractional version of Problem (1.1):

Minimize x(V )
subject to f(X) + x(X) ≥ r(X) for all X ⊆ V

x : V → R,
(1.2)

where x(X) =
∑

v∈X x(v) for all X ⊆ V . This problem can be regarded as a
generalization of a capacitated type of the source location problem with edge-
connectivity requirements in undirected graphs. Then we show that Sakashita
et al.’s algorithm can be extended to this problem.

The rest of this paper is organized as follows. In Section 2, after giving basic
definitions, we review properties and applications of Problem (1.1) shown in [6].
In Section 3, we define a π-monotonicity of a modulotone function. Furthermore,
we show a structural property of minimal deficient sets of Problem (1.1) with a
π-monotone modulotone function, which enables a greedy algorithm. Section 4
discusses Problem (1.2) as a fractional version of Problem (1.1).

2 Preliminaries

Let V be a finite set. For two sets X,Y ⊆ V , we say that X and Y intersect
each other if X ∩ Y 
= ∅, X − Y 
= ∅, and Y −X 
= ∅. For a family E ⊆ 2V , the
hypergraph (V, E) may be written as E simply. Let V (E) denote the vertex set
of a hypergraph E . For a hypergraph E , a subset R ⊆ V is called a transversal
(or hitting set) of E if R ∩ E 
= ∅ for all E ∈ E . A hypergraph E is called a tree
hypergraph (or hypertree) if there exists a tree T with a vertex set V such that
each hyperedge in E induces a subtree of T . We call such a tree T a basic tree for
E , and we may regard T as a rooted tree in describing algorithms. For a subset
U of vertices in a tree T , T [U ] denotes the subgraph of T induced by U . For a
vertex v in a rooted tree T , T (v) denotes the subtree of T rooted at v.

2.1 Posi-modular Systems

In this subsection, let us review several properties about Problem (1.1) shown
by Sakashita et al. [6]. A set function f : 2V → R is called submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (2.1)

for arbitrary two subsets X,Y of V , and posi-modular if

f(X) + f(Y ) ≥ f(X − Y ) + f(Y −X) (2.2)

for arbitrary two subsets X,Y of V . A set function r : 2V → R is called modu-
lotone if for any nonempty subset X of V , there exists an element v ∈ X such
that all subsets Y of X with Y * v satisfies r(Y ) ≥ r(X).
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Observe that Problem (1.1) is equivalent to that of asking to find a minimum
transversal R of {X ⊆ V | f(X) < r(X)}. A set X ⊆ V is called deficient if
f(X) < r(X). A deficient set X is called minimal if any proper subset Y of X
is not deficient. We denote the family of all minimal deficient sets by W(f, r). It
is known that the posi-modular systems have the following interesting property,
where a Sperner family denotes a family of sets in V in which arbitrary two
distinct sets E,E′ satisfy neither E ⊆ E′ nor E′ ⊆ E.

Theorem 1. [6] A Sperner family E ⊆ 2V is a tree hypergraph if and only if
E = W(f, r) holds for a posi-modular function f : 2V → R and a modulotone
function r : 2V → R. �	
By this theorem and properties observed in [2,3], it follows that Problem (1.1)
can be solved in O(|V |3ρ(|V |)) time, where ρ(|V |) is the time required to check
the feasibility, while it is still open whether the feasibility can be checked in
polynomial time. On the other hand, we can solve Problem (1.1) more efficiently
(more precisely, quadratically faster) by the following algorithm MinTransver-

sal, under the assumption that f is submodular and r is given as

r(X) =
{

max{d1(v) | v ∈ X} if X 
= ∅
0 if X = ∅, (2.3)

for a function d1 : V → R+ or

r(X) =
{

max{d2(u, v) | u ∈ X, v ∈ V −X} if X 
= ∅, V
0 if X = ∅ or V

(2.4)

for a function d2 : V × V → R+. It is not difficult to observe that both func-
tions defined as (2.3) and (2.4) are modulotone. Also, we remark that these
assumptions are necessary only for executing this algorithm in polynomial time.

2.2 Applications of Problem (1.1)

We here introduce the source location problem and the external network problem
in undirected graphs discussed as applications of Problem (1.1) in [6].

Algorithm 1. Algorithm MinTransversal[6]
Require: A posi-modular function f : 2V → R, a modulotone function r : 2V → R

with f(∅) ≥ r(∅).
Ensure: A minimum transversal R of W(f, r).
1: Compute a basic tree T for W(f, r).
2: Initialize R := ∅ and U := V .
3: while U �= ∅ do
4: Choose a leaf v of T [U ] and U := U − {v}.
5: if R ∪ U is not a transversal then
6: R := R ∪ {v}.
7: end if
8: end while
9: Output R as a solution.
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Let G = (V,E, c) be an undirected graph with a set V of vertices, a set E of
edges, and a capacity function c : E → R+. Suppose that each vertex v ∈ V has
a demand d1(v) ∈ R+. The source location problem is defined as follows:

Minimize |S|
subject to λG(S, v) ≥ d1(v) for all v ∈ V

S ⊆ V,
(2.5)

where λG(S, v) denotes the maximum flow value (or edge-connectivity) between
S and v in G, and we define λG(S, v) = +∞ if v ∈ S. This problem has been
studied as a location problem with requirements measured by a network flow
amount or network connectivity [1,5,7,8].

In a multimedia network, a set S of some specified network nodes, such as
the so-called mirror servers, may have functions of offering the same services for
users. A user at a node v can use the service by communicating with at least
one node s ∈ S through a path between s and v. The edge-connectivity between
S and v measures the robustness of the service against network link failures.
Thus, location problems with such a fault-tolerancy can be formulated as the
source location problem.

By the max-flow min-cut theorem, it is not difficult to see that the constraint
of Problem (2.5) is equivalent to u(X) ≥ r(X) for all subsets X of V −S, where
u(X) =

∑
{c(u, v) | u ∈ X, v ∈ V −X, (u, v) ∈ E} (i.e., u is a cut function in G)

and r is given as (2.3). Since u is posi-modular, it follows that Problem (2.5) is
a special case of Problem (1.1).

Given an undirected graph G = (V,E, c) and a demand function d2 : V ×V →
R+, the external network problem is given by:

Minimize |S|
subject to λG/S(u, v) ≥ d2(u, v) for all u, v ∈ V

S ⊆ V,
(2.6)

where G/S denotes the graph obtained from G by contracting S into a single
vertex s, and if u ∈ S, we define λG/S(u, v) = λG/S(s, v). This problem has been
studied as a problem of finding access points to some highly reliable external
network while taking into account a network flow amount or connectivity [3].

In a communication network N , each pair of nodes may have some require-
ments measured by a network flow amount or connectivity. Suppose that we can
use a highly reliable external network N ′ in which neither node nor link failures
occurs. Then we can improve the reliability of N by adding access points to N ′.
The problem of asking to find a minimum set S of access points to N ′ in order
to satisfy the connectivity requirements can be formulated as Problem (2.6).

Again by the max-flow min-cut theorem, we can see that the constraint of
Problem (2.6) is equivalent to u(X) ≥ r(X) for all subsets X of V − S, where r
is given as (2.4). Thus, Problem (2.6) is also a special case of Problem (1.1).

Furthermore, since a cut function u is submodular, both problems can be
solved in polynomial time by Algorithm MinTransversal. In particular, for
the source location problem, a much simpler greedy algorithm without using any
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Algorithm 2. Algorithm MinSourceSet[8]
Require: An undirected graph G = (V, E, c) and a demand function d1 : V → R+.
Ensure: A minimum set S satisfying λG(S, v) ≥ d1(v) for all v ∈ V .
1: Order vertices of V such that d1(v1) ≤ · · · ≤ d1(vn).
2: Initialize S := ∅ and U := V .
3: for j = 1 to n do
4: U := U − {vj}.
5: if S ∪ U is infeasible then
6: S := S ∪ {vj}.
7: end if
8: end for
9: Output S as a solution.

basic tree for the tree hypergraph was proposed [8]. This algorithm is described
as Algorithm MinSourceSet.

3 Modulotone Function with π-Monotonicity

From the previous section, we can observe that as for Problem (2.5), if there
exists a basic tree T for the family W(f, r) of minimal deficient sets such that
d1(u) ≤ d1(v) holds for each pair of a vertex u and its parent v in T , then
Algorithm MinTransversal can be executed in the same way as Algorithm
MinSourceSet does; that is, in such cases we need not prepare any basic tree
for the tree hypergraph. In this section, we will prove the existence of such a
basic tree in a more general setting.

For this, we first characterize a modulotone function by using a function
p : V × 2V → R in Subsection 3.1. In Subsection 3.2, we define Problem (1.1)
with a function r called π-monotone which is a generalization of Problem (2.5),
discuss its applications, and prove the existence of basic trees for W(f, r) defined
as above.

3.1 Characterization of a Modulotone Function

We here show that an arbitrary modulotone function can be characterized by
using a function p : V × 2V → R. This is a slight generalization of similar
properties observed in [4]. For a nonempty subset X of V and a function p :
V × 2V → R, let

p∗(X) = max{p(v, U) | U ⊆ V, v ∈ X ⊆ V − U}. (3.1)

Lemma 1. (i) Let p : V × 2V → R be a function. Then, the set function p∗ :
2V → R given as (3.1) is modulotone.
(ii) Let p∗ : 2V → R be a modulotone function. Then, there exists a function
p : V × 2V → R that satisfies (3.1). �	
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3.2 π-Monotonicity

For a modulotone function r, we denote by pr a function p : V × 2V → R such
that r is given as (3.1). A modulotone function r is called π-monotone if there
exist a function pr and a permutation π : V → [|V |] of V such that for all
u, v ∈ V and U ⊆ V − {u, v}, π(u) ≥ π(v) if and only if pr(u, U) ≥ pr(v, U). In
this section, we focus on Problem (1.1) in the case where r is π-monotone.

We first observe that the function r defined as (2.3) is π-monotone. Let
pr(v, U) = d1(v) for all v ∈ V and U ⊆ V , and π be a permutation of V
such that π(u) ≥ π(v) if and only if d1(u) ≥ d1(v) for each pair of two vertices u
and v. Thus, r is clearly π-monotone. It follows that Problem (2.5) is a special
case of Problem (1.1) with a π-monotone r.

For the function r defined as (2.4), if d2(u, v) is defined as a function of
(q(u), q(v)) such as q(u) + q(v) or q(u)q(v) for a given function q : V → R, then
we can observe that r is π-monotone. For example, it is natural to consider a
situation where a user who pays more cost (or money) can communicate with a
higher reliablity; d2(u, v) may be considered as a value proportional to q(u)+q(v)
where q(u) is a payment of a user u. In another situation where each node
u corresponds to a city whose population is q(u), the reliablility requirement
between two cities u and v may be assumed to be proportional to q(u)q(v). In
these settings, Problem (2.6) becomes a special case of Problem (1.1) with a
π-monotone r.

On the other hand, we remark that even if r is given as (2.4), then r is
not necessarily π-monotone. Consider pr in the case where V = {v1, v2, v3, v4},
d2(v1, v2) = 1, d2(v3, v4) = 2, and d2(vi, vj) = 0 otherwise. For X1 = {v1, v3},
pr(v1, U) ≤ 1 holds for all nonempty subsets U of V − X1, since otherwise
r(v1) > 2, a contradiction. It follows by r(X1) = 2 that pr(v3, U

′) = 2 for
some U ′ ⊆ V − X1. For X2 = {v1, v3, v4}, pr(v, V − X2 (= {v2})) = 0 for all
v ∈ {v3, v4} by r({v1, v2}) = 0. It follows by r(X2) = 1 that pr(v1, V −X2) = 1.
Thus, by pr(v3, U

′) > pr(v1, U
′) and pr(v3, V − X2) < pr(v1, V − X2), we can

see that this r is not π-monotone.
In the rest of this subsection, we will show the following interesting structural

property about W(f, r).

Theorem 2. For a posi-modular function f : 2V → R and a π-monotone mod-
ulotone function r : 2V → R, there exists a basic tree T for E = W(f, r) (which
is a tree hypergraph) such that for any pair of two vertices u and v in T ,

if u is a child of v, then π(u) ≤ π(v). (3.2)

This property enables us to execute Algorithm MinTransversal greedily based
on π without any basic tree for W(f, r). Indeed, if we pick up all elements
in V in nondecreasing order of their π-values, then it follows that we pick up
a leaf of T [U ] for the current U in each iteration of the while loop of Algo-
rithm MinTransversal. Also notice that this greedy procedure based on π is
a generalization of Algorithm MinSourceSet.
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Corollary 1. If a modulotone function r is π-monotone, then Problem (1.1)
can be solved in a greedy manner based on π. �	

Before proving this theorem, we show several preparatory lemmas. For a set
X ⊆ V , let π(X) = max{π(v) | v ∈ X}.

Lemma 2. If W1 and W2 in W(f, r) satisfy W1 ∩ W2 
= ∅, then W1 and W2
intersect each other and we have π(W1 ∩ W2) > π(W1 −W2) or π(W1 ∩W2) >
π(W2 −W1). �	

Lemma 3. Let W = {W1,W2, . . . ,Wp} be a family of sets in W(f, r) with
W1 ∩W2 ∩ . . .∩Wp 
= ∅. Then there exists a set Wq ∈ W such that all elements
w ∈ Wq with π(w) = π(Wq) are contained in W1 ∩W2 ∩ . . . ∩Wp. �	

Proof of Theorem 2. Let E be a tree hypergraph with E = W(f, r) and T1
be its basic tree. Let vr be a vertex with the maximum π-value (i.e., π(vr) =
max{π(v) | v ∈ V }) and regard T1 as a tree rooted at vr. Assume that T1 does
not satisfy (3.2). Let u, v, and w be three vertices in T1 such that u = pT1(v),
v = pT1(w), π(u) ≥ π(v) < π(w), and depth(w;T1) is the minimum, where pT (x)
denotes the parent of x in T , and depth(x;T ) denotes the length of the simple
path connecting r and x in T rooted at r. Now, for a tree T rooted at r, define
FT = {(x, pT (x)) | π(x) > π(pT (x))}, and a potential function

Φ(T ) = depth(x∗T ;T ) +
∑

x: (x,pT (x))∈FT

n(π(x) − π(pT (x)),

where n = |V | and x∗T is a vertex x with (x, pT (x)) ∈ FT such that depth(x;T )
is the minimum. Notice that if (3.2) is satisfied, Φ(T ) = 0, otherwise Φ(T ) > 0.
Below, we will prove this theorem by showing the existence of a basic tree T ′

for W(f, r) such that Φ(T ′) < Φ(T1). Let C(v) denote the set of all children of
v other than w in T1, and W∗ denote the family of sets in W(f, r) containing v.
Partition W∗ into X1 = {X ∈ W(f, r) | v, w ∈ X,u /∈ X,C(v) ∩ X 
= ∅}, X2 =
{X ∈ W(f, r) | v, w ∈ X,u /∈ X,C(v) ∩ X = ∅}, Y1 = {X ∈ W(f, r) | u, v ∈
X,w /∈ X,C(v)∩X 
= ∅}, Y2 = {X ∈ W(f, r) | u, v ∈ X,w /∈ X,C(v) ∩X = ∅},
Z1 = {X ∈ W(f, r) | u, v, w ∈ X,C(v) ∩ X 
= ∅}, and Z2 = {X ∈ W(f, r) |
u, v, w ∈ X,C(v)∩X = ∅}. Notice that every two sets in W∗ intersect each other
since every set is a minimal deficient set. There are the following three possible
cases: (Case-1) X1 ∪ X2 = ∅, (Case-2) Y1 ∪ Y2 = ∅, and (Case-3) otherwise.

(Case-1) Let T2 denote the tree from T1 by deleting the edge (v, w) and adding
a new edge connecting u and w (i.e., pT2(w) := u). T2 is also a basic tree for
W(f, r) because otherwise there exists a set X ∈ W(f, r) with v, w ∈ X and u /∈
X , contradicting X1 ∪X2 = ∅. Also, we can observe that Φ(T2) < Φ(T1). Indeed,
if π(u) < π(w), then we have Φ(T2) − Φ(T1) = depth(w;T2) − depth(w;T1) +
n(−π(u) + π(v)) < 0 because x∗T1

= x∗T2
= w, depth(w;T2) = depth(w;T1) − 1,

and π(u) ≥ π(v). If π(u) ≥ π(w), then we have Φ(T2)−Φ(T1) = depth(x∗T2
;T2)−

depth(w;T1) + n(−π(u) + π(v)) < 0 because depth(x∗T2
;T2) ≤ n− 1 and π(u) >

π(v) (by π(u) ≥ π(w) > π(v)).
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(Case-2) Let T2 denote the tree from T1 by deleting the edge (u, v), adding
a new edge connecting u and w (i.e., pT2(w) := u), and making the parent of
v the vertex w (i.e., pT2(v) := w). T2 is also a basic tree for W(f, r) because
otherwise there exists a set X ∈ W(f, r) with u, v ∈ X and w /∈ X , contradicting
Y1 ∪ Y2 = ∅.

Also, we can observe that Φ(T2) < Φ(T1). Indeed, if π(u) < π(w), then we
have Φ(T2)−Φ(T1) = depth(w;T2)−depth(w;T1)+n(−π(u)+π(v)) < 0 because
x∗T1

= x∗T2
= w, depth(w;T2) = depth(w;T1)− 1, π(u) ≥ π(v), and (v, w) /∈ FT2 .

If π(u) ≥ π(w), then we have Φ(T2) − Φ(T1) = depth(x∗T2
;T2) − depth(w;T1) +

n(−π(u) + π(v)) < 0 because depth(x∗T2
;T2) ≤ n − 1, π(u) > π(v) (by π(u) ≥

π(w) > π(v)), and (v, w) /∈ FT2 .
(Case-3) Omitted due to space limitation. �	

In Algorithm MinSourceSet, if there exist two vertices u and v with d1(u) =
d1(v), then we can choose u before v or vice versa, depending on the sorting in
line 1. The following corollary shows that there exists a basic tree for W(f, r)
corresponding to each of these cases.

Corollary 2. Let E = W(f, r) be a tree hypergraph whose basic tree T satisfies
(3.2), and (v, w) be an edge in T with v = pT (w) and π(v) = π(w). Then there
exists a basic tree T ′ for W(f, r) satisfying (3.2) such that w = pT ′(v) or v and
w have a common parent in T ′. �	

Finally, we give a much simpler proof of the property that the above greedy
algorithm based on π works. Notice that we scan all elements in nondecreasing
order of their π-values. When we pick up an element v and R ∪ U − {v} is
not a transversal of W(f, r) for the current transversal R ∪ U , there exists a
minimal deficient set Wv ∈ W(f, r) such that Wv ∩ U = {v}. Then notice that
all elements in Wv other than v have been scanned and deleted, and this implies
that v has the maximum π-value among all elements in Wv; π(v) = π(Wv). It
follows that for each v ∈ R, there exists such a set Wv; let W = {Wv | v ∈ R}.
Then we can prove that every two sets in W are disjoint, which implies that R
is a minimum transversal. Indeed, if two sets Wu and Wv satisfy Wu ∩Wv 
= ∅,
then by u ∈ Wu −Wv, π(u) = π(Wu), v ∈ Wv −Wu, and π(v) = π(Wv), we have
π(Wu −Wv) = π(Wu) and π(Wv −Wu) = π(Wv), contradicting Lemma 2.

4 Algorithm for Problem (1.2)

In this section, we consider Problem (1.2). This can be regarded as a general-
ization of a variant of the source location problem; given an undirected graph
G = (V,E, c) and a demand function d1 : V → R+, find an x : V → R+ such
that x(X) + u(X) ≥ max{d1(v) | v ∈ X} holds for all nonempty subsets X of
V and x(V ) is the minimum. In applications of multimedia networks, we can
locate a mirror server v with an arbitrarily finite capacity x(v) and we want to
minimize the total capacity x(V ) of servers to be located. Notice that in a setting
discussed in Subsection 2.2, each server to be located has an infinite capacity.
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Algorithm 3. Algorithm MinCover

Require: A posi-modular function f : 2V → R, a modulotone function r : 2V → R
with f(∅) ≥ r(∅).

Ensure: A minimum cover x : V → R of W(f, r).
1: Compute a basic tree T for W(f, r).
2: Initialize x(v) := 0 and x′(v) := max{r(W ) | W ∈ W(f, r)} for all v ∈ V and

U := V .
3: while U �= ∅ do
4: Choose a leaf v of T [U ], x′(v) := 0, and U := U − {v}.
5: if x + x′ is not a cover then
6: x(v) := max{r(W ) − x(W ) − f(W ) | W ∈ W(f, r)}.
7: end if
8: end while
9: Output x as a solution.

For f : 2V → R, r : 2V → R, and W(f, r), x : V → R is called a cover of
W(f, r) if x(X)+f(X) ≥ r(X) for all X ⊆ V . Then we can find a minimum cover
of W(f, r) by Algorithm MinCover, similar to Algorithm MinTransversal.

Lemma 4. Algorithm MinCover finds a minimum cover x of W(f, r). �	

Finally, we remark that if f is submodular and r is given as (2.3) or (2.4),
Algorithm MinCover can be implemented to run in the same complexity as
Algorithm MinTransversal. Furthermore, similarly to the discussion in the
previous section, if r is π-monotone, then we can execute it greedily based on π
without any basic tree for W(f, r).
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Abstract. Toric ideals have many applications including solving integer
programs. Several algorithms for computing the toric ideal of an integer
matrix are available in the literature. Since it is an NP hard problem the
present approaches can only solve relatively small problems. We propose
a new approach which improves upon a well known saturation technique.

1 Introduction

Let A be an integer matrix, and let ker(A) be the lattice kernel of A, i.e., integer
solutions of Au = 0. For any u ∈ ker(A), let u+ denote the vector such that
u+[i] = u[i] if u[i] > 0 else u+[i] = 0. Vector u− is given by u+ − u. For any
positive integer vector v ∈ Nn, monomial x

v[1]
1 x

v[2]
2 · · ·xv[n]

n is concisely denoted
by xv. The polynomial ideal generated by {xu+ − xu− |u ∈ ker(A)} is called the
toric ideal of A and it is denoted by IA. In this paper we address the problem of
computing a generating set of IA, which we loosely call the problem of computing
a toric ideal.

This problem has some useful applications including solving integer programs
[1,2,3], computing primitive partition identities [4] chapters 6 and 7, and solving
scheduling problem [5] among a few others.

Suppose V is a lattice kernel basis, i.e., a basis of ker(A) which generates
the kernel vectors with integer coefficients. Let JV be the ideal generated by
{xu+ − xu− |u ∈ V }. Then IA = JV : (x1 . . . xn)∞ where the r.h.s. denotes the
ideal {f ∈ k[x]|xα · f ∈ JV for some xα} is called the saturation of JV . Thus
the computation of a toric ideal has two steps: computation of lattice kernel
basis and the saturation of JV . The first step has a polynomial time solution
by computing the Hermite normal form of A. Therefore the complex step is the
saturation computation.

One of the most useful ideas in computational commutative algebra is Gröbner
basis of an ideal. It has found many applications in computations related to ideal
[6,7]. The first and the best known algorithm to compute a Gröbner basis is
due to Büchberger [8]. It turns out that it is useful in the computation of the
saturation of an ideal.

An early algorithm to compute IA involved computation of a Gröbner basis
in a ring of n+ d+1 variables [4], where A is n× d. It turned out to be too slow
because Büchberger’s algorithm is sensitive to the number of variables involved.
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An algorithm, working in n variables, for saturation is due to Urbanke [9].
It transforms A to A′ by negating some columns such that one of the rows has
all non-negative entries. In this case IA′ = JV ′ . Replacing one negated column
at a time by the original one, it computes the toric ideal for the corresponding
matrix from that of the previous matrix. Each step involves the computation of
one Gröbner basis.

Another algorithm which also works in n variables is due to Sturmfels [10,4].
It computes the toric ideal iteratively, computing the saturation with xi in the
i-th iteration. Each iteration involves the computation of one Gröbner basis. The
performances of the two algorithms are comparable, see [10] Bigatti et.al. [11]
improved Sturmfels’ algorithm.

Hemmecke and Malkin [12] presented an entirely new approach called project
and lift . Let Ij denote the ideal IA after setting xj+1, . . . , xn to 1. They begin by
computing the Gröbner basis of I1 and build their way up to IA, one dimension
at a time. In the i-th step they compute a certain grading vector ri, and a
Gröbner basis w.r.t. a term order based on ri in the ring k[x1, · · · , xi].

We present an algorithm improving Sturmfels’ algorithm. It requires the com-
putation of a Gröbner basis in i-th iteration in k[x1, · · · , xi], i.e., in i variables.
In our approach the basis is computed with respect to reverse lexicographic term
order, which is known to be the most efficient among all term orders, [13,14].
Sturmfels’ algorithm as well as our algorithm can compute saturation of any
binomial ideal (ideal with at least one basis containing only binomials.)

Let k[x] denote the polynomial ring k[x1, . . . , xn] over a field k. Also, let
B ⊂ k[x] be a set of polynomials. Then, we denote by 〈B〉, the ideal generated
by the polynomials in B.

A total ordering ≺ on the monomials of k[x] is called a term order if it
satisfies following properties: (i) it is a well-ordering (Artinian) and (ii) xα ≺
xβ ⇒ xα+γ ≺ xβ+γ for all α, β, γ. Given a term order ≺ on k[x], we denote
the leading term of a polynomial f by in≺(f). A particular term order, graded
reverse lexicographic order is frequently the most efficient ordering to compute
Gröbner basis. Given an ordering on the variable-indices and a grading vector
d, the graded reverse lexicographic order ≺d is given as follows: xα ≺d xβ if
α · d < β · d or if they are equal, then the least non-zero coordinate in α − β
is negative. By ≺d,i we will represent any graded reverse lexicographic ordering
with xi as the least element.

Let I be an ideal in k[x] and ≺ be a term order. By in≺(I) we denote the set
〈in≺(f)|f ∈ I〉, called the initial ideal if I. A basis of I, G = {f1, . . . , fm}, is
called a Gröbner basis if in≺(I) = 〈in≺(f1), . . . , in≺(fn)〉.

Let f be a polynomial and B be a set of polynomials in k[x]. If there is fi ∈ B
and a term c ·xα in f such that in≺(fi) divides c ·xα and if the quotient is c′ ·xβ

then f → f − c′ ·xβ .fi is called a reduction step. If a sequence of reductions lead
to f ′, then we say that f is reduced to f ′ by B. If G is a Gröbner basis such that
each f ∈ G is irreducible by G \ {f}, then G is called reduced Gröbner basis.
This basis is unique for a given ordering. We will denote it by G≺(I).
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2 Surjective Ring Homomorphism

In this paper φ will denote a surjective ring homomorphism k[x] → k[y], where
k[x] denotes k[x1 . . . , xn] and k[y] denotes k[y1, . . . , ym].

Definition 1. Let S ⊆ k[x] be a set. Then, we define φ(S) = {φ(f) | f ∈ S}.

Lemma 1. Let f1, . . . , fs ∈ k[x]. Then, φ(〈f1, . . . , fs〉) = 〈φ(f1), . . . , φ(fs)〉.

Proof. Let f ′ ∈ φ(〈f1, . . . , fs〉). Then, ∃f ∈ 〈f1, . . . , fs〉 such that φ(f) = f ′.
Then ∃g1, . . . gs ∈ k[x] such that f =

∑
i gifi. It implies φ(f) = φ(

∑
i gifi).

Hence f ′ =
∑

i φ(gi)φ(fi). Which implies f ′ ∈ 〈φ(f1), . . . , φ(fs)〉.
Conversely, let f ′ ∈ 〈φ(f1), . . . , φ(fs)〉. Then, ∃g′1, . . . , g

′
s ∈ k[y] such that

f ′ =
∑

i g′iφ(fi). From surjectivity, ∃g1, . . . , gs ∈ k[x] such that φ(g1) = g′1, . . . ,
φ(gs) = g′s. So, f ′ =

∑
i φ(gi)φ(fi) = φ(

∑
i gifi). Since

∑
i gifi ∈ 〈f1, · · · , fs〉,

f ′ ∈ φ(〈f1, · · · , fs〉). �
Definition 2. Kernel of a homomorphism φ is ker(φ) = {f ∈ k[x] | φ(f) = 0}.

From the first theorem of isomorphism, k[x]/ker(φ) is isomorphic to k[y]. We
shall denote this isomorphism by Φ.

Definition 3. Let S be a subset of k[x]. Then φ−1(S) = {f ∈ k[x]|φ(f) ∈ S}.

Observation 1. Let J be an ideal in k[y]. Then φ−1(J) is an ideal. Also J ,
Φ−1(J), and φ−1(J)/ker(φ) are isomorphic.

Projections are examples of surjective homomorphisms which will be used in
algorithms discussed in this paper.

Definition 4. Let V be a set of variables and V ′ ⊂ V . Then the map φ :
k[V ] → k[V \V ′] is a said to be a projection map if φ(f) = f |x=1∀x∈V ′ . We shall
denote the projections k[x] → k[x1, . . . , xi−1, xi+1, . . . , xn], k[xi, · · · , xi+j , z] →
k[xi, · · · , xi+j ], and k[x] → k[xi+1, . . . , xn] by πi, πz, and Πi respectively.

Observation 2. πi, πz and Πi are surjective ring homomorphisms.

3 Homogeneous Polynomials and Saturation

3.1 Homogenization

Definition 5. Let f ∈ k[x] and d ∈ Nn. We say f is homogeneous w.r.t. d if
for all monomials xα ∈ f , d · α are equal. Vector d is called the grading vector.

Let d ∈ Nn+1 be a 0/1 vector such that dn+1 = 1. Now we define a mapping
hd : k[x] → k[x, z] such that hd(f) is homogeneous w.r.t. d for every f ∈ k[x].
Let f =

∑
i cix

αi ∈ k[x]. Let α′i ∈ Nn+1 such that its 1 to n components coincide
with those of αi and its n+1-st component is 0. Let ci0x

αi0 be a term in f such
that α′i0 · d ≥ α′i · d for all i. Let δi = (α′i0 − α′i) · d. Define hd(f) =

∑
i xαizδi .

We shall denote hd(f) by f̃ when d is known from the context. Observe that
πz(f̃) = f . If B = {fi}i is a set of polynomials of k[x], then by homogenization
of B we would mean the set B̃ given by {f̃i}i.
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3.2 Colon Ideals

Definition 6. Let J ⊆ k[x] be an ideal. Then J : x∞i denotes the ideal {f ∈
k[x] | xa

i f ∈ J for some a}. (. . . (J : x∞1 ) . . .) : x∞i is equal to J : (x1 · · ·xi)∞

which is given by {f ∈ k[x] | xαf ∈ J for some α ∈ Nn}.
In general the computation of J : x∞i is expensive, see section 4 in chapter 4 of
[7]. But in a special case when J is a homogeneous ideal an efficient method to
compute J : x∞i is known as described in the following theorem.

Notation. Let f be a polynomial and a be the largest integer such that xa
j

divides f , then we denote the quotient of the division by f ÷ x∞j . If B be a set
of polynomials, then B : x∞i denotes the set {f ÷ x∞i |f ∈ B}.

Algorithm 2 computes J : x∞j for arbitrary ideal J using following lemmas..

Lemma 2 (lemma 12.1, [4]). Let J ⊆ k[x] be a homogeneous ideal w.r.t. the
grading vector d. Also let G≺d,j

(J) = {fi}i. Then {fi ÷ x∞j }i is a Gröbner basis
of J : x∞j .

Lemma 3. Let J ⊆ k[x] be any ideal. Then πi(J : x∞j ) = πi(J) : x∞j .

Data: A generating set, B, of an ideal J ⊆ k[x]; An index i; A grading vector
d ∈ Nn+1 be the vector with all components one.

Result: The Gröbner basis of 〈B〉 : x∞
i

B̃ := {f̃ |f ∈ B};1

Compute G≺d,i(〈B̃〉);2

Compute B′ = { f ÷ x∞
i | f ∈ G≺d,i(〈B̃〉) };3

return πz(B
′).4

Algorithm 2. Computation of 〈B〉 : x∞i

4 Shadow Algorithms under a Surjective Homomorphism

Let I be an ideal in k[x]. Lemma 1 shows that φ(I) is an ideal in k[y]. In this
section we show how to compute a basis B of I such that φ(B) is a Gröbner
basis of φ(I).

Let α and β be two vectors in Nn, and let α[i] and β[i] denotes their ith

components. Then, α ∨ β is the vector given by (α ∨ β)[i] = max{α[i], β[i]}.
In this and the next section we will assume the existence of an oracle which

computes any one member h of φ−1(m) for any monomial m ∈ k[y]. With an
abuse of the notation we shall denote this by h := φ−1(m) as a step in the
algorithms given below.

Let ≺ denote a term order in k[y]. Consider any h1, h2 ∈ k[y]. Let c1y
α1 =

in≺(h1) and c2y
α2 = in≺(h2). Also let β1 = (α1∨α2)−α1 and β2 = (α1∨α2)−α2.

Then the S-polynomial of these polynomials is given by S(h1, h2) = c2y
β1h1 −

c1y
β2h2. Observe that if in≺(h2) divides in≺(h1), then S(h1, h2) is the reduction

of h1 by h2. Algorithm 3 computes g1, g2 ∈ k[x] for given f1, f2 ∈ k[x] such that
φ(g1)φ(f1) − φ(g2)φ(f2) = S(φ(f1), φ(f2)).

Observation 3. (g1, g2) = A(f1, f2, φ,≺) ⇒ φ(g1f1 − g2f2) = S(φ(f1), φ(f2)).
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Data: f1, f2 ∈ k[x], a surjective ring homomorphism φ : k[x] → k[y], a term
order ≺ over k[y], an oracle that computes any one member of φ−1(m)
for any monomial m of k[y]

Result: Two polynomials g1, g2 ∈ k[x] such that
φ(f1g1 − f2g2) = S(φ(f1), φ(f2))

Let c1 · yα1 = in≺(φ(f1)), c2 · yα2 = in≺(φ(f2));1

β1 := (α1 ∨ α2) − α1;2

β2 := (α1 ∨ α2) − α2;3

return g1 := φ−1(c2y
β1); g2 := φ−1(c1y

β2) ;4

Algorithm 3. A(f1, f2, φ,≺): computation of g1, g2 for given f1, f2

4.1 Generalized Division Algorithm

Let g, g1, · · · , gs ∈ k[y] and ≺ be a term order in k[y]. Then g =
∑

i qigi + r is
said to be a standard expression for g if (i) in≺(qigi) � in≺(g) ∀i and (ii) no
monomial of r is divisible by in≺(gi) for any i, i.e., no monomial of r belongs to
〈{in≺(gi)|1 ≤ i ≤ s}〉. Standard expression generalizes the concept of division of
a polynomial by another polynomial to the division of a polynomial by a set of
polynomials. Here r is called the remainder and qi are called the quotients of the
division of g by {g1, · · · , gs}. The algorithm to perform such a division is well
known, see section 3 in chapter 2 of [7]. Let f, f1, · · · , fs ∈ k[x]. In Algorithm 4
we present a pseudo-division algorithm for f by f1, · · · , fs such that its image in
k[y] gives a standard expression for φ(f) w.r.t. φ(f1), · · · , φ(fs).

Observe that the leading term of φ(p) strictly decreases after each pass of the
while loop. Combining with this fact that ≺ is a well-ordering we observe that
the algorithm terminates. Also observe that f̄ ·f =

∑
j qjfj +r+p is an invariant

of the loop. Thus we have the following claim.

Lemma 4. Algorithm 4, SHADOW DIV(f, f1, . . . , fs, φ,≺), terminates to give
f̄ · f =

∑
j qj · fj + r and φ(f) = (1/φ(f̄))(

∑
j φ(qj)φ(fj) + φ(r)) is a standard

expression for φ(f) under ≺, where φ(f̄) is a non-zero constant.

4.2 Büchberger’s Algorithm with Generalized Division

Now we present Algorithm 5 to compute a basis of any ideal in k[x] such that
the image of the basis under φ is a Gröbner basis of the image of the ideal.

Lemma 5. Algorithm 5 terminates.

Proof. We first consider the computation of C1.
The algorithm iterates only if we detect that Bnew 
= Bold. Let Bi denote the

basis after the i-th iteration. So there must have been f, g ∈ Bi−1 such that the
remainder, r, of division of g1f − g2g by Bi−1 is non-zero.

Then from Lemma 4, in≺(r) /∈ 〈in≺(φ(Bi−1))〉. Thus, 〈in≺(φ(B0))〉 �
〈in≺(φ(B1))〉 � 〈in≺(φ(B2))〉 � · · ·. k[y] is Noetherian hence this chain must be
finite and consequently the algorithm must stop after finitely many iterations.

The termination of the second part is obvious. �
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Data: f ∈ k[x]; {f1, . . . , fs} ⊂ k[x]; a surjective ring homomorphism,
φ : k[x] → k[y]; a term order ≺ over k[y]; an oracle to compute one
member of φ−1(m) for any monomial m of k[y].

Result: f̄ , q1, . . . , qs, r ∈ k[x] such that f̄ f =
∑

j qjfj + r and

φ(f̄)φ(f) =
∑

j φ(qj)φ(fj) + φ(r) is a standard expression for φ(f)

under ≺, where φ(f̄) is a constant
f̄ := 1; q1 := 0, . . . , qs := 0; r := 0; p := f ;1

while φ(p) �= 0 do2

if ∃ i s.t. in≺(φ(fi) divides in≺(φ(p)) then3

(g1, g2) := A(p, fi, φ, ≺); /* φ(g1) is a constant */4

f̄ := f̄ ∗ g1; q1 := q1 ∗ g1, . . . , qs := qs ∗ g1; r := r ∗ g1;5

p := p ∗ g1 − fi ∗ g2;6

qi := qi + g27

end8

else9

g1 := φ−1(in≺(φ(p)));10

r := r + g1; p := p − g1 /* φ(p) = 0 */11

end12

end13

r := r + p.14

Algorithm 4. SHADOW DIV(f, {f1, . . . , fs}, φ,≺)

In the first part of the algorithm the remainder r is appended in the successive
bases. But r = g1f − g2g −

∑
i qifi so it is already in the ideal before division,

so appending it to the basis does not expand the ideal.

Lemma 6. 〈B〉 = 〈C1〉.

Lemma 7. φ(C1) is the Gröbner basis of 〈φ(B)〉. Further, φ(C2) is the reduced
Gröbner basis for 〈φ(B)〉.

Proof. It was pointed out after Algorithm 3 that φ(g1f1−g2f2)=S(φ(f1), φ(f2)).
Upon termination, φ(r) = 0 for all f1, f2 ∈ Bnew. So from Lemma 4 the standard
expression for the S-polynomial is S(φ(f1), φ(f2)) =

∑
j φ(qj)φ(fj) for all pairs

φ(f1), φ(f2) ∈ φ(Bnew). From Büchberger’s criterion φ(Bnew) is a Gröbner basis,
see [7] section 7 of chapter 2.

In the second part φ(r) is the result of the reduction of φ(f) by φ(Bnew)\{f}).
So upon termination, no polynomial in φ(Bnew) is reducible by the rest of the
polynomials. Thus φ(Bnew) is the reduced Gröbner basis. �

Lemma 8. For every f ∈ 〈B〉 there exists h ∈ φ−1(1) such that h · f ∈ 〈C2〉.

Proof. In the second part of SHADOW BÜCH, let the successive bases after
each reduction be C1 = B0, B1, · · · , Bk = C2 such that Bi+1 = (Bi ∪ {r}) \ {f}
where r is the result of reduction of f ∈ Bi by Bi \ {f}. We will show that for
each j, if g ∈ B0, then there exists h ∈ φ−1(1)such that h · g ∈ Bj .

The claim is trivially true for j = 1. In order to prove the claim by induction
let us assume that it holds for j ≤ i.
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Data: B = { f1, . . . , fs } ⊆ k[x]; a surjective ring homomorphism
φ : k[x] → k[y], a term order, ≺, in k[y]

Result: A subset C1 ⊂ k[x] such that 〈C1〉 = 〈B〉 and φ(C1) is a Gröbner basis
of φ(〈B〉), a subset C2 ⊂ k[x] such that φ(C2) is the reduced Gröbner
basis of φ(〈B〉) and for each f ∈ 〈B〉 there is h ∈ φ−1(1) such that
h · f ∈ 〈C2〉

Bnew := B;1

repeat2

Bold := Bnew ;3

for each pair f1, f2 ∈ Bnew s.t. f1 �= f2 and φ(f1) �= 0, φ(f2) �= 0 do4

(g1, g2) := A(f1, f2, φ, ≺);5

compute SHADOW DIV(g1f1 − g2f2, Bnew , φ, ≺);6

if φ(r) �= 0 then7

Bnew := Bnew ∪ {r}8

end9

end10

until Bnew = Bold ;11

C1 := Bnew; Bold := Bnew ;12

for each f ∈ Bold do13

compute SHADOW DIV(f,Bnew \ {f}, φ, ≺);14

Bnew := Bnew \ {f};15

if r �= 0 then16

Bnew := Bnew ∪ {r};17

end18

end19

C2 := Bnew;20

Algorithm 5. SHADOW BÜCH(B, φ,≺)

We have Bi \ {f} = Bi+1 \ {r}. From SHADOW DIV algorithm we know
that for some constant c there exists f̄ ∈ φ−1(c) such that f̄ · f ∈ Bi+1. Let
g ∈ 〈B0〉 then from induction hypothesis ∃ḡ ∈ φ−1(1) such that ḡ ·g ∈ 〈Bi〉. Thus
ḡ ·g =

∑
k qkfk where fk ∈ Bi. If f does not occur in the sum then ḡ ·g ∈ 〈Bi+1〉.

Otherwise, suppose f1 = f . So (1/c)f̄ · ḡ · g = (1/c)
∑

k qk(f̄ fk) ∈ Bi+1. The
desired h = (1/c)f̄ · ḡ. �

Remark. If the computation of φ and φ−1 is O(1), then SHADOW BÜCH and
Büchberger’s algorithm have same time-complexity.

4.3 Projection Homomorphism and Binomial Ideal

From now onwards we shall restrict our consideration to only projection homo-
morphisms. In the following we shall use z to denote those x-variables which are
set to 1 by the projection homomorphism and the remaining variables will be
denoted by symbol y. For example, if we are considering φ = Πi then x1, · · · , xi

will be denoted by z1, · · · , zi and xi+1, · · · , xn will be denoted by y1, · · · , yn−i

The steps computing φ−1() in A (algorithm 3) and SHADOW DIV (algorithm
5) are described as follows.
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In algorithm A for j = 1 and 2, fj must contain a sub-polynomial of the form
hj(z).yαj such that φ(hj(z)) = cj and in≺(φ(f ′j)) is strictly less than in≺(φ(f))
where f ′j = fj − hj(z).yαj . We define steps 4 and 5 as g1 := h2(z)yβ1 and
g2 := h1(z)yβ2.

In algorithm SHADOW DIV there exists a sub-polynomial h(z)yα in p(x)
such that in≺(φ(p − h(z)yα)) is strictly less than in≺(φ(p)). We define step 10
as g1 := h(z)yα.

Observation 4. If φ is a projection homomorphism and f1, f2 are homogeneous
w.r.t. d and (g1, g2) = A(f1, f2, φ,≺), then g1f1 − g2f2 is also homogeneous
w.r.t. d.

We further restrict our discussion to binomial ideals. If a binomial f = xα1 −xα2

is such that φ(f) is non-zero, then φ(xα1 ) 
= φ(xα2 ). Hence g1, g2 in steps 4,5 in
A and g1 in step 10 in SHADOW BÜCH are all monomials.

Observation 5. If φ is a projection, f1 and f2 are binomials and (g1, g2) =
A(f1, f2, φ,≺), then f1g1 − f2g2 is the S-polynomial of f1, f2, hence it is also a
binomial.

Observation 6. If φ is a projection and B is a set of binomials, then f̄ com-
puted by SHADOW DIV (f, B, φ,≺) is a monomial. Additionally, if f and each
member of B is homogeneous, then so is the remainder r.

In the notation for the variables in this section, f̄ computed by SHADOW DIV
is zα for some α. Using this fact in the proof of Lemma 8 we get the following
lemma which is at the heart of algorithm proposed in the next section.

Lemma 9. If φ is a projection, B is a set of binomials, and C2 is computed
by SHADOW BÜCH(B, φ,≺), then for each binomial f ∈ 〈B〉 there exists a
monomial zα such that zαf ∈ 〈C2〉.

5 A Fast Algorithm for Toric Ideals

Let B be a finite set of binomials from k[x]. In Algorithm 6 we present a new
algorithm to compute 〈B〉 : (x1 . . . xn)∞ which is the key step in the computation
of (generator set of) a toric ideal IA given a matrix A.

To prove the correctness of Algorithm 6 let us assume that at the start of
an iteration the value of B is Bold and at its end it is Bnew. From Lemma 9
〈C̃2〉 : (x1 · · ·xi)∞ = 〈B̃〉 : (x1 · · ·xi)∞ and from Lemma 7 Πi(C̃2) is the reduced
Gröbner basis of 〈Π(B̃)〉. From Theorem 2 〈C̃2÷x∞i+1〉 = 〈C̃2〉 : x∞i+1. Hence 〈C̃2÷
x∞i+1〉 : (x1 · · ·xi)∞ = (〈C̃2〉 : (x1 · · ·xi)∞) : x∞i+1 = (〈B̃〉 : (x1 · · ·xi)∞) : x∞i+1 =
(〈B̃〉 : (x1 · · ·xi+1)∞). Taking the projection πy we get 〈Bnew〉 : (x1 · · ·xi)∞ =
〈Bold〉 : (x1 · · ·xi+1)∞. Thus we have the correctness theorem.

Theorem 7. Algorithm 6 correctly computes 〈B〉 : (x1 · · ·xn)∞.
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Data: B ⊂ k[x], a finite set of binomials
Result: A generating set of 〈B〉 : (x1 . . . xn)∞

for i = n − 1 to 0 do1

d := (01, . . . , 0i, 1i+1, . . . , 1n, 1y);2

B̃ = {f̃ |f ∈ B};3

C̃2 := SHADOW BÜCH(B̃, Πi, ≺d,i+1);4

B := πy(C̃2 ÷ x∞
i+1);5

end6

return B;7

Algorithm 6. Computation of I : (x1 · · ·xn)∞ for a binomial ideal I

The advantage of the new algorithm is as follows. In this algorithm the dimen-
sion of the y-space is 1 in the first iteration, 2 in the second iteration, so on.
Symbolically let t(i) denote the time complexity of the Büchberger’s algorithm
in i variable problem. Then, as remarked after Lemma 8, the cost of the proposed
algorithm is

∑n
i=1 t(i) against the Sturmfels’ algorithm’s cost n · t(n).

6 Experimental Results

In this section we present the results on performance of the new algorithm and
compare it with the existing algorithm by Sturmfels [10]. In these experiments
we randomly generate binomials and compute JV : (x1 . . . xn)∞. The programs
were written in C. There are cases where one can ignore certain S-polynomial
reduction in the Büchberger algorithm for Gröbner basis computation. There is
a significant literature on criteria to select such S-polynomials. We only applied
one such criterion, referred as criterion tail in Proposition 3.15 of [15] in the
implementation of the new algorithm as well as to Sturmfels algorithm. Since
every such criterion can be applied to both algorithms, we believe the perfor-
mance gains shown here will remain same after the implementations are fully
optimized.

Table 1.

Number of Size of basis Time taken (in sec.) Speedup
variables Initial Final Sturmfels Proposed

6 2 5 0.0 0.00 -
4 51 0.001 0.00 -

8 4 186 0.12 0.02 6
6 597 6.58 0.64 10.3

10 6 729 18.16 0.50 36.3
8 357 2.68 0.29 9.2

12 6 423 4.04 0.27 14.9
8 2695 822.12 27.21 30.2

14 10 1035 127.97 4.24 30.1
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Table 1 shows performances of the two algorithms. Although only a few cases
are shown in the table we ran an extensive experiment and in each and every
case the proposed algorithm was faster. Also, as expected the performance ratio
improves as the number of variables increase.
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programming (1995)

11. Bigatti, A.M., Scala, R., Robbiano, L.: Computing toric ideals. J. Symb. Com-
put. 27, 351–365 (1999)

12. Hemmecke, R., Malkin, P.N.: Computing generating sets of lattice ideals and
Markov bases of lattices. Journal of Symbolic Computation 44, 1463–1476 (2009)

13. Bayer, D., Stillman, M.: On the complexity of computing syzygies. J-SYMBOLIC-
COMP 6, 135–148 (1988) (or 135–147??) Computational aspects of commutative
algebra

14. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexi-
cographic order. Duke Mathematical Journal 55, 321–328 (1987)

15. Bigatti, A.M., Scala, R., Robbiano, L.: Computing toric ideals. J. Symb. Com-
put. 27, 351–365 (1999)



Linear and Sublinear Time Algorithms for Basis

of Abelian Groups�

Li Chen1 and Bin Fu2

1 Department of Computer Science, University of District of Columbia,
Washington, DC 20008, USA

lchen@udc.edu
2 Dept. of Computer Science, University of Texas - Pan American

TX 78539, USA
binfu@cs.panam.edu

Abstract. It is well known that every finite abelian group G can be rep-
resented as a direct product of cyclic groups: G ∼= G1×G2×· · ·×Gt, where
each Gi is a cyclic group of order pj for some prime p and integer j ≥ 1.
If ai generates the cyclic group of Gi, i = 1, 2, · · · , t, then the elements
a1, a2, · · · , at are called a basis of G. We show a randomized algorithm
such that given a set of generators M = {x1, · · · , xk} for an abelian group
G and the prime factorization of order ord(xi) (i = 1, · · · , k), it computes

a basis of G in O(|M |(log n)2 +
∑t

i=1 nip
ni/2
i ) time, where n = |G| has

prime factorization pn1
1 pn2

2 · · · pnt
t (which is not a part of input). This

generalizes Buchmann and Schmidt’s algorithm that takes O(|M |
√

|G|)
time. In another model, all elements in an abelian group are put into a
list as a part of input. We obtain an O(n) time deterministic algorithm
and a subliner time randomized algorithm for computing a basis of an
abelian group.

1 Introduction

Abelian groups are groups with commutative property. It is well known that
a finite Abelian group can be decomposed to a direct product of cyclic groups
with prime-power order (called cyclic p-groups) [9]. The set of generators with
exactly one from each of those cyclic groups form a basis of the abelian group.
Because a basis of an abelian group fully determines its structure, which is
the nondecreasing orders of the elements in a basis, finding a basis is crucial
in computing the general properties for abelian groups. The orders of all ele-
ments in a basis form the invariant structure of an abelian group. There is a
long line of research about the algorithm for determining group isomorphism
(e.g. [14,8,12,13,16,20,10,6,11]). Two abelian groups are isomorphic if and only
if they have the same structure.

For finding a basis of abelian group, Chen [4] showed an O(n2) time algo-
rithm for finding a basis of an abelian group G given all elements and size of G
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as input. An abelian group is often represented by a set of generators in filed
of computational group theory (e.g., [18]) as a set of generators costs a small
amount memory. The algorithm for basis of abelian group with a set of genera-
tors as input was developed by Buchmann, et al [2], Teske [19], and Buchmann
and Schmidt [3] with the fastest proven time O(m

√
|G|). The methods for com-

puting the order for one element in a group also has connection with computing
the abelian basis was also reported in [2,17].

We show a randomized algorithm such that given a set of generators M =
{x1, · · · , xk} for an abelian group G and the prime factorization of order ord(xi)
(i = 1, · · · , k), it computes a basis of G in O(|M |(log n)2 +

∑t
i=1 nip

ni/2
i ) time,

where n = |G| has prime factorization pn1
1 pn2

2 · · · pnt
t (which is not a part of

input). This implies an algorithm such that given an abelian group G represented
by a set of generators M = {x1, · · · , xk} without their orders information, it
computes a basis of G in O(|M |(log n)2+

∑t
i=1 nip

ni/2
i +(

∑t
i=1

√
ord(xi))) time.

This improves Buchmann and Schmidt’s algorithm that takes O(|M |
√
|G|) time.

In the model of all elements in an abelian group being put into a list as a
part of input, we derive an O(

∑t
i=1 ni min(pni/2

i , pni−1
i ) +

∑t
i=1 ni log n)-time

randomized algorithm to compute a basis of abelian group G of order n with
factorization n = pn1

1 · · · pnt
t , which is also a part of the input. It implies an

O(n1/2 ∑t
i=1 ni)-time randomized algorithm to compute a basis of an abelian

group G of order n. It also implies that if n is an integer in {1, 2, · · · ,m}−G(m, c),
then a basis of an abelian group of order n can be computed in O((log n)c+1)-
time, where c is any positive constant and G(m, c) is a subset of the small fraction
of integers in {1, 2, · · · ,m} with |G(m,c)|

m = O( 1
(log m)c/2 ) for every integer m. We

show an algorithm such that given a set of generators M = {x1, · · · , xk} for an
abelian group G and the prime factorizations of orders ord(xi) (i = 1, · · · , k),
it computes a basis of G in O(|M |(

∑t
i=1 p

ni/2
i )) time, where n = |G| has prime

factorization pn1
1 pn2

2 · · · pnt
t (which is not a part of input). We also obtain an

O(n)-time deterministic algorithm for computing a basis of an abelian group
with n elements. The existing algorithms need O(n2) time by Chen and O(n1.5)
time by Buchmann and Schmidt .

2 Notations

For two positive integers x and y, (x, y) represents the greatest common divisor
(GCD) between them. For a set A, |A| denotes the number of elements in A. For
a real number x, �x� is the largest integer ≤ x and �x� is the smallest integer
≥ x. For two integers x and y, x|y means that y = xc for some integer c.

A group is a nonempty set G with a binary operation “·” that is closed in set G
and satisfies the following properties (for simplicity, “ab” represents “a·b”): 1)for
every three elements a, b and c in G, a(bc) = (ab)c; 2)there exists an identity
element e ∈ G such that ae = ea = a for every a ∈ G; 3)for every element a ∈ G,
there exists a−1 ∈ G with aa−1 = a−1a = e. A group G is finite if G contains
finite elements. Let e be the identity element of G, i.e. ae = a for each a ∈ G.
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For a ∈ G, ord(a), the order of a, is the least integer k such that ak = e. For
a ∈ G, define 〈a〉 to be the subgroup of G generated by the element a (in other
words, 〈a〉 = {e, a, a2, · · · , aord(a)−1}). Let A and B be two subsets of group G,
define AB = A ·B = A ◦B = {ab|a ∈ A and b ∈ B}. We use ∼= to represent the
isomorphism between two groups.

A group G is an abelian group if ab = ba for every pair of elements a, b ∈ G.
Assume that G is an abelian group with elements g1, g2, · · · , gn. For each element
gi ∈ G, it corresponds to an index i. According to the theory of abelian group,
a finite abelian group G of n elements can be represented as G = G(pn1

1 ) ◦
G(pn2

2 )◦ · · · ◦G(pnt
t ) ∼= G(pn1

1 )×G(pn2
2 )×· · ·×G(pnt

t ), where n = pn1
1 pn2

2 · · · pnt
t ,

p1 < p2 < · · · < pt are the prime factors of n, and G(pni

i ) is a subgroup of G with
pni

i elements (see [9]). We also use the notation Gpi to represent the subgroup
of G with order pni

i . Any abelian group G of order pm can be represented by
G = G(pm1) ◦G(pm2) ◦ · · · ◦G(pmk) ∼= G(pm1) ×G(pm2) × · · · ×G(pmk), where
m =

∑k
i=1 mi and 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk. Notice that each G(pmi) is a

cyclic group.
For, a1, a2, · · · , ak from the abelian group G, denote 〈a1, a2, · · · , ak〉 to be the

set of all elements in G generated by a1, · · · , ak. In other words, 〈a1, a2, · · · , ak〉 =
〈a1〉〈a2〉 · · · 〈ak〉. An element a ∈ G is independent of a1, a2, · · · , ak in G if a 
= e
and 〈a1, a2, · · · , ak〉 ∩ 〈a〉 = {e}. If G = 〈a1, a2, · · · , ak〉, then {a1, a2, · · · , ak} is
called a set of generators of G. If X is a set of elements in G, we also use 〈X〉
to represent the subgroup generated by set X .

The elements a1, a2, · · · , ak from the abelian group G are independent if ai is
independent of a1, · · · , ai−1, ai+1, · · · , ak for every i with 1 ≤ i ≤ k. A basis of G
is a set of independent elements a1, · · · , ak that can generate all elements of G
(in other words, G = 〈a1, a2, · · · , ak〉).

3 Randomized Algorithm for Basis via Generators

An abelian group is often represented by a set of generators. The set of generators
for a group is usually much less than the order of a group. It is important to
find the algorithm for computing a basis of abelian group represented by a set
of generators. The randomized algorithms in this paper belong to Monte Carlo
algorithms [1], which have a small probability to output error results.

Let B = {b1, · · · , bk} be a set of basis for an abelian group G of size pm (p is
a prime) and assume that ord(b1) ≤ ord(b2) ≤ · · · ≤ ord(bk). The structure of
G is defined by 〈ord(b1), ord(b2), · · · , ord(bk)〉. We note that the structure of an
abelian group is invariant, but its basis is not unique.

The theorem of Buchmann and Schmidt [3] is used in our algorithm for finding
a basis of abelian group. The following Theorem 1 follows from Lemma 3.1 and
Theorem 3.4 in [3].

Theorem 1 ([3]). There exists an O(m
√

|G|) time algorithm such that given a
set of generators of order m for an abelian group G of order pt for some prime
number p and intger t ≥ 1, the algorithm returns a basis and the structure of G
in O(m

√
|G|) steps.
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Theorem 2 ([3]). There exists an algorithm such that given an element g of
an abelian group G, it returns ord(g) in O(

√
ord(g)) steps.

Lemma 1. Assume G is an abelian group of order n. We have the following
two facts: 1) If n = m1m2 with (m1,m2) = 1, G′ = {a ∈ G|am1 = e} and
G′′ = {am1 |a ∈ G}, then both G′ and G′′ are subgroups of G, G = G′◦G′′, |G′| =
m1 and |G′′| = m2. Furthermore, for every a ∈ G, if (ord(a),m1) = 1, then
a ∈ G′′. 2)If n = pn1

1 pn2
2 · · · pnt

t , then G = G(pn1
1 ) ◦G(pn2

2 ) ◦ · · · ◦G(pnt
t ), where

G(pni

i ) = {a ∈ G|ap
ni
i = e} for i = 1, · · · , t.

Proof. It is easy to verify that G′ is subgroup of G. Assume a1, · · · , as1 , b1, · · · , bs2

are the elements in a basis of G such that ord(ai)|m1 for i = 1, · · · , s1 and
ord(bj)|m2 for j = 1, · · · , s2. It is easy to see that am1

i = e for i = 1, · · · , s1 and
bm1
j 
= e for j = 1, · · · , s2. For each bj , 〈bj〉 = 〈bm1

j 〉 since (m1,m2) = 1 and
ord(bj)|m2. Assume that x = am1 and y = a′m1 . Both x and y belong to G′′.
Let’s consider xy = (aa′)m1 . We still have xy ∈ G′′. Thus, G′′ is closed under
multiplication. Since G′′ is a subset of a finite group, G′′ is a group. Therefore,
G′′ is a group generated by bm1

1 , · · · , bm1
s2

that is the same as the group generated
by b1, · · · , bs2 . Therefore, G′′ is of order m2. On the other hand, G′ has basis of
elements a1, · · · , as1 and is of order m1. We also have that G′ ∩ G′′ = {e}. It is
easy to see that G = G′ ◦G′′. For a ∈ G with (ord(a),m1) = 1, 〈am1〉 = 〈a〉 and
am1 
= e. So, we have am1 ∈ G′′, which implies that a ∈ 〈a〉 = 〈am1〉 ⊆ G′′. Part
2) follows from part 1).

Lemma 2. Let M = {x1, · · · , xk} be a set of generators for an abelian group
G. Assume that |G| = n = pn1

1 · · · pnt
t is the prime factorization of the order of

G. Let mi = max{ti : pti

i |ord(xj) for some xj in M} and ui =
∏

v �=i p
mv
v for

i = 1, · · · , t. Let Mi = {xui
1 , · · · , xui

k }. Then Mi is a set of generators for G(pni

i ).

Proof. For each xui

j ∈ Mi, we have (xui

j )p
ni
i = e. Therefore, all elements of

Mi are in G(pni

i ) (by Lemma 1). Let g be an arbitrary element in G(pni

i ). By
Lemma 1, gp

ni
i = e. Since M is a set of generators for G, let g = xz1

1 · · ·xzk

k .
Since the greatest common divisor (ui, p

ni

i ) = 1, there exist two integers y1 and
y2 such that y1ui + y2p

ni

i = 1. We have that

g = gy1ui+y2p
ni
i = gy1uigy2p

ni
i = gy1ui = (xz1

1 · · ·xzk

k )y1ui = (xui
1 )z1y1 · · · (xui

k )zky1 .

We just show that g can be generated by the elements in Mi. Therefore, Mi is
a set of generator for G(pni

i ).

Let X = {x1, · · · , xk} be a set elements in a group G. Define a p-random product
xa1

1 · · ·xak

k , where a1, · · · , ak are independent random integers in [0, p− 1].

Lemma 3. Let G′ be a proper subgroup of an abelian group G = 〈x1, · · · , xk〉 of
order pm for some prime p. Let g be a p-random product of {x1, · · · , xk}. Then
Pr(g ∈ G′) ≤ 1

p .
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Proof. Since G′ 
= G, let i be the least index such that xi 
∈ G′. Consider
g = xa1

1 · · ·xai−1
i−1 xai

i x
ai+1
i+1 · · ·xak

k . Let u = xa1
1 · · ·xai−1

i−1 and v = x
ai+1
i+1 · · ·xak

k . For
any fixed u and v, there exists at most one integer ai ∈ [0, p − 1] such that
uxai

i v ∈ G′. Assume that there exist a′i < a′′i ∈ [0, p − 1] such that ux
a′

i
i v ∈ G′

and ux
a′′

i

i v ∈ G′. We have that x
a′′

i −a′
i

i ∈ G′ since G is an abelian group. Let
ord(xi) = ps. There exists an integer j such that j(a′′i − a′i) = 1(mod ps) since
a′′i − a′i ∈ (0, p − 1]. Clearly, x

a′′
i −a′

i

i ∈ G′ implies xi = x
j(a′′

i −a′
i)

i ∈ G′. A
contradiction. Therefore, with probability at most 1

p , g ∈ G′.

Lemma 4. There exists a randomized algorithm such that given a set of gener-
ators M = {x1, x2, · · · , xk} for a finite abelian p-group G, prime p, and integer
h ≥ 1, it computes a basis for G in O(|M |hr log p + (r + h)pr/2) time with
probability at most p−h to fail, where |G| = pr (which is not a part of input).

Proof. We have the algorithm Randomly-Find-Basis-for-p-Group to find a basis
for a p-group.

Algorithm Randomly-Find-Basis-for-p-Group
Input: prime p, a set of generators x1, · · · , xk of a finite abelian group G of

order pm (pm is not a part of input), and a parameter h.
Output: a basis of G
Steps:

Let A0 = {e} (only contains the identity).
Let B0 = {e}
Let S0 = 〈e〉 (the structure for the group with one element).
i = 0.
Repeat

i = i + 1.
Generate h p-random products a1, · · · , ah of M .
Let Ai = Bi−1 ∪ {a1, · · · , ah}.
Let Bi be a basis of 〈Ai〉 and Si be the structure of 〈Ai〉 by the
Algorithm in Theorem 1.

Until Si = Si−1.
Output Bi−1 as a basis of G.

End of Algorithm

We prove that the algorithm has a small probability failing to return a basis
of G. Assume that the subgroup 〈A〉 is not equal to G. By Lemma 3, for a p-
random product g of M , the probability is at most 1

p that g ∈ 〈A〉. Therefore,
for h p-random elements a1, · · · , ah, the probability that all a1, · · · , ah are in 〈A〉
is at most p−h. We have that the probability at most p−h that the algorithm
stops before returning a basis of G.

Each cycle in the loop of the algorithm is indexed by the variable i. Since G
is of order pr, the order |〈Bi〉| of subgroup 〈Bi〉 of G is pmi for some integer mi.
A basis of G contains at most r elements since |G| = pr. Therefore, |Bi| ≤ r.
It takes O(|M | log p) time to generate one p-random product. The time spent in
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cycle i is O(|M |h log p+(|Bi|+h)
√
|〈Bi〉|). The loop is repeated at most r times

since 〈Bi−1〉 
= 〈Bi〉. Assume the algorithm stops when i = i0. The total time is
O(

∑i0
i=1(|M |h log p + (|Bi| + h)

√
|〈Bi〉|). Since 〈B0〉 
= 〈B1〉 
= · · · 
= 〈Bi0〉, we

have that 0 = m0 < m1 < · · · < mi0 ≤ r. We have
∑i0

i=1((|Bi| + h)
√
|〈Bi〉|) ≤

∑r
i=1((r + h)

√
pi = (r + h) (

√
p)r+1−1√

p−1 . The total time is O(|M |hr log p + (r +

h)pr/2).

Theorem 3. Let ε be a small constant greater than 0. Then there exists a ran-
domized algorithm such that given a set of generators M = {x1, x2, · · · , xk} for a
finite abelian group G and the prime factorization for the order ord(xi) of every
xi(i = 1, · · · , k), it computes a basis for G in O((|M |(log n)2 +

∑t
i=1 nip

ni/2
i ))

time and has probability at most ε to fail, where n = |G| has prime factorization
pn1
1 pn2

2 · · · pnt
t (which is not a part of input) with p1 < p2 < · · · < pt.

Proof. Our algorithm to find a basis of G is decomposed into finding a basis of
every p-group of G. The union of every basis among all p-subgroups of G is a
basis of G. Let h be a constant such that 1

(h−1)2h−1 ≤ ε.

Algorithm Randomly-Find-Basis-By-Generators
Input: a set of generators x1, · · · , xk of a finite abelian group G and the prime

factorization for every ord(xi) (i = 1, · · · , k).
Output: a basis of G
Steps:

Let p1, · · · , pt be all of the prime numbers pj with pj |ord(xi) for some i
in {1, 2, · · · , k}.
For i = 1 to t let vi = max{pti

i : pti

i |ord(xj) for some xj in M}.
Let u = v1v2 · · · vt.
For i = 1 to t let ui = u

vi
.

For i = 1 to t let Mi = {xui
1 , · · · , xui

k }.
For i = 1 to t

Let Bi be a basis of 〈Mi〉 by the Algorithm in Lemma 4 with input
pi,Mi, and h.

Output B1 ∪B2 ∪ · · · ∪Bt as a basis of G.
End of Algorithm

By Lemma 2, Mi is a set of generator for Gpi . By Lemma 4, the probability
is at most p−h

i that Bi is not a basis of Gpi . The probability failing to output a
basis of G is at most

∑t
i=1 p−h

i <
∑∞

i=p1

1
ih ≤

∫∞
p1

1
xh dx ≤ 1

(h−1)ph−1
1

≤ ε since h

is selected with 1
(h−1)2h−1 ≤ ε. By Lemma 2, B1 ∪B2 ∪ · · · ∪Bt is a basis of G.

Since the prime factorization of the order ord(xi) for i = 1, · · · , k is a part in-
put, it takes O(|M |t) time to compute one vi. It takes O(|M |t2) = O(|M |(log n)2)
time to compute v1, · · · , vt. It takes O(t) time to compute u and u1, · · · , ut.

The time for computing each element in Mi is O(log n) since ui ≤ n and com-
puting the power function (xn) takes O(log n) time. It takes O(|M | logn) time to
generate one set Mi and O(|M |t log n) = O(|M |(log n)2) time to
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generate all M1, · · · ,Mt. By Lemma 4, the computational time for computing
each basis of 〈Mi〉 is O(|Mi|nih+(ni+h)pni/2

i ). The total time is O((|M |(log n)2+
(
∑t

i=1 nip
ni/2
i ))) since h is a constant, |Mi| = |M |, and

∑t
i=1 ni = O(log n).

The fastest-known fully proven deterministic algorithm for integer factorization
is the Pollard-Strassen method, which is stated in Theorem 4.

Theorem 4 ([15,7]). There exists an 2O((log n)1/3(log log n)2/3)) time algorithm
to factorize any integer n.

We have Theorem 5 to compute a basis of an abelian group only given a set of
generators. Some additional time is needed to compute the orders of elements
among generators.

Theorem 5. There exists a randomized algorithm such that given a set of gen-
erators M = {x1, x2, · · · , xk} for a finite abelian group G of order n, it computes
a basis for G in O(|M |(log n)2 +

∑t
i=1 nip

ni/2
i +

∑t
i=1

√
ord(xi)) time, where n

has prime factorization pn1
1 pn2

2 · · · pnt
t (which is not a part of input).

We have Theorem 6 to compute a basis of an abelian group only given a set
of generators and their orders. Some additional time is needed to factorize the
orders of elements among generators.

Theorem 6. There exists a randomized algorithm such that given a set of gen-
erators M = {x1, x2, · · · , xk} and their orders for a finite abelian group G of
order n, it computes a basis for G in
O(|M |(log n)2 +

∑t
i=1 nip

ni/2
i + |M |2O((log n)1/3(log log n)2/3)) time, where n has

prime factorization pn1
1 pn2

2 · · · pnt
t , which is not a part of input.

4 Sublinear Time Algorithm with Entire Group as Input

In this section, we present a sublinear time randomized algorithm for finding
a basis of a finite abelian group. The input contains a list that holds all the
elements of an abelian group. We first show how to convert a random element
from G to its subgroup G(pni

i ) in Lemma 5.

Lemma 5. Let n = pn1
1 · · · pnt

t and G be an abelian group of n elements. Assume
mi = n

p
ni
i

for i = 1, · · · , t. If a is a random element of G that with probability
1
|G| , a is equal to b for each b ∈ G, then ami is a random element of G(pni

i ), the
subgroup of G with pni elements, such that with probability 1

p
ni
i

, ami is b for any
b ∈ G(pni

i )

Proof. Let bi,1, bi,2, · · · , bi,ki form a basis of G(pni

i ), i.e. G(pni

i ) = 〈bi,1〉 ◦ · · · ◦
〈bi,ki〉. Assume a is a random element in G. Let a = (

∏ki

j=1 b
ci,j

i,j )a′, where a′

is an element in
∏

j �=i G(pnj

j ). For every two integers x 
= y ∈ [0, pni

i − 1],
mix 
= miy(mod pni

i ) (Otherwise, mix = miy(mod pni

i ) implies x = y because
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(mi, pi) = 1). Thus, the list of numbers mi · 0(mod ps
i ),mi · 1(mod ps

i ), · · · ,
mi(ps

i − 1)(mod ps
i ) is a permutation of 0, 1, · · · , ps

i − 1 for any integer s ≥ 1.
Thus, if ci,j is a random integer in the range [0, ord(bi,j) − 1] such that with
probability 1

ord(bi,j)
, ci,j = c′ for each c′ ∈ [0, ord(bi,j) − 1], then the probabil-

ity is also 1
ord(bi,j)

that mici,j = c′ for each c′ ∈ [0, ord(bi,j) − 1]. Therefore,

ami = ((
∏ki

j=1 b
ci,j

i,j )a′)mi =
∏ki

j=1 b
mici,j

i,j , which is a random element in G(pni

i ).

Lemma 6. Let G be a group of order pr. Then the probability is at most 2
ph ln p

that a set of r + 2h logh + 9h random elements from G cannot generate G.

Proof. For every subgroup G′ of G, if |G′| = ps, then the probability is ps−r

that a random element of G is in G′. We use this fact to construct a series
of subgroups G0 = 〈e〉 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gr′ with r′ ≤ r. Each Gi is
〈Hi〉, where Hi is a set of random elements from G and we have the chain
H0 = {e} ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hr′ , which shows that Hi+1 is extended from Hi

by adding some additional random elements to Hi.
Let Gi be a subgroup generated by some elements Gi = 〈Hi〉. If |Gi| = ps ≤

pr−h, then add one more random element to Hi to form Hi+1. With probability
at most ps−r, the new element is in Gi. Let a be the random element to be
added to Hi. Therefore, Hi+1 = Hi ∪ {a}, Gi+1 = 〈Hi+1〉, and the probability
is at most ps−r that Gi = Gi+1.

Now assume that |Gi| > pr−h. We add new elements according to size of Gi.
Let |Gi| = ps. We have r − s < h since ps = |Gi| > pr−h. We will construct at
most h− 1 extensions (from Gi = 〈Hi〉 to Gi+1 = 〈Hi+1〉). It is easy to see that
[1, h] ⊆ ∪�log h�

k=0 ( h
2k+1 ,

h
2k ]. For 0 < r−s < h, there exists an integer k ∈ [0, �lnh�]

such that r − s ∈ ( h
2k+1 ,

h
2k ]. If r − s is in the range ( h

2k ,
h

2k+1 ], then in order to
form Hi+1, we add 2 · 2k+1 new random elements to Hi. Then the probability is
at most (ps−r)2

k+2 ≤ (p−
h

2k+1 )2
k+2 ≤ 1

p2h that all of the 2 · 2k+1 new elements
are in Gi. Thus, with probability at most 1

p2h that Gi = Gi+1.
Let i0 be the least integer i with |Gi| > pr−h. The number of random elements

used in Hi0−1 is at most r − h since one element is increased from Hi−1 to Hi

for i < i0.
Let j = �lnh�. The number of integers in ( h

2k+1 ,
h
2k ] is at most h

2k − h
2k+1 +1 =

h
2k+1 +1. For i ≥ i0, Hi+1 is increased by 2 ·2k+1 new random elements from Hi,
where |Gi| = ps with r− s ∈ ( h

2k+1 ,
h
2k ]. For all extensions from Hi to Hi+1 after

i ≥ i0, we need at most ((h− h
2 + 1) · 4 + (h

2 − h
4 + 1) · 8 + · · ·+ ( h

2j − h
2j+1 + 1) ·

2 · 2j+1) = (
∑j

i=0 2h+
∑j

i=0 2i+2) ≤ 2h(lnh + 1) + 8h = 2h lnh + 10h elements.
The total number of random elements used is at most (r−h)+(2h lnh+10h) =
r + 2h lnh + 9h.

The probability that Gi = Gi+1 for some i < i0 is at most
∑∞

i=h
1
pi . The

probability Gi = Gi+1 for some i ≥ i0 is at most (h−1)
p2h . The probability that

r + 2h lnh + 9h random elements of G are not generators for G is at most∑∞
i=h

1
pi + (h−1)

p2h ≤ 2
∑∞

i=h
1
pi ≤ 2

∫∞
h

1
px dx ≤ 2

ph ln p .
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Theorem 7. Let h be an integer parameter. There exists a randomized algo-
rithm such that given an abelian group G of order n with n = pn1

1 · · · pnt
t with

p1 < p2 < · · · < pt, the algorithm computes a basis of G in O(
∑t

i=1(ni +
h log h)min(pni/2

i , pni−1
i )+

∑t
i=1(ni + h logh) logn) running time and has prob-

ability at most 2
(h−1)ph−1

1 ln p1
to fail.

Proof. It takes O(log n) steps to compute ami for an element a ∈ G, where
mi = n

p
ni
i

. Each random element of G can be converted into a random element
of G(pni

i ) by Lemma 5. Each G(pni

i ) needs O(ni + h logh) random elements to
find a basis by Lemma 6. Each G(pni

i ) needs O((ni+h log h) logn) time to convert
the O(ni + h log h) random elements from G to G(pni

i ). It takes O(
∑t

i=1(ni +
h log h) logn)) time to convert random elements of G into the random elements in
all subgroups G(pni

i ) for i = 1, · · · , t. For n = pn1
1 · · · pnt

t ,
∑t

i=1 ni log pi = logn.
If ni = 1, we just select an nonidentity element to be the basis for G(pni

i ).
If ni > 1, by Theorem 1, each G(pni

i ) needs O((ni + h log h)pni/2
i ) time to

find a basis for G(pni

i ). The time spend for computing a basis of G(pni

i ) is
O((ni+h logh)min(pni/2

i , pni−1
i )). The sum of time for all G(pni

i )s to find basis is
O(

∑t
i=1(ni+h logh)min(pni/2

i , pni−1
i )). The total time for the entire algorithm is

equal to the time for generating random elements for k subgroups G(pni

i ) and the
time for computing a basis of every G(pni

i ) (i = 1, · · · , t). Thus, the total time can
be expressed as O(

∑t
i=1(ni+h log h)min(pni/2

i , pni−1
i )+

∑t
i=1(ni+h log h) logn).

By Lemma 6, the probability is at most 2
ph

i ln pi
that we cannot get a set of

generators for G(pni

i ) by selecting O(ni + h log h) random elements in G(pni

i ).
The total probability to fail is

∑t
i=1

2
ph

i ln pi
≤ 2

ln p1

∑t
i=1

1
ph

i

≤ 2
ln p1

∫∞
p1

1
xh dx =

2
(h−1)ph−1

1 ln p1
.

Definition 1. For an integer n, define F (n) = max{pi−1 : pi|n, pi+1 
 |n, i ≥ 1,
and p is a prime }. Define G(m, c) to be the set of all integers n in [1,m] with
F (n) ≥ (logn)c and H(m, c) = |G(m, c)|.

Theorem 8. H(m,c)
m = O( 1

(log m)c/2 ) for every constant c > 0.

Theorem 9. There exists a randomized algorithm such that if n is in [1,m] −
G(m, c), then a basis of an abelian group of order n whose prime factorization is
also part of the input can be computed in O((log n)c+1)-time, where c ≥ 1 is an
arbitrary constant and G(m, c) is a subset of integers in [1,m] with |G(m,c)|

m =
O( 1

(log m)c/2 ) for each integer m.

We also develop deterministic algorithms to compute a basis of an abelian group.
Our O(n) time algorithm needs the results of Kavitha [10,11].

Theorem 10. There is an O(n) time algorithm for computing a basis of an
abelian G group with n elements.
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Abstract. In a multicore transactional memory (TM) system, concurrent execu-
tion threads interact and interfere with each other through shared memory. The
less interference a program provokes the better for the system. However, as a pro-
grammer is primarily interested in optimizing her individual code’s performance
rather than the system’s overall performance, she does not have a natural incen-
tive to provoke as little interference as possible. Hence, a TM system must be
designed compatible with good programming incentives (GPI), i.e., writing effi-
cient code for the overall system coincides with writing code that optimizes an
individual program’s performance. We show that with most contention managers
(CM) proposed in the literature so far, TM systems are not GPI compatible. We
provide a generic framework for CMs that base their decisions on priorities and
explain how to modify Timestamp-like CMs so as to feature GPI compatibility.
In general, however, priority-based conflict resolution policies are prone to be ex-
ploited by selfish programmers. In contrast, a simple non-priority-based manager
that resolves conflicts at random is GPI compatible.

1 Introduction

In traditional single core architecture, the performance of a computer program is usually
measured in terms of space and time requirements. In multicore architecture, things are
not so simple. Concurrency adds an incredible, almost unpredictable complexity to to-
day’s computers, as concurrent execution threads interact and interfere with each other.
The paradigm of Transactional Memory (TM), proclaimed and implemented by Herlihy
and Moss [6] in the 1990’s, has emerged as a promising approach to keep the challenge
of writing concurrent code manageable. Although today, TM is most-often associated
with multithreading, its realm of application is much broader. It can for instance also be
used in inter process communication where multiple threads in one or more processes
exchange data. Or it can be used to manage concurrent access to system resources. Ba-
sically, the idea of TM can be employed to manage any situation where several tasks
may concurrently access resources representable in memory. A TM system provides
the possibility for programmers to wrap critical code that performs operations on shared
memory into transactions. The system then guarantees an exclusive code execution such
that no other code being currently processed interferes with the critical operations. To
achieve this, TM systems employ a contention management policy. In optimistic con-
tention management, transactional code is executed right away and modifications on

� A full version including all proofs, is available as TIK Report 310 at http://www.tik.ee.ethz.ch.
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incRingCounters(Node start){
var cur = start;
atomic{

while(cur.next!=start){
c = cur.count;
cur.count = c + 1;
cur = cur.next; }}}

incRingCountersGP(Node start){
var cur = start;
while(cur.next!=start){

atomic{
c = cur.count;
cur.count = c + 1;}

cur = cur.next; }}

Fig. 1. Two variants of updating each node in a ring

shared resources take effect immediately. If another process, however, wants to access
the same resource, a mechanism called contention manager (CM) resolves the conflict,
i.e., it decides which transaction may continue and which must wait or abort. In case
of an abort, all modifications done so far are undone. The aborted transaction will be
restarted by the system until it is executed successfully. Thus, in multicore systems,
the quality of a program must not only be judged in terms of space and (contention-
free) time requirements, but also in terms of the amount of conflicts it provokes due to
concurrent memory accesses.

Consider the example of a shared ring data structure. Let a ring consist of s nodes
and let each node have a counter field as well as a pointer to the next node in the ring.
Suppose a programmer wants to update each node in the ring. For the sake of simplicity
we assume that she wants to increase each node’s counter by one. Given a start node,
her program accesses the current node, updates it and jumps to the next node until it
ends up at the start node again. Since the ring is a shared data structure, node accesses
must be wrapped into a transaction. We presume the programming language offers an
atomic keyword for this purpose. The first method in Figure 1 (incRingCounters)
is one way of implementing this task. It will have the desired effect. However, wrapping
the entire while-loop into one transaction is not a very good solution, because by doing
so, the update method keeps many nodes blocked although the update on these nodes
is already done and the lock1 is not needed anymore. A more desirable solution is to
wrap each update in a separate transaction. This is achieved by a placement of the
atomic block as in incRingCountersGP on the right in Figure 1. When there is no
contention, i.e., no other transactions request access to any of the locked ring nodes,
both incRingCounters and incRingCountersGP run equally fast2 (cf. Figure 2).
If there are interfering jobs, however, the affected transactions must compete for the
resources whenever a conflict occurs. The defeated transaction then waits or aborts
and hence system performance is lost. In our example, using incRingCounters

instead of incRingCountersGP leads to many unnecessarily blocked resources and
thereby increases the risk of conflicts with other program parts. In addition, if there is
a conflict and the CM decides that the programmer’s transaction must abort, then with
incRingCountersGP only one modification needs to be undone, namely the update
to the current node in the ring, whereas with incRingCounters all modifications back

1 An optimistic, direct-update TM system “locks” a resource as soon as the transaction reads
or writes it and releases it when committing or aborting. This is not to be confused with an
explicit lock by the programmer. In TM, explicit locks are typically not supported.

2 If we disregard locking overhead.
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Fig. 2. Transactional allocation of ring nodes (a) by incRingCounters and (b) by
incRingCountersGP

to the start node must be rolled back. In brief, employing incRingCounters causes
an avoidable performance loss.

One might think that it is in the programmer’s interest to choose the placement of
atomic blocks as beneficial to the TM system as possible. The reasoning would be
that by doing so she does not merely improve the system performance but the effi-
ciency of her own piece of code as well. Unfortunately, in current TM systems, it is
not necessarily true that if a thread is well designed—meaning that it avoids unneces-
sary accesses to shared data—it will also be executed faster. On the contrary, we will
show that most CMs proposed so far privilege threads that incorporate long transactions
rather than short ones. This is not a severe problem if there is no competition for the
shared resources among the threads. Although in minor software projects all interfer-
ing threads might be programmed by the same developer, this is not the case in large
software projects, where there are typically many developers involved, and code of dif-
ferent programmers will interfere with each other. Furthermore, we must not assume
that all conflicting parties are primarily interested in keeping the contention low on the
shared objects, especially if doing so slows down their own thread. It is rather realistic
to assume that in many cases, a developer will push his threads’ performance at the
expense of other threads or even at the expense of the entire system’s performance if
the system does not prevent this option.To avoid this loss of efficiency, a multicore sys-
tem must be designed such that the goal of achieving an optimal system performance is
compatible with an individual programmer’s goal of executing her code as fast as pos-
sible. This paper shows analytically that most CMs proposed in the literature so far lack
such an incentive compatibility. As a practical proof of our findings, we implemented
free-riding strategies in the TM library DSTM2[5] and tested them in several scenarios.
These results can be found in [3].

2 Model

We use a model of a TM system with optimistic contention management, immedi-
ate conflict detection and direct update. As we do not want to restrict TM to the
domain of multithreading, we will use the notion of jobs instead of threads to de-
note a set of transactions belonging together. In inter process communication, e.g.,
a job is rather a process than a thread. A job Ji consists of a sequence of trans-
actions Ti1, Ti2, . . . , Tik. If Ji consists of only one transaction, we sometimes write
Ti instead of Ti1. Transactions access shared resources Ri. At any point in time,
we denote by n the number of running transactions in the system and by s the
number of resources currently accessed. For the sake of simplicity, we consider all
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accesses as exclusive, thus, if two transactions both try to access resource Ri at the
same time or if one has already locked Ri and the other desires access to Ri as
well, they are in conflict. When a conflict occurs, a mechanism decides which trans-
action gains (or keeps) access of Ri and aborts the other competing transaction. Such
a mechanism is called contention manager (CM). We assume that once a transaction
has accessed a resource, it keeps the exclusive access right until it either commits or
aborts. We further assume that the time needed to detect a conflict, to decide which
transaction wins and the time used to commit or start a transaction are negligible.
We neither restrict the number of jobs running concurrently, nor do we impose any
restrictions on the structure and length of transactions.3 We say a job Ji is running if
its first transaction Ti1 has started and the last Tik has not committed yet. Notice that
in optimistic contention management, the starting time ti of a job Ji and therewith the
starting time ti1 of Ti1 is not influenced by the CM, since it only reacts once a conflict
occurs. The environment E is a potentially infinite set of tuples of a job and the time it
enters the system, i.e., E = {(J0, t0), (J1, t1), . . .}. We assume that the state at a time
t of a TM system managed by a deterministic CM is determined by the environment E .
The execution environment of a job Ji is then E−i = E \ {(Ji, ti)}.We further assume
that once a job Ji is started at time ti, any contained transaction Tij accesses the same
resources in each of its executions and for any resource, the time of its first access after
a (re)start of Tij remains the same in each execution. Once ti is known, this allows
a description of a contained transaction by a list of all resources accessed with their
relative access time. E.g., Tij = ({(R1, t1), . . . , (Rk, tk)}, dij) means that transaction
Tij accesses R1 after t1 time and so forth until it hopefully commits after dij time. The
contention-free execution time dEij is the time the system needs to execute Tij if Tij

encounters no conflicts. The job execution time dM,E
i is the time Ji’s execution needs

in a system managed by M in environment E , i.e., the period from the time Ti1 enters
the system, ti1, until the time Tik commits. Similarly, dM,E

ij denotes the execution time
of transaction Tij and dM,E is the makespan of all jobs in E , i.e., the time from mini ti
until maxi(ti + dM,E

i ). We denote by M∗ an optimal offline CM. We presume M∗

to know all future transactions. It can thus schedule all transactions optimally so as to
minimize the makespan. We assume that the program code of each job is written by a
different selfish developer and that there is competition among those developers. Selfish
in this context means that the programmer only cares about how fast her job terminates.
A developer is considered rational, i.e., she always acts so as to maximize her expected
utility. This is, she minimizes her job’s expected execution time. Further, we assume
the developers to be risk-averse in the sense that they expect the worst case to happen,
however they expect their job Ji to eventually terminate even if under certain environ-
ments, M does not terminate Ji. This assumption is inevitable since with many CMs,
there exist (at least theoretically) execution environments E−i which make Ji run for-
ever. Thus a risk-averse developer could just as well twirl her thumbs instead of writing
a piece of code without this assumption. In Lemma 1, the used notion of rationality will
be further adapted in that we argue that delaying a transaction does not make sense if
an arbitrary environment is assumed.

3 That is why we do not address the problem of recognizing dead transactions and ignore heuris-
tics included in CMs for this purpose.
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3 Good Programming Incentives (GPI)

Our main goal is to design a multicore TM system that is as efficient as possible. As
we may not assume programmers to write code so as to maximize the overall system
performance but rather to optimize their individual job’s runtime, we must design a
system such that the goal of achieving an optimal system performance is compatible
with an individual programmer’s goal of executing her code as fast as possible. A first
step in this direction is to determine the desired behavior, that is, we have to find the
meaning of good programming in a TM system. We want to find out how a programmer
should structure her code, or in particular, how she should place atomic blocks in order
to optimize the overall efficiency of a TM system.

When a job accesses shared data structures it puts a load on the system. The insight
gained by studying the example in the introduction is that the more resources a job
locks and the longer it keeps those locks, the more potential conflicts it provokes. If the
program logic does not require these locks, an unnecessary load is put on the system.

Fact 1. Unnecessary locking of resources provokes a potential performance loss in a
TM system.

However the question remains whether partitioning a transaction into smaller
transactions—even if this does not reduce the resource accesses—results in a better
system performance. Consider an example where the program logic of a job J1 requires
exclusive access of resource R1 for a period of d1. One strategy for the programmer
is to simply wrap all operations on R1 into one transaction T1 = ({(R1, 0)}, d1).
However, let the semantics also allow an execution of the code in two subsequent
transactions T11 = ({(R1, 0)}, d11) and T12 = ({(R1, 0)}, d12) without losing con-
sistency and without overhead, i.e., d11 + d12 = d1. Figure 3 shows the execution
of both strategic variants in a system managed by an optimal CM M∗ in an execu-
tion environment E−1 = {(J2, 0)} with only one concurrent job J2. Both jobs J1 and
J2 enter the system at time t = 0. Job J2 consists of transactions T21 and T22 with
T21 = ({(R2, 0), (R1, d21 − δ1)}, d21) and T22 = ({(R2, 0), (R1, δ2)}, d22). Further-
more, let δ1 << d1 and δ2 << d1. In situation (a), the programmer does not partition
T1, M∗ schedules T1 first, at time t = 0, T21 at t = δ1 + δ2 and T22 at t = d1 + δ1.

Fig. 3. Partitioning example. The picture depicts the optimal allocation of two resources R1 and
R2 over time in two situations (a) and (b). In (a), the programmer of job J1 does not partition
T1. In (b), she partitions T1 into T11 and T12. The overall execution time is shorter in (b), the
individual execution of J1, however, is faster in (a).
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This optimal schedule of T1, T21 and T22 has a makespan of d1 + δ1 + d22. In situation
(b), the programmer partitions T1 into T11 and T12, an optimal CM schedules T11 and
T21 concurrently at time t = 0, T12 at t = d21 = d11 + δ1 and T22 at t = d11 + 2δ1.
This yields a makespan of d11 + 2δ1 + d22 = d1 + δ1 + d22 − δ2. Thus, in the example
of Figure 3, partitioning T1 allows to schedule J1 and J2 by δ2 faster. We can show that
partitioning is beneficial in a system managed by M∗ in general.

Theorem 1. Let Tij1, Tij2 be a valid partition of Tij . Let Ji be a job containing
Tij1, Tij2 and J ′i the same job except it contains Tij instead of Tij1, Tij2. A finer trans-
action granularity speeds up a transactional memory system managed by an optimal
CM M∗, i.e., ∀ E−i, t : dM

∗,E−i∪{(Ji,t)} ≤ dM
∗,E−i∪{(J′

i,t)} and ∃ E−i, t such that
inequality holds.

Proof (Sketch). Partitioning transactions only gives more freedom to M∗. To be at least
as fast with Ji as with J ′i , M∗ could execute Ti2 right after Ti1. In some cases it might
be even faster to schedule an intermediary transaction between Ti1 and Ti1. �	

Let us reconsider the example from Figure 3. We have seen that partitioning T1 into T11
and T12 results in a smaller makespan. But what about the individual execution time of
job J1? In the unpartitioned execution, where J1 only consists of T1, J1 terminates at
time t = d1. In the partitioned case, however, J1 terminates at time t = d1 + δ1. This
means that partitioning a transaction speeds up the overall performance of a concurrent
system managed by an optimal CM, but it possibly slows down an individual job. Thus,
from a selfish programmer’s point of view, it is not rational to simply make transactions
as fine granular as possible. In fact, if a finer grained partitioning of transactions might
result in a slower execution of a job, why should a selfish programmer make the effort
of finding a transaction granularity as fine as possible?

Avoiding unnecessary locks and partitioning transactions whenever possible is ben-
eficial to a TM system. We say a CM M rewards partitioning of transactions if in a
system managed by M, it is rational for a programmer to always partition a transac-
tion whenever the program logic allows her to do so. Further, M punishes unnecessary
locking if in a system managed by M, it is rational for a programmer to never lock
resources unnecessarily, i.e., she only locks a resource when required by the program
logic. One can expect that, from a certain level of selfishness among developers, a CM
which incentivizes these two crucial aspects of good programming, performs better than
the best incentive incompatible CM. In the remainder, we are mainly concerned with
the question of which CM policies fulfill the following property.

Property 1. A CM is good programming incentive (GPI) compatible if it rewards par-
titioning and punishes unnecessary locking.

As a remark, we would like to point out that the optimal CM M∗ does not reward
partitioning and hence is not GPI compatible (cf. Figure 3). If we assume developers
act selfish then also a system managed by an optimal offline scheduler suffers a per-
formance loss and a CM which offers incentives for good programming might be more
efficient than M∗. There is, however, an inherent loss due to the lack of collaboration,
commonly known as price of anarchy (cf. [2,7]).
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4 Priority-Based Contention Management (CM)

One key observation when analyzing the contention managers proposed in [1,4,8,9,10]
is that most of them incorporate a mechanism that accumulates some sort of priority for
a transaction. In the event of a conflict, the transaction with higher priority wins against
the one with lower priority. Most often, priority is supposed to measure, in one way
or another, the work already done by a transaction.The intuition behind this approach
is that aborting old transactions discards more work already done and thus hurts the
system efficiency more than discarding newer transactions. The proposed CMs base
priority on a transaction’s time in the system, the number of conflicts won, the number
of aborts or the number of resources accessed. Definition 1 introduces a framework that
comprises priority-based CMs. It allows us to classify priority-based CMs and to make
generic statements about GPI compatibility of certain CM classes.

Definition 1. A priority-based CM M associates with each job Ji a priority vector
ωi ∈ Rs where ωi[k] is Ji’s priority on resource Rk. M resolves conflicts between two
transactions Tix ∈ Ji and Tjy ∈ Jj over resource Rk by aborting the transaction with
lower priority, i.e., if ωi[k] ≥ ωj[k] then Tix wins otherwise Tiy is aborted.

In many CMs, all entries of the vector ωi are equal. In this case, we can also re-
place ωi by a scalar priority value ωi ∈ R. We call such a CM scalar-priority-
based. In the remainder we often use ωi instead of ωi, for the sake of simplicity,
even if we are not talking about scalar-priority-based CMs only. Mostly, for a cor-
rect valuation of a job’s competitiveness, absolute priority values are not relevant,
but the relative value to other job priorities. A job Ji’s relative priority vector ω̃i

is defined by ω̃i[k] = ωi[k] − mini=1...n ωi[k], ∀k = 1 . . . s. If the CM uses
scalar priorities, Ji’s relative priority ω̃i is obtained by subtracting mini=1...n ωi from
the absolute priority ωi. Since optimistic CMs feature a reactive nature it is best to
consider the priority-building mechanism as event-driven. We find that the follow-
ing events may occur for a transaction Tij ∈ Ji in a transactional memory system:
A time step (T ); Tij wins a conflict (W); Tij loses a conflict and is aborted (A);
Tij successfully allocates a resource Rk (Rk); Tij commits (C). The following two
subtypes of priority-based CMs capture most contention management policies in the
literature.

Definition 2. A priority-based CM is priority-accumulating iff no event decreases a
job’s priority and there is at least one type of event which causes the priority to increase.
A CM is quasi-priority-accumulating iff it is priority-accumulating w.r.t. events T , W ,
A and R but it resets Ji’s priority when a transaction Tij ∈ Ji commits.

As an example consider a Timestamp CM MT . MT uses only events of type T and C,
i.e., in a time step dt after Tij ∈ Ji entered the system, ωi is increased by dω = αdt, α ∈
R+ until C occurs, then reset to 0. Ji’s scalar priority at time t, tij < t ≤ tij + dMT ,E

ij

is ωi(t) =
∫ t

tij
αdt = α(t − tij). Timestamp is quasi-priority-accumulating since a

job’s priority always increases and never decreases over time except it is reset when a
contained transaction commits.
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Waiting Lemma. We argue in this paragraph that delaying the execution of a job4 is
not rational with the assumption that the execution environment E−i is arbitrary. This
assumption implies that at any point in time, the history of the transactions does not
hold any information about their future. Furthermore, we demand two restrictions on
the CM’s priority modification mechanism: (I.) An increase (or decrease) of ωi never
depends on ωi’s current value5 or on any other job’s priority value. (II.) In a period
where no events occur except for time steps, all priorities ωi increase by Δω ≥ 0. Note
that if Δω is always 0, the priority is not based on time.

Lemma 1. If E−i is arbitrary, the strategy of waiting is irrational in a system managed
by a priority-based CM M restricted by ( I.–II.).

Proof (Sketch). If a programmer delays a transaction by Δ, the adversary can preserve
the environment and thus increase its execution time by Δ. �	

Note that the assumption on E−i being arbitrary naturally applies if the programmer has
no information about the environment in which her program will be executed. Indeed, if
the environment would be truly a worst case environment, the execution of job Ji would
take forever. As with this assumption, starting a job would be completely pointless, we
adapt our model of a risk-averse agent in that we let her suppose that a worst case
environment yields a finite execution time. In practice, the programmer often has some
information about the environment in which her programm will be deployed. Hence it
might make sense to presume some structure of E−i. E.g., she could assume that lengths
of locks follow a certain distribution, or that each resource has a given probability of
being locked. In such cases waiting might not be irrational. In the following, we will
sometimes argue that a CM is (not) GPI compatible by comparing two jobs Ji and J ′i
where both are equal except for J ′i either locks a resource unnecessarily or does not
partition a transaction although this would be semantically possible. We will show that
in the same execution environment E−i, one job either perfoms faster or if it is slower,
this is because it does not wait at a certain point in the execution. Since waiting is
irrational, a developer will prefer this job even if it is not guaranteed to perform better
in any environment.

Quasi-Priority-Accumulating CM. Quasi-priority-accumulating CMs increase a
transaction’s priority over time. Again, the intuition behind this approach is that, on
one hand, aborting old transactions discards more work already done and thus hurts the
system efficiency more than discarding newer transactions and on the other hand, any
transaction will eventually have a priority high enough to win against all other competi-
tors. This approach is legitimate. Although the former presupposes some structure of
E and the latter is not automatically fulfilled, examples of quasi-priority-accumulating
CMs showed to be useful in practice (cf. [9]). However, quasi-priority-accumulating
CMs bear harmful potential. They incentivize programmers to not partition transac-
tions and in some cases even to lock resources unnecessarily. Consider the case where a

4 A programmer can implement waiting by executing code without allocating shared resources.
5 E.g., rules such as “if ωi is larger than 10 add 100” or “ωi = 2ωi” are prohibited. “ωi = ωi+2”

is permitted.
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job has accumulated high priority on an resource Ri. It might be advisable for the job to
keep locking Ri in order to maintain high priority. Although it does not need an exclu-
sive access for the moment, maybe later on, the high priority will prevent an abort and
thus save time. In fact, we can show that the entire class of quasi-priority-accumulating
CMs is not GPI compatible.

Theorem 2. Quasi-priority-acc. CMs restricted by ( I.–II.) are not GPI compatible.

Theorem 2 reflects the intuition, that if committing decreases an advantage in priority
then there are cases where it is rational for a programmer not to commit and start a
new transaction but to continue instead with the same transaction. Obviously, the op-
posite case is possible as well, namely that by not committing, the developer causes a
conflict with a high priority transaction on a resource, which could have been freed if
the transaction would have committed earlier, and thus is aborted. As in our model of a
risk-averse programmer, she does not suppose any structure on E−i, she does not know
which case is more likely to happen either and therefore has no preference among the
two cases. She would probably just choose the strategy which is easier to implement. If
we assumed, e.g., that a resource Ri is locked at time t with probability p by a transac-
tion with priority x where both, p and x follow a certain probability distribution, then
there would be a clear trade-off between executing a long transaction and therewith
risking more conflicts and partitioning a transaction and thus losing priority.

Note that a similar proof can be used to show that no priority-based CM rewards
partitioning unless it prevents the case where, after a commit of transaction Tij ∈ Ji,
the subsequent transaction Ti(j+1) ∈ Ji starts with a lower priority than Tij had just
before committing. In fact, we can show that all priority-accumulating CMs proposed
by [1,4,8,9,10] are not GPI compatible.

Corollary 1. Polite, Greedy, Karma, Eruption, Kindergarten, Timestamp and Polka are
not GPI compatible.

Priority-Accumulating CM. The inherent problem of quasi-priority-accumulating
mechanisms is not the fact that they accumulate priority over time but the fact that these
priorities are reset when a transaction commits. Thus, by comitting early, a job loses its
priority when starting a new transaction. One possibility to overcome this problem is
to not reset ωi when a transaction of Ji commits. With this trick, neither partitioning
transactions nor letting resources go whenever they are not needed anymore resets the
accumulated priority. We further need to ensure that two subsequent transactions of Ji

are scheduled right after each other, because otherwise partitioning would result in a
longer execution even in a contention-free environment. We denote this property of a
CM as gapless transaction scheduling. If a CM M only modifies priorities on a certain
event type X , we say M is based only on X -events.

Lemma 2. Any priority-accumulating CM M which schedules transactions gapless
and is based only on time (T -events) is GPI compatible.

Proof (Sketch). Unnecessary locking is punished since it can cause the transaction to
abort and restart. Thus restarted, the transaction might be lucky and catch a better slot
for execution. However, this is the same as waiting and hence irrational. Partitioning is
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rewarded since committing and restarting does not decrease priority. Furthermore, if a
finer-grained job loses in a conflict, it has to redo less work. �	

For instance, by simply not resetting a job Ji’s priority when a contained transaction
Tij ∈ Ji commits, we can make a Timestamp contention manager GPI compatible.
Nevertheless, priority based CMs are generally dangerous in the sense that they bear a
potential for programmers to cheat, i.e., to boost their job’s priority at the expense of
other jobs. E.g., consider a CM like Karma [8], where priority depends on the number
of resources accessed. One way to gain high priority for a job would be to quickly
access an unnecessarily large number of objects and thus become overly competitive.
Or if priority is based on the number of aborts or the number of conflicts, a very smart
programmer might use some dummy jobs which compete with the main job in such
a way that they boost its priority. In fact, we can show that a large class of priority-
accumulating CMs is not GPI compatible.

Theorem 3. A priority-acc. CM M is not GPI compatible if one of the following holds:

(i) M increases a job’s relative priority on W-events (winning a conflict).
(ii) M increases relative priority on R-events (having exclusive access of a re-

source).
(iii) M schedules transactions gapless and increases relative priorities on C-events.
(iv) M restarts aborted transactions immediately and increases relative priorities

on A-events (aborting).

5 Non-priority Based CM

One example of a CM which is not priority-based is Randomized (cf. [8]). To resolve
conflicts, Randomized simply flips a coin in order to decide which competing transac-
tion to abort. The advantage of this simple approach is that it bases decisions neither
on information about a transaction’s history nor on predictions about the future. This
leaves programmers little possibility to boost their competitiveness.

Lemma 3. Randomized is GPI compatible.

Proof (Sketch). The proof works similarly to the proof of Lemma 2. Note that Lemma 1
does not apply here as Randomized is not priority-accumulating. However, to show that
waiting is irrational also with Randomized is easy. An adversary can provoke the same
conflicts for a transaction, if it is started immediately or if it is delayed for some time
Δ. Since in any conflict, the probability of winning is the same, the expected runtime
increases by Δ when the transaction is delayed. �	

Employing such a simple Randomized CM is not a good solution although it rewards
good programming. The probability psuccess that a transaction runs until commit de-
creases exponentially with the number of conflicts, i.e., psuccess ∼ p|C| where p is the
probability of winning an individual conflict and C the set of conflicts. However, we
see great potential for further developement of CMs based on randomization.
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6 Conclusion and Future Work

While TM constitutes an inalienable convenience to programmers in concurrent envi-
ronments, it does not automatically defuse the danger that selfish programmers might
exploit a multicore system. GPI compatibility has to be addressed when designing a
TM system. Priority-based CMs are prone to be corrupted unless they are based on
time only. CMs not based on priority seem to feature incentive compatibility more natu-
rally. We conjecture that by combining randomized conflict resolving with a time-based
priority mechanism, chances of finding an efficient, GPI compatible CM are high.
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Abstract. An induced packing of odd cycles in a graph is a packing
such that there is no edge in a graph between any two odd cycles in the

packing. We prove that the problem is solvable in time 2O(k3/2) ·n3 log n
when the input graph is planar. We also show that deciding if a graph
has an induced packing of two odd cycles is NP-complete.

1 Introduction

We assume that the reader is familiar with notions of graph theory; for those
not defined here, we refer to [6].

Packing graphs. Packing graphs is a classic field of graph theory with many
results and many conjectures. Packing is finding (usually) vertex- or edge-disoint
copies of graphs from some family (the guests graphs) into a fixed graph G (the
host graph). There is a significant body of work on graph packing in the context
of extremal combinatorics. The survey by H. Yap [21] presents many results on
packing graphs into a complete graph.

Packing has also been studied from the algorithmic point of view. The goal is
usually to find the maximum number of disjoint copies of a guest graph in the
host graph. A matching in a graph is a packing of vertex disjoint K2’s and it can
be solved in polynomial time by Edmond’s algorithm [9].
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Packing cylces. The problem of finding the maximum number of vertex disjoint
triangles in the input graph was proved to be NP-complete by Garey and Johnson
in [11]. However, there is a randomized (43/83 − ε)-approximation algorithm,
even for the weighted version of the problem presented by Hassin and Rubinstein
[12], [13].

There is a large collection of results on edge-disjoint packing of cycles which
has appliactions in genome rearrangement in computational biology. The prob-
lem is studied by Caprara et al. in [3] where the authors prove that it is APX-
hard and can be approximated with the factor of O(log n) by a greedy algorithm.
The approximation factor was later improved by Krivelevich et al. to O(log1/2 n)
in [14]. Friggstad and Salavatipour showed that it is almost best possible [10].
They proved that to approximate the edge-disjoint cycle problem within ratio
of O(log1/2−ε n) is quasi-NP-hard, for any constant ε > 0. They also note that
the same results hold for packing vertex-disjoint cycles.

Packing odd cylces. The problem of packing odd cycles in a graph was studied
by Bruce Reed in [18]. He was mainly concerned with Erdős-Pósa property for
odd cycles. In the conclusion, he gives an argument that packing k odd cycles
in a graph is NP-complete when k is a part of the input. He also points out
that a consequence of his results on Erdős-Pósa property is a polynomial-time
algorithm for packing odd cycles in a planar graph. Then he continues, “As of
the current writing, the author and P. Seymour believe they have a much more
complicated algorithm for determining if a graph contains k vertex disjoint odd
cycles, k fixed. However, the proof of this result is extremely complicated and
may well never be written down.” We are not aware of any materialization of
this proof, or any other proof of this result. However, in the view of this claim
packing k odd cycles in a graph can be done in polynomial-time when k is fixed.
As we show in this paper, things are different when we require such cycles to be
induced.

Even and odd holes. A hole is an induced cycle of length at least 4. Finding
even and odd holes has been studied in the literature. The structure of graphs
with no even hole is analyzed by Conforti et al. in [15], and in [16] they gave
a polynomial-time algorithm for finding an even hole in a graph. Another algo-
rithm, with a better running time, was proposed by Chudnovsky et al. in [17].

Despite a seeming similarity the complexity of detecting an odd hole in a
graph has been a long standing open problem. The problem has been shown by
Conforti et al. to be solvable in polynomial-time for graphs of bounded clique
number [4]. Also, Bienstock has shown that the problem is NP-complete if the
odd hole is required to contain a given vertex [1].

Our results. We are interested in induced packing of odd cycles. In this setting,
odd cycles in the host graph are not only vertex-disjoint but also there is no edge
in the host graph between two odd cycles in the packing. While packing of k odd
cycles is polynomial, for any fixed k, as claimed in [18], we prove that to decide
if a graph contains an induced packing of 2 odd cycles is NP-complete. Induced
packing is then, not surprisingly, much harder than packing.
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The two odd cycles in our hardness proof are in fact odd holes (and can be
made arbitrarily long). While the problem of settling the complexity of detecting
an odd hole is likely to be rather difficult to tackle, we show that to determine
if a graph has two induced odd holes such that there is no edge between them
is NP-complete.

A simple argument shows that induced packing of k odd cycles is NP-complete
for planar graphs, if k is a part of the input. We prove that when k is restricted
to be a slowly growing function of the size of the graph, the induced packing of k
odd cycles can be found in polynomial time. Our strategy is to solve the problem
by dynamic programming for graphs of small tree-width. If the tree-width is
large, then the graph contains a large grid minor. In the model of the minor, we
can either find an induced packing of k disjoint cycles, or a large bipartite graph.
Our main technical result shows that in the latter case we can find an irrelevant
vertex in the graph. The vertex is called irrelevant because one can remove it
from the graph and be sure that the new graph has an induced packing of k odd
cycles if and only if the original graph does.

2 Background

In this section, we gather some definitions and present results from the literature
that we will use later. We consider graphs without loops and multiple edges and
denote the number of vertices in the graph by n.

A graph is chordal if it does not contain an induced cycle of length ≥ 4. The
tree-width of the graph G is the minimum size of the maximum clique minus 1,
where the minimum is taken over all chordal supergraphs of G.

The m×m grid has all pairs (i, j) for i, j = 0, 1, . . . ,m−1 as the vertex set, and
two vertices (i, j) and (i′, j′) are joined by an edge if and only if |i−i′|+|j−j′| = 1.
A connected graph G contains H as a minor if H can be obtained from G by a
sequence of vertex or edge deletions, and edge contractions (removing loops and
multiple edges).

Here are two useful lemmas.

Lemma 1 ((6.2) in [19]). Let m ≥ 1 be an integer. Every planar graph with
no m×m grid minor has tree-width ≤ 6m− 5.

Lemma 2 (from [2]). The length of the side of the largest square grid minor
in a planar graph can be approximated with the factor of 4 and the corresponding
grid minor can be constructed in time O(n2 logn).

Let G be a plane graph and f its outer face. For a cycle C ⊆ G and a subgraph
H ⊆ G, we say that H lies inside C if the boundary of f and H are contained
in two different connected components of G \ C.

For two cycles C and Z, we define μZ(C) to be the number of connected
components of C \ Z. We say that C crosses Z, for two cycles C and Z in a
plane graph G, if there is a vertex of C inside Z.
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Two subgraphs of a graph are called mutually induced if they are vertex
disjoint and there is no vertex of one subgraph is adjacent to a vertex of the
other. A set of subgraphs of a graph is mutually induced if any two subgraphs
of the set are mutually induced.

A sequence of cycles Z1, . . . , Zq in a plane graph G is called nested, if there
exist disks Δ1, . . . , Δq such that for i = 1, . . . , q, Zi bounds Δi, and Δi+1 ⊆ Δi,
for i = 1, . . . , q − 1.

Now we are ready to formally define the problem we study here.

Problem k-Induced-Packing-Of-Odd-Cycles

Input: A planar graph G.
Output: A set of k mutually induced odd cycles in G if there exists one;

NO otherwise.

The k-Induced-Packing-Of-Odd-Cycles problem is expressible in monadic
second order logic. The seminal result of Courcelle [5] implies that for any class of
graphs whose tree-width is bounded, there exists a linear-time algorithm solving
the problem in this class of graphs. Even though the complexity is linear in
n, the dependence on the parameter k is highly exponential. However, for our
purposes, we can obtain a better dependence on the parameter using dynamic
standard dynamic programming on tree decompositions. This approach can give
an answer to the problem in 2O(w·log w) · n steps where w is the treewidth of the
input graph. This running time can be further improved to 2O(w) · n for planar
graphs using the technique of Catalan Structures developed by Bodlaender et al.
[8] (see also [7] for a survey). Due to space restrictions, we omit the details (for
the application of the same technique to similar problems see [20]). We conclude
to the following lemma.

Lemma 3. k-Induced-Packing-Of-Odd-Cycles is is solvable in time
2O(w)n for graphs of tree-width at most w.

3 Induced Packing of Odd Cycles

In this section, we present a combinatorial lemma on the existence of an irellevant
vertex, and state our algorithm together with the proof of its correctness.

Irrelevant vertex

Lemma 4. Let k be a positive integer, G a plane graph, and Z1 a cycle in G
such that the graph induced by the vertices of Z1 and the vertices inside Z1 is
bipartite. Also, let Z1, . . . , Zk be a sequence of nested, mutually induced cycles
in G and v a vertex inside Zk such that it is not adjacent to any vertex of Zk.
Then, G has an induced packing of k odd cycles if and only if G \ v does.
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Proof. The backward implication is clear. To prove the forward implication, let
us assume that G has an induced packing of k odd cycles and let C be one
for which

∑
C∈C

∑
i=1,...,k μZi(C) is minimum. We want to show that v is not

contained in any cycle of C, or adjacent to any vertex of any cycle in C.
The relation of being inside defines a poset on C whose Hasse diagram HC is

a forest. We will work with HC assuming that every tree in the forest is rooted;
this can be done in a natural way. We define the height of a cycle in C to be 1 for
the leaves of HC . For other cycles in C, the height is the minimum of the height
of its children in HC plus 1. Notice that the depth of a tree in TC is at most k
and therefore the maximum height of a cycle in C is at most k.

Now it only remains to prove the following claim.

Claim. No cycle of height (at most) i from C crosses Zi, for all i = 1, . . . , k.

Let i be the smallest integer such that a cycle C ∈ C of height i crosses Zi. Let
Q the set of edges of C which are lie inside Zi, and P be the set of edges of Zi

which lie inside C in the plane graph G. Notice that (C \Q) ∪ P is a collection
of cycles. Sets P and Q are disjoint and P ∪ Q is a collection of cycles every
belonging to the bipartite graph and therefore even. Hence, the number of all
edges in P and in Q is even. Since C is an odd cycle, the total length of cycles
in (C \Q) ∪ P is odd. Thus, there is an odd cycle C′ ∈ (C \Q) ∪ P .

Cycle C′ lies inside C in the plane graph G and there is no cycle inside C if
i = 1, and no cycle inside C which would cross Zi−1, for i > 1. Hence, C′ is
mutually induced with every cycle in C \ C and therefore (C \ C) ∪ {C′} is an
induced packing of k cycles in G. However,

∑
i=1,...,k μZi(C′) <

∑
i=1,...,k μZi(C);

a contradiction with the choice of C. �	

The algorithm

Algorithm k-Induced-Packing-Of-Odd-Cycles

Input: A planar graph G.
Output: A collection of k mutually induced odd cycles in G if there exists

one; NO otherwise.

1. Run the algorithm from Lemma 2 and construct a grid minor M .
2. If the side length of M is less than �

√
k�(4k + 2) − 1, then solve the

problem using the algorithm of Lemma 3 and stop.
3. Otherwise, find k mutually induced copies of a square grid of side length

4k + 1 in M .
4. For every copy, check if the model of the copy in G is bipartite.
5. If models of all copies are non-bipartite, return an induced packing of k

odd cycles and stop.
6. Otherwise, construct k mutually induced odd cycles in a bipartite copy H .
7. Find an irrelevant vertex v in H using Lemma 4.
8. Run the algorithm for G \ v.
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Theorem 1. Algorithm k-Induced-Packing-Of-Odd-Cycles is correct and
runs in time 2O(k3/2)n3 logn.

Proof. Let us suppose that the input graph G contains an induced packing of k
odd cycles.

If the algorithm from Lemma 2 in Step 1 finds a grid minor M of side length
less than �

√
k�(4k + 2) − 1, then the largest grid minor is of side length less

than 4�
√
k�(4k + 2)− 1. This, from Lemma 1, means that the tree-width of the

graph is bounded by a constant and the problem can be solved by Lemma 3.
The induced packing of k odd cycles will be found in Step 2.

If the side length of M is at least �
√
k�(4k+2)−1, then M contains k mutually

disjoint copies of (4k+ 1)× (4k +1) grid (Step 3). For each copy, we look at the
graph induced by the union of branch sets in G corresponding to the vertices of
the copy. If for every copy the graph is non-bipartite, there is an induced packing
of k odd cylces (Step 4 & 5).

Otherwise, there is a copy H whose model is bipartite. In this copy, peeling off
the (4k+1)×(4k+1) grid, we find k nested, mutually induced cycles Z ′1, . . . , Z

′
k.

The central vertex of the grid v′ is also mutually induced with the cycles. Notice
that the model of cycle Z ′i in G, for all i = 1, . . . , k, contains a cycle passing
through the all branch sets corresponding to the vertices of Z ′i. Therefore, we
construct a collection of k nested, mutually induced cycles Z1, . . . , Zk (Step 6).
These cycles, together with a vertex v from the model of v′ in G (Step 7), satisfy
conditions of Lemma 4. By the Lemma 4, the induced packing of k odd cycles
will be found recursively (Step 8).

Notice that Step 8 of the algorithm will be executed at most n times and
Step 3 is most time-consuming the algorithm, taking O(n2 logn) time. Hence,
the algorithm runs in time O(n3 logn). �	
Analyzing the proof of Theorem 1 we realize that if k is a slow-growing function
of n, then k-Induced-Packing-Of-Odd-Cycles can be solved in polynomial-
time.

Corollary 1. If k = O(log2/3 n), then k-Induced-Packing-Of-Odd-

Cycles can be solved in polynomial time.

4 Two Induced Disjoint Odd Cycles

Theorem 2. It is NP-complete to decide whether a given graph G contains two
mutually induced odd cycles.

Proof. We reduce the well known NP-complete 3-Satisfiability problem [11].
It is known that this problem remains NP-complete even for the case when each
Boolean variable occurs at most two times in positive and at most two times in
negations. We use this variant of the problem for our reduction. Let x1, . . . , xn

be Boolean variables and let C1, . . . , Cm be clauses of the given Boolean formula
Φ in the conjunctive normal form. We construct a graph G as follows.



520 P.A. Golovach et al.

ui

vi

xi

xi

ai

ci

di ei

ei

ui−1

vi−1

bi y
(2)
idi

bi

ai y
(1)
i

y
(1)
i y

(2)
i

Fig. 1. First stage of construction of G

First, we introduce vertices u0, . . . , un and vertices v0, . . . , vn. For each 1 ≤
i ≤ n, the following is done (see Fig. 1):

– Add vertices xi, xi and edges ui−1xi, xiui, ui−1xi and xiui. Denote by Pi

and P i the paths ui−1xiui and ui−1xiui respectively.
– Construct vertices ai, bi, ci, di, ei, ai, bi, di, ei and y

(1)
i , y

(2)
i , y

(1)
i , y

(2)
i , and

then add edges vi−1ai, aiy
(1)
i , y

(1)
i bi, bici, cidi, diy

(2)
i , y

(2)
i ei, eivi, vi−1ai,

aiy
(1)
i , y

(1)
i bi, bici, cidi, diy

(2)
i , y

(2)
i ei and eivi. Denote by Qi the path

vi−1aiy
(1)
i bicidiy

(2)
i divi and let Qi = vi−1aiy

(1)
i bicidiy

(2)
i divi.

– Add edges xiai, xibi, xidi, xiei, xiai, xibi, xidi and xiei.

Now we introduce vertices w0, . . . , wm. For each 1 ≤ j ≤ m, three vertices
z
(1)
j , z

(2)
j , z

(3)
j are constructed and joined by edges with wj−1 and wj . We denote

by R
(r)
j the path wj−1z

(r)
j wj for r = 1, 2, 3. Assume that the clause Cj contains

literals l1, l2, l3. For each literal lr, 1 ≤ r ≤ 3, the following is done (see Fig. 2):

– If lr = xi for some 1 ≤ i ≤ n, then the edge xiz
(r)
j is added, and also the

vertex z
(r)
j is joined by an edge with y

(1)
i if lr is the first occurrence of the

literal xi in the Boolean formula, and z
(r)
j is joined with y

(2)
i if lr is the

second occurrence of xi.
– If lr = xi for some 1 ≤ i ≤ n, then the edge xiz

(r)
j is added, and also the

vertex z
(r)
j is joined by an edge with y

(1)
i if lr is the first occurrence of the

literal xi in the Boolean formula, and z
(r)
j is joined with y

(2)
i if lr is the

second occurrence of xi.

Finally, we add the edges u0un and v0w0, introduce the vertex s and join the
vertices vn and wm with s by edges.

We claim that Φ can be satisfied if and only if there are two disjoint induced
odd cycles S1 and S2 in G.

Suppose that Φ can be satisfied, and variables x1, . . . , xn have corresponding
truth assignment. We construct S1 from paths Pi and Pi using them as segments.
For each 1 ≤ i ≤ n, we include Pi in the cycle if xi = false and P i is included
if xi = true. The construction of S1 is completed by adding the edge u0un. The
cycle S2 is constructed by using paths Qi, Qi and R

(r)
j . For each 1 ≤ i ≤ n, the
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Fig. 2. Second stage of construction of G, the clause Cj contains literals xi (second
occurrence), xp (first occurrence) and xq (second occurrence)

path Qi is included in S2 if xi = false and Qi is included if xi = true. Now we
consider clauses Cj for 1 ≤ j ≤ m. Suppose that Cj contains literals l1, l2, l3.
Since Φ = true, there is a literal lr = true, and we include in S2 the path R

(r)
j .

Finally, the edge v0w0 and the path vnswm is added to the cycle. It is easy to
check that S1 and S2 are disjoint induced odd cycles, and they have no adjacent
vertices.

Assume now that G contains two disjoint induced odd cycles S1 and S2.
Notice that the graph obtained from G by removal of the edges u0un and v0w0
is bipartite. Since S1 and S2 are odd, they have to include these edges. Suppose
without loss of generality that u0un is included in S1 and v0w0 is included in
S2. We need now the following claim.

Claim. For any 1 ≤ i ≤ n,

– either Pi or Pi is included in S1 as a segment,
– if Pi is included in S1 then Qi is included in S2, and if S1 contains Pi then

S2 contains Qi.
For each 1 ≤ j ≤ n, S2 includes one of the paths R

(1)
j , R

(2)
j , R

(3)
j .

Proof (Proof of the Claim). First we prove that for any 1 ≤ i ≤ n, either Pi or
Pi is included in S1 as a segment, and if Pi is included in S1 then Qi is included
in S2, and if S1 contains Pi then S2 contains Qi. Suppose that this claim holds
for the lesser values of the parameter, i.e. S1 contains the edge u0un and either
the path Pk or P k for 1 ≤ k < i, and similarly S2 contains the edge v0w0 and
either the path Qk or Qk for 1 ≤ k < i. Assume without loss of generality that if
i > 1 then S1 includes Pi−1. Since S1 is an induced cycle, it contains either the
edge ui−1xi or the edge ui−1xi. Assume using the symmetry of our construction
that ui−1xi is in S1. Cycles S1 and S2 have no adjacent vertices. Therefore S2
can not include edges vi−1ei−1 (if i > 1) and vi−1ai. Hence this cycle contains
the edges vi−1ai and aiy

(1)
i . Notice that if y

(1)
i is adjacent to some vertex z

(r)
j
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then xi is also adjacent to this vertex and S2 can not include the edge y
(i)
i z

(r)
j . It

means that S2 contains the edges y
(1)
i bi and bici. By similar arguments we prove

that S2 includes the edges cidi, diy
(2)
i , y(2)

i ei and eivi. Therefore S2 includes Qi.
Now we return to the cycle S1. Since all vertices z

(r)
j adjacent to xi are adjacent

either to y
(1)
i or y

(2)
i , S1 can not include edges xiz

(r)
j . So, it contains the edge

xiui, and together with the fact that S1 includes ui−1xi, it means that Pi is a
segment of S1.

Now we prove that for each 1 ≤ j ≤ n, S2 includes one of the paths
R

(1)
j , R

(2)
j , R

(3)
j . Again suppose that this claim holds for the lesser values of the

parameter, and S2 contains the edge v0w0 and one of the paths R
(1)
k , R

(2)
k , R

(3)
k

for 1 ≤ k < j. Since S2 is an induced path, it includes one of the edges wj−1z
(1)
j ,

wj−1z
(2)
j , wj−1z

(1)
j . Assume that the cycle contains wj−1z

(3)
j . Suppose that z

(1)
j

is adjacent to some vertex xi, and therefore to one of vertices y
(1)
i or y

(2)
i (say,

the vertex y
(1)
i ). Notice that in this case xi is a vertex of S1 by the first part

of the claim. The cycle S2 can not contain the edge z
(1)
j xi since xi is adjacent

to the vertex ui−1 which is included in S1. If S2 contains z
(1)
j y

(1)
i then it should

contain either the edge y
(1)
i ai or y

(1)
i bi, but these vertices are adjacent to xi.

Same arguments can be used for the case when z
(1)
j is adjacent to some vertex

xi. Hence S2 includes the edge z
(1)
j wj and we conclude that R

(1)
j is a segment

of S2.

Using this claim we assign values to the Boolean variables x1, . . . , xn: set xi =
true if P i is a segment of S1 and xi = false if Pi is a segment of S1. Consider
clauses C1, . . . , Cm. Suppose that the clause Cj contains literals l1, l2, l3 which
correspond to vertices z

(1)
j , z

(2)
j , z

(3)
j . The cycle S2 contains one of the paths

R
(1)
j , R

(2)
j , R

(3)
j , say the path R

(1)
j which goes through z

(1)
j . This vertex is adjacent

to one of the vertices xi or xi, and this vertex is not included in S1. It follows
that by our truth assignment li = true. Since it holds for each 1 ≤ j ≤ m,
Φ = true.

To conclude the proof of the theorem, it remains to note that G has 15n +
4m + 4 vertices, and therefore can be constructed in polynomial time.

5 Conjecture

We conclude the paper with a conjecture. We have showed how to solve the
problem in the class of planar graph but we believe that this can be generalized
to larger classes.
Conjecture. k-Induced-Packing-Of-Odd-Cycles can be solved in polyno-
mial time for any class of graphs in which genus is bounded.
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Abstract. A bar-slider framework is a bar-joint framework a part of
whose joints are constrained by using line-sliders. Such joints are allowed
to move only along the sliders. Streinu and Theran proposed a combi-
natorial characterization of the infinitesimal rigidity of generic bar-slider
frameworks in two dimensional space. In this paper we propose a gen-
eralization of their result. In particular, we prove that, even though the
directions of the sliders are predetermined and degenerate, i.e., some slid-
ers have the same direction, it is combinatorially decidable whether the
framework is infinitesimally rigid or not. Also, in order to prove that, we
present a new forest-partition theorem.

1 Introduction

A 2-dimensional bar-joint framework is defined as a pair (G,p), where G = (V, E)
is a finite undirected graph having neither loops nor multiple edges and p is a
mapping from V to R2, called a joint configuration. In a framework, each vertex
and each edge are regarded as a universal joint and a rigid bar, respectively,
and each joint is allowed to move continuously keeping the lengths of the bars.
A framework is called flexible if it can be deformed by a continuous motion
of joints, and otherwise rigid. A rigid framework is called minimally rigid if
removing any bar results in a flexible framework.

A common strategy of dealing with the edge length constraints is to take the
first order approximation, and this paper also focuses on this rigidity model,
called the infinitesimal rigidity. The formal definition will be given in the next
section. A joint configuration p is called generic if there is no special algebraic
dependency between coordinates of p. (This will be formally defined later.)

The celebrated Maxwell-Laman theorem [4] states that, if p is generic, (G,p)
is infinitesimally minimally rigid if and only if G satisfies |E| = 2|V | − 3 and
|F | ≤ 2|V (F )| − 3 for all nonempty F ⊆ E, where V (F ) denotes the set of
vertices spanned by F . A graph satisfying Laman’s counting condition is called a
minimally rigid graph or a Laman graph. Instead of Laman’s counting condition,
� The first author is supported by Grant-in-Aid for Scientific Research (B) and Grant-

in-Aid for Scientific Research (C), JSPS. The second author is supported by Grant-
in-Aid for JSPS Research Fellowships for Young Scientists.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 524–533, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Infinitesimal Rigidity of Bar-and-Slider Frameworks 525

(a) (b) (c) (d) (e)

Fig. 1. The sets of bold and dotted edges represent a bipartition. (a) A proper 2forest-
partition. (b) A non-proper 2forest-partition. (c) A bar-slider framework. (d) The un-
derlying graph of (c). (e) A proper bipartition satisfying (P1) and (P2) of Proposition 1.

several equivalent characterizations are known, see e.g. [14]. Crapo [1] showed
that G is minimally rigid if and only if |E| = 2|V | − 3 holds and E can be
partitioned into two colored classes {R, B} such that (i) each color forms a
forest, and (ii) no subset V ′ ⊆ V with |V ′| ≥ 2 induces two colored subtrees
that span V ′ simultaneously. A bipartition of E into two forests is called 2forest
partition, while a bipartition satisfying the property (ii) is called proper. Hence,
a bipartition satisfying both (i) and (ii) is said to be a proper 2forest partition1

(see Figure 1(a)(b)).
Streinu and Theran [12] have extended Crapo’s characterization to bar-slider

frameworks in a natural way. A bar-slider framework is a bar-joint framework
a part of whose joints are constrained by using sliders. As in [12,6], we shall
handle each slider as a loop of a graph to extract the combinatorial aspect
of frameworks. Let G = (V, E) be an undirected graph that may have some
loops, and let us denote the set of loops in F ⊆ E by L(F ) and the set of
loops incident to a vertex u ∈ V by δL(E)(u). Then, a bar-slider framework is
defined as a triple (G,p,d), where p : V → R2 is a joint configuration and
d : L(E) → R2 represents a direction of each slider. Namely, for u ∈ V and
e ∈ δL(E)(u), {p(u) + td(e) : t ∈ R} is a line representing a slider incident to
p(u), and p(u) is allowed to move along this line (see Figures 1(c) and (d)).

A framework is minimally rigid if removing any bar or slider results in a
framework that is not rigid. The following proposition is a result of [12].

Proposition 1. ([12]) Let G = (V, E) be an undirected graph. If E can be par-
titioned into two colored classes {R, B} such that (i) {R \ L(R), B \ L(B)} is a
proper 2forest partition2 of E \ L(E), and (ii) each connected component of the
graph (V, R) and (V, B) contains exactly one loop of its color, then there exist a
joint configuration p and a direction mapping d such that (G,p,d) is infinitesi-
mally rigid. In particular, each of L(R) and L(B) is realized as a slider parallel
to the x-axis and the y-axis, respectively.

Figure 1(e) shows an example of a partition of E satisfying (P1) and (P2). We
refer to it as a proper 2rooted-forest partition. As a corollary of the algorithm by
1 A partition of E into three trees such that each vertex is incident to exactly two

of them is called a 3tree2 partition, and Crapo’s partition is usually called a proper
3tree2 partition. It is known that E admits a proper 3tree2 partition if and only if
E admits a proper 2forest partition with |E| = 2|V | − 3.

2 In [12], this is called an induced-cut 2-forest in order to emphasize the existence of
a monochromatic cut in any induced subgraph.
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Streinu and Theran [13] for checking the sparsity of a graph, it is known that E
admits a proper 2rooted-forest partition if and only if

(L1) |E| = 2|V |,
(L2) |F | ≤ 2|V (F )| − 3 for every nonempty F ⊆ E \ L(E), and
(L3) |F | ≤ 2|V (F )| for every F ⊆ E.

In this paper, we will provide an extension of these results. Proposition 1
says that, if E admits a proper 2rooted-forest partition {R, B}, then each of
L(R) and L(B) is realized as an x-slider and a y-slider, respectively. It is not
however obvious whether a specified loop is realized as either x-or y-slider until
we actually construct a partition specifically. In most practical situations, the
directions of sliders are predetermined, and then we are not allowed to realize
the predetermined x-slider as a y-slider or vice verse. This raises the following
question. Given a set of joints connected by some bars as well as some sliders
whose directions are specified and moreover some of which may have the same
direction (e.g. x-direction or y-direction), we would like to decide whether it is
rigid or flexible.

Notice that, even though a joint configuration is generic, (G,p,d) could be
either rigid or flexible depending on d. In this paper we will prove, however, that
the generic rigidity does not actually depend on the specific values of d, and it is
combinatorially decidable whether a framework is rigid or not even though the
directions of the sliders are “predetermined” and “degenerate”.

To extract a combinatorial aspect of this problem, we shall consider a loop-
colored graph Gc = (V, E, c), where c is a mapping from L(E) to a finite set C of
colors. Each color indicates a direction of a slider. We then redefine a bar-slider
framework as a triple (Gc,p,d), where Gc is a loop-colored graph, p is a joint
configuration, and d is a direction mapping from C to R2 (not from L(E)) such
that d(c) and d(c′) are linearly independent for any pair of distinct colors c and
c′ in C. A loop colored in c ∈ C is supposed to be realized as a slider with the
direction d(c) (see Figure 2). A main result of this paper is stated as follows.

Theorem 1. Let Gc = (V, E, c) be a loop-colored graph. Then, for any direction
mapping d and for any generic joint-configuration p, the bar-slider framework
(Gc,d,p) is infinitesimally rigid if and only if Gc satisfies (L1)∼(L3) as well as

(L4) |F | ≤ 2|V (F )|−1 for any F ⊆ E such that all loops of L(F ) are monochro-
matically colored.

The necessity of Theorem 1 follows straightforwardly from the definition of the
rigidity. In Section 3, we shall propose nontrivial forest-partition theorems (The-
orem 2 and Theorem 3), which might be interesting results in their own right.
In Section 4, we will provide a proof of the sufficiency of Theorem 1 based on
the forest-partition theorem.

As for the related works of bar-slider frameworks, we should mention the
pinning problem of a bar-joint framework in the plane. In this problem, given a
bar-joint framework (having certain degree of freedom), we would like to stabilize
it by fixing the positions of the smallest number of joints. Lovász [7] showed, as
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Fig. 2. A loop-colored graph Gc and a bar-slider framework (Gc,p, d)

an application of his matroid matching algorithm, that the pinning problem can
be reduced to a 2-polymatroid matching problem, and is solvable in polynomial
time. Fekete [2] provided a simpler min-max characterization of the optimal
value in generic case. Fekete and Jordán further discussed in [3] the pinning
problem from the view point of generic global rigidity. Also, Servatius, Shai
and Whiteley [10] have presented a counting condition for the pinned bar-joint
framework. Notice that pinning down a joint reduces the degree of freedom of
a framework by at most two, while attaching a slider at some joint reduces the
degree of freedom by at most one. In fact, attaching a slider seems easier to
handle than pinning a joint and we thereby obtain a much clearer and extended
combinatorial characterization of the rigidity of bar-slider frameworks.

2 Preliminaries

Matroids and Submodular Functions. We skip the definition, basic ter-
minologies and fundamental properties of matroids (see e.g. [8]). Let E be a
finite set. The function f : 2E → R is called submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) for any X, Y ∈ 2E and nondecreasing if f(X) ≤ f(Y )
for any X ⊆ Y ⊆ E. Let f : 2E → Z be an integer-valued nondecreasing sub-
modular function. It is known that f induces a matroid on E, denoted by Mf ,
whose collection of independent sets is written by I(Mf ) = {I ⊆ E : |I ′| ≤
f(I ′) for nonempty I ′ ⊆ I} see e.g., [8, Chapter 12]. For an edge set F , P(F )
denotes the collection of all possible partitions {F0, F1, . . . , Fm} of F for some
integer m with 0 ≤ m ≤ |F | such that Fi 
= ∅ for each i = 1, . . . , m (and F0 may
be empty). The following proposition provides an explicit formula expressing
the rank function rf of Mf , which is in the form of the Dilworth truncation
(restricted to a matroid), see e.g. [11, Chapter 48].

Proposition 2. Let f be an integer-valued nondecreasing submodular function
on E satisfying f(F ) ≥ 0 for every nonempty F ⊆ E. Then, for any nonempty
F ⊆ E, the rank rf (F ) of F in Mf is given by

rf (F ) = min
{F0,...,Fm}∈P(F )

{|F0| +
m∑

i=1

f(Fi)}. (1)

Let us consider the matroid union Mf ∨Mg of Mf and Mg induced by integer-
valued nondecreasing submodular functions f and g on E. Pym and Perfect [9]
showed that Mf ∨ Mg is the matroid induced by the submodular function
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f + g, i.e. Mf ∨Mg = Mf+g, if f(F ) ≥ 0 and g(F ) ≥ 0 hold for every F ⊆ E
including ∅. Whiteley further claimed Mf ∨ Mg = Mf+g in [14] even in the
case of f(∅) < 0 or g(∅) < 0. Although this statement is true for the union of
the same matroids, say the union of graphic matroids, Jordán pointed out that
this is not always true in general. We shall show below a sufficient condition for
the statement to be true.

Lemma 1. Let f and g be integer-valued nondecreasing submodular functions
on E satisfying f(F ) ≥ 0 and g(F ) ≥ 0 for every nonempty F ⊆ E. Then, Mf ∨
Mg = Mf+g holds if, for any F ⊆ E, there exists a partition {F0, F1, . . . , Fm} ∈
P(F ) that takes the minimum values of (1) for rf (F ) and rg(F ) simultaneously.

Bar-joint Rigidity. Recall that a bar-joint framework is defined as a pair (G,p)
of a graph G and a joint configuration p : V → R2. An infinitesimal motion of
(G,p) is defined as an assignment v : V → R2 of a 2-dimensional vector for each
joint p(v) such that

(p(v) − p(u)) · (v(v) − v(u)) = 0 for each uv ∈ E. (2)

We refer to (2) as the length constraint by the bar p(u)p(v). Collecting (2) for
all e ∈ E, we have a system of the |E| equations on the unknown v(u), u ∈ V .
Hence v is an infinitesimal motion if and only if it is in the null space of the
|E| × 2|V |-matrix R(G,p), so-called the rigidity matrix of (G,p). If |V | ≥ 2 and
the rank of R(G,p) is equal to 2|V | − 3, the framework (G,p) is said to be
infinitesimally rigid. Equivalently, (G,p) is infinitesimally rigid if and only if all
solutions of R(G,p)v = 0 are trivial, that is, (derivatives of) translations and
rotations of the whole framework, see e.g. [14] for more details.

A configuration p is called generic with respect to G if the rank of the rigidity
matrix R(G,p) and those of all its row-induced submatrices have the maximum
values taken over all configurations p. Note that each minor of the rigidity ma-
trix is written as a polynomial of coordinates of p. If such a polynomial is not
identically zero, then it takes nonzero value for almost all joint configurations.
Namely, a set of generic joint configurations forms an open dense subset of the
space of joint configurations. (see e.g. [14]). Therefore, in almost all cases, the
rigidity of frameworks is completely determined by the underlying graphs.

Bar-slider Rigidity. Recall that a bar-slider framework is defined as a triple
(Gc,p,d), where Gc is a loop-colored graph, and d is a direction mapping from a
set of colors to R2. A joint p(u) is constrained to be on the line {p(u)+td(c(e)) :
t ∈ R} for each e ∈ δL(E)(u).

Rigidity of a bar-slider framework is defined in a similar way as in the case
of a bar-joint framework, but it counts even trivial motions as its degree of
freedom. (Gc,p,d) is rigid if there exists no continuous motion of p which con-
verts to a distinct framework under bar length constraints as well as slider con-
straints. Again, we shall consider the first-order rigidity of this concept, where an
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infinitesimal motion v : V → R2 of (Gc,p,d) satisfies (2) as well as direction
constraints written as

v(u) · d(c(e))⊥ = 0 for each u ∈ V and e ∈ δL(E)(u), (3)

where d(c(e))⊥ denotes a vector orthogonal to d(c(e)). As a result, taking new
rows corresponding to the direction constraints (3) into account, we obtain the
rigidity matrix R(Gc,p,d), whose size becomes |E|×2|V |. It is called infinitesi-
mally rigid if no infinitesimal motion exists (except for 0), equivalently the rank
of R(Gc,p,d) is equal to 2|V |. A generic joint configuration p with respect to a
given Gc and a given d is defined as in the case of bar-joint frameworks.

3 Combinatorial Results

Let Gc = (V, E, c) be a loop-colored graph, and {c1, c2, . . . , ck} be the set of
colors appearing in Gc. By regarding each self-loop as a root, a subgraph G′ =
(V ′, E′) of Gc is said to be a rooted-forest colored in ci if (i) (V ′, E′ \L(E′)) is a
forest, (ii) E′ does not contain any loop colored in cj with j 
= i, and (iii) each
connected component of G′ contains exactly one loop colored in ci. G′ is further
called a spanning rooted-forest colored in ci if E′ spans V .

We say that Gc satisfies the strong counting condition if it satisfies (L1)∼(L4)
given in the introduction. In this section we shall reveal properties of graphs
satisfying the strong counting condition. In particular, we generalize a concept of
the forest partitions to a partition E = {E1, E2, . . . , Ek} of E into k components
such that

(P1) each Ei induces a rooted-forest colored in ci,
(P2) each vertex is spanned by exactly two components, i.e., |{i : δE(v)∩Ei 
=

∅}| = 2 holds for each v ∈ V .

We refer to each component of E as a colored class. If a partition of E satisfies
these two conditions, we say that E (or Gc) admits a (k, 2)-rooted-forest partition.
As before, a (k, 2)-rooted-forest partition is said to be proper if no two subtrees
from Ei \ L(Ei) and Ej \ L(Ej) span the same set of vertices for any 1 ≤ i, j ≤
k with i 
= j. Figure 3 shows examples of (k, 2)-rooted-forest partitions. The
following forest partition theorem is our main combinatorial result.

Theorem 2. Let Gc be a loop-colored graph, and let k be the number of colors
used in Gc. Then, Gc satisfies the strong counting condition if and only if it
admits a proper (k, 2)-rooted-forest partition.

To prove Theorem 2, we define a counting condition weaker than (L2) as

(L2’) |F | ≤ 2|V (F )| − 2 for every nonempty F ⊆ E \ L(E),

and let us refer to the set of the counting conditions (L1), (L2’), (L3) and (L4)
as the weak counting condition. Although the detailed description is omitted,
Theorem 2 easily follows from the next result.
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(a) (b)

Fig. 3. (a) A proper (k, 2)-rooted-forest partition for k = 3. (b) A non-proper (k, 2)-
rooted-forest partition for k = 3.

Theorem 3. Let Gc be a loop-colored graph, and let k be the number of colors
used in Gc. Then, Gc satisfies the weak counting condition if and only if it admits
a (k, 2)-rooted-forest partition.

Notice that, a set of edges satisfying the weak counting condition and the strong
counting condition, respectively, is a base of the matroid induced by the integer-
valued nondecreasing submodular functions μ : 2E → Z and μ′ : 2E → Z,
respectively, defined as

μ(F ) = 2|V (F )| − 2 + min{χ(F ), 2} (4)

μ′(F ) =

{
2|V (F )| − 3 if L(F ) = ∅
2|V (F )| − 2 + min{χ(F ), 2} otherwise,

(5)

where χ(F ) denotes the total number of colors appearing in L(F ). Therefore,
Theorem 3 implies that a set of edges admitting a (k, 2)-rooted-forest partition is
characterized in terms of a matroid as the well-known characterization of forest-
partitions in terms of the union of graphic matroids. Also, Theorem 2 generalizes
Crapo’s characterization [1] of Laman graphs.

Proof of Theorem 3 for k = 2. We now consider a special case of Theorem 3
where the number of colors k is restricted to two. We prove that (2, 2)-rooted-
forest partitions can be characterized in terms of the union of two matroids.
For a vertex set V , let K(V ) denote the complete graph on V , and let K+(V )
denotes the graph obtained from K(V ) by attaching two loops at each vertex.
We simply denote by K+(V ) the edge set of K+(V ), if it is clear from the
context. Throughout this restricted case (of k = 2), we assume that one of two
loops incident to v in K+(V ) is colored in red and the other one is colored in
blue for each v ∈ V . For an edge set F ⊆ K+(V ), let Lr(F ) and Lb(F ) denote
the sets of loops colored in red and blue, respectively.

Let us first consider the following function τr : 2K+(V ) → Z; For F ⊆ K+(V ),

τr(F ) = |V (F )| − 1 + χr(F ), (6)

where χr(F ) is defined as χr(F ) = 0 if Lr(F ) = ∅ and otherwise χr(F ) = 1.
Then, it is not difficult to see that τr is submodular. Also τr is nondecreasing,
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and hence it induces a matroid, denoted by Mτr , on K+(V ). The functions τb

and χb, and the matroid Mτb
(for the blue color) are symmetrically defined.

Lemma 2. Let c ∈ {r, b} and c̄ ∈ {r, b}\{c}. An edge set F of K+(V ) is a base
of Mτc if and only if it is a spanning rooted-forest colored in c.

Let us consider how the independent sets of Mτr ∨Mτb
can be characterized in

terms of the counting condition. To apply Lemma 1, we just need to show the
following property.

Lemma 3. Let c ∈ {r, b} and let F ⊆ K+(V ). Let m be the total number of
connected components of G[F ] and {F1, . . . , Fm} be a partition of F such that,
for each j = 1, . . . , m, Fj is the edge set of a connected component of G[F ].
Also, let F0 = ∅. Then, {F0, F1, . . . , Fm} ∈ P(F ) takes the minimum value of
(1). Namely, the rank rτc(F ) can be described by rτc(F ) =

∑m
i=1 τc(Fi).

Combining Lemma 1 and Lemma 3, we obtain Mτr ∨Mτb
= Mτr+τb

, and the
following lemma easily follows.

Lemma 4. Let E ⊆ K+(V ). Then, E is a base of Mτr ∨Mτb
if and only if it

satisfies the weak counting condition.

We are now ready to show Theorem 3 for k = 2. By Lemma 2, an edge set is a
base of Mτr ∨Mτb

if and only if it can be partitioned into Er and Eb which are
spanning rooted-forests colored in red and blue, respectively, and equivalently it
admits a (2, 2)-rooted-forest partition. Combining Lemma 4 with this fact, we
conclude that an edge set admits a (2, 2)-rooted-forest partition if and only if it
satisfies the weak counting condition.

Due to the space limitation, we omit the proof of Theorem 3 for k > 2 in this
extended abstract.

Other Combinatorial Results. In order to prove Theorem 1 we need one
more combinatorial lemma related to the weak counting condition. We refer to
a vertex v as a (a, b)-vertex in Gc if δE\L(E)(v) = a and δL(E)(v) = b. The
following lemma claims the existence of small degree vertices.

Lemma 5. Let Gc = (V, E, c) be a connected graph with |V | > 1 satisfying the
weak counting condition. Suppose that there exists no (1, 1), (1, 2), (2, 0), (3, 0)-
vertex. Then, for any (k, 2)-rooted-forest partition E of Gc, there exists a (2, 1)-
vertex v such that the two non-loop edges incident to v belong to distinct colored
classes in E.

Remark. Each condition of the strong counting condition (and also the weak
one) can be checked by using the so-called “pebble game” algorithm for checking
the sparsity of graphs (see [5,13]). Since the pebble game works in O(|V |2) time,
checking whether Gc satisfies the strong counting condition (also the weak one)
can be done in O(k|V |2) time, where k is the number of colors. This can be im-
proved to O(|V |2) time by just avoiding to start each pebble game from scratch.
Therefore, assuming a generic joint configuration, we can decide in O(|V |2) time
whether a bar-slider framework is rigid or not.
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4 Infinitesimally Rigid Bar-Slider Frameworks

We now prove the following statement; for a given loop-colored graph Gc sat-
isfying the strong counting condition and a direction mapping d on a set of
colors, there exists a joint configuration p such that the bar-slider framework
(Gc,p,d) is infinitesimally rigid in the plane. Note that, if one particular re-
alization (Gc,p,d) is rigid, then (Gc,q,d) becomes rigid for all generic joint
configurations q as explained in Section 2, implying the nontrivial part (suffi-
ciency) of Theorem 1.

The proof is done by induction on |E \ L(E)| as follows. We convert Gc to a
slightly smaller graph G′c′ with respect to |E \ L(E)|, and then prepare a rigid
realization (G′c′ ,p,d) based on the induction hypothesis. Finally, we shall show
that (Gc,p,d) is infinitesimally rigid.

We omit the base case. Let us consider the case of |E \ L(E)| > 0. Applying
Theorem 2, we have a proper (k, 2)-rooted-forest partition E = {E1, E2, . . . , Ek}
of Gc, where k = χ(E). For the convenience of the description, let us assume that
all edges of Gc (not only loops but also non-loop edges) are colored according to
this partition E throughout the proof. Following Lemma 5, the proof is split into
five cases depending on the existence of small degree vertices. Due to the space
limitation, we shall omit the four cases, and show only the final case where Gc
has no (1, 1), (1, 2), (2, 0), (3, 0)-vertex.

In this case, by Lemma 5, Gc has a (2, 1)-vertex v such that the two non-loop
edges incident to v belong to distinct colored classes in E . Let e1 be the loop
attached to v with the color c1, and let va and vb be the two non-loop edges
incident to v. By condition (P2) of E and Lemma 5, we may assume that va and
vb are colored in c1 and c2, respectively (see Figure 4).

We shall consider the graph G′c′ obtained from Gc by removing va, vb and then
attaching new loops f1 colored in c1 to a and f2 colored in c2 to v, respectively
(see Figure 4). Then, the coloring of the edge set induces a proper (k, 2)-rooted-
forest partition of G′c′ , implying that G′c′ satisfies the strong counting condition.
By induction, there exists a rigid realization (G′c′ ,p,d). Since the joint p(v) is
isolated, we may assume that p(v) is located such that p(v)−p(a) is orthogonal
to the direction d(c1) (as shown in Figure 4).

We claim that (Gc,p,d) is infinitesimally rigid. To see this, suppose that
there exists a nonzero infinitesimal motion v for (Gc,p,d). Due to the direction
constraint by the slider associated with e1, v(v) is a scalar multiple of d(c1), and
consequently v(a) is also a scalar multiple of d(c1) by the length constraint of
the bar p(v)p(a). Let us define v′ : V → R2 as v′(v) = 0 and v′(u) = v(u) for

realization

Gc G’c’ G’c’(       ,p,d) Gc(     ,p,d)

v

a
b

v

a
b

p(v)

p(b)

p(a)

p(v)

p(b)

p(a)

e1 e1

f 1

f 2
d(c )1

d(c )1

Fig. 4. (2, 1)-vertex
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all u ∈ V \ {v}. Then, it is not difficult to see that v′ satisfies all the constraints
appearing in (G′c′ ,p,d) since v′ satisfies the direction constraints by the sliders
associated with f1 and f2, only which are not contained in Gc. Therefore, all
entries of v′ must be zero because (G′c′ ,p,d) is rigid. Since v is nonzero, we
obtain that v(v) 
= 0 and v(u) = v′(u) = 0 for all u ∈ V \ {v}. However, v does
not satisfy the length constraint (2) by the bar p(v)p(b) which (Gc,p,d) has.
This contradicts that v is an infinitesimal motion of (Gc,p,d). �	
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Abstract. We study the computability and complexity of the exploration prob-
lem in a class of highly dynamic graphs: periodically varying (PV) graphs, where
the edges exist only at some (unknown) times defined by the periodic movements
of carriers. These graphs naturally model highly dynamic infrastructure-less net-
works such as public transports with fixed timetables, low earth orbiting (LEO)
satellite systems, security guards’ tours, etc. We establish necessary conditions
for the problem to be solved. We also derive lower bounds on the amount of time
required in general, as well as for the PV graphs defined by restricted classes
of carriers movements: simple routes, and circular routes. We then prove that the
limitations on computability and complexity we have established are indeed tight.
We do so constructively presenting two worst case optimal solution algorithms,
one for anonymous systems, and one for those with distinct nodes ids.

1 Introduction

Graph exploration is a classical fundamental problem extensively studied since its ini-
tial formulation in 1951 by Shannon [10]. It has various applications in different areas,
e.g, finding a path through a maze, or searching a computer network using a mobile
software agent. In these cases, the environment to be explored is usually modelled as a
(di)graph, where a single entity (called agent or robot) starting at a node of the graph,
has to visit all the nodes and terminate within finite time. Different instances of the
problem exist depending on a variety of factors (e.g., see [1,3,4,5,6]), but all these in-
vestigations assume that the graph to be explored is connected.

The connectivity assumption unfortunately does not hold for the new generation
of networked environments that are highly dynamic and evolving in time. In these
infrastructure-less networks, end-to-end multi-hop paths may not exist, and it is ac-
tually possible that, at every instant of time, the network is disconnected. However,
communication routes may be available through time and mobility, and not only basic
tasks like routing, but complex communication and computation services could still be
performed. Almost all the existing work in this area focuses on the routing problem
(e.g., [8,9,11,12]). No work exists on exploration of such networks, with the notice-
able exception of the study of exploration by random walks [2]. The highly dynamic
features of these networks can be described by means of time-varying graphs, that is
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graphs where links between nodes exist only at some times (a priori unknown to the
algorithm designer); thus, for example, the static graph defined by the set of edges ex-
isting at a given time might not be connected. Our research interest is on computability
and complexity of the deterministic exploration of time-varying graphs.

In this paper, we start the investigation focusing on a particular class of time-varying
graphs: the periodically varying graphs (PV graphs), where the edges of the graphs are
defined by the periodic movements of some mobile entities, called carriers. This class
models naturally infrastructure-less networks where mobile entities have fixed routes
that they traverse regularly. Examples of such common settings are public transports
with fixed timetables, low earth orbiting (LEO) satellite systems, security guards’ tours,
etc.; these networks have been investigated in the application/engineering community,
with respect to routing and to the design of carriers’ routes (e.g., see [9,12]). We view
the system as composed of n sites and k carriers, each periodically moving among a
subset of the sites. The routes of the carriers define the edges of the time-varying graph:
a directed edge exists from node u to node v at time t only if there is a carrier that in
its route moves from u to v at time t. In the system enters an explorer agent a that
can ride with any carrier along its route, and it can switch to any carrier it meets while
riding. Exploring a PV-graph is the process of a visiting all the nodes and exiting the
system within finite time. We first investigate the computability of PVG-Exploration
and establish necessary conditions for the problem to be solvable. We then consider the
complexity of PVG-Exploration and establish lower bounds on the number of moves.
We then prove that the limitations on computability and complexity established so far,
are indeed tight. In fact we prove that all necessary conditions are also sufficient and all
lower bounds on costs are tight. We do so constructively presenting worst case optimal
solution algorithms, one for anonymous systems and one for those with ids. An added
benefit is that the algorithms are rather simple and use a limited amount of memory.
Due to space limitations, some proofs are omitted and are available in [7].

2 Model and Terminology

2.1 Periodically Varying Graphs

The system is composed of a set S of sites; depending on whether the sites have unique
ids or no identifiers, the system will be said to be with ids or anonymous, respectively.
In the system operates a set C of mobile entities called carriers moving among the
sites; |C| = k ≤ n = |S|. Each carrier c has a unique identifier id(c) and an ordered
sequence of sites π(c) =< x0, x1, . . . , xp(c)−1 >, xi ∈ S, called route; for any integer
j we will denote by π(c)[j] the component xi of the route where i = j mod p(c),
and p(c) will be called the period of π(c). A carrier c ∈ C moves cyclically along
its route π(c): at time t, c will move from π(c)[t] to π(c)[t + 1] where the indices are
taken modulo p(c). In the following, x0 will be called the starting site of c, and the set
S(c) = {x0, x1, . . . , xp(c)−1}, will be called the domain of c; clearly |S(c)| ≤ p(c).
Each route π(c) =< x0, x1, . . . , xp(c)−1 > defines a directed edge-labelled multigraph
G(c) = (S(c), E(c)), where E(c) = {(xi, xi+1, i), 0 ≤ i < p(c)} and the operations
on the indices are modulo p(c). If (x, y, t mod p(c)) ∈ E(c), we shall say that c ac-
tivates the edge (x, y) at time t. A site z ∈ S is the meeting point (or connection) of
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carriers a and b at time t if π(a)[t] = π(b)[t] = z; that is, there exist sites x and y such
that, at time t − 1, a activates the edge (x, z) and b activates the edge (y, z). A route
π(c) =< x0, x1, . . . , xp(c)−1 > is simple if G(c) does not contain self loops nor mul-
tiple edges; that is xi 
= xi+1, for 0 ≤ i < p(c)}, and if (x, y, i), (x, y, j) ∈ E(c) then
i = j. A simple route π(c) is irredundant (or cyclic if G(c) is either a simple cycle or a
virtual cycle (i.e., a simple traversal of a tree). We shall denote by R = {π(c) : c ∈ C}
the set of all routes and by p(R) = Max{p(c) : c ∈ C} the maximum period of the
routes in R. The set R defines a directed edge-labelled multigraph GR = (S, E),
where E = ∪c∈CE(c), called periodically varying graph (or, shortly, PV graph).
A concrete walk (or, simply, walk) σ in GR is a (possibly infinite) ordered sequence
σ =<e0, e1, e2 . . .> of edges in E where ei = (ai, ai+1, i) ∈ E(ci) for some ci ∈ C,
0 ≤ i. To each route π(c) in R corresponds an infinite concrete walk σ(c) in GR where
ei = (π(c)[i], π(c)[i + 1], i) for i ≥ 0. A concrete walk σ is a concrete cover of GR

if it includes every site: ∪0≤i≤|σ|+1 {ai} = S. A set of routes R is feasible if there
exists at least one concrete cover of GR starting from any carrier. R is homogeneous if
all routes have the same period: ∀a, b ∈ C, p(a) = p(b); it is heterogeneous otherwise.
R is simple (resp. irredundant) if every route π(c) ∈ R is simple (resp., irredundant).
With an abuse of notation, the above properties of R will be used also for GR; hence
we will accordingly say that GR is feasible (or homogeneous, simple, etc.). In the fol-
lowing, when no ambiguity arises, we will denote p(R) simply as p, GR simply as G,
and (x, y, t mod p(c)) simply as (x, y, t).

2.2 Exploring Agent and Traversal

In the system is injected an external computational entity a called exploring agent;
the agent is injected at the starting site of some carrier at time t = 0. The only two
operations it can perform are: move with a carrier, switch carrier. Agent a can switch
from carrier c to carrier c′ at site y at time t iff it is riding with c at time t and both c and
c′ arrive at y at time t, that is: iff it is riding with c at time t and ∃x, x′ ∈ S such that
(x, y, t) ∈ E(c) and (x′, y, t) ∈ E(c′). Agent a does not necessarily know n, k, nor G;
when at a site x at time t, a can however determine the identifier id(c) of each carrier
c that arrives at x ∈ S at time t. The goal of a is to fully explore the system within
finite time, that is to visit every site and terminate, exiting the system, within finite time,
regardless of the starting position. We will call this problem PVG-Exploration.

An exploration protocol A is an algorithm that specifies the exploring agent’s actions
enabling it to traverse periodically varying graphs. More precisely, let start(GR) =
{π(c)[0] : c ∈ C} be the set of starting sites for a periodically varying graph GR, and
let C(t, x) = {π(c)[t] = x : c ∈ C}, be the set of carriers that arrive at x ∈ S at
time t ≥ 0. Initially, at time t = 0, a is at a site x ∈ start(GR). If a is at node y
at time t ≥ 0, A specifies action ∈ C(t, x) ∪ {halt}: if action = c ∈ C(t, x), a will
move with c to π(c)[t+1], traversing the edge (x, π(c)[t+1], t) ; if action=halt, a will
terminate the execution and exit the system. Hence the execution of A in GR starting
from injection site x uniquely defines the (possibly infinite) concrete walk ξ(x) =<
e0, e1, e2, · · · > of the edges traversed by a starting from x; the walk is infinite if a
never executes action=halt, finite otherwise. Algorithm A solves the PVG-Exploration
of GR if ∀x ∈start(GR), ξ(x) is a finite concrete cover of GR; that is, executing A in
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GR, a visits all sites of GR and performs action=halt, regardless of the injection site
x ∈ start(GR). Clearly, we have the following property.

Property 1. PVG-Exploration of GR is possible only if R is feasible.

Hence, in the following, we will assume that R is feasible and restrict PVG-Exploration
to the class of feasible periodically varying graphs. We will say that problem PVG-
Exploration is unsolvable (in a class of PV graphs) if there is no deterministic explo-
ration algorithm that solves the problem for all feasible PV graphs (in that class). The
cost measure is the number of moves that the exploring agent a performs. Let M(GR)
denote the number of moves that need to be performed in the worst case by a to solve
PVG-Exploration in feasible GR. Given a class G of feasible graphs, let M(G) be the
largest M(GR) over all GR ∈ G; and let Mhomo(n, k) (resp. Mhetero(n, k)) denote
the largest M(GR) in the class of all feasible homogeneous (resp. heterogeneous) PV
graphs GR with n sites and k carriers.

3 Computability and Lower Bounds

3.1 Knowledge and Solvability

The availability of a priori knowledge by a about the system has an immediate impact
on the solvability of the problem PVG-Exploration. Consider first anonymous systems:
the sites are indistinguishable to the exploring agent a. In this case, the problem is
unsolvable if a has no knowledge of (an upper bound on) the system period.

Theorem 1. Let the systems be anonymous. PVG-Exploration is unsolvable if a has
no information on (an upper bound on) the system period. This result holds even if the
systems are restricted to be homogeneous, a has unlimited memory and knows both n
and k.

Proof. By contradiction, let A solve PVG-Exploration in all anonymous feasible PV
graphs without any information on (an upper bound on) the system period. Given n and
k, let S = {x0, . . . , xn−1} be a set of n anonymous sites, and let π be an arbitrary
sequence of elements of S such that all sites are included. Consider the homogeneous
system where k carriers have exactly the same route π and let G be the corresponding
graph. Without loss of generality, let x0 be the starting site. Consider now the execution
of A by a in G starting from x0. Since A is correct, the walk ξ(x0) performed by a
is a finite concrete cover; let m be its length. Furthermore, since all carriers have the
same route, ξ(x0) is a prefix of the infinite walk σ(c), performed by each carrier c; more
precisely it consists of the first m edges of σ(c). Let ti denote the first time when xi is
visited in this execution; without loss of generality, let ti < ti+1, 0 ≤ i < n−2. Let π∗

denote the sequence of sites in the order they are visited by a in the walk ξ(x0). Let α
be the first tn−2 +1 sites of π∗, and β be the next m+1− (tn−2 +1) sites (recall, m is
the length of ξ(x0) and thus m + 1 is that of π∗). Let γ be the sequence obtained from
β by substituting each occurrence of xn−1 with xn−2. Consider now the homogeneous
system where all the k agents have the same route π′ =< α, γ, β >, and let G′ be
the corresponding graph. The execution of A in G′ by a with injection site x0 results
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in a performing a concrete walk ξ′(x0) which, for the first m edges, is identical to
ξ(x0) except that each edge of the form (x, xn−1, t) and (xn−1, x, t) has been replaced
by (x, xn−2, t) and (xn−2, x, t), respectively. Because of anonymity of the nodes, a
will be unable to distinguish xn−1 and xn−2; furthermore, it does not know (an upper
bound on) the system’s period). Thus a will be unable to distinguish the first m steps
of the two executions; it will therefore stop after m moves also in G′. This means that
a stops before traversing β; since xn−1 is neither in α nor in γ, ξ′(x0) is finite but not
a concrete cover of G′, contradicting the correctness of A.

In other words, in anonymous systems, an upper bound on the system period must be
available to a for the problem to be solvable. Consider now distinct ids systems, i.e.
where the sites have distinct identities accessible to a when visiting them; in this case,
the problem is unsolvable if a has no knowledge of neither (an upper bound on) the
system period nor of the number of sites.

Theorem 2. Let the sites have distinct ids. PVG-Exploration is unsolvable if a has no
information on either (an upper bound on) the system period or of the number of sites.
This result holds even if the systems are homogeneous, and a has unlimited memory
and knows k.

3.2 Lower Bounds on Number of Moves

Arbitrary Routes
We will first consider the general case, where no assumptions are made on the struc-
ture of the system routes, and establish lower bounds on the number of moves both in
homogeneous and heterogeneous systems (where costs can be significantly higher).

Theorem 3. For any n, k, p, with n ≥ 9, n
3 ≥ k ≥ 3, and p ≥ max{k − 1, � n

k−1�},
there exists a feasible homogeneous graph GR with n sites, k carriers and period p
such that M(GR) ≥ (k−2)(p+1) + � n

k−1�. This result holds even if a knows GR, k
and p, and has unlimited memory.

Theorem 4. For any n, k, p, with n ≥ 9, n
3 ≥ k ≥ 3, and p ≥ max{k− 1, �n

k �}, there
exists a feasible heterogeneous graph GR with n sites, k carriers and period p such
that M(GR) ≥ (k− 2)(p− 1)p+ �n−2

k−1 �− 1. This result holds even if a knows GR, k
and p, and has unlimited memory.

Notice that the parameter p can be arbitrarily large; in fact a route can be arbitrarily
long even if its domain is small. This however can occur only if the carriers are allowed
to go from a site x to a site y an arbitrary amount of times within the same period.

Simple Routes
A natural restriction is that each route is simple: the directed graph it describes does not
contain self-loops nor multi-edges; that is, π(c)[i] 
= π(c)[i+1] and, if π(c)[i] = π(c)[j]
for 0 ≤ i < j, then π(c)[i + 1] 
= π(c)[j + 1] where the operations on the indices are
modulo p(c). If a route π(c) is simple, then p(c) ≤ n(n − 1). Let us stress that even if
all the routes are simple, the resulting system GR is not necessarily simple. The routes
used in the proof of Theorems 3 and 4 were not simple. Unfortunately the simplicity of
the routes cannot lower the cost fundamentally.
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Theorem 5. For any n ≥ 4 and n
2 ≥ k ≥ 2 there exists a feasible simple homogeneous

PV-graph GR with n sites and k carriers such that M(GR) > 1
8kn(n−8). This result

holds even if a knows GR and k, and has unlimited memory.

Theorem 6. For any n ≥ 36 and n
6 − 2 ≥ k ≥ 4 there exists a feasible simple

heterogeneous PV-graph GR with n sites and k carriers such that

M(GR) ≥ 1
16 (k − 3)(n2 − 2n)2.

This result holds even if a knows GR and k, and has unlimited memory.

Circular Routes
A further restriction on a route is to be irredundant (or circular): an edge appears in
the route only once. The resulting graph is either a cycle or a virtual cycle (i.e., induced
by a simple traversal of a tree). By definition, any circular route π(c) is simple and
p(c) ≤ 2(n − 1). The system is irredundant if all the routes are circular. The system is
irredundant does not imply that the graph GR is irredundant or even simple.

Fig. 1. n = 8, k = 3, p = 6

The graph used in the proof of Theorem 5 is simple but not irredundant. The natural
question is whether irredundancy can lower the cost fundamentally but the answer is
unfortunately negative also in this case.

Theorem 7. Let the systems be homogeneous. For any n ≥ 4 and n
2 ≥ k ≥ 2 there

exists a feasible irredundant simple graph GR with n sites and k carriers such that
M(GR) ≥ n(k−1). This result holds even if a knows GR, n and k, and has unlimited
memory.

Proof. Consider the system where S = {x0, x1, . . . , xn−k−1, y1, y2, . . . , yk}, C =
{c1, . . . , ck}, and the set of routes is defined as follows:

π(ci) =
{

< x0, α(1), y1, α(1)−1 > for i = 1
< x0, α(i), β(i), yi, β(i)−1, α(i)−1 > for 1 < i ≤ k

where α(j) = xj , xj+1, xj+2, . . . , xn−k−1, β(j) = x1, x2, . . . , xj−1, and α(j)−1 and
β(j)−1 denote the reverse of α(j) and β(j), respectively. In other words, the system is
composed of k circular routes of period p = 2(n − k), each with a distinguished site
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(the yj’s); the distinguished sites are reached by the corresponding carriers simultane-
ously at time t ≡ n − k mod p. The other n − k − 1 sites are common to all routes;
however there is only a single meeting point in the system, x0, and all carriers reach
it simultaneously at time t ≡ 0 mod p. More precisely, for all 1 ≤ i 
= j ≤ k,
ci and cj meet only at x0; this will happen whenever t ≡ 0 mod p. Let a start
at x0 at time t = 0. To visit yi, a must hitch a ride on ci; this can happen only
at x0 at time t ≡ 0 mod p; in other words, until all yi’s are visited, a must tra-
verse all k routes (otherwise it will not visit all distinguished sites) returning to x0;
only once the last distinguished site, say yj has been visited, a can avoid returning to
a0. Each route, except the last, takes 2(n − k) moves; in the last, the agent can stop
after only n − k moves, for a total of 2k(n − k) − (n − k) moves. Since k ≤ n

2 ,
2k(n − k) − (n − k) = 2nk − 2k2 − n + k ≥ (k − 1) n.

Theorem 8. Let the systems be heterogeneous. For any 0 < ε < 1, 2
ε ≤ n and 2 ≤

k ≤ ε n, there exists a feasible irredundant graph GR with n sites and k carriers such
that M(GR) > 1

4 (1 − ε)2 n2 (k − 2) This result holds even if a knows GR, n and k,
and has unlimited memory.

4 Optimal Explorations

In this section we show that the limitations on computability and complexity presented
in the previous section are tight. We do so constructively presenting worst case optimal
solution algorithms. We introduce the notion of meeting graph, that will be useful in the
description and analysis of our exploration algorithms. We will describe and analyze
two exploration algorithms, one that does not require unique node identifiers (i.e., the
PV graph could be anonymous), and one for the case when distinct site ids are available.
The meeting graph of a PV graph G is the undirected graph H(G) = (C, E), where
each node corresponds to one of the k carriers, and there is an edge between two nodes
if there is at least a meeting point between the two corresponding carriers.

4.1 Exploration of Anonymous PV Graphs

We first consider the general problem of exploring any feasible periodically varying
graph without making any assumption on the distinguishability of the nodes. By The-
orem 1, under these conditions the problem is not solvable if an upper bound on the
periods is not known to a (even if a has unbounded memory and knows n and k). We
now prove that, if such a bound B is known, any feasible periodically varying graph can
be explored even if the graph is anonymous, the system is heterogeneous, the routes are
arbitrary, and n and k are unknown to a. The proof is constructive: we present a simple
and efficient exploration algorithm for those conditions. Since the PV graph is anony-
mous and n and k are not known, to ensure that no node is left unvisited, the algorithm
will have a explore all domains, according to a simple but effective strategy; the bound
B will be used to determine termination. Let us now describe the algorithm, HITCH-A-
RIDE. The exploration strategy used by the algorithm is best described as a pre-order
traversal of a spanning-tree of the meeting graph H , where "visiting" a node of the
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meeting graph H really consists of riding with the carrier corresponding to that node
for B′ time units, where B′ = B if the set of routes is known to be homogeneous,
B′ = B2 otherwise (the reason for this amount will be apparent later). More precisely,
assume that agent a is riding with c for the first time; it will do so for B′ time units
keeping track of all new carriers encountered (list Encounters). By that time, a has
not only visited the domain of c but, as we will show, a has encountered all carriers
that can meet with c ( i.e., all the neighbours of c in the meeting graph H). At this point
a has "visited" c in H ; it will then continue the traversal of H moving to an unvisited
neighbour; this is done by a continuing to ride with c until a new carrier c′ is encoun-
tered; c will become the "parent" of c′. If all neighbours of c in H have been visited, a
will return to its "parent" in the traversal; this is done by a continuing the riding with c
until its parent is encountered. The algorithm terminates when a returns to the starting
carrier and the list Encounters is empty.

Theorem 9. Algorithm HITCH-A-RIDE correctly explores any feasible PV graph in
finite time provided (an upper bound on) the size of largest route is known.

Theorem 10. The number of moves performed by HITCH-A-RIDE to traverse a feasible
PV graph G is at most (3k − 2)B′.

Proof. Every time routine VISIT(c) is executed, a performs B′ moves; since a visit
is performed for each carrier, there will be a total of k · B′ moves. Routine GO-TO-
NEXT(c) is used to move from a carrier c to another c′ having a meeting point in com-
mon. This is achieved by riding with c until c′ is met; hence its execution costs at most
B′ moves. The routine is executed to move from a carrier to each of its "children", as
well as to return to its "parent" in the post-order traversal of the spanning tree of H de-
fined by the relation "parent-of". In other words, it will be executed precisely 2(k − 1)
times for a total cost of at most 2(k − 1)B′ moves. The theorem then follows.

The efficiency of Algorithm HITCH-A-RIDE clearly depends on the accuracy of the
upperbound B on the size p of the longest route in the system, as large values of B affect
the number of moves linearly in the case of homogeneous systems, and quadratically in
the case of heterogeneous system. It is sufficient that the upperbound is linear in p for
the algorithm to be optimal. From Theorem 10 and from Theorems 3-8 we have:

Theorem 11. Let B = O(p); then Algorithm HITCH-A-RIDE is worst-case optimal
with respect to the amount of moves. This optimality holds even if (unknowingly) re-
stricted to the class of feasible PV graphs with ids, and even if the class is further
restricted to be simple or circular (anonymous or not).

It is interesting to note that the amount of memory used by the algorithm is relatively
small: O(k log k) bits are used to keep track of all the carriers and O(log B) bits to
count up to B2, for a total of O(log B + k log k) bits.

4.2 Non-anonymous Systems

We now consider the case when the nodes have distinct Ids. By Theorem 2, either n
or an upperbound on the system period must be available for the exploration to be
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possible. If an upperbound on the system period is available, the algorithm presented
in the previous section would solve the problem; furthermore, by Theorem 11, it would
do so optimally. Thus, we need to consider only the situation when just n is known.

The exploration strategy we propose is based on a post-order traversal of a spanning-
tree of the meeting graph H , where "visiting" a node c of the meeting graph H now
consists of riding with c for an amount of time large enough (1) to visit all the nodes
in its domain, and (2) to meet every carrier that has a meeting point in common with c.
In the current setting, unlike the one considered previously, an upper bound on the size
of the domains is not available, making the correct termination of a visit problematic.
To overcome this problem, the agent will perform a sequence of guesses on the largest
period p, each followed by a verification (i.e., a traversal). If the verification fails, a
new (larger) guess is made and a new traversal is started. The process continues until n
nodes are visited, a detectable situation since nodes have ids. Let us now describe the
algorithm, HITCH-A-GUESSING-RIDE. Call a guess g ample if g ≥ P , where P = p if
the graph is (known to be) homogeneous,P = p2 otherwise. To explain how the process
works, assume first that a starts the exploration riding with c0 with an ample guess g.
The algorithm would work as follows. When a is riding with a carrier c for the first time,
it will ride (keeping track of all visited nodes) until either it encounters a new carrier
c′ or it has made g moves. In the first case, c becomes its "parent" and a starts riding
with c′. In the latter, a has “visited" c, and will returns to its parent. Termination occurs
when a has visited n distinct nodes. Similarly for the algorithm of Section 4.1, it is not
difficult to see that this strategy will allow a to correctly explore the graph. Observe
that this strategy might work even if g is not ample, since termination occurs once a
detects that all n nodes have been visited, and this might happen before all nodes of H
have been visited. On the other hand, if the (current) guess is not ample, then the above
exploration strategy might not result in a full traversal, and thus a might not visit all the
nodes. Not knowing whether the current guess gi is sufficient, a proceeds as follows:
it attempts to explore following the post-order traversal strategy indicated above, but at
the first indication that the guess is not large enough, it starts a new traversal using the
current carrier with a new guess gi+1 > gi. We have three situations when the guess is
discovered to be not ample. (1) while returning to its parent, a encounters a new carrier
(the route is longer than gi); (2) while returning to its parent, more than gi time units
elapse (the route is longer than gi); (3) the traversal terminates at the starting carrier,
but the number of visited nodes is smaller than n. In these cases the guess is doubled
and a new traversal is started. Whenever a new traversal is started, all variables are reset
except for the set V isited containing the already visited nodes.

Theorem 12. Algorithm HITCH-A-GUESSING-RIDE correctly explores any feasible
PV graph with ids in finite time provided the number of nodes is known.

This theorem, together with Theorem 9, proves that the necessary condition for PVG-
Exploration expressed by Theorem 2 is also sufficient.

Theorem 13. The number of moves performed by Algorithm HITCH-A-GUESSING-
RIDE to traverse a feasible PV graph G is O(k · P ).

Proof. Note that the worst case occurs when the algorithm terminates with an ample
guess g. Let us consider such a case. Let g0, g1, . . . , gm = g be the sequence of guesses
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leading to g and consider the number of moves performed the first time a uses an ample
guess. Every time routine GO-TO-NEXT(c) is executed a incurs in at most gi moves.
Routine GO-TO-NEXT(c) either returns a new carrier (at most k times) or a "parent" do-
main through routine BACKTRACK(c) (again at most k times). Routine BACKTRACK(c)
spends at most gi moves every time it is called and it is called for each backtrack (at
most k times). So the overall move complexity is 3gi · k. Let g0, g1, . . . , gm be the se-
quence of guesses performed by the algorithm. Since the Algorithm correctly terminates
if a guess is ample, only gm can be ample; that is gm−1 < P ≤ gm. Since gi = 2gi−1,
then the total number of moves will be at most

∑m
i=0 3kgi < 6kgm = O(k · P ).

Theorem 14. Let B = O(p); then Algorithm HITCH-A-RIDE is worst-case optimal
with respect to the amount of moves. This optimality holds even if (unknowingly) re-
stricted to the class of simple feasible PV graphs with ids, and even if the the graphs in
the class are further restricted to be circular.
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For the Directed Steiner Tree problem (DST), the task is to connect
a distinguished root vertex by directed paths to a set of given terminals. For
the Strongly Connected Steiner Subgraph problem (SCSS), the task is
to connect all terminals among each other. Finally, for the Directed Steiner

Network problem (DSN), the task is to connect given terminal vertex pairs.
Refer to Section 2 for formal definitions. Obviously, DST and SCSS are special
cases of DSN, whereas they are “incomparable” to each other. Note that, follow-
ing standard modelling, we always assume the underlying directed graph to be
complete; arcs that do not exist are modelled by assigning them the weight ∞.
To achieve full modelling flexibility (including the cases where one wants to
augment an already existing digraph), we sometimes also use arcs of weight 0
to represent already existing connection structure that comes for free. Allowing
only arcs of weights 0 and 1 is studied and known in the literature as aug-
mentation problem, and allowing only arc of weights 1 and ∞ models the case
that one searches for a minimum-size subgraph. Thus, we distinguish between
0-DSN and DSN, indicating whether 0-weights are allowed or not (analogously,
0-SCSS, SCSS, 0-DST, DST). Moreover, we consider the (maximum) ratio r of
arc weights to be the quotient of the maximum occurring arc weight and the
minimum occurring arc weight, excluding 0-weights from consideration. If there
are ∞-weight arcs, then we call this unbounded ratio. Clearly, a bounded ratio
means that in principle every arc is a candidate for being part of the connecting
subgraph. It is important to note that a higher ratio makes the problem harder
as well as allowing arcs of weight 0 does. Some meaningful parameterizations of
the considered Steiner problems are

– the parameter l that denotes the number of terminals to be connected,
– the weight p of the solution divided by the minimum arc weight minW (again

excluding 0), giving the parameter p/minW ,1 and
– the combined parameter (l, p/minW ).

Finally, note that a hardness result with respect to the combined parameter
clearly means hardness results for each single parameter and, by way of contrast,
a fixed-parameter tractability result for a single parameter trivially extends to
the combined parameter.

Next, we discuss some known results for the introduced problems. Herein, n
denotes the number of vertices and m the number of arcs of finite weight. In gen-
eral terms, one may say that the considered problems are hard to approximate.
For instance, it is known that DSN cannot be approximated to within a factor
of O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ TIME(2polylog(n)) [4]. We refer
to Kotsarz and Nutov [9] for a survey on the numerous approximation results
for Steiner-type problems. By way of contrast, much less is known about the pa-
rameterized complexity of directed Steiner problems. The basic Steiner Tree

problem in undirected graphs is known to be W[2]-complete with respect to the
parameter “size of the Steiner tree” [5] whereas it is fixed-parameter tractable

1 This parameter naturally reflects the number of arcs in the spanning subgraph by
providing an upper bound on the number of (non-zero) arcs.
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Table 1. Parameterized complexity results for (0-)DST, (0-)SCSS, and (0-)DSN.
Herein, r denotes the ratio of the arc weights. For r = 1 the problems DST, SCSS, and
DSN can be solved in a straightforward way in polynomial time.

Param. l p/minW combined

DST r ≥ 1: FPT [3,6] r ≥ 1: FPT [3,6] r ≥ 1: FPT [3,6]
r = ∞: no poly. kernel r = ∞: no poly. kernel r = ∞: no poly. kernel

(Thm. 4) (Thm. 4) (Thm. 4)

0-DST r ≥ 1: FPT [3,6] r ≥ 1: FPT [3,6]
r = ∞: no poly. kernel r ≥ 1: W[2]-h. [5] r = ∞: no poly. kernel

(Thm. 4) (Thm. 4)

SCSS r ≥ 9: W[1]-h. (Thm. 1) r ≥ 9: W[1]-h. (Thm. 1) r ≥ 9: W[1]-h. (Thm. 1)
2 < r < 9: open 2 < r < 9: open 2 < r < 9: open

r ≤ 2: FPT (Thm. 5) r ≤ 2: FPT (Thm. 5) r ≤ 2: FPT (Thm. 5)

0-SCSS r ≥ 4: W[1]-h. (Thm. 2) r ≥ 4: W[1]-h. (Thm. 2)
1 < r < 4: open r ≥ 1: W[2]-h. [1] 1 < r < 4: open

r = 1: FPT (Thm. 6) r = 1: FPT (Thm. 6)

DSN r ≥ 9: W[1]-h. (Thm. 1) r ≥ 9: W[1]-h. (Thm. 1) r ≥ 9: W[1]-h. (Thm. 1)
1 < r < 9: open 1 < r < 9: open 1 < r < 9: open

0-DSN r ≥ 1: W[1]-h. (Thm. 3) r ≥ 1: W[2]-h. [1] r ≥ 1: W[1]-h. (Thm. 3)

(FPT) with respect to the parameter “number of terminals” [6]. Both results also
transfer to the directed case. In particular, the FPT-algorithm can also be used
to solve 0-DST, yielding its fixed-parameter tractability with respect to the pa-
rameter “number of terminals”. Moreover, since the W[2]-complete Set Cover

problem (see [5]) can also be formulated as a special case of both 0-DST and 0-
SCSS, it follows that 0-DST, 0-SCSS, and 0-DSN are W[2]-hard with respect to
the parameter p/minW . Finally, Feldman and Ruhl [7] showed that 0-DSN can
be solved in O(mn4l−2 + n4l−1 logn) time using their O(mn2l−3 + n2l−2 logn)-
time algorithm for 0-SCSS as a subprocedure. These algorithmic results directly
lead to the question whether there are polynomial-time algorithms whose poly-
nomial degree is independent of l. Thus, Feldman and Ruhl explicitly asked for
the fixed-parameter tractability of (0-)DSN and (0-)SCSS.

We extend the above results by initiating a first systematic study of the param-
eterized complexity of the Steiner problems discussed above (also cf. Table 1).
First, we observe that results of Arkin et al. [1] (seemingly Arkin et al. have
been unaware of parameterized complexity issues) already answer Feldman and
Ruhl’s question, showing that 0-DSN is W[2]-hard with respect to the parame-
ter p/minW . We significantly extend this result by showing W[1]-hardness results
even with respect to the combined parameter (l, p/minW ) for all four types of
problems (0-DSN, DSN, 0-SCSS, SCSS). Interestingly, for arc weight ratio r for
SCSS (0-SCSS) we obtain W[1]-hardness with respect to the combined param-
eter only if r ≥ 9 (r ≥ 4), whereas we obtain fixed-parameter tractability for
SCSS when r ≤ 2 and mixed results for 0-SCSS for r < 4 (see Table 1 for details).
Notably, also with respect to the combined parameter, 0-SCSS turns out to be
fixed-parameter tractable for r = 1 whereas 0-DSN is W[1]-hard for r = 1. As a



Parameterized Complexity of Arc-Weighted Directed Steiner Problems 547

further negative result, we show that DST and 0-DST parameterized by the com-
bined parameter have no polynomial-size problem kernel unless the polynomial
hierarchy collapses to the third level. As indicated in Table 1, our work leaves
some challenges for future research particularly concerning the parameterized
complexity for small constant arc weight ratios.

Due to the lack of space, most details are deferred to the full paper.

2 Preliminaries and Formal Definitions

Let N be the set of natural numbers and let W be some subset of N ∪ {0,∞}.
If V is a set of vertices, w : V × V → W a weight function2, and A ⊆ V × V a
set of arcs, then we define w(A) :=

∑
a∈A w(a). We study the following:

Directed Steiner Tree (DST)

Instance: A set of vertices V , a weight function w : V × V → W , a set T ⊆ V
of terminals (l := |T |), a root s ∈ V , and a weight bound p ∈ N.
Question: Is there a set of arcs A ⊆ V ×V of weight w(A) ≤ p such that in the
digraph D := (V,A) for every t ∈ T there is a directed path from s to t?

Strongly Connected Steiner Subgraph (SCSS)

Instance: A set of vertices V , a weight function w : V × V → W , a set S ⊆ V
of terminals (l := |S|), and a weight bound p ∈ N.
Question: Is there a set of arcs A ⊆ V ×V of weight w(A) ≤ p such that in the
digraph D := (V,A) for every s, t ∈ S there is a directed path from s to t?

Directed Steiner Network (DSN)

Instance: A set of vertices V , a weight function w : V × V → W , l pairs of
vertices (s1, t1), (s2, t2), . . . , (sl, tl), and a weight bound p ∈ N.
Question: Is there a set of arcs A ⊆ V ×V of weight w(A) ≤ p such that in the
digraph D := (V,A) for every 1 ≤ i ≤ l there is a directed path from si to ti?

We set minW := min(W \ {0}) and maxW := max(W \ {∞}). We use {u, v}
to denote the undirected edge between vertices u and v and use (u, v) to denote
the arc directed from u to v. Moreover, in a directed graph D = (V,A), we use
in-degree (out-degree) of a vertex u to denote the number of vertices which have
arcs directed to u (from u). A graph is strongly connected if between each pair
of vertices u and v there is a path from u to v and a path from v to u.

A given parameterized problem is fixed-parameter tractable (FPT) with re-
spect to a parameter k if there is an algorithm solving the problem in f(k) ·nO(1)

time for some computable function f . A core tool in the development of param-
eterized algorithms is polynomial-time preprocessing by data reduction rules, of-
ten yielding a problem kernel. Herein, the goal is, given any problem instance G
with parameter k, to transform it in polynomial time into a new instance G′ with
parameter k′ such that the size of G′ is bounded from above by some function
only depending on k, k′ ≤ k, and (G, k) is a yes-instance if and only if (G′, k′)
2 Observe that in this way we actually deal with complete digraphs in the sense that

only arc weights are specified.
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is a yes-instance. In analogy to the polynomial-time hierarchy, a hierarchy for
parameterized complexity, called the W-hierarchy, has been defined. At the 0th
level of this hierarchy lies the class FPT of fixed-parameter tractable problems.
The class of all problems at the ith level of the W-hierarchy (i > 0) is denoted
by W[i], W[1] is the basic class of fixed-parameter intractable problems. A pa-
rameterized problem Q is FPT-reducible to a parameterized problem Q′ if there
exists an algorithm of running time f(k)|x|O(1) that on an instance (x, k) of Q
produces an instance (x′, g(k)) of Q′ such that (x, k) is a yes-instance of Q if
and only if (x′, g(k)) is a yes-instance of Q′, where the functions f and g depend
only on k. A parameterized problem Q is W[i]-hard if every problem in W[i] is
FPT-reducible to Q. See [5,10] for more details.

3 Parameterized Hardness Results

In this section, we present the parameterized hardness results for DST, SCSS,
and DSN. We start with SCSS. We provide an FPT-reduction from the W[1]-
complete Multi-Colored Clique (MCC) problem [8]. In MCC we are given
an undirected graph that is properly colored by k colors and the question is
whether there is a size-k clique in it taking exactly one vertex from each color
class. The parameter is k.

Theorem 1. Strongly Connected Steiner Subgraph with ratio at least 9
is W[1]-hard with respect to the combined parameter (l, p/minW ).

Proof. (Sketch.) Let an undirected graph G = (V,E), an integer k ≥ 1, and the
proper coloring c : V → {1, . . . , k} form an instance of MCC. The high-level idea
of the construction of the SCSS-instance (V ′, w, S, p) is as follows:

First, for every fixed arc weight ratio r ≥ 9, we use only two weights for the
arcs between the vertices in V ′, the cheap ones having weight minW and the
expensive ones having weight maxW (∞ if the ratio is unbounded) with r =
maxW /minW . It can be shown that there is always a solution using only cheap
arcs. Thus, we consider in the following only such solutions.

Second, for each color i there is one terminal bi that has only cheap arcs to
and from the vertex gadgets representing the vertices in G of this color. Thus,
the paths between bi and other terminals, which consist of cheap arcs, have to
pass through some arcs in some of these vertex gadgets. This corresponds to
taking some vertex from this color class into the solution for the MCC-instance.
A similar gadget is also used for every pair of distinct colors, representing the
choice of the edge connecting the vertices of the appropriate colors.

Third, the vertex gadget for a vertex v of G consists of two vertices cv and c′v
and a cheap arc (cv, c

′
v). This arc is the only cheap one leaving cv and is also

the only cheap arc entering c′v. Taking this uniquely defined arc in solutions
for the SCSS-instance represents the selection of the corresponding vertex into
the solution for the MCC-instance. The edges of G are encoded in a similar
way. Note, however, that every edge is encoded twice. Finally, the vertex and
edge gadgets are connected by cheap arcs according to the incidence so that the
selected edges are between the selected vertices.
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fij
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Fig. 1. Part of the construction from Theorem 1 with three vertices—v and w of color i
and u of color j—and two edges {u, v} and {u, w}. Only the arcs of Y \ Γ are drawn
for simplicity. The gadget representing the choice of a vertex of color i is in the bottom
left corner, the one for a vertex of color j in the bottom right, the edge selection is
represented as a selection of an arc from color-i vertices to color-j vertices in top left
and as a selection of an arc from color-j vertices to color-i vertices in top right. The
gadgets are interconnected according to the incidence of the vertices and the edges.

Now let us present the construction more formally: We construct our instance
(V ′, w, S, p) of SCSS as follows. The set of vertices V ′ consists of the following
six vertex subsets (see Fig. 1):

B := {bi | 1 ≤ i ≤ k}, D := {du,v, dv,u | {u, v} ∈ E},
C := {cv | v ∈ V }, D′ := {d′u,v, d

′
v,u | {u, v} ∈ E},

C′ := {c′v | v ∈ V }, F := {fij | 1 ≤ i, j ≤ k, i 
= j}.
The following arcs are given the weight minW , that is, they are cheap arcs

(see Fig. 1):

A := {αv := (bc(v), cv) | v ∈ V },
A′ := {α′v := (c′v, bc(v)) | v ∈ V },
B := {βv := (cv, c

′
v) | v ∈ V },

Γ := {γu,v := (c′u, cv) | u, v ∈ V },
D := {δu,v := (c′u, du,v), δv,u := (c′v, dv,u) | {u, v} ∈ E},
D′ := {δ′u,v := (d′u,v, cv), δ′v,u := (d′v,u, cu) | {u, v} ∈ E},
H := {εu,v := (du,v, d

′
u,v), εv,u := (dv,u, d

′
v,u) | {u, v} ∈ E},

Z := {ζu,v := (fc(u),c(v), du,v), ζv,u := (fc(v),c(u), dv,u) | {u, v} ∈ E},
Z ′ := {ζ′u,v := (d′u,v, fc(u),c(v)), ζ′v,u := (d′v,u, fc(v),c(u)) | {u, v} ∈ E},
Y := A ∪A′ ∪ B ∪ Γ ∪ D ∪ D′ ∪H ∪ Z ∪ Z ′.

All remaining arcs are set to be expensive arcs, that is, for (x, y) ∈ ((V ×V )\Y),
w((x, y)) := maxW (∞ if the ratio is unbounded). The terminal set S is equal
to B ∪ F and hence l = |S| = |B| + |F | = k + k(k − 1) = k2. Finally, we
set p := (3k + 5k(k − 1)) · minW . It is clear that the instance is constructible in
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polynomial time and that both l and p/minW only depend on the parameter k.
We defer the correctness proof of the above reduction to the full paper. �	

A similar reduction as above also works for 0-SCSS.

Theorem 2. 0-Strongly Connected Steiner Subgraph with ratio at
least 4 is W[1]-hard with respect to the combined parameter (l, p/minW ).

The reduction for 0-DSN with ratio 1 again is from Multi-Colored Clique.
However, with now only one non-zero weight allowed, more care, compared to the
proofs of Theorems 1 and 2, is necessary to argue that only the arcs representing
vertices and edges are needed.

Theorem 3. 0-Directed Steiner Network is W[1]-hard with respect to the
combined parameter (l, p/minW ) even with ratio 1.

Finally, we can use the technique introduced by Bodlaender et al. [2] to show
that there is no polynomial-size problem kernel for DST.

Theorem 4. There is no polynomial-size kernel for Directed Steiner Tree

with unbounded ratio with respect to the combined parameter (l, p/minW ) unless
the Polynomial Hierarchy collapses to the third level.

4 Algorithmic Results

Here, we present two fixed-parameter algorithms for two variants of SCSS and
0-SCSS that restrict the allowed arc weight ratio, respectively. In addition, we
indicate that these algorithms directly imply a significant running time improve-
ment of the algorithm by Feldman and Ruhl [7] for these relevant cases.

Theorem 5. Strongly Connected Steiner Subgraph with ratio at most 2
is solvable in O(l! · n) or O((p/minW )! · n) time.

Proof. We only consider the case that p/(2minW ) < l ≤ p/minW , since a
Hamiltonian cycle over terminals gives a total weight at least l · minW and
at most 2l · minW . This means that to strongly connect the terminals in S we
need an arc set with a minimum weight at least l ·minW and a maximum weight
at most l · maxW ≤ 2l · minW . Thus, p ≥ 2l · minW always gives yes-instances,
while p < l · minW gives no-instances. Therefore, the parameters l and p/minW

are linearly related and it suffices to show that the problem is solvable in O(l! ·n)
time. To this end, we claim that there is always a Hamiltonian cycle on S having
the minimum total weight among all arc sets strongly connecting S. Since there
are l! Hamiltonian cycles on S and computing the total weight of a cycle can be
done in O(n) time, the theorem follows. The proof for the claim is omitted. �	

Next, we consider the “augmentation case” of SCSS, namely, the case that there
are only two weights and one of them is zero. In contrast to the W[1]-hardness
of the augmentation case of DSN (cf. Theorem 3), for SCSS we achieve fixed-
parameter tractability with respect to the number of terminals l.
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Theorem 6. 0-Strongly Connected Steiner Subgraph with ratio 1 is
solvable in O(4l2 + n3) time.

Proof. First note that in this case we have only two weights 0 and minW =
maxW . Suppose that we are given an input instance of 0-SCSS consisting of
V,w, S (where |S| = l), and p. If p/minW ≥ l, then the answer is always yes,
since we can connect all terminals to a cycle that costs at most l ·minW . So, for
the rest of the proof we will assume that p/minW < l.

We provide four data reduction rules executable in O(n3) time that lead to a
problem kernel with at most 2 ·2l + l vertices. Let A0 := {a ∈ V ×V | w(a) = 0}.
To simplify the presentation, the rules are described as modifications of the
digraph H := (V,A0), which can be included in any solution. The vertices of
V \S are called non-terminals. The rules are ordered and the next rule is always
applied after the previous one cannot be applied any more. Later rules never
produce a situation where an earlier rule could again be applied.

The instance produced by rules is a yes-instance if and only if the original
instance is a yes-instance. For the first two rules and the fourth rule this is easy
to check, reconnecting the arcs not in A0 terminating in the removed vertices to
the vertex from which the same vertices can be reached. Similarly for the arcs
not in A0 starting in the removed vertices. For the third rule a proof is given.
Further details, as well as the running times of the rules, are defered to the full
version of the paper.

Rule 1. Contract strongly connected components into a single vertex.

Rule 2. For any non-terminal v ∈ V \ S with both N−(v) 
= ∅ and N+(v) 
= ∅,
where N−(v) is its in-neighborhood and N+(v) its out-neighborhood, delete v
and connect its neighbors appropriately, that is, continue with the digraph H ′ :=
(V \ {v}, A0 \ (({v} ×N+(v)) ∪ (N−(v) × {v})) ∪ (N−(v) ×N+(v))).

After this rule is exhaustively applied, there remain only sources, terminals,
and sinks in the digraph.

Rule 3. Delete all weight-0 arcs between two non-terminals.

Claim. There is an optimal solution that uses no arc of weight 0 between two
non-terminals.

Proof of Claim. Suppose, on the contrary, that each optimal solution uses some
arc in A0 ∩ ((V \S)× (V \S)). Let A be an optimal solution with the minimum
number of such arcs and let a := (x, y) ∈ A ∩ A0 be such an arc, that is,
x, y ∈ V \ S. Clearly, x is a source and y a sink in H = (V,A0). There is
some arc in A ending in x and some arc in A starting in y since A \ {a} is
not a solution. We can assume that there is only one arc ending in x in A for
the following reason: If |N−A (x)| ≥ 2, then select an arbitrary x′ ∈ N−A (x) and
replace the arcs ending in x (except (x′, x)) by arcs ending in x′ and get another
optimal solution that satisfies this assumption. Let us call this unique arc (x′, x).
Similarly, we assume that there is a unique arc starting in y and we call it (y, y′).
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N
P

x

y

x′
y′

O

Fig. 2. Illustration to the proof of the claim in Theorem 6. Solid lines represent the
sure connections in A. No other connections are possible in A, except for those drawn
by dotted lines. Dashed lines represent the arcs in A′ \ A.

Let V0 denote the minimal set S ⊆ V0 ⊆ V such that A ⊆ V0 × V0 and
also assume that A is minimal in the sense that (V0, A) is a strongly connected
digraph. Now let us distinguish the following sets of vertices (see Fig. 2):

P := {v ∈ V0 \ {y} | ∃ a path in (V0, A \ {a}) from v to y},
N := {v ∈ V0 \ {x} | ∃ a path in (V0, A \ {a}) from x to v},
O := V0 \ (P ∪N ∪ {x, y}).

Observe that in A \ {a} there is no path from any vertex in N to any vertex
in P (in particular N ∩ P = ∅), since otherwise there would be a path from x
to y different from (x, y) and, thus, A \ {a} would be a solution. There is also
no path from O to P and from N to O according to the definition of N , P ,
and O. If N is empty, then A′ := (A\ {(x′, x), a})∪{(x′, y)} is a better solution,
since (V0 \ {x}, A′) is strongly connected, x is a non-terminal, and w((x′, x)) ≥
w((x′, y)). Hence N is non-empty. Similarly, P is non-empty since otherwise
(A \ {a, (y, y′)}) ∪ {(x, y′)} would be a better solution.

Since N is non-empty and (V0, A) is strongly connected there must be some
arc from some vertex in N to some vertex outside N . But, as we have shown,
it can end neither in O nor in P nor in y. Hence it ends in x and thus x′ ∈ N .
Similarly, y′ ∈ P . Now, let A′ := (A \ {a, (x′, x), (y, y′)}) ∪ {(x′, y′), (y, x)}. It
is straighforward to check that the digraph H ′ := (V0, A

′) is again strongly
connected. Since w((x′, x)) + w((y, y′)) = 2 · minW ≥ w((x′, y′)) + w((y, x)) we
have w(A′) ≤ w(A). Thus, A′ is an optimal solution which uses less arcs of
weight 0 between two non-terminals—a contradiction. �	

Rule 4. If there are several non-terminals with the same neighborhood, then
delete all of them except for one.

Claim. If Rule 4 cannot be applied, then the digraph has at most 2·2l+l vertices.

Proof of Claim. (Sketch.) Each non-terminal is either source or sink and its
(unique) neighborhood is formed only by terminals. �	
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To solve 0-SCSS on the reduced instance, try all possibilities to connect at
most p/minW sinks out of 2l many to at most p/minW sources out of 2l many
and check whether in the resulting digraph the terminals are mutually intercon-
nected. This can be carried out in O(

(2l

l

)
·
(2l

l

)
· l! · 2l · l) = O(4l2 ) time. Thus,

0-SCSS with ratio 1 can be solved in O(4l2 + n3) time. �	

The (0-)DSN algorithm developed by Feldman and Ruhl [7] uses an algorithm
for (0-)SCSS as a subprocedure. Using the algorithms developed in the proofs
of Theorems 5 and 6 in case of arc weight ratios 2 and 1, respectively, as the
subprocedure, the running time of the overall algorithm of Feldman and Ruhl
can be significantly improved by roughly halving the degree of its running time
polynomial for the relevant case of these small arc weight ratios.

Corollary 1. Directed Steiner Network with ratio 2 and 0-Directed

Steiner Network with ratio 1 can be solved in O((2l)! · n2l) time and
O(16l2n2l + n2l+3) time, respectively.
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Abstract. The pickup and delivery problem (PDP) asks to find a set
of routes with the minimum travel cost to serve a given set of requests.
PDP is called the multi-trip PDP with consecutive pickups and deliveries
(PDPCMT) if it has an additional requirement such that any vehicle
which has begun a delivery action is not allowed to take pickup actions
until all of the loads on the vehicle are delivered. In this paper, we are
interested in how the least travel cost can be increased by the additional
requirement, and examine the maximum ratio of the optimal value of
PDPCMT to that of PDP over all instances with p requests. We show
that the maximum ratio is bounded from above by O(log p) and from
below by Ω(log p/ log log p).

1 Introduction

Decreasing physical distribution cost is a fundamental subject for most man-
ufacturing and distribution companies. The pickup and delivery problem (ab-
breviated as PDP) is a well studied physical distribution problem, and there
exist several variations to PDP such as the vehicle routing problem (VRP) [10],
the split delivery VRP (SDVRP) [1,4], PDP with transfer (PDPT) [6,7], PDP
(resp., PDPT) with a constraint such that once a vehicle take a delivery action
no pickup action is allowed during the same route (PDPC) (resp., (PDPTC))
[7], and so on.

Some theoretical analyses show how much travel cost can be increased by an
additional requirement in routing problems [1,2,3,7]. Given an instance I and
problem PRB, let p be the number of requests that need to be served, and
let opt

PRB
(I) denote the optimal cost to PRB with instance I. Archetti et al. [1]

showed that opt
VRP

(I) ≤ 2opt
SDVRP

(I) holds for any I, and gave an instance where
the bound is tight. Nakao and Nagamochi [7] studied the maximum cost that
can be saved by introducing a transshipment point to PDP. They showed that
opt

PDPC
(I) ≤ 6p1/2 · opt

PDPTC
(I) holds for any instance I with p requests, while

presenting an instance I ′ that satisfies opt
PDPC

(I ′) = p1/4 · opt
PDPTC

(I ′).
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In this paper, we introduce a multi-trip pickup and delivery problem with con-
secutive pickups and deliveries (PDPCMT), which we encounter in many practi-
cal cases. We then analyze upper and lower bounds on the maximum travel cost
that can be saved by regarding an instance I to PDP as that to PDPCMT.
It is not difficult to obtain similar results between PDPT and PDPTCMT
(PDPTCMT is an abbreviation of PDPCMT with transfer). Analyses for unca-
pacited cases with consecutive pickups and deliveries were reported in [2], while
we consider capacitated cases.

After formulating PDP and PDPCMT in Section 2, we introduce a partition
problem that asks to find a partition of vertices on a binary tree, and present
a lower bound on the partition problem in Section 3. Section 4 shows an upper
bound on the maximum ratio of the optimal cost of PDPCMT to that of PDP.
Next, Section 5 presents an instance that gives a lower bound on the optimal cost
by using the result of Section 3. Finally Section 6 makes concluding remarks.

2 Formulations of PDP and PDPCMT

This section formulates PDP and PDPCMT. Depots and customers to be visited
by vehicles are represented by distance functions d(u, v) for all ordered pairs of
vertices u and v.

An instance consists of a set Q of depots, a set R of requests, and a vehicle
capacity c > 0. Each request r ∈ R consists of a pickup action r+, a delivery
action r−, and a quantity q(r) of loads for the request. That is, quantity q(r) of
loads is required to be picked up at a specified vertex where r+ is taken and to
be delivered to a specified vertex where r− is taken. We may denote the vertex
where request r is picked up (resp., delivered) by r+ (resp., r−), and call the
vertex r+ a pickup point (resp., r− a delivery point). Let A = {r+, r− | r ∈ R},
i.e., the set of all actions for R.

Each vehicle must start from a depot in Q, and return to the same depot after
serving some of the requests in R. A route is the requests assigned to a vehicle,
and is represented by the sequence σ = (a0, a1, a2, . . . , am, am+1) of actions
of the requests in the order that the vehicle serves, where a1, a2, . . . , am ∈ A
(m is an even integer) and a0, am+1 ∈ Q. The travel cost of σ is defined by
cost(σ) =

∑
0≤i≤m d(ai, ai+1). A solution s is a set of routes that serves all

requests in R, and its cost cost(s) is defined by the sum of the travel costs of the
routes σ in s. The objective is to find a minimum cost solution, and we assume
that any number of vehicles is available. We start with defining PDP.

Pickup and Delivery Problem (PDP)
Input: An instance I = (Q,R, c).
Output: A minimum cost solution that satisfies the following constraints:

(a) the total quantity of loads during a route does not exceed vehicle capacity c
at any time;

(b) each request r is served by exactly one vehicle, and the actions r+ and r−

are taken only once by the vehicle;
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(c) (coupling constraint) actions r+ and r− of each request r must appear in the
same route, and no request r is allowed to be temporarily dropped at any
vertices; and

(d) (precedence constraint) For each request r, action r+ must be taken before
action r−.

PDP is known to be NP-hard [9]. Many heuristics and metaheuristic algorithms
have been developed for the problem [5,8,9]. We next define PDPCMT.

Multi-Trip PDP with Consecutive Pickups and Deliveries (PDPCMT)
Input: An instance I = (Q,R, c).
Output: A minimum cost solution that satisfies (a),(b),(c),(d), and the following
constraint:
(e) once a delivery action begins, pickup actions cannot be taken until all of the
loads on the vehicle are delivered.

A route satisfying (e) is a sequence of subsequences such that first a vehicle with
no loads on it takes pickup actions for some requests and takes delivery actions
for these requests, which we call trips.

3 Lower Bound on a Partition Problem

This section derives a lower bound on a partition problem that asks to find a
partition of vertices on a complete binary tree with the minimum cost.

Let h be a positive integer, and let c = 2h, and let Tc = (V,E) denote a
complete binary tree with 2c−1 leaves. Hence the number of vertices in V is
|V | =

∑c
i=1 2i−1 = 2c − 1. For a vertex v ∈ V , let L(v) denote the set of leaves

that are the descendants of v (including v). For a subset X ⊆ V , let L(X) denote
the set ∪v∈XL(v). Fig 1 illustrates Tc with c = 4.

We now introduce a partition problem of vertices on a binary tree (PPBT). We
call a partition V1, V2, . . . , Vn (n ≥ 1) of V is feasible if it satisfies V1 ∪V2 ∪ · · · ∪
Vn = V , Vi ∩Vj = ∅ for 1 ≤ i < j ≤ n, and the number of vertices in each subset
Vi is less than or equal to c. We call a feasible partition a solution to PPBT.
The cost costL(s) of a solution s = {V1, V2, . . . , Vn} is defined by the number of
times that leaves appear in L(X), X ∈ s, i.e., costL(s) =

∑
X∈s |L(X)|.

PPBT asks to find a solution s that minimizes costL(s). This section proves
the following theorem.

Theorem 1. For a complete binary tree Tc with 2c−1 leaves, any solution s∗ to
PPBT satisfies costL(s∗) ≥ 2c−2 · c/ log2 c. Furthermore there exists a solution
ŝ such that costL(ŝ) = 2c−1 · c/ log2 c.

We introduce some notations on tree Tc. We denote by V [i], i = 1, 2, . . . , c, the
set of vertices on the i-th layer from the root vertex in Tc. We denote set V [c]
of vertices on the c-th layer in Tc by V [c] = {v(0, 1), v(1, 2), v(2, 3), . . . , v(2c−1 −
1, 2c−1)}. For i = 1, 2, . . . , c, set V [i] consists of 2i−1 vertices and is denoted by

V [i] = {v((j − 1) · 2c−i, j · 2c−i) | j = 1, 2, . . . , 2i−1}. (1)
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)8,0(v
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Fig. 1. An example of a solution s = {V1 = {v(0, 8), v(0, 4), v(0, 2), v(1, 2)},
V2 = {v(0, 1), v(4, 5), v(4, 6), v(4, 8)}, V3 = {v(2, 4), v(2, 3), v(3, 4), v(5, 6)}, V4 =
{v(6, 8), v(6, 7), v(7, 8)} to PPBT with c = 4

The set V [i] satisfies

|L(V [i])| = |L(v(0, 2c−1))| = 2c−1. (2)

Fig. 1 illustrates an example of a solution s to PPBT with n = 4. It hold
|L(V1)| = 8, |L(V2)| = 5, |L(V3)| = 3, and |L(V4)| = 2.

We now introduce a certain solution ŝ to PPBT, which has a systematic
structure, and is used to analyze a lower bound on the optimal cost of PPBT.

Given a solution s to PPBT and a vertex v ∈ V , we denote by V (v; s) the
set of vertices in s to which v belongs. For a vertex v1 ∈ V (v; s) − {v}, we say
that v is covered by v1 in s if v is a descendant vertex of v1 on Tc, i.e., it holds
L(v) ⊂ L(v1). We denote by Cover(v; s) the set of vertices by which v is covered
in s. For example in Fig. 1, we have Cover(v(1, 2); s) = {v(0, 8), v(0, 4), v(0, 2)},
Cover(v(2, 3); s) = {v(2, 4)}, Cover(v(4, 8); s) = ∅.

For a set X in a solution s, a vertex v ∈ X is called a head vertex in X if X
contains no vertex that covers v, i.e., Cover(v; s) = ∅. Let Head(X) denote the
set of head vertices in X . We easily see that for any set X ∈ s it holds

⋃

v∈Head(X)

L(v) =
⋃

v∈X

L(v) = L(X). (3)

For the solution s shown in Fig. 1, we have Head(V1) = {v(0, 8)}, Head(V2) =
{v(0, 1), v(4, 8)}, Head(V3) = {v(2, 4), v(5, 6)}, and Head(V4) = {v(6, 8)}.

Given a solution s, let Head(s) =
⋃

X∈s Head(X). By using the observation
that no vertex appears as head vertices for two distinct sets in s, we easily derive

costL(s) = |L(Head(s))|. (4)

We next introduce a solution ŝ to PPBT. Recall that c = 2h holds for binary
tree Tc. We partition the vertex set V of Tc into subsets V [k, j], k = 1, . . . , c/h,
m = 1, . . . , 2(k−1)h such that each set V [k, j] induces a complete binary subtree
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)8,0(v)4,0(v )8,4(v

)2,0(v )4,2(v )6,4(v )8,6(v
)1,0(v )2,1(v )3,2(v )4,3(v )5,4(v )6,5(v )7,6(v )8,7(v

]1,1[V

]1,2[V ]2,2[V ]3,2[V ]4,2[V

Fig. 2. A solution ŝ with c = 4 and h = 2

with exactly c− 1 vertices from Tc, as shown in Fig. 2. We then define solution
ŝ by

ŝ = {V [k, j] | k = 1, 2, . . . , c/h, j = 1, 2, . . . , 2(k−1)h},
where the highest vertex in V [k, j] is the unique head vertex in V [k, j]. Boxes
with dashed lines in Fig. 2 show sets V [k, j], k = 1, 2, j = 1, 2, . . . , 22(k−1), of
vertices with c = 4 and h = 2. By using (2) and (4), we confirm that it holds

costL(ŝ) = |L(Head(ŝ))| = 2c−1 · c/h = 2c−1 · c/ log2 c. (5)

Let us analyze a lower bound on costL(s∗) for a solution s∗ to PPBT, by
comparing s∗ with solution ŝ. For this, we first partition the set V of vertices
in Tc into five sets Z1, Z2, Z

′
2, Z3, and Z4 according to two solutions ŝ and s∗ as

follows.

Z1 = {v | v ∈ Head(ŝ), v ∈ Head(s∗)}, (6)
Z2 = {v | v ∈ Head(ŝ), v /∈ Head(s∗), Cover(v; s∗) ∩Head(ŝ) = ∅}, (7)
Z ′2 = {v | v ∈ Head(ŝ), v /∈ Head(s∗), Cover(v; s∗) ∩Head(ŝ) 
= ∅}, (8)
Z3 = {v | v /∈ Head(ŝ), v ∈ Head(s∗)}, (9)
Z4 = {v | v /∈ Head(ŝ), v /∈ Head(s∗)}.

We obtain the following lemma.

Lemma 1. The sets Z1, Z2, Z
′
2, and Z3 of vertices defined in (6) - (9) satisfy

(i) |L(Z1)| + |L(Z2)| + |L(Z ′2)| = 2c−1 · c/h;
(ii) |L(Z2)| ≤ |L(Z3)|; and
(iii) |L(Z ′2)| ≤ |L(Z1)| + |L(Z2)|.

Proof: (i) The equality follows from Z1 ∪ Z2 ∪ Z ′2 = Head(s∗) and (5).
(ii) Let v2 be an arbitrary vertex in Z2. Then there exists a vertex v3 ∈ Z3 ∩
Cover(v2; s∗), since v2 is not a head vertex in V (v2; s∗), and is covered by a head
vertex of V (v2; s∗) in s∗. Notice that it holds L(v2) ⊂ L(v3) since v2 is covered
by v3 in s∗. Hence L(Z2) ⊆ L(Z3) holds.
(iii) Let X ∈ s∗ be an arbitrary set with X ∩ Z ′2 
= ∅. For each vertex u2 ∈
X ∩Z ′2, it holds Cover(u2; s∗)∩Head(ŝ) 
= ∅ by (8), and hence Cover(u2; s∗)∩
Head(ŝ) = Cover(u2; s∗) ∩ (Z1 ∪ Z2 ∪ Z ′2) 
= ∅. We choose a highest vertex
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v1 ∈ Cover(u2; s∗)∩ (Z1∪Z2∪Z ′2) in Tc. Then v1 ∈ Z1∪Z2 holds, since v1 ∈ Z ′2
would imply that there exists a vertex v′ ∈ Cover(v1; s∗)∩Head(ŝ), which covers
v1 and also belongs to Cover(u2; s∗)∩Head(ŝ), a contradiction to the choice of
v1 (since v′ is higher than v1 in Tc).

By the structure of ŝ, v1 ∈ Head(ŝ) is the head vertex in a set V [k1, j1] ∈ ŝ
with k1 ∈ {1, 2, . . . , c/h − 1} and j1 ∈ {1, 2, . . . , 2(k1−1)h}, and u2 ∈ Head(ŝ)
is the head vertex in a set V [k2, j2] ∈ ŝ with k2 ∈ {k1 + 1, . . . , c/h − 1} and
j2 ∈ {1, 2, . . . , 2(k2−1)h}. Since k2 ≥ k1 + 1 and the number of layers in Tc for
each set V [k, j] is h, this implies

|L(u2)| ≤ |L(v1)|/2h.

Note that there may exist more than one vertex in Z ′2 ∩X . By summing up the
inequality over all vertices u ∈ Z ′2 ∩X , we have

∑

u∈Z′
2∩X

|L(u)| ≤ |Z ′2 ∩X |
2h

|L(v1)| ≤ |L(v1)|,

where the second inequality follows from |Z ′2 ∩X | ≤ c = 2h by the feasibility of
s∗. Note that v1 ∈ Cover(u2; s∗) ⊆ V (u2; s∗) = X holds. Therefore, by summing
up the inequality over all sets in s∗, we have the lemma. �	

We are ready to prove Theorem 1. By applying Lemma 1(ii), (iii) and (i), we
have costL(s∗) = |L(Head(s∗))| = |L(Z1)| + |L(Z3)| ≥ |L(Z1)| + |L(Z2)| ≥
1
2 (|L(Z1)| + |L(Z2)| + |L(Z ′2)|) = 2c−2 · c/h. This and (5) prove Theorem 1.

4 Upper Bound on Travel Cost of PDPCMT Solutions

This section derives an upper bound on the maximum ratio of the optimal cost
of PDPCMT to that of PDP.

Given an instance I, we call a solution to PRB with instance I a PRB solution
to I, and call a route in PRB solution with instance I a PRB route to I.

Given a solution s to PDPCMT or PDP, we denote by T (s) the set of trips
in s. Let R(t) denote the set of requests that are served on trip t. Given a route
σ, let A(σ) represent the set of actions along σ.

Travel cost d(j, j′) from vertex j to j′ for j, j′ ∈ A is a nonnegative real
number, and in general asymmetric; i.e., d(j, j′) 
= d(j′, j) may hold. Given a
trip t = (a1, a2, . . . , an), let cost(t) =

∑
1≤i≤n−1 d(ai, ai+1). Given a solution s,

let cost(s) =
∑

σ∈s cost(σ), where σ is a route in s.
Given a PDPCMT route σ = (a0, t1, t2, . . . , tk, a1) with a0, a1 ∈ Q and

trips t1, t2, . . . , tk, we define the loaded travel cost as the travel cost with loads,
i.e., costf (σ) =

∑k
i=1 cost(tk). Given a PDPCMT solution s, let costf (s) =∑

σ∈s costf (σ).

Theorem 2. Let I = (Q,R, c) be an instance with p ≥ 2 requests. Then it holds

opt
PDPCMT

(I) ≤ �log2 2p� · opt
PDP

(I).



560 Y. Nakao and H. Nagamochi

For this, we show how to convert a PDP solution to a PDPCMT solution.

Theorem 3. Given a PDP route σ to an instance I, PDPCMT routes σ′ with

A(σ′) = A(σ) and cost(σ′) ≤ �log2 2p′� · cost(σ)

can be constructed in polynomial time, where p′ is the number of requests served
in σ.

Theorem 2 is obtained by applying Theorem 3 to each route σ in an optimal
PDP solution s to I.

In this section, we denote a given PDP route by σ = (a0, a1, a2, . . . , am, am+1),
where a0, am+1 ∈ Q, a1, . . . , am ∈ A and m = 2p. For notational simplicity, we
assume that m = 2k holds for some integer k ≥ 1 by introducing fictitious
requests r with q(r) = 0 and r− = r+ on vertex ah if necessary. We describe an
algorithm that converts a PDP route σ = (a0, a1, . . . , am, am+1) to k PDPCMT
routes π1, π2, . . . , πk. Each route πj visits the vertices in σ in the same order
serving a set Rj of requests defined as follows.

We divide the set A(1, 1) = {ai | i = 1, 2, . . . , 2k} of all actions in σ into
two subsets A(2, 1) = {ai | i = 1, 2, . . . , 2k−1} and A(2, 2) = {ai | i = 2k−1 +
1, 2k−1 + 2, . . . , 2k} in the second level. By repeating this recursively, we define
2j−1 subsets at the j-th level to be

A(j, b) = {ai | i = (b− 1)2k−j+1 + 1, (b− 1)2k−j+1 + 2, . . . , b2k−j+1}

for b = 1, 2, . . . , 2j−1, where j = 1, 2, . . . , k + 1. A request r ∈ R is at the j-th
level if j is the smallest level such that a subset A(j, b) contains both actions r+

and r−. Let us denote the subsets of requests at the j-th level by

R(j, b) = {r ∈ R | r+ ∈ A(j + 1, 2b− 1), r− ∈ A(j + 1, 2b)},

j = 1, 2, . . . , k and b = 1, 2, . . . , 2j−1. We assign to route πj the requests in

Rj = R(j, 1) ∪R(j, 2) ∪ · · · ∪R(j, 2j−1),

and let a vehicle serve the requests R(j, 1), R(j, 2), . . . , R(j, 2j−1) in this order
along πj . Note that it holds cost(πj) = cost(σ) if Rj 
= ∅, cost(πj) = 0 otherwise,
for each j = 1, 2, . . . , k. The feasibility of routes π1, π2, . . . , πk can be ensured.
(The proof is omitted due to space limitation.)

We are now ready to prove Theorem 3. Since m = 2p′ = 2k, and k is an integer
number, we have k = �2p′�. Let σ′ be a route where π1, π2, . . . , πk appear in this
order. Then it holds A(σ′) = A(σ). Thus we have cost(σ′) =

∑k
j=1 cost(πj) ≤

k · cost(σ) = �log |2p′|� · cost(σ). Thus we have the theorem.

5 Lower Bound on Travel Cost of PDPCMT Solutions

This section proves that the upper bound in Theorem 2 is tight up to factor of
O(log log p) by identifying such an instance for any large p. Thus we prove the
next result.
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: depot  or  pickup point  or  delivery point : request

v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)

}1{ }2{ }3{ }4{ }5{ }6{ }7{ }8{
}2,1{ }4,3{ }6,5{ }8,7{

}4,3,2,1{ }8,7,6,5{

}8,7,6,5,4,3,2,1{

Fig. 3. An instance G(p, λ) with c = 4, h = 2 and p = 15

Theorem 4. For any integer h ≥ 1, there exists an instance I = (Q,R, c) with
p = 22h − 1 requests that satisfies

opt
PDPCMT

(I) ≥ log2(p + 1)
4 log2 log2(p + 1)

· opt
PDP

(I).

Such an instance I in Theorem 4, which we denote by G(p, λ), is defined below.
Given an integer p = 22h − 1 (h ≥ 1) and a real λ > 0, let capacity be

c = 2h = log2(p + 1),

and let V = {v(0), v(1), v(2), . . . , v(2c−1)} be the set of vertices in G(p, λ). We
assume that all vertices in V are arranged uniformly on a horizontal straight line-
segment of length λ from left to right as shown in Fig. 3. Hence d(v(0), v(2c−1)) =
λ and d(v(i), v(i + 1)) = λ/2c−1 for i = 0, 1, . . . , 2c−1 − 1. A set of integers on
each arc in Fig. 3 will be explained in the next subsection.

Let Q consist of a single depot v(0), and the set R of requests in G(p, λ)
consist of the following c subsets R[i], i = 1, . . . , c, containing 2i−1 requests.
Fig. 3 illustrates set R of requests in G(p, λ) with p = 15. Let set R[1] consist of
a single request r with r+ = v(0) , r− = v(2c−1). The i-th set R[i], i = 1, 2, . . . , c,
consists of 2i−1 requests and expressed by

R[i] = {r | (r+, r−) ∈ {(v(0), v(2c−i)), (v(2c−i), v(2 · 2c−i)),
(v(2 · 2c−i), v(3 · 2c−i)), . . . , (v(2c−1 − 2c−i), v(2c−1))}}.

Let q(r) = 1 for all r ∈ R.
We show that G(p, λ) has a PDP route σ with travel cost 2λ, which is optimal

since any vehicle must start from v(0), visit v(2c−1), and return to v(0), requiring
at least 2λ travel cost. Hence σ consists of the path from v(0) to v(2c−1) and the
path from v(2c−1) to v(0). The total quantity of requests loaded on a vehicle is
less than or equal to c any time on the path from v(0) to v(2c−1), since requests
on a vehicle contains at most one request from each set R[i], i = 1, . . . , c.

Let us analyze a lower bound on the loaded travel cost of PDPCMT solutions
by using Theorem 1. We analyze a lower bound on the loaded travel cost that
does not depend on sequences in trips but are derived from travel cost between
pickup points and delivery points of requests in the trips. We explain the cost
in detail as follows.
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We assign a set of integers to each request in R. Let ϕ(r+, r−) denote a set of
integers that are assigned to request r = (r+, r−). We first assign a set of integers
to requests in R[c] = {r | (r+, r−) ∈ {(v(j − 1), v(j)) | j = 1, 2, . . . , 2c−1}} by

ϕ(v(j − 1), v(j)) = {j}, j = 1, 2, . . . , 2c−1.

As shown in Fig. 3, the sets of integers that are assigned to the requests in
R−R[c] are defined by

ϕ(v(i), v(j)) = ϕ(v(i), v(i + 1)) ∪ ϕ(v(i + 1), v(i + 2)) ∪ · · · ∪ ϕ(v(j − 1), v(j)).

Given a trip t in a PDPCMT route, we define cost costb(R(t)) of a set R(t)
of requests that are served along t by

costb(R(t)) = |
⋃

r∈R(t)

ϕ(r+, r−)|.

The following lemma gives a lower bound on the loaded travel cost of a PDPCMT
solution.

Lemma 2. Given a PDPCMT solution s, the loaded travel cost costf (s) of s
satisfies

costf (s) ≥
∑

t∈T (s)

costb(R(t)) · λ/2c−1.

Proof: For i = 1, 2, . . . , 2c−1, travel cost d(v(i − 1), v(i)) along the segment
from v(i − 1) to v(i) is given by d(v(i − 1), v(i)) = λ/2c−1. It costs at least
costb(R(t)) · λ/2c−1 to serve the requests in R(t) since a vehicle that serves the
requests in R(t) is required to travel at least costb(R(t)) segments. Thus we have
the lemma. �	
We derive a lower bound on costf (s) over all PDPCMT solution s as follows. For
a PDPCMT solution s, let R1, R2, . . . , Rn of R be sets of requests such that each
Ri corresponds to the set of requests that are served in a trip in s. Hence it holds∑

r∈Ri
q(r) ≤ c for i = 1, 2, . . . , n. We show that minimizing

∑n
i=1 costb(Ri)

over all PDPCMT solution s is reduced to PPBT. For this, we associate request
r = (v((j − 1) · 2c−i), v(j · 2c−i)) in G(p, λ) with vertex v((j − 1) · 2c−i, j · 2c−i)
on the binary tree Tc for PPBT. Then it holds

ϕ(v((j − 1) · 2c−i), v(j · 2c−i)) = |L(v((j − 1) · 2c−i, j · 2c−i))|
for i = 1, 2, . . . , c and j = 1, 2, . . . , 2i−1. Let Vk be the set of vertices in Tc

obtained from Rk in this way. If request r = (v((j − 1) · 2c−i), v(j · 2c−i)) in
G(p, λ) belongs to Rk, then we let vertex v((j − 1) · 2c−i, j · 2c−i) in V belong
to Vk. Then s∗ = {V1, V2, . . . , Vn} is a feasible partition in Tc since |Vi| = |Ri| ≤
c holds. Also

∑
t∈T (s) costb(R(t)) = costL(s∗) holds. By Theorem 1, we have

costL(s∗) ≥ 2c−2c/h. We are now ready to prove Theorem 4. We have

opt
PDPCMT

(G(p, λ)) ≥ costf (s) ≥
∑

t∈T (s)

costb(R(t)) · λ/2c−1

≥ 2c−2c/h · λ/2c−1 = λ log2(p + 1)/(2 log2 log2(p + 1)).

Since opt
PDP

(G(p, λ)) = 2λ, this proves Theorem 4.
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6 Conclusion

In this paper, we analyzed upper and lower bounds on the maximum travel cost
that can be saved by regarding an instance to PDP as that to PDPCMT. We
showed that opt

PDPCMT
(I) ≤ �log2 2p� · opt

PDP
(I) holds for all instance I by con-

structing a method for converting a PDP solution to a PDPCMT solution. Thus
we contributed to study on difference between travel cost of optimal solutions for
several routing problems. In particular, we established a lower bound technique
based on partitioning binary trees.
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Abstract. We give the first known optimal algorithm that computes a
minimum cycle basis for any weighted outerplanar graph. Specifically,
for any n-node edge-weighted outerplanar graph G, we give an O(n)-
time algorithm to obtain an O(n)-space compact representation Z(C)
for a minimum cycle basis C of G. Each cycle in C can be computed
from Z(C) in O(1) time per edge. Our result works for directed and
undirected outerplanar graphs G.

1 Introduction

Unless clearly specified otherwise, all graphs in the paper are undirected and
have no multiple edges and self-loops. Let G = (V, E) be an edge-weighted graph.
Each cycle C of G can be represented by an incidence vector x with index set
E such that e is an edge of C if and only if xe = 1. The cycle space of G is the
vector space spanned by the incidence vectors of the cycles in G over F2. A cycle
basis of G is a collection of cycles whose incidence vectors form a basis of the
cycle space of G. A cycle basis of G with minimum weight is a minimum cycle
basis (MCB) of G. An example is shown in Figure 1. In the present article, we
study the problem of identifying an MCB for G, which finds applications in elec-
trical engineering, biochemistry, structural engineering, surface reconstruction,
and public transportation [1–3]. Kavitha, Liebchen, Mehlhorn, Michail, Rizzi,
Ueckerdt, and Zweig [4] also presented an in-depth survey on the problem. The
problem is NP-complete if G may contain negative cycles [4]. The rest of the
paper assumes that G has nonnegative edge weights.

The cycle space of a graph is the direct sum of the cycle spaces of its 2-
connected components. Therefore, without loss of generality, we assume that the
input n-node m-edge graph G is 2-connected. One can verify that any MCB of G
consists of m−n + 1 cycles. Horton [5] gave the first polynomial-time algorithm
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2

1.5

0.5
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v4v2

v1

v3

Fig. 1. An edge-weighted outerplanar graph G with three cycles: 〈v1, v2, v3〉, 〈v1, v3, v4〉,
and 〈v1, v2, v3, v4〉. Any two of them form an MCB of G.

for the problem, which runs in O(m3n) time.1 de Pina [8] presented a different
algorithm to solve the problem in O(m3+mn2 log n) time. (Recently, a combina-
torial algorithm with the same time complexity was given by Berger, Gritzmann,
and de Vries [9].) Golynski and Horton [10] then reduced the required time com-
plexity of Horton’s algorithm [5] to O(mωn) time, where ω can be any constant
such that multiplying two k × k matrices can be done in O(kω) time.2 Based on
de Pina’s approach [8], Kavitha, Mehlhorn, Michail, and Paluch [12–14] gave an
O(m2n + mn2 log n)-time algorithm. Mehlhorn and Michail [1] then gave an ap-
proach which runs in O(m2n/ logn+mn2) time. Mehlhorn and Michail [15] also
addressed the implementation issues of the above algorithms. The best currently
known algorithm, due to Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [16],
runs in expected O(mω) time.

Algorithms for finding near minimum cycle bases of G are also investigated
in the literature. For any ε > 0, Kavitha, Mehlhorn, Michail, and Paluch [12, 13]
gave a (1+ε)-approximation algorithm that runs in O(mnωε−1 log(ε−1W )) time,
where W is the largest edge weight in G. For any integer k > 1, Kavitha,
Mehlhorn, and Michail [14, 17] presented a (2k−1)-approximation algorithm run-
ning in expected O(kmn1+2/k+mn(1+1/k)(ω−1)) time or deterministic O(n3+2/k)
time. Moreover, Mehlhorn and Michail [1] gave a 2-approximation algorithm that
runs in expected O(m2

√
n/ logn+n2m+mω) time and a (2k−1)-approximation

algorithm, for any integer k > 1, that runs in O(n3+2/k/ log n + n3+1/k) time.
Various graph structures have been exploited for the MCB problem in the

literature [16, 18–25]. Among which the results of Hartvigsen and Mardon [24]
and Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [16] seem to be the only
algorithms that handle special graphs with edge weights. Specifically, Hartvigsen
and Mardon [24] gave an O(n2 log n)-time algorithm for planar G, which was im-
proved to O(n2) time by Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [16],
recently. In the present article, we focus on outerplanar G with edge weights.
As shown in Figure 1, even if the edges of G have distinct weights, G may have

1 Several researchers [6, 7] incorrectly claimed to solve the problem in polynomial
time.

2 Coppersmith and Winograd [11] proved that ω < 2.376.
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a

aaa

aaa

b b b b

Fig. 2. If b � a, then this n-node outerplanar graph has a unique MCB with Θ(n2)
edges

more than one MCB. As summarized in the next theorem, we obtain an al-
gorithm that is optimal in time and space. Our result extends the O(n)-time
algorithm of Leydold and Stadler [25] for unweighted outerplanar G.

Theorem 1. Given an n-node edge-weighted outerplanar graph G, an O(n)-
space representation Z(C) of a minimum cycle basis C of G can be computed
from G in O(n) time such that each cycle in C can be determined from Z(C) in
O(1) time per edge.

Although our result is presented only for undirected G, according to [16, Theo-
rem 7], the MCB obtained by our algorithm found is also directed, weakly fun-
damental, totally unimodular, and integral [4]. Therefore, our result also works
for directed outerplanar graph G.

The running time of our algorithm is linear in the size of input and output,
but we have to point out that some G may have Θ(n2) edges in its unique MCB.
For instance, consider the case that G is as depicted in Figure 2 with b & a.
Let � = n

2 − 1. G has exactly � edges with weight b. Every cycle of G contains
at least one edge with weight b. Moreover, there are exactly � cycles of G that
contain exactly one edge with weight b. One can verify that these � cycles, which
contains Θ(n2) edges, form the unique MCB of G.

The rest of the paper is organized as follows. Section 2 gives the basics. Sec-
tion 3 gives our algorithm. Section 4 concludes the paper.

2 Basics

For the rest of the paper, let G be the input 2-connected outerplanar graph
equipped with an outerplanar embedding. All nodes of G belong to the external
boundary of G in the given embedding. An edge of G is external if it belongs to
the external boundary of G. An edge of G is internal if it does not belong to the
external boundary of G. For any subgraph H of G, let w(H) denote the sum of
edge weights in H .

2.1 Lex Short Cycles

For any set S, let |S| denote the number of elements in S. If S is totally ordered,
let min(S) denote the minimum element in S. Let the nodes of G form an
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Fig. 3. An outerplanar graph with three tight edges (bh, ch, and ce) and three loose
edges (bj, hj, and cg)

arbitrary but fixed total order. For any subgraph H of G, let V (H) denote the
node set of H and let E(H) denote the edge set of H . For any nodes u and v of
G, a u-v path of G is a path of G with endpoints u and v. A u-v path P of G
is lex shortest [24] in G if P satisfies one of the following disjoint conditions for
any u-v path P ′ of G other than P :

1. w(P ) < w(P ′),
2. w(P ) = w(P ′) and |E(P )| < |E(P ′)|,
3. w(P ) = w(P ′), |E(P )| = |E(P ′)|, and min(V (P ) \ V (P ′)) < min(V (P ′) \

V (P )).

As noted by Hartvigsen and Mardon [24, Proposition 4.1], there is a unique lex
shortest path of G between any two distinct nodes. Let P (uv) denote the lex
shortest u-v path of G. Clearly, w(uv) ≥ w(P (uv)) holds for any edge uv of G.
Moreover, w(uv) = w(P (uv)) if and only if uv = P (uv).

Lemma 1 (Hartvigsen and Mardon [24, Proposition 4.3]). It takes O(n)
time to compute an edge weight ŵ from the original edge weight w such that
P (uv) is the unique shortest u-v path of G with respect to ŵ.

A cycle C is lex short [24] in G if C contains P (xy) for any two distinct nodes
x and y in C.

Lemma 2 (Hartvigsen and Mardon [24, Proposition 4.5]). There is an
MCB C of G such that each cycle in C is lex short.

2.2 Tight Cycles and Loose Cycles

An internal edge uv of G is tight if w(uv) = w(P (uv)). An internal edge uv of
G is loose if w(uv) > w(P (uv)). For instance, if G is as shown in Figure 3, then
G has three tight edges (bh, ch, and ce) and three loose edges (bj, jh, and cg).
One can verify that P (uv) does not contain any loose edge of G, since otherwise
P (uv) can be shortened by replacing that loose edge, say, xy with P (xy).
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Fig. 4. The tight cycles of the outerplanar graph shown in Figure 3

Lemma 3. It takes O(n) time to classify the internal edges of G into tight and
loose edges.

Proof. We first obtain the weight function ŵ ensured by Lemma 1 in O(n) time.
According to Frederickson and Janardan [26, Theorem 3.2], it takes O(n) time
to determine for all edges uv of G whether uv belongs to the shortest u-v path
of G with respect to ŵ. If uv belongs to the shortest u-v path of G with respect
to ŵ, then uv is tight; otherwise, uv is loose. Therefore, the lemma holds.

A cycle C of G is tight if

– each edge of C is either external or tight; and
– each edge interior of C is loose.

If G has k tight edges, then these tight edges and the external boundary of
G form k + 1 bounded regions, each of whose boundaries is a tight cycle. For
instance, if G is as shown in Figure 3, then edges bh, ce and ch are the tight
edges of G. Therefore, as shown in Figure 4, 〈a, b, h, i, j〉, 〈b, c, h〉, 〈c, d, e〉, and
〈c, e, f, g, h〉 are the tight cycles of G.

A cycle C of G is loose if C contains a loose edge uv such that C = uv∪P (uv).
By the uniqueness of lex shortest u-v path and the fact that P (uv) cannot contain
any loose edge, we know that there cannot be two distinct loose cycles containing
the same loose edge uv. Therefore, if G has � loose edges, then G has exactly �
loose cycles. For instance, if G is as shown in Figure 3, then edges bj, cg, and
hj are the loose edges. Therefore, as shown in Figure 5, 〈a, b, j〉, 〈a, b, h, j〉, and
〈c, g, h〉 are the loose cycles of G.

Let T consist of the tight cycles of G. Let L consist of the loose cycles of G.
Clearly, T and L are disjoint. Let

C = T ∪ L.
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Fig. 5. The loose cycles of the outerplanar graph shown in Figure 3

Lemma 4. C is an MCB of G. Moreover, C is exactly the set of lex short cycles
of G.

Proof. G has m − n internal edges. Suppose that k of them are tight and the
other m−n− k are loose. Therefore, C consists of the k +1 tight cycles and the
m−n− k loose cycles of G. We first prove that each lex short cycle C has to be
a member of C.

– For the case that C has no loose edge, i.e., C consists of the tight and the
external edges, we show that C is tight by ensuring that any edge ab interior
of C has to be loose. Edge ab, which is interior of C, cannot be an external
edge. If ab is tight, then P (ab) = ab, a contradiction to the assumption that
C is lex short.

– For the case that C contains some loose edge uv, it follows from the definition
of lex short cycle that C contains P (uv). Since uv is loose, P (uv) does not
contain uv. As a result, C = uv ∪ P (uv). Thus, C is a loose cycle.

It follows that G has at most m − n + 1 lex short cycles. Since each MCB of G
has exactly m − n + 1 cycles, the lemma follows from Lemma 2.

3 Our Algorithm

Let H be the outerplane graph obtained from G by deleting its loose edges. It
follows from Lemma 3 that H can be obtained in O(n) time. The boundaries
of the internal faces of H are the tight cycles. Therefore, the tight cycles of G
can be obtained in O(n) time. Let Tk denote the k-th cycle of T. Let Tk(i, j)
denote the path of Tk starting from the i-th node of Tk to the j-th node of Tk

in clockwise order, when i 
= j.

3.1 The Compact Representation for Tight Cycles

Let Z(T) be an array of node lists, where the k-th list keeps the nodes of Tk in
clockwise order. For instance, if G is as shown in Figure 3, then
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Z(T) = 〈T1, T2, T3, T4〉, (1)

where T1 = 〈c, d, e〉, T2 = 〈c, e, f, g, h〉, T3 = 〈b, c, h〉, T4 = 〈a, b, h, i, j〉.
Lemma 5

1. Z(T) takes O(n) space.
2. It takes O(n) time to compute Z(T) from G.
3. For any indices i, j, and k, the path Tk(i, j) can be determined from Z(T)

in O(1) time per edge.

Proof. The lemma follows immediately from the definition of Z(T).

3.2 The Compact Representation for Loose Cycles

Let Z(L) be an array of triples, one for each loose edge of G. Suppose that the
y-th loose edge uv is enclosed by Tk. Let i and j be the indices such that the
i-th (respectively, j-th) node of Tk in Z(T) is u (respectively, v). By definition
of tight cycle, P (uv) is either Tk(i, j) or Tk(j, i). If P (uv) = Tk(i, j), then let the
y-th entry of Z(L) be (i, j, k); otherwise let the y-th entry of Z(L) be (j, i, k). For
instance, if G is as shown in Figure 3 and Z(T) is as shown in Equation (1), then

Z(L) = 〈(4, 1, 2), (5, 2, 4), (5, 3, 4)〉.

Lemma 6

1. Z(L) takes O(n) space.
2. It takes O(n) time to compute Z(L) from G.
3. For each index y, the y-th loose cycle of G can be obtained from Z(T) and

Z(L) in O(1) time per edge.

Proof. The first statement is straightforward. The third statement follows im-
mediately from the definition of Z(L) and Lemma 5(3).

The rest of the proof proves the second statement. We first obtain the weight
function ŵ ensured by Lemma 1 in O(n) time. For each index k, it takes time
linear in the size of Tk to determine ŵ(Tk) and ŵ(Tk(1, t)) for all indices t.
Therefore, it takes O(n) time to come up with a data structure, from which the
value of ŵ(Tk(i, j)) for any indices i, j, ad k can be determined in O(1) time.

For each index k, it takes time linear in the size of Tk, with the help of
Lemma 3, to recognize the internal loose edges enclosed by Tk. Therefore, it
takes O(n) time to compute a data structure, from which it takes O(1) time to
determine for each index y the indices i, j, and k such that

– Tk encloses the y-th loose edge and
– the endpoints of the y-th loose edge are the i-th and j-th nodes of Tk.

As a result, for each index y, it takes O(1) time to determine which one of Tk(i, j)
and Tk(j, i) is the lex shortest path between the endpoints of the y-th loose edge.
Specifically,

– if ŵ(Tk(i, j)) < ŵ(Tk(j, i)), then the y-th entry of Z(L) is (i, j, k);
– if ŵ(Tk(i, j)) > ŵ(Tk(j, i)), then the y-th entry of Z(L) is (j, i, k).

Thus, the second statement holds.
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3.3 Proving Theorem 1

Proof. Let Z(C) consist of Z(T) and Z(L). By Lemmas 5(1) and 6(1), Z(C)
takes O(n) space. By Lemmas 5(2) and 6(2), Z(C) can be computed from G
in O(n) time. By Lemmas 5(3) and 6(3), each cycle C in C can be computed
from Z(C) in O(1) time per edge. It follows from Lemma 4 that the theorem is
proved.

4 Concluding Remarks

Exploiting structures of larger classes of special graphs with edge weights for the
MCB problems is an interesting direction for future work.
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Abstract. We study the classical Bandwidth problem from the view-
point of parameterized algorithms. In the Bandwidth problem we are
given a graph G = (V, E) together with a positive integer k, and asked
whether there is an bijective function β : {1, . . . , n} → V such that for
every edge uv ∈ E, |β−1(u) − β−1(v)| ≤ k. The problem is notoriously
hard, and it is known to be NP-complete even on very restricted sub-
classes of trees. The best known algorithm for Bandwidth for small
values of k is the celebrated algorithm by Saxe [SIAM Journal on Alge-
braic and Discrete Methods, 1980 ], which runs in time 2O(k)nk+1. In a
seminal paper, Bodlaender, Fellows and Hallet [STOC 1994 ] ruled out
the existence of an algorithm with running time of the form f(k)nO(1)

for any function f even for trees, unless the entire W-hierarchy collapses.
We initiate the search for classes of graphs where Bandwidth is fixed

parameter tractable (FPT), that is, solvable in time f(k)nO(1) for some
function f . In this paper we present an algorithm with running time
2O(k log k)n2 for Bandwidth on AT-free graphs, a well-studied graph
class that contains interval, permutation, and cocomparability graphs.
Our result is the first non-trivial FPT algorithm for Bandwidth on a
graph class where the problem remains NP-complete.

1 Introduction

The bandwidth of a graph G is the smallest integer b such that there is an bijective
function β : {1, . . . , n} → V , also called a layout for G, such that for every edge
uv ∈ E, |β−1(u)− β−1(v)| ≤ b. Given a graph G and an integer k, Bandwidth

asks whether the bandwidth of G is at most k. The problem arises in sparse
matrix computations, where given an n × n matrix A and an integer k, the
goal is to decide whether there is a permutation matrix P such that PAPT is a
matrix whose all non-zero entries lie within the k diagonals on either side of the
main diagonal. Standard matrix operations like inversion and multiplication as
well as Gaussian elimination can be sped up considerably if the input matrix A
can be transformed into a matrix PAPT of small bandwidth [10].
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Bandwidth is one of the most well-known and extensively studied graph
layout problems [9]. The Bandwidth problem is NP-complete [21] and remains
NP-complete even on very restricted subclasses of trees, like caterpillars of hair
length at most 3 [18]. Furthermore, the bandwidth of a graph is NP-hard to
approximate within a constant factor for trees [2]. Polynomial-time algorithms
for the exact computation of bandwidth are known for a few graph classes in-
cluding caterpillars with hair length at most 2 [1], cographs [23], interval graphs
[14] and bipartite permutation graphs [12]. A classical algorithm by Saxe [22]
solves Bandwidth in time 2O(k)nk+1, which is polynomial when k is a constant.
However, as the value of k grows, the exponent of the polynomial grows with it.
A natural question is whether Bandwidth can be solved in time f(k)nc where
c is a constant independent of k. This amounts to asking whether Bandwidth

is fixed parameter tractable.
Parameterized complexity is a two-dimensional generalization of “P vs. NP”

where, in addition to the overall input size n, one studies how a secondary mea-
surement that captures additional relevant information affects the computational
complexity of the problem in question. Parameterized decision problems are de-
fined by specifying the input, the parameter and the question to be answered.
The two-dimensional analogue of P is solvability within a time bound of f(k)nc,
where n is the total input size, k is the parameter, f is some computable function,
and c is a constant that does not depend on k or n. A parameterized problem
that can be solved in such time is termed fixed-parameter tractable (FPT). There
is a hierarchy of intractable parameterized problem classes above FPT, the main
ones being:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P ] ⊆ XP .

The principal analogue of the classical intractability class NP is W[1], which
is a strong analogue, because a fundamental problem complete for W[1] is the
k-Step Halting Problem for Nondeterministic Turing Machines with
unlimited nondeterminism and alphabet size — this completeness result provides
an analogue of Cook’s Theorem in classical complexity. Thus a parameterized
problem that is hard for W[1] is unlikely to be fixed parameter tractable. For
general background on the theory see the textbooks by Downey and Fellows [7],
Flum and Grohe [11] and Niedermeier [19].

In a seminal paper, Bodlaender, Fellows and Hallet showed that Bandwidth

is hard for W[t] for every t ≥ 1, even for trees [3]. This rules out the existence of
an FPT algorithm for Bandwidth unless the entire W-hierarchy collapses. The
hardness result in [3] indicates that the tractable cases for Bandwidth seem to
be few and far between. Here, we initiate the search for classes of graphs where
Bandwidth is fixed parameter tractable.

For the graph classes for which polynomial time algorithms are known, it has
been proved that Bandwidth becomes NP-complete (or its complexity remains
unknown) on slightly larger graph classes. Therefore it is natural to investigate
the parameterized complexity of Bandwidth on these larger classes of graphs.
In this paper we present an algorithm with running time 2O(k log k)n2 for Band-

width on AT-free graphs. A graph is AT-free if for every triple of pairwise
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Fig. 1. A graph class inclusion diagram with the classical complexity of Bandwidth

on these graph classes

non-adjacent vertices, the neighborhood of one of them separates the two others.
The class of AT-free graphs contains various well-known graph classes, like inter-
val, permutation, trapezoid, and cocomparability graphs [4]. While Bandwidth

is polynomial-time solvable on interval graphs [14] and well-studied subclasses
of permutation graphs [23,12] it is NP-complete on cocomparability graphs and
hence on AT-free graphs [16]. For permutation graphs, the complexity of Band-

width is a well-known open problem. Most natural superclasses of AT-free
graphs contain trees, and thus the hardness result in [3] rules out an FPT al-
gorithm for Bandwidth on these classes. Thus our FPT algorithm on AT-free
graphs essentially settles the parameterized complexity of Bandwidth on the
chain of natural graph classes above the polynomial cases (Figure 1).

Our algorithm is based on structural properties of AT-free graphs and their
relation to interval graphs. The principal idea is to combine layouts for small
subgraphs of the input graph to a layout for the whole graph. This approach can
be described as sweeping a small window over a layout. For arbitrary graphs,
there is no information about the relationship between the vertices in the win-
dow. For AT-free graphs, however, we are able to show that we can restrict to
windows of vertices that have small distance to a common vertex in the input
AT-free graph. This enables us to restrict the number of considered windows
and to establish the claimed FPT running time of our algorithm.

2 Definitions and Notation

In this paper, we mainly consider simple finite undirected graphs. However, as
an auxiliary structure, we also define a directed graph. By “graph”, we always
mean undirected graph, and by “digraph”, we mean a directed graph.

For a graph G = (V, E), we denote the vertex and edge set of G by respectively
V = V (G) and E = E(G), with n = |V |. Edges of a graph are denoted as uv, and
if uv is an edge of G, we call u and v adjacent. The neighborhood of a vertex u
is the set of vertices that are adjacent to u and is denoted as NG(u). For two
vertices u, v ∈ V , a u, v-path of G of length r is a sequence (u0, . . . , ur) of distinct
vertices where u0 = u, ur = v and uiui+1 ∈ E for 0 ≤ i < r. The distance of u
and v in G, denoted by dG(u, v), is the smallest length of a u, v-path in G. For
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a vertex u of G and an integer � ≥ 1, the ball around u of radius �, BG(u, �),
is the set of vertices different from u that are at distance at most � to u in G.
Formally, BG(u, �) = {x 
= u : dG(u, x) ≤ �}. A graph G is connected if there is a
u, v-path in G for every vertex pair u, v. A set of vertices is a clique if its vertices
are pairwise adjacent. The square of G is G2 = (V, {uv : 1 ≤ dG(u, v) ≤ 2}).

For a set S ⊆ V , the subgraph of G induced by S, denoted by G[S], has
vertex set S and all edges of G that have both their endpoints in S. By G\S, we
denote G[V \S]. A graph G is a subgraph (not necessarily induced) of a graph H
if V (G) ⊆ V (H) and E(G) ⊆ E(H). In this case, we write G ⊆ H . A connected
component of G is a maximal connected induced subgraph of G.

For a graph G, a layout β (or vertex ordering) is a bijective function from
{1, . . . , n} to V . We also write β as 〈β(1), . . . , β(n)〉. For a vertex pair u, v of
G, the distance between u and v in β is dβ(u, v) = |β−1(u) − β−1(v)|. We write
u �β v if β−1(u) ≤ β−1(v) and u ≺β v if β−1(u) < β−1(v). The leftmost and
rightmost vertex in β are respectively β(1) and β(n). For an integer k ≥ 1, we
call β a k-layout for G if for every edge uv of G, dβ(u, v) ≤ k.

The bandwidth of G, bw(G), is the smallest integer b such that G has a b-
layout. A minimum bandwidth layout for G is a k-layout for G with k = bw(G).
Observe that for any two graphs G and H with G ⊆ H , bw(G) ≤ bw(H).

If β is a layout for G and � is between 1 and n, then every i between 1 and
n − � + 1 defines an �-window of β: 〈β(i), . . . , β(i + � − 1)〉. Informally, an �-
window is a portion of β containing exactly � consecutive vertices. Vertices β(i)
and β(i + � − 1) are called respectively left and right vertex of the �-window.

Layouts of sets of vertices are defined analogously to layouts for graphs. Let
U, U ′ ⊆ V and let β and β′ be layouts of respectively U and U ′. Let U ∩U ′ 
= ∅
and let 1 ≤ t ≤ |U | be smallest with β(t) ∈ U ′. If β(t + i) = β′(i + 1) for all 0 ≤
i ≤ |U |−t then β•β′ is the layout 〈β(1), . . . , β(|U |), β′(|U ′|−t+2), . . . , β′(|U ′|)〉;
otherwise, if the condition is violated, β • β′ is not defined. Informally, β • β′ is
the concatenation of β and β′ by overlapping in the common part. Note that the
• operator satisfies the associativity law.

In this paper, we study AT-free graphs and subclasses of AT-free graphs. A
set {u, v, w} of three pairwise non-adjacent vertices of a graph is called asteroidal
triple, AT for short, if for any pair of the vertices there is a path between these
two vertices avoiding the neighborhood of the third vertex. A graph that has no
asteroidal triple is called AT-free. For more information on structural properties
of AT-free graphs we refer to [4,5].

Finally, a cycle in a digraph G is a sequence (u1, . . . , ur) of distinct vertices
where (ur, u1) and (u1, u2), . . . , (ur−1, ur) are arcs of G. A digraph without cycles
is called acyclic.

3 Preliminary and Auxiliary Results on Bandwidth

The following observation will be important for the running time of our algo-
rithm. The result is easy to establish from the fact that a graph of bandwidth
at most k cannot have a vertex of degree more than 2k.
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Lemma 1. For an arbitrary graph G = (V, E), |E| ≤ bw(G) · |V |.

A graph H is an interval graph if its vertices can be assigned closed intervals of
the real line such that two vertices of H are adjacent if and only if the assigned
intervals have a non-empty intersection. For an arbitrary graph G, an interval
completion of G is an interval graph H on vertex set V (G) with E(G) ⊆ E(H).
If there is no interval completion H ′ of G with E(H ′) ⊂ E(H) then H is a
minimal interval completion of G.

An interval graph is a proper interval graph if there is an interval representa-
tion of it where no interval completely contains another interval. For an arbitrary
graph G, a proper interval completion of G is a proper interval graph H on vertex
set V (G) with E(G) ⊆ E(H).

Lemma 2 ([13]). For any integer k ≥ 0, a graph G has a proper interval
completion H of maximum clique size at most k + 1 if and only if bw(G) ≤ k.

From Lemma 2 it follows that any minimum bandwidth layout β for G defines
a proper interval completion of it in the following way. For every edge uv of G,
make the set of vertices between (including) u and v in β into a clique by adding
the necessary missing edges.

Lemma 3. For every graph G, there is a minimal interval completion H of G
with bw(G) = bw(H).

Proof. Let β be a minimum bandwidth layout for G. Then, β defines a proper
interval completion H ′ of G, where bw(G) = bw(H ′). Since H ′ is an interval
graph, there is a minimal interval completion H of G with G ⊆ H ⊆ H ′ and
bw(H) = bw(G). �	

An alternative characterization of interval graphs is that a graph G is an interval
graph if and only if G has a vertex ordering σ such that for all vertex triples
u, v, w of G with u ≺σ v ≺σ w, uw ∈ E(G) implies vw ∈ E(G) [20]. Such a
vertex ordering is called an interval ordering.

Theorem 1 ([8]). Let H be an interval graph with interval ordering σ. There
is a minimum bandwidth layout β for H such that for every pair u, v of non-
adjacent vertices of H, u ≺σ v implies u ≺β v.

Lemma 4. Let H be an interval graph. There is a minimum bandwidth layout β
for H with the property: for every vertex pair u, v of H, dβ(u, v) ≥ dH(u, v)− 2.

Proof. Let σ be an interval ordering for H . Let β be a minimum bandwidth
layout for H with the property of Theorem 1 with respect to σ. We show that β
satisfies the lemma. Let u, v be a vertex pair of H . If dH(u, v) ≤ 3, the lemma
trivially holds. Let dH(u, v) ≥ 4. Without loss of generality, we can assume
u ≺σ v. Let (x0, . . . , xr) be a shortest u, v-path of H , where x0 = u and xr = v.
If there is 1 ≤ i ≤ r − 2 with xi−1 ≺σ v ≺σ xi then v is adjacent to xi by the
properties of interval orderings, contradicting the choice of the shortest path.
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If there is 1 ≤ i ≤ r − 1 with xi ≺σ u ≺σ xi+1 then u and xi+1 are adjacent,
which again gives a contradiction. Thus, u ≺σ xi ≺σ v for all 1 ≤ i ≤ r − 2.
Since x2, . . . , xr−2 are non-adjacent to u and v, Theorem 1 for β implies that
u ≺β xi ≺β v for all 2 ≤ i ≤ r − 2. Hence, dβ(u, v) ≥ r − 2 = dH(u, v) − 2. �	

Lemma 5. Let G be a connected graph and β a k-layout for G, where k ≥ 1.
Let U be the vertices of a (k + 2)-window of β with a and b the respectively left
and right vertex. Then, G \ U has at most 2k connected components, and for
every connected component C of G\U , the vertices of C are either all to the left
of a or all to the right of b in β.

Proof. Since there is no edge uv of G with u ≺β a ≺β b ≺β v by β being a
k-layout and dβ(a, b) = k + 1, no connected component of G \ U has vertices
to the left of a and to the right of b in β. Since G is a connected graph, every
connected component of G \ U has a vertex with a neighbor in U . Thus, every
connected component of G \ U has a vertex to the left of a at distance (with
respect to β) at most k to a or to the right of b at distance at most k to b in β.
Hence there can be at most 2k connected components in G \ U . �	

Lemma 6. Let G be a graph and let β be a k-layout for G, where k ≥ 1. For
every vertex a of G and every integer � ≥ 1, |BG(a, �)| ≤ 2� · k.

Proof. Let c and d be the respectively leftmost and rightmost vertex from
BG(a, �) in β. Since dβ(c, a) ≤ � · k and dβ(a, d) ≤ � · k it follows that dβ(c, d) ≤
2� · k. Since all vertices from BG(a, �) are between c and d in β, the bound of
the lemma follows. Note that by definition a /∈ BG(a, �). �	

4 Bandwidth of AT-Free Graphs

Combining the results of [16] and [17], we obtain the following:

Theorem 2 ([16,17]). Let G be an AT-free graph. For every minimal interval
completion H of G, H ⊆ G2.

We use this fact to restrict the number of (k + 2)-windows to be considered by
our algorithm.

Lemma 7. For a connected AT-free graph G with bw(G) ≤ k, there is a k-
layout β that satisfies the following. Let U be the vertices of a (k + 2)-window of
β with left vertex a. For every vertex x ∈ U , dG(a, x) ≤ 2k + 6.

Proof. Let H be a minimal interval completion of G with bw(H) = bw(G); H
exists due to Lemma 3. By Theorem 2 dH(u, v) ≥ 1

2 · dG(u, v) for every vertex
pair u, v of G. Let β be a minimum bandwidth layout for H with the property
of Lemma 4. Then, for every vertex pair u, v of G, dβ(u, v) + 2 ≥ dH(u, v) ≥
1
2dG(u, v), i.e., dβ(u, v) ≥ 1

2dG(u, v)−2. Let U be the vertices of a (k+2)-window
of β with left vertex a. Since dβ(a, x) ≤ k + 1 for every x ∈ U , it follows that
dG(a, x) ≤ 2k + 6. �	
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We construct a digraph to encode all feasible k-layouts. Let k ≥ 1 and let
G = (V, E) be a connected AT-free graph on n ≥ k +3 vertices. Note that every
graph on at most k + 1 vertices has bandwidth at most k, and every graph on
k+2 vertices has bandwidth at most k if and only if the graph has a pair of non-
adjacent vertices. For a vertex u of G, we say that u has few close neighbors if
|BG(u, 2k+6)| ≤ 2k ·(2k+6). Let a be a vertex of G that has few close neighbors.
An a-bag is a tuple (C1, γ, C2) where C1, C2 ⊆ V such that U = V \ (C1 ∪ C2) and
C1, C2, γ have the following properties:

– {a} ⊆ U ⊆ BG(a, 2k + 6) ∪ {a} and |U | = k + 2;
– γ is a layout of U where a is the leftmost vertex;
– let b be the rightmost vertex in γ, a has no neighbor in C2 ∪ {b}, and b has

no neighbor in C1 ∪ {a};
– G \ U has at most 2k connected components, and

for every connected component C of G \U , either V (C) ⊆ C1 or V (C) ⊆ C2.

Lemma 8. For every vertex a of G where a has few close neighbors, the number
of a-bags is at most

(2k·(2k+6)
k+1

)
· (k + 1)! · 22k ≤ 2O(k log k).

Proof. Let a be a vertex of G with few close neighbors. Since |BG(a, 2k + 6)| ≤
2k · (2k + 6), there are at most

(2k·(2k+6)
k+1

)
subsets of BG(a, 2k + 6) of size k + 1.

Let U be such a subset. There are (k + 1)! possible layouts of U . And since
G\(U ∪{a}) has at most 2k connected components according to the definition of
an a-bag, there are at most 22k different partitions of the connected components
of G \ (U ∪ {a}) into a left and a right set. �	

The auxiliary digraph that we will define has a vertex for every bag and arcs
between bags representing the fact that one bag can follow another bag in a
minimum bandwidth layout. We now describe the construction of the auxiliary
digraph aux(G, k). The digraph aux(G, k) has a vertex for every a-bag where
a ∈ V has few close neighbors, a source vertex S and a sink vertex T . The
vertices of aux(G, k) corresponding to a-bags are labeled with these a-bags. For
two vertices u and u′ of aux(G, k) such that u 
= u′ and u, u′ 
∈ {S, T } with u
labeled with an a-bag (C1, γ, C2) and u′ labeled with an a′-bag (C′1, γ′, C′2), with
U = V \ (C1 ∪ C2) and U ′ = V \ (C′1 ∪ C′2), the digraph contains the arc (u, u′) if
and only if the bags satisfy one of the following two conditions:

1) C1 ⊂ C′1 ⊂ (C1 ∪ U) and C′2 = ∅ and γ • γ′ is k-layout for G[U ∪ U ′]
2) |U ∩U ′| = 1 and C′1 = C1∪(U \U ′) and γ •γ′ is k-layout for G[U ∪U ′].

Note that, by the definition of the • operator for layouts, the end of layout γ is
equal to the beginning of layout γ′. For condition 2, this means that the rightmost
vertex in γ is equal to the leftmost vertex in γ′. To complete the definition of
aux(G, k), add all arcs (S, u) with u labeled with a bag of the type (∅, γ, C2) and
all arcs (u′, T ) with u′ labeled with a bag of the type (C′1, γ′, ∅).

Lemma 9. The auxiliary digraph aux(G, k) is acyclic.
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Proof. Suppose that aux(G, k) contains a cycle (u(1), . . . , u(r)). Let (C(i)
1 , γ(i), C(i)

2 )
be the bag that u(i) is labeled with, for 1 ≤ i ≤ r. According to the definition of
aux(G, k), it holds that C(1)

1 ⊂ · · · ⊂ C(r)
1 ⊂ C(1)

1 . This yields a contradiction. �	

The proof of the next lemma will appear in the full version of the paper.

Lemma 10. The auxiliary digraph aux(G, k) has an S, T -path if and only if
bw(G) ≤ k. Furthermore, every S, T -path of aux(G, k) defines a k-layout for G.

For the algorithm in the proof of the following theorem, we assume the input
graph to be given in adjacency list representation.

Theorem 3. For given an AT-free graph G and an integer k ≥ 1, it can be
decided in 2O(k log k)n2 time whether bw(G) ≤ k.

Proof. Let k ≥ 1. Let G = (V, E) be an AT-free graph. Since bw(G) ≤ k if and
only if bw(C) ≤ k for every connected component C of G, the algorithm to be
described below is to run on every connected component of G. By these consider-
ations, we can assume that the input graph G to our algorithm is connected. The
algorithm is: if |E| > k · |V | or if a vertex has more than 2k neighbors then reject,
otherwise, compute aux(G, k), with the distinguished source and sink vertices S
and T , and accept if and only if aux(G, k) contains an S, T -path. Correctness
follows from Lemmata 1, 6, and 10.

The running time of the algorithm is mainly determined by the generation
of aux(G, k). Let a be a vertex of G. Since every vertex of G has at most 2k
neighbors, it can be checked in time O(k3) whether vertex a has few neigh-
bors and, if so, to compute BG(a, 2k + 6). In time 2O(k log k)n, all a-bags can
be listed due to Lemma 8. Determining the left side and right side connected
components of a single bag takes time O(kn), and writing down a single a-bag
takes time O(n). In total, the vertices of aux(G, k) together with the labels can
be listed in 2O(k log k)n2 time. Note that aux(G, k) has 2O(k log k)n vertices. Let
u be a vertex of aux(G, k) labeled with an a-bag (C1, γ, C2). If C2 
= ∅, then
all arcs from u go to vertices x that are labeled with a b-bag, where b is the
rightmost vertex in γ in case |C2| ≥ k + 1 or is uniquely determined in γ from
the size of C2. Hence, for every vertex of aux(G, k) there are at most 2O(k log k)

vertices to check, and each check takes O(n) time because of the left and right
side connected components. Hence, in overall 2O(k log k)n2 time, aux(G, k) can be
generated, and it has 2O(k log k)n vertices and arcs. Since verifying the existence
of an S, T -path in aux(G, k) takes 2O(k log k)n time, this concludes the running
time analysis for our algorithm. �	

5 Concluding Remarks

Our algorithm guesses layouts of small sets of vertices and concatenates them
to create a layout for the whole graph. The running time of the algorithm relies
on the fact that the considered sets of vertices are of special type, namely that
it suffices to consider vertices that are at small distance to a common vertex.
Correctness of this restriction follows from the result that distances in minimal
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interval completions of AT-free graphs provide a constant-factor approximation
of the distances in the graph. Thus, we can generalize our algorithm to graph
classes with the same property. Which other graph class C has this property:
there is constant c such that for every graph G from C and every minimal interval
completion H of G, dG(u, v) ≤ c · dH(u, v) for all vertex pairs u, v of G?

Classes of graphs of bounded diameter certainly have this property. These are
classes of dense graphs. For such classes of dense graphs, the problem becomes
trivial, as we show in the following. For a graph G, the diameter of G, denoted
by diam(G), is the maximum distance between a vertex pair of G.

Lemma 11. For an arbitrary connected graph G = (V, E), |V | ≤ 1 + diam(G) ·
bw(G).

Proof. Let β be a minimum bandwidth layout for G. Let a and b be the re-
spectively leftmost and rightmost vertex in β. Then, |V | − 1 = dβ(a, b) ≤
diam(G) · bw(G). �	
In other words, for a class of graphs of bounded diameter, there is only a finite
number of graphs of bounded bandwidth. Thus, for such graph classes, deciding
whether bw(G) ≤ k for given graph G is trivial when k is fixed. If k is part of
the input, we can apply the currently best known exact algorithm for comput-
ing bandwidth by Cygan and Pilipczuk, with running time O(4.473n) [6], and
obtain a O(4.473dk)-time algorithm for deciding whether bw(G) ≤ k for a given
(connected) graph G with diam(G) ≤ d and integer k. Examples of such graphs
are Pd+1-free graphs, in particular split graphs and cobipartite graphs, which are
well-studied classes of P5-free graphs. The bandwidth problem is NP-complete
when restricted to split and cobipartite graphs [15,16].

We conclude the paper with a few concrete open problems.

– Does there exist an FPT algorithm for Bandwidth on AT-free graphs run-
ning in time 2O(k)nO(1)? An algorithm with this running time would be
interesting even for cocomparability graphs.

– Can bandwidth be FPT-approximated on trees? That is, is there an algo-
rithm that given a tree T and integer k, runs in time f(k)nO(1) and either
correctly answers that bw(T ) > k or outputs a g(k)-layout for T for some
function g.

– What is the parameterized complexity of Bandwidth on caterpillars with
hairlength c, for fixed constant c ≥ 3?
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Abstract. In the Π-Cluster Editing problem, one is given an undi-
rected graph G, a density measure Π , and an integer k ≥ 0, and needs
to decide whether it is possible to transform G by editing (deleting and
inserting) at most k edges into a dense cluster graph. Herein, a dense clus-
ter graph is a graph in which every connected component K = (VK , EK)
satisfies Π . The well-studied Cluster Editing problem is a special
case of this problem with Π :=“being a clique”. In this work, we con-
sider three other density measures that generalize cliques: 1) having
at most s missing edges (s-defective cliques), 2) having average degree
at least |VK | − s (average-s-plexes), and 3) having average degree at
least μ · (|VK | − 1) (μ-cliques), where s and μ are a fixed integer and a
fixed rational number, respectively. We first show that the Π-Cluster

Editing problem is NP-complete for all three density measures. Then, we
study the fixed-parameter tractability of the three clustering problems,
showing that the first two problems are fixed-parameter tractable with
respect to the parameter (s, k) and that the third problem is W[1]-hard
with respect to the parameter k for 0 < μ < 1.

1 Introduction

Graph-based data clustering is an important tool for analyzing real-world data,
ranging from biological to social network data. In such applications, data items
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are represented as vertices, and there is an edge between two vertices iff the
interrelation between the two corresponding data items exceeds some threshold
value. A clustering with respect to such a graph means a partition of the vertices
into dense subgraphs, also called clusters, such that there are few edges between
the clusters. When formulated as a graph modification problem, one thus asks for
a minimum-cardinality set of edge modifications, such that the resulting graph
is a graph in which every connected component is a cluster. More precisely, the
algorithmic task can be formalized as follows:

Π-Cluster Editing:
Input: An undirected graph G = (V,E), a density measure Π , and an
integer k ≥ 0.
Task: Find a set of at most k edge modifications to transform G into
a Π-cluster graph, that is, a graph in which every connected component
satisfies Π .

Herein, an edge modification is to insert or delete an edge. Analogously, one
defines Π-Cluster Deletion by allowing only edge deletions and Π-Cluster

Addition by allowing only edge insertions.
One of the most prominent problems in this context is the NP-hard Cluster

Editing problem (also known as Correlation Clustering) [2, 16], where the
required density measure is Π :=“being a clique”. Cluster Editing finds ap-
plications in various fields, such as computational biology [3] and machine learn-
ing [16], and has been intensively studied from the viewpoints of polynomial-time
approximability as well as parameterized algorithmics. In terms of approximabil-
ity, the currently best known approximation factor is 2.5 [17]. Cluster Editing

can be solved in O(1.83k + |E|) time [3] and several studies concerning provably
efficient and effective preprocessing by data reduction have been performed [8,
11]. Successful experimental studies of the parameterized algorithms for Clus-

ter Editing have been conducted mainly in the context of computational biol-
ogy [3, 6]. The related Cluster Deletion problem is also NP-hard [2].

The density requirement of being cliques has been often criticized for its overly
restrictive nature and modeling disadvantages [5, 15]. In this work, we attempt
to chart the tractability borderlines of Π-Cluster Editing when the density
requirement is relaxed. Therefore, we consider three relaxed density measures,
namely, s-defective cliques, average-s-plexes, and μ-cliques. The corresponding
modification problems are s-Defective Clique Editing, Average-s-Plex

Editing, and μ-Clique Editing. We study the classical and the parameter-
ized complexity of the aforementioned problems. The proposed density measures
may provide more realistic models for practical applications and fixed-parameter
tractability (FPT) results can serve as a first step in a series of algorithmic im-
provements, eventually leading to applicability in practice, as it was the case for
Cluster Editing [3, 6, 8, 11]. An overview of our results is given in Table 1.
Note that for all three density measures the polynomial-time solvability of the
addition problem can be easily seen and is included only for the sake of com-
pleteness. In the following, we give the exact definitions of the density measures
studied in this work, point to related work, and describe our results.
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Table 1. The complexity of the problems considered in this work. For s-defective
cliques and average-s-plexes, the considered parameter is (s, k), for μ-cliques, the con-
sidered parameter is k.

Deletion Editing Addition

s-Defective Clique NP-complete (Thm. 1)
FPT (Thm. 3)

NP-complete (Thm. 1)
FPT (Thm. 3)

∈ P

Average-s-Plex NP-complete (Thm. 4)
FPT (Thm. 5)

NP-complete (Thm. 4)
FPT (Thm. 5)

∈ P

μ-Clique NP-complete (Thm. 7) W[1]-hard (Thm. 6) ∈ P

Defective Cliques. The concept of defective cliques has been used in biological
networks to represent a clique with exactly one edge missing [18]. Here, we
generalize this notion1 by allowing up to s missing edges: A graph G = (V,E) is
called an s-defective clique, if G is connected and |E| ≥ |V |·(|V |−1)/2−s. On the
negative side, we prove that s-Defective Clique Deletion and Editing are
NP-complete. On the positive side however, we show that s-defective cliques can
be characterized by forbidden subgraphs of size at most 2(s+1), thus showing the
fixed-parameter tractability of s-Defective Clique Deletion and Editing

with respect to the parameter (s, k).

Average-s-Plexes. With average-s-plexes, we propose a density measure that
concerns the average degree of a graph G = (V,E), which is defined as d̄ =
2|E|/|V |. We call a connected graph G = (V,E) an average-s-plex if the average
degree d̄ of G is at least |V |− s for an integer 1 ≤ s ≤ |V |. This density measure
is a relaxation of the s-plex notion, which demands that the minimum degree of
a graph G = (V,E) is |V | − s. s-Plexes find applications for example in social
network analysis [15]. For s-plexes, the clustering problem s-Plex Editing has
been previously shown to be NP-hard but fixed-parameter tractable with respect
to the parameter (s, k) [12]. Here, we complement this result by showing that
Average-s-Plex Deletion and Editing are also NP-hard as well as fixed-
parameter tractable with respect to the parameter (s, k). The fixed-parameter
tractability result is achieved by a reduction to a more general problem and a
subsequent polynomial-time data reduction for the general problem that pro-
duces a graph with at most 4k2 + 8sk vertices.

μ-Cliques. With this density measure, we capture the ratio of edges in a graph
versus the number of edges in a complete graph of the same size. More precisely,
the density of a graph G = (V,E) is defined as 2|E|/(|V |(|V | − 1)). A connected
graph G = (V,E) is then called a μ-clique for a rational constant 0 ≤ μ ≤
1 if the density of G is at least μ. We assume that μ is represented by two
constant integers a, b such that μ = a/b (note that a and b are not part of
the input). Observe that for μ = 0 every graph is a μ-clique, and that a graph
is a 1-clique iff it is a clique. The μ-clique concept was studied for example

1 Note that Yu et al. [18] introduced a different generalization of defective cliques
that is more restrictive than the one considered here.
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by Abello et al. [1] and is sometimes also referred to as μ-dense graph [13].
We show that—in contrast to s-Defective Clique Editing and Average-s-
Plex Editing—μ-Clique Editing is W[1]-hard and thus presumably fixed-
parameter intractable with respect to the parameter k for any fixed 0 < μ < 1.
Note that for μ = 1, the problem is equivalent to Cluster Editing and is thus
fixed-parameter tractable. For μ-Clique Deletion we show the NP-hardness,
the parameterized complexity remains open.

Preliminaries. We only consider undirected graphs G = (V,E), where n := |V |
and m := |E|. The (open) neighborhood N(v) of a vertex v ∈ V is the set of
vertices that are adjacent to v in G. The degree of a vertex v, denoted by deg(v),
is the cardinality of N(v). For a set U of vertices, N(U) :=

⋃
v∈U N(v) \ U . We

use N [v] to denote the closed neighborhood of v, that is, N [v] := N(v)∪{v}. For
a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the vertex
set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G− V ′ as an
abbreviation for G[V \ V ′] and for a vertex v ∈ V let G − v denote G− {v}. A
vertex v ∈ V (G) is called a cut-vertex if G− v has more connected components
than G. For a graph G = (V,E) let G := (V,E) with E := {{u, v} | u, v ∈
V ∧ u 
= v ∧ {u, v} 
∈ E} denote the complement graph of G.

A parameterized problem is fixed-parameter tractable (FPT) with respect to
a parameter k, if there exists an algorithm solving the problem in time f(k) ·
nO(1), where n denotes the overall input size and f is a computable function.
Downey and Fellows [7] developed a formal framework to show fixed-parameter
intractability; the basic complexity class for fixed-parameter intractability is
called W [1] and there is good reason to believe that W [1]-hard problems are
not FPT [7, 14].

Due to lack of space, some proofs are deferred to the full version.

2 Defective Cliques

First, we focus on the s-Defective Clique Editing problem. A graph is called
an s-defective clique graph if every connected component forms an s-defective
clique. An edge {u, v} ∈ E is called a missing edge of G. The following theorem
can be obtained by reductions from Cluster Deletion and Editing.

Theorem 1. s-Defective Clique Deletion and Editing are NP-complete.

If we delete an arbitrary vertex of an s-defective clique graph, then clearly the
resulting graph is still an s-defective clique graph. A graph property that is closed
under the operation of deleting vertices (and hence, taking induced subgraphs)
is called hereditary. It is well known that hereditary graph properties can be
described by forbidden induced subgraphs [10]. This means that there exists a
set F of graphs such that a given graph G is an s-defective clique graph iff G
is F -free, that is, G does not contain any graph from F as induced subgraph. A
forbidden induced subgraph is minimal if each of its proper induced subgraphs
is an s-defective clique graph. Clearly, a graph is an s-defective clique graph iff
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it does not contain any minimal forbidden induced subgraph. Next, we show
that, for s ≥ 1, every minimal forbidden subgraph of s-defective clique graphs
contains at most 2(s+1) vertices. Note that for s = 0 the only forbidden induced
subgraph is a path on 3 vertices.

Theorem 2. For s ≥ 1, every minimal forbidden induced subgraph of s-defective
clique graphs contains at most 2(s + 1) vertices. Given a graph that is not an
s-defective clique graph, a minimal forbidden induced subgraph can be found
in O(nm) time.

Proof. Assume towards a contradiction that there exists a minimal forbidden
subgraph G = (V,E) with |V | > 2(s + 1). Clearly, we can assume that G is
connected, since otherwise we can keep one connected component that is not an
s-defective clique and delete all other connected components.

First, we consider the case when G contains a cut-vertex v. Let U denote a set
of s+2 vertices which together with v induce a connected graph G′ := G[U∪{v}]
and v remains a cut-vertex in G′. We show that G′ is not an s-defective clique
graph, a contradiction to the fact that G is minimal (note that s + 3 ≤ 2s + 2
for s ≥ 1). Let U1, . . . , U� denote the connected components of G′ − v. It is not
hard to see that there are at least 1

2

∑�
i=1 |Ui| · (|U \Ui|) > s edges missing in G′,

and, hence, G′ is not an s-defective clique graph.
In the following, we assume that G does not contain any cut-vertex. Moreover,

we can assume that no vertex of G is adjacent to all other vertices of G, since
otherwise we can delete it to get a connected graph that has the same number
of missing edges as G, thus contradicting the minimality of G. Hence, there are
more than s + 1 missing edges in G, since every vertex is incident to at least
one missing edge. Let v be an arbitrary vertex of G and let A := V \ N [v].
Since the deletion of v results in an s-defective clique graph, it follows that
in G − v there are at most s missing edges. Hence, there exists a vertex u that
is adjacent to all vertices of G − v. Clearly, u ∈ A, since, otherwise, u would
be adjacent to all vertices in G. Then, the deletion of u reduces the number of
missing edges by one. Thus, G − u is connected and has at least s + 1 missing
edges, and, hence, is not an s-defective clique graph, contradicting the fact that G
is minimal.

To find a minimal forbidden induced subgraph proceed as follows. Given a
graph G = (V,E) that is not an s-defective clique graph we check for every v ∈ V
whether G − v is an s-defective clique graph in O(n + m) time and delete v if
not. It is not hard to observe that we have to consider every vertex at most once.
Hence, the overall running time is O(nm). �	

The forbidden subgraph characterization given in Theorem 2 directly leads to a
search tree algorithm for s-Defective Clique Editing [4].

Theorem 3. s-Defective CliqueEditing and Deletion are fixed-parameter
tractable with respect to the parameter (s, k).
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3 Average-s-Plexes

Here, we consider the Average-s-Plex Editing problem, showing its NP-
completeness and fixed-parameter tractability with respect to (s, k). To this end,
we need the following problem, called Equal-Size Clique Editing: Given an
undirected graph G = (V,E) and two integers k, d ≥ 0, decide whether it is
possible to transform G, by adding and deleting at most k edges, into a vertex-
disjoint union of d cliques which have the same size. The edge deletion version of
this problem allows only edge deletions. The NP-completeness of both problems
can be shown by a reduction from the well-known Clique problem. Reducing
from Equal-Size Clique Editing and Deletion we can show the following.

Theorem 4. Average-s-Plex Editing and Deletion are NP-complete.

In the following, we describe a fixed-parameter algorithm for Average-s-Plex

Editing parameterized by (s, k). Our algorithm consists of two main steps. First,
we reduce the original problem to a weighted version. Then, we show the fixed-
parameter tractability of the weighted version by describing two polynomial-
time data reduction rules that yield instances which contain at most 4k2 + 8sk
vertices. Note that being an average-s-plex graph is not a hereditary graph prop-
erty. Hence, the fixed-parameter tractability of Average-s-Plex Editing and
Average-s-Plex Deletion cannot be shown by a forbidden subgraph charac-
terization as in the case of s-Defective Clique Deletion and s-Defective

Clique Editing.
We begin with describing a weighted version of Average-s-Plex Editing.

We introduce three types of weights: two vertex weights and one edge weight.
The idea behind these weight types is the following: whenever there are two
vertices in G that cannot be separated by at most k edge modifications, we
can merge them into a new “super-vertex”, since it is clear that they end up
in the same connected component of the solution. We say that a super-vertex v
“comprises” a vertex u of the input graph, if u is merged into v. When doing so,
we must remember for each such super-vertex v:

- How many vertices of the input graph v comprises,
- How many edges there are between the vertices that v comprises, and
- For each vertex w outside v, how many vertices that v comprises are
adjacent to w.

The first two aspects can be remembered by introducing two weights for v, σ(v)
which keeps track of the number of vertices comprised by v, and δ(v) which keeps
track of the number of edges between these vertices. The third aspect can be
stored as the edge weight ω(e) for the edge e = {w, v}. Herein, we call a vertex
pair having no edge between them a non-edge. Then, edges have edge weights
at least one and non-edges have edge weight zero.

The “size” of a vertex set S is then simply defined as σ(S) :=
∑

v∈S σ(v). The
average degree d̄(Vi) of a connected component Vi can be computed as follows:
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d̄(Vi) =
2
∑

v∈Vi
δ(v) +

∑
v∈Vi

∑
u∈N(v) ω({u, v})

σ(Vi)
.

Similar to the definition of average-s-plex graphs, we say that a graph is a
weighted average-s-plex graph, if for each connected component Vi, the aver-
age degree d̄(Vi) is at least σ(Vi) − s. For modifying the weighted graph, we
allow the following modifications: increasing δ(u) by one for some u ∈ V , in-
creasing ω({u, v}) by one for some {u, v} ∈ E, decreasing ω({u, v}) by one for
some {u, v} ∈ E, deleting some {u, v} ∈ E with ω({u, v}) = 1, and adding some
edge {u, v} to E and setting ω({u, v}) := 1. Each of these operations has cost
one, and the overall cost of a modification set S is thus exactly |S|. The weighted
problem version is then defined as

Weighted Average-s-Plex Editing

Input: A graph G = (V,E), with two vertex-weight functions σ : V →
[1, n] and δ : V → [0, n2], an edge weight function ω : E → [1, n2], and a
nonnegative integer k.
Question: Is there a set of edge modifications S such that applying S
to G yields a weighted average-s-plex graph, and such that |S| ≤ k?

Observe that we can easily reduce an instance ((V,E), k) of Average-s-Plex

Editing to an instance of Weighted Average-s-Plex Editing, by set-
ting σ(v) := 1 and δ(v) := 0 for each v ∈ V , and ω({u, v}) := 1, if {u, v} ∈ E;
otherwise, ω({u, v}) := 0. Note that this reduction is parameter-preserving, that
is, s and k are not changed.

In the following, we present two data reduction rules for Weighted Average-

s-Plex Editing which (as we show in Theorem 5) yield instances that contain
at most 4k2 + 8sk vertices.

Rule 1. Remove connected components that are weighted average-s-plexesfrom G.

The rule is obviously correct, since no optimal solution modifies any edges inci-
dent to vertices of such a connected component.

The second reduction rule identifies two vertices that have a large common
neighborhood, or a heavy edge between them and “merges” these vertices into
a new “super-vertex”.

Rule 2. If G contains two vertices u and v such that ω({u, v}) > k or u and v
have more than k common neighbors, then remove u from G and set
− σ(v) := σ(u) + σ(v),
− δ(v) := δ(u) + δ(v) + ω({u, v}), and
− ω({v, w}) := ω({v, w}) + ω({u,w}) for each w ∈ V \ {u, v}.

To see the correctness of the rule, consider the following: we cannot separate u
and v using at most k edge modifications, they thus end up in the same connected
component. Hence, we can remove one of them, and store the information about
its adjacency in the vertex weights and edge weights of the other vertex.

With these two reduction rules we can show our main result of this section.
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Theorem 5. (Weighted) Average-s-Plex Editing and Deletion are
fixed-parameter tractable with respect to the parameter (s, k).

Proof. We first show that a yes-instance I of Weighted Average-s-Plex

Editing that is reduced with Rules 1 and 2 contains at most 4k2 +8sk vertices.
Let I be such a reduced instance, and let G be the input graph of I. Since I is a
yes-instance, there is a weighted average-s-plex graph G′ that can be obtained
from G by applying at most k edge modifications. We now bound the size of G′.
Herein, we call a vertex v “affected” if v is an endpoint of a modified edge.

First, since G is reduced with respect to Rule 1, there is at least one affected
vertex in each connected component of G′. Hence, there can be at most 2k
connected components in G′.

Next, we show that each connected component of G′ contains at most 2k+4s
vertices. Suppose towards a contradiction that there is a connected component Vi

of G′ such that |Vi| > 2k + 4s. Let u ∈ Vi be a vertex of maximum degree
in Vi. Since G′ is a weighted average-s-plex graph, the average vertex degree
in G′[Vi] is at least σ(Vi) − s. Since |Vi| ≤ σ(Vi), u must be adjacent to at
least |Vi| − s ≥ 2k + 3s vertices in G′[Vi]. We consider two cases for σ(v).

Case 1: σ(u) ≥ σ(Vi)/2. We show that the average degree of G′[Vi] is less
than σ(Vi)−s, contradicting the assumption that G′ is a weighted average-s-plex
graph. Since G is reduced with respect to Rule 2, there is no edge that has weight
at least k+ 1 in G. In G′, the edge weights of edges incident to u have increased
by at most k overall. Without loss of generality we can assume that the solution
distributes these edge weight increases evenly, since for the average degree of
a connected component only the overall edge and vertex weights are relevant.
The maximum edge weight of edges incident to u in G′ is thus at most k + 2,
since u has 2k + 3s neighbors in G′ and spreading the edge additions equally
leads to a weight increase of at most one for each edge. However, with σ(u) ≥
σ(Vi \ {u}) ≥ 2k + 3s, this means that for each edge incident to u, the edge
weight is at most σ(u)/2. This leads to a low average degree. More precisely, we
can bound the average degree of Vi as

d̄(Vi)
(∗)
<

2
(
σ(Vi)

2

)
− (σ(u)/2) · σ(Vi \ {u})

σ(Vi)
(∗∗)
<

2
(
σ(Vi)

2

)
− (σ(u)/2) · 4s
σ(Vi)

(∗∗∗)
≤

2
(
σ(Vi)

2

)
− (σ(Vi)/4) · 4s
σ(Vi)

< σ(Vi) − s.

Inequality (*) follows from assuming the (maximum-density) case that with ex-
ception of the edges incident to u all edges are present and have maximum pos-
sible weight, and the fact that the maximum edge weight of edges incident to u
is k+1, which means that for each such edge, a weight of at least σ(u)−(k+1) >
σ(u)/2 is “missing”. Inequality (**) follows from σ(Vi \ {u}) ≥ |Vi|− 1 > 4s and
inequality (***) follows from σ(u) ≥ σ(Vi)/2.
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Case 2: σ(u) < σ(Vi)/2. First, we show that there must be at least one other
vertex w ∈ Vi that has at least |Vi| − 2s neighbors in G′[Vi]. Suppose otherwise.
Then it holds for the average degree of G′[Vi] that

d̄
(∗)
≤ σ(u) · (σ(Vi) − 1) + (σ(Vi) − σ(u)) · (σ(Vi) − 2s− 1)

σ(Vi)

=
σ(Vi) · (σ(Vi) − 1) − 2s · (σ(Vi) − σ(u))

σ(Vi)
(∗∗)
<

σ(Vi) · (σ(Vi) − s)
σ(Vi)

.

Inequality (*) follows from assuming the (maximum-density) case that u is ad-
jacent to all vertices in Vi and that all edge and vertex weights have maximum
possible values. Inequality (**) follows from σ(Vi) − σ(u) > σ(Vi)/2. We have
thus shown that there is at least one vertex w that is adjacent to at least |Vi|−2s
vertices in G′. Since u has at least |Vi| − s neighbors in G′[Vi], there must be at
least |Vi| − 3s > 2k+ 4s− 3s = 2k + s vertices in G′[Vi] that are common neigh-
bors of u and w. Clearly, more than k+s of those vertices are common neighbors
of u and w in G. This contradicts that G is reduced with respect to Rule 2.

We have thus shown that a reduced yes-instance contains at most 4k2 + 8sk
vertices. We obtain a fixed-parameter algorithm for Weighted Average-s-
Plex Editing as follows. First we exhaustively apply the reduction rules, which
can clearly be done in polynomial time. If the reduced instance contains more
than 4k2 + 8sk vertices, then it is a no-instance. Otherwise, we can solve the
problem with running time only depending on s and k, for example by brute-
force generation of all possible partitions of the graph. The fixed-parameter
tractability of Average-s-Plex Editing, then directly follows from the de-
scribed reduction to Weighted Average-s-Plex Editing. �	

4 μ-Cliques

The main result of this section is that, in contrast to s-Defective Clique

Editing and Average-s-Plex Editing, μ-Clique Editing is fixed-parameter
intractable with respect to the number k of allowed edge modifications.

Theorem 6. For any fixed 0 < μ < 1, μ-Clique Editing is NP-complete and
W[1]-hard with respect to the number k of allowed edge modifications.

The reduction used in the proof of Theorem 6 does not work for the edge deletion
case. However, we can establish the NP-hardness of μ-Clique Deletion by a
reduction from the NP-complete Maximum Triangle Packing problem [9].

Theorem 7. For any fixed 0 < μ < 1, μ-Clique Deletion is NP-complete.

5 Outlook

There are numerous topics for future research, we only point out some of them.
For s-Defective Clique Editing and Average-s-Plex Editing clearly
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further algorithmic improvements are necessary. For instance, s-Defective

Clique Editing is still missing a non-trivial kernelization algorithm, whereas
for Average-s-Plex Editing a solution algorithm other than the brute-force
one that can be applied to the reduced instance is needed. As a next step, ex-
perimental studies should then be undertaken regarding the running time of the
algorithms and the quality of the produced clusterings. For μ-Clique Editing,
other parameterizations should be studied. Finally, the parameterized complex-
ity of μ-Clique Deletion remains open.
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Abstract. We provide a certifying algorithm for the problem of deciding whether
a P5-free graph is 3-colorable by showing there are exactly six finite graphs that
are P5-free and not 3-colorable and minimal with respect to this property.

1 Introduction

An algorithm is certifying if it returns with each output a simple and easily verifiable
certificate that the particular output is correct. For example, a certifying algorithm for
the bipartite graph recognition would return either a 2-coloring of the input graph prov-
ing that it is bipartite, or an odd cycle proving it is not bipartite. A certifying algorithm
for planarity would return a planar embedding or one of the two Kuratowski subgraphs.
The notion of certifying algorithm [8] was developed when researchers noticed that a
well known planarity testing program was incorrectly implemented. A certifying algo-
rithm is a desirable tool to guard against incorrect implementation of a particular algo-
rithm. In this paper, we give a certifying algorithm for the problem of deciding whether
a P5-free graph is 3-colorable. We will now discuss the background of this problem.

A class C of graphs is called hereditary if for each graph G in C, all induced sub-
graphs of G are also in C. Every hereditary class of graphs can be described by its
forbidden induced subgraphs, i.e. the unique set of minimal graphs which do not be-
long to the class. A comprehensive survey on coloring of graphs in hereditary classes
can be found in [11]. An important line of research on colorability of graphs in heredi-
tary classes deals with Pt-free graphs. The induced path on t vertices is called Pt, and
a graph is called Pt-free if it does not contain Pt as an induced subgraph.

It is known [13] that 5-COLORABILITY is NP-complete for P8-free graphs and [9] 4-
COLORABILITY is NP-complete for P9-free graphs. On the other hand, the
k-COLORABILITY problem can be solved in polynomial time for P4-free graphs (since
they are perfect). In [4] and [5], it is shown that k-COLORABILITY can be solved for
the class of P5-free graphs in polynomial time for every particular value of k. For
t = 6, 7, the complexity of the problem is generally unknown, except for the case

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 594–604, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Known complexities for k-colorability of Pt-free graphs

k\t 3 4 5 6 7 8 9 10 11 12 . . .
3 O(m) O(m) O(nα) O(mnα) ? ? ? ? ? ? . . .
4 O(m) O(m) P ? ? ? NPc NPc NPc NPc . . .
5 O(m) O(m) P ? ? NPc NPc NPc NPc NPc . . .
6 O(m) O(m) P ? ? NPc NPc NPc NPc NPc . . .
7 O(m) O(m) P ? ? NPc NPc NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of 3-COLORABILITY of P6-free graphs [12]. Known results on the k-COLORABILITY

problem in Pt-free graphs are summarized in Table 1 (n is the number of vertices in the
input graph, m the number of edges, and α is matrix multiplication exponent known to
satisfy 2 ≤ α < 2.376 [2]).

In this paper, we study the coloring problem for the class of P5-free graphs. This
class has proved resistant with respect to other graph problems. For instance, P5-free
graphs is the unique minimal class defined by a single forbidden induced subgraph
with unknown complexity of the MAXIMUM INDEPENDENT SET and MINIMUM INDE-
PENDENT DOMINATING SET problems. Many algorithmic problems are known to be
NP-hard in the class of P5-free graphs, for example DOMINATING SET [6] and CHRO-
MATIC NUMBER [7]. In contrast to the NP-hardness of finding the chromatic number
of a P5-free graph, it is known [4] that k-COLORABILITY can be solved in this class in
polynomial time for every particular value of k. This algorithm produces a k-coloring if
one exists, but does not produce an easily verifiable certificate when such coloring does
not exist. We are interested in finding a certificate for non-k-colorability of P5-free
graphs. For this purpose, we start with k = 3.

Besides [4], there are several polynomial-time algorithms for 3-coloring a P5-free
graph ([5,10,13]) but none of them is a certifying algorithm. In this paper, we obtain a
certifying algorithm for 3-coloring a P5-free graphs by proving there are a finite number
of minimally non-3-colorable P5-free graphs and each of these graphs is finite.

Theorem 1.1. A P5-free graph is 3-colorable if and only if it does not contain any of
the six graphs in Fig. 1 as a subgraph.

It is an easy matter to verify the graphs in Fig. 1 are not 3-colorable, the rest of the paper
involves proving the other direction of the theorem. In the last Section, we will discuss
open problems arising from our work.

2 Definition and Background

Let k and t be positive integers. An MNkPt is a graph G that (i) is not k-colorable and
is Pt-free and (ii) every proper subgraph of G is either k-colorable or has a Pt. We will
be interested specifically in the case where k = 3 and t = 5. We will use the following
notations. Let G be a simple undirected graph. A set S of vertices of G is dominating if
every vertex in G − S has a neighbor in S. A k-clique is a clique on k vertices. u ∼ v
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will mean vertex u is adjacent to vertex v. u � v will mean vertex u is not adjacent
to vertex v. For any vertex v, N(v) denotes the set of vertices that are adjacent to v.
We write G ∼= H to mean G is isomorphic to H . The clique number of G, denoted by
ω(G), is the number of vertices in a largest clique of G. The chromatic number of G,
denoted by χ(G), is the smallest number of colors needed to color the vertices of G. A
hole is an induced cycle with at least four vertices, and it is odd (or even) if it has odd
(or even) length. An anti-hole is the complement of a hole. A k-hole (k-anti-hole) is a
hole (anti-hole) on k vertices. A graph G is perfect if each induced subgraph H of G
has χ(G) = ω(G).

Theorem 2.1 (The Strong Perfect Graph Theorem [3]). A graph is perfect if and
only if it does not contain an odd hole or odd anti-hole as an induced subgraph.

Let G = {K4,W5, S1, S2, T, B} be the set of graphs in Fig. 1. We will denote these
graphs in the following way.

– P5(v1v2v3v4v5) means there is a P5 being v1, v2, v3, v4 and v5.
– K4(wxyz) means {w, x, y, z} form a K4.
– W5(v1v2v3v4v5, w) means v1, v2, v3, v4, v5 and w form a W5 where v1v2v3v4v5

form a 5-cycle and w is adjacent to every other vertex.
– S1(v1v2v3v4v5, u2, u5) means v1, v2, v3, v4, v5, u2, u5 form an S1 where v1 is the

only degree 4 vertex and N(v1) = {u5, u2, v5, v2}. Also N(v3) = {v4, v2, u2}
and N(v4) = {v3, v5, u5}, and v1v2v3v4v5 form a 5-cycle.

– S2(v1v2v3v4v5, w, x) means v1, v2, v3, v4, v5, w and x form an S2 where N(w) =
{v2, v3, v4, v5}, N(x) = {v1, v3, v4} and v1v2v3v4v5 form a 5-cycle.

– T (u1uAuBu2, v1vAvBv2, x1, x2) means a T graph is present as shown previously.
– B(w, u0u1u2u3u4u5, v0v1v2v3v4v5) means a B graph is present as shown

previously.

We will rely on the following result.

Theorem 2.2 ([1]). Every connected P5-free graph has dominating clique or P3.
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The following lemma is folklore.

Lemma 2.1 (The neighborhood lemma). Let G be a minimally non k-colorable graph.
If u and v are two non-adjacent vertices in G, then N(u) � N(v).

Proof. Assume N(u) ⊆ N(v). Then the graph G− v admits a k-coloring. By giving u
the color of v, we see that G is k-colorable, a contradiction. �	

The neighborhood lemma is used predominantly throughout this paper. Writing
N(v,w) → u will denote the fact that N(v) � N(w) by the neighborhood lemma
so there exists a vertex u where u ∼ v, but u � w.

The following fact is well-known and easy to establish.

Fact 2.1. In a minimally non k-colorable graph every vertex has degree at least k. �

3 Intermediate Results

In this section, we establish a number of intermediate results needed for proving the
main theorem.

Lemma 3.1. Let G be an MN3P5 graph with a 5-hole C = {v1, v2, v3, v4, v5} and a
vertex w adjacent to at least 4 vertices of C. Then G ∈ G.

Proof. If w is adjacent to all five vertices of C, then G clearly is isomorphic to W5.
Now, assume N(w) ∩ {v1, v2, v3, v4, v5} = {v2, v3, v4, v5}.

We have N(v1,w) → x.
Assume for the moment that x � v3, v4. We have

x ∼ v5, otherwise, we have P5(xv1v5v4v3).
x ∼ v2, otherwise, we have P5(xv1v2v3v4).

But then G contains S1(v1v2v3v4v5, x, w). This means x ∼ v3 or x ∼ v4. By sym-
metry, we may assume x ∼ v3. We have x ∼ v2 or x ∼ v4, otherwise, G contains
P5(xv1v2wv4). If x ∼ v2 then G properly contains S1(v1v2v3v4v5, x, w), a contradic-
tion. This means x ∼ v4; so G contains S2(v1v2v3v4v5, w, x) and G ∼= S2. �	

Theorem 3.1. Every MN3P5 graph different from K4 contains a 5-hole.

Proof. Let G be an MN3P5 graph different from a K4. We have ω(G) ≤ 3 and χ(G) ≥
4. Thus, G is not perfect. By Theorem 2.1, G contains an odd hole or an odd anti-hole
H . H cannot be a hole of size 7 or greater because G is P5-free. We may assume H is
an anti-hole of length at least seven, for otherwise we are done (observe that the hole
on five vertices is self-complementary). Let v1, v2, v3, v4, v5, v6, v7 be the cyclic order
of the hole in the complement of G. Then G properly contains S1(v4v6v3v5v2, v1, v7),
a contradiction. �	

Lemma 3.2. Let G be an MN3P5 graph that has a dominating clique {a, b, c}. Also
assume that there is a vertex v /∈ {a, b, c} adjacent to two vertices from {a, b, c}. Then
G ∈ G.
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Proof. The proof is by contradiction. Suppose that G /∈ G. We may assume v is ad-
jacent to b and c. We have v � a, otherwise, G contains K4(abcv). Through repeated
applications of the Neighborhood Lemma, we will eventually add nine vertices to G
to arrive at a contradiction. In the end, we will obtain the graph B (see Fig. 2 for the
order in which vertices are added). Each time we add a vertex we will consider its adja-
cency to the other vertices of the graph. In every case, the adjacency can be completely
determined at each step.
N(v,a) → v1.

• v1 ∼ c: since {a, b, c} is dominating, v1 is adjacent to either b or c. Without
loss of generality, assume v1 ∼ c.

• v1 � b: otherwise, G contains K4(bcvv1).
N(v1,b) → v2.

• v2 ∼ a: assume v2 � a. We have v2 ∼ v, otherwise,G containsP5(v2v1vba).
Also, v2 ∼ c since {a, b, c} is a dominating set. But then, G contains
K4(v1v2vc).

• v2 � c: otherwise, G contains W5(abvv1v2, c).
• v2 ∼ v: otherwise, c has four neighbors in the 5-hole v2abvv1 contradicting

Lemma 3.1.

N(v2, c) → v3.

• v3 ∼ b: assume v3 � b. We have v3 ∼ a since {a, b, c} is a dominating
set. We have v3 � v1, otherwise, G contains S1(vbav3v2, c, v1). But then G
contains P5(v3v2v1cb).

• v3 � v; otherwise, G contains W5(bcv1v2v3, v).
• v3 ∼ v1: otherwise, v has four neighbors in the 5-hole v3bcv1v2 contradict-

ing Lemma 3.1.
• v3 � a: otherwise G contains S1(v3acvv1, b, v2).

N(v3,v) → v4.

• v4 ∼ c: assume v4 � c. Then we have v4 ∼ v2, for otherwise G contains
P5(v4v3v2vc); v4 � v1, for otherwise G contains K4(v1v2v3v4); v4 � b,
for otherwise G contains S1(v1v2v4bc, v3, v); v4 ∼ a because {a, b, c} is
dominating. But then G contains P5(v4abvv1).
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• v4 � v1: for otherwise G contains W5(v4v3v2vc, v1).
• v4 � b: for otherwise, G contains S1(vv1v3v4b, v2, c).
• v4 � a: for otherwise, G contains P5(v4abvv1).
• v4 ∼ v2: for otherwise the vertex v1 has exactly four neighbors in the 5-hole
v4v3v2vc contradicting Lemma 3.1.

N(a,v) → v5.
• v5 � v3: Assume v5 ∼ v3. Then we have v5 ∼ v1, for otherwise G contains
P5(av5v3v1v); v5 � v2, for otherwise G contains K4(v1v2v3v5); v5 ∼ c, for
otherwise G contains P5(v5v3v2vc). But now G contains W5(v5cvv2v3, v1).

• v5 ∼ b: assume v5 � b. Then we have v5 ∼ v1, for otherwise G contains
P5(v5abvv1). But then c has four neighbors in the 5-hole v5abvv1 contradict-
ing Lemma 3.1.

• v5 � c: for otherwise G contains K4(abcv5).
• v5 ∼ v1: for otherwise G contains P5(v5acv1v3).
• v5 ∼ v4: for otherwise G contains P5(v3v4cav5).
• v5 � v2: for otherwise G contains S1(cvv2v5a, v1, b).

N(v5, c) → v6.
• v6 ∼ v: assume v6 � v. We have v6 ∼ a, for otherwise G contains
P5(v6v5acv); v6 � b, for otherwise G contains K4(abv5v6); v6 ∼ v1, for
otherwise, G contains P5(v6abvv1). But c has four neighbors in the 5-hole
v6abvv1 contradicting Lemma 3.1.

• v6 � b: for otherwise G contains W5(v5v6vca, b).
• v6 � v2: for otherwise G contains P5(v2v6v5bc).
• v6 ∼ v3: for otherwise G contains P5(v5v6vv2v3)
• v6 ∼ a: for otherwise G contains P5(v3v6v5ac).
• v6 � v1: for otherwise G contains S1(v6abcv, v5, v1).
• v6 � v4: for otherwise G contains T (v6av5b, v3v2v1v, v4, c).

N(v4,v1) → v7.
• v7 ∼ v: assume v7 � v. Then we have v7 ∼ v3, for otherwise G contains
P5(v7v4v3v1v); v7 � v2, for otherwiseG containsK4(v2v3v4v7); v7 ∼ c, for
otherwise G contains P5(v7v3v2vc). Now, G contains S1(v2vcv7v3, v1, v4).

• v7 � v2: for otherwise G contains W5(vv1v3v4v7, v2).
• v7 � v6: for otherwise G contains P5(v6v7v4v2v1).
• v7 ∼ a: for otherwise G contains P5(v4v7vv6a).
• v7 ∼ v3: for otherwise G contains P5(av7vv1v3).
• v7 � c: for otherwise G contains S1(v3v4cvv1, v7, v2).
• v7 � b: for otherwise G contains P5(v7bcv1v2).
• v7 � v5: for otherwise G contains T (av7v5v4, cvv1v2, b, v3).

N(v6,b) → v8.
• v8 ∼ c: assume v8 � c. Then we have v8 ∼ a because {a, b, c} is a dom-

inating set; v8 ∼ v5, for otherwise G contains P5(v8v6v5bc). But now, G
contains K4(av5v6v8).

• v8 � a: for otherwise G contains W5(v8v6v5bc, a).
• v8 � v1: for otherwise G contains P5(bav6v8v1).
• v8 ∼ v2: for otherwise G contains P5(v2v1cv8v6).
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• v8 ∼ v5: for otherwise G contains P5(v8v2v1v5b).
• v8 � v4: for otherwise G contains P5(v4v8v6ab).
• v8 � v: for otherwise G contains S1(bcv8v6a, v, v5).
• v8 � v3: for otherwise G contains T (v6av5b, v3v2v1v, v8, c).
• v8 ∼ v7: for otherwise G contains P5(v8v5bv3v7).

N(v8,a) → v9.

• v9 ∼ b: assume v9 � b. We have v9 ∼ v2, for otherwise G contains
P5(v9v8v2ab); v9 ∼ v6, for otherwise G contains P5(v9v8v6ab). This means
G contains T (v6v8v9v2, abcv, v5, v1).

• v9 ∼ v1: assume v9 � v1. We have v9 ∼ v2, for otherwise G contains
P5(v9bav2v1). This means G contains T (v2vv1c, v8v6v5a, v9, b).

• v9 ∼ v6: for otherwise G contains P5(v1v9bav6).
• v9 ∼ v7: for otherwise G contains P5(v1v9bav7).
• v9 ∼ v4: assume v9 � v4. Then we have v9 ∼ v2, for otherwise G contains
P5(v9bav2v4). This means G contains T (v6av5b, v9v2v1v, v8, c).

But this means G contains B(c, v5abv6v7v8, v2v1vv3v9v4), a contradiction. �	

Lemma 3.3. Let G be an MN3P5 with a dominating clique {a, b, c}. Let A = N(a) −
{b, c}, B = N(b) − {a, c} and C = N(c) − {a, b}. Suppose A, B and C are pairwise
disjoint. Then G ∈ G.

Proof. Some observations are necessary for this proof.

Observation 3.1. Let X and Y be two distinct elements of {A,B,C}. Let X ′ be a
component in X with at least two vertices, and y be a vertex in Y . Then either y is
adjacent to all vertices of X ′ or to no vertex of X ′.

Proof. Suppose the Observation is false. Then there are adjacent vertices v1, v2 ∈ X
such that y is adjacent to exactly one of v1, v2. Without loss of generality, we may
assume X = A and Y = B. Now, {c, b, y, v2, v1} induces a P5, a contradiction. �	

Observation 3.2. Every component in A, B or C is a single edge or one vertex.

Proof. Assume that one of A, B or C contains a vertex of degree 2. Without loss of
generality, assume there is such a vertex a0 ∈ A that is adjacent to two other distinct
vertices a1 and ax in A. Now we have a1 � ax, for otherwise G contains K4(a1axa0a).
The Neighborhood Lemma implies N(a1,ax) → a2 and N(ax, a1) → ay. Observa-
tion 3.1 implies a2, ay ∈ A. We have ay � a0, for otherwise G contains K4(aa0axay);
a2 � a0, for otherwise G contains K4(aa0a1a2); ay ∼ a2, for otherwise G contains
P5(ayaxa0a1a2). Then G contains W5(ayaxa0a1a2, a), a contradiction. �	

We continue the proof of the Lemma. Assume G /∈ G. Consider the case that two of A,
B or C contain an edge. Without loss of generality, assume A contains an edge a1a2 and
B contains an edge b1b2. If a vertex in {b1, b2} is adjacent to a vertex in {a1, a2} then by
Observation 3.1, G contains K4(a1a2b1b2), a contradiction. Suppose some vertex c0 ∈
C is adjacent to a vertex in {a1, a2, b1, b2}. We may assume c0 ∼ a1. By Observation
3.1, we have c0 ∼ a2. If c0 � bi (i = 1, 2) then G contains P5(bibcc0a1). So, c0
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is adjacent to all vertices of {a1, a2, b1, b2}. But now, G contains S1(c0a1abb1, a2, b2).
So, no vertex in C is adjacent to a vertex in {a1, a2, b1, b2}. By Fact 2.1 and Observation
3.2, there exists a vertex a3 ∈ A with b1, b2 ∼ a3 and a vertex b3 ∈ B with a1, a2 ∼ b3.
Also by Fact 2.1, C contains a vertex c0. We have a3 ∼ c0, for otherwise G contains
P5(a3b1bcc0); b3 ∼ c0, for otherwise G contains P5(b3a1acc0); a3 ∼ b3, for otherwise
G contains P5(b1a3c0b3a1). But now G contains T (aa1a2b3, bb1b2a3, c, c0) which is a
contradiction. So, at most one of A,B,C contains an edge.

If all of A,B,C is a stable set, then G is obviously 3-colorable. We may assume
B,C are stable sets, and A contains an edge. Now there must be one vertex b0 ∈
B with N(b0) contains two adjacent vertices in A. Otherwise, G admits a 3-coloring
f as follows. The vertices of C are colored with color 3. Now, for each edge in A,
its endpoints are arbitrarily colored with colors 1, 2. The remaining vertices of A are
colored with color 1. The vertices of B are colored with color 2 (no vertex of B is
adjacent to an endpoint of a edge of A by Observation 3.1), and let f(a) = 3, f(b) =
1, f(c) = 2. Thus, f is a 3-coloring which is a contradiction. Therefore, there is a vertex
b1 ∈ B adjacent to both endpoints in some edge ab1ab2 in A. By a similar argument,
there is a vertex c1 ∈ C adjacent to both endpoints in some edge ac1ac2.

Suppose that ab1ab2 and ac1ac2 are the same edge. For simplicity, write a1a2 =
ab1ab2 = ac1ac2. We have b1 � c1, for otherwise G contains K4(a1a2b1c1).

• N(b1,a) → c2. We have c2 ∈ C by the fact that B is an independent set.
• N(c1,a) → b2. We have b2 ∈ B by the fact that C is an independent set.
• b2, c2 � a1, a2. Otherwise, suppose b2 ∼ a1. Then by Observation 3.1, we

have b2 ∼ a2 so G contains K4(a1a2b2c1).
• b2 ∼ c2. Otherwise, G contains P5(c1b2bb1c2).

Now, G contains P5(b2c2caa1). Thus, ab1ab2 and ac1ac2 are distinct edges. We have
b1 � ac1, ac2 and c1 � ab1, ab2, for otherwise we are done by the previous case.
We have b1 ∼ c1, for otherwise G contains P5(b1ab1aac1c1). But now G contains
S1(ab1ab1b1c1ac1, ab2, ac2), a contradiction. �	

Lemma 3.4. Let G be an MN3P5 with a dominating clique {a, b, c}. Then G ∈ G.

Proof. If there is a vertex other than a, b and c adjacent to at least two of a, b or c then
by Lemma 3.2, G ∈ G. Otherwise, the conclusion follows from Lemma 3.3. �	

Lemma 3.5. Let G be an MN3P5 with a dominating clique {a, b} of size 2. Then
G ∈ G.

Proof. Assume G /∈ G. We may assume G contains no dominating 3-clique, for other-
wise we are done by Lemma 3.4. It follows that no vertex v is adjacent to both a, b.

By Theorem 3.1, there is 5-hole C = v1v2v3v4v5 in G because G 
= K4. Clearly C
cannot contain both a and b. WLOG, assume that |N(a) ∩ C| ≥ |N(b) ∩ C|. If b /∈ C
then since {a, b} is a dominating clique of G we have |N(a) ∩ C| ≥ 3. If b ∈ C, then
a must be adjacent to the 2 vertices in C not adjacent to b. Thus, since a ∼ b we also
have |N(a) ∩ C| ≥ 3. The case when |N(a) ∩ C| ≥ 4 is handled by Lemma 3.1, so
WLOG we may assume either N(a) ∩C = {v1, v2, v3} or N(a) ∩ C = {v1, v3, v4}.

Suppose N(a) ∩C = {v1, v2, v3}. Since {a, b} is a dominating clique, we have b 
∈
C and b ∼ v4, v5. Since no vertex is adjacent to both a and b, G containsP5(bv5v1v2v3),
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a contradiction. Now, we may assume N(a) ∩ C = {v1, v3, v4}. There exists a vertex
x with x � a, v3, v4, for otherwise {a, v3, v4} is dominating 3-clique. If x ∼ v5, then
x ∼ v2, for otherwise G contains P5(xv5v4v3v2); but now G contains P5(v2xv5v4a).
Thus, we have x � v5 and by symmetry x � v2. Since {a, b} is a dominating clique,
we have x ∼ b, and b ∼ v2, v5. Recall that no vertex is adjacent to both a, b. Now, G
contains P5(xbv5v4v3)whichisacontradiction. �	

Theorem 3.2. If G is an MN3P5 with a dominating clique then G ∈ G.

Proof. If G has a dominating clique of size one or two, then it has a dominating clique
of size 2 since G contains no isolated vertices. By Lemma 3.5, G ∈ G. If G has a
dominating clique of size 3, then Lemma 3.4 implies G ∈ G. If G has a dominating
clique of size 4 or more, then G contains a K4 so G = K4 ∈ G by minimality. �	

Lemma 3.6. Let G be an MN3P5 with a dominating 5-hole. Then G has a dominating
K3 or G ∈ G.

Proof. Let C = v1v2v3v4v5 be an induced 5-hole of G. Assume G does not have a
dominating clique. Let Xi be the set of vertices adjacent to vi−1 and vi+1 and not
adjacent to vi+2 and vi+3 with the subscript taken modulo 5, for i = 1, 2, 3, 4, 5. We
now prove every vertex of G belongs to exactly one Xi.

Consider a vertex w 
∈ C. By Lemma 3.1, we have 1 ≤ |N(w) ∩ C| ≤ 3. If w has
one neighbor in C, then G obviously contains a P5. Suppose w has two neighbors a, b
in C. If a ∼ b, then G obviously contains a P5. Otherwise, a and b have distance two on
C and so w belongs to some Xi. We may now assume w has three neighbors on C. If
these three neighbors are consecutive on C, then w belongs to some Xi. Now, we may
assume w ∼ v1, v3, v4. There is a vertex x with x � w, v4, v3, for otherwise {w, v4, v3}
is a dominating clique. Vertex x must have a neighbor in {v1, v2, v5} because C is a
dominating set. If x ∼ v5, then x ∼ v2, for otherwise G contains P5(xv5v4v3v2);
but now G contains P5(v2xv5v4w). Thus, we have x � v5 and by symmetry x � v2.
Now, we have x ∼ v1, and G contains P5(xv1v5v4v3). Thus, X1, X2, X3, X4, X5 is a
partition of V (G).

If there are nonadjacent vertices x1, x2 with x1 ∈ X1, x2 ∈ X2, then G contains
P5(x1v5v4v3x2). Thus, there are all possible edges between Xi and Xi+1 for all i.
If every Xi is a stable set, then G is obviously 3-colorable, a contradiction. So we
may assume WLOG X5 contains an edge ab. Then X1 is a stable set, for otherwise G
contains a K4 with one edge in X1 and one edge in X5. Similarly, X4 is a stable set. If
X2 contains an edge cd, then G contains S1(v1cv3v4a, d, b). If X3 contains an edge fg,
then G contains S1(v4fv2v1a, g, b). Thus, Xi is a stable set for i = 1, 2, 3, 4. Consider
the subgraph H of G induced by X5. If H contains an odd cycle D, then D ∪ {v1} is
a K4 or W5, or D contains a P5. Thus H is bipartite. By coloring X5 with colors 2,3,
X1 ∪ X4 with color 1, X2 with color 2, X3 with color 3, we see that G is 3-colorable,
a contradiction. �	

4 Proof of Theorem 1.1

We can now prove the main theorem.
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It is a routine matter to verify the “only if” part. We only need prove the “if” part.
Suppose G does not contain any of the graphs in Fig. 1 but is not 3-colorable. Then G
contains an induced subgraph that is minimally not 3-colorable. It follows that we may
assume G is a connected MN3P5 graphs. By Theorem 2.2, G contains a dominating
clique or P3. If G contains a dominating clique, then we are done by Theorem 3.2. So,
we may assume G contains no dominating clique and thus contains a dominating P3
with vertices v1, v2, v3 and edges v1v2, v2v3. There is a vertex v4 with v4 ∼ v3 and
v4 � v1, v2 since v1v2 is not a dominating edge. Similarly, there is a vertex v5 with
v5 ∼ v1 and v5 � v2, v3. We have v5 ∼ v4, for otherwise G contains a P5. Thus,
v1v2v3v4v5 is a dominating 5-hole of G, and we are done by Lemma 3.6. �

5 Conclusion and Open Problems

In this paper, we provide a certifying algorithm for the problem of 3-coloring a P5-graph
by showing there are exactly six finite minimally non-3-colorable graphs. Previously
known algorithms ([5,10,13]) provide a yes-certificate by constructing a 3-coloring if
one exists. Our algorithm provides a no-certificate by finding one of the six graphs of
Fig. 1. Since these graphs are finite, our algorithm runs in polynomial time. We do not
know if there is a fast algorithm running in, say, O(n4) to test if a graph contains one
of the six graphs of Fig. 1 as a subgraph. We leave this as an open problem.
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Abstract. For a connected graph G = (V, E), a subset U ⊆ V is called
a k-cut if U disconnects G, and the subgraph induced by U contains
exactly k (≥ 1) components. More specifically, a k-cut U is called a
(k, �)-cut if V \U induces a subgraph with exactly � (≥ 2) components.
We study two decision problems, called k-Cut and (k, �)-Cut, which
determine whether a graph G has a k-cut or (k, �)-cut, respectively. By
pinpointing a close relationship to graph contractibility problems we first
show that (k, �)-Cut is in P for k = 1 and any fixed constant � ≥ 2, while
the problem is NP-complete for any fixed pair k, � ≥ 2. We then prove
that k-Cut is in P for k = 1, and is NP-complete for any fixed k ≥ 2. On
the other hand, we present an FPT algorithm that solves (k, �)-Cut on
apex-minor-free graphs when parameterized by k + �. By modifying this
algorithm we can also show that k-Cut is in FPT (with parameter k) and
Disconnected Cut is solvable in polynomial time for apex-minor-free
graphs. The latter problem asks if a graph has a k-cut for some k ≥ 2.

1 Introduction

Graph connectivity is a fundamental graph-theoretic property that is well-studied
in the context of network robustness. In the literature several measures for graph
connectivity are known, such as requiring hamiltonicity, edge-disjoint spanning
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Fig. 1. A graph G with a disconnected cut V1 ∪ V3 that is also a 2-cut and a (2, 4)-cut
and a disconnected cut V2 ∪ V4 that is also a 4-cut and a (4, 2)-cut

trees, or edge- or vertex-cuts of sufficiently large size. Here, we study the prob-
lem of finding a vertex-cut, called a “disconnected cut” of a graph, such that
the cut itself is disconnected. As we shall see, this problem is strongly related to
several other graph problems such as biclique vertex-covers. We give all further
motivation later and first state our problem setting.

Let G = (V,E) be a connected simple graph. For a subset U ⊆ V , we denote
by G[U ] the subgraph of G induced by U . We say that U is a cut of G if U
disconnects G, that is, G[V \U ] contains at least two components. A cut U is
connected if G[U ] contains exactly one component, and disconnected if G[U ]
contains at least two components. We observe that G[U ] is a disconnected cut
if and only if G[V \U ] is a disconnected cut. In Fig.1, the subset V1 ∪ V3 is a
disconnected cut, and hence its complement V2 ∪ V4

(
= V \ (V1 ∪ V3)

)
is also a

disconnected cut. This leads to the decision problem Disconnected Cut which
asks if a connected graph G has a disconnected cut.

The complexity of Disconnected Cut is open. However, it is known that
the problem can be solved in polynomial time for some restricted graph classes,
such as graphs with bounded maximum degree, triangle-free graphs, and graphs
with a dominating edge (these include cographs) [10]. In particular, we mention
that every graph of diameter at least three has a disconnected cut [10].

Besides Disconnected Cut, we study two closely related problems in which
we wish to find a cut having a prespecified number of components. For a fixed
constant k ≥ 1, a k-cut of a connected graph G is a cut U of G such that
G[U ] contains exactly k components. More specifically, for a pair (k, �) of fixed
constants k ≥ 1 and � ≥ 2, a k-cut U is called a (k, �)-cut of G if G[V \U ] consists
of exactly � components. Note that a k-cut and a (k, �)-cut are connected cuts
if k = 1; otherwise (when k ≥ 2) they are disconnected cuts. It is obvious that,
for a fixed pair k, � ≥ 2, a (k, �)-cut U of G corresponds to an (�, k)-cut V \U of
G. For example, the disconnected cut V1 ∪V3 in Fig.1 is a 2-cut and a (2, 4)-cut,
while its complement V2 ∪ V4 is a 4-cut and a (4, 2)-cut. We study the following
two decision problems, where k and � are fixed, i.e., not part of the input. The
k-Cut problem asks if a connected graph has a k-cut. The (k, �)-Cut problem
asks if a connected graph has a (k, �)-cut.
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Our results and the paper organization. Our three main results are as fol-
lows. First, we show that Disconnected Cut is strongly related to several other
graph problems. This way we determine the computational complexity of (k, �)-
Cut. Second, we determine the computational complexity of k-Cut. Third, we
give an FPT algorithm that solves (k, �)-cut for apex-minor-free graphs when
parameterized by k + �. In the following, we explain our results in detail.

In Section 2 we define our terminology. Section 3 contains our first result.
We state our motivation for studying these three types of cut problems. We
then pinpoint relationships to other cut problems, and to graph homomorphism,
biclique vertex-cover and vertex coloring problems. We show a strong connec-
tion to graph contractibility problems. This way we prove that (k, �)-Cut is
polynomially solvable for k = 1, � ≥ 2, and is NP-complete otherwise.

Section 4 gives our second result: we classify the computational complexity
of k-Cut. For k = 1 this is equivalent to asking if a graph G has a connected
cut. We show that k-Cut is polynomially solvable for k = 1, while it becomes
NP-complete for every fixed constant k ≥ 2. Note that the result for (k, �)-Cut

in Section 3 does not imply this result, because � is fixed and the subgraph
obtained after removing a (k, �)-cut must consist of exactly � components.

In Section 5 we present our third result: an FPT algorithm that solves (k, �)-
Cut on apex-minor-free graphs when parameterized by k+ �. We also show that
k-Cut is FPT in k for apex-minor-free graphs, and that Disconnected Cut is
polynomially solvable for this class (which includes the class of planar graphs).

In Section 6 we state some further results and mention a number of open
problems that are related to chordal, claw-free and line graphs.

2 Preliminaries

The graphs we consider are undirected and without multiple edges. Unless stated
otherwise, they do not contain loops either. Let G = (V,E) be a graph. The
neighborhood of a vertex u ∈ V is N(u) = {v |uv ∈ E}. Two disjoint nonempty
subsets U,U ′ ⊂ V are adjacent if there exist u ∈ U and u′ ∈ U ′ with uu′ ∈
E. The distance dG(u, v) between two vertices u and v in G is the number of
edges in a shortest path between them. The diameter diam(G) is defined as
max{dG(u, v) | u, v ∈ V }.

Terms in Section 3. A diagonal coloring of G is a function c : V → {1, 2, 3, 4}
such that all four colors 1, 2, 3, 4 are used, and no edge has the colors 1, 3 or 2, 4
at its end-vertices. Note that a diagonal coloring does not have to be proper.

A model graph is a simple graph with two types of edges: solid and dotted
edges. Let H be a fixed model graph with vertex set {h1, . . . , hk}. An H-partition
of a graph G is a partition of VG into k (nonempty) sets V1, . . . , Vk such that for
all vertices u ∈ Vi, v ∈ Vj and for all 1 ≤ i < j ≤ k the following two conditions
hold. First, if hihj is a solid edge of H , then uv ∈ EG. Second, if hihj is a dotted
edge of H , then uv /∈ EG. Let 2K2 be the model graph with vertices h1, . . . , h4
and solid edges h1h3, h2h4, and 2S2 be the model graph with vertices h1, . . . , h4
and dotted edges h1h3, h2, h4.
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A homomorphism from a graph G to a graph H is a vertex mapping f :
VG → VH satisfying the property that f(u)f(v) ∈ EH whenever uv ∈ EG.
It is vertex-surjective if f(VG) = VH . Here we used the shorthand notation
f(S) = {f(u) | u ∈ S} for a subset S ⊆ V . It is called a compaction if f is
edge-surjective, i.e., for every edge xy ∈ EH with x 
= y there exists an edge
uv ∈ EG with f(u) = x and f(v) = y. We then say that G compacts to H .
For an induced subgraph H of G, a homomorphism f from G to H is called a
retraction if f(h) = h for all h ∈ VH . In that case we say that G retracts to H .

The edge contraction of an edge e = uv in a graph G removes the two end-
vertices u and v from G, and replaces them by a new vertex adjacent to precisely
those vertices to which u or v were adjacent. If H can be obtained from G by
a sequence of edge contractions, then G is contractible to H (or H-contractible).
This is equivalent to saying that G has a so-called H-witness structure W , which
is a partition of VG into |VH | sets W (h), called H-witness sets, such that each
W (h) induces a connected subgraph of G and for every two hi, hj ∈ VH , witness
sets W (hi) and W (hj) are adjacent in G if and only if hi and hj are adjacent
in H . Clearly, by contracting the vertices in the witness sets W (h) to a single
vertex for every h ∈ VH , we obtain the graph H . As an example, viewing each
component of each Vi in the graph G in Fig.1 as a witness set shows that G is
K2,4-contractible. In general, the witness sets W (h) might not be unique.

The cycle and path on n vertices are denoted by Cn and Pn, respectively. A
graph G is called reflexive if every vertex i in G has a loop ii. We denote the
reflexive cycle consisting of n vertices by Cn. A graph G = (V,E) is complete
p-partite if V can be partitioned into p independent sets V1, . . . , Vp such that
uv ∈ E if and only if u ∈ Vi and v ∈ Vj for some 1 ≤ i < j ≤ p. For p = 2, |V1| =
k, and |V2| = �, we speak of a biclique Kk,�.

Terms in Section 4. A hypergraph H is a pair (Q,S) consisting of a set Q =
{q1, . . . , qm}, called the vertices of H , and a set S = {S1, . . . , Sn} of nonempty
subsets of Q, called the hyperedges of H . With a hypergraph H = (Q,S) we
associate its incidence graph I = (Q,S, EI), which is a bipartite graph with
partition classes Q and S, where for any q ∈ Q,S ∈ S we have qS ∈ EI if and
only if q ∈ S. A 2-coloring of a hypergraph H = (Q,S) is a partition (Q1, Q2)
of Q such that Q1 ∩ Sj 
= ∅ and Q2 ∩ Sj 
= ∅ for 1 ≤ j ≤ n. The Hypergraph

2-Colorability problem asks whether a given hypergraph has a 2-coloring.
This problem, also known as Set Splitting, is NP-complete (cf. [11]).

Terms in Section 5. A connected graph G contains H as a minor if H can be
obtained from G by a sequence of edge deletions and edge contractions; otherwise
G is H-minor-free. A graph G which is not planar but has a vertex v such that
G \ v is a planar graph is called an apex. The edge subdivision of an edge e = uv
in a graph G removes e from G and replaces it by a new vertex w adjacent to u
and v. A subdivision of a graph G is a graph obtained from G after performing a
sequence of edge subdivisions. In Figure 2 three examples of an elementary wall
are given. A wall W of height h is a subdivision of an elementary wall of height
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Fig. 2. Elementary walls of height 2, 3, 4 with perimeter of length 14, 22, 30, resp.

h and has a unique planar embedding. A brick in W is a face cycle of length 6.
The unique face cycle of length greater than 6 is called the perimeter PW of W .

For a graph G with subgraph D, let ∂G(D) be the set of all vertices of D
incident to an edge in EG \ ED. A pair (X,Y ) of subsets of VG such that G =
G[X∪Y ] is called a separation of G of order |X∩Y |. Let G be a graph containing a
wall W with perimeter P . Let K ′ be the unique component of G\P that contains
W \ P . The graph K = K ′ ∪ P is called the compass of W in G. A layout of
K (with respect to the wall W in G) is a family (C,D1, . . . , Dm) of connected
subgraphs of K that satisfies the following six properties:

1. K = C ∪D1 ∪ · · · ∪Dm (m ≥ 0)
2. W ⊆ C
3. Y ⊆ X for each separation (X,Y ) of C of order ≤ 3 with VW ⊆ X
4. ∂G(Di) ⊆ VC for all 1 ≤ i ≤ m
5. |∂G(Di)| ≤ 3 for all 1 ≤ i ≤ m
6. ∂G(Di) 
= ∂G(Dj) for all 1 ≤ i < j ≤ m.

We define Ĉ as the graph obtained from C by adding, for i ∈ {1, . . . ,m}, a
new vertex di and all edges between vertices in ∂G(Di)∪ {di} (so ∂G(Di)∪ {di}
becomes a clique). We call Ĉ the core of the layout and D1, . . . , Dm its extensions.
The layout (C,D1, . . . , Dm) is flat if Ĉ is a planar graph. We call the wall W
flat (in G) if the compass of W has a flat layout.

A problem is fixed parameter tractable if an instance (I, k) can be solved
in time O(f(k)nc), where f denotes a computable function and c a constant
independent of k. The class FPT is the class of all fixed-parameter tractable
decision problems.

Terms in Section 6. A chordal graph is a graph with no induced cycles of
length larger than three. A claw-free graph is a graph that does not contain K1,3
as an induced subgraph. The line graph L(G) of a graph G with edges e1, . . . , ep

is the graph L(G) with vertices u1, . . . , up such that there is an edge between
any two vertices ui and uj if and only if ei and ej share one end-vertex in G.
Note that a line graph is claw-free.

3 Relationship to Other Problems

The Disconnected Cut problem can be formulated in several different ways
as shown in [10]. We summarize and extend them in the proposition below.
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Proposition 1. Leg G be a connected graph. Then the following statements are
equivalent.

• G has a disconnected cut.
• G has a diagonal coloring.
• G has a 2S2-partition.
• G allows a vertex-surjective homomorphism to C4.
• G has a spanning subgraph that consists of two bicliques.
• G has a 2K2-partition.

If diam(G) = 2, the above statements are also equivalent to

• G allows a compaction to C4.
• G is contractible to some biclique Kk,� for some k, � ≥ 2.

Proof. Below we only show that a graph G = (V,E) with diam(G) = 2 has a
disconnected cut if and only if G is contractible to Kk,� for some k, � ≥ 2. The
(straightforward) proofs of all other statements can be found in [10].

Let G = (V,E) be a graph with diam(G) = 2. Suppose G has a disconnected
cut U . Let X1, . . . , Xk be the components of G[U ] and let Y1, . . . , Y� be the
components of G[V \U ]. Suppose some Xi is not adjacent to some Yj . Then the
distance from a vertex of Xi to a vertex of Yi is at least three. This is not possible.
Hence, G is Kk,�-contractible with as witness sets the sets Xi for i = 1, . . . , k
and Yj for j = 1, . . . , �. Suppose G is Kk,�-contractible with witness structure
W . Let the partition classes of Kk,� be A = {a1, . . . , ak} and B = {b1, . . . , b�}.
Then W (a1) ∪ . . . ∪W (ak) is a disconnected cut of G. �	

We now describe the different frameworks related to the equivalent statements in
Proposition 1. As we shall see in all these problem settings the Disconnected

Cut problem pops up as a missing case (often the missing case).

1. Cut sets. In the literature, various kinds of cut sets have been studied. For
instance, a cut U of a graph G = (V,E) is a k-clique cut if G[U ] has a spanning
subgraph consisting of k complete graphs, a strict k-clique cut if G[U ] consists
of k components that are complete graphs, a stable cut if U is an independent
set and a matching cut if EG[U ] is a matching. The problem that asks whether
a graph has a k-clique cut is polynomially solvable for k = 1 [16] and k = 2 [4].
The latter paper also shows that deciding if a graph has a strict 2-clique cut
is polynomially solvable. On the other hand, the problems that asks whether a
graph has a stable cut [2] or a matching cut [5], respectively, are NP-complete.
Recently, the problem that asks if a graph has a stable cut of size at most k has
been shown to be in FPT [13].

2. H-partitions. The authors of [7] prove that the problem that asks if a graph
allows an H-partition can be solved in polynomial time for all fixed model graphs
H with at most four vertices, except for H = 2K2 or H = 2S2. From Proposi-
tion 1 it is clear that these two cases correspond exactly to the Disconnected

Cut problem. We note that the list version of the 2S2-problem (and conse-
quently the 2K2-problem) is NP-complete. This follows directly from a result
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of Hell and Feder [8] who show that the problem of deciding whether a graph
G retracts to C4 is NP-complete. A variant on H-partitions that allows empty
blocks Vi in an H-partition can be found in [9].

3. Compactions. We note that any edge-surjective homomorphism from a
graph G to a connected graph H is vertex-surjective (whereas the reverse is
not necessarily true). Vikas [15] showed that the C4-Compaction problem that
asks if there exists a compaction from a graph G to C4 is NP-complete. By a
modification of his proof, one can easily show that the C4-Compaction problem
stays NP-complete for the class of graphs of diameter three. Unfortunately, only
for graphs of diameter two, the C4-Compaction problem is equivalent to the
Disconnected Cut problem (cf. Proposition 1).

4. Contractibility. The H-Contractibility problem asks if a graph G is
H-contractible. A slight modification of the proof of Proposition 1 shows that a
graph with diameter two has an (k, �)-cut if and only if it is Kk,�-contractible
for k, � ≥ 2. Observe that the (1, �)-Cut problem is equivalent to the K1,�-
Contractibility problem for the class of all connected graphs. Brouwer &
Veldman [3] show that Kk,�-Contractibility is polynomially solvable for k =
1. For k, � ≥ 2, they show that it is NP-complete. As the gadget in their NP-
completeness reduction has diameter two, we obtain the following result.

Proposition 2. The (k, �)-Cut problem is in P for k = 1 and NP-complete,
even for the class of connected graphs of diameter two, for k, � ≥ 2.

5. Vertex-covers. The problem of deciding if a graph has has a spanning sub-
graph that consists of at most k mutually vertex-disjoint bicliques is called the
k-Biclique Vertex-Cover problem. It has applications in data mining, e-
commerce, information retrieval and network management. This problem is poly-
nomially solvable if k = 1 and NP-complete if k ≥ 3 [10]. The missing case is
k = 2 and Proposition 1 shows that this case is equivalent to the Disconnected

Cut problem. Due to Proposition 2 we can easily show the following.

Corollary 1. The problem of deciding if a graph has a spanning subgraph con-
sisting of two vertex-disjoint graphs, one of which is complete k-partite and the
other one is complete �-partite, is NP-complete for k, � ≥ 2.

4 Cuts with a Prespecified Number of Components

We determine the computational complexity of the k-Cut problem. Note that
we cannot obtain this result from Proposition 2. We omit its proof due to page
restrictions.

Theorem 1. The k-Cut problem is in P for k = 1 and NP-complete, even for
the class of connected graphs of diameter two, for k ≥ 2.
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5 Apex-Minor-Free Graphs

As K5 is an apex and a planar graph is K5-minor-free, a planar graph is an
example of an apex-minor free graph. For these graphs we prove that (k, �)-Cut

is fixed parameter tractable in k+�, that k-Cut is fixed parameter tractable in k,
and that Disconnected Cut is polynomially solvable. Here we apply a win-win
approach. From Theorem 2 below, which is a variant of the Trinity Lemma [14]
for apex-minor-free graphs, an apex-minor-free graph either has small treewidth
or a large wall. If the treewidth is small, we show that the problem is polynomially
solvable. If the graph has a large wall we show it always has a (k, l)-cut (k-cut, or
disconnected cut, resp.). We discuss each case separately and refer to [6] for the
definitions of tree decomposition and treewidth, as we do not need them here.

Theorem 2 ([12]). There exists a computable function f : N2 → N and an
algorithm that, given an apex H, a graph G, and a non-negative integer h, outputs
in polynomial time one of the following:

1. a tree decomposition of G of width at most f(|VH |, h), or
2. an H-minor of G, or
3. a wall of height ≥ h in G, and a flat layout (C,D1, . . . , Dm) of the compass

K of W in G such that the treewidth of each of the extensions D1, . . . , Dm

is at most f(|VH |, h).

First assume G = (V,E) has small treewidth. A seminal result of Courcelle [6]
is that in any class of graphs of bounded treewidth, every problem definable in
monadic second-order logic can be solved in time linear in the number of vertices
of the graph. We need the following proposition, whose proof we omitted.

Proposition 3. Let k, � be two fixed integers. Then the (k, �)-Cut, the k-Cut

and Disconnected Cut problem can be defined in monadic second order logic.

Now suppose we have a “large” wall. We arrange its bricks into walls of height
two (a group of four bricks). Each group has at least one middle vertex not
adjacent to any vertex in the outerface of the group. The groups of four give
a tiling of the wall and the set of middle vertices from different groups forms
an independent set, whose removal leaves the graph connected. Hence we have
shown Lemma 1 and continue with Lemma 2 before summarizing in Theorem 3.

Lemma 1. A wall W of height ≥ h contains an independent set S of cardinality
(h− 1)2/4 such that W \ S is connected.

Lemma 2. Let k, � be two fixed integers, and H an apex. There exists a constant
t such that each connected H-minor-free graph G with tw(G) ≥ t has a (k, �)-cut.

Proof. Let h = 2(
√
�− 1+

√
k − 1)+3 and let t be the smallest integer such that

f(|VH |, h) ≤ t − 1 (for the function f from Theorem 2). By Theorem 2, an H-
minor-free graph G with tw(G) ≥ t has a flat wall W of height ≥ h. Then, due to
the flat layout of its compass K, there exists a cycle Q in W with VQ ∩VPW = ∅
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such that there is a component R of G \ Q not containing perimeter PW . Now
let Q′ be a subgraph of G containing Q and such that G \ Q′ has exactly two
components: R′ ⊂ R and the component T containing PW . Note that Q can be
chosen in such a way that R′ has a wall WR′ of height 2

√
�− 1 + 1, and T has a

wall WT of height 2
√
k − 1 + 1. From Lemma 1, R′ contains an independent set

SR′ of size �− 1, and T contains an independent set ST of size k − 1 such that
WR′\SR′ and WT \ST are connected.

For each v ∈ ST we define Cv to be v together with the union of all those
components of G \ v that do not contain PWT . For each v ∈ SR′ we define Cv

analogously. Let I =
⋃

v∈ST
Cv and J =

⋃
v∈SR′ Cv. Now, U = Q′ ∪ (R′\J) ∪ S′

is a cut with exactly k components, and G \ U has exactly � components. �	

Theorem 3. Let H be an apex. For the class of connected H-minor-free-graphs,
the following statements hold:

(i) The (k, �)-Cut problem is fixed parameter tractable in k + �;
(ii) The k-Cut problem is fixed parameter tractable in k;
(iii) The Disconnected Cut problem is solvable in polynomial time.

Proof. Let t be the constant from Lemma 2 which guarantees that an H-minor-
free graph G with tw(G) ≥ t is a Yes-instance of the (k, �)-Cut problem. We
first check if tw(G) < t. We can do so as recognizing such graphs is fixed pa-
rameter tractable in t [1]. So, if tw(G) ≥ t we are done. Suppose tw(G) < t.
By Proposition 3, the (k, �)-Cut problem is expressible in monadic second order
logic and therefore solvable on graphs of bounded treewidth [6].

For (ii) we take � = 2 and repeat all arguments. If tw(G) ≥ t then G has a
(k, 2)-cut, and hence a k-cut. If tw(G) < t then we apply Proposition 3 on the
k-Cut problem. For (iii) we take k = � = 2 and proceed similarly. �	

6 Further Results and Related Open Problems

The main open problem is to determine the computational complexity of the
Disconnected Cut problem. The related Disconnected Separator prob-
lem asks whether a connected graph G has a disconnected cut separating two
specified vertices s and t of G. This problem is NP-complete. We omit the proof.

Theorem 4. The Disconnected Separator problem is NP-complete, even
for the class of connected graphs of diameter 3.

6.1 Chordal Graphs

We can solve Disconnected Cut in polynomial time for this class. We omit
the proof. What about k-Cut or even (k, �)-Cut?

Proposition 4. The Disconnected Cut problem is solvable in polynomial
time for connected chordal graphs.
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6.2 Claw-Free Graphs

Is Disconnected Cut polynomially solvable for this class or even for its sub-
class of line graphs? Every graph of diameter at least three has a disconnected
cut [10]. Hence, we only need to consider graphs of diameter two. Then the
following connections become relevant. Proofs are omitted.

Proposition 5. For the class of connected claw-free graphs of diameter two,
Disconnected Cut, (2, 2)-Cut and C4-Contractibility are equivalent.

Proposition 6. Let L(G) be the line graph of a connected graph G with diameter
two. If the diameter of L(G) is two, then G has a disconnected cut if and only
if L(G) has a disconnected cut.

Note that Proposition 6 does not hold if G has diameter at least three: take
G = P4 = p1p2p3p4, which has diameter three and disconnected cut {p1, p3}.
However, L(G) = P3 does not have a disconnected cut. The condition that L(G)
has diameter two is necessary as well. Take two triangles and merge them in one
vertex in order to obtain the graph ({u, v, w, x, y}, {uv, vw,wu, ux, xy, yu}). This
graph has diameter two but no disconnected cut. However, its line graph is a K4
on vertices e1, e2, e3, e4 extended with two vertices d1, d2 and edges d1e1, d1e2
and d2e3, d2e4. This graph has diameter three and disconnected cut {d1, e3, e4}.
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Abstract. In comparative genomic, the first step of sequence analysis is usually
to decompose two or more genomes into syntenic blocks that are segments of
homologous chromosomes. For the reliable recovery of syntenic blocks, noise
and ambiguities in the genomic maps need to be removed first. Maximal Strip
Recovery (MSR) is an optimization problem recently proposed by Zheng, Zhu,
and Sankoff for reliably recovering syntenic blocks from genomic maps in the
midst of noise and ambiguities. Given d genomic maps as sequences of gene
markers, the objective of MSR-d is to find d subsequences, one subsequence of
each genomic map, such that the total length of the syntenic blocks (substrings of
consecutive gene markers that appear identically in all d subsequences) is maxi-
mized. A polynomial-time 2d-approximation for MSR-d was previously known.
In this paper, we show that even the most basic version of MSR-2, in which all
gene markers are distinct and in positive orientation, is APX-hard. Moreover, we
provide the first explicit lower bounds on approximating MSR-d for all constants
d ≥ 2.

1 Introduction

In comparative genomic, the first step of sequence analysis is usually to decompose two
or more genomes into syntenic blocks that are segments of homologous chromosomes.
For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps
need to be removed first. A genomic map is a sequence of gene markers. A gene marker
appears in a genomic map in either positive or negative orientation. Given d genomic
maps, Maximal Strip Recovery (MSR-d) is the problem of finding d subsequences, one
subsequence of each genomic map, such that the total length of strips of these subse-
quences is maximized [10,6]. Here a strip (or syntenic block) is a maximal string of at
least two markers that appear consecutively in each of the d subsequences, either with
all markers in positive orientation and in the same order, or with all markers in negative
orientation and in reverse order. For example, the two genomic maps (the markers in
negative orientation are underlined)

1 2 3 4 5 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9

have two subsequences

1 3 6 7 8 10 11 12
8 7 6 1 3 12 11 10

� Supported in part by NSF grant DBI-0743670.
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of the maximum total strip length 8. The strip 〈1, 3〉 is positive and forward in both
subsequences; the other two strips 〈6, 7, 8〉 and 〈10, 11, 12〉 are positive and forward in
the first subsequence, but are negative and backward in the second subsequence.

The problem MSR-2 was introduced by Zheng, Zhu, and Sankoff [10], and was later
generalized to MSR-d by Chen, Fu, Jiang, and Zhu [6]. For MSR-2, Zheng et al. [10]
presented a potentially exponential-time heuristic that solves a subproblem of
Maximum-Weight Clique. For MSR-d, d ≥ 2, Chen et al. [6] presented a polynomial-
time 2d-approximation.

On the complexity side, Chen et al. [6] showed that several close variants of the prob-
lem MSR-d are intractable. In particular, they showed that (i) MSR-2 is NP-complete
if duplicate markers are allowed in each genomic map, and that (ii) MSR-3 is NP-
complete even if the markers in each genomic map are distinct. The complexity of
MSR-2 with no duplicates, however, was left as an open problem.

In the biological context, a genomic map may contain duplicate markers as a paral-
ogy set [10, p. 516], but such maps are relatively rare. Indeed MSR-2 without duplicates
is the most common version of MSR-d in application. Theoretically, MSR-2 without
duplicates is the most basic and hence the most interesting version of MSR-d. Also, the
previous NP-hardness proofs for both (i) MSR-2 with duplicates and (ii) MSR-3 with-
out duplicates [6] rely on the fact that a marker may appear in a genomic map in either
positive or negative orientation. A natural question is whether there is any version of
MSR-d that remains NP-hard even if all markers in the genomic maps are in positive
orientation.

The following is a precise formulation of the most basic version of MSR-d:

INSTANCE: Given d sequences Gi, 1 ≤ i ≤ d, where each sequence is a permutation
of 〈1, . . . , n〉.

QUESTION: Find a subsequence G′i of each sequence Gi, 1 ≤ i ≤ d, and find a set
of strips Sj , where each strip is a sequence of length at least two over the alphabet
{1, . . . n}, such that each subsequence G′i is the concatenation of the strips Sj in
some order, and the total length of the strips Sj is maximized.

The main result of this paper is the following theorem that settles the computational
complexity of the most basic version of Maximal Strip Recovery, and moreover pro-
vides the first explicit lower bounds on approximating MSR-d for all constants d ≥ 2:

Theorem 1. MSR-d for any constant d ≥ 2 is APX-complete. Moreover, it is NP-hard
to approximate MSR-2, MSR-3, and MSR-d (d ≥ 4) within any constant less than 2320

2319
(> 1.0004), 474

473 (> 1.0021), and 285
284 (> 1.0035), respectively, even if all markers are

distinct and appear in positive orientation in each genomic map.

For any constant d ≥ 2, MSR-d admits a polynomial-time 2d-approximation algo-
rithm [6] and is thus in APX. In the following two sections, we show that MSR-d for
any constant d ≥ 2 is APX-hard, and provide explicit constant factors for the hardness
of approximation. For any two constants d and d′ such that 2 ≤ d < d′, the problem
MSR-d is a special case of the problem MSR-d′ with d′ − d additional copies of a ge-
nomic map. Thus the APX-hardness of MSR-2 implies the APX-hardness of MSR-d
for all constants d ≥ 2. To derive better lower bounds on approximation factors, how-
ever, and to present the proof progressively, we first show that MSR-3 and MSR-4 are
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APX-hard, by two relatively simple L-reductions, then show that MSR-2 is APX-hard,
by a more elaborate L-reduction.

Preliminaries. Given two optimization problems X and Y, an L-reduction [8] from X
to Y consists of two polynomial-time functions f and g and two positive constants α
and β satisfying the following two properties:

1. For every instance x of X, f(x) is an instance of Y such that

opt(f(x)) ≤ α · opt(x), (1)

2. For every feasible solution y to f(x), g(y) is a feasible solution to x such that

|opt(x) − val(g(y))| ≤ β · |opt(f(x)) − val(y)|. (2)

Here val(y) denotes the value of a solution y, and opt(x) denotes the value of the
optimal solution to an instance x. For two maximization problems X and Y, the two
properties of L-reduction imply the following inequality on the relative errors of
approximation:

opt(x) − val(g(y))
opt(x)

≤ αβ · opt(f(x)) − val(y)
opt(f(x))

.

That is, if there is a polynomial-time 1
1−ε -approximation for Y, then there is a polynomial-

time 1
1−αβε -approximation for X.

2 MSR-3 and MSR-4 Are APX-Hard

We prove that MSR-3 and MSR-4 are APX-hard by two similar L-reductions from Max-
IS-3 and Max-IS-4, respectively. Max-IS-Δ is the problem Maximum Independent Set
on graphs of maximum degree Δ. Both Max-IS-3 and Max-IS-4 are APX-hard; see [4].
Moreover, Chlebı́k and Chlebı́ková [7] showed that it is NP-hard to approximate Max-
IS-3 and Max-IS-4 within any constant less than 1.010661 and 1.0215517, respectively.
Before we present the L-reductions, we first show that MSR-3 is NP-hard by a reduction
in the classical style, which is perhaps more familiar to most readers.

2.1 NP-Hardness Reduction from Max-IS-3 to MSR-3

We need to introduce some preliminaries. A linear forest is a graph in which every con-
nected component is a path. The linear arboricity of a graph is the minimum number
of linear forests into which the edges of the graph can be decomposed. A famous con-
jecture on linear arboricity [2] is that any Δ-regular graph has linear arboricity at most
�(Δ + 1)/2�. This conjecture has been confirmed for graphs of small constant degrees.
In particular, the proofs of the conjecture for Δ = 3 and 4 are constructive and lead to
polynomial-time algorithms for decomposing a graph of maximum degree Δ = 3 and
4 into at most �(Δ + 1)/2� = 2 and 3 linear forests, respectively [2,1,3].
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We now present the NP-hardness reduction from Max-IS-3 to MSR-3. Let G be a
graph of maximum degree 3. Partition the edges of G into two linear forests E1 and
E2. Let V1 and V2 be the vertices of G that are not incident to any edges in E1 and
E2, respectively. Let n be the number of vertices in G. Construct three genomic maps
G0, G1, and G2, where each map is a permutation of 4n distinct markers all in positive
orientation:

– n pairs of vertex markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n;

– n pairs of dummy markers
i
� and

i
	, 1 ≤ i ≤ n.

G0 consists of the 2n pairs of vertex and dummy markers in an alternating pattern:

1
⊂

1
⊃

1
�

1
	 · · ·

n
⊂

n
⊃

n
�

n
	

G1 and G2 are represented schematically as follows:

G1 : 〈V1〉 〈E1〉 〈D〉
G2 : 〈D〉 〈E2〉 〈V2〉

1. 〈E1〉 and 〈E2〉 consist of vertex markers of the vertices incident to the edges in
E1 and E2, respectively. The markers of the vertices in each path v1v2 . . . vk are
grouped together in an interleaving pattern: for 1 ≤ i ≤ k, the left marker of vi,
the right marker of vi−1 (if i > 1), the left marker of vi+1 (if i < k), and the right
marker of vi are consecutive.

2. 〈V1〉 and 〈V2〉 consist of vertex markers of the vertices in V1 and V2, respectively.
The left marker and the right marker of each pair are consecutive.

3. 〈D〉 is the reverse permutation of the n pairs of dummy markers:

n
�

n
	 · · ·

1
�

1
	

This completes the construction. We refer to Figure 1 (a) and (b) for an example. Two
pairs of markers intersect in a genomic map if a marker of one pair appears between the
two markers of the other pair. The following property of our construction is obvious:

Proposition 1. Two vertices are adjacent in the graph G if and only if the correspond-
ing two pairs of vertex markers intersect in one of the two genomic maps G1, G2.

We say that three subsequences of the three genomic maps G0, G1, G2 are canonical
if each strip of the subsequences is either a pair of vertex markers or a pair of dummy
markers. We have the following lemma on canonical subsequences:

Lemma 1. If the three genomic maps G0, G1, G2 have three subsequences of total strip
length l, then they must have three subsequences of total strip length at least l such that
each strip of the subsequences is either a pair of vertex markers or a pair of dummy
markers.

Proof. There is an algorithm that transforms the subsequences into canonical form
without reducing the total strip length. �	
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Fig. 1. (a) The graph G: E1 is a single (solid) path 〈1, 2, 3, 4, 5, 6〉, E2 consists of two (dot-
ted) paths 〈1, 7, 8, 3〉 and 〈4, 9, 6〉, V1 = {7, 8, 9}, V2 = {2, 5}. (b) The three genomic maps
G0, G1, G2. (c) The three subsequences of the genomic maps G0, G1, G2 corresponding to the
independent set {2, 4, 6, 8} in the graph G.

The following lemma establishes the NP-hardness of MSR-3:

Lemma 2. The graph G has an independent set of at least k vertices if and only if the
three genomic maps G0, G1, G2 have three subsequences of total strip length at least
2(n + k).

2.2 L-Reductions from Max-IS-3 to MSR-3 and from Max-IS-4 to MSR-4

We present an L-reduction (f, g, α, β) from Max-IS-3 to MSR-3 as follows. The func-
tion f , given a graph G of maximum degree 3, constructs the three genomic maps
G0, G1, G2 as in our NP-hardness reduction. Let k∗ be the number of vertices in a
maximum independent set in G, and let l∗ be the maximum total strip length of three
subsequences of G0, G1, G2. Since a simple greedy algorithm (which repeatedly selects
a vertex not adjacent to the previously selected vertices) finds an independent set of at
least n/(3+1) vertices in the graph G of maximum degree 3, we have k∗ ≥ n/(3+1).
Then, by Lemma 2, we have

l∗ = 2(n + k∗) ≤ 2((3 + 1)k∗ + k∗) = 2(3 + 2)k∗ = 10k∗.

Choose α = 10, then property (1) of L-reduction is satisfied.
The function g, given three subsequences of the three genomic maps G0, G1, G2,

transforms the subsequences into canonical form as in the proof of Lemma 1, then
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returns an independent set of vertices in the graph G corresponding to the pairs of
vertex markers that are strips of the subsequences. Let l be the total strip length of the
subsequences, and let k be the number of vertices in the independent set returned by the
function g. Again, by Lemma 2, we have

k∗ − k ≤ k∗ − (l/2 − n) = (n + k∗) − l/2 = (l∗ − l)/2.

Choose β = 1/2, then property (2) of L-reduction is also satisfied. The L-reduction
from Max-IS-3 to MSR-3 can be generalized:

Lemma 3. Let Δ ≥ 3 and d ≥ 3 be integer constants. If there is a polynomial-time
algorithm for decomposing any graph of maximum degree Δ into d − 1 linear forests,
then there is an L-reduction from Max-IS-Δ to MSR-d with constants α = 2(Δ + 2)
and β = 1/2.

Recall that there exist polynomial-time algorithms for decomposing a graph of max-
imum degree 3 and 4 into at most 2 and 3 linear forests, respectively [2,1,3]. Thus,
besides the L-reduction from Max-IS-3 to MSR-3 with constants α = 2(3 + 2) and
β = 1/2, we also have by Lemma 3 an L-reduction from Max-IS-4 to MSR-4 with
constants α = 2(4+ 2) and β = 1/2. Chlebı́k and Chlebı́ková [7] showed that it is NP-
hard to approximate Max-IS-3 and Max-IS-4 within any constant less than 1.010661
(> 1

1−(3+2)/474 ) and 1.0215517 (> 1
1−(4+2)/285 ), respectively. Therefore, it is NP-

hard to approximate MSR-3 and MSR-4 within any constant less than 1
1−1/474 = 474

473

(> 1.0021) and 1
1−1/285 = 285

284 (> 1.0035), respectively. The lower bound for MSR-4
extends to MSR-d for constants d ≥ 4.

3 MSR-2 Is APX-Hard

We prove that MSR-2 is APX-hard by an L-reduction from Ep-Occ-Max-Eq-SAT with
p = 3 and q ≥ 2. Given a set X of n variables and a set C of m clauses, where each
variable has exactly p literals (in p different clauses) and each clause is the disjunction
of exactly q literals (of q different variables), Ep-Occ-Max-Eq-SAT is the problem of
finding an assignment of X that satisfies the maximum number of clauses in C. Note
that np = mq. Berman and Karpinski [5] showed that it is NP-hard to approximate
E3-Occ-Max-E2-SAT within any constant less than 464

463 ; we will use this to derive an
approximation lower bound for MSR-2. Before we present the L-reduction, we first
present an NP-hardness reduction in the classical style.

3.1 NP-Hardness Reduction from Ep-Occ-Max-Eq-SAT to MSR-2

Let (X, C) be an instance of Ep-Occ-Max-Eq-SAT, where X is a set of n variables xi,
1 ≤ i ≤ n, and C is a set of m clauses Cj , 1 ≤ j ≤ m. Without loss of generality,
assume that the p literals of each variable are neither all positive nor all negative. Since
p = 3, it follows that each variable has either 2 positive and 1 negative literals, or 1
positive and 2 negative literals. We construct two genomic maps G1 and G2, each map
a permutation of 2(5n + m + qm + 2) distinct markers all in positive orientation:
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– 1 pairs of variable markers
i
<

i
> for each variable xi, 1 ≤ i ≤ n;

– 2 pairs of true markers
i,1



i,1
� and

i,2



i,2
� for each variable xi, 1 ≤ i ≤ n;

– 2 pairs of false markers
i,1
�

i,1
 and

i,2
�

i,2
 for each variable xi, 1 ≤ i ≤ n;

– 1 pair of clause markers
j
�

j
� for each clause Cj , 1 ≤ j ≤ m;

– q pairs of literal markers
j,t
⊂

j,t
⊃, 1 ≤ t ≤ q, for each clause Cj , 1 ≤ j ≤ m;

– 2 pairs of dummy markers
1
�

1
	 and

2
�

2
	.

The construction is done in two steps: first arrange the variable markers, the true/false
markers, the clause markers, and the dummy markers into two sequences Ǧ1 and Ǧ2,
next insert the literal markers at appropriate positions in the two sequences to obtain the
two genomic maps G1 and G2.

The two sequences Ǧ1 and Ǧ2 are represented schematically as follows:

Ǧ1 : 〈x1〉 · · · 〈xn〉
1
�

1
	

2
�

2
	

1
�

1
� · · ·

m
�

m
�

1
<

1
> · · ·

n
<

n
>

Ǧ2 : 〈xn〉 · · · 〈x1〉
m
�

m
� · · ·

1
�

1
�

2
�

2
	

1
�

1
	

For each variable xi, 〈xi〉 consists of the corresponding four pairs of true/false markers
i,1



i,1
�

i,2



i,2
�

i,1
�

i,1


i,2
�

i,2
 in Ǧ1 and Ǧ2, and in addition the pair of variable markers

i
<

i
>

in Ǧ2. These markers are arranged in the two sequences in a special pattern as follows
(the indices i are omitted for simpler notations):

1
�

2



1


2
�

2
�

1



2


1
�

1



1
�

1
�

1
 < >

2
�

2



2


2
�

Now insert the literal markers to the two sequences Ǧ1 and Ǧ2 to obtain the two ge-
nomic maps G1 and G2. First, Ǧ1 → G1. For each positive literal (resp. negative

literal) of a variable xi that occurs in a clause Cj , place a pair of literal markers
j,t
⊂

j,t
⊃,

1 ≤ t ≤ q, around a false marker
i,s
� (resp. true marker

i,s
�), 1 ≤ s ≤ 2. The four

possible positions of the three pairs of literal markers of each variable xi are as follows:

⊂
1
�⊃

2



1
 ⊂

2
�⊃ ⊂

2
�⊃

1



2
 ⊂

1
�⊃

1



1
�

1
�

1
 < >

2
�

2



2


2
�

Next, Ǧ2 → G2. Without loss of generality, assume that the q pairs of literal markers
of each clause Cj appear in G1 with ascending indices:

j,1
⊂

j,1
⊃ · · ·

j,q
⊂

j,q
⊃

Insert the q pairs of literal markers in G2 immediately after the pair of clause markers
j
�

j
�, in an interleaving pattern:

j,q
⊂ · · ·

j,1
⊂

j,q
⊃ · · ·

j,1
⊃
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1,1
�

1,2



1,1


1,2
�

1,2
�

1,1



1,2


1,1
�

2,1
�

2,2



2,1


2,2
�

2,2
�

2,1



2,2


2,1
�

1
�

1
	

2
�

2
	

1
�

1
�

2
�

2
�

3
�

3
�

1
<

1
>

2
<

2
>

2,1



2,1
�

2,1
�

2,1


2
<

2
>

2,2
�

2,2



2,2


2,2
�

1,1



1,1
�

1,1
�

1,1


1
<

1
>

1,2
�

1,2



1,2


1,2
�

3
�

3
�

2
�

2
�

1
�

1
�

2
�

2
	

1
�

1
	

(a)

1,1
⊂

1,1
�

1,1
⊃

1,2



1,1


3,1
⊂

1,2
�

3,1
⊃

2,1
⊂

1,2
�

2,1
⊃

1,1



1,2


1,1
�

1,2
⊂

2,1
�

1,2
⊃

2,2



2,1


2,2
⊂

2,2
�

2,2
⊃

2,2
�

2,1



2,2


3,2
⊂

2,1
�

3,2
⊃

1
�

1
	

2
�

2
	

1
�

1
�

2
�

2
�

3
�

3
�

1
<

1
>

2
<

2
>

2,1



2,1
�

2,1
�

2,1


2
<

2
>

2,2
�

2,2



2,2


2,2
�

1,1



1,1
�

1,1
�

1,1


1
<

1
>

1,2
�

1,2



1,2


1,2
�

3
�

3
�

3,2
⊂

3,1
⊂

3,2
⊃

3,1
⊃

2
�

2
�

2,2
⊂

2,1
⊂

2,2
⊃

2,1
⊃

1
�

1
�

1,2
⊂

1,1
⊂

1,2
⊃

1,1
⊃

2
�

2
	

1
�

1
	

(b)

1,1
⊂

1,1
⊃

1,2



1,2
�

2,1
⊂

2,1
⊃

1,1



1,1
�

2,1
�

2,1


2,2
�

2,2


3,2
⊂

3,2
⊃

1
�

1
	

2
�

2
	

1
�

1
�

2
�

2
�

3
�

3
�

1
<

1
>

2
<

2
>

2,1
�

2,1


2
<

2
>

2,2
�

2,2


1,1



1,1
�

1
<

1
>

1,2



1,2
�

3
�

3
�

3,2
⊂

3,2
⊃

2
�

2
�

2,1
⊂

2,1
⊃

1
�

1
�

1,1
⊂

1,1
⊃

2
�

2
	

1
�

1
	

(c)

1,1
⊂

1,1
⊃

1,2



1,2
�

1,1



1,1
�

2,1
�

2,1


2,2
⊂

2,2
⊃

2,2
�

2,2


3,2
⊂

3,2
⊃

1
�

1
	

2
�

2
	

1
�

1
�

2
�

2
�

3
�

3
�

1
<

1
>

2
<

2
>

2,1
�

2,1


2
<

2
>

2,2
�

2,2


1,1



1,1
�

1
<

1
>

1,2



1,2
�

3
�

3
�

3,2
⊂

3,2
⊃

2
�

2
�

2,2
⊂

2,2
⊃

1
�

1
�

1,1
⊂

1,1
⊃

2
�

2
	

1
�

1
	

(d)

Fig. 2. MSR-2 construction for the E3-Occ-Max-E2-SAT instance C1 = x1 ∨x2, C2 = x1 ∨ x̄2,
and C3 = x̄1 ∨ x̄2. (a) The two sequences Ǧ1 and Ǧ2. (b) The two genomic maps G1 and G2.
(c) Two canonical subsequences for the assignment x1 = true and x2 = false. (d) Two other
canonical subsequences for the assignment x1 = true and x2 = false .

This completes the construction. We refer to Figure 2 (a) and (b) for an example of the
two steps.

We say that two subsequences of the two genomic maps G1 and G2 are canonical
if each strip of the two subsequences is a pair of markers. Two examples of canoni-
cal subsequences are shown in Figure 2 (c) and (d). We have the following lemma on
canonical subsequences:

Lemma 4. If the two genomic maps G1 and G2 have two subsequences of total strip
length l, then they must have two subsequences of total strip length at least l such that
each strip is a pair of markers and, moreover, (i) the two pairs of dummy markers are
two strips, (ii) the m pairs of clause markers and the n pairs of variable markers are
m+n strips, (iii) at most one pair of literal markers of each clause is a strip, (iv) either
both pairs of true markers or both pairs of false markers of each variable are two strips.

Proof. There is an algorithm that transforms the subsequences into canonical form
without reducing the total strip length. The algorithm performs incremental operations
on the subsequences such that the following eight conditions are satisfied progressively:

1. Each strip that includes a dummy marker is a pair of dummy markers.
2. The two pairs of dummy markers are two strips.
3. Each strip that includes a clause or variable marker is a pair of clause markers or a

pair of variable markers.
4. The m pairs of clause markers and the n pairs of variable markers are m+n strips.
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5. Each strip that includes a literal marker is a pair of literal markers.
6. At most one pair of literal markers of each clause is a strip.
7. Each strip that includes a true/false marker is a pair of true markers or a pair of false

markers.
8. Either both pairs of true markers or both pairs of false markers of each variable are

two strips. �	
The following lemma establishes the NP-hardness of MSR-2:

Lemma 5. The variables in X have an assignment that satisfies at least k clauses in
C if and only if the two genomic maps G1 and G2 have two subsequences of total strip
length at least 2(3n + m + k + 2).

3.2 L-Reduction from Ep-Occ-Max-Eq-SAT to MSR-2

We present an L-reduction (f, g, α, β) from Ep-Occ-Max-Eq-SAT to MSR-3 as fol-
lows. The function f , given the Ep-Occ-Max-Eq-SAT instance (X, C), constructs the
two genomic maps G1 and G2 as in our NP-hardness reduction. Let k∗ be the maxi-
mum number of clauses in C that can be satisfied by an assignment of X , and let l∗

be the maximum total strip length of two subsequences of G1 and G2. Since a random
assignment of each variable independently to either true or false with equal probabil-
ity 1

2 satisfies each disjunctive clause of q literals with probability 1 − 1
2q , we have

k∗ ≥ 2q−1
2q m. Then, by Lemma 5, we have

l∗=2(3n+m+k∗+2)=
(

6
q

p
+ 2

)
m+2k∗+4≤

((
6

q

p
+ 2

)
2q

2q − 1
+ 2 +

4
k∗

)
k∗.

The function g, given two subsequences of the two genomic maps G1 and G2, trans-
forms the subsequences into canonical form as in the proof of Lemma 4, then returns
an assignment of X corresponding to the choices of true or false markers. Let l be the
total strip length of the subsequences, and let k be the number of clauses in C that are
satisfied by this assignment. Again, by Lemma 5, we have

k∗ − k ≤ k∗ − (l/2 − 3n− m − 2) = (3n + m + k∗ + 2) − l/2 = (l∗ − l)/2.

Let ε > 0 be an arbitrary small constant. Note that by brute force we can check whether
k∗ < 2/ε and, in the affirmative case, compute an optimal assignment of X that satisfies
the maximum number of clauses in C, all in mO(1/ε) time, which is polynomial in m for
a constant ε. Therefore we can assume without loss of generality that k∗ ≥ 2/ε. Then,
with the two constants α = (6 q

p + 2) 2q

2q−1 + 2 + 2ε and β = 1/2, both properties (1)
and (2) of L-reduction are satisfied. In particular, for p = 3 and q = 2,

αβ =
(

3
q

p
+ 1

)
2q

2q − 1
+ 1 + ε = 5 + ε.

Berman and Karpinski [5] showed that it is NP-hard to approximate E3-Occ-Max-E2-
SAT within any constant less than 464

463 = 1
1−1/464 . Thus it is NP-hard to approximate

MSR-2 within any constant less than

lim
ε→0

1
1 − 1/

(
(5 + ε) · 464

) =
1

1 − 1/2320
=

2320
2319

> 1.0004.
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4 Concluding Remarks

A strip of length l has l − 1 adjacencies between consecutive markers. In general, k
strips of total length l have l − k adjacencies. It can be checked that our L-reductions
still work even if the objective function is changed from the total strip length to the total
number of adjacencies in the strips. The only effect of this change is that the constant
α is halved and correspondingly the constant β is doubled (from 1/2 to 1). Since the
product αβ is unaffected, Theorem 1 remains valid.

Postscript. This manuscript was written in December 2008. The author was later
informed by Binhai Zhu in January 2009 that Lusheng Wang and he [9] had indepen-
dently and almost simultaneously proved a weaker result that MSR-2 is NP-hard even
if all gene markers are distinct in each genomic map.
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Abstract. In this paper we consider the computational complexity of
deciding the existence of a perfect matching in certain classes of dense
k-uniform hypergraphs. Some of these problems are known to be notori-
ously hard. There is also a renewed interest recently in the very special
cases of them. One of the goals of this paper is to shed some light on the
tractability barriers for those problems.

It has been known that the perfect matching problems are NP-complete
for the classes of hypergraphs H with minimum ((k − 1)−wise) vertex de-
gree δ at least c|V (H)| for c < 1

k
and trivial for c ≥ 1

2 , leaving the status
of the problems with c in the interval [ 1

k
, 1

2 ) widely open. In this paper
we show, somehow surprisingly, that 1

2 , in fact, is not a threshold for the
tractability of the perfect matching problem, and prove the existence of
an ε > 0 such that the perfect matching problem for the class of hyper-
graphs H with δ at least ( 1

2 −ε)|V (H)| is solvable in polynomial time. This
seems to be the first polynomial time algorithm for the perfect matching
problem on hypergraphs for which the existence problem is nontrivial. In
addition, we consider parallel complexity of the problem, which could be
also of independent interest in view of the known results for graphs.

1 Introduction

In recent years hypergraphs gained a lot of interest as a natural generalization
of graphs as well as a model for certain discrete optimization problems. For
instance, Asadpour, Feige and Saberi [AFS08] reduced a max-min allocation
problem, known as the Santa Claus Problem, to finding a perfect matching in
a class of bipartite hypergraphs. Since they relied on a rather non-constructive,
Hall-type sufficient condition of Haxell [Ha95], they could not solve their problem
efficiently.

From the computational point of view, more satisfactory is another, Dirac-
type sufficient condition given by Rödl et al. [RRS09]. Recall that the celebrated
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Dirac theorem for graphs guarantees a Hamilton cycle in every n-vertex graph
with minimum degree at least 1

2n, and thus, a perfect matching when n is even. In
[RRS09], the authors used the minimum degree of a (k−1)-tuple of vertices in a
k-uniform hypergraph and determined the best possible bound on this parameter
guaranteeing a perfect matching. If n is sufficiently large and divisible by k, then
the threshold values turned out to be close to 1

2n.
As a consequence, the decision problem asking whether a given k-uniform

hypergraph with the minimum (k − 1)-wise degree above 1
2n contains a perfect

matching is trivial. Szymańska observed in [Sz09] that the argument presented
in [RRS09] can be transformed into a deterministic polynomial time algorithm.
Moreover, she also showed that answering the question whether a k-uniform
hypergraph with minimum (k − 1)-wise vertex degree at least c|V (H)|, c < 1

k ,
contains a perfect matching is NP-complete.

Those results leave a “hardness gap” between 1
k and 1

2 . By the counterexam-
ples introduced in [RRS09] it is apparent that in this case there exist hypergraphs
of minimum (k− 1)-wise vertex degree below 1

2 |V (H)| without a perfect match-
ing. This motivated us to investigate the complexity of the existence problem
for hypergraphs in the gap interval. Interestingly, it turned out that at least in
the upper end of this interval, when still both answers, yes and no are possible,
the problem is polynomial. Indeed, in this paper we provide a polynomial time
algorithm which for every hypergraph of the minimum (k−1)-wise vertex degree
at least (1

2 − ε)|V (H)| constructs a perfect matching if one exists and otherwise
exhibits a certificate for non-existence (cf. Theorem 2).

Our second result regards the parallelization of the problem. While the perfect
matching problem in graphs can be decided and computed in polynomial time,
the parallel complexity of the decision problem remains unknown. Apart from
randomized results, only some special classes of graphs have efficient parallel
algorithms. This includes dense graphs, in particular Dirac’s graphs, that is,
graphs with minimum degree δ ≥ n

2 . Dalhaus, Hajnal and Karpiński in [DKH93]
gave an NC2 parallel algorithm finding a perfect matching in such graphs and
showed that for the minimum degree at least cn, c < 1

2 , the problem is as hard
as for all graphs. Motivated by the results of [DKH93] and [Sa09], we investigate
the parallel complexity of the perfect matching problem in dense hypergraphs.
Our Theorem 5 implies that the problem of deciding whether a given k−uniform
hypergraph H , with minimum (k−1)-wise vertex degree at least c|V (H)|, c > 1

2 ,
contains a perfect matching admits an NC algorithm. Along the way, we also
design parallel algorithms for constructing almost perfect matchings in graphs
with restricted (k − 1)-wise degrees (cf. Theorems 3,4). These algorithms serve
as subroutines in the main algorithm.

In the following subsections we introduce our notation, define formally the
problems in question and state our results (Theorems 2, 3, 4 and 5, and Propo-
sition 1). Section 2 contains three parallel algorithms and their analysis which
proves Theorems 3, 4 and 5. The last section is devoted to an outline of the proof
of Theorem 2. A complete proof of Theorem 2, as well as a proof of Proposition 1,
will be presented in a full version of the paper.
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1.1 Basic Definitions and Notation

Hypergraphs. A hypergraph H = (V,E) is a finite set of vertices V together
with a family E of distinct, nonempty subsets of V , called edges. In this paper
we consider k-uniform hypergraphs (or, shortly, k-graphs) in which, for a fixed
k ≥ 2, each edge is of size k.

A matching in a hypergraph H is a set M ⊆ E of disjoint edges (we often
treat M as a subhypergraph of H and identify M with E(M)). The number |M |
of edges in a matching M is called the size of the matching, while the number
of vertices missing from M , that is, the number |V (H) \ V (M)| is called the
deficiency of M in H . Note that the deficiency of any matching in H equals
n modulo k. In other words, if n ≡ q (mod k), then r-deficient matchings are
possible if and only if r = q + �k for some � ≥ 0, and such matchings have, of
course, size �n/k�− �. A matching is perfect if its deficiency is 0, or equivalently
if its size is 1

k |V (H)|. So, a necessary condition for the existence of a perfect
matching in H is that |V (H)| ≡ 0 (mod k).

For a k-graph H and a set of k−1 vertices S, let NH(S) be the set of edges of
H containing S and put degH(S) = |NS(H)|. We define δ(H) = minS degH(S)
and refer to it as the (k − 1)-wise, collective minimum degree of H , or sim-
ply, minimum co-degree, as we will not consider any other kinds of degrees in
hypergraphs.

Furthermore, for all integers k ≥ 2, r ≥ 0, and n ≥ k, denote by t(k, n, r) the
smallest integer t such that every k-graph H on n vertices and with δ(H) ≥ t
contains an r-deficient matching.

Three classes of computational problems. For k ≥ 2, by PM(k) we de-
note the problem of deciding whether a k-graph H = (V,E) contains a perfect
matching. The problem PM(2) is the classical problem of deciding the existence
of a perfect matching in a graph, and is known to be in the polynomial class
P since the paper by Edmonds [Ed65]. For all k ≥ 2, PM(k) is equivalent to a
decision problem called exact cover by k-sets, which is known to be NP-complete
for k ≥ 3 [GJ79].

Given integers k ≥ 3 and r ≥ 0, let PM(k, r) denote the problem of deciding
whether a k−graph H = (V,E) with |V (H)| ≡ r (mod k) contains an r-deficient
matching. In particular, when 0 < r < k, PM(k, r) asks for a matching in
H which, although non-perfect, is as perfect as one can get. Note also that
PM(k, 0)=PM(k).

Given integers k ≥ 3, r ≥ 0 and a real c > 0, by PM(k, r, c) we denote
the same problem as PM(k, r) but restricted to k−graphs H = (V,E) with
minimum co-degree δ(H) ≥ c|V (H)|. When r = 0, PM(k, 0, c) can be viewed as
the perfect matching problem for dense k-graphs.

1.2 Known Results

Existential Results. Let us begin with the perfect case r = 0. For k = 2
(graphs), it is very easy to show that, for even n, t(2, n, 0) = 1

2n. For all integers
k ≥ 3 and sufficiently large n ≥ k, the value of t(k, n, 0) is exactly determined in
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[RRS09]. It is proved there that t(k, n, 0) = 1
2n−k+ck,n, where ck,n is an explicit

constant depending on the parities of k, n and 1
kn, and satisfying 3

2 ≤ ck,n ≤ 3.
Hence, in particular, 1

2n − k + 3
2 ≤ t(k, n, 0) ≤ 1

2n − k + 3 ≤ 1
2n. In [RRSS08]

only a slightly weaker upper bound, t(k, n, 0) ≤ 1
2n + 1

4k, but with a simpler
proof, was shown.

As for the deficient matchings (case r > 0), a striking difference between
perfect and almost perfect matchings was observed in [RRS09]. Indeed, it was
proved there that for n ≡ r (mod k) and k ≥ 3, t(k, n, r) = n−r

k for r ≥ (k−2)k,
and n−r

k ≤ t(k, n, r) ≤ n
k + O(log n) for 0 < r < (k − 2)k. Thus, in all cases

other than the perfect one, the threshold value of δ(H) for the existence of an
r-deficient matching in H is around 1

kn, while in the perfect case it is around 1
2n.

Computational Results. An immediate consequence of the results in [RRS09]
is that the decision problem PM(k, 0, c) is trivial for every c ≥ 1

2 , while PM
(k, r, c), r > 0, is trivial already for c > 1

k . (By trivial we mean that the answer
is yes for every instance.)

In [Sz09], it was shown by a polynomial reduction of PM(k) to PM(k, r, c)
that for all k ≥ 3, r ≥ 0, and every constant c < 1

k , PM(k, r, c) is NP-complete.
It follows that PM(k, r) is NP-complete too, although this can be derived by
a direct reduction from PM(k). Those results have established a “phase tran-
sition” at c = 1

k for PM(k, r, c), r > 0, but left a hardness gap of [ 1
k ,

1
2 ) for

PM(k, 0, c).
On the positive side, [Sz09] provided a polynomial time algorithm for the

corresponding search problem when c > 1
k , and r > 0. It was also observed in

[Sz09] that the existential proof from [RRS09] can be turned into a polynomial
time algorithm finding a perfect matching when c ≥ 1

2 .

1.3 New Results

One goal of this paper is an attempt to understand the complexity of PM(k, 0, c)
in the gap interval c ∈ [ 1

k ,
1
2 ). Theorem 2 below shows that at least in the

upper end of the interval the decision problem PM(k, 0, c) is polynomial in
time. Another part of this paper is devoted to an alternative, constructive proof
of the bound t(k, n, 0) ≤ 1

2n + 1
4k from [RRSS08]. In fact, we turned that proof

into a parallel algorithm (see Theorem 5 below), showing that PM(k, 0, c) is not
only in P but also in the NC class. In the next two subsections we formulate
our results in detail.

Hardness Taxonomy. Concerning the problem PM(k, 0, c), the results from
[RRS09] and [Sz09] described in Sect. 1.2 have left a hardness gap for c ∈ [ 1

k ,
1
2 ).

Problem 1. What is the computational complexity of PM(k, 0, c) when
c ∈ [ 1

k ,
1
2 )?

We present two results which suggest different answers to this problem. To put
the first of them into a right context, recall that by [RRS09] we know already
that PM(k, k, c) is trivial for c > 1

k . In other words, every k-graph H with
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δ(H) ≥ c|V (H)|, where c > 1
k and |V (H)| is divisible by k, has a k-deficient

matching.

Proposition 1. For all k ≥ 3, PM(k) is NP -complete even when restricted to
k-graphs containing a k-deficient matching.

It means that knowing that a k-graph has a matching just one edge short from a
perfect one, does not help in deciding the existence of the latter. This could sug-
gest that PM(k, 0, c) is NP-complete for all c ∈ [ 1

k ,
1
2 ). However, it turns out that

it is not so. Indeed, in Sect. 3 we describe an algorithm, called PerfectMatch,
which, for some c < 1

2 places PM(k, 0, c) in P .

Theorem 2. For all k ≥ 3 there exists ε > 0 such that if c ≥ 1
2 − ε, then

PM(k, 0, c) and its search version are in P.

Remark 1. Theorem 2 reveals an interesting feature: it provides a polynomial
time algorithm which, unlike the algorithms in [DKH93], [Sa09], [Sz09], or those
described in the next section, takes as inputs instances which may not posses
a desired matching, and decides whether they indeed have one. If the answer
is yes, the algorithm, in fact, computes in polynomial time a perfect matching,
while when the answer is no, it provides an evidence (in a form of a witness).

Parallel Algorithms. As the model of computation we choose the version
EREW PRAM. Recall that, as shown in [RRS09], the problem PM(k, 0, 1

2 ) is
trivial, that is, for all H with δ(H) ≥ 1

2n, H has a perfect matching. As observed
in [Sz09], the existential proof from [RRS09] can be turned into a polynomial
time search algorithm of complexity O(nk2+2k log4 n). Here we present a parallel
algorithm which places the search version of PM(k, 0, c), c > 1

2 , in the class NC.
Recall that NC =

⋃
i NCi, and a problem is in NCi if it admits an algorithm

of running time O(logi n), using a polynomial number of processors.
Our algorithm, par-PerfectMatch, is based on the existential proof in

[RRSS08] and uses as subroutines two other parallel algorithms of independent
interest, par-LargeDefMatch(r) and par-SmallDefMatch(r), which find
r-deficient matchings for, resp., large and small, positive values of r, under in-
creasingly restrictive conditions on δ(H).

The properties of these algorithms are presented in the following theorems.
The first of them provides a parallel algorithm which finds an r-deficient match-
ing for large r, but relatively small δ.

Theorem 3. For every k ≥ 3 and r ≥ (k − 2)k there exists a constant n0, and
a parallel algorithm, called par-LargeDefMatch(r), which in every k-graph
H on n ≥ n0 vertices with n ≡ r (mod k) and δ(H) ≥ n−r

k finds an r-deficient
matching in O(log3 n) rounds using a polynomial number of processors. It follows
that the search version of PM(k, r, c) is in the class NC3 for r ≥ (k − 2)k and
c ≥ 1

k .
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If the degree condition is strengthened just a little, we can find in parallel a
matching of any smaller, but positive, deficiency r. The algorithm par-

SmallDefMatch(r), given below, uses the algorithm from Theorem 3 as a
subroutine.

Theorem 4. For every k ≥ 3 and 0 < r < (k − 2)k there exist constants n0
and C > 0, and a parallel algorithm, called par-SmallDefMatch(r), which in
every k-graph on n ≥ n0 vertices with n ≡ r (mod k) and δ(H) ≥ n

k + C logn
finds an r-deficient matching in a polylogarithmic number of rounds using a
polynomial number of processors. It follows that the search version of PM(k, r, c)
is in the class NC for 0 < r < (k − 2)k and c > 1

k .

Finally, if δ(H) exceeds 1
2n, then we are in position to compute in parallel a

perfect matching in H . This is the main result of this section.

Theorem 5. For every k ≥ 3 there exists constant n0, and a parallel algorithm,
called par-PerfectMatch, which in every k-uniform hypergraph on n ≥ n0
vertices with n divisible by k and such that δ(H) ≥ n

2 + k
4 finds a perfect matching

in a polylogarithmic number of rounds using a polynomial number of processors.
It follows that the search version of PM(k, 0, c) is in the class NC for c > 1

2 .

The above three theorems will be proved in the next section. A summary of all
computational results about PM(k, r, c) is displayed in Table 1.

Table 1. The complexity of PM(k, r, c) with k ≥ 3. For every t=trivial problem there
exists an NC parallel algorithm finding an r-deficient matching.

�
��r

c
c < 1

k
1
k

( 1
k
, 1

2 − ε) ( 1
2 − ε, 1

2 ] c > 1
2

r ≥ (k − 2)k NP-com t t t t
0 < r < (k − 2)k NP-com ? t t t

r = 0 NP-com ? ? in P t

2 Description and Analysis of Parallel Algorithms

In this section we prove Theorems 3–5. Each proof consists of a description of
the algorithm followed by a proof of its correctness.

2.1 Proof of Theorem 3

The construction below generalizes the ideas from [DKH93] to hypergraphs. The
intersection graph of a hypergraph H has the edges of H as its vertices, and two
vertices are adjacent if the corresponding edges of H intersect. Observe that the
matchings in H map one-to-one with the independent sets of the intersection
graph. When we refer to a MIS algorithm, we always mean a parallel algorithm
from [Lu86] which places the maximal independent set problem in NC2.
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Algorithm. par-LargeDefMatch(r), r ≥ (k − 2)k

In: k-graph H with n ≥ n0, n ≡ r (mod k) and δ(H) ≥ n−r
k

Out: r-deficient matching M1

1. Compute in parallel a maximal matching M1 in H applying a MIS algo-
rithm to the intersection graph of H . Let W := V (H) \ V (M1).

2. Repeat while |W | > r

(a) Arbitrarily divide W into t :=
⌊
|W |

(k−1)k

⌋
disjoint sets S of size |S| =

(k − 1)k. Call this family of sets S. Define an auxiliary bipartite graph
G = (V1, V2, E(G)) as follows:
– V1 = M1 and V2 = S; thus |V2| = t.
– For each e ∈ V1 and S ∈ V2 put in parallel an edge {e, S} ∈ E(G) if

and only if there are two vertices ue, ve ∈ e, ue 
= ve and two disjoint
(k−1)−element subsets XS , YS of S such that e′e,S := XS∪{ue} ∈ H
and e′′e,S := YS ∪ {ve} ∈ H,.

(b) Compute in parallel a maximal matching M2 in G using a parallel MIS
algorithm.

(c) For every edge (e, S) ∈ M2 in parallel absorb into M1 the set of vertices
XS∪YS , by replacing e with e′e,S and e′′e,S , at the same time releasing from
M1 the remaining k−2 vertices of e, i.e., M1 := (M1−{e})∪{e′e,S, e

′′
e,S}.

Set W := V (H) \ V (M1).
3. Return M1.

To show that the above algorithm computes a desired matching we need the
following fact.

Fact 6. Any maximal matching M2 in the bipartite graph G defined in the al-
gorithm saturates every vertex of V2, that is, V (M2) ⊇ V2.

The algorithm par-LargeDefMatch(r) finds an r-deficient matching in O(log n)
iterations and thus its time complexity is O(log3 n). Note that in the case of
graphs discussed in [DKH93], only one iteration in step 2 was sufficient, saving
one logarithmic factor in time complexity.

2.2 Proof of Theorem 4

Let us begin by noting that without loss of generality we may restrict the range
of r to 0 < r ≤ k. Indeed, if r1 < r2 and ri ≡ n (mod k), i = 1, 2, then any
r1-deficient matching contains an r2-deficient matching.

The algorithm par-SmallDefMatch presented below uses as subroutine
par-LargeDefMatch. In addition, following the absorbing technique intro-
duced in [RRS09], we will need another parallel subroutine which computes a so
called powerful matching.
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Definition 7 (absorbing edge,[RRS09]). Given a set S of k+1 vertices, an
edge e ∈ H is called S-absorbing if there are two disjoint edges e′ and e′′ in H
such that |e′ ∩ S| = k − 1, |e′ ∩ e| = 1, |e′′ ∩ S| = 2 and |e′′ ∩ e| = k − 2.

The key feature of the absorbing edge is that there are Θ(nk) of them for every
set S in the input hypergraph H (see Fact 2.2 in [RRS09]).

Definition 8 (powerful matching). A matching M in a k-graph H is called
powerful if for every set S ⊂ V of size k +1 the number of S-absorbing edges in
M is at least k − 2.

To construct a small, powerful matching in H , we first create an auxiliary graph
G = (X ∪ Y,E), where X is an independent set. The vertices in Y represent all
matchings in H of size k−2, while the vertices in X represent the families FS of
all matchings of size k−2 consisting of S-absorbing edges, where S runs through
all subsets of vertices of size k + 1. The xy edges of G, where x ∈ X and y ∈ Y ,
exhibit the membership of the matchings in the families FS, while the y′y′′ edges,
where y′, y′′ ∈ Y , indicate whether the two matchings represented by y′ and y′′

have a vertex in common. Now, our goal is to construct an independent subset
D of Y of size O(log n) which dominates all vertices of X . Then the union of the
(k − 2)-matchings represented by the vertices of D forms the desired powerful
matching in H . This can be done efficiently in parallel if

degG(x) ≥ c|Y | for all x ∈ X and Δ(G[Y ]) = o
(

1
log n |Y |

)
. (1)

Algorithm. par-IndDomSet

In: graph G = (X ∪ Y,E), G[X ] = ∅, satisfying (1)
Out: independent subset D ⊆ Y dominating X , |D| = O(log n)

1. Repeat until X = ∅:
(a) For all y ∈ Y compute in parallel degG(y,X); set y0 for the lexico-

graphically first y for which degG(y,X) ≥ c
2 |X |;

(b) Set D := D ∪ {y0}; X := X \ {x : xy0 ∈ E},
Y := Y \ ({y0} ∪ {y : yy0 ∈ E})

2. Return D.

Algorithm. par-SmallDefMatch(r), 0 < r ≤ k

In: k-graph H with δ(H) ≥ n
k + C log n and n ≥ n0, n ≡ r (mod k).

Out: r-deficient matching M

1. Compute a powerful matching M0 (|M0| ≤ 1
kC logn), as in Definition 8,

applying par-IndDomSet to the auxiliary graph G described above.
2. H ′ := H − V (M0), [notice that δ(H ′) ≥ 1

k |V (H ′)|].
3. Compute a (k(k − 2) + r)−deficient matching M1 using algorithm

par-LargeDefMatch(k(k − 2) + r) in H ′.
4. T := V (H) \ (V (M1) ∪ V (M0)), [notice that |T | = k(k − 2) + r].
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5. Repeat until |T | = r: [k − 2 sequential iterations]
(a) for an arbitrary set S ⊆ T, |S| = k+1, and an S−absorbing edge e ∈ M0,

set M0 := M0 \ {e} ∪ {e′, e′′}, where e′, e′′ are as in Definition 7;
(b) T := V (H) \ V (M ′

0 ∪M1).
6. Return M := M0 ∪M1.

It is clear that the above algorithm returns an r-deficient matching in a poly-
logarithmic number of steps.

2.3 Proof of Theorem 5

In our construction we will apply an absorbing configuration motivated by the
proof in [RRSS08].

Definition 9 (absorbing configuration). Given a set S = {x1, x2, . . . , xk} of
k vertices, a triplet of vertex disjoint edges e1, e2, e3 ∈ H is called S-absorbing
configuration if there are four disjoint edges f1, f2, f3 and f4 in H such that
f1 ∩ e1 = {v}, |f1 ∩ e2| = k − 1, f2 ∩ e1 = {w}, f2 = {u} ∪ {x1, . . . , xk−1} and
f3 ∩ e3 = T and f4 = {xk} ∪ (e3 − T ) ∪ (e1 − {v, w}).

Algorithm par-PerfectMatch

In: k-graph H with δ(H) ≥ n
k + k

4 and n ≥ n0, n ≡ 0 (mod k).
Out: perfect matching M

1. Compute a k-deficient matching M1 using the parallel algorithm.
par-SmallDefMatch(k) in H .

2. T := V (H) − V (M1).
3. For every triple of edges e1, e2, e3 ∈ M1, in parallel check if they span an

absorbing configuration as in Definition 9.
4. Use an absorbing configuration found in step 3 to absorb the vertices of T

and obtain a perfect matching M.
5. Return M.

The existence of an absorbing configuration in a hypergraph H with δ(H) ≥
n
k + k

4 , searched for in step 3, is guaranteed by the proof in [RRSS08].

3 Toward Understanding the Hardness Gap (the Proof of
Theorem 2)

Claim 5.2 in [RRS09] asserts that if H is a k-graph on n > n0 vertices, n divisible
by k, δ(H) ≥ (1

2 − ε)n, and at least one of two conditions, (i) or (ii), holds, then
H has a perfect matching.

We say that a partition V (H) = A ∪ B is even-complete [odd-complete] if
for all even [odd] r, the subhypergraphs Er := Er(A,B) and Kr(A,B) differ
only by an ε′-fraction of edges, where ε′ is a function of ε which tends to zero
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Algorithm. PerfectMatch

In: k-graph H with δ(H) ≥ (1
2 − ε)n and n ≥ n0, n ≡ 0 (mod k).

Out: YES if H has a perfect matching, NO otherwise.

1. If (i) or (ii) hold, return YES.
2. Otherwise, let A := NH(S1), B := V \ A, where (S1, . . . , Sk) is a k-tuple

violating (i).
3. If k is odd and (A,B) is odd-complete, swap A and B around;
4. If (A,B) is even-complete set k′ = k− 1 if k is odd and k′ = k− 2 otherwise

and do:
(a) Identify the set S of all 0.3-small vertices of Ek′ and move them to the

other side, that is, reset A := A$ S and B := B $ S.
(b) If |A| is even or

⋃
r odd Er 
= ∅, return YES

(c) Return NO
5. If (A,B) is odd-complete (and so k is even) set k′ = k

2 + 1 if k is divisible
by 4 and k′ = k

2 otherwise and do:
(a) Identify the set S of all 0.3-small vertices of Ek′ ; reset A := A $ S and

B := B $ S.
(b) If |A| ≡ n

k (mod 2) or
⋃

r even Er 
= ∅, return YES.
(c) Return NO.

when ε does. (For the definitions of Er := Er(A,B) and Kr(A,B), as well as of
c-small vertices in Er, see [RRS09], Sect. 4.1)

Because of the lack of space here we give the correctness proof in the full
version of the paper.
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[Sa09] Särkózy, G.: A fast parallel algorithm for finding Hamiltonian cycles in
dense graphs. Discrete Mathematics 309, 1611–1622 (2009)



On Lower Bounds for Constant Width

Arithmetic Circuits

V. Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan

Institute of Mathematical Sciences
C.I.T Campus, Chennai 600 113, India

{arvind,pushkar,srikanth}@imsc.res.in

Abstract. For every k > 1, we give an explicit polynomial that is
computable by a linear-sized monotone circuit of width 2k but has no
subexponential-sized monotone circuit of width k. As a consequence
we show that the constant-width and the constant-depth hierarchies of
monotone arithmetic circuits (both commutative and noncommutative)
are infinite. We also prove hardness-randomness tradeoffs for identity
testing of constant-width circuits analogous to [6,4].

1 Introduction

Nisan, in a seminal paper [9], showed exponential size lower bounds for noncom-
mutative formulas (and noncommutative Algebraic Branching Programs (ABPs)
– see [9,10] for the definition of ABPs) that compute the noncommutative per-
manent or determinant polynomials in the ring F〈X〉, where X = {x1, · · · , xn}
are noncommuting variables. By Ben-Or and Cleve’s result [3], we know that
bounded-width arithmetic circuits (both commutative and noncommutative) are
at least as powerful as formulas (indeed, width three is sufficient). Our motivation
is whether we can Nisan’s result [9] to show size lower bounds for noncommuta-
tive bounded-width circuits.

An arithmetic circuit over a field F and variables x1, x2, · · · , xn is a directed
acyclic graph with each node of indegree zero labeled by a variable or a scalar
constant. Internal nodes of the DAG are of indegree two and are labeled by +
or × (indicating a plus or multiply gate). A node of the DAG is designated
as the output gate. Each internal node computes a polynomial (by adding or
multiplying its input polynomials). The polynomial computed by the circuit is
the polynomial computed at the output gate. The size of a circuit is the number
of nodes in it.

A layered circuit has its vertex set partitioned into sets V1 ∪V2 ∪ . . .∪Vt such
that (i) V1 contains all the indegree zero nodes, (ii) Each child of an internal
node g ∈ Vi, for i > 1, is either in V1 or in Vi−1. The width of a layered circuit
is maxi>1 |Vi|.

An arithmetic circuit over the field R is monotone if all the scalars used are
nonnegative. Finally, a layered arithmetic circuit is staggered if, in each layer
i > 1, all nodes except possibly one is a product gate of the form g = u× 1, for
some gate u from the previous layer.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 637–646, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Width-w staggered circuits are essentially the same as straight-line programs
with w registers. A width w − 1 arithmetic circuit can be easily converted to a
width-w staggered circuit (for both commutative and noncommutative circuits).
More precisely, for any layered arithmetic circuit of width w and size s, there is
a staggered arithmetic circuit, computing the same polynomial, of width w + 1
and size O(ws).

Ben-Or and Cleve’s seminal result on bounded-width circuits [3] shows that
size s arithmetic formulas (commutative or noncommutative) can be evaluated
by staggered arithmetic circuits of width three and size O(s2n). Bounded width
circuits are studied under various restrictions in [7,8,5]. However, these papers
have not considered proving explicit lower bounds.

We first observe that width-2 arithmetic circuits are universal.

Proposition 1. Any polynomial f ∈ F[x1, x2, · · · , xn] (or in F〈x1, · · · , xn〉) of
degree d with s monomials can be computed by a width two arithmetic circuit of
size O(d · s). Furthermore, if F = R and f is monotone, it can be computed by
a width-two size O(d · s) monotone circuit.

We note that Nisan’s rank argument [9] is not useful for proving lower bounds
for noncommutative bounded width circuits. For the noncommutative “palin-
dromes” polynomial P (x0, x1) =

∑
w∈{x0,x1}n wwR, the communication matrix

Mn(P ) is of rank 2n and hence any noncommutative ABP for it is exponentially
large [9]. However, we can easily give a width-2 noncommutative arithmetic cir-
cuit for P (x0, x1) of size O(n). Indeed, we can even ensure that each gate in this
circuit is homogeneous.

Proposition 2. The palindromes polynomial P (x0, x1) has a width-2 noncom-
mutative arithmetic circuit of size O(n).

We believe that a good candidate explicit polynomial not computable by width-
2 circuits of polynomial size is P �

k (defined in Section 2) for suitable k. A lower
bound argument still eludes us. However, if we consider monotone constant-
width circuits then even in the commutative case we can show exponential size
lower bounds for monotone width-k circuits computing P �

k . Since P �
k is com-

putable by depth 2k arithmetic circuits (of unbounded fanin), it follows that
the constant-width and the constant-depth hierarchies of monotone arithmetic
circuits are infinite. We present these results in Section 2.

Remark 1. Regarding the separation of the constant-depth hierarchy of mono-
tone circuits, a separation is shown by Raz and Yehudayoff in [11]. They show
a superpolynomial separation between depth k multilinear circuits and depth
k + 1 monotone circuits for all k ≥ 2. In contrast, our separation works only for
monotone circuits, and only for infinitely many k. Nonetheless, we show stronger
separations. More precisely, [11] shows a separation of 2(log s)1+Ω(1/k)

(i.e. there is
a polynomial computable by circuits of depth k + 1 and size s but not by depth
k circuits of size 2(log s)1+Ω(1/k)

). On the other hand, our separation is at least
2(log s)c

for any c > 0 (see the full version [1] for details).
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A related question is the comparative power of noncommutative ABPs and non-
commutative formulas. Noncommutative formulas have polynomial size noncom-
mutative ABPs. However, sO(log s) is the best known formula size upper bound
for noncommutative ABPs of size s. An interesting question is whether we can
prove a separation result. A separation in the monotone case can be easily de-
rived from an old result of Snir [12]. Let {x0, x1} be noncommuting variables. Let
L be the set of all monomials of degree 2n with an equal number of x0 and x1,
and consider the polynomial E =

∑
w∈L w. We can show that E is computable

by a monotone homogeneous ABP of size O(n2), whereas any monotone formula
for E has size nΩ(log n).

To illustrate again the power of constant-width circuits, there is a width-2
circuit of nO(1) size for computing the polynomial E if the field F has at least
cn2 distinct elements for a constant c. This is based on the well-known Ben-
Or trick [2] for computing the elementary symmetric polynomials in depth 3.
These observations are additional motivation for the study of constant-width
arithmetic circuits. In this extended abstract several proofs are omitted due to
lack of space. The full version of this paper is available on the ECCC [1].

2 Monotone Constant Width Circuits

We show that monotone constant-width arithmetic circuits form an infinite
hierarchy. Our construction implies that constant-depth monotone arithmetic
circuits too form an infinite hierarchy. For positive integers k and � we de-
fine a polynomial P �

k on �2k variables. For each � let P �
1 (x1, x2, . . . , x�2) =

∑�
i=1

∏�
j=1 x(i−1)�+j . Given P �

k , define for each �

P �
k+1(x1, x2, . . . , x�2k+2)=

�∑

i=1

�∏

j=1

P �
k(x(i−1)�2k+1+(j−1)�2k+1, . . . , x(i−1)�2k+1+j�2k).

Clearly, P �
k is a homogeneous polynomial of degree �k on �2k variables com-

putable by a depth 2k monotone formula of size O(�2k). Furthermore, P �
k are

the “hardest” polynomials for constant-depth circuits.

Proposition 3. Given a depth k arithmetic circuit C of size s, there is a pro-
jection reduction from C to the polynomial P �

k where � = O(s2k).

It is easy to see the following from the fact that a monotone depth 2k arithmetic
circuit of size s can be simulated by a monotone width 2k circuit of size O(s).

Proposition 4. For any positive integers � and k there is a monotone circuit
of width 2k and size O(�2k) that computes P �

2k.

For a polynomial f ∈ F[X ], where X = {x1, x2, · · · , xn} let mon(f) denotes
the set of nonzero monomials in the polynomial f . Let var(f) be the set of
all variables occurring in the monomials in mon(f). If an arithmetic circuit C
computes f , we sometimes denote mon(f) by mon(C) and var(f) by var(C).
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A layered circuit C is minimal if there is no smaller circuit C′ of the same
width s.t mon(C) = mon(C′). For any monotone circuit C, there is a mini-
mal circuit C′ of the same width s.t mon(C′) = mon(C) and has the following
properties.

– The only constants used in C′ are 0 and 1, and no gate is ever multiplied by
a constant.

– Given any node g in C′ computing a polynomial p, there is a monomial
m such that mon(m · p) ⊆ mon(C′). In particular, this implies that if C′

computes a homogeneous multilinear polynomial of degree d, then p must
be a homogeneous multilinear polynomial; moreover, mon(p) ⊆ mon(C′) if
deg(p) = d.

– If C′ computes a homogeneous multilinear polynomial of degree d, and if a
node g in layer i also computes a polynomial p of degree d, then g is a child
of a sum gate g′ in layer i + 1, if such a layer exists.

We call a minimal circuit satisfying the above a good minimal circuit. We now
state a useful property of good minimal circuits C satisfying mon(C) ⊆ P �

k , for
any �, k ≥ 1.

Lemma 1. Fix any �, k ≥ 1. We can write P �
k =

∑�
i=1 Pi, where var(Pi) ∩

var(Pj) = ∅ for any i 
= j. Suppose C is a good minimal circuit such that
mon(C) ⊆ mon(P �

k). If a gate g in C computes a polynomial p of degree less
than d := �k, or a product of two polynomials each of degree less than d, then
var(p) ⊆ var(Pi) for a unique i. Moreover, if p is of degree d, then we in fact
have mon(p) ⊆ mon(Pi).

We will now state and prove the lower bound: P �
k has no small width-k mono-

tone circuits. In fact, we prove a stronger statement: that P �
k is even hard to

“approximate” by polynomial size width-k monotone circuits.

Theorem 1. For each k > 0 there is �0 ∈ Z+ such that for all � > �0 and
any width-k monotone circuit C such that mon(C) ⊆ mon(P �

k) and |mon(C)| ≥
|mon(P �

k)|
2 , the circuit C is of size at least 2�

10 .

Proof. For i ∈ Z+ and j ∈ [w], denote by gi,j the jth node in layer i of C and
by fi,j the polynomial computed by gi,j . For a set of monomials M , we say that
a circuit C1 computes M if mon(C1) ⊇ M .

W.l.o.g., we assume throughout that C is a good minimal circuit. The proof is
by induction on k. The case k = 1 is distinct and easy to handle. Thus, we con-
sider as the induction base case the case k = 2. Consider a width two monotone
circuit C such that mon(C) ⊆ mon(P �

2 ) and |mon(C)| ≥ |mon(P �
2 )|/2 = ��+1/2.

Let f denote the polynomial computed by C. We know that both f and P �
2 are

homogeneous polynomials of degree d = �2.
We can write P �

2 =
∑�

i=1 Pi, where var(Pi) = {x(i−1)�3+1, . . . , xi�3}. Note that
var(Pi) ∩ var(Pj) = ∅ for i 
= j. Let f =

∑�
i=1 P ′i where mon(P ′i ) ⊆ mon(Pi) for

each i.
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Since C is good and f is homogeneous, each gate of C computes only ho-
mogeneous polynomials. Consider the lowest layer (say, i0) when the circuit C
computes a degree d monotone polynomial. W.l.o.g. fi0,1 is such a polynomial.
We list some crucial properties satisfied by gi0,1 and C.

1. As i0 is minimal, gi0,1 is a product gate computing the product of two poly-
nomials of degree less than d. Hence, by Lemma 1, mon(fi0,1) ⊆ mon(Pi)
for exactly one i. W.l.o.g. we assume i = 1.

2. Since deg(fi0,1) = d and C is good, there is a sequence of nodes gi,ji , for
i > i0 such that for each i, gi,ji is a sum gate with gi−1,ji−1 as child (here,
ji0 = 1), and hence mon(fi0,1) ⊆ mon(fi0+1,ji0+1) ⊆ mon(fi0+2,ji0+2) . . .,
and each fi,ji is homogeneous of degree d. We assume, w.l.o.g, that ji = 1
for each i > i0.

By the choice of i0, the node gi0,2 either computes a polynomial of degree less
than d or a product of two polynomials of degree less than d. Hence, var(fi0,2) ⊆
var(Pi) for some i. If i > 1, we assume w.l.o.g. that var(p) ⊆ var(P2). Consider
the circuit C with all variables in var(P1) ∪ var(P2) set to 0. The polynomial
computed by the new circuit C′ is now f ′ = f − P ′1 − P ′2 =

∑�
i=3 P ′i . Let

qi,j denote the new polynomial computed by the node gi,j. Each qi0,j is now a
constant polynomial.

Consider the monotone circuit C′′ obtained from C′ as follows: we remove all
the gates below layer i0; the gate gi0,2 in layer i0 is replaced the constant 1, if it
computes a nonzero constant in C′ and 0 otherwise; from layer i0 onwards, all
nodes of the form gi,1 are replaced by the constant 0. Clearly, C′′ is a width 1
circuit. We will refer to the nodes of C′′ with the same names as the correspond-
ing nodes in C′. For any node gi,2 in C′′ (i ≥ i0), let q′i,2 be the polynomial it
now computes. Crucially, we observe the following from the above construction.

Claim 2. For each i ≥ i0, mon(q′i,2) ⊇ mon(qi,2) \ mon(qi,1).

We now finish the proof of the base case. Define a sequence i1 < i2 < . . . < it of
layers as follows: for each j ∈ [t], ij is the least i > ij−1 such that mon(qi,1) �
mon(qij−1,1), and mon(qit,1) = mon(f ′). Clearly, t is at most the size of C. Note
that it must be the case that qij ,1 = qij−1,1+qij−1,2. Hence, we have mon(qij ,1) =
mon(qij−1,1)∪mon(qij−1,2) = mon(qij−1 ,1)∪(mon(qij−1,2)\mon(qij−1,1)). By the
above claim, the set mon(qij−1,2)\mon(qij−1,1), which we will denote by Sj , can
be computed by a width-1 circuit. Thus, mon(f ′) = mon(qit,1) = mon(qi0,1) ∪⋃t

j=1 Sj , where each Sj can be computed by a width-1 circuit. Since qi0,1 is the
zero polynomial, we have mon(f ′) =

⋃t
j=1 Sj .

Now, consider any width-1 monotone circuit computing a set S ⊆ P �
2 .

Claim 3. The set S is of the form mon(p) where p = (
∑

i∈X1
xi)

∏
j∈X2

xj , and
X1 ∩X2 = ∅.

Clearly, as each Sj satisfies Sj ⊆ var(P ′i ) for some i, it has at most �3 monomials.
Therefore, if the monotone circuit C is of size less than 2�, then it computes a
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polynomial of the form P ′1 +P ′2 +f ′, where f ′ has at most 2��3 monomials. Since
|mon(P ′i )| ≤ |mon(Pi)| = �� for each i, we have for suitably large �, |mon(C)| ≤
2�� + 2��3 < 3�� < ��+1

2 = |mon(P �
2 )|

2 , and the base case follows.
The induction step is similar to the base case. As induction hypothesis we as-

sume that any monotone circuit Ĉ of width k−1 such that mon(Ĉ) ⊆ mon(P �
k−1)

and |mon(Ĉ)| ≥ |mon(P �
k−1)|/2 must be of size at least 2�/10.

We write P �
k =

∑�
i=1 Pi, with var(Pi) = {x(i−1)�2k+1+1, . . . , xi�2k+1} and fur-

ther Pi =
∏�

j=1 Qij , where each Qij is of type P �
k−1. We have var(Qij) =

{x(i−1)�2k+1+(j−1)�2k+1, . . . , x(i−1)�2k+1+j�2k}. Let d denote deg(P �
k) = �k.

Consider any width k−1 circuit Ĉ of size less than 2�/10 such that mon(Ĉ) ⊆
mon(P �

k). For any i, j ∈ [�], by fixing all the variables outside var(Pi) to 0 and all
the variables in var(Pi)\var(Qij) to 1, we obtain a width k−1 circuit Ĉij of the
same size s.t mon(Ĉij) ⊆ mon(Qij). By the induction hypothesis, we see that
|mon(Ĉij)| ≤ |mon(Qij)|/2. Clearly mon(Ĉ) ⊆

⋃�
i=1 mon(Ĉi1)×mon(Ĉi2)×. . .×

mon(Ĉi�). Therefore, |mon(Ĉ)| ≤
∑

i

∏
j |mon(Ĉij)| ≤

∑
i

∏
j |mon(Qij)|/2 =

|mon(P �
k)|/2�. We have established the following claim.

Claim 4. For any width k − 1 circuit Ĉ of size less than 2�/10 such that
mon(Ĉ) ⊆ mon(P �

k), we have |mon(Ĉ)| ≤ |mon(P �
k)|

2� .

Now, consider any monotone width-k circuit C of size at most 2�/10 such that
mon(C) ⊆ mon(P �

k). We will show that |mon(C)| < |mon(P �
k)|/2. W.l.o.g., we

can assume that C is a good minimal circuit. Let f denote the polynomial
computed by C; we write f =

∑�
i=1 P ′i , where mon(P ′i ) ⊆ mon(Pi) for each i.

Let i0 be the first layer where a polynomial of degree d is computed. Exactly
as in the base case, we fix a sequence of nodes gi,ji for each i ≥ i0 such that gi,ji is
a sum gate with gi−1,ji−1 as a child such that mon(fi0,ji0

) ⊆ mon(fi0+1,ji0+1) ⊆
mon(fi0+2,ji0+2) . . ., and each fi,ji computes a homogeneous polynomial of degree
d. Renaming nodes if necessary, we assume ji = 1 for all i.

Now consider fi0,j for j > 1. As in the base case, var(fi0,j) ⊆ var(Ps) for
some s ∈ [�]. Thus, there is a set S ⊆ [�] s.t |S| < k such that

⋃
j>1 var(fi0,j) ⊆⋃

s∈S var(Ps). W.l.o.g., assume that S ⊆ [k].
Consider the circuit C′ obtained by setting the variables in

⋃
s∈[k] var(Ps) to

0. Let qi,j be the polynomial computed by gi,j in C′. The polynomial computed
by C′ is f ′ = f −

∑
s∈[k] P

′
s. Each qi0,j is now simply a constant for each j, and

that the size of C′ is at most the size of C which by assumption is bounded by
2�/10. Using this size bound we will argue that C′ cannot compute too many
monomials.

We now modify C′ as follows: we remove all the gates below layer i0; each
gate gi0,j with j > 1 is replaced by 1 if it computes a nonzero polynomial in C′

and 0 otherwise; from layer i0 onwards, all nodes of the form gi,1 are replaced
by the constant 0. Call this new circuit C′′. Clearly, C′′ has size at most the size
of C and width at most k − 1. For ease of notation, we will refer to the nodes
of C′′ with the same names as the corresponding nodes in C′. For any node gi,j
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in C′′ (i ≥ i0 and j > 1), let q′i,j be the polynomial it now computes. As in the
base case, we observe the following from the above construction.

Claim 5. For each i ≥ i0 and each j > 1, mon(q′i,j) ⊇ mon(qi,j) \ mon(qi,1).

Using Claim 5, we show that the circuit C′ was essentially just using the gates
gi,1 to store the sum of polynomials computed using width k − 1 circuits.

Construct a sequence of layers i1 < i2 < . . . < it in C′ as follows: for
each j ∈ [t], ij is the least i > ij−1 such that mon(qi,1) � mon(qij−1,1), and
mon(qit,1) = mon(f ′). Surely, t is at most the size of C′. Now, fix any ij for
j ≥ 1. Clearly, it must be the case that qij ,1 = qij−1,1 + qij−1,s for some s > 1;
therefore, we have mon(qij ,1) ⊆ mon(qij−1,1) ∪ (mon(qij−1,s) \ mon(qij−1,1)).
Denote the set mon(qij−1,s) \ mon(qij−1,1) by Sj . Since the above holds for
all j, and mon(qij−1,1) = mon(qij−1,1), we see that mon(f ′) = mon(qit,1) ⊆
mon(qi0,1) ∪

⋃
j Sj =

⋃
j Sj , since qi0,1 is the zero polynomial.

By Claim 5, for each j, there is a width k−1 circuit C′′ of size at most the size
of C such that Sj ⊆ mon(C′′) ⊆ P �

k . If the size of C (and hence that of C′ and
C′′) is at most 2�/10, it follows from Claim 4 that |Sj | ≤ |mon(P �

k)|/2�. Hence,
we see that |mon(f ′)| ≤ t|mon(P �

k)|/2�, which is at most |mon(P �
k )|/10. Since

the polynomial f computed by the circuit C is of the form f ′+
∑

i∈[k] P
′
i , where

|mon(P ′i )| ≤ |mon(Pi)| = |mon(P �
k)|/�. Therefore, |mon(f)| ≤ k

� |mon(P �
k)| +

|mon(f ′)| ≤ |mon(P �
k)|

(
k
� + 1

10

)
<
|mon(P �

k)|
2 for large enough �. This proves the

induction step.

From the remarks following the definition of P �
k and Proposition 4, we have the

following corollary of Theorem 1.

Corollary 1. For any fixed k ∈ Z+ and any n ∈ Z+, the explicit polynomial
P
�n1/2k�
k ∈ F[x1, . . . , xn] has linear-sized monotone circuits of depth 2k and width

2k, but no subexponential sized monotone circuits of depth k or width k.

The analogue of Theorem 1 and the above corollary can also be derived for
noncommutative circuits [1].

3 Identity Testing for Constant Width Circuits

Impagliazzo and Kabanets [6] showed that derandomizing polynomial identity
testing is equivalent to proving arithmetic circuit lower bounds: If there are
explicit polynomials that require superpolynomial size arithmetic circuits, they
can be used in a Nisan-Wigderson type “arithmetic” pseudorandom generator
to derandomize polynomial identity testing. Dvir et al [4] show that if there are
explicit polynomials that require superpolynomial size constant-depth arithmetic
circuits then polynomial identity testing for constant-depth arithmetic circuits
can be derandomized.

We prove a similar result showing that hardness for constant-width arithmetic
circuits yields a derandomization of polynomial identity testing for constant-
width circuits. A family {Pn,p | n ∈ Z+, p prime} where Pn,p(x) ∈ Fp[x1, · · · , xn]
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is a multilinear polynomial is called explicit if the coefficient of each monomial
m of the polynomial Pn,p can be computed in time 2(n+p)O(1)

.

Lemma 2. Let f ∈ F[x1, x2, · · · , xn] be a polynomial of degree m computed by
a staggered arithmetic circuit of size s and width w. Then Hi(f) (the ith homo-
geneous component of f) is computable by a staggered circuit of size poly(s,m)
and width w + O(1), provided F has at least deg(f) + 1 many elements.

Proof. Write f(x1z, x2z, · · · , xnz) =
∑m

i=0 Hi(f)zi where m = deg(f) and Hi(f)
is the ith homogeneous part of f . Let {z0, z1, · · · , zm} be m + 1 distinct field
elements. Consider the matrix (m + 1) × (m + 1) matrix M where Mij = zj−1

i−1
for i, j ∈ [m + 1]. Let g(x, z) = f(x1z, x2z, · · · , xnz). We have the system of
equations M(H0(f), H1(f), · · · , Hm(f))T = (g(x, z0), g(x, z1), · · · , g(x, zm))T .

Since M is invertible, there are aij ∈ F such that Hi(f) =
∑m

j=0 aijg(x, zj).
Since f(x) has a width w circuit of size s, g(x, z) has a (staggered) circuit of
width w + O(1) of size O(s). It follows that each Hi(f) has a circuit of width
w + O(1) and size O(ms).

Lemma 3. Let P (x1, x2, · · · , xn, y) be a polynomial, over a sufficiently large
field F, computed by a width-w staggered circuit of size s. Suppose the maximum
degree of y in P is r. Then for each j the jth partial derivative ∂jP

∂yj is computable
by a staggered circuit of width w + O(1) and size (rs)O(1).

The proof is similar to that of Lemma 2.

Lemma 4. [4, Lemma 3.2] For g ∈ F[x1, x2, · · · , xn] let H≤k(g) =
∑k

i=0 Hi(g).
Let P ∈ F[x1, x2, · · · , xn, y] and degy(P ) = r. Suppose f ∈ F[x1, x2, · · · , xn]
such that P (x, f(x)) = 0 and ∂P

∂y (0, f(0)) is equal to ξ 
= 0. Let P (x, y) =
∑r

i=1 Ci(x)yi. Then for each k ≥ 0 there is a polynomial Qk ∈ F[y0, y1, · · · , yr]
such that H≤k(f) = H≤k(Qk(C0, C1, · · · , Cr)).

Using the above lemmata, we prove the following theorem.

Theorem 6. Let P ∈ F[x1, x2, · · · , xn, y] and degy(P ) = r ≥ 1 such that P
has a staggered circuit of size s and width w. Suppose that P (x, f(x)) = 0 for
some polynomial f ∈ F[x1, x2, · · · , xn] with deg(f) = m. Then f has a staggered
circuit of size poly(s, (m + r)r) and width w + O(1) if char(F) > r and F is
sufficiently large.

Proof. We can assume that ∂P
∂y (0, f(0)) = ξ 
= 0. For, if ∂P

∂y (x, f(x)) ≡ 0 we
can replace P by ∂P

∂y . Since char(F) > r, there is a j : 1 ≤ j ≤ r such that
∂jP
∂yj (x, f(x)) 
≡ 0. Hence, we can assume ∂P

∂y (x, f(x)) 
≡ 0. Therefore, there is an
a ∈ Fn such that ∂P

∂y P (a, f(a)) 
= 0. We can assume that a = 0 by appropriately
shifting P as in [4]. Let P (x, y) =

∑r
i=1 Ci(x)yi.

By Lemma 4, there is Qk ∈ F[y0, · · · , yr] such that H≤k(f) =
H≤k(Qk(C0, C1, · · · , Cr)) for each 0 ≤ k ≤ m. Putting k = m and letting
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Qm = Q we have f(x) = H≤m(Q(C0, C1, · · · , Cr)). Let y∗ = (C0(0), · · · , Cr(0))
and deg(Q) = M . Define IM = {(α0, α1, · · · , αr) | αi ∈ N,

∑
αi ≤ M}.

By expanding Q at y∗ we get Q(y) =
∑

α∈IM
Qα

∏r
i=0(yi − y∗i )αi . Thus,

f(x) = H≤m[
∑

α∈IM
Qα

∏r
i=0(Ci(x) − Ci(0))αi ].

As the constant term of Ci(x) − Ci(0) is zero, if we consider
∏r

i=1(Ci(x) −
Ci(0))αi for some α with

∑
i αi > m then we will get monomials of degree

more than m whose net contribution to f(x) must be zero. Hence, f(x) =
H≤m[

∑
α∈Im

Qα

∏r
i=0(Ci(x) − Ci(0))αi ], where Im = {(α0, α1, · · · , αr) | αi ∈

N,
∑

αi ≤ m}. Clearly, |Im| ≤ (m + r)r. Now, the polynomial
∏r

i=0(yi − y∗i )αi

has a simple O(1)-width circuit C′. We can compute
∏r

i=0(Ci(x) − Ci(0))αi

by plugging in the staggered width w + O(1) circuit for Ci(x) (as obtained in
Lemma 3) where yi is input to C′. Thus, we obtain a circuit of width w+O(1) for∑

α∈Im
Qα

∏r
i=0(Ci(x) − Ci(0))αi that is of size polynomial in s and (m + r)r .

By Lemma 2 we can compute its homogeneous components and their partial
sums with constant increase in width. Hence, f(x) is computable by a circuit of
width w + O(1) and size polynomial in s and (m + r)r .

We apply Theorem 6 to prove the main result of this section.

Theorem 7. There is a constant c1 > 0 so that the following holds. Sup-
pose there is an explicit family {Pm,q | m ∈ Z+, q prime} where Pm,q(x) ∈
Fq[x1, · · · , xm] is a multilinear polynomial which can not be computable by arith-
metic circuits of width w+ c1 and size 2mε

, ε > 0. Then for any constant c2 > 0
and prime p > (logn)c2 , there is a deterministic 2(log n)O(1)

time algorithm that
takes as input a circuit C of size nO(1) and width w computing a polynomial
f ∈ Fp[x1, . . . , xn], with each variable of individual degree at most (logn)c2 , and
checks if the polynomial computed by C is identically zero.

Proof Sketch. Let m = (logn)c3 and � = (log n)c4 where c3 is suitably chosen
depending on ε and c2, and c4 is suitably larger than c3. Construct the Nisan-
Wigderson design S1, · · · , Sn ⊂ [�] such that |Si| = m for each i and |Si ∩ Sj | ≤
logn.

Consider F (y1, y2, · · · , y�) = C(Pm(y|S1), Pm(y|S2), · · · , Pm(y|Sn)). For any
input y ∈ F� we can evaluate F by evaluating Pm(y|Si) for each i and then
evaluating C on the resulting values. Since the Pm are explicit polynomials and
|Si| has (log n)O(1) size we can evaluate Pm in time 2(log n)O(1)

. We test if F (y) ≡ 0
using a brute-force algorithm based on the Schwartz-Zippel lemma. Consider a
finite set S ⊆ Fp, such that |S| is more than deg(F ) (go to suitable extension
field if necessary). Check if F (a) ≡ 0 for all a ∈ S� in time nO(�). If all the tests
returned zero then return C ≡ 0 otherwise C 
≡ 0.

Suppose the algorithm fails. After hybridization and fixing variables in C,
we get a nonzero polynomial F2 of the form F2(y|Si+1, xi+1) = F1(Pm(y|S1 ∩
Si+1), Pm(y|S2∩Si+1), · · · , Pm(y|Si∩Si+1), xi+1), where F1(x1, x2, . . . , xi+1) can
be computed by a width w circuit of size poly(n) and F2(y|Si+1, Pm(y|Si+1)) ≡ 0.
The polynomials Pm(y|Sj ∩ Si+1) depend only on logn variables and hence are
computable by brute force width-2 staggered circuits of size O(n logn). Clearly,
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F1 is computable by a staggered circuit of size poly(n) and width at most w+1.
Combining these circuits, F2 is computable by a staggered circuit C′ of size
poly(n) and width w + O(1). Applying Theorem 6 to C′ we get a circuit of
width w + O(1) to compute Pm contradicting the size bound in the hardness
assumption.

We observe an analogue of [6, Theorem 4.1] for bounded width circuits. If
the identity testing problem for bounded-width arithmetic circuits over Q is
in NSUBEXP then either NEXP 
⊆ P/poly or the Permanent polynomial is
computable by polynomial size bounded-width arithmetic circuit over Q.

Acknowledgements. We thank Amir Yehudayoff for pointing out the separa-
tion in [11] and for many valuable comments.
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Abstract. It is a common belief that computing a market equilibrium
in Fisher’s spending model is easier than computing a market equilib-
rium in Arrow-Debreu’s exchange model. This belief is built on the fact
that we have more algorithmic success in Fisher equilibria than Arrow-
Debreu equilibria. For example, a Fisher equilibrium in a Leontief market
can be found in polynomial time, while it is PPAD-hard to compute an
approximate Arrow-Debreu equilibrium in a Leontief market.

In this paper, we show that even when all the utilities are additively
separable, piecewise-linear and concave, computing an approximate equi-
librium in Fisher’s model is PPAD-hard. Our result solves a long-term
open question on the complexity of market equilibria. To the best of our
knowledge, this is the first PPAD-hardness result for Fisher’s model.1

1 Introduction

1.1 Market Equilibria: Fisher’s Model vs. Arrow-Debreu’s Model

In 1891, Irving Fisher introduced one of the most fundamental exchange market
models in his Ph.D. thesis [2]. It considers a market in which there are m buyers
and n divisible goods. We denote the amount of good j, j ∈ [n], in the market
by cj > 0. Every buyer i comes to the market with a certain amount of money,
denoted by wi > 0. The goal of a buyer is to obtain a bundle of goods, denoted
by ai ∈ Rn

+, that maximizes her utility function ui : Rn
+ → R+.

Fisher showed that if all the utility functions ui satisfy some mild conditions
then there always exists an equilibrium price vector p ∈ Rn

+. At this price, one
can find a bundle of goods ai for each buyer i such that ai maximizes her utility
under the budget constraint that ai · p ≤ wi, and at the same time, the market
demands equal to the market supply:

∑
i∈[m] ai,j ≤ cj for all j ∈ [n].

Fisher’s model is a special case of the more general model of exchange eco-
nomies considered by Arrow and Debreu [3]: In an exchange economy there are
1 Recently, Vazirani and Yannakakis independently proved that the problem of com-

puting an approximate Fisher equilibrium in a market with additively separable and
PLC utility functions is PPAD-hard [1]. They also showed that the problem of find-
ing an exact Arrow-Debreu equilibrium in such markets is in PPAD and thus, both
problems are PPAD-complete.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 647–656, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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m traders and n divisible goods. Trader i has an initial endowment of wi,j ≥ 0
of good j, and a utility function ui : Rn

+ → R+. The individual goal of a trader
is to obtain a new bundle of goods that maximizes her utility.

In a sense, Fisher’s model focuses more on spending than trading as in Arrow-
Debreu’s model. In his model, money can be viewed as a special kind of good.
All but one “special” trader only have money as their endowments, and money
has no value to their utilities; the special trader, sometime called the “market”,
has all the goods and her interest is to collect all the money.

Over the last two decades we have more algorithmic success in computing a
market equilibrium in Fisher’s model than computing a market equilibrium in
Arrow-Debreu’s model.

– For the latter, polynomial-time algorithms are only known for markets with
utility functions that are linear [4,5,6,7,8,9,10,11,12] or satisfy weak gross
substitutability [13]. These algorithms critically used the fact that the set of
equilibria of these markets is convex. Progress on markets with non-convex
set of equilibria has been relatively slow. There are only a few algorithms in
this case. Devanur and Kannan [14] gave a polynomial-time algorithm for
markets with piecewise-linear and concave (PLC) utilities and a constant
number of goods. Codenotti, McCune, Penumatcha, and Varadarajan [15]
gave a polynomial-time algorithm for CES markets when the elasticity of
substitution s ≥ 1/2.

For Leontief markets, in which each utility function is of the form minj ajxj ,
the problem of finding an approximate Arrow-Debreu equilibrium is known
to be PPAD-hard [16,17,18]. In [19], Chen et al. proved that finding an app-
roximate Arrow-Debreu equilibrium, even if all the utilities are additively
separable 2 and PLC, is PPAD-hard. Recently, Vazirani and Yannakakis [1]
showed that the problem of computing an exact Arrow-Debreu equilibrium
in such markets is a member of PPAD and thus, is complete in PPAD.

– For Fisher’s model, polynomial-time algorithms are given not only for linear
markets but also for Leontief and many other markets, e.g., the hybrid linear
Leontief markets [20]. We know that an (approximate) market equilibrium
in any Fisher’s economy with CES utilities can be found in polynomial time
[4,15,12,21,7,22]. In fact, Ye [21] proved that if every utility function is the
minimum of a collection of homogeneous linear functions, then one can find
a Fisher equilibrium in polynomial time.

1.2 Our Results

It remains open whether there is a family of concave utility functions for which
it is PPAD-hard to compute a Fisher equilibrium. The family of utility functions
that has drawn most attention is the additively separable, piecewise-linear, and
concave (PLC) functions. In [23], Vazirani remarked that obtaining a polynomi-
al-time algorithm for markets with additively separable and concave utilities is
2 A function u(x1, . . . , xm) from Rm

+ to R+ is additively separable if there exist m real-
valued functions f1, . . . , fm such that u(x1, . . . , xm) =

∑m
j=1 fj(xj).
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a premier open question today. Although the recent result of Chen et. al. shows
that finding an Arrow-Debreu equilibrium in markets with additively separable
and PLC utility functions is PPAD-hard [19], the complexity of Fisher equilibria
remains unclear.

In this paper, we show that the problem of finding a Fisher equilibrium re-
mains to be PPAD-hard when the utility functions are additively separable and
PLC. It then follows from the membership result of Vazirani and Yannakakis [1]
that this problem is PPAD-complete. Therefore, for this seemingly simple class
of utility functions, finding a Fisher equilibrium is as hard as finding an Arrow-
Debreu equilibrium. Recently, Vazirani and Yannakakis [1] also independently
proved that the problem of finding an approximate Fisher equilibrium in such
markets is complete in PPAD.

Proof Sketch: We prove the PPAD-hardness of the problem by giving a redu-
ction from Sparse Bimatrix [24]: the problem of finding an approximate Nash
equilibrium in a sparse two-player game (see Section 2.1 for definition).

Similar to [19], our reduction starts by constructing a family of markets Mn

for every n ≥ 1, which we refer to as the price-regulating markets. There are 2n
goods in Mn, and every approximate equilibrium price p satisfies the following
price-regulation property: p2k−1 + p2k ≈ 3 and 1/2 ≤ p2k−1

/
p2k ≤ 2, for every

k ∈ [n]. This allows us to encode n [0, 1]-variables x1, . . . , xn using p as follows

xk = p2k −
(
p2k + p2k+1

)/
3, for every k ∈ [n]. (1)

Moreover, the price-regulation property is stable with respect to “small pertur-
bations” to Mn: When new buyers are added to Mn (without introducing new
goods), this property remains to hold as long as the total amount of money of
these new buyers is small compared to that of the buyers in Mn.

Given an n × n two-player game (A,B), we construct a market M in poly-
nomial time by adding new buyers to M2n+1 (with 4n + 2 goods). All the new
buyers have very little money compared to those buyers in M2n+1 so the price-
regulation property still holds. This enables us to encode a pair of probability
distributions (x,y) of n dimensions (with 2n [0, 1]-variables) using the first 4n
entries of the price vector p, as in (1). By using the price-regulation property, we
show how to set the utilities of those new buyers appropriately so that we can
control their preferences over the goods and ultimately implement all the Nash
equilibrium constraints over (x,y) through p. As a result, given any (approxi-
mate) market equilibrium price vector p of M, the pair (x,y) obtained (after
normalization) must be an approximate Nash equilibrium of (A,B).

2 Preliminaries

2.1 Complexity of Nash Equilibria

A two-player game is defined by the payoff matrices (A,B) of its two players.
In this paper, we assume that both players have n choices of actions and thus,
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both A and B are square matrices with n rows and columns. We use Δn ⊂ Rn

to denote the set of probability distributions of n dimensions.
For ε ≥ 0, we say a pair of probability distributions (x,y), where x,y ∈ Δn,

is an ε-well-supported Nash equilibrium of (A,B), if for all i, j ∈ [n],

AiyT − AjyT > ε ⇒ xj = 0 and xBi − xBj > ε ⇒ yj = 0, (2)

where we let Ai denote the ith row of A, and Bi denote the ith column of B.
A two-player game (A,B) is said to be normalized if every entry of A and

B is between −1 and 1. We say a two-player game (A,B) is sparse if every row
and every column of A and B have at most 10 nonzero entries.

Let Sparse Bimatrix denote the following search problem: given an n × n
sparse normalized two-player game, find an n−6-well-supported Nash equilibri-
um. By [24], we know that Sparse Bimatrix is PPAD-complete.

2.2 Markets with Additively Separable PLC Utilities

Let G = {G1, . . . , Gn} denote a set of n divisible goods, and T = {T1, . . . , Tm}
denote a set of buyers. For each good Gj , we use cj > 0 to denote the amount
of Gj in the market. For each buyer Ti, we use wi > 0 to denote her money and
ui : Rn

+ → R+ to denote her utility function. In this paper, we will mainly focus
on markets with additively separable, piecewise-linear and concave utilities.

A continuous function r(·) over R+ is said to be t-segment piecewise linear
and concave (PLC) if r(0) = 0; and there exists a tuple

[
θ0 > θ1 > . . . > θt ≥ 0; 0 < a1 < a2 < . . . < at

]

of length 2t + 1 such that (letting a0 = 0)

1. ∀ i ∈ [0 : t − 1], the restriction of r(·) over [ai, ai+1] is a segment of slope θi;
2. the restriction of r(·) over [at, +∞) is a ray of slope θt.

The (2t + 1)-tuple is called the representation of r(·). Also we say r(·) is strictly
monotone if θt > 0, and is α-bounded for some α ≥ 1 if α ≥ θ0 and θt ≥ 1.

Definition 1. A function u(·) : Rn
+ → R+ is said to be an additively separable

PLC function if there exist PLC functions r1(·), . . . , rn(·) from R+ to R+ such
that u(a) =

∑
j∈[n] rj(aj) for all a ∈ Rn

+.

In such a market, we use, for every Ti ∈ T , ri,j(·) : R+ → R+ to denote her PLC
function with respect to good Gj ∈ G and thus, ui(a) =

∑
j∈[n] ri,j(aj).

We use p ∈ Rn
+ to denote a price vector, where p 
= 0 and pj is the price of

Gj . Given p, we let OPT(i,p) denote the set of allocations that maximize ui:

OPT(i,p) = argmax a∈Rn
+, a·p≤wi

ui(a).

We let X = {ai ∈ Rn
+ : i ∈ [m]} denote an allocation of the market: for each

buyer Ti ∈ T , ai ∈ Rn
+ is the amount of goods that Ti receives.

Definition 2. A market equilibrium is a nonzero vector p ∈ Rn
+ such that there

exists an allocation X = {ai : i ∈ [m]}, which has the following two properties:
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1. Every buyer gets one of the optimal bundles: ∀ i ∈ [m], ai ∈ OPT(i,p);
2. The market clears: ∀j ∈ [n], we have

∑
i∈[m] ai,j ≤ cj and

∑
i∈[m] ai,j = cj if pj > 0.

In general, not every market has such an equilibrium price vector. However, for
the additively separable PLC markets, the following condition guarantees the
existence of an equilibrium:

If for every buyer Ti ∈ T there exists a good Gj ∈ G such that the PLC
function ri,j(·) is strictly monotone, then a market equilibrium p exists.

It is a corollary of Maxfield [25]. Moreover, one can show that (e.g., see [14,19,1]),
if all parameters of M are rational numbers, then it must have a rational equi-
librium p, and the number of bits needed to describe p is polynomial in the
input size of M (i.e., the number of bits we need to describe the market M).

We are interested in the problem of finding an approximate market equilibrium
in an additively separable PLC market.

Definition 3. Let M be an additively separable PLC market. Then we say p ∈
Rn

+ is an ε-approximate equilibrium for some ε ≥ 0, if there exists an allocation
X = {ai ∈ Rn

+ : i ∈ [m]} such that ai ∈ OPT(i,p) for all i ∈ [m]; and
∣
∣
∣
∑

i∈[m] ai,j − cj

∣
∣
∣ ≤ ε · cj . for all Gj ∈ G.

We make some further restrictions on the markets we are interested in. We say
an additively separable PLC market M is α-bounded for some α ≥ 1, if for all
Ti and Gj the PLC function ri,j(·) is either the zero function or α-bounded. We
call an additively separable PLC market M a 2-linear market, if for all Ti and
Gj , ri,j(·) has at most two segments. Finally we say an additively separable PLC
market M is t-sparse, for some positive integer t, if for any Ti, the number of
j ∈ [n] such that ri,j(·) is not the zero function is at most t. In another word
every buyer Ti is interested in at most t goods.

We use Fisher to denote the following search problem: given a 2-linear ad-
ditively separable PLC market M, which is 81-bounded, 43-sparse and satisfies
the condition of Maxfield, find an n−21-approximate market equilibrium, where
n denotes the number of goods in the market. The main result of the paper is

Theorem 1 (Main). Fisher is PPAD-hard.

3 A Price-Regulating Market

In this section, we construct a family of price-regulating markets {Mn : n ≥ 1}
in Fisher’s setting. For every positive integer n, Mn has n buyers, 2n goods and
satisfies the following price regulation property.

Property 1. Let p be an ε-approximate equilibrium with ε < 1, then ∀k ∈ [n],

3/(1 + ε) ≤ p2k−1 + p2k ≤ 3/(1 − ε) and 1/2 ≤ p2k−1/p2k ≤ 2.
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We start with some notation. The goods in Mn are G = {G1, . . . , G2n} and the
buyers in Mn are T = {T1, . . . , Tn}. For each buyer Ti ∈ T , we use wi > 0 to
denote her money, ui(·) to denote her utility function, ri,k(·) to denote her PLC
function with respect to Gk. In the construction of Mn below, we let r(·) ⇐ [θ]
denote the action of setting r(·) to be the linear function of slope θ ≥ 0; and let
r(·) ⇐ [θ0, θ1; a1] denote the action of setting r(·) to be the 2-segment function
with representation [θ0, θ1; a1], where θ0 > θ1 and a1 > 0.

Construction of Mn: First, we set ck = 1, for all k ∈ [2n]. Second, for every
i ∈ [n], we set wi = 3. Finally, we set the PLC functions ri,k(·) as follows:

1. For all k 
= 2i − 1, 2i, we set ri,k(·) to be the zero function: ri,k(·) ⇐ [0];
2. ri,2i−1(·) ⇐ [2]; and ri,2i(·) ⇐ [4, 1; 1].

This finishes the construction of Mn which is 2-linear, 4-bounded and 2-sparse.

Proof (Proof of Property 1). Let p be an ε-approximate equilibrium, and X =
{ai ∈ R2n

+ : i ∈ [n]} be an optimal allocation that clears the market approxima-
tely. Without loss of generality, we prove Property 1 for k = 1.

First, it is easy to check that p1, p2 > 0.
Second, we show that p1/p2 ≤ 2. Assume, for contradiction, that p1 > 2 · p2.

By the optimality of a1, we have a1,1 = 0. As a result, we have ai,1 = 0 for all
i ∈ [n], contradicting the assumption. Similarly we have p1/p2 ≥ 1/2.

Finally, by the optimality of a1, we have 3 = a1,1 · p1 + a1,2 · p2. Since p is an
ε-approximate market equilibrium, we have |a1,1 − 1|, |a1,2 − 1| ≤ ε. As a result,
we have (1 − ε)(p1 + p2) ≤ 3 ≤ (1 + ε)(p1 + p2) and Property 1 follows.

By Property 1, we have p2k−1, p2k ∈ [1/(1 + ε), 2/(1 − ε)] for all k ∈ [n]. In
the next section, we use M2n+1 and the following 2n variables derived from p
to encode a pair of n-dimensional distributions (x′,y′): For k ∈ [n],

x′k = p2k −
(
p2k−1 + p2k

)/
3 and y′k = p2(n+k) −

(
p2(n+k)−1 + p2(n+k)

)/
3. (3)

Given an n×n sparse two-player game (A,B), we show how to add new buyers
to “perturb” the market M2n+1 so that any approximate equilibrium p of the
new market yields an approximate Nash equilibrium (x′,y′) of (A,B).

4 Reduction from Sparse Bimatrix to Fisher

In this section, we prove Theorem 1 by giving a reduction from Sparse Bima-

trix to Fisher. Given an n × n sparse two-player game (A,B), where A,B ∈
[−1, 1]n×n, we construct an additively separable and PLC market M by adding
new buyers to the price-regulating market M2n+1. There are 4n + 2 goods G =
{G1, . . . , G4n, G4n+1, G4n+2} in M, and the buyers T in M are

T =
{
Ti, Tu, Tv : i ∈ [2n + 1],u ∈ U and v ∈ V

}
,

where U = {(i, j, 1) : 1 ≤ i 
= j ≤ n} and V = {(i, j, 2) : 1 ≤ i 
= j ≤ n}.
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The buyers {Ti : i ∈ [2n + 1]} have almost the same money and utilities as
in M2n+1. When constructing M, we also define a 4n-dimensional vector su for
every Tu, and a vector sv for every Tv, which will be useful in the proof later.

We now start the construction of M.

Buyers Ti, where i ∈ [2n + 1]. For every Ti ∈ T , where i ∈ [2n + 1], we set
her money wi and PLC functions ri,k(·) almost the same as in M2n+1. First we
set wi = 3. Second, the PLC function ri,k(·) is set as:

ri,k(·) ⇐ [0] for all k 
= 2i − 1, 2i; ri,2i−1(·) ⇐ [2]; ri,2i(·) ⇐ [4, 1; 1 + 1/n20].

Buyers Tu, where u ∈ U . Let u = (i, j, 1), where 1 ≤ i 
= j ≤ n. We use
Ai and Aj to denote the ith and jth row vectors of A, and let C = Ai − Aj .
As A ∈ [−1, 1]n×n, we have |Ck| ≤ 2 for all k. We denote by m the number of
nonzero entries in C, then m ≤ 20. Let C =

∑
k∈[n]Ck, then we have |C| ≤ 20.

First, we set the money wu of Tu to be

wu = 3/n12 + (6m + C)/n13.

Using C, we set the PLC functions ru,k(·), where k ∈ [4n + 2], of Tu as follows:

1. ru,2(n+k)−1(·) ⇐ [0] and ru,2(n+k)(·) ⇐ [0] for all k ∈ [n] such that Ck = 0;
2. ru,2(n+k)−1(·) ⇐ [81, 1; 2/n13] for all k ∈ [n] such that Ck 
= 0;
3. ru,2(n+k)(·) ⇐ [81, 1; (2 + Ck)/n13] for all k ∈ [n] such that Ck 
= 0;
4. ru,2j−1(·) ⇐ [27, 1; 1/n12] and ru,2j(·) ⇐ [9, 1; 1/n12];
5. ru,k(·) ⇐ [0] for all other k ∈ [2n]; ru,4n+1(·) ⇐ [3] and ru,4n+2(·) ⇐ [0].

We also define the auxiliary vector su ∈ R4n
+ as follows:

1. su,2(n+k)−1 = su,2(n+k) = 0 for all k ∈ [n] such that Ck = 0;
2. su,2(n+k)−1 = 2/n13 and su,2(n+k) = (2 + Ck)/n13 for all k with Ck 
= 0;
3. su,2j−1 = su,2j = 1/n12; and su,k = 0 for all other k ∈ [2n].

Buyers Tv, where v ∈ V . The behavior of Tv, v ∈ V , is similar except that
it works on B, so we omit it here, which can be found in the full version [26].

Setting ck, where k ∈ [4n + 2]. First c4n+1 = c4n+2 = 1. Second, for each k
∈ [4n], we set ck = 1 +

∑
u∈U su,k +

∑
v∈V sv,k using vectors su and sv.

This finishes the construction of the market M.
Let N = 4n + 2, the number of goods in M. Then to prove Theorem 1, we

only need to show that from every N−21-approximate equilibrium p of M, one
can construct an n−6-well-supported equilibrium (x,y) of (A,B) efficiently.

To this end, we let (x′,y′) denote the pair of n-dimensional vectors derived
from p as in (3). Then we normalize (x′,y′) to get a pair of probability distri-
butions (x,y) (we will show later that x′,y′ 
= 0):

xk = x′k

/∑
i∈[n] x

′
i and yk = y′k

/∑
i∈[n] y

′
i, for every k ∈ [n]. (4)
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Theorem 1 then follows from Theorem 2. Note that if p is an N−21-approximate
equilibrium, then by definition it is also an n−21-approximate equilibrium.

Theorem 2. If p is an n−21-approximate market equilibrium of M, then (x,y)
constructed above must be an n−6-well-supported Nash equilibrium of (A,B).

We prove Theorem 2 in the rest of this section. Let p ∈ R4n+2
+ be an n−21-appro-

ximate equilibrium of M. It is easy to see that pk > 0 for all k. Let X be an
optimal allocation with respect to p that clears the market approximately:

X =
{
ai,au,av ∈ R4n+2

+ : i ∈ [2n + 1],u ∈ U and v ∈ V
}
.

We start with some notation. We let

T ∗ =
{
Ti : i ∈ [2n + 1]

}
, TU =

{
Tu : u ∈ U

}
, and TV =

{
Tv : v ∈ V

}
.

Let T ′ ⊆ T be a subset of buyers and k ∈ [4n + 2], then we let ak[T ′] denote
the amount of good Gk that buyers in T ′ receive in the final allocation X . For
T ′ ⊆ TU ∪ TV and k ∈ [4n], we let

sk[T ′] =
∑

Tu∈T ′∩TU
su,k +

∑
Tv∈T ′∩TV

sv,k.

By the construction, we have c4n+1 = c4n+2 = 1 and 1 < ck = 1 + Θ(1/n11) < 2
for every k ∈ [4n]. By the definition of ε-approximate equilibria, we also have

∣
∣sk[Tu ∪ Tv] − ak[Tu ∪ Tv] + 1 − ak[T ∗]

∣
∣ < 2/n21, for all k ∈ [4n]. (5)

To prove Theorem 2, we first show that the price vector p must satisfy the
following price-regulation property. The proof is similar to that of Property 1,
which mainly uses the fact that the buyers in T ∗ possess almost all the money
in M. So we omit it here, which can be found in the full version [26].

Lemma 1 (Price Regulation). For every k ∈ [2n + 1], we have

1/2 ≤ p2k−1/p2k ≤ 2 and 3 − O
(
1/n11) ≤ p2k−1 + p2k ≤ 3 + O

(
1/n10) .

Using Lemma 1, we analyze the behavior of Tu, u ∈ U , as follows.

Behavior of Tu: Let u = (i, j, 1) ∈ U where 1 ≤ i 
= j ≤ n. Let C = Ai − Aj ,
m ≤ 20 be the number of nonzero entries in C and C =

∑
k∈[n] Ck. By Lemma

1 and the optimality of au, Tu first buys the following bundle of goods:
{

su,2(n+k)−1 of G2(n+k)−1 and su,2(n+k) of G2(n+k) : k ∈ [n] and Ck 
= 0
}
. (6)

Using Lemma 1, one can show that her money left is 3/n12 − O(1/n13) > 0.
After buying this bundle, Tu buys G2j−1 up to 1/n12, and her money left is

Ω(1/n12) by Lemma 1. Finally, Tu buys G2j up to 1/n12, and then spends all
the money left, if any, to buy G4n+1.
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The behavior of Tv, v ∈ V , is similar so we omit it here. The analysis above
gives us the following lemma. The proof can be found in the full version [26].

Lemma 2. Let p be an n−21-approximate equilibrium. Then for any k ∈ [2n],

s2k[TU ∪ TV ] − a2k[TU ∪ TV ] = Ω(1/n19) =⇒ p2k = (p2k−1 + p2k)/3.

s2k[TU ∪ TV ] − a2k[TU ∪ TV ] = O(1/n21) =⇒ p2k = 2(p2k−1 + p2k)/3.

Let x′,y′ denote the two vectors obtained from p as in (3). By Lemma 1, we
have 0 ≤ x′k, y′k ≤ 1 + O(1/n10), for any k ∈ [n]. Finally, we state the following
two lemmas. Both proofs use Lemma 2, which can be found in [26].

Lemma 3. Let ε = n−6. Then for all i, j with 1 ≤ i 
= j ≤ n, we have

(Ai − Aj)y′T > ε/2 ⇒ x′j = 0 and x′(Bi − Bj) > ε/2 ⇒ y′j = 0,

where Ai denotes the ith row of A and Bi denotes the ith column of B.

Lemma 4. ∃ i, j ∈ [n] such that x′i ≥ 1 − O(1/n11) and y′j ≥ 1 − O(1/n11).

Now assume x′ and y′ satisfy both lemmas. In particular, Lemma 4 implies that
x′,y′ 
= 0. Therefore, we can normalize them to get two probability distributions
x and y using (4). Theorem 2 then follows directly from Lemma 3 and 4. The
proof can be found in [26].
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Abstract. In this paper we study several closely related fundamental
problems for words and matrices. First, we introduce the Identity Cor-
respondence Problem (ICP): whether a finite set of pairs of words (over
a group alphabet) can generate an identity pair by a sequence of con-
catenations. We prove that ICP is undecidable by a reduction of Post’s
Correspondence Problem via several new encoding techniques. In the sec-
ond part of the paper we use ICP to answer a long standing open problem
concerning matrix semigroups: “Is it decidable for a finitely generated
semigroup S of integral square matrices whether or not the identity ma-
trix belongs to S?”. We show that the problem is undecidable starting
from dimension four even when the number of matrices in the generator
is 48. From this fact, we can immediately derive that the fundamental
problem of whether a finite set of matrices generates a group is also un-
decidable. We also answer several questions for matrices over different
number fields.

1 Introduction

Combinatorics on words has many connections to several areas of mathematics
and computing. It is well known that words are very suitable objects to formu-
late fundamental properties of computations. One such property that may be
formulated in terms of operations on words is the exceptional concept of unde-
cidability. A problem is called undecidable if there exists no algorithm that can
solve it. A famous example is Post’s Correspondence Problem (PCP) originally
proved undecidable by Post in 1946. It plays a central role in computer science
due to its applicability for showing the undecidability of many computational
problems in a very natural and simple way.

In the spirit of Post’s Correspondence Problem, in this paper, we introduce the
Identity Correspondence Problem (ICP): whether a finite set of pairs of words
(over a group alphabet) can generate an identity pair by a sequence of concatena-
tions. We prove that ICP is undecidable by a reduction of Post’s Correspondence
Problem via several new encoding techniques that are used to guarantee the exis-
tence of an identity pair only in the case of a correct solution for PCP. We believe
that the ICP will be useful in identifying new areas of undecidable problems re-
lated to computational questions in abstract algebra, logic and combinatorics on
words.
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In the second part of the paper, we use the Identity Correspondence Problem
to answer several long standing open problems concerning matrix semigroups
[6]. Taking products of matrices is one of the fundamental operations in mathe-
matics. However, many computational problems related to the analysis of matrix
products are algorithmically hard and even undecidable. Among the oldest re-
sults is a remarkable paper by M. Paterson, where he shows that it is undecidable
whether the multiplicative semigroup generated by a finite set of 3×3 integer ma-
trices contains the zero matrix (also known as the mortality problem), see [18].
Since then, many results were obtained about checking the freeness, boundedness
and finiteness of matrix semigroups and the decidability of different reachability
questions such as the membership problem, vector reachability, scalar reachabil-
ity etc. See [2,3,4,5,7,8,9,13] for example for some related decidability results.

The membership problem asks whether a particular matrix is contained within
a given semigroup. The membership problem is undecidable for 3 × 3 integral
matrix semigroups due to Paterson’s results and also for the group SL(4, Z)
of 4 × 4 integer matrices of determinant 1, shown by Mikhailova [16]. Another
important problem in matrix semigroups is the identity problem: Decide whether
a finitely generated matrix semigroup contains the identity matrix. The identity
problem is equivalent to the following problem: Given a finitely generated matrix
semigroup S ⊆ Zn×n, decide whether a subset of the generators of S generates a
non-trivial matrix group. In general it is undecidable whether or not the monoid
described by a given finite representation is a group. However, this decision
problem is reducible to a very restricted form of the uniform word problem and
it is not directly applicable to the proof of undecidability of the group problem
in matrix semigroups [17].

The question about the membership of the identity matrix for matrix semi-
groups is a well known open problem and was recently stated in “Unsolved Prob-
lems in Mathematical Systems and Control Theory”, [6] and also as Problem 5
in [11]. The embedding methods used to show undecidability in other results do
not appear to work here [6]. As far as we know, only two decidability results are
known for the identity problem. Very recently the first general decidability result
for this problem was proved in the case of 2× 2 integral matrix semigroups, see
[9]. It is also known that in the special case of commutative matrix semigroups
[1] the problem is decidable in any dimension.

In this paper we apply ICP to answer the long standing open problem: “Is
it decidable for a finitely generated semigroup S of square integral matrices
whether or not the identity matrix belongs to S?”. We show that the identity
problem is undecidable starting from dimension four even when the number
of matrices in the generator is fixed. In other words, we can define a class of
finite sets {M1,M2, . . . ,Mk} of four dimensional matrices such that there is no
algorithm to determine whether or not the identity matrix can be represented
as a product of these matrices. From this fact, we can immediately derive that
the fundamental problem of whether a finite set of 4 × 4 matrices generates a
group is also undecidable. In our proofs we use the fact that free groups can be



The Identity Correspondence Problem and Its Applications 659

embedded into the multiplicative group of 2 × 2 integral matrices. This allows
us to transfer the undecidability of ICP into undecidability results on matrices.

We also provide a number of other corollaries. In particular, the identity and
group problems are undecidable for double quaternions and a set of rotations
on the 3-sphere. Therefore, there is no algorithm to check whether a set of
linear transformations or a set of rotations in dimension 4 is reversible. Also, the
question of whether any diagonal matrix can be generated by a 4 × 4 integral
matrix semigroup is undecidable.

2 Identity Correspondence Problem

Notation: Given an alphabet Σ = {a, b}, we denote the concatenation of two
letters x, y ∈ Σ by xy or x · y. A word over Σ is a concatenation of letters from
alphabet Σ, i.e., w = w1w2 · · ·wk ∈ Σ∗. We denote throughout the paper the
empty word by ε. We shall denote a pair of words by either (w1, w2) or w1

w2
.

The free group over a generating set H is denoted by FG(H), i.e., the free
group over two elements a and b is denoted as FG({a, b}), we shall also write this
as FG(a, b) by abuse of notation. For example, the elements of FG(a, b) are all
the words over the alphabet {a, b, a−1, b−1} that are reduced, i.e., that contain
no subword of the form x · x−1 or x−1 · x (for x ∈ {a, b}).

Problem 1. Identity Correspondence Problem (ICP) - Given a finite set of
pairs of words Π = {(u1, v1), (u2, v2), . . . , (um, vm)} ⊂ FG(a, b)×FG(a, b). Does
the equation us1us2 · · ·usk

= vs1vs2 · · · vsk
= ε hold for any nonempty finite

sequence of indices s = (s1, s2, . . . , sk), where ε is the empty word (identity)?

We shall reduce a restricted form of Post’s Correspondence Problem (PCP) [13]
to the Identity Correspondence Problem in a constructive way. We shall require
the following theorem:

Theorem 1. [13,15] Let Σ = {a, b} be a binary alphabet and P = {(r1, t1),
(r2, t2), . . . . . . , (rn, tn)} ⊆ Σ∗ ×Σ∗ be a set of pairs of words. It is undecidable
to determine if there exists a finite sequence of indices 2 ≤ x1, x2, . . . , xk ≤ n−1
such that: r1rx1rx2 · · · rxk

rn = t1tx1tx2 · · · txk
tn. This result holds even for n = 7.

A first step towards the proof of undecidability of Problem 1 was shown in [2]
where the following theorem was presented (although in a different form).

Theorem 2. [2] Let Σ = {a, b} be a binary alphabet and X = {(u1, v1),
(u2, v2), . . . . . . , (un, vn)} ⊆ FG(Σ)∗ × FG(Σ)∗. It is undecidable to determine
if there exists a finite sequence s1, s2, . . . , sk where 1 ≤ si ≤ n and exactly one
si = n such that us1us2 · · ·usk

= vs1vs2 · · · vsk
= ε.

The reason Theorem 2 does not prove Problem 1 is undecidable is the restric-
tion that the final pair of words (un, vn) is used exactly one time. Despite many
attempts, it is not clear how one may remove this restriction in the construc-
tion of the proof, since it is essential that this pair be used once to avoid the
pathological case of several incorrect solutions canceling with each other.
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The main idea of this paper is to show a new non-trivial encoding which
contains the encoding used in Theorem 2 but avoids the requirement that a
specific element be used one time. The idea is that by encoding the set X four
times using four different alphabets and adding ‘borders’ to each pair of words
such that for cancelation to occur, each of these alphabets must be used in a
specific order, any incorrect solutions using a single alphabet will not be able to
be canceled later on.

We shall reduce an instance of the restricted Post’s Correspondence Problem
of Theorem 1 to an instance of the Identity Correspondence Problem. Let here
and throughout Σ = {a, b} and define new alphabets Γi = {ai, bi} for 1 ≤ i ≤ 4
and ΓB = {xj |1 ≤ j ≤ 8} such that the alphabets are distinct (specifically, the
intersection of the free groups generated by any two different alphabets equals
{ε}). Let us define mappings δi : FG(Σ) → FG(Γi) by δi(a) = ai, δi(b) = bi,
δi(a−1) = a−1

i , δi(b−1) = b−1
i for 1 ≤ i ≤ 4. Note that each δi is a homomorphism

that may be applied to words over FG(Σ) in the natural way.
Let Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ ΓB. Define φi : Z+ → {ai, bi}∗ by φi(j) = aj

ibi.
Similarly, let ψi : Z+ → {a−1

i , b−1
i }∗ be defined by ψi(j) = (a−1

i )jb−1
i . These

morphisms will be used to ensure a product is in a specific order.
Let P = {(s1, t1), (s2, t2), . . . , (sn, tn)} ⊆ Σ∗ ×Σ∗ be a given restricted PCP

instance. An instance of ICP consists of a set of 48 pairs of words for n = 7:

W = W0 ∪W1 ∪ . . . ∪W15 ⊆ FG(Γ )∗ × FG(Γ )∗

W0 =
{

x8
x8

· v−1
11 u11

b1
· x−1

1

x−1
1

}
, W1 =

{
x1
x1

· u1j

φ1(j)
· x−1

1

x−1
1

|2 ≤ j ≤ n− 1
}
,

W2 =
{

x1
x1

· u1nv−1
1n

b−1
1

· x−1
2

x−1
2

}
, W3 =

{
x2
x2

· v−1
1j

ψ1(j)
· x−1

2

x−1
2

|2 ≤ j ≤ n− 1
}
,

W4 =
{

x2
x2

· v−1
21 u21

b2
· x−1

3

x−1
3

}
, W5 =

{
x3
x3

· u2j

φ2(j)
· x−1

3

x−1
3

|2 ≤ j ≤ n− 1
}
,

W6 =
{

x3
x3

· u2nv−1
2n

b−1
2

· x−1
4

x−1
4

}
, W7 =

{
x4
x4

· v−1
2j

ψ2(j)
· x−1

4

x−1
4

|2 ≤ j ≤ n− 1
}
,

W8 =
{

x4
x4

· v−1
31 u31

b3
· x−1

5

x−1
5

}
, W9 =

{
x5
x5

· u3j

φ3(j)
· x−1

5

x−1
5

|2 ≤ j ≤ n− 1
}
,

W10 =
{

x5
x5

· u3nv−1
3n

b−1
3

· x−1
6

x−1
6

}
, W11 =

{
x6
x6

· v−1
3j

ψ3(j)
· x−1

6

x−1
6

|2 ≤ j ≤ n− 1
}
,

W12 =
{

x6
x6

· v−1
41 u41

b4
· x−1

7

x−1
7

}
, W13 =

{
x7
x7

· u4j

φ4(j)
· x−1

7

x−1
7

|2 ≤ j ≤ n− 1
}
,

W14 =
{

x7
x7

· u4nv−1
4n

b−1
4

· x−1
8

x−1
8

}
, W15 =

{
x8
x8

· v−1
4j

ψ4(j)
· x−1

8

x−1
8

|2 ≤ j ≤ n− 1
}
,

where uik = δi(sk), vik = δi(tk) for 1 ≤ k ≤ n and 1 ≤ i ≤ 4. Given any
two words w1, w2 ∈ FG(Γ )∗, recall that we denote by w1

w2
the pair of words

(w1, w2) ∈ FG(Γ )∗ × FG(Γ )∗ in the above table.
Note that each word in each pair from Wi has a so called ‘border letter’ on

the left and right from alphabet FG(ΓB). These are used to restrict the type of
sequence1 that can lead to an identity pair. The central element of each word
(i.e. excluding the ‘border letters’) corresponds to particular words from P and

1 The only sequences that may lead to identity pair should be of the form of a cycle
or insertions of cycles.
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11u

11

−1
v

1ju

1n

−1
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1j

−1
v

1nu
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W3 W4

W5

W6

W7

W9

W10

W8

W11

W15

W14

W13
W12

C

A B

D

...

...

...

...
...

...

...

...

...

...
...

...

...

...

Fig. 1. The structure of a product which forms the identity

we encode instance P four times separately, first in W0,W1,W2,W3, secondly in
W4,W5,W6,W7 etc. using different alphabets for each encoding 2. This may be
seen in Fig. 1, where A,B,C and D each separately encode instance P .

The second words from each pair in W use an encoding which will ensure that
the first words are concatenated in a particular order within each A,B,C and
D part. We show in Lemma 1 that this encoding enforces a correct encoding of
the instance P within each part if that part gets reduced down to two letters in
the second word (the first and last ‘border letters’). In particular, we adapt here
our recently introduced index encoding technique from [2].

One of the important encoding concepts is a cycle of a set W . We see that
the first and last letters of any pair of words from set Wi ⊂ W only cancel with
a pair of words from set Wi+1 mod 16 for 0 ≤ i ≤ 15 and with elements from Wi

itself if imod 2 = 1.

Definition 1. A cycle w of W is a word pair from W ∗ of the following form:

w = wi · w(i+1) mod 16 · . . . · w(i+15) mod 16 ∈ W ∗ (1)

for some i: 0 ≤ i ≤ 15, where wy ∈ Wy if y mod 2 ≡ 0 and wy ∈ W ∗
y if

y mod 2 ≡ 1.

For example a cycle could use element W4 followed by a product of elements
from W5, then element W6, followed by a product of elements from W7 etc.
As previously mentioned, the idea of the encoding is that a correct solution to
the PCP instance P will be encoded four times in a correct solution to W , in
elements from {W0, . . . ,W3}, {W4, . . . ,W7}, {W8, . . . ,W11} and {W12, . . . ,W15}
separately.
2 In the case of an incorrect solution for a PCP instance, the use of different alphabets

for the four parts create an ordered sequence of non-empty parts that cannot be
trivially canceled from the left or right side.
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Proposition 1. If ICP has a solution it must be constructed by a sequence of
pairs of words which form either a single cycle or a pattern generated by cycle
insertions.

Definition 2. For any product Y ∈ W ∗ let us denote by a decomposition by
parts of Y , the decomposition Y = Y1Y2 · · ·Yk where for each 1 ≤ i ≤ k, if
Yi ⊂ FG(Γi ∪ ΓB)∗ × FG(Γi ∪ ΓB)∗ then Yi+1 ⊂ FG(Γj ∪ ΓB)∗ × FG(Γj ∪ ΓB)∗

where 1 ≤ i, j ≤ 4 and i 
= j.

For a cycle Q, the decomposition by parts of Q clearly gives either 4 or 5 parts
in the decomposition. For example, we may have Q = X1X2X3X4X5 where
X1 ∈ FG(Γi ∪ ΓB)∗ × FG(Γi ∪ ΓB)∗ and thus X2 ∈ FG(Γ(i mod 4)+1 ∪ ΓB)∗ ×
FG(Γ(i mod 4)+1 ∪ΓB)∗ etc. X5 is either empty or uses the same alphabet as X1.

The first words from each pair in each A,B,C,D part of Fig. 1 will store all
words from the instance of restricted PCP, P separately. If we concatenate the
first words of one of these parts in the correct order and have the empty word
(excluding initial and final ‘border letters’), then this corresponds to a solution
of P . By a correct order, we mean that if we have ui1ui2 · · ·uik for example,
then they should be concatenated with (vi1vi2 · · · vik)−1 = v−1

ik · · · v−1
i2 v−1

i1 . If the
concatenation of these words equals ε, then we have a correct solution to P .

The encoding in the second words using φi, ψi and {bi, b
−1
i |1 ≤ i ≤ 4} is

used to ensure that any solution to W must use such a correct ordering in each
A,B,C,D part. The next lemma formalizes this concept and is a modification of
the technique presented in [2]. It also can be seen as a simpler version of Fixed
Element PCP, see [4].

Lemma 1. Given any part X ∈ FG(Γj ∪ ΓB)∗ × FG(Γj ∪ ΓB)∗, if the second
word of X consists of only the initial and final ‘border letters’ xpx

−1
q where

(p, q) ∈ {(8, 2), (2, 4), (4, 6), (6, 8)} (i.e. it is of length two and over ΓB), then
the second words of X must be of the form

xp · bjφj(z1)φj(z2) · · ·φj(zk) · b−1
j · ψj(zk) · · ·ψj(z2)ψj(z1) · x−1

q ,

where 2 ≤ z1, z2, . . . , zk ≤ n − 1. (This corresponds to a ‘correct’ palindromic
encoding of the PCP instance P within this part.)

Lemma 2. If there exists a solution to the PCP instance P , then there exists a
solution to the Identity Correspondence Problem instance W .

Proof. Assume we have a solution to P with indices 2 ≤ i1, i2, . . . , ik ≤ n − 1,
i.e., s1si1 · · · sik

sn = t1ti1 · · · tik
tn. If we form a cycle of elements from W using

these indices for j in the u, v words, we see that all elements will cancel and we
will form the word ε

ε as required (see Fig. 1). �	

We shall define four ‘types’ of these parts, A,B,C,D where type A parts use
alphabet FG(Γ1∪ΓB)∗×FG(Γ1∪ΓB)∗, type B parts use FG(Γ2∪ΓB)∗×FG(Γ2∪
ΓB)∗, type C parts use FG(Γ3 ∪ ΓB)∗ × FG(Γ3 ∪ ΓB)∗ and type D parts use
FG(Γ4 ∪ ΓB)∗ × FG(Γ4 ∪ ΓB)∗ as in Fig. 1. A cycle thus has a decomposition
which is a permutation of ABCD.
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Let us define a function ζ : W ∗ → N. Given any product Y with the de-
composition by parts Y = Y1Y2 · · ·Yk, let ζ(Y ) denote the sum of non-identity
words from the set of pairs of words {Z1, Z2, . . . , Zk} where Zi is a pair of words
constructed from Yi where we exclude the first and last letters (from ΓB) in
each pair of words in Yi. Note that Zi ∈ FG(Γj ∪ΓB)∗×FG(Γj ∪ΓB)∗ for some
1 ≤ j ≤ 4.

Thus for a single cycle Q, 0 ≤ ζ(Q) ≤ 10 since it can be decomposed to a
maximum of 5 parts. If the first and second words in each decomposed part have
a non-reducible word in between the borders, we have that ζ(Q) is equal to 10.
If ζ(Q) equals 0, it means that all words in between the border elements are
reducible to identity.

Lemma 3. If there exists no solution to the encoded PCP instance P then for
any cycle Q ∈ W+ and its decomposition by parts Q = X1X2X3X4X5 the
following holds: any Xr 
= (ε, ε) where 1 ≤ r ≤ 5; ζ(Q) ≥ 4 and Q 
= (ε, ε), i.e.,
a single cycle cannot be a solution to the Identity Correspondence Problem.

Proof. Let Q be a single cycle of the form (1). Since it is a cycle, the ‘border
letters’ of each pair will all cancel with each other and thus we may ignore letters
from FG(ΓB). Let Q = X1X2X3X4X5 be its decomposition by parts (thus X5
can be empty and four of the ‘parts’ use different alphabets).

Let us consider Xr which is either equal to X1 X2, X3, X4 or X5. We
will show that Xr cannot be equal to (ε, ε). Since Q is a cycle, which has a
specific structure, the first word of this element, when concatenated, equals
v−1

r1 ur1urj1 · · ·urjmurnv
−1
rn v−1

rkl
· · · v−1

rk1
for some 1 ≤ r ≤ 4 and m, l ≥ 0. If ji = ki

for all 1 ≤ i ≤ m with m = n then this is a correct encoding of the PCP instance
P which we have assumed has no solution, thus this word does not equal ε in
this case. Therefore the elements must not be in a correct sequence if the first
word equals ε. In this case however, the second word will now not equal ε by
the choice of the morphisms φi and ψi as shown in Lemma 1. If we have such
an incorrect ordering then when we multiply the second set of words (since also
each morphism uses a different alphabet) they never equal ε which is not difficult
to see. So assuming that there is no solution to the PCP instance P , for any part
Xr, Xr 
= (ε, ε), i.e., at least one word in the pairs of words of each part does
not equal ε. Thus, if there exists no solution to PCP, then 4 ≤ ζ(ABCD) ≤ 8
for a cycle ABCD. �	

It follows from Lemma 3 that the statements of Prop. 1 can be restricted further.
Then in Lemma 4 we show that a concatenation of cycles cannot form a solution
either which means that if ICP has a solution it should be a solution in the form
of a single cycle.

Proposition 2. If ICP has a solution it must be given by a concatenation of
cycles.

Lemma 4. Given an instance of the Identity Correspondence Problem W en-
coding an instance P of restricted Post’s Correspondence Problem, if there exists
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no solution to P then for any product X ∈ W+, it holds that X 
= (ε, ε), i.e., if
there is no solution to P , there is no solution to W .

Proof. Let X = X1X2 · · ·Xk be the decomposition by parts of X . Assume X =
(ε, ε) is a solution to W , then clearly a permutation of the elements of X is
possible so that we may assume without loss of generality that X starts with a
part of type A.

Due to the ‘border constraints’, Proposition 2 gives us a restricted form of
sequences that may lead to an identity pair, i.e., a type A pair of words must be
followed by a type B pair of words which must be followed by a type C pair of
words etc. Clearly then X must be of the form ABCD · ABCD · · ·ABCD if it
equals (ε, ε) since a single cycle is not a solution to W by Lemma 3.

Assuming that there is no solution to the PCP instance P , for any part, Yi, we
proved in Lemma 3 that Yi 
= (ε, ε), i.e., at least one word in the pairs of words
of each part does not equal ε (even excluding initial and final border letters).
Thus, crucially, if there exists no solution to PCP, then 4 ≤ ζ(ABCD) ≤ 8 for
a cycle ABCD.

We have that ζ(ABCD) ≥ 4. We shall now prove ζ(ABCDABCD) ≥ 4, i.e.,
by adding another cycle to the existing one, the number of ‘empty parts’ does
not decrease. This means that we cannot reduce such a product to (ε, ε) and
thus if there exists no solution to instance P , there exists no solution to the
Identity Correspondence Problem instance W as required. To see this, consider
how many parts can be cancelled by adding a cycle. For example if the first word
has an A part which cancels with the A part of the second cycle, then the first
word for the B,C,D parts of the first cycle must be ε. But since no part can be
equal to (ε, ε) we know that in the first ABCD cycle, the second word of the
B,C,D parts must not equal ε. The only element that can cancel the second
word of ABCD is thus the D part of the second cycle. However this implies that
the second word of the A,B,C parts of the second cycle all equal ε, thus the
first word of the B,C parts of the second cycle cannot be ε and we have at least
four non ε parts (the first and second words of the B,C parts).

The same argument holds to cancel any part thus we cannot reduce more
than 4 parts by the concatenation of two cycles. The first word can cancel at
most two parts and the second words can cancel at most two parts but since
we start with eight nonempty parts we remove only four parts at most leaving
four remaining parts. Thus ζ(ABCDABCD) ≥ ζ(ABCD) + ζ(ABCD) − 4 ≥ 4
as required. In fact, it is not difficult to see that this argument can be applied
iteratively and thus ζ((ABCD)k) ≥ 4 always holds. If there is no solution to
ICP then a concatenation of cycles cannot form a solution. �	

Theorem 3. The Identity Correspondence Problem is undecidable for n = 48.

Proof. Given an instance of the Identity Correspondence Problem, W ⊆
FG(Γ )∗ × FG(Γ )∗ which encodes an instance of restricted Post’s Correspon-
dence Problem P . If there exists a solution to P , Lemma 2 implies that there
also exists a solution to W . If there does not exist a solution to P , for a single
cycle of W , Lemma 3 shows that there also exists no solution. Finally, Lemma 4
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shows that if there is no solution to P , any possible solution to W must be a
concatenation of cycles but we then showed that such a concatenation cannot
actually be a solution to W by considering the decomposition of the product by
parts and the maximum number of cancellations and thus W has a solution if
and only if P has a solution proving the undecidability.

It remains to prove that we may define the problem over a binary group
alphabet {a, b, a−1, b−1}. This is not difficult however by a standard technique
which we now outline. Given a group alphabet Σ1 = {y1, . . . , yk, y

−1
1 , . . . , y−1

k }
and a binary group alphabet Σ = {a, b, a−1, b−1}. Define σ : Σ1 → Σ∗ by
σ(yi) = aib and σ(y−1

i ) = (a−1)ib−1. It is not difficult to see that this is an
injective morphism and applying iteratively to each letter in each word of W
proves the undecidability of the Identity Correspondence Problem over a binary
group alphabet. �	

Problem 2. Group Problem - Is the semigroup generated by a finite set of pairs
of words P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊂ FG(a, b) × FG(a, b) a group?

Theorem 4. The Group Problem is undecidable.

Proof. Let us assume by contradiction that the group problem is decidable
for a semigroup S defined by pairs of words over a group alphabet and the
operation of pairwise concatenation. If the identity element can be gener-
ated by the concatenation of word pairs (ui1 , vi1 )(ui2 , vi2) · . . . · (uik

, vik
) =

(ui1ui2 · . . . · uik
, vi1vi2 · . . . · vik

) = (ε, ε) then any cyclic permutation of words
in this concatenation is also equal to (ε, ε). Thus every element in the set of all
pairs used in the generation of identity has an inverse element and this set gen-
erates a subgroup. Therefore the identity problem can be solved by checking if
any nonempty subset of the original pairs generates a group. If there is a subset
of S which generates a group then the identity element is in S. Otherwise the
identity element is not generated by S. �	

3 Applications of ICP

In this section we will provide a number of new results in matrix semigroups using
the undecidability of ICP. It was not previously known whether the identity
problem for matrix semigroups was decidable for any dimension greater than
two. The decidability of the two dimensional case was recently proved to be
decidable in [9].

Theorem 5. Given a semigroup S generated by a fixed number n of square four
dimensional integral matrices, determining whether the identity matrix belongs
to S is undecidable. This holds even for n = 48.

Proof. We shall use a standard encoding to embed an instance of the Identity
Correspondence Problem into a set of integral matrices. Given an instance of
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ICP say W ⊆ Σ∗×Σ∗ where Σ = {a, b, a−1, b−1} generates a free group. Define
the morphism ρ : Σ∗ → Z2×2:

ρ(a) =
(

1 2
0 1

)
, ρ(b) =

(
1 0
2 1

)
, ρ(a−1) =

(
1 −2
0 1

)
, ρ(b−1) =

(
1 0
−2 1

)
.

It is known from the literature that ρ is an injective homomorphism, i.e., the
group generated by {ρ(a), ρ(b)} is free, see for example [14]. For each pair of
words (w1, w2) ∈ W , define the matrix Aw1,w2 = ρ(w1) ⊕ ρ(w2) where ⊕
denotes the direct sum of two matrices. Let S be a semigroup generated by
{Aw1,w2 |(w1, w2) ∈ W}. If there exists a solution to ICP, i.e., (ε, ε) ∈ W+, then
we see that ρ(ε)⊕ρ(ε) = I4 ∈ S where I4 is the 4×4 identity matrix. Otherwise,
since ρ is an injective homomorphism, I4 
∈ S. �	

It follows from the above construction that another open problem concerning
the reachability of any diagonal matrix in a finitely generated integral matrix
semigroup stated in [6] and as Open Problem 6 in [11] is also undecidable.

Corollary 1. Given a finitely generated semigroup of integer matrices S, de-
termining whether there exists any diagonal matrix in S is algorithmically un-
decidable.

Proof. This result follows from the proof of Theorem 5. Note that in that theo-
rem, the morphism ρ is injective and thus the only diagonal matrix in the range
of ρ is the 2 × 2 identity matrix I2 (corresponding to ρ(ε)), since diagonal ma-
trices commute. Clearly then, the only diagonal matrix in the semigroup S of
Theorem 5 is given by ρ(ε) ⊕ ρ(ε) = I4 where I4 is the 4 × 4 identity matrix.
Since determining if this matrix is in S was shown to be undecidable, it is also
undecidable to determine if there exists any diagonal matrix in S. �	

Theorem 6. Given a finite set of rotations on the 3-sphere. Determining
whether this set of rotations generates a group is undecidable.

Proof. For the definitions of quaternions used in this theorem, see [5]. The set
of all unit quaternions forms the unit 3-sphere and any pair of unit quaternions
a and b can represent a rotation in 4 dimensional space. We can rotate a point
x = (x1, x2, x3, x4) on the 3-sphere, represented by a quaternion qx = x1 +x2i+
x3j+x4k, in the following way: aqxb

−1. We can define a morphism ξ from a group
alphabet to unitary quaternions: ξ(a) = (3/5)+ (4/5) · i; ξ(b) = (3/5)+ (4/5) · j.
It was proven in [5] that ξ is an injective homomorphism. Now we convert pairs
of words from an instance of the Identity Correspondence Problem into pairs
of quaternions {(a1, b1), . . . , (an, bn)}. Thus we reduce the group problem for
pairs of words over a group alphabet to the question of whether a finite set of
rotations, {(a1, b1), . . . , (an, bn)}, represented by pairs of quaternions, generates
a group. �	

Acknowledgements. We would like to thank Prof. Tero Harju for useful dis-
cussions concerning this problem.
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Abstract. We give a deterministic distributed approximation algorithm
for the maximum matching problem in graphs of bounded arboricity.
Specifically, given 0 < ε < 1 and a positive integer a, the algorithm
finds a matching of size at least (1 − ε)m(G), where m(G) is the size
of the maximum matching in an n-vertex graph G with arboricity at
most a. The algorithm runs in O(log∗ n) rounds in the message passing
model and it is the first sublogarithmic algorithm for the problem on
such a wide class of graphs. Moreover, the result implies that the known
Ω(

√
log n/ log log n) lower bound on the time complexity for a constant

or polylogarithmic approximation does not hold for graphs of bounded
arboricity.

1 Introduction

Designing distributed approximation algorithms for special families of networks
has attracted a lot of interest in recent years and efficient algorithms for many
classical graph-theoretic problems in constant-degree graphs, unit-disk graphs, or
planar networks have been given ([CH06], [KMNW05a], [KMNW05b], [BE08]).
At the same time, most of the problems that admit efficient solutions in the
above classes of graphs are provably intractable (see, e.g., [KMW04]) or seem
unapproachable in general networks. In this paper, we focus on the maximum
matching problem and give a fast, deterministic, distributed approximation al-
gorithm for the problem in graphs of bounded arboricity.

1.1 Model of Computation, Definitions and Notation

We will consider a synchronous, message-passing model of computations (re-
ferred to as LOCAL in [Pe00]). In this model a graph is used to represent an
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�� This work was supported by grant N206 017 32/2452 for years 2007-2010.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 668–678, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Fast Distributed Approximation Algorithm 669

underlying network. The vertices of the graph correspond to computational units,
and edges represent communication links. The network is synchronized and in
one round a vertex can send and receive messages from all of its neighbors. In
addition, in the same round, a vertex can perform some local computations. Nei-
ther the amount of local computations nor the size of a message is restricted in
any way and the running time of the algorithm is the number of rounds needed to
solve a problem. We assume that vertices have unique identifiers from {1, . . . , n},
where n is the order of the graph.

Recall that a matching in a graph G = (V, E) is a set M ⊆ E of disjoint
edges. A matching M is called maximal if there is no matching M ′ such that
M is a proper subset of M ′, and a matching M is called maximum if there is
no matching M ′ with |M ′| > |M |. The size of a maximum matching in G is
denoted by m(G). In this paper, we will analyze the distributed complexity of
the matching problem in uniformly sparse graphs. The uniform sparsity of a
graph can be formalized using the concept of arboricity.

Definition 1. The arboricity of a graph G = (V, E) is defined by arb(G) =
max{

⌈ |E(G′)|
|V (G′)|−1

⌉
|G′ ⊆ G, |V (G′)| ≥ 2}.

It follows from the definition that if a graph G has arboricity at most a then
for every subset U ⊆ V (G) the subgraph induced by U has at most a|U | edges.
We will use this fact repeatedly in the proofs. In addition, in view of the Nash-
Williams Theorem ([Di05]), E(G) is a union of �a� forests. Of course, arb(G) ≤ 1
if and only if G is a forest, and when G is planar then arb(G) ≤ 3. Moreover,
graphs without a forbidden minor have bounded arboricity which depends on
the minor. On the other hand, a graph of constant arboricity may contain K√n

as a minor.
We will follow standard graph-theoretic notation. In particular, if G = (V, E)

is a graph and U, W ⊆ V then E(U, W ) denotes the set of edges with one endpoint
in U and the other in W . We set e(U, E) = |E(U, W )|. If U = {u} then we write
E(u, W ). In addition, we set deg(u, W ) := e(u, W ), write deg(u) for deg(u, V ),
and use Δ(G) for maxv∈V (G) deg(v). For U ⊂ V (G), G[U ] denotes the subgraph
of G induced by U . The number of edges in G[U ] we denote by e(U).

1.2 Related Work

The theory of distributed algorithms for graph-theoretic problems has seen a
dynamic growth in recent years (see the survey by Elkin [El04] for a general
overview). The distributed complexity of the sequentially polynomial matching
problem has been intensively studied and many questions remain open in the
general case. In [HKP01] a poly-logarithmic time (in n), distributed algorithm
for the maximal matching problem is given. By virtue of its maximality the re-
turned matching is a 1

2 -approximation of a maximum matching. This was further
improved in [CHS02] to 2

3 -approximation in O(log4 n) time for general graphs
and in [CH03] a (1 − ε)-approximation for bipartite graphs in time (log n)O(1/ε)

was given. With the help of randomization it is possible to reduce the expected
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running time to O(log n) ([II86]) and the current best approximation ratio, (1−ε)
for any ε > 0, within this frame is due to Lotker et al. [LPP08].

One of the fundamental interests in the distributed computing is the trade-
off between time and approximation ratio. On the negative site, Kuhn et al.
[KMW05] proved a lower bound of Ω(

√
log n/ log log n) on the time complex-

ity for any distributed algorithm, deterministic or randomized to compute a
constant or polylogarithmic approximation for maximum matching. The lower
bound holds even if messages have unbounded size. This, somehow surprising
limitation of local algorithms justified the study of the problem in special classes
of graphs. It has turned out that if the underlying graph has more structure,
much faster algorithms are available. For example, in the case of bounded degree
graphs it is possible to find a maximal matching in O(log∗ n) rounds using the
algorithm of Cole and Vishkin [CV86] or Panconesi and Rizzi [PR01]. In Sect. 2,
building on this fact, we give an algorithm which finds a (1 − ε)-approximation
of the maximum matching in this class of graphs in O(log∗ n) rounds.

Many problems admit very fast approximations in planar networks. In [CHS06]
the authors presented a maximum matching algorithm which yields an asymptot-
ically optimal approximation ratio of (1+O(1/ logn)) but the number of rounds
is O(log29 n). Later Czygrinow et al. [CHW08] provided an (1−ε)-approximation
of the maximum matching in this class of graphs in O(log∗ n) rounds. Note, how-
ever, that all the above algorithms use planarity extensively, and the fact that
contracting a subgraph preserves planarity is a fundamental principle of the
approach in [CHW08].

A common generalization of bounded degree graphs and planar graphs is
the class of uniformly sparse graphs, that is graphs of bounded arboricity. Re-
cently, these graphs were considered by Barenboim and Elkin ([BE08]), who gave
a O(log n/ log log n)-time algorithm for the maximal independent set problem
based on forest-decomposition. Motivated by their result we study distributed
approximation for the maximum matching problem in the same family of graphs.
Unfortunately, we cannot apply the ideas from [CHW08] or [BE08] and instead
must use different techniques. Indeed, the forest decomposition method, suitable
for bounded arboricity graphs carries a lower bound, proved in [BE08], and the
complexity which makes it insufficient for our task. On the other hand, bounded
arboricity is not preserved under subgraph contraction and the technique from
[CHW08] fails as well.

Our approach is based on a reduction to the narrower class of bounded degree
graphs.

1.3 Main Result

Our main result is summarized in the following theorem.

Theorem 1. Given 0 < ε < 1 and a positive integer a, there exits a distributed
algorithm (Matching) which finds in a graph G with arb(G) ≤ a a matching
M such that

|M | ≥ (1 − ε)m(G).

The algorithm runs in c log∗ n rounds, where c depends only on ε and a.
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We assume that the order n of the underlying graph G and the arboricity of
G are globally known. According to our knowledge, this is the first O(log∗ n)-
time distributed approximation for a non-trivial problem in the class of graphs
of bounded arboricity. Also, our result shows that the lower bound on the dis-
tributed time complexity for a constant or polylogarithmic approximation proved
in [KMW05], mentioned in the preceding subsection, does not hold in graphs of
bounded arboricity.

In addition, as an application of Theorem 1, we design an algorithm finding an
approximate orientation of bounded arboricity graphs (see Theorem 4 in Sect. 5).

1.4 Organization

The rest of the paper is structured as follows. In the next section we give a
procedure for finding an approximation of a maximum matching in graphs of
bounded degrees. In Sect. 3, we describe the main algorithm and its analysis is
presented in Sect. 4. Finally, in Sect. 5 we outline how the matching algorithm
can be used to find an orientation of almost all edges in a graph of bounded
arboricity.

2 Bounded Degree Graphs

In this section we will give a procedure which approximates a maximum matching
in bounded degree graphs. Although many problems are known to admit very
fast distributed algorithms in the class of bounded degree graphs, according to
our knowledge a (1 − ξ)-approximation of the maximum matching in O(log∗ n)
rounds has not been explicitly discussed. The procedure given here is then used
in Sect. 3 in the main matching algorithm. Our method will rely on augmenting
paths. Let M be a matching in a graph G. A vertex v of G is called M -saturated
if v ∈ V (M) and is called M -free if v /∈ V (M). A path P in G of length 2l− 1 is
called M -augmenting if the edges of P alternate between E(G) \M and M, and
the endpoints of P are M -free. The following well known result can be applied
in the approximation of m(G).

Theorem 2. [HK73]

(a) Let M be an arbitrary matching in G. If there are no M -augmenting paths
of lengths at most 2k − 1, then |M | ≥

(
1 − 1

k+1

)
m(G).

(b) Let k ≥ 2 and let M be a matching in a graph G such that there are no
M -augmenting paths of length at most 2k− 3 (in particular, the matching is
maximal). Let P be a maximal set of vertex-disjoint M -augmenting paths of
length 2k − 1 and let M ′ = M ÷ (

⋃
P∈P E(P )) be the matching obtained by

augmenting M along the paths from P . Then there are no M ′-augmenting
paths of length at most 2k − 1 in G.

Consequently, together parts (a) and (b) of Theorem 2 assure, that the matching
M ′ satisfies |M ′| ≥

(
1 − 1

k+1

)
m(G).
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The general idea behind our algorithm in this section is to find a maximal
matching M and then to improve M iteratively, using a maximal collection of
pair-wise vertex-disjoint M -augmenting paths of length 2l − 1 (l = 2, . . . , k), as
described in part (b) of the above theorem.

In order to find a maximal set of vertex-disjoint M -augmenting paths of length
2l − 1 we will compute a maximal independent set of vertices (MIS) in a special
path graph Hl. Similar approach has been used in [LPP08]. Let the vertices of Hl

represent all M -augmenting paths of length 2l − 1 in G, and there is an edge be-
tween Pu, Pv ∈ V (Hl) whenever the paths Pu and Pv corresponding to u and v
share a vertex in G. An ID of v ∈ V (Hl) can be defined as the sequence of ID’s of
vertices from the path Pv in G. Note that unique ID’s which are bounded by np for
some constant p, are required by the algorithm from [CV86] to run in O(log∗ n)
rounds. In our case p depends only on the error of approximation. We remark that
for any constant l, Hl can be obtained in a constant number of rounds and each
round in Hl can be simulated by a constant number of rounds in G.

MatchingInBoundedDegree

Input: A graph G with Δ(G) ≤ L (where L is a constant), ξ > 0.
Output: A matching M in G with |M | > (1 − ξ)m(G).

1. Find a maximal matching M in G by computing a MIS in the line graph of
G using the algorithm from [CV86].

2. For l := 2 to � 1
ξ − 1� do

(a) Construct the path graph Hl for G with respect to M .
(b) Find a MIS I in Hl using the algorithm from [CV86].
(c) Augment M along the paths in G that correspond to vertices in I.

3. Return M .

Theorem 3. Given 0 < ξ < 1 and a positive integer L, MatchingInBounded-

Degree finds in a graph G with Δ(G) ≤ L a matching M such that |M | ≥
(1 − ξ)m(G) in O(log∗ |G|) rounds.

Proof. The algorithm proceeds in iterations with l = 2, . . . , k; k = � 1
ξ − 1�. In

the lth iteration the procedure accepts a matching M obtained in the previous
iteration and constructs the path graph Hl on all M -augmenting paths of length
2l − 1. Then it finds a MIS in Hl which gives us an independent set of pairwise
disjoint M -augmenting paths of length 2l−1 in G. Once a maximal independent
set of paths is found, the edges in paths that belong to M and those that are
not in M are exchanged. By part (b) of Theorem 2, the new matching does
not have augmenting paths of lengths which are less than or equal to 2l − 1.
Consequently, the resulting matching is of cardinality at least

(
1 − 1

l+1

)
m(G).

Moreover, since Δ(Hl) is a function of L and l, and the identifiers of vertices
from Hl are bounded by n2l, the [CV86] algorithm can be used to find a MIS in
Hl in c log∗ n time, where the constant c depends only on L and ξ. �	
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3 The Algorithm

In this section, we present the main algorithm. The idea behind our algorithm is
to reduce the search for a large matching in G to its carefully chosen subgraphs
of bounded degree which span a relatively large matching compared to m(G). To
solve the latter problem we invoke twice procedure MatchingInBoundedDe-

gree from Sect. 2. Before we describe the algorithm, we need to develop some
more notation. The matching algorithm will take as an input a positive integer
a, a graph G = (V, E) with arb(G) ≤ a and a real number 0 < ε < 1. Based
on these parameters some auxiliary constants and certain subsets of V will be
calculated by the procedure. Let

C :=
20a

ε2
, C1 := εC (1)

and consider sets U1, U2, and U3 defined as

U1 := {v : deg(v) ≤ C} (2)
U2 := {v /∈ U1 : deg(v, U1) ≥ C − C1}, (3)

U3 := V \ (U1 ∪ U2). (4)

Moreover, consider two more subsets of U2 and their union:

L2,1 := {v ∈ U2 : deg(v, U1) ≥ 2C}, (5)
L2,2 := {v ∈ U2 : deg(v, U2) ≥ 2C}, (6)

L2 := L2,1 ∪ L2,2. (7)

In addition to the notation from (1)–(7), set ui := |Ui| for i = 1, 2, 3. Note that
the maximum degree of graph G′ := G[U1 ∪ (U2 \ L2)] is at most 4C and so,
using procedure MatchingInBoundedDegree from the previous section, we
are able to approximate a maximum matching in this subgraph. Let M1 denote
the obtained matching. It will follow from the arboricity bound that L2,2 is
negligible with respect to m(G). If L2,1 is so too, we are done. Otherwise, in the
next step we disregard the subset L′2,1 ⊆ L2,1 which contains the vertices with
less than C neighbors in U1 \ V (M1). We will use only the vertex set L2,1 \L′2,1
to enlarge the matching M1. To this end, we consider the bipartite graph G[U1 \
V (M1), L2,1 \ L′2,1] and construct a subgraph G′′ ⊆ G[U1 \ V (M1), L2,1 \ L′2,1]
with Δ(G′′) ≤ C. Finally, we invoke MatchingInBoundedDegree again to
approximate a maximum matching in graph G′′ and find M2. The algorithm
returns M1 ∪ M2. The bottom line is that either L2,1 is negligible or L′2,1 is
negligible with respect to L2,1.

Matching

Input: G = (V, E) with arb(G) ≤ a, 0 < ε < 1.
Output: A matching M in G such that |M | ≥ (1 − ε)m(G).
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1. Compute constants and sets defined in (1)–(7).
2. Use procedure MatchingInBoundedDegree (with ξ := ε/3 and L := 4C)

to compute a matching M1 in G′ := G[U1 ∪ (U2 \ L2)].
3. Let L′2,1 := {v ∈ L2,1 : deg(v, U1 \ V (M1)) < C}.
4. For every vertex v ∈ L2,1 \ L′2,1 delete arbitrarily deg(v, U1 \ V (M1)) − C

edges. Let G′′ denote the subgraph of G(U1 \ V (M1), L2,1 \ L′2,1) obtained
in this way.

5. Use procedure MatchingInBoundedDegree (with ξ := ε/7 and L := C)
to find a matching M2 in G′′.

6. Output M := M1 ∪ M2.

4 Analysis

This section is devoted to the proof of Theorem 1. The argument is divided into
three sections. First we recall some facts about matchings in bipartite graphs.
Next we prove that certain subsets of V (G) can be neglected when estimating
m(G). Finally, we give the main proof of Theorem 1. In what follows we assume
that ε is given and use notation from (1)-(7). Observe that we may assume that
ε < 1/2.

4.1 Matchings in Bipartite Graphs

Let us start with the following easy consequence of Hall’s theorem.

Fact 1. Let G = (X ∪ Y, E) be a bipartite graph, 0 ≤ ξ ≤ 1, and let L > 0. If
maxx∈X deg(x) ≤ L and miny∈Y deg(y) ≥ (1− ξ)L, then G contains a matching
of size at least (1 − ξ)|Y |.

Next, we will observe that the graph G contains a matching which constitutes a
significant fraction of the vertices of the set U2.

Corollary 1. u2 ≤ 2m(G).

Proof. From Fact 1, the bipartite graph G[U1, U2] contains a matching of size
(1 − ε)u2 ≥ u2/2. �	

4.2 Negligible Sets

Recall the notation from (1)–(7) with ui := |Ui| for i = 1, 2, 3 and set li,j := |Li,j |
for i, j = 1, 2. Here we show that u3 and l2,2 are both small with respect to m(G).

Fact 2. u3 < ε/9 · m(G).

Proof. Write
∑

v∈U3
deg(v) = 2e(U3) + e(U3, U2) + e(U3, U1). By the definition

of U3, we have
∑

v∈U3
deg(v) > Cu3, and e(U3, U1) < (C − C1)u3. Moreover,

by the arboricity bound, e(U3) ≤ au3 and e(U3, U2) ≤ a(u3 + u2). Therefore,
Cu3 < 3au3 +au2 +(C −C1)u3, and so, u3 < a

C1−3au2 ≤ ε
20−3εu2, by the choice

of C1 in (1). By Corollary 1, u3 < ε/9 · m(G). �	
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Recall that L2,2 ⊆ L2 ⊆ U2 as defined in (2)-(7). Next, we argue that L2,2 is
negligible.

Fact 3. l2,2 ≤ ε/19 · m(G).

Proof. The argument is analogous to the one for Fact 2. Consider
∑

v∈L2,2

deg(v, U2) = 2e(L2,2)+e(L2,2, U2\L2,2) and further, 2Cl2,2 ≤ 2al2,2+au2, which
together with our choice of C in (1) gives l2,2 ≤ a

2(C−a)u2 < ε
38u2 ≤ ε

19 ·m(G). �	

4.3 Proof of the Main Result

We will now prove Theorem 1 using the observations from previous sections.

Proof. Let M be the matching returned by Matching and let M1 and M2
denote matchings found in Steps 2 and 5. We will show that

|M | ≥ (1 − ε)m(G). (8)

Let L′2,1 be as in Step 3 of Matching. We will consider two cases based on the
relative size of the set L′2,1 in L2,1. Set m1 := |M1|, m2 := |M2|. In the first case
we will show that M1 already guarantees the approximation ratio claimed in the
theorem. The second case regards the situation in which M2 has to be included
in the solution to obtain a desired approximation error.
Case 1: Suppose |L′2,1| ≥ ε/3 · |L2,1|. Then, by the arboricity bound and defini-
tion of L′2,1,

ε
3Cl2,1 ≤ C|L′2,1| ≤ e(L′2,1, V (M1)) ≤ a(l2,1 + 2m1), which implies

l2,1 ≤ 6a

εC − 3a
m1 ≤ ε

3
m1 ≤ ε

3
m(G). (9)

The matching M1 found in Step 2 of Matching is such that

|M1| ≥ (1 − ε/3)m(G′) ≥ (1 − ε/3)(m(G) − u3 − l2,1 − l2,2).

Consequently, by Fact 2, Fact 3, and (9)

|M1| ≥ (1 − ε/3)(m(G) − u3 − l2,1 − l2,2) ≥ (1 − ε)m(G).

Case 2: Suppose |L′2,1| < ε/3 · |L2,1|. Let G′′ := G[U1 \ V (M1), L2,1 \ L′2,1].
We apply Fact 1 to G′′ with L := C and ξ = 0. Noting that for every u ∈
U1, deg(u) ≤ C and ∀v ∈ L2,1 \ L′2,1, deg(v, U1 \ V (M1)) ≥ C, we obtain the
bound

m(G′′) = l2,1 − l′2,1 > (1 − ε/3)l2,1. (10)

Let M∗ be a maximum matching in G, i.e. |M∗| = m(G). We consider the
partition of M∗ into three subsets. Let M∗

1 := {e ∈ M∗|e ∩ (U3 ∪ L2,2) 
= ∅}.
Then, by Fact 2 and Fact 3, |M∗

1 | ≤ (u3 + l2,2) < ε/5 · m(G). Let M∗
2 := {e ∈

M∗|e ∩ L2,1 
= ∅}. Then, clearly, |M∗
2 | ≤ l2,1 and by (10) the matching M2

obtained in Step 5 of Matching satisfies
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|M2| > (1 − ε/7)m(G′′) ≥ (1 − ε/7)(1 − ε/3)l2,1 ≥ (1 − ε/2)|M∗
2 |.

Finally, let M∗
3 := M∗ \ (M∗

1 ∪M∗
2 ). Every e ∈ M∗

3 is contained in U1∪(U2 \L2).
Thus M∗

3 ≤ m(G′) and M1, obtained in Step 2 of Matching, satisfies |M1| ≥
(1 − ε/3)|M∗

3 |. Hence, the matching M returned by Matching is such that

|M | = |M1| + |M2| ≥ (1 − ε/2)(|M∗
2 | + |M∗

3 |) = (1 − ε/2)(|M∗| − |M∗
1 |)

> (1 − ε/2 − ε/5 + ε/10)m(G) ≥ (1 − ε)m(G).

This finishes the proof of (8). Finally, note that for a fixed ε, both M1 and M2 can
be found in O(log∗ n) rounds and so the running time of Matching is c log∗ n
where c depends only on ε and a. �	

5 Finding an Approximate Nash-Williams Orientation

In this section, we will briefly describe one application of our main result. As
mentioned in the Introduction, every graph of arboricity a can be decomposed
into a edge-disjoint forests. The edges of every forest can be oriented so that the
maximum out-degree equals one. Consequently, one can obtain an orientation of
the entire graph with maximum out-degree at most a. Nonetheless, finding such
an orientation efficiently in distributed model is not easy [BE08]. Our algorithm
Matching can quickly find an approximate orientation having this property.
The result is formalized in the following theorem.

Theorem 4. Given 0 < ε < 1 and a positive integer a, there is a distributed
algorithm which finds in a graph G with arb(G) ≤ a an orientation of all but at
most εn edges with the property that the out-degree in this directed subgraph is
at most a. The algorithm runs in O(log∗ n) rounds.

Proof. Consider an auxiliary bipartite graph H = (U, W ) obtained from G in the
following way. The vertices of U correspond to the edges of G, that is U := E(G),
while W consists of a copies of every vertex of G. We put an edge between e ∈ U
and v ∈ W if v is a copy of a vertex incident to e. Obviously, deg(e) = 2a for
every e ∈ U and hence, the arboricity of H is at most 2a.

As explained prior to Theorem 4, the fact that G has arboricity at most a
implies the existence of an orientation of the edges of G with maximum out-
degree at most a. This orientation in turn yields the existence of a matching
in H that saturates U. This matching consists of the edges ((v1, v2), v), where
(v1, v2) is an oriented edge of G and v is one of the a copies of v1 in H. Such a
selection is always possible because there are at most a edges which start at v1.
Hence, m(H) = |U |.

We construct an approximate orientation of G invoking procedure Matching

for H. It gives us a matching M such that |M | ≥ (1 − ε)m(H) = (1 − ε)|U |.
Finally, every edge e = {u, v} ∈ E(G) = U which is saturated by M is oriented
from u to v if the M -neighbor of e in H is a copy of u, and from v to u otherwise.

The time complexity of this procedure is dominated by Matching and equals
O(log∗ n). �	
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We remark that in the subgraph of G induced by the orientation found above
(i.e. on (1− ε)|E(G)| edges), it is then possible to compute a vertex coloring and
a MIS in O(log∗ n) rounds using the procedure from [CV86].
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Abstract. This paper describes the traveling tournament problem, a
well-known benchmark problem in the field of tournament timetabling.
We propose an approximation algorithm for the traveling tournament
problem with the constraints such that both the number of consecutive
away games and that of consecutive home games are at most k. When
k ≤ 5, the approximation ratio of the proposed algorithm is bounded
by (2k − 1)/k + O(k/n) where n denotes the number of teams; when
k > 5, the ratio is bounded by (5k − 7)/(2k) + O(k/n). For k = 3, the
most investigated case of the traveling tournament problem to date, the
approximation ratio of the proposed algorithm is 5/3 + O(1/n); this is
better than the previous approximation algorithm proposed for k = 3,
whose approximation ratio is 2 + O(1/n).

Keywords: traveling tournament problem, approximation algorithm,
lower bound, timetabling, scheduling.

1 Traveling Tournament Problem

In the field of tournament timetabling, the traveling tournament problem (TTP)
is a well-known benchmark problem established by Easton, Nemhauser and
Trick [2]. The objective of TTP is to make a round-robin tournament that min-
imizes the total traveling distance of participating teams. The problem TTP
includes optimization aspects similar to those of the traveling salesman prob-
lem (TSP) and vehicle routing problems. However, TTP is surprisingly harder
than TSP: there is a 10-team TTP instance that has not yet been solved ex-
actly [6]. This contrasts starkly to TSP, for which a 10-city instance of TSP is
easy. For further discussions related to TTP and its variations, see [4,5].
� This is an extended abstract. Proofs of theorems and lemmas are omitted due to

page limitation. They are available in our technical report [7].
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In the following, we introduce some terminology and then define TTP. We
are given a set T of n teams, where n ≥ 4 and even. Each team in T has its
home venue. A game is specified by an ordered pair of teams. A double round-
robin tournament is a set of games in which every team plays every other team
once at its home venue and once at away (i.e., at the venue of the opponent);
consequently, exactly 2(n − 1) slots are necessary to complete a double round-
robin tournament.

Each team stays at its home venue before a tournament; then it travels to play
its games at the chosen venues. After a tournament, each team returns to its
home venue if the last game is played at away. When a team plays two consecutive
away games, the team goes directly from the venue of the first opponent to the
other without returning to its home venue.

Let V be the set of venues satisfying |V | = n. For any pair of venues i, j ∈ V ,
dij ≥ 0 denotes the distance between the venues i and j. We denote the distance
matrix (dij) by D, whose rows and columns are indexed by V . Throughout this
paper we assume that triangle inequality (dij +djk ≥ dik), symmetry (dij = dji),
and dii = 0 hold for any i, j, k ∈ V .

Given a constant (positive integer) k ≥ 3, the traveling tournament prob-
lem [2] is defined as follows.

Traveling Tournament Problem (TTP(k))
Input: a set of teams T and a distance matrix D = (dij), indexed by V .
Output: a double round-robin tournament S of n teams such that
C1. no team plays more than k consecutive away games;
C2. no team plays more than k consecutive home games;
C3. game i at j immediately followed by game j at i is prohibited;
C4. the total distance traveled by the teams is minimized.

In this paper, we assume that n is sufficiently larger than a fixed parameter k.
Constraints C1 and C2 are called the atmost constraints, and Constraint C3 is
called the no-repeater constraint. In the remainder of this paper, a double round-
robin tournament satisfying the above conditions C1–C3/C1–C4 are called a
feasible/optimal tournaments.

Various studies on TTP have been appeared in recent years, and most of them
considered TTP(3) [6]. Most of the best upper bounds of TTP instances are ob-
tained using metaheuristic algorithms; on the other hand, few researches have
been done to explore lower bounds and exact methods for TTP (see [5] for ex-
ample). Recently, three of the authors of this paper proposed (2+(9/4)/(n−1))-
approximation algorithm for TTP(3), which is the first approximation algorithm
with a constant ratio [3].

In this paper, we propose an approximation algorithm for TTP(k). When
k ≤ 5, the approximation ratio of our algorithm is bounded by (2k − 1)/k +
O(k/n); when k > 5, the approximation ratio is bounded by (5k − 7)/(2k) +
O(k/n). For k = 3, the approximation ratio of our algorithm is 5/3 + O(1/n);
that improves the approximation ratio of the previous algorithm for TTP(3),
whose ratio is 2 + (9/4)/(n− 1) = 2 + O(1/n).
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2 Algorithm

A key idea of our algorithm is the use of the Kirkman schedule and a shortest
Hamilton cycle. The classical Kirkman schedule satisfies the property that the
orders of opponents in almost all teams are very similar to a mutual cyclic
order of teams. Roughly speaking, our algorithm constructs an almost shortest
Hamilton cycle passing all the venues and finds a permutation of teams such
that the above cyclic order corresponds to the obtained Hamilton cycle.

In Section 2.1, we introduce how to make a single round-robin schedule with
a specific structure. In Section 2.2, we construct double round-robin schedules
based on the single round-robin schedule proposed in Section 2.1. In Section 2.3,
we consider an assignment of venues to teams in the schedules of Section 2.2.

In the following, “schedule without HA-assignment” means that “round-robin
schedule without concepts of home game, away game and venue.” In other words,
in a schedule without HA-assignment, only a sequence of opponents of each team
is decided, but the venues of these games are not specified.

2.1 Single Round-Robin Schedule

Denote the set of n teams by T = {0, 1, . . . , n − 1} and the set of n − 1 slots
S = {0, 1, . . . , n − 2}. A single round-robin schedule (without HA-assignment)
is a matrix K whose (t, s) element K(t, s) denotes the opponent of team t at
slot s. More precisely, K is a matrix such that
(1) rows and columns are indexed by T and S, respectively,
(2) every element of K is a team,
(3) a row of K indexed by t consists of teams T \ {t}, and
(4) for any pair (t, s) ∈ T × S, a team t′ = K(t, s) satisfies K(t′, s) = t.

The Kirkman schedule K∗ is a matrix defined by

K∗(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

s− t mod n− 1 (t 
= n− 1 and [s− t 
= t mod n− 1]),
n− 1 (t 
= n− 1 and [s− t = t mod n− 1]),
s/2 (t = n− 1 and s is even),
(s + n− 1)/2 (t = n− 1 and s is odd).

Lemma 1. The Kirkman schedule K∗ is a single round-robin schedule.
Proof. Omitted due to page limitation.

Next, we define HA-assignments of the Kirkman schedule. For constructing vari-
ations of HA-assignments, we introduce a function f : U → {H,A} where
U = {i ∈ Z | i 
= 0 mod n − 1}. Given a function f , we define the negated
function ¬f : U → {H,A} by

¬f(i) =
{

H (f(i) = A),
A (f(i) = H).

Similarly, we define that ¬H is A and ¬A is H. We say that the function f is
HA-feasible if f satisfies
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(F1) ∀i, ∀j ∈ U , [i = j mod n− 1 implies f(i) = f(j)], and
(F2) ∀i ∈ U , f(i) = ¬f(−i).

From the above definition, an HA-feasible function f is uniquely defined by
the sequence (f(1), f(2), . . . , f(n/2 − 1)). The second condition (F2) implies
that the sequence (f(−n/2+1), . . . , f(−2), f(−1)) is the reverse of the sequence
(¬f(1),¬f(2), . . . ,¬f(n/2−1)). Given an HA-feasible function f , we define that
for any pair of teams t, t′ ∈ T \{n−1}, the game between t and t′ is f(t′ − t)-game
of team t and ¬f(t′ − t) = f(t− t′)-game of team t′. (Here we note that H-game
means a home game, and A-game means an away game.) For constructing a
complete HA-assignment, we need to define an HA-pattern of team n − 1. We
introduce a root sequence (r0, r1, . . . , rn−2) ∈ {H,A}n−1 defined by

ri =

⎧
⎨

⎩

H (i 
= n− 3 and [i ∈ {0, 1, . . . , k − 1} mod 2k]),
A (i 
= n− 3 and [i ∈ {k, k + 1, . . . , 2k − 1} mod 2k]),
rn−2 (i = n− 3).

For example, when n = 32 and k = 5 the root sequence is

(HHHHH︸ ︷︷ ︸
k

AAAAA︸ ︷︷ ︸
k

HHHHH︸ ︷︷ ︸
k

AAAAA︸ ︷︷ ︸
k

HHHHH︸ ︷︷ ︸
k

AAAA
rn−3

H︸ ︷︷ ︸
k

rn−2

H ).

We define that team n− 1 plays rs-game at slot s and the opponent of n− 1 at
slot s plays ¬rs-game (at slot s).

As a consequence, given an HA-feasible function f (and the root sequence),
we can construct an HA-assignment of the Kirkman schedule K∗ as follows. For
any pair (t, s) ∈ T × S,

at slot s, team t plays

⎧
⎨

⎩

f(s− 2t)-game (t 
= n− 1 and [s− t 
= t mod n− 1]),
¬rs-game (t 
= n− 1 and [s− t = t mod n− 1]),
rs-game (t = n− 1).

When t 
= n− 1 and [s− t 
= t mod n− 1], the opponent of team t, denoted by
K∗(t, s), is defined by K∗(t, s) = s− t mod n− 1 and team t plays f(K∗(t, s)−
t)-game at slot s. Thus, K∗(t, s) − t = (s − t) − t = s − 2t mod n − 1 and
Definition (F1) implies f(K∗(t, s) − t) = f(s − 2t). The remaining cases are
trivial.

Next, we define variations of HA-assignments by introducing k HA-feasible
functions f1, f2, . . . , fk. For each α ∈ {1, 2, . . . , k}, we settle a function fα by
a sequence (fα(1), fα(2), . . . , fα(n/2 − 1)), defined below. First, we consider an
infinite sequence that contains k consecutive ‘A’s and k consecutive ‘H’s alter-
nately. Next, we clip a sequence of length n/2− 1 whose top k − α + 1 elements

are (

k−α
︷ ︸︸ ︷
A,A, . . . ,A,H). Lastly, we set the first and second elements to ‘A’ and

change the penultimate element to the same element as the last (if it is re-
quired). When k = 3, we additionally set the third and fourth elements to ‘H.’
For example, when n = 32 and k = 5, the sequence
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Fα = (fα(−15), . . . , fα(−2), fα(−1), ∗, fα(1), fα(2), . . . , fα(15))
becomes
F1 = (AAHHHHAAAAAHHHH ∗ AAAAHHHHHAAAAHH)
F2 = (AAHHHHHAAAAAHHH ∗ AAAHHHHHAAAAAHH)
F3 = (AAAHHHHHAAAAAHH ∗ AAHHHHHAAAAAHHH)
F4 = (AAAAHHHHHAAAAHH ∗ AAHHHHAAAAAHHHH)
F5 = (AAAAAHHHHHAAAHH ∗ AAHHHAAAAAHHHHH).

In the rest of this paper, Xα (α ∈ {1, 2, . . . , k}) denotes the Kirkman schedule
with an HA-assignment induced by an HA-feasible function fα.

2.2 Feasible Double Round-Robin Schedule

In the previous section, we introduced an HA-feasible function fα, the sequence

Fα = (fα(−n/2 + 1), . . . , fα(−2), fα(−1), ∗, fα(1), fα(2), . . . , fα(n/2 − 1))

and the Kirkman schedule (with an HA-assignment) Xα for any α ∈ {1, 2, . . . , k}.
We set the center element (denoted by ∗) of Fα to A or H, and denote the
obtained sequence by FA

α or FH
α , respectively. Here we assume that the first

element of FA
α is adjacent with the last element of FA

α (and similarly assume
for FH

α ). Then an HA-pattern of team t ∈ T \{n−1} in schedule Xα is obtained
by a cyclic permutation of sequence FA

α or FH
α . In addition, the HA-pattern of

team n− 1 in schedule Xα is obtained by the root sequence.
From the definition of HA-feasible functions f1, f2, . . . , fk and the root se-

quence, the following property holds.

Theorem 1. For any single round-robin schedule Xα ∈ {X1, X2, . . . , Xk}, Xα

satisfies the atmost constraints.
Proof. Omitted due to page limitation.

Next, we show a property of sequences FA
α and FH

α , which plays an important
role in constructing a double round-robin schedule.

Lemma 2. For any α ∈ {1, 2, . . . , k}, (1) every consecutive three elements of
the cyclic sequence FA

α is neither (HAH) nor (AHA); (2) every consecutive three
elements of the cyclic sequence FH

α is neither (HAH) nor (AHA).
Proof. Omitted due to page limitation.

Lemma 2 and the definition of the root sequence imply the following.

Corollary 1. For any single round-robin schedule Xα ∈ {X1, X2, . . . , Xk}, Xα

satisfies: (1) the HA-pattern of each team at slots (n − 2, 0, 1) is neither (HAH)
nor (AHA); (2) the HA-pattern of each team at slots (n− 3, n− 2, 0) is neither
(HAH) nor (AHA).

For any α ∈ {1, 2, . . . , k}, given a single round-robin schedule Xα defined above,
we construct a double round-robin schedule as follows. First, we construct a
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single round-robin schedule, denoted by Yα, by exchanging the first slot for the
last slot of Xα. Next, we construct a double round-robin schedule by the ordinary
mirroring as follows. Denote Yα the schedule obtained from Yα by reversing the
home and away. We concatenate two single round-robin schedules Yα and Y α to
obtain a double round-robin schedule, denoted by Zα.

Theorem 2. For any α ∈ {1, 2, . . . , k}, both of the single round-robin schedules
Yα and Yα satisfy the atmost constraints.

Proof. Omitted due to page limitation.

Theorem 3. For any double round-robin schedule Zα ∈ {Z1, Z2, . . . , Zk}, Zα is
a feasible schedule.

Proof. Omitted due to page limitation.

2.3 Assignment of Venues

In Section 2.1, we defined that T is a set of teams and described a method
for constructing a double round-robin schedule of teams in T . In this section,
we say that T is a set of imaginary teams (without venues) and each venue
in V represents a real team. We propose an algorithm for finding a bijection
between the set of venues V and the set of imaginary teams T . In this section,
‘a team t ∈ T ’ means ‘an imaginary team t ∈ T .’

Herein, we describe our algorithm. First, we choose α ∈ {1, 2, . . . , k} randomly
and construct a double round-robin schedule Zα with imaginary teams T . Next,
we apply Christofides’ algorithm for the traveling salesman problem to a com-
plete undirected graph with vertex set (venue set) V and edge length defined
by D, and obtain a Hamilton cycle HC. (Here we note that the length of an undi-
rected edge is well-defined by D, since D satisfies symmetry dij = dji.) We denote
a Hamilton cycle HC by a sequence (v0, v1, . . . , vn−1) of vertices (venues). Lastly,
we choose β ∈ {0, 1, . . . , n − 1} randomly and construct a bijection π : T → V
defined by π(i) = vj where T = {0, 1, . . . , n− 1} and j = i + β mod n.

To determine an expected value of total traveling distance obtained by the
above algorithm, we introduce an undirected graph Gα defined by a double
round-robin schedule Zα. The graph Gα has a vertex set T , and a (multi) edge
set E(α) with partition {Et(α) | t ∈ T } where every edge in a multiset Et(α)
corresponds to a move of team t ∈ T in Zα. More precisely, multiset Et(α)
consists of following (at most) four types of edges;

(1) when team t plays two consecutive away games, Et(α) includes an edge
between two opponents,
(2) when team t plays consecutive pair of home and away games, Et(α) includes
an edge between t and opponent of the away game,
(3) if t plays away game at first slot, Et(α) includes an edge between t and
opponent in the away game,
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(4) if t plays away game at last slot, Et(α) includes an edge between t and
opponent in the away game.

If we have a bijection π : T → V , the corresponding total traveling distance
becomes

∑
{i,j}∈E(α) dπ(i)π(j).

Next, we define a partition of E(α) consists of three subsets, called irregular
edges, regular Hamilton edges, and regular non-Hamilton edges. For any t ∈ T ,
an edge e in Et(α) is called irregular if e satisfies at least one of the following
conditions;

(I1) e has at least one parallel edge in Et(α),
(I2) e connects a pair of vertices in {t− 5, t− 4, . . . , t + 5} ∪ {n− 2, n− 1, 0} ∪
{t− n/2 + 1, t− n/2 + 2, t− n/2 + 3} ∪ {t + n/2 − 3, t + n/2 − 2, t + n/2 − 1},
where every integer t+ i appearing above corresponds to a vertex (team) t′ ∈ T
with t′ = t + i mod n,
(I3) e corresponds to a move between a pair of slots in {(0, 1), (n − 3, n − 2),
(n− 2, n− 1), (n− 1, n), (2n− 4, 2n− 3)},
(I4) e corresponds to a move caused by an away game at first slot (if it exists),
(I5) e corresponds to a move caused by an away game at last slot (if it exists),
(I6) e ∈ En−1(α), i.e., e corresponds to a move of team n− 1.

Every non-irregular edge in E(α) is called regular. If a regular edge in E(α)
connects a pair of vertices {t, t′} with t′ = t+1 mod n, the edge is called regular
Hamilton. Here we note that every regular Hamilton edge corresponds to an edge
in Hamilton cycle H∗ defined by cyclic sequence (0, 1, . . . , n− 1) of T . The rests
of regular edges in E(α) are called regular non-Hamilton edges.

In the following, we determine the number of irregular edges in E(α). For any
team t ∈ T , undirected graph (T,Et(α)) is an Eulerian graph such that every
vertex t′ ∈ T \ {t} has two incident edges. Thus, every pair of vertices has at
most two parallel edges corresponding to consecutive three games with the HA-
pattern (H,A,H). From the definition of Zα, the number of vertex pairs with
parallel edges in Et(α) is bounded by a constant and thus the number of irregular
edges in Et(α) satisfying Condition I1 is bounded by a constant. Obviously, the
number of irregular edges in Et(α) satisfying Conditions I2–I5 is also bounded
by a constant. Consequently, for any team t ∈ T \ {n − 1}, Et(α) contains a
constant number of irregular edges. Since |En−1(α)| = O(n), the total number
of irregular edges in E(α) is O(n).

Next, we discuss the number of regular Hamilton edges. Every regular Hamil-
ton edge corresponds to a consecutive pair of away games of a team t ∈ T \{n−1}.
Thus, every team t ∈ T \ {n− 1} has at most (2n− 2)(k− 1)/(2k) ≤ n(k− 1)/k
regular Hamilton edges.

Finally, every regular non-Hamilton edge corresponds to a consecutive pair
of home game and away game of a team t ∈ T \ {n − 1}. Consequently, every
team t ∈ T \ {n− 1} has at most (2n− 2)2/(2k) ≤ 2n/k regular non-Hamilton
edges.
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The below table shows upper bounds of sizes of three sets.

irregular edges O(n)
regular Hamilton edges n(n− 1)(k − 1)/k
regular non-Hamilton edges 2n(n− 1)/k

3 Lower Bounds

In the rest of this paper, we consider a complete undirected graph G with vertex
set (venue set) V and edge length defined by the distance matrix D. We can
relate every move of a real team to an undirected edge in G.

Let Ψ∗ be an optimal tournament of a given instance and ψ∗ the optimal
value. In the tournament Ψ∗, each real team v ∈ V visits every venue of opponent
exactly once, and we call the sequence of moves of v among venues a tour of v.
For each real team v ∈ V, ψ∗v denotes a tour distance of team v in Ψ∗. Obviously,∑

v∈V ψ∗v = ψ∗ holds.
Let η∗ be the length of shortest Hamilton cycle of a complete undirected graph

G. Since distance matrix D satisfies triangle inequalities, ψ∗v ≥ η∗ holds for any
v ∈ V . Consequently, we have the following lemma.

Lemma 3. The length η∗ of a shortest Hamilton cycle satisfies that ψ∗ ≥ nη∗.

For each real team v ∈ V , ψhome
v denotes the sum of distances correspond-

ing to moves leaving or returning to its home v. We introduce a ratio a∗ =
(
∑

v∈V ψhome
v )/ψ∗. Let τ∗ be the length of minimum spanning tree of a complete

undirected graph G. Then we have the following.

Lemma 4. The length τ∗ of a minimum spanning tree satisfies (1− a∗

2 )ψ∗≥ nτ∗.
Proof. Omitted due to page limitation.

We denote the sum total of distances of ordered pairs of venues by Δ,
i.e., Δ def.=

∑
v∈V

∑
u∈V dvu.

Lemma 5. The sum of distances Δ satisfies (a∗ + k−2
2 )ψ∗ ≥ Δ.

Proof. Omitted due to page limitation.

4 Approximation Ratio

Here we discuss the approximation ratio of our algorithm. Let (v0, v1, . . . , vn−1)
be a sequence of vertices (venues) corresponding to Hamilton cycle HC ob-
tained by Christofides’ algorithm. Our algorithm chooses β ∈ {0, 1, . . . , n − 1}
randomly and construct a bijection π : T → V defined by π(i) = vj where
T = {0, 1, . . . , n− 1} and j = i + β mod n.

First, we consider the sum of weights of irregular edges, denoted by a random
variable WIR. For each irregular edge (t, t′) connecting t, t′ ∈ T, π(t) (and π(t′)) is
randomly assigned to a vertex in V . For any v ∈ V , the triangle inequalities imply
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that dπ(t)π(t′) ≤ dπ(t)v +dvπ(t′), and thus dπ(t)π(t′) ≤ (1/n)
∑

v∈V (dπ(t)v +dvπ(t′))
holds. The expectation of dπ(t)π(t′) with respect to random selection of β satisfies

E[dπ(t)π(t′)] ≤
(

1
n

)∑

v∈V

(
E[dπ(t)v] + E[dvπ(t′)]

)

=
(

1
n

)∑

v∈V

((
1
n

)∑

u∈V

duv +
(

1
n

)∑

u∈V

dvu

)

=
(

2
n2

)∑

v∈V

∑

u∈V

duv =
(

2
n2

)
Δ.

As discussed in Section 2.3, the number of irregular edges is bounded by O(n)
and consequently E[WIR] ≤ O(n)(2/n2)Δ = O(1/n)Δ holds.

Next, we consider the sum of weights of regular Hamilton edges, denoted
by WRH. On the length of HC, the following is a well-known theorem.

Lemma 6. [1] The length of HC is less than or equal to τ∗+ (1/2)η∗, where τ∗

and η∗ denote the length of minimum spanning tree and shortest Hamilton cycle
of a complete undirected graph G.

Since regular Hamilton edges in H∗ are contained in Hamilton cycle HC for
any β ∈ {0, 1, . . . , n − 1}, the above randomization implies that the expecta-

tion satisfies E[WRH] ≤ n(n− 1)(k − 1)
k

(ηC

n

)
≤ (n− 1)(k − 1)

k
(τ∗ + (1/2)η∗),

where ηC denotes the length of HC.
Lastly, we consider the sum of weights of regular non-Hamilton edges, de-

noted by WRnH. Recall that every regular non-Hamilton edge corresponds to a
consecutive pair of a home game and an away game of a team t ∈ T \ {n− 1}.
We fix team t ∈ T \ {n− 1}, β ∈ {0, 1, . . . , n− 1}, and permutation π : T → V
with respect to β. For any team t′ ∈ T \ {t, n − 1}, a regular non-Hamilton
edge corresponding to a move of team t (real team π(t)) between venues π(t)
and π(t′) appears with probability at most 2/k with respect to random choice
of α ∈ {0, 1, . . . , k − 1} (and consequently sequence Fα), because our algorithm
constructs a double round-robin tournament by mirroring. Thus, we have that

E[WRnH] ≤
∑

t∈T\{n−1}

∑

β∈{0,1,...,n−1}

(
1
n

)
⎛

⎝
∑

t′∈T\{n−1,t}

(
2
k

)
dπ(t)π(t′)

⎞

⎠

≤
∑

t∈T

∑

β∈{0,1,...,n−1}

(
1
n

)(
∑

t′∈T

(
2
k

)
dπ(t)π(t′)

)

=
(

2
kn

) ∑

β∈{0,1,...,n−1}

(
∑

t∈T

∑

t′∈T

dπ(t)π(t′)

)

=
(

2
k

)
Δ.

Finally, we determine the approximation ratio of our algorithm.

Theorem 4. When k ≤ 5, the approximation ratio of our algorithm is bounded
by (2k−1)/k+O(k/n). If k > 5, the ratio is bounded by (5k−7)/(2k)+O(k/n).
Proof. Omitted due to page limitation.
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We note that, if we run our algorithm for every pair of α ∈ {1, 2, . . . , k} and
β ∈ {0, 1, . . . , n− 1}, the above approximation ration can be always attainable
in polynomial time.
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Abstract. We study the problem of Fault-Tolerant Facility Allocation
(FTFA) which is a relaxation of the classical Fault-Tolerant Facility Lo-
cation (FTFL) problem [1]. Given a set of sites, a set of cities, and
corresponding facility operating cost at each site as well as connection
cost for each site-city pair, FTFA requires to allocate each site a proper
number of facilities and further each city a prespecified number of facili-
ties to access. The objective is to find such an allocation that minimizes
the total combined cost for facility operating and service accessing. In
comparison with the FTFL problem which restricts each site to at most
one facility, the FTFA problem is less constrained and therefore incurs
less cost which is desirable in application. In this paper, we consider the
metric FTFA problem where the given connection costs satisfy triangle
inequality and we present a polynomial-time algorithm with approxima-
tion factor 1.861 which is better than the best known approximation
factor 2.076 for the metric FTFL problem [2].

1 Introduction

Facility location problem [3] is one of the classical problems that has been widely
studied in operations research. In this problem, we are given a set F of nf sites
and a set C of nc cities: each site i ∈ F is associated with a non-negative cost
fi for facility operating and each site-city pair (i, j), i ∈ F , j ∈ C a connection
cost cij for service accessing. The objective is to find a subset of F to deploy
facilities and further connect each city in C to one site in the subset in order to
access service so that the total combined cost for facility operating and service
accessing is minimized.

In this paper, we study a generalization of the facility location problem called
Fault-Tolerant Facility Allocation (FTFA). In this problem, each site allows an
unlimited number of facilities and each city requires a prespecified number of
connections for fault tolerance purpose. Let the connectivity requirement of city
j ∈ C be rj , the objective of FTFA is to allocate each site a proper number of
facilities and each city the required number of facilities so that the total combined
cost is minimized. The FTFA problem can be formulated by the following integer
linear program.

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subjected to ∀j ∈ C :
∑

i∈F xij ≥ rj

∀i ∈ F , j ∈ C : yi ≥ xij

∀i ∈ F , j ∈ C : xij , yi ∈ Z+

(1)

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 689–698, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the above formulation, non-negative integer yi indicates how many facilities
are opened at site i and xij indicates how may connections between site i and
j are established. The first constraint is to ensure fault tolerance of connections
— each city j ∈ C is assigned totally rj connections and is able to tolerate up
to rj − 1 connection failures. The second constraint ensures fault tolerance of
facilities — each city j ∈ C is assigned distanct facilities for any two connections
and is able to tolerate up to rj − 1 facility . In this paper, we consider the
metric version of the problem where the given connection costs satisfy triangle
inequality.

FTFA is very close to the well studied Fault-Tolerant Facility Location (FTFL)
problem [1,4,5,2] which has the same objective function and constraints as FTFA
except the range of variants: For any i ∈ F , j ∈ C, xij and yi are any non-negative
integers (Z+) in FTFA but binary integers (0 or 1) in FTFL. Without the restric-
tion on the maximum number of facilities at each site, FTFA is less constrained
and therefore incurs less cost which is desirable in application. FTFA can be
applied in the deployment of ATMs, server farms etc. where multiple facilities
can be deployed at one site if necessary and share the duty to service clients
together. We also notice that the problem becomes the classical Uncapacitated
Facility Location (UFL) problem when connectivity requirement rj = 1 for all
j ∈ C. The relation between UFL, FTFA and FTFL is: UFL ⊆ FTFA ⊆ FTFL.
The second inclusion relation is implied by a special case of FTFL with facil-
ity set F ′ = F × {1, 2, ..., R}, where R = maxj∈C rj is the number of identical
facilities in each site.

Considering the relation between FTFA and UFL, we demonstrate in Section
3 how to adapt an existing UFL algorithm to deal with the new problem. We
study a UFL problem with facility set F ′ and city set C′ = {(j, p), j ∈ C, 1 ≤
p ≤ rj} for any given FTFA problem, where {(j, p), 1 ≤ p ≤ rj} presents all
cities derived from original city j ∈ C. We make the derived solution feasible
to FTFA by ensuring additionally that every two ports of a city are connected
with distinct facilities. The proposed algorithm runs through R phases and in
each phase employs a subroutine to pick the most cost-efficient star iteratively.
Instead of employing two types of events as in the algorithms of Jain et al.
[6,7,8], our algorithm need to process three types of events: One for facilities
opened in a previous phase, one for facilities opened in the current phase and
another for opening a new facility in the current phase. Combined with the same
factor-revealing LP as in [6,8], our analysis in Section 4 shows that the proposed
algorithm is also 1.861 approximation for the metric FTFA problem (The MMS
algorithm [6,8] is 1.861-approximation for the metric UFL problem). Running
time of the algorithm is O(mR log m), where m = nfnc.

2 Related Work

Facility location problem and its variants occupy a central place in operations re-
search [3]. For the simplest version of the problem UFL, the first approximation
algorithm was built by Cornuejols et al. [9]. They obtain (1−e−1)-approximation
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algorithm for the maximization variant of the problem. The first approximation
algorithm for the minimization variant, a greedy algorithm achieving a guarantee
of O(log n) in the general (nonmetric) case due to [10]. For the metric version of
the problem, the first constant-factor approximation algorithm for this problem
was due to Shmoys et al. [11], who gave a 3.16-approximation algorithm using
the filtering technique of Lin and Vitter [12] to round the optimal solution of a
linear program; Chudak, Williamson [13] and Sviridenko [14] improved the ap-
proximation ratio to 1.736 and 1.582 by rounding an optimal fractional solution
to a linear programming relaxation.

Aside from the above results which are achieved through linear programming
and rounding technique, primal dual algorithms for facility location problem
also have been studied extensively. Charikar and Guha [15] obtained an 1.853-
approximation algorithm and an 1.728-approximation algorithm by using primal-
dual theory and greedy augmentation; Jain et al. [16,6,7,8] presented greedy
algorithms based on dual fitting and factor-revealing LP technique, achieving
approximation guarantee 1.861 and 1.61. Different from traditional primal dual
schema [17,18], dual fitting relaxes the feasibility of the dual solution first in
the algorithm and then shrink the solution a factor in the analysis to make the
shrunk solution feasible, which is further shown to be the approximation factor
of the algorithm. Mahdian et al. further improved the approximation ratio to
1.52 [19] by adding a scaling and greedy augmentation procedure to the JMS
[7,8] algorithm. Byrka [20] modified the Chudak and Shmoys’s algorithm [21]
and obtained a new one which touches the approximability limit in the first
time. Their new approach give a 1.5-approximation algorithm which is currently
the best known for the problem.

Fault Tolerant Facility Location [1] is a generalization of UFL, where
connectivity at different cities (i. e. the number of distinct facilities that serve a
city) are specified to meet fault-tolerant requirements. Guha et al. [5]
obtained a 3.16-approximation algorithm by rounding the optimal fractional
solution to the problem and further improve the result to 2.41 by employing
a greedy local improvement step. Recently, Swamy and Shmoys [2] presented
a 2.076-approximation by using LP rounding. All these results hold for both
uniform connectivity case and nonuniform connectivity case. Guha and Khuller
[22] proved that the best approximation factor to UFL is not better than 1.463,
assuming NP � DTIME[nO(log log n)]. This result also holds for the fault-tolerant
generations of the problem including FTFL and FTFA.

3 The Algorithm

Without loss of generality, assume the set of connectivity requirements R =
{1, 2, 3, ..., R}, otherwise add dummy cities with the missing connectivity re-
quirements. Further assume rj ports at each city, R facilities at each site, all
ports of a city must be connected in the order from 1 to rj and all facilities at
a site can be opened, if necessary, in the order from 1 to R. We use vector yp

to denote whether the p-th facility is opened for all facilities and xp whether
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the p-th port of a city is connected with the site for all site-city pairs. It is
clear that xp

ij = 0 if p > rj for any site-city pair, furthermore y =
∑R

p=1 yp

and x =
∑R

p=1 xp. For the sake of simplicity, let vector Xb =
∑b

p=1 xp and
Y b =

∑b
p=1 yp, 1 ≤ b ≤ R, our algorithm evolves the solution from the ini-

tial stage (suppose X0 and Y 0), through R phases, to XR and Y R. For the
convenience of explanation, we first rewrite program (1) as

minimize
∑

i∈F
∑

p∈R(fiy
p
i +

∑
j∈C cijx

p
ij)

subjected to ∀j ∈ C, 1 ≤ p ≤ rj :
∑

i∈F xp
ij ≥ 1

∀j ∈ C, i ∈ F : Y R
i ≥ XR

ij

∀j ∈ C, i ∈ F , p ∈ R : xp
ij , y

p
i ∈ {0, 1}.

(2)

The LP-relaxation of the above program can be obtained by allowing xij and yi

to be non-negative real numbers. The dual problems of the LP relaxation is

maximize
∑

j∈C
∑rj

p=1 αp
j

subjected to ∀i ∈ F , p ∈ R :
∑

j∈C βp
ij ≤ fi

∀i ∈ F , j ∈ C, p ∈ R : αp
j − βp

ij ≤ cij

∀i ∈ F , j ∈ C, p ∈ R : αp
j , β

p
ij ≥ 0.

(3)

We use similar interpretation of dual variables αp
j and βp

ij as in [6,8] which will
be explained in detail later. One of the interesting observation is that we can
extract p ∈ R in the constraints and the objective function if we have αp

j = 0
when p > rj . We utilize this observation to design a high level algorithm which
decomposes the problem into R subproblems and process them in the order. In
fact, our algorithm opens facilities through R phases, establishing one connection
for each city in each phase if it is not-fully-connected. A facility opened in one
phase at site i can be used for free by any city j in a later phase, suppose p, under
the condition Xp

ij ≤ Y p
i . In each phase p ∈ R , the set of not-fully-connected

cities is denoted by Cp = {j ∈ C : rj ≥ p}.
The process of our algorithm is presented in Algorithm 1: In the p-th phase,

the solution inherited from the last phase is (Xp−1, Y p−1) which serves as the
input of the subroutine together with F and Cp. Note that cities with rj < p
is already fully-connected and therefore not included in Cp. Suppose the new
opened facilities and new established connections are denoted by (xp, yp), then
in the next phase, we have Xp = Xp−1+xp and Y p = Y p−1+yp. The algorithm
ends when all R phases are finished.

In the p-th phase algorithm, we use a notation of star and a definition of
cost efficiency. A star is composed of a facility and a group of cities that are
connected with the facility. Considering the time before the new star is selected,
we define the cost efficiency of a star to be

eff(i, p, C′) =
fp

i +
∑

j∈C′ ci,j

|C′| , (4)

where fp
i is the cost paid to open a facility at site i in phase p and C′ the set

of city members in the star. The two items in the numerator represent the total
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Algorithm 1. 1.861-Approximation Algorithm
Input: fi, rj , cij for any i ∈ F , j ∈ C.
Output: xij , yi for any i ∈ F , j ∈ C.
(1) Initially set vector X0 ← 0, Y 0 ← 0 and the No. of current phase p ← 1.
(2) While p ≤ R:

(a) Invoke the p-th phase algorithm with input (Xp−1, Y p−1,F , Cp), sup-
pose the output is (Xp, Y p).

(b) Set p ← p + 1.
(3) Set x = Xrmax and y = Y rmax

The p-th Phase Algorithm
(1) Let U ⊆ Cp be the set of un-fully-connected cities, initially set U ← Cp.
(2) While U 
= φ:

(a) Find the most cost-efficient star (i, p, C′) according to Formula (4).
(b) Open the facility i, if it is not already open, and establish a connection

to facility i for all cities in C′.
(c) Set fi ← 0, U ← U \ C′.

cost of the star and therefore the cost efficiency of a star is actually the average
payment of all city members to establish the star. Let U ⊆ Cp be the set of
not-fully-connected cities in phase p, C′ ⊆ U a set of cities to be connected with
facility i. As an open facility can be accessed for free under certain condition,
the cost paid to the facility is equal to zero if no new facility have to be opened.
Formally, we have

fp
i =

{
fi if a new replica of i must be opened;
0 otherwise.

Now the dual variables αp
j and βp

ij can be used to find the most cost-efficient
star. We use similar interpretation as in [6,8]: αp

j is the total cost (including the
connection cost and the contribution to open facilities) paid by the p-th port
of city j and βp

ij the contribution received by facility i from the p-th port of
city j. As such, the most cost-efficient star in each iteration of the subroutine
can be found in this way: if the dual variables of all unconnected cities are
raised simultaneously, the most cost-efficient star will be the first star (i, p, C′)
achieving ∑

j∈C′

max(t − cij , 0) = fp
i ,

where αp
j = t and βp

ij = max(t− cij , 0). The p-th phase algorithm open the most
cost-efficient star repeatedly until all the cities in Cp are connected with a facility.
Once a city is connected, it is removed from U ; in contrast, a facility is never
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removed, instead it can be reused for free under certain condition. The subroutine
is very close to the MMS algorithm [8,6] proposed for the UFL problem. The
difference is, here we need to ensure the feasibility of the solution by maintaining
Xp

ij ≤ Y p
i for any i ∈ F , j ∈ C, p ∈ R. For the sake of simplicity, we say yp

i ← 1
means a new facility at site i is opened and xp

ij ← 1 a new connection between
city j and facility i is established. In order to maintain the feasibility of a solution,
we consider three cases for any j ∈ Cp:

1. Xp−1
ij < Y p−1

i : In this case, feasibility of the solution maintains if we set
xp

ij ← 1. There is no need to open a new facility at site i and fp
i = 0. We

say the facility i is eligible to be connected by city j.
2. Xp−1

ij = Y p−1
i and yp

i = 0: In this case, we must open a new facility at site
i in order to establish a new connection for city j and therefore fp

i = fi.
The operating cost is shared between cities in C′ and any city contributed
to open the facility can be connected.

3. Xp−1
ij = Y p−1

i and yp
i = 1: This case is the result of the second case. Feasi-

bility of the solution maintains if we set xp
ij ← 1. We do not have to open a

new facility and fp
i = 0.

In the above three cases, only the second one involves more than one cities.
Suppose each facility has a list of cities and these cities are ordered according to
their connection costs to the facility, the most cost-efficient star will consist of a
facility and a set containing the first k cities in this order, for some k. Therefore
the algorithm can be finished efficiently in polynomial time. We use three types
of events to process the above cases respectively. Note that fp

i = 0 implies that
once a city j ∈ U has enough credit to pay the connection cost, i. e. cij = t, the
star is formed. We restate the p-th phase algorithm based on these observations.

Remark 1. Algorithm 1 is independent on the order of city sets being processed,
e. g., we can also process cities in order CR, CR−1..., C1.

4 Analysis

In this section, we assume the function of connection cost forms a metric. In
order to show the performance of Algorithm 1, we claim that the maximum cost
ratio in each phase is bounded by a constant for any instance of the problem.
Formally, let I be an instance of the FTFA problem, we define

λp,I = max
i∈F ,C′⊆Cp

∑
j∈C′ αp

j

fi +
∑

j∈C′ cij

as the maximum cost ratio with respect to any possible star (i, p, C′).

Claim. The cost of solution in each phase is equal to
∑

j∈Cp
αp

j and the maxi-
mum cost ratio λp,I is bounded by a constant λ for any phase p ∈ R and any
instance I.

We use dual fitting technique here to analysis the approximation factor of the
high level algorithm by shrinking the dual solution λ times to make it ’fit’ to the
original problem.
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Algorithm 2. Restatement of the p-th Phase Algorithm
(1) At the beginning, all cities are unconnected, namely, t ← 0, U ← Cp. Assume

a city j ∈ U has rj ports each with some credit which increases from zero
simultaneously with time before the port is connected.

(2) While U 
= φ, increase time t until an instance of Event-1 or Event-2 or
Event-3 occurs. If two events occur at the same time, process them in arbi-
trary order.
(a) Event -1 : A city j ∈ U has enough credit to be connected with an eligible

facility, suppose i, i. e. t = cij and Xp−1
ij < Y p−1

i . Set Xp
ij ← Xp−1

ij + 1
in this case.

(b) Event-2 : A facility i ∈ F receives enough payment from cities in U to
open its p-th facility, i. e.

∑
j∈U max(t − cij , 0) = fi. In this case, let

C′ = {j ∈ U : cij ≤ t}, set Y p
i ← Y p−1

i + 1 and Xp
ij ← Xp−1

ij + 1 for any
j ∈ C′.

(c) Event -3 : A city j ∈ U has enough credit to be connected with a new
opened facility, i. e. t = cij . Set Xp

ij ← Xp−1
ij + 1 in this case.

(d) For any city j ∈ U , set αp
j ← t and remove city j from U if it is connected

with a facility in phase p.

Theorem 1. If the p-th phase algorithm fulfills the claim, Algorithm 1 is a λ-
approximation algorithm to the FTFA problem.

Proof. It is not hard to see that Xp
ij stops increasing when p > rj because a city j

is included in Cp only when p ≤ rj . Therefore, we have ∀i ∈ F , j ∈ C : XR
ij ≤ Y R

i

because Y p
i is increasing monotonously (we never close a facility). Feasibility of

solution is proved.
In order to show the cost ratio, we compose an extra instance of the problem

and its feasible dual solution. Let βp
ij = max(αp

j/λ − cij , 0) for any i ∈ F , j ∈
C, p ∈ R and C′ = {j ∈ C : αp

j ≥ λcij}, we have
∑

j∈C βp
ij =

∑
j∈C′ βp

ij =∑
j∈C′(αp

j/λ − cij). According to the claim, we have

∑

j∈C′

(αp
j/λ − cij) ≤ fi

for any i ∈ F , p ∈ R. That is, there exist dual variable βp
ij ≥ 0 such that

∀i ∈ F , p ∈ R :
∑

j∈C βp
ij ≤ fi (5)

and ∀i ∈ F , j ∈ C, p ∈ R : αp
j/λ − βp

ij ≤ cij . (6)

We note that the above inequalities are exactly the constraints of the dual prob-
lem (3). Let OPT be the optimal solution to the primal problem of I. From
Inequality (5) and (6), we know (α/λ, β) is a feasible solution to the dual prob-
lem of I. Due to the weak duality theorem, which states that the optimum
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of the dual maximization problem is no more than the optimum of the primal
minimization problem, we have

∑

j∈C

rj∑

p=1

αp
j/λ ≤ OPT. (7)

Considering that the cost of solution in each phase is equal to
∑

j∈Cp
αp

j , the
theorem is established.

Remark 2. Another interesting observation is that the greedy algorithm for the
UFL problem, like the MMS algorithm [6,8] or JMS Algorithm [7,8], can also be
analysed through decomposing the optimal solution into a group of stars. This is
true because any solution to UFL can be decomposed into stars without overlap
or interference. However in the FTFA problem, a city is involved in multiple
stars and how to assign their costs to achieve the balance between regarding
stars is a nontrivial task. Fortunately, by using the dual fitting technique, we get
an alternative approach to reveal the approximation factor.

From the algorithm, we can see that all payments are either for the connection
cost or facility cost. Therefore the first part of the claim is complied by the
algorithm. Now, we only need to find a proper value of λ ≥ 1 such that for any
instance I of the FTFA problem and any phase p ∈ R

max
i∈F ,C′⊆Cp

∑
j∈C′ αp

j

fi +
∑

j∈C′ cij
≤ λ.

It is clear that we only need to consider cities with αp
j ≥ λcij . Without loss of

generality, suppose there are k such cities in Cp and further αp
1 ≤ αp

2 ≤ ... ≤ αp
k.

We consider some important properties of the p-th algorithm in order to find a
proper value of λ. We have the following lemmas on the contribution received
by a facility and the triangle inequality between connection costs respectively.
Lemma 1. Given an instance I and phase p ∈ R,

∑k
j=h max(αp

h − cij , 0) ≤ fi

for any facility i ∈ F and any city h, 1 ≤ h ≤ k.

Proof. omitted.

Lemma 2. Given an instance I and phase p ∈ R, αp
j ≤ αp

h + cij + cih for any
facility i ∈ F and city h, j, 1 ≤ h, j ≤ k.

Proof. omitted.

The above lemmas present some important properties of the p-th phase algorithm
and the following result turns out that they are enough to bound the ratio of
the total cost of a derived solution to that of an optimal solution. Let λk be the
maximum of the following linear program.

maximize
∑k

j=1 αj

f+
∑

k
j=1 dj

subjected to ∀1 ≤ j < h ≤ k : αh ≤ αj + dj + dh

∀1 ≤ h ≤ k :
∑k

j=h max(αh − dj , 0) ≤ f

∀1 ≤ j ≤ k : αj , dj , f ≥ 0

(8)
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If λk has an upperbound with respect to any integer k, we are able to choose
this upperbound as the value of λ with respect to the claim. Linear programs
like Program (8) are also called factor revealing LPs in the literature [23,6,7,8].

Corollary 1. Algorithm 1 is a 1.861-approximation algorithm for the FTFA
problem.

Proof. omitted.

5 Discussion

The FTFA problem is useful in fault tolerant network design. Suppose the us-
ability required by city j is bj. If downtime of facilities or links is predicable, e. g.
a system where each facility need a fraction of time to ’rest’, and the downtime
ratio is uniformly b for all facilities, the regarding network design problem can
be model as a FTFA problem with rj equals �bj/(1− b)�. If downtime is unpre-
dictable, we can solve the problme by setting rj to be �logb(1 − bj)�. In both
cases, we can apply the proposed algorithm to solve directly. However, if facili-
ties or links have nonuniform downtime, the constraints on connectivity becomes∑

i∈F(1 − bij)xij ≥ bj for the deterministic model and
∏

i∈F :xij=1 bij ≤ 1 − bj

for the stochastic model and we leave regarding problems for future research.
FTFA can also be extended into Fault-Tolerant k-Facility Allocation which has
an extra constraint on the maximum number of open facilities as showed in our
another paper [24].
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Abstract. Connected dominating set (CDS) has a wide range of appli-
cations in wireless ad hoc networks. A number of approximation algo-
rithms for constructing a small CDS in wireless ad hoc networks have
been proposed in the literature. The majority of these algorithms follow
a general two-phased approach. The first phase constructs a dominat-
ing set, and the second phase selects additional nodes to interconnect
the nodes in the dominating set. In the performance analyses of these
two-phased algorithms, the relation between the independence number
α and the connected domination number γc of a unit-disk graph plays
the key role. The best-known relation between them is α ≤ 3 2

3γc + 1. In
this paper, we prove that α ≤ 3.4306γc + 4.8185. This relation leads to
tighter upper bounds on the approximation ratios of two approximation
algorithms proposed in the literature.

1 Introduction

Connected dominating set (CDS) has a wide range of applications in wireless ad
hoc networks (cf. a recent survey [3] and references therein). Consider a wireless
ad hoc network with undirected communication topology G = (V,E). A CDS of
G is a subset U ⊂ V satisfying that each node in V \ U is adjacent to at least
one node in U and the subgraph of G induced by U is connected. A number of
distributed algorithms for constructing a small CDS in wireless ad hoc networks
have been proposed in the literature. The majority of these distributed algo-
rithms follow a general two-phased approach [1,2,4,8,10,11,12]. The first phase
constructs a dominating set, and the nodes in the dominating set are called
dominators. The second phase selects additional nodes, called connectors, which
together with the dominators induce a connected topology. The algorithms in
[1,2,4,8,10,11] differ in how to select the dominators and connectors. For ex-
ample, the algorithm in [2] selects the dominators using the Chvatal’s greedy
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algorithm [5] for Set Cover, the algorithms in [1,10] select an arbitrary maximal
independent set (MIS) as the dominating set, and all the algorithms in [4,8,11,12]
choose a special MIS with 2-hop separation property as the dominating set.

The approximation ratios of these two-phased algorithms [1,2,4,8,10,11] have
been analyzed when the communication topology is a unit-disk graph (UDG). For
a wireless ad hoc network in which all nodes lie in a plane and have equal maximum
transmission radii normalized to one, its communication topology G = (V,E) is
often modelled by a UDG in which there is an edge between two nodes if and only if
their Euclidean distance is at most one. Except the algorithms in [2,10] which have
logarithmic and linear approximations ratios respectively, all other algorithms in
[1,4,8,11,12] have constant approximation ratios. The algorithm in [1] targets at
distributed construction of CDS in linear time and linear messages. With this ob-
jective, it trades the size of the CDS with the time complexity, and thus its approx-
imation ratio is a large constant (but less than 192). The analyses of the algorithms
in [4,8,11,12] rely on the relation between the independence number (the size of a
maximum independent set) α and the connected domination number (the size of
a minimum connected dominating set) γc of a connected UDG G. A loose relation
α ≤ 4γc + 1 was obtained in [11], which implies an upper bound of 8 on the ap-
proximation ratios of both algorithms in [4,11]. A refined relation α ≤ 3.8γc +1.2
was discovered in [13]. With such a refined relation, the upper bound on the ap-
proximation ratios of both algorithms in [4,11] was reduced from 8 to 7.6, and an
upper bound of 5.8 + ln 5 ≈ 7. 41 on the approximation ratio of the algorithms in
[8] was derived (the bound 4.8+ln 5 ≈ 6. 41 in [8] was incorrect). The best-known
relation α ≤ 3 2

3γc + 1 if G has at least two nodes was recently proven in [12]. As
a result, the upper bound on the approximation ratio of the algorithm in [11] was
further reduced to 7 1

3 in [12]. Another greedy approximation algorithm was also
proposed in [12] and its approximation ratio was proven to be bounded by 6 7

18 .
In this paper, we first prove a further improved relation α ≤ 3.4306γc+4.8185

in Section 3. The proof for this bound employs an integrated area and length
argument, and involves some other interesting extreme geometric problems which
are studied in Section 2. Subsequently in Section 4, we provide tighter analyses
of the approximation algorithm in [11] and the other greedy algorithm in [12].
We prove that the approximation ratio of the former algorithm is at most 6. 862
and the approximation ratio of the latter algorithm is at most 6. 075.

We remark that a recent paper [7] claimed that for any connected UDG G,

α ≤ 3.453γc + 8.291.

However, as discovered in [12], the proof for a key geometric extreme property
underlying such claim was missing, and such proof is far from being apparent or
easy. Such property is rigorously proved in Lemma 5. Consequently, the bound
claimed in [7] can be treated at most as a conjecture at the time of its publication
rather than a proven result.

In the remaining of this section, we introduce some terms and notations. For
any point u and any r > 0, we use diskr (u) to denote the closed disk of radius r
centered at u, and circler (u) to denote the boundary circle of diskr (u). A path
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or a polygon is said to be inscribed in a circle if all its vertices lie on the circle.
The Lebesgue measure (or area) of a measurable set A ⊂ R2 is denoted by |A|.
The topological boundary of a set A ⊂ R2 is denoted by ∂A. For the simplicity
of presentation, the line segment between two points u and v and its length are
both denoted by uv by slightly abusing the notation, but the actual meaning
can be clearly told from the context.

2 Canonical Polygons and Inscribed Polygons

Suppose that s, o and t are three points from the left to the right on a horizontal
line with os = 1 and ot = 0.5. For any pair of points u and v on circle1/

√
3 (o),

let ûv be the arc in circle1/
√

3 (o) from u to v in the counterclockwise manner.
Denote by φ the radian of ûv, and let k = �φ/ (π/3)�. We construct a path Q of
k edges from u to v with all vertices on ûv as follows: If φ is an integer multiple
of π

3 , then all edges of Q are tangent to circle0.5 (o); otherwise, all edges except
the�k/2�-th edge are tangent to circle1/

√
3 (o) (we remark that in this case, the

�k/2�-th edge is disjoint from circle1/
√

3 (o)). The path Q is referred to as the
canonical path inscribed in circle1/

√
3 (o) from u to v.

For any point u which lies on the right side the the vertical line through t, we
construct a polygon P as follows: let u1 and u2 be the two points on circle1/

√
3 (o)

such that the two line segments u1u and u2u are tangent to circle1/
√

3 (o) and
u1 is above the line st. Then, P is surrounded by u1u, u2u and the canonical
path from u1 to u2. The polygon P is referred to as the canonical polygon of u.
The point u is called the base vertex of P , and the angle θ = arccos 1

2ou is called
the base angle of P . Note that if u is on the ray ot, then P is symmetric with
respect to the line ot, and the area of P ∩ disk1.5 (s) is a function of the base
angle θ, which is denoted by f (θ). In this section, we will derive the explicit
expression of f (θ) and explore some useful properties of the function f (θ). We
will also prove that for any canonical polygon P , |P ∩ disk1.5 (s)| ≥ f (θ) where
θ is the base angle of P .

We first introduce a geometric function g on [0, π] defined as follows. For any
θ ∈ [0, π], let v be a point on circle1/2 (o) satisfying that ∠tov = θ and v is
above st. Let w be the point on circle1.5 (s) satisfying that vw is tangent to
circle1/2 (o) and w lies to the right of v. Then, g (θ) is defined to be the area of
the region surrounded by arc tw and the three line segments ot, ov and vw (see
Figure 1). The next lemma presents the explicit expressions of g (θ) and its first
and second order derivatives.

Due to space limit, we omit some of the proofs in this version.

Lemma 1. Let β = θ − arccos 1+2 cos θ
3 .Then,

g (θ) =
9
8
β − 3

4
sinβ +

√
6

4
sin

β

2
,

g′ (θ) =
13
8

− 1.5 cosβ,
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Fig. 1. Calucaltion of ∠wst and g (θ)
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Fig. 2. The curve of f on [0 ◦, 90 ◦)

g′′ (θ) = 1.5

(

1 −
√

1 − 1
2 + cos θ

)

sinβ.

In addition, g is increasing and convex on [0, π], while both g′ and g′′ are in-
creasing on

[
0, π

2

]
.

It is easy to show that f (θ) = 2g (θ) + h (θ) , where

h (θ) =
1

4
√

3

⌊
6 − θ

π
6

⌋
+

1
6

sin 2
((

6 −
⌊
6 − θ

π
6

⌋)
π

6
− θ

)
.

Figure 2 is the curve of f on [0 ◦, 90 ◦). We observe and will prove later that f
is increasing on [60 ◦, 90 ◦). However, on either of the two intervals [0 ◦, 30 ◦] and
[30 ◦, 60 ◦], f is neither monotone, nor concave, and nor convex. Fortunately, on
either of these two intervals f has the following weak but still nice quasi-concave
property: f is said to be quasi-concave on an interval [a, b] ⊂ [0 ◦, 90 ◦) if for each
triple of increasing values θ1, θ2, θ3 in [a, b], f (θ2) ≥ min {f (θ1) , f (θ3)}.

Lemma 2. f is quasi-concave on
[
0, π

6

]
and

[
π
6 ,

π
3

]
respectively, and increasing

on
[

π
3 ,

π
2

)
.



Tighter Approximation Bounds for Minimum CDS 703

Denote f
(

π
6

)
by σ. Then,

σ =
√

3
6

− 1
2

+

√
8 + 2

√
3

4
+

3π
8

− 9
4

arccos
1 +

√
3

3
≈ 0.855 053 28.

It is easy to verify that f (0) =
√

3/2 and f (32 ◦) < f
(

π
3

)
< f (34 ◦) . So, by

Lemma 2 we have the following corollary.

Corollary 1. The minimum of f on the interval [0 ◦, 90 ◦) (respectively, [32 ◦, 90 ◦)
and [34 ◦, 90 ◦)) is achieved at 30 ◦ (respectively, 32 ◦ and 60 ◦).

Finally, we prove the following extreme property of the canonical polygons.

Lemma 3. For any canonical polygon P with base angle θ, |P ∩ disk1.5 (s)| ≥
f (θ).

Next, we prove the following lemma about inscribed polygons.

Lemma 4. Suppose that P is a polygon inscribed in circle1/
√

3(o) satisfying that
disk0.5 (o) ⊆ P . Then,

|P | >
√

3/2,
|P ∩ disk1.5 (s)| ≥ σ.

3 Independence Number vs. Connected Domination
Number

In this section, we present an improved upper bound on the independence num-
ber in terms of the connected domination number.

Theorem 1. Let α and γc be the independence number and connected domina-
tion number of a connected UDG G. Then,

α ≤ 3.4306γc + 4.8185.

We prove the above theorem by an integrated area and length argument. Let U
be a minimum CDS of G, and define

Ω =
⋃

u∈U

disk1.5 (u) .

Consider a maximum independent set I of G. We construct the Voronoi diagram
defined by I. For each o ∈ I, we use V or (o) to denote its Voronoi cell and call
the set V or (o) ∩ Ω as the truncated Voronoi cell of o. Clearly, |Ω| is the total
area of truncated Voronoi cells of all nodes in I. We partition I into two subsets
I1 and I2 defined by

I1 =
{
o ∈ I : disk1/

√
3 (o) ⊂ Ω

}
,

I2 = I \ I1.

Denote by α1 and α2 the size of I1 and I2 respectively. The next lemma provides
a lower bound on each truncated Voronoi cell.
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v

1

2o

o

e

e

o1

2

Fig. 3. Any vertex of V or (o) is apart from o by at least 1/
√

3

Lemma 5. For each o in I1 (respectively, I2), the area of its truncated Voronoi
cell is at least

√
3/2 (respectively, σ).

Proof. Since the pairwise distances of the points in I are at least one, the distance
between o and each side of V or (o) is at least 0.5 and consequently disk0.5 (o) ⊂
V or (o). Next, we show that no vertex of V or (o) is inside disk1/

√
3 (o). Let v

be a vertex of V or (o), and e1 and e2 be the two sides of V or (o) incident to v
(see figure 3). Let o1 (respectively, o2) be the point which is symmetric to o with
respect to e1 (respectively, e2). Then, both o1 and o2 belong to I, and hence
the three sides of $oo1o2 are all at least 2. Clearly, v is the center of $oo1o2.
Since at least one of the three central angles of $oo1o2 is at most 120 ◦, the
circumscribing radius of $oo1o2 is at least 1/

√
3. Thus, ov ≥ 1/

√
3.

Let s be the node in the MCDS U closest to o. Then, o ∈ disk1 (s). If
disk1/

√
3 (o) ⊆ V or (o), then |V or (o) ∩Ω| ≥

∣
∣
∣disk1/

√
3 (o) ∩ disk1.5 (s)

∣
∣
∣ >

√
3/2.

So, we assume disk1/
√

3 (o) is not fully contained in V or (o). Then V or (o) in-
tersects circle1/

√
3(o). We construct a polygon P ⊆ V or (o) satisfying that P is

inscribed in circle1/
√

3(o) and disk0.5 (o) ⊆ P ⊆ V or (o). Let Q be the sequence
of intersecting points between V or (o) and circle1/

√
3 (o) in the counterclockwise

order. For each pair of successive u and v in Q, if ∠uov ≤ π
3 , we add to P a

side between u and v; otherwise, we add to P a path inscribed in the arc from
u to v satisfying that each edge in this path is either tangent to or disjoint from
circle1/

√
3 (o) (see Figure 4). The resulting polygon P meets the requirement.

By Lemma 4, |P | ≥
√

3/2.
If o ∈ I1, then

P ⊆ V or (o) ∩ disk1/
√

3 (o) ⊆ V or (o) ∩Ω,

hence
|V or (o) ∩Ω| ≥ |P | ≥

√
3/2.

Now, we assume that o ∈ I2. Note that |P ∩ disk1.5 (s)| grows when moving o
away from s along a fixed radius of disk1.5 (s). By Lemma 4, |P ∩ disk1.5 (s)| ≥ σ.
Since

P ∩ disk1.5 (s) ⊆ V or (o) ∩Ω,
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o

Fig. 4. Inserting operations

we have
|V or (o) ∩Ω| ≥ |P ∩ disk1.5 (s)| ≥ σ.

We define

Ω′ =
⋃

v∈U

disk1.5−1/
√

3 (v) .

The next lemma gives an upper bound on the length of ∂Ω′.

Lemma 6. The length of ∂Ω′ is at most 2
(
1 − 1/

√
3
)
α2.

By Lemma 5,

|Ω| ≥
√

3
2

α1 + σα2 =
√

3
2

α−
(√

3
2

− σ

)

α2,

which implies

α ≤ |Ω|
√

3
2

+

(

1 − σ
√

3
2

)

α2. (1)

It is easy to prove by induction on γc that

|Ω| ≤ 9
2

(

(γc − 1)

(

arcsin
1
3

+
√

8
9

)

+
π

2

)

, (2)

and the length of of ∂Ω′ is at most

2
(

3 − 2√
3

)(

(γc − 1) arcsin
1

3 − 2√
3

+
π

2

)

.

By Lemma 6,

α2 ≤
2
(
3 − 2√

3

)(
(γc − 1) arcsin 1

3− 2√
3

+ π
2

)

2
(
1 − 1√

3

)

=
√

3 + 7
2

(

(γc − 1) arcsin
1

3 − 2√
3

+
π

2

)

. (3)
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The three inequalities (1), (2) and (3) imply altogether that α is at most

(γc − 1)

⎛

⎜
⎜
⎝

√
27

(
arcsin 1

3 +
√

8
9

)

+

(

1− σ√
3

2

)

(
√

3+7)
2 arcsin 1

3− 2√
3

⎞

⎟
⎟
⎠+

π

2

(
√

27 +

(

1 − σ
√

3
2

) √
3 + 7
2

)

≈ 3.4305176γc + 4.8184688.

Thus, Theorem 1 follows.

4 Tighter Approximation Ratios

In this section, we derive tighter bounds on the approximation ratio of the dis-
tributed algorithm proposed in [11] and the other greedy algorithm proposed
in [12]. For the convenience of presentation, we call them WAF and WWY
respectively. Let G = (V,E) be a unit-disk graph. We denote by α and γc the
independence number and connected domination number of G respectively. For
any finite set S, we use |S| to denote the cardinality of S.

The CDS produced by the algorithm WAF consists of a maximal independent
set I and a set C of connectors. Specifically, let T be an arbitrary rooted spanning
tree of G. The set I is selected in the first-fit manner in the breadth-first-search
ordering in T . Let s be the neighbor of the root of T which is adjacent to the
largest number of nodes in I. Then, C consists of s and the parents (in T ) of the
nodes in I	I (s). It was proved in [11] that I∪C is a CDS and |I ∪C| ≤ 8γc−1.
Later on, two progressively improved tighter bounds 7.6γc + 1.4 and 7 1

3γc were
obtained in [13] and [12] respectively. The next theorem further improves the
bound on |I ∪C|.

Theorem 2. The CDS produced by the algorithm WAF has size at most 6.
862γc + 8. 637.

Proof. Let I and C be the set of nodes selected by the algorithm WAF in the
first phase and the second phase respectively. Since |C| ≤ |I| − 1, we have

|I ∪ C| ≤ 2 |I| − 1 ≤ 2 (3.4306γc + 4.8185)− 1 ≤ 6. 862γc + 8. 637.

So, the theorem follows.

In the next, we study the algorithm WWY. The first phase of this algorithm is
the same as the algorithm WAF, and we let I be the selected maximal indepen-
dent set. But the second phase selects the connectors in a more economic way.
For any subset U ⊆ V \ I, let q (U) be the number of connected components in
G [I ∪ U ]. For any U ⊆ V \ I and any w ∈ V \ I, we define

$wq (U) = q (U) − q (U ∪ {x}) .

The value $wq (U) is referred to as the gain of w with respect to U . The following
lemma was proved in [12].
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Lemma 7. Suppose that q (U) > 1 for some U ⊆ V \ I. Then, there exists a
w ∈ V \ (I ∪ U) such that $wq (U) ≥ max {1, �q (U) /γc� − 1}.

The second phase of the algorithm WWY runs as follows. We use C to denote
the sequence of selected connectors. Initially C is empty. While q (C) > 1, choose
a node w ∈ V \ (I ∪ C) with maximum gain with respect to C and add w to C.
When q (C) = 1, then I∪C is a CDS. It was proved in [12] that |I ∪ C| ≤ 6 7

18γc.
We derive a tighter bound on the output CDS in the theorem below.

Theorem 3. The CDS produced by the algorithm WWY has size at most 6.
075γc + 5. 425.

Proof. Let I and C be the set of nodes selected by the algorithm WWY in the
first phase and the second phase respectively. If γc = 1, then |I| ≤ 5 and |C| ≤ 1,
hence |I ∪ C| ≤ 6. Thus, the theorem holds trivially if γc = 1. If |I| ≤ 3γc + 2,
then |I ∪C| ≤ 2 |I| − 1 ≤ 6γc + 3, and the theorem also holds. From now on, we
assume that γc ≥ 2 and |I| > 3γc + 2.

We break C into three contiguous (and possibly empty) subsequences C1, C2
and C3 as follows. C1 is the shortest prefix of C satisfying that q (C1) ≤ 3γc +2,
and C1 ∪C2 is the shortest prefix of C satisfying that q (C1 ∪ C2) ≤ 2γc + 1. We
can prove that

|C1| ≤
{

|I|
3 − γc if q (C1) ≤ 3γc + 1,

|I|−2
3 − γc if q (C1) = 3γc + 2;

|C2| ≤
{ γc

2 if q (C1) ≤ 3γc + 1,
γc+1

2 if q (C1) = 3γc + 2;

|C3| ≤ 2γc − 1.

From the first two inequalities, we have

|C1 ∪C2| ≤
|I|
3

− γc

2
.

Using the third inequality, we have

|C| ≤ |I|
3

− γc

2
+ 2γc − 1 =

|I|
3

+
3
2
γc − 1.

So,

|I ∪ C| ≤ 4 |I|
3

+
3
2
γc − 1

≤4
3

(3.4306γc + 4.8185) +
3
2
γc − 1

≤6. 075γc + 5. 425.

Thus, the theorem follows.
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5 Discussions

In this paper, we obtained a tighter relation between the independence number
and connected domination number of a connected UDG. We actually proved the
following stronger result on packing. Let V be a set of n nodes of a connected
dominating set, and Γ be the unions of unit-disks centered at V . Then, we can
pack in Γ at most 3.4306n+ 4.8185 points whose pairwise distances are greater
than or equal to one. We’d like to emphasize that here we allow two points
packed in Γ to have distance equal to one. On the other hand, a packing of
3n + 3 points in Γ whose pairwise distances are greater than one was presented
in [12]. It was also conjectured 3n+3 is the exact bound. Thus, there is still a gap
between the bound 3.4306n + 4.8185 derived in this paper and the conjectured
bound 3n + 3.

References

1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-Optimal Connected Dominating
Sets in Mobile Ad Hoc Networks. In: ACM Mobihoc (2002)

2. Bharghavan, V., Das, B.: Routing in Ad Hoc Networks Using Minimum Connected
Dominating Sets. In: IEEE ICC (1997)

3. Blum, J., Ding, M., Cheng, X.: Applications of Connected Dominating Sets in
Wireless Networks. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial
Optimization, pp. 329–369. Kluwer Academic Publisher, Dordrecht (2004)

4. Cadei, M., Cheng, X., Du, D.-Z.: Connected Domination in Ad Hoc Wireless Net-
works. In: Proc. 6th International Conference on Computer Science and Informatics
(2002)
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Abstract. Given two comparative maps, that is two sequences of mark-
ers each representing a genome, the Maximal Strip Recovery problem
(MSR) asks to extract a largest sequence of markers from each map such
that the two extracted sequences are decomposable into non-overlapping
strips (or synteny blocks). This aims at defining a robust set of synteny
blocks between different species, which is a key to understand the evo-
lution process since their last common ancestor. In this paper, we add a
fundamental constraint to the initial problem, which expresses the biolog-
ically sustained need to bound the number of intermediate (non-selected)
markers between two consecutive markers in a strip. We therefore intro-
duce the problem δ-gap-MSR, where δ is a (usually small) non-negative
integer that upper bounds the number of non-selected markers between
two consecutive markers in a strip. Depending on the nature of the com-
parative maps (i.e., with or without duplicates), we show that δ-gap-MSR
is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also
provide two approximation algorithms, with ratio 1.8 for δ = 1, and ratio
4 for δ ≥ 2.

Keywords: algorithmic complexity, approximation algorithms, compar-
ative maps, genome comparison, synteny blocks.

1 Introduction

In comparative genomics, finding synteny blocks (that is, regions with similar
content and gene order) of two genomes is a crucial task, as the decomposition
of genomes into synteny blocks allows to estimate the nature of genome rear-
rangement events that hold during the evolution process since the last common
ancestor of the genomes.

In addition to the difficulty to define a synteny block precisely, another diffi-
culty is introduced by the quality of genome annotation. Zheng et al. [9] make
a list of possible errors and ambiguities introduced by the mapping technology,
which is used to obtain a representation of a genome as a sequence of markers,
called a genomic map. Each marker represents a small, specific element which
has been identified on the genome, at a specific position which is the marker’s

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 710–719, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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position. Comparing two genomes is then possible using their genomic maps,
assuming that the pairs of identical markers on the two genomes are known (the
maps are then called comparative maps). Comparative maps are less precise than
genome sequences (either as DNA sequences or as sequences of genes), but still
allow the identification of synteny blocks.

The problem that needs to be solved when no error occurs is the follow-
ing: Given two comparative maps, decompose them into non-intersecting syn-
teny blocks. In case of errors or ambiguities, Zheng et al. [9] propose to switch
to the following problem: Given two comparative maps, find a longest (possibly
non-contiguous) subsequence of markers in each comparative map, such that the
subsequences are decomposable into non-intersecting synteny blocks. The idea
behind this maximization problem is that true synteny is possibly interrupted
by erroneous or ambiguous markers, which should be discarded before searching
for synteny blocks.

The problem, called Maximal Strip Recovery (MSR), is obtained from
this maximization problem using comparative maps with signed, but not du-
plicated, markers, and a specific definition of synteny blocks. Synteny blocks
are defined as strips, which are contiguous sequences of at least two markers
that occur on each genome either in the same order, or in reverse order and
with a reversed sign. Zheng et al [9] and Choi et al. [4] propose two heuristics
to solve the MSR problem. Chen et al. [3] devise a 4-approximation algorithm
for it, propose its extension, called MSR-d, to an arbitrary number d ≥ 2 of
genomes and show that MSR-3 is NP-complete. The NP-completeness of MSR
(or equivalently MSR-2) is a result obtained by Wang et al. [8], who also pro-
pose FPT algorithms for MSR-d (with arbitrary d) and MSR-DU, the variant of
MSR where duplicated markers are allowed in the maps and in different synteny
blocks.

The MSR problem takes into account the need to keep as much of the data as
possible from the initial comparative maps and the need to have conflict-free syn-
teny blocks. However, it is too permissive as it allows two consecutive elements
from one strip to be separated by an arbitrary long gap (in terms of intermediate
markers) on the initial comparative maps, and possibly to be very close on one
map and very far from each other on the other. As the discarded elements are
supposed to be errors and ambiguities (which are rather the exception than the
rule), and the elements kept in the subsequences are supposed to be the safe
information (which is the major part of the comparative information), it follows
that a safe synteny block should not allow arbitrarily long gaps.

We therefore introduce and study in this paper the δ-gap-MSR problem, a
restriction of the MSR problem where the allowed gaps along the comparative
maps between two consecutive elements in a strip are upper bounded by param-
eter δ, where δ is a given (usually small) non-negative integer. We investigate the
algorithmic complexity of δ-gap-MSR depending on the allowed multiplicity for a
marker and prove the results given in Table 1. For the NP-complete or APX-hard
cases, we provide two approximation algorithms, whose approximation ratios are
given in Table 2.
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Table 1. Complexity of variants of MSR

Problem Without duplicates With duplicates
(-DU variant)

0-gap-MSR P (Section 4.2) ?
1-gap-MSR NP-complete (Section 3.1) NP-complete (Section 3.1)
δ-gap-MSR (δ ≥ 2) APX-complete (Section 3.2) APX-complete (Section 3.2)
MSR NP-complete [8] NP-complete [8]

Table 2. Best approximation ratios of variants of MSR

Problem Without duplicates With duplicates
(-DU variant)

0-gap-MSR - 4 (Section 4.2)
1-gap-MSR 1.8 (Section 4.1) 4 (Section 4.2)
δ-gap-MSR (δ ≥ 2) 4 (Section 4.2) 4 (Section 4.2)
MSR 4 [3] 4 [3]

The organization of the paper is as follows. In Section 2, we introduce some
notations, and we define formally MSR, MSR-DU, δ-gap-MSR and δ-gap-MSR-
DU. We prove in Section 3 the hardness results (NP-completeness for δ = 1 in
Section 3.1, APX-completeness for δ ≥ 2 in Section 3.2). We then give approxima-
tion algorithms in Section 4: a 1.8-approximation for 1-gap-MSR in Section 4.1,
and a general 4-approximation in Section 4.2. Due to space constraints, most of
the proofs are omitted from this paper.

2 Notations and Definitions

A comparative map M is a sequence of signed integers, where the absolute
value of each integer represents a specific marker, and the sign represents the
orientation of the marker on the chromosome. A marker may appear several
times in a comparative map, possibly with different orientations: in this case,
we say that the comparative map M has duplicates (the presence of duplicates
is useful if we do not want to distinguish paralogs in the comparative map). A
sequence M is denoted M=〈m1, m2, . . . , ml〉, and its ith element mi is (also)
denoted M[i].

A subsequence σ of M is a sequence 〈σ1, . . . , σh〉 of markers from M with
h ≥ 2 and positions i1 < i2 < . . . < ih respectively on M. The vector (i1, . . . , ih)
is denoted idx(σ,M). The gap of σ in M is max{ik+1 − ik − 1 : 1 ≤ k < h},
its length |σ| is h. Two subsequences σ and τ are non-overlapping in M if one
appears strictly before the other (i.e., if the last element of idx(σ,M) is strictly
smaller than the first element of idx(τ,M) or vice-versa). The reversed opposite
of 〈σ1, . . . , σh〉 is 〈−σh,−σh−1, . . . ,−σ1〉.

Given two comparative maps M1 and M2, a prestrip is a subsequence σ of M1
such that either σ or its reversed opposite is a subsequence of M2, and such that
the markers in σ are pairwise different. The gap of a prestrip is the maximum of



MSR with Gaps: Hardness and Approximation Algorithms 713

the gaps of the two corresponding subsequences in M1 and M2. Two prestrips
are non-overlapping if the corresponding subsequences are non-overlapping, both
in M1 and M2. A strip is a prestrip with gap 0. Strips represent synteny blocks
between two comparative maps. A prestrip can also be seen as a synteny bock,
but only if we consider that there is noise in the comparative maps (false markers
appear between two consecutive markers of the “true” synteny block). A set of
prestrips S is said to be feasible if it contains pairwise non-overlapping prestrips,
and we write ||S|| for its total size: ||S|| =

∑
σ∈S |σ|.

We finally define some notions of graph theory: a graph G = (V, E) is cubic if
every vertex u ∈ V has degree exactly 3. A set X ⊂ V is said to be independent
if for every edge (u, v) ∈ E, u /∈ X or v /∈ X . The cardinality of a maximum
independent set of G is written α(G).

The problems MSR (for Maximal Strip Recovery, see [9]) and MSR-
DU [3] are defined, in their decision formulation, as follows:

Problem: MSR
Input: Two comparative maps M1 and M2 without duplicates, k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, s.t. ||S|| ≥ k ?

Problem: MSR-DU
Input: Two comparative maps M1 and M2 (possibly with duplicates), k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, s.t. ||S|| ≥ k ?

The idea behind both those problems is that, if we find a set of compatible
prestrips with maximum total size, the elements appearing in no prestrip are
considered as noise: we can remove them to “clean” the data. Indeed, once those
elements are removed, the comparative maps can be partitioned into common
strips, i.e. we have decomposed both genomes into synteny blocks with the same
set of blocks in both genomes. Heuristics for the first problem have been given
in [9,4]. They have been improved in [3] into a 4-approximation algorithm. Fi-
nally, those problems have been proved NP-complete in [8], where an FPT algo-
rithm is also provided.

The variant we introduce, δ-gap-MSR, takes into account the fact that it is
unlikely that long sequences of markers can appear only from noise and errors.
If a large number of elements are inserted between two consecutive elements of
a prestrip (thus, if it has a large gap), then they are not errors, and the prestrip
cannot be considered a synteny block of the original genomes. Thus we define
the following two problems:

Problem: δ-gap-MSR
Input: Two comparative maps M1 and M2 without duplicates, k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, such that every
σ ∈ S has gap at most δ, and ||S|| ≥ k ?

Problem: δ-gap-MSR-DU
Input: Two comparative maps M1 and M2 (possibly with duplicates), k ∈ N.
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Question: Is there a feasible set S of prestrips of M1 and M2, such that every
σ ∈ S has gap at most δ, and ||S|| ≥ k ?

With the gap constraint we introduce, we keep only prestrips which are nearly
contiguous, while tolerating some noise in the input data. Note that those prob-
lems are defined for uni-chromosomal genomes. However, algorithms can easily
be adapted to handle multi-chromosomal instances.

3 Hardness Results

3.1 NP-Hardness of 1-gap-MSR

In this section, we prove the following theorem.

Theorem 1. 1-gap-MSR and 1-gap-MSR-DU are NP-hard.

Note that we need to consider only 1-gap-MSR (without duplicates) since NP-
hardness of 1-gap-MSR-DU directly follows from NP-hardness of 1-gap-MSR.

The proof uses a reduction from a variant of Maximum Independent Set,
3-colored-MIS, which is defined below. A 3-edge-coloring (also known as Tait
Coloring) of a cubic graph G = (V, E) is a partition of its edges in three classes
E = EA ∪ EB ∪ EC such that if two edges e1, e2 ∈ E are incident to a common
vertex, they belong to different classes.
Problem: 3-colored-MIS
Input: A cubic graph G = (V, E), a 3-edge-coloring (EA, EB, EC) of G, an
integer k.
Question: Is α(G) ≥ k ?

Lemma 2. 3-colored-MIS is NP-hard.

Starting from any instance of 3-colored-MIS, we construct two comparative maps
as follows. First, we assign a list of 4 positive integers (or 4 “markers”) to each
vertex u ∈ V : they are denoted yA1

u , yA2
u , yB1

u and yB2
u . We also assign a list of

10 integers x1
uv , . . . , x10

uv to each edge (u, v) ∈ EC, in such a way that no integer
appears in two different lists. We will also use peg markers: written with the
symbol ×, they are integers appearing only once, either in M1 or in M2 (and
thus cannot belong to any prestrip).

We construct the comparative maps with the following iterative procedure.
Suppose we have arbitrarily ordered the vertices in V . In that case:

1. For all (u, v) ∈ EA such that u < v, add 〈yA1
u , yA1

v , yA2
u , yA2

v ,×,×〉 to M1.
2. For all (u, v) ∈ EB such that u < v, add 〈yB1

u , yB1
v , yB2

u , yB2
v ,×,×〉 to M2.

3. For all (u, v) ∈ EC such that u < v, add Γ1(u, v) to M1, Γ2(u, v) to M2,
where Γ1 and Γ2 are defined as:

Γ1(u, v) =
〈

x1
uv, x5

uv, x2
uv, x6

uv, x3
uv, x7

uv, x4
uv,×,×,

yB1
u , x8

uv, yB2
u , x9

uv, yB1
v , x10

uv, yB2
v ,×,×

〉
;

Γ2(u, v) =
〈

x1
uv, x8

uv, x2
uv, x9

uv, x3
uv, x10

uv, x4
uv,×,×,

yA1
u , x5

uv, yA2
u , x6

uv, yA1
v , x7

uv, yA2
v ,×,×

〉
.
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Property 3. Let G = (V, E) be an n-vertex cubic graph with a 3-edge-coloring,
and let M1 and M2 be the two comparative maps obtained by the construction
defined above. Then the optimal value of 1-gap-MSR over (M1,M2) equals 4n+
2α(G).

Proof (of Theorem 1). The above property directly implies that our construction
(which can clearly be done in polynomial time) leads to a reduction from 3-
colored-MIS to 1-gap-MSR, which proves Theorem 1. �	

3.2 δ-gap-MSR and δ-gap-MSR-DU Are APX-hard

In this section, we prove the following theorem.

Theorem 4. δ-gap-MSR and δ-gap-MSR-DU are APX-hard for any δ ≥ 2.

As in the previous section, we note that we need to consider only δ-gap-MSR
(without duplicates) since APX-hardness of δ-gap-MSR-DU directly follows from
APX-hardness of δ-gap-MSR. For this, we use an L-reduction [7] from the variant
of Maximum Independent Set restricted to cubic graphs, that we call 3-MIS
here. Note that the L-reduction refers to the optimization versions of problems
δ-gap-MSR and δ-gap-MSR-DU, which are easy to deduce from the decision
versions presented here.

Problem: 3-MIS
Input: A cubic graph G = (V, E), an integer k.
Question: Is α(G) ≥ k ?
It is proved in [1] that 3-MIS is APX-hard. Given a cubic graph G = (V, E), our
reduction consists in constructing two comparative maps M1 and M2, having
properties P1, P2 and P3 described below, where Ω denotes the set of all prestrips
of M1 and M2 having gap at most δ:

P1. There exists a bijection Φ between V and Ω
P2. Every prestrip in Ω has length 2
P3. Two prestrips σ1 and σ2 of Ω are overlapping iff

(
Φ−1(σ1), Φ−1(σ2)

)
∈ E

Let Pk denote the path graph with k vertices.

Lemma 5. Given a cubic graph G = (V, E), one can compute in polynomial
time a partition of E into two classes EB and EW (for “Black” and “White”
edges), such that (1) each connected component of (V, EB) (called “black compo-
nent”) is isomorphic to a path Pk , and (2) each connected component of (V, EW)
(called “white component”) is isomorphic to a path Pk′ , with k′ ≤ 4.

The first step of the reduction is to compute a partition of E into two classes
EB and EW according to Lemma 5. We then construct two comparative maps
M1 and M2, satisfying properties P1, P2 and P3. Moreover, incompatibilities
in M1 (resp. M2) will correspond to black (resp. white) edges. We begin by
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assigning a different pair of integers (xa, x′a) to every vertex a ∈ V (G); we write
Φ(a) = 〈xa, x′a〉.

Then, for every black component Bi of order k, let V (Bi) = {ah : 1 ≤ h ≤ k}
and let (ah, ah+1) ∈ EB for 1 ≤ h < k; we construct the following sequence:

Ii =
〈
xa1 ,×,×δ−2, xa2 , x

′
a1

,×δ−2, . . . , xah
, x′ah−1

,×δ−2, . . . ,×, x′ak

〉

where ×l represents l consecutive peg markers. The full comparative map M1
is given by M1 =

〈
I1,×δ+1, I2,×δ+1, . . .

〉
.

For M2, we use a similar construction, but we need to take the reversed
opposite of some subsequences to avoid creating undesired prestrips. For a white
component Wj having 4 vertices, say a, b, c and d with (a, b), (b, c), (c, d) ∈ EW,
we create the following sequence:

Jj = 〈xa, xb, x
′
a,−x′c, x

′
b,−x′d,−xc,−xd〉 .

If Wj is of order three (resp. two), we remove the extra elements from Jj , i.e.
Jj = 〈xa, xb, x

′
a,−x′c, x

′
b,−xc〉 (resp. Jj = 〈xa, xb, x

′
a, x′b〉). Finally, M2 is created

in the same way as M1: M2 =
〈
J1,×δ+1, J2,×δ+1, . . .

〉
.

Lemma 6. The set Ω of the prestrips of M1 and M2 with gap less than or
equal to δ is exactly {Φ(a) : a ∈ V }. Moreover, Φ(a) and Φ(b) overlap in M1
iff (a, b) ∈ EB, and Φ(a) and Φ(b) overlap in M2 iff (a, b) ∈ EW.

The consequence of this lemma is that M1 and M2 satisfy the three properties
P1, P2 and P3 defined above. The reduction we have described is an L-reduction
from 3-MIS to δ-gap-MSR: indeed, Φ transforms an independent set of size l into
a feasible set of prestrips with gap δ of total size 2l, and Φ−1 does the reverse
operation. So δ-gap-MSR, like 3-MIS, is APX-hard for δ ≥ 2.

4 Approximation Algorithms

4.1 1.8-approximation for 1-gap-MSR

In this section, we present an approximation algorithm for 1-gap-MSR. Our
result is the following.

Theorem 7. There exists a factor-1.8 approximation algorithm for 1-gap-MSR.

Proof. Our algorithm makes uses of an exact algorithm to solve Maximum

Weight Independent Set (MWIS) on claw-free graphs. A claw is the 4-vertex
graph (V, E) with V = {a, b, c, d} and E = {(a, b), (a, c), (a, d)}. A graph is said
to be claw-free if none of its induced subgraphs is isomorphic to a claw. The
variant of MWIS on claw-free graphs, Claw-Free-MWIS (which is known to be
in P, [6]), is stated as follows:

Problem: Claw-Free-MWIS
Input: A claw-free graph G = (V, E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?
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Our 1.8-approximation algorithm (given in Algorithm 1) works as follows. Given
two comparative maps M1 and M2, compute the set Ω of all prestrips with
length 2 or 3 (and gap at most 1). Longer prestrips are ignored, since they can
be split into smaller ones appearing in Ω. Select a subset V λ ⊆ Ω (according to
some parameter λ: see the selection process described below), and create Eλ, the
set of all overlapping pairs of prestrips of V λ. The pair (V λ, Eλ) forms a graph
which is claw-free (see Lemma 8). An independent set for this graph (computable
in polynomial time) yields a feasible set of prestrips V λ

Ind.
The selection of V λ amongst Ω is done as follows: given a prestrip σ of M1 and

M2, take the values of idx(σ,M2)−λ modulo 9. This is done by the arithmetic
function π9, which takes the values of a list modulo 9: for example, if σ has
indices (30, 32, 33) in M2, and λ = 5, then idx(σ,M2) − λ = (25, 27, 28), and
π9(idx(σ,M2) − λ) = (7, 9, 1). If the result of π9(idx(σ,M2) − λ) belongs to
some list (the list T in Algorithm 1), add σ to V λ. We only need to test the 9
different values of λ to obtain 9 different feasible sets of prestrips.

Finally, Lemma 9 proves that there exists some λ for which the total size of
the corresponding V λ

Ind is at least 5/9th of a maximum feasible set of prestrips
of M1 and M2. Thus, Algorithm 1 is a polynomial-time algorithm giving a 1.8-
approximation to 1-gap-MSR, and Theorem 7 is proved. �	

Algorithm 1. A factor-1.8 approximation algorithm for 1-gap-MSR
Input: Two comparative maps M1, M2 without duplicates.
T ← {(1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5),

(6, 7), (6, 8), (7, 8), (7, 9), (8, 9)};
Ω ← set of all prestrips of M1 and M2 of length 2 or 3, with gap at most 1;
for λ ← 1 to 9 do

V λ ← {σ : σ ∈ Ω, π9(idx(σ, M2) − λ) ∈ T};
Eλ ← {(σ1, σ2) : σ1, σ2 overlapping prestrips of V λ};
w(σ) ← |σ| (for all σ ∈ V λ);
V λ

Ind ←Maximum Weight Independent Set of (V λ, Eλ) with weight w;
end for
return max{||V λ

Ind|| : 1 ≤ λ ≤ 9};

Lemma 8. For each λ, the graph (V λ, Eλ) created by Algorithm 1 is claw-free.

Lemma 9. If O is a feasible set of prestrips of M1, M2 with gap 1, Algorithm 1
provides a solution of total size at least 5||O||/9.

4.2 Reduction to Maximum Weight Independent Set

In this section we consider the variants of Maximum Weight Independent

Set on two classes of graphs: interval graphs and 2-interval graphs.
An interval graph is a graph G = (V, E), where every vertex in V is seen as

an interval I of R, and such that (I, J) ∈ E iff (1) I and J are distinct intervals
from V , and (2) I ∩ J 
= ∅.
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A 2-interval graph is a graph G = (V, E), where every vertex in V is seen as
a pair of disjoint intervals (I1, I2) of R (also called a 2-interval), and such that
((I1, I2), (J1, J2)) ∈ E iff (1) (I1, I2) and (J1, J2) are distinct 2-intervals from V ,
and (2) (I1 ∪ I2) ∩ (J1 ∪ J2) 
= ∅.

Problem: Interval-MWIS
Input: An interval graph G = (V, E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?
Problem: 2-Interval-MWIS
Input: A 2-interval graph G = (V, E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?
The problem Interval-MWIS is known to be polynomial [5]. On the other hand,
2-Interval-MWIS is APX-hard, and we know a 4-approximation for it [2].

Theorem 10. There exists a factor-4 approximation algorithm for δ-gap-MSR
for all δ ≥ 2, and for δ-gap-MSR-DU for all δ ≥ 0.

Proof. In this proof, we describe a reduction from δ-gap-MSR to 2-Interval-
MWIS. Given a pair of comparative maps and a maximal gap δ, we construct a
set of 2-intervals in the following way. First, compute the set Ω of all prestrips
of M1 and M2 having gap at most δ. Then, to each prestrip σ ∈ Ω, assign the
following 2-interval (where l is |M1| + 1):

Iσ = ( [min(idx(σ,M1)), max(idx(σ,M1))],
[min(idx(σ,M2)) + l, max(idx(σ,M2)) + l]) ,

with the weight:
w(Iσ) = |σ| .

We denote Gδ(M1,M2) the weighted 2-interval graph with vertex set {Iσ : σ ∈
Ω} and weight w. It has the following property:

Property 11. The set {Iσ : σ ∈ S} is an independent set of Gδ(M1,M2)
with weight W iff S is a feasible subset of Ω with total size W .

The 4-approximation algorithm for δ-gap-MSR and δ-gap-MSR-DU is the follow-
ing (adapted from the 4-approximation algorithm for MSR and MSR-DU [3]):

1. Compute the weighted 2-interval graph Gδ(M1,M2) as described above.
2. Compute X , a 4-approximation to 2-Interval-MWIS(Gδ(M1,M2)).
3. Deduce a feasible set of prestrips S = {σ : Iσ ∈ X}.

Property 11 tells us that the total size of S is the weight of X , and that δ-gap-
MSR-DU(M1,M2) and 2-Interval-MWIS(Gδ(M1,M2)) have the same optimal
values: so S is indeed a 4-approximation of the optimal solution of δ-gap-MSR-
DU(M1,M2). We have proved Theorem 10. �	

Theorem 12. There exists an exact polynomial-time algorithm for 0-gap-MSR.
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Proof. We consider the case where M1 has no duplicates and the maximum gap
is 0 (we only consider strips instead of prestrips): this is the case for instances
of 0-gap-MSR.

We use the same reduction as for Theorem 10, with the difference that now,
G0(M1,M2) is in fact an interval graph. It can be seen by considering intervals

I ′σ = [min(idx(σ,M1)), max(idx(σ,M1))].

We no longer need to consider the interval coming from M2 for the following
reason. If two strips overlap in M2, since they have gap zero, they must have
a common marker m appearing in M2. But since m can appear only once in
M1, they also overlap in M1. Thus Iσ and Iτ intersect iff I ′σ and I ′τ intersect:
G0(M1,M2) can thus be seen as an interval graph. Hence, we can adapt the
previous algorithm to obtain an optimal solution, and complete the proof of
Theorem 12:

1. Compute the weighted interval graph Gδ(M1,M2).
2. Compute X , an optimal solution to Interval-MWIS(Gδ(M1,M2)).
3. Deduce a maximal feasible set of prestrips S = {σ : Iσ ∈ X}.

�	
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Abstract. We consider the directed Hausdorff distance between point
sets in the plane, where one or both point sets consist of imprecise points.
An imprecise point is modelled by a disc given by its centre and a radius.
The actual position of an imprecise point may be anywhere within its
disc. Due to the direction of the Hausdorff Distance and whether its tight
upper or lower bound is computed there are several cases to consider.
For every case we either show that the computation is NP-hard or we
present an algorithm with a polynomial running time. Further we give
several approximation algorithms for the hard cases and show that one of
them cannot be approximated better than with factor 3, unless P=NP.

1 Introduction

The analysis and comparison of geometric shapes are essential tasks in various
application areas within computer science, such as pattern recognition and com-
puter vision. Beyond these fields also other disciplines evaluate the shape of ob-
jects such as cartography, molecular biology, medicine, or biometric signal pro-
cessing. In many cases patterns and shapes are modeled as finite sets of points.

The Hausdorff distance is an important tool to measure the similarity between
two sets of points (or, more generally, any two subsets of a metric space). It is
defined as the largest distance from any point in one of the sets, to the closest
point in the other set (see Section 1.3 for a formal definition). This distance is
used extensively in pattern matching.

Data imprecision is a phenomenon that has existed as long as data is being
collected. In practice, data is often sensed from the real world, and as a result has
a certain error region. On the one hand, many application fields of computational
geometry use algorithms that take this into account. However, these algorithms
are mostly heuristics, and do not benefit from theoretical guarantees. On the
other hand, algorithms from computational geometry are provably correct and
efficient, often under the assumption that the input data is correct. If we want
these algorithms to be used in practice, they need to take imprecision into ac-
count in the analysis. Thus not surprisingly, data imprecision in computational
geometry is receiving more and more attention.
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In this paper, we study several variants of the important and elementary prob-
lem of computing the Hausdorff distance under the Euclidean metric between
imprecise point sets.

1.1 Related Work

The Hausdorff distance is one of the most studied similarity measures. For a
survey about similarity measures and shape matching refer to [2]. A straight-
forward, naive algorithm computes the Hausdorff distance between two point
sets A and B consisting of m and n points, respectively, in O(mn) time. Using
Voronoi diagrams and a more sophisticated approach the running time can be
reduced to O((m + n) log n), [1].

The study of imprecision within computational geometry started around
twenty years ago, when Guibas et al. [7] introduced epsilon geometry as a way
to handle computational imprecision. In this model, each point is assumed to be
at most ε away from its given location.

For a given measure on a set of imprecise points, one of the simplest questions
to ask in this model is what are the possible output values? Each input point
can be anywhere in a given region, and depending on where each point is, the
output will have a different value. This leads to the problem of placing the points
in their regions such that this value is minimised or maximised. One of the first
results of this kind is due to Goodrich and Snoeyink [6], who show how to place a
set of points on a set of vertical line segments such that the points are in convex
position and the area or perimeter of the convex hull is minimised in O(n2) time.
A similar problem is studied by Mukhopadhyay et al. [12], and their result was
later generalised to isothetic line segments [11].

Nagai and Tokura [13] thoroughly study the efficient computation of lower
and upper bounds for a variety of region shapes and measures; in particular
they study the diameter, the width, and the convex hull, and all their algorithms
run in O(n log n) time. However, not all of their bounds are tight. Van Kreveld
and Löffler [14] study the same problems and give algorithms to compute tight
bounds, though the running times of the algorithms can be much higher and
some variants are proven to be NP-hard.

Related work concerning the Hausdorff distance in an imprecise context in-
cludes [5] and [8].

1.2 Contribution

In this paper, we assume that an imprecise point is modelled by a disc with a
given centre and radius. In general, it is possible that the discs intersect. We
assume we have two sets of points, P and Q, and that at least one of them is
imprecise. We want to compute the directed Hausdorff distance from P to Q.
This includes both the tight lower and upper bound on the possible values, for
each combination. This leads to six different cases. Additionally, in some settings
the problems become easier if we restrict the model of imprecision to disjoint
discs or discs that all have the same radius; we state these results separately.
Our results are summarised in Table 1.
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Table 1. P and Q are point sets and P̃ and Q̃ are imprecise point sets. Results are
shown for the case when all sets have O(n) elements. ∗can be computed exactly in

O(n3) if the discs are disjoint and the answer is smaller than r(
√

5 − 2
√

3−1)/2 where
r is the radius of the smallest disc in Q̃.

setting tight lower bound tight upper bound

h(P̃ , Q) [general] O(n2) O(n log n)

h(P, Q̃) [general] NP-hard∗, 4-APX in O(n3 log2 n) O(n log n)
[disjoint unit discs] 3-APX-hard, 3-APX in O(n10 log n) O(n log n)

h(P̃ , Q̃) [general] NP-hard O(n2)

[const. depth in P̃ ] O(n log n)

In the next section, we review some definitions and structures that we use to
obtain our results. After that, we present our three main results. In Section 2,
we give a general algorithm for computing the upper bound, which works in
all settings in the table, though it can be simplified (conceptually) in some
settings. In Section 3, we prove hardness of computing the lower bound in most
settings. Finally, in Section 4, we give algorithmic results for computing the lower
bound, exactly in some cases and approximately in others. Due to severe space
constraints, we are not able to include most of the details of the algorithms. In
what follows, we describe the main ideas and structure of our results, but we
encourage the interested reader to consult the full version of this paper instead,
which can be found in [9].

1.3 Preliminaries

The directed Hausdorff distance h from a point set P = {p1, . . . , pm} to a point
set Q = {q1, . . . , qn} with an underlying Euclidean metric can be computed in
O ((n + m) log n) time, see [1], and is defined as (see Fig. 1 for an example):

P

Q

Q̃

P̃

Fig. 1. (a) h(P, Q) is defined by the pair of points
indicated by the arrow. (b) An example input of
imprecise points.

h(P, Q) = max
p∈P

min
q∈Q

‖p − q‖

Let P̃ and Q̃ denote two im-
precise point sets consisting
of m and n closed discs re-
spectively. We call a set P =
{p1, . . . , pm} a precise realisa-
tion of P̃ = {p̃1, . . . , p̃m} if
pi ∈ p̃i for all i. We also write
P � P̃ in this case.

We define the directed Hausdorff distance between a precise and an imprecise
or two imprecise point sets as the interval of all possible outcomes for that
distance.
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h(P, Q̃) = {h(P, Q) | Q � Q̃}, h(P̃ , Q) = {h(P, Q) | P � P̃}
h(P̃ , Q̃) = {h(P, Q) | P � P̃ , Q � Q̃}

Further, we denote the tight upper and lower bounds of this interval by hmax
and hmin respectively, for example

hmax(P, Q̃) = max h(P, Q̃) and hence h(P, Q̃) = [hmin(P, Q̃), hmax(P, Q̃)].

2 Algorithm for Computing the Tight Upper Bound

In this section, we consider the following problem. Given are two set of discs P̃
and Q̃. The radii may be all different; an example input is shown in Fig. 1(b).
We want to place point sets P � P̃ and Q � Q̃ such as to maximise the directed

(a)

Q̃

P̃

(b)

Q̃

P̃

Fig. 2. (a) The inverted additive Voronoi Dia-
gram (iaVD) of Q̃. The point set P placed lo-
cally optimal. (b) The points in Q are all placed
as far away from p̂ as possible.

Hausdorff distance h(P, Q). In
other words, we want to place the
points in P and Q such that one
point from P is as far as possi-
ble away from all points in Q. The
placements of the remaining points
of P do not matter. So, we need
to identify which point p̂ ∈ P will
play this important role. We need
to place p̂ such that after we placed
all points in Q as far away from p̂
as possible, this distance is max-
imised.

2.1 Basic Algorithm

We will first compute the inverted additive Voronoi Diagram (iaVD) of Q̃. This
is a subdivision of the plane into regions where each point x in the plane is
associated with the disc in Q̃ whose furthest point is closest to x. See Fig. 2(a)
for an example. This diagram can be computed in O(n log n) time [4], since it
corresponds to the additively weighted Voronoi Diagram (also known as Apol-
lonius diagram) of the centres of Q̃, where the weight of a point is minus the
radius of the corresponding disc.

Using the iaVD, we can place each point p ∈ p̃ ∈ P̃ at a locally optimal
position, as if it were p̂. We identify three possible placement types for p that
are locally optimal, as is illustrated in Fig. 2.

1. A vertex of the iaVD.
2. An intersection point between a Voronoi edge and a disc from P̃ .
3. A point on the boundary of p̃ that is furthest away from the iaVD site whose

cell contains the centre of p̃
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We can now iterate over all points in P and their locally optimal placements,
and determine p̂ by keeping track of the locally optimal placement p ∈ p̃ such
that the shortest distance between p and (the furthest point on) any disc in Q̃
is maximised. Once p̂ is known, we place all points in Q as far away from p̂ as
possible, and all points in P \{p̂} anywhere inside their discs. The result is shown
in Fig. 4(b). As it is possible that there are O(mn) locally optimal placements of
the second type (namely: an intersection between a disc boundary and a Voronoi
edge), we conclude with the following theorem.

Theorem 1. Given two sets P̃ and Q̃ of imprecise points of size m and n,
respectively, we can compute hmax(P̃ , Q̃) and precise realisations P � P̃ and
Q � Q̃ with h(P, Q) = hmax(P̃ , Q̃) in O(nm + n log n) time.

2.2 Faster Algorithms in Special Cases

In this section we show how the above result can be improved under certain
assumptions. To speed up the algorithm, we make some observations about the
nature of locally optimal placements.

Q̃
P̃

(a)
Q̃

P̃

(b)

Fig. 3. (a) There could be a
quadratic number of intersec-
tions between the edges of the
iaVD of Q̃ and the discs in P̃ .
(b) When the discs overlap, the
union of P̃ has fewer intersec-
tions with the iaVD.

Lemma 1. Let p̃ be a disc in P̃ , and let q̃1 and
q̃2 be two discs in Q̃, such that the part of the
bisector of q̃1 and q̃2 that is in the iaVD slices
through p̃ (that is, it is not connected to a vertex
of the iaVD inside p̃). Then the optimal place-
ment of p occurs on the same side of this bi-
sector where the centre of p̃ is, regardless of the
rest of the iaVD.

Proof. Some notation: let pc be the centre of
p̃, qc1 the centre of q̃1 and qc2 the centre of q̃2.
Now let f1 be the point on the boundary of p̃
that is furthest away from qc1 (this would be
the type 3 placement if q̃1 was the only player),
and similarly let f2 be the point furthest away
from qc2. Now, suppose w.l.o.g. that pc is on the
same side as qc1. Now, suppose that the optimal
placement p is on the other side, that is, on the
side of qc2. Then we observe that f2 must be on the side of qc1, because qc2, pc

and f2 lie on a line. This means that along the boundary of p̃, the intersection
points with the bisector have a better value than any other point on the side of
qc2, in particular, better than p, which is a contradiction. (Note that if there are
other cells of the iaVD involved, the value of p could only be lower). �	

This lemma basically says that if we want to place a certain point p locally
optimally, we can start looking by walking from the centre of p̃ and never have
to cross edges of the iaVD that slice through p̃, like illustrated in Fig. 3. This
makes us arrive at the following conclusion.
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Corollary 1. Let p̃ be a disc in P̃ , and suppose that the iaVD has t vertices
inside p̃. Then we can find the locally optimal placement for p in O(t) time.

This immediately implies that if the discs of P̃ do not overlap, we can simply
place all points p independently in linear time.

Now, assume that the discs of P̃ are disjoint, or that the intersection depth
is at most some constant c. Then, clearly, each vertex of the iaVD can appear
in at most c discs of P̃ . So, if each disc p̃i contains ti vertices of the iaVD, we
have

∑
i ti ≤ cn, and we can find all locally optimal placements in O(n) time.

Theorem 2. Given two sets P̃ and Q̃ of imprecise points of size m and n,
respectively, where the discs in P̃ have constant intersection depth, we can com-
pute hmax(P̃ , Q̃) and precise realisations P � P̃ and Q � Q̃ with h(P, Q) =
hmax(P̃ , Q̃) in O((m + n) log(m + n)) time.

(a)

Q̃

P̃

(b)

Q̃

P̃

Fig. 4. (a) An example input. (b) The optimal out-
put, shown as a set of circles covering Q.

The algorithm described in
this section works in the most
general setting. However, in
some more specific settings,
the algorithm can be simpli-
fied. For example, when the
discs of Q̃ are unit discs, the
iaVD is simply the normal
Voronoi diagram. When P is
not imprecise, there are of
course only m possible loca-
tions for p̂, and we do not
need to look for all three
placement types. This results in the running times as indicated in Table 1.

3 Hardness Results for Tight Lower Bounds

In this section, we consider a transformation from the known NP-complete prob-
lem planar 3-sat [10] to the problem of computing hmin(P, Q̃) for a set P of
points and a set Q̃ of discs with radius r. In the planar 3-sat problem, we are
given as input a 3-sat formula f with the additional property that the graph
G(f) is planar, where G(f) has a vertex for each variable and each clause in f ,
and there is an edge between a variable vertex and a clause vertex if the variable
occurs in the clause. Having the boolean formula f and a planar embedding of
G(f), the transformation is as follows (see Fig. 5(a,b) for a general overview):

For each variable vertex v in G(f), we construct a cycle C of alternating points
in P and discs in Q̃. The distance between consecutive points and discs is ε, such
that r = 2.5ε (see Fig. 5(c)). There may be bends up to a certain angle, and also
other geometric features necessary to connect cycles and chains. When looking
only at the points PC and discs Q̃C corresponding to a cycle C, we observe that
by the construction of C, there are two realisations QC

0 , QC
1 � Q̃C such that

h(PC , QC
0 ) = ε and h(PC , QC

1 ) = ε. These two realisations represent the two
possible boolean values the variable for that cycle can have.
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(a) (b) (e)(d)

ε
ε

εεεε

p

q̃′

q̃

(c)

2.5ε

Fig. 5. (a) Planar embedding of G(f), circles represent variables and rectangles rep-
resent clauses. (b) Rough overview of how G(f) is transformed into P and Q̃, some
details are misrepresented. the chain starts with p followed by q̃′, all other points and
discs belong to the cycle. (c,d) Two realisations (representing opposite boolean values)
with Hausdorff distance ε of chains, cycles and connections. (e) Connection of a chain
to a cycle.

For each edge {v, c} in G(f), we construct a chain of alternating points in
P and discs in Q̃ with distance ε (see Fig. 5(d)). The chain connects the cycle
corresponding to the variable v and the representation of a clause c. One end of
this chain is a disc that will be part of a representation of clause c (see Fig. 5(e)),
the other end is a point p that is placed near a disc q̃ ∈ Q̃ of a variable cycle
such that p has distance ε to either QC

0 ∩ q̃ or QC
1 ∩ q̃ (see Fig. 5(e)).

Each clause vertex in G(f) is represented by three discs and one additional
point p∗, such that the disc centres lie on the vertices of an equilateral triangle,
and the point has distance ε to each of the discs. The three discs are ends of
chains that connect to cycles that correspond to the three literals in the clause.

Theorem 3. Let P be a precise point set and Q̃ be an imprecise point set of
pairwise disjunct discs. It is NP-hard to compute a δ-approximation of the di-
rected Hausdorff distance hmin(P, Q̃) for 1 ≤ δ < 3.

4 Algorithms for Tight Lower Bounds

In this section we present algorithms for computing the minimum of h(P̃ , Q)
and h(P, Q̃). As we have seen in the previous section, the latter problem is NP-
hard and even hard to approximate in some settings. In the following we give
a 4-approximation for the general case, an optimal 3-approximation for disjoint
discs and an algorithm for the case which is not NP-hard when the Hausdorff
distance is small. Many results in this section rely on similar ideas. Therefore,
we will describe several (sub-) algorithms with different approximation factors
and running times depending on the value d of the optimal solution. Afterwards,
we discuss how to apply them to obtain the results claimed in Table 1.

4.1 Algorithm for Precise Q

In this section, we describe an algorithm for the case where we have an imprecise
point set P̃ and a precise point set Q. We place all points in P̃ as close to a point
in Q as possible. Fig. 6(a) shows an example. For each pair (p̃, q) with p̃ ∈ P and
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(a)

Q
P̃

(b)

Fig. 6. (a) Placing points in P . (b) Discs of
radius at most c can only intersect at most
two discs of Q̃.

q ∈ Q we could simply compute
the placement p ∈ p̃ minimizing the
Hausdorff distance and keep track of
the longest distance over all pairs.
This takes O(mn) time. However, in
practice it is probably better to com-
pute the Voronoi diagram of Q first,
and locate the discs of P̃ in it. In the
worst case, each disc could still inter-
sect linearly many Voronoi cells (al-
though the input needs to be contrived for this). Also, note that as soon as a disc
from P̃ is discovered to contain a point from Q, we can stop the computation
and just place the point there.

Theorem 4. Let P̃ denote an imprecise point set consisting of m discs and Q
denote a precise point set consisting of n points. The tight lower bound of h(P, Q̃)
can be computed in O(mn) time.

4.2 Algorithms for Imprecise Q̃

In the case where P is precise and Q̃ is imprecise, we have several simple and
more involved algorithms. The algorithms are described in detail in the full
version [9]; here we merely mention the resulting theorems.

First, we describe a simple subalgorithm Candidates to establish the
following lemma.

Lemma 2. Let P denote a precise point set consisting of m points and Q̃ denote
an imprecise point set consisting of n discs. It is possible to reduce the possible
values of hmin(P, Q̃) to O(m3 + m2n) many candidates in O(m3 + m2n) time.

Next, we describe an algorithm IndependentSets , which is summarised in the
following theorem.

Theorem 5. Let P denote a precise point set consisting of m points and Q̃
denote an imprecise point set consisting of n disjoint discs. Algorithm Inde-

pendentSets computes whether the tight lower bound for h(P, Q̃) is smaller
than r(

√
5 − 2

√
3 − 1)/2 where r is the radius of the smallest disc in Q̃. If

this is the case, the exact value of hmin(P, Q̃) is computed. The running time is
O(m3 + m2n + n log2 n).

Finally, we describe another algorithm GrownDiscs .

Theorem 6. Let P denote a precise point set consisting of m points and Q̃
denote an imprecise point set consisting of n discs. Given a c-approximation to
the geometric k-covering problem that runs in T (k, m) time, we can compute
a (c + 2)-approximation to the tight lower bound of h(P, Q̃) in O(m3 + m2n +
(n2T (k, m)+mn+m

√
m) log(m+n)) time, where k ≤ n is an internal parameter

of the optimal solution.
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We now proceed to describe how to use those results and combine the algo-
rithms to solve various variants of the problem we are interested in.

For the remainder of this section let rmin and rmax denote the radius of the
smallest and largest disc in Q̃. When P is precise and Q̃ is imprecise, we note that
by Theorem 6 Algorithm GrownDiscs immediately presents a 4-approximation
for the case when the discs may have different radii and overlap, which we obtain
by plugging in a 2-approximation algorithm for geometric k-covering that runs
in O(m log k) time [3]. The running time of the entire algorithm then becomes
O(m3 + m2n + mn2 log(m + n) log n) in the worst case.

We can improve this algorithm by first testing whether v < c · rmin using Al-
gorithm IndependentSets and Theorem 5, without increasing the asymptotic
running time. If it is, then we can actually compute the exact solution.

Furthermore, when the discs are disjoint and all have the same size, we can
improve this result to a 3-approximation by combining Algorithm GrownDiscs

and a trivial algorithm called CentrePoints which simply places every impre-
cise point at the centre of its disc. First we test whether v > r/2 = rmax/2, by
applying CentrePoints and checking whether the resulting Hausdorff distance
is larger than 3/2r. If it is, we are done. Otherwise, note that each cell of A is
a subset of the intersection of k ≤ 4 discs, because Q̃’s discs are disjoint and
v < r/2. Therefore, by Theorem 6 we can obtain a 3-approximation from Algo-
rithm GrownDiscs by plugging in an exact algorithm to solve the geometric
k-covering problem.

We can solve the geometric 4-covering problem exactly by computing the
arrangement circles around the points to be covered or radius d. The arrangement
has quadratic complexity. Then we need to find out whether there are three cells
that are together in all cells. There are O(m8) such combinations to test, and
by keeping track of which discs are already taken care of each can be tested in
constant time. So, using this algorithm, we have a 1 + 2 = 3-approximation to
the original problem for disjoint unit discs. The total running time now becomes
O(n2m8 log(m + n)).

Theorem 7. Let P denote a precise point set consisting of m points and Q̃
denote an imprecise point set consisting of n disjoint discs of the same radius.
The tight lower bound for h(P, Q̃) is 3-approximable in time O(m3 + m2n +
n log2 n).

5 Conclusions and Future Work

We studied computing tight lower and upper bounds on the directed Hausdorff
distance between two point set, when at least one of the sets has imprecision. We
gave efficient exact algorithms for computing the upper bound, prove that com-
puting the lower bound is NP-hard in most settings, and provide approximation
algorithms. Furthermore, we show that in one special case, our approximation
algorithm is optimal. In other settings, a gap in the factor between the hardness
result and approximation still remains. When both sets are imprecise, we don’t
have any constructive results for the lower bound.
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All our results hold for the directed Hausdorff distance. An obvious next step
would be to extend them to the undirected Hausdorff distance. We can immedi-
ately solve the upper bound problem in that case using our results, since it is just
the minimum of the two directed distances. However, computing lower bounds
seems to be more complicated, because there one needs to find a single placement
of both point sets that minimises the distance in both directions at the same time.

Other directions of future work include looking at other underlying metrics than
the Euclidean metric, other similarity measures than the Hausdorff distance, or,
as is common in shape matching, allowing some transformation of the point sets.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
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Fig. 1. A bifiltration. The complex with labeled vertices is at coordinate (3, 2).
Simplices are highlighted and named at the critical coordinates that they appear.

the barcode corresponds to the lifetime of a single topological attribute within
the filtration. Since features have long lives, while noise is short-lived, a quick
examination of the intervals gives a robust estimation of the topology. The ex-
istence of a complete compact invariant, as well as efficient algorithms and fast
implementations have led to successful application of persistence to a variety of
problems, such as shape description [5], denoising volumetric density data [6],
detecting holes in sensor networks [7], analyzing neural activity in the visual
cortex [8], and analyzing the structure of natural images [9], to name a few.

For multifiltrations of dimension higher than one, the situation is much more
complicated. The theory of multidimensional persistence shows that no complete
discrete invariant exists, where discrete means that the structure of the target for
the invariant does not depend on the structure of the underlying field [1]. Instead,
the authors propose an incomplete invariant, the rank invariant, which captures
important persistent information. Unfortunately, this invariant is not compact,
requiring large storage, so its direct computation using the one-dimensional al-
gorithm is not feasible. A variant of the problem of multidimensional persistence
has appeared in computer vision [10]. A partial solution, called vineyards, has
been offered [11]. A full solution, however, has not been attempted by any prior
work.

1.3 Contributions

In this paper, we provide a complete solution to the problem of computing
multidimensional persistence. We recast persistence as a problem within com-
putational algebraic geometry, allowing us to utilize powerful algorithms from
this area. We then exploit the structure provided by a multifiltration to greatly
simplify the algorithms. Finally, we show that the resulting algorithms are poly-
nomial time, unlike their original counterparts, which are Expspace-complete,
requiring exponential space and time. We begin with a brief review of necessary
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concepts in Section 2, and recast the problem into an algebraic geometric frame-
work. Section 3 contains the main contribution of this paper, where we use the
structure of multifiltrations to simplify the traditional algorithms.

2 Background and Approach

In this section, we review concepts from algebraic topology and computational
algebraic geometry. We then present our approach of computing multidimen-
sional persistence using algorithms from the latter area. Due to lack of space,
we omit significant portions of our work, referring the interested reader to our
manuscript for a complete description [12]. Our treatment of algebraic geometry
and its algorithms follow Chapter 5 of Cox, Little, and O’Shea [13].

Our goal is the computation of the persistent homology of a multifiltration. Let
N ⊆ Z be the set of non-negative integers. A topological space X is multifiltered
if we are given a family of subspaces {Xu}u, where u ∈ Nn and Xu ⊆ X such
that for u,w1, w2, v ∈ Nn, the diagrams

Xu Xw1

Xw2 Xv

��

��

��
��

(1)

commute whenever u ≤ w1, w2 ≤ v. We call the family of subspaces {Xu}u a
multifiltration, such as the example in Figure 1. In this paper, we assume our
input is a multifiltered simplicial complex that has the following property:

Definition 1 (one-critical). A multifiltered complex where each cell has a
unique minimal critical grade at which it enters the complex is one-critical.

The bifiltration in Figure 1 is one-critical, as are most multifiltrations that arise
in practice [12].

Given a simplicial complex K, we may define chain groups Ci as the free
Abelian groups on oriented i-simplices. The boundary operator ∂i : Ci → Ci−1
connects the chain groups into a chain complex C∗:

· · · → Ci+1
∂i+1−−−→ Ci

∂i−→ Ci−1 → · · · . (2)

Given any chain complex, the ith homology group is

Hi = ker ∂i/ im∂i+1. (3)

Given a multifiltration {Xu}u, for each pair u ≤ v ∈ Nn, Xu ⊆ Xv by definition,
so Xu ↪→ Xv, inducing a map ιi(u, v) at the homology level Hi(Xu) → Hi(Xv)
that maps a homology class in Xu to the one that contains it in Xv. The ith
persistent homology is the image of ιi for all pairs u ≤ v.

Our work rests on the theory of persistence [4,1]. The key insight is this:
Persistent homology of a multifiltration is standard homology of a single multi-
graded module that encodes the multifiltration using polynomial coefficients. Let



Computing Multidimensional Persistence 733

An = k[x1, . . . , xn] be the n-graded polynomial ring, graded by An
v = kxv, v ∈

Nn. We define an n-graded module over this ring as follows.

Definition 2 (chain module). Given a multifiltered simplicial complex {Ku}u,
the ith chain module is the n-graded module over the graded polynomial ring An

Ci =
⊕

u

Ci(Ku), (4)

where the k-module structure is the direct sum structure and xv−u : Ci(Ku) →
Ci(Kv) is the inclusion Ku ↪→ Kv.

These graded chain modules Ci are finitely generated, and for one-critical filtra-
tions, they are also free, so we may choose bases for them.

Definition 3 (standard basis). The standard basis for the ith chain module
Ci is the set of i-simplices in critical grades.

Given standard bases, we may write the boundary operator ∂i : Ci → Ci−1
explicitly as a matrix with polynomial entries. We now have a new n-graded
chain complex (2) that encodes the multifiltration. The homology of this chain
complex is the persistent homology of the multifiltration [1]. By definition (3),
we may compute homology in three steps:

1. Compute im ∂i+1: This is a submodule of the polynomial module, and its
computation is the submodule membership problem in computational al-
gebraic geometry. We may solve this problem by computing the reduced
Gröbner basis using the Buchberger and reduction algorithms, and then
dividing using the Divide algorithm.

2. Compute ker ∂i: The is the (first) syzygy module, which we may compute
using Schreyer’s algorithm.

3. Compute Hi: This task is simple, once the above two tasks are complete.
We need to test whether the generators of the syzygy submodule are in the
boundary submodule, a task which may be completed using the tools above.

While the above algorithms solve the membership problem, they have not been
used in practice due to their complexity. The submodule membership problem
is a generalization of the Polynomial Ideal Membership Problem (PIMP) which
is Expspace-complete, requiring exponential space and time [14,15]. Indeed,
the Buchberger algorithm, in its original form is doubly-exponential. Therefore,
while our reformulation of multidimensional persistence gives us algorithms, we
need to make them faster to make this approach feasible.

3 Multigraded Algorithms

In this section, we show that multifiltrations provide additional structure that
may be exploited to simplify the algorithms for our three tasks. These simplifi-
cations convert these intractable algorithms into polynomial time algorithms.
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3.1 Exploiting Homogeneity

The key property that we exploit for simplification is homogeneity.

Definition 4 (homogeneous). Let M be an m × n matrix with monomial
entries. The matrix M is homogeneous iff

1. every column f of M is associated with a coordinate in the multifiltration
(uf ) and thus a corresponding monomial xuf ,

2. every non-zero element Mjk may be expressed as the quotient of the mono-
mials associated with column k and row j, respectively.

Any vector f endowed with a coordinate uf that may be written as above is
homogeneous, e.g. the columns of M .

We will show that (1) all boundary matrices ∂i may be written as homogeneous
matrices initially, and (2) the algorithms for computing persistence only produce
homogeneous matrices and vectors. That is, we maintain homogeneity as an
invariant throughout the computation. We begin with our first task.

Lemma 1. For a one-critical multifiltration, the matrix of ∂i : Ci → Ci−1 writ-
ten in terms of the standard bases is homogeneous.

Proof. Recall that we may write the boundary operator ∂i : Ci → Ci−1 explicitly
as a mi−1×mi matrix M in terms of the standard bases for Ci and Ci−1, as shown
in matrix (Equation 5) for ∂1. From Definition 3, the standard basis for Ci is the
set of i-simplices in critical grades. In a one-critical multifiltration, each simplex
σ has a unique critical coordinate uσ (Definition (1)). In turn, we may represent
this coordinate by the monomial xuσ . For instance, simplex a in Figure 1 has
critical grade (1, 1) and monomial x(1,1) = x1x2. We order these monomials using
>lex and use this ordering to rewrite the matrix for ∂i. The matrix entry Mjk

relates σk, the kth basis element for Ci to σ̂j , the jth basis element for Ci−1. If
σ̂j is not a face of σk, then Mjk = 0. Otherwise, σ̂j is a face of σk. Since a face
must precede a co-face in a multifiltration, uσk

>lex uσ̂j =⇒ xuσk >lex xuσ̂j ,
and Mjk = xuσk /xuσ̂j = xuσk

−uσ̂j . That is, the matrix is homogeneous.

For example, σ̂1 = a is a face of σ1 = ab, so M11 = x1x
2
2/x1x2 = x2 in the

matrix for ∂1 for the bifiltration in Figure 1.

Corollary 1. For a one-critical multifiltration, the boundary matrix ∂i in terms
of the standard bases has monomial entries.

Proof. The result is immediate from the proof of the previous lemma. The matrix
entry is either 0, a monomial, or xu(σk)−u(σ̂j), a monomial.

Below, we show the homogeneous matrix for ∂1 for the bifiltration in Figure 1,
where we augment the matrix with the associated monomials. We assume we
are computing over Z2.
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⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

ab bc cd de ef af bf ce
x1x

2
2 x2

1x
2
2 x1 x1 x2

1 x1x
2
2 x2

2 x2

a x1x2 x2 0 0 0 0 x2 0 0
d x1 0 0 1 1 0 0 0 0
b 1 x1x

2
2 x2

1x
2
2 0 0 0 0 x2

2 0
c 1 0 x2

1x
2
2 x1 0 0 0 0 x2

e 1 0 0 0 x1 x2
1 0 0 x2

f 1 0 0 0 0 x2
1 x1x

2
2 x2

2 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(5)

We next focus on our second task, showing that given a homogeneous matrix as
input, the algorithms produce homogeneous vectors and matrices. Let F be an
m× n homogeneous matrix. Let {e1, . . . , em} and {ê1, . . . , ên} be the standard
bases for the graded polynomial rings Rm and Rn, respectively. A homogeneous
matrix associates a coordinate and monomial to the row and column basis ele-
ments. For example, since x1 is the monomial for row 2 of matrix (5), we have
ue2 = (1, 0) and xue2 = x1. Each column f in F is homogeneous and may be
written in terms of rows:

f =
m∑

i=1

ci
xuf

xuei
ei, (6)

where ci ∈ k and we allow ci = 0 when a row is not used. For example, column
g for edge ab in our bifiltration may be written as:

g = x2e1 + x2x
2
2e3 =

x2x
2
2

x1x2
e1 +

x2x
2
2

1
e3 =

xug

xue1
e1 +

xug

xue3
e3 =

∑

i∈{1,3}

xug

xuei
ei.

Consider the Buchberger algorithm [13]. The algorithm repeatedly computes
S-polynomials of homogeneous vectors.

Lemma 2. The S-polynomial S(f ,g) of homogeneous vectors f and g is homo-
geneous.

Proof. A zero S-polynomial is trivially homogeneous. A non-zero S-polynomial
S(f ,g) implies that h = lcm(lm(f), lm(g)) is non-zero. By the definition of
lcm, the leading monomials of f and g contain the same basis element ej. We
have, lm(f) = xuf

x
uej

ej, lm(g) = xug

x
uej

ej, and:

h = lcm(lm(f), lm(g)) = lcm

(
xuf

xuej
,
xug

xuej

)
ej =

lcm (xuf , xug)
xuej

ej.

Let x� = lcm(xuf , xug) = xlcm(uf ,ug), giving us h = x�

x
uej

ej. We now have

h
lt(f)

=
x�

x
uej

ej

cf
xuf

x
uej

ej
=

x�

cfxuf
,

where cf 
= 0 is the field constant in the leading term of f . Similarly, we get

h
lt(g)

=
x�

cgxug
, cg 
= 0.
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Putting it together, we have

S(f ,g) =
h

lt(f)
f − h

lt(g)
g

=

(
x�

cfxuf

m∑

i=1

ci
xuf

xuei
ei

)

−
(

x�

cgxug

m∑

i=1

c′i
xug

xuei
ei

)

=
m∑

i=1

di
x�

xuei
ei,

where di = ci/cf − c′i/cg. Comparing with Equation (6), we see that S(f ,g) is
homogeneous with uS(f ,g) = �.

Having computed the S-polynomial, Buchberger next divides it by the current
homogeneous basis G using a call to the Divide algorithm [13].

Lemma 3. Divide(f , (f1, . . . , ft)) returns a homogeneous remainder vector r
for homogeneous vectors f , fi ∈ Rm.

Proof. Initially, we set r and p to be 0 and f , respectively, so they are both
trivially homogeneous. Since both fi and p are homogeneous, we have fi =∑m

j=1 cij
x

ufi

x
uej

ej, p =
∑m

j=1 dj
xup

x
uej

ej. Since lt(fi) divides lt(p), the terms must

share basis element ek and we have lt(fi) = cik
x

ufi

xuek
ek, lt(p) = dk

xup

xuek
ek,

lt(p)/ lt(fi) = dk

cik
· xup

x
ufi

, where xup >lex xufi so that the division makes sense.
Then, p is assigned to

p − (lt(p)/ lt(fi))fi =
m∑

j=1

dj
xup

xuej
ej −

(
dk

cik
· xup

xufi

) m∑

j=1

cij
xufi

xuej
ej

=
m∑

j=1

(
dj −

dk · cij

cik

)
xup

xuej
ej =

m∑

j=1

d′j
xup

xuej
ej,

where d′j = dj − dk · cij/cik and d′k = 0, so the subtraction eliminates the kth
term. The final sum means that p is now a new homogeneous polynomial with
the same coordinate up as before. Similarly, lt(p) is added to r and subtracted
from p, and neither action changes the homogeneity of either vector. Both remain
homogeneous with coordinate up.

Theorem 1 (homogeneous Gröbner). The Buchberger algorithm com-
putes a homogeneous Gröbner basis for a homogeneous matrix.

Proof. Initially, the algorithm sets G to be the set of columns of the input ma-
trix F , so the vectors in G are homogeneous by Lemma 1. The algorithm then
computes the S-polynomial of homogeneous vectors f ,g ∈ G. By Lemma 2,
the S-polynomial is homogeneous. It then divides the S-polynomial by G. Since
the input is homogeneous, Divide produces a homogeneous remainder r by
Lemma 3. Since only homogeneous vectors are added to G, it remains homoge-
neous. We may extend this result easily to the reduced Gröbner basis.

Using similar arguments, we may show the following result.

Theorem 2 (homogenous syzygy). For a homogeneous matrix, all matrices
encountered in the computation of the syzygy module are homogeneous.
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3.2 Optimizations

We have shown that the structure inherent in a multifiltration allows us to
compute using homogeneous vectors and matrices whose entries are monomials
only. We next explore the consequences of this restriction on both the data
structures and complexity of the algorithms.

By Definition (4), an m× n homogeneous matrix naturally associates mono-
mials to the standard bases for Rm and Rn. Moreover, every non-zero entry
of the matrix is a quotient of these monomials as the matrix is homogeneous.
Therefore, we do not need to store the matrix entries, but simply the field el-
ements of the matrix along with the monomials for the bases. We may modify
two standard data structures to represent the matrix.

– linked list: Each column stores its monomial as well as a linked-list of its
non-zero entries in sorted order. The non-zero entries are represented by the
row index and the field element. The matrix is simply a list of these columns
in sorted order.

– matrix: Each column stores its monomial as well as the column of field
coefficients. If we are computing over a finite field, we may pack bits for
space efficiency.

The linked-list representation is appropriate for sparse matrices as it is space-
efficient at the price of linear access time. This is essentially the representation
used for computing in the one-dimensional setting [4]. In contrast, the matrix
representation is appropriate for dense matrices as it provides constant access
time at the cost of storing all zero entries. The multidimensional setting provides
us with denser matrices, as we shall see, so the matrix representation becomes
a viable structure.

In addition, the matrix representation is optimally suited to computing over
the field Z2, the field often commonly employed in topological data analysis.
The matrix entries each take one bit and the column entries may be packed
into machine words. Moreover, the only operation required by the algorithms
is symmetric difference which may be implemented as a binary XOR operation
provided by the chip. This approach gives us bit-level parallelism for free: On
a 64-bit machine, we perform symmetric difference 64 times faster than on the
list. The combination of these techniques allow the matrix structure to perform
better than the linked-list representation in practice.

We may also exploit homogeneity to speed up the computation of new vectors
and their insertion into the basis. We demonstrate this briefly using the Buch-

berger algorithm. We order the columns of input matrix G using the POT rule
for vectors [13]. Suppose we have f ,g ∈ G with f > g. If S(f ,g) 
= 0, lt(f) and
lt(g) contain the same basis, which the S-polynomial eliminates. So, we have
S(f ,g) < g < f . This implies that when dividing S(f ,g) by the vectors in G,
we need only consider vectors that are smaller than g. Since the vectors are in
sorted order, we consider each in turn until we can no longer divide. By the POT
rule, we may now insert the new remainder column here into the basis G. This
gives us a constant time insertion operation for maintaining the ordering, as well
as faster computation of the Gröbner basis.
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3.3 Complexity

Our optimizations from the last section allow us to give simple polynomial
bounds on our multigraded algorithms. These bounds, in turn, imply that we
may compute multidimensional persistence in polynomial time.

Lemma 4. Let F be an m×n homogeneous matrix of monomials. The Gröbner
basis G contains O(n2m) vectors in the worst case. We may compute G using
Buchberger in O(n4m3) worst-case time.

Proof. In the worst case, F contains nm unique monomials. Each column f ∈
F may have any of the nm monomials as its monomial when included in the
Gröbner basis G Therefore, the total number of columns in the G is O(n2m).
In computing the Gröbner Basis, we compare all columns pairwise, so the total
number of comparisons is O(n4m2). Dividing the S-polynomial takes O(m) time.
Therefore, the worst-case running time is O(n4m3).

We omit the proof of the following due to lack of space and refer the reader to
the full manuscript [12].

Lemma 5. Let F be an m × n homogeneous matrix of monomials and G be
the Gröbner Basis of F . The Syzygy module S for G may be computed using
Schreyer’s algorithm in O(n4m2) worst-case time.

Theorem 3. Multidimensional persistence may be computed in polynomial time.

4 Conclusion

In this paper, we develop polynomial time algorithms for multidimensional
persistence by recasting the problem into computational algebraic geometry.
Although the recast problem is Expspace-complete, we exploit the multigraded
setting to develop practical algorithms. We have implemented all our algorithms
and provide statistical experiments to demonstrate their feasibility in the full
manuscript [12]. For additional speedup, we plan to parallelize the computa-
tion by batching and threading the XOR operations. We also plan to apply our
algorithms toward studying scientific data. For instance, for zero-dimensional
homology, multidimensional persistence corresponds to clustering multiparam-
eterized data, This gives us a fresh perspective, as well as a new arsenal of
computational tools, to attack an old and significant problem in data analysis.
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Abstract. Given a set P of n points in the plane such that each point
has a positive weight, we study the problem of finding an obnoxious
line that intersects the convex hull of P and maximizes the minimum
weighted Euclidean distance to all points of P . We also consider a variant
of this problem whose input is a set of m polygons with totally n vertices
in the plane such that each polygon has a positive weight and whose goal
is to locate an obnoxious line with respect to the weighted polygons. We
improve the previous results for both problems. Our algorithms are based
on new geometric observations and interesting algorithmic techniques.

1 Introduction

Determining the locations of undesirable or obnoxious facilities among a set of
geometric objects has been an important research topic. In this paper, the target
obnoxious facility is a line in the plane. Formally, given a set of n points in the
plane, P = {p1, p2, . . . , pn}, where each point pi has a weight wi > 0, a line l is
said to be obnoxious if there is at least one point of P lying on each side of l (i.e.,
l intersects the convex hull of P ) and the value of min{wi · d(l, pi) | pi ∈ P} is
maximized, where d(l, pi) denotes the Euclidean distance between the line l and
the point pi. The obnoxious line location (OLL) problem seeks an obnoxious line
with respect to the weighted points of P . When all the point weights are equal,
we call it the unweighted OLL problem.

In a variant, a set of m (possibly intersecting) polygons, P = {P1, P2, . . . , Pm},
with a total of n vertices in the plane is given, where each polygon Pi has a weight
wi > 0, and the goal is to compute an obnoxious line l with respect to P such
that there is at least one polygon of P lying on each side of l and the value of
min{wi · d(Pi, l) | Pi ∈ P} is maximized, where d(Pi, l) is the minimum distance
of any point in Pi to l. We call this variant the OLL problem among weighted
polygons, denoted by OLLP. When all the polygon weights are equal, we call it
the unweighted OLLP problem.
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These problems are motivated by applications of locating a linear route
through existing facilities such that the route is noxious or hazardous to its
surroundings or of obtaining the maximum clearance of a route with respect
to the existing facilities. The weights may represent various importance of the
facilities. For examples, one may need to build or find pipelines, roads, railway
lines, or sailing routes to transport noxious materials.

A key ingredient to our solution for OLL is the following problem, called disks
separability, which may be of interest in its own right: Given n disks in the plane,
either find a line l in the plane such that l does not intersect the interior of any
disk and there is at least one disk on each side of l, or report that there exists
no such line. We have not found any previous work on this problem.

The OLL problem was first studied in [8], with an O(n3) time algorithm. The
previously best-known algorithm for the OLLP problem, of O(mn + n log2 n log
m+m2 logn log2 m) time, was given in [7] based on parametric search. By treat-
ing each input point as a degenerate polygon and using the method in [7] (with
m = n), OLL is solved in O(n2 log3 n) time. The previously best solution for the
unweighted OLLP takes O((m2 + n logm) log n) time [7].

The unweighted OLL problem is equivalent to the widest empty corridor prob-
lem [9]. By using topological sweeping and duality, the problem was solved in
O(n2) time and O(n) space [9]. The dynamic version of the widest empty cor-
ridor problem was also studied [11]. Other problem variants include k-dense
corridors [2,11,15], L-shaped corridors [4], and curved corridors [1]. The “dual”
problem of OLL, which seeks a line minimizing the maximum weighted distance
between the line and a given set of points in the plane, has been studied as well.
The unweighted version is equivalent to the set width problem which is solvable
in O(n logn) time [10,12]. The weighted version was solved in O(n2 log n) time
[12]. It turns out that solving the OLL problem resorts to considerably different
algorithmic techniques than its “dual” problem.

In this paper, we present an O(n2 log n) time algorithm for solving the OLL
problem, improving the O(n2 log3 n) time solution in [7]. Our algorithm is based
on parametric search where our O(n2) solution for the disks separability prob-
lem works as a decision procedure. For the OLLP problem, we give an O(mn +
n log2 n + m2 logn) time algorithm, improving the O(mn + n log2 n logm +
m2 logn log2 m) time result in [7]. For the unweighted OLLP problem, by a slight
modification of the O((m2 + n logm) logn) time algorithm in [7], we reduce its
running time to O(m2 + n logm).

2 The Disks Separability Problem

Given a set of disks in the plane, D = {Di | 1 ≤ i ≤ n}, where each disk Di is
centered at the point (xi, yi) with radius ri, the disks separability problem seeks
to either find a line l in the plane such that l does not intersect the interior of any
disk in D and there is at least one disk of D on each side of l, or report that there
exists no such line. We call a line that satisfies these requirements a separation
line of D. We say that D is separable if there exists a separation line. In this
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paper, when we say a line intersects a disk, we mean that the line intersects the
interior of the disk (and thus the line is not tangent to the disk); similarly, when
we say two disks intersect each other, we mean that the intersection in their
interior is not empty. The main result of this section is as follows.

Theorem 1. Given a set D of n disks in the plane, in O(n2) time, we can either
find a separation line for D or report that no separation line exists.

To prove the theorem, we begin with an obvious but critical observation.

Observation 1. Given D, a separation line exists if and only if there is a sep-
aration line that is a common tangent of two different disks in D.

Based on Observation 1, to solve the disks separability problem, it suffices to
compute the common tangents of all pairs of different disks in D, and for each
tangent line, check whether it is a separation line. Our algorithm follows this
idea. Since there are totally O(n2) common tangents, a straightforward solution
takes O(n3) time. An more efficient algorithm is given below.

First, we remove those disks each of which is completely contained in another
disk in O(n log n) time by a sweeping algorithm. Clearly, the removal of such
disks does not affect the solution of the problem. Thus, we assume that in D,
no disk contains any other disk. Hence, depending on their positions and radii,
every pair of disks in D has at least two and at most four common tangents. For
each disk Di, denote by Li the set of common tangents between Di and all other
disks in D. Thus, |Li| = O(n). Each tangent in Li determines a tangent point on
Di. Denote by Ti the set of tangent points on Di determined by the tangents in
Li. If all points of Ti are arranged in a counterclockwise order around Di, then
we say that they are sorted or in a sorted order. We have the following lemma.

Lemma 1. Suppose the tangent point set Ti is sorted for each i = 1, 2, . . . , n.
Then in O(n2) time, we can either find a separation line for D or report that no
separation line exists.

Proof. We show that in O(n2) time, the following algorithm can check every
tangent line in ∪n

i=1Li to determine whether it is a separation line.
Consider an arbitrary Li. For any Dj with i 
= j, if Di intersects Dj , then

there are two common tangents between Di and Dj in Li. Let p1 and p2 be the
two tangent points on Di determined by these two tangents. The two points p1
and p2 cut the bounding circle of Di into two open arcs (p1 and p2 do not belong
to these two arcs). One of the two open arcs must have the following property: A
tangent line of Di intersects the disk Dj if and only if the corresponding tangent
point is on that arc of Di. We call this open arc the engaging arc of Di with
Dj . Further, we call p1 the entering point and p2 the exiting point if we pass the
engaging arc by moving from p1 counterclockwise to p2 along the boundary of
Di; otherwise, p1 is the exiting point and p2 is the entering point (see Fig. 1(a)).
If Di does not intersect Dj and Di is not tangent to Dj , then they have four
common tangents in Li. Similarly, the corresponding four tangent points on Di

cut the circle of Di into four open arcs, two of them are engaging arcs, and two of
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the tangent points are entering points and the other two are exiting points (see
Fig. 1(b)). If Di is tangent to Dj, although they have three common tangents,
we still view them as four tangents (two of them coincide) and we handle this
case in the same way as for the case with four different common tangents.

Hence, there are O(n) engaging arcs on the circle of Di determined by the
tangent points in Ti. Half of the points in Ti are entering points and the other
half are exiting points. Denote by Ai the set of all engaging arcs on Di. Note
that all engaging arcs of Ai, including their entering points and exiting points,
can be determined when computing the set Li. In other words, in O(n) time, we
can compute the sets Li, Ti, and Ai, and also determine which points in Ti are
entering points or exiting points.

For each tangent line l of Di, observe that l does not intersect any disk if and
only if its corresponding tangent point on Di does not belong to any engaging
arc in Ai. Further, to determine whether l is a separation line, we also need to
check whether there is at least one disk of D on each side of l (i.e., whether l
intersects the interior of the convex hull of all disks in D). To rule out all tangent
lines to the convex hull of D, we use a preprocessing procedure, as follows. We
first compute the convex hull of D, in O(n logn) time by the algorithm in [13,14].
For each disk Di, if there is one (closed) arc of Di that is part of the convex hull,
we call it the forbidden arc of Di. It is shown in [14] that the number of arcs
and line segments in the convex hull of D is at most 2n−1. Thus, the number of
forbidden arcs on all disks is at most 2n− 1. To decide whether any tangent of
Di is a separation line, we only need to determine whether there is a point in Ti

(already given in sorted order) that does not belong to any of the forbidden arcs
of Di (if any) or the engaging arcs in Ai. We remove the points on all Ti’s that
belong to any of the forbidden arcs, which takes O(n2) time since the number of
forbidden arcs on all disks is at most 2n− 1. Then, for each Ti, we use a simple
tangent sweeping algorithm to solve the problem in O(n) time, as follows.

Since the points in Ti are sorted, starting from the first point of Ti and fol-
lowing the sorted order, our algorithm sweeps the circle of Di by a sweeping
point. Initially, we use O(n) time to compute the number of arcs in Ai that
cover the starting point. Denote this number by m. In the sweeping, whenever
we encounter an entering point, we increase m by 1, meaning that one more en-
gaging arc covers the sweeping point now; when we encounter an exiting point,
we decrease m by 1. During the sweeping, if the value of m ever becomes 0, then
the algorithm stops and reports that the tangent line of Di passing through
the current tangent point is a separation line. Otherwise, the algorithm stops at
the last point of Ti and reports that no tangent to Di is a separation line. The
correctness of the algorithm is obvious and its running time is O(n).

Since we have at most n Ti’s, in O(n2) time, we either find a separation line
or report that no separation line exists. The lemma thus follows.

With the above lemma, to prove Theorem 1, it remains to sort all Ti’s in O(n2)
time. This is done in the lemma below with its proof in [3].

Lemma 2. In O(n2) time, we can obtain all sorted sets Ti’s, for i = 1, 2, . . . , n.
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Fig. 1. (a) The case of Di intersecting Dj : The engaging arc of Di with Dj is the lower
open arc on Di between points p1 and p2; p1 is its entering point and p2 is its exiting
point. (b) The non-intersection case: There are two engaging arcs on Di; p1 and p3 are
two entering points and p2 and p4 are two exiting points. (c) The line l∗ is the inner
common tangent of Di and Dj (resp., Di and Dk); the tangent point of Di on l∗ is
between those of Dj and Dk on l∗. (d) Illustrating the two inner common tangents.

3 Obnoxious Line Location among Weighted Points

In this section, based on geometric observations (some are from [7,8]), we apply
parametric search to solve the OLL problem, which uses the disks separability
algorithm as a decision making procedure. Below is the result of this section.

Theorem 2. Given a set of n weighted points in the plane, an obnoxious line
can be determined in O(n2 logn) time.

Given a point set P = {p1, p2, . . . , pn}, where each pi has a weight wi > 0, for
any ε > 0 and each 1 ≤ i ≤ n, define Di(ε) to be a disk centered at pi with radius
ε

wi
. Let D(ε) be the disk set {Di(ε) | 1 ≤ i ≤ n}. Suppose l∗ is an obnoxious line

for P and ε∗ is the corresponding error, i.e., ε∗ = min{wi · d(l∗, pi) | pi ∈ P}.
For any ε > 0, note that if D(ε) is separable, then ε ≤ ε∗ must hold; otherwise,
ε∗ < ε. Based on the results in [8], an obnoxious line l∗ has the following (almost
self-evident) properties. We say that two disks are outer tangent to each other if
they are mutually tangent and no disk is contained by the other.

Observation 2. One of two cases must hold for l∗: (1) There exist two disks in
D(ε∗) outer tangent to each other and l∗ passes through their tangent point (l∗

is perpendicular to the line connecting the two disk centers); (2) there exist three
disks Di, Dj, and Dk in D(ε∗) such that l∗ is both the inner common tangent of
Di and Dj and the inner common tangent of Di and Dk, and the tangent point
of Di on l∗ is between the tangent points of Dj and Dk on l∗ (see Fig. 1(c)).

Let εij be the error such that Di(εij) and Dj(εij) are outer tangent to each other,
which corresponds to case (1) in Observation 2. Denote by E1 the set of all such
O(n2) possible εij ’s. Similarly, a corresponding error in case (2) of Observation
2 is determined by three disks, and we denote by E2 the set of all these errors.
Thus, we have |E1| = O(n2) and |E2| = O(n3). By Observation 2, ε∗ must be in
E1 ∪ E2. By using our disks separability algorithm and the selection algorithm
[6], a straightforward approach can find ε∗ and l∗ in O(n3) time. A more efficient
algorithm based on parametric search is given below.
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3.1 The Parametric Search

We follow the same high-level framework of the parametric search in [7], but
handle a lot of details differently and more efficiently.

We first compute the two elements ε1 < ε2 in E1, where ε1 is the largest error
such that D(ε1) is separable and ε2 is the smallest error such that D(ε2) is not
separable. Both ε1 and ε2 can be computed in O(n2 logn) time by utilizing the
disks separability algorithm. Note that it must be ε1 ≤ ε∗ < ε2. Thus, if ε1 < ε∗,
then ε∗ is attained in a situation corresponding to case (2) of Observation 2.
Furthermore, since the interval (ε1, ε2) contains no value in E1, for any ε′, ε′′ ∈
(ε1, ε2) and any i 
= j, Di(ε′) ∩Dj(ε′) = ∅ if and only if Di(ε′′) ∩Dj(ε′′) = ∅; in
other words, Di(ε′) and Dj(ε′) have inner common tangents if and only if Di(ε′′)
and Dj(ε′′) have inner common tangents. In the following discussion, ε is always
restricted to be inside the interval (ε1, ε2).

For any two disks Di(ε) and Dj(ε) that have inner common tangents, denote
by lij (resp., rij) the inner common tangent that rotates clockwise (resp., coun-
terclockwise) when we increase the value of ε. Denote by αij(ε) (resp., βij(ε))
the angle defined by lij (resp., rij) and the x-axis (see Fig. 1(d)). To adapt to
the forthcoming parametric search, we restrict all the angles αij(ε) and βij(ε) in
the interval [0, π). In [7], it was claimed (without a formal proof) that αij(ε) is
decreasing and βij(ε) is increasing when ε is increased. However, at least in our
problem setting, this is not always the case. Precisely, initially, αij(ε) is decreas-
ing, but after αij(ε) = 0 (if ever), αij(ε) starts to decrease from π. Thus, the
curve defined by αij(ε) consists of at most two disjoint continuous decreasing
pieces. Fig. 2(a) shows two curves defined by two different α functions. By a
slight abuse of notation, we also use αij(ε) to denote the curve defined by αij(ε)
with ε ∈ (ε1, ε2). For each continuous piece of the curve αij(ε), define the curve
piece span as the difference of the largest value of αij(ε) and the smallest value
of αij(ε) in that curve piece. We then have the next lemma.

Lemma 3. For any curve αij(ε), if it has one piece, then its piece span is less
than π/2; if it has two pieces, then the sum of its two piece spans is less than
π/2. Further, there exist no two ε′ and ε′′ in (ε1, ε2) such that ε′ 
= ε′′ and
αij(ε′) = αij(ε′′).

Proof. When ε = 0, each of the two disks Di(ε) and Dj(ε) degenerates into a
point that is the center of the disk. Denote by l1 the line containing the two
centers, and by α1 the angle defined by l1 and the x-axis. Let εij be the er-
ror such that Di(εij) and Dj(εij) are outer tangent to each other and neither
of them is contained by the other. Let p′ be the tangent point of Di(εij) and
Dj(εij). Denote by l2 the line passing through p′ and perpendicular to l1, and
by α2 the angle defined by l2 and the x-axis. Refer to Fig. 2(b) for an example.
Note that when we increase ε from 0 to εij , lij will rotate from l1 to l2. Thus, lij
rotates exactly π/2 if we increase ε from 0 to εij . By the definitions of ε1 and ε2,
we have 0 ≤ ε1 and ε2 ≤ εij . Hence lij rotates less than π/2 when ε ∈ (ε1, ε2).
Note that the amount of angle rotated by lij is exactly the piece span if the
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Fig. 2. (a) Illustrating two α curves, one solid (black) and one dotted (red). Each curve
has two pieces. The two curves can intersect each other at most once. (b) Illustrating
two outer tangent disks and the corresponding l1, l2, α1, and α2. (c) Illustrating the
Minkowski sum (the solid curve) of a polygon (the dashed one) and a disk centered
at the origin. (d) Illustrating two convex hulls whose boundaries ∂i and ∂j intersect
transversally four times. The solid segments are the boundary of their union, i.e., ∂;
p1 and p2 are on ∂ \ ∂j and p3 and p4 are on ∂ \ ∂i.

curve αij(ε) has one piece or the sum of the two piece spans if the curve has two
pieces. The first part of the observation thus follows. The second part is quite
straightforward and we omit it due to the space limit.

The curve βij(ε) has similar properties as in Lemma 3.
Note that if all O(n2) inner common tangent angles αij and βij between the

Di(ε)’s are sorted at ε = ε∗ (ε∗ is not yet known), then we have αij(ε∗) = βik(ε∗)
if three disks Di, Dj , and Dk determine l∗ as shown in case (2) of Observation 2
(e.g., see Fig. 1(c)). Thus, l∗ can be found if we sort all αij(ε∗)’s and βij(ε∗)’s.
Although we do not know the value of ε∗, the sorting can still be done by
parametric search, in which the disks separability algorithm is utilized to make
decision for each comparison. Further, although each α curve or β curve may
not be strictly increasing or decreasing, we can still make our parametric search
work by using the special properties in Lemma 3, as explained below.

To compare any two different α angles αij(ε∗) and αtk(ε∗), we claim that the
two curves αij(ε) and αtk(ε) have at most one intersection if they do not overlap
(Lemma 4 in [7] shows a similar result). Intuitively, one curve is decreasing
“faster” than the other, and thus, although each of them may have two pieces,
they still have at most one intersection (see Fig. 2(a)). We omit the formal proof
here. If the two curves overlap (this can be determined in constant time), then we
have αij(ε∗) = αtk(ε∗); otherwise, we need to compute the value ε′ (if any) such
that αij(ε′) = αtk(ε′). Although both αij(ε) and αtk(ε) may have two pieces, we
can still compute their intersection in constant time. After obtaining ε′, we can
follow the standard parametric search technique to determine the comparison
result of αij(ε∗) and αtk(ε∗) and possibly shrink the interval (ε1, ε2), which uses
the disks separability algorithm. The comparison of any two different β angles
βij(ε∗) and βtk(ε∗) can be performed similarly. To compare any two values αij(ε∗)
and βtk(ε∗), by Lemma 3 and similar observations for the β curves, we can show
that the two curves αij(ε) and βtk(ε) have at most one intersection. We omit the
proof here. Similarly, their intersection can be computed in constant time. By the
standard parametric search technique, we can determine the comparison result
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of αij(ε∗) and βtk(ε∗) and possibly shrink the interval (ε1, ε2). In summary, we
can sort all O(n2) angles αij(ε∗) and βij(ε∗) by the standard parametric search
for sorting, in which each comparison takes O(n2) time. By Cole’s parametric
search [5], we obtain l∗ and ε∗ in O(n2 logn) time. Theorem 2 thus follows.

4 Obnoxious Line Location among Weighted Polygons

In this section, we present an improved algorithm for the OLLP problem. It
should be noted that by slight modifications on our OLL algorithm, OLLP is
solvable in O(n2 logn) time. We also give an improved algorithm for the un-
weighted version. Our results in this section are summarized below.

Theorem 3. The OLLP problem is solvable in O(mn+n log2 n+m2 logn) time;
its unweighted version is solvable in O(m2 + n logm) time.

We first present an algorithm for the decision version of OLLP which works as
a crucial subroutine in the algorithm for OLLP. Our improved algorithm for the
unweighted OLLP problem is discussed in [3] due to the space limit.

4.1 The Decision Version of OLLP

Let P = {P1, P2, . . . , Pm} be a set of m polygons with a total of n vertices in the
plane such that each polygon Pi has a weight wi > 0. Without loss of generality,
we assume that all polygons in P are convex since a closest point of a polygon
Pi to a line not intersecting Pi is always at a vertex of the convex hull of Pi.
(If any Pi is not convex, then we simply replace it by its convex hull; this takes
O(n) time for the set P .)

For any value ε > 0, let P̂i(ε) be the region that is the Minkowski sum of Pi and
the disk centered at the origin with radius ε

wi
, for each 1 ≤ i ≤ m (see Fig. 2(c)).

Clearly, P̂i(ε) is convex. Note that the boundary of P̂i(ε) consists of line segments
and arcs, and each arc corresponds to a vertex of Pi. Let P̂(ε) = {P̂i(ε) | 1 ≤ i ≤
m}. We call a line l a separation line for P̂(ε) if l does not intersect the interior
of any region in P̂(ε) and there is at least one region of P̂(ε) on each side of
l. If there exists a separation line for P̂(ε), then we say that P̂(ε) is separable.
Suppose l∗ is an obnoxious line for P and ε∗ is the corresponding error. Given
ε > 0, if P̂(ε) is separable, then it must be ε ≤ ε∗; otherwise, ε∗ < ε.

The decision version of OLLP is equivalent to the following problem: Given
ε > 0, determine whether P̂(ε) is separable, and if yes, find a separation line.
The algorithm in [7] solves this problem in O((m2 +n logm) logn) time. We give
the following improved result.

Theorem 4. The decision version of OLLP is solvable in O(n log n+m2) time.

Our algorithm can be viewed as an extension to the disks separability algorithm,
with an additional preprocessing procedure. We first give in Lemma 4 an algo-
rithm under the assumption that every two different regions in P̂(ε) have at
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most four common tangents, and then show that we can preprocess P̂(ε) so that
this assumption holds while the solution for the original problem is not affected.
The algorithm for the following lemma makes use of the techniques of duality,
curve arrangement construction and a similar procedure to the tangent sweeping
algorithm. Due to the space limit, we leave the details in the full paper [3].

Lemma 4. If any two different regions in P̂(ε) have at most four common tan-
gents, then in O(n log n+m2) time, we can either find a separation line for P̂(ε)
or report that no separation line exists.

To satisfy the conditions of Lemma 4, we perform preprocessing on P̂(ε), which
uses a simple sweeping algorithm to find all connected components of P̂(ε) and
then for each connected component, computes its convex hull. It should be noted
that in this setting, two regions in P̂(ε) are considered to be connected if and
only if they intersect in their interior. Since all regions in P̂(ε) are convex, this
preprocessing can be done in O(n log n) time by using the algorithm in [13].
Clearly, the number of connected components in P̂(ε) is no more than m. Let
P̂ ′ be the set of convex hulls thus resulted, with |P̂ ′| ≤ m. The next lemma
establishes the fact that P̂ ′ can be used as the input to the algorithm in Lemma
4 to solve our original problem, which yields the result of Theorem 4.

Lemma 5. A line is a separation line for P̂(ε) if and only if it is a separation
line for P̂ ′, and any two different convex hulls in P̂ ′ have at most four common
tangents.

Proof. First of all, note that a separation line for P̂ ′ must also be a separation
line for P̂(ε). On the other hand, suppose l is a separation line for P̂(ε). Denote
by P̂(1)(ε) the set of regions in P̂(ε) on one side of l and by P̂(2)(ε) the set of
regions in P̂(ε) on the other side. Since P̂(1)(ε) and P̂(2)(ε) are separated by l,
any connected component of P̂(ε) cannot contain both a region in P̂(1)(ε) and a
region in P̂(2)(ε). Let P̂ ′(1) (resp., P̂ ′(2)) be the set of convex hulls of the connected

components of the regions in P̂(1)(ε) (resp., P̂(2)(ε)). Since l does not intersect
the interior of any region in P̂(1)(ε) (resp., P̂(2)(ε)), l cannot intersect the interior
of any convex hull in P̂ ′(1) (resp., P̂ ′(2)). Thus, l is also a separation line for P̂ ′.

Obviously, two different convex hulls in P̂ ′ have at most four common tangents
if one of the following cases holds: (1) They do not intersect in their interior; (2)
one convex hull contains the other. The only remaining case to consider is that
the two convex hulls intersect in their interior and neither of them contains the
other. Let P̂ ′i and P̂ ′j be any two such convex hulls in P̂ ′. Denote by ∂i and ∂j

their boundaries, respectively. We claim that ∂i and ∂j can intersect each other
transversally at most twice. (An intersection of two curves is transversal if the
two curves cross each other at the intersection point.) Let ∂ be the boundary of
the union of P̂ ′i and P̂ ′j (see Fig. 2(d)). Thus, ∂ consists of parts of ∂i and parts of
∂j . Suppose ∂i and ∂j intersect each other transversally more than twice. Then
there must exist two distinct vertices p1 and p2 of ∂i lying on ∂ \ ∂j and two
distinct vertices p3 and p4 of ∂j lying on ∂ \ ∂i, such that their cyclical order
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around ∂ is p1, p3, p2, and p4 (see Fig. 2(d)). But this implies the two connected
components of P̂(ε) corresponding to P̂ ′i and P̂ ′j intersect in their interior, a
contradiction. Since ∂i and ∂j can intersect each other transversally at most
twice, P̂ ′i and P̂ ′j have at most two common tangents. The lemma thus follows.

4.2 Solving OLLP (the Optimization Version)

We follow the high-level algorithmic framework in [7], but use our improved
OLLP decision algorithm to make decisions. Further, we show that our para-
metric search strategy for OLL in Section 3 can be somehow applied. Due to the
space limit, all the details are given in the full paper [3].
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Abstract. We consider the following question, motivated by the enumeration
of fullerenes. A fullerene patch is a 2-connected plane graph G in which inner
faces have length 5 or 6, non-boundary vertices have degree 3, and boundary
vertices have degree 2 or 3. The degree sequence along the boundary is called
the boundary code of G. We show that the question whether a given sequence S
is a boundary code of some fullerene patch can be answered in polynomial time
when such patches have at most five 5-faces. We conjecture that our algorithm
gives the correct answer for any number of 5-faces, and sketch how to extend the
algorithm to the problem of counting the number of different patches with a given
boundary code.

1 Introduction

In this paper we consider a graph theoretical problem that is motivated by the genera-
tion and enumeration of fullerenes, a problem to which a lot of work has been devoted
in mathematical chemistry. A fullerene is a molecule consisting only of carbon atoms,
which are arranged in a spherical structure, such that every carbon atom is bound to
three other carbon atoms in hexagon and pentagon patterns. Since their discovery in
1985, these structures have created an entire new research branch in chemistry, but
they have also inspired a lot of research in other fields such as graph theory and algo-
rithm engineering. In this paper we analyze a fascinating question from this area for the
first time from a computational complexity viewpoint, and present a strongly improved
algorithm. We use basic graph theoretic terminology as in defined [9]. For detailed def-
initions see also Section 2.

In graph theoretical terms, fullerenes can be modelled by 3-regular plane graphs with
only 5-faces and 6-faces (fullerene graphs). In the study of how fullerenes are generated
and can be enumerated, the following concept is essential [10,6,5]: a fullerene patch can
be obtained from a fullerene graph by taking a cycle in the plane graph and removing
every vertex and edge outside of the cycle. This motivates the following definition: a
fullerene patch (or simply patch) is a 2-connected plane graph in which every inner
face has length 5 or 6, every non-boundary vertex has degree 3, and boundary vertices
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have degree 2 or 3. (Boundary vertices and edges are those that are incident with the
unique unbounded face, the outer face. All other faces are inner faces.) The problem
we study can informally be posed as follows: given a fullerene patch, is it a subgraph of
some fullerene graph? This is the decision problem. We will also discuss the important
counting version of the problem, which asks in how many ways a fullerene patch can
be completed to a fullerene graph.

These problems are well-studied in chemistry and combinatorics [12,8,4,7,5], and
algorithms have been developed for special cases (see below). Little is however known
about the computational complexity of the problem. To illustrate how little is known,
and how much this problem differs from the ‘usual’ problems studied in algorithmics:
it is not even known whether the decision problem is decidable1!

In this paper we give a polynomial time algorithm for a broad class of instances
of the decision problem. We conjecture that our algorithm actually solves the decision
problem in polynomial time for all instances (see Section 4). We will also sketch how to
extend our approach to solve the counting problem. Our algorithm will be formulated
for a slightly more general version of the above problem. We will pose a number of
open questions and conjectures on the complexity of this generalization.

A sequence S = x0, . . . ,xk−1 is a boundary code of a fullerene patch G if the boundary
vertices of G can be labeled v0, . . . ,vk−1 in cyclic order along the boundary (i.e. the cycle
v0, . . . ,vk−1,v0 is the boundary of the outer face of G), and the degree d(vi) = xi for all
i. It can be seen that a patch G with boundary code S can be completed to a fullerene
graph if and only if there exists a fullerene patch with complementary boundary code
S := 5−x0,5−x1, . . . ,5−xk−1; the boundary cycles can be identified such that vertices
of degree 3 are identified with vertices of degree 2, to yield a 3-regular planar graph.
So to answer the problem, we only need to know whether a patch with a prescribed
boundary code exists, and therefore we formulate the problem FULLERENE PATCH -
BOUNDARY CODE as follows: Given a sequence S of twos and threes of length n, does
there exist a fullerene patch with boundary code S?

This problem is slightly more general because we do not require that S is the com-
plement of a boundary code for some patch. Implications of this generalization are
discussed in Section 4. This problem, and the related problems of counting or gener-
ating all possible solutions, are also known as the PentHex Puzzle in the literature. A
fullerene patch G for which S is a boundary code will also be called a solution to S. For
a sequence S, we use (S)x to denote the sequence obtained by repeating S x times.

Let f5(G) denote the number of inner faces of G of length 5. It is well-known that
f5(G) is determined by the degrees on the boundary. Let di(G) denote the number of
boundary vertices of G with degree i.

Proposition 1. For a fullerene patch G, f5(G) = 6−d2(G)+ d3(G).

(This expression follows from Euler’s formula by elementary arguments). Note that
from this expression, it also follows that fullerene graphs have exactly twelve 5-faces.
For a sequence S of twos and threes, define di(S) to be the number of times i occurs in S,

1 Informally speaking, it is possible to exhaustively enumerate all possible solutions, and check
whether one of these gives a valid solution, so the problem is Turing recognizable. However
when no solution is found, it is not clear when one may terminate and return ‘no’.
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and f5(S)= 6−d3(S)+d2(S). It is known that when f5(S)≤ 5, any patch with boundary
code S has size O(n2) (throughout, n denotes the length of S). Bornhöft, Brinkmann
and Greinus give precise upper and lower bounds for possible sizes [3]. On the other
hand, when f5(S) ≥ 6 there may be infinitely many patches with boundary code S.
Consider for instance S = (2,3)5. A solution G with six 5-faces and no 6-faces exists,
but arbitrarily many ‘layers’ of 6-faces may be added around G while maintaining the
same boundary code.

When f5(G) = 0 for a fullerene patch G, G is called a hexagonal patch. Even in this
case, the problem is not trivial: Guo, Hansen and Zheng [13] showed that even boundary
codes S with f5(S) = 0 may have multiple solutions, although they all have the same
size. Their construction can be extended to show that exponentially many solutions are
possible. Nevertheless, we have shown in [1] that in this case counting can be done in
polynomial time:

Theorem 2. The number of hexagonal patches that satisfy a boundary code S of length
n can be computed in time O(n3).

The algorithm is based on a known technique that uses the fact that hexagonal patches
can be mapped uniquely to the hexagonal lattice (the infinite 3-regular planar graph
where all faces have length 6) with a locally injective homomorphism [13,12]. Previous
algorithms for the case f5(S) = 0 focused on the simple special case of patches where
the aforementioned mapping is injective [8], or used an algorithm that branches for
every face [8,4]. No explicit complexity bounds are given in [4] and [8], but we observe

that the worst case complexity is superexponential, a rough bound is O
(

nn2
)

. Other

algorithms use variants of this branching approach that apply to sequences S of a special
form [7,5], or simply generate all possible patches and categorize them according to
boundary codes [6].

Intuitively, the essential new idea in our algorithm is that we have found a way to
guess the positions of the 5-faces in advance; we only branch once for each 5-face, in-
stead of for every face. In addition this is done such that the number of possible guesses
O(n3) for one 5-face is not much more than the maximum number of positions of a
5-face; the maximum number of faces of the patch is O(n2). It can then be checked in
polynomial time O(n3) whether for these guessed positions of the 5-faces a valid so-
lution exists. This way, for any f5(S) ≤ 5, we show that the problem can be solved in
polynomial time O(n3 f5+3) (Section 3), a vast improvement on the complexity of previ-
ous algorithms. This is a rather rough bound; in Section 4 we discuss improvements. We
start in Section 2 with definitions. Due to space constraints, some details are omitted,
see also [2].

2 Preliminaries

For basic graph theoretic notions not defined here we refer to [9]. A walk W of length
k in a graph G is a sequence of vertices W = v0, . . . ,vk such that vivi+1 ∈ E(G) for all i.
This is also called a (v0,vk)-walk. W is closed if vk = v0. It is a path if all vertices are
distinct, and a cycle or k-cycle if it is closed and vi 
= v j for all distinct i, j ∈ {0, . . . ,k−
1}. A graph is planar if it admits a planar embedding or simply embedding, which is a



Finding Fullerene Patches in Polynomial Time 753

drawing in the plane without edge crossings. A plane graph is a graph together with a
fixed (planar) embedding. The unbounded face is called the outer face, all other faces
inner faces. For every vertex in a plane graph, the clockwise order of edges around every
vertex defines a cyclic order on the incident edges. We say that a walk W = v0, . . . ,vk

turns left (right) at i if vivi+1 follows (precedes) vi−1vi in this clockwise order around vi,
for 1≤ i ≤ k−1. If the walk is closed, this is also defined for i = 0, as expected. We will
mostly consider graphs with maximum degree 3 and walks with vi−1 
= vi+1, in which
case the walk turns left or right at every 1 ≤ i ≤ k−1. A closed walk W in a plane graph
is a facial walk or simply face if it is a minimal closed walk that turns left at every index.
If W has length k this is also called a k-face. Observe that a graph is 2-connected if and
only if every facial walk is a cycle. Throughout, we will only consider plane graphs
of which every component is 2-connected, with an embedding such that only the outer
face is incident with multiple components. So every component C has a facial cycle that
is incident with the outer face. Such a cycle is called a boundary cycle of C. Vertices
and edges that are part of a boundary cycle are called boundary vertices and edges,
respectively. For a sequence σ = σ0, . . . ,σk, by σ−1 we denote the reversed sequence
σk, . . . ,σ0. It if is a sequence of numbers, σ denotes the complementary sequence 5−
σ0,5−σ1, . . . ,5−σk. (σ)x denotes the sequence consisting of x≥ 0 repetitions of σ . We
call sequences lists when their elements are sequences again. We will use the notation
‘|’ to separate sequences in a sequence list, i.e. 2,3,3 | 2,2,2 is a list consisting of two
sequences. A patch G is a solution to a sequence S = x0, . . . ,xk−1 if G has a boundary
cycle v0, . . . ,vk−1,v0 with d(vi) = xi for all 0 ≤ i ≤ k−1. A plane graph of which every
component is a fullerene patch, embedded such that all components are incident with
the outer face, is called a patch set. For a sequence list S = S1 | S2 | . . . | Sk, a patch
set G is called a solution to S if the components of G can be numbered G1, . . . ,Gk

such that Gi is a solution to Si for all 1 ≤ i ≤ k. If G is a solution to S, S is called a
boundary code of G. For a sequence S consisting of d2 twos and d3 threes, f5(S) =
6− d2 + d3. For a sequence list S = S1 | . . . | Sk, f5(S) = ∑k

i=1 f5(Si) and d j(S) =
∑k

i=1 d j(Si) (for j = 2,3). For a vertex v in a connected plane graph G, the distance to the
boundary of v is the minimum length over all (v,w)-paths where w is a boundary vertex
of G. For a connected plane graph G, dist(G) denotes the maximum distance to the
boundary over all vertices v ∈ V (G). For a disconnected plane graph G in which every
component is incident with the outer face, dist(G) denotes the maximum of dist(C) over
all components C of G.

3 The Algorithm

Below we will define graph operations on patches G that use use shortest paths P =
u0, . . . ,ul from the boundary of G to a 5-face f . So u0 is a boundary vertex of G, ul is
incident with f , and no shorter path with these properties exists. To limit the number of
possible operations, we first give an upper bound for dist(G), which bounds the length
of such a path P. The next lemma can be proved using similar techniques as those in [3].
We remark that with more effort, the bound can be improved, but for our purposes this
suffices.
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Lemma 3. Let G be a patch with f5(G) ≤ 5 with boundary length n. Then dist(G) ≤
n−3.

There always exist shortest paths of a very restricted type, called 1-bend paths2, which
ensures that we only have to consider a polynomial number of possible operations.

Definition 4. A path P = u0, . . . ,ul in a patch G with u0 on the boundary and no other
vertices on the boundary is a 1-bend path of length l with bend at b if there exists an
even b ∈ {0, . . . , l} such that P turns left at i ∈ {1, . . . , l −1} if and only if i ≤ b and i is
odd, or i > b and i is even.

Note that the choice of l, b and u0 uniquely determines P, provided that a 1-bend path
with these parameters exists.

Lemma 5. Given a patch G and inner face f of G, there exists a shortest path P from
the boundary to f that is a 1-bend path.

(b)

(d)

(a)

(c)

f

f
f

f

Fig. 1. Cutting a patch using 5-face f and path P

Let G be a patch with 5-face f , and let P = u0, . . . ,ul be a 1-bend shortest path in G
from the boundary of G to f . For any such path P and 5-face f we define the cutting
operation using f and P as shown in Figure 1. In the case that P has non-zero length,
this operation is defined as follows. See Figure 1(a), where the bold edges indicate P.
Every vertex ui of P is replaced by two vertices vi and wi, and every edge uiui+1 is
replaced by two two edges vivi+1 and wiwi+1. Edges xui with x 
∈V (P) are replaced by
either xvi or xwi, as shown in Figure 1(a), such that a planar embedding is maintained,
and every inner face other than f corresponds again to an inner face. Observe that v0,
w0, vl and wl receive degree 2, and for all other i, d(vi)+ d(wi) = 5.

In the case that P has length zero, f must contain a boundary edge, because G
has maximum degree 3. In this case, the cutting operation simply consists of delet-
ing all edges of f that are boundary edges of G, and the resulting isolated vertices (see
Figure 1(b),(c),(d)). Note that when f contains only boundary edges (G is just this 5-
cycle), the resulting graph is the empty graph. We say that an edge set is connected if
it induces a connected subgraph. When the boundary edges of f are not connected, this

2 Using 1-bend paths was suggested to us by Gunnar Brinkmann.
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operation disconnects the graph (Figure 1(c),(d)). However since f has length 5, at most
two components result.

It is easy to see that these operations preserve a plane embedding, and that the vertex
degree and face length conditions are maintained. In addition, every component of G′

is 2-connected, since every edge lies again on a cycle (corresponding to an inner face).

Proposition 6. Let G′ be obtained by a cutting operation using face f and path P of a
patch G. Every component of G′ is again a patch.

Now we will consider how the boundary code changes when applying a cutting opera-
tion to a patch G. Formally, since earlier operations may have disconnected the graph,
we have to consider the case that G is a patch set. The result G′ is again a patch set
(which may contain more or fewer components). If G is a solution to a sequence S, then
G′ is a solution to some S′ that can be obtained by one of the sequence operations on S
that are defined below. Since the cutting operation is only applied to one component of
G, we define sequence operations only for the case that G is a single patch; generalizing
these definitions to patch sets is straightforward. Let f and P respectively be the 5-face
and path used for the cutting operation on G, so P is a 1-bend path of length l with bend
at b. Let S be a boundary code of G. We consider four cases.

If l ≥ 1, then f contains no boundary edges. Then it can be seen that a boundary
code of the new patch G′ can be obtained from S by replacing a single three by the new
sequence shown on the right, see Figure 1(a):

. . . ,3, . . .⇒ . . . ,2,σ ,2,3,3,3,3,2,σ−1,2, . . . ,

where σ is a sequence of twos and threes of length l − 1. Since P is a 1-bend path of
length l with bend at b, σ = σ1, . . . ,σl−1 is the following sequence: σi = 3 if and only
if i ≤ b and i is odd, or i > b and i is even. The corresponding operation on sequences
of twos and threes is called a sequence operation of type I of length l.

Now consider the case that l = 0, so f contains at least one boundary edge. In the first
case, f contains x < 5 boundary edges which are connected. So S is a cyclic permutation
of a sequence of the form shown on the left:

3,(2)x−1,3,y0, . . . ,yn1 ⇒ 2,(3)4−x,2,y0, . . . ,yn1 .

Here the numbers indicate degrees of boundary vertices incident with f . The sequence
shown on the right is then a boundary code of the resulting patch (see Figure 1(b)).
The corresponding sequence operation is called a sequence operation of type II, with
1 ≤ x ≤ 4. Now suppose that the boundary edges of f are not connected. Since f is
a 5-face, this means that f contains either two isolated boundary edges (Figure 1(c)),
or one isolated boundary edge and a pair of adjacent boundary edges (Figure 1(d)). In
other words, for a ∈ {0,1}, the boundary code S is a cyclic permutation of a sequence
of the form shown on the left:

3,(2)a,3,y0, . . . ,yn1 ,3,3,z0, . . . ,zn2 ⇒ 2,(3)b,2,y0, . . . ,yn1 | 2,(3)c,2,z0, . . . ,zn2 .

A cutting operation on G then yields a boundary code list of the form shown on the
right (consisting of two sequences), where b and c are non-negative integers satisfying
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a + b + c = 1. Sequence operations that replace a sequence of the first form with two
sequences of the second form are called sequence operations of type III. In the final case
where f contains only boundary edges, the boundary code of G is simply 2,2,2,2,2,
and the resulting empty graph has an empty boundary code. Such an operation is called
a sequence operation of type IV. To summarize, for every possible cutting operation, we
have defined a corresponding sequence operation.

Proposition 7. Let G′ be the patch set obtained from a cutting operation on a patch
set G. If S is a boundary code of G, then a boundary code of G′ can be obtained by
applying a sequence operation of type I, II, III or IV to one of the sequences in S.

Similarly, it can be checked that we did not define sequence operations that do not
correspond to cutting operations. So by considering the corresponding reversed cutting
operations, the following proposition can be proved.

Proposition 8. Let S′ be a sequence list obtained from a sequence list S by one of the
sequence operations defined above. If S′ has a solution, then S has a solution.

When we use the expression ‘all sequence operations of length at most d’, this includes
all sequence operations of type II, III and IV.

Proposition 9. Let S be a sequence list of twos and d3 threes. There are less than d2
3 +

d2d3 ways to apply a sequence operation of type I, II or III of length at most d to S.

Algorithm 1.

INPUT: A sequence S of length n, which either has no solution or
a solution G with dist(G) ≤ n−3.

OUTPUT: The existence of a solution G to S.

1. call TEST(S,n−3)
2. If S = 2,2,2,2,2 then output(‘yes’) else output(‘no’)

Subroutine TEST(S: sequence list, d: integer):

1. if f5(S) = 0 then
2. if for every sequence S′ in list S a hexagonal patch exists, then
3. output(‘yes’), halt
4. else
5. for all possible ways to apply a type I, II or III operation of length at most d to S:
6. Let S′ be the resulting sequence list
7. while a type IV operation can be applied to S′:
8. Let S′ be the resulting sequence list
9. call TEST(S′,d)

Algorithm 1 now shows our algorithm that decides whether for a given sequence S,
a patch with boundary code S exists. Line 2 of the subroutine TEST requires some
additional explanation: here it is tested whether a sequence list S with f5(S) = 0 admits
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a solution. Note that if one sequence S′ in list S has f5(S′)> 0, then another sequence S′′

must have f5(S′′) < 0, so then the condition is obviously not satisfied. Otherwise, every
sequence S′ in the list S has f5(S′)= 0, and we can use the algorithm from Theorem 2 for
every sequence. If S is the empty list (which may occur after applying type IV sequence
operations), then the condition is trivially satified. We first prove the correctness of
Algorithm 1.

Theorem 10. Let S be a sequence with length n, such that S either has no solution, or
a solution G with dist(G) ≤ n−3. Then Algorithm 1 returns whether S has a solution.

Proof: We prove by induction over f5(S) that if S has a solution G with dist(G) ≤ d,
then TEST(S,d) returns ‘yes’, provided that no type IV operation can be applied to S.
(Note that if initially a type IV operation can be applied, ‘yes’ will be returned in Line 2
instead.) If f5(S) = 0 the statement is clear, so assume f5(S) ≥ 1. Now there exists a
1-bend path P in G from the boundary to a 5-face f , of length at most d (Lemma 5).
Therefore G can be transformed to a patch set G′ with f5(G′) = f5(G)−1 by a cutting
operation of length at most d (Proposition 6). Note that cutting operations do not in-
crease the distance to the boundary, so dist(G′)≤ dist(G)≤ d. Proposition 7 shows that
a sequence operation on S (of length at most d) exists such that the resulting sequence
list S′ is a boundary code for G′. By our assumption, this operation is of type I, II or
III. Since the algorithm tries all possibilities to do such sequence operations of length
at most d on S, in one of the iterations of the for-loop, S′ is considered. Applying type
IV operations to S′ as long as possible (Line 7) does not change the fact that S′ has a
solution G′ with dist(G′) ≤ d, so by induction on f5(S), the recursive call TEST(S′,d)
returns ‘yes’.

On the other hand, if ‘yes’ is returned by the algorithm, then S has a solution: this
is again clear if f5(S) = 0 or if S = 2,2,2,2,2. Otherwise, let S′ be the sequence list
obtained from S in the recursion branch in which ‘yes’ is returned. By induction over
f5(S), S′ then has a solution G′. Proposition 8 shows that from G′, a solution G to S can
be obtained by applying the appropriate reversed cutting operation. �
The complexity of Algorithm 1 can be bounded using the following observations: (i)
On input S, the depth of the recursion tree is at most f5(S). (ii) TEST(S, d) makes at
most d2

3(S)+ d2d3(S) recursive calls, when f5(S) ≥ 1 (Proposition 9). (iii) A sequence
operation of length at most d increases d3(S) by at most d + 2. (iv) TEST(S,d) has
complexity O(n3) = O(d3

3(S)) when f5(S) = 0, since then the complexity is determined
by the algorithm from Theorem 2. Combining these observations properly yields the
following complexity bound.

Theorem 11. Let S be a sequence with k = f5(S) and length n. The time complexity of

Algorithm 1 on input S is O
(

k! k3 n2k+3 (n+k)!
n!

)
.

If f5(S) ≤ 5, the condition of Theorem 10 is satisfied by Lemma 3. So combining The-
orem 10 and 11 then yields:

Theorem 12. Let S be a sequence with k = f5(S)≤ 5 and length n. Algorithm 1 returns
whether S has a solution, in time O(n3k+3) ⊆ O(n18).
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4 Discussion

We gave the first polynomial time algorithm for finding fullerene patches with a given
boundary code S, when f5(S) ≤ 5. This opens up the way to further studies of compu-
tational complexity of this problem, and can be used to as a basis for developing fast
practical algorithms for this problem.

Our focus was on proving membership in P and introducing new algorithmic tech-
niques. We remark that with a more detailed topological proof it can be shown that for
any patch, there exists an alternating left-right path from some 5-face to the boundary
of length O(n). Applying this result in our algorithm would improve the complexity
to O(n2 f5+3). The exponent can be improved further, but we do not know whether it
is possible to entirely remove the parameter f5 from it (see below). In addition there
are many ad-hoc improvements possible to reduce the branching, but that is beyond the
scope of this paper.

Observe that there is only one part where we needed the assumption that f5(S) ≤
5, namely in Lemma 3 that bounds dist(G) by n− 3, for any solution G. For f5 ≥ 6
such a statement does not hold since in that case, arbitrarily large solutions may exist.
However, to answer the question whether at least one solution exists, proving a weaker
statement suffices:

Conjecture 1. For any sequence S of twos and threes of length n, either no solution
exists, or at least one solution G with dist(G) ≤ max{n−3,10} exists.

Note that a proof of Conjecture 1 would show that Algorithm 1 solves the problem for
any value of f5(S), with complexity as stated in Theorem 11. That is, in polynomial
time for any fixed f5. (The small cases with n < 13 can be treated correctly by initially
setting the parameter d = 10 instead of d = n−3.)

Algorithm 1 can be extended to the counting problem, by generating solutions, stor-
ing them in a list and comparing equivalence (see the full version for details). The only
problem is that there may be exponentially many solutions, so in polynomial time one
can only decide this way if there are at least p(n) solutions for some polynomial p(n).

Question 2. Can the number of different solutions to a boundary code S with f5(S)≤ 5
be determined in polynomial time?

Recall that originally we considered the problem whether a given patch can be com-
pleted to a fullerene graph. Expressed in terms of the boundary code problem, this
restricts the problem to sequences S such that the complement S also has a solution,
which we will call real sequences. This restriction has some advantages: for instance
this implies that f5(S) ≤ 12, so proving Conjecture 1 would show that the restricted
problem can be solved in polynomial time (without the condition ‘for any fixed f5’).
Secondly, we expect that real sequences can only have polynomially many solutions.

Question 3. It there a polynomial p(n) such that every real sequence S of length n with
f5(S) ≤ 5 has at most p(n) solutions?

This would imply that the approach sketched above solves the counting problem in
polynomial time, when restricted to real sequences. However, we expect that the general
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problem cannot be solved in polynomial time without restricting f5. Note that in general
patches may have arbitrarily many 5-faces.

Question 4. Is Fullerene Patch - Boundary Code NP-hard?

Finally, considering how the complexity depends on the parameter f5, this problem is
an excellent candidate to be considered from the viewpoint of parameterized complex-
ity [11]. Our algorithm has complexity nO( f5). An algorithm with complexity f ( f5)nO(1)

for some computable function f (a fixed parameter tractable (FPT) algorithm) would
be preferable, but we do not know whether such an algorithm is possible.

Question 5. Does there exist an FPT algorithm for the problem Fullerene Patch -
Boundary Code parameterized by f5(S), or is this problem W [1]-hard?

Acknowledgement. We thank Gunnar Brinkmann for introducing us to this subject and
his suggestions.
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Abstract. In a convex grid drawing of a plane graph, every edge is
drawn as a straight-line segment without any edge-intersection, every
vertex is located at a grid point, and every facial cycle is drawn as a
convex polygon. A plane graph G has a convex drawing if and only
if G is internally triconnected. It has been known that an internally
triconnected plane graph G of n vertices has a convex grid drawing on
a grid of O(n3) area if the triconnected component decomposition tree
of G has at most four leaves. In this paper, we improve the area bound
O(n3) to O(n2), which is optimal up to a constant factor. More precisely,
we show that G has a convex grid drawing on a 2n × 4n grid. We also
present an algorithm to find such a drawing in linear time.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [12]. The most typical drawing of a plane graph is a straight
line drawing, in which all edges are drawn as straight line segments without
any edge-intersection. A straight line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. One can find a convex drawing of a
plane graph G in linear time if G has one [3,4,12].

A straight line drawing of a plane graph is called a grid drawing if all vertices
are put on grid points of integer coordinates. This paper deals with a convex
grid drawing of a plane graph. Throughout the paper we assume for simplicity
that every vertex of a plane graph G has degree three or more. Then G has a
convex drawing if and only if G is “internally triconnected” [2,9,10]. One may
thus assume that G is internally triconnected. If either G is triconnected [1,2] or
the “triconnected component decomposition tree” T (G) of G has two or three
leaves [9], then G has a convex grid drawing on an (n− 1)× (n− 1) grid, where
n is the number of vertices in G. If T (G) has exactly four leaves, then G has a
convex grid drawing on a 2n× n2 grid [11]. Thus, G has a convex grid drawing
of O(n3) area if T (G) has at most four leaves.
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Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 760–770, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Convex Drawings of Internally Triconnected Plane Graphs on O(n2) Grids 761

In this paper, we improve the area bound O(n3) above to O(n2), which is
optimal up to a constant factor because a plane graph of nested triangles needs
an Ω(n2) area in any straight line drawing [5]. More precisely, we show that an
internally triconnected plane graph G has a convex grid drawing on a 2n×4n =
O(n2) grid if T (G) has exactly four leaves, and present an algorithm to find such
a drawing in linear time.
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Fig. 1. (a) A plane graph G, (b) subgraphs Gu and Gd, (c) a drawing Du of Gu, (d) a
drawing Dd of Gd, and (e) a convex grid drawing D of G

2 Outline of Our Algorithm

(a) (b) (c)
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Fig. 2. (a) Split components of the graph G in Fig. 1(a),
(b) triconnected components of G, and (c) a decomposi-
tion tree T (G)

In this section, we outline
our algorithm, which is a
modification of the algo-
rithm in [11].

The plane graph G
in Fig. 1(a) is inter-
nally triconnected, the
triconnected components
of G are depicted in
Fig. 2(b), and the tricon-
nected component decomposition tree T (G) of G having four leaves l1, l2, l3 and
l4 is depicted in Fig. 2(c). We draw G so that the contour of the outer face
of G is a rectangle, as illustrated in Fig. 1(e). We first appropriately choose
four vertices a1, a2, a3 and a4 as the four apices of the rectangular contour.
We then divide G into an upper subgraph Gu and a lower subgraph Gd, as
illustrated in Fig. 1(b), so that Gu contains a1 and a2 and Gd contains a3
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and a4. Using the “pentagon algorithm” in [11], we then obtain “inner con-
vex” grid drawings Du of Gu and Dd of Gd, both of O(n2) area, as illustrated
in Figs. 1(c) and (d). More precisely, Du has width W (Du) ≤ 2nu − 2 and
height H(Du) ≤ 2nu − 2, and Dd has width W (Dd) ≤ 2nd − 2 and height
H(Dd) ≤ 2nd − 2, where nu and nd are the numbers of vertices in Gu and
Gd, respectively, and hence nu + nd = n. We then shift either vertex a1 to
the left or a3 to the right so that these two drawings have the same width
max{2nd − 2, 2nu − 2}. We next arrange Dd and Du so that y(a3) = y(a4) = 0
and y(a1) = y(a2) = H(Dd)+H(Du)+max{2nd−2, 2nu−2}+1, as illustrated
in Fig. 1(e), where y(a1), y(a2), y(a3) and y(a4) are the y-coordinates of a1, a2,
a3 and a4, respectively. We finally draw, by straight line segments, all the edges
of G that are contained in neither Gu nor Gd. Thus, the width W (D) of the
resulting drawing D of G is

W (D) ≤ max{2nd − 2, 2nu − 2} < 2n,

and the height H(D) of D is

H(D) ≤ 2nd − 2 + 2nu − 2 + max{2nd − 2, 2nu − 2} + 1 < 4n.

Hence, the area of the drawing D is 2n × 4n = O(n2). The selection of apices
a1, a2, a3 and a4, the division of G to Gu and Gd and some others are different
from those in [11].

3 Preliminaries

In this section, we give some definitions, and outline the pentagon algorithm in
[11] which is used to draw Gd and Gu.

We denote by G = (V,E) an undirected connected simple graph with vertex
set V and edge set E. We often denote the set of vertices of G by V (G) and the
set of edges by E(G). An edge joining vertices u and v is denoted by (u, v).

A W ×H integer grid consists of W +1 vertical grid lines and H +1 horizontal
grid lines, and has a rectangular contour. We call W and H the width and height
of the integer grid, respectively. We denote by W (D) the width of the minimum
integer grid enclosing a grid drawing D of a graph, and by H(D) the height of D.

A plane graph G divides the plane into connected regions, called faces. The
boundary of a face is called a facial cycle. We denote by Fo(G) the outer facial
cycle of G. A vertex on Fo(G) is called an outer vertex, while a vertex not on
Fo(G) is called an inner vertex. In a convex drawing D of a plane graph G, all
facial cycles must be drawn as convex polygons. The convex polygonal drawing
of Fo(G) is called the outer polygon of D. We call a vertex of a polygon an apex
in order to avoid the confusion with a vertex of a graph.

We call a vertex v of a connected graph G a cut vertex if its removal from G re-
sults in a disconnected graph, that is, G− v is not connected. A connected graph
G is biconnected if G has no cut vertex. We call a pair {u, v} of vertices in a bicon-
nected graph G a separation pair if its removal from G results in a disconnected
graph, that is,G−{u, v} is not connected. A biconnected graphG is triconnected if
G has no separation pair. A biconnected plane graph G is internally triconnected
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if, for any separation pair {u, v} of G, both u and v are outer vertices and each
connected component of G− {u, v} contains an outer vertex.

Let G = (V,E) be a biconnected graph, and let {u, v} be a separation pair of
G. Then, G has two subgraphs G′1 = (V1, E

′
1) and G′2 = (V2, E

′
2) such that

(a) V = V1
⋃

V2, V1
⋂

V2 = {u, v}; and
(b) E = E′1

⋃
E′2, E′1

⋂
E′2 = ∅, |E′1| ≥ 2, |E′2| ≥ 2.

For a separation pair {u, v} of G, G1 = (V1, E
′
1+(u, v)) and G2 = (V2, E

′
2+(u, v))

are called the split graphs of G with respect to {u, v}. The new edges (u, v) added
to G1 and G2 are called the virtual edges. Even if G has no multiple edges, G1
and G2 may have. Dividing a graph G into two split graphs G1 and G2 is called
splitting. Reassembling the two split graphs G1 and G2 into G is called merging.
Merging is the inverse of splitting. Suppose that a graph G is split, the split
graphs are split, and so on, until no more splits are possible, as illustrated in
Fig. 2(a) for the graph in Fig. 1(a) where virtual edges are drawn by dotted
lines. The graphs constructed in this way are called the split components of G.
The split components are of three types: triconnected graphs; triple bonds (i.e.
a set of three multiple edges); and triangles (i.e. a cycle of length three). The
triconnected components of G are obtained from the split components of G by
merging triple bonds into a bond and triangles into a ring, as far as possible,
where a bond is a set of multiple edges and a ring is a cycle [8]. Thus the
triconnected components of G are of three types: (a) triconnected graphs; (b)
bonds; and (c) rings. Two triangles in Fig. 2(a) are merged into a single ring,
and hence the graph in Fig. 1(a) has six triconnected components as illustrated
in Fig. 2(b).

Let T (G) be a tree such that each node corresponds to a triconnected com-
ponent Hi of G and there is an edge (Hi, Hj), i 
= j, in T (G) if and only if Hi

and Hj are triconnected components with respect to the same separation pair,
as illustrated in Fig. 2(c). We call T (G) a triconnected component decomposition
tree or simply a decomposition tree of G [8]. T (G) has four leaves for the graph G
in Fig. 1(a). (See Fig. 2(c).) If G is triconnected, then T (G) consists of a single
isolated node and hence T (G) has exactly one leaf.

Let G be an internally triconnected plane graph such that T (G) has exactly
four leaves. Then every leaf of T (G) is a triconnected graph and the outer poly-
gon of every convex drawing of G must have four or more apices [10,11]. Our
algorithm obtains a convex grid drawing of G whose outer polygon has exactly
four apices and is a rectangle in particular, as illustrated in Fig. 1(e).

In Section 4, we will present an algorithm to draw G, which uses the following
“canonical decomposition” [2,12]. Let G = (V,E) be an internally triconnected
plane graph, and let V = {v1, v2, · · · , vn}. Let v1, v2 and vn be three arbitrary
outer vertices appearing counterclockwise on Fo(G) in this order. We may assume
that v1 and v2 are consecutive on Fo(G); otherwise, add a virtual edge (v1, v2) to
the original graph, and let G be the resulting graph. Let Π = (U1, U2, · · · , Um)
be an ordered partition of V into nonempty subsets U1, U2, · · · , Um. We denote
by Gk, 1 ≤ k ≤ m, the subgraph of G induced by U1

⋃
U2

⋃
· · ·

⋃
Uk, and denote

by Gk, 0 ≤ k ≤ m− 1, the subgraph of G induced by Uk+1
⋃

Uk+2
⋃
· · ·

⋃
Um.
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We say that Π is a canonical decomposition of G (with respect to vertices v1, v2
and vn) if the following three conditions (cd1)–(cd3) hold:

(cd1) Um = {vn}, and U1 consists of all the vertices on the inner facial cycle
containing edge (v1, v2).

(cd2) For each index k, 1 ≤ k ≤ m, Gk is internally triconnected.
(cd3) For each index k, 2 ≤ k ≤ m, all the vertices in Uk are outer vertices of

Gk, and
(a) if |Uk| = 1, then the vertex in Uk has two or more neighbors in Gk−1

and has one or more neighbors in Gk when k < m; and
(b) if |Uk| ≥ 2, then each vertex in Uk has exactly two neighbors in Gk,

and has one or more neighbors in Gk.

(b) (c)(a)

U5

U1

U2

U3

U4
U8U7

U6

U9

U10

U11

vr

v2
v1

vl

vn

D

v2v1

vl vr

vn

G

Vl Vr

Fig. 3. (a) An internally triconnected plane graph G, (b) a canonical decomposition Π
of G, and (c) a pentagonal drawing D of G

A canonical decomposition Π = (U1, U2, · · · , U11) with respect to vertices v1, v2
and vn of the graph in Fig. 3(a) is illustrated in Fig. 3(b). If T (G) has at most
three leaves, then G has a canonical decomposition [11].

Let G be a plane graph having a canonical decomposition Π = (U1, U2, · · · ,
Um) with respect to vertices v1, v2 and vn, as illustrated in Fig. 3(b). Miura et al.
[11] give a linear-time algorithm, called the pentagon algorithm, to find a convex
grid drawing of G with a pentagonal outer polygon, as illustrated in Fig. 3(c).
The algorithm is based on the so-called shift methods given by Chrobak and
Kant [2] and de Fraysseix et al. [6], and will be used by our convex grid drawing
algorithm in Section 4 to draw Gu and Gd.

We then outline the pentagon algorithm. Let vl be an arbitrary outer vertex
on the path going from v1 to vn clockwise on Fo(G), and let vr(
= vl) be an
arbitrary outer vertex on the path going from v2 to vn counterclockwise on
Fo(G), as illustrated in Fig. 3(a). Let Vl be the set of all vertices on the path
going from v1 to vl clockwise on Fo(G), and let Vr be the set of all vertices on the
path going from v2 to vr counterclockwise on Fo(G). The pentagon algorithm in
[11] obtains a convex grid drawing of G whose outer polygon is a pentagon with
apices v1, v2, vr, vn and vl, as illustrated in Fig. 3(c).

More precisely, the pentagon algorithm obtains an “inner convex” grid draw-
ing Dk for each k, 1 ≤ k ≤ m, in which all inner facial cycles are convex polygons.
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Fig. 4. Drawing Dk of graph Gk

Let Fo(Gk) = w1, w2, · · · , wt, w1 = v1, and
wt = v2, as illustrated in Fig. 4. Let wf be
the vertex with the maximum index f among
all the vertices wi, 1 ≤ i ≤ t, on Fo(Gk) that
are contained in Vl. Let wg be the vertex with
the minimum index g among all the vertices
wi that are contained in Vr. Of course, 1 ≤
f < g ≤ t. We denote by ∠wi the interior
angle of apex wi of the outer polygon of Dk.
We call wi a convex apex of the polygon if ∠wi < π. The drawing Dk of Gk

satisfies the following six conditions (sh1)–(sh6). (See Fig. 4.)

(sh1) w1 is on the grid point (0, 0), and wt is on the grid point (2|V (Gk)|−2, 0).
(sh2) x(w1) = x(w2) = · · · = x(wf ), x(wf ) < x(wf+1) < · · · < x(wg), x(wg) =

x(wg+1) = · · · = x(wt), where x(wi) is the x-coordinate of wi.
(sh3) Every edge (wi, wi+1), f ≤ i ≤ g − 1, has slope −1, 0, or 1.
(sh4) The Manhattan distance between any two grid points wi and wj , f ≤ i <

j ≤ g, is an even number.
(sh5) Every inner face of Gk is drawn as a convex polygon.
(sh6) Vertex wi, f + 1 ≤ i ≤ g − 1, has one or more neighbors in Gk if wi is a

convex apex.

The pentagon algorithm obtains a convex grid drawing D of G = Gm on a W×H
grid with W = 2n−2 and H ≤ n2−n−2 in linear time [11]. Thus the area of D
is O(n3). However, we observe that the algorithm obtains a convex grid drawing
D of O(n2) area if one chooses vr = v2, as follows.

Lemma 1. For a plane graph G having a canonical decomposition Π = (U1,
U2, · · · , Um), the pentagon algorithm obtains an inner convex grid drawing Dk

of Gk, 1 ≤ k ≤ m, such that H(Dk) ≤ W (Dk) = 2|V (Gk)| − 2 if one chooses
vr = v2. (Proof is omitted in this extended abstract.)

Figure 8(d) depicts the convex drawing of the graph in Fig. 8(a) obtained by the
pentagon algorithm with choosing vr = v2. It should be noted that the outer poly-
gon is not a pentagon but is a quadrangle with apices v1, v2, vn(= w) and vl.

4 Convex Grid Drawing Algorithm

In this section we present a linear algorithm to find a convex grid drawing D
of an internally triconnected plane graph G whose decomposition tree T (G) has
exactly four leaves. Such a graph G does not have a canonical decomposition,
and hence none of the pentagon algorithm and those in [1], [2], [7], [9] can find
a convex grid drawing of G. Our algorithm draws the outer facial cycle Fo(G)
as a rectangle as illustrated in Fig. 1(e). The algorithm first divides G into an
upper subgraph Gu and a lower subgraph Gd as illustrated in Fig. 1(b), then
draws Gu and Gd by using the pentagon algorithm [11] with choosing vr = v2
as illustrated in Figs. 1(c) and (d), and finally combine these two drawings to a
convex grid drawing of G as illustrated in Fig. 1(e).
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4.1 Division

Fig. 5. Decomposition trees T (G)
(a) having a node of degree four
and (b) having two nodes of degree
three

We first explain how to divide G into Gu and
Gd. (See Figs. 1(a) and (b).) One may assume
that the four leaves l1, l2, l3 and l4 of T (G)
appear clockwise in T (G) in this order as il-
lustrated in Fig. 5. Clearly, either exactly one
internal node u4 of T (G) has degree four and
each of the other internal nodes has degree
two as illustrated in Fig. 5(a), or exactly two
internal nodes ul3 and ur3 have degree three
and each of the other internal nodes has de-
gree two as illustrated in Fig. 5(b), where node ul3 is assumed to be arranged to
the left and node ur3 to the right.

=

=

Fig. 6. Graph G, decomposition and path P for Cases (a)–(f)

Since each ver-
tex of G is as-
sumed to have
degree three or
more, all the four
leaves of T (G) are
triconnected graphs.
Moreover, every tri-
connected compo-
nent of G hav-
ing degree three
or four in T (G)
is either a tricon-
nected graph or a
ring, while every
bond has degree
two in T (G) [11].
Thus we need to
consider the fol-
lowing six cases
(a)–(f).

(a) Node u4 is a triconnected graph as illustrated in Fig. 6(a);
(b) Node u4 is a ring as illustrated in Fig. 6(b);
(c) Both of nodes ul3 and ur3 are triconnected graphs as illustrated in Fig. 6(c);
(d) Node ul3 is a triconnected graph and ur3 is a ring, as illustrated in Fig. 6(d);
(e) Node ul3 is a ring and ur3 is a triconnected graph, as illustrated in Fig. 6(e);
(f) Both of nodes ul3 and ur3 are rings as illustrated in Fig. 6(f).

As the four apices of the rectangular contour of G, the algorithm in [11] chooses
as ai, 1 ≤ i ≤ 4, an arbitrary outer vertex in the triconnected component Ci

corresponding to leaf li that is not a vertex of the separation pair of Ci. We
choose a2 and a4 in the same way as in [11]. However, we choose a1 and a3 of
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G, as follows. Let ai, i ∈ {1, 3}, be the outer vertex in Ci that we encounter
second when we traverse Fo(G) clockwise from an outer vertex not in Ci. Thus
ai, i ∈ {1, 2, 3, 4}, is not a vertex of the separation pair of the component Ci.
Let s1 be the outer vertex that is counterclockwise next to a1 on Fo(G), and
let s3 be the outer vertex that is clockwise next to a3 on Fo(G), as illustrated
in Figs. 1(a) and 6. Clearly si, i ∈ {1, 3}, is a vertex of a separation pair of Ci.
The six vertices s1, a1, a2, s3, a3 and a4 appear clockwise on Fo(G) in this order
as illustrated in Figs. 1(a) and 6.

Fig. 7. Graph G

We then show how to divide G into Gu and Gd. Our
division is different from that in [11]. Consider all the inner
faces of G that contain one or more vertices on the path
going from a1 to s3 clockwise on Fo(G). (All these faces for
the graph G in Fig. 1(a) are shaded in Fig. 7.) Let G′ be
the subgraph of G induced by all the edges on these faces.
Then Fo(G′) is a simple cycle. Clearly, Fo(G′) contains
vertices s1, a1, a2, s3 and a3 in all Cases (a)–(f). Let Pd
be the path going from s1 to a3 counterclockwise on Fo(G′). Pd is drawn by
thick lines in Figs. 1(a), 6 and 7. Let Gd be the subgraph of G induced by all
the vertices on Pd or below Pd, and let Gu be the subgraph of G obtained by
deleting all vertices in Gd, as illustrated in Fig. 1(b). For every edge e of G that
is contained neither in Gu nor in Gd, an end of e is on Fo(Gu) and the other is
on Fo(Gd). Let nd be the number of vertices of Gd, and let nu be the number
of vertices of Gu, then nd + nu = n.

4.2 Drawing of Gd

Gd

U

UU
U

U

1

2

2

3
4

5

U6

U7

‘

‘

(b)

(c)

a3
a4

r

r

Dd

Pd

w w

V
V

(d) a3

a4 vr

l

n

s1

v = 

v = 

v = 

v v= 

2
v

= 

vl
s1= 

vl s1= 

Dd

Pd

= 
= 

w

Fig. 8. (a) G′
d for the graph G in Fig. 1(a), (b)

a canonical decomposition of G′
d, (c) a drawing

Dd of Gd, and (d) a drawing D′
d of G′

d

We now explain how to draw Gd.
Let G′d be a graph obtained

from G by contracting all the ver-
tices of Gu to a single vertex w,
as illustrated in Fig. 8(a) for the
graph in Fig. 1(a). Then clearly
Gd = G′d − w, and G′d is bicon-
nected. One can prove, similarly
as in [11], that G′d is internally tri-
connected and has a canonical de-
composition.

The decomposition tree T (G′d)
of G′d has exactly two leaves l3 and
l4, and a3 and a4 are contained
in the triconnected graphs corre-
sponding to the leaves and are not
vertices of the separation pairs.
Every vertex of G′d other than w
has degree three or more, and w has degree two or more in G′d. Therefore, G′d has
a canonical decomposition Π = (U1, U2, · · · , Um) with respect to a4, a3 and w,



768 X. Zhou and T. Nishizeki

as illustrated in Fig. 8(b), where Um = {w}, v1 = a4 and v2 = a3. We choose
vl = s1 and vr = a3, as illustrated in Fig. 8(a). Using the pentagon algorithm
in [11], we obtain a convex grid drawing Dm = D′d of Gm = G′d, in which the
outer polygon of Dm is a quadrangle with apices a4, a3, w and s1, as illustrated
in Fig. 8(d). Our drawing Dd of Gd is an intermediate drawing of Dm, that is,
Dd is the drawing Dm−1 of Gm−1 induced by U1∪U2∪· · ·∪Um−1, as illustrated
in Fig. 8(c). Note that Gd = G′d − w = Gm−1. Since we choose vr = v2, by
Lemma 1 we have H(Dd) ≤ W (Dd) ≤ 2nd − 2.

4.3 Drawing of Gu

We now explain how to draw Gu.
If the degree of s3 is one in Gu, then let P3 be the maximal induced path with

an end s3 such that all the intermediate vertices of P3 have degree two in Gu,
and let s2 be the other end of P3, as illustrated in Fig. 9(a). Otherwise, let P3 be
the trivial path consisting only of s3 and let s2 = s3. Let G′u be a graph obtained
from G by contracting all the vertices of Gd and all the vertices of P3 except s2
to a single vertex w, as illustrated in Fig. 9(b) for the graph G in Fig. 1(a). Then
clearly G′u is biconnected. Similarly to G′d, G′u has a canonical decomposition
Π = (U1, U2, · · · , Um) with respect to a2, a1 and w, as illustrated in Fig. 9(c).
We choose vl = s2 and vr = a1, as illustrated in Fig. 9(c). Using the pentagonal
algorithm in [11], we obtain a convex grid drawing D′u = Dm of G′u, in which
the outer polygon is a quadrangle with apices a2, a1, w and s2, as illustrated in
Fig. 9(e). Figure 9(d) depicts the drawing Dm−1 of Gm−1 = G′u −w induced by
U1 ∪U2 ∪ · · · ∪Um−1. We obtain a drawing Du of Gu from Dm−1 by putting the
vertices of P3 on grid points having the same x-coordinate as a2, as illustrated
in Fig. 9(f). Clearly |V (Gm−1)| = nu − |V (P3)| + 1 and |V (P3)| ≥ 1. Therefore,
by Lemma 1,

W (Du) = W (Dm−1) ≤ 2|V (Gm−1)| − 2 ≤ 2nu − 2|V (P3)| ≤ 2nu − 2

G

P
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‘

u Gu (c)
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= vra
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Fig. 9. (a) Gu, (b) G′
u, (c) a canonical decomposition of G′

u, (d) a drawing Dm−1 of
Gm−1, (e) a drawing D′

u = Dm of G′
u, and (f) a drawing Du of Gu
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and

H(Du) ≤ W (Dm−1) + |V (P3)| − 1 ≤ 2nu − 2|V (P3)|+ |V (P3)| − 1 ≤ 2nu − 2.

4.4 Drawing of G

If W (Dd) 
= W (Du), then we widen the narrower one of Dd and Du by the shift
method in [2] so that both have the same width, which is at most max{2nd −
2, 2nu − 2}. Since we combine the two drawings Dd and Du of the same width
to a drawing D of G, we have

W (D) ≤ max{2nd − 2, 2nu − 2} < 2n.

We arrange Dd and Du so that y(a3) = y(a4) = 0 and y(a1) = y(a2) = H(Dd)+
H(Du) + W (D) + 1, as illustrated in Fig. 1(e). Since nd + nu = n, we have

H(D) = H(Dd) + H(Du) + W (D) + 1 < (2nd − 2) + (2nu − 2) + 2n + 1 < 4n.

We finally draw, by straight line segments, all the edges of G that are contained
in neither Gu nor Gd. This completes the grid drawing D of G. (See Fig. 1(e).)

Since the conditions (sh5) and (sh6) hold for Dd and Du, one can prove
similarly as in [11] that the drawing D obtained above is a convex grid drawing of
G. Clearly the algorithm takes linear time. We thus have the following theorem.

Theorem 1. Assume that G is an internally triconnected plane graph, every
vertex of G has degree three or more, and the triconnected component decompo-
sition tree T (G) has exactly four leaves. Then our algorithm finds a convex grid
drawing of G on a 2n× 4n grid in linear time.

5 Conclusions

In this paper, we showed that every internally triconnected plane graph G whose
decomposition tree T (G) has exactly four leaves has a convex grid drawing on a
2n× 4n = O(n2) grid, and we present a linear algorithm to find such a drawing.
The area bound O(n2) is optimal up to a constant factor since the nested trian-
gles graph needs Ω(n2) area. The remaining problem is to obtain an algorithm
for an internally triconnected plane graph whose decomposition tree has five or
more leaves.
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Abstract. This paper studies the construction of self-stabilizing topolo-
gies for distributed systems. While recent research has focused on chain
topologies where nodes need to be linearized with respect to their iden-
tifiers, we go a step further and explore a natural 2-dimensional gener-
alization. In particular, we present a local self-stabilizing algorithm that
constructs a Delaunay graph from any initial connected topology and in
a distributed manner. This algorithm terminates in time O(n3) in the
worst-case. We believe that such self-stabilizing Delaunay networks have
interesting applications and give insights into the necessary geometric
reasoning that is required for higher-dimensional linearization problems.

1 Introduction

Open distributed systems such as peer-to-peer systems are often highly dynamic
in the sense that nodes join and leave continuously. In addition to these natural
membership changes, a system is sometimes under attack, e.g., a botnet may
block entire network fractions by a denial-of-service attack. For these reasons,
there is a considerable scientific interest in robust and “self-healing” topologies
that can be maintained in a distributed manner even under high churn.

An important concept to build robust networks is topological self-stabilization:
A self-stabilizing network can provably recover from any connected state, that
is, eventually the network always returns to a desirable (to be specified) state.
Despite its relevance, topological self-stabilization is a relatively new area and
today, we still know only very little about the design of self-stabilizing algorithms.
In particular, while much existing literature focuses on eventual stabilization, the
required convergence times are still not well understood.

Recently, progress was made in the area of graph linearization where nodes
need to be arranged in a chain network which respects the node identifiers. In
this paper, we go one step further and explore the 2-dimensional case. We as-
sume nodes are distributed in the Euclidean plane and are arbitrarily connected.
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A natural 2-dimensional analogon of linearization is the Delaunay graph, whose
edge set includes all nearest neighbor connections between node pairs. Delaunay
graphs are an important graph family in various CS domains, from computa-
tional geometry to wireless networking. This is due to their desirable properties
such as locality, sparseness or planarity. We find that while insights from graph
linearization are useful for self-stabilizing Delaunay graphs as well, the construc-
tion and analysis is more involved, requiring a deeper geometric reasoning.

1.1 Related Work

Researchers in the field of self-stabilization study algorithms that provably con-
verge to a desirable system state from any initial configuration. In the seminal
work by E.W. Dijkstra in 1974 [4], the problem of self-stabilization in a token
ring is examined. Subsequently, many aspects of distributed systems have been
explored from a self-stabilization point of view, including communication proto-
cols, graph theory problems, termination detection, clock synchronization, and
fault containment. Also general techniques for self-stabilization have been con-
sidered: In [1], Awerbuch and Varghese showed that every local algorithm can
be made self-stabilizing if all nodes keep a log of the state transitions until the
current state.

However, much of this work is not applicable to scenarios where faults in-
clude changes in the topology (e.g., see [6] for an early work on topological
self-stabilization): A single fault may require the involvement of all nodes in the
system and is hence expensive to repair. To reduce this overhead, researchers
have started to study so-called superstabilizing protocols [5]. Topological self-
stabilization is still in its infancy. Often, recovery algorithms do not work gen-
erally but only from certain degenerate network states (see, e.g., the technical
report of the Chord network). A notable recent exception is [8] which describes
a truly self-stabilizing algorithm for skip graphs. Unfortunately, however, skip
graphs do not maintain locality in the sense that nodes which are close in the
metric space are also close with respect to the hop distance, and therefore cannot
be used in our context.

In order to shed light onto the fundamental principles enabling provable topo-
logical self-stabilization, researchers have started to examine the most simple
networks such as line or ring graphs (e.g., [3, 7]). Our paper goes one step
further and initiates the study of self-stabilizing constructions of 2-dimensional
graphs. As a case study, we consider the important family of Delaunay graphs.
We assume nodes have (x, y) coordinates and are distributed in the Euclidean
plane. As Delaunay graphs include all nearest neighbor edges, our algorithms
also involve a kind of 2-dimensional linearization. However, it turns out that the
problem is more involved, and the reasoning requires geometric techniques. Still
we are able to prove a O(n3) convergence time in the worst-case.

1.2 Our Contributions

This paper presents the first self-stabilizing algorithm to build a Delaunay graph
from any weakly connected network. Our algorithm is local in the sense that
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nodes are only allowed to communicate with their topological neighbors. Besides
correctness, we are able to derive a O(n3) worst-case bound on the convergence
time (i.e., number of communication rounds). We believe that this result has in-
teresting implications, and that our geometric reasoning can give general insights
into the design of higher-dimensional “nearest-neighbor graphs” respecting the
closeness of nodes in a self-stabilizing manner. If the initial network contains the
Delaunay graph, the convergence time is at most n rounds.

Compared to the trivial strategy to obtain a complete graph in O(log n)
rounds in a first phase and then compute the Delaunay graph “locally” at each
node in a second phase, our algorithm provides several advantages. First of all,
it is not necessary to distinguish between different execution phases: Each node
will perform updates according to the same set of rules at any time; only like
this, the algorithm is truly self-stabilizing. Furthermore, our algorithm can deal
efficiently with small topology changes: If only a small number of nodes joins or
leaves, the topology is repaired locally; a complete re-computation is not needed.
Finally the simulations show that the maximal degree and the total number of
edges remain rather small in general. This keeps the resource requirements at
each node small.

2 Model and Preliminaries

This section first introduces some notations and definitions from geometry.
Subsequently, the Delaunay graph is introduced together with some important
properties. In this paper, we will consider non-degenerate cases only, that is, we
assume that no two nodes are at the same location, no three points are on a line,
and no four points are on a circle.

2.1 Geometry

We consider the 2-dimensional Euclidean space R2. The scalar product is written
as 〈·, ·〉 and the Euclidean norm (the distance from the origin) is given by ‖x‖ =√
〈x, x〉. We make use of the following notation. Let B(x, r) denote the disk (or

ball) with center x ∈ R2 and radius r ∈ R, i.e., B(x, r) := {y ∈ R2 : ‖x−y‖ ≤ r}.
Note that the border explicitly belongs to the ball in our model, and hence, a
point y ∈ B(x, r) may lie on the border. C(x, y) := B(1

2 (x + y), 1
2‖x − y‖) is

the disk between x, y ∈ R2. Similarly, C(x, y, z) := B(c, r) with r = ‖x − c‖ =
‖y − c‖ = ‖z − c‖ is the disk defined by non-collinear x, y, z ∈ R2. For a vector
x 
= 0 we define 0 
= ⊥x ∈ R2 to be the perpendicular, i.e., 〈x,⊥x〉 = 0. Note
that ⊥x is unique up to constant factors.

By ∠xzy we denote the area spanned by the vectors x and y attached to z,
i.e., the area that can be expressed as a linear combination of the vectors x and y
with non-negative factors. In particular, ∠xzy = ∠yzx. If a node u is contained
in this area, we write u ∈ ∠xzy.

This paper makes use of the following simple geometric facts. For two general
points a, b ∈ R2, due to the triangle inequality, we have that ‖a+b‖ ≤ ‖a‖+‖b‖.
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Moreover, ‖a+ b‖ = ‖a‖+ ‖b‖ ⇔ ∃t ≥ 0 : a = t · b. Pythagoras’ law says that for
any a, b ∈ R2 with 〈a, b〉 = 0, it holds that ‖a + b‖2 = ‖a‖2 + ‖b‖2. If we know
two points on the border of a disk, then their midpoint must be on a specific
straight line. Formally, let u, v, x ∈ R2. Then ‖u − x‖ = ‖v − x‖ if and only if
x = 1

2 (u + v) + t(u − v) for some t ∈ R. For the Euclidean norm, it holds for
C = C(u, v) for u, v ∈ R2 that w ∈ C and ‖w − u‖ ≥ ‖v − u‖ imply w = v.

For some proofs we want to choose a disk C̃ contained in a bigger disk C with
at least two points on the border of C̃. We can make the following observations.

Fact 2.1. Let C = B(x, r) be a disk with u, v ∈ C and u 
= v. Then there is a
disk C̃ = B(x̃, r̃) ⊆ C with ‖u − x̃‖ = ‖v − x̃‖ = r̃.

For the opposite direction, given a set of points, we need a disk containing all of
them, with at least three on the border.

Fact 2.2. Let V ⊂ R2 be a finite set of points, not all of them collinear. Then
there are three different, not collinear points u, v, w ∈ V with C(u, v, w) ⊃ V .

2.2 Delaunay Graphs

We consider graphs with an embedding into R2. Let V ⊂ R2 be a finite set and
E ⊂

(
V
2

)
, then G = (V, E) is called undirected embedded graph with nodes V

and edges E. Let n = |V | be the cardinality of V . We define NG(u) = {v ∈ V :
{u, v} ∈ E} as the neighbors of u. Moreover, let NG(u) = NG(u) ∪ {u} denote
the neighbors of u including u.

Usually we speak of a directed graph G = (V, E) with E ⊂ V 2. Then a directed
edge from u to v is denoted by (u, v), the undirected edge {u, v} represents the
two directed edges (u, v) and (v, u) and NG(u) = {v ∈ V : (u, v) ∈ E}. NG(u) is
defined analogously. Note that any undirected graph can be seen as a directed
graph with this interpretation of undirected edges. This will be done implicitly
throughout the paper. A directed graph is called strongly connected, if for every
pair (u, v) of nodes u, v ∈ V there is a directed path from u to v. A direct
graph is weakly connected, if the graph obtained by replacing all directed edges
by undirected edges is connected.

Armed with these definitions, we can now define the Delaunay graph.

Definition 2.3 (Delaunay Graph). The Delaunay Graph

GD(V ) = (V, ED(V ))

of the vertices V is an undirected embedded graph defined by {u, v} ∈ ED(V ) ⇔
u 
= v ∧ ∃C = B(x, r) : C ∩ V = {u, v} i.e., u and v are connected, if and only
if there is a disk containing only these two points of V .

Recall that we will consider non-degenerate cases, that is, we assume there is
no disk B(x, r) with four different points x1, . . . , x4 ∈ V on its border, i.e.
∀B(x, r) : |V ∩ {y ∈ R2 : ‖x − y‖ = r}| ≤ 3. It is easy to see that the Delaunay
graph on a given node set always includes the convex hull edges.
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2.3 Properties

We can give several equivalent formulations of Definition 2.3 that will be useful
in our analysis. In a Delaunay graph, two nodes u and v are connected if and
only if either they are the only two nodes in the disk C(u, v), or if there exists
a third node w such that u, v, and w are the only three nodes in C(u, v, w). [2]
Lemma 2.4. Let G = (V, ED(V )) be a Delaunay graph. Then

{u, v} ∈ ED(V ) ⇔ u 
= v ∧ (C(u, v) ∩ V = {u, v} ∨
∨∃w ∈ V \ {u, v} : C(u, v, w) ∩ V = {u, v, w})

The following lemma states that in a Delaunay graph, for each pair of non-
adjacent nodes, there must be a “close” neighboring node.
Lemma 2.5. Let G = (V, ED(V )) be a Delaunay graph and {u, v} /∈ ED(V ).
Then every disk C = B(x, r) containing u and v must contain at least one
neighbor w ∈ NG(u) with ‖w − x‖ < r.
We need some properties about restrictions of Delaunay graphs to a subset of
nodes U ⊂ V . It is easy to see, that the restriction of the Delaunay graph of V
to U is contained in the Delaunay graph on U :
Lemma 2.6

U ⊂ V ⇒ ED(U) ⊃ ED(V ) ∩ (U × U).

Proof. Let {u, v} be an edge in ED(V ) ∩ (U × U). Then by Definition 2.3 there
is a disk C = B(x, r) such that C ∩ V = {u, v}. Since U ⊂ V , C ∩ U = {u, v}
and thus {u, v} ∈ ED(U). �	
Combining this lemma with the previous one, additional insights can be gained.
Let us pick U such that is contains the neighbors NG(u) of a node u. Then u has
the same neighbors in the Delaunay graph on U as in the original Delaunay graph.

Lemma 2.7. Let G = (V, ED(V )) be a Delaunay graph, u ∈ V and NG(u) ⊂
U ⊂ V . Then NGD(U)(u) = NG(u).

Proof. NGD(U)(u) ⊃ NG(u) is clear by Lemma 2.6. Now let {u, v} ∈ (U ×
U) \ ED(V ). So, by Lemma 2.5, in each disc C = B(x, r) containing v, w there
is a neighbor w of u (i.e. w ∈ NG(u) ⊂ U). Thus, by Definition 2.3, {u, v}
/∈ ED(U). �	
The next, important characterization of Delaunay graphs also argues about edges
that are not Delaunay. If and only if two nodes u and v are not connected, there
must exist two neighbors x and y of u, such that the disk C(u, v, x) contains
only y, and x and y lie on different sides of the line connecting u and v.
Lemma 2.8. Let G = (V, ED(V )) be a Delaunay graph. Then

{u, v} /∈ ED(V ) ⇔ ∃x, y ∈ V \ {u, v} : C(u, v, x) ∩ V ⊃ {u, v, x, y} ∧
∧〈x − u,⊥(v − u)〉 · 〈y − u,⊥(v − u)〉 ≤ 0

That is, x and y must be on different sides of the line connecting u and v. One
can even choose x, y ∈ NG(u).
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We will later need the existence of special edges in Delaunay graphs. First, we
observe that a Delaunay node is always connected to the closest node, that is,
the Delaunay graph contains the nearest neighbor graph. The following lemma
follows directly from the observation that, for two closest neighbors u, v ∈ V ,
C(u, v) ∩ V = {u, v}.

Lemma 2.9. Let G = (V, ED(V )) be a Delaunay graph and u ∈ V . Then u is
connected to the node v ∈ V \ {u} with minimal Euclidean distance to u.

Another important property of Delaunay graphs is that they are connected.

Lemma 2.10. Every Delaunay graph G = (V, ED(V )) is connected. [12]

Moreover, it can be shown that these graphs have a planar embedding.

Lemma 2.11. Every Delaunay graph G = (V, ED(V )) is planar. [2]

2.4 Local Algorithms and Self-stabilization

The main objective of this paper is to devise a distributed algorithm—essentially
a simple set of rules—which is run by every node all the time. Independently
from the initial, weakly connected topology (nodes can be connected to any other
nodes from all over the metric space), a self-stabilizing algorithm is required to
eventually terminate with a correct Delaunay graph as defined in Definition 2.3.
During the execution of this algorithm, each node will add or remove edges to
other nodes using local interactions only. In order to evaluate the algorithm’s
performance, a synchronous model is investigated (similarly to [11]) where time
is divided into rounds. In a round, each node is allowed to perform an update of
its neighborhood, that is, remove existing edges and connect to other nodes. We
study the time complexity of the algorithm and measure the number of rounds
(in the worst-case) until a Delaunay graph is formed and the algorithm stops.

3 Self-stabilizing Algorithm

This section presents our algorithm ALG. During the execution of ALG, all
nodes continuously calculate a Delaunay graph on their neighbors, that is, each
node u computes the Delaunay graph on the node set N(u)—a triangulation
consisting of circular edges (“convex hull”) and radial edges. In the following, we
will call the considered node the active node and the calculated Delaunay graph
its so-called local Delaunay graph. Here active is not referring to an calculation
order but emphasizes the local role of the computing node for its local Delaunay
graph. Note that the local Delaunay graph of a node u, denoted by GL(G, u) =
(NG(u), ED(NG(u)), also contains edges that are not incident to u, but connect
neighbors of u.

The construction of the local Delaunay graph GL(G, u) is reminiscent of the
1-localized Delaunay graph LDEL(1)(NG(u)) introduced by Li et al. [10]. The
major difference is that [10] assumes an underlying unit disk graph to define the
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neighbors of a node whereas in our construction the current approximation of
the Delaunay graph is used (which can be arbitrarily bad initially).

Informally, the active node keeps edges to neighbors in the local Delaunay
graph, and forms edges among them in a circular order around it. All other
nodes are deferred to some Delaunay neighbor of the active node. The Delaunay
update G̃ = (V, Ẽ) of G is the union of these update edges for all nodes in G.
Due to the division into rounds, the updates are well-defined and the actions of
different nodes in the same round do not interfere.

Definition 3.1 (Stable and Temporary Edges). Stable edges are undirected
and are currently—from a local point of view—consistent with the Delaunay
properties. Temporary edges on the other hand are directed and will appear, be
forwarded, and disappear again (i.e., become stable) during the execution of our
algorithm.

We are now ready to formally define the Delaunay update:

Definition 3.2 (Delaunay Update). Let G = (V, E) be a directed graph.

• The local Delaunay graph of u is GL(G, u) = (NG(u), ED(NG(u)).
• Each node u selects the following edges ES(G, u) from ED(NG(u)), which

will be kept for the next round:

ES(G, u) = Estable(G, u) ∪ Etemp(G, u)

where Rule I:

Estable = {{u, v} : v ∈ NGL(G,u)(u)}
(undirected edges from u to its neighbors in GL(u))

∪
{
{v, w} : v, w ∈ NGL(G,u)(u)∧
�x ∈ NGL(G,u)(u) : x ∈ ∠vuw

}

(undirected circular edges between u’s neighbors)

and Rule II:

Etemp(G, u) =
{
(v, w) : v ∈ NGL(G,u)(u), w ∈ NG(u) \ NGL(G,u)(u)∧
∀x ∈ NGL(G,u)(u) : ‖x − w‖ ≥ ‖v − w‖

}

(directed edges from u’s non-neighbors to neighbors)

Rule II keeps directed edges between a node’s neighbor and a non-neighbor
if there is no closer neighbor to the non-neighbor (a nearest connection
strategy).

• Then the Delaunay update is G̃ = (V, Ẽ) with

Ẽ =
⋃

u∈V

ES(G, u),

the graph that arises when all nodes have chosen their new neighbors for the
next round.
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Observe that ALG follows a nearest neighbor strategy in the sense that tem-
porary circular edges are only allowed from closest neighbors to non-neighbors
of the active node. Moreover, an important property of our algorithm is that
temporary edges are forwarded to closer nodes. We will say the edge (u, v) is
passed to node w, if (u, v) is replaced by (w, v); the node pointed to remains the
same.

4 Analysis

We start with two fundamental properties of the Delaunay updates.

Lemma 4.1. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. Then Delaunay edges of G will also be in G̃, that is,

(u, v) ∈ E ∩ ED(V ) ⇒ {u, v} ∈ Ẽ.

Proof. Since (u, v) ∈ E, u, v ∈ NG(u). By Lemma 2.6, {u, v} ∈ ED(NG(u)) and
by Definition 3.2, Rule I, {u, v} ∈ Ẽ. �	

Moreover, the following lemma claims that Delaunay updates maintain connec-
tivity.

Lemma 4.2. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. If G is (weakly or strongly) connected, then so is G̃.

Proof. It is enough to show, that for every neighbor w of u in G there is a
directed path from u to w in G̃. By Definition 3.2, we have to consider two
cases. If w ∈ NGL(G,u)(u), then (u, w) ∈ Ẽ is a path from u to w. Otherwise
(v, w) ∈ E for some v ∈ NGL(G,u)(u), since directed edges are forwarded between
nodes, while the pointed-to node remains the same. Thus (u, v) and (v, w) form
a path from u to w. �	

Note that Lemma 4.2 proves that all paths are maintained during updates.

4.1 Superfluous Edges

Lemma 4.1 implies that if every Delaunay edge will be created in some round, we
end up with a supergraph of GD(V ). Assuming that this happened, this section
will show that all non-Delaunay edges will disappear after a few rounds, so that
we are left with just the Delaunay graph.

First we need that the circular connections of a node’s Delaunay neighbors
are Delaunay edges.

Lemma 4.3. Let G = (V, E) be a directed embedded graph with NG(u) ⊇
NGD(V )(u). Then

{
{v, w} : v, w ∈ NGL(G,u)(u) ∧ �x ∈ NGL(G,u)(u) : x ∈ ∠vuw

}
⊆ ED(V ).
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The following helper lemma is crucial for our convergence analysis, as it shows
that non-Delaunay edges become shorter over time. The lemma takes into ac-
count that ALG follows a nearest neighbor strategy.

Lemma 4.4. Let G = (V, E) be a directed embedded graph with E ⊇ ED(V ) and
G̃ = (V, Ẽ) its Delaunay update. Then for every non-Delaunay edge in G̃ there
is a strictly longer non-Delaunay edge in G, formally, (v, w) ∈ Ẽ \ ED(V ) ⇒
∃(u, w) ∈ E \ ED(V ) : ‖u − w‖ > ‖v − w‖.

We are now ready to prove that superfluous edges disappear quickly in at most
n rounds.

Lemma 4.5. Let G = (V, E) be a directed embedded graph with E ⊇ ED(V ),
i.e., G is a supergraph of the Delaunay graph GD(V ). Then ALG converges to
GD(V ) in at most n rounds.

4.2 Fixpoint and Convergence

We will first show that there is no “dead end”, i.e., as long as we do not reach
the Delaunay graph, local updates will change the graph.

Lemma 4.6. Let V ⊂ R2 be a finite set of nodes in general positions. Then
the Delaunay graph G = GD(V ) = (V, ED(V )) is the only weakly connected
stable graph on the nodes V , i.e., the only graph that equals its Delaunay update
G̃ = (V, Ẽ).

For the convergence proof we need a potential function.

Definition 4.7 (Potential φ). Let G = (V, E) be a directed embedded graph.
Then the potential φG(v) of a node v is defined as the number of nodes w ∈
V that are better approximations of the Delaunay neighbors than its current
neighbors. This means they would be neighbors of v in the local Delaunay graph
containing v, its neighbors and w. Formally

φG(v) = |{w ∈ V \ NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})}|.

The potential of the whole graph is φ(G) =
∑

v∈V φG(v).

We now observe that the potential φ(G) is monotone.

Lemma 4.8. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. Then φ(G) ≥ φ(G̃).

Combining all our insights, we can now prove our main result.

Theorem 4.9. Let G = (V, E) be a directed embedded, weakly connected graph.
Then ALG requires at most O(n3) rounds (i.e. Delaunay updates) until the topol-
ogy converges to the Delaunay graph GD(V ).
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Proof. Consider the sequence of graphs G0 = G, G1, . . ., where Gi+1 is the
Delaunay update of Gi = (V, Ei). Due to Lemma 4.2 each graph in this sequence
is weakly connected. As soon as ED(V ) ⊆ Ei, we know Gi+n = GD(V ) from
Lemma 4.5. So we just have to consider the case ED(V ) 
⊆ Ei.

From Lemma 4.8 we know that the potential cannot increase. In particular,
it holds that once a node leaves the potential set

{w ∈ V \ NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})},

it will never be member of the set again. Therefore, it remains to show that
after every at most n steps, the cardinality of the set decreases (by a positive
integer value): Since the potential is bounded by n · (n − 1) and the only graph
with potential 0 is the Delaunay graph, this gives the desired bound on the
convergence time.

Now assume for the case of contradiction that the potential set has the same
cardinality for more than n rounds. This implies that no new Delaunay edge
appeared during this time period. Since each temporary edge is forwarded no
more than n − 1 times, the topology must describe a Delaunay fixpoint in the
sense of Lemma 4.6. Since the graph is connected, it must be the Delaunay
graph. This contradiction proves the claim. �	
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Abstract. We show that greedy geometric routing schemes exist for the Eu-
clidean metric in R2, for 3-connected planar graphs, with coordinates that can
be represented succinctly, that is, with O(log n) bits, where n is the number of
vertices in the graph.

1 Introduction

Geometric routing algorithms perform message passing using geometric information
stored at the nodes and edges of a network.

Greedy Geometric Routing. Perhaps the simplest routing rule is the greedy one:

– If a node v receives a message M intended for a destination w 
= v, then v should
forward M to a neighbor that is closer to w than v is.

This rule can be applied in any metric space, of course, but simple and natural met-
ric spaces are preferred over cumbersome or artificial ones. Thus, we are interested in
greedy routing schemes that assign network nodes to virtual coordinates in a natural
metric space.

Interest in greedy geometric routing in fixed-dimensional Euclidean spaces has ex-
panded greatly since the work by Papadimitriou and Ratajczak [8], who showed that
any 3-connected planar graph can be embedded in R3 so as to support greedy geomet-
ric routing. Indeed, their conjecture that such embeddings are possible in R2 spawned
a host of additional papers (e.g., see [1,2,3,6,7]). Leighton and Moitra [5] settled this
conjecture by giving an algorithm to produce a greedy embedding of any 3-connected
planar graph in R2, and a similar result was independently found by Angelini et al. [1].
Greedy embeddings in R2 were previously known for graphs containing Delaunay tri-
angulations [6], and existentially (but not algorithmically) for triangulations [2].

Succinct Geometric Routing. In spite of their theoretical elegance, these results set-
tling the Papadimitriou-Ratajczak conjecture have an unfortunate drawback, in that the
virtual coordinates of nodes in these solutions require Ω(n logn) bits each in the worst
case. These space inefficiencies reduce the applicability of these results for greedy geo-
metric routing, since one could alternatively keep routing tables of size O(n log n) bits
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at each network node to support message passing. Indeed, such routing tables would
allow for network nodes to be identified using labels of only O(log n) bits each, which
would significantly cut down on the space, bandwidth, and packet header size needed
to communicate the destination for each packet being routed. Thus, for a solution to
be effectively solving the routing problem using a greedy geometric routing scheme,
we desire that it be succinct, that is, it should use O(log n) bits per virtual coordinate.
Succinct greedy geometric routing schemes are known for fixed-dimensional hyper-
bolic spaces [3,7], but we are unaware of any prior work on succinct greedy geometric
routing in fixed-dimensional Euclidean spaces.

Our Results. We provide a succinct greedy geometric routing scheme for 3-connected
planar graphs in R2. At the heart of our scheme is a new greedy embedding for 3-
connected planar graphs in R2 which exploits the tree-like topology of a spanning
(Christmas cactus) subgraph. Our embedding allows us to form a coordinate system
which uses O(log n) bits per vertex, and allows distance comparisons to be done just
using our coordinate representations consistently with the Euclidean metric.

2 Finite-Length Coordinate Systems

Let us begin by formally defining what we mean by a coordinate system, and how that
differs, for instance, from a simple compression scheme. Let Σ be an alphabet, and let
Σ∗ a set of finite-length strings over Σ. We define a coordinate system f for a space S:

1. f is a map, f : Σ∗ → S, which assigns character strings to points of S.
2. f may be parameterized: the assignment of strings to points may depend on a fixed

set of parameters.
3. f is oblivious: the value of f on any given x ∈ Σ∗ must depend only on f ’s

parameters and x itself. It cannot rely on any other character strings in Σ∗, points
in S, or other values of f .

If f is lacking property 3, we prefer to think of f as a compression scheme.

3 Greedy Routing in Christmas Cactus Graphs

Our method is a non-trivial adaptation of the Leighton and Moitra scheme [5], so we
begin by reviewing some of the ideas from their work.

A graph G is said to be a Christmas cactus graph if: (1) each edge of G is in at most
one cycle, (2) G is connected, and (3) removing any vertex disconnects G into at most
two components. For ease of discussion, we consider any edge in a Christmas cactus
graph that is not in a simple cycle to be a simple cycle itself (a 2-cycle); hence, every
edge in is in exactly one simple cycle. The dual tree of a Christmas cactus graph G is a
tree containing a vertex for each simple cycle in G with an edge between two vertices
if their corresponding cycles in G share a vertex. Rooting the dual tree at an arbitrary
vertex creates what we call a depth tree.

Having a depth tree allows us to apply the rooted tree terminology to cycles in G. In
particular: root, depth, parent, child, ancestor, and descendant all retain their familiar



Succinct Greedy Geometric Routing in the Euclidean Plane 783

definitions. We define the depth of a node v to be the minimum depth of any cycle
containing v. The unique node that a cycle C shares with its parent is called the primary
node of C. Node v is a descendant of a cycle C if v is in a cycle that is a descendant
of C and v is not the primary node of C. Node v is a descendant of node u if removing
neighbors of u with depth less than or equal to u leaves u and v in the same component.

Greedy Routing with a Christmas Cactus Graph Embedding. Working level by
level in a depth tree, Leighton and Moitra [5] embed the cycles of a Christmas cactus
graph on semi-circles of increasing radii, centered at the origin. Within the embedding
we say that vertex u is above vertex v if u is embedded farther from the origin than v,
and we say that u is to the left of v if u is embedded in the positive angular direction
relative to v. We can define below and right similarly. These comparisons naturally give
rise to directions of movement between adjacent vertices in the embedding: up, down,
left, and right.

s

t t

s

(a) (b)

Fig. 1. Arrows indicate valid greedy hops. (a) Descendants of s can be reached by a simple path
of up and right hops, up and left hops, or a combination of the two. (b) If t is not a descendant of
s, then we route down and (left or right) in the direction of t until we reach an ancestor of t.

Routing from start vertex s to a terminal vertex t in a Christmas cactus graph em-
bedding can be broken down into two cases: (1) t is a descendant of s, and (2) t is not
a descendant of s.

1. As shown in Fig. 1(a), if t is a descendant of s, then we can route to t by a simple
path of up and right hops, up and left hops, or a combination of the two.

2. As shown in Fig. 1(b), if t is not a descendant of s, then we route to the least
common (cycle) ancestor of s and t. Suppose, without loss of generality, that t is
to the left of s, then we can reach this cycle by a sequence of down and left hops.
Once on the cycle, we can move left until we reach an ancestor of t. Now we are
back in case 1.

This routing scheme immediately gives rise to a simple succinct compression scheme
for 3-connected planar graphs, which we discuss in the full version of this paper.

4 Toward a Succinct Greedy Embedding

Given a 3-connected planar graph, we can find a spanning Christmas cactus subgraph
in polynomial time [5]. Therefore, we restrict our attention to Christmas cactus graphs.
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Our results apply to 3-connected planar graphs with little or no modification. In this sec-
tion, we construct a novel greedy embedding scheme for any Christmas cactus graph
in R2. We then build a coordinate system from our embedding and show that the co-
ordinates can be represented using O(log2 n) bits. In the next section, we show how to
achieve an optimal O(log n)-bit representation.

Heavy Path Decompositions. We begin by applying the Sleator and Tarjan [9] heavy
path decomposition to the depth tree T for G.

Definition 1. Let T be a rooted tree. For each node v in T , let nT (v) denote the number
of descendants of v in T , including v. For each edge e = (v, parent(v)) in T , label e
as a heavy edge if nT (v) > nT (parent(v))/2. Otherwise, label e as a light edge.
Connected components of heavy edges form paths, called heavy paths. Vertices that are
incident only to light edges are considered to be zero-length heavy paths. We call this
the heavy path decomposition of T .

For ease of discussion, we again apply the terminology from nodes in T to cycles in
G. A cycle in G is on a heavy path H if its dual node in T is on H . Let H be a
heavy path in T . We say that head(H) is the cycle in H that has minimum depth, we
define tail(H) similarly. Let C1 and C2 be two cycles such that C1 = parent(C2) and
let {p} = V (C1) ∩ V (C2). If C1 and C2 are on the same heavy path then we call
p a turnpike. If C1 and C2 are on different heavy paths (where C1 = tail(H1) and
C2 = head(H2)) then we call p an off-ramp for H1 and the vertices v ∈ V (C2) \ {p}
on-ramps for H2.

An Overview of Our Embedding Strategy. Like Leighton and Moitra [5], we lay
the cycles from our Christmas cactus graph on concentric semi-circles of radius 1 =
R0 < R1 < R2 . . .; however, our embedding has the following distinct differences: we
have Θ(n log n) semi-circles instead of O(n) semi-circles, on-ramps to heavy paths are
embedded on special semi-circles which we call super levels, turnpikes are placed in
a predefined position when cycles are embedded, and the radii of semi-circles can be
computed without knowing the topology of the particular Christmas cactus graph being
embedded.

To make our embedding scheme amenable to a proof by induction, we modify the
input Christmas cactus graph. After constructing a greedy embedding of this modified
graph, we use it to prove that we have a greedy embedding for the original graph.

Modifying the Input Christmas Cactus Graph. Given a Christmas cactus graph G on
n vertices, we choose a depth tree T of G, and compute the heavy path decomposition
of T . For a cycle C on a heavy path H , we define relativeDepth(C) to be depth(C)−
depth(head(H)). For each C1, C2 = child(C1) forming a light edge in T , let {p} =
V (C1)∩V (C2). Split p into two vertices p1 and p2 each on their own cycle, and connect
p1 to p2 with a path of n − 1 − relativeDepth(C1) edges. The new graph G′ is also
a Christmas cactus graph, and our new depth tree T ′ looks like T stretched out so
that heads of heavy paths (from T ) are at depths that are multiples of n. We continue
to call the paths copied from T heavy paths (though they do not form a heavy path
decomposition of T ′), and the newly inserted edges are dummy edges.
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Embedding the Modified Christmas Cactus Graph in R2. Given a Christmas cactus
graph G on n vertices, run the modification procedure described above and get G′ and
T ′. We embed G′ in phases, and prove by induction that at the end of each phase we
have a greedy embedding of an induced subgraph of G′.

Lemma 1 (Leighton and Moitra [5]). If points c = (0, 1 + z), b = (− sinβ, cosβ),
and a = (−(1 + ε) sin(β − α), (1 + ε) cos(β − α)) are subject to the constraints
0 < α ≤ π/2, 0 < β ≤ π/2, 0 < ε ≤ (1−cosβ)/6, 0 ≤ z ≤ ε, and sinα ≤ ε(1−cos β)

2(1+ε)

then d(a, c) − d(b, c) ≥ ε2 > 0.

We begin by embedding the root cycle, C = (v0, . . . , vk−1), of T ′. We trace out a semi-
circle of radius R0 = 1 centered at the origin and divide the perimeter of this semi-circle
into 2n + 1 equal arcs. We allow vertices to be placed at the leftmost point of each arc,
numbering these positions 0 to 2n. We place vertices v0, . . . , vk−1 clockwise into any k
distinct positions, reserving position n for C’s turnpike. If C does not have a turnpike,
as is the case if C is a dummy edge or the tail of a heavy path, then position n remains
empty. The embedding of C is greedy (proof omitted here).

Inductive Step: Suppose we have a greedy embedding all cycles in T ′ up to depth i,
call this induced subgraph G′i. We show that the embedding can be extended to a greedy
embedding of G′i+1. Our proof relies on two values derived from the embedding of G′i.

Definition 2. Let s, t be any two distinct vertices in G′i and fix ns,t to be a neighbor of
s such that d(s, t) > d(ns,t, t). We define δ(G′i) = mins,t{d(s, t) − d(ns,t, t)}.

We refer to the difference d(s, t) − d(ns,t, t) as the delta value for distance-decreasing
paths from s to t through ns,t.

Definition 3. Let β(G′i) to be the minimum (non-zero) angle that any two vertices in
the embedding of G′i form with the origin.

t

u

s

Fig. 2. s, u and t form a lower bound for δ(G′
0)

Since we do not specify exact placement of all vertices, we cannot compute δ(G′0) and
β(G′0) exactly. We instead compute positive underestimates, δ0 and β0, by considering
hypothetical vertex placements, and by invoking the following lemma.

Lemma 2. Let s and u be two neighboring vertices embedded in the plane. If there
exists a vertex t that is simultaneously closest to the perpendicular bisector of su (on
the u side), and farthest from the line su, then the delta value for s to t through u is the
smallest for any choice of t.
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Applying the above lemma to all hypothetical s, u, and t placements for the embedding

of G′0 leads to the underestimate δ0 = 2−
√

2 + 2 cos π
2n+1 < d(s, t)−d(u, t) ≤ δ(G′0)

where s, u, and t are shown in Fig. 2. Trivially, β0 = π
2n+1 ≤ β(G′0).

We now show how to obtain a greedy embedding of G′i+1, given a greedy embedding
of G′i and values δi and βi.

Let εi = min{δi/3, Ri
1−cos 2

3 βi

6 }. Trace out a semi-circle of radius Ri+1 = Ri + εi

centered at the origin. Each cycle at depth i+1 of T ′ has the form C = (v, x1, . . . , xm)
where v, the primary node of C, has already been embedded on the ith semi-circle. We
embed vertices x1 to xm in two subphases:

Subphase 1 We first embed vertex x1 from each C. Choose an orientation for C so that
x1 is not a turnpike.1 We place x1 where the ray beginning at the origin and passing
through v meets semi-circle i + 1. We now show that distance decreasing paths exist
between all pairs of vertices embedded thus far.

Distance decreasing paths between vertices in G′i are preserved by the induction
hypothesis. For t placed during this subphase: t has a neighbor v embedded on semi-
circle i. If s = v then s’s neighbor t is strictly closer to t. Otherwise if s ∈ G′i then
since t is within distance δi/3 of v, then s’s neighbor u that is closer to v is also closer

to t. If s was placed during this subphase then s is within distance Ri
1−cos 2

3 βi

6 from its
neighbor v, and the perpendicular bisector of sv contains s on one side and every other
vertex placed on the other side. Therefore s’s neighbor v is closer to t.

The next subphase requires new underestimates, which we call δ1
i and β1

i . By con-
struction, β1

i = βi. No s–t paths within G′i decrease the delta value. Paths from s ∈ G′i
to t placed in this subphase have delta value at least δi/3 by design. For paths from
s placed in this subphase, s’s neighbor v is the closest vertex to the perpendicular bi-
sector of sv on the v side. If we translate v along the perpendicular bisector of sv to a
distance of Ri+1 from sv, this hypothetical point allows us to invoke Lemma 2 to get
an underestimate for the delta value of all paths beginning with s. Therefore, our new

underestimate is: δ1
i = min{δi/3,

√
R2

i+1 + ε2i −Ri+1}.

Subphase 2 We now finish embedding each cycle C = (v, x1, . . . xm). Let the value

α = min{β1
i /3, δ

1
i /(3Ri+1)}, s.t. sinα ≤ εi(1−cos 2

3 β1
i )

2(1+εi)
. Trace out an arc of length

Ri+1α from the embedding of x1, clockwise along semi-circle i + 1. We evenly divide
this arc into 2n + 1 positions, numbered 0 to 2n. Position 0 is already filled by x1. We
embed vertices in clockwise order around the arc in m− 1 distinct positions; reserving
position n for C’s turnpike. If there is no such node, position n remains empty.

This completes the embedding of G′i+1. We show that the embedding of G′i+1 is
greedy. We only need to consider distance decreasing paths that involve a vertex placed
during this subphase. For t placed during this subphase, t is within distance δ1

i /3 from
an x1, therefore, all previously placed s 
= x1 have a neighbor u that is closer to t. If

1 For the case where C is a 2-cycle and x1 is a turnpike we insert a temporary placeholder
vertex p into C with edges to v and x1, and treat p as the new x1. We can later remove this
placeholder by the triangle inequality.
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s = x1 the s’s neighbor closer to t is x2. Finally, for s placed during this subphase, let
the cycle that s is on be C = (v, x1, . . . , xm). For s = xi 
= xm, since α ≤ β1

i /3,
the interior of the sector formed by x1, xm and the origin is empty, therefore t is either
on the xi−1 side of the perpendicular bisector to xi−1xi or on the xi+1 side of the
perpendicular bisector to xixi+1. If s = xm If t is embedded to the left s, the closer

neighbor is xm−1. Otherwise, applying Lemma 1, our choice of sinα ≤ εi(1−cos 2
3 β1

i )
2(1+εi)

forces the perpendicular bisector to sv to have s on one side, and all nodes to the right
of s on the other side. All cases are considered, so the embedding of G′i+1 is greedy.

To complete the inductive proof, we must compute δi+1 and βi+1. Trivially, βi+1 =
α
2n ≤ β(G′i+1). Distance decreasing paths between vertices placed before this subphase
will not update the delta value. Therefore, we only evaluate paths with s or t embedded
during this subphase. By design, paths from s previously placed to t placed during this
subphase have a delta value ≥ δ1

i /3. Distance-decreasing paths from s placed in this
subphase to t ∈ G′i+1 take two different directions. If s’s neighbor u which is closer
to t is on semi-circle i + 1 then points that are closest to the perpendicular bisector
to su are along the perimeter of the sector formed by s, u, and the origin. The point
closest to the perpendicular bisector is where the first semi-circle intersects the sector.
We translate this point down Ri+1 + 2 units along the perpendicular bisector, and we
have an underestimate for the delta value for any path beginning with a left/right edge.
If s’s neighbor that is closer to t is on the ith semi-circle, then a down edge is followed.
To finish, we evaluate down edges su added during the second subphase. The closest
vertex to the perpendicular bisector to su on the u side is either u, or the vertex placed
in the next clockwise position the i+1th semi-circle. Translating this point 2Ri+1 units
away from su along the perpendicular bisector gives us the an underestimate for paths
beginning with su.

This completes the proof for the greedy embedding of G′. To obtain a greedy em-
bedding for G, we repeatedly collapse dummy edges in G′ until we get G. When we
collapse an edge (p, x1), where p is the primary node for the 2-cycle, we collapse the
edge to vertex p in the embedding. Collapsing in the other direction may break distance
decreasing paths through p and neighbors of p embedded on the same semi-circle as p.
After collapsing all such dummy edges, we have a greedy embedding of G.

We call the levels where the on-ramps to heavy paths are embedded super levels, and
all other levels are baby levels. There are n− 1 baby levels between consecutive super
levels and, since any path from root to leaf in a depth tree travels through O(log n)
different heavy paths, there are O(log n) super levels.

Our Coordinate System. Let v be a vertex in G. We define level(v) to be the number
of baby levels between v and the previous super level (zero if v is on a super level)
and cycle(v) to be the position, 0 to 2n, where v is placed when its cycle is embedded.
These values can be assigned to vertices without performing the embedding procedure.

Let s be v’s ancestor on the first super level. The path from s to v passes through
O(log(n)) heavy paths, entering each heavy path at an on-ramp, and leaving at an off-
ramp. We define v’s coordinate to be a O(log n)-tuple consisting of the collection of
(level(·), cycle(·)) pairs for each off-ramp where a change in heavy paths occurs on
the path from s to v, and the pair (level(v), cycle(v)), which is either an off-ramp or a
turnpike. Using the coordinate for v and the parameter n, we can compute the Euclidean
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coordinates for all the turnpikes and off-ramps on the path from s to v, including the
coordinate for v. Thus, we have defined a coordinate system for the Euclidean plane.

Using a straightforward encoding scheme, each level-cycle pair is encoded using
O(log n) bits. Since a coordinate contains O(log n) of these pairs, we encode each
coordinate using O(log2 n) bits.

Greedy Routing with Coordinate Representations. By design, the routing scheme
discussed in Sect. 3 is greedy for our embedding. We develop a comparison rule using
the potential number of edges that may be traversed on a specific path from s to t.

Let si be the vertex between super levels i and i + 1, whose level-cycle pair is in
position i of s’s coordinate. We define ti similarly. Let superlevel(s) be the position
that contains the level-cycle pair for s itself. Let h be the smallest integer such that sh

and th differ. Using the level-cycle pairs for sh and th, we can compute the level-cycle
pair for the off-ramps on the least common ancestor C that diverge toward s and t,
which we call sC and tC . That is, if level(sh) = level(th) then sC = sh and tC = th.
Otherwise, assume without loss of generality that level(sh) < level(th), then sC ’s pair
is (level(sh), cycle(sh)) and tC is a turnpike with the pair (level(sh), n).

We define l, r, d, u be the potential number of left, right, down, and up edges that
may be traversed from s to t. Values d and u are simply the number of semi-circles
passed through by down and up hops, respectively. That is,

d = (superlevel(s) · n + level(s)) − (hn + level(sC))

u = (superlevel(t) · n + level(t)) − (hn + level(tC)).

If cycle(tC) < cycle(sC), then we count the maximum number left edges on the path
from s to tC , and the maximum number of right edges from tC to t. That is,

l =

{
cycle(s) + 2n(d − 1) + cycle(sC) − cycle(tC) if s �= sC ,

cycle(sC) − cycle(tC) if s = sC .

r =

{
2n(u − 1) + cycle(t) if t �= tC ,

0 if t = tC .

If cycle(tC) ≥ cycle(sC), then we count the maximum number of right edges on the
path from s to tC , and the maximum number of right edges from tC to t. That is,

l = 0

r = r1 + r2, where

r1 =

{
2n − cycle(s) + 2n(d − 1) + cycle(tC) − cycle(sC) if s �= sC ,

cycle(tC) − cycle(sC) if s = sC .

r2 =

{
2n(u − 1) + cycle(t) if t �= tC ,

0 if t = tC .

Our comparison rule is:

D(s, t) = l + r + (2n + 1)u + d.
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Following the routing scheme from Sect. 3, any move we make toward the goal will
decrease D(·, ·), and any move away from the goal will increase D(·, ·). Therefore, we
can use this comparison rule to perform greedy routing in our embedding efficiently,
and comparisons made while routing will evaluate consistently with the corresponding
Euclidean coordinates under the L2 metric.

5 An Optimal Succinct Greedy Embedding

Conceptually, the level(·) and cycle(·) values used in the previous section are encoded
as integers whose binary representation corresponds to a path from root to a leaf in
a full binary tree with n leaves. Instead of encoding with a static O(log n) bits per
integer, we will modify our embedding procedure so we can further exploit the heavy
path decomposition of the dual tree T , using weight-balanced binary trees [4].

Definition 4. A weight-balanced binary tree is a binary tree which stores weighted
items from a total order in its leaves. If item i has weight wi, and all items have a
combined weight of W then item i is stored at depth O(logW/wi). An inorder listing
of the leaves outputs the items in order.

Encoding the Level Values. Suppose we have a depth tree T for G, and a heavy path
decomposition of T . Let C be a simple cycle in G on some heavy path H and let Cnext
be the next cycle on the heavy path H , if it exists. Let n(C) be the number of vertex
descendants of C in G. We define a weight function γ(·) on the cycles in G as follows:

γ(C) =

{
n(C) if C = tail(H),

n(C) − n(Cnext) if C �= tail(H).

For each heavy path H , create a weight-balanced binary tree BH containing each cycle
C in H as an item with weight γ(C), and impose a total order so that cycles are in their
path order from head(H) to tail(H).

Let v be a vertex whose coordinate we wish to encode, and suppose v is located
between super levels l and l + 1. Let vi be the vertex whose level-cycle pair is in
position i of v’s coordinate. Let vi be contained in cycle Ci (such that vi is not Ci’s
primary node) on heavy path Hi. The code for level(vi) is a bit-string representing the
path from root to the leaf for Ci in the weight-balanced binary tree BHi . Let Wi be
the combined weight of the items in BHi . Since Ci is at a depth of O(logWi/γ(Ci)),
this is length of the code. Thus, the level values in v’s coordinate are encoded with
O(

∑
0≤i≤l logWi/γ(Ci)) bits total. By design, this sum telescopes to O(log n) bits.

Encoding the Cycle Values. For a node v in G we define a weight function μ(v) to be
the number of descendants of v in G.

Let C = (p, x1, x2, . . . , xm) be a cycle in G, where p is the primary node of C. Let
xh be the turnpike that connects C to the next cycle on the heavy path, if it exists. Let
xi have weight μ(xi) and impose a total order so xj < xk if j < k. For each cycle
C, we create a weight-balanced binary tree BC containing nodes x1 to xm as follows.
We first create two weight-balanced binary trees B1

C and B2
C where B1

C contains xj
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for j < h and B2
C contains xk for k > h. If no such xh exists, then choose an integer

1 ≤ k ≤ m and insert items xj for j < k into B1
C and insert the remaining items into

B2
C . We form our single weight-balanced binary tree BC in two steps: (1) create a tree

B3
C with B1

C as a left subtree and a node for xh as a right subtree, and (2) form BC with
B3

C as a left subtree and B2
C as a right subtree. We build BC in this way to ensure that

every turnpike is given the same path within its tree, and hence the same cycle code and
value.

The code for cycle(vi) is a bit-string representing the path from root to the leaf for
vi in the weight-balanced binary tree BCi . Let Wi be the combined weight of the items
in BCi . Since vi is at a depth of O(logWi/μ(vi)), this is length of the code. Thus, the
cycle values in v’s coordinate are encoded with O(

∑
0≤i≤l logWi/μ(vi)) bits total. By

design, this sum telescopes to O(log n) bits.

Interpreting the Codes. Let c be the smallest integer constant such that item i stored in
the weight-balanced binary tree is at depth ≤ c logW/wi. We can treat the position of
i in the weight-balanced binary tree as a position in a full binary tree of height c logn.
We interpret this code to be the number of tree nodes preceding i in an in-order traversal
of the full binary tree. Using our codes as described, we require 2nc − 2 baby levels
between each super level and 8nc − 1 cycle positions.

An Overview of the Optimal Embedding. Let T be the depth tree for our Christmas
cactus graph G. We create weight-balanced binary trees on the heavy paths in T and on
each of the cycles in G, giving us the level and cycle codes for every vertex. We adjust
the graph modification procedure so that adjacent cycles on heavy paths are spaced out
according to the level codes. That is, adjacent cycles on the same heavy path have heavy
dummy edges (dummy edges that are considered to be on the heavy path) inserted
between them so that they are placed on the appropriate baby levels. For cycles on
different heavy paths, we insert dummy edges to pad out to the next superlevel, and
heavy dummy edges to pad out to the appropriate baby level.

We embed the modified graph analogously to our O(log2 n) embedding, except that
the cycle codes dictate vertex placements. We augment our coordinate system to store
the level value for elements on the root cycle, otherwise it is not possible to compute the
corresponding Euclidean point from our succinct representation. The same comparison
rule applies to our new coordinate system, with little change to account for the new
range of cycle values. Using this embedding scheme and coordinate system we achieve
optimal O(log n) bits per coordinate.
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Abstract. We investigate an oblivious routing scheme amenable to dis-
tributed computation and resilient to graph changes, based on electrical
flow. Our main technical contribution is a new rounding method which
we use to obtain a bound on the L1 → L1 operator norm of the inverse
graph Laplacian.

1 Introduction

Overview. We address a vision of the Internet where every participant exchanges
messages with their direct friends and no one else. Yet such an Internet should
be able to support reliable and efficient routing to remote locations identified by
unchanging names in the presence of an ever changing graph of connectivity.

Modestly to this end, this paper investigates the properties of routing along
the electric flow in a graph (electric routing for short) for intended use in such
distributed systems, whose topology changes over time. We focus on the class of
expanding graphs which, we believe, gives a good trade-off between applicabil-
ity and precision in modeling a large class of real-world networks. We address
distributed representation and computation. As a measure of performanace, we
show that electric routing, being an oblivious routing scheme, achieves mini-
mal maximum edge congestion (as compared to a demand-dependent optimal
scheme). Furthermore, we show that electric routing continues to work (on av-
erage) in the presence of large edge failures ocurring after the routing scheme
has been computed, which attests to its applicability in changing environments.
We now proceed to a formal definition of oblivious routing and statement of our
results.

Oblivious routing. The object of interest is a graph G = (V,E) (with V = [n] and
|E| = m) undirected, positively edge-weighted by wu,v � 0, and not necessarily
simple. The intention is that higher wu,v signifies stronger connectivity between
u and v; in particular, wu,v = 0 indicates the absence of edge (u, v). For analysis
purposes, we fix an arbitrary orientation “→” on the edges (u, v) of G, i.e. if
(u, v) is an edge then exactly one of u → v or v → u holds. Two important
operators are associated to every G. The discrete gradient operator B ∈ �E×V ,
sending functions on V to functions on the undirected edge set E, is defined as
χ∗(u,v)B := χu − χv if u → v, and χ∗(u,v)B := χv − χu otherwise, where χy is
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the Kronecker delta function with mass on y. For e ∈ E, we use the shorthand
Be := (χeB)∗. The discrete divergence operator is defined as B∗.

A (single-commodity) demand of amount α > 0 between s ∈ V and t ∈ V is
defined as the vector d = α(χs − χt) ∈ �V . A (single-commodity) flow on G is
defined as a vector f ∈ �E , so that f(u,v) equals the flow value from u towards
v if u → v, and the negative of this value otherwise. We also use the notation
fu→v := f(u,v) if u → v, and fu→v := −f(u,v) otherwise. We say that flow f
routes demand d if B∗f = d. This is a linear algebraic way of encoding the
fact that f is an (s, t)-flow of amount α. A multi-commodity demand, also called
a demand set, is a matrix whose columns constitute the individual demands’
vectors. It is given as the direct product ⊕τdτ of its columns. A multi-commodity
flow is represented as a matrix ⊕τfτ , given as a direct product of its columns,
the single-commodity flows. For clarity, we write fτ,e for (fτ )e. The flow ⊕τfτ

routes the demand set ⊕τdτ if B∗fτ = dτ , for all τ , or in matrix notation
B∗(⊕τfτ ) = ⊕τdτ . The congestion ‖ · ‖G of a multi-commodity flow measures
the load of the most-loaded edge, relative to its capacity. It is given by

‖ ⊕τ fτ‖G := max
e

∑

τ

∣
∣fτ,e/we

∣
∣ = ‖(⊕τ fτ )∗W −1‖1→1, where ‖A‖1→1 := sup

x �=0

‖Ax‖1
‖x‖1

. (1)

An oblivious routing scheme is a (not necessarily linear) function R : �V → �
E

which has the property that R(d) routes d when d is a valid single-commodity
demand (according to our definition). We extend R to a function over demand
sets by defining R(⊕τdτ ) := ⊕τR(dτ ). This says that each demand in a set is
routed independently of the others by its corresponding R-flow. We measure the
“goodness” of an oblivious routing scheme by the maximum traffic that it incurs
on an edge (relative to its capacity) compared to that of the optimal (demand-
dependent) routing. This is captured by the competitive ratio ηR of the routing
scheme R, defined

ηR := sup
⊕τ dτ

sup
⊕τ fτ

B∗(⊕τ fτ )=⊕τ dτ

‖R(⊕τdτ )‖G

‖ ⊕τ fτ‖G
. (2)

Let E denote the (yet undefined) function corresponding to electric routing. Our
main theorem states:

Theorem 1. For every undirected graph G with unit capacity edges, maxi-
mum degree dmax and vertex expansion α := minS⊆V

|E(S,S�)|
min{|S|,|S�|} , one has

ηE �
(
4 ln n

2

)
·
(
α ln 2dmax

2dmax−α

)−1
. This is tight up to a factor of O(ln lnn).

The competitive ratio in Theorem 1 is best achievable for any oblivious routing
scheme up to a factor of O(ln lnn) due to a lower bound for expanders, i.e. the
case α = O(1), given in [1]. Theorem 1 can be extended to other definitions
of graph expansion, weighted and unbounded-degree graphs. We omit these ex-
tensions for brevity. We also give an unconditional, but worse, bound on ηE :

Theorem 2. For every unweighted graph on m edges, electrical routing has ηE �
O(m1/2). Furthermore, there are families of graphs with corresponding demand
sets for which ηE = Ω(m1/2).
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Electric routing. Let W = diag(. . . , we, . . . ) ∈ �E×E be the edge weights ma-
trix. We appeal to a known connection between graph Laplacians and electric
current [2,3]. Graph edges are viewed as wires of resistance w−1

e and vertices are
viewed as connection points. If ϕ ∈ �V is a vector of vertex potentials then, by
Ohm’s law, the electric flow (over the edge set) is given by f = WBϕ and the
corresponding demand is B∗f = Lϕ where the (un-normalized) Laplacian L is
defined as L = B∗WB. Central to the present work will be the vertex potentials
that induce a desired (s, t)-flow, given by ϕ[s,t] = L†(χs − χt), where L† is the
pseudo-inverse of L. Thus, the electric flow corresponding to the demand pair
(s, t) is WBϕ[s,t] = WBL†(χs − χt). We define the electric routing operator as

E(d) = WBL†d (3)

The vector E(χs−χt) ∈ �E encodes a unit flow from s to t supported on G, where
the flow along an edge (u, v) is given by �st, uv� := E(χs − χt)u→v = (ϕ[s,t]

u −
ϕ

[s,t]
v )wu,v.1 (Our convention is that current flows towards lower potential.) When

routing an indivisible message (an IP packet e.g.), we can view the unit flow
E(χs −χt) as a distribution over (s, t)-paths defined recursively as follows: Start
at s. At any vertex u, forward the message along an edge with positive flow, with
probability proportional to the edge flow value. Stop when t is reached. This rule
defines the electric walk from s to t. It is immediate that the flow value over an
edge (u, v) equals the probability that the electric walk traverses that edge.

Let “∼” denote the vertex adjacency relation of G. In order to make a (di-
visible or indivisible) forwarding decision, a vertex u must be able to compute
�st, uv� for all neighbors v ∼ u and all pairs (s, t) ∈

(
V
2

)
. We address this next.

Representation. In order to compute �st, uv� (for all s, t ∈ V and all v ∼ u) at u,
it suffices that u stores the vector ϕ[w] := L†χw, for all w ∈ {w : w ∼ u} ∪ {u}.
This is apparent from writing

�st, uv� = (χu − χv)L†(χs − χt) = (ϕ[u] − ϕ[v])∗(χs − χt), (4)

where we have (crucially) used the fact that L† is symmetric. The vectors ϕ[w]

stored at u comprise the (routing) table of u, which consists of deg(u) · n real
numbers. Thus the per-vertex table sizes of our scheme grow linearly with the
vertex degree – a property we call fair representation. It seems that fair rep-
resentation is key for routing in heterogenous sytems consisting of devices with
varying capabilities.

Equation (4), written as �st, uv� = (χs −χt)∗(ϕ[u] −ϕ[v]), shows that in order
to compute �st, uv� at u, it suffices to know the indices of s and t (in the ϕ[w]’s).
These indices could be represented by O(lnn)-bit opaque vertex ID’s and could
be carried in the message headers. Routing schemes that support opaque vertex
addressing are called name-independent. Name independence allows for vertex
name persistence across time (i.e. changing graph topology) and across multiple
co-existing routing schemes.
1 The bilinear form �st, uv� = χs,tBL†B∗χu,v acts like a “representation” of G, hence

the custom bracket notation.
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Computation. We use an idealized computational model to facilitate this ex-
position. The vertices of G are viewed as processors, synchronized by a global
step counter. During a time step, pairs of processors can exchange messages of
arbitrary (finite) size as long as they are connected by an edge. We describe an
algorithm for computing approximations ϕ̃[v] to all ϕ[v] in O(lnn/λ) steps, where
λ is the Fiedler eigenvalue of G (the smallest non-zero eigenvalue of L). If G is an
expander, then λ = O(1). At every step the algorithm sends messages consisting
of O(n) real numbers across every edge and performs O(deg(v) · n) arithmetic
operations on each processor v. Using standard techniques, this algorithm can
be converted into a relatively easy-to-implement asynchronous one. (We omit
this detail from here.) It is assumed that no graph changes occur during the
computation of vertex tables.

A vector ζ ∈ �V is distributed if ζv is stored at v, for all v. A matrix M ∈
�

V×V is local (with respect to G) if Mu,v 
= 0 implies u ∼ v or u = v. It is
straightforward that if ζ is distributed and M is local, then Mζ can be computed
in a single step, resulting in a new distributed vector. Extending this technique
shows that for any polynomial q(·), the vector q(M)ζ can be computed in deg(q)
steps.

The Power Method gives us a matrix polynomial q(·) of degree O(lnn/λ)
such that q(L) is a “good” approximation of L†. We compute the distributed
vectors ζ[w] := q(L)χw, for all w, in parallel. As a result, each vertex u obtains
ϕ̃[u] = (ζ [1]

u , . . . , ζ
[n]
u ), which approximates ϕ[u] according to Theorem 3 and the

symmetry of L. In one last step, every processor u sends ϕ̃[u] to its neighbors. The
approximation error n−5 is chosen to suffice in accordance with detailed analysis
given in [4]. The next theorem is proven in the full version of the paper [4]:

Theorem 3. Let λ be the Fiedler (smallest non-zero) eigenvalue of G’s Lapla-
cian L, and let G be of bounded degree dmax. Then ‖ζ [v] − ϕ[v]‖2 � n−5,
where ζ[v] = (2dmax)−1 ∑k

ω=0 Mωχv and M = I − L/2dmax, as long as
k � Ω(λ−1 · lnn).

Robustness and latency. In order to get a handle on the analysis of routing in
an ever-changing network we use a simplifying assumption: the graph does not
change during the computation phase while it can change afterwards, during the
routing phase. This assumption is informally justified because the computation
phase in expander graphs (which we consider to be the typical case) is relatively
fast, it takes O(lnn) steps. The routing phase, on the other hand, should be as
“long” as possible before we have to recompute the scheme. Roughly, a routing
scheme can be used until the graph changes so much from its shape when the
scheme was computed that both the probability of reaching destinations and the
congestion properties of the scheme deteriorate with respect to the new shape of
the graph. We quantify the robustness of electric routing against edge removals
in the following two theorems, proven in [4]:

Theorem 4. Let G be an unweighted graph with Fiedler eigenvalue λ = Θ(1)
and maximum degree dmax, and let f [s,t] denote the unit electric flow between s
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and t. For any 0 < p � 1, let Qp = {e ∈ E : |f [s,t]
e | � p} be the set of edges

carrying more than p flow. Then, |Qp| � min{2/(λp2), 2dmax‖L†‖1→1/p}.

Note that part one of this theorem, i.e. |Qp| � 2/(λp2), distinguishes electric
routing from simple schemes like shortest-path routing. The next theorem studies
how edge removals affect demands when “the entire graph is in use:”

Theorem 5. Let graph G be unweighted of bounded degree dmax and vertex ex-
pansion α. Let f be a routing of the uniform multi-commodity demand set over
V (single unit of demand between every pair of vertices), produced by an η-
competitive oblivious routing scheme. Then, for any 0 � x � 1, removing a
x-fraction of edges from G removes at most x · (η · dmax · lnn · α−1)-fraction of
flow from f .

The expected number of edges traversed between source and sink reflects the
latency of a routing. The next theorem, also proven in [4], bounds the average
latency of electric routing in arbitrary graphs:

Theorem 6. The latency of every electric walk on an undirected
graph of bounded degree dmax and vertex expansion α is at most
O(min{m1/2, dmaxα

−2 lnn}).

Analysis. The main hurdle is Theorem 1, which we attack in two steps. First,
we show that any linear routing scheme R (i.e. scheme for which the operator
R : �V → �

E is linear) has a distinct worst-case demand set, known as uniform
demands, consisting of a unit demand between the endpoints of every edge of G.
Combinging this with the formulaic expression for electric flow (3) gives us an
operator-based geometric bound for ηE , which in the case of a bounded degree
graph is simply ηE � O(‖L†‖1→1) where the operator norm ‖ · ‖1→1 is defined
by ‖A‖1→1 := supx �=0 ‖Ax‖1/‖x‖1. This is shown in Theorem 7. Second, we
give a rounding-type argument that establishes the desired bound on ‖L†‖1→1.
This argument relies on a novel technique we dub concurrent flow cutting and
is our key technical contribution. This is done in Theorem 8. This concludes the
analysis of the congestion properties of electric flow.

The computational procedure for the vertex potentials ϕ[v]’s (above) only af-
fords us approximate versions ϕ̃[v] with �2 error guarantees. We need to ensure
that, when using these in place of the exact ones, all properties of the exact elec-
tric flow are preserved. For this purpose, it is convenient to view the electric flow
as a distribution over paths (i.e. the electric walk, defined above) and measure
the total variation distance between the walks induced by exact and approxi-
mate vertex potentials. It is then easy to verify that any two multi-commodity
flows, whose respective individual flows have sufficiently small variation distance,
have essentially identical congestion and robustness properties. This is pursued
in detail in [4].

Related work. Two bodies of prior literature concern themselves with oblivious
routing. One focuses on approximating the shortest-path metric [5,6,7,8], the
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other focuses on approximating the minimal congestion universally across all
possible demand sets [9,10]. The algorithms in these works are essentially best
possible in terms of competitive characteristics, however they are not distributed
and do not address (competitive) performance in the presence of churn. It is not
obvious how to provide efficient distributed variants for these routing schemes
that are additionally resistant to churn. The primary reason for this are the algo-
rithmic primitives used. Common techniques are landmark (a.k.a. beacon) selec-
tion [5,6], hierarchical tree-decomposition or tree-packings [9]. These approaches
place disproportiantely larger importance on “root” nodes, which makes the re-
sulting schemes vulnerable to individual failures. Furthermore, these algorithms
require more than (quasi-)linear time (in the centralized model), which translates
to prohibitively slow distributed times.

We are aware of one other work in the theoretical literature by Goyal, et
al. [11] that relates to efficient and churn-tolerant distributed routing. Motivated
by the proliferation of routing schemes for trees, they show that expanders are
well-approximated by the union of O(1) spanning trees. However, they do not
provide a routing scheme, since routing over unions of trees is not understood.

Concurrently with this paper, Lawler, et al. [12] study just the congestion
of electric flow in isolation from other considerations like computation, repre-
sentation or tolerance to churn. Their main result is a variant of our graph
expansion-based bound on ‖L†‖1→1, given by Theorem 8. Our approaches, how-
ever, are different. We use a geometric approach, compared to a less direct prob-
abilistic one. Our proof exposes structural information about the electric flow,
which makes the fault-tolerance of electric routing against edge removal an easy
consequence. This is not the case for the proofs found in [12].

Organization. Section 2 relates the congestion of electric flow to ‖L†‖1→1. Sec-
tion 3 obtains a bound on ‖L†‖1→1 by introducing the concurrent flow cutting
method. Section 4 contains remarks and open problems.

2 The Geometry of Congestion

Recall that given a multi-commodity demand, electric routing assigns to each
demand the corresponding electric flow in G, which we express (3) in operator
form E(⊕τdτ ) := WBL†(⊕τdτ ). Electric routing is oblivious, since E(⊕τdτ ) =
⊕τE(dτ ) ensures that individual demands are routed independently from each
other. The first key step in our analysis, Theorem 7, entails bounding ηE by
the ‖ · ‖1→1 matrix norm of a certain natural graph operator on G. This step
hinges on the observation that all linear routing schemes have an easy-to-express
worst-case demand set. This theorem is proven in [4]:

Theorem 7. For every undirected, weighted graph G, let Π =
W 1/2BL†B∗W 1/2, then ηE � ‖W 1/2ΠW−1/2‖1→1.

Using Theorem 7, the unconditional upper bound in Theorem 2 is simply a con-
sequence of basic norm inequalities. (See [4] for a proof.) Theorem 1 provides
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a much stronger bound on ηE when the underlying graph has high vertex
expansion. The lower bound in Theorem 1 is due to Hajiaghayi, et al. [1].
They show that every oblivious routing scheme is bound to incur congestion
of at least Ω(lnn/ ln lnn) on a certain family of expander graphs. The up-
per bound in Theorem 1 follows from Theorem 7, Theorem 8 and using that
‖Π‖1→1 = O(‖L†‖1→1) for unweighted bounded-degree graphs. Thus in the
next section we derive a bound on ‖L†‖1→1 in terms of vertex expansion.

3 L1 Operator Inequalities

The main results here are an upper and lower bound on ‖L†‖1→1, which match
for bounded-degree expander graphs. In this section, we present vertex expansion
versions of these bounds that assume bounded-degree.

Theorem 8. Let graph G = (V,E) be unweigthed, of bounded degree dmax, and
vertex expansion

α = min
S⊆V

|E(S, S�)|
min{|S|, |S�|}

, then ‖L†‖1→1 �
(
4 ln

n

2

)
·
(
α ln

2dmax

2dmax − α

)−1
.

(5)

The proof of this theorem (given in the next Section) boils down to a struc-
tural decomposition of unit (s, t)-electric flows in a graph (not necessarily an
expander). We believe that this decomposition is of independent interest. In
the case of bounded-degree expanders, one can informally say that the electric
walk corresponding to the electric flow between s and t takes every path with
probability exponentially inversely proportional to its length. We complement
Theorem 8 with a lower bound on ‖L†‖1→1, proven in [4]:

Theorem 9. Let graph G = (V,E) be unweighted, of bounded degree dmax,
with metric diameter D. Then, ‖L†‖1→1 � 2D/dmax and, in particular,
‖L†‖1→1 �

(
2 lnn

)
·
(
dmax ln dmax

)−1 for all bounded-degree, unweighted graphs
with vertex expansion α = O(1).

3.1 Proof of Upper Bound on ‖L†‖1→1 for Expanders

Proof (Proof of Theorem 8).
Reformulation: We start by transforming the problem in a more manageable

form,

‖L†‖1→1 := sup
y �=0

‖L†y‖1

‖y‖1
= max

w
‖L†χw‖1

(∗)
� n− 1

n
max
s�=t

‖L†(χs − χt)‖1, (6)

where the latter inequality comes from

‖L†χs‖1 = ‖L†π⊥�χs‖1 = ‖n−1
∑

t�=s

L†(χs − χt)‖1 � n− 1
n

max
t

‖L†(χs − χt)‖1.
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Pick any vertices s 
= t and set ψ = L†(χs − χt). In light of (6) our goal is to
bound ‖ψ‖1. We think of ψ as the vertex potentials corresponding to electric
flow with imbalance χs − χt. By an easy perturbation argument we can assume
that no two vertex potentials coincide.

Index the vertices in [n] by increasing potential as ψ1 < · · · < ψn. Further,
assume that n is even and choose a median c0 so that ψ1 < · · · < ψn/2 < c0 <
ψn/2+1 < · · · < ψn. (If n is odd, then set c0 to equal the pottential of the middle
vertex.)

We aim to upper bound ‖ψ‖1, given as ‖ψ‖1 =
∑

v |ψv| =
∑

v:ψv>0 ψv −∑
u:ψu<0 ψu. Using that

∑
w ψw = 0, we get ‖ψ‖1 = 2

∑
v:ψv>0 ψv =

−2
∑

u:ψu<0 ψu.
Assume, without loss of generality, that 0 < c0, in which case

‖ψ‖1 = −2
∑

u:ψu<0

ψu � 2
n/2∑

i=1

|ψi − c0| =: 2N (7)

In what follows we aim to upper-bound N .
Flow cutting: Define a collection of cuts (Si, S

�
i ) of the form Si = {v : ψv � ci},

for integers i � 0, where Si will be the smaller side of the cut by construction.
Let ki be the number of edges cut by (Si, S

�
i ) and pij be the length of the jth

edge across the same cut. The cut points ci, for i � 1, are defined according to
ci = ci−1 −Δi−1, where Δi−1 := 2

∑
j

pi−1,j

ki−1
. The last cut, (Sr+1, S

�
r+1), is the

first cut in the sequence c0, c1, . . . , cr+1 with kr+1 = 0 or, equivalently, Sr+1 = ∅.
Bound on number of cuts: Let ni = |Si|. The isoperimetric inequality for ver-

tex expansion (5) applied to (Si, S
�
i ) and the fact that ni � n/2, by construction,

imply

ki

ni
� α. (8)

Let li be the number of edges crossing (Si, S
�
i ) that do not extend across ci+1,

i.e. edges that are not adjacent to Si+1. The choice Δi := 2
∑

j pij/ki ensures
that li � ki/2. These edges are supported on at least li/dmax vertices in Si, and
therefore ni+1 � ni − li/dmax. Thus,

ni+1 � ni −
li

dmax
� ni −

ki

2dmax

(8)
� ni −

αni

2dmax
= ni

(
1 − α

2dmax

)
, (9)

Combining inequality (9) with n0 = n/2, we get

ni � n

2

(
1 − α

2dmax

)i

(10)

The stopping condition implies Sr 
= ∅, or nr � 1, and together with (10) this
results in

r � log1/θ

n

2
, with θ = 1 − α

2dmax
. (11)
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Amortization argument: Continuing from (7),

N =
n/2∑

i=1

|ψi − c0|
(∗)
�

r∑

i=0

(ni − ni+1)
i∑

j=0

Δj , (12)

where (∗) follows from the fact that for every vertex v ∈ Si − Si+1 we can write
|ψv − c0| �

∑i
j=0 Δj .

Because BL†(χs − χt) is a unit flow, we have the crucial (and easy to verify)
property that, for all i,

∑
j pij = 1. In other words, the total flow of “simulate-

nous” edges is 1. So,

Δi = 2
∑

j

pij

ki
=

2
ki

(8)
� 2

αni
(13)

Now we can use this bound on Δj in (12),

r∑

i=0

(ni − ni+1)
i∑

j=0

Δj
(∗)
=

r∑

i=1

niΔi � 2
α

r∑

i=0

1 =
2
α

(r + 1),

where to derive (∗) we use nr+1 = 0. Combining the above inequality with (11)
concludes the proof.

4 Conclusions

Our main result in Theorem 1 attests to the good congestion properties
on graphs of bounded degree and high vertex expansion, i.e. α = O(1). A
variation on the proof of this theorem establishes a similar bound on ηE ,
however, independent of the degree bound and as a function of the edge ex-
pansion β = minS⊆V

vol(E(S,S�))
min{vol(S),vol(S�)} , where vol(S) :=

∑
v∈S

∑
u:u∼v wu,v and

vol(E(S, S�)) :=
∑

(u,v):u∈S,v∈S� wu,v.
The bounded degree assumption is also implicit in our computational proce-

dure in that all vertices must know an upper bound on dmax in order to apply
M in Theorem 3. Using a generous bound on dmax is not desirable because it
slows down the mixing of the power polynomial. To avoid this complication, we
describe a symmetrization “trick” in [4].

We conclude with a couple of open questions. A central concern, widely-
studied in social-networks, are Sybil Attacks [13]. These can be modeled as
graph-theoretic noise, as defined in [14]. It is interesting to understand how such
noise affects electric routing. We suspect that any O(lnn)-competitive oblivious
routing scheme, which outputs its routes in the “next hop” model, must maintain
Ω(n)-size routing tables at every vertex. In the next hop model, every vertex v
must be able to answer the question “What is the flow of the (s, t)-route in the
neighborhood of v?” in time O(polylog(n)), using its own routing table alone
and for every source-sink pair (s, t).
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Abstract. In this paper, we consider the universally quickest transshipment prob-
lem in a dynamic network where each arc has not only a capacity but also a tran-
sit time. The problem asks for minimizing the time when the last supply reaches
the sink as well as simultaneously maximizing the amount of supply which has
reached the sink at every time step. In this paper, we propose a polynomial-time
algorithm for the problem in the class of dynamic networks which is a general-
ization of grid networks with uniform capacity and uniform transit time.

1 Introduction

Recently, it is very important to establish crisis management systems against large-
scale disasters such as big earthquakes, conflagrations and tsunamis to effectively guide
residents to a safe place. In the network flow theory, the problem of finding the most
effective plan to evacuate people to a safe place has been modelled as the evacuation
problem by using dynamic flows. In the evacuation problem, we are given a dynamic
network D = (D = (V,A), c, τ, b, s), where D = (V,A) is a digraph that consists
of a vertex set V and an arc set A, each x ∈ V has the supply b(x), each a ∈ A has
the capacity c(a) and the transit time τ(a), and a special vertex s ∈ V is designated
as a sink. If we consider the urban evacuation, vertices model buildings, exits and so
on, and arcs model pathways or roads. For each x ∈ V , b(x) represents the number of
people which exist at x. For each a ∈ A, c(a) represents the number of people which
can enter a per unit time, and τ(a) represents the time required to traverse a. Then, the
evacuation problem asks for finding the minimum time required to send all the supplies
to s as well as a dynamic flow which attains the optimal evacuation time. Practically,
it is not sufficient to minimize the time when the last supply reaches the sink, and it is
more desirable that we can simultaneously maximize the amount of supply which has
reached the sink at every time step. We call such a dynamic flow a universally quickest
transshipment. The problem of finding a universally quickest transshipment is called
the universally quickest transshipment problem (in short UQT).

Previous works. It is known [1] that there always exists a universally quickest trans-
shipment. This result can be derived by reducing the problem to the lexicographically

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 802–811, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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maximum flow problem on a time-expanded network (for details, see Sec. 3). Hajek and
Ogier [2] presented the first polynomial-time algorithm for the case where the transit
time of every arc is equal to zero, which needs O(|V |) maximum flow computations.
Fleischer [3] gave an algorithm which can solve the problem for this case in the same
time complexity as that of the maximum flow algorithm presented by Goldberg and
Tarjan [4]. Baumann and Skutella [5] presented an algorithm whose running time is
bounded by a polynomial in the input size and the number of breakpoints of the piece-
wise linear function which represents the amount of supply that has reached the sink
at each time step in a universally quickest transshipment. Unfortunately, in the worst
case the number of the breakpoints is exponential in the input size [5]. Fleischer and
Skutella [6] gave an approximation algorithm for this problem.

Our contribution. In this paper, we present a polynomial-time algorithm for UQT in a
dynamic network satisfying the following two conditions called the uniform path-length
condition [7] and the fully connected condition [8]. The length of a directed path P is
defined by the sum of the transit times of all the arcs contained in P . In this paper, we
allow a directed path to pass through the same vertex or arc more than once. Then, if
for each x ∈ V \ {s} the lengths of all the directed paths from x to s are identical, we
call D a dynamic network with uniform path-lengths. Notice that we allow that a length
of a path from x ∈ V and that of a path from y ∈ V with y 
= x are not identical. For
each x ∈ V , we denote by &D(x) the set of a ∈ A whose head is x. The connectivity
from x to s in D with the capacity function c is defined by the value of a maximum
flow from x with infinite supply to s in D where each a ∈ A has the capacity c(a) (for
the definitions, see Sec. 2). Then, if for every x ∈ V \ {s} the connectivity from x to
s in D with the capacity function c is equal to the sum of c(a) over a ∈ &D(s) whose
tail is reachable from x, we say that a triplet (D, c, s) or D is fully connected. The class
of fully connected dynamic networks with uniform path-lengths is a generalization of
grid networks with uniform capacity and uniform transit time which frequently appear
in modelling cities or buildings.

Our technique. Our algorithm uses a compressed time-expanded network [7] which
is originally introduced for solving the evacuation problem in a dynamic network with
uniform path-lengths. Its size is bounded by a polynomial in the input size (for de-
tails, see Sec. 4). Thus, since a time-expanded network to which we reduce UQT in a
general dynamic network is originally introduced for solving the evacuation problem
in a general dynamic network, it seems that we can straightforwardly solve UQT in
a fully connected dynamic network with uniform path-lengths by reducing it to the
lexicographically maximum flow problem in a compressed time-expanded network.
However, since a compressed time-expanded network is obtained from a time-expanded
network by merging some arcs and vertices, this is not the case. In order to overcome
this difficulty, we first introduce the hierarchical lexico-max flow problem (in short
HLF) which is a generalization of classical lexicographically maximum flow problems,
and we present a polynomial-time algorithm for this problem. Then, we transform a
compressed time-expanded network so that a hierarchical lexico-max flow in this net-
work yields a universally quickest transshipment.
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Outline. Sec. 2 gives necessary definitions and reviews elementary results. In Sec. 3,
we define HLF, and then we show that this problem can be solved in polynomial time. In
Sec. 4, we prove the polynomial-time solvability of UQT in a fully connected dynamic
network with uniform path-lengths by reducing it to HLF.

2 Preliminaries

Let R≥0, R>0 and Z≥0 be the sets of nonnegative reals, positive reals and nonnega-
tive integers. We may not distinguish between a singleton {x} and its element x. For
each n ∈ Z≥0, let [n] = {1, . . . , n}. Given two ordered sequences (x1, . . . , xk) and
(y1, . . . , yk) of reals, we write (x1, . . . , xk) ≥L (y1, . . . , yk) if we have xi = yi for
every i ∈ [k], or there exists p ∈ [k] such that xi = yi holds for every i ∈ [p − 1] and
xp > yp holds. Given a set X of k reals, we denote by σ(X) the sequence (x1, . . . , xk)
of k reals in X satisfying x1 ≤ · · · ≤ xk. Given a function f : X → R≥0 on a set X ,
we use the abbreviation f(Y ) =

∑
x∈Y f(x) for each Y ⊆ X . Given a real M and a

set X , we call a function f : X → R≥0 a distribution of M to X if f(X) = M holds.
Let D = (V,A) be a digraph that consists of a vertex set V and an arc set A. In this

paper, we assume without loss of generality that every digraph has no parallel arcs. We
denote by a = xy an arc a with a tail x and a head y. It may be simply written as xy.
For each X ⊆ V , let δD(X) (resp., &D(X)) be the set of arcs xy ∈ A with x ∈ X and
y /∈ X (resp., x /∈ X and y ∈ X). A vertex x is said to be reachable from a vertex y
when there exists a directed path from y to x.

Dynamic networks. Let D = (D, c, τ, b, s) be a dynamic network which consists of a
digraph D, a capacity function c : A → R>0, a transit time function τ : A → Z≥0, a
supply function b : V → R≥0 and a sink s ∈ V . Since we consider the evacuation to
s, we assume without loss of generality that δD(s) = ∅ and b(s) = 0 hold, and s is
reachable from every vertex.

We define a dynamic flow f : A × Z≥0 → R≥0 as follows. For each a ∈ A and
θ ∈ Z≥0, we denote by f(a, θ) the flow rate entering the tail of a at time step θ which
reaches the head of a at the time step θ + τ(a). We call f feasible if it satisfies the
capacity constraint f(a, θ) ≤ c(a) for every a ∈ A and θ ∈ Z≥0, the flow conservation

∑

a∈δD(x)

Θ∑

θ=0
f(a, θ) ≤

∑

a∈�D(x)

Θ−τ(a)∑

θ=0
f(a, θ) + b(x) (x ∈ V, Θ ∈ Z≥0),

and the demand constraint

∑

a∈�D(s)

Θ−τ(a)∑

θ=0
f(a, θ) = b(V ) (1)

for some Θ ∈ Z≥0. For each feasible dynamic flow f , we define the evacuation time
et(f) of f by the minimum time step Θ satisfying (1). Then, the evacuation problem
asks for finding the minimum evacuation time among all the feasible dynamic flows as
well as an optimal dynamic flow which attains the minimum evacuation time. Now we
formally define the universally quickest transshipment problem (UQT) which we will
consider in this paper. This problem is a variant of the evacuation problem in which we
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are asked to simultaneously maximize the amount of supply which have reached the sink
at every time step, i.e., UQT asks for finding a feasible dynamic flow f∗ ∈ F ∗ satisfying

∑

a∈�D(s)

Θ−τ(a)∑

θ=0
f∗(a, θ) ≥

∑

a∈�D(s)

Θ−τ(a)∑

θ=0
f(a, θ)

for every f ∈ F ∗ and Θ ∈ {0} ∪ [Θ∗], where Θ∗ is the optimal objective value for the
evacuation problem in D and F ∗ is the set of optimal dynamic flows for the evacuation
problem in D. We call such f∗ a universally quickest transshipment. It is known [1] that
there always exists a universally quickest transshipment (for details, see Sec. 3).

Static networks. Let S = (H,u, v, S, T ) be a static network which consists of a di-
graph H = (N,L), a capacity function u : L → R≥0, a supply function v : S → R≥0,
a source set S ⊆ N and a sink set T ⊆ N with S ∩T = ∅. For each flow ξ : L → R≥0
and X ⊆ N , let ∂ξ(X) = ξ(δH(X)) − ξ(&H(X)). Then, we call ξ feasible if it satis-
fies the capacity constraint ξ(a) ≤ u(a) for every a ∈ L, and the flow conservation in
which ∂ξ(x) = 0 for x ∈ V \ (S ∪T ), 0 ≤ ∂ξ(x) ≤ v(x) for x ∈ S and ∂ξ(x) ≤ 0 for
x ∈ T . Given a static network S, the maximum flow problem asks for finding a feasible
flow ξ∗ maximizing −∂ξ∗(T ) which is the value of ξ∗ from S to T . We call such ξ∗ a
maximum flow in S, and we denote by mv(S) the value of a maximum flow in S. It is
known [4] that this problem can be solved in polynomial time and let MF(n,m) be the
time required to solve this problem in a static network with n vertices and m arcs.

For solving the evacuation problem, Ford and Fulkerson [9] introduced the time-
expanded network D(Θ) which is a static network for D with a time horizon Θ (see
Fig. 1). The vertex set of D(Θ) consists of vertices x(θ) (x ∈ V, θ ∈ {0}∪ [Θ]) and x∗

(x ∈ V \ {s}). The arc set of D(Θ) consists of the following three parts. The first part
contains an arc a(θ) = x(θ)y(θ + τ(a)) with a capacity c(a) for each a = xy ∈ A and
θ ∈ {0} ∪ [Θ − τ(a)], and the second part contains an arc x(θ)x(θ + 1) with infinite
capacity for each x ∈ V \ {s} and θ ∈ {0} ∪ [Θ − 1]. The arcs of the second part are
called holdover arcs. The third part contains an arc x∗x(θ) with infinite capacity for
each x ∈ V \ {s} and θ ∈ {0}∪ [Θ]. We define the source set and the sink set of D(Θ)
by {x∗ | x ∈ V \ {s}} and {s(θ) | θ ∈ {0}∪ [Θ]}, respectively. For each x ∈ V \ {s},
the supply of x∗ is b(x). It is known [9] that there exists a feasible dynamic flow f in D
with et(f) ≤ Θ if and only if mv(D(Θ)) = b(V ). We can construct a feasible dynamic
flow f in D with et(f) ≤ Θ from a maximum flow ξ in D(Θ) whose value is b(V ) by
setting f(a, θ) = ξ(a(θ)) for each a ∈ A and θ ∈ {0} ∪ [Θ − τ(a)].

x

y

z

s
(4, 1)

(2, 2)

(1, 1)

(2, 3)

(3, 3)

(a)

x(0)

y(0)

s(0)

z(0)

x(7)

y(7)

s(7)

z(7)

x∗

(b)

Fig. 1. (a) A dynamic network D. A pair of numbers attached to an arc shows its capacity and
transit time, respectively. (b) D(7). We omit y∗ and z∗ as well as the arcs leaving these vertices.
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3 The Lexicographically Maximum Flow Problem

In this section, we introduce the hierarchical lexico-max flow problem (HLF) which is
a generalization of two classical lexicographically maximum flow problems called the
ordered and unordered lexico-max flow problem (OLF and ULF, respectively).

We first define OLF. Suppose that we are given a static network S with T = {x1, . . . ,
xk} and a linear ordering x1 ≺ · · · ≺ xk . For each i ∈ [k], let Si be a static network
which is the same as S except that it has the sink set {x1, . . . , xi} instead of T . OLF
asks for finding a maximum flow ξ∗ in S with −∂ξ∗({x1, . . . , xi}) = mv(Si) for every
i ∈ [k]. We call such ξ∗ an ordered lexico-max flow in S with respect to ≺.

Theorem 1 ([1]). Given a static network S with T = {x1, . . . , xk} and a linear order-
ing x1 ≺ · · · ≺ xk, there is an ordered lexico-max flow in S with respect to ≺.

By Theorem 1, we can see the existence of a universally quickest transshipment in D.
Consider D(Θ) where Θ is the optimal objective value of the evacuation problem in D.
Then, mv(D(Θ)) is equal to b(V ). Thus, UQT in D is equivalent to OLF in D(Θ) with
respect to a linear ordering s(0) ≺ · · · ≺ s(Θ). The following theorem is not essential,
but it renders our algorithm very concise. We omit the proof.

Theorem 2. Given a dynamic network D, there exists an ordered lexico-max flow ξ∗

in D(Θ) with respect to a linear ordering s(0) ≺ · · · ≺ s(Θ) such that ξ∗ uses no
holdover arc, where Θ is the optimal objective value for the evacuation problem in D.

Next we define ULF. Suppose that we are given a static network S and a weight function
w : T → R>0. Then, ULF asks for finding a maximum flow ξ∗ in S satisfying

σ({−∂ξ∗(x)
w(x) | x ∈ T }) ≥L σ({−∂ξ(x)

w(x) | x ∈ T })

for every maximum flow ξ in S, where in this inequality we denote by {·} a multiset.
We call such ξ∗ an unordered lexico-max flow in S with respect to w.

Theorem 3 ([10,11]). Given a static network S and a weight function w : T → R>0,
there always exists an unordered lexico-max flow in S with respect to w.

It is known [11] that this problem can be solved in polynomial time. Let LM(n,m) be
the time required to solve ULF in a static network with n vertices and m arcs.

In HLF, we are given a static network S in which T is decomposed into subsets
T1, . . . , Tk, a linear ordering T1 ≺ · · · ≺ Tk and a weight function w : T → R>0. For
each i ∈ [k], we generalize the definition of Si given above to a static network which
is the same as S except that it has the sink set ∪i

t=1Tt. If a feasible flow ξ in S satisfies
−∂ξ(∪i

t=1Tt) = mv(Si) for every i ∈ [k], we call ξ eligible in S with respect to ≺.
Then, HLF asks for finding an eligible flow ξ∗ in S with respect to ≺ such that

σ({−∂ξ∗(x)
w(x) | x ∈ Ti}) ≥L σ({−∂ξ(x)

w(x) | x ∈ Ti}) (2)

for every eligible flow ξ in S with respect to ≺ and i ∈ [k], where in (2) we denote by
{·} a multiset. We call such ξ∗ a hierarchical lexico-max flow in S with respect to ≺
and w. In this paper, we show that there always exists a hierarchical lexico-max flow,
and we can find it in polynomial time. We omit the proof.



A Polynomial-Time Algorithm for the Universally Quickest Transshipment Problem 807

Theorem 4. Suppose that we are given a static network S in which T is decomposed
into subsets T1, . . . , Tk, a linear ordering T1 ≺ · · · ≺ Tk and a weight function
w : T → R>0. Then, there always exists a hierarchical lexico-max flow in S with re-
spect to ≺ and w, and we can find it in O(k · LM(|N |, |L|)) time.

4 The Universally Quickest Transshipment Problem

In this section, we prove that we can solve UQT in a fully connected dynamic network
with uniform path-lengths by solving HLF. As described in Sec. 3, UQT in a dynamic
network is equivalent to OLF in its time-expanded network. In this section, if the input
dynamic network satisfies the uniform path-length condition and the fully connected
condition, we can find in polynomial time an ordered lexico-max flow in the time-
expanded network by solving HLF in compressed time-expanded network [7].

Here we introduce notations related to D with uniform path-lengths. For each x ∈ V ,
we define l(x) as the length of a directed path from x to s. Notice that since D satisfies
the uniform path-length condition, l(x) is well-defined for each x ∈ V . From here, we
fix k as the number of the distinct path-lengths in D, i.e., k = |{l(x) | x ∈ V }|. Let
us arrange the distinct values of l(x) (x ∈ V ) as l1, . . . , lk satisfying l1 < · · · < lk.
For each x ∈ V , we write lev(x) = i when l(x) = li holds. We assume without loss of
generality that there exists x ∈ V with lev(x) = k and b(x) > 0. Given a time horizon
Θ (≥ lk), we partition the interval (0, 1, . . . , Θ) into disjoint subintervals I1, . . . , Ik

satisfying Ii = (li, li + 1, . . . , li+1 − 1) for each i ∈ [k], where lk+1 = Θ + 1.
Here we introduce the compressed time-expanded network for D with uniform path-

lengths. For this, we first investigate the structure ofD(Θ) (see Fig. 2(a)). Every feasible
flow in D(Θ) does not use vertices from which any sink is not reachable and arcs
entering or leaving such vertices. Thus, we assume without loss of generality that such
vertices and arcs are removed from D(Θ). Moreover, since we consider an ordered
lexico-max flow in D(Θ) with respect to a linear ordering s(0) ≺ · · · ≺ s(Θ), we
assume by Theorem 2 that all holdover arcs are removed from D(Θ). For each θ ∈
{0} ∪ [Θ], let L(θ) be a subnetwork of D(Θ) induced by the vertex set {x(θ − l(x)) |
x ∈ V with l(x) ≤ θ}. By the uniform path-length condition, the underlying digraph
of L(θ) with θ ∈ Ii is isomorphic to the subgraph of D induced by vertices x ∈ V with
lev(x) ≤ i. Furthermore, D(Θ) consists of Θ + 1 components L(θ) (θ ∈ {0} ∪ [Θ]),
sources x∗ (x ∈ V \ {s}) and arcs x∗x(θ) (x ∈ V \ {s}, θ ∈ {0} ∪ [Θ − l(x)]).

Intuitively, the compressed time-expanded network C(Θ) is obtained from D(Θ) by
merging L(θ) for all θ ∈ Ii into a single network Li for each i ∈ [k] (see Fig. 2(b)).
More precisely, C(Θ) has k components Li (i ∈ [k]). The underlying digraph of Li is
isomorphic to the subgraph of D induced by vertices x ∈ V with lev(x) ≤ i, i.e., the
underlying digraph of L(θ) with θ ∈ Ii. Let xi (resp., ai) denote the vertex (resp., the
arc) of Li corresponding to x ∈ V (resp., a ∈ A). The capacity of an arc ai of Li is
equal to |Ii| · c(a). Furthermore, C(Θ) contains sources x∗ (x ∈ V \ {s}) and arcs x∗xi

(x ∈ V \ {s}, i ∈ {lev(x), . . . , k}), and the sink set of C(Θ) is {si | i ∈ [k]}. For
each x ∈ V \ {s}, the supply of x∗ is equal to b(x). It is known [7] that mv(D(Θ)) =
mv(C(Θ)) holds and we can find the optimal objective value for the evacuation problem
for D in O(k|A| · MF(k|V |, k|A|)) time.
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Fig. 2. (a) The layered structure of D(7) in Fig. 1(b). We omit y∗ and z∗ as well as the arcs
leaving these vertices. (b) C(7) for D(7) in (a). We omit x∗, y∗ and z∗ as well as the arcs leaving
these vertices. A number attached to an arc represents its capacity. (c) The modified C(7).

4.1 Reduction to the Lexicographically Maximum Flow Problem

In the sequel, we assume that D satisfies the fully connected condition and the uniform
path-length condition, and let us fix Θ as an optimal objective value for the evacuation
problem in D. In order to show the reduction, we slightly transform C(Θ) (see Fig. 2(c)).
For each i ∈ [k], let [&D(s)]≤i = {xs ∈ &D(s) | lev(x) ≤ i}. Notice that [&D(s)]≤i

is the set of a ∈ &D(s) such that there exists ai in Li. Then, for each i ∈ [k], we
replace si in Li by new sinks sa

i (a ∈ [&D(s)]≤i), and let Ti be the set of these new
sinks. Moreover, we change the head of ai to sa

i for each a ∈ [&D(s)]≤i. Let ∪k
t=1Tt

be the sink set of C(Θ) (denoted by T ). From here, we abuse the notation C(Θ) to
denote this modified network. We show that OLF in D(Θ) with respect to a linear
ordering s(0) ≺ · · · ≺ s(Θ) can be solved by solving HLF in C(Θ) with respect to
a linear ordering T1 ≺c · · · ≺c Tk and a weight function w : T → R>0 defined by
w(sa

i ) = c(a) for each sa
i ∈ T .

Our goal is to prove that an ordered lexico-max flow in D(Θ) with respect to ≺
can be constructed from a hierarchical lexico-max flow in C(Θ) with respect to ≺c and
w. Recall that C(Θ) is obtained from D(Θ) by merging several components. Hence,
in order to construct an ordered lexico-max flow in D(Θ) with respect to ≺ from a
hierarchical lexico-max flow in C(Θ) with respect to ≺c and w, for each maximum flow
ϕ in C(Θ) we consider distributions γa

i (sa
i ∈ T ) such that each γa

i is a distribution of
−∂ϕ(sa

i ) to Ii with γa
i (θ) ≤ c(a). We call such distributions γa

i (sa
i ∈ T ) ϕ-legal. By

the way of construction of C(Θ), it is easy to see that given a maximum flow ξ in D(Θ),
we can construct a maximum flow ϕ in C(Θ) and ϕ-legal distributions γa

i (sa
i ∈ T )

with −∂ξ(s(θ)) =
∑

{γa
i (θ) | sa

i ∈ Ti} for every i ∈ [k] and θ ∈ Ii by merging the
subflows of ξ in L(θ) (θ ∈ Ii) for each i ∈ [k] and setting γa

i (θ) = ξ(a(θ− τ(a))). We
say that such ξ is generated by γa

i (sa
i ∈ T ). Furthermore, the following lemma asserts

the opposite direction also holds. The proof of this lemma will be given in Sec. 4.2.

Lemma 1. Suppose that we are given a fully connected dynamic network D with uni-
form path-lengths, a maximum flow ϕ in C(Θ) and ϕ-legal distributions γa

i (sa
i ∈ T ).
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Then, there is a maximum flow ξ in D(Θ) with −∂ξ(s(θ)) =
∑

{γa
i (θ) | sa

i ∈ Ti} for
every i ∈ [k] and θ ∈ Ii, i.e., γa

i (sa
i ∈ T ) generate a maximum flow in D(Θ).

From Lemma 1 together with the observation given prior to the lemma, it follows that
finding an ordered lexico-max flow ξ∗ in D(Θ) with respect to ≺ reduces to the choice
of a maximum flow ϕ∗ in C(Θ) and ϕ∗-legal distributions γa

i (sa
i ∈ T ) that generate

ξ∗. Notice that there always exist such ϕ∗ and γa
i (sa

i ∈ T ) by Theorem 1.
Under the constraint that a maximum flow ϕ in C(Θ) is fixed, among all possible

ϕ-legal distributions we consider how to determine ϕ-legal distributions γa
i (sa

i ∈ T )
which generate an ordered lexico-max flow ξ in D(Θ) with respect to ≺. We can con-
struct such ξ by distributing −∂ϕ(sa

i ) greedily to γa
i (θ) as much as possible by giving

a higher priority to γa
i (θ) with smaller θ. More formally, we define γa

i : Ii → R≥0 by

γa
i (θ) =

⎧
⎪⎨

⎪⎩

c(a), if θ ∈ {li, . . . , li + �−∂ϕ(sa
i )

c(a) � − 1},
−∂ϕ(sa

i ) − �−∂ϕ(sa
i )

c(a) � · c(a), if θ = li + �−∂ϕ(sa
i )

c(a) �,
0, otherwise,

(3)

for each i ∈ [k] and sa
i ∈ Ti. We call ϕ-legal distributions γa

i (sa
i ∈ T ) proper if γa

i is
defined by (3), and we denote by ξϕ a maximum flow in D(Θ) which is generated by
the proper ϕ-legal distribution.

In the sequel, let ϕ∗ be a hierarchical lexico-max flow in C(Θ) with respect to ≺c

and w. By using the above notions, our goal is equivalent to showing that ξϕ∗ is an
ordered lexico-max flow in D(Θ) with respect to ≺. It is not difficult to see that this
can be prove the following Facts A and B (we omit the proofs of these facts), and the
reduction is done. For each i ∈ [k], let [C(Θ)]i be the same as C(Θ) except that it has
the sink set ∪i

t=1Tt instead of T . Let Φ∗ be the set of maximum flows ϕ in C(Θ) with
−∂ϕ(∪i

t=1Tt) = mv([C(Θ)]i) for every i ∈ [k]. Notice that ϕ∗ ∈ Φ∗.

A. For a maximum flow ϕ in C(Θ) with ϕ /∈ Φ∗, ξϕ is not an ordered lexico-max flow
in D(Θ) with respect to ≺, i.e., we need to choose ϕ ∈ Φ∗.

B. For every maximum flow ϕ in C(Θ) with ϕ ∈ Φ∗ and for every θ ∈ {0} ∪ [Θ],∑
{−∂ξϕ∗(s(θ)) | θ ∈ {0} ∪ [θ]} ≥

∑
{−∂ξϕ(s(θ)) | θ ∈ {0} ∪ [θ]}.

4.2 Proof of Lemma 1

In this subsection, we give the proof of Lemma 1. We prove the lemma by giving the
way of constructing such ξ. In the proof, we fix i ∈ [k] and let Vi be the set of the
vertices of Li. Furthermore, let

∑
{γa

i (θ) | sa
i ∈ Ti} = Γ a

i (θ), and Si = Vi \ Ti.
We first give the sketch of the proof. Recall that Li is constructed by merging L(θ)

for all θ ∈ Ii. Thus, we determine the value of ξ for the arcs from all x∗ to L(θ)
(θ ∈ Ii) in D(Θ) by distributing ϕ(x∗xi) in C(Θ) to these arcs. For each xi ∈ Si,
let λxi be a distribution of ϕ(x∗xi) to Ii. Then, let L̃(θ) be a static network which is
the same as L(θ) except that each vertex x(θ − l(x)) of L(θ) (i.e., the vertex of L(θ)
corresponding to xi of Li) has the supply λxi(θ) (i.e., λxi(θ) represents the supply of
a vertex in L̃(θ) corresponding to xi in Li). In order to prove the lemma, we show that
there exist distributions λxi (xi ∈ Si) with λSi(θ) = Γ a

i (θ) for each θ ∈ Ii, where
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λSi(θ) =
∑

{λxi(θ) | xi ∈ Si}. Note that L̃(θ) has the single sink s(θ), and that
flow values of arcs entering s(θ) are given as γa

i (θ) for each a ∈ [&D(s)]≤i. Thus, once
λxi(θ)’s satisfying λSi(θ) = Γ a

i (θ) are given, flow values of arcs leaving all x∗ are also
given. The remaining task is therefore to find a maximum flow to s(θ) in L̃(θ) which
is consistent with λSi(θ) = Γ a

i (θ). Namely, we will prove that for every θ ∈ Ii there
exists a maximum flow in L̃(θ) whose value is the sum of the supplies of the vertices
of L̃(θ), i.e., λSi(θ). This can be done by using the fact that D is fully connected.

Here we consider how to find such distributions λxi (xi ∈ Si). We obtain such
λxi (xi ∈ Si) by determining λxi(θ; sa

i ) which is determined as follows and setting
λxi(θ) =

∑
{λxi(θ; sa

i ) | sa
i ∈ Ti}. It is known that we can decompose the subflow of

ϕ in Li into flows ϕa
i (sa

i ∈ Ti) in Li satisfying the capacity constraint and for every
sa

i , s
ā
i ∈ Ti (i) ∂ϕa

i (sā
i ) = ∂ϕ(sa

i ) if sā
i = sa

i and (ii) ∂ϕa
i (sā

i ) = 0 otherwise. The
value ∂ϕa

i (xi) represents the allocation of ϕ(x∗xi) to the sink sa
i . Let λxi(θ; sa

i ) =
∂ϕa

i (xi) · γa
i (θ)

−∂ϕ(sa
i ) . Furthermore, as mentioned above, let λxi(θ) =

∑
{λxi(θ; sa

i ) |
sa

i ∈ Ti}. Then, λxi is a distribution of ϕ(x∗xi) to Ii and λSi(θ) = Γ a
i (θ) for every

θ ∈ Ii. We show that for λxi (xi ∈ Si) obtained in this way that there exists a maximum
flow in L̃(θ) whose value is λSi(θ) by the following lemma. We omit the proof.

Lemma 2. Given a static network S such that T consists of the single sink t and S =
N \ {t}, (H,u, t) is fully connected, and v(X) ≤ u(R(X)) holds for every X ⊆
N \ {t}, we have mv(S) = v(N \ {t}), where let R(X) be the set of a ∈ &H(t) whose
tail is reachable from at least one vertex of X in H .

Let D̃ = (Ṽ , Ã), ũ and ṽ be the underlying digraph, the capacity function and the
supply function of L̃(θ), respectively. Recall that s(θ) is the single sink of L̃(θ). By
Lemma 2, in order to prove that there exists a maximum flow in L̃(θ) whose value is
λSi(θ), it suffices to show that (D̃, ũ, s(θ)) is fully connected and ṽ(X) ≤ ũ(R̃(X))
holds for every X ⊆ Ṽ \ {s(θ)}, where let R̃(X) be the set of a ∈ &D̃(s(θ)) whose
tail is reachable from at least one vertex of X in D̃. We omit the proof that ṽ(X) ≤
ũ(R̃(X)) holds for every X ⊆ Ṽ \{s(θ)}. We show that (D̃, ũ, s(θ)) is fully connected
by using that D (i.e., (D, c, s)) is fully connected. Recall that D̃ is isomorphic to the
subgraph D≤i of D induced by vertices x ∈ V with lev(x) ≤ i. Furthermore, by the
definition of the capacities in the D(Θ), (D̃, ũ, s(θ)) and (D≤i, c≤i, s) are equivalent,
where c≤i is the restriction of c on D≤i. Since lev(x) ≤ i implies lev(y) ≤ i for each
xy ∈ A by the nonnegativity of the transit time, the connectivity from x to s in D≤i with
a capacity function c≤i and that in D with a capacity function c are identical for every
vertex x of D≤i. Hence, since D is fully connected and (D̃, ũ, s(θ)) and (D≤i, c≤i, s)
are equivalent, (D̃, ũ, s(θ)) is also fully connected.

4.3 Time Complexity

By the proof of Lemma 1, we can obtain the following algorithm for our problem.

Step 1: Find a hierarchical lexico-max flow ϕ in C(Θ) with respect to a linear ordering
T1 ≺ · · · ≺ Tk and a weight function w : T → R>0 defined by w(sa

i ) = c(a).
Step 2: Construct from ϕ flows ϕa

i (i ∈ [k], sa
i ∈ Ti).

Step 3: Calculate λxi(·; sa
i ) by using the proper ϕ-legal distributions γa

i (sa
i ∈ T ) and

then construct λxi(·) from λxi(·; sa
i ).
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Step 4: Find a maximum flow in L̃(θ) for each θ ∈ {0}∪ [Θ], and construct an ordered
lexico-max flow in D(Θ) with respect to s(0) ≺ · · · ≺ s(Θ) by combining them.

Step 1 can be executed in polynomial time by Theorem 4, and it is known that Step 2 can
be done in O(k|V |·MF(|V |, |A|)) time. However, the time required for Step 3 through 4
is not in general bounded by a polynomial in the input size since we independently find
a maximum flow in L̃(θ) for each θ ∈ {0} ∪ [Θ]. In order to reduce the time required
for these steps, we partition the interval (0, . . . , Θ) into subintervals whose number is
bounded by a polynomial in the input size, and we simultaneously find maximum flows
in L̃(θ) for each subinterval via one maximum flow computation. More precisely, we do
it as follows. Let us fix i ∈ [k]. From (3), we see that every γa

i takes the form such that
Ii = (li, li+1, . . . , li+1−1) can be partitioned into at most three nonempty subintervals
in each of which γa

i does not change. Therefore, overlaying these subintervals for all
sa

i ∈ Ti onto the interval Ii, we can decompose Ii into at most 3|Ti| subintervals in
each of which every γa

i does not change. In each subinterval I , instead of computing
a maximum flow in L̃(θ) for all θ ∈ I , it is sufficient to compute a maximum flow for
only one θ ∈ I since the supply of each vertex of L̃(θ) is identical for every θ ∈ I . By
these augments, the following theorem holds.

Theorem 5. Given a fully connected dynamic network D with uniform path-lengths, we
can solve UQT in the time required to find the optimal objective value for the evacuation
problem in D plus O(k · LM(k|V |, k|A|) + k|V | · MF(|V |, |A|)) time.
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Abstract. Randomized rumor spreading is a classic protocol to dissem-
inate information in a network. At SODA 2008, a quasirandom version
of this protocol was proposed and competitive bounds for its run-time
were proven. This prompts the question: to what extent does the quasi-
random protocol inherit the second principal advantage of randomized
rumor spreading, namely robustness against transmission failures?

A tentative solution was proposed at ICALP 2009 where it was demon-
strated that if each transmission reaches its destination with a probability
of p ∈ (0, 1], the run-time increases by a factor of approximately 4/p. In
this paper, we follow up on this research and provide a result precise up
to (1 ± o(1)) factors. We limit ourselves to the network in which every
two vertices are connected by a direct link. Run-times accurate to their
leading constants are unknown for all other non-trivial networks.

For networks on n nodes, we show that after (1+ ε)(log1+p n+ 1
p

lnn)

rounds, the quasirandom protocol with probability 1 − n−c(ε,p) has
informed all nodes in the network. Note that this is faster than the in-
tuitively natural 1/p factor increase over the run-time of approximately
log2 n + ln n for the non-corrupted case.

We also provide a corresponding lower bound for the classical model.
This demonstrates that the quasirandom model is at least as robust as
the fully random model despite the greatly reduced degree of independent
randomness.

1 Introduction

Disseminating information in a network, that is, making information known to a
single node available to all other nodes, is a classic problem. A simple, yet power-
ful approach is randomized rumor spreading, also known as random phone calls.
In this setting, each node already informed participates in the dissemination
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process by randomly calling neighbors and passing along copies of the informa-
tion. Besides being self-organized, this approach has two crucial advantages. (i)
It is fast. For many important network topologies, O(log n) rounds suffice to
inform all n nodes with high probability. (ii) It is robust against transmission
failure. Often, a constant fraction of independently chosen transmission failures
does not cause serious problems, but merely increases the time required by a
constant factor.

Success of the basic randomized rumor spreading protocol has motivated the
study of several variants. At SODA 2008, a quasirandom version of the protocol
was proposed. This version is structurally simpler, uses less randomness, and is
especially beneficial in that each vertex contacts each neighbor at most once.
Nonetheless, most run-time guarantees known for the classical model still hold
for the quasirandom version, some in an even stronger form. However, little was
previously known about the robustness of this model.

In this paper, we offer a detailed investigation of the robustness of the quasi-
random protocol. We use the following model of lossy communication. We assume
that independently for all transmissions the message reaches its target with a
certain probability 0 < p < 1. For networks in which every two nodes are con-
nected by a link, we demonstrate that this lossiness only increases the run-time
by a small constant factor, which we precisely determine for each value of p.
Surprisingly, it is smaller than 1/p, e.g., 1.828 for p = 1/2. The same result also
holds for the classical, fully random model. We will not give a formal proof for
this, as only slight modifications of our methods are necessary.

In addition, we show that the corresponding slow-down for the classical model
is at least this factor. This shows that the quasirandom model is at least as robust
as the classical model.

This is the first time, for the classical as well as for the quasirandom model,
that results precise up to the leading constant are shown for the robustness.

1.1 Randomized Rumor Spreading

The classic, fully random randomized rumor spreading protocol was first inves-
tigated by Frieze and Grimmett [1]. They proposed the following model. Given
is a network modeled on an undirected graph G = (V, E). At the start of the
protocol, a single vertex s ∈ V knows a piece of information that is to be dissem-
inated to all other vertices. We say that v is informed. The protocol proceeds in
rounds (hence it assumes a common clock). In each round, every informed vertex
v chooses a neighbor uv ∈ N(v) := {u ∈ V | {u, v} ∈ E} uniformly at random
and sends a copy of the information to it. This results in uv becoming informed,
if it is not already, and in uv participating in the dissemination process in sub-
sequent rounds. This process defines a random variable Ts, which denotes the
number of rounds after which all vertices in the network are informed, assum-
ing that the initially informed vertex is s. The broadcast time T is then defined
as the maximum of all Ts, s ∈ V , where the Ts are defined over independent
probability spaces.
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Frieze and Grimmett show that if the network is a complete graph on n
vertices, the broadcast time satisfies T = (1±o(1))(log2 n+lnn) with probability
1−o(1). For hypercubes and random graphs G(n, p) for p ≥ (1+ε) ln(n)/n, Feige,
Peleg, Raghavan and Upfal [2] also determine a broadcast time of Θ(log n) with
probability 1 − 1/n, albeit without making the implicit constant precise. They
also provide the general bounds of 12n logn and O(Δ(G)(diam(G) + log n)) for
arbitrary n-vertex graphs.

For reasons of space, we shall not extensively discuss the practical side of
the randomized rumor spreading protocol. We refer the interested reader to the
aforementioned paper [2] as well as the paper by Karp, Shenker, Schindelhauer
and Vöcking [3] for a general discussion, or the works of Demers et al. [4] and
Kempe, Dobra and Gehrke [5] for particular applications. What are generally
recognized as the three key advantages of randomized rumor spreading are speed
(logarithmic broadcast time on important network topologies); self-organization
(there is no central authority involved); and robustness against transmission
failure. Contrary to broadcast times, significantly less work has been done to
quantify the robustness of the randomized rumor spreading protocol.

As far as we are aware, the only results on the robustness of randomized rumor
spreading are due to Elsässer and Sauerwald [6]. They consider the model where
each transmission does not reach its destination with (independently sampled)
failure probability f < 1. Denoting the success probability of a transmission by
p := 1− f , they assert that the broadcast time for all graphs in this lossy model
is at most a factor of O(1/p) larger than in the model without transmission
failures.

1.2 Quasirandom Rumor Spreading

The above results show that randomized rumor spreading is a very powerful
approach to dissemination problems. However, taking all decisions independently
at random also has some unwanted effects. For example, a vertex may contact
one of its neighbors twice before contacting all of its other neighbors. This may
only be a minor problem for dense graphs like the complete graph, but for sparse
graphs, it may increase the broadcast time significantly.

Motivated by the paradigm of quasirandomness, Friedrich, Sauerwald and the
first author [7] suggest the following quasirandom rumor spreading protocol.

In this model, each vertex is equipped with a cyclic permutation of its neigh-
bors. As before, the protocol proceeds in rounds, and all informed vertices par-
ticipate in the dissemination process. However, each vertex only directs its first
transmission to a random neighbor. Subsequently, it informs the successors of
the first addressee on its list. We shall not make any assumptions about the
structure of these cyclic lists.

Before analyzing the quasirandom protocol, let us discuss it from an imple-
mentation point of view. From a theory perspective, we immediately note that
the quasirandom model requires each vertex to store the permutation of its
neighbors, which may utilize up to Θ(n log n) bits. This is not necessary for the
fully random model. However, we may assume that in most networks each vertex
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already has some list or array of its neighbors, since the information regarding
how to contact a neighbor must be stored somewhere. In this scenario, the use
of the lists does not increase the complexity. Rather, it appears that the quasi-
random protocol needs less resources. In particular, it requires significantly fewer
random bits. This is beneficial if we consider randomness costly, and useful if we
want to trace an actual run of the protocol.

The core question to be answered is whether the quasirandom protocol works
well even if we are not permitted to design the lists. Surprisingly, the answer is
positive.

For all lists that can be present at each vertex, O(log n) rounds suffice with
high probability to inform all vertices of a complete graph Kn, a hypercube Qn,
an expander graph on n vertices (some extra conditions are needed here), or a
random graph G(n, p) with p ≥ (1 + ε)(lnn)/n [7,8]. Naturally, the lower bound
of log2 n rounds valid for the fully random model also holds for the quasirandom
model. Once again these bounds fall into the right order of magnitude.

Sharper bounds analogous to those defined by Frieze and Grimmett are known
for the complete graph. In [9], it is shown that with probability 1 − o(1), the
number of rounds needed to inform all vertices is (1 ± o(1))(log2 n + lnn).

For some settings, we observe better broadcast times than in the classical
model. One example is the random graph with edge probability p = (lnn +
ω(1))/n only minimally above the connectivity threshold. Nevertheless, with
probability 1 − o(1), the random graph is such that with high probability the
quasirandom protocol needs only O(log n) rounds independent of the starting
point. This is a notable advantage over the fully random model. Feige et al. [2]
demonstrate that for p = (lnn + O(log log n))/n, the random graph with prob-
ability 1− o(1) is such that Θ(log2 n) rounds are necessary to spread the rumor
with high probability.

1.3 Robustness of the Quasirandom Protocol

The above results show that the broadcast time of the quasirandom rumor
spreading protocol is quite well understood. Together with the experimental
investigation [10], all results indicate that the quasirandom protocol achieves
comparable or better broadcast times than the random model. For the equally
important aspect of robustness, much less is known. Since it would typically
seem that robustness of randomized algorithms is caused by the large number of
independent random decisions taken by the algorithm, one may conclude that
the quasirandom protocol is less robust.

The following result from [8] is the first to debunk this assertion. Let G be a
graph, T ∈ N and γ ≥ 1 such that the quasirandom protocol independent of the
starting vertex with probability 1 − n−γ succeeds in informing all other nodes
within T rounds. Then in the presence of transmission failures (independently
chosen with probability 1 − p), independent of the starting vertex 4γ(1/p)T
rounds suffice to inform all vertices with probability 1 − 2n−γ.

Naturally, this leaves room for constant factor differences between the two
models. The only other result pertaining to robustness is the experimental
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evaluation in [10]. For both the hypercube and the complete graph on 212 ver-
tices, it was observed that if messages sent across the network using either pro-
tocol get lost with probability 1

2 , the broadcast time increases by a factor of
between 1.8 and 1.9.

To gain a deeper understanding, we study the robustness of quasirandom
rumor spreading on the complete graph in this work. Recall that the complete
graph is the only graph for which a broadcast time of one of the two models
precise up to the leading constant is published. We show the following main
result.

Main Result: For all ε > 0 and p ∈ (0, 1] there exists a c > 0 such that
the quasirandom rumor spreading protocol with arbitrary lists and in spite of
independent message losses with probability 1 − p, succeeds with probability
1 − n−c in informing all other vertices from a given vertex in time at most
(1 + ε)(log1+p n + 1

p ln n).
This result is interesting in two respects. Firstly, it shows that the quasi-

random protocol is even more robust than previous results indicate. Note that
the above bound is strictly better than (1/p)(1 + o(1))(log2 n + lnn), that is,
(1/p) times the bound for the case without faulty transmissions.

Secondly, our results imply that the quasirandom protocol is at least as robust
as the classical one. To prove this, we show a corresponding lower bound for the
fully random protocol.

We should add that our proof for the upper bound of the quasirandom model
can be modified to yield a corresponding proof for the classical protocol. This
is the first bound to make the robustness of the classical protocol precise up to
the leading constant.

2 Lower Bound for Randomized Rumor Spreading

In this section, we analyze the classical (fully random) rumor spreading model
where in each round each informed node randomly chooses a node in Kn to
inform. However, it only makes successful contact with probability p ∈ (0, 1].
We prove the following lower bound for the broadcast time.

Theorem 1. Let ε > 0 and p ∈ (0, 1]. With probability 1 − e−Ω(nε/6), the num-
ber of rounds we need to inform all the nodes of Kn using the random rumor
spreading protocol with message success probability p is at least

(1 − ε)
(
log1+p n + 1

p ln n
)

.

For reasons of space, the proof is omitted. The idea is to split the rumor spreading
process into three phases. The first phase is composed of the rounds that occur
from the start of the process up to the end of the first round after whose com-
pletion nε/2 nodes are informed. The second phase begins directly after Phase 1
terminates, and continues until the end of the first round after which n/4 nodes
are informed. Here, in each round the number of informed nodes will grow by
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a multiplicative factor. The last phase begins directly after Phase 2 terminates,
and continues until all the nodes in Kn are informed. Here we observe a type of
coupon collector process.

In order to establish the lower bound posited above, we show that with prob-
ability 1− e−Ω(nε/6), we need at least (1− ε) log1+p n rounds to complete Phase
2, and that with probability 1−e−Ω(nε), we need more than (1−ε) 1

p ln n rounds
to complete Phase 3.

Since all random decisions are independent, this can be done by standard
arguments like Chernoff bounds for independent random variables and for neg-
atively correlated ones.

3 Upper Bound for Quasirandom Rumor Spreading

In this section we analyze the quasirandom counterpart of the rumor spreading
model described in the previous section. This model differs from the random
model in that each vertex is initially equipped with a cyclic list of its neighbors
in the order in which it plans to spread the rumor. At the beginning of the round
directly following the round in which a vertex is informed, it chooses a neighbor
uniformly at random to contact. The vertex has then initiated a starting point
in its list, and subsequently attempts to contact vertices in the order that has
been predetermined. Each of these attempts is independently successful with
probability p.

Our goal is to prove that the rumor in the quasirandom model spreads at
least as quickly as in the random model. To this aim, we prove the following.

Theorem 2. For every ε > 0 and p ∈ (0, 1] there exists a c > 0 such that with
probability 1−n−c, the number of rounds we need to inform all the nodes of Kn

using the quasirandom rumor spreading model with message success probability
p is at most

(1 + ε)
(
log1+p n + 1

p ln n
)

.

Unfortunately, since the rumor spreading process is saturated with so many
dependencies, determining the runtime for the the quasirandom model is not
straightforward. As in [7], we try to overcome this difficulty by suitably simpli-
fying the random experiment, in particular, by assuming that certain vertices
stop informing (ignoring), and that other vertices do not immediately start their
own informing process after becoming informed (delaying).

To obtain bounds for this lossy model that are precise up to the leading
constant, however, we have to be careful that we do not lose too much through
delaying and ignoring. For this reason, we split the set of rounds we need to
inform all nodes into two different types of phases. They have in common that in
the beginning of each phase the only nodes that we consider active are informed
nodes that never informed other nodes.

Lazy phases are the type of phases that were also used in [7]. In each round
of the lazy phase, only the nodes in the active set are able to spread the rumor.
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Nodes that are contacted during the phase, although they are still considered
to be informed, remain inactive, and are therefore unable to spread the rumor
themselves for the continuation of the phase.

Since lazy phases neglect the rumor spreading potential of a significant portion
of the nodes, we also need busy phases. Here, all nodes informed during the
busy phase are active for the remainder of the phase. In other words, nodes
newly informed during the busy phase have the ability to spread the rumor
in each subsequent round until the termination of the phase. By choosing the
lengths of the busy phases suitably, we balance the difficulties with the inherent
dependencies and the losses due to ignoring informed vertices at the end of each
phase.

As a result of implementing phases in which vertices that can spread the
rumor in the original model are now inactive, we are only delaying the point in
time at which all the vertices are informed. Therefore, the upper bound for the
quasirandom model with lazy and busy phases holds as an upper bound for the
original quasirandom model.

For ε defined above, we can determine the upper bound for the number of
rounds that are necessary to inform all the nodes in Kn by splitting the rumor
spreading process into the following phases.

Phase 1. The first phase in the process is a lazy phase. This phase is composed
of the first 1

2ε lnn rounds.

Phases 2 through l + 1. This set of l phases for some l ≤ (1+ε) log1+p n

k are all
busy phases, each of constant length k.

Last Two Phases. The final two phases in the process are both lazy phases.
We will let Nt denote the set of vertices that are newly informed at a given

time-step t. Similarly, we will denote the set of vertices informed by time t as It.

3.1 The First Lazy Phase

The first lazy phase begins with the first round and terminates at time 1
2ε ln n.

Our goal is to prove the following.

Lemma 1. Let t1 := 1
2ε ln n. Then with probability 1 − n−pε/36,

|Nt1 | ≥ 1
3pε lnn.

The main idea of the proof is as follows. At the beginning of the phase, only
one node is informed, and due to the laziness assumption only this node informs
new nodes during the entire phase. In the quasirandom model, this node tries to
inform a segment of length 1

2ε lnn on his list. Due to transmission failures, we
expect it to inform only p 1

2ε lnn. Chernoff bounds now easily yield the lemma.

3.2 The Busy Phases

A sufficient number of nodes are informed of the rumor in the first lazy phase, and
so we are ready to commence the set of busy phases. Because of the dependencies,
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these phases require a more refined analysis. Our goal is to inform a constant
fraction of the nodes in the network by the time we complete this sequence of
phases.

The Analysis of a Single Busy Phase. In order to determine the cumulative
effect of the busy phases, we must first analyze the impact of a single busy phase
composed of k rounds. The theorem we present below holds for any constant
number of rounds, and the constant fraction that we pick is a function of this

number. More precisely, let k ∈ N, p ∈ (0, 1] and ζ′ ≤ 2−k

k (2e)−
2k−1

p3(1+p)k−3−k−1
.

Then we can prove the following statement.

Theorem 3. Let ε′ > 0 and t ∈ N such that in our model at point t we have
|Nt| ≥ pε′ ln n and |It| ≤ ζ′n. Then there exists a c = c(ε′, p) > 0 such that if we
perform a busy phase of length k, then at the conclusion of this busy phase, the
number of newly informed vertices satisfies with probability 1−n−c the inequality

|Nt+k| ≥ p(1 + p)k−2|Nt|.

This theorem is the heart of the precise analysis of the quasirandom model. For
reasons of space the proof had to be omitted. The idea is to investigate the part
of the process originating from each single node in Nt. A single such process can
be analyzed with moderate difficulty. Unfortunately, there may be “conflicts”
among these partial processes, that is, several of these partial processes may
inform the same node, possibly at different times. However, we show that only
few of these conflicts occur. By completely ignoring all parts that are contained
in a conflict, we manage to analyze the busy phase.

Assembling of the Busy Phases. Now that we have analyzed a single busy
phase, we can put these phases together to obtain a constant fraction of informed
nodes. Let ε > 0, p ∈ (0, 1] and

k :=
1 + ε

ε

(
log1+p

1
p

+ 2
)

.

As in the previous section, let ζ ≤ 1
k (2e)−

2k−1

p3(1+p)k−3−k−1
, and ζ′ := 2−kζ. We

show the following.

Theorem 4. Let ε′ > 0. Let t1 be such that in our model at point t1 we have
|Nt1 | ≥ pε′ ln n and |It1 | ≤ ζ′n. Then there exists an l ≤ (1+ε) log1+p n

k and a
c = c(ε′, p) > 0 such that if we perform l busy phases of length k, we have at
least ζ′n but at most ζn informed vertices with probability 1−n−c. Furthermore,
with t2 := t1 + lk we get with probability 1 − n−c

|It2 | ≤
2k − 1

p(1 + p)k−2 − 1
|Nt2 |.

The proof of this theorem relies on an inductive application of the results on a
single busy phase.
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3.3 Second to Last Phase

Now that we have a small constant fraction of newly informed nodes, a lazy
phase of a constant number of rounds suffices to yield a large fraction of newly
informed nodes.

Lemma 2. Let ε ∈ (0, 1), p ∈ (0, 1] and k := 1+ε
ε

(
log1+p

1
p + 2

)
. Let t2 be such

that in our model at round t2 we have |It2 | ≤ 2k−1
p(1+p)k−2−1 |Nt2 |, and that there

exist ζ, ζ′ ∈ (0, 1) such that ζ′n ≤ |It2 | ≤ ζn holds.

Let S :=
2k ln 1

ζ′

p2ζ′ . After one lazy phase of S rounds starting at time t2, at least
(1 − 3ζ)n nodes will be newly informed with probability 1 − e−Ω(n).

We omit the elementary proof of this lemma.

3.4 The Final Phase

The last phase of the protocol is again a lazy phase. We now use the large fraction
of newly informed nodes from the previous phase to inform the few remaining
nodes.

Lemma 3. Let ε ∈ (0, 1), p ∈ (0, 1] and η ≤ ε
4 . Let t3 be such that in our

model at round t3 we have |Nt3 | ≥ (1 − η) n. After one lazy phase of (3+ε)
3p ln n

rounds starting at time t3, all the nodes in Kn will be informed with probability
1 − Ω(n−ε 1−ε

12 ).

The proof of this lemma had to be omitted. It mainly uses coupon collector type
arguments.

3.5 Proof of Theorem 2

Let ε ∈ (0, 1), p ∈ (0, 1] and k := 1+ε
ε

(
log1+p

1
p + 2

)
. Furthermore, let

ζ := min
{

1
k (2e)−

2k−1

p3(1+p)k−3−k−1
, ε

12

}
and ζ′ := 2−kζ.

We start a delayed quasirandom rumor spreading protocol with message suc-
cess probability p and with one initially informed vertex. We first perform one
lazy phase of length t1 := 1

2ε ln n. By Lemma 1 this yields that |Nt1 | ≥ 1
3pε lnn

holds with probability 1 − n−pε/36. Of course, after one lazy phase of length t1
we have with probability one |It1 | ≤ t1 + 1 ≤ ζ′n for any sufficiently large n. So
we can apply Theorem 4 with ε′ := ε

3 . This gives us an l ≤ (1+ε) log1+p n

k such
that if we set t2 := t1 + lk, there exists a c = c(ε, p) > 0 such that we have with
probability 1 − n−c

ζ′n ≤ |It2 | ≤ ζn and |It2 | ≤
2k − 1

p(1 + p)k−2 − 1
|Nt2 |.
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So with probability 1−n−c the preconditions of Lemma 2 are fulfilled. Therefore,

if we set S :=
2k ln 1

ζ′

p2ζ′ and t3 := t2 +S, we get |Nt3 | ≥ (1 − 3ζ)n with probability
1−n−c′

for some constant c′ = c′(ε, p) > 0. We can apply Lemma 3 with η := 3ζ.
We obtain that after (3+ε)

3p ln n more rounds all the nodes will be informed with

probability 1 − n−c′′
for some constant c′′ = c′′(ε, p) > 0.

Overall, we perform at most

1
2ε ln n + (1 + ε) log1+p n + S +

3 + ε

3p
ln n ≤ (1 + ε)

(
1
p ln n + log1+p n

)
.

rounds in our delayed quasirandom rumor spreading protocol with message
success probability p.
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Abstract. In this paper we design data structures supporting range
median queries, i.e. report the median element in a sub-range of an array.
We consider static and dynamic data structures and batched queries. Our
data structures support range selection queries, which are more general,
and dominance queries (range rank). In the static case our data structure
uses linear space and queries are supported in O(log n/ log log n) time.
Our dynamic data structure uses O(n log n/ log log n) space and supports
queries and updates in O((log n/ log log n)2) time.

1 Introduction

The median of a set S of size n is an element in S that is larger than �n−1
2 �

other elements from S and smaller than �n−1
2 � other elements from S. In the

range median problem one must preprocess an input array A of size n into
a data structure that given indices i and j, 1 ≤ i ≤ j ≤ n, a query must
return an index i′, i ≤ i′ ≤ j, such that A[i′] is the median of the elements
in the subarray A[i, j] = [A[i], A[i + 1], . . . , A[j]]. This problem is considered
in [1,2,3,4,5]. In the batched case, the input is an array of size n and a set of k
queries, (i1, j1), . . . , (ik, jk), and the output is the answer to these k queries [6].
Range median queries are naturally generalized to range selection, given indices
i, j and s, return the index of the s’th smallest element in A[i, j]. A related
problem is range dominance (or range rank) queries, given indices i, j and a
value e, return the number of elements from A[i, j] that are less than or equal
to e (dominated by e). This corresponds to 3-sided range counting queries for a
set of points.

Previous Work. Previously, the best linear space data structure supported
range selection queries in O(log n) time [4,5]. In the dynamic case the only
known data structure uses O(n logn) space and supports updates and queries
in O(log2 n) time [4]. For dominance queries, linear space data structures sup-
porting queries in O(log n/ log logn) time is known, as well as a matching lower
bound [7,8,9]. In the dynamic case [10] describes an O(n) space data structure
that supports dominance queries in O((log n/ log logn)2) time and updates in
O(log9/2 n/(log logn)2) time. A query lower bound of Ω((log n/ log logn)2) for
data structures with O(logO(1) n) update time is proved in [7].
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Our Results. In this paper we use the RAM model of computation with word-
size Θ(log n). Our data structures use the same basic approach as in [4]. We
design a static linear space data structure that supports both range selection and
range rank queries in O(log n/ log logn) time. This is the best known for range
median data structures using O(n logO(1) n) space, and for range dominance
queries this is optimal. Our dynamic data structure uses O(n logn/ log logn)
space and supports queries and updates in O((log n/ log logn)2) time. For dom-
inance queries this query time is optimal. We prove an Ω(log n/ log logn) time
lower bound on range median queries for data structures that can be updated in
O(logO(1) n) time using a reduction from the marked ancestor problem [11], leav-
ing a significant gap to the achieved upper bound. With our static data structure
we improve the O(n log k + k logn) time bound for the batched range median
problem achieved in [4] to O(n log k + k logn/ log logn) time. If k >

√
n we con-

struct our static data structure in O(n logn) = O(n log k) time and perform k
queries. This takes O(n log n+ k logn/ log logn) = O(n log k + k logn/ log logn)
time. If k <

√
n then O(n log k) time is already achieved by [6,4].

2 Simple Range Selection Data Structure

In this section we describe the data structure of Gfeller and Sanders [4], which
uses linear space and supports queries in O(log n) time. First, we describe a data
structure that uses O(n logn) space and supports queries in O(log n) time. Then
the space is reduced to O(n) using standard techniques. The main idea is the
following. Sort the input elements and place them in the leaves of a binary search
tree. Consider a search for the s’th smallest element in A[i, j]. If the left subtree
of the root contains s or more elements from A[i, j] then it contains the s’th
smallest element from A[i, j]. If not, it is in the right subtree. We augment each
node of the tree with prefix sums such that the number of elements from A[1, j]
contained in the left subtree can be determined for any j, and we use fractional
cascading [12] to avoid a search for the needed prefix sums in each node.

2.1 Basic Structure

Let A = [y1, . . . , yn] be the input array. We sort A and build a complete bi-
nary search tree T that stores the n elements in the leaves in sorted order. We
introduce the following notation. For a node v in T , let Tv denote the subtree
rooted at v, and |Tv| the number of leaves in Tv. The x-predecessor of an index
(x-coordinate) i in Tv is the largest index i′ such that i′ ≤ i and yi′ ∈ Tv. If no
such index exists the x-predecessor of i is zero. The x-rank of an index i in Tv

is the number of elements from A[1, i] contained in Tv. An x-rank is essentially
a prefix sum. If we know the x-rank of i − 1 and j in Tv, we know the number
of elements from A[i, j] in Tv since this is the difference between the two. Notice
that in Tv, the x-rank of j and the x-rank of the x-predecessor of j are equal.

Each node v of T stores two indices for each element yi ∈ Tv in an array Av

of size |Tv|. Let yi ∈ Tv and ri be the x-rank of i in Tv. The ri’th pair of
indices stored in Av is the x-rank of i in the left subtree, and the x-rank of i
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in the right subtree of v. These are fractional cascading indices, meaning that
the x-rank of i in the left (right) subtree is the position of the indices stored
for the x-predecessor of i in the left (right) subtree. The arrays are constructed
by scanning A, starting with y1, and inserting the elements, yi, in increasing i
order into T . For each element yi, the search path to yi is traversed, and in each
visited node v the pair of indices for yi are appended to Av. The data structure
can be built in O(n log n) time and uses O(n log n) words of space.

Range Selection Query. A range selection query is given two indices i and j,
and an integer s, where 1 ≤ i ≤ j ≤ n, and must return the s’th smallest element
in A[i, j]. In a node v of T the search is guided using the x-ranks stored for the
x-predecessor of i− 1 and j in Tv. In the root this is the i− 1’th and j’th pair
stored in the root’s array. By subtracting the x-ranks for the left subtree we
learn how many elements, s′, from A[i, j] the left subtree of v contains. If s ≤ s′

the search continues in the left subtree. Otherwise, we set s = s−s′ and continue
the search in the right subtree. Notice that each step learns the x-ranks of i− 1
and j in the children nodes, which are needed to lookup the indices stored for
the x-predecessors of i− 1 and j in the subsequent step. A query takes O(log n)
time since each step takes constant time. Given indices i and j in a range median
query we return the s = � j−i

2 �+1’th smallest element in A[i, j]. Given indices i, j
and a value e in a range rank query, we do a predecessor search for e in T : In
each step where the search continues to the right child, the number of elements
from A[i, j] in the left subtree is computed as above, and these are added up.
When a leaf is reached this sum is the rank of e in A[i, j].

2.2 Getting Linear Space

We reduce the space usage of the data structure to O(n) by replacing the arrays
stored in each node by simple rank and select data structures [13] as follows. In
each node v, the array Av is partitioned into chunks of size logn. The last entry
of each chunk, i.e. every logn’th entry of Av, is stored as before. For the remain-
ing entries of a chunk, one bit is stored, indicating whether the corresponding
element resides in the left or right subtree. These bits are packed in order into
one word, which we denote a direction word. This reduces the space to O(n)
bits per level of T . Even though v no longer stores an x-rank for each element
in Tv, a needed x-rank is easily computed from the stored chunks in constant
time. Let rj be the x-rank of j in Tv, and let j′ = �j/ logn�. The indices stored
in the j′ − 1’th chunk yields the x-rank, rλ, in the left subtree of yλ ∈ Tv. The
first rj − j′ logn bits in the direction word from the j′’th chunk determines how
many elements from A[λ + 1, j] that reside in the left subtree. The sum of these
is the x-rank of j in the left subtree. The latter is computed using complete
tabulation. The extra table needed for this uses O(n) additional space.

3 Improving Query Time

In this section we generalize the data structure from Section 2 and ob-
tain a linear space data structure that supports range selection queries in
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O(log n/ log logn) time. First, we describe a data structure that supports queries
in O(log n/ log logn) time but uses slightly more than O(n) space. Then we re-
duce the space to O(n) by generalizing the ideas from Section 2.2.

3.1 Structure

The data structure is a balanced search tree T storing the n elements from
A = [y1, . . . , yn] in the leaves in sorted order. The fan-out of T is f = �logε n� for
some constant 0 < ε < 1. The height of T is O(log n/ log f) = O(log n/ log logn).
Each node v ∈ T contains f · |Tv| prefix sums: For each element, yi ∈ Tv, and for
each child index, 1 ≤ � ≤ f , v stores the number of elements from A[1, i] that
reside in the first � subtrees of Tv. We denote by ti� such a prefix sum. These
prefix sums are stored in |Tv| bit-matrices, one matrix Mi for each yi ∈ Tv. The
�’th row of bits in Mi is the number ti�. The rows form a non-decreasing sequence
of numbers by construction. The matrices are stored consecutively in an array
Av as above, i.e. Mi is stored before Mj if i < j, and the x-rank of i in Tv defines
the position of Mi in Av. If yj /∈ Tv then v does not store a matrix Mj , but it
is still well defined and equal to the matrix Mj′ , that is stored in v, where j′

is the x-predecessor of j in Tv. Each matrix is stored in two different ways. In
the first copy each row is stored in one word. In the second copy each matrix
is divided into sections of g = �logn/f� columns. The first section contains the
first g bits of each of the f rows, and these are stored in one word. This is the g
most significant bits of each prefix sum stored in the matrix. The second section
contains the last three bits of the first section and then the following g− 3 bits,
and so on. The reason for this overlap of three bits will become clear later. We
think of each section as an f × g bit matrix. For technical reasons, we ensure
that the first column of each matrix only contain zero entries by prepending a
column of zeroes to all matrices before the division into sections.

3.2 Range Selection Query

A query is given indices i, j and s and locates the s’th smallest element in A[i, j].
In each node we consider the matrix M ′ = Mj − Mi−1 (row-wise subtraction).
The �’th row of M ′ is tj� − ti−1

� , i.e. the number of elements from A[i, j] contained
in the first � subtrees. We compute the smallest � such that the �’th row in
M ′ stores a number greater than or equal to s, and this defines the subtree
containing the s’th smallest element in Tv. In the following pages we describe
how to compute � without explicitly constructing the entire matrix M ′.

The intuitive idea to guide a query in a given node, v, is as follows. Let
K = |Tv ∩ A[i, j]| be the number of elements from A[i, j] contained in Tv. We
consider the section from M ′ containing the �logK�’th least significant bit of
each row. All the bits stored in M ′ before this section are zero and thus not im-
portant. Using word-level parallelism we find an interval [�1, �2] ⊆ [1, f ], where
the g bits of M ′ match the corresponding g bits of s and the following row.
These indices define the subtrees of Tv that can contain the s’th smallest el-
ement in Tv. We then try to determine which of these subtrees contain the
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s’th smallest element. First, we consider the children of v defined by the end-
points of the interval, �1 and �2. If neither of these contain the s’th smallest
element in A[i, j], we know that the subtree of Tv containing the s’th smallest
element stores approximately a factor of 2g elements from A[i, j] fewer than Tv,
since the g most significant bits of the prefix sum of the row corresponding
to this subtree are the same as the bits in the preceding row. Stated differ-
ently, the number of elements in this subtree does not influence the g most
important bits of the prefix sum, and thus it must be small. In this case we
determine � in O(log logn) time using a standard binary search. The point is
that this can only occur O(log n/g) times, and the total cost of these searches is
O(log n log logn/f) = O(log1−ε n log logn) = o(logn/ log log n). In the remain-
ing nodes we use constant time.

There are several technical issues that must be worked out. The most impor-
tant is that we cannot actually produce the needed section of M ′ in constant
time. Instead, we compute an approximation where the number stored in the g
bits of each row of the section is at most one too large when compared to the g
bits of that row in M ′. The details are as follows.

In a node v ∈ T the search is guided using Mpi and Mpj where pi is the
x-predecessor of i− 1 in Tv and pj is the x-predecessor of j in Tv. For clarity we
use Mi−1 and Mj for the description. A query maintains an index c, initially one,
defining which section of the bit-matrices that is currently in use i.e. c defines
the section of M ′ containing the �logK�’th least significant bit. We maintain
the following invariant regarding the c’th section of M ′ in the remaining subtree:
in M ′, all bits before the c’th section are zero, i.e. the important bits of M ′ are
stored in the c’th section or to the right of it. For technical reasons, we ensure
that the most important bit of the c’th section of M ′ is zero. This is true before
the query starts since the first bit in each row of each stored matrix is zero.

We compute the approximation of the c’th section of M ′ from the c’th section
of Mj and Mi. This approximation we denote wi,j and think of it as a f × g
bit-matrix. Basically, the word containing the c’th section of bits from Mi−1 is
subtracted from the corresponding word in Mj. However, subtracting the c’th
section of g bits of ti−1

� from the corresponding g bits of tj� does not encompass
a potential cascading carry from the lower order bits when comparing the result
with the matching g bits of tj� − ti−1

� , the �’th row of M ′. This means that in
the c’th section, the �’th row of Mi−1 could be larger than �’th row of Mj. To
ensure that each pair of rows is subtracted independently in the computation of
wi,j , we prepend an extra one bit to each row of Mj and an extra zero bit to
each row of Mi to deal with cascading carries. Then we subtract the c section
of Mi−1 from the c’th section of Mj, and obtain wi,j . After the subtraction we
ignore the value of the most significant bit of each row in wi,j (it is masked out).
After this computation, each row in wi,j contain a number that either matches
the corresponding g bits of M ′, or a number that is one larger. Since the most
important bit of the c’th section of M ′ is zero, we know that the computation
does not overflow. If all bits in wi,j are zero the algorithm never needs to consider
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the current section again, and it is skipped in the remaining subtree by increasing
c by one, without breaking the invariant, and wi,j is recomputed.

Searching wi,j . Let sb = s1, . . . , sg be the g bits of s defined by the c’th
section, initially the g most important bits of s. If we had actually computed the
c’th section of M ′ then only rows matching sb and the first row containing an
even larger number can define the subtree containing the s’th smallest element.
However, since the rows can contain numbers that are one to large, we also
consider all rows matching sb + 1, and the first row storing a number even
larger. Therefore, the algorithm locates the first row of wi,j storing a number
greater than or equal to sb and the first row greater than sb + 1. The indices
of these rows we denote �1 and �2, and the subtree containing the s’th smallest
element corresponds to at row between �1 and �2. Subsequently, it is checked
whether the �1’th or �2’th subtree contains the s’th smallest element in Tv using
the first copy of the matrices (where the rows are stored separately). If this is
not the case, then the index of the correct subtree is between �1 + 1 and �2 − 1,
and it is determined by a binary search. The binary search uses the first copy
of the matrices. In the c’th section of M ′, the g bits from the �1 + 1’th row
represents at number that is at least sb −1, and the �2−1’th row a number that
is at most sb + 1. Therefore, the difference between the numbers stored in row
�1−1 and �2−1 in M ′ is at most two. This means that in the remaining subtree,
the c’th section of bits from M ′ (tj�−

i−1
� for 1 ≤ � ≤ f) is a number between

zero and two. Since the following section stores the last three bits of the current
section, the algorithm safely skips the current section in the remaining subtree,
by increasing c by one, without violating the invariant. We need two bits to
express a number between zero and two, and the third bit ensures that the most
significant bit of the c’th section of M ′ is zero. After the subtree, T�, containing
the s’th smallest element is located s is updated as before, s = s− (tj�−1 − ti−1

�−1).
Let ri−1 = ti−1

� − ti−1
�−1, be the x-rank of i−1 in T�, and rj = tj� − tj�−1, the x-rank

of j in T�. In the subsequent node the algorithm uses the ri−1’th and the rj ’th
stored matrix to guide the search. This corresponds to the matrix stored for the
x-predecessor of i− 1 and the x-predecessor of j in T� (fractional cascading).

In the next paragraph we explain how to determine �1 and �2 in constant
time. Thus, if the search continues in the �1’th or �2’th subtree, the algorithm
used O(1) time in the node. Otherwise, a binary search is performed, which takes
O(log f) time, but in the remaining subtree an additional section is skipped. An
additional section may be skipped at most �1 + logn/(g − 3)� = O(f) times.
When the search is guided using the last section there will not be any problems
with cascading carries. This means that the search continues in the subtree
corresponding to the first row of wi,j where the number stored is at least as
large as sb, and a binary search is never performed in this case. We conclude
that a query takes O(log n/ log logn + f log f) = O(log n/ log logn) time.

Given i, j and e in a rank query we use a linear space predecessor data struc-
ture (van Emde Boas tree [14]) that in O(log logn) time yields the predecessor
ep of e in the sorted order of A. Then, the path from ep to the root in T is



828 G.S. Brodal and A.G. Jørgensen

traversed, and during this walk the number of elements from A[i, j] in subtrees
hanging of to the left are added up using the first copy of the bit matrices. The
data structures uses O(nf logn/ log log n) = O(n log1+ε n/ log logn) space.

Determining �1 and �2. The remaining issue is compute �1 and �2. A query
maintains a search word, sw, that contains f independent blocks of the g bits
from s that corresponds to the c’th section. Initially, this is the g most important
bits of s. To compute sw we store a table that maps each g-bit number to a word
that contains f copies of these g bits. After updating s we update sw using a
bit-mask and a table look-up. A query knows wi,j = v1

1 , . . . , v
1
g , . . . , v

d
1 , . . . , v

d
g

and sw which is sb = s1, . . . , sg concatenated f times. The g-bit block v�
1, . . . , v

�
g

from wi,j we denote wi,j
� and the �’th block of s1, . . . , sg from sw we denote s�

w.
We only describe how to find �1, �2 can be found similarly. Remember that �1 is
the index of the first row in wi,j that stores a number greater than or equal to sb.
We make room for an extra bit in each block and make it the most significant.
We set the extra bit of each wi,j

� to one and the extra bit of each s�
w to zero. This

ensures that wi,j
� is larger than s�

w, for all �, when both are considered g + 1 bit
numbers. sw is subtracted from wi,j and because of the extra bit, this operation
subtracts s�

w from wi,j
� , for 1 ≤ � ≤ f , independently of the other blocks. Then,

all but the most significant (fake) bit of each block are masked out. The first
one-bit in this word reveals the index � of the first block where wi,j

� is at least
as large as s�

w. This bit is found using complete tabulation.

3.3 Getting Linear Space

In this section we reduce the space usage of our data structure to O(n) words.
The previous data structure stores a matrix for each element on each level of
the tree, and every matrix uses O(f logn) bits of space. Instead we only store a
matrix for every t = �f log n�’th element. In each node, the sequence of matrices
is divided into chunks of size t and only the last matrix of each chunk is explicitly
stored. For each of the remaining elements in a chunk, �log f� bits are used to
describe in which subtree it resides. The description for d = �logn/�log f��
elements are stored in one word, which we denote a direction word. Prefix sums
are stored after each direction word summing up all previous directions words
in the chunk, i.e. storing how many elements that was inserted in the first �
subtrees for � = 1, . . . , f . Since each chunk stores the direction of t elements, at
most �f log t/ logn� = O(1) words are needed to store these f prefix sums. We
denote it a prefix word. The data structure uses O(n) words of space.

Range Selection Query. The query works similarly to above. The main differ-
ence is that we do not use the matrices Mi−1 and Mj to compute wi,j since they
are not necessarily stored. Instead, we use two matrices that are stored which
are close to Mi−1 and Mj . The direction and update words enables us to exactly
compute any row of Mj and Mi−1 in constant time. Therefore, the main differ-
ence compared to the previous data structure, is that the potential difference
between wi,j , that we compute, and the c’th section of M ′ is marginally larger,
and for this reason the overlap between blocks is increased to four.
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In a node v ∈ T a query is guided as follows. Let ri be the x-rank of i− 1 and
rj the x-rank of j in Tv. Let i′ = �ri/t� and j′ = �rj/t�. The matrices stored
in the i′’th and j′’th chunk respectively are used to guide the search. These
matrices we denote Ma and Mb. Since v stores every t’th matrix from above,
tj� − tb� ≤ t for any 1 ≤ � ≤ f . If we ignore a potential cascading carry, then
adding tj� − tb� to tb� only affects the last log t = (1 + ε) log logn bits of tb�. This
means that, unless the search is using the last section, each row in the currently
considered section of Mb represents a number that is at most one smaller than
if we had used the corresponding section from Mj . The same is true for Ma.

We can obtain the value of any row in Mj as follows. From the direction and
prefix words from the j′’th chunk we compute for each �, 1 ≤ � ≤ f , how many
of the first rj − j′t elements represented in the chunk that reside in the first
� children. These are the elements considered in M j but not in M b. Formally,
the p = �(rj − j′t)/d�’th prefix word stores how many of the first pd elements
from the chunk that reside in the first � children for 1 ≤ � ≤ f . Using complete
tabulation on the following direction word, we obtain a word storing how many
of the following rj − j′t− pd elements from the chunk that reside in the first �
children for all 1 ≤ � ≤ f . Adding this to the p’th prefix word, gives for each
1 ≤ � ≤ f , the difference between the �’th row of Mj and Mb. The difference
between Ma and Mi−1 can be computed similarly. Thus, any row of Mj and
Mi−1, and the last section of Mj and Mi−1 can be computed in constant time.

If the last section is used it is computed exactly in constant time and the
search is guided as above. Otherwise, we compute the difference between each
row in the c’th section of Ma and Mb, yielding wa,b. Since the �’th row, for
1 ≤ � ≤ f , in the current section of Mb might be one to small compared to
�’th row in the current section of Mj , the �’th row in wa,b may be one to small
compared to the corresponding g bits of M ′. Similarly, each row in wa,b might
also one to the large since the current section of bits from Ma may be one smaller
than in the current section of Mi−1. As above, the computation of wa,b does not
consider cascading carries from lower order bits and for this reason the �’th row
of wa,b may additionally be one to large when compared to the same bits in M ′.
Therefore, the first row of wa,b that is at least sb − 1 and the first row greater
than sb + 2 are located as above. As above, the subtree we are searching for is
defined by a row between these two, and if it is not one of these, a binary search
is used to determine it. In this case, by the same arguments as earlier, each row
in the c’th section of M ′ in the remaining subtree, represents at number between
zero and six. Since we have an overlap of four bits between sections, we safely
move to the next section after every binary search.

Dominance queries are supported similarly to above.

4 Dynamic Range Selection

In this section we briefly sketch how our data structure can be made dynamic.
Our dynamic data structure uses O(n log n/ log logn) space and supports queries
and updates in O((log n/ log logn)2) time, worst case and amortized respectively.
Details will appear in the full paper.
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Our data structure maintains a set of points, S = {(xi, yi)}, under insertions
and deletions. A query is given values xl, xr and an integer s and returns the
point with the s’th smallest y value among the points in S with x-value between
xl and xr. We store the points from S in a weight-balanced search tree [15,16],
ordered by y-coordinate. In each node of the tree we maintain the bit-matrices,
defined in the static structure, dynamically using a weight-balanced search tree
over the points in the subtree, ordered by x-coordinate. The main issue is efficient
generation of the needed sections of the bit-matrices used by queries. The quality
of the approximation is worse than in the static data structure, and we increase
the overlap between sections to O(log logn). Otherwise, a search works as in the
static data structure.

5 Lower Bound for Dynamic Data Structures

In this section we describe a reduction from the marked ancestor problem to
a dynamic range median data structure. In the marked ancestor problem the
input is a complete tree of degree b and height h. An update marks or unmarks
a node of the tree, initially all nodes are unmarked. A query is provided a leaf v
of the tree and must return whether there exist a marked ancestor of v. Let
tq and tu be the query and update time for a marked ancestor data structure.
Alstrup et al. proved the following lower bound trade-off for the problem, tq =
Ω( log n

log(tuw log n) ) [11], where w is the word size.

Reduction. Let T denote a marked ancestor tree of height h and degree b. For
each node v in T we associate two pairs of elements, which we denote start-mark
and end-mark. We translate T into an array of size 4|T | by a recursive traversal
of T , where we for each node v outputs its start-mark, then recursively visit each
of v’s children, and then output v’s end-mark. Start-marks are used to mark a
node, and end-marks ensure that markings only influences the answer for queries
in the marked subtree. When a node v is unmarked, start-mark=end-mark=(0,1)
and when v is marked, start-mark is set to (1,1) and end-mark to (0,0).

A marked ancestor query for a leaf v is answered by returning yes if and only
if the range median from the subarray ranging from the beginning of the array
to the start-mark element associated with v is one. If zero nodes are marked,
the array is on the form [0, 1, . . . , 0, 1]. Since the median in any range that can
be considered by a query is zero, any marked ancestor query returns no. If v or
one of its ancestors is marked there will be more ones than zeros in the range
for v, and the query answers yes. A node u that is not an ancestor of v has its
start-mark and end-mark placed either before v’s marks or after v’s marks, and
independently of whether u is marked or not, it contributes and equal number
of zeroes and ones to v’s query range. Since the reduction requires an overhead
of O(1) for both queries and updates we get the following lower bound.

Theorem 1. Any data structure that supports updates in O(logO(1) n) time uses
Ω(log n/ log logn) time to support a range median query.
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6 Main Open Problems

There are two main open problems. First, what is the lower bound on the query
time for range selection queries in static O(n logO(1) n) space data structures? We
can prove that any O(n logO(1) n) space data structure needs Θ(log n/ log logn)
time for three-sided range median queries by a reduction from two dimensional
rectangle-stabbing [8]. Furthermore, there is a gap between the upper and lower
bounds for batched range median problem for k = Ω(n1+ε), and the lower
bound [6] is only valid in the comparison model.
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8. Pǎtraşcu, M.: (Data) STRUCTURES. In: Proc. 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 434–443 (2008)
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Abstract. Many database systems that use a B+ tree as the underlying data
structure do not do rebalancing on deletion. This means that a bad sequence of
deletions can create a very unbalanced tree. Yet such databases perform well in
practice. Avoidance of rebalancing on deletion has been justified empirically and
by average-case analysis, but to our knowledge no worst-case analysis has been
done. We do such an analysis. We show that the tree height remains logarithmic
in the number of insertions, independent of the number of deletions. Furthermore
the amortized time for an insertion or deletion, excluding the search time, is O(1),
and nodes are modified by insertions and deletions with a frequency that is ex-
ponentially small in their height. The latter results do not hold for standard B+

trees. By adding periodic rebuilding of the tree, we obtain a data structure that
is theoretically superior to standard B+ trees in many ways. We conclude that
rebalancing on deletion can be considered harmful.

1 Introduction

Deletion in balanced search trees [2–6, 8–10, 14, 15, 18] is a problematic operation.
First, if items are stored in the internal nodes of the tree, deletion can require swapping
the item to be deleted with its predecessor or successor: this moves the deletion position
to the bottom of the tree, where the deletion can be done easily. Second, the rebalancing
needed to keep the height of the tree (and the worst-case search time) logarithmic is
more complicated than that needed for insertion. Indeed, the original paper on AVL
trees [1] did not discuss deletion, and many textbooks neglect it. Third, if operations
on the search tree occur in parallel, as in many database systems that use B or B+

trees, the synchronization necessary to do rebalancing on deletion reduces the available
parallelism [7]. Whereas rebalancing must be done on insertion into a B or B+ tree to
guarantee correctness (nodes cannot become overfull), it is optional on deletion, since
a B or B+ tree remains a valid search tree even if it has underfilled nodes.

The first problem with deletion can be overcome by storing the items only in the ex-
ternal nodes of the tree, storing keys in the internal nodes to support search. B+ trees [6]
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are an example of such a data structure. This takes extra space, but the space penalty
may be worth the benefits. The second and third problems can be addressed by avoiding
rebalancing on deletion. But then the tree need no longer have a height logarithmic in
the number of items. Nevertheless, this method has been used successfully in Berkeley
DB [16, 17], which uses B+ trees with underfilled nodes, and in other database systems.

Avoiding rebalancing on deletion has been justified empirically [7, 13, 16, 17] and by
average-case analysis [11, 12], but to our knowledge no one has studied its worst-case
efficiency, perhaps because of the assumption that the worst case, however unlikely,
is terrible. Here we undertake such a study. Perhaps surprisingly, our results provide
ample theoretical justification for avoiding rebalancing on deletion.

One may wonder how this is possible. It is easy to construct an example showing
that the tree height can become arbitrarily large, even if there is only one item left in
the tree [10]. Furthermore the idea of deletion without rebalancing has also been used
in red-black trees, resulting in unforseen and unfortunate consequences in at least one
application [19]. Nevertheless, it is still possible that the height could remain logarith-
mic in the number of insertions. We show that this is indeed the case. We also show
that the amortized time per insertion or deletion is O(1), and that nodes are affected by
updates with a frequency exponentially small in their heights. These latter results do not
hold for standard B+ trees. Thus in some ways deletion with rebalancing is not only not
helpful but actually harmful. Our results provide theoretical support for the design deci-
sion made in Berkeley DB and other database systems to avoid rebalancing on deletion.
In a companion paper [19] we present similar results for balanced binary trees. These
results require careful design of the deletion method; certain natural choices result in
the tree height becoming linear in the number of insertions in the worst case.

The remainder of our paper consists of five sections. In Section 2 we define the B−

tree, a relaxed form of B+ tree in which deletions are done without rebalancing. B− trees
are essentially those used in Berkeley DB. We describe how to do searches, insertions,
and deletions in such trees. Insertions require node-splitting, which can be done either
bottom-up or top-down; we describe both methods. Deletions require only deletion of
empty nodes. In Section 3 we analyze B− trees. We show that the height, and hence
the search time, is O(logb m), where m is the total number of insertions and b is the
maximum node degree. This bound is independent of the number of deletions. We also
show that an insertion or deletion takes O(1) amortized time in addition to a search, and
that nodes are modified by insertions and deletions with a frequency that is exponentially
small in their height. (These results require b > 3 if node-splitting is top-down.)

In Section 4 we discuss how and when to rebuild the tree. Such rebuilding eliminates
two drawbacks of B− trees: it keeps the space used proportional to the number of items
in the tree, and it keeps the height logarithmic in the number of items. If rebuilding
is done appropriately often, the amortized rebuilding time is O(ε) per insertion for an
arbitrarily small positive constant ε. In Section 5 we sketch how to do rebalancing with
deletion while retaining our inverse exponential bounds on node updates. Section 6 con-
tains some concluding remarks, including a comparison between the case of multiway
trees and that of binary trees.
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2 B− Trees

In our discussion of multiway search trees we denote by m, d, n, and h, respectively,
the number of insertions, the number of deletions, the current number of items in the
tree, and the tree height. We assume that the initial tree is empty. We measure the time
of an operation by counting the number of nodes examined or modified. In B+ trees,
the structure of internal nodes differs from that of external nodes: internal nodes con-
tain keys and pointers to children; external nodes contain items (and their keys) but no
pointers. To allow for this difference, we define our trees using two parameters, which
give upper bounds on the sizes of the internal and external nodes. A B− tree of type
b > 2, c > 0 consists of an ordered tree whose external nodes all have the same depth,
each of whose internal nodes has at most b children, and each of whose external nodes
contains at least one and at most c items. Generally we think of b and c as large but
within a small constant factor of each other (though our results do not require this).
Each item has a distinct key selected from a totally ordered universe. (If keys are not
distinct we break ties by item identifier.) Increasing key order corresponds to left-to-
right node order. That is, if external node y is to the right of external node x, all items in
y have larger key than all items in x. In order to facilitate searching, each internal node
x with j children contains j−1 keys in increasing order, alternating with pointers to its
children; if a pointer to node y immediately follows (precedes) key k, then all items in
the subtree rooted at y have key greater than (not greater than) k. We allow j = 1; an
internal node with one child contains no key.

To search for the item (if any) with a given key k in a B− tree, start at the root and
repeat the following search step until reaching an external node: in the current node x,
find the largest key in x less than k and replace x by the child indicated by the pointer
immediately following k; if there is no such k, replace x by the leftmost child of x.
Upon reaching an external node, check whether any of its items have the desired key.
The time for a search is h + 1.

To insert a new item into a B− tree, if the tree is empty merely create a new external
node containing the item. Otherwise, do a search for the key of the item. Upon reaching
an external node, insert the new item into this node. If the node overflows (because
it now has c + 1 items), split it into two external nodes, one containing the smallest
�(c + 1)/2� = �c/2 + 1� items and the other containing the remaining (largest) �(c +
1)/2� = �c/2� items; in the parent, replace the pointer to the original external node by
two pointers to the two nodes formed by the split, separated by a copy of the largest
key in the new external node containing the smaller keys. If this causes the parent to
overflow, because it now has b+1 children and b keys, split it, but in a slightly different
way: find a median of its keys; put the keys smaller than the median and the child
pointers preceding the median in a new node, and put the keys larger than the median
and the child pointers following the median in another new node; in the parent, replace
the pointer to the old node by two pointers to the new nodes, separated by the median.
That is, the median is promoted to the parent, not copied. Walk back up the path toward
the root, splitting nodes in this way, until some node does not overflow or the root splits.
If the root splits, create a new root containing pointers to the two new nodes formed by
the split, separated by the promoted or copied median. (The old root could be an internal
or external node.)
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Fig. 1. Deletion in a B− tree with b = c = 3. Deleting item 2 in the above tree causes the
additional node and item deletions shown in dotted crosses.

An alternative way to do an insertion is to split full nodes top-down as the search
proceeds, rather than splitting overfull nodes bottom-up after the search. This method
only gives good bounds if b > 3. To do an insertion, do a search on the key of the
new item, but if the current node of the search is full (it has b children), find a median
of its keys, split the remaining keys and the child pointers into two nodes, containing
the keys less than the median and the child pointers preceding the median, and the keys
greater than the median and the child pointers following the median, respectively; in the
parent, replace the pointer to the old child by pointers to the two new nodes, separated
by the median. (The parent cannot be full; if it were, it would have split previously.) If
the root splits, create a new root as in the bottom-up method. Continue the search from
the appropriate one of the two nodes formed by the split. On reaching an external node,
insert the new item into this node and split the node if it is overfull. (Again, the parent
cannot be full.)

To delete an item in a B− tree, find the external node containing it and delete the
item from the node. If the node is now empty, delete it, as well as the pointer from its
parent and one of the keys next to this pointer (either key will do if there are two). If
before the deletion the parent contained no key (and only one child pointer), delete the
parent as well, and walk back up the path toward the root deleting each node with no
children until reaching a node that still has at least one child or until reaching the root.
If the root has no children, delete it; the tree is now empty. (See Figure 1.)

The insertion methods we have described are the standard bottom-up and top-down
insertion methods for B+ trees. In the standard deletion method, a node that becomes
underfull is refilled, by fusing it with a sibling (the inverse of splitting) and then possibly
resplitting. Also, a root with only one child is deleted. What “underfull” means depends
on whether node-splitting during insertion is bottom-up or top-down; in the former case,
an internal node is underfull if it has less than �b/2� children; in the latter case, if it has
less than �b/2� children. In either case, an external node is underfull if it has less than
�c/2� items. A B+ tree has height at most log�b/2�(n/c)+1 if splitting is bottom-up, at
most log�b/2�(n/c)+1 if top-down. Avoiding refilling simplifies deletion considerably,
but at the expense of having underfull nodes, which worsens space utilization and can
increase the time for accesses and updates. Nevertheless, our analysis in the next section
provides theoretical support for this method.



836 S. Sen and R.E. Tarjan

3 Analysis of B− Trees

To analyze B− trees we use the potential method of amortized analysis [20]. To each
state of the data structure we assign a non-negative potential, zero for an empty struc-
ture. We define the amortized cost of an operation to be its actual cost plus the net
increase in potential it causes. Then for any sequence of operations starting with an
empty structure, the sum of the actual costs is at most the sum of the amortized costs.

We use exponential potential functions similar to those we have used to analyze bal-
anced binary trees [9, 19]. Each node has a non-negative potential; the potential of a tree
is the sum of the potentials of its nodes. We begin by analyzing bottom-up splitting; then
we modify the analysis to handle top-down splitting. We define the potential of a node
of height h > 0 with j children to be max{0, j−�b/2+1�}�b/2�h and the potential of
an external node containing j items to be max{0, j−�c/2 + 1�}�b/2�/�c/2�; to cover
temporarily overfull nodes, we allow j = b + 1 for an internal node, j = c + 1 for an
external node.

A deletion cannot increase the potential. Ignoring the effect of splits, an insertion
increases the potential by at most �b/2�/�c/2�, by adding one item to an external node.
If an overfull external node (containing c + 1 items) splits, the potential of both new
nodes is zero; the potential of the parent (if any) increases by at most �b/2�. The poten-
tial of the old external node was (c + 1 − �c/2 + 1�)�c/2�/�b/2� = �b/2�, so the split
does not increase the total potential. If an overfull internal node (having b+ 1 children)
splits, the potential of both new nodes resulting from the split is zero, and the potential
of the parent (if any) increases by at most �b/2�h+1. The potential of the old node that
split was (b + 1 − �b/2 + 1�)�b/2�h = �b/2�h+1, so the split does not increase the
potential. If the node that splits is the root, the potential decreases by �b/2�h+1. Since
the potential can never be negative and increases by a total of at most m�b/2�/�c/2�,
we obtain the following theorem:

Theorem 1. A B− tree built by m insertions with bottom-up splitting intermixed with
arbitrary deletions has height at most log�b/2�(m/�c/2�) + 1.

Thus as long as m, the total number of insertions, is polynomial in n, the current num-
ber of items in the tree, the B− tree built by an update sequence has height within a
multiplicative constant of that of the B+ tree built by the same update sequence; the
constant depends on the degree of the polynomial. If m is linear in n, the height of the
B− tree is within an additive constant of that of the B+ tree.

By truncating the potential function, we can obtain an inverse-exponential bound on
the number of splits, and the number of nodes, of a given height. For any fixed h let the
potential function be as defined above for nodes of height at most h, zero for nodes of
height greater than h. Then every split of a node at height h reduces the potential by
�b/2�h+1, which gives the following theorem:

Theorem 2. In a B− tree built by m insertions with bottom-up splitting intermixed with
arbitrary deletions, the number of splits of nodes at heighth is at most m/(�b/2�h�c/2�).

Corollary 1. In a B− tree built by m insertions with bottom-up splitting intermixed
with arbitrary deletions, the number of deletions of roots of height h > 0 is at most
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m/(�b/2�h−1�c/2�). The number of deletions of non-roots of height h is at most
m/(�b/2�h�c/2�).

Proof. The number of nodes deleted at height h is at most the number added. For a
node to be added at height h, a split must occur at height h − 1. Each deletion of a
non-root at height h must correspond to a previous split at height h. Thus both parts of
the corollary follow from Theorem 2. �	

Corollary 2. With bottom-up splitting, the amortized time for an insertion, excluding
the search time, is O(1). The amortized time for a deletion is zero. (Each deletion can
be charged to the corresponding insertion.)

Proof. The sum over all heights of the bounds given by Theorem 2 on node splits and
by Corollary 1 on node deletions is a geometric series summing to O(m). �	

By using a related but different potential function that increases as a node becomes
empty rather than as it becomes full, we can obtain a bound on node deletions as a func-
tion of d, the number of item deletions, rather than m. We define the potential of a root to
be zero, that of a child of height h > 0 with j children to be max{0, �b/2�− j}�b/2�h,
and that of an external child containing j items to be max{0, �c/2� − j}�b/2�/�c/2�;
to cover underfull nodes, we allow j = 0.

An insertion cannot increase the potential: splitting a node creates two nodes of po-
tential zero and adds a child to the parent; if there is no parent, a new root is created,
of potential zero. Ignoring node deletions, an item deletion increases the potential by at
most �b/2�/�c/2�. Deletion of a node of height h decreases the potential by that of the
deleted node, namely �b/2�h+1, and increases the potential of the parent by at most the
same amount, resulting in no net increase. A deletion of a root of height h > 0 must be
preceded by a deletion of its only child, reducing the potential by �b/2�h. If we truncate
the potential function by letting the potential of nodes of height greater than h be zero
for some fixed h, then a deletion of a node of height h other than the root reduces the
potential by �b/2�h+1. This gives the following theorem:

Theorem 3. In a B− tree built by insertions with bottom-up splitting intermixed with
d arbitrary deletions, the number of deletions of roots of height h > 0 is at most
d/(�b/2�h−1�c/2�). The number of deletions of non-roots of height h is at most
d/(�b/2�h�c/2�).

For top-down splitting we obtain the same results, but with �b/2� in place of �b/2�,
so the bounds are slightly worse. We assume b > 3. Let the potential of a node of
height h > 0 with j children be max{0, j − �b/2�}�b/2�h and that of an external
node containing j items be max{0, j − �b/2 + 1�}�b/2�/�c/2�. An argument like that
preceding Theorem 1 gives the following:

Theorem 4. A B− tree built by m insertions with top-down splitting intermixed with
arbitrary deletions has height at most log�b/2�(m/�c/2�) + 1.

By defining the potential of a node of height exceeding h to be zero for any fixed h, we
obtain the following analogues of Theorem 2, Corollary 1, and Corollary 2:



838 S. Sen and R.E. Tarjan

Theorem 5. In a B− tree built by m insertions with top-down splitting intermixed with
arbitrary deletions, the number of splits of nodes at heighth is at most m/(�b/2�h�c/2�).

Corollary 3. In a B− tree built by m insertions with top-down splitting intermixed
with arbitrary deletions, the number of deletions of roots of height h > 0 is at most
m/(�b/2�h−1�c/2�). The number of deletions of non-roots of height h is at most
m/(�b/2�h�c/2�).

Corollary 4. With top-down splitting, the amortized time for an insertion, excluding
the search time, is O(1).

To obtain a bound on node deletions as a function of d, we let the potential of a root
be zero, the potential of a child of height h > 0 with j children be max{0, �b/2� −
j}�b/2�h, and that of an external child containing j items be max{0, �c/2� −
j}�b/2�/�c/2�. An argument like that preceding Theorem 3 gives the following:

Theorem 6. In a B− tree built by insertions with top-down splitting intermixed with
d arbitrary deletions, the number of deletions of roots of height h > 0 is at most
d/(�b/2�h−1�c/2�). The number of deletions of non-roots of height h is at most
d/(�b/2�h�c/2�).

4 Rebuilding the Tree

B− trees have two possible disadvantages: their space usage may be ω(n), where n is
the current number of items, and the search time may exceed O(logb n). This can only
occur when d/m approaches one. For applications in which insertions significantly
outnumber deletions, this is not a concern, but for other applications it may be. We can
solve both problems by periodically rebuilding the tree. How to rebuild the tree, and
how often, are interesting questions that deserve careful study and experimentation. We
describe a simple rebuilding method that takes O(ε) amortized time per insertion for an
arbitrarily small positive constant ε, analogous to the rebuilding method for binary trees
presented in [19].

To rebuild the tree, we initialize a new tree to empty. We traverse the old tree in
symmetric order, deleting each item and inserting it into the new tree. To facilitate the
rebuilding process, we maintain the right spine (the path from the root to the rightmost
external node) of the new tree as a list. The list provides the location of the next in-
sertion: the new item is inserted into the last node on the list. Thus there is no need
to search for the insertion location. The list also contains consecutively all the nodes
at which splits occur. When a node is split, the new node containing the larger keys
replaces the original node on the list. A split at the root additionally creates a new root,
which is added to the end of the list. Each insertion into the new tree takes O(1) amor-
tized time, and the entire rebuilding process takes O(n) time.

To decide when to rebuild the tree, we keep track of n and rebuild the tree when
the space usage or the tree height (or both) becomes too high. If we rebuild the tree
when the space usage becomes greater than an for a suitably large but fixed constant a,
then the space usage of the tree is always O(n), and the rebuilding time is O(1/a) per
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insertion. Similarly, if we rebuild the tree when its height exceeds log�b/2�(n/c) + g
for a suitably large but fixed constant g, then the height of the tree is always O(logb n)
and the rebuilding time is O(1/�b/2�g) per insertion. The larger the values of a and g,
the smaller the overhead for rebuilding, but the worse the space usage and the larger the
tree height can become in terms of n.

Rebuilding can also be done incrementally, by maintaining both the old tree and
the new tree and doing O(ε) rebuilding work per insertion. For example, we can start
the rebuilding process when the tree exceeds the maximum space usage or height, and
then move two items from the old tree to the new tree for each subsequent insertion
or deletion until the old tree becomes empty. During rebuilding, insertions occur in the
new tree if the key of the item is less than the largest key of an item in the old tree moved
so far, and in the old tree otherwise. We maintain the left spine of the old tree and the
right spine of the new tree as lists, so the next item to be deleted from the old tree and
its new location in the new tree can be found in O(1) time. We need to update these lists
when insertions and deletions occur, but this takes O(1) amortized time per insertion or
deletion. If n is the number of items in the old tree at the start of the rebuilding process,
the number of items in the new tree at the end of the rebuilding process is between n/2
and 2n.

Whether the tree is rebuilt incrementally or all at once, the space usage of the tree is
always O(n) and the tree height is always O(logb n). The inverse-exponential bounds
on node updates in Section 3 also continue to hold.

5 Deletion with Weak Rebalancing

As an alternative to rebuilding, one can obtain our inverse-exponential bounds on node
updates (with a worse base), while guaranteeing linear space usage and O(logb n)
search time, by refilling nodes that become too empty. This makes deletion as com-
plicated as in standard B+ trees, but achieves O(1) rebalancing time per insertion or
deletion (not including search time).

To obtain the bounds we seek, we need to allow nodes to become emptier than in
standard B+ trees. Rebalancing during a deletion can be done either bottom-up or top-
down. In either case, when an external node contains too few items or an internal node
has too few children, we fuse it with a sibling, by combining the contents of both nodes
and, if the node is internal, adding the key in the parent that is between the pointers to
the two nodes being fused. Whether the node is internal or not, we replace the key in
the parent and its adjacent pointers by a pointer to the new node. Then, if the new node
is too full, we resplit it evenly, as in an insertion. To rebalance bottom-up, we start at the
external node that has just lost an item, fuse it with a sibling if necessary, and walk up
toward the root fusing each node that is too empty with a sibling, until reaching a node
that is full enough, or resplitting a fused node, or reaching the root. If the root is internal
and loses all but one child, we delete it and make its only child the new root. Top-down
rebalancing works in the same way, except that we pre-emptively do the fusing top-
down during the search; if the root is left with only one child as a result of a fusion of
its children, we delete it.

One can easily parameterize the results based on the sizes at which fusions and
resplits occur, but here we consider one illustrative special case. Suppose fusion is
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bottom-up, we fuse an internal node when it has less than �b/8� children, an external
node when it has less than �c/8� items, and we resplit an internal node if it has more
than �b/2� children, an external node when it has more than �c/2� items. We need b
and c sufficiently large, say at least 16. Theorems 1, 2, 4, and 5, and Corollaries 2 and 4
still hold, since nodes created by fusion with or without resplitting have zero potential.
The tree height is at most log�b/8�(n/�c/8�) + 1. Furthermore we have the following
result:

Theorem 7. Whether splitting during insertion is bottom-up or top-down, the number
of node fusings (with or without resplittings) of nodes at height h is at most
d/(�b/8�h�c/8�).

Proof. Let the potential of a root be zero, that of an internal node of height h with
j children be max{0, 2�b/8� − j}�b/8�h, and that of an external node with j items
be max{0, 2�c/8� − j}�b/8�/�c/8�. An insertion does not increase the potential. Ex-
cluding node fusings and resplittings, a deletion increases the potential by at most
�b/8�/�c/8�. A fusing of two nodes at height h without a resplit does not increase
the potential, since the fused node has potential at least �b/8�h+1 less than the sum of
the potentials of the two nodes that fuse, and the potential of the parent increases by at
most this amount. A fusing of two nodes at height h with a resplit does not change the
potential of the parent and decreases the total potential of the affected nodes at height
h by at least �b/8�h+1. If we change the potential of nodes exceeding a fixed height h
to zero, then any fusing at height h decreases the potential by at least �b/8�h+1. The
theorem follows. �	

6 Remarks

We have shown that in B+ trees deletion without rebalancing preserves a logarithmic
height bound, and that with this method node updates during insertions and deletions
occur exponentially infrequently in the height of the node. If one rebuilds the tree pe-
riodically, the space usage remains linear and the height remains logarithmic in the
number of items in the tree; the rebuilding time can be made O(ε) per insertion for
an arbitrarily small positive constant ε. We have obtained similar inverse exponential
bounds if rebalancing is done on deletion but nodes are allowed to be less full than in
standard B+ trees. Such “weak” rebalancing takes O(1) amortized time per insertion or
deletion, whereas in standard B+ trees the amortized time per insertion or deletion can
be logarithmic in n. Our bounds for weak rebalancing have worse constants than those
for rebalancing without deletion, however.

We have obtained similar results for balanced binary trees [9, 19]. In the case of
binary trees it is not so simple to do deletion without rebalancing and still obtain good
bounds: the deletion method we have analyzed here can produce long chains of unary
nodes, but binary trees do not have unary nodes. We could eliminate unary nodes in our
solution for multiway trees by making the parent of such a node point to its only child,
but this method fails unless one keeps track, for each pointer replacing a path of unary
nodes, of the length of the path it replaces. This is what we did to solve the problem for
binary trees, and this seems to be required. See [19].
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Counting in the Presence of Memory Faults

Gerth Stølting Brodal1, Allan Grønlund Jørgensen1, Gabriel Moruz2,�,
and Thomas Mølhave3,��

1 MADALGO� � �, Department of Computer Science, Aarhus University
2 MADALGO� � �, Institut für Informatik, Goethe University Frankfurt am Main

3 Department of Computer Science, Duke University

Abstract. The faulty memory RAM presented by Finocchi and Italiano [1] is a
variant of the RAM model where the content of any memory cell can get cor-
rupted at any time, and corrupted cells cannot be distinguished from uncorrupted
cells. An upper bound, δ, on the number of corruptions and O(1) reliable mem-
ory cells are provided. In this paper we investigate the fundamental problem of
counting in faulty memory. Keeping many reliable counters in the faulty memory
is easily done by replicating the value of each counter Θ(δ) times and paying
Θ(δ) time every time a counter is queried or incremented. In this paper we de-
crease the expensive increment cost to o(δ) and present upper and lower bound
tradeoffs decreasing the increment time at the cost of the accuracy of the counters.

1 Introduction

Modern memory chips are made from increasingly smaller and complicated circuits that
work at low voltage levels and offer large storage capacities [2]. Unfortunately, these
improvements have increased the likelihood of soft memory errors, where arbitrary bits
flip, corrupting the contents of the affected memory cells [3]. Soft memory errors are
triggered by phenomena such as power failures, cosmic rays, and manufacturing de-
fects. Even though the occurrence rate of these errors in individual memories is quite
low they are a serious concern in applications running on clusters, where the frequency
of soft memory errors is much larger. The soft memory errors rate is predicted to in-
crease in the future [4]. Since the amount of cosmic rays increases with altitude, soft
memory errors are a serious concern in fields like avionics and space research [5].

Corrupted memory cells can have significant consequences for algorithms. For in-
stance, a single corruption in a sorted array can force a standard binary search to end up
Ω(n) cells away from the correct position. Soft memory errors can also be exploited to
break the security of software systems. This has been demonstrated in works breaking
Java Virtual Machines [6], cryptographic protocols [7,8], and smart-cards [9].

Soft memory errors can be addressed by using replication and error correcting codes
at the hardware level, but this approach is not always popular since the increased cir-
cuitry requirements is costly with respect to performance, storage capacity, and money.
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In software, memory errors have been addressed in a variety of settings, with the
main focus on ensuring that code runs as expected, anticipating critical errors caused
by hardware errors and malicious attacks. Errors are detected using techniques such as
algorithm based fault tolerance [10], assertions [11], control flow checking [12], proce-
dure duplication [13], and automatically correcting heap-based memory errors [14].

Most algorithms and data structures assume a perfectly reliable storage, but algo-
rithms dealing with unreliable data were also proposed. These include fault-tolerant
pointer-based data structures [15], fault-tolerant sorting networks [16], fault-tolerant
parallel models [17], the liar model [18], and locally mendable distributed networks [19].

Faulty Memory RAM. Recently, the faulty-memory RAM model was proposed in [1].
This model is a regular RAM with word size w where any memory cell can get cor-
rupted at any time during the execution of an algorithm, and a cell containing corrupted
data cannot be distinguished from a cell that does not. Algorithms are provided with an
upper bound, δ, on the number of corruptions that may occur during execution. We let
α ≤ δ denote the actual number of corruptions that have taken place during the com-
putation. Given that registers in the processor are considered incorruptible, O(1) safe
memory locations are provided. It is assumed that reading a word from memory is an
atomic operation. An algorithm is resilient if it works correctly for all uncorrupted data.
For instance, a resilient sorting algorithm outputs a sequence where all uncorrupted ele-
ments appear in sorted order and corrupted elements can appear anywhere in the output.
The correctness of algorithms is usually proved by assuming that an adaptive adversary
(worst-case) performs up to δ corruptions during the execution of an algorithm.

Several problems have been addressed in the faulty-memory RAM, see a recent sur-
vey [20] for more information. For instance optimal comparison based sorting algo-
rithms and (static and dynamic) dictionaries [1,21,22,23], and priority queues [24] have
been proposed. In [25] it is shown that resilient sorting algorithms are of practical inter-
est. Motivated by the increased soft memory errors frequency on clusters operating with
massive data sets, in [26] resilient algorithms are linked to external-memory algorithms,
providing the first external-memory algorithms resilient to memory faults.

Our results. We investigate maintaining many counters in the faulty memory RAM:

Definition 1. A resilient counter with additive error γ is a data structure with an incre-
ment operation and a query operation. The query operation returns an integer between
v − γ and v + γ where v is the number of increment operations preceding the query.

We investigate upper and lower bound tradeoffs between the time needed for n increase
operations and the additive error of the counter. We only consider data structures where
no information is stored in safe memory between operations, therefore the counters are
stored completely in unreliable memory. Our results are summarized in Figure 1.

In Section 2 we prove that any resilient counter with non-trivial additive error must
use Ω(δ) space, and that a deterministic query operation requires Ω(δ) time. Further-
more, we prove a lower bound tradeoff between the increment time and the additive
error, stating that if an increment operation takes t ≤ δ time, the additive error is at
least �δ/t� in the worst case, i.e. (increment time) × (additive error) ≥ δ. The lower
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Time (n increments) Query time Additive error γ Space Section
O(δn) O(δ) 0 O(δ) -

O(nt log(δ/t) + α log(α/t)) O(δ) α/t O(δ) 3.1
O(n + α log α) O(δ) α log δ O(δ) 3.1

O(n) O(δ2) O(α2) O(δ) 3.2
O(n + α

√
δ) O(δ) α O(δ) 3.3

Expected O(n) O(δ) α O(δ) 3.4

Fig. 1. Overview of our upper bounds

bounds suggest that an optimal resilient counting data structure is characterized by an
O(δ) space bound, O(t) increment time, O(α/t) additive error and O(δ) query time.

In Section 3.1 and 3.3 we provide deterministic data structures where both the incre-
ment time and the additive error depend on α. The first result in Section 3.1 provides
a tradeoff between the increment time and the additive error that does not blow up the
space used by the data structure nor the query time. Given any t ≥ 1 the data structure
has additive error α/t and supports n increments in O(nt log(δ/t) + α log(α/t)) time.
A small change to this data structure gives a data structure with additive error α log δ
that supports n increments in O(n + α logα) time. In Section 3.3 we describe a data
structure with additive error α that supports n increments in O(n + α

√
δ) time. This is

optimal for n = Ω(α
√
δ).

In Section 3.2 we describe a deterministic data structure where the time used by an
increment is independent of the number of possible corruptions. The data structure sup-
ports increments in O(1) time in the worst case. The additive error of the data structure
is O(α2) and queries are supported in O(δ2) time.

Finally, in Section 3.4 we present a randomized data structure with additive error α,
that supports n increments in O(n) time in expectation and supports queries in O(δ)
time in the worst case. This is optimal up to constant factors.

The additive error of any of our resilient counters can be reduced by a factor of t
by using t counters. Each increment operation increments all t counters and the query
operation returns the sum of all t counters divided by t. However, this produces a new
tradeoff by increasing the increment time and space by a factor of t. Similarly, any of
our resilient counters can be used to create a new counter that supports both decrement
and increment operations with the same additive error. This is achieved by using two
counters; one to count the number of increment operations and one to count the number
of decrement operations.

Preliminaries. Throughout the paper we denote by reliable value a value stored in
unreliable memory that can be retrieved reliably despite possible corruptions. This is
achieved by replicating the given value in 2δ + 1 consecutive cells. Since at most δ of
the copies can be corrupted, the majority of the 2δ + 1 elements are uncorrupted. The
value can be retrieved in O(δ) time with the majority algorithm in [27], which scans the
2δ + 1 values keeping a single majority candidate and a counter in safe memory.

2 Lower Bounds and Tradeoffs

We present some simple lower bounds on space and time for resilient counters.
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Space. Any resilient counter data structure with non-trivial additive error must use
more than δ space. If the data structure uses δ space or less, the adversary can corrupt
the entire structure and force a query operation to return any arbitrary value.
Deterministic Query. Any deterministic algorithm uses at least δ probes in the worst
case for a query. If a query algorithm reads at most δ memory cells the adversary can
simulate any value by corrupting δ cells. This means that the adversary can completely
control the value returned by a query, making it impossible to get a non-trivial bound
on the additive error.
Deterministic Increment. If an increment takes k time the adversary can roll back the
changes to the data structure done by the last �δ/k� increments, or do the changes to the
data structure corresponding to �δ/k� increments. Thus, the counter has additive error
at least �δ/k� in the worst case.

3 Data Structures

3.1 Replicating Bits

In this section we describe a data structure that is parameterized with an integer t,
1 ≤ t ≤ δ. The data structure uses O(δ) space and has additive error �α/t�. The time
used for n increments is O(nt log(δ/t) + α log(α/t)), and queries take O(δ) time.
Structure. The data structure maintains the bits of the binary representation of the
counter value separately, each bit replicated depending on its significance as follows.
For i = 0, . . . , �log(δ/t)� the i’th least significant bit is replicated t2i+1 times in t2i+1

different memory cells. The value of the remaining w−�log(δ/t)� most significant bits
are stored in a reliable variable v. The memory cells are stored in one array of size O(δ).
Increment. Increments are implemented as binary addition, where we consider the i’th
bit to be one if at least t2i of the t2i+1 copies of it are non-zero. The i’th bit is set by
writing the value of the bit in all of the t2i+1 copies.
Query. The query algorithm reliably retrieves the value of the w−�log(δ/t)� bits stored
in v. For the lower order bits, we add 2i to the sum, for i = 0, . . . , �log(δ/t)�, if at least
t2i of the t2i+1 copies of the i’th least significant bit are non-zero.
Additive Error. Since the value of the i’th bit is given by the majority value of t2i+1

copies, the adversary must use t2i corruptions to alter the i’th bit. Changing the i’th bit
changes the value stored in the data structure by 2i, yielding an additive error of �α/t�.
Complexity. If no corruptions occur, we update the i’bit of the counter every 2i incre-
ments, taking O(t2i) time. Similarly, we update v after Θ(δ/t) increments in O(δ) time.
Therefore, if we ignore corruptions, the time used for n increments is O(nt log(δ/t)).

The only way corruptions can influence the running time of increment operations is
by changing the value of a bit. Assume the adversary corrupts the i’th bit, using t2i

corruptions. After a number of increments a cascading carry affects this (corrupted) bit
and the increment operation writes the t2i+1 copies of the i + 1’th bit. We charge the
work needed to move the t2i corrupted bits to the corruptions that caused them. These
corrupted bits can be charged in log(δ/t) − i such cascading carries. However, when
k increments have been performed, where kt > α, the time used by the increments
alone is O(kt log δ/t) dwarfing the time needed to deal with corruptions. Otherwise,
the number stored in the data structure is at most k + α/t ≤ 2α/t. Thus, the most
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significant bit written in an increment operation is the �log(α/t)� least significant bit.
We conclude that the extra time needed to deal with corruptions is O(α log(α/t)).

Theorem 1. The counter structure uses O(δ) space and has additive error �α/t�. The
time used for n increments is O(nt log(δ/t) +α log(α/t)) and queries take O(δ) time.

Trading off Additive Error for Increment Time. We can reduce the time for n increments
to O(n + α logα) by storing the �log log δ� least significant bits in the same memory
cell. For i = �log log δ� + 1, . . . , log δ the i’th least significant bit is replicated in
2i+1/�log δ� memory cells. The remaining bits are stored in a reliable value v as before.
One corruption can change the �log log δ� least significant bits causing an additive error
of at most �log δ�, and 2i/�log δ� corruptions are needed to corrupt the i’th bit. The
increment and the query are basically the same.

Corollary 1. The counter structure uses O(δ) space and has additive error α log δ.
The time used for n increments is O(n + α logα) and queries use O(δ) time.

3.2 Round-Robin Counting

In this section we describe a data structure that uses O(δ) space and has O(α2) additive
error. Increments are supported in constant time, and queries use O(δ2) time.
Structure. The data structure consists of an array A of k = 2δ + 3 integers C1, . . . , Ck

used as counters, and a round-robin index i. The structure is initialized by setting all
counters to zero and i to one. We denote by corrupted counter a counter that has been
changed directly by the adversary.
Increment. If i is not in the range 1, . . . , k, it has been corrupted and we reset it to one.
Next, we increment first Ci and then i. If i becomes k + 1 we set it to one. Note that i
could have been corrupted to a value in 1, . . . , k, but we do not check if this happened.

Let vj be the number of times the increment algorithm has incremented Cj , and let
v =

∑k
j=1 vj denote the correct value of the counter. If no corruption has taken place,

then C1 = · · · = Cr = d + 1 and Cr+1 = · · · = Ck = d, where d = �v/k� and r = v

mod k. Furthermore, if no counter has been corrupted, v =
∑k

j=1 Cj , regardless of
corruptions of the round robin index i.
Query. Let αi be the number of times i has been corrupted. The key observation for
the query algorithm is that for any two uncorrupted counters, Ca and Cb, we have
|va − vb| ≤ αi + 1, which means that |v/k − va| ≤ αi + 1.

First, we compute a value m larger than or equal to at least one uncorrupted counter,
and smaller than or equal to at least one uncorrupted counter. Since the difference be-
tween two uncorrupted counters is at most αi + 1, m ∈ { v

k − αi − 1, v
k + αi + 1}.

After computing m, simply returning mk yields an additive error of O((α + 1)k) =
O((α + 1)δ). To improve the additive error we locate O(α) counters which are too far
from m and ignore them.

We store m in safe memory and compute it as in [21] as follows. Initially, we set m
to −∞. The k counters are scanned �k/2� times. In each iteration we update m to the
minimum counter larger than the current m. Since k = 2δ + 3, after �k/2� iterations
there exist two uncorrupted counters, such that one is smaller and one is larger than m.
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Next, we find a bound, x, on the number of the counters that are too far away from m
as follows. Initially, we set x to one. Then, the number of counters c outside the range
{m−x, . . . ,m+x} is counted in a scan. If c ≥ x we increment x and recompute c. This
process ends when x becomes larger than c. Finally, we scan the k counters maintaining
a sum, initially zero, in safe memory. If a counter stores a value in the range {m−x,m+
x} we add it to the sum. If a counter is outside the range, it is far from m, and we add
m to the sum. Finally, we return the computed sum.
Additive Error. Let αc be the number of times a counter was corrupted by the adversary.
By definition, αi + αc = α ≤ δ. First we recall that for any two uncorrupted counters,
Ca and Cb, we have |vb − va| ≤ 1 + αi, and that the value of m is in the range
{ v

k − αi − 1, v
k + αi + 1}. Therefore, if x ≥ αi + 1 in the above algorithm, then c,

the number of counters that are not in the range {m − x,m + x}, is at most αc, the
number of counter corruptions. At most αc corrupted counters can be counted by c, and
we conclude that when the algorithm terminates, then x ≤ αi + αc + 1.

Let S be the set of counters not counted by c, i.e. all counters in the range {m −
x,m + x}. All uncorrupted counters in S are unchanged and do not contribute to the
error. Let Cj be a corrupted counter in S. By definition of m and x we know that
|vj−Cj | ≤ |vj−m|+|m−Cj| ≤ αi+1+x ≤ 2α+1. Therefore, each corrupted counter
in S can affect the additive error by O(α). We add m to the result for all counters outside
the range {m− x,m + x}. By definition of m, the value for uncorrupted counters not
in S differs from m by at most αi + 1. Similarly, for any corrupted counter Cj not in S
the difference between m and vj is at most αi+1. There are at most x = O(α) counters
not in S, and at most αc corrupted counters in S, leading to an additive error of O(α2).
Complexity. The increment operation uses O(1) time to update a counter and the round
robin index. The query time is given by the time used to computem and x, that is O(δ2).

Theorem 2. The counter data structure described uses O(δ) space and has an additive
error of O(α2). Increments are supported in O(1) time and queries in O(δ2) time.

3.3 Counting by Scanning Bits

We describe a counter data structure that uses O(δ) space with additive error α. It
performsn increments in O(n+α

√
δ) time, and answers queries in O(δ) time. First, we

describe a simpler data structure with an additive error of α that supports n increments
in O(n+αδ) time. Subsequently, we reduce the cost for n increments to O(n+α

√
δ).

Structure. The data structure stores an array A of δ memory cells, a reliable variable v,
and a round-robin index i. Each cell of A is used to store a single bit. We initialize all
values in A to zero, v to zero, and i to one.
Increment. If A[i] = 0 we set A[i] = 1 and set i = 1 + (i + 1 mod δ). Otherwise,
we count the number of non-zero entries in A. We add this number plus one (for the
current increment) to v and set all entries in A to zero.
Query. We count the number v′ of non-zero entries in A, retrieve v, and return v + v′.
Additive Error. Every time we add a value, k, to the reliable value v in an increment
we have seen k − 1 non-zero entries in A. The only way a cell in A can be non-zero
is if it was set to one by an earlier increment operation, or the adversary corrupted it.
Conversely, a cell is set to zero either after updating the reliable value or by a corruption.
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Thus, the number returned by a query differs by at most α from the actual number of
increments performed.
Complexity. If no corruptions occur, the increment operation takes O(1) amortized time,
since setting a value in A to one takes O(1) time and updating v takes O(δ) time and
occurs every δ+1 increments. Every corruption to the round robin index i or an element
of A can force us to scan A and reliably add a value to v, and this takes O(|A| + δ) =
O(δ) time. Therefore, n increments take O(n + αδ) time.

Improving Increment Time by Packing. We improve the time used for n increments to
O(n + α

√
δ) by packing elements in A to an auxiliary array. In addition to the reliable

value v and the array A of size δ, we store an array P of size δ, which is logically
divided into Θ(

√
δ) blocks of

√
δ consecutive memory cells.

Increment. First, we test if i is in the range {1, . . . , δ}. If not then i has been corrupted
and we set it to one. Then, we test whether A[i] = 0 and if so, we set A[i] = 1 and
increment i. If i becomes δ + 1 we set i to one. However, unlike the simpler data
structure, if A[i] 
= 0, a packing phase is initiated. In the packing phase we scan A from
left to right starting from A[1] until we encounter a zero, or the end of A is reached.
During the scan we count the amount, c, of non-zero entries read and set all these entries
to zero. After the scan i is set to one. Then, we set c entries in P to one as follows. Let dj

be the index in P of the first element in the j’th logical block. We scan P from d1. If
we see an entry storing a zero, we set it to one, and decrement c. If we see something
else we go to the start of the following logical block and continue. We stop the packing
phase when c reaches zero or a non-zero element, or the boundary of the last block is
found. If c > 0 after the packing phase, we count the amount of non-zero elements in A
and P in a scan and set all entries to zero. This count summed with c is added to v.
Query. The query operation returns the sum of v and the number of ones in A and P .
Additive Error. Similarly to the simpler data structure, each corruption can only change
the value of the data structure by one. It follows that the additive error is α.
Complexity. We analyze the time used between two consecutive updates of v and this
time-frame we denote a round. The array A consists of a number of sections of non-zero
elements separated by zeros. Note that the packing phase removes at least one section.
If no corruptions occur, increments can only extend sections. A corruption, of a cell
in A or of the index i, may extend a section, connect two sections, create a section or
split an existing section in two. The same things can happen in an increment following
a corruption of the index i. Thus, the number of sections created during a round is
bounded by one plus the number of corruptions, and a section is moved only once in P .

Moving t non-zero entries from A to P in a packing phase takes O(t +
√
δ) time,

and the clean ending the round takes O(δ) time. Let cp be the number of increments
and αp be the number of corruptions in the p’th round. Since the packing phase is called
at most αp + 1 times, the time used in the p’th round is O(cp + αp

√
δ + δ). We show

that the O(δ) time used for the clean can be payed for by the cp increments and the αp

corruptions, by charging O(1) per increment and O(
√
δ) per corruption.

If we copy elements to the i’th logical block in P in a packing phase and encounter a
non-zero entry before filling all the

√
δ cells, at least one cell in the block is corrupted.

Furthermore, we never put elements in the i’th block again unless a new corruption
occur, setting a zero in the first entry of the block. This means that the only block that
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is changed by a packing phase that is not completely filled or has a cell that has been
corrupted since the last time it was updated, is the last block considered in the phase.

When an increment performs a clean, ending the round, the first block of all logical
blocks contained a non-zero entry during the packing phase. We categorize the

√
δ

logical blocks as filled blocks, corrupted blocks, and last blocks. A filled block is a
logical block which a packing phase has filled with

√
δ non-zero entries, a corrupted

block contains a cell that has been corrupted during the round and which is not filled,
and a last block is a block that does not contain a corrupted cell, but was not completely
filled during the packing phase that put a one in the first entry of the block.

There are at most αp + 1 packing phases in a round, thus at most αp + 1 last blocks,
and at most αp corrupted blocks. If there are f filled blocks then we have performed at
least f

√
δ−αp increments in the round. This means that there are

√
δ− f other blocks

(corrupted, last) and since there are O(αp) blocks that are not filled,
√
δ − f = O(αp).

We have charged each increment Θ(1), which means that the increments have payed at
least f

√
δ − αp. It remains to charge δ − (f

√
δ − αp) =

√
δ(
√
δ − f) + αp to the αp

corruptions. Since
√
δ − f = O(αp), we have charged enough if each corruption pays

Θ(
√
δ). We conclude that n increments take O(n + α

√
δ) time.

Theorem 3. The counter data structure uses O(δ) space and has additive error α. The
time used for n increments is O(n + α

√
δ) and queries are answered in O(δ) time.

3.4 Using Randomization to Obtain Fast Increments

In this section we describe a randomized data structure that uses O(δ) space and has
additive error α. The expected time used for n increments is O(n), and queries are sup-
ported in O(δ) time in the worst case. The data structure is similar to the data structures
in Section 3.3 but randomization is used to find an empty cell fast.
Structure. The data structure stores an array A of size k = 3δ and a resilient variable v.
Initially, v and all entries in A are set to zero.
Increment. We pick a random index r ∈ {1, . . . , k} and probe A[r]. If A[r] = 0, we
set A[r] = 1 and return. Otherwise, the probe failed and we do one of two things: with
probability k−1

k we restart the increment operation and with probability 1
k we clean the

array. The clean operation counts the number of non-zero entries in A and adds this plus
one (the current increment) to the reliable value v, then it sets all entries in A to zero.
Query. The query operation is the same as the one in Section 3.3, it simply counts the
number of non-zero entries in A and returns the sum of this number and v.
Additive Error. As in Section 3.3 the additive error is α since each unreliable array
entry contributes at most one to the result.
Complexity. The query operation simply scans A and retrieves v in O(δ) time. The ex-
pected time analysis of the increment operation is more involved. The sequence of n
increments is logically divided into �n/t� rounds of t = �δ/2� increments. We prove
that the expected cost of each round is O(t), and then the bounds follow from linearity
of expectation. We split each full round in two parts, the first part consists of the incre-
ments performed before the first clean in the round, and the remaining increments are
the second part. If a round does not do a clean, we additionally charge for repeatedly
doing failed probes until a clean would be performed. When the first part starts, the state



850 G.S. Brodal et al.

of the array A could be anything. When the second part starts, the array stores only zero
values. We divide the cost of the t increments into three.

The cost of successful probes, the cost of failed probes and the cost of doing cleans.
The cost of the successful probes is O(t). The cost of failed probes, is divided into
two, a cost for the failed probes in the first part and a cost for the failed probes in the
second part. The first part ends when the first clean is performed. We charge the first
failed probe in each increment to the increment itself. The remaining number of failed
probes is upper bounded by the number of times we restart the increment operation
before we clean, and a clean is performed with probability k−1

k . Thus, the probability
of doing exactly f additional failed probes is (k−1

k )f 1
k . This means that the expected

cost of failed probes in the first part is bounded by t +
∑∞

f=0 f(k−1
k )f ( 1

k ) = O(t). In
the second part we place at most t ones in A and the adversary can at most introduce δ
non-zero entries. Therefore, during each increment in the second part, half of the entries
in A contains a zero. This means that for each increment in the second part we expect
to do one failed probe implying that the expected cost of failed probes in the second
part is linear in the number of increments. Each round makes one clean in the first part,
and for each increment in the second part, the probability of doing a clean is at most
1
2

∑∞
f=1

1
2f (k−1

k )f−1 1
k ≤ 2/k. Thus, the expected cost for doing cleans in the second

part is O(1) per increment, we conclude that the expected cost of a full round is O(t).
Only the last round remains. If this is the first round, it has no first part, and by the

analysis above the cost of this round is linear in the number of increments. If the last
round is not the first round, the expected cost is O(δ) even if zero increments has been
performed. We charge this cost to the second to last round.

Theorem 4. The counter data structure described uses O(δ) space and has additive
error α. The expected time used for n increments is O(n), and queries use O(δ) time.

4 Open Problems

The main open problem is whether there exists a data structure that given any t ≥ 1
has additive error O(α/t), supports increments in O(t) time and queries in O(δ) time.
One resilient counter needs Ω(δ) space. It would be interesting too see if one can store k
counters using o(kδ) space with each counter having a non-trivial bound on the additive
error. Most of the counters presented in this paper require Θ(δ) space for a reliable
variable which seems hard to share among several counters. It may be interesting to
see if one can use the safe memory to store some state to achieve this and possibly
circumventing the lower bound tradeoff between increments and additive error.
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A Simple, Fast, and Compact Static Dictionary
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Symantec Corporation, Culver City CA 90230, USA

Abstract. We present a new static dictionary that is very fast and com-
pact, while also extremely easy to implement. A combination of proper-
ties make this algorithm very attractive for applications requiring large
static dictionaries:
1. High performance, with membership queries taking O(1)-time with

a near-optimal constant.
2. Continued high performance in external memory, with queries requir-

ing only 1-2 disk seeks. If the dictionary has n items in {0, ..., m−1}
and d is the number of bytes retrieved from disk on each read, then

the average number of seeks is min
(
1.63, 1 + O

(√
n log m

d

))
.

3. Efficient use of space, storing n items from a universe of size m in
n log m− 1

2n log n+O (n + log log m) bits. We prove this space bound
with a novel application of the Kolmogorov-Smirnov distribution.

4. Simplicity, with a 20-line pseudo-code construction algorithm and
4-line query algorithm.

1 Introduction

A static dictionary is a data structure that stores a subset S of a finite set
U = {0, ...,m− 1} and answers membership queries. It is possible to store these
n items with fewer than n logm bits1, the space required for a simple list of the
items. The theoretical minimum space required is [13]

B =
⌈
log

(
m

n

)⌉
= n log

(m

n
e
)
−Θ

(
n2

m

)
−O (logn)

To scale well to very large data sizes, a dictionary (or any other data struc-
ture) needs not only good time and space complexity, but also good locality.
Indeed, according to a standard textbook on large data structures, “We mea-
sure a computer system’s speed in terms of the number of accesses made to disk,
because this access time—which is measured in fractions of a second—dominates
the total time involved in a search.”[19]

1.1 Previous Work

Much progress has been made in reducing both space usage and membership
query time for static dictionaries. Fredman, Komlós, and Szemerédi [8] created

1 All logarithms in this paper will have base 2.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 852–861, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the first dictionary to run membership queries in O(1) worst case time with low
space usage (n logm + o(n logm) bits) for a broad range of values of m and n.
Brodnik and Munro gave the first O(B) space usage static dictionary [1], and
later improved this to B+o(B).[2] Pagh reduced this further to B+o(n) bits.[13]
Several recent papers [16,9,15] have the same or even lower space usage, while
also supporting rank and select operations in constant time.

All of the papers above, except the first, save space by a technique called
quotienting. (To our knowledge, quotienting was first described in section 6.4,
exercise 13 in [11].) After dividing the dictionary’s n elements into buckets, each
bucket only needs to store enough information to distinguish its items from the
subset of U that could be hashed into that bucket. This information is the item’s
quotient. If the b buckets divide U evenly, then this is only

⌈
log m

b

⌉
bits. Thus,

dictionaries that use quotienting can save �N log b� bits at the cost of needing
to store the number of items in each bucket.

Dynamic dictionaries also support fast insertion and deletion, though at the
cost of positive space overhead.[14,7] Jensen’s and Pagh’s dynamic dictionary

performs very well in external memory, requiring only 1 + O

(√
log m

d

)
disk

accesses per lookup, insertion, or deletion.[10]
Cleary’s bidirectional probing hash table (another dynamic dictionary) is also

noteworthy because it reduces space usage by a technique similar to the one used
in this paper.[4] His table requires (1 + ε)n log m

n + O(n) bits, but has O
( 1

ε2

)

expected lookup and insertion time. The #C[i]− #V [i] values he computes are
offsets, with a similar distribution to the offsets used in this paper.

1.2 This Paper

This paper presents a static dictionary that is compact, fast, and extremely sim-
ple. It is not succinct and does not support rank or select, but it contributes to
the field in several ways. First, its compact size, fast lookup, and high locality
make it an excellent practical choice for use in software projects. Queries have av-
erage O(1) running time and require only 1-2 disk seeks, on average, when data is
stored on disk. Second, our unusual use of the Kolmogorov-Smirnov distribution
to prove our space bound is interesting in itself. Finally and most importantly,
the extreme simplicity of this dictionary (a few dozen lines of code on top of a
bit vector implementation) gives it a unique edge. Though succinct dictionaries
save more space, they may be too complex for many real-world projects. At
Symantec, this static dictionary is being integrated into our enterprise data loss
prevention product. (See http://vontu.com.) Thus, we think it is appropriate
and valuable for this dictionary to have a proper analysis in the literature.

Our dictionary uses n logm− 1
2n logn + O (n + log logm) bits, in its simplest

form. Although larger than other known algorithms, it is still much less than
required to store the elements directly and its O(1) average membership query
time has a very low constant. In the worst case, membership queries access
Θ(log logn) memory locations, with very high locality.

http://vontu.com
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Our static dictionary consists of two arrays. One stores a log 2m
n bit quotient

for each item (plus satellite data, if any). The other stores pointers to the start
of each bucket in the quotient array. It saves space by compressing these pointers
with a technique similar to one in Cleary’s hash table.[4] We prove these space
savings using the Kolmogorov-Smirnov distribution.

Section 2 describes the simplest form of our data structure and does some
simple analysis. Section 3 uses the Kolmogorov-Smirnov distribution to prove
the space bound stated above. Section 4 then describes how to reduce the aver-
age number of disk seeks to min

(
1.63, 1 + O(

√
n log m

d )
)
, where d is the amount

of data the operating system reads from the disk at once (typically several kilo-
bytes). Section 5 shows empirical results on the number of disk seeks per query
and other metrics. Finally, section 6 concludes this paper.

2 Algorithm

The simplest form of our data structure just hashes the n items into n buckets
and stores two arrays: the bucket offset array and the quotient array.

The quotient array concatenates items in all buckets together into an array of
n items. It stores only item quotients, which are log 2m

n bits each.2 Section 2.3
will discuss the choice of hash and quotient functions.

In the bucket offset array, each entry stores data that indicates the quotient
array index for the first item in each bucket. By looking at two consecutive
entries in the bucket offset array, we can find the quotient array range for a
bucket and do a binary search.

If the bucket offset array simply stored indexes, it would use logn bits per
item, cancelling any space savings. Instead, we compress indexes by observing
that the expected average value of the index for bucket number i is simply i.
Each item in this array stores an offset – the difference between the quotient
array index for the first item in the bucket and the bucket’s number. Thus,
the number of bits needed per offset is determined by the size of the largest
offset.

Intuitively, one would expect this to be O(
√
n). This turns out to be true,

though the proof is not trivial. It is easy to show that the expected offset for
any particular offset is O(

√
n), but it is not easy to show that the largest of the

n offsets, which have high statistical dependence, is O(
√
n). Section 3 will show

this using the Kolmogorov-Smirnov distribution.
The total space for the dictionary, in terms of the largest offset, |Δmax|, is

n log
2m
n

+ n(�log |Δmax|� + 1) + O (log logm) (1)

The +1 is for the sign bit in the offset array. The last term is the space for
encoding hash function data.

2 We will assume that m and n are powers of 2. If they are not, the quotient array
may store another extra bit per item.
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2.1 Dictionary Construction

Algorithm 1 shows the basic construction of our static dictionary. The main
elements are the OFFSETS and QUOTIENTS arrays. The algorithm’s inputs
are S, m, hash function h, and quotient function q.

Construction is quite simple. We sort values in S by h(x) and q(x) and then
iterate through it, adding quotients to the QUOTIENTS array. Whenever h(x)
increases, we set values in the OFFSETS array, subtracting x’s index in the
QUOTIENTS array from the OFFSETS array index.

Other than sorting S, all steps are linear. If the largest offset or maximum
number of items in one bucket (which affects the worst-case running time) is
much higher than its expected value, we will try again with a different hash
function.3 This is an expected O(1) number of tries and section 3 will show
that, once we have uniformly distributed items, we are virtually assured that the
largest offset will be O (

√
n). Thus, the expected construction time is O(n log n).

Algorithm 1. Dictionary Construction
Sort S, first by h(x) and then by q(x).
Create the (n + 1)-element TEMPOFFSETS array with log n bits per item.
Create the n-element QUOTIENTS array with log 2m

n
bits per item.

currentItemNum ← 0
minOffset ← 0
maxOffset ← 0
for bucketNum = 0 → n do

TEMPOFFSETS[bucketNum ] ← currentItemNum − bucketNum
minOffset ← min(minOffset , TEMPOFFSETS[bucketNum ])
maxOffset ← max(maxOffset , TEMPOFFSETS[bucketNum ])
while h(S[currentItemNum]) = bucketNum do

QUOTIENTS[currentItemNum] ← q(S[currentItemNum])
currentItemNum ← currentItemNum + 1

end while
end for
Create the (n + 1)-element OFFSETS array with

�log max(|minOffset | ,maxOffset)� bits per item
Copy items from from TEMPOFFSETS to OFFSETS.

2.2 Dictionary Operations

We test the membership of x in two steps. First, we check the offsets at h(x)
and h(x) + 1 to find indexes for the start and end of x’s bucket. Then, we do a
binary search in the corresponding range of the quotient array for q(x).

3 We may try several hash functions to find a lower largest offset – one below
√

n. This
is unlikely to save more than 1 bit per item, however. There is only a 3.6% chance
that the largest offset will be under 1

2

√
n. Repetition is probably only worthwhile

when the largest offset is bigger than
√

n.



856 S. Schneider and M. Spertus

Algorithm 2. Membership Query
leftIndex ← h(x) + OFFSETS [h(x)]
rightIndex ← (h(x) + 1) + OFFSETS [h(x) + 1] − 1
Binary search QUOTIENTS from leftIndex to rightIndex for q(x).
Return true if q(x) was found in QUOTIENTS, or false otherwise.

The average number of items in each bucket is 1. Logarithm is concave, so
the average time required for membership is O(1).

The worst case time for membership is logarithmic in the size of the largest
bucket. In general, this could be as high as n, but section 2.1 showed how we
limit the maximum bucket size. We set this limit close to the expected largest
bucket size, which is Θ

(
log n

log log n

)
.[6] Thus, the worst case time is Θ (log logn).

1-2 disk seeks in membership queries. When a typical operating system
reads from disk, it reads a fixed-size chunk. This is usually one physical disk
track – around 8 kilobytes.[18] This chunk is not centered on the requested data,
but starts at a predetermined alignment. Thus, if the data chunk size is d bytes
and we want to read x bytes, the average number of disk accesses is 1+ x−1

d . We

will consider O
(

log m
d

)
to be negligibly small, though O (nε/d) is worth noting.

The first read in a membership query is to two consecutive offsets. This is
2 (log |Δmax| + 1) bits. |Δmax| cannot be larger than O(n), so the chance that
this read spans two chunks is negligibly small.

In addition, there is a 1
e chance that this bucket is empty. If so, the membership

query is done in one read. Otherwise, the second step is a binary search of a
bucket. The average bucket size is 1, so the average number of disk reads in the
binary search is 1. Thus, with 1 access for reading offsets and a 1 − 1

e chance of
1 more access, the expected total number of accesses is 2 − 1

e ≈ 1.63.

The worst case involves a binary search of the largest bucket. It has Θ
(

log n
log log n

)

items with log m
n bits each. This requires Θ

(
log m log n
d log log n

)
additional accesses, for

a total of 2 + Θ
(

log m log n
d log log n

)
.

Adding satellite data does not change this much. The quotient array stores
this extra data, so the average number of disk accesses does not change. If we
have t bits per item, the worst case changes to 2 + Θ

(
(log m+t) log n

d log log n

)
accesses.

2.3 Hash and Quotient Functions

Our algorithm has an especially great need for a hash function that distributes
S uniformly, so that offsets are low. Let items in S be values from 0, 1, ...m− 1.
We use the well-known hash function, h(x) = (ax mod p) mod n [11,3], where p
is a prime number such that m ≤ p < 2m and a is a randomly chosen number
such that 1 ≤ a < p.
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The argument that ax mod p has a uniform distribution is similar to the
well-known argument that it is universal. If Pr (ax mod p = ay mod p) ≤ 1

p for
random a and x 
= y, then Pr (ax mod p > ay mod p) ≤ ax mod p

p .
This h(x) is slightly distorted. Hash values are slightly more likely to be less

than the value r, where r = p mod n. The probability of getting a particular hash
value less than r is 1

p

⌊
p
n + 1

⌋
, as opposed to the 1

p

⌊
p
n

⌋
probability of getting a

particular hash value greater than or equal to r.
This creates a positive expected value for offsets, which is highest at r:

〈|x ∈ S : h(x) < r|〉 = n · Pr (h(x) < r) = nr
1
p
� p
n

+ 1�

〈Offset(r)〉 = nr
1
p
� p
n

+ 1� − r =
r

p
(p− r + n) − r

=
r(n− r)

p

Thus, the largest expected offset is O(n2

m ). For n = O(
√
m), this hardly mat-

ters. For larger n, we can simply adjust our offset calculation to subtract the
expected number of items from the bucket’s quotient array index.

The corresponding quotient function is q(x) = �ax mod p
n �. Its largest value is

�p−1
n �, so a quotient requires log 2m

n bits.

3 The Largest Offset

The amount of space saved in the dictionary depends on the largest offset, which
determines how many bits are used for each item in the array of b buckets.

Theorem 1. For large n and b, the probability that the largest absolute value of
an offset in the OFFSETS array is less than λ

√
n approaches

p(λ) =
+∞∑

k=−∞
(−1)ke−2k2λ2

Proof. Let 0 ≤ x(1) ≤ ... ≤ x(n) < m be the sorted values for the items. The
normalized sum function, F (i), is equal to the largest f such that x(f) < im

b ,
where 0 ≤ i ≤ b. (If x(1) ≥ im

b , then F (i) = 0.) F (i) is monotonically non-
decreasing from 0 to n. The offsets, Δi, can in the simplest case4 be written

Δi = F (i) −
⌊
i
n

b

⌋

The absolute value of the maximum offset is therefore approximated by
∣
∣∣
∣
Δmax

n

∣
∣∣
∣ = max

∣
∣∣
∣
F (i)
n

− i

b

∣
∣∣
∣ (2)

4 In the more complicated case that n = ω(
√

m), we will replace
⌊
in

b

⌋
with < F (i) >,

the expected number of values below i.
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The key observation is that the right hand side approximates the Kolmogorov-
Smirnov distribution with error bounded by 1/b.[17,12] F (i)/n is the items’
observed distribution and i/b is their expected, theoretical distribution – the
uniform distribution. |Δmax/n| corresponds to λ.

While the Kolmogorov-Smirnov test only applies to continuous distributions,
we can get a uniform distribution of integers by choosing a uniform distribution of
real numbers and rounding down to integers, which will not change the maximum
offset by more than 1. Therefore, the standard tables and computations for the
Kolmogorov-Smirnov distribution will estimate the probability distribution for
the largest offset.

To complete the proof, we simply note that p(λ) is the limit, for large n, of
the Kolmogorov-Smirnov distribution, as in [12].

As Smirnov’s pre-calculated table of p(λ) shows, λ has a high probability of
being close to 1.[17] For example, there is a 90% probability that the maximum
offset will be less than 1.23

√
n and a 99.9% probability that the largest offset is

less than 1.95
√
n. The probability that λ = ω(1) is well-approximated by

1 − p(λ) ≈ 1 −
(
1 − 2e−2λ2

)
= 2e−2λ2

Even for λ =
√

logn, 1 − p(λ) = 2
n2 is still quite small. This proves the

statement in section 2.1 that the largest offset is extremely unlikely to be much
larger than

√
n.

Corollary 1. Our data structure’s average space usage is

n logm− 1
2
n logn + O (n + log logm)

Proof. To prove this, we simply plug the expected value of the largest offset,
from theorem 1, into equation (1).

4 Reducing Disk Seeks Further

We can create locality between a membership query’s two reads by interleaving
values in the bucket offsets array and the quotient array in the data structure
stored on disk. Suppose a bucket has a 0 offset and 1 item. In this case, the
query reads offsets for the query item’s bucket and the next bucket, and then
checks the bucket’s item, which is between these two offests. This is only 1 disk
access.

An item’s bucket’s offset is the main factor in the distance between the first
and last memory locations that a query will read. The average absolute offset
value is c

√
n, with c = O(1). The number of bits required for an (offset, quotient)

pair is

log |Δmax| + 1 + log
m

n
≈ 1

2
logn + 1 + log

m

n
< logm
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So the average memory span is c
√
n log m

8 bytes. This, combined with 1
e chance

that a bucket is empty, gives the average, total number of disk seeks for a mem-
bership query as 1 +

(
1 − 1

e

)
min

(
1, c

√
n log m
8d

)
= min

(
1.63, 1 + O

(√
n log m

d

))
.

(Again, satellite data does not change this much.) For d = 8 kilobytes, we rarely
avoid this second lookup for n ≥ 107, but if d rises to 128 kilobytes, we will often
avoid the second lookup for n ≈ 109. We achieve this by increasing locality, not
by optimizing specifically for this model of memory access.

5 Empirical Results

In empirical testing, we measured the average size of the largest offset and the
number of disk seeks per membership query. We did not give overall query times
because our tables fit mostly or entirely in memory, so numbers would largely
be meaningless due for other memory configurations, disk cache sizes, etc.

We set n to powers of 2 and m to 264. We generated dictionary members
randomly and tested 50 tables at each size. We measured locality by counting
the number of distinct pages of various sizes (2k, 8k, and 32k) that were accessed
during the query. We did this both for dictionary members and random values
(which are mostly non-members), but for the sake of clarity, include the random
value results only for the 8k block size. In actual testing, most accesses did not
result in a disk seek because much of the dictionary was resident in memory. As
a result, practical usage typically results in fewer disk seeks than the already
good numbers here.

Fig. 1. Largest offset Fig. 2. Disk seeks

As expected, the largest offset is proportional to
√
n. Also, the number of

disk seeks tends toward 2 for members and 1.63 for random values. The three
curves for positive tests show that, for constant

√
n

d , we have approximately the
same number of disk seeks.

Although all of these results merely confirm the theoretical analysis, several
useful observations came from writing the empirical tests. First, most of the
code for our dictionary dealt with bit-packing and manipulating data that is not
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byte-aligned. Like other common languages, C++ does not have arrays whose ele-
ment size is a specified number of bits. Aside from this, the implementation only
runs a few dozen lines of code. Second, we noticed that the glibc implementation
of the rand() function has a rather short cycle of several million items. Tests
with larger n required a better source of random numbers.

6 Concluding Remarks

We have described a static dictionary that is simple, compact, and fast. When
it is too large to fit in memory, membership queries require only 1-2 disk seeks.
These properties make this data structure very practical for real-world appli-
cations, such as the enterprise data leakage prevention product for which we
developed it.

We saved space by using quotienting and by compressing indexes, each of
which is O(n), into offsets that are O (

√
n). We use a novel application of the

Kolmogorov-Smirnov distribution to prove this, as well as our space usage. We
presented an optimization that reduced the number of disk seeks to 1, when the
number of bytes that the operating system retrieves from the disk on each read
is Ω (

√
n).

One major optimization that we have not analyzed is reducing offsets by
adding empty slots to the QUOTIENTS array. We can add these empty slots
before large negative offsets and after large positive offsets. It is not hard to
imagine that adding O (

√
n) empty slots (O (

√
n) log m

n bits of space) could re-
duce the largest offset by a factor of 2, saving n bits. We plan to investigate in
the future how far this can reduce the largest offset.

As future work, we also plan to apply our analysis techniques to Cleary’s
bidirectional probing hash table. Cleary observed that, with a load factor of 95%,
99% of the offsets were between -15 and +15.[4] Kolmogorov-Smirnov theorem 3
in [5] will give the expected number of offsets larger than a specified value, but
this and other theorems cannot accommodate a load factor below 1. A theoretical
understanding of load factor’s impact on offsets would show, for the first time,
the space-time trade-offs in Cleary’s dictionary.
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Abstract. A range-finding scanner can collect information about the
shape of an (unknown) polygonal room in which it is placed. Suppose
that a set of scanners returns not only a set of points, but also additional
information, such as the normal to the plane when a scan beam detects a
wall. We consider the problem of reconstructing the floor plan of a room
from different types of scan data. In particular, we present algorithmic
and hardness results for reconstructing two-dimensional polygons from
points, point/normal pairs, and visibility polygons. The polygons may
have restrictions on topology (e.g., to be simply connected) or geometry
(e.g., to be orthogonal). We show that this reconstruction problem is NP-
hard in most models, but for some assumptions allows polynomial-time
reconstruction algorithms which we describe.

1 Introduction

Range scanners have been configured in many ways: looking in to capture objects
on a platform or in-situ, looking down to capture terrain or urban environments,
and looking out to capture rooms or factory floors. Some scanners [3,11] provide
– in addition to point coordinates – surface labels, normals, or unobstructed
portions of scanned rays.

The problem of reconstructing surfaces from the resulting point clouds has
been given both theoretical and practical consideration. Theoretical solutions can
provably reconstruct the correct surface when the sample points are sufficiently
dense relative to local feature size [1,2]. Applied solutions handle noisy data and
often incorporate additional information such as estimated normals [11].

We consider the problem of reconstructing the two-dimensional floor plan
of a polygonal room using different types of scanned data. Specifically, we ask
whether having additional information about each data point and knowing some-
thing about the geometry (monotonicity and/or orthogonality) of the room al-
lows efficient reconstruction from less dense data.

� Supported by NSERC.
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1.1 Models and Problem Definition

We consider five models for input data that may be obtained by scanning a room
with one or more scanners, as illustrated in Fig. 1.

1. A point scan is a set of points, each of which lies on a wall (edge) of the
scanned room (polygon).

2. A point-wall scan is a point scan for which each point records the line con-
taining the wall on which it lies (i.e., the orientation of the wall).

3. A point-normal scan is point-wall scan for which each point-line pair records
a normal perpendicular to the line that points towards the room’s interior.

4. A segment scan is a point-normal scan for which each point records the
position of its scanner; this implies that the entire line segment from a scan-
ner to the corresponding scan point must be inside the room.

5. A visibility-polygon scan is a set of visibility polygons, i.e., the entire region
visible from each scanner.

Given n observations under of one of the five models, the polygon reconstruction
problem is to determine whether there exists a polygon that is consistent with
the input data. Without additional restrictions, the answer is always “yes” in
the point-scan model, as well as in all five models if a solution may include
additional edges not encountered by any input point. In this paper, therefore,
we assume that each wall has been seen, i.e., that each polygon edge contains at
least one scan point.

1.2 Related Work

We have already mentioned results [1,2,11] on reconstructing shapes from densely-
spaced samples on the surface in the point-scan model. Because we primarily

point−normal scannerpoint−wall scannerpoint scanner

segment scanner visibility−polygon scanner solution

Fig. 1. Input instances of the five scan models and a common solution
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consider scan models that provide additional information, sample points need
not be closely spaced as long as each edge includes at least one sample point.
Thus, our approaches are more closely related to previous work on reconstruct-
ing a polygon from a given vertex set. O’Rourke [12] gives an O(n log n) time
algorithm for reconstructing an orthogonal polygon when all vertices must meet
edges at a right angle; when a solution exists, it is unique. This problem is NP-
hard if edges at a vertex meet either straight or at right angles [14] and also
NP-hard if edges must be parallel to one of three (or more) given directions [5].

The reconstruction problem can be formulated as a matching problem with
additional restrictions in a graph G = (V, E). Each sample point corresponds to
a segment on the polygon’s boundary: let V contain two vertices for each sample
point, one for each direction out from the segment. Join two vertices by an edge
in E if the corresponding rays intersect. The polygon reconstruction problem
reduces to finding a spanning subgraph H ⊆ G that has specific properties. In
particular, we require that H be a perfect matching that is simple (no matching
edges cross each other). Furthermore, if each pair of vertices induced by a sample
point is joined by an edge, the resulting subgraph must be connected.

If the constraints of simplicity and connectivity are dropped, the problem
is reducible to finding a perfect matching and is solvable in polynomial time
[4,6,7,10]. Adding either constraint renders the problem hard: finding a non-
crossing 2-factor in a geometric graph was shown to be NP-hard by Jansen and
Woeginger [9], and a connected 2-factor is simply a Hamiltonian cycle, which
is well known to be NP-hard to find [6], even in grid graphs [8]. Neither of
these results, however, directly implies hardness for the polygon reconstruction
problems we consider.

1.3 Our Results

We first show that the reconstruction problem is NP-hard (Section 2). Our re-
duction is to the visibility-polygon scan model, but straightforward modifications
can reduce to the point-wall, point-normal, or segment scan models.

For positive results, we consider geometric restrictions to the allowable con-
figurations of polygons. A star-shaped polygon is entirely visible from some point
in its interior (i.e., there is a single scanner). The interior of a monotone1 polygon
intersects every vertical line in at most one line segment. The boundary of a mono-
tone polygon splits into two chains, the upper and lower chains, both of which are
monotone. Every edge in an orthogonal polygon is either horizontal or vertical.

Our hardness result implies that the reconstruction problem remains NP-hard
even for orthogonal polygons. We show that two cases for monotone polygons
can be solved in polynomial time: orthogonal monotone polygons for point-wall
scans (Section 3), and monotone polygons for point-normal scans (Section 4).
The reconstruction problem is also solvable for star-shaped polygons (Section 5).
Finally, we present a lower bound showing that the running times of our algo-
rithms are optimal (Section 6).

1 For simplicity, we use the term monotonicity to refer to x-monotonicity.
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2 Hardness Results

In this section, we prove that reconstructing a simply-connected polygon from
a visibility-polygon scan is NP-hard. We use a reduction from ORTHOGO-
NAL NON-CROSSING SPANNING TREE, which was shown to be NP-hard
by Jansen and Woeginger [9]. An orthogonal graph is a graph drawn in the plane
such that every edge is either a horizontal or vertical line segment connecting
two vertices and no edge contains any vertex in its interior.

ORTHOGONAL NON-CROSSING SPANNING TREE
Instance. An orthogonal graph G.
Question. Find a graph H ⊆ G that is a spanning tree of G such that no two
edges in H cross.

Theorem 1. Polygon reconstruction under the visibility-polygon scan model is
NP-hard.

Proof. Given any orthogonal graph G, we construct an instance of the visibility-
polygon scan problem, f(G), by replacing each vertex v with the vertex gadget
f(v) illustrated in Fig. 2. In this gadget, there is a gap in the corresponding
polygon edge for every neighbour of the vertex. This allows either connecting
to the corresponding neighbouring vertex gadget via the corridor formed by a
pair of parallel edges (blue, dashed), or closing off the gap by extending an
edge (red, dotted). If a vertex has degree less than four, then the positions of
the corresponding scanners can be moved accordingly such that there is no gap
(Fig. 2B).

Let d denote the minimum Euclidean distance between the position of any
two vertices in the orthogonal drawing of G. Choose any ε ∈ (0, d/2). Now f(G)
consists of a set of vertex gadgets such that a gadget of width and height d/2− ε
is centered at the position of every vertex v ∈ V . See Figs. 2 and 3.

Components f(v1) and f(v2) can be joined by a pair of horizontal or vertical
parallel edges forming a corridor if and only if vertices v1 and v2 are adjacent
in G. Each edge in the corridor completes a partial edge in one of the two
vertex gadgets. Note that the resulting instance f(G) can be constructed in
time proportional to the size of G on a Cartesian grid.

If G has a non-crossing spanning tree, then f(G) has a simple polygonal solu-
tion formed by including the corridors that correspond to edges of the spanning
tree. On the other hand, if f(G) has a simple polygonal solution, then all ver-
tex gadgets must be joined. Since every edge of the polygon must be seen by a
scan, joining edges complete partial edges, and are therefore orthogonal. Since
the polygon must be simple, the solution selects both or neither edge in a cor-
ridor, and edges from two crossing corridors cannot be selected simultaneously.
Therefore, G has a non-crossing spanning tree. �	

Since all edges in the reduction are orthogonal, the visibility-polygon scan prob-
lem remains NP-hard for orthogonal polygons. The construction can be modified
to show hardness for the point-normal scan and segment scan models.
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BA

Fig. 2. The vertex gadget is a portion of the polygon with four scanners: vertices of
degree four (A) and degree two (B). Dashes indicate how a gadget may be closed or
continued, provided it matches a corresponding gadget on the other end. Graph edge
crossings that are not vertices need no gadget.

G f(G)

Fig. 3. A spanning tree of a graph G and the corresponding simple polygon in f(G)

3 Orthogonal Monotone Polygons

Since the general reconstruction problem is NP-hard, we consider special cases
that are solvable in polynomial time. Many actual room layouts are orthogonal
and monotone, motivating our consideration of these natural geometric con-
straints in this section. We show that these can be reconstructed uniquely from
point-wall scans, i.e., each data point returns whether its edge is horizontal (H)
or vertical (V).

Theorem 2. A monotone orthogonal polygon can be reconstructed from a point-
wall scan in O(n log n) time. Moreover, the solution is unique.

Initially, let us assume that no edge contains two data points and that no data
point is at a vertex; we describe later how to resolve such instances. We represent
the input as a sequence σ of symbols over the alphabet {V, H} in left-to-right or-
der (breaking ties arbitrarily) in correspondence to whether the associated edge
is vertical or horizontal. It will suffice to determine for each symbol whether it
belongs to the lower or the upper chain. Our approach is to begin at a subse-
quence of σ for which the solution is uniquely determined locally, and then to
propagate the solution, first to the right and then to the left.

Sequence σ must begin and end with V for the leftmost and rightmost edges.
Under our assumptions, σ has equally many Vs and Hs, so it contains a subse-
quence HH – two horizontal edges with no vertical edge between them. The one
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with larger y-coordinate must be in the upper chain and the other in the lower
chain. (They cannot have the same y-coordinate since otherwise they would
belong to the same edge.)

Now we extend the chains rightwards. The next element of σ cannot be H,
otherwise some horizontal edge would contain two data points. Therefore the
next element must be V; let pv denote the corresponding data point. If the next
element of σ is H (with corresponding data point denoted ph), then the chains
can be expanded as follows:

– If pv is above the upper chain, then it belongs to the upper chain (see
Fig. 4A).

– If pv is below the lower chain, then it belongs to the lower chain (see Fig. 4B).
– If pv is strictly between the two chains and pv is above ph, then it belongs

to the upper chain (see Fig. 4C).
– If pv is strictly between the two chains and pv is below ph, then it belongs

to the lower chain (see Fig. 4D).
– Note that pv cannot be at the same height as one of the chains, otherwise

there would be a crossing or a data point at a vertex.
– In all cases, ph belongs to the same chain as pv.

p
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p
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lower lower
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p

DA B C

Fig. 4. Four cases for resolving a substring VH

Thus, if the next two elements of σ are VH, we can resolve these two edges.
Moreover, again we know the y-coordinates of the last horizontal edge of the
upper and lower chains, and hence can repeat until the next two elements of
σ are VV. Here we can determine similarly to which chains the vertical edges
belong, but then are stopped since no y-coordinates of the upper and lower
chains are known to the right.

For every substring VV, there must be a substring HH later on since σ ends
with V . We jump forward to this occurrence of HH, and then resolve rightward
from then on until we reach another VV, jump forward to the next HH, and so
on, until we have reached the rightmost data point.

We then repeat the same process in the opposite direction: The first scan
resolves all intervals of the form HH to VV or rightmost V, and the second
resolves from VV or leftmost V to HH. The time complexity of the algorithm is
linear once the data points are sorted by x-coordinates. The resulting orthogonal
polygon is unique since each edge is deterministically assigned to a chain.

To remove the initial assumptions: multiple data points on a horizontal edge
can be detected and omitted during the above propagation since the points
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have identical y-coordinates. Detecting multiple data points on a vertical edge is
slightly more complicated. We can deduce the position of the substring VV by
the absence of the substring HH due to multiple data points; we then delete one
of the data points without affecting the solution. Finally, vertices can report VH
or HV as they choose; if we find the sequence begins or ends with H, we assign
responsibility to a vertex and swap with the adjacent V. �	

4 Monotone Polygons

In this section we consider the reconstruction problem for monotone (not nec-
essarily orthogonal) polygons from a point-normal scan. In this case, each in-
put point knows the orientation and interior of the polygon boundary passing
through it. In the monotone setting, these half-spaces determine whether each
non-vertical edge belongs to the upper or lower chain of the polygon. This leaves
the set of vertical edges to be assigned to chains. Nevertheless, the problem is
non-trivial; in particular, a solution is not necessarily unique (e.g., see Fig. 5).

Fig. 5. Even under the visibility-polygon scan model this input instance has two dis-
tinct monotone solution polygons; the central vertical edge could belong to the lower
or upper chain

Theorem 3. A monotone polygon can be reconstructed from a point-normal
scan in O(n log n) time.

We sketch the ideas behind the dynamic programming algorithm that determines
the chain to which vertical edges are assigned. Scan all data points from left to
right and update a function that stores whether there is a partial solution (in
the form of an upper and lower chain) up to the current x-coordinate, with some
conditions on where the upper and lower chains end.

Let t denote an x-coordinate that is not the coordinate of any data point.
The upper-left line of t is the line through the last data point before t for which
the edge is not vertical and is in the upper chain (i.e., the associated half-space
points downward). The upper-right line of t is the line through the first data
point after t for which the edge is not vertical and is in the upper chain. We
define the lower-left and lower-right lines of t analogously.
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Observe that the vertical line through t intersects the upper chain of any
solution necessarily in either the upper-left line or the upper-right line; otherwise
one of the corresponding data points could not be used for the upper chain (and
could not be used for the lower chain by the given normals). We compute a
partial solution and prescribe which of the two lines it uses for the upper chain,
and correspondingly for the lower. Thus, define f(t, u, �) ∈ {true, false}, where
u, � ∈ {L, R}, and f(t, u, �) = true if and only if there exist disjoint, monotone,
upper and lower chains that may end at t with the upper line u ∈ {L, R} and
lower line � ∈ {L, R}, as in Fig. 6.

t

lower−right

upper−right
upper−left

lower−left

Fig. 6. In this example f(t, L, R) = true. White circles indicate points in which the
upper/lower chain might be required to end.

We can initialize f(t, u, �) at t = −∞ and update f(t, u, �) as t increases. We
omit the details, most of which are straightforward; the full paper gives details
on one of the more complex cases. Each update can be done in constant time.
The time complexity for this algorithm is linear once the data points have been
sorted by x-coordinate, resulting in a total running time of O(n log n). �	

5 Star-Shaped Polygons

We briefly describe simple results for reconstructing a star-shaped polygon, i.e.,
a polygon that is entirely visible from some point in its interior. The region of
points that sees all of a star-shaped polygon is its kernel.

Reconstructing a star-shaped polygon is straightforward in the point-normal
model. Any point in the kernel must be visible to all data points. To compute
the kernel, it suffices to compute the intersection I of the set of half-spaces
associated with data points; this can be achieved in O(n log n) time [13]. Either
all or none of the points in I are visible to all data points. Thus, to compute the
polygon, select any point o in the interior of I, sort all data points in clockwise
order around o, and compute the polygon defined by them in this order; either
this polygon is star-shaped or there is no solution. Consequently, a solution is
unique if it exists.

Theorem 4. A star-shaped polygon can be reconstructed from a point-normal
scan in O(n log n) time. Moreover, the solution is unique.
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We can also reconstruct a star-shaped polygon from a point-wall scan, but the
time complexity increases. Consider the arrangement defined by the set of lines
that pass through walls. As for point-normal scans, the kernel of a star-shaped
polygon must be one of the cells defined by this arrangement, i.e., one of the
maximal connected regions that do not contain a point on a line. There are
O(n2) such cells for n lines. For each cell we can select a point o and attempt
to reconstruct a star-shaped polygon with o in its kernel as explained above.
The corresponding time complexity is O(n3 log n). We suspect that this time
can be improved: instead of repeating the O(n log n) test in every cell, it might
be possible to update the intersection of half-planes dynamically each time a
half-plane is crossed. Furthermore, we believe that the solution, if one exists, is
unique. Both of these questions remain open.

Theorem 5. A star-shaped polygon can be reconstructed from a point-wall scan
in polynomial time.

6 Lower Bound

We show the following lower bound which follows by a reduction from sorting.
Details are omitted due to space constraints.

Theorem 6. Any algorithm that reconstructs an orthogonal polygon from point-
scans, point-wall scans, point-normal scans, or segment scans requires Ω(n log n)
comparisons. Furthermore, this lower bound also applies to the cases for which a
solution must be orthogonal monotone or orthogonal, monotone, and star-shaped.

7 Discussion and Directions for Future Research

If a solution is not unique, a natural question is to determine the number of ad-
ditional scanners necessary to reveal the true solution. This question is NP-hard
since Theorem 1 shows hardness for an instance of the corresponding decision
problem. Approximation algorithms might be interesting to consider.

Several variants of our problem have not yet been considered. In particular:

– Can we reconstruct a monotone polygon from a point-wall scan?
– What other restrictions on a solution make reconstruction feasible in poly-

nomial time? For example, a reasonable assumption could be that a room
has four walls, each of which is a polygonal chain: two x-monotone walls and
two y-monotone walls.

– Finally, a natural question is to consider the corresponding problems in three
or higher dimensions.
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Abstract. In this paper we present algorithms that compute large
matchings in planar graphs with fixed minimum degree. The algorithms
give a guarantee on the size of the computed matching and run in linear
time. Thus they are faster than the best known algorithm for comput-
ing maximum matchings in general graphs and in planar graphs, which
run in O(

√
nm) and O(n1.188) time, respectively. For the class of planar

graphs with minimum degree 3 the bounds we achieve are known to be
best possible. Further, we discuss how minimum degree 5 can be used to
obtain stronger bounds on the matching size.

1 Introduction

A matching is a set of independent (i.e., pairwise non-adjacent) edges in a graph.
A maximum matching is a matching of maximum cardinality, and a maximal
matching cannot be enlarged by adding edges. Finding maximum matchings, or
large matchings in general, has many applications, see for example the book on
matching theory of Lovász and Plummer [8]. To-date the asymptotically fastest
(but rather complicated) algorithm for finding maximum matchings in general
graphs runs in O(

√
nm) time [9], where n and m are the numbers of vertices

and edges of the given graph, respectively. Only recently faster algorithms for
dense graphs, for planar graphs, for graphs of bounded genus, and for general
H-minor free graphs have been suggested. They are all based on fast matrix
multiplication (which, as a tool, is not very practical) and run in O(nω) time
for dense graphs [11], O(nω/2) time for planar graphs [12] and for graphs of
bounded genus [21], and in O(n3ω/(ω+3)) ⊂ O(n1.326) time for H-minor free
graphs [21], where ω ≤ 2.376 is the exponent in the running time of the best-
known matrix-multiplication algorithm [4]. However, for practical purposes often
slower, but less complicated algorithms are used. They are based on repeatedly
finding augmenting paths and have a running time of O(nmα(n,m)) [19].

There has been a sequence of more and more general characterizations of
graphs with perfect matchings [15,7,20], i.e., matchings of size n/2. This has
also led to algorithms that test the existence of or compute perfect matchings in
o(
√
nm) time in, e.g., bipartite k-regular graphs [18,3] and 3-regular biconnected

graphs [1]. Moreover, for planar bipartite graphs a perfect matching can be
computed in O(n log3 n) time if it exists [10,5].
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There are combinatorial results that prove lower bounds on the size of max-
imum matchings in certain graph classes. Nishizeki and Baybars [13] show that
planar graphs with minimum degrees 3,4 and 5 have matchings of size at least
(n + 2)/3, (2n + 3)/5 and (5n + 6)/11, respectively. Biedl et al. [2] show that
maxdeg-3 graphs have a matching of size (n − 1)/3, 3-regular graphs have a
matching of size (4n− 1)/9 and 3-connected planar graphs have a matching of
size (n + 4)/3. However, these proofs are not constructive, in particular they
do not indicate a way to find such a matching faster than by computation of a
maximum matching.

Recently, Rutter and Wolff [17] (a preliminary version appeared in [16]) gave
fast algorithms that achieve the tight bounds of Biedl et al. Their algorithms
compute matchings of size (n − 1)/3 in maxdeg-3 graphs in linear time, of size
(4n − 1)/9 in 3-regular graphs in O(n log4 n) time and of size (n + 4)/3 in 3-
connected planar graphs in linear time.

However, none of these results can be used to obtain matchings of guaranteed
size in planar graphs with fixed minimum degree. In fact the question how fixed
minimum degrees can be exploited algorithmically was posed as an open question
in [17]. We answer this question and show that the tight bounds of Nishizeki and
Baybars [13] for minimum degree 3 can be reached in linear time. We further
analyze our algorithm in the context of minimum degree 5 and show that with
some small modification it yields a matching of size (2n + 1)/5 in this case.

The bounds of Nishizeki and Baybars [13] for 1-connected planar graphs with
minimum degree 3 were also obtained by Papadimitriou and Yannakakis [14].
They analyze the structure of maximum matchings and show that the structure
is such that the free vertices can be balanced against the matching edges. We
show that if we construct the matching accordingly, this balancing can be done
locally: there is a pairing of free vertices with matching edges such that each free
vertex is adjacent to its partner.

The paper is structured as follows. In Section 2 we give a simple algorithm
that already gives a non-trivial guarantee on the matching size, yet fails to reach
the tight bound of (n+2)/3 for planar minimum degree 3 graphs. Section 3 then
shows how these structural constraints can be employed to obtain a linear-time
algorithm that finds matchings of size (n+2)/3 in planar graphs with minimum
degree 3 and discuss how our how our approach can be generalized to obtain
better bounds for planar graphs with minimum degree 5. We conclude and pose
some open questions in Section 4. For full proofs we refer the reader to the long
version[6] of this article.

2 Exploiting Minimum Degrees

In this section we describe a simple linear-time matching algorithm that already
gives a non-trivial guarantee for planar mindeg 3 graphs. Our tight analysis then
shows which aspects of the algorithm need to be improved in order to achieve
the tight bounds of Nishizeki and Baybars [13].

We then show that certain additional structural requirements on the matching
ensure that for minimum degree δ = 3 we obtain the tight bound of Nishizeki
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and Baybars [13]. This analysis forms the basis of the algorithm presented in
Section 3 where we show that a corresponding matching can be found quickly.

In order to present the algorithms we need some standard notation for graphs
and matchings. Let G = (V,E) be a graph and let M be a matching of G. We
denote the degree of a vertex v by d(v). A vertex in V is free (with respect to
M) if it is not incident to an edge of M . An augmenting path P (with respect
to M) is a path that alternates between edges in M and edges in E \ M and
starts and ends at different free vertices. In this case the symmetric difference
of P and M is a matching of size |M | + 1. A matching is k-free if it does not
admit an augmenting path of length at most k.

2.1 Algorithm Based on Short Augmenting Paths

We propose the following two-step algorithm Match3Aug: (1) Compute a max-
imal matching. (2) Iteratively find augmenting paths of length 3.

It is not hard to see that Match3Aug can be implemented to run in linear
time. In the following we analyze the size of 3-free matchings in planar graphs
with minimum degree δ. To this end, we divide the free vertices into two disjoint
sets that we bound independently.

Let G = (V,E) be a planar graph with minimum degree δ and let M be a
3-free matching. Let e ∈ M be an edge such that there is a free vertex v ∈ V
that is incident with both endpoints of e. We say that v covers e and that e is
covered. An edge of the matching that is not covered by a vertex is open. Let MC

and MO denote the set of covered and open edges of M , respectively. Moreover,
let FC denote the set of vertices that cover an edge and let FO be the set of free
vertices that do not cover any edge. Note that by definition MC and MO form a
partition of M and FC , FO form a partition of the free vertices of V . Hence we
have that |M | = |MC |+ |MO| and n = 2 · |M |+ |FC |+ |FO|. We now bound the
number of free vertices from below by independently bounding |FC | and |FO|.

Lemma 1. Let G = (V,E) be a planar graph with minimum degree δ, let M be
a 3-free matching and let MC,MO, FC and FO be defined as above. Then,

|FC | ≤ |MC | (1)

|FO| ≤ 2 · |MO| − 2
δ − 2

. (2)

Proof. First note that Equation (1) holds since the vertex covering an edge is
unique as there would be an augmenting path of length 3 otherwise.

For the proof of Equation (2) consider the bipartite auxiliary graph G′ =
(V ′, E′) whose vertices are the vertices in FO and the open edges of M . We
connect a vertex v ∈ FO with an edge m of MO if v is adjacent to an endpoint
of m in G. The graph G′ is planar as it can be obtained as a minor of G by
contracting matching edges and removing edges that are not incident to a free
vertex. Since no vertex of FO covers an edge, each vertex in FO has degree at
least δ in G′. Equation (2) now follows from |E′| ≤ 2·|V ′|−4 = 2·(|FO|+|MO|)−4
(bipartite, planar) and |E′| ≥ δ|FO| (minimum degree). �	
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C

Fig. 1. Planar graph with n vertices, min-
deg 3 and a 3-free matching with only
(n + 4)/4 edges

Fig. 2. Construction of curve C that
separates matched and free vertices of
a pure tree-like matching

Theorem 1. Let G = (V,E) be a planar graph with n vertices, minimum de-
gree δ ∈ {3, 4} and let M be a 3-free matching. Then the following holds:

|M | ≥ (δ − 2) · n + 4
2 · (δ − 1)

. (3)

Proof. Follows from Lemma 1 and |V | = 2 · |M | + |FO| + |FC |. �	

Equation (3) does not hold for δ = 5 as in this case the bound on |FC |, which is
independent of δ, is too weak. By Theorem 1 Match3Aug computes in linear
time matchings of size at least (n+4)/4 in planar graphs with minimum degree 3
and matchings of size (n + 2)/3 in planar graphs with minimum degree 4.

In order to obtain the bound (n + 2)/3 for δ = 3 we would like to improve
the bound of |FO| from Equation (2). However, Fig. 1 shows that our analysis is
tight. Roughly speaking the problem is that the graph induced by the matching
in this example is no connected.

2.2 More Structure via Pure Tree-Like Matchings

Let G = (V,E) be a planar graph with a fixed embedding, i.e., for every vertex
v we have a cyclic ordering σ(v) of its incident edges, and let M be a matching
of G. Let GM be the graph that is induced by the matched vertices of M . A
matched vertex v is cyclically pure if its incident edges in GM form an interval
in σ(v), further M is called pure if all matched vertices are cyclically pure. The
matching M is called tree-like if GM is a tree.

Lemma 2. Let G = (V,E) be a planar embedded graph and let M be a pure
tree-like matching in G such that all free vertices have degree at least δ. Let FM

be the set of free vertices that have only matched neighbors. If FM is not empty
then there is a vertex v ∈ FM that has matched neighbors x1, . . . , xδ−2 and each
xi has no other neighbor in FM .

Proof. In this proof we distinguish between outer vertices, i.e., matched vertices
with free neighbors and inner vertices, i.e., matched vertices that are not outer.
To prove the lemma we consider the subgraph G′ of G that is induced by the
edges that have one endpoint in FM . We show that all outer vertices share a
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common face in the embedding inherited from G. The main argument is that in
a drawing of G with the given embedding there exists a simple closed curve C
that contains all outer vertices, encloses all inner ones and separates the matched
vertices from the free vertices (see Fig. 2). Hence, by planarity, the vertices in
FM must have a parenthetical structure, where the most interior ones have the
desired property. �	

This result on pure tree-like matchings can be used to improve the bound on
|FO| and hence the bound on 3-free matchings.

Lemma 3. Let G = (V,E) be a planar graph with minimum degree δ, let M be
a pure tree-like 3-free matching and let MO and FO be defined as above. Then,

|FO| ≤ |MO| − 2
δ − 2

. (4)

With the stronger bound of Equation 4 it follows that a pure tree-like 3-free
matching in a planar graph with n vertices and minimum degree 3 has size at
least n/3. For minimum degrees 4 and 5 the bound on |FC | is now weaker than
the bound on |FO|. Hence to obtain even stronger bounds we would need to
improve the bound on the size of FC .

Unfortunately, it is not easily possible to find a maximal pure tree-like match-
ing in a given graph. Instead we show that we can construct such a matching
by carefully removing free vertices when we cannot continue with enlarging the
matching. The main part is to show that the number of removed vertices is
bounded by the number of matching edges.

3 Algorithm

In this section we describe an algorithm that computes in linear time a matching
of size at least (n + 2)/3 in planar graphs with minimum degree 3. To show
that our algorithm actually finds a matching of this size we use the following
argument. In the course of the algorithm we perform a series of steps each of
which either increases the size of the matching by 1 or deletes a free vertex.
Whenever a vertex is deleted, we make sure that there is an edge in the matching
that “remembers” it in such a way that each matching edge “remembers” at most
one vertex and no vertex is ever “forgotten”. The algorithm finishes when there
are no free vertices left. The bound then follows from the observation that there
can be at most as many free vertices as matching edges.

The algorithm works as follows. We start by adding an arbitrary edge to the
matching, which clearly is both pure and tree-like. We then enlarge the matching
and make sure it remains pure and tree-like. To find an adequate spot to try to
enlarge the matching we use Lemma 2: If there are only free vertices that also
have free neighbors (i.e., FM = ∅), we can easily find an edge that can be used
to enlarge the matching, see Section 3.1. If FM is not empty (i.e. there are free
vertices which have only matched neighbors) the lemma yields a free vertex v
and a matched vertex x such that v is the only neighbor of x in FM . In this
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case we try to enlarge the matching by two different strategies: a) If there is an
augmenting path vxyu of length 3, we will use this fact to swap xy for two new
matching edges (Section 3.2). b) If x has free neighbors which have further free
neighbors, we will use one of these and add an edge between two free vertices to
the matching (Section 3.1).

In case neither of these strategies can be applied we remove v and show that
there is a suitable matching edge that can remember it. The algorithm stops
when no free vertices are left. In the following sections we describe these steps
in detail and prove that they preserve a pure tree-like matching.

3.1 Enlargement by Adding a Suitable Edge

In this section we discuss how to enlarge a pure tree-like matching M by adding
a suitable edge such that the outcome is still pure and tree-like. Consider a
matched vertex x that has free neighbors and some of these have further free
neighbors. Since the edges that connect x to free vertices form an interval in
σ(x), there exist a leftmost and a rightmost free neighbor of x (they coincide if x
has only one free neighbor). To preserve cyclic purity we need that the leftmost
or rightmost free neighbor u of x has a free neighbor u′. This situation occurs if
x has at most one free neighbor that belongs to FM and x is adjacent to a free
vertex that is not in FM , see Fig. 3a.

Lemma 4. Let G = (V,E) be a planar graph and let M be a pure tree-like
matching in G such that each free vertex has degree at least δ. Further let x be a
matched vertex such that the leftmost or rightmost free neighbor of x is adjacent
to a free vertex. Then there is a graph G′ = (V,E′) with E′ ⊆ E and a pure
tree-like matching M ′ of G′ such that |M ′| = |M | + 1 and each free vertex has
degree at least δ in G′.

Proof. Without loss of generality, we can assume that the leftmost free neighbor
u of x has a free neighbor. We now scan σ(u) beginning with x until we find
the first free neighbor u′. Let M ′ be M ∪ {uu′} and let G′ be the graph that
we obtain by removing all edges between u or u′ and another matched vertex
except for xu and uu′. We show that G′ and M ′ satisfy the claim.

First, it is obvious that |M ′| = |M |+1 holds and each free vertex has the same
degree as before since we only deleted edges that have both endpoints matched.
It remains to show that M ′ is pure and tree-like. The vertex x is cyclically pure
since u was the leftmost free neighbor of x and a possible edge xu′ has been
removed. Vertex u is cyclically pure, since it has just two matched neighbors
x and u′ and the edges ux and uu′ are adjacent in σ(u). Vertex u′ is cyclically
pure, because u is its only matched neighbor. The other matched vertices remain
also cyclically pure as removing edges never violates cyclical purity. Thus M ′ is
pure. Moreover, M ′ is tree-like since GM ′ can be obtained by adding the branch
xuu′ to GM (u and u′ were free and thus not in GM ). �	
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Fig. 3. Illustration of the different cases that can occur in the algorithm for the can-
didate vertex x and its unique neighbor v in FM

3.2 Exploiting Existence of an Augmenting Path of Length 3

In this section we describe how to make use of an augmenting path of length at
most 3 in our context. Let G = (V,E) be a planar embedded graph, let M be
a pure tree-like matching in G such that all free vertices have degree at least 3
and let vxyu be an augmenting path of length 3. We show that we can modify
G and M such that M is enlarged by 1 and remains pure and tree-like. The
problem is that just using the augmenting path to enlarge the matching may
violate cyclic purity at the vertices u, v, x and y. Instead we show that there
exists a suitable augmenting path of length 3 which leads (after removing some
edges whose endpoints are both matched) to an enlarged pure tree-like matching.
An example of this situation is shown in Fig. 3b.

Lemma 5. Let G = (V,E) be a planar graph and let M be a pure tree-like
matching in G such that each free vertex has degree at least δ. Let vxyu be an
augmenting path of length 3. Then there is a graph G′ = (V,E′) with E′ ⊆ E
and a pure tree-like matching M ′ such that |M ′| = |M |+ 1 and each free vertex
has degree at least δ in G′.

Proof. Let x� and xr be the leftmost and rightmost free neighbor of x, respec-
tively, and define yr,y� analogously. Choose v′ ∈ {x�, xr}, u′ ∈ {y�, yr} such that
v′ and u′ are distinct.

This is always possible, otherwise x� = xr = y� = yr and x and y both have
only one free neighbor, which is actually shared by x and y, contradicting v 
= u.

We set M ′ := (M \ {xy}) ∪ {v′x, yu′} and let G′ be the graph obtained from
G by removing all edges that connect v′ or u′ to a matched vertex other than
their matching partner. Clearly |M ′| = |M | + 1 holds. Similar to the proof of
Lemma 4 it can be seen that M ′ is a pure tree-like matching in G′ and that
every free vertex of G′ has degree at least δ. �	

3.3 Linear-Time Algorithm

Lemma 4 and Lemma 5 yield together with Lemma 2 the simple algorithm,
whose structure was described in the beginning of this section. A pseudo-code
description of our approach is shown in Algorithm 1.
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Algorithm 1. MatchMinDeg3

1: Select an arbitrary edge e and set M ← {e}
2: while there are still free vertices do
3: if FM �= ∅ then
4: Select a matched vertex x and a free vertex v according to Lemma 2
5: if there is an augmenting path vxyu then
6: Enlarge the matching according to Lemma 5
7: else if x has a free neighbor outside of FM then
8: The leftmost or rightmost free neighbor of x suits to apply Lemma 4
9: else

10: Remove v (the matching edge that is incident to x remembers v)
11: else
12: Select a matched vertex that has free neighbors and apply Lemma 4

Theorem 2. Let G be a planar embedded graph with n vertices and minimum
degree 3. The algorithm MatchMinDeg3 computes a matching of cardinality
at least (n + 1)/3 in O(n) time.

Proof. We begin this proof by stating and justifying some loop invariants for the
while-loop in MatchMinDeg3.

(a) Each removed vertex is remembered by an adjacent matching edge
(b) Each matching edge remembers at most one vertex.
(c) The matching is pure and tree-like.
(d) Each free vertex has degree at least 3.

Invariants (a),(b) are needed to prove the correctness of the algorithm while
Invariants (c),(d) ensure that the conditions of Lemmas 2, 4 and 5 are satisfied.

The algorithm preserves the invariants: When a free vertex v is removed, it
is remembered by a matching edge xy (x and v are adjacent) that is not part
of an augmenting path of length 3 and x has no other adjacent free vertices.
Hence x and y do not have other free neighbors. Thus xy will not have to
remember another vertex and it is never removed from the matching (Fig. 3c,3d).
Thus Invariants (a) and (b) hold throughout the algorithm. Invariant (c) holds
since we change the matching only by using Lemmas 4 and 5, which preserve
the invariant. These lemmas together with the fact that we exclusively remove
vertices that have only matched neighbors guarantee Invariant (d).

The size of the computed matching can now be seen as follows. Invariants (a),
(b) and the observation that the last removed vertex has an additional remem-
bering edge yields the bound |F | ≤ |M | − 1 where F is the set of free vertices of
G with respect to the output matching M . Using the equation |F | = n− 2 · |M |
yields the bound (n + 1)/3 ≤ |M |.

Next, we discuss how to realize MatchMinDeg3 in linear running time. Each
iteration decreases the number of free vertices by at least 1. Thus the algorithm
stops after at most n iterations. We show that each iteration of the while-loop
runs in amortized O(1) time.
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For each vertex we store whether it is matched and if it has free neighbors.
When a vertex v becomes matched it requires O(d(v)) time to propagate this
information to its neighbors such that they can update their number of free
neighbors. The overall-time spent in this step is linear since a matched vertex
stays matched (although its matching partner may change).

For matched vertices with free neighbors, we additionally store the first and
the last edge to a free vertex. With this information we can check whether a
given edge is part of an augmenting path of length 3 since this involves only a
constant number of vertices. Note that the first and last edge can be updated in
constant time when we remove an edge or match a free vertex. Moreover, for each
matched vertex we store its match-degree, i.e., its number of free neighbors in
FM . When the last free neighbor of a free vertex v gets matched or v is deleted,
v notifies its neighbors which can update their match-degree. Both cases occur
at most once for each free vertex and thus this notification work needs linear
time in total. By keeping a list of vertices with match-degree 1 we can find a
candidate vertex x as in Lemma 2 in constant time.

The operation provided by Lemma 5 can be realized in constant time. The
total time for all applications of the procedure provided by Lemma 4 is linear.
This can be seen by considering an occurrence of this case. Determining the
leftmost and rightmost free neighbor of a matched vertex x is possible in constant
time. Checking which one of these is not in FM is also directly possible since we
store whether a vertex has free neighbors or not. When we found the suitable
free vertex u we have to traverse σ(u) in order to find a suitable free neighbor v
and delete edges to matched vertices. Afterwards, also σ(v) has to be traversed
for the same removal issue. This takes O(d(u)+d(v)) time and since u and v are
matched afterwards, they will not be processed in the same way again. Finally,
removing a free vertex v can also be done in O(d(v)) time. �	

3.4 A Better Bound for Minimum Degree 5

For minimum degree 5 the fact that Lemma 3 yields a candidate vertex v with
three neighbors having only v as neighbor in FM can be used to improve the
bound.

Theorem 3. Let G = (V,E) be a planar graph with n vertices and minimum
degree 5. A matching of size at least (2n + 1)/5 can be computed in O(n) time.

4 Conclusion and Future Work

In this paper we have shown that it is possible to exploit minimum degrees in
planar graphs algorithmically to compute matchings of guaranteed size quickly.
Our algorithms run in linear time and yield matchings of size at least (n + 2)/3
and (2n + 1)/5 for planar graphs with minimum degrees 3 and 5, respectively.

While (n+2)/3 is tight for planar graphs with minimum degree 3, it is known
that planar graphs with minimum degree 4 and 5 admit matchings of size (2n+
3)/5 and (5n + 6)/11, respectively. We leave open the question, whether these
tight bounds can be achieved in linear time.
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Abstract. In this paper we study the problem of existence of a crossing-
free acyclic hamiltonian path completion (for short, HP-completion) set
for embedded upward planar digraphs. In the context of book embed-
dings, this question becomes: given an embedded upward planar digraph
G, determine whether there exists an upward 2-page book embedding of
G preserving the given planar embedding.

Given an embedded st-digraph G which has a crossing-free HP-
completion set, we show that there always exists a crossing-free HP-
completion set with at most two edges per face of G. For an embedded
N-free upward planar digraph G, we show that there always exists a
crossing-free acyclic HP-completion set for G which, moreover, can be
computed in linear time. For a width-k embedded planar st-digraph G,
we show that it can be efficiently tested whether G admits a crossing-free
acyclic HP-completion set.

1 Introduction

A k-page book is a structure consisting of a line, referred to as spine, and of k half-
planes, referred to as pages, that have the spine as their common boundary. A
book embedding of a graph G is a drawing of G on a book such that the vertices are
aligned along the spine, each edge is entirely drawn on a single page, and edges
do not cross each other. If we are interested only in two-dimensional structures
we have to concentrate on 2-page book embeddings and to allow spine crossings.
These embeddings are also referred to as 2-page topological book embeddings.

For acyclic digraphs, an upward book embedding can be considered to be a
book embedding in which the spine is vertical and all edges are drawn monoton-
ically increasing in the upward direction. As a consequence, in an upward book
embedding of an acyclic digraph G the vertices of G appear along the spine in
topological order. If G is planar upward digraph and an upward embedding of G
on the plane is given, we are interested to determine a 2-page upward topological
book embedding of G which preserves its plane embedding and has minimum
number of spine crossings. Giordano et al. [5] showed that an embedded upward
planar digraph always admits an upward topological 2-page book embedding
(which preserves its plane embedding) with at most one spine crossing per edge.
However, in their work no effort was made to minimize the total number of spine
crossings.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 882–891, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Crossing-Free Acyclic Hamiltonian Path Completion for Planar st-Digraphs 883

The acyclic hamiltonian path completion with crossing minimization problem
(Acyclic-HPCCM ) was inspired by its equivalence with the problem of deter-
mining an upward 2-page topological book embedding with a minimum number
of spine crossings for an embedded planar st-digraph [8].

In the hamiltonian path completion problem (HPC ) we are given a graph1 G
and we are asked to identify a set of edges S (refereed to as an HP-completion
set) such that, when the edges of S are embedded on G they turn it to a hamil-
tonian graph, that is, a graph containing a hamiltonian path2. The resulting
hamiltonian graph GS is referred to as the HP-completed graph of G. When we
treat the HP-completion problem as an optimization problem, we are interested
in HP-completion sets of minimum size. When the input graph G is an embed-
ded planar digraph, an HP-completion set S for G must be naturally extended
to include an embedding of its edges on the plane, yielding to an embedded
HP-completed digraph GS . In general, GS is not planar, and thus, it is natu-
ral to attempt to minimize the number of edge crossings of the embedding of
the HP-completed digraph GS instead of the size of the HP-completion set S.
This problem is known as HP-completion with crossing minimization problem
(HPCCM ) and was first defined in [8]. When the input digraph G is acyclic, we
can insist on HP-completion sets which leave the HP-completed digraph G′ also
acyclic. We refer to this version of the problem as the Acyclic-HPC problem.
Analogously, we define the acyclic-HPCCM which, as stated above, is equiva-
lent to determining 2-page upward topological book embeddings with minimum
number of spine crossings for embedded upward planar digraphs. When deal-
ing with the acyclic-HPCCM problem, it is natural to first examine whether
there exists an acyclic HP-completion set for a digraph G of zero crossings, i.e.,
a crossing-free acyclic HP-completion set for G. In terms of an upward 2-page
topological book embedding, this question is formulated as follows: given an em-
bedded upward planar digraph G, determine whether there exists an upward
2-page book embedding of G without spine crossings preserving G’s embedding.

In this paper we focus on crossing-free hamiltonian path completion sets for
embedded upward planar digraphs. Our results include:

1. Given an embedded st-digraph G which has a crossing-free HP-completion
set, we show that there always exists a crossing-free HP-completion set with at
most two edges per face of G (Theorem 1).

This result finds application to upward 2-page book embeddings. The prob-
lem of spine crossing minimization in an upward topological book embedding is
defined with a scope to improve the visibility of such drawings. For the class of
upward planar digraphs that always admit an upward 2-page book embedding
(i.e. a topological book embedding without spine crossings) it make sense to
define an additional criterion of visibility. When a graph is embedded in a book,
its faces are split by the spine into several adjacent parts. It is clear that the

1 In this paper, we assume that G is directed.
2 In the literature, a hamiltonian graph is traditionally referred to as a graph contain-

ing a hamiltonian cycle. In this paper, we refer to a hamiltonian graph as a graph
containing a hamiltonian path.
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visibility of a drawing improves if each face is split into as few parts as possible.
This result implies that the upward planar digraphs which admit an upward 2-
page book embedding also admit one such embedding where each face is divided
to at most 3 parts by the spine.

2. Given an embedded N -free upward planar digraph G, we show how to con-
struct a crossing-free HP-completion set for G (Theorem 3). The class of em-
bedded N -free upward planar digraphs is the class of embedded upward planar
digraphs that does not contain as a subgraph the embedded N -graph of Fig-
ure 1.a. N -free upward planar digraphs have been studied in the context of par-
tially ordered sets (posets) and lattices [1]. The class of N -free upward planar
digraphs contains the class of series-parallel digraphs which has been thorough
studied in the context of book embeddings [4].

3. Given a width-k embedded planar st-digraph G, we show how to determine
whether G admits a crossing-free HP-completion set (Theorem 5). It follows that
for fixed-width embedded planar st-digraphs, it can be tested in polynomial
time whether there exists a crossing-free HP-completion set (and thus, a 2-page
upward book embedding). The result is based on a reduction to the minimum
setup scheduling problem.

For reasons of space, some proofs have been omitted and can be found in [7].

2 Terminology and Notation

Let G = (V,E) be a graph. Throughout the paper, we use the term “graph” to
refer to both directed and undirected graphs. We use the term “digraph” when
we want to restrict our attention to directed graphs. We assume familiarity
with basic graph theory [6,3]. A drawing Γ of graph G maps every vertex v
of G to a distinct point p(v) on the plane and each edge e = (u, v) of G to a
simple open curve joining p(u) with p(v). A drawing in which every edge (u, v)
is a a simple open curve monotonically increasing in the vertical direction is
an upward drawing. A drawing Γ of graph G is planar if no two distinct edges
intersect except at their end-vertices. Graph G is called planar if it admits a
planar drawing Γ . An embedding of a planar graph G is the equivalence class of
planar drawings of G that define the same set of faces or, equivalently, of face
boundaries. A planar graph together with the description of a set of faces F is
called an embedded planar graph. Let G = (V,E) be an embedded planar graph,
E′ be a superset of edges containing E, and Γ (G′) be a drawing of G′ = (V,E′).
When the deletion from Γ (G′) of the edges in E′ − E induces the embedded
planar graph G, we say that Γ (G′) preserves the embedded planar graph G. Let
G = (V,E) be a digraph. A vertex of G with in-degree (resp. out-degree) equal
to zero (0) is called a source (resp., sink). An st-digraph is an acyclic digraph
with exactly one source and exactly one sink. Traditionally, the source and the
sink of an st-digraph are denoted by s and t, respectively. An st-digraph which
is planar and, in addition, embedded on the plane so that both of its source and
sink appear on the boundary of its external face, is referred to as a planar st-
digraph. In a planar st-digraph G each face f is bounded by two directed paths
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Fig. 1. (a) Embedded N-digraph. (b) Embedded I -digraph. (c) Planar digraph that
is N-free if treated as an embedded planar digraph, but not N-free as a planar digraph.
(d) An embedded N-free planar st-digraph G1. (e)-(f) The construction for the proof
of Theorem 3.

which have two common end-vertices. The common origin (resp., destination) of
these paths is called the source (resp., sink) of f and is denoted by source(f)
(resp., sink(f)). The leftmost (resp., rightmost) of these two paths is called a
left border (resp., right border) of face f . The bottom-left (rest., bottom-right)
edge of a face f is the first edge on its left(resp., right) border. Similarly we
define the top-left and the top-right edge of a face border. The right(left) border
of an st-digraph is the rightmost(leftmost) path from its source s to its sink
t. A new edge e that is inserted to a face f of a planar st-digraph G, with
its origin and destination on the the left and right border of f , respectively, is
called a left-to-right oriented edge. Analogously, we define a right-to-left oriented
edge. Following the terminology of posets, the digraph GN = (VN , EN ), where
VN = {a, b, c, d} and EN = {(a, b), (c, b), (c, d)} is called an N -digraph. Then, any
digraph that does not contain GN as a subgraph is called an N -free digraph.
This definition can be extended to embedded planar digraphs by insisting on
a specific embedding. If we adopt the embedding of Figure 1.a. we refer to an
embedded N -digraph while, if we adopt the embedding Figure 1.b. we refer to an
embedded I-digraph. An embedded planar digraph G is then called N -free (I -
free) if it does not contain any embedded N -digraph (I -digraph) as a subgraph.
Figure 1.c shows an embedded N -free digraph. However, when its embedding is
ignored, the digraph is not N -free since vertices a, b, c, d comprise a N -digraph.

Let G = (V,E) be an embedded planar st-digraph. The external face is split
into two faces, s∗ and t∗. s∗ is the face to the left of the left border of G while
t∗ is the face to the right of the right border of G. For each e = (u, v) ∈ E, we
denote by left(e) (resp. right(e)) the face to the left (resp. right) of edge e as we
move from u to v. The dual of an st-digraph G, denoted by G∗, is a digraph such
that: (i) there is a vertex in G∗ for each face of G; (ii) for every edge e 
= (s, t)
of G, there is an edge e∗ = (f, g) in G∗, where f = left(e) and g = right(e).
If G∗ after this construction contains multiply edges, we substitute them by
single edges. It is a well known fact that the dual graph G∗ of any planar st-
digraph G, is also a planar st-digraph with source s∗ and sink t∗. The following
definitions were given in [5] for maximal planar st-digraph. Here we extend them
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for planar st-digraphs. Let G = (V,E) be a planar st-digraph and G∗ be the
dual digraph of G. Let v∗1 = s∗, v∗2 , . . . , v

∗
m = t∗ be the set of vertices of G∗ where

the indices are given according to an st-numbering of G∗. By the definition of
the dual st-digraph, a vertex v∗i of G∗ (1 ≤ i ≤ m) corresponds to a face of G.
In the following we denote by v∗i both the vertex of the dual digraph G∗ and
its corresponding face in digraph G. Face v∗k is called the k-th face of G. Let
Vk be the subset of the vertices of G that belong to faces v∗1 , v

∗
2 , . . . , v

∗
k. The

subgraph of G induced by vertices in Vk is called the k-facial subgraph of G and
is denoted by Gk. The next lemma describes how, given an st-digraph G and
an st-numbering of its dual, G can be incrementally constructed from its faces.
The proof is identical to the proof given in [5] for maximal planar st-digraphs.

Lemma 1. Assume a planar st-digraph G and let v∗1 = s∗, v∗2 , . . . , v
∗
m = t∗

an st-numbering of its dual G∗. Consider the kth-facial subgraph Gk and the
k + 1-th face v∗k+1 of G, (1 ≤ k < m). Let sk+1 be the source of v∗k+1 ,
tk+1 be the sink of v∗k+1, sk+1, ul

1, ul
2, . . . , ul

i, tk+1 be its left border, and
sk+1, ur

1, ur
2, . . . , ur

j , tk+1 be its right border. Then:
a. Gk is a planar st-digraph.
b. The vertices sk+1, u

l
1, u

l
2, . . . , u

l
i, tk+1 are vertices of the right border of Gk.

c. Gk+1 can be built from Gk by an addition of a single directed path sk+1, u
r
1,

ur
2, . . . , u

r
j , tk+1. �	

Let G = (V,E) be an embedded planar st-digraph which has an acyclic crossing-
free HP-completion set S. By GS = (V,E

⋃
S) we denote the HP-completed

acyclic digraph and by PGS the resulting hamiltonian path. Note that, as S
creates zero crossings with G, each edge of S is drawn within a face of G and,
therefore, GS is a planar st-digraph.

3 Two Edges Per Face Are Enough

In this Section, we prove that an embedded planar st-digraph G which has
a crossing-free acyclic HP-completion set, always admits a crossing-free HP-
completion set with at most two edges per face of G. This result implies that
the upward planar st-digraphs which admit an upward 2-page book embedding
also admit one such embedding where each face is divided to at most 3 parts by
the spine. This improves the quality of the book embedding drawing.

Theorem 1. Assume an embedded planar st-digraph G which has an acyclic
crossing-free HP-completion set S. Then, there exists another acyclic crossing-
free HP-completion set S′ for G containing at most two edges per face of G.

Sketch of proof: The proof is based on the fact that any three consecutive edges
of the HP-completion set drawn on the same face can be substituted by a single
HP-completion edge (see Figure 2). �	
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Fig. 2. (a) A crossing-free acyclic HP-completion set S which places at least three
edges to a face of an st-digraph. (b) An equivalent crossing-free acyclic HP-completion
set S′ where the three edges (vl
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4 Embedded N -Free Upward Planar Digraphs Always
Have Crossing-Free Acyclic HP-Completion Sets

In this Section, we study embedded N -free upward planar digraphs. We establish
that any embedded N -free upward planar digraph G has a crossing-free acyclic
HP-completion set with at most one edge per face of G. Recall that the class
of embedded N -free upward planar digraphs is the class of embedded upward
planar digraphs that does not contain as a subgraph the embedded N -graph of
Figure 1.a. For the class of N -free upward planar embedded digraphs, which is
substantially larger than the class of N -free upward planar digraphs, we show
that there is always a crossing-free acyclic HP-completion set that can be com-
puted in linear time, thus improving the results given in [1,4]

Theorem 2. Any embedded N -free planar st-digraph G = (V,E) has an acyclic
crossing-free HP-completion set S which contains exactly one edge per face of
G. Moreover, S can be computed in O(V ) time.

Proof. Let G∗ be the dual graph of G and let s∗ = v∗1 , . . . , v
∗
m = t∗ be the vertices

of G∗ ordered according to an st-numbering of G∗. Let Gk−1 be the (k−1)-facial
subgraph of G. By Lemma 1, Gk can be constructed from Gk−1 by adding to
the right border of Gk−1 the directed path forming the right border of v∗k.

We prove the following stronger statement than the one in the theorem:

Statement 1. For any Gk (1 ≤ k < m) there exists an acyclic crossing-free HP-
completion set Sk such that the following holds: Let Pk be the resulting hamilto-
nian paht and let e be an edge of the right border of Gk that is also the bottom-left
edge of a face f ∈ {v∗k+1, . . . v

∗
m}. Then, edge e is traversed by Pk.
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Proof of Statement 1. If k = 1, G1 consist of a single path, that is the left border
of G (Figure 3.a). We let S1 = {∅} and set P1 to G1. As all the edges of G1
are traversed by P1 it is clear that, any edge e on the right border of G1 that
is also a bottom-left edge of any other face t is traversed by P1. Assume now
that the statement is true for any Gk−1, k < m. We will show that it is true for
Gk. Denote by Sk−1 a crossing-free acyclic HP-completion set of Gk−1 and by
Pk−1 the produced hamiltonian path. Let e be an edge on the right border of
Gk−1 that is also the bottom-left edge of v∗k. By the induction hypothesis, Pk−1
passes through e = (sk, v) (see Figure 3.b). Denote by sk and tk the source and
the sink of v∗k respectively, and by vr

1 , . . . , v
r
mk

the vertices of the right border
of v∗k. By Lemma 1, sk and tk are vertices of the right border of Gk−1 and Gk

can be built from Gk−1 by adding the path sk, v
r
1 , . . . , v

r
mk

, tk to it. Suppose
first that mk 
= 0 (i.e., the right border of v∗k contains at least one vertex). Set
Sk = Sk−1

⋃
{(vr

mk
, v)}, and Pk = Pk−1[s . . . sk], vr

1 , . . . , v
r
mk

, Pk−1[v . . . t] (see
Figure 3.c). It is clear that Pk is a hamiltonian path of Gk. This is because
Pk−1 is hamiltonian path of Gk−1 and Pk traverses all newly added vertices. It
is also easy to see that Sk is acyclic: the edge (vr

mk
, v) which was added to Sk−1

creates a single directed path: from vertex sk to the vertex v, which were already
connected by the directed edge (sk, v) in Gk−1. We now show that the bottom-
left edge e of any f ∈ {v∗k+1 . . . v∗m}, where e is also on the right border of Gk, is
traversed by Pk. The only edge that was added to Gk−1 to create Gk and is not
traversed by Pk, is e′ = (vr

mk
, tk), that is, e′ is the last edge of the right border

of v∗k. If e′ is also the left bottom edge of a f then the graph has an embedded
N -digraph as a subgraph (see the subgraph induced by the vertices u, tk, v

r
mk

, w
in Figure 3.c), a contradiction. Otherwise, if the bottom-left edge of f coincides
with any other edge of the right border of v∗k, then the statement holds. If f
has its bottom-left edge on the right border of Gk−1 then, by the induction, a
bottom left edge of f is traversed by Pk−1 and, thus, by Pk. Consider now the
case where mk = 0, that is, the right border of v∗k is a single, transitive edge (see
Figure 3.d). In this case, no new vertex is added to Gk, so we set Sk+1 = Sk and
Pk+1 = Pk. Consider now a face f ∈ {v∗k+1 . . . v∗m}. If the bottom-left edge e of f
is on the right border of Gk and coincides with the transitive edge (sk, tk), then
u, tk, sk, w form an embedded N -digraph (see Figure 3.d), a contradiction. So e
is not (sk, tk) and, hence, it is an edge of the right border of Gk−1. So, by the
induction hypothesis, e is traversed by Pk−1 and hence by Pk. This completes
the proof of the statement. Having proved Statement 1, the theorem follows from
the observation that Gm = G. The bound on the time needed to compute the
crossing-free HP-completion set easily follows from the incremental nature of the
described constructive proof. �	

Corollary 1. Any I-free embedded planar st-digraph G = (V,E) has an acyclic
crossing-free HP-completion set S which contains exactly one edge per face of
G. Moreover, S can be computed in O(V ) time.

Proof. Reverse the edges of G∗ and repeat the proof of Theorem 2.
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Fig. 3. (a) G1 = P1 and a face f . The bottom left edge of f is traversed by P1. (b)
Gk−1 and v∗

k. Pk−1 is denoted by solid line. (c) A graph Gk for the case that the right
border of v∗

k contains at least one vertex. The newly constructed Pk is denoted by solid
line. (d) A graph Gk for the case that the right border of v∗

k is a transitive edge.

Theorem 3. Any embedded N -free upward planar digraph G = (V,E) has an
acyclic crossing-free HP-completion set that can be computed in O(V ) time.

Proof. We just prove that, any embedded N -free upward planar digraph G can
be transformed to an embedded N -free upward planar st-digraph G′ by the
addition of few edges. Then, the result follows from Theorem 2. Consider an
upward planar embedding Γ of G = (V,E) that is N -free. If the outer face of
G contains more than one sink (source), then we add a new super-sink (super-
source) vertex. Let t1, . . . , tk be the sinks of G in the outer face. By adding a
new vertex t and by joining each ti to t by an edge, the embedding Γ of G is
preserved and remains N -free, because each ti 1 ≤ i ≤ k has out-degree zero
(see Figure 1.e). Let now some sink t1 be placed in a inner face of G. Let t2
be the sink of that face. We add edge (t1, t2). The addition of the edge (t1, t2)
creates an embedded N -digraph only if there are edges (v, t2) and (v, w) in G
with (v, w) is the edge following (v, t2) (in counter clockwise order), out of v.
But then, there is already an embedded N -digraph in G (the digraph induced
by the vertices u, t2, v, w in Figure 1.f). A clear contradiction, so (t1, t2) can
be added to G without creating any embedded N -digraph as a subgraph. The
sources are treated similarly. The transformation of G into an st-digraph can be
easily completed in linear time. �	

5 Crossing-Free Acyclic HP-Completion Sets for Fixed
Width st-Digraphs

In this section we establish that for any embedded planar st-digraph G of
bounded width, there is a polynomial time algorithm determining whether there
exists a crossing-free HP-completion set for G. In the case that such an HP-
completion set exists, we can easily construct it. A set Q of vertices of G
is called independent if the graph incident to Q has no edges. Following the
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terminology of partially ordered sets, we call width of G, and denote it by
width(G), the maximum integer r such that G has an independent set of car-
dinality r. In Minimum Setup Scheduling (MSS) we are given a number of jobs
that are to be executed in sequence by a single processor. There are constraints
which require that certain jobs be completed before another may start; these
constraints are given in the form of precedence dag. In addition, for each pair i, j
of jobs there is a setup cost representing the cost of performing job j immediately
after job i, denoted by cost(i, j). The objective is to find a one-processor sched-
ule for all jobs which satisfies all the precedence constraints and minimizes the
total setup cost incurred. The main idea of the result presented in this section
is a simple application of an algorithm solving the minimum setup scheduling
problem . Given a precedence dag D and a matrix C of costs, s(D,C) denotes
the total setup cost of a minimum cost schedule satisfying the constraints given
by D. The next theorem follows from the complexity analysis given in [2].

Theorem 4 ([2]). Given an n-vertex precedence dag D of width k and a ma-
trix C of setup costs, we can compute in O(nkk2) time a setup cost s(P,C) of
minimum cost schedule, satisfying the constraints given by P .

In the rest of this section, we show that given a planar st-digraph G the problem
of determining whether there is a crossing-free acyclic HP-completion set for
G can be presented as an instance of MSS. Let G = (V,E) is an embedded
planar st-digraph. We define the setup cost matrix as follows. Set CG[i, j] = 0 if
(vi, vj) ∈ E or vi and vj belong to the opposite borders of the same face of G,
otherwise set CG[i, j] = 1.

Lemma 2. Let G = (V,E) be an embedded planar st-digraph. Let also s(G,CG)
be a setup cost of minimum cost schedule satisfying the constraints given by G
and setup costs given by CG. G has an acyclic crossing-free HP-completion set
iff s(G,CG) = 0.

Proof. (⇒) Assume that G has a crossing-free acyclic HP-completion set S and
the vertices in the sequence v1, v2, . . . , vn are enumerated as they appear in the
hamiltonian path which is created when S is embedded on G. Then, the sequence
v1, v2, . . . , vn presents a schedule satisfying constraints given by G, otherwise an
embedding of S in G would create a cycle. The setup cost for this schedule
is

∑n−1
i=1 CG[i, i + 1]. We know that S does not create any crossing with G.

Therefore, any two successive vertices vi and vi+1 of the resulting hamiltonian
path are either connected by an edge of the graph or belong to the opposite
borders of the same face, and thus, CG[i, i + 1] = 0. So, we have shown that
there is a schedule of setup cost zero and, thus, s(G,CG) = 0.

(⇐) Assume now that s(G,CG) = 0, i.e., there exists a one-processor schedule
for the jobs represented by the vertices of G which has total setup cost zero and
satisfies the precedence constraints given by G. Let v1, v2, . . . , vn be the jobs
as they appear in this schedule. We construct the set of edges S as follows:
Consider any two successive jobs vi and vi+1. If they are not connected by an
edge (vi, vi+1) of G, then we add this edge to S. All the edges added to S
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correspond to two jobs with setup cost zero, and hence represent edges which
connect two vertices of the opposite borders of the same face. So we have that
S creates in G a hamiltonian path which does not cross any edge of G. Finally
we note that (i) there can be no crossings among the edges of S and, (ii) the
addition of S to G does not create any cycle. �	

Theorem 5. Let G be a planar st-digraph of width k ∈ N. Then, in O(k2nk)
time we can decide whether G has an crossing-free HP-completion set. In the
event that such a set exists, it can be easily computed in the same time bounds.
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Abstract. Given an undirected graph on n vertices with weights on its
edges, Min WCF(p) consists of computing a covering forest of minimum
weight such that each of its tree components contains at least p vertices.
It has been proved that Min WCF(p) is NP -hard for any p ≥ 4 (Imielin-
ska et al., 1993) but (2 − 1

n
)-approximable (Goemans and Williamson,

1995). While Min WCF(2) is polynomial-time solvable, already the un-
weighted version of Min WCF(3) is NP -hard even on planar bipartite
graphs of maximum degree 3. We prove here that for any p ≥ 4, the
unweighted version is NP -hard, even for planar bipartite graphs of max-
imum degree 3; moreover, the unweighted version for any p ≥ 3 has no
ptas for bipartite graphs of maximum degree 3. The latter theorem is
the first-ever APX-hardness result on this problem. On the other hand,
we show that Min WCF(p) is polynomial-time solvable on graphs with
bounded treewidth, and for any p bounded by O( log n

log log n
) it has a ptas

on planar graphs.

1 Introduction

Let G = (V,E) be a graph with |V | = n vertices. An edge cover of G is a
subset of the edge set E such that every vertex is incident with at least one
edge in the covering set. Finding the minimum size, ρ(G), of an edge cover of a
graph is a fundamental problem. As proved by Gallai [8], it is strongly related
to determining the maximum size, ν(G), of a matching in G. A famous result
of [8] states that any graph G without isolated vertices satisfies the identity
ν(G)+ρ(G) = n. As a matter of fact, the relation is much more than quantitative:
every maximum matching of a graph can be extended to a minimum edge cover,
and also conversely, every minimum edge cover contains a maximum matching.
In this way, one can derive a minimum-size edge cover from a maximum matching
M just by adding an arbitrary incident edge for each vertex missing from M .
Hence, a minimum-size edge cover can be found in polynomial time.
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In the case where the graph G = (V,E) has weights on its edges, the minimum-
weight edge cover problem can be reduced to the problem of finding a minimum-
weight perfect matching; a simple reduction is described e.g. in the first volume of
Schrijver’s monograph [15, Section 19.2]. As a consequence, an optimal solution
can be found in O(n3) time by the results of Edmonds and Johnson [7]. It
should be noted, however, that the relation between maximum matchings and
minimum edge covers does not remain valid for weighted graphs, neither for
uniform hypergraphs of edge size greater than two [16].

A problem that generalizes the minimum-weight edge cover problem in a
very natural way is the Min Weighted Constrained Forest problem, denoted by
Min WCF(p) in the sequel. It consists of computing a spanning forest of G of
minimum weight such that every tree component contains at least p vertices,
for a given integer p. Although traditionally p is assumed to be a constant, the
methods proving our positive results will allow us to take p as a function of
n, too.

Monnot and Toulouse [14] proved that the unweighted version of Min WCF(3)

is NP -hard even on planar bipartite graphs of maximum degree three. Imielinska
et al. [10] showed that Min WCF(p) is NP -hard for p ≥ 4, and that a greedy al-
gorithm achieves a 2-approximation. Interestingly enough, a different algorithm
studied by Laszlo and Mukherjee [12] has exactly the same tight worst-case ratio
of 2, as well as a common generalization of those two approaches [13]. With the
methods of Goemans and Williamson [9], just a slightly better ratio 2 − 1

n can
be achieved.

Let us denote by Min CF(p) the unweighted version of the problem. Until
now nothing was known about the complexity of Min CF(p) for p ≥ 4. We settle
this problem by showing that Min CF(p) is NP -hard for any p ≥ 4, already on
planar bipartite graphs with maximum degree three.

Moreover, we study non-approximability of these problems for the first time.
In this direction we prove that dropping the condition of planarity, Min CF(p)
becomes APX -hard for any p ≥ 3 on bipartite graphs, and even on those with
maximum degree three. It also turns out that this weakening in the condition
necessarily has to appear in non-approximability results, since we can design
a polynomial-time approximation scheme for Min WCF(p) on planar graphs.
In this result we may allow p to be bounded by O( log n

log log n ). An important tool
in the proof is an algorithm computing an optimal solution for Min WCF(p)
on any input graph of treewidth at most k in O(kckp2k+2n) time, for some
constant c. This time bound is valid without any restrictions on the growth of p,
hence applicable also in graph classes which cannot be treated with Courcelle’s
powerful method via monadic second-order logic [4]. (The latter would require
to fix p as a constant.)

It is worth noting that the unweighted case admits a much simpler approach
than the weighted one, with the following improved approximation ratio:

Remark 1. Contrary to the weighted case, it is very easy to find increasingly
better approximations for Min CF(p) as p gets large. Indeed, since every feasible
solution has at most n/p connected components, the optimum can never have
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a value smaller than n − n/p = p−1
p n, and hence any spanning tree gives a

(1 + 1
p−1 )-approximation.

Our results on NP- and APX-hardness are proved in Section 3, while efficient
algorithms are presented in Section 4. Due to space limitations, some proofs are
not given in the paper.

2 Preliminaries

We begin with some basic definitions, summarized in two groups.

Problems. First, we formally define the problem we will study in the sequel.
Min Weighted Constrained Forest p (Min WCF(p))
Input: An undirected graph G = (V,E) with non-negative weights on its edges.
Output: A spanning forest of minimum weight where every tree is of order at
least p (i.e., it contains at least p vertices).

The unweighted version of Min WCF(p) will be denoted by Min CF(p).
In our proofs we shall use the following problems:

3-Dimensional Matching (3DM)

Input: Three disjoint sets A,B,C of the same size q, and a set T ⊆ A×B ×C
of triplets.
Question: Does T contain a perfect matching, that is a subset M ⊆ T such
that |M| = q and no two elements of M agree in any coordinate (i.e., for any
(a, b, c), (a′, b′, c′) ∈ M we have a 
= a′, b 
= b′, and c 
= c′) ?

We can associate a bipartite graph with any instance of 3DM as follows. We
take an ‘element-vertex’ for each element of A ∪B ∪ C, and one ‘triplet-vertex’
for each triplet in T . There is an edge connecting a triplet-vertex to an element-
vertex if and only if the element is a member of the triplet. Moreover, we say
that the instance is planar if the graph associated with it is planar.
Max 3-Dimensional Matching (Max 3DM)

Input: Three disjoint sets A,B,C of the same size and a set T ⊆ A×B×C of
triplets.
Output: A matching (set of mutually disjoint triplets) M ⊆ T of maximum size.

The restricted versions of 3DM and of Max 3DM where each element of
A ∪ B ∪ C appears in exactly two triplets will be denoted by 3DM2 and Max

3DM2, respectively.

Approximability. Given an instance x of an optimization problem A and a
feasible solution y of x, we denote by v(x, y) the value of the solution y, and by
optA(x) the value of an optimum solution of x. The performance ratio of y is

R(x, y) = max
{

v(x, y)
optA(x)

,
optA(x)
v(x, y)

}
.

For a constant c > 1, an algorithm is a c-approximation if for any instance x
of the problem it returns a solution y such that R(x, y) ≤ c. An optimization
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problem is said to be constant approximable if, for some c > 1, there exists a
polynomial-time c-approximation for it. The class of problems which are constant
approximable is denoted by APX . An optimization problem has a polynomial-
time approximation scheme (a ptas , for short) if, for every constant ε > 0, there
exists a polynomial-time (1 + ε)-approximation for it.

3 Complexity for p ≥ 3

In this section we prove that the constrained forest problem is intractable for
every p ≥ 4, even on some very restricted classes of problem instances. We first
deal with time complexity and then with approximation hardness.

3.1 NP-Hardness for p ≥ 4, Planar Bipartite Unweighted Graphs

Theorem 1. For any p ≥ 4, Min CF(p) is NP-hard, even on planar bipartite
graphs with maximum degree 3.

Proof. First, we prove NP -hardness for p = 4. We construct a polynomial re-
duction from 3DM to Min CF(4). Let I = (A,B,C, T ) be an instance of 3DM

where |A| = |B| = [C| = q and T = {T1, . . . , Tm}. Assume, without loss of
generality, that each element occurs in at least one triplet (otherwise I admits
no perfect matching at all).

The graph instance G(I) = (V,E) of Min CF(4) is constructed as follows; see
an illustration in Figure 1 with a particular instance I of 3DM. For each triplet
T� = (ai, bj, ck) ∈ T we create a copy of a star with 3 branches, that we shall call
star gadget, with vertices a�

i , b
�
j , c

�
k, d

� and edges (a�
i , d

�), (b�
j , d

�), (c�
k, d

�). These
stars are assumed to be vertex-disjoint. For their union we denote

VT =
⋃

T�=(ai,bj ,ck)∈T
{a�

i , b
�
j , c

�
k, d

�} and

ET =
⋃

T�=(ai,bj,ck)∈T
{(a�

i , d
�), (b�

j , d
�), (c�

k, d
�)}.

To the elements of A ∪ B ∪ C we assign linking gadgets ; if an element appears
in h triplets, then h− 1 gadgets will be associated with it.

Consider first the set A. We define the set JA ⊂ A×N×N to be the collection
of all (ai, r, s) with the following properties: ai ∈ A, and r, s are two consecutive
indices of triplets containing ai, in the sense that ai ∈ Tr and ai ∈ Ts but ai /∈ T�

for any r < � < s. (In this general setting we allow that some ai occur in just
one member of T — hence generating no linking gadgets — although in such a
situation I would easily be reducible to a smaller instance.) Each (ai, r, s) ∈ JA

defines a linking gadget inducing a ‘claw’ in G(I), with vertices ar
i , a

s
i , a

r,s
i , a r,s

i

and edges (ar
i , a

r,s
i ), (ar,s

i , as
i ), (a

r,s
i , a r,s

i ). For their union we denote
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VA =
⋃

(ai,r,s)∈JA

{ar,s
i , a r,s

i } and EA =
⋃

(ai,r,s)∈JA

{(ar
i , a

r,s
i ), (ar,s

i , as
i ), (a

r,s
i , a r,s

i )}.

The sets JB and JC are defined in a similar way. Each (bj , r, s) ∈ JB defines a
linking gadget inducing a ‘claw’ in G(I), with vertices br

j , b
s
j , b

r,s
j , b

r,s

j , b r,s
j and

edges (br
j , b

r,s
j ), (br,s

j , bs
j), (b

r,s
j , b r,s

j ), (br,s
j , b

r,s

j ). For their union we denote

VB =
⋃

(bj ,r,s)∈JB

{br,s
j , b r,s

j , br,s
j } and

EB =
⋃

(bj ,r,s)∈JB

{(br
j , b

r,s
j ), (br,s

j , bs
j), (b

r,s
j , b r,s

j ), (b r,s
j , b

r,s

j )}.

The same is done for the set C in complete analogy to B, hence introducing the
linking gadgets (ck, r, s) ∈ JC and obtaining vertex set VC and edge set EC .

After all these preparations, let the graph G(I) = (V,E) has vertex set V =
VT ∪ VA ∪ VB ∪ VC and edge set E = ET ∪ EA ∪ EB ∪ EC . Since an element of
A∪B∪C appearing in h triplets has h copies and h−1 linking gadgets in G(I),
we can see that the total number of vertices is precisely 12|T | − 8q. Hence, the
transformation is linear with respect to input size.

We are going to show that I contains a perfect matching if and only if G(I)
contains a forest of weight at most 9|T | − 6q in which every tree component is
of order at least 4.

Fig. 1. Graph G(I) derived from instance I = (A, B, C, T ) of 3DM with A =
{a1, a2, a3}, B = {b1, b2, b3}, C = {c1, c2, c3}, and T = {T1, . . . , T6} with T1 =
(a1, b2, c2), T2 = (a1, b1, c1), T3 = (a2, b3, c1), T4 = (a1, b3, c3), T5 = (a1, b1, c2),
T6 = (a3, b1, c3)
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Suppose first that M is a perfect matching of I. For a T� = (ai, bj, ck) ∈ M
we write fM (ai) = fM (bj) = fM (ck) = �, and further denote by FT the set of
edges of the star gadgets corresponding to triplets of M:

FT =
⋃

T�=(ai,bj ,ck)∈M
{(a�

i , d
�), (b�

j , d
�), (c�

k, d
�)}

and
Fai =

⋃

r<fM (ai)
(ai,r,s)∈JA

{(dr, ar
i ), (a

r
i , a

r,s
i ), (ar,s

i , a r,s
i )} ∪

⋃

s>fM (ai)
(ai,r,s)∈JA

{(ds, as
i ), (a

s
i , a

r,s
i ), (ar,s

i , a r,s
i )},

Fbj =
⋃

r<fM(bj)
(bj ,r,s)∈JB

{(br
j , b

r,s
j ), (br,s

j , b r,s
j ), (br,s

j , b
r,s

j )} ∪

⋃

s>fM (bj)
(bj ,r,s)∈JB

{(bs
j , b

r,s
j ), (br,s

j , b r,s
j ), (br,s

j , b
r,s

j )}.

The set Fck
is defined like Fbj . Let FM =

⋃
e∈A∪B∪C Fe ∪FT . Forest FM covers

G(I) with trees of order 4. Thus, it is a forest of weight 9|T | − 6q.
Conversely, let F be a covering forest of G(I) of weight at most 9|T | − 6q,

where each tree is of order at least 4. Remark that since the graph G(I) has
exactly 12|T |− 8q vertices, a covering forest without isolated edges and isolated
vertices is of weight at least 9|T | − 6q. Thus, every tree in F is of order exactly
4, and F is of weight 9|T | − 6q. All edges (ar,s

i , a r,s
i ) are in F since this is the

only edge incident to a r,s
i . Since F has only trees of order 4, just one of the

edges (ar,s
i , ar

i ) and (ar,s
i , as

i ) is in F . Therefore in the family {a�
i}� there exists

exactly one vertex that is not incident to a linking gadget in F . Since forest F is
of weight 9|T | − 6q, it contains 3|T | − 2q trees. Since for any element of A,B,C
the number of linking gadgets associated is equal to the number of occurrences
of this element in T minus 1, there are 3|T | − 3q linking gadgets in G(I). It
means that there are q trees of F which do not cover any linking gadget. Each
of these remaining trees therefore covers a star gadget of the form a�

i , b
�
j , c

�
k, d

�.
From these star gadgets we extract a collection of q triplets (ai, bj, ck), which is
a valid solution in I since every triplet appears in T by construction and every
element of the triplets appears in exactly one occurrence.

Since 3DM is NP -hard even on planar instances [5] and the previous reduction
preserves planarity, we can restrict Min CF(4) to planar bipartite graphs of
maximum degree 3. This completes the proof for p = 4. The construction of
G(I) for p > 4 consists of replacing some edges of G(I) for p = 4 by paths of
length p− 3. �
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3.2 APX -Hardness for p ≥ 3, Unweighted Bipartite Graphs

Applying L-reduction from Max 3DM2, the following result can be obtained.

Theorem 2. For any p ≥ 3, Min CF(p) is APX-hard. Moreover, Min CF(p)
for p ≥ 3 is not 95(8p−7)+1

95(8p−7) -approximable on bipartite graphs of maximum de-
gree 3, unless P=NP.

4 Efficient Algorithms

4.1 Exact Algorithms for Bounded Treewidth Graphs

In this section we present an efficient algorithm solving Min WCF(p) on graph
classes of bounded treewidth. For undefined details on tree decomposition we
refer to [11].

Theorem 3. The problem Min WCF(p) on graphs with treewidth bounded by k
can be solved in time O(kckp2k+2n) for some constant c, where n is the number
of vertices.

Remark 2. The time bound is polynomial in n whenever k(log k + log p) =
O(log n) and in particular if k = O( log n

log log n ) and p = O(log n).

Proof. Let G be a graph of treewidth k, and (TG, {X | x ∈ V (TG)}) a tree
decomposition of G with width k. As a notational convention, the vertex subset
of G associated with node x of TG is denoted by the corresponding upper-case
letter X , and we shall use the same subscript for them where necessary. We view
TG as a rooted tree. By assumption, the set X associated with any node x of
TG contains at most k + 1 vertices of V (G). We shall assume further that every
node x is of one of the following types:

– a start node that has no children (a leaf in TG),
– a join node that has two children x1, x2 and X1 = X2 = X ,
– an introduce node that has one child x1 and X1 = X\{v} for some v ∈ V (G),
– a forget node that has one child x1 and X1 = X ∪ {v} for some v ∈ V (G).

This is called a “nice tree decomposition” in the literature, see pp. 149–150 of
[11]. As it is well known, every graph admits a tree decomposition of size O(n)
satisfying these conditions. It is also easy to see that any tree decomposition of
width k can be modified to one with the properties above in O(kn) time.

For any node x of TG, let TG(x) be the rooted subtree of TG containing
exactly the node x and its descendants. The vertices of G which appear in the
sets associated with the nodes of TG(x) define a subgraph of G, denoted by G(x).
Remark that TG(x) is a tree decomposition of G(x).

Consider any node x of TG. For each spanning forest F (possibly with many
vertices of degree zero in F ) of the subgraph G[X ] induced by X in G, we consider
all partitions P = (C1, . . . , C�) of X and all �-tuples I = (i1, . . . , i�) ∈ {1, . . . , p}�

such that the following conditions are met:
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– if vi, vj ∈ X are in the same tree component of F , then vi, vj belong to the
same partition class Cr,

– if |Cr| ≤ p, then |Cr| ≤ ir ≤ p, and otherwise ir = p.

Let f(x, F,P , I) be defined as the value of a minimum-weight spanning forest of
G(x) in which X induces precisely F , and in which two vertices belong to the
same tree component if and only if they are in the same class of P .

Lemma 1. For any vertex x of TG, for any forest F over the subgraph G[X ],
for any partition P of X, and for any �-tuple I of integers satisfying the con-
ditions above, we can determine f(x, F,P , I) in O(kckp2k+2) time if the corre-
sponding values f are available for the child(ren) of x.

Sketch of Proof. One has to consider each type of nodes separately. Due to space
limitations, we give the argument for join nodes only, which is the most time-
consuming case. If x is a join node, then P has to be generated from two finer
partitions over X , one for X1 and the other for X2. We can do this by artificially
completing F with sets Eblue, Ered of blue and red edges (not necessarily edges of
G) to obtain a forest, each tree component of which spans a class of P . We then
consider the forests Fblue and Fred which are respectively the forests defined by
F ∪Eblue and F ∪Ered. The tree components of these forests define the partitions
Pblue and Pred over the vertices of X . The vectors I1 and I2 are such that, for
every partition class Cj of P , ij is equal to the minimum of p and the sum of
the values of the blue and red classes included in Cj minus |Cj |. Then,

f(x, F,P , I) = min
Fblue,Fred,I1,I2

f(x1, F,Pblue, I1) + f(x2, F,Pred, I2) − w(F ).

The number of relevant blue-red forests is not larger than the number Bk+1 of
partitions of a (k+1)-element set. For each of them, processing all combinations
of O(pk+1) records at X1 and the same amount of data at X2 may need O(p2k+2)
time. This yields the upper bound Bk+1 ·O(p2k+2) altogether. �

To conclude the proof of Theorem 3, we traverse TG in postorder, and compute
f(x, F,P , I) for all possible choices of node x, spanning forest F of G[X ], parti-
tion P of X , and sequence I satisfying the conditions given at the beginning of
the proof. Then the solution of Min WCF(p) on G is equal to the smallest value
of f occurring at the root of TG for a sequence I = (p, . . . , p) of any length.

The overall upper bound is obtained by the facts that for any k, the number
of choices for P is bounded above by Bk+1, the number of vertex-labeled trees
of order t is tt−2 (this puts a bound on the choices for F ), and the number of
sequences I at x is at most pk+1. The most time-consuming step is to compute
f at a join node; it can be organized by taking all combinations of the values
stored at x1 and x2. �

Remark 3. The same method can be applied to solve the more general problem
where, instead of a uniform condition p for the constrained forest, the input
graph G = (V,E) on vertex set V = {v1, . . . , vn} is given together with a vector
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(p1, . . . , pn) of natural numbers pi ≤ p, and it is required that each vi be con-
tained in a tree component which has at least pi vertices in the spanning forest.
The steps of the algorithm above can be adjusted for this variant.

4.2 Ptas for Planar Graphs

Theorem 4. For p = O( log n
log log n ), Min WCF(p) on planar graphs admits a

ptas.

Proof. Given a planar embedding of an input graph, we consider the set of the
vertices which are on the exterior face, they will be called level 1 vertices. By
induction we define level k as the vertices which are on the exterior face when
we have removed the vertices of levels smaller than k [1]. A planar embedding
is k-level if it has no nodes of level greater than k. If a planar graph is k-level,
it has a k-outerplanar embedding.

If we want to achieve an approximation within 1 + ε, let us consider k =
� 4(p−1)

ε �. Let Xt be the set of vertices of level t and let Hi, 0 ≤ i ≤ k − 1, be
the graph obtained from G by deleting all edges between the vertices Xt and
Xt+1 for all t such that t ≡ i (mod k). The set of vertices

⋃
t+1≤j≤t+k Xj , for

t ≡ i (mod k) is therefore a component in Hi since we have deleted all edges
from this set of vertices to the other vertices of the graph. Hence, the subgraph
containing exactly

⋃
t+1≤j≤t+k Xj is k-outerplanar, and so is Hi.

Since Hi is k-outerplanar, it has treewidth at most 3k − 1 [2]. By applying
Theorem 3 and Remark 3, we can efficiently determine an optimal forest Si on
Hi; the condition on p remains true on vertices not incident with edges deleted,
and is changed to zero on the boundary vertices of Hi, that means vertices in
Xt+1, Xt+k with t ≡ i (mod k). We complete the solution Si obtained on Hi into
a feasible solution Fi on G by choosing the useful edges of smallest cost greedily
within the edges of G until every tree is of order at least p.

We are going to prove that the best forest among F0, . . . , Fk−1 is an (1 + ε)-
approximation of the optimal value on G. We will use two lemmas and some
notation for the proof. For any tree T of G, let wmax(T ) denote the maximum
weight of the edges of T , wmax(T ) = maxe∈E(T ) w(e). Let g : V → R be defined
as g(v) = minT tree, |V (T )|=p, v∈V (T ) wmax(T ).

Lemma 2. Let F be a spanning forest of G, and V ′ = {v1, . . . , vr} a set of
vertices such that any tree T of F which is not of order at least p contains
a vertex vi ∈ V ′. Then we can construct a forest of G in which every tree
component has order at least p and the total weight is at most w(F )+

∑
v∈V ′ g(v).

Lemma 3.
∑

v∈V g(v) ≤ 2(p− 1) opt(G).

Now we are in a position to complete the proof of the theorem. Let Vi =⋃
t≡i (mod k)(Xt+1 ∪ Xt+k). By Lemma 2, starting from Si we can construct

a forest Fi satisfying the property that every tree component is as large as re-
quired, moreover w(Si)+

∑
v∈Vi

g(v) ≥ w(Fi). Since Si is an optimal solution of a
relaxed problem, we have w(Si) ≤ opt(G) and so opt(G) +

∑
v∈Vi

g(v) ≥ w(Fi).
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Moreover, using Lemma 3 we obtain the following inequality
∑

1≤i≤k g(Vi) =
2
∑

v∈V g(v) ≤ 4(p−1) opt(G). Hence, there exists an i0 such that
∑

v∈Vi0
g(v) ≤

4(p−1)
k opt(G), which implies min1≤i≤k w(Fi) ≤ w(Fi0 ) ≤ (1 + 4(p−1)

k ) opt(G) ≤
(1+ε) opt(G). The overall running time of the algorithm is k times what we need
for graphs of treewidth at most k, that is O((4p

ε )dp/εn), where d is a constant.
Hence, since p = O( log n

log log n ) we have a ptas. �

Remark 4. We can improve the time of the ptas given in Theorem 4 using sphere
cut decomposition instead of bounded treewidth decomposition. In this way we
obtain a ptas whose running time is O((4p)8p/εn)

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the Association for Computing Machinery 41(1), 153–180 (1994)

2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

3. Chlebik, M., Clebikova, J.: Complexity of approximating bounded variants of op-
timization problems. Theoretical Computer Science 354, 320–338 (2006)

4. Courcelle, B.: The monadic second-order logic of graphs. III. Tree-decompositions,
minors and complexity issues. RAIRO Informatique Théorique Appliquée 26, 257–
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1 Department of Computer Science, Tufts University, Medford, MA, USA �

{maljub01,mishaque,kredei01,dls}@cs.tufts.edu
2 Department of Mathematics, University of Calgary, AB, Canada ��

cdtoth@ucalgary.ca

Abstract. It is shown that if a planar straight line graph (PSLG) with n vertices
in general position in the plane can be augmented to a 3-edge-connected PSLG,
then 2n−2 new edges are enough for the augmentation. This bound is tight: there
are PSLGs with n ≥ 4 vertices such that any augmentation to a 3-edge-connected
PSLG requires 2n − 2 new edges.

1 Introduction

Connectivity augmentation is a classical problem in graph theory with application in
network design. Given a graph G(V, E), with vertex set V and edge set E, and a
constant k ∈ N, find a minimum set E′ of new edges such that G′(V, E ∪ E′) is k-
connected (respectively, k-edge-connected). For k = 2, Eswaran and Tarjan [2] and
Plesnı́k [10] showed independently that both edge- and vertex-connectivity augmen-
tation problems can be solved in linear time. Watanabe and Nakamura [16] proved
that the edge-connectivity augmentation problem can be solved in polynomial time for
any k ∈ N. The runtime was later improved (using the edge-splitting technique of
Lovász [6] and Mader [7]) by Frank [3] and by Nagamochi and Ibaraki [8]. Jackson
and Jordán [4] proved that the vertex-connectivity augmentation problem can be solved
in polynomial time for any k ∈ N. For related problems, refer to surveys by Nagamochi
and Ibaraki [9], and by Kortsarz and Nutov [5].

The results on connectivity augmentation of abstract graphs do not apply if the input
is given with a planar embedding, which has to be respected by the new edges (e.g.,
in case of physical communication or transportation networks). A planar straight line
graph (PSLG) is a graph G = (V, E), where V is a set of distinct points in the plane,
and E is a set of straight line segments between the points in V such that two segments
may intersect at their endpoints only. Given a PSLG G = (V, E) and an integer k ∈
N, the embedding preserving k-connectivity (resp., k-edge-connectivity) augmentation
problem asks for a set of new edges E′ of minimal cardinality such that G = (V, E ∪
E′) is a k-connected (resp., k-edge-connected) PSLG. Since every planar graph has at

� Partially supported by NSF grant CCF-0830734.
�� Supported by NSERC grant RGPIN 35586. Research done at Tufts University.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 902–912, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs 903

least one vertex of degree at most 5, the embedding preserving k-connectivity (k-edge-
connectivity) augmentation problems make sense for 1 ≤ k ≤ 5 only.

Rutter and Wolff [11] showed that both the embedding preserving vertex- and edge-
connectivity augmentation problems are NP-hard for k = 2, . . . , 5. They reduce PLA-
NAR3SAT to a decision problem whether a PSLG with m vertices of degree k−1 can be
augmented to a k-edge-connected PSLG with m/2 new edges. The preservation of the
input embedding imposes a severe restriction: for example, a path (as an abstract graph)
can be augmented to a 2-connected graph by adding one new edge—however if a path
is embedded as a zig-zag path with n vertices in convex position, then it takes n − 2
(resp., �n/2�) new edges to augment it to a 2-connected (2-edge-connected) PSLG [1].
If the vertices of a PSLG G are in convex position, then it cannot be augmented to a
3-connected (or 3-edge-connected) PSLG, since any triangulation (which is a maximal
augmentation) on n ≥ 3 vertices in convex position has a vertex of degree 2.

A few combinatorial bounds are known on the maximum number of new edges
needed for the embedding preserving augmentation of PSLGs. It is easy to see that
every PSLG with n ≥ 2 vertices and p connected components can be augmented to a
connected PSLG by adding at most p − 1 ≤ n − 1 new edges. Every connected PSLG

G with n ≥ 3 vertices and b ≥ 2 distinct 2-connected blocks can be augmented to a
2-connected PSLG by adding at most b − 1 ≤ n − 2 new edges [1]. Every connected
PSLG with n ≥ 3 vertices can be augmented to a 2-edge-connected PSLG by adding at
most �(2n − 2)/3� new edges [13]. These bounds are tight in the worst case [1].

Valtr and Tóth [14] recently characterized the PSLGs that can be augmented to a 3-
connected or a 3-edge-connected PSLG, respectively. In particular, a PSLG G = (V, E)
can be augmented to a 3-connected PSLG if and only if V is not in convex position
and E does not contain a chord of the convex hull ch(V ). It can be augmented to
a 3-edge-connected PSLG if and only if V is not in convex position and E does not
contain a chord of the convex hull ch(V ) such that all vertices on one side of the chord
are incident to ch(V ). A PSLG with these properties is called 3-augmentable and 3-
edge-augmentable, respectively. They also showed that every 2-edge-connected 3-edge-
augmentable PSLG can be augmented to a 3-edge-connected PSLG with at most n − 2
new edges, and this bound is the best possible [14].

Results. We show that every 3-edge-augmentable PSLG with n vertices can be aug-
mented to 3-edge-connected PSLG with at most 2n−2 new edges. This bound is the best
possible. Our proof is algorithmic, and the new edges can be computed in O(n log2 n)
time in the real RAM model.

Lower bounds. We present two lower bound constructions. First, consider the empty
graph with n − 1 vertices in convex position, n ≥ 4, and one vertex in the interior of
their convex hull (Fig. 1, left). The only 3-connected or 3-edge-connected augmentation
is a wheel graph with 2n − 2 edges. Second, consider a triangulation with m vertices,
2m − 5 bounded faces and the outer face. Put a singleton vertex in each bounded face,
and 2 singletons behind each edge in the outer face as in Fig. 1, right. The only 3-
edge connected augmentation is obtained by adding 3 new edges for each singleton in a
bounded face, and 5 new edges for a pair of singletons behind each edge. A graph with
n = m + (2m − 5) + 6 = 3m + 1 vertices requires 3(2m − 5) + 5 · 3 = 2n − 2 new
edges.
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Fig. 1. The two lower bound constructions

2 Preliminaries

In the next section (Section 3), we present an algorithm for augmenting a 3-edge-
augmentable PSLG with n vertices to a 3-edge-connected PSLG with at most 2n − 2
new edges. In this section, we introduce some notation for the number of bridges, com-
ponents, reflex vertices, and singletons. They will play a key role in tracking the number
of new edges. We also present a few simple inequalities used for verifying that at most
2n − 2 edges have been added.

A vertex in a PSLG G is reflex if it is the apex of an angle greater than 180◦ in one
of the incident faces of G. For example, a vertex of degree 1 or 2 is always reflex, but
a singleton is not reflex. An edge in a graph G is a bridge if the deletion of the edge
disconnects one of the connected components of G. Similarly a pair of edges in a graph
G is a 2-bridge (or 2-edge-cut) if the deletion of both edges disconnects one of the
connected components of G.

By Euler’s formula, a PSLG with n vertices has at most 2n − 5 bounded faces. We
use a stronger inequality that includes the number of reflex vertices.

Lemma 1 ([12]). Let G be a PSLG with f bounded faces and n vertices, r of which are
reflex. Then we have f + r ≤ 2n − 2.

Applying Lemma 1 for each 2-edge-connected component of a PSLG G, independently,
we can conclude the following.

Corollary 1. Let G be a PSLG with b bridges, c non-singleton components, f bounded
faces, n vertices, r of which are reflex, and s singletons. Then

b + c + f + r + 2s ≤ 2n, (1)

with equality if and only if G is a forest.

Proof. Let G0 be the disjoint union of the 2-edge-connected components of G. Then
G0 has no bridges. Denote by c0, f0, and r0, resp., the number of non-singleton com-
ponents, bounded faces, and reflex vertices in G0. Applying Lemma 1 for each non-
singleton component, and charging 2 for each singleton, we have f0 + r0 + 2s0 ≤
2n− 2c0, or c0 + f0 + r0 + 2s0 ≤ 2n− c0. Whenever we add a new edge between two
components, the number of components (including both singleton and non-singleton
components) decreases by one, and the number of bridges increases by one. If one end-
point of a new edge is a singleton, then the singleton becomes a reflex vertex. Hence
b + c + f + r + 2s remains constant. Therefore, b + c + f + r + 2s ≤ 2n, with equality
if and only if c0 = 0. �	
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After each step of our augmentation algorithm (in Section 3 below), we will derive
an upper bound for the number of newly added edges in terms of b, c, f , r, and s.
Inequality (1) will ensure that altogether at most 2n − 2 edges are added.

k-edge-connected components. Given a graph G = (V, E), two vertices u, v ∈ V are
k-edge-connected if they are connected by at least k edge-disjoint paths. This defines a
binary relation on V , which is an equivalence relation [15]. The equivalence classes are
the k-edge-connected components of G. By Menger’s theorem, G is k-edge-connected
if and only if there are k edge-disjoint paths between any two vertices, that is, if V is
a single k-edge-connected component. For a graph G, let λ(G) denote the number of
3-edge-connected components. For a PSLG G, where the boundary of the outer face is a
simple polygon P , let λh(G) denote the number of 3-edge-connected components that
have at least one vertex incident on P .

Connecting singletons. To raise the edge-connectivity of G to 3, the degree of every
singleton has to increase to at least 3. We can charge at most two new edges to each
singleton (i.e., the term 2s in Inequality (1)). We will charge additional new edges at
singletons to faces and reflex vertices (i.e., the terms f +r+2s in Inequality (1)). Every
vertex of degree 2 is reflex, and we will charge one new edge per reflex vertex to the
term r in Inequality (1), as well. The greatest challenge in designing our augmentation
algorithm is to add r new edges at reflex vertices that serve two purposes: they (i)
connect each reflex vertex to another vertex and (ii) connect a possible nearby singleton
to the rest of the graph.

The following technical lemma is used in the analysis of Algorithm 1 below. A wedge

(or angular domain) ∠(−→a ,
−→
b ), defined by rays −→a and

−→
b emanating from a point o, is

the region swept by the ray rotated about o counterclockwise from position−→a to
−→
b . For

every reflex angular domain ∠(−→a ,
−→
b ), we define the reverse wedge to be ∠(−−→

b ,−−→a ).

Lemma 2. Let Q be a convex polygon, and let −→r 1 and −→r 2 be two rays emanating from
Q. Then Q has a vertex u such that the reverse wedge of the exterior angle of Q at u is
disjoint from both −→r 1 and −→r 2.

3 Augmentation Algorithm

Let G = (V, E) be a 3-edge-augmentable PSLG with n ≥ 4 vertices. We augment G
to a 3-edge-connected PSLG with at most 2n− 2 new edges in seven stages. At the end
of stage i = 1, 2, . . . , 7, the input G has been augmented to a PSLG Gi, where G7 is 3-
edge-connected. In stages 1-4 of the algorithm, we maintain a unique deformable edge
τ(F ) for each bounded face F of the current PSLG. In stage 5, the bounded faces will
be partitioned into convex regions with property (♥) below. In stage 6, each deformable
edge ujvj will be replaced by a path between uj and vj .

(♥) The interior of ch(G3) is decomposed into pairwise disjoint convex re-
gions, C1, C2, . . . , C�. For every j = 1, 2, . . . , �, there is a unique deformable
edge ej whose endpoints lie on the boundary of Cj ; and the only edge of G3
that may intersect the interior of Cj is ej .
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Notation for bridges, components, and vertices along the convex hull. We distin-
guish two types of bridges, edges, singletons, and non-singleton components. In the
input graph G, let bh (resp., gh, rh, and sh) denote the number of bridges (resp., edges,
reflex vertices, and singletons) along the convex hull ch(G). Clearly, we have bh ≤ gh.
Let ch be the number of non-singleton components with at least one vertex incident on
the convex hull. Let bi = b − bh, ci = c − ch, ri = r − rh, and si = s − sh.

Stage 1. Deformable edges for bounded faces. For every bounded face F in G, add a
deformable edge τ(F ) parallel to an arbitrary edge in E adjacent to F . We have created
f deformable edges, each of which is parallel to an existing edge of G.

Stage 2. Convex hull edges. Augment G1 with the edges of the convex hull ch(G) (if
they are not already present in G1). The number of vertices along the convex hull is
rh + sh, and so we have added at most rh + sh − gh new edges.

Lemma 3. At the end of stage 2, we have λh(G2) ≤ ch + sh + gh.

Proof. Since all hull edges are already included in the PSLG G2, the hull vertices are in
one 2-edge-connected component of G2. If any two hull vertices are connected by a path
in the interior of ch(G), then they are also in the same 3-edge-connected component.
Walk around the boundary of ch(G) in counterclockwise orientation, starting from an
arbitrary vertex. We will assume that every vertex along the walk belongs to distinct
3-edge-connected components unless we can show that it is connected by a path in
the interior of ch(G) to a previous vertex along the walk. The walk visits all ch + sh

(singleton or non-singleton) components of the input graph G incident on the convex
hull. There are ch + sh edges along which the walk arrives to a component of G for
the first time, and the walk traverses gh edges of G (staying in the same component
of G). Let z denote the number of remaining hull edges: these are not edges of G and
they lead to a component previously visited by the walk. The convex hull has a total of
ch + sh + gh + z edges. Assume that the walk arrives to component C ⊆ G for the
kth time, k ≥ 2, at some vertex v. Let u denote the last vertex of C visited by the walk.
Then C contains a path from u to v whose edges lie in the interior of ch(G), hence v
and u are 3-edge-connected in G2. Hence, we have λh(G2) ≤ ch + sh + gh. �	
Stage 3. Connecting non-singleton components. For each non-singleton component
of G2 that lies in the interior of ch(G), we add two new edges to connect it to the
component containing the convex hull.

GhH

u

wu

vu

Fig. 2. Connecting a non-
singleton component

Repeat the following procedure while there is a
non-singleton component in the interior of ch(G). Re-
fer to Fig. 2. Let Gh denote the connected compo-
nent that contains the hull edges. Let H be the disjoint
union of all non-singleton components in the interior
of ch(G). Let U denote the set of vertices of ch(H).
Each vertex u ∈ U is a reflex vertex in G2. Shoot a ray
along the bisector of the reflex angle at each u ∈ U ,
until it hits an edge vuwu outside of ch(H). Pick a
vertex u ∈ U for which the distance between u and
the supporting line of vuwu is minimal. Compute the
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shortest (i.e., geodesic) paths path(u, vu) and path(u, wu) with respect to the con-
nected PSLG Gh. Any internal vertex of these paths is closer to the supporting line of
vuwu than u, and so it must be a vertex of Gh. Augment G2 with the edges incident
to u along each of path(u, vu) and path(u, wu). The new edges are not bridges, and
they partition the reflex angle at u into three convex angles. We have used 2ci new
edges. All ci non-singleton components have been connected, and the number of reflex
vertices in the interior of ch(G) has decreased by at least ci. The resulting PSLG G3
has one non-singleton component (which contains all hull edges) and all singletons lie
in bounded faces.

Stage 4. Eliminate bridges in the interior of ch(G). It was shown by Abellanas et
al. [1, Lemma 4] that if G = (V, E) is a connected PSLG with a bridge e ∈ E, then
it can be augmented with one new edge e′ to a PSLG (V, E ∪ {e′}) in which e and e′

are not bridges. In other words, we can decrease the number of bridges by adding one
new edge. We use at most bi new edges to eliminate bridges of G3, which lie inside
ch(G). We obtain a PSLG G4, on which we execute Algorithm 1 during the stage 5.

Algorithm 1
Input: A PSLG G4 = (V, E4) that consists of some singletons and a 2-edge-connected com-
ponent such that the boundary of the outer face is a simple polygon P4; and a function τ that
maps a unique edge τ (F ) to every bounded face F of G4.
Output: G5 = (V, E5).
For every bounded face F in G4, set C(F ) := int(F ). Let R be the set of reflex vertices lying
in the interior of P4. Compute Wu and −→a u with respect to G4 for every vertex u ∈ R. Set
E5 := E4.
while R �= ∅ do

if there is a vertex u ∈ R that sees a non-singleton vertex v in Wu (Fig. 3(b)), then
set E5 := E5 ∪ {uv} and R := R \ {u}. Edge uv splits face Fu into two faces, and it
also splits region C(Fu) into two regions. If v ∈ R and uv splits the reflex angle at v into
two convex angles, then set R := R \ {v}.

else if there is a vertex u ∈ R such that −→a u does not hit edge τ (Fu) (Fig. 3(c)), then
pick a vertex u ∈ R such that eu �= τ (Fu) and the part of face Fu which lies on one
side of −→a u incident on τ (Fu) is minimal. Set v1v2 = eu such that v1 is on the same side
of −→a u as τ (Fu). Compute the shortest path path(u, v2) in F , and denote its vertices by
path(u, v2) = (u = w0, w1, w2, . . . , w� = v2). Set E5 := E5 ∪ {wjwj+1 : 0 ≤ j ≤
� − 1} and R := R \ {wj : 0 ≤ j ≤ � − 1}. The new edges split F into � + 1 faces. The
rays −→a wj , j = 0, 1, . . . , � − 1 (in this order) split region C(Fu) into � + 1 regions. Each
new edge wjwj+1 lies between two bisectors −→a wj and −→a wj+1 , and hence in a unique
new region, which contains a unique new face incident on wjwj+1.

else
for every u ∈ R, ray −→a u hits edge τ (Fu) (Fig. 3(d)). Pick a vertex u ∈ R such that
the distance between u and the supporting line of the edge τ (Fu) is minimal. Let vw =
τ (Fu). Set E5 := (E5 \{τ (Fu)})∪{uv, uw} and R := R\{u}. The removal of τ (Fu)
merges face Fu with an adjacent face, and then the two new edges split it into three faces;
ray −→a u splits region C(Fu) into two regions.

end if
end while
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u
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v2 = w3
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v
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−→a u w1

w2

(a) (b)
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v

τ (Fu)
w

−→a u

(e)

u

v

w

(f)

u

v

u

v1

v2 = w3

τ (Fu)

Fu

Fu

F0

F1

F2
F3

C(F2)

Fu

Fig. 3. (a) A PSLG G4. Deformable edges are marked with dashed lines. Reflex vertices in R are
marked with empty dots. The three rows show three consecutive while loops of Algorithm 1.

Stage 5. Adding new edges at reflex vertices in the interior of ch(G). At the be-
ginning of this stage, we have a PSLG G4 that consists of a 2-edge-connected PSLG

Gh (which contains all hull edges) and some singletons. There are at most ri − ci re-
flex vertices in the interior of ch(G). We modify Gh (by adding some new edges and
“deforming” some of the deformable edges) to a PSLG where every 3-edge-connected
component is incident to the outer face, and increase the number of edges by at most
ri − ci . We also compute a decomposition of the interior of ch(G) into convex regions

with property (♥).
Let R be the set of reflex vertices in the interior of ch(G). For a reflex vertex u, let

Fu denote the unique face adjacent to the reflex angle at u. Let Wu denote the reverse
wedge of the reflex angle at u in G4; let −→a u be the bisector ray of the reflex angle at
u, and let eu be the first edge of the current PSLG hit by −→a . Visibility is defined with
respect to the current (augmented) PSLG, where all edges are opaque: a point p is visible
to point q if the relative interior of segment pq is disjoint from edges of the PSLG.

Algorithm 1 will process the vertices in R, and increase the number of edges by one
for each u ∈ R. In particular, it either adds a new edge uv, or replaces a deformable edge
vw by two new deformable edges vu and uw. That is, at every reflex vertex, we add one
or two new edge(s) that split(s) the reflex angle at u into smaller (but not necessarily
convex) angles. In particular, some of the vertices in R remain reflex after they have
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been processed. Algorithm 1 will maintain a set of bounded faces F and a set of (not
necessarily convex) regions C. Each face F ∈ F corresponds to a region C(F ) ∈ C. All
reflex vertices of a region C(F ) ∈ C are reflex vertices of the corresponding face, and
all unprocessed reflex vertices of a face F ∈ F are reflex vertices of C(F ). It follows
that when all reflex vertices in the interior of ch(G) have been processed, C is a convex
decomposition of the interior of ch(G). Initially, F is the set of all bounded faces in
G4, and C = F .

In the following lemma, we assume that the input of Algorithm 1, G4, has no single-
tons. Note that singletons are not affected during Algorithm 1.

Lemma 4. Let G4 = (V, E4) be a 2-edge-connected PSLG such that the boundary
of the outer face is a simple polygon P4; and let τ map a unique edge τ(F ) to every
bounded face F of G4. Algorithm 1 outputs a PSLG G5 such that the boundary of the
outer face is a simple polygon P5, and every 3-edge-connected component is incident
on P5.

Proof. Consider the output G5 = (V, E5) of Algorithm 1. Note that Algorithm 1 does
not necessarily augment G4 to G5, since it may replace a deformable edge vw = τ(Fu)
by a path (vu, uw). In the course of several steps, an edge vw = τ(Fu) of G4 may
“evolve” into a simple path between v and w. In particular, the number of edges between
two subsets of vertices of V cannot decrease. The boundary of the outer face is modified
during the algorithm if a ray −→a u of a reflex vertex in the interior of P4 hits an edge
τ(Fu) = vw along P4, and the edge vw is replaced by the edges uv and uw. Every
such step maintains the property that the boundary of the outer face is a simple polygon.
Hence the boundary of the outer face in G5 is a simple polygon P5. Moreover, all
vertices of P4 remain on the boundary of the outer face, and so int(P5) ⊆ int(P4).

e′
f ′

H

G4

F1

u

h

F2

Fig. 4. A 2-bridge {e′, f ′} in G5

Next we show that every 3-edge-connected
component of G5 is incident on the outer face.
Assume that there is a 2-bridge {e′, f ′} in G5
such that both e′ and f ′ are inside P5. Denote
the two connected components of G5 − {e′, f ′}
by H and G5−H . We may assume w.l.o.g., that
H lies in the interior of P4 (and G5−H contains
all vertices of P5). Hence H also lies in the in-
terior of P4. Refer to Fig. 4. Since G4 is 2-edge-
connected, there are exactly two edges, say, e
and f , between vertices of H and G4 − H . We
may assume that either e = e′ or e has evolved
to a path that contains e′; and similarly, either f = f ′ or f has evolved to a path that
contains f ′. Since G4 is 2-edge-connected, the minimum vertex degree in both G4 and
G5 is at least 2. Every vertex of degree 2 is reflex. Algorithm 1 increased the degree of
every vertex of degree 2 lying in the interior of P4 to at least 3. It follows that H cannot
be a singleton (which would be incident to e′ and f ′ only), or a single edge (where each
endpoint would be incident to this edge and either e′ or f ′). Therefore, H has at least
three vertices. Hence, at least three vertices of H are incident on the convex hull ch(H).
The vertices on the convex hull of H may be incident to exactly two bounded faces of
G4, say F1 and F2, which are adjacent to both e and f . Algorithm 1 modifies edges e
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or f only if they are the special edges τ(F1) or τ(F2), and the bisectors of all reflex
angles in those faces hit these edges.

By Lemma 2, there is a vertex u on the convex hull Q = ch(H) such that the reverse
wedge of the exterior angle at u does not intersect e or f . Vertex u is reflex in G4, it lies
in the interior of P4, and so it is initially in R. Since the edges of G4 incident on u lie
inside ch(H), the reverse wedge Wu is part of the reverse wedge of ch(H) at u. Hence
−→a u always hits some edge h in G4 − H , with h 
= e, f . It follows that Algorithm 1
does not modify e or f as long as u ∈ R. In the while loop where Algorithm 1 removes
u from R, there are three possible cases: (1) some vertex v in Wu is visible from u and
we add a new edge uv; (2) ray −→a u hits an edge vw 
= τ(Fu) outside of H , and we add
all edges along the geodesic path(u, v); (3) ray −→a u hits an edge vw = τ(Fu) outside
of H , and we add the edges uv and uw. In all three cases, we add new edges between
H and G4 − H . This contradicts the assumption that there are only two edges between
H and G5 − H . We conclude that {e′, f ′} is not a 2-bridge in G5. �	

Lemma 5. At the end of stage 5, we have λ(G5) ≤ ch + gh + s.

Proof. At the end of stage 2, we have λh(G2) ≤ ch + sh + gh by Lemma 3. Stages 3-
4 did not change the convex hull edges, so at the end of stage 4 we have λh(G4) ≤
ch + sh + gh. Since every 3-edge-connected component of G5 is either one of the si

singletons or incident on the outer face P5, we have λ(G5) = λh(G5)+si. It is enough
to show that λh(G5) ≤ λh(G4). Assume that P4 is the boundary of the outer face in
G4. Algorithm 1 may change P4 by replacing an edge vw of P4 by the edges vu and uw
for some reflex vertex u ∈ int(P4). In each such step, a new vertex appears along the
outer face, however this vertex is connected to another vertex of the outer face by a path
that lies in the interior of P5. None of these steps increases the number of components
incident on the outer face, and so we have λh(G5) ≤ λh(G4). �	

Stage 6. Connecting singletons. There are si singletons in the interior of ch(G), which
lie in convex regions Cj ∈ C with property (♥). In each convex region Cj , j =
1, 2, . . . , �, we replace the deformable edge ej = ujvj by a path between uj and vj

that lies entirely in Cj and passes through all singletons in Cj . Let m be the number of
singletons in the interior of Cj . Label them as w1, w2, . . . wm as follows. First label the
singletons on the left of −−→ujvj in the decreasing order of angles ∠(vj , uj , wi); then label
the singletons on the right of −−→ujvj in increasing order of angles ∠(ujvj , wi). Replace
edge ujvj by the simple path (uj , w1, w2, . . . , wm, vj). We obtain a 2-edge-connected
PSLG G6. The number of edges has increased by si . Each of the si singletons of G5
becomes a 3-edge-connected component in G6. Hence the number of 3-edge-connected
components does not change, and we have λ(G6) = λ(G5) ≤ ch + gh + s.

Stage 7. Eliminating 2-bridges. The input PSLG G was 3-edge-augmentable. In stages
1-6, we have not added any chords of ch(G), and so at the beginning of stage 6, we have
a 2-edge-connected 3-edge-augmentable PSLG G6. We to obtain a 3-edge-connected
PSLG G7 with at most λ(G6) − 1 = ch + gh + s − 1 new edges by [14]. This com-
pletes our augmentation algorithm.
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Theorem 1. Every 3-edge-augmentable PSLG G with n ≥ 4 vertices can be aug-
mented to 3-edge-connected PSLG with at most 2n− 2 new edges.

Proof. In stages 1-7, we have added at most bi + c + f + r + 2s − 1 new edges. If G
is not a forest, this is at most 2n − 2 by Corollary 1. If G is a forest and has an edge
(bridge) along ch(G), then bh ≥ 1, and again bi + c + f + r + 2s − 1 ≤ 2n − 2.

Let G be a forest with no edges along the convex hull (i.e., bh = 0). We would like
to show that our augmentation algorithm used fewer than bi + c + f + r + 2s− 1 new
edges. We distinguish four cases.
• Case 1. A non-singleton component of G has two vertices, u and v, along the convex
hull. By adding all hull edges in stage 2, we eliminate the bridges along the path between
u and v, and so we add fewer than bi new edges in stage 4.
• Case 2. Every component of G has at most one vertex along the convex hull, and ci ≥
1. Then in stage 3 we add two new edges to a vertex of each non-singleton component
in the interior of ch(G). The two edges form a circuit with Gh, and so it either decreases
λh(G3) or eliminates a bridge in the interior of ch(G).
• Case 3. Every component of G has at most one vertex along the convex hull, ci = 0,
but G2 has a bridge. Then in stage 4 we add a new edge for each bridge. The first such
new edge creates a circuit, which either contains another bridge of G3 (eliminating at
least two bridges at once), or contains a hull edge, decreasing λh(G3) by at least one.
• Case 4. G consists of n singletons. Then one can augment G to a plane Hamiltonian
circuit (e.g., the Euclidean TSP tour on n vertices), with n new edges. We can augment
the edge-connectivity from 2 to 3 with at most n−2 new edges [14]. In this case, again,
G can be augmented to a 3-edge-connected PSLG with at most 2n − 2 new edges. �	
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Abstract. We introduce a new wider class of polyhedra called upward
(star-shaped) polyhedra, and present a graph-theoretic characterization.
Our proof includes a drawing algorithm which constructs an upward
polyhedron with n vertices in O(n1.5) time. Moreover, we can test
whether a given plane graph is an upward polyhedral graph in linear time.
Our result is the first graph-theoretic characterization of non-convex
polyhedra, which solves an open problem posed by Grünbaum [6], and a
generalization of the Steinitz’ theorem [9].

1 Introduction

There is a rich literature on convex polytopes [4,10]. The most well-known Steinitz’
theorem [9] characterizes a convex 3-polytope as a triconnected planar graph, and
some variations of Steinitz’ theorem are available [10]. Many researchers investi-
gated polytope graphs, i.e., the graphs of polytopes, of convex polytopes [4,6,8].
However, as pointed out by Grünbaum [6], non-convex polyhedra have not been
well studied, in particular, the polyhedral graphs of non-convex polyhedra.

We define “polyhedra” in the three dimensional Euclidean space �3 mostly
according to Grünbaum [5]. A polyhedron is a collection of planar, compact,
simply-connected polygonal regions; the boundary of such a region is called a
simple polygon and the region itself is referred as a face of the polyhedron. A
simple polygon consists of a finite number of line segments of positive length
(the edges of the polygon); the endpoints of the edges are the vertices of the
polygon. Each vertex of a polygon belongs to precisely two edges (said to be
mutually adjacent), and the edges form a simple circuit (Jordan polygon). We
consider nonsingular polyhedra without holes in �3. We assume that each edge
is shared by precisely two faces and that all faces containing a given vertex form
a single circuit of at least three faces. A polyhedron is called acoptic [5] if the
relative interiors of its elements (faces, edges and vertices) are disjoint.

In this paper, we call an acoptic polyhedron a spherical polyhedron if it has no
singular points and no holes, and two faces sharing an edge are non-coplanar (i.e.,
they are in different planes). Spherical polyhedra satisfy Euler’s formula which
gives a combinatorial relationship between the numbers of vertices n, edges m
and faces f : n−m−f = 2. A given set of vertices, edges and faces which satisfies
this formula forms a topological sphere, a combinatorial embedding of a planar

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 913–922, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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graph. We call such a planar graph of a spherical polyhedron P the vertex-edge
graph of P , denoted by G(P ).

In this paper, as the first step for discovering a new class of polyhedra which
admits a graph-theoretic characterization, we introduce a new wider class of
spherical polyhedra, called upward (star-shaped) polyhedra such that (i) each face
is star-shaped, (ii) all the vertices, edges and faces (except the bottom face) are
visible from a view point, and (iii) any two faces sharing two vertices are non-
coplanar. We present a complete graph-theoretic characterization, biconnected
planar graphs with special conditions, by presenting a constructive proof.

2 Planar/Plane Graphs, Splitness and Decomposition

Throughout the paper, a graph stands for a simple undirected graph. Let G =
(V,E) be a graph. The minimum degree of a vertex in G is denoted by δ(G).
A cycle C is k-connected in G if G has a vertex v not in C and k vertices
u1, u2, . . . , uk in C such that G has k internally vertex-disjoint paths Pi, i =
1, 2, . . . , k, each joins v and ui.

A face is characterized by the cycle of G that surrounds the region, called
a facial cycle. A set F of facial cycles in a drawing is called a combinatorial
embedding of a planar graph G. A plane graph G = (V,E, F ) is a planar graph
with a fixed plane embedding F of G, where we always denote the fixed outer
facial cycle in F by fo. A vertex (resp., an edge) in fo is called an outer vertex
(resp., an outer edge), while a vertex (resp., an edge) not in fo is called an inner
vertex (resp., an inner edge). The following lemma states that every facial cycle
of G(P ) of a spherical polyhedron P is triconnected (see [7] for a proof).

Lemma 1. Let G = (V,E, F ) be a biconnected planar graph with fixed embed-
ding. If there is a spherical polyhedron P with G(P ) = G, then each cycle f ∈ F
is triconnected. �	

We say that two faces f and f ′ in a biconnected simple planar graph with a
fixed embedding are adjacent if they share an edge. For a pair {u, v} of vertices,
two faces f and f ′ are joined at {u, v}, if they share the two vertices u and v.
We say that two faces f and f ′ are linearly-joined if they share an edge or at
least three vertices (note that they are not linearly-joined if they share exactly
two vertices but no edge). The following lemma describes a forbidden structure
for a biconnected planar graph G to be realized as spherical polyhedra (see [7]
for a proof).

Lemma 2. Let G = (V,E, F ) be a biconnected planar graph with fixed em-
bedding. If G has a separation pair {u, v} and three edges (u,wi), i = 1, 2, 3,
incident to u such that each edge (u,wi) is shared by a pair of linearly-joined
faces at {u, v}, then there is no spherical polyhedron P with G(P ) = G. �	

Let G = (V,E, F ) be a biconnected simple planar graph with the outer face fo.
The splitness ξ(u, v) of a pair {u, v} of vertices is defined by the number of pairs
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Fig. 1. (a) and (b) show a pair of outer vertices u and v with ξ(u, v) = 1, where
two inner faces f1, f2 and the outer face fo are joined at {u, v}, and f1 and f2 are
linearly-joined at {u, v}; (c) and (d) show a pair of vertices u and v with ξ(u, v) = 2,
where inner faces f1, f2, f3 and f4 are joined at {u, v}, and fi and fi+1 (i = 1, 3) are
linearly-joined at {u, v} (f2 �= f1 �= f4 �= f3 but possibly f2 = f3)

of linearly-joined inner faces joined at {u, v}. We define the splitness ξ(G) of a
plane graph G as the maximum of max{ξ(u, v) + 1 | u and v are outer vertices}
and max{ξ(u, v) | one of u and v is an inner vertex}. See Fig. 1.

We now briefly review the decomposition of a biconnected graph G into tri-
connected components, based on the SPQR tree [2]. Each node ν in the SPQR
tree is associated with a graph σ(ν) = (Vν , Eν) (Vν ⊆ V ), called the skeleton of
ν, which corresponds to a triconnected component of G. In fact, we use a mod-
ified SPQR tree without Q-nodes, called SPR tree. Thus, there are only three
types of nodes in the SPR tree: S-node (the skeleton is a simple cycle), P-node
(the skeleton consists of two vertices with at least 3 edges), and R-node (the
skeleton is a triconnected simple graph). The edges of the SPR tree are defined
by the virtual edges which are introduced by the decomposition process. If two
triconnected components have a virtual edge in common, then the nodes that
represent the two triconnected components in the SPR tree are joined by an
edge that represents the virtual edge. We treat the SPR tree of a graph G as a
rooted tree T by choosing a node ν∗ as its root. For a node ν, let Ch(ν) denote
the set of children of ν. We denote the graph formed from σ(ν) by deleting its
parent virtual edge e′ as σ−(ν) = (Vν , E

−
ν ), (E−ν = Eν −{e′}). Let G−(ν) denote

the subgraph of G which consists of the vertices and real edges in the graphs
σ−(μ) for all descendants μ of ν, including ν itself.

When G is a plane graph, we also treat graphs σ−(ν) and G−(ν) as plane
graphs induced from the embedding of G. A node is called outer if its skeleton
has a face whose vertices are all outer vertices of G. We choose the root of SPR
tree T of G as an outer node. We always choose an outer R-node as the root of
T (note that G is assumed to have at least one outer R-node). A real edge in
the skeleton of a node is called outer (resp., inner) if it is an outer (resp., inner)
edge of G. Then we have the following property (see [7] for a proof).

Lemma 3. Let G be a biconnected planar graph with a fixed embedding, and f
be a face in F . Then the facial cycle f is triconnected if and only if the SPR tree
of G has an R-node ν whose skeleton σ(ν) contains a face f ′ with V (f ′) ⊆ V (f).
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Fig. 2. (a) A biconnected plane graph G which satisfies the necessary condition of
Theorem 1: (b) an upward polyhedron P with G(P ) = G

3 Upward Polyhedral Graphs

Now we present our main theorem, a characterization of upward polyhedral
graphs.

Theorem 1. A plane graph G with an outer face fo is an upward polyhedral
graph (i.e., the vertex-edge graph of an upward polyhedron P with the bottom face
fo) if and only if it is a biconnected plane graph with δ(G) ≥ 3 and ξ(G) ≤ 1,
and the cycle fo is triconnected in G. �	

Fig. 2 shows an example of a plane graph G and a proper upward polyhedron
P with G(P ) = P . Based on Theorem 1, we can test whether a given plane
graph is an upward polyhedral graph in linear time, since the splitness ξ(G) and
triconnectivity of cycle fo can be computed in linear time after constructing the
SPR tree in linear time [2].

Necessity of Theorem 1: Let P be an upward polyhedron. Obviously, G(P )
is simple and satisfies δ(G(P )) ≥ 3. Also G(P ) is biconnected because otherwise
G(P ) would have a face whose boundary is not a simple cycle, contradicting
the assumption on spherical polyhedra. We omit a proof for the reason why
ξ(G(P )) ≤ 1 is necessary (see [7] for a proof).

Lemma 4. The vertex-edge plane graph G(P ) of an upward polyhedron P sat-
isfies ξ(G(P )) ≤ 1. �	

4 Proof for Sufficiency

This section gives a proof sketch of the sufficiency of Theorem 1. We first pre-
pare a building block of the proof. For three points p1, p2, p3 ∈ �3 which are
not collinear, the plane that contains these points is denoted by H(p1, p2, p3).
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Fig. 3. (a) A convex polyhedron P with base face (u, v, v1, v2) and top face (u, v, v4, v3);
(b) a pyramid Δ(a, b, c, d) of type A with base face (a, b, c) and top face (a, b, d); (c)
a convex polyhedron P ′ transformed from P into the interior of pyramid Δ(a, b, c, d)
of (b); (d) the skeleton σ(ν) of an R-node ν; (e) a type A pyramid Y ; (f) a convex
polyhedron Pν that fits into Y

A triangle (p1, p2, p3) is a polygon with three apices p1, p2 and p3. A convex
polygon with exactly four non-coplanar vertices p1, p2, p3, p4 ∈ �3 is called a
pyramid, and is denoted by Δ(p1, p2, p3, p4).

Consider an ordered sequence of four points a, b, c, d ∈ �3. The pyramid Y =
Δ(a, b, c, d) is called of type A, if face (a, b, c) is not visible and face (a, b, d) is
visible (see Fig. 3(b)). We call the faces (a, b, c) and (a, b, d) of a type A pyramid
the base face and the top face, respectively. The pyramid Y = Δ(a, b, c, d) is
called of type B, if both faces (a, b, c) and (a, b, d) are not visible (see Fig. 4(b)).
We call the faces (a, b, c) and (a, b, d) of a type B pyramid the side faces. The
edge (a, b) of a pyramid of a type A or B is called the splicing edge.

Type A Pyramids. Let P be a convex polyhedron, and fb and ft be the two
adjacent faces, where we call fb and ft the base face and the top face of P . Let
e = (u, v) be the edge shared by fb and ft, which we call the base edge, where
we assume that u and v appear consecutively in this order when we traverse the
top face in the clockwise order (see Fig. 3(a)).

We say that a convex polyhedron P with the base face fb, the top face ft and
the base edge e = (u, v) fits into a type A pyramid Y = Δ(a, b, c, d) in �3, if P can
be placed in �3 so that (i) the positions of vertices u and v are equal to a and b,
respectively; (ii) the region fb (resp., ft) is contained in the triangle (a, b, c) (resp.,
(a, b, d)); and (iii) all faces of P except for the base face fb are visible.

We next show that a triconnected planar graph with the base and top faces
can be realized as a convex polyhedron that fits into any type A pyramid in the
following sense (see [7] for a proof).
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Fig. 4. (a) A convex polyhedron P with side faces (u, v, v1, v2) and (u, v, v4, v3); (b)
a pyramid Δ(a, b, c, d) of type B with side faces (a, b, c) and (a, b, d); (c) a convex
polyhedron P ′′ transformed from P into the interior of pyramid Δ(a, b, c, d) of (b); (d)
the skeleton σ(ν) of an R-node ν; (e) a type B pyramid Y ; (f) a convex polyhedron Pν

that fits into Y

Lemma 5. Let G=(V,E, F ) be a triconnected planar graph, and Y =Δ(a, b, c, d)
be a type A pyramid in �3. Then for any two adjacent faces fb and ft in G
designated as the base and the top faces, there is a convex polyhedron P with
G(P ) = G that fits into Y . �	

Type B Pyramids. Let P be a convex polyhedron, and fs1 and fs2 be the two
adjacent faces, where we call fs1 and fs2, the side faces of P . Let e = (u, v) be
the edge shared by fs1 and fs2, which we call the base edge (see Fig. 4(a)).

We say that a convex polyhedron P with the two side faces fs1 and fs2 and
the base edge e = (u, v) fits into a type B pyramid Y = Δ(a, b, c, d) in �3, if P
can be placed in �3 so that (i) the positions of vertices u and v are equal to a and
b, respectively; (ii) the region fs1 (resp., fs2) is contained in the triangle (a, b, c)
(resp., (a, b, d)); and (iii) all faces of P except for the side faces fs1 and fs2 are
visible. We next show that any triconnected planar graph with the side faces can
be realized as a convex polyhedron that fits into a given type B pyramid (see [7]
for a proof).

Lemma 6. Let G=(V,E, F ) be a triconnected planar graph, and Y =Δ(a, b, c, d)
be a type B pyramid in �3. Then for any two adjacent faces fs1 and fs2 in G
designated as the two side faces, there is a convex polyhedron P with G(P ) = G
that fits into Y . �	
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We now present the main idea of our algorithm that constructs a desired upward
polyhedron. Recall that the structure of each R-node in the SPR tree is given
by its skeleton σ(ν), which is a triconnected planar graph and admits a convex
polyhedra Pν with G(Pν) = σ(ν) by Steinitz’ theorem. In fact, our upward
polyhedron P consists of these convex polyhedra Pν with necessary projective
transformations using bounding pyramids.

Our algorithm first chooses an R-node ν∗ whose skeleton contains at least
three outer vertices of G, and designate ν∗ as the root of the SPR tree of G.
We first realize the skeleton σ(ν∗) of the root R-node ν∗ as an upward convex
polyhedron Pν∗ of the R-node as follows. We choose a type A pyramid Y =
(a, b, c, d) on the xy-plane (H(a, b, c) is the xy-plane and d is a point over the
xy-plane). By designating an outer edge e = (u, v) of σ(ν∗) as the base edge,
and the outer face fo(σ(ν∗)) and the face f sharing e as the base and top faces,
respectively, we convert Pν∗ into a convex polyhedron P that fits into Y . By
Lemma 5, the resulting polyhedron P is upward.

Starting with setting P as an upward convex polyhedron Pν∗ for the root
R-node ν∗, the algorithm traverses the rooted SPR tree in a DFS manner, and
computes an “appropriate” convex polyhedron Pν whenever it visits an R-node
ν. The polyhedron Pν will be combined with the current polyhedron P to update
P as a new upward polyhedron. We construct a type A or type B pyramid Y
on a face of P to choose the “appropriate” convex polyhedron for Pν . Then the
convex polyhedron Pν will be attached to the current polyhedron P in such a
way that (i) the bottom face fo(Pν) is completely contained in the region of
some face f of P , and (ii) one edge e of fo(Pν) is completely contained in some
edge of f without generating any other intersection between fo(Pν) and f . This
means that all faces in P are always simple polygons.

Types of nodes in the SPR tree and virtual edges. For a biconnected
plane graph G with δ(G) ≥ 3 and ξ(G) ≤ 1 which has a triconnected outer face
fo, the root of the SPR tree of G is now chosen as an R-node ν∗ whose skeleton
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contains at least three outer vertices of G. For each non-root R-node ν, we treat
the skeletons σ−(ν) and σ(ν) as plane graphs induced from the plane embedding
of G. Note that σ(ν) contains the virtual parent edge of ν, and is triconnected.
For an edge (u, v), we denote the two faces of σ(ν) containing an edge (u, v) by
fuv

ν and fvu
ν , where u and v appear in this order when we traverse the cycle fuv

ν

in the clockwise order (see Figs. 3(d) and 4(d)).
Then a biconnected simple plane graph G with δ(G) ≥ 3 and ξ(G) ≤ 1 is

characterized by the following conditions: (C1) Each outer P-node ν has no
inner S-node child and no inner real edge in its skeleton; (C2) Each non-outer
P-node ν with an S-node child has no other S-node child and no real edge in its
skeleton (ν cannot have an outer S-node or an outer real edge); and (C3) For
each S-node, no two real edges are adjacent in the skeleton σ−(ν).

By condition (C1), for an outer P-node ν, exactly one edge in σ−(ν) corre-
sponds to an outer R-node, an outer S-node or an outer real edge, and the rest
of edges correspond to only R-nodes (note that the virtual parent edge of σ(ν)
may be an outer real edge or corresponds to an outer S-node). We call an outer
P-node ν type R (resp., type S or type E) if all edges in σ−(ν) correspond to
R-nodes (resp., one edge in σ−(ν) corresponds to an outer S-node or an outer
real edge). By condition (C2), a non-outer P-node ν can have at most one of a
non-outer S-node or an inner real edge. We call a non-outer P-node ν type R
(resp., type S or type E) if all edges in σ−(ν) correspond to R-nodes (resp., one
edge in σ−(ν) corresponds to an S-node or a real edge). See Figs. 5 and 6.

We distinguish the following three cases for a virtual edge e in the current
polyhedron P : (i) e is not in the boundary of the bottom face fo(P ), and e is a
convex edge; (ii) e is not in the boundary of fo(P ), and e is a concave edge; and
(iii) e is in the boundary of fo(P ). We always treat an edge e in (iii) as a concave
edge which is created by the side face containing e and the plane H(fo(P )).

Replacing virtual edges. We now describe how to process virtual edges in
the current upward polyhedron P . In the following, we omit the details on the
treatment of visibility of non-bottom faces, and star-shaped faces for simplicity
of algorithm description. We focus on how to add a new polyhedron Pν to the
current polyhedron P without losing the upward property.

Let e = (u, v) be the virtual edge to be processed (i.e., the virtual edge with
the highest priority in the DFS traversal of the SPR tree). The virtual edge
e = (u, v) corresponds to an S-, R-, or P-node. Let f1, f

′
1 be the two faces of

P that share the edge e = (u, v), where we assume that f ′1 denotes the region
obtained from the plane H(fo(P )) by removing the region fo(P ) if e is in the
boundary of fo(P ). Also assume that u and v appear in this order when we
traverse the facial cycle f1 in the clockwise order. Let ν be the child node to
which e corresponds.

We distinguish the three cases: ν is an S-node, R-node, or P-node. Here we
consider the case where e = (u, v) corresponds to an R-node ν, which is the
most essential part in our construction (see [7] for S- and P-node cases). We first
construct a convex polyhedron Pν of the skeleton σ(ν). Note that σ(ν) contains
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Y1, Y2, . . . , Yk for concave edge e

the parent virtual edge e = (u, v), which is not an element of a polyhedron for
the input graph G, and thus we have to eliminate it when we add Pν to the
current polyhedron P . We then have the following two cases.

Case (1). e = (u, v) is a convex edge in P : Let us designate e = (u, v) as the
base edge, and fvu

ν , fuv
ν as the base and top faces of Pν . We then choose a type A

pyramid Y = Δ(a, b, c, d) so that a and b are the endpoints of (u, v) in P , c is a
point in the face f1, and d is a point in the plane H(f ′1) and above the face f1
(note that such d can be chosen so that Δ(a, b, c, d) is type A, since P is upward
and e is convex).

By Lemma 5, we can assume that Pν fits into Y . By definition of fitting poly-
hedra, we see that the polyhedron P modified by adding Pν remains upward,
and the parent virtual edge e temporarily introduced to construct Pν has disap-
peared in the resulting P , since the top face fuv

ν of Pν is contained in the plane
H(f ′1) (see Fig. 3(f)). Note that by choosing a point c outside H(f ′1), we can
realize edge e as an element of the resulting polyhedron, if necessary.

Case (2). e = (u, v) is a concave edge in P (including the case where e is in the
boundary of fo(P )): Let us designate e = (u, v) as the base edge, and fuv

ν , fvu
ν

as the side faces of Pν . We then choose a type B pyramid Y = Δ(a, b, c, d) so
that a and b are the endpoints of (u, v) in P , c is a point in the face f1, and d
is a point in the face f ′1 (note that such c, d can be chosen so that Δ(a, b, c, d) is
type B, since P is upward and e is concave).
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By Lemma 6, we can assume that Pν fits Y . By definition of fitting polyhedra,
we see that the polyhedron P modified by adding Pν remains upward, and the
edge e in Pν is concealed by the two invisible side faces of Pν in the resulting P .

Correctness. The algorithm realizes real edges in R-, S- and P-nodes of the
current polyhedron P , and the set of edges of the final polyhedron consists only
of the real edges of G, i.e., G(P ) = G. By the way of choosing convex polyhedra
Pν that fit into bounding pyramids on the current polyhedron P , all non-bottom
faces of P are always visible. Also, when we place a convex polyhedra Pν , we
keep the convexity of the base edge e, if e was convex in P before adding Pν to
P . We can also easily maintain all the faces as star-shaped as follows.

When we introduce a new face f in the current polyhedron P (i.e., f is a non-
bottom face of Pν), we choose an internal point in the region of f as the view
point rf of f . When the face f is modified by placing the bottom face fo(Pμ) of
a polyhedron Pμ on f (or f is extended with a face ft of a polyhedron Pμ), we
choose the polygonal shape of such face fo(Pμ) (or ft) so that the view point rf

remains as a visible point in the resulting face f . See [7] for details.

Time complexity. We can transform a convex polyhedron with n vertices into
a convex polyhedron that fits into a pyramid Y in O(n) time. Hence our algo-
rithm for constructing an upward polyhedron runs in O(n + T (n)) time, where
T (n) denotes the time complexity of an algorithm for constructing a convex
polyhedron of a triconnected planar graph (the current best runs in O(n1.5)
time [1,3]).
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Abstract. In this article, we study the approximability of satisfiable
Max 3CSP-q for q > 3 be a prime. We give a ( 1

q
+ 1

q2 − 1
q3 ) + ε-hardness

result for approximate Max 3CSP-q even on satisfiable instances, con-
ditioned on Khot’s d-to-1 Conjecture, for any finite constant integer
d < q/2.

1 Introduction

An Max 3CSP-q instance I is specified by a set of variables, which get values
from a fix finite domain (say Zq), and a set of constraints, with each constraint
be a predicate applied to 3 variables. The objective of Max 3CSP-q is to find an
assignment to the variables that satisfies as many constraints as possible. When
q = 2 it is the Boolean Max 3CSPs, which includes Max 3SAT as special case.

It is well-known that for most Max 3CSP-qs it is NP-hard to find the optimal
assignment, a natural question asks the performance of finding an approximation
solution. Over recent years, this question has been answered successfully for
many subcases of 3CSPs. For example, H̊astad [5] and Zwick [15] successfully
specified the approximability of all Boolean Max 3CSP. They showed that the
random assignment can get the best approximation ratio for Max E3-Sat even on
satisfiable instances, H̊astad [5] also gives tight approximability result for Max
E3Lin-q and many other CSPs.

In order to show some hardness results of approximation, Khot introduced
the Unique Game Conjecture, based on this conjecture [6], many natural prob-
lems’ tight hardness of approximation were proved, such as Max Cut [7], Min
Vertex Cover [8] and so on. Moreover, based on Unique Game Conjecture, both
the algorithm of Charikar et al. [3] for Boolean Max kCSP and the algorithm
of Charikar et al. [2] for Unique Games are nearly tight. Recently, Raghavendra
[13] even shows that any Max CSP’s optimal hardness result is equal to the in-
tegrality gap of certain semidefinite programming, conditioned on Unique Game
Conjecture.
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Conjecture 1 (Unique Game Conjecture). [6] For all constant ζ, δ > 0, there
exists a constant k = k(ζ, δ) such that it is NP-hard to determine whether a
unique Label Cover instance with label sets of size k has value at least 1 − ζ or
at most δ.

An interesting question is how much satisfiable promise can help in approxima-
tion algorithm for CSP instances. There are CSP instances do benefit from the
satisfiable promise, for example the Max k-Lin-q instances for any k ≥ 3 and
q ≥ 2, since we can use Gaussian Elimination to get an assignment in polyno-
mial time for satisfiable linear equation systems whereas it hard to approximate
within 1/q + ε even on almost satisfiable Max k-Lin-q instances. There are also
instances that do not benefit, for example Boolean 3SAT, which is still hard to
approximate with in 7/8 + ε on satisfiable instances. For general Max 3CSP-q
instances, it is still an interesting open question.

We remark that all hardness results conditioned on Unique Game Conjecture
make no sense for satisfiable Max CSP instances, since there is a hierarchical
unsatisfiability (1 − ζ for completeness) in Unique Game Conjecture. Until re-
cently, a breakthrough result of O’Donnell and Wu [11] shows that satisfiable
Max 3NTW is hard to approximate within 5/8+ ε, conditioned on Khot’s d-to-1
Conjecture, i.e., Max 3NTW do not benefit from the satisfiable promise. Their
result also solves a long-standing open question which asks the exact approx-
imability of satisfiable Boolean Max 3CSP and the power of PCP system with
3 nonadaptive queries and perfect completeness.

In this paper, we try to extend O’Donnell and Wu’s hardness results [11] to
approximate satisfiable Max 3CSP-q, here q > 3 is a prime. We are able to show

Theorem 1. If Khot’s d-to-1 Conjecture is true for any finite constant integer
q/2 > d ≥ 2, then for any ε > 0 it is NP-hard to approximate Max 3CSP-q
within (1

q + 1
q2 − 1

q3 ) + ε even on satisfiable instances.

When q = 2, it is exactly O’Donnell and Wu’s hardness results [11] for NTW.
Actually our CSP instance is a natural extension of 3NTW to large domain
Zq. We construct a special kind of predicate Γ on 3 variables, which accepting
q2+q−1 input patterns of the total q3, and show it is Approximation Resistant [1]
( actually hierarchical approximation resistant [1]) even on satisfiable instances.
Here by Approximation Resistant we mean it is NP-hard to approximate the
Max 3CSP-q instances defined by predicate Γ better than the performance of
random assignment. So the satisfiable promise does not help in approximating
Max 3CSP-q instances defined by our predicate Γ , to our best knowledge, Γ is
the Predicate on 3 variables with least accepting inputs up to now which satisfies
the above property.

By the standard argument of the relations between Max CSPs and the PCP
verifier systems, we know that conditioned on d-to-1 Conjecture,

PCP1, 1
q + 1

q2− 1
q3 +ε[O(log), 3] = NP
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if the proof of the PCP verifier is encoded with q-bit. Before us, Engebretsen
and Holmerin [4] had shown

PCP1, 1
q + 1

q2 +ε[O(log), 3] = NP

using different kind of accepting Predicate in the PCP system.

2 Preliminaries

In this article q > 3 is a prime, ω is a primitive q’th root of unity. We use the
notations [q] � {0, q, ..., q − 1} ∼= {ωi : i ∈ [q]} and [q]∗ � [q]\{0}, define ST be
the set

{(ωx, ωy, ωz) ∈ [q]3 : x = y = z or x + y + z = 1 mod q}

then |ST | = q2 + q−1. For a ∈ [q]n, let N(a) � {i ∈ [n], ai 
= 0}. For two vectors
a ∈ [q]S , b ∈ [q]T with T ⊆ S, we denote a\b � a|S\T .

2.1 Fourier Analysis and Noise Sensitive Operator

For function f : [q]n → C, let

f =
∑

a∈[q]n
f̂aχa

be the Fourier decomposition of f withχa(x)=ω
∑n

i=1 aixi and f̂a =Ex[f(x)χa(x)].

Definition 1. We say a function f : [q]n → C is q-folded, if f(x + a · 1) =
ωaf(x) for any x ∈ [q]n and a ∈ [q], here 1 = (1, ..., 1). Say a function f respects
exponentiation if f(ax) = f(x)a for any a ∈ [q]∗ and x ∈ [q]n.

It is easy to check that if f is q-folded, then Ex[f(x)] = 0 and f̂a = 0 unless∑
i ai = 1 mod q and if f respects exponentiation, then all f̂a are real values.

Definition 2. For a function f : [q]n → C and 1 ≤ i ≤ n, define the Influence
of i’th coordinate on f as

Infi(f) =
∑

a∈[q]n,ai �=0

|f̂a|2

Similarly for any ∅ 
= S ⊆ [n], define the Influence of S on f as:

InfS(f) =
∑

a∈[q]n,S⊆N(a)

|f̂a|2



926 L. Tang

Definition 3. For 0 < ρ < 1, define the Bonami-Beckner operator Tρ mapping
function f : [q]n → C to function Tρf : [q]n → C as

Tρf =
∑

a∈[q]n
ρ|N(a)|f̂aχa

Lemma 1. For any function f : [qn] → C with |f(x)| ≤ 1 and 0 < γ < 1, we
have ∑

i∈[n]

Infi(T1−γf) ≤ 1
2e ln 1

1−γ

and ∑

S⊆[n],|S|≤d

InfS(T1−γf) ≤ (
d

2γ
)d

2.2 Correlation of Distributed Spaces

We need to extend the definition of correlation for product probability spaces
which is introduced by Mossel [9].

Definition 4. (Ω,Ψ ;μ) is a finite correlated probability space. μ is the proba-
bility distribution on the product set Ω × Ψ with the marginals of μ on Ω and Ψ
have full support. Define the correlation between Ω and Ψ as:

ρ(Ω,Ψ ;μ) = max{|Eμ[f(x)g(y)]|}

with the maximum restricted on f : Ω → C and g : Ψ → C satisfying Eμ[f(x)] =
0, Eμ[g(y)] = 0, Eμ[|f(x)|2] ≤ 1 and Eμ[|g(y)|2] ≤ 1.

Lemma 2. [9] For 1 ≤ i ≤ n, let (Ωi × Ψi, μi) be correlated spaces and Ti be
the corresponding Markov operator associated with Ωi and Ψi. Define

Ω =
∏

i

Ωi, Ψ =
∏

i

Ψi, μ =
∏

i

μi, T =
∏

i

Ti

If ρ(Ωi × Ψi, μi) = ρi, then

ρ(Ω,Ψ ;μ) = max ρ(Ωi, Ψi;μi)

and for all f : Ω → C with Efron-Stein Decomposition f(x) =
∑

S⊆[n] fS(xS),
it holds that

‖ T (fS) ‖2≤
(∏

i∈S

ρi

)
‖ fS ‖2

Lemma 3. [9] Let (Ω×Ψ, μ) be correlated space and let T be the corresponding
Markov operator associated with Ω and Ψ . Let f be Ω measurable function with
E[f ] = 0 and E[|f |2] = 1, then among all g that are Ψ measurable satisfying
E[g] = 0 and E[|g|2] = 1, a maximizer of |E[fg]| is given by

f =
Tg

√
E[|Tg|2]

with |E[fg]| =
√

E[|Tg|2].
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We remark that Mossel proved the above lemmas in the case that the functions
are real-valued, and our functions are complex-valued. However, these results
are still true by a similar way to verify.

2.3 Hypercontractivity Inequality

Definition 5. For 1 ≤ p ≤ q ≤ ∞ and (F, ‖ · ‖) is a separable Banach space
and let X be a random vector with values in F such that E[‖X‖p] < ∞. Then
we say X is (2, q, η)-hypercontractive if

∀v ∈ F ‖v + ηX‖q ≤ ‖v + X‖2

Conditioned on Oleszkiewicz’s result [12], Wolff [14] shows the following

Lemma 4. Let μ be a discrete measure of random variable X, with the mass
of least atom equal to α, then for 2 < p < ∞ such that 1

p−1 ≤ ln 1
α , X is

(2, p, η)-hypercontractive for η ≤ ( β2/p−α2/p

βα2/p−1−αβ2/p−1 )1/2, where β = 1 − α.

We call a collection of finitely many orthonormal complex random variables,
one of which is the constant 1, an orthonormal ensemble. Given a sequence
of independent complex random variables X1, ..., Xn, we can view them as a
sequence of ensembles X = {X1, ...,Xn}, with each Xi = {Xi,0, Xi,1} by setting
Xi = Xi,1 and Xi,0 = 1.

Definition 6. For 1 ≤ p ≤ q ≤ ∞ and 0 < η < 1, we say a sequence of
ensembles X is (p, q, η)-hypercontractive if

‖(TηQ)(X )‖q ≤ ‖Q(X )‖p

for every multi-linear polynomial Q over X .

Proposition 1. [9] Let X and Y be two independent sequences have n1 and n2
ensembles respectively. Assume both X and Y are (p, q, η)-hypercontractive, then
the sequences of ensembles X ∪ Y is also (p, q, η)-hypercontractive.

2.4 The d-to-1 Conjectures

Definition 7. A d-to-1 Label Cover instance L(G,R1, R2, {πe}) consists of a
bi-regular bipartite graph G = (U, V ;E), each edge e associated with a d-to-1
constraint πe, the goal is to find a labeling of the vertices, i.e., functions LU :
U → R1 and LV : V → R2, that maximizes the fraction of satisfied edges. An
edge e = (u, v) is satisfied if πe(L(v)) = (L(u)). The value of L is defined as the
maximum fraction of edges satisfied simultaneously. A d-to-1 constraint π from
R2 to R1 is that for any i ∈ R1, π−1(i) ⊆ R2 satisfies | π−1(i) |≤ d.

The following well-known conjecture is the start of our reduction.

Conjecture 2 ( d-to-1 Conjecture). [6] For any δ > 0, there exists a constant
k = k(δ) such that it is NP-hard to determine whether a d-to-1 Label Cover
instance with label sets of size k has value 1 or at most δ.
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3 The PCP Verifier and Conditional Hardness

In this section, we construct a reduction from d-to-1 Label Cover instance to
Max 3CSP-q instance, then conditioned on d-to-1 Conjecture [6], we show that
for any ε > 0, it’s NP-hard to approximate the Max 3CSP-q problem within
(q2 + q − 1)/q3 + ε on satisfiable instance by the standard argument.

3.1 The Test Distribution

Given a d-to-1 Label Cover instance L(G(U, V ), R1, R2, {πe}), our test needs to
generate (x,y, z) ∈ [q]R1 × [q]R2 × [q]R2 according to some fixed distributions
Tπe and Iπe for each πe. We first define some basic distributions.

Definition 8. For an integer D > 0, define distributions T (D), N (D) and
I(D) generating

(x, y1, ..., yD, z1, ..., zD) ∈ [q] × [q]D × [q]D

such that: T (D) first chooses x, y1, ..., yD independently and uniformly from [q],
then for each i ∈ [D], define zi = 1 − x − yi mod q. N (D) first draws from
T (D), then randomly choose i ∈ [D], let yi = zi = x. I(D) first draws from
T (D), then rerandomize x.

Definition 9. Define the mixed distributions (0 < δ < 1 is a parameter):

Tδ(D) = (1 − δ)T (D) + δN (D) and Iδ(D) = (1 − δ)I(D) + δN (D)

It is easy to find that T (D) and I(D) have the same marginal distributions on
X , Y, Z and on Y × Z.

Definition 10. For a d-to-1 constraint π : [R2] → [R1], we define a related
distribution Tπ as follows: Let X i = [q]{i} and Yi,Zi = [q]π

−1(i) with |π−1(i)| =
di, T i

δ � Tδ(di) on X i × Yi ×Zi and Tπ � ⊗R1
i=1T i

δ which is on

R1∏

i=1

(X i × Yi ×Zi) = [q]R1 × [q]R2 × [q]R2

Similarly, we can define distribution Iπ � ⊗R1
i=1Ii

δ with Ii
δ � Iδ(di).

Lemma 5. If function g : [q]R2 → C is q-folded and satisfies ‖g‖2 ≤ 1, let T be
the Markov Operator between [q]R1 × [q]R2 and [q]R2 under the distribution Tπ

for some d-to-1 constraint π with 2d < q, then there is some constant &0 < 1
which is independent of R1 and R2, such that

‖TgS‖2 ≤ &
|S|
0 ‖gS‖2

where gS =
∑

b∈[q]R2 ,π(N(b))=S ĝbχb.
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Lemma 5 is verified directly. We can not follow the way of [11] since the based
graph of Tδ(D) is not connected any more, however we can use the fact that g
is q-folded to make this work.

We denote the distribution T ∗δ (γ)(D) as first generate (x,y, z) by Tδ(D) then
rerandomizing each bit in y, z independently with probability γ.

Lemma 6. The correlation between [q]R1 and [q]R2 × [q]R2 under T ∗π (γ) �
⊗T ∗δ (γ)(di) is bounded above by &1 = 1 − γ2d

2 for any d-to-1 constraint π.

3.2 The PCP Verifier

Given a d-to-1 Label Cover instance L(G(U, V ;E), R, {πe}), we construct an
instance of Max 3CSP-q, presented as a O(logn)-randomness PCP verifier. As
usual, in our PCP system the given proof is supposed to contain a label for
each vertex, which is of folded q-ary long code form. An Long code function
f : [q]n → {ω0, ..., ωq−1} is defined as f(x) = ωxi for some i ∈ [n]. We may
w.l.o.g. assume the functions given by our proof satisfy the following conditions
(which is always satisfied if the proof gives long code functions): q-folded and
respects exponentiation. The PCP verifier works as follows:

1. Pick an edge e = (u, v) ∈ E at random, let πe be the d-to-1 constraints on
edge e. Let fu, fv be the supposed q-ary Long codes of the labels for u, v
respectively.

2. Generate a triple (x,y, z) from the distribution Tπe on [q]R1 × [q]R2 × [q]R2 .
3. Accept if and only if (fu(x), fv(y), fv(z)) is in ST .

Completeness: The Completeness part is easy and standard.

Soundness: We will show that if the PCP verifier accepts with probability
exceeding (q2 + q − 1)/q3 + ε, then we can find a labeling assignment for the
d-to-1 Label Cover instance that satisfies at least θ fraction of edges, here θ > 0
is independent of the label size R1 and R2.

We define an indictor function P : [q]3 −→ R as P (x, y, z) = 1 if (ωx, ωy, ωz)
is in ST , P (x, y, z) = 0 otherwise. Then

P (x, y, z) =
∑

a∈[q]3
P̂aχa(x, y, z) =

∑

a∈[q]3
P̂aω

a1xωa2yωa3z

with P̂a = Ex,y,z[P (x, y, z)χa(x, y, z)] and |P̂a| ≤ 1 since |P (x, y, z)| ≤ 1 for all
(x, y, z) ∈ [q]3. Now we have

Pr[Verifier accepts] = Eu,vEx,y,z[(fu(x), fv(y), fv(z)) is in ST ]

= Eu,vEx,y,z[
∑

a∈[q]3
P̂afu(x)a1fv(y)a2fv(z)a3 ]

=
q2 + q − 1

q3 + Eu,vEx,y,z[
∑

0 �=a∈[q]3
P̂afu(x)a1fv(y)a2fv(z)a3 ]
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If the PCP verifier accepts with probability at least (q2 + q− 1)/q3 + ε, then for
at least ε/2 fraction of edges (u, v) (call such edges ’good’), we have

Ex,y,z[
∑

0 �=a∈[q]3
P̂afu(x)a1fv(y)a2fv(z)a3 ] ≥ ε/2

Fixed a good edge e = (u, v) with d-to-1 constraint πe, there exists 0 
= a ∈ [q]3

such that

|Ex,y,z[P̂afu(x)a1fv(y)a2fv(z)a3 ]| ≥ ε/2q3

Since |P̂a| ≤ 1, then

|Ex,y,z[fu(x)a1fv(y)a2fv(z)a3 ]| ≥ ε/2q3

Note the above expectation is over (x,y, z) ∈Tπe
[q]R1 × [q]R2 × [q]R2 .

Let δ > 0 be a small enough value (say δ ≤ (ε/6q3)2 ≤ ε/2q3) used in the
definition of distribution Tπ, then Lemma 7 and Lemma 8 imply that a1a2a3 
= 0.
Theorem 2 (since δ ≤ (ε/6q3)2 then 3

√
δ ≤ ε/2q3) implies that there exists some

τ = τ(ε, q, d) > 0, i ∈ [R1] and some a ∈ [q]R2 with N(a) ⊆ π−1
e (i), |N(a)| > 0

such that

min{Infi(T1−γ′/2fu), InfN(a)(T1−γ/2fv)} ≥ τ

for small enough γ = γ((ε, q, d)) and γ′ = γ′(ε, q, d).
For each u ∈ U and v ∈ V , define

Lu = {i ∈ [R1] : Infi(T1−γ′/2fu) ≥ τ}

Lv = ∪S ⊆ [R2] : |S| ≤ d, InfS(T1−γ/2fv) ≥ τ

Then for each ’good’ edge e = (u, v), Lu 
= ∅ and there exists some i ∈ Lu such
that π−1(i) ∩ Lv 
= ∅. Moreover, as ‖ T1−γ′/2fu ‖2

2≤ 1 and ‖ T1−γ/2fv ‖2
2≤ 1,

we have |Lu| ≤ 1
2eτ ln 1

(1−γ′/2)
and |Lv| ≤

d( d
γ )d

τ by Lemma 1. We define a label

assignment for the d-to-1 label cover instance as follows: random choose i ∈ Lu

as assignment of u and random choose i ∈ Lv as assignment of v, edge (u, v) is
satisfied by the assignment with probability at least

|Lu|−1 · |Lu|−1 ≥ (2eτ ln
1

(1 − γ′/2)
× τ

d( d
γ )d

) =
2eτ2γd

dd+1 ln
1

(1 − γ′/2)

Note that there are remarkable fraction of ’good’ edges (at least ε/2), so the
assignment we defined satisfies at least θ = eετ2γd

dd+1 ln 1
(1−γ′/2) fraction of edges in

expectation, which finish our proof by the observation that θ is independent of
R1 and R2.
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3.3 Some Lemmas Used in Soundness Proof

In this section, we present the lemmas we used to prove the soundness of PCP
verifier, we omit their proof for space limit, instead we give some proof sketch
of these lemmas.

We assume f : [q]R1 → C, g : [q]R2 → C respect exponentiation and satisfy
E[f ] = 0, E[g] = 0, |f(x)| ≤ 1 and |g(y)| ≤ 1 for all x ∈ [q]R1 , y ∈ [q]R2 in all
lemmas of this subsection.

Lemma 7. For any nonzero vector (a, b) ∈ [q]2, we have

|ETπe
[f(x)ag(y)b]| ≤ δ

Lemma 8. For any a, b ∈ [q]∗,

|ETπe
[g(y)ag(z)b]| ≤ δ

Theorem 2. For any d, δ > 0 and a, b, c ∈ [q]∗, there exists constant τ, γ de-
pending only on d, δ, q such that the following holds: if for every i ∈ [R1] and
a ∈ [q]R2 with N(a) ⊆ π−1(i) and

∑
j∈π−1(i) aj 
= 0 we have

Min{Infi(T1−γ/2f), InfSa(T1−γ/2g)} ≤ τ

then
|ETπe

[f(x)ag(y)bg(z)c]| ≤ 3
√
δ

Proof (Proof Sketch of Lemma 7, Lemma 8 and Theorem 2). The Proof of
Lemma 7 uses standard Fourier techniques directly. For Lemma 8, we prove
it by induction on R1.

The main idea to prove Theorem 2 is to use Invariance principle argument
to transfer bounding |ETe [f(x)ag(y)bg(z)c]| to bounding |EIe [f(x)ag(y)bg(z)c]|
which is much easier. This line of work includes [10], [9] and [11]. All the tech-
niques we used are similar as [11] for proving their Theorem 6.3. However, since
our functions are C-valued other than R-valued, we need more careful analysis
and more complicated verification, specifically we need to use Lemma 5 instead
of to bound the correlation between X × Y and Z under Te, and we also need
different kind of Hypercontractive argument Lemma 4.

4 Discussion

In this paper, we try to understand the effect of satisfiable promise to approx-
imate Max 3CSP-q. We are able to construct a special kind of Predicate on 3
variables with q2 + q − 1 accepting inputs of the total q3 and show that Max
3CSP-q instances defined by such Predicate is Approximation Resistant even on
satisfiable instances conditioned on d-to-1 Conjecture, which means that satis-
fiable promise does not help in approximating such instances. It is still an in-
teresting open question whether the Predicate we defined is the Predicate with
least accepting inputs which satisfies the above mentioned property. However,
when q = 2, i.e., in the boolean case, it is the case. On the other hands, an better
approximation algorithm for satisfiable Max 3CSP-q would also be interesting.
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The Roles of Advice to One-Tape Linear-Time

Turing Machines and Finite Automata
(Extended Abstract)

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui, 910-8507 Japan

Abstract. Wediscuss the power and limitations of various “advice,”when
it is given particularly to weak computational models of one-tape two-way
linear-time Turing machines and one-way finite (state) automata. Of vari-
ous advice types, we consider deterministically-chosen advice, which is se-
lected depending only on input size, and randomly-chosen advice, which
is chosen according to certain probability distributions. We show that ma-
chines can be significantly enhanced in computational power when advice
is provided; on the contrary, there are clear limitations on such a power.

1 Introduction

How can we enhance the computational power of an underlying machine? An
obvious way is to provide a piece of supplemental information besides original
input information so that the machine takes advantages of such extra knowledge
to solve a given problem more efficiently. A notion of so-called advice in compu-
tational complexity refers to such additional information, given to the machine,
which depends only on the size of the input. Since Karp and Lipton [4] initiated
it in early 1980s, the study of advice has attracted many researchers in various
fields of computer science. To grip a better understanding of the roles of such
advice, we intend to take a rather intuitive but systematic approach toward an
investigation of the strengths and limitations of the advice particularly on weak
models of advised computations.

One-tape two-way one-head Turing machines (or 1TMs, in short) running in
linear time could be one of the most basic types of computational models ever
discussed in computational complexity theory. As were shown in [3,5,6], certain
variants of this machine model are closely tied to one-way finite (state) au-
tomata with no memory space. Advised computations of one-way deterministic
finite automata (or 1dfa’s, in short) were initially studied in [1,6] and deter-
ministic linear-time 1TMs with advice were discussed in [6]. Importantly, it was
shown in [6] that deterministic linear-time 1TMs that take linear-size advice are
no more powerful than 1dfa’s together with advice of size equal to input size.
This characterization makes it easier for us to handle the one-tape linear-time
model. Recently, a series of studies [7,8] revealed an excessive power as well as
an unexpected weakness of advice when it is given to various underlying finite

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 933–942, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1-DLIN/lin

= REG/n

1-BPLIN/Rlin

= REG/Rn
1-C=LIN/lin

1-PLIN/lin

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL 

co-1-C=LIN/lin

CFL/n

proper inclusion

no inclusion

CFL/Rn

Fig. 1. A hierarchy of advised language families

automata. In addition to standard (deterministic) advice, in this paper, we also
study randomized advice (in which each advice string is chosen at random accord-
ing to a certain probability distribution), which allows its underlying machines,
possibly incorporated with the machine’s coin-tossing mechanism, to err. When
the overall error probability is always at most a constant away from 1/2 (less
than 1/2, resp.), we use the term “bounded error” (“unbounded error”, resp.) to
describe that. As we later demonstrate, a piece of such randomized advice gives
a significantly high power to the machines.

Based on the aforementioned model of linear-time 1TMs, we are focused only
on the following language families: 1-DLIN (deterministic), 1-BPLIN (bounded-
error probabilistic), 1-PLIN (unbounded-error probabilistic), and 1-C=LIN
(error probability exactly 1/2). These language families can be viewed as “scaled-
down” versions of the well-known complexity classes, P, BPP, PP, and C=P.
Their advised counterparts are succinctly denoted as 1-DLIN/lin, 1-PLIN/lin,
and 1-C=LIN/lin. When randomized advice is provided, we write their corre-
sponding families as 1-BPLIN/Rlin, 1-PLIN/Rlin, and 1-C=LIN/Rlin.
Similarly, using the finite-automata models, we define REG/n and CFL/n re-
spectively for regular languages with advice and context-free languages with
advice. We further introduce two additional language families with randomized
advice: REG/Rn and CFL/Rn.

In this paper, we shall present new class separations among the above-listed
advised language families. Our results are summarized in Fig. 1. To obtain these
results, we need to develop new characterizations of advised families and further
cultivate their new structural properties, which are interesting on their own light.

2 Basic Notions and Notation

Let N be the set of all nonnegative integers. For any pair m, n ∈ N with m ≤ n,
[m, n]Z denotes the integer interval {m, m + 1, . . . , n}. For simplicity, write [m]
for [1, m]Z. Let R≥0 be the set of all nonnegative real numbers. A function f :
N → R≥0 is said to be negligible if f(n) ≤ 1/p(n) for any non-zero polynomial
p and for all but finitely-many numbers n ∈ N. An alphabet Σ is a nonempty
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finite set and a string over Σ is a series of symbols taken from Σ. Let λ denote
the empty string. The length of a string x, denoted |x|, is the total number of
symbols in x. For any string x over Σ and any symbol σ in Σ, the notation
#σ(x) denotes the number of σ’s in x. A probability ensemble μ over Σ∗ is an
infinite series {μn}n∈N, in which each μn is a probability distribution over Σn.

Our basic model of computation is one-tape (or single-tape) two-way one-
head Turing machines (or 1TMs), each of which can be expressed as a sextuple
(Q, Σ, δ, q0, Qacc, Qrej), where Q is a set of inner states, Σ is an input alphabet,
q0 (∈ Q) is the initial state, δ is a transition function, Qacc (⊆ Q) is a set of
accepting states, and Qrej (⊆ Q) is a set of rejecting states. This machine M
is equipped with one input/work tape, on which an input is initially marked
by two endmarkers |c and $, and a tape head either moves in both directions
or stays still. We say that M runs in linear time if the longest computation
path (even in a case of probabilistic computation) of M on every input x of
length n is bounded from above by a certain linearly-bounded function in n.
In other words, any computation tree corresponding to the input x has hight at
most O(n). (See [6] for a detailed discussion on this so-called strong definition
for running time.) When δ is deterministic (probabilistic, resp.), we succinctly
call M 1DTM (1PTM, resp.). Notice that finite (state) automata are a special
case of these linear-time 1TMs. Let REG, CFL, and DCFL denote, respectively,
the families of regular languages, of context-free languages, and of deterministic
context-free languages.

We say that a 1PTM M has bounded error probability if there exists a constant
ε ∈ [0, 1/2) such that, for every input string x, either ProbM [M(x) = 1] ≥ 1−ε or
ProbM [M(x) = 0] ≥ 1−ε. Let 1-DLIN (1-BPLIN, 1-PLIN, and 1-C=LIN, resp.)
denote the collection of all languages that are recognized by 1DTMs (1PTMs
with bounded error, 1PTMs with unbounded error, and 1PTMs with error prob-
ability exactly 1/2, resp.) in linear time using the strong definition.

To feed a piece of supplemental information besides inputs to 1TMs, we use
a “track” notation of [6]. For two symbols σ ∈ Σ and τ ∈ Γ , the notation
[ σ

τ ] expresses a new symbol made from σ and τ . For a 1TM equipped with an
input/work tape, this symbol [ σ

τ ] is written in a single cell, which consists of
two tracks, whose upper track contains σ and the lower track contains τ . A tape
head of the 1TM scans this symbol [ σ

τ ] at once. For any two strings x and y of
the same length n, where x = x1x2 · · ·xn and y = y1y2 · · · yn, let [ x

y ] denote the
string [ x1

y1
][ x2

y2
] · · · [ xn

yn
] of length n. The track notation can be further extended

to the case where |x| 
= |y|. If |x| < |y| and y = y1y2 with |x| = |y1|, then [ x
y ]

denotes [ x
y1

][ #|x|−|y|
y2

]; if |x| > |y| and x = x1x2 with |y| = |x1|, then [ x
y ] denotes

[ x1
y ][ x2

#|x|−|y| ], where # is a special symbol for “blank.”
For our later use, we give a brief description of one-way probabilistic finite

automata. Here, we assume that all vectors are row vectors. For any matrix
M , MT denotes its transposed matrix. A one-way (rational) probabilistic finite
automaton (or 1pfa, in short) M is a quintuple (Q, Σ, νini, {Mσ}σ∈Σ , F ), where
νini is an initial state vector with rational entries, each Mσ is a |Q|×|Q| stochastic
matrix with rational entries, and F (⊆ Q) is a set of final states. Without loss
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of generality, we can assume that νini has always value 1 in its q0-entry and 0
in all the other entries. The set F induces a vector μF defined as follows: for
each state q ∈ Q, the q-entry of ξF has value 1 if q ∈ F , and 0 otherwise. For
any string x = σ1σ2 · · ·σn in Σn, let Mx denote Mσ1Mσ2 · · ·Mσn . The accepting
(rejecting, resp.) probability of M on the input x is defined as pacc(x) = νiniMxξT

F

(prej(x) = 1 − pacc(x), resp.).

3 Deterministic Computation with Advice

We formally define the notion of advice and describe how to use it on one-
tape Turing machines and finite automata. An advice function h is a function
mapping N to Γ ∗, where Γ is a certain alphabet (which is referred to as an
advice alphabet). The advised language family� 1-DLIN/lin (REG/n, resp.) [6]
is defined as the collection of all languages S over any alphabet Σ such that there
exist an advice alphabet Γ , an advice function h : N → Γ ∗, and a linear-time
1DTM (1dfa, resp.) M satisfying the following two conditions: (i) there are two
constants c, d > 0 such that, for every length n ∈ N, |h(n)| ≤ cn + d (|h(n)| =
n, resp.) and (ii) for every string x ∈ Σ∗, x ∈ S iff M accepts [ x

h(|x|) ]. It is
important to note that this scheme of providing advice strings is computationally
equivalent to Karp-Lipton’s original one [4] if its underlying computation is, for
instance, polynomially time-bounded. Naturally, REG/n contains non-regular
languages (for instance, Leq = {0n1n | n ∈ N}). Surprisingly, these two advised
families coincide.

Lemma 1. [6] 1-DLIN/lin = REG/n.

In a similar fashion, we can define two more advised language families, 1-PLIN/lin
and 1-C=LIN/lin, by expanding the definition of 1-DLIN/lin using 1PTMs in
lieu of 1DTMs. It is shown in [6] that CFL ∩ 1-C=LIN � REG/n. From this
result, since 1-DLIN/lin ⊆ 1-C=LIN/lin, it follows that REG/n is properly
included in 1-C=LIN/lin.

For a further analysis of languages in REG/n, it is useful to find their machine-
independent characterization. In Theorem 1, we give such a characterization,
which naturally yields the so-called swapping lemma for regular languages [7].
For our notational convenience, for any language S, we define S(x) = 1 if x ∈ S;
S(x) = 0 if x 
∈ S.

Theorem 1. For any language S over an alphabet Σ, the following two state-
ments are equivalent. Let Δ = {(x, n) ∈ Σ∗ × N | |x| ≤ n}.
1. S is in REG/n.
2. There exists an equivalence relation ≡S over Δ such that

(a) the total number of equivalence classes in Δ/ ≡S is finite; and
(b) for any number n ∈ N and any two strings x, y ∈ Σ∗ with |x| = |y| ≤ n,

the following relation holds: (x, n) ≡S (y, n) iff, for all z with |xz| = n,
S(xz) = S(yz).

� The “advice” definition of Damm and Holzer [1] for 1dfa’s is quite different from our
current definition. However, these two definitions are equivalent for, e.g., polynomial
time-bounded computations.
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4 Power of Randomized Advice

Our underlying machines so far enable to process a single advice string h(n) per
each input length n. It is also possible to give the machines “randomized” advice
strings, which are produced according to a certain fixed probability distribution.
It turns out that such randomized advice may give an enormous power to the
machine’s language recognition.

In this paper, randomized advice refers to a probability ensemble over advice
strings. Let m, n ∈ N, let x be any input string, and let Dm be any probability
distribution over Γ m, where Γ is an advice alphabet. The notation [ x

Dm
] indicates

a random variable that expresses [ x
y ] over all strings y in Γ m, where [ x

y ] is chosen
randomly with probability Dm(y). In addition, for a machine M , the notation
M([ x

Dm
]) denotes a random variable expressing the outcome M([ x

y ]) of M on
any input [ x

y ] when [ x
y ] is chosen randomly according to Dm.

We write 1-BPLIN/Rlin to denote the collection of all languages L such
that there exist a linear-time 1PTM M , an error bound ε ∈ [0, 1/2), an advice
probability ensemble {Dn}n∈N, and a linearly-bounded function � : N → N
satisfying: for every input x, ProbM,Dm [M([ x

Dm
]) = L(x)] ≥ 1 − ε, where m =

�(|x|). Similarly, we can define 1-C=LIN/Rlin and 1-PLIN/Rlin; however, those
two language families are so powerful that they can recognize all languages. This
can be “roughly” shown for every language A by simply taking the randomized
advice Dn that generates all elements in Σn − A with equal probability.

Proposition 1. The advised language family 1-C=LIN/Rlin (as well as
1-PLIN/Rlin) consists of all languages.

Hereafter, we are focused on the advised language family 1-BPLIN/Rlin. Let
us first present a useful characterization of 1-BPLIN/Rlin using one-way finite
automata. A language A over an alphabet Σ is in REG/Rn if there exist a
1dfa M , a constant ε ∈ [0, 1/2), and an advice probability ensemble {Dn}n∈N

that satisfy the following condition: for any n ∈ N and x ∈ Σn, if x ∈ A
then M accepts [ x

Dn
] with probability ≥ 1 − ε; otherwise, M rejects [ x

Dn
] with

probability ≥ 1− ε. In a similar fashion, we can define another advised language
family CFL/Rn using one-way nondeterministic pushdown automata (instead of
1dfa’s) with randomized advice. Obviously, REG/Rn ⊆ CFL/Rn. With regard
to REG/Rn, we obtain the following lemma, whose proof is in essence similar
to [6, Lemma 6.1].

Lemma 2. 1-BPLIN/Rlin = REG/Rn.

Even for weaker language families, such as REG/Rn and REG/n, randomized
advice becomes more resourceful than deterministic advice. Let us consider the
language Pal = {wwR | w ∈ {0, 1}∗} (even-length palindromes), which is in
DCFL, where wR is w in reverse. It is shown in [7] that Pal is not in REG/n.
Since we can show that Pal belongs to REG/Rn, we therefore obtain the fol-
lowing proposition.

Proposition 2. DCFL ∩ REG/Rn � REG/n.
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It is not difficult to show that Dup = {ww | w ∈ {0, 1}∗} (duplicated strings)
is in REG/Rn. Since Dup 
∈ CFL/n [7], we obtain that REG/Rn � CFL/n.
Moreover, it holds that Dup ∈ 1-C=LIN/lin. Therefore, we conclude:

Proposition 3. REG/Rn ∩ 1-C=LIN/lin � CFL/n.

Notice that Proposition 3 immediately yields another class separation between
CFL/n and CFL/Rn since REG/Rn ⊆ CFL/Rn.

Theorem 2. 1. 1-C=LIN/lin 
= co-1-C=LIN/lin 
= 1-PLIN/lin.
2. REG/Rn � 1-C=LIN/lin ∪ co-1-C=LIN/lin.

To prove the theorem, we need a key lemma, which gives new criteria that
every language in 1-C=LIN/lin must satisfy. In early 1970s, Dieu [2] showed (in
our terminology) that, for any language L in 1-C=LIN, there exists a number
m ∈ N such that, for any u, y, v ∈ Σ∗, if {uyiv | i ∈ [0, m − 1]Z} ⊆ L then
{uyiv | i ∈ N} ⊆ L. Unfortunately, his criteria cannot be extended to our
advised language family 1-C=LIN/lin, mainly because advice strings may differ
for different input sizes. We thus need to seek other criteria for 1-C=LIN/lin.
The next lemma provides such criteria.

Lemma 3. Let A be any language in 1-C=LIN/lin over an alphabet Σ. There
exists a positive integer m that satisfies the following statement. Let n, � ∈ N
and z ∈ Σ∗ satisfy that n ≥ 2, � ≤ n − 1, and |z| = �. Let An,z = {w ∈ Σn−� |
wz ∈ A}. There exists a subset S ⊆ An,z with |S| ≤ m such that, for each string
y ∈ Σ�, if {wy | w ∈ S} ⊆ A then {xy | x ∈ An,z} ⊆ A.

We shall prove Theorem 2 using Lemma 3. The proof of the theorem exemplifies
usefulness of the criteria given in the lemma.

Proof of Theorem 2. (1) We have already proven that Dup ∈ 1-C=LIN/lin.
Next, we show that Dup 
∈ 1-C=LIN/lin. Let A = Dup for simplicity and we
wish to prove that A 
∈ 1-C=LIN/lin. Now, let us assume to the contrary that
A ∈ 1-C=LIN/lin. By Lemma 3, there is a positive integer m that satisfies the
conclusion of the lemma. Choose the minimal even integer n for which 2n/2−1 >
m + 1, and set z = 1n/2. Clearly, we have |An,z| = 2n/2 − 1. The lemma gives
a subset S ⊆ An,z with |S| ≤ m. Take any string y in Σn/2 − S ∪ {z}. Since
wy ∈ A for any w ∈ S, the lemma concludes that yy ∈ A. This is a contradiction
against A = Dup. Thus, we obtain A 
∈ 1-C=LIN/lin.

(2) Since Dup is in REG/Rn and REG/Rn is closed under complementation,
Dup is also in REG/Rn. However, since (1) implies that Dup 
∈ 1-C=LIN/lin, it
follows that REG/Rn � 1-C=LIN/lin. From this, we obtain that co-REG/Rn �
co-1-C=LIN/lin. Therefore, REG/Rn = co-REG/Rn � co-1-C=LIN/lin. �

Let us return to the proof of Lemma 3.

Proof of Lemma 3. Let A ∈ 1-C=LIN/lin be any language over an
alphabet Σ. Similar to Lemma 1, we can show that there exists a 1pfa
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M = (Q, Σ, νini, {Mσ}σ∈Σ , F ) and an advice function h such that, for every
string x ∈ Σ∗, x ∈ A iff ProbM [M([ x

h(|x|) ]) = 1] = 1/2. Recall from Section 2
our assumption on νini and ξF .

We set m = |Q| and choose arbitrarily triplet n, �, and z that satisfy |z| = �.
Note that if � = 0 then the lemma trivially holds. In what follows, we assume
that � > 0. For simplicity, let r = τ1τ2 · · · τn−� and s = τn−�+1τn−�+2 · · · τn if
h(n) = τ1τ2 · · · τn. Consider An,z = {w ∈ Σn−� | wz ∈ A}. Since the lemma is
trivially true when |An,z| ≤ |Q|, now we assume that |An,z| > |Q|.

For notational convenience, we write w̃ = [ w
r ], x̃ = [ x

r ], z̃ = [ z
s ], and ỹ = [ y

s ].
Note that the accepting probability pacc(wz) =def νiniMw̃Mz̃ξ

T
F (note that this

notation suppresses the advice string h(n)) equals 1/2 for all strings wz ∈ A.
Consider the set T = {νiniMw̃ | w ∈ An,z} of vectors. Choose a maximal set S′

of linearly independent vectors in T (those form a set of basis vectors). Clearly,
since νiniMw̃ has dimension |Q|, there are at most |Q| linearly independent
vectors. Thus, we have |S′| ≤ |Q| = m. The desired set S is now defined as
S = {w ∈ An,z | νiniMw̃ ∈ S′}. Note that, for any vector νiniMx̃ in T −S′ can be
written as a linear combination of basis vectors: (*) νiniMx̃ =

∑
w∈S αw ·νiniMw̃,

where {αw}w∈S is a set of certain real numbers. Note that
∑

w∈S αw = 1.
At last, we shall show the desired property of S. Let y be any string in

Σ� and assume that wy ∈ A for all strings w in S. From the above note,
since pacc(wy) = 1/2, we obtain that pacc(xy) =

(∑
w∈S αw · νiniMw̃

)
Mỹξ

T
F =∑

w∈S αw · pacc(wy) = 1
2

∑
w∈S αw = 1

2 . Therefore, it follows that xy ∈ A. This
completes the proof of the lemma. �

Proposition 3 implies that 1-C=LIN/lin � CFL/n. This result can be improved
as follows.

Proposition 4. 1-C=LIN � CFL/n.

Proof. Consider the language Equal6, which consists of all strings w over
the alphabet Σ6 = {a1, a2, . . . , a6, #} such that, for any pair a, a′ ∈ Σ6 − {#},
#a(w) = #a′(w). Note that Equal6 is not in CFL/n [7]; thus, it suffices to show
that Equal6 belongs to 1-C=LIN. For any pair i, j ∈ [1, 6]Z, we write Li,j for
the language {w ∈ Σ∗6 | #ai(w) = #aj (w)}. Note that Equal6 =

⋂6
i=2 L1,i.

Clearly, each language Li,j belongs to 1-C=LIN. Since 1-C=LIN is closed under
intersection [6], we conclude that Equal6 is also in 1-C=LIN. �

Next, we show another class separation between CFL/n and 1-PLIN/lin.

Theorem 3. CFL � 1-PLIN/lin. Thus, CFL/n � 1-PLIN/lin.

This theorem follows from the next lemma, which gives new criteria for languages
in 1-PLIN/lin. This lemma can be compared to Lemma 3.

Lemma 4. Let A ∈ 1-PLIN/lin over an alphabet Σ. There exists a positive
constant m that satisfies the following statement. Let n, � ∈ N be any numbers
with m ≤ |Σ|� and � ≤ n − 1. There exists a set S = {w1, w2, . . . , wm} ⊆ Σ�

with |S| = m for which the following implication holds: for any set T ⊆ Σn−�, if
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|{A(w1y)A(w2y) · · ·A(wmy) | y ∈ T }| ≥ 2m, then it follows that, for any string
x ∈ Σ�, there exists a pair y, y′ ∈ T of strings such that xy ∈ A and xy′ 
∈ A.

From this lemma, Theorem 3 easily follows.

Proof of Theorem 3. Let Σ = {0, 1} for simplicity. Consider the language
IP∗ = {axy | a ∈ {λ, 0, 1}, x, y ∈ Σ∗, |x| = |y|, xR 4 y ≡ 0 (mod 2)}. Since
IP∗ ∈ CFL [8], we need to show that IP∗ 
∈ 1-PLIN/lin.

Let us assume that IP∗ ∈ 1-PLIN/lin. We take a constant m that satisfies
Lemma 4. Choose a sufficiently large even number n and let � = n/2. There
is a subset S = {w1, w2, . . . , wm} ⊆ Σ� with m distinct elements that satisfy
the lemma. To each binary sequence r = (r1, r2, . . . , rm), we assign a string
yr ∈ Σn−� for which wR

i 4 yr ≡ ri (mod 2) for all indices i ∈ [m]. Define
T = {yr | r ∈ Σm} (here, r is seen as a string). Note that |T | = 2m. Since
n is larger than 2m, there is a string x ∈ Σ� satisfying xR 4 yr ≡ 0 (mod 2)
for every r ∈ Σm. For this x, the lemma yields a pair y, y′ ∈ T such that
xy ∈ IP∗ and xy′ 
∈ IP∗. This is a contradiction against the choice of x. Hence,
IP∗ 
∈ 1-PLIN/lin. �

Now, let us present the proof of Lemma 4. This proof relies on an idea, similar
to the early part of the proof of Lemma 3, of translating “A ∈ 1-PLIN/lin” to
the existence of a 1pfa M and an advice function h satisfying the property that
ProbM [M([ x

h(|x|) ]) = A(x)] > 1/2 for every input x. This “translation” is not
difficult to prove.

Proof of Lemma 4. Let A be any language in ∈ 1-PLIN/lin over an alphabet
Σ. For this A, we can take an appropriate 1pfa M and an advice function
h, as described above. To make our argument simple, we make the following
assumption: the success probability of M on any input string never becomes
exactly 1/2. This can be done by an appropriate modification of the given 1pfa
M (see, e.g., [6]). Choose n and � arbitrarily. Similar to the proof of Lemma 3,
we can define a constant m > 0 and a subset S (induced from basis vectors). The
only difference here is that we do not need to take a fixed input string z that leads
M to accept. Now, let S = {w1, w2, . . . , wm} and fix x ∈ Σ� arbitrarily. Using the
same notations as in the proof of Lemma 3, there exist a series {αwi}i∈[1,m]Z of
real numbers such that, for every string y ∈ Σn−�,

∑m
i=1 αwi = 1 and νiniMx̃ =∑m

i=1 αwi(νiniMw̃i), where x̃ = [ x
r ] and w̃i = [ wi

r ].
Next, we let T ⊆ Σn−� and assume that, for any binary series r =

(r1, r2, . . . , rm), there is a string yr ∈ T such that r coincides with the m-
bit string A(w1yr)A(w2yr) · · ·A(wmyr). For each y ∈ Σn−� and each i ∈ [m],
let pacc(wiy) = 1/2 + βi,y (as before, this notation suppresses the advice
string) for a certain real number βi,y ∈ [−1/2, 1/2]− {0}. For such y, we have
pacc(xy) =

∑
i αwipacc(wiy) = 1

2 +
∑

i αwiβi,y = 1
2 +

∑
i(−1)1−A(wiy)|βi,y|αwi .

We define a new series r = (r1, . . . , rm) as follows: let ri = 0 (or equivalently
A(wiyr) = 0) if αwi < 0, and ri = 1 (or A(wiyr) = 1) if αwi ≥ 0. Note that
its corresponding string yr exists by our assumption. Take this yr as our desired
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string y, because
∑

i(−1)1−A(wiy)|βi,y|αwi =
∑

i |βi,y||αwi | > 0, which implies
xy ∈ A. Next, we define r′ as the bitwise negation of r and let y′ be yr′ . Similar to
the previous case, we have

∑
i(−1)1−A(wiy

′)|βi,y′ |αwi =
∑

i(−1)|βi,y′ ||αwi | < 0.
This implies that xy′ 
∈ A. This completes the proof of the lemma. �

5 Limitation of Randomized Advice

The previous section has demonstrated a power of randomized advice; for ex-
ample, we have shown that REG/Rn � CFL/n∪1-C=LIN/lin. To the contrary,
this section shall discuss a limitation of the randomized advice. In particular,
we wish to show that CFL � REG/Rn. This result significantly extends the
previously-known separation CFL � REG/n [7]

Theorem 4. CFL � REG/Rn.

From this theorem, we can deduce that CFL/Rn properly contains REG/Rn
because, otherwise, CFL is included in REG/Rn, contradicting the theorem.

Hereafter, we shall prove Theorem 4. To do so, we borrow an idea from com-
munication complexity theory because our randomized-advice setting is loosely
related to two-party one-way communication with shared randomness. First, we
define a new complexity class Aver-REG/n. The class Aver-REG/n consists of
all distributional problems (A, μ), where A is a language over an alphabet Σ and
μ = {μn}n∈N is a probability ensemble over Σ∗, such that there exist a 1dfa
M , an advice function h, and a constant ε ∈ [0, 1/2) satisfying the following
condition: for every length n ∈ N, Probx∼μn [M

(
[ x

h(n) ]
)

= A(x)] ≥ 1 − ε, where
“x ∼ μn” means that x is chosen randomly according to μn.

Proposition 5. If A ∈ REG/Rn, then (A, μ) ∈ Aver-REG/n for any probabil-
ity ensemble μ.

Recall that our goal is to present a context-free language A that does not belong
to REG/Rn. For this purpose, by Proposition 5, it suffices to show that (A, μ)
does not belong to Aver-REG/n for a certain probability ensemble μ. We present
a simple example of such language, known as REG/n-pseudorandom languages
[8]. Formally, a language L over an alphabet Σ is called REG/n-pseudorandom if,
for every language A ∈ REG/n over Σ, the function �(n) =def

∣
∣
∣ |(A L)∩Σn|

|Σn| − 1
2

∣
∣
∣

is negligible, where A$L = (A − L) ∪ (L − A).

Lemma 5. If A is REG/n-pseudorandom, then (A, μuni) is not in
Aver-REG/n, where μuni = {μuni,n}n∈N is the uniform probability ensem-
ble (i.e., each μuni,n is uniform over Σn).

Proof. We prove a contrapositive. Let (A, μuni) be any distributional
problem in Aver-REG/n with an input alphabet Σ. There exist a 1dfa M , a
constant ε ∈ [0, 1/2), and an advice function h such that, for every n ∈ N,
Probx∼μuni,n [M([ x

h(n) ]) = A(x)] ≥ 1 − ε. For our convenience, we express ε as
1
2 − ε′ with ε′ > 0. Now, let us define B = {x ∈ Σ∗ | M([ x

h(|x|) ]) = 1} and
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consider the symmetric difference B$A. We then obtain Probx∼μuni,n [x ∈
B$A] = Probx∼μuni,n [M([ x

h(n) ]) 
= A(x)] ≤ 1
2 − ε′. From this

bound, it thus follows that �(n) = ||(B$A) ∩ Σn|/|Σn| − 1/2| =∣
∣Probx∼μuni,n [x ∈ B$A] − 1/2

∣
∣ ≥ ε′. This means that A cannot be REG/n-

pseudorandom. �

With Proposition 5 and Lemma 5, it becomes rather an easy task to give the
proof of Theorem 4. Since we already know that there exists a context-free
language that is also REG/n-pseudorandom [8], we thus conclude by Proposition
5 and Lemma 5 that CFL contains a language not in REG/Rn. This proves
Theorem 4.

To close this section, we still need to prove Proposition 5. This follows im-
mediately from a new characterization of REG/Rn. This characterization is an
immediate consequence of Yao’s principle [9] and it is, to some extent, analogous
to a well-known result on one-way communication with public coin.

Lemma 6. Let A be any language over an alphabet Σ. The following two state-
ments are equivalent.
1. A is in REG/Rn.
2. There are a 1dfa M , an alphabet Γ , and a constant ε ∈ [0, 1/2) that satisfy

the following: for every probability ensemble {μn}n∈N over Σ∗, there exists
an advice function h : N → Γ ∗ such that Probx∼μn [M([ x

h(n) ]) = A(x)] ≥ 1−ε
for every length n ∈ N.
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Of Choices, Failures and Asynchrony:
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Abstract. Set agreement is a fundamental problem in distributed com-
puting in which processes collectively choose a small subset of values from
a larger set of proposals. The impossibility of fault-tolerant set agreement
in asynchronous networks is one of the seminal results in distributed
computing. The complexity of set agreement in synchronous networks
has also been a significant research challenge. Real systems, however, are
neither purely synchronous nor purely asynchronous. Rather, they tend
to alternate between periods of synchrony and periods of asynchrony.

In this paper, we analyze the complexity of set agreement in a “par-
tially synchronous” setting, presenting the first (asymptotically) tight
bound on the complexity of set agreement in such systems. We intro-
duce a novel technique for simulating, in fault-prone asynchronous shared
memory, executions of an asynchronous and failure-prone message-
passing system in which some fragments appear synchronous to some
processes. We use this technique to derive a lower bound on the round
complexity of set agreement in a partially synchronous system by a
reduction from asynchronous wait-free set agreement. We also present
an asymptotically matching algorithm that relies on a distributed asyn-
chrony detection mechanism to decide as soon as possible during periods
of synchrony.

By relating environments with differing degrees of synchrony, our sim-
ulation technique is of independent interest. In particular, it allows us to
obtain a new lower bound on the complexity of early deciding k-set agree-
ment complementary to that of [12], and to re-derive the combinatorial
topology lower bound of [13] in an algorithmic way.

1 Introduction

Set agreement was first introduced by Chaudhuri [6] to capture the power of
allowing more choices than consensus [16], where only a single decision value
is permitted. Each process pi begins with an initial value vi; eventually, every
process outputs one of the initial values as a decision. In k-set agreement, the
set of all values output can be of size at most k. When k = 1, set agreement
reduces to consensus. When k = n, the problem is trivial, i.e., processes can act
entirely independently.
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In a collection of seminal papers, Borowsky, Gafni, Herlihy, Saks, Shavit, and
Zaharoglou [14, 17, 5] showed that fault-tolerant asynchronous set agreement is
impossible (while at the same time revealing a deep connection between dis-
tributed computing and algebraic topology). Chaudhuri et al. [7] further devel-
oped these techniques, establishing a tight lower bound on the round complexity
of synchronous set agreement: in a system with t failures, at least �t/k� + 1
rounds are necessary. More recently, Gafni et al. [12] and Guerraoui et al. [13]
considered the feasibility of reaching an early decision: how fast can an algorithm
tolerating up to t failures decide in an execution with at most f < t failures?
They both show, in different ways, that at least �f/k� + 2 rounds are needed.

Set agreement has been extensively studied in both synchronous and asyn-
chronous systems. Real world distributed systems, however, are neither purely
synchronous nor purely asynchronous. Instead, they tend to exhibit periods of
synchrony when the network is well behaved, and periods of asynchrony when
the network is poorly behaved. To describe such a system, Dwork et al. [9] in-
troduced the idea of partial synchrony. They assume for every execution some
(unknown) time GST (global stabilization time), after which the system is syn-
chronous. In this paper, we study the feasibility and complexity of set agreement
in the context of partially synchronous systems, determining the minimum-sized
window of synchrony in which k-set agreement can be solved. Of course, the
lower bounds for synchronous systems [7, 10] imply an immediate lower bound
here of � t

k� + 1 rounds. The question, then, is whether there exists any match-
ing algorithm that terminates in a synchronous window of size � t

k� + 1, or is
there some inherent cost to tolerating asynchrony? Moreover, how does this cost
depend on t and k?

We answer these questions by showing that at least � t
k � + 2 synchronous

rounds are required for k-set agreement, and demonstrating an algorithm that
terminates in any window of synchrony of size at least � t

k�+4 rounds. Together,
these results tightly bound the inherent price of tolerating some asynchrony.

Lower Bound By Reduction. The technique for deriving the lower bound
is an important contribution in end of itself, as it provides new insights into
the complexity of set agreement. Instead of relying on topology, as is typically
required for set agreement lower bounds, we derive our result by reducing the
feasibility of asynchronous set agreement to the problem of solving set agreement
in a window of size � t

k� + 1. Since asynchronous set agreement is known to be
impossible, this reduction immediately implies that at least � t

k�+2 synchronous
rounds are required for k-set agreement.

Early Deciding Synchronous Set Agreement. Our technique turns out
to be of more general interest, as we can re-derive and extend existing lower
bounds for synchronous early deciding set agreement. It has been previously
shown [12,13] that even in an execution with f < t failures, some process cannot
decide prior to round �f/k� + 2.

Using our simulation technique, we re-derive both previous lower bounds in a
simpler and more general manner, in the standard model where t and n are
bounded and known. Of note, both lower bounds are corollaries of a single
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theorem that relates the number of processes which decide early with the worst-
case round complexity of an algorithm. Basically, we show that if d processes
decide by round �f/k� + 1 in executions with at most f failures, then in the
worst-case, some process takes at least time �t/k�+ E(·)+ 1 to decide (where E
is a function of t, k and d). Due to space limitations, we leave the presentation
of these results to the full version of the paper [2].

Upper Bound for Eventually Synchronous Agreement. We then present
the first known algorithm for set agreement that tolerates periods of asynchrony.
Our algorithm guarantees correctness, regardless of asynchrony, and terminates
as soon as there is a window of synchrony of size �t/k� + O(1). For simplicity,
we show synchronous round complexity of �t/k�+4; a tighter analysis in the full
version yields �t/k� + 3 for t ≥ k2. Note that a previous paper [3] presents an
algorithm that exactly matches the lower bound, for the special case of consensus
(k = 1). Thus, closing the one round gap between the two bounds remains an
intriguing challenge.

Two basic ideas underlie our algorithm. First, processes collectively execute
an asynchrony detection sub-protocol that determines whether a round appears
synchronous or asynchronous. A process can decide when it sees �t/k� + O(1)
synchronous rounds. Even so, different sets of processes may have different views
of the actual execution when the decision occurs, since there are only �t/k�+O(1)
rounds to exchange information. Second, each process maintains an estimate, i.e.,
a value that it is leaning toward choosing. In each round, each process adopts
the minimum estimate that it receives. If a process is about to decide, however,
it can elevate the priority of its estimate, causing other processes to adopt its
value instead.

Implications. Several implications arise from our simulation technique and
its usage. First, it provides additional evidence that the impossibility of
fault-tolerant asynchronous k-set agreement is a central result in distributed
computing, as it implies non-trivial results in both partially synchronous and
synchronous models. Second, it highlights close connections between models that
have differing levels of synchrony. In particular, our simulation technique takes
advantage of structural similarities between eventually synchronous set agree-
ment and early deciding set agreement to establish lower bounds in two different
models of synchrony. The uncertainty regarding asynchrony (found in a partially
synchronous execution) turns out to be fundamentally similar to the uncertainty
regarding failures (found in an early deciding execution).

2 Model

In this section, we define three basic models of computation. The partially syn-
chronous model ESn,t consists of n deterministic processes Π = {p1, . . . , pn}, of
which up to t < n may fail by crashing. (Note that the algorithm in Section 4 uses
t < n/2.) The processes communicate via a message-passing network, modeled
much as in [9,8,15]: time is divided into rounds ; however, there is no assumption
that every message broadcast in a round is also delivered in that round. Instead,
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we assume only that if all non-failed processes broadcast a message in round r,
then each process receives at least n − t messages in that round1. We assume
that the network is partially synchronous: there is some round GST after which
every message sent by a non-failed process is delivered in the round in which it
is sent. The synchronous model Sn,t is identical to ESn,t, except that we assume
every process knows, a priori, that GST = 0, i.e., that every message is delivered
in the round that it is sent.

The asynchronous model ASn,k consists of n processes Π , up to k of which
may crash. The processes communicate via single-writer, multi-readers (SWMR)
registers. The memory is organized in arrays X [1..n] of n registers; entry X [i] of
an array can be written only by pi. In addition to read() and write() operations,
a process can also invoke X.snapshot() to read all the contents of X in a logically
instantaneous single operation. Let x and x′ be the result of any two snapshot
operations on X . We assume that the following hold: Containment: x ⊆ x′∨x′ ⊆
x; Self inclusion: Let v be the value written by pi in X [i] prior to invoking
X.snapshot(), with no intervening x.write(·) operations; let x be the result of
the snapshot operation; then x[i] = v. Implementation of snapshot on top of
SWMR registers can be found in [1, 4], and thus they provide no extra power.
k-set agreement is impossible in ASn,k [5, 14, 17].

3 Simulating Synchronous Views: A Lower Bound for
k-Set Agreement

In this section, we present an algorithm for simulating, in the asynchronous
model ASn,k, executions in ESn,t of a k-set agreement algorithm A. The simu-
lation pseudocode is presented in Figure 1. Each process in ASn,k simulates one
process executing A in ESn,t. (We refer to the processes in ASn,k as simulators.)
Each execution e simulated by our algorithm is a valid execution of A in model
ESn,t, and satisfies the following property: at least one process, whose simulator
is correct, observes a window of synchrony of length at least �t/k� + 1. More
precisely, for each simulated execution e, there exists a round R and a process p
such that p cannot distinguish, by the end of round R + �t/k� + 1, execution e
from some execution e′ in which the global stabilization round GST is equal to
R. We say that p has a synchronous view of length �t/k� + 1.

Our simulation relies on the ideas introduced in [10]. The goal in [10] is to
simulate, in ASn,k, executions of the synchronous model Sn,t. The simulation
ensures that (1) whenever a message is not delivered by some process, the sender
is simulated as failed in every following round and, (2) in each round, at most k
new failures occur. The first property guarantees that the simulated execution
is synchronous, while the second property implies that up to �t/k� rounds can
be simulated without exceeding the maximum number of failures t allowed by
the model Sn,t.

1 This can be implemented by delaying a round r+1 message until at least n−t round
r messages have been received.
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We observe that in an execution of �t/k�+ 1 rounds simulated with the tech-
nique described in [10], although more than t processes might have failed in the
simulated execution, at least one process p observes no more than t failures and
still perceives the execution as synchronous. Thus, if we assume a k-set agree-
ment protocol for model ESn,t where every process decides by the end of round
GST + �t/k� + 1, process p must obtain a decision. If its associated simulator
does not fail, the decision can be propagated to every simulator which allows
them to decide. In the other case, we repeat the simulation for another �t/k�+1
rounds, again resulting in a process either deciding or its associated simulator
failing. Eventually, after k + 1 repetitions (which we refer to as “phases”), we
argue that some process decides and does not fail.

3.1 Basic Setup

The simulation depends on three parameters: the algorithm A being simulated,
the number of phases numP , and an array R1, R2, . . . , RnumP+1 where each Ri

is the first round in the ith phase.
For process pi, the algorithm A is described by a function compute(r, rec),

where r is a round number and rec a set of messages received by pi in round r.
The compute function returns a pair (di, mi), where mi is the message to be sent
in the next round, and di is the decision value or ⊥. Without loss of generality,
we assume that each process sends the same message to all other processes.

3.2 Simulating Synchronous Rounds

Each process in ASn,k simulates one process executing A in ESn,t. The simula-
tion begins with a call to propose(vi) (line 5), where vi is pi’s proposal.

The simulation is divided into phases (lines 8–13): in each round of a phase
in which no simulators fail, there is at least one process that sees the phase as a
window of synchrony within a (possibly) asynchronous execution.

Round overview. In order to simulate round r (lines 11–13), process pi

invokes simulate(mi, r) (line 12), where mi is its message for round r, which was
computed previously. The simulate procedure returns pairs 〈j, mj〉, where mj is
the round r message “sent” by pj. The simulator then calls the compute function
(line 13), which returns di, a possible decision, and mi, the next message to send.
If di 
= ⊥, simulator pi writes the decision value di in the shared array DEC
before deciding that value (line 13). Similarly, if a simulator observes that a
value 
= ⊥ has been written in DEC , it decides that value (lines 14–16).

Simulating a round. The simulate function (lines 17–30) carries out the
send/receive step. For round r, simulator pi writes the message mi into the
register VAL[r][i] (line 18), and then performs repeated snapshots of VAL[r]
(line 19) to discover the messages of other simulators. Since k simulators may
fail in ASn,k, the simulator cannot wait for messages from all n simulators. As
soon as pi discovers n− k messages in its snapshot of VAL[r], it continues. The
variable Mi stores the set of up to k processes from which some message was
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Parameters: A, numP , [R1, . . . , RnumP+1 ]1

Shared variables:2

AC[1..RnumP+1][1..n], array of adopt-commit objects3

DEC [1..n], VAL[1..RnumP + 1][1..n], array of SWMR registers.4

procedure propose(vi): start Task T1; start Task T2;5

Task T1:6

( , mi) ← compute(0, vi, true) % messages for the first round7

for ρ = 1 to numP do8

% Begin a new phase:9

Si ← ∅10

for r = Rρ to Rρ+1 − 1 do11

reci ← simulate(mi, r) % Simulate send/receive of round r.12

(di, mi) ← compute(r, reci) % Compute message for next round. if13

di �= ⊥ then DEC [i].write(di); stop T2; return di

Task T2:14

repeat for j = 1 to n do deci[j] ← DEC [i] until (∃� : deci[�] �= ⊥)15

stop T1; return deci[�]16

procedure simulate( mi, r ) % Simulate round r where pi sends message mi.17

reci ← ∅; VAL[r][i].write(mi)18

repeat viewi ← VAL[r].snapshot() until |{j : viewi[j] = ⊥}| ≤ k19

Mi ← {j : viewi[j] = ⊥}20

for j = 1 to n do21

if j ∈ Si ∪ Mi then statei[j] ← AC[r][j].propose(suspect)22

else statei[j] ← AC[r][j].propose(alive)23

if statei[j] = (commit, suspect ) then Si ← Si ∪ {j}24

else if statei[j] = (adopt, suspect ) then Si ← Si ∪ {j};25

reci ← reci ∪ {〈j,VAL[r][j]〉}
else reci ← reci ∪ {〈j, VAL[r][j]〉}26

% Complete view of round r, if necessary:27

if |reci| < n − t then reci ← {〈j, viewi[j]〉 : viewi[j] �= ⊥} ;28

if 〈i, mi〉 /∈ reci then reci ← reci ∪ {〈i, viewi[i]〉} ;29

return reci30

Fig. 1. Simulating A in ASn,k, code for simulator pi

missed. The simulators then need to agree on which messages to deliver in the
simulated round and which messages were missed; if a message is missed from
some process pj , then the simulators collectively “fail” process pj in all future
simulated rounds.

Adopt-commit objects. The simulators use adopt-commit objects (intro-
duced in [10,18]) to coordinate which processes have “failed” in the simulation.
An adopt-commit object AC is invoked via a propose(v) operation, and returns a
decision (dec, v) where dec ∈ {adopt, commit}. The object satisfies the following
properties: 1. Termination: Each invocation by a correct process terminates. 2.
Validity: If a process decides (dec, v) then some process invoked AC .propose(v).



Of Choices, Failures and Asynchrony: The Many Faces of Set Agreement 949

3. Agreement: If a process decides (commit, v), then every decision is (·, v). 4.
Convergence: If every process proposes the same v, then (commit, v) is the only
possible decision. Implementations of adopt-commit objects in ASn,k can be
found in [10, 18]. These implementations also satisfy: 5. Commit Validity: As-
sume pj invokes AC .propose(v); then pj cannot get back (commit, v′) with v 
= v′.

Agreeing on failures. After completing the snapshots, the simulators use the
adopt-commit objects to agree on which processes have failed. Simulator pi stores
in Si a set of suspected processes, and it resets Si to ∅ at the beginning of each
phase. Throughout the phase, processes are added to Si based on the output
of the adopt-commit objects. If a process pi misses a message from a process
pj in round r (i.e., if pj ∈ Mi), or if process pi suspects pj (i.e., if pj ∈ Si),
then its simulator proposes suspecting pj using AC [r][j] (line 22). Otherwise,
the simulator proposes that pj is alive (line 23).

There are three possible decisions. First, (commit, suspect) (line 24): in this
case, the simulation fails process pj in round r. By agreement, we know that
every simulator either adopts or commits to suspecting pj, and so process i adds
pj to Si. Second, (adopt, suspect) (line 25): in this case, we cannot determine
whether pj is failed or not in round r; even so, to be safe, simulator pi adds pj to
Si. We know, however, by validity that some process proposed pj as alive, and
so we know that VAL[r][j] contains the message from pj , which we add to the
set reci of messages to deliver. Finally (·, alive) (line 26): as in the second case,
we add the message from VAL[r][j] to reci. Notice that if any simulator commits
to failing pj , then every other simulator will either adopt or commit to failing
pj and add pj to Si. By convergence, in the following round, every simulator
commits to failing pj. By using the adopt-commit objects in this way, we ensure
that simulated views remain synchronous.

The end of the phase. This approach results in simulating up to k new
failures in each round. Eventually, the number of simulated failures may surpass
t, the bound on failures in ESn,t. Consequently, for some processes, the set of
messages reci may no longer contain an appropriate set of messages to deliver.
In that case, simulator pi augments the set reci to ensure that it contains enough
messages (|reci| ≥ n− t, line 28) and that it contains the round r message of pi

(line 29).
Therefore, not all processes may maintain a synchronous view. However, we

can show that if the length of the phase is at most �t/k�+1 rounds, at least one
process is able to maintain its synchronous view through the end of a phase.

3.3 Lower Bound on Set Agreement in ESn,t

We now show how to use the simulation technique to prove a lower bound on
set agreement in ESn,t. We begin, for the sake of contradiction, by assuming
that algorithm A solves k-set agreement in ESn,t in any window of synchrony
of size �t/k�+ 1. The simulation uses k + 1 phases, each of length �t/k�+ 1, i.e.,
Rρ = (ρ − 1)(�t/k� + 1) + 1. We show that the resulting simulation of A solves
k-set agreement in ASn,k, which is known to be impossible, implying that no
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such algorithm A exists. This implies that any k-set agreement protocol requires
at least �t/k�+ 2 synchronous rounds to decide.

First, we list some of the properties of the simulation, whose proofs can be
found in the full version of the paper [2]: (P1) the simulated execution of A is a
valid execution of A in ESn,t; (P2) each phase ρ appears synchronous: if a process
sees f ≤ t failures by the end of round r, then it perceives the first r rounds
of phase ρ as synchronous; (P3) there are at most t simulated failures at the
beginning of the last simulated round in phase ρ; (P4) some simulated process
sees no new failures in the last round. Since each phase is of length �t/k� + 1,
and since A guarantees a decision in a window of synchrony of size �t/k�+ 1, it
follows from properties (P1)–(P4) that by the end of phase ρ, a process either
decides, having seen the entire phase as synchronous, or its associated simulator
fails.

Lemma 1. For every phase ρ, if no process decides and writes its decision to
DEC prior to the end of phase ρ, then at least one process that begins phase ρ
fails before beginning phase ρ + 1.

We conclude that our simulation of algorithm A solves k-set agreement in ASn,k.
Agreement follows from the fact that our simulation is a valid simulation of A in
ESn,t, and termination follows from the fact that if there is no decision, then at
least one simulator fails in every phase; since there are only k possible failures
in ASn,k, by the end of phase k + 1, some process must decide.

Lemma 2. The algorithm in Figure 1 simulating A solves k-set-agreement in
ASn,k.

Since k-set agreement is impossible in ASn,k, we conclude:

Theorem 1. There is no algorithm A for ESn,t that decides by round GST +
�t/k�+ 1, i.e., within a window of synchrony of size �t/k� + 1.

4 k-Set Agreement Algorithm for ESn,t

We present an algorithm named K4 which solves k-set agreement in a window
of synchrony of size �t/k� + 4. The algorithms requires a majority of correct
processes, i.e., t < n/2. The pseudocode can be found in Figure 2. The proof of
correctness for the protocol can be found in the full version of this paper [2].

4.1 Description

K4 is a round-based full-information protocol. Each process maintains a local
estimate est i, representing its preferred decision, and sets Activei and Failed i,
which denote the processes that pi believes to be alive and failed (respectively).
In every round, each process broadcasts its entire state (line 5), and receives all
the messages for the current round (line 6), updating its view of which processes
have failed and which rounds are synchronous (lines 7–10). A process decides if it
receives a message from another process that has already decided (lines 11–12),
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procedure propose(vi)i1

esti ← vi; ri ← 1; msgSeti ← ∅; sF lagi ← false2

Active i ← [ ]; Failed i ← [ ]; AsynchRoundi ← [ ]3

while true do4

send( esti, ri, sF lagi, Activei, Failed i, AsynchRoundi, decidei ) to all5

wait until received at least (n − t) messages for round ri6

msgSeti[ri] ← messages that pi receives in round ri7

Activei[ri] ← processes from which pi gets messages in round ri8

Failed i[ri] ← Π \ Active i[ri]9

updateSynchDetector() % Update the state of pi.10

if ( ∃msgp ∈ msgSet i with msgp.decidedp = true ) then11

decidei ← true; esti ← msgp.estp12

if (sCount i = �t/k� + 4) then decidei ← true13

if (decidedi = false) then14

flagProcsi ← { p ∈ Activei[ri] | sF lagp = true }15

if flagProcsi �= ∅ then esti ← minq∈flagProcsi(estq)16

else esti ← minq∈Activei[ri](estq)17

ri ← ri + 118

procedure updateSynchDetector()19

for every msgj ∈ msgSet i[ri] do20

for round r from 1 to ri − 1 do21

Active i[r] ← msgj .Activej [r] ∪ Activei[r]22

Failed i[r] ← msgj .Failed j [r] ∪ Failed i[r]23

for round r from 1 to ri − 1 do24

AsynchRoundi[r] ← false25

for round k from r + 1 to ri do : if (Active i[k] ∩ Failed i[r] �= ∅) then26

AsynchRoundi[r] ← true
sF lagi ← false27

sCounti ← max�(∀r′ ∈ [ri − �, ri], AsynchRoundi[r
′] = false)28

if sCounti = �t/k� + 3 then sF lagi ← true29

Fig. 2. The K4 algorithm, at process pi

or if it sees �t/k�+ 4 consecutive synchronous rounds (line 13). If no decision is
reached, then the estimate est i is updated in lines 15–17. There are two key com-
ponents to K4: accurately determining whether rounds are synchronous (which
is critical for ensuring liveness), and updating the estimate (which is critical for
ensuring agreement).

Detecting Asynchrony. updateSynchDetector() merges information into the
Active and Failed sets; if a process believes that p� was active in round r, then
p� is added to Active[r]; if it believes that p� was failed during round r, then
p� is added to Failed [r] (see lines 20–23). It then determines based on Active[r]
and Failed [r] sets whether round r seems synchronous (lines 24-26). A round r
is deemed asynchronous if some process p� is believed to have failed in round
r (i.e., p� ∈ Failed [r]), and yet is also believed to be alive at some later round
k > r (i.e., p� ∈ Active[k]). Finally, process pi sets a flag sF lag to true if it sees
the previous �t/k� + 3 rounds as synchronous (line 29).
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Updating the estimate. Each process updates the estimate in every round.
Estimates have two levels of priority: if a process has seen �t/k�+3 synchronous
rounds, i.e., if it is “ready to decide,” then its estimate has high priority; other
estimates are awarded normal priority. A process adopts the minimum prioritized
estimate, if one exists (line 16); otherwise, it adopts the minimum estimate
received in the current round (line 17).

5 Conclusion

We have presented a new technique for simulating synchronous and partially
synchronous executions in asynchronous shared memory. Our technique allows
us to characterize the complexity of set agreement in partially synchronous sys-
tems, as well as to refine earlier lower bounds for early-deciding synchronous set
agreement. One direction of future work is to extend our lower bound results
to other tasks by encapsulating the Extended BG simulation [11]. On the algo-
rithmic side, the solvability of set agreement in partially synchronous systems
without a majority of correct processes remains an open question.
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Abstract. Demaine et. al. [1] have introduced a model for staged as-
sembly for constructing self-assembled shapes as an extension to the
multiple tile model [2]. In their model the assembly proceeds in several
bins and several stages with different sets of tiles and supertiles applied
on each bin and in each stage. Taking advantage of all these features they
showed that a constant number of tile types is sufficient to self-assemble
any given shape.

In this paper, we consider a simplified model of staged assembly, called
the step assembly model, in which we only have one bin in each step and
assembly happens by attaching tiles one by one to the growing structure
as in the standard assembly model. We show that in this simplified model
a constant number of tile types (24) is sufficient to assemble a large
class of shapes. This class includes all shapes obtained from any shape
by scaling by a factor of 2. For general shapes, we note that the tile
complexity of this model has connections to the monotone connected
node search number of a spanning tree of the shape.

1 Introduction

Self-assembly is the process by which simple parts autonomously assemble into
larger, more complex objects. Self-assembly occurs in nature, for example, when
atoms combine to form molecules, and molecules combine to form crystals. It has
been suggested that intricate self-assembly schemes will ultimately be useful for
circuit fabrication, nano-robotics, DNA computing, and amorphous computing
[3–6]. Current research focuses on self-assembling sieves to remove viruses from
serum, and nanomanufacturing drug-delivery and medical-imaging devices [1].

The standard model to study the process of self-assembly is the Tile Assembly
Model proposed by [7] which considers the assembly of square blocks called
“tiles” and a set of glues called “binding domains”. Each of the four sides of a
tile can have a glue on it that determines interactions with neighbouring tiles. It
is assumed that there is an infinite supply of tiles of each tile type. The process
of self-assembly is initiated by a single seed tile and proceeds by attaching tiles
one by one. A tile can only bind to the growing complex if it binds strongly
enough, as determined by the temperature τ .

Branched DNA molecules [8] provide a direct physical motivation for this
model. DNA double-crossover molecules, each bearing four “sticky ends”
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analogous to the four sides of a tile, have been designed to self-assemble into a
periodic two dimensional lattice [9–12]. The binding interactions between double-
crossover molecules may be redesigned by changing the base sequence of their
sticky ends, thus allowing arbitrary sets of tiles to be investigated in the labo-
ratory. Tiles can also be implemented using protein-based designs, where unit-
length nanorods (made of proteins) are joined at right angles at their midpoints
to form a plus sign [1]. Protein nanorod structures are, unlike DNA based as-
semblies, very rigid. It is believed that this rigidity will allow them to be used
for the nanomanufacture of macroscale objects.

In this paper we introduce a modification to the standard model of self-
assembly which, instead of having a single set of tiles, allows for several sets
of tiles. We immerse a seed tile into one of the sets, “filter out” the assembled
shape from this set and place this assembled shape into a different set of tiles
where it now acts as a seed and assembly continues. We do not restrict the num-
ber of times a shape can be filtered out and placed in a new set of tiles, nor
do we restrict the number of different sets of tiles. Using this model, we give
an upper bound on the number of tile types required to uniquely assemble an
arbitrary shape. We note that this bound is related to the monotone connected
node search number (cf. [13]) of the underlying spanning tree. Lastly, we exhibit
a large class of shapes that have constant tile complexity (24 tile types suffice).
This class includes all shapes scaled by a factor of 2. We also show that for these
scaled shapes (by a factor of 2), 14 tile types suffice.

A similar model, called the staged assembly model, has been proposed in [1].
The key differences between our step assembly model and this model are that
in our model growth occurs by addition of single tiles to the seed configuration
similarly as in the standard assembly model, while in the stage assembly model
two assemblies are allowed to attach to form a larger assembly. Moreover, our
model uses only one bin, while the staged assembly model uses multiples bins at
each stage for later mixing of assembled supertiles (assemblies). In [1], a bound
of at most 16 tile types for uniquely assembling an arbitrary shape, if we do not
require a bond between every two adjacent tiles is given. If scaling by a factor of
two is allowed, then the authors show that any arbitrary shape can be assembled
using at most 8 binding domains (and hence a constant number of tile types),
and this construction ensures that there is a bond between every two adjacent
tiles (a full shape is assembled).

The reader may be also interested in other models of self-assembly, for in-
stance, flexible glue model, unique shape model, multiple temperature model,
multiple tile model [2].

2 Description of the Step Tile Assembly Model

We will consider the square lattice, i.e., the graph with vertex set Z×Z and edge
set {(u, v) : |u, v| = 1}. The directions D = {N,E, S,W} are used to indicate
the natural directions in the lattice. Formally, they are functions from Z × Z
to Z × Z: N(x, y) = (x, y + 1), E(x, y) = (x + 1, y), S(x, y) = (x, y − 1), and
W (x, y) = (x− 1, y). Note that E−1 = W and N−1 = S.
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A tile t is a square represented by a 4-tuple (tN , tE , tS , tW ) ∈ Σ4 indicating
the binding domains on the north, east, south, and west side, respectively. We
will use null to indicate the lack of a binding domain, and will assume null ∈ Σ.
The special tile empty = (null, null, null, null) represents an empty space when
placed onto the grid. A configuration on a set of tiles T is a map C : Z×Z → T .
We define the vertex set of configuration C as V (C) = {(x, y) : C(x, y) 
=
empty}. A configuration C is finite if V (C) is finite. We will refer to C(x, y) as
the tile at the vertex (x, y) in C. Given a configuration C and a set of vertices
V ⊆ Z×Z, a sub-configuration of C induced by V is the map C[V ] : Z×Z → T
such that C[V ](x, y) = C(x, y) for all (x, y) ∈ V , and C[V ](x, y) = empty,
otherwise. If G is any subgraph of the lattice graph, then we sometimes abuse
the notation of C[V (G)] to simply C[G]. Given two configurations C and D, we
define their union to be the following map from Z × Z to T ∪ {∞}:

(C ∪D)(x, y) =

⎧
⎪⎨

⎪⎩

C(x, y) if D(x, y) = empty or C(x, y) = D(x, y),
D(x, y) if C(x, y) = empty or C(x, y) = D(x, y),
∞ otherwise.

Note that C ∪ D is a configuration whenever it is a map to T . Equivalently,
C ∪ D is not a configuration if there exists (x, y) ∈ V (C) ∩ V (D) such that
C(x, y) 
= D(x, y).

A strength function g : Σ × Σ → N = {0, 1, 2, ...} measures the interaction
strength between binding domains. We denote by sΣ the strength function sat-
isfying sΣ(σ, σ′) = 1, if σ = σ′ 
= null, and sΣ(σ, σ′) = 0 otherwise. We call sΣ a
simple strength function. In this paper we restrict ourselves to simple strength
functions.

Given a tile t, a configuration C, and a direction d, we denote the interaction
strength in configuration C between tile t at position (x, y) and its respective
neighbouring tile by gC

d (t, x, y) = g(td, C(d(x, y))d−1). Note that we do not re-
quire that C(x, y) = t. In particular, if C(x, y) 
= t, then gC

d (t, x, y), d ∈ D tells
us how t would bind if it were in C. Given (x, y) ∈ Z×Z and d ∈ D, we say that
there is a bond between positions (x, y) and d(x, y) in C if gC

d (C(x, y), x, y) = 1,
i.e. the binding domain on the abutting sides of the two tiles is the same.

Under the Tile Assembly Model a tile system is a 5-tuple T = (Σ, T, φ, g, τ),
where T is a finite set of tiles with binding domains from Σ and contains the tile
empty, φ is a set of configurations on T called seed configurations, g is a strength
function, and τ is a threshold parameter called temperature. We will be working
with seed configurations consisting of a single tile; formally a configuration Ct,
where t ∈ T , satisfying Ct(0, 0) = t, and Ct(x, y) = empty for all (x, y) ∈
Z×Z\{(0, 0)}. To distinguish these tile systems from step tile systems which we
will define shortly, we will sometimes refer to the above tile systems as simple
tile systems.

Self-assembly is now defined as a relation between configurations on T . Let
C and D be two configurations of T , such that C = D except at position (x, y),
where C(x, y) = empty, and D(x, y) = t, for some t ∈ T \{empty}. Then we
write C →T D, if

∑
d∈D gC

d (t, x, y) ≥ τ . For simple strength functions and
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τ = 1, which are considered in this paper, C →T D if and only if there exists
d ∈ D such that gC

d (t, x, y) = 1. The relation →+
T is the transitive closure of →T.

A tile system T and the relation →+
T define the partially ordered set of

configurations called assemblies of T: Asmb(T) = {A : S →+
T A, where S ∈

φ}, and the set of terminal assemblies of T: Term(T) = {A ∈ Asmb(T) :
�B such that A →+

T B}. A tile system uniquely produces A if Term(T) = {A}.
A step tile system is a 5-tuple Tstep = (Σ, {Ti}k

i=1, {Ct}, g, {τi}k
i=1), where

{Ti}k
i=1 is a sequence of finite sets of tiles (each set including the tile empty), Ct

is the initial seed configuration (consisting of the single tile t), g is a strength
function, and {τi}k

i=1 is a sequence of temperatures. We define the (simple) tile
system at step 1 as T1 = (Σ, T1, {Ct}, g, τ1) and the (simple) tile system at step
i as Ti = (Σ, Ti, T erm(Ti−1), g, τi) for 2 ≤ i ≤ k. This allows us to view step
tile systems as a sequence of simple tile systems.

We define the set of terminal assemblies of Tstep as Term(Tstep)=Term(Tk).
Given a configuration A, we say that the step tile system Tstep uniquely produces
A, if Term(Tstep) = {A}. We are interested in the number of tile types used in
a tile system and define the tile complexity of Tstep as |

⋃k
i=1 Ti| − 1 (where we

are subtracting 1 to exclude the empty tile).

3 Tile Complexity of Step-Assembled Shapes

A shape S is a connected induced subgraph of the lattice. We say a configuration
A has shape S, if V (A) = V (S). We say a tile system uniquely produces shape
S, if the the terminal assembly of the tile system is unique and has shape S.

A caterpillar K is a graph consisting of a single path, called the spine, and
additional vertices attached to the internal vertices of the spine by single edges,
called hairs. We refer to these vertices as hairtips. Given a tree F , a caterpillar K
with spine P and set of hairtips L is a natural for F if it is a subgraph of F and
all vertices in L are leaves in F . If it will be clear which tree F we mean, we will
omit the reference to F and simply say, K is a natural caterpillar. Moreover, K is
maximal if it is natural and there is no natural caterpillar properly containing K.
If v is an endpoint of the spine P of the caterpillar K, we say that K is anchored
at v. Moreover, K is maximal anchored at v, if K is a natural caterpillar anchored
at v and it is not properly contained in any natural caterpillar anchored at v.

Given a tree F , the sequence of sets of caterpillars {Li}δ
i=1 forms a level

decomposition DF of F if it satisfies all of the following:

(LD1) All caterpillars in
⋃δ

i=1 Li are edge disjoint, and cover all edges of F .
(LD2) L1 consists of a single maximal caterpillar of F .
(LD3) For every 2 ≤ i ≤ δ, caterpillars in Li are vertex disjoint.
(LD4) For every 2 ≤ i ≤ δ, every caterpillar K in Li is a maximal caterpillar

anchored at a vertex v on the spine of some caterpillar in Li−1. We call
v the anchor of K.

Note that the anchor of K is either an internal vertex of the spine of a cater-
pillar K ′ or the anchor of K ′, where K ′ ∈ Li−1. A vertex v has level i in DF ,
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if i is the smallest index such that v is a vertex of a caterpillar in Li. The
depth of a level decomposition DF = {Li}δ

i=1 is δ. The level-depth of a tree F ,
LD-depth(F ), is the smallest δ such that F has a level decomposition of depth
δ1. The level-depth of a shape S, LD-depth(S), is the minimum level-depth of
all spanning trees of S.

A vertex v is a single anchor (double anchor) if it is an anchor for exactly
one (two) caterpillar(s) in DF . Note that if F is a spanning tree of a shape S,
then v cannot be an anchor for more than two caterpillars, since degF (v) ≤ 4,
and every anchor is an internal vertex of the spine of some caterpillar. Note that
since for every 1 < i ≤ δ caterpillars of Li are vertex disjoint, any vertex v of
level j that is a double anchor is an anchor for one caterpillar of Lj+1 and one
caterpillar of Lj+2; moreover, degF (v) = 4 and the remaining two edges incident
to v belong to a caterpillar of Lj . Note that in this case v cannot be a leaf of
the caterpillar of Lj.

Theorem 1. Any shape S that has a spanning tree F of level-depth δ can be
uniquely produced by a step tile system with tile complexity at most 68δ + 8.
Moreover, if the maximum degree of F is 3, S can be uniquely produced by a step
tile system with tile complexity at most 44δ + 8, and if the maximum degree of
F is 2, only 14 tile types suffice.

Proof. Let DF = {Li}δ
i=1 be a level decomposition of F of level-depth δ. In the

step tile system we are constructing, each tile set will contain only a
single non-empty tile type. The binding domains will be taken from the set
Σ = {null, a1, a2, . . . , aδ+2, b1, b2, . . . , bδ}. We define a partial function x on Σ
as follows: ai = bi and bi = ai, for 1 ≤ i ≤ δ. We also define a rank on Σ as fol-
lows: rank(ai) = i, rank(bi) = i, and rank(null) = 0. Our construction is guided
by a depth first search ordering of the vertices of F obtained as follows. Let s0 be
an endpoint of the spine of the caterpillar in L1 (without loss of generality we as-
sume that s0 = (0, 0)). The sequence {sj}|S|−1

j=0 is obtained by a depth first search
on the vertices of F starting at the vertex s0. At each branching point the depth
first search will choose the next vertex to visit as follows: choose a non-visited
neighbour that is a leaf if possible, or otherwise, choose a non-visited neighbour
of the highest level. For every vertex sj of F let tj = (tjN , tjE , tjS , t

j
W ) be the tile

that will be placed onto sj . The tile sets used will be the sets Tj = {tj, empty}.
Next we specify the tile types tj for j = 1, . . . , |S| in this order. Let d ∈ D be
the unique direction such that s1 = d(s0). Set t0d = a1 and t0α = null, if α 
= d.

For j > 1 and degF (sj) = 1, let sk be the neighbour of sj such that k < j.
Let d be the direction such that sk = d(sj). Set tjd = tkd−1 (this ensures that the
tile tj can attach to the neighbouring tile tk), and tjα = null, if α 
= d.

For j > 1 and degF (sj) = 2, let sk be the unique neighbour of sj such that
k < j. Note that sj+1 is also a neighbour of sj , and, because degF (sj) = 2,
sk, sj , and sj+1 all belong to the same caterpillar in some Li. Let d1, d2 be
directions such that sk = d1(sj), and sj+1 = d2(sj). Set tjd1

= tk
d−1
1

(this ensures

1 The level-depth of a tree has close connections to the monotone connected node
search number of the tree[13] which we will discuss in the full version of this paper.
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that the tile tj can attach to its neighbouring tile tk), tjd2
= tjd1

, and tjα = null,
if α /∈ {d1, d2}. For j > 1 and degT (sj) = 3, we distinguish two cases:

Case (i) sj is not an anchor: Then sj belongs to exactly one caterpillar K in
Li for some i. Note that sj+1 is a neighbour of sj and it is a leaf. Let sk and sm

be the other two neighbours of sj such that k < j and m > j (see Figure 1(a)).
Note that sm = sj+2 and that sj and all its neighbours belong to the same
caterpillar. Let d1, d2, d3 be directions such that d1(sj) = sk, d2(sj) = sj+1,
and d3(sj) = sm. Set tjd1

= tk
d−1
1

(this ensures that tile tj can attach to the

neighbouring tile tk), tjd2
= ai+1 (hence using a new binding domain for hairs of

K), tjd3
= tjd1

, and tjα = null, if α /∈ {d1, d2, d3}.
Case (ii) sj is an anchor: Then sj must be a single anchor, since only vertices
of degree four can be double anchors. Let sj be an anchor for a caterpillar K ′ in
Li+1. It follows that sj also belongs to a caterpillar K in Li (see Figure 1(b)).
Let sk, sm, d1, d2, and d3 be defined as in case (i). Note that sj+1 is a neighbour
of sj and its level is i + 1. Set tjd1

= tk
d−1
1

(this ensures that tile tj can attach to

the neighbouring tile tk), tjd2
= ai+1, (as the caterpillar K ′ will use a new pair

of binding domains ai+1, bi+1), t
j
d3

= tjd1
, and tjα = null, if α /∈ {d1, d2, d3}.

sj

sj+1

smsk

tj+1

tjtk tm
Li

d2

d1 d3

(a)

sj

sj+1

smsk

tj+1

tjtk tm
Li

Li+1
d2

d1 d3

(b)

Fig. 1. The two cases for vertex sj . The tiles tn are indicated together with the vertices
sn of the spanning tree of S. Dashed sides of a tile indicate that another tile could
attach to that side. Dashed edges of the tree indicate how the tree might continue. The
shading represents the caterpillar of level i that the vertex sj belongs to. The relative
directions are indicated in the top right corner of each figure.

The case when j > 1 and degF (sj) = 4 can be proved similarly.2

Consider configuration C : Z × Z → {tj}|S|−1
j=0 defined by

C(v) =

{
tj if v = sj for some sj ∈ V (T ),
empty otherwise.

Clearly, the configuration C has shape S. We will show that the step tile system
Tstep = (Σ, {tj , empty}|S|−1

j=1 , {Ct0}, sΣ, {1}|S|−1
j=1 ) uniquely produces C. To this

2 The complete proof will appear in the full version.
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end, let Cj = C[Vj ] where Vj = {s0, . . . , sj}, be the sub-configuration of C in-
duced by the first j+1 vertices, (j = 0, . . . , |S|−1). We say that the configuration
Cj is hierarchical, if all of the following hold:

(H1) All non-null binding domains exposed on Cj have distinct ranks.
(H2) Let x1, x2, . . . , xm be all exposed non-null binding domains on Cj ordered

increasingly by their ranks. Let ti1 , ti2 , . . . , tim be the corresponding tiles
in Cj . Then i1 ≤ i2 ≤ . . . ≤ im.

We will show by induction that the tile system Tj of Tstep uniquely produces
Cj for each j ≥ 1.

By definition of the step tile system Tstep, the seed configuration is C0 = Ct0 .
Since C0 contains only one tile, condition (H2) is trivially satisfied. Since all
non-null binding domains exposed on C0 have distinct rank (as there is only
one non-null binding domain, namely a1, exposed), C0 satisfies condition (H2).
Hence, C0 is hierarchical. Now we show that for every j ≥ 1, if the set of seed
configurations of Tj is {Cj−1}, and Cj−1 is hierarchical, then Tj produces the
unique terminal assembly Cj , and Cj is hierarchical. The claim will follow.

By the induction hypothesis, the set of seed configurations of Tj is {Cj−1},
i.e., Tj = {Σ, {tj, empty}, {Cj−1}, sΣ, 1}. Let the vertex sk be the neighbour of
sj in the tree F such that k < j. Since Cj−1(sj) = empty, by our construction
tj can attach to Cj−1 at position sj in step j. Since tj is the only non-empty
tile in this step, it will attach at this position. Next we show that tj cannot
attach anywhere else. Let r be the rank of the binding domain via which tiles
tj and tk are attached to each other in our construction. Due to our assignment
of binding domains, r is a lowest rank of non-null binding domains on tj (there
could be two binding domains on tj with lowest rank), and r is the highest rank
of exposed binding domains on tk. By the depth-first search, either tk = tj−1 or
tj−1 is a leaf of F and the algorithm backtracked to tk, in which case the tiles
tk+1, . . . , tj−1 do not have any exposed non-null binding domains. This implies
that the binding domain of highest rank exposed on Cj−1 is on tk, since Cj−1 is
hierarchical. As r is the highest rank of exposed binding domains on tk, it follows
that r is the highest rank of exposed binding domains on Cj−1. Since all binding
domains exposed on Cj−1 have distinct rank and r is a lowest rank of non-null
binding domains on tj , tile tj cannot attach anywhere else. Hence, Tj uniquely
produces Cj . It remains to show that Cj is hierarchical. Let X = x1, x2, . . . , xm

be the exposed non-null binding domains of Cj−1 ordered by increasing rank.
In Cj , tile tj is attached to tk via binding domain xm which is of rank r. Since
Cj−1 satisfies (H1), and r is the lowest non-null rank of the binding domains
on tj , and the exposed non-null binding domains on tj in Cj are distinct, it
follows that Cj satisfies (H1). Let Y = y1, y2, . . . , yk be the exposed non-null
binding domains of Cj ordered by increasing rank. Since r is the highest rank
all non-null binding domains exposed on Cj−1 and r is also the lowest rank of
all non-null binding domains on tile tj , in the sequence Y all non-null binding
domains of tj are at the end of the sequence. Since all the preceding elements are
a subsequence of X , they satisfy (H2). Moreover, since all new (if any) binding
domains in Y come from tile tj , Cj also satisfies (H2). Thus, Cj is hierarchical.
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Hence, the step tile system Tstep uniquely produces the terminal assembly C,
and therefore, Tstep uniquely produces shape S.

It is not difficult to check that the tile complexity of Tstep is as required in
all three cases. We will leave the details for the full version of this paper.

4 Shapes with Constant Tile Complexity

A rectangle R is a shape for which there exist integers N ≥ 2 and M ≥ 2 and
a vertex (x0, y0) such that vertex (x, y) ∈ R if and only if x0 ≤ x < x0 + N
and y0 ≤ y < y0 + M . Given a shape S and an integer k ≥ 1, we say S has a
rectangle decomposition {Ri}m

i=1 with connectors of size k if there exist m disjoint
rectangles, R1, . . . , Rm, such that V (S) =

⋃m
i=1 V (Ri) and for each i > 1, there

exists j < i such that the rectangles Ri and Rj are joined in S by at least k
edges. A selected set of k consecutive such edges is called the connector of Ri

and Rj . Note the the endvertices of this connector in Ri (and Rj , respectively)
induce a path of length k − 1 which is called an interface of Ri (Rj). Observe
that if Ri connects to l other rectangles it will have l interfaces.

R1

R2

R3

connector

interfaces of R2

connector

Fig. 2. A rectangle decomposition of a shape with connectors of size 2. Connector edges
are depicted in bold and interface edges are depicted in grey.

Theorem 2. A shape S which has a rectangle decomposition R = {Ri}m
i=1 with

connectors of size 2, can be assembled using at most 24 non-empty tiles types.

Proof. We will show that S has a spanning tree F of maximum degree at most
3 and level-depth at most 2. Given this spanning tree, we will obtain a tile
system following the construction in the proof of Theorem 1. Due to our choice
of F , this tile system will only use 24 non-empty tile types. Note that direct
application of the result of Theorem 1 would give a bound of 96 non-empty tile
types.

To obtain a suitable spanning tree F of S it can be shown3 that S has a
spanning subgraph G satisfying all of the following conditions:

3 The proof will appear in the full version.
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(i) The maximum degree of G is 3.
(ii) G contains a cycle C that consists of all connector edges and all boundary

edges of each rectangle in R which are not interface edges.
(iii) Every vertex not on the cycle C is on a “horizontal” path whose west

endpoint belongs to C.

Given this spanning subgraph G of S, we obtain a spanning tree F of S
by deleting from the cycle C an edge that is on the northern boundary of S.
Certainly F will still have maximum degree three. It remains to show that F
has level-depth at most 2. Let the caterpillar K consist of the path in F that
we obtained by deleting an edge from the cycle C of G (this is the spine of K),
together with any paths Pw that include only a single edge. Let L1 = {K}. If
K = F , then L1 trivially forms a level decomposition of F . Otherwise let L2
be the set consisting of all the paths Pw that are not included in the caterpillar
K. Then all caterpillars in L1 ∪ L2 are edge-disjoint and cover all edges of F .
Hence, {L1, L2} satisfies condition (LD1). Let u and v be the endpoints of the
spine of K. Since u and v are on the northern boundary of S, they are leafs of
F (any branching occurs on the western boundary of a rectangle). Thus K is a
maximal caterpillar of F , and hence {L1, L2} satisfies condition (LD2). By our
construction, all paths Pw are vertex disjoint. Thus, {L1, L2} satisfies condition
(LD3). Every path Pw is a maximal caterpillar anchored at w, where w is an
internal vertex of the spine of caterpillar K in L1. Hence, {L1, L2} satisfies
condition (LD4). Therefore, {L1, L2} is a level decomposition of F , and hence
F has depth at most 2.

Now construct a tile system from the spanning tree F of S as described in the
proof of Theorem 1. However, due to our choice of F this tile system will use far
less than the 96 tile types that Theorem 1 guarantees. Our tile system will use 4·3
tile types that use both a1 and b1 (exactly once) and no other non-null binding
domains. There will be six tile types that use exactly three non-null binding
domains (a1, b1, and a2) (this is because any vertices of degree 3 are on the
western boundary of a rectangle). There are two tile types that use both a2 and
b2 (exactly once) and no other non-null binding domains, because all the paths
in L2 are horizontal. For the same reason, there are only two tile types with only
one non-null binding domain which is taken from {a2, b2}. Furthermore, there
will be two more tile types corresponding to the endpoints of the spine of the

Rm

Ri ui vi

um vm

Fig. 3. Extending the spanning subgraph to include Rm
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caterpillar of L1 (both of these tiles have only one non-null binding domain -
either a1 or b1). Therefore, our tile system uses only 24 non-empty tiles.

If we are allowed to scale shapes by a factor of 2, then any shape can be assembled
using a constant number of tile types.

Theorem 3. Given an arbitrary shape S, let S′ be the shape obtained by scaling
S by a factor of 2. Then S′ can be uniquely produced by a step assembly system
at temperature 1 using at most 14 non-empty tile types.
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Abstract. Given a graph, suppose that intruders hide on vertices or
along edges of the graph. The fast searching problem is to find the mini-
mum number of searchers required to capture all intruders satisfying the
constraint that every edge is traversed exactly once and searchers are not
allowed to jump. In this paper, we prove lower bounds on the fast search
number. We present a linear time algorithm to compute the fast search
number of Halin graphs and their extensions. We present a quadratic
time algorithm to compute the fast search number of cubic graphs.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. In the fast search
model, every edge of G is initially contaminated and our aim is to clean the
whole graph by a sequence of steps. Each intruder can move at a great speed
at any time from vertex u to vertex v along a path that contains no searchers.
There are two types of actions for searchers, i.e., placing a searcher on a vertex
and sliding a searcher along an untraversed edge from one endpoint to the other,
and an edge is cleared only by a sliding action in a proper way. First we place
all the searchers on a subset of vertices of G (allowing multiple searchers to be
placed on any vertex). Then every edge of G will be traversed exactly once by
one searcher to clear the edge. A contaminated edge uv can be cleared in one
of two ways by one sliding action: (1) sliding a searcher from u to v along uv
while at least one searcher is located on u, and (2) sliding a searcher from u to
v along uv while all edges incident on u except uv are already cleared. A fast
search strategy is a sequence of actions such that the final action leaves all edges
of G cleared. The minimum number of searchers needed to clear G in the fast
searching is the fast search number of G, denoted by fs(G). A fast search strategy
that uses fs(G) searchers to clear G is called an optimal fast search strategy.

The edge search model and the node search model are two major models of
graph searching problems. In edge searching problem introduced in [6], there are
three types of actions for searchers and an edge can be cleared only by sliding
actions. In the node searching problem introduced in [4], there are only two types
of actions for searchers and an edge is cleared if both endpoints are occupied by
searchers. The fast search model was first introduced by Dyer, Yang and Yaşar
[2]. In [2], a linear time algorithm is presented for computing the fast search
number of trees.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 964–973, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Lower bounds are very important issue in graph searching. It is usually very
difficult to show that a graph requires at least certain number of searchers to
clear. In this paper, we prove several lower bounds on fast searching. Using one
of our lower bounds, we can compute the fast search number of grids, which
have been studied in many search models. We also use our lower bounds to
compute the fast search number of Halin graphs and cubic graphs. It is an open
problem whether there is a polynomial time algorithm to compute the edge
search number or the node search number of Halin graphs. We will present a
linear time algorithm for computing the fast search number of Halin graphs.
It is NP-hard to find the edge search number or the node search number of
cubic graphs [5]. However, for the fast searching problem, we will show that the
fast search number of cubic graphs can be found in O(n2) time, where n is the
number of vertices in the graph.

2 Definitions and Notation

Unless otherwise stated, all graphs in this paper will be finite, undirected and
without loops, multiple edges, or isolated vertices. Throughout this paper, we
use G = (V, E) to denote a graph with vertex set V and edge set E, and we also
use V (G) and E(G) to denote the vertex set and edge set of G respectively. We
use uv to denote an edge with endpoints u and v. Definitions omitted here can
be found in [7].

For a graph G = (V, E), the degree of a vertex v ∈ V , denoted by degG(v),
is the number of edges incident on v. A vertex is odd when its degree is odd.
Similarly, a vertex is even when its degree is even. A vertex with degree 1 is called
a leaf. Let Vodd be the set of all odd vertices in G, and Veven = V \ Vodd. For
trees and forests, a vertex of degree greater than 1 is called an internal vertex.

A component of a graph G is a maximal connected subgraph of G. A cut-edge
or cut-vertex of a graph is an edge or vertex whose deletion increases the number
of components. A block of a graph G is a maximal connected subgraph of G that
has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a
block. It is easy to see that an edge of G is a block if and only if it is a cut-
edge. If a block has at least 3 vertices, then it is 2-connected. Thus, the blocks
of a graph are its isolated vertices, its cut-edges, and its maximal 2-connected
subgraphs. The block-cutpoint graph of G is a bipartite graph B in which one
partite set consists of the cut-vertices of G and the other partite set has a vertex
vi for each block Bi of G such that uvi is an edge of B if and only if u ∈ V (Bi).
When a connected graph G is not a single block, its block-cutpoint graph is a
tree whose leaves must correspond to blocks of G, which are called leaf blocks.
Note that every leaf block has exactly one cut-vertex. A leaf block of G is strong
if the cut-vertex of the leaf block is incident to a cut-edge of G.

A path is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge
ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi and each vertex appears exactly once
(except that its first vertex might be the same as its last). A cycle is a path that
begins and ends on the same vertex.
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A Halin graph is a plane graph constructed from a plane embedding of a tree
with at least 4 vertices and with no vertices of degree 2, by connecting all leaves
with a cycle in the natural cyclic order defined by the embedding of the tree. An
extended Halin graph is a connected graph H = F ∪ C with no multiple edges,
where F is a forest and C is a cycle containing all leaves of F .

In the fast search model, initially, we have a graph G with all edges contami-
nated (an invisible intruder hides on any edge or vertex of G). We assume that
before the first sliding action is carried out, we have placed all the searchers
on vertices of G so that these searchers will clear G by a sequence of sliding
actions. So, a fast search strategy S = (s0, s1, . . . , s|E|) is a sequence of actions
that consists of two parts, the first part s0 is the placing action that places all
the searchers on vertices of G, and the second part s1, . . . , s|E| is a sequence of
sliding actions such that the final action leaves all edges of G clean. The number
of searchers used by S to clear G is denoted by fs(G;S). If S is an optimal fast
search strategy of G, then fs(G;S) = fs(G).

We say that a vertex in G is occupied at some moment if at least one searcher
is located on this vertex at this moment. A sliding action that moves a searcher
from a vertex u to vertex v along the edge uv is called a sliding-out action on u
and a sliding-in action on v. Given a graph G = (V, E) and a fast search strategy
S of G, define αS(v) as the number of searchers on v just before the first sliding
action of S and βS(v) as the number of searchers on v after the final action of
S, and define V s

S = {v ∈ V : deg(v) ≥ 2 and the first clean edge incident on v is
cleared by a sliding-out action on v}, and V t

S = {v ∈ V : deg(v) ≥ 2 and the last
clean edge incident on v is cleared by a sliding-in action on v}. In the case with
no ambiguity, we delete subscripts from the above notation.

3 Lower Bounds

Lemma 1. For a graph G = (V, E) and a fast search strategy S of G, we have
the following properties: (i) fs(G;S) = 1

2

∑
v∈V (α(v) + β(v)); (ii) α(v) + β(v) ≡

deg(v) (mod 2) for each vertex v ∈ V ; (iii) α(v) ≥ 2 for any v ∈ V s; and (iv)
β(v) ≥ 2 for any v ∈ V t.

Proof. (i) Because all searchers are placed on vertices of G before the first sliding
action, and no searcher can be removed from G, we know that every searcher is
counted twice in

∑
v∈V (α(v) + β(v)). Thus fs(G;S) is half of this sum.

(ii) For any vertex v ∈ V , there are α(v) searchers on v just before the first
sliding action. Since every searcher can only slide along an untraversed edge,
when an edge incident on v is cleared, the number of searchers on v increases by
one or decreases by one. Thus, if deg(v) is even, then α(v) has the same parity
as β(v); and if deg(v) is odd, then α(v) has the opposite parity from β(v). In
both cases, deg(v) has the same parity as α(v) + β(v).

(iii) Since deg(v) ≥ 2 and the first clean edge incident on v is cleared by a
sliding-out action on v, we know there are at least two searchers on v just before
this sliding-out action on v.
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(iv) Since deg(v) ≥ 2, just before the last edge incident on v is cleared, there
are both contaminated edge and clean edge incident on v. Thus, there is at least
one searcher on v just before the last edge incident on v is cleared. After this
edge is cleared by a sliding-in action on v, there are at least two searchers on v.

Lemma 2. For a graph G = (V, E), a vertex v ∈ V , and a fast search strategy
S of G, we have the following: (i) if deg(v) is odd, then α(v) + β(v) ≥ 1; (ii) if
v ∈ V s ∪ V t, then α(v) + β(v) ≥ 2; (iii) if v ∈ V s ∪ V t and deg(v) is odd, then
α(v)+β(v) ≥ 3; (iv) if v ∈ V s∩V t, then α(v)+β(v) ≥ 4; and (v) if v ∈ V s∩V t

and deg(v) is odd, then α(v) + β(v) ≥ 5.

Proof. (i) If deg(v) is odd, it follows from Lemma 1(ii) that α(v) + β(v) is also
an odd number. Thus α(v) + β(v) ≥ 1.

(ii) It follows from Lemma 1(iii) or (iv) that α(v) + β(v) ≥ 2.
(iii) From Lemma 1(ii), we know that α(v) + β(v) is an odd number. From

(ii), we have α(v) + β(v) ≥ 3.
(iv) It follows from Lemma 1(iii) and (iv) that α(v) + β(v) ≥ 4.
(v) From Lemma 1(ii), we know that α(v) + β(v) is an odd number. From

(iv), we have α(v) + β(v) ≥ 5.

We can now show the main result of this section.

Theorem 1. fs(G) ≥ 1
2 |Vodd| + |(V s ∪ V t) \ (V s ∩ V t)| + 2|V s ∩ V t|.

Proof. For any vertex v ∈ V s ∪ V t or v is odd, v must be in exactly one of the
following five cases.

1. v ∈ Vodd \ (V s ∪ V t). From Lemma 2(i), we have α(v) + β(v) ≥ 1.
2. v ∈ (V s ∪ V t) \ (V s ∩ V t) and v is even. It follows from Lemma 2(ii) that

α(v) + β(v) ≥ 2.
3. v ∈ (V s ∪ V t) \ (V s ∩ V t) and v is odd. It follows from Lemma 2(iii) that

α(v) + β(v) ≥ 3.
4. v ∈ V s∩V t and v is even. It follows from Lemma 2(iv) that α(v)+β(v) ≥ 4.
5. v ∈ V s ∩ V t and v is odd. It follows from Lemma 2(v) that α(v) + β(v) ≥ 5.

From Lemma 1(i), we have fs(G) = 1
2

∑
v∈V (α(v)+β(v)) = 1

2

∑
v∈Vodd

(α(v)+
β(v))+ 1

2

∑
v∈Veven

(α(v)+β(v)) ≥ 1
2 |Vodd|+ |(V s ∪V t)\ (V s ∩V t)|+2|V s ∩V t|.

Theorem 2. For a graph G = (V, E) with no leaves, fs(G) ≥ 1
2 |Vodd| + 2.

An application of Theorem 2 is to find the fast search number of grids. An n×m
grid, denoted by Gn×m, is the cartesian product of the two paths with n (n ≥ 2)
and m (m ≥ 2) vertices, respectively.

Theorem 3. For m ≥ n ≥ 2, fs(Gn×m) = n + m − 2.

Lemma 3. Let G = (V, E) be a graph with no leaves. For every strong leaf block
Bs and any fast search on G, there exists v ∈ V (Bs) ∩ (V s ∪ V t).
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Proof. Let c ∈ V (Bs) be a cut-vertex in G. Assume that the cut-edge of G
incident on c is cleared by a sliding-in action on c. We consider two cases:

Case 1. Before clearing the cut-edge all edges of Bs have been cleared. This
implies that c ∈ V t because the cut-edge is the only edge of G incident on c
which is not in Bs.

Case 2. After clearing the cut-edge there are still uncleared edges of Bs. In
this case consider the last cleared edge of Bs. The searcher that clears this edge
ends at some v ∈ V (Bs) and clearly v ∈ V t.

So considering these two cases, we have seen that if the cut-edge is cleared by
a sliding-in action on c, then there is v ∈ V (Bs)∩V t. Similarly, if the cut-edge is
cleared by a sliding-out action on c, then there is v ∈ V (Bs)∩V s. This completes
the proof of the lemma.

Theorem 4. For a connected graph G containing cut-edges and no leaves,
fs(G) ≥ 1

2 |Vodd| + τ , where τ is the number of strong leaf blocks in the block-
cutpoint graph of G.

The theory built on graph minors plays an important role in graph searching.
Most of graph searching problems are minor closed. However this is not true for
fast searching [2]. If the edge contraction is the only operation allowed in the
graph transformation, then we have the following result.

Theorem 5. Given a graph G, let H be the graph obtained from G by edge
contractions. Then fs(H) ≤ fs(G).

4 Halin Graphs

In this section, we show how to compute the fast search number and an optimal
fast search strategy for Halin graphs in linear time. Our algorithm can compute
the fast search number and an optimal fast search strategy for extended Halin
graphs in the same time bound.

The following algorithm SearchHalin(H) describes a fast search strategy
that can clear H using 1

2 |Vodd(H)| + 2 searchers. The output of the algorithm
is an optimal fast search strategy 〈Vp, As〉, where Vp is a multiset of vertices on
which we place searchers and As is a sequence of arcs corresponding to sliding
actions, that is, an arc (u, v) corresponds to a sliding along the arc from tail u
to head v.

Algorithm. SearchHalin(H)
Input: A Halin graph H .
Output: A fast search strategy 〈Vp, As〉 of H .

1. Decompose H into a plane embedding of a tree T and a cycle C =v0v1 . . . vcv0
such that v0, v1, . . . , vc are all leaves of T in the natural cyclic order defined
by the embedding of T .

2. Place two searchers λ1 and λ2 on v0, and slide λ1 along v0v1 from v0 to v1.
λ1 and λ2 will slide only on edges of C, and when they meet at a vertex of
C, they will stay at this vertex forever.



Lower Bounds on Fast Searching 969

3. Place a searcher on the vertex of C that is occupied by λ1, slide the searcher
along the contaminated edge in T , and slide λ1 to the next vertex on C.

4. When a searcher λ slides to a vertex u that has been occupied by another
searcher λ′, if λ′ 
∈ {λ1, λ2} and there is at least one contaminated edge
incident on u, then keep sliding λ along a contaminated edge; if λ′ ∈ {λ1, λ2}
and there is a contaminated edge incident on u (this edge must be on C),
then keep λ on u and slide λ′ along this contaminated edge.

5. If there is an even vertex u ∈ V (T ) occupied by one searcher and there is
only one contaminated edge incident on u, then slide the searcher along this
contaminated edge from u to the other endpoint and go to Step 4.

6. If all edges of H are cleared, then stop and output the multiset of vertices
Vp on which searchers are placed and then output the sequence of arcs As

in the order when searchers slide along them; otherwise, go to Step 3.

Theorem 6. For any Halin graph H, fs(H) = 1
2 |Vodd(H)| + 2.

Proof. Since Halin graphs have no leaves, it follows from Theorem 2 that fs(H) ≥
1
2 |Vodd(H)|+2. We will show that the fast search strategy described in Algorithm
SearchHalin(H) can clear H using 1

2 |Vodd(H)| + 2 searchers.
From Step 1 of SearchHalin(H), we know all leaves of T have degree 3 in

H . Since every internal vertex of T has degree at least 3, we have |V (C)| =>
1
2 |V (T )|. From Step 2, we know that searchers λ1 and λ2 slide only on edges of C,
and when they meet at a vertex of C, they will stay at this vertex forever. Thus,
all edges of T are cleared by other searchers, called T -searchers. From Step 3, we
know that every T -searcher is placed on a leaf of T . From Steps 4 and 5, when a
searcher (including λ1 and λ2) passes through a vertex u that has been occupied
by another searcher (neither λ1 nor λ2), the parity of the number of contaminated
edges incident on u does not change because two contaminated edges incident
on u are cleared by this searcher. Thus, if an odd vertex of T is occupied by a
searcher (neither λ1 nor λ2) who is the first searcher sliding to this odd vertex,
then this searcher will stay on this odd vertex forever. If an even vertex of T is
occupied by a searcher who is the first searcher sliding to this even vertex, then
this searcher will slide out from this even vertex when only one contaminated
edge is incident on this even vertex. Notice that |V (C)| > 1

2 |V (T )| ≥ 1
2 |Vodd(T )|

and T is connected. Hence, every searcher can start from a leaf of T . On the
other hand, every odd vertex of T is either the start or the end vertex of exactly
one searcher except λ1 and λ2. Therefore, the total number of searchers used by
the fast search strategy is 1

2 |Vodd(T )| + 2 = 1
2 |Vodd(H)| + 2.

Theorem 7. Given a connected graph G containing a cut-edge uv, let G1 and
G2 be the two subgraphs with u ∈ V (G1) and v ∈ V (G2) after uv is deleted.
(i) If there is an optimal fast search strategy of G1 such that there is a searcher
starting from u and there is an optimal fast search strategy of G2 such that there
is a searcher starting from v, then fs(G) = fs(G1) + fs(G2) − 1. (ii) If for any
optimal fast search strategy of G1 there is no searcher starting from u and for
any optimal fast search strategy of G2 there is no searcher starting from v, then
fs(G) = fs(G1) + fs(G2) + 1. (iii) If there is an optimal fast search strategy of
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G1 such that there is a searcher starting from u and for any optimal fast search
strategy of G2 there is no searcher starting from v, then fs(G) = fs(G1)+fs(G2).

Corollary 1. Given a connected graph G containing a cut-edge uv, let G1 and
G2 be the two subgraphs with u ∈ V (G1) and v ∈ V (G2) after uv is deleted. If
both degG1

(u) and degG2
(v) are odd, then fs(G) = fs(G1) + fs(G2) − 1.

Theorem 8. For any extended Halin graph H, the fast search number and an
optimal fast search strategy of H can be computed in linear time.

5 Cubic Graphs

In this section, we show how to compute the fast search number and an optimal
fast search strategy for cubic graphs and their extension in quadratic time.

Algorithm. SearchCubic(G)
Input: A connected cubic graph G = (V, E) with |V | > 4.
Output: A fast search strategy 〈Vp, As〉 of G, where Vp is a multiset of vertices on
which we place searchers and As is a sequence of arcs corresponding to sliding
actions, that is, an arc (u, v) corresponds to a sliding along the arc from tail u
to head v.

1. If G has no cut-vertex, then pick two adjacent vertices b1 and b2, and let
L0 ← {b1, b2}, τ ← 2 and P be the edge b1b2; otherwise, compute the
block-cutpoint graph of G to find all the leaf blocks B1, . . . , Bτ and their
cut-vertices a1, . . . , aτ , and then pick vertices bi ∈ V (Bi) \ {ai}, 1 ≤ i ≤ τ ,
and let L0 ← {b1, . . . , bτ} and P be a path in G between b1 and b2.

2. Totally order L0 by letting b1 ≺ b2 ≺ · · · ≺ bτ . Initially, let L ← L0, X ← G,
P ← ∅, and i ← 1.

3. While X contains edges, do the following:
(a) Let P ← P ∪ {P}. Write P = p1p2 . . . pj , where p1, pj ∈ L satisfying

p1 ≺ pj . Totally order V (P ) by letting p1 ≺ p2 ≺ · · · ≺ pj. Update L by
adding all internal vertices of P , and by extending the order on L so that
it is compatible with the order on V (P ). For example if x ∈ L\V (p) and
y ∈ V (p) \ {p1, pj} then we can let x ≺ y if x ≺ pj and y ≺ x if pj ≺ x.

(b) Let X ← X − E(P ). If E(X) = ∅, then go to Step 4; otherwise, set
i ← i + 1.

(c) If G has any cut-vertex, then go to Step 3d. If i = 2, then find a path P ′

in X between b1 and b2, otherwise, arbitrarily pick two vertices from L
which are in the same component in X , and find a path P ′ in X between
them. Let P ← P ′ and go to Step 3a.

(d) If 2 ≤ i ≤ τ − 1, then pick bi+1 and an arbitrary element of L \ L0
which is in the same component in X , and find a path P ′ in X between
them; if τ ≤ i ≤ 2τ − 1, then pick bi−τ+1 and an arbitrary element of
L \ L0 which is in the same component in X , and find a path P ′ in X
between them; otherwise, arbitrarily pick two vertices from L which are
in the same component in X , and find a path P ′ in X between them.
Let P ← P ′ and go to Step 3a.
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4. Each edge uv of G is oriented to (u, v) if u ≺ v. Let As be the sequence of
all oriented edges in G listed in the left lexicographical order coming from
order of the vertices (i.e., (u, v) ≺ (u′, v′) if u ≺ u′, or u = u′ and v ≺ v′).
Let Vp be the multiset of the smallest vertex of each path in P . Stop and
output the fast search strategy 〈Vp, As〉.

The correctness of Algorithm SearchCubic(G) is shown with the following
series of lemmas.

Lemma 4. Any vertex in L \ L0 has degree 0 or 1 in X.

Lemma 5. In Step 3b, any vertex incident on a removed edge must be in L. So
L0 ∪ {u : degC(u) = 1} ⊂ L.

Lemma 6. If G is a block and i ≥ 2, then after updating X in Step 3b every
nonempty component of X has at least one vertex of degree 1. If G has more
then one leaf block, then after updating X in each iteration of Step 3b, every
nonempty component of X has at least one vertex of degree 1.

Proof. Note that a nonempty component is a maximal connected subgraph with
at least one edge. Consider a nonempty component C of X . Observe that if we
can show that C has a vertex of degree 0 or 1 we are done. Observe there must
be v ∈ V (C), such that some edge e incident on v has been removed (in other
words e is an edge of some path P ∈ P) as otherwise C would be all of G. Then
by Lemma 5, v ∈ L. If v is not a bi then by Lemma 4, the degree of v in C is
either 0 or 1 and we are done.

So assume v = bi. If we are in the case of G being a block, then, since we have
completed at least two iterations of Step 3b, at least two edges incident on bi

have been removed, and so degX(bi) = 1. This completes the proof when there
is only one block, so for the rest of the proof we assume there is more then one
leaf block in G. Let Bi be the leaf block of v = bi. So an edge e incident on bi

has been removed. Let v′ be the other endpoint of e. In Step 1, bi is not incident
on a cut-edge, so v′ is on the same leaf block Bi of G as bi, and so v′ 
∈ L0. By
Lemma 5, v ∈ L. If v′ ∈ V (C), we are done since Lemma 4 would then imply
that degC(v′) = 0 or 1.

So now assume that v′ 
∈ V (C). Since Bi has no cut edges, edges other than
e must have been removed from Bi. At least one of these must be incident on a
vertex v′′ ∈ V (C). If v′′ = bi then at least two edges adjacent to bi have been
removed and so bi has degree 0 or 1 in C. If v′′ 
= bi then since v′′ ∈ Bi it is not
bj for i 
= j as well. So v′′ ∈ L \ L0. Thus the degree of v′′ in C is 0 or 1. Since
C contains no vertices of degree 0, we are done proving the lemma.

Lemma 7. Any cut-edge of any nonempty component C of any of the updated
graphs X has on either side of it at least one vertex of L0 ∪ {u : degC(u) = 1}.

Proof. Consider a cut-edge e of X . If X = G, on either side of any cut-edge there
is at least one vertex of L0. So the statement is true for G. Let P be the path
that was deleted from the old X to get the updated X . Assume the statement
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is true for the previous X . We want to show it still holds for the updated X .
There are two cases:

Case 1. e is a cut-edge of the previous X . If P is in a different component of
the old X from e then C is a component of the old X and so we can use the same
vertices as we did for the old X . So assume that P is in the same component
C′. Then there is v ∈ V (P ) on one side of e connected to e in the new X . Notice
that by Lemma 4 v ∈ V (P ) implies that v ∈ L0 ∪ {u : degC(u) = 1}. So we can
use that vertex for the one side of e and the vertex from the old X for the other.

Case 2. e = uu′ is not a cut-edge of the previous X . Then there was a path
Q in the old X between u and u′ whose intersection with P is nonempty. So
Q \ P is a disjoint union of, possibly empty, paths in the new X . Endpoints of
the components of the paths containing u and u′ give v, v′ ∈ V (P ) on different
sides of e in the new X . Again by Lemma 4, these are the required points.

Lemma 8. Step 3 of the algorithm terminates and ∪P∈PE(P ) = E(G).

Proof. We can always perform the first iteration of Step 3. In case G has a single
block then b1 and b2 are adjacent so in the first iteration of Step 3(b) we removed
a single edge. So the updated X is still connected and there is a path from b1 to
b2. So we can perform the second iteration of Step 3. For any other iterations if
the present X is not empty, then by Lemma 6, each nonempty component of X
has a vertex of degree 1. Since any vertex of degree 1 is incident on a cut-edge,
we can apply Lemmas 7 and 5 to get that each nonempty component of X has
at least two elements of L as vertices. This means we can proceed with Step 3 of
the algorithm. Notice that if G has more then one leaf block, none of the paths
from a vertex of degree 1 to a bj can pass through another vertex of L0, since
once a path enters a leaf block it has no way to leave. So for the early steps we
can take a bj and any vertex of degree 1 in the same component of X . Since each
step removes edges, after finitely many steps X will be empty. This will mean
that ∪P∈PE(P ) = E(G) and also that we go to Step 4.

Lemma 9. At Step 4 of Algorithm SearchCubic(G), |P| ≤ |V |/2 + τ .

Lemma 10. At each iteration of Step 3, for any v ∈ (L \ {b1})∩ (∪P∈PV (P )),
there is v′ ∈ L such that v′ ≺ v and an edge e ∈ ∪P∈PE(P ), between v and v′.

Theorem 9. Algorithm SearchCubic(G) describes a fast search strategy that
clears G using at most |V |/2 + τ searchers.

Proof. Notice that since by Lemma 8 the paths from P cover G and every edge
of G is covered exactly one time, to clear G we need to show that anytime a
searcher slides from vertex u to v along edge uv, either:

(1) all the edges incident on u except uv have been cleared, or
(2) another searcher remains on u.
Looking at Step 3 of the algorithm, we see that at least two paths have

endpoints at b1 and this implies that in fact three paths have endpoints at b1.
Since b1 is the smallest, three searchers start there and move out. This means
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that (2) occurs when the first two searchers leave and (1) occurs when the last
searcher leaves.

By Lemma 10, any vertex v 
= b1 has an adjacent v′ such that v′ < v. Since
we are searching lexicographically, this means that a searcher λ goes from v′ to
v before any searcher leaves v. If λ remains on v for the rest of the search, then
any searcher that leaves v satisfies 2).

So assume that λ continues on from v. In this case there is another searcher
λ′ that either begins its search at v of that ends its search at v. If λ′ ends its
search at v, then it must come from a lower vertex. Thus it arrives at v before
λ leaves and it follows that both (1) and (2) are satisfied when λ leaves clearing
the third and final vertex incident on v. If λ′ begins its search at v, then when
the first of λ and λ′ leaves v, (2) is satisfied and when the second leaves, thus
clearing the final edge, (1) is satisfied.

So we have proven that any time a searcher leaves a vertex at least one of (1)
and (2) is satisfied. Since every edge of G is traversed exactly once, this strategy
clears G. If follows from Lemma 9 that this fast search strategy needs at most
|V |/2 + τ searchers.

Theorem 10. For a connected cubic graph G = (V, E), let τ be the number of
leaf blocks in the block-cutpoint graph of G if G contains at least one cut-vertex,
and define τ = 2 if G contains no cut-vertex. Then fs(G) = |V |/2 + τ .

Theorem 11. For any connected cubic graph G = (V, E), the fast search num-
ber and an optimal fast search strategy of G can be computed in O(|V |2) time.
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Abstract. We provide approximation algorithms for several variants of
the Firefighter problem on general graphs. The Firefighter problem
models the case where an infection or another diffusive process (such as
an idea, a computer virus, or a fire) is spreading through a network, and
our goal is to stop this infection by using targeted vaccinations. Specif-
ically, we are allowed to vaccinate at most B nodes per time-step (for
some budget B), with the goal of minimizing the effect of the infection.
The difficulty of this problem comes from its temporal component, since
we must choose nodes to vaccinate at every time-step while the infection
is spreading through the network, leading to notions of “cuts over time”.

We consider two versions of the Firefighter problem: a “non-spreading”
model, where vaccinating a node means only that this node cannot be in-
fected; and a “spreading” model where the vaccination itself is an infec-
tious process, such as in the case where the infection is a harmful idea,
and the vaccine to it is another infectious idea. We give complexity and
approximation results for problems on both models.

1 Introduction

Faced with an epidemic that is spreading through a population, and a limited
supply of vaccine (or simply a lack of time to administer it), it is necessary to
decide whom to vaccinate. Questions about the spread of disease and epidemics
in a social network have often been modeled using graph theory (e.g. [11, 3]),
and correspond to fundamental graph-theoretic concepts [22]. Moreover, these
graph theoretic principles can be applied to many diffusive network processes,
including epidemics in computer networks, the spread of innovations and ideas,
and viral marketing [23]. In this paper, we focus specifically on inhibiting the
spread of an epidemic or an idea by using vaccination.

Model and the Firefighter problem. We model our network of agents as a di-
rected1 graph G = (V, E) and a source node s. All nodes in the graph are in one
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of three states: they can be infected, vaccinated, or vulnerable, that is neither
vaccinated nor infected. At time τ = 0, all nodes are vulnerable, except node
s, which is infected. At each τ > 0, any vulnerable vertex v which is connected
to an infected node u, such that (u, v) ∈ E, gets infected at time τ + 1, unless
it is vaccinated at time step τ . Infected and vaccinated nodes stay infected and
vaccinated, respectively. We call a node saved if it is either vaccinated or if all
paths from any infected node to it contains at least one vaccinated node.

Definition 1. A vaccination strategy is a set Ψ ⊆ V × J where V is the set of
vertices of graph G and J = {1, 2, . . . |V |}. The vertex v is vaccinated at time
τ ∈ J by the vaccination strategy Ψ if (v, τ) ∈ Ψ . A vaccination strategy Ψ is
valid with respect to budget B, if the following two conditions are satisfied:

i. if (v, τ) ∈ Ψ then v is not infected at time τ ,
ii. let Ψτ = {(v, τ) ∈ Ψ}; then |Ψτ | ≤ B for τ = 1 . . . |V |.

The first condition implies we can only vaccinate vulnerable nodes, and the
second requires that no more than B nodes are vaccinated at any time-step.

We consider two objectives in this paper. The first objective, which we call
MaxSave, is to maximize the number of non-infected nodes at the end, given
a fixed budget B. The second objective, which we call MinBudget, is to mini-
mize the budget B needed per time instant in order to save a given set of nodes,
T ⊆ V . They can be formally described as follows.

MaxSave(G, B, s, T )
Instance: A rooted graph (G(V, E), s), integer B ≥ 1 and T ⊆ V
Objective: Find a valid vaccination strategy Ψ such that if s is the only infected
node at time 0, then at the end of the above process the number of non-infected
nodes that belong to T is maximized.

This problem is also referred to as the Firefighter problem in the litera-
ture when T = V [20, 16].

MinBudget(G, s, T )
Instance: A rooted graph (G(V, E), s), and T ⊆ V
Objective: Find a valid vaccination strategy Ψ with minimum possible budget
B, such that if s is the only infected node at time 0, then at the end of the above
process all nodes in T are saved.

We also consider a variant of the above model, where the vaccination is also
a process that spreads through the network. In the case of ideas propagating
through a social network, this represents the fact that an antidote to a harmful
idea is often another idea, which can be just as infectious. In disease propagation,
this represents the fact that vaccines can be infectious as well, since they are often
an attenuated version of the actual disease. In this Spreading Vaccination Model,
if at time step τ > 0 a node u is vaccinated and there is a vulnerable node v such
that (u, v) ∈ E, then at time τ + 1, the node v also gets vaccinated. Note that
a vulnerable node may be adjacent to both an infected node and a vaccinated
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Fig. 1. This example shows that sometimes vaccinating nodes far away from the infec-
tion is the only way to save all the required nodes

node, in which case we assume that the vaccine prevails over the infection and
the vulnerable node is vaccinated in the subsequent time step (assuming the
opposite does not change the quality of our results). In the spreading model, we
will say that a node is vaccinated directly when it is vaccinated by the vaccination
strategy, and it is vaccinated indirectly when it is vaccinated by the spread of
the vaccine through the network.

Example 1. To gain some intuition about this problem, consider the example
shown in Figure 1 using the non-spreading model of vaccination.

Consider the MinBudget objective for this example. The infection begins at
node s, and the goal is to find the smallest number B of nodes that need to be
vaccinated at every time step so that we can save the node t, which we assume
cannot itself be vaccinated. If we were only allowed to cut nodes during the
first time-step, this would be equivalent to the minimum s-t node-cut problem.
However, unlike previous works, such as [22], which examine the static problem
of vaccinating a ‘cut’ before the infection has started spreading, we need to find
the “best” cut over time (where best depends on the considered objective). This
temporal nature of the problem, complicates matters: intuitively, the tradeoff
is between vaccinating a small set of nodes close to the infection source early,
or spreading out (over time) the vaccination of a larger set of nodes which are
farther away from the source.

For instance, in the above example, a minimum s-t node-cut is {1, 2}, which
requires B = 2. However, there is a solution to the above problem with B = 1,
but the final set of vaccinated nodes does not form a minimum s-t node-cut.
One such solution is to vaccinate vertices 4, 6, and 5 at time steps 1, 2, and 3
respectively, leading to the final set of vaccinated nodes being {4, 5, 6} which is
not a minimum cut. In fact, it is not hard to come up with examples where the
optimal value of B is much smaller than the size of a minimum node s-t cut and
the final set of vaccinated nodes is much larger than the size of a minimum node
s-t cut (e.g., take a graph where s has k neighbors, each of which is connected to
t via k long internally node-disjoint paths). Thus, this “cuts over time” problem
is quite different from the classical min-cut problem, and in fact is known to be
NP-hard (even when the graph is a tree!) [15].

Our Results. In Section 2, we consider the model of spreading vaccinations. In
general, our results show that this model is more tractable than the model with
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non-spreading vaccinations. For MaxSave we show that this problem reduces to
maximizing a submodular function with a matroid constraint. Therefore a simple
greedy algorithm provides a 2-approximation, and a recent result of [6] lets us
prove a (1 − 1/e)-factor approximation. For MinBudget we give a O(log n)
approximation algorithm, and show that this approximation ratio is tight, by
showing a set-cover hardness.

The non-spreading model, on the other hand, does not yield itself to good
approximation algorithms. In fact, we show in Section 3 that it is NP-hard to
approximate MaxSave in general graphs by a factor of nα, for any α < 1.
For MinBudget, we give a O(

√
n) factor approximation algorithm for general

graphs based on a natural LP relaxation for the problem. For directed layered
graphs with � layers, we give a O(H�) = O(log �) approximation algorithm. The
latter algorithm is combinatorial and requires just one max-flow computation.
We show that this result is tight by proving that the integrality gap of the LP
is Ω(log �) for �-layered directed graphs.

Section 3.1 is devoted to vaccination strategies when the underlying graph is a
tree. This special case has received a lot of attention [21,26], is computationally
difficult [15], and is in fact a generalization of a complex scheduling problem (de-
tails in the full version [1]). For this special case we show that both the spreading
and the non-spreading models are equivalent, so the stronger results from Sec-
tion 2 hold for the non-spreading model as well. In addition, our algorithm for
layered graphs also implies a O(log h) approximation algorithm for MinBudget

on trees with height h. Note that this is stronger than the O(log n) algorithm
we have for general graphs in the spreading model.

Related Work. Questions about epidemic propagation have been studied in sev-
eral fields, (e.g., [4,29]), although most of this research models the epidemic as a
dynamic system and ignores the effect of the network structure. Recently, a few
groups have considered the spread of viruses or ideas on Internet-like topologies,
such as small-world networks [32] and preferential attachment models [5, 25].
The papers [10, 13] study targeted vaccinations in this context, and show that
they can be used to significantly reduce the effect of an epidemic. These studies
assume certain properties of the networks (based on where these networks arise
from).

Various recent papers consider modeling vaccination by using graph cuts. For
example, the work of Hayrapetyan et al. [22] and others [3, 12] fully utilizes
the social-network structure to “cut off” and contain various diffusive processes
in a social network. As mentioned earlier, all this work is only concerned with
vaccinating a set of nodes before the infection begins, however, and does not
have the temporal component of the Firefighter problem. A lot more work has
been done on maximizing the spread of an infection (instead of trying to stop it
using vaccinations), by selecting the best nodes to infect initially [11, 23].

The Firefighter problem was first introduced by B. Hartnell [20], and there
has been much work on this problem; see, e.g., [16] for a survey. However, much
of the work has focused on special graph structures, such as grids [9, 18, 31],
and that too usually with the MaxSave objective. The Firefighter problem is
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NP-complete even when the underlying graph is a tree [15], although [21] and [26]
give approximation algorithms for this case, and [28] shows how to solve the
problem in in polynomial time for special cases of trees.

We have recently learnt that, independent of our work, Chalermsook and
Chuzhoy [7] obtain some similar results for the non-spreading version of the
MinBudget problem. In particular, they also give an O(log �)-approximation
for �-layered directed graphs, and obtain an improved approximation for trees.

2 Spreading Vaccination Model

We first show a few simple hardness results about this model, and then give
approximation algorithms for both our objectives. Due to lack of space, detailed
proofs appear in the full version [1] of the paper.

2.1 General Properties

We make certain useful observations about this model. Let N(v, i) be the set of
all the nodes that are a distance of at most i from v.

Lemma 1. At time τ , all nodes in the neighborhood N(s, τ) will either be vac-
cinated or infected.

Now, since all the nodes in the neighborhood N(s, τ) will be either infected or
vaccinated by time τ , any optimal vaccination strategy would not vaccinate any
node in this neighborhood at time > τ . Since any valid strategy can vaccinate
only B nodes at any time-step, it means that an optimal strategy would vaccinate
at most B · τ nodes directly in the neighborhood N(s, τ).

We define a set Γ (v) for every node v ∈ V by

Γ (v) = {(u, τ)|u ∈ V and0 < τ ≤ (d(s, v) − d(u, v))}

The tuple (v, τ) essentially represents the event of vaccinating node v at time τ .

Theorem 1. A node v ∈ V is vaccinated by the vaccination strategy Ψ iff
Ψ ∩ Γ (v) 
= ∅.

This theorem tells us that vaccinating an element of Γ (v) is exactly what is
needed to save a node v, and this provides insight into the structure of the
problem.

2.2 Approximation for MaxSave

As we explain in the full version of the paper, the MaxSave problem can be
modeled as a problem of maximizing a submodular set function on a collection
of sets that form a partition matroid. On the basis of this knowledge, techniques
like the greedy algorithm [17] can be used to obtain a 1

2 approximation for
MaxSave, while the randomized algorithm of [6] can be used to obtain a (1−1/e)
approximation.
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Theorem 2. There is a randomized algorithm which gives with high probability
a (1 − 1/e)-approximation for the MaxSave problem. Additionally, a simple
greedy algorithm gives a 1

2 -approximation.

The gist of the proof is as follows. A partition matroid consists of disjoint sets
E1, . . . , Ek, and a set S is called independent if |S∩Ei| ≤ �i, for some given num-
bers �1, . . . , �k. We argue that one can actually consider vaccination strategies
that satisfy only property (ii) in Definition 1. This set of strategies forms a par-
tition matroid, since we can only choose at most B nodes at every time-step to
vaccinate (so �i = B for all i). We next show that the function f(Ψ) defined (suit-
ably) as the number of nodes saved by using the (possibly invalid) vaccination
strategy Ψ is submodular, by using Theorem 1, and if Ψ satisfies the budget-
constraint then there is a valid vaccination strategy Ψ ′ such that f(Ψ) = f(Ψ ′).
Thus, we can use the results of [6, 17] on maximizing a submodular function
subject to a matroid constraint to obtain the desired approximations.

We note that a (1 − 1/e)-approximation can also be obtained by applying
a randomized rounding technique similar to [26] to a modified version of the
MaxSave problem. We believe, however, that modeling the problem using par-
tition matroids and submodular functions is fruitful since it provides further
insight into the problem, and also yields a rather simple and efficient, combina-
torial, deterministic, 1

2 -approximation algorithm.

2.3 Approximation for MinBudget

Consider an instance of MinBudget. First, suppose that we know the optimal
budget B that is needed in order to save all nodes of T . Below we give an
algorithm that saves all nodes in T using a budget of at most B log n.

By slight adjustments to the proof of Theorem 2, we know that by running
the greedy algorithm with budget B, we save at least half of the nodes in T . The
greedy algorithm in this case chooses the nodes to vaccinate in each time-step
one at a time, always picking the node that saves the most nodes of T . For this
purpose the greedy algorithm needs to know exactly which nodes will be saved
if a node u is vaccinated at time τ , which we can compute in poly-time. Once
finished with the first time-step, the algorithm goes on to the second, and so on.

The complete algorithm is as follows. Repeat the following steps log n times:

– vaccinate nodes in graph G using the greedy algorithm with budget B.
– Construct graph G1 from G by removing all the vertices that were vaccinated

directly and indirectly in the previous step. Let T1 be the nodes of T that
are in G1.

– Set G = G1 and T = T1.

It is clear that the new graph G1 will always contain the original source node
s as it is never vaccinated by the greedy algorithm. The log n applications of the
greedy algorithm yield an algorithm that vaccinates B log n nodes at each step,
since at each step, we can simply combine the (at most) B nodes that the greedy
algorithm vaccinates at that time step in the log n runs. We call the resulting
algorithm, the RepGreedy algorithm.
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Theorem 3. The RepGreedy algorithm saves all nodes of T by vaccinating at
most B log n nodes per time-step.

Finally, to obtain an O(log n)-approximation algorithm without knowing B, we
simply do a binary search on B, and run RepGreedy for every choice of B.

We complement the above result with the following inapproximability result.

Theorem 4. The MinBudget problem is as hard as set cover, and hence,
cannot be approximated in poly-time to a factor better than log n unless P=NP.

3 Non-spreading Vaccination Model

The non-spreading model is considerably more difficult than the spreading
model. One of the main reasons is that Lemma 1 (or any simple modification
of it) is no longer true. The MaxSave problem is NP-complete for bipartite
graphs [28] and for cubic graphs (3-regular) [24]. The MaxSave problem is NP-
complete even when restricted to trees with maximum degree three [15]. We
prove the following about the inapproximability of MaxSave

Theorem 5. The MaxSave(G(V,E),s,B,T) problem cannot be approximated
in poly-time to the factor of nα where n = |V | and α < 1, unless P=NP.

We introduce an auxiliary problem, Save-t, which asks whether a specified node
t can be saved by vaccinating one node (other than t) at a time. The NP-
completeness of this problem follows from known NP-completeness proofs. We
then give a gap introducing reduction from the Save-t problem to the MaxSave

problem such that if there exists any nα approximation for the MaxSave prob-
lem then we can solve the Save-t problem in polynomial time. The proof appears
in full version.

In the remainder of the section, we focus on the MinBudget problem. Note
that we need to save all the nodes in a set T with the minimum number of
vaccinations required per time instant. To simplify notation, we consider the
following equivalent problem: we add a new node t with edges from all nodes in
T to t, and consider the problem of saving t with minimum budget under the
additional constraint that t itself cannot be vaccinated. We call s the source and
t the sink. Let P denote the collection of all s-t paths.

Minimize B (Primal)

s.t.
∑

v∈V

xτ
v ≤ B ∀τ = 1, . . . , n

k∑

i=1

i∑

τ=1

xτ
vi

≥ 1 ∀(s, v1, · · · , vk, t) ∈ P

x ≥ 0.

Maximize
∑

P∈P
fP (Dual)

s.t.
n∑

τ=1

zτ ≤ 1

∑

P∈P:v∈P (τ)

fP ≤ zτ ∀v ∈ V, τ =1, . . . , n

z, f ≥ 0.
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(Primal) gives the LP relaxation of the problem, and (Dual) is the dual of
this LP. The primal LP has a variable xτ

v that indicates whether vertex v is
vaccinated at time τ or not. We consider τ going up to n since it is clear that
there is no need to vaccinate any vertex after time n. The first constraint bounds
the number of vaccinations at every time step. The second constraint says that
for every path (s, v1, · · · , vk, t) to the sink t, one of the nodes, say vi, must be
vaccinated by time i. This is a necessary and sufficient condition for this path not
to transmit the infection to t. In the dual, we have a flow-variable fP for every
s-t path P . The second constraint in the dual is a bit subtle: it says that for
every τ , the total flow through a vertex v via paths such that v lies at a distance
τ or more from s on the path, is at most zτ . We use P (τ) to denote the portion
of the path from the τth vertex to t; that is, if P = (s, v1, . . . , vτ , . . . , vk, t), then
P (τ) = (vτ , . . . , vk, t).

Although the primal LP above has exponentially many constraints, it can
be solved in polynomial time since one can give an efficient separation oracle
for the LP. Strictly speaking the LP (Primal) may have an integrality gap of
n = |V |. However note that if OPT denotes the optimal value of (Primal), then
in fact �OPT� is a lower bound on the minimum budget, and by comparing the
budget of our solution against this lower bound, we prove the following theorems.
Similarly, when we say “integrality gap” below, we mean the worst-case ratio of
the (integer) optimum budget and �OPT�.
Theorem 6. In the non-spreading model, there is a 2

√
n-approximation for the

MinBudget problem in general graphs.

(Proof Sketch) At a high level, the algorithm recognizes the set of vertices to
be vaccinated by time i by looking at the fraction vaccinated by time i. If this
fraction is larger than 1/

√
n, then the node is vaccinated by day i. We can

then show that in the remaining graph, infection can reach t only using paths
of length longer than

√
n, and thus there is a cut of size

√
n which separates s

and t. Thus vaccinating this cut as well completes the algorithm. The analysis
is slightly subtle and is deferred to the full version.

We now present an improved approximation algorithm for layered graphs.
An s-t directed layered graph with � layers is one where (i) s has only outgoing
edges, t has only incoming edges; (ii) all nodes except t can be partitioned into
sets L0 := {s}, L1, L2, . . . , L� such that for every node v ∈ Li+1 (so v 
= t) and
every incoming edge (u, v) of v, we have u ∈ Li. Note that now we only need to
consider τ = 1, . . . , � in (Primal) and (Dual). Let Hr = 1 + 1/2 + · · · + 1/r.

Theorem 7. There is an H�-approximation for the MinBudget problem in
s-t directed �-layered graphs. Furthermore, there are �-layered instances showing
that the integrality gap of (Primal) is at least H� = Ω(log �).

(Proof Sketch) The algorithm sets capacity 1/iH� on each vertex of layer i, for
all i, and simply computes a minimum s-t vertex cut. It then divides the cut into
� pieces, corresponding to the vertices vaccinated on day i. Using the dual LP,
we can show that our solution is within H� of the LP optimum. The integrality
gap example is a similar layered graph. We defer the details to the full version.
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3.1 Vaccination on Trees

When G is a tree rooted at s, the following observation establishes the equiva-
lence between the spreading model and non-spreading model. For the spreading
model on general graphs we defined a function Γ (v) as a set of all tuples (u, τ)
such that if u is vaccinated directly at time τ then the node v will be saved. For
a tree, it is easy to observe that a node v will be saved if any of its ancestors is
vaccinated directly before the infection reaches v. Therefore, the optimal strat-
egy will be the same on a given tree irrespective of the vaccination model being
spreading or non-spreading. This implies that all the positive results from Sec-
tion 2 also hold for trees. Since the MinBudget problem on trees with height
h yields an instance of MinBudget on an s-t directed graph with h layers, we
immediately obtain the following Corollary of Theorem 7.

Corollary 1. There is an O(log h)-approximation for MinBudget on trees,
where the set T is the set of leaves and h is the height of the tree.
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Abstract. We give constant-factor approximation algorithms for com-
puting the optimal branch-decompositions and largest grid minors of
planar graphs. For a planar graph G with n vertices, let bw(G) be the
branchwidth of G and gm(G) the largest integer g such that G has a
g × g grid as a minor. Let c ≥ 1 be a fixed integer and α, β be arbitrary
constants satisfying α > c + 1.5 and β > 2c + 1.5. We give an algo-

rithm which constructs in O(n1+ 1
c log n) time a branch-decomposition

of G with width at most α bw(G). We also give an algorithm which con-

structs a g×g grid minor of G with g ≥ gm(G)
β

in O(n1+ 1
c log n) time. The

constants hidden in the Big-Oh notations are proportional to c
α−(c+1.5)

and c
β−(2c+1.5) , respectively.

Keywords: Graph algorithms, branch-decompositions, graph minors.

1 Introduction

The notions of branchwidth and branch-decompositions are introduced by
Robertson and Seymour [19] in relation to the more celebrated notions of
treewidth and tree-decompositions [17,18] in the graph minor theory. Grid mi-
nors also play an important role in the graph minor theory. All those notions have
important algorithmic applications. A graph of small treewidth/branchwidth
admits efficient dynamic programming algorithms for a vast class of problems
on the graph [2,5]. A tree-/branch-decomposition based dynamic programming
algorithm usually runs in exponential time in the width of the tree-/branch-
decomposition. Grid minors are fundamental in many algorithms studied in the
algorithmic graph minor theory and bidimensionality theory [8,9,10,11]. The ra-
tio of the treewidth or branchwidth of a graph over the largest size of the grid
minor of the graph typically appears in the exponent of the running time of
those algorithms.

For an arbitrary graph G, the treewidth tw(G) of G and the branchwidth
bw(G) of G are linearly related by inequalities bw(G) ≤ tw(G) + 1 ≤ � 3bw(G)

2 �
and there are simple translations between tree- and branch-decompositions that
prove these inequalities [19]. For general graphs, the problem of deciding if a given

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 984–993, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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graph has treewidth smaller than k is NP-complete, if k is part of the input [1].
If k is upper-bounded by a constant, then both the decision problem and the
optimal decomposition problem can be solved in linear time [6], although the
dependency of the time on k is huge. There are exact parallels for branchwidth
and branch-decompositions to these results: NP-completeness [22] and a linear-
time algorithm for fixed k [7]. For an important subclass of graphs, planar graphs,
the decision problem for branchwidth can be solved in O(n2) time by the well-
known rat-catching algorithm of Seymour and Thomas [22] and optimal branch-
decompositions can be constructed in O(n3) time [14,22], while it is not known
whether the problem of deciding the treewidth of a planar graph is polynomially
solvable or NP-complete (the problem is widely believed NP-hard though).

Approximation algorithms for computing the width and minimum-width
decompositions have also been extensively studied (see recent work [3,4] for
literature). Because of the relationship between treewidth/decomposition and
branchwidth/decomposition stated above, the approximation problems for these
two types of width/decomposition are almost equivalent. For general graphs, the
best known approximation factor achievable in polynomial time is O(

√
log k)

[12], where k is the optimal width, and constant-factor approximation algo-
rithms take time exponential in the optimal width [3,20]. For planar graphs, the
best known approximation result for treewidth is the obvious O(n2 log n) time
1.5-approximation algorithm, which uses the rat-catching algorithm of Seymour
and Thomas and a binary search. Tree-decompositions take O(n3) time for 1.5-
approximation with a similar approach. Bodlaender, Grigoriev, and Koster give
another constant-factor approximation algorithm for treewidth of planar graphs
that runs in O(n2 log n) time but uses less memory [4].

Computing large grid minors of planar graphs is a key ingredient in the al-
gorithmic graph minor theory and bidimensionality theory [8,9,10,11]. It is not
known whether a largest grid minor can be computed in polynomial time for pla-
nar graphs. For a graph G, let gm(G) denote the largest size of a grid minor of G,
that is, the largest integer g such that G has a g×g grid minor. From the defini-
tion of branchwidth (see Section 2), gm(G) ≤ bw(G). The branchwidth bw(G) is
also upper-bounded by some function of gm(G). For general graphs, the known
upper bound is bw(G) ≤ 202(gm(G))5 , while for planar graphs a linear bound
bw(G) ≤ 4gm(G) is known [21]. This linear bound gives an algorithm which
finds a g × g grid minor with g ≥ gm(G)

4 for planar graphs1. An O(n2 log n)
time algorithm which gives the same bound of g ≥ gm(G)

4 is also known [4].
The inequalities tw(G) ≤ � 3bw(G)

2 � and bw(G) ≤ 4gm(G) give a linear bound
tw(G) ≤ 6gm(G) for planar graphs. This bound is improved to tw(G) ≤ 5gm(G)
[13,24]. These bounds bw(G) ≤ 4gm(G) and tw(G) ≤ 5gm(G) for planar graphs
has been exploited in many algorithms developed under the bidimensionality
theory, which work on a large grid minor if they find one and otherwise use a

1 An O(n2 log n) time implementation can be realized by using the rat-catching algo-
rithm of Seymour and Thomas [22] to construct an oracle for the tangles which are
required in constructing the grid minor.
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tree/branch-decomposition of small width. In those applications, improving the
coefficient in the bound is important, as it appears in the exponent of the running
time of the algorithms. Recently, the present authors have improved the bound
showing that bw(G) ≤ 3gm(G) + 2 for planar graph G [15]. From the relation
tw(G) ≤ � 3bw(G)

2 �, this gives tw(G) ≤ 4.5gm(G)+2 for planar graphs, improving
the previous tw(G) ≤ 5gm(G) results of [13,24]. The algorithm implied by their
proof, given a planar graph G on n vertices and a positive integer k, runs in
O(n2) time and either finds a k × k grid minor or certifies that bw(G) ≤ 3k − 1.
This algorithm yields a 3-approximation algorithm for finding the largest grid
minor of planar graphs which is the best known in terms of the approximation
ratio but not faster than other known constant-factor approximation algorithms.
For branchwidth, the result may not have significant algorithmic consequences,
because of the rat-catching algorithm of Seymour and Thomas mentioned earlier.

The purpose of this paper is to build on the ideas in [15] to develop faster
constant-factor algorithms both for branch-decompositions and for finding large
grid minors of planar graphs. Our results are the fastest known constant-factor
approximation algorithms for both of the problems. To gain in speed, we sacrifice
the approximation ratio. In fact, our algorithms are parameterized and provide a
trade-off between the running time and the approximation ratio. Our algorithm
for grid minors actually finds a more general cylinder minor from which a grid
minor can be straightforwardly derived. A k× k′ cylinder is a cartesian product
of a cycle on k vertices and a path on h vertices. Our main results are expressed
in the following theorem.

Theorem 1. Let c ≥ 1 be a fixed integer, δ > 0 be a constant, and λ = 1
2 or

1. There is an algorithm which, given a planar graph G with n vertices and an
integer k, in O(n1+ 1

c ) time constructs either a branch-decomposition of G with
width at most (2λ(c + 1)+ 1

2 + δ)k or a k×�λk� cylinder minor of G, where the
constant hidden in the Big-Oh notation is proportional to c

δ .

Because a k × �λk� cylinder has branchwidth min{2�λk�, k} [15], Theorem 1
with λ = 1

2 , together with a binary search, implies the following result.

Theorem 2. Let c ≥ 1 be a fixed integer, δ > 0 be an arbitrary constant, and
α = δ+c+1.5. Given a planar graph G with n vertices, we can in O(n1+ 1

c log n)
time construct a branch-decomposition of G with width at most α bw(G).

Theorem 2 can be readily extended to planar hypergraphs. This theorem natu-
rally implies an O(n1+ε) time constant-factor approximation algorithm for tree-
decompositions of planar graphs, with an additional multiplicative factor of 1.5.
Since a k × �λk� cylinder has a k × �λk� grid minor, taking λ = 1, the following
result can be obtained from Theorem 1 and a binary search.

Theorem 3. Let c ≥ 1 be a fixed integer, δ > 0 be an arbitrary constant, and
β = δ+2c+1.5. Given a planar graph G with n vertices, we can in O(n1+ 1

c log n)
time construct a g × g grid minor of G with g ≥ bw(G)

β .

The next section gives preliminaries of the paper. We describe the basic approach
for our algorithm in Section 3. We prove Theorem 1 in Section 4.
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2 Preliminaries

A hypergraph G consists of a set V (G) of vertices and a set E(G) of edges,
where each edge e of E(G) is a subset of V (G) with at least two elements. For
a set E ⊆ E(G) of edges let V (E) denote ∪e∈E e. A hypergraph G is a graph if
|e| = 2 for every edge e ∈ E(G). We say a vertex v and an edge e are incident
to each other if v ∈ e. We say that two edges e1 and e2 are incident to each
other if e1 ∩ e2 
= ∅. A hypergraph H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A sub-hypergraph H of G is induced by V ⊆ V (G) if V (H) = V
and E(H) = {e ∈ E(G)|VG(e) ⊆ V }. A subgraph H of G is induced by E ⊆ E(G)
if E(H) = E and V (H) = V (E). We denote by G[E] the subgraph induced by E.

For a hypergraph G and a subset A ⊆ E(G) of edges, we denote E(G) \A by
A when G is clear from the context. A separation of hypergraph G is an ordered
pair (A, A) of subsets of E(G). For each A ⊆ E(G), we denote by ∂(A) the
vertex set V (A) ∩ V (A). The order of separation (A, A) is |∂(A)| = |∂(A)|.

The notions of branchwidth and branch-decomposition are introduced by
Robertson and Seymour [19]. A branch-decomposition of hypergraph G is a pair
(φ, T ) where T is a tree each internal node of which has degree 3 and φ is a
bijection from the set of leaves of T to E(G). Consider an edge e′ of T and let
L1 and L2 denote the sets of leaves of T in the two respective subtrees of T
obtained by removing e′. We say that the separation (L1, L2) is induced by this
edge e′ of T . We define the width of the branch-decomposition (φ, T ) to be the
largest order of the separations induced by edges of T . The branchwidth of G,
denoted by bw(G), is the minimum width of all branch-decompositions of G. In
the rest of this paper, we identify a branch-decomposition (φ, T ) with the tree
T , leaving the bijection implicit and regarding each leaf of T as an edge of G.

The contraction of an edge e in a hypergraph G is to remove e from G, identify
all vertices of e by a new vertex, and make all edges of G incident to e incident to
the new vertex. A hypergraph H is a minor of hypergraph G if H is isomorphic
to a hypergraph obtained from G through a (possibly empty) sequence of edge
contractions and edge/vertex deletions (which take the subgraphs induced by
the remaining sets of edges/vertices).

It suffices to prove Theorem 1 for biconnected planar graphs since if a planar
graph G is not biconnected, the problems of finding branch-decompositions and
grid minors of G can be solved individually for each biconnected component.

Let Σ be a fixed sphere. A planar embedding of a hypergraph G is a mapping
ρ : V (G) ∪ E(G) → Σ ∪ 2Σ satisfying the following properties.

– For u ∈ V (G), ρ(u) is a point of Σ, and for distinct u, v ∈ V (G), ρ(u) 
= ρ(v).
– For each edge e ∈ E(G), if e = {u, v} then ρ(e) is a closed segment with

end points ρ(u) and ρ(v), otherwise (|e| ≥ 3) ρ(e) is a topological disc (a
simply connected closed region) of Σ and for each vertex u ∈ e, ρ(u) is on
the boundary of ρ(e).

– For distinct e1, e2 ∈ E(G), ρ(e1) ∩ ρ(e2) = {ρ(u)|u ∈ e1 and u ∈ e2}.

A hypergraph is planar if it has a planar embedding. A plane hypergraph is
a pair (G, ρ), where ρ is a planar embedding of G. We may simply use G to
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denote the plane hypergraph (G, ρ), leaving the embedding ρ implicit. For a
plane hypergraph G, each connected component of Σ \ (∪e∈E(G)ρ(e)) is a face
of G.

Let G be a plane hypergraph. We say that a curve μ on the sphere Σ is G-
normal if μ intersects with edges of G only at vertices of G. We may use normal
for G-normal, leaving G implicit. The length of a normal curve μ, denoted by
|μ|, is the number of connected components of μ \

⋃
v∈V (G) ρ(v). For vertices

u, v ∈ V (G), we define the normal distance ndG(u, v) to be the length of the
shortest normal curve between ρ(u) and ρ(v). A noose of G is a closed normal
curve on Σ that does not intersect with itself. A minimum noose satisfying
certain properties is a noose with the minimum length satisfying the properties.

Let ν be a noose of G and let R1 and R2 be the two open regions of the sphere
separated by ν. Then, ν induces a separation (A, A) of G, with A = {e ∈ E(G) |
ρ(e) ⊆ R1 ∪ ν} and A = {e ∈ E(G) | ρ(e) ⊆ R2 ∪ ν}. We also say that noose
ν induces edge-subset A of G if ν induces a separation (A, A) having A on one
side. We call a separation or an edge-subset noose-induced if it is induced by
some noose. We say a noose separates edge sets X and Y if the noose induces a
separation (A, A) with X ⊆ A and Y ⊆ A.

Let G be a plane hypergraph and let A be a noose-induced edge-subset of G.
We denote by G|A a hypergraph defined by V (G|A) = (V (G) \ V (A)) ∪ ∂(A)
and E(G|A) = (E(G) \ E(A)) ∪ {∂(A)}. Note that in G|A, we replace all
the hyperedges of A by a single hyperedge ∂(A). We also assume that the
embedding of G|A is naturally derived from that of G by “painting out” the
drawing of the subgraph A by a disc representing hyperedge ∂(A). For a col-
lection A = {A1, . . . , Ar} of mutually disjoint edge-subsets of G, we denote
(. . . (G|A1)| . . .)|Ar by G|A.

3 Basic Approach

We first give some known results on which our algorithm relies and the basic ap-
proach of our algorithm. Let G be a plane hypergraph, (A, A) a noose-induced
separation of G, and TA and TA branch-decompositions of G|A and G|A, re-
spectively. We define TA + TA to be the tree obtained from TA and TA by first
identifying the leaf of TA and the leaf of TA both corresponding to ∂(A), joining
the two edges incident to these leaves into one edge and removing the identified
leaves. The following lemma is straightforward from the definition of branch-
decompositions.

Lemma 1. Let G be a plane hypergraph, (A, A) a noose-induced separation of
G, and TA and TA branch-decompositions of G|A and G|A respectively. Then
TA + TA is a branch-decomposition of G with width max{|∂(A)|, kA, kA} where
kA is the width of TA and kA is the width of TA.

We use this lemma to recursively construct branch-decompositions of a given
plane hypergraph. For each recursive step, we need some known results from the
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rat-catching characterization of the branchwidth of planar hypergraphs due to
Seymour and Thomas [22].

Let G be a plane hypergraph and l > 0 an integer. We say that a vertex
u ∈ V (G) directly captures with order l an edge e ∈ E(G) if the following holds:

1. There is a noose ν which induces separation ({e}, E(G) \ {e}).
2. There are two vertices v1, v2 ∈ e that separates ν into two normal curves μ1

and μ2 such that ndG(u, v1) + ndG(u, v2) + max{|μ1|, |μ2|} < l.

The rat-catching characterization of the branchwidth of a plane hypergraph G
with |e| < k for every e ∈ E(G) implies that if there is a vertex u of G that
directly captures with order l every edge of G, then the branchwidth of G is at
most max{l−1, k−1} [22]. Further, Tamaki [23] shows that, given such a vertex
u, a branch-decomposition of width max{l − 1, k − 1} can be constructed in
O(n) time, where n is the number of vertices of G. The following lemma directly
follows from these results.

Lemma 2. [23] Let G be a plane hypergraph with n vertices and |e| < k for
every e ∈ E(G). If there is a vertex u of G such that ndG(u, v) ≤ h for every
vertex v ∈ V (G) then a branch-decomposition of G with width at most max{2h+
�k−1

2 �, k − 1} can be constructed in O(n) time.

The following lemma (an application of Lemma 3.5 of [15]) gives a base for
constructing the cylinder minors. A proof for the lemma can be found in [16].

Lemma 3. Let G be a plane graph and k, k′ > 0 integers. Let X and Y be edge
sets of G satisfying the following conditions.
1. Each of separations (X, X) and (Y, Y ) is noose-induced.
2. G[Y ] is biconnected.
3. For any vertex u ∈ ∂(X) and any vertex v ∈ ∂(Y ), ndG(u, v) ≥ k′.
4. There is no noose of G with length < k that separates X and Y .
Then G has a k × k′ cylinder as a minor and such a minor can be constructed
in time linear in |V (X ∩ Y )|.

Let G be a plane hypergraph and u a vertex of G. For any positive integers h
and k, a collection A of noose-induced edge-subsets of G is (k, h)-shallowing for
(G, u), if it satisfies the following conditions.

1. u ∈ V (A) for every A ∈ A.
2. A ∩ B = ∅ for every pair of distinct elements A, B ∈ A.
3. |∂(A)| < k for every A ∈ A.
4. For each vertex v of G|A, ndG(u, v) ≤ h.

A (k, h)-shallowing collection A of noose-induced edge-subsets is used to re-
duce the problem of decomposing G, via Lemma 1, to subproblems of decom-
posing G|A for each A ∈ A. Based on this notion of (k, h)-shallowing collection,
we give a recursive procedure used in our algorithm. In this procedure, the input
G and k to the algorithm are global. The precise value of parameter h used in
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the algorithm shall be specified later. For now, we simply remark that h = O(k).
The parameter λ is either 1

2 or 1.

Procedure Branch-Grid(U, u)
Input: A noose-induced edge-subset U of G s.t. G|U is biconnected, u ∈ ∂(U).
Output: Either a branch-decomposition of G|U of width at most 2h + k

2 or a
k × �λk� cylinder minor of G.
Steps:

1. If ndG|U (u, v) ≤ h for each v ∈ V (G|U) then apply Lemma 2 to find a
branch-decomposition of G|U . Otherwise, proceed to the next step.

2. Try to find a collection A of noose-induced edge-subsets of G|U that is (k, h)-
shallowing for (G|U, u). When unsuccessful, we are able to apply Lemma 3
to find a cylinder minor of G and terminate the algorithm, as we prove later.
If we find such a collection, proceed to the next step.

3. For each A ∈ A, choose a vertex va ∈ ∂(A) of graph G|A and call Branch-
Grid(A, va) to construct a branch-decomposition TA or a cylinder minor of
G|A.
If we find a branch-decomposition for every A ∈ A, apply Lemma 2
to (G|U)|A to construct a branch-decomposition T0 of (G|U)|A and use
Lemma 1 to combine these branch-decompositions TA, A ∈ A, and T0 into
a branch-decomposition T of G|U and return T .

To bound the number of recursive calls in which each fixed vertex is involved
in the computation of Step 2, we enforce some “progress” when we recurse on
each noose-induced edge-subset in A. Let u be a vertex of G and let d > 0 be
arbitrary. We say that a noose-induced edge-subset A of G is d-progressive for
(G, u) if it satisfies the following conditions.

1. u ∈ A.
2. Let va be an arbitrary vertex in ∂(A) of H = G|A and let v be an arbitrary

vertex of G. Then the following holds:
(a) If ndG(u, v) ≤ d then v ∈ V (A).
(b) If v ∈ V (H) then ndH(va, v) ≤ ndG(u, v) − d.

We say a collection of noose-induced edge-subsets is d-progressive for (G, u) if
each of its members is d-progressive for (G, u). Informally, if a noose-induced
edge-subset A of G|U is d-progressive for (G|U, u) and Branch-Grid(U, u) makes
a recursive call Branch-Grid(A,va), then each vertex of G|U gets closer to va in
(G|U)|A than to u in G|U by the amount of d, as long as it appears in (G|U)|A.
This is how we enforce a progress in the recursion.

4 Algorithm Details

We now give the details of our algorithm, including the precise value of parameter
h which depends on a positive integer c and a positive constant δ.

For a plane hypergraph G, a vertex u of G, and a nonnegative integer d,
let reachG(u, d) =

⋃
{v ∈ V (G)|ndG(u, v) ≤ d} denote the set of vertices with
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normal distance d or smaller from u. Let λ = 1
2 or 1. We define d1 = ( δ

2 +1)�k−1
2 �

and for positive integer i ≥ 2, di = di(k) = d1 + (i − 1)(�λk� − 1).
Theorem 1 relies on the following lemma which guarantees that we can find a

sufficiently shallowing and progressive collection of noose-induced edge-subsets
during the recursion, as long as bw(G) < k. A sketch of the proof for the lemma
shall be given later.

Lemma 4. Let c ≥ 1 be a fixed integer and δ an arbitrary positive con-
stant. Let G be a biconnected plane graph, k a positive integer, U a noose-
induced edge-subset of G with |∂(U)| < k, and u an arbitrary vertex in ∂(U)
of G|U . Let M denote the number of vertices of G|U in reachG|U (u, dc+1). If
reachG|U (u, dc+1) 
= V (G|U), we can in O(M1+ 1

c ) time either
(1) find a δ

2k-progressive and (k, dc+1)-shallowing collection A of noose-induced
edge-subsets for (G|U, u) such that for each A ∈ A, G[A] is biconnected, or (2)
find a k × �λk� cylinder minor of G|U .

In executing Step 2 of Procedure Branch-Grid, we invoke Lemma 4 and obtain a
d-progressive and (k, h)-shallowing collection of noose-induced edge-subsets with
d = δ

2k and h = dc+1. When the search for such a collection is unsuccessful,
Lemma 4 ensures that a k × �λk� cylinder minor of G is found. Theorem 1
follows from the following lemma which in turn is proved assuming Lemma 4 is
true. A proof for the lemma can be found in [16].

Lemma 5. Given a biconnected plane graph G and an integer k ≥ 3, suppose
Branch-Grid({e}, u) is called, where e is an arbitrary edge of G and u ∈ e. The
algorithm either gives a branch decomposition of G with width at most 2dc+1 + k

2
or a k × �λk� cylinder minor of G. The execution time of this call is O(n1+ 1

c ),
where n is the number of vertices of G.

Now we give a proof sketch for Lemma 4 to complete the proof of Theorem 1.
We first describe the main ideas. Let G, U and u be as in Lemma 4. For each
subgraph X of G|U that are at distance h away from u (a precise definition is
given later), we try to find a separation of order smaller than k that separates
X from u (this can be done in linear time by solving the vertex-disjoint Menger
problem on plane hypergraphs, details can be found in [16]). If we fail to find
such a separation for any X , then by Lemma 3, we obtain a cylinder minor of G
that certifies bw(G) ≥ k. If we do obtain separation (AX , AX) of order smaller
than k for each X that separates X from u, then we hope that these edge-subsets
AX constitute a (k, h)-shallowing collection for (G | U, u). There are two issues
to be resolved in this approach.

1. These subsets may not be disjoint with each other as required by the defini-
tion of (k, h)-shallowing collections.

2. Even though the algorithm for the vertex-disjoint Menger problem runs in
linear time, the computation must be repeated for each X and may result
in a quadratic running time.

The first issue is resolved by Lemma 5.2 of [16]. The second issue is resolved by
a layered tree approach described below combined with Lemma 5.1 of [16] that
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helps localizing the graph on which the algorithm for the vertex-disjoint Menger
problem is executed.

Let G and u be as above. The layer tree for (G, u), denoted by LT(G, u), is
defined as follows. Recall that d1 = ( δ

2 + 1)�k−1
2 � and for positive integer i ≥ 2,

di = di(k) = d1 + (i − 1)(�λk� − 1).

1. The root of the tree is V (G).
2. Each biconnected component of G[V (G) \ reachG(u, d1)] is in level 1 of the

tree and is a child node of the root.
3. For each i, 2 ≤ i ≤ c, each biconnected component X of G[V (G) \

reachG(s, di)] is in level i of the tree and is a child node of the connected
component of G[V (G) \ reachG(s, di−1)] that contains X .

Let X be a non-root node of LT(G, u) and Y a child node of X . Since each
vertex u of G in X is of normal distance at least di − di−1 + 1 ≥ k

2 from each
vertex v of G in V (Y ) and G[Y ] is biconnected, we can apply Lemma 3 to obtain
a noose-induced edge-subset A with ∂(A) < k separating X and Y , assuming
bw(G) < k. Our strategy is to find at least one such noose along the path from
each leaf in level c + 1 to the root.

Let m denote the number of leaves in level c + 1 of LT(G, u). We classify
nodes of LT(G, u) as crowded or uncrowded by induction on its tree structure.
We classify each leaf in level c+1 as crowded. We classify a node in other levels as
crowded if it has more than m

1
c crowded child nodes. Otherwise it is uncrowded.

We call a parent-child pair (X, Y ) processable, if X is uncrowded, Y is crowded,
and no ancestor of X is crowded. In LT(G, u), for every leaf Z in level c + 1, the
path from the root to Z contains exactly one processable parent-child pair.

To “process” a parent-child pair (X, Y ), that is, to find a minimum noose
separating X and Y , we solve the vertex-disjoint Menger problem for planar
hypergraphs. To localize the problem, we define a hypergraph H(X, Y ) for each
parent-child pair X, Y in LT(G, u) as follows. Let i be the level of node X in
LT(G, u). Then, H(X, Y ) = (G|X)|B, where B is the collection of biconnected
components of X \ reachG(u, di+1). Let ν be a minimum noose in G separating
X and a Y ∈ B in G and suppose |ν| < k. By Lemma 5.1 of [16], ν is also
a minimum noose separating the edge ∂(X) and the edge ∂(Y ) in H(X, Y ).
Thus, running the algorithm for the vertex-disjoint Menger problem in H(X, Y )
is sufficient for deciding if there is a noose of G of size smaller than k separating
X and Y and, if there is, finding such a noose.

From the approach described above we get Lemma 4 (the proof details can
be found in [16]).
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Abstract. Let P be a set of n points in the Euclidean plane and let O
be the origin point in the plane. In the k-tour cover problem (called fre-
quently the capacitated vehicle routing problem), the goal is to minimize
the total length of tours that cover all points in P , such that each tour
starts and ends in O and covers at most k points from P .

The k-tour cover problem is known to be NP-hard. It is also known
to admit constant factor approximation algorithms for all values of k and
even a polynomial-time approximation scheme (PTAS) for small values
of k, k = O(log n/ log log n).

In this paper, we significantly enlarge the set of values of k for which

a PTAS is provable. We present a new PTAS for all values of k ≤ 2logδ n,
where δ = δ(ε). The main technical result proved in the paper is a novel
reduction of the k-tour cover problem with a set of n points to a small
set of instances of the problem, each with O((k/ε)O(1)) points.

1 Introduction

The k-tour cover problem (k-TC), is a very natural and well known generalization
of the traveling salesperson problem (TSP) to include several tours [2,3,8,12].
Namely, we are given a set P of points (sites), a distinguished point O outside
P , called the origin as well as a distance function defined on P ∪{O}. A tour is a
cycle whose vertices are in P ∪{O}. The length of a tour is the sum of distances
between the adjacent points on the tour. The objective is to find a set of tours,
each including the origin and at most k points in P , which covers all points in
P and achieves the minimum total length.

In Operations Research, the k-TC problem is well known as the capacitated
vehicle routing problem [12]. The name comes from its standard application when
the points in P represent customer locations, and the origin O stands for a depot.
Then, a fleet of vehicles located at the depot must serve all the customers, so
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cations (DIMAP), EPSRC award EP/D063191/1, and by VR grant 621-2005-408.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 994–1003, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



PTAS for k-Tour Cover Problem on the Plane 995

that each vehicle can serve at most k customers. The objective is to minimize
the total distance traveled by the fleet. The k-TC problem (capacitated vehicle
routing problem) is one of the central special cases of a more general vehicle
routing problem, introduced by Dantzig and Ramser [5] fifty years ago, and
studied very extensively in the literature ever since (cf. [9,12]).

The k-TC problem contains the TSP problem as a special case and it is known
to be NP-hard for all k ≥ 3. For this reason, the research on k-TC has focused on
heuristic algorithms and approximation algorithms. The most extensively stud-
ied variants of k-TC are the metric one, when the distance function is symmet-
ric and satisfies the triangle inequality, and in particular the two-dimensional
Euclidean one, when the points are placed in the plane and the distance is
Euclidean.

The general metric case of k-TC for k ≥ 3 has been shown to be APX-
complete [2], i.e., complete for the class of optimization problems admitting
constant factor approximations. However, the approximability status of the two-
dimensional Euclidean k-TC problem, in particular, the problem of the existence
of a PTAS, has not been completely settled yet. One of the first studies of two-
dimensional Euclidean k-TC has been due to Haimovich and Rinnooy Kan [8],
who presented several heuristics for the metric and Euclidean k-TC, including
a PTAS for the two-dimensional Euclidean k-TC with k < c log log n, for some
constant c [8, Section 6]. Asano et al. [3] substantially subsumed this result by
designing a PTAS for k = O(log n/ log log n). They also observed that Arora’s [1]
or Mitchell’s [10] PTAS for the two-dimensional Euclidean TSP implies a PTAS
for the corresponding k-TC where k = Ω(n). There has not been any significant
progress since the paper by Asano et al. [3] until very recently, when Das and
Mathieu [6] showed a quasi-polynomial time approximation scheme (QPTAS)
for the two-dimensional Euclidean k-TC for every k. Their algorithm combines
the approach developed by Arora [1] for Euclidean TSP with some new ideas
to deal with k-TC and gives a (1 + ε)-approximation for the two-dimensional
Euclidean k-TC in time nlogO(1/ε) n (this bound holds for any k).

In this paper we focus on the two-dimensional Euclidean variant of k-TC. (To
simplify the notation, we shall further refer to this variant as to k-TC).

Our main result is a new PTAS for k-TC for all values of k ≤ 2logδ n, where
δ = δ(ε). This significantly enlarges the set of values of k for which a PTAS is
known. Our PTAS relies on a novel reduction of an instance of k-TC with a set
of n points to an instance or a small number of independent instances of the
problem with a small number of points. Our first reduction takes any instance
of k-TC on n points and reduces it to an instance with O((k/ε)O(1) log2(n/ε))
points. Then we present a refinement, where the instance of k-TC is reduced to
a small set of instances of k-TC, each with O((k/ε)O(1)) points. These results,
when combined with the recent QPTAS due to Das and Mathieu [6], give the
aforementioned PTAS for k-TC for all values k ≤ 2logδ n, where δ = δ(ε).

For simplicity of the presentation, we will present (1 + O(ε))-approximation
algorithms; reduction to (1 + ε)-approximation is straightforward.
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2 Preliminaries

We assume a fixed origin in the plane and denote it by O. For a tour T , its (Eu-
clidean) length is denoted by |T |. For a set U of tours, we set |U | to

∑
T ∈U |T |.

For a set P of points in the plane, we denote by TSP (P ) the minimum length
of a TSP-tour through P and by opt(P ) the minimum length of a solution to
k-TC (i.e., the minimum length of a set of tours, each through the origin and
containing at most k points of P , which covers all points in P ). When P is clear
from the context, we shall simply use the notation opt.

For a point p ∈ P , we denote by r(p) the distance of p from the origin O.
The following simple lower bound plays a very important role in the previous

approaches to k-TC, see [3, Proposition 2] and [8, Lemma 1].

Fact 1. opt(P ) ≥ 2
k

∑
p∈P r(p).

Following [3], we shall term 2
k

∑
p∈P r(p) as the radial cost of P , and denote

by rad(P ). Among other things, Haimovich and Kan considered the so called
iterated tour partitioning heuristic for k-TC in [8]. The heuristic starts from con-
structing a TSP-tour T through P . Then, it considers all k-tour covers resulting
from partitioning T into paths visiting exactly k points (assuming that n is di-
visible by k), and connecting the endpoints of the paths with O. The heuristic
outputs the shortest among these solutions.

Fact 2. [3] If the iterated tour partitioning heuristic uses a TSP tour U , then
it returns a k-tour cover of total length not exceeding (1 − 1

k ) · |U | + rad(P ).

Note that given a TSP tour, the iterated tour partitioning heuristic can be
implemented in time O(k n

k + n) by repeatedly updating the previous partition
and k-tour cover to the next one in time O(n

k ). Using the minimum spanning tree
heuristic for TSP we can find a 2-approximation of the TSP in time O(n log n).
Hence, we obtain the following.

Corollary 1. If the iterated tour partitioning heuristic uses the minimum span-
ning tree heuristic for TSP then it returns a (3− 2

k )-approximation of an optimal
k-tour cover of an n-point set and it can be implemented in time O(n log n).

3 PTAS for Moderate Values of k

In this section we present a reduction that takes as an input any instance of the
k-tour cover problem on a set of n points in the Euclidean plane and reduces it to
an instance of the problem with O((k/ε)O(1) log2(n/ε)) points. Then, we apply
this reduction to obtain a PTAS for the k-tour cover problem for all k ≤ 2logδ n,
where δ is some positive constant, δ = δ(ε).

Our construction uses a series of transformations that eliminate most of the
input points and reduce the input problem instance to one significantly smaller.
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ci

2π/s

locations

O O

Fig. 1. The structure of circles, rays, and locations. The point labeled O is the origin.
Other fat dots represent the points from P . In the right picture each point has been
moved to its nearest location.

3.1 Removing Close Points

Let L be the maximum distance from a point in P to the origin O, that is,
L = max{p ∈ P : r(p)}. Since opt ≥ 2L, we can ignore any point that is at a
distance at most Lε/n from the origin: covering all such points with 1-tours will
give us additional cost not greater than n · 2Lε

n ≤ ε · opt. Therefore, from now
on, we will consider only the points p with r(p) ≥ Lε/n.

3.2 Circles, Rays, and Locations

Let us create circles around the origin, the i-th circle with a radius

ci =
Lε

n
·
(
1 +

ε

k

)i

, for 0 ≤ i ≤
⌈
log(1+ε/k)

n

ε

⌉
.

Let us draw rays from the origin with the angle between any pair of neighbor-
ing rays equal to 2π/s (that is, partition the space into s sectors) with s = � 2πk

ε �.
Define a location to be any point on the plane that is the intersection of a

circle and a ray. Since

log(1+ε/k)
n

ε
=

log n
ε

log(1 + ε/k)
= Θ

(
k

ε
· log

n

ε

)
,

there are Θ
(

k
ε log(n/ε)

)
circles and Θ

(
k
ε

)
rays. Therefore we obtain:

Claim 1. The total number of locations T satisfies T = Θ(k2ε−2 log(n/ε)).

Now, we modify P by moving each point from P to its nearest location.

Claim 2. The operation of moving each point to its nearest location can change
the cost of a k-tour cover by at most ε · opt.
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Proof. Let p be a point in P . Suppose that p lies between the circles with radius
ci and ci+1 (the distance between p and the origin is in the interval [Lε/n, L], so
we know such circles exist). The distance between these circles equals ci+1−ci =
ε
k · ci. The distance between two consecutive locations at the i-th circle is less
than 2πci/s ≤ ε

k · ci. Therefore the distance between p and its nearest location
is at most

√
2 · (1

2 · ε
k ci) < ε

k · ci ≤ ε
k · r(p).

If we move a point p ∈ P by a distance at most ε
k · r(p), the cost of a tour can

change by at most 2 ε
k · r(p). If we add up the changes of the cost generated by

moving all points in P , then this total change is upper bounded by
∑

p∈P 2 ε
k ·r(p).

Next, we use Fact 1 to conclude that the total cost of moving all the points is
at most ε · opt. �	

From a k-tour cover U ′ for a modified instance of the problem (where all points
have been moved to their nearest locations) we can easily get a k-tour cover U
for the original version of the problem such that |U | ≤ |U ′|+ ε ·opt. So a PTAS
for the modified version yields a PTAS for the original version. In the rest of
this paper we will consider the modified version of the problem.

3.3 Trivial and Nontrivial Tours

We say that a tour visits a location if it contains at least one point from that
location. (If an edge passes trough a location, but the tour does not contain any
point from that location, then the tour does not visit that location.) We call a
tour trivial if it visits only a single location in P ; it is nontrivial otherwise.

Theorem 1. There is an optimal solution in which there are at most T non-
trivial tours.

Proof. We say that a set of tours t1, t2, . . . , tm (m ≥ 2) forms a cycle if there is
a set of locations �1, �2, · · · , �m, �m+1 = �1 such that each tour ti visits locations
�i and �i+1. Note that the origin is not considered as a location.

To prove our theorem we will need the following:

Lemma 1. There is an optimal solution in which there are no cycles.

Proof. Let U be such an optimal solution which minimizes the sum over all its
nontrivial tours of the number of locations visited by that tour.

Let us suppose that U has a cycle, and let t1, t2, . . . , tm be a minimal cycle
(m is minimal). Let �1, �2, . . . , �m be the locations in which the consecutive tours
meet. From the minimality of the cycle we know that both tours and locations
are pairwise distinct.

Let v(t, �) denote the number of points from a location � visited by a tour
t. Let min = mini∈{1,...,m}{v(ti, �i)}. Now we are ready to swap points between
the tours: the i-th tour, instead of visiting v(ti, �i) points in the location �i and
v(ti, �i+1) points in the location �i+1 will now visit (v(ti, �i) − min) points in �i

and (v(ti, �i+1) + min) points in �i+1. Here �m+1 denotes �1.
Observe that the modification does not change the number of points visited

by each tour. It also does not increase the length of any tour. Therefore, we
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obtain another optimal solution, in which the sum over all nontrivial tours of
the number of locations visited by that tour is smaller than in U (we managed
to remove one location from each tour ti for which v(ti, �i) = min). This is a
contradiction with the minimality of that sum in U .

Therefore the optimal solution U has no cycles. �	

Consider an optimal solution without cycles. Note that the lack of 2-cycles means
that no two tours visit the same pair of locations. To each nontrivial tour we can
assign a pair of distinct locations visited by this tour. The chosen pairs are in
one-to-one correspondence with the nontrivial tours and they induce an acyclic
undirected graph on the locations.

Hence, we can have at most T − 1 nontrivial tours in an acyclic solution, so
using Lemma 1 we have proved the theorem. �	

3.4 Reduction to an Instance of k-TC with (k log n/ε)O(1) Points

Observe that Theorem 1 implies that there is an optimal solution in which at
most Tk points are covered by nontrivial tours. Therefore it is enough to consider
only solutions which fulfill that property.

If the number of points in a location � is greater than Tk, some of the points
will have to be covered by trivial tours. We may assume, without loss of gener-
ality, that among all trivial tours visiting a given location there is at most one
that visits less than k points. Moreover, if at least one point from some loca-
tion is visited by a nontrivial tour, we can assume that all trivial tours visiting
that location contain exactly k elements. Therefore, for each location � contain-
ing c� points, we only have to consider at most min{c�, c� − k · � c�−Tk

k �} ≤ Tk
points for nontrivial tours. After finding a (1+ε)-approximation for such reduced
case, we will add trivial tours covering all remaining points. That will give us
(1 + ε)−approximation for the original problem.

Corollary 2. One can reduce the k-TC problem on n points to one on at most
T 2k points.

3.5 PTAS for k-TC with k ≤ 2logδ n

We use Corollary 2 to reduce any instance of k-TC with the input set of n points
P to an instance of k-TC with N = T 2k = Θ(k5ε−4 log2(n/ε)) input points. For
such input instance, we apply the quasi-polynomial time approximation scheme
for k-TC due to Das and Mathieu [6]. The obtained algorithm returns a (1 + ε)-
approximation in time N logO(1/ε) N . This gives polynomial time for all k ≤ 2logδ n

for some constant δ = δ(ε) > 0. Hence, we have the following main theorem.

Theorem 2. There is a PTAS for the k-TC problem provided that k ≤ 2logδ n

for some positive constant δ = δ(ε).
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4 Refinement: Reduction to (k/ε)O(1) Points

In the preceding section, we have demonstrated that the problem of close approx-
imation of the k-TC problem on the input set of n points in the plane reduces
to that for a multi-point-set of size polynomial in k/ε and polylogarithmic in n
in the relevant locations. In this section, we shall eliminate the polylogarithmic
dependency of n in the reduction. This will have only a relatively small effect
on the asymptotics for the size of the largest k in terms of n for which we can
attain a PTAS and we will obtain a PTAS for all k ≤ 2logδ′

n, where comparing
to the bound in Theorem 2, we will have δ′ > δ. However, for small values of
k this will lead to a faster PTAS. Hopefully, because it removes completely the
dependency on n from the size of the reduced instance, it also might be a step
towards a PTAS for arbitrary values of k.

Our approach resembles Baker’s method [4] of closely approximating several
hard problems on planar graphs. It relies on the following separation lemma.

Lemma 2. Let P be a set of points situated in the locations and let ε > 0. There
is a clustering of the circles into rings of �log1+ ε

k
(6/ε)� consecutive circles and

there are positive integers a = O(ε−1) and b ∈ {1, . . . , a} such that if we mark
each (b+ja)-th ring then any k-tour cover U of P can be transformed to a k-tour
cover U ′ of the points in the unmarked rings such that

1. no tour in U ′ visits two points in P separated by a marked ring, and
2. |U ′| ≤ (1 + ε

2 )|U |.
Furthermore, the points in the marked rings can be covered with k-tours of total
length at most ε

2 |U | produced by the iterated tour partitioning heuristic from [8]
(cf. Section 2).

Proof. Let t denote a tour obtained by removing its edges incident to O. Suppose
that t crosses one of the marked rings. Let i be the number of the most inner circle
of the ring. Denote the circle by Ci. It follows by straightforward calculation
and the definition of the circles that each minimal fragment of t crossing the
aforementioned ring is at least 2

ε times longer than the doubled radius of Ci. We
can appropriately split the tour t along Ci into smaller ones by connecting pairs
of crossing points on Ci with O or just with themselves, see Figure 2.

The total length of the smaller tours is longer than |t| by at most ε
2 of the

total length of the aforementioned fragments of t.
We may assume, without loss of generality, that the aforementioned marked

ring is the outermost among those crossed by t. We can iterate the elimination
of the crossings of the smaller resulting tours but for their edges incident to O
with more inner marked rings. Note that then other disjoint fragments of t will
be charged with the increase of the length of the union of the resulting smaller
tours. Finally, by applying short-cutting, we can drop the points in the marked
rings from the resulting tours.

We conclude that we can transform U into a k-tour cover U ′ of the points in
P in the unmarked rings such that no tour in U ′ crosses any marked ring (but
for its edges incident to O) and |U ′| ≤ (1 + ε

2 )|U |.
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OCi OCi

Fig. 2. Splitting t into smaller tours. The grey area is the marked ring. In the left
picture dotted lines represent the lines which will be added to our solution. The right
picture shows two separate tours obtained from the original tour (one is marked with
a dashed line, and the other with a solid one), before the short-cutting.

It remains to show that we can set a and b ∈ {1, . . . , a} such that one can
easily cover the points in P contained in the marked rings with k-tours of total
length not exceeding ε|U|

2 .
Let Rj denote the set of points from P lying in the j-th ring. Set a to � 24

ε �.
For each b ∈ {1, . . . , a}, let Pb be the set of points in P in the marked rings,
Pb =

∑
j≡b mod a Rj . We shall show that there is some b ∈ {1, . . . , a} such that

by applying the k-TC heuristic given in Corollary 1 for Pb, we can cover Pb

with k-tours of length at most ε|U|
2 . For this purpose, we shall observe that∑

j TSP (Rj) ≤ 3 · TSP (P ).
Suppose for the sake of this observation that the tour t considered in the first

part of the proof is an n-tour, i.e., an optimal TSP tour of P ∪{O}. Apply almost
the same transformation to the tour t as before with the exception that instead
of connecting the outer cut part by two rays to O, we connect the cutting points
directly. By the triangle inequality, the total length of the so modified TSP tour
t is at most (1+ ε

2 ) ·TSP (P ). The modified TSP tour t can be easily reduced to
the non-necessarily optimal TSP tours of the unmarked regions by short-cutting.
Assuming first for a moment that the unmarked rings are the even ones, and
then conversely, that the unmarked rings are the odd ones, and that ε < 1

2 , we
conclude that

∑
j TSP (Rj) ≤ 3 · TSP (P ).

Using Fact 2 we get that

∑

b∈{1,...,a}
opt(Pb) ≤

∑

b∈{1,...,a}

∑

j≡b(mod a)

opt(Rj) =
∑

j

opt(Rj)

≤
∑

j

(rad(Rj) + TSP (Rj)) ≤ rad(P ) + 3 · TSP (P ) ≤ 4|U |.

There must be some b ∈ {1, . . . , a} such that opt(Pb) ≤ 4
a |U | ≤ ε|U|

6 . Thus,
if we apply the 3-approximation algorithm for the k-tour cover of Pb, which
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is a composition of the iterated tour partitioning heuristic with the minimum
spanning tree heuristic for TSP, we obtain a k-tour cover of Pb of length at
most ε|U|

2 . �	

Theorem 3. The k-TC problem on a set P of n points on the plane can be
reduced to a collection of O(ε−1 log(n/ε)/ log(1/ε)) disjoint k-tour cover prob-
lems, each on O(k5ε−6 log2(1/ε))-point set and each having the maximum dis-
tance to the origin at most (1/ε)O(1/ε) larger than the minimum one, such that
(1 + ε)-approximate solutions to each of the latter problems yield a (1 + O(ε))-
approximation to the original k-tour cover problem. The reduction can be done
in time O(n log n) for a fixed ε.

Proof. Move the points to the locations and compute the sets Rj of input points
lying in the rings for a fixed ε. This all can be easily done in time O(n log n) by
using standard data structures for point location [11].

Next, compute the value a (the distance between marked rings) and for each
b ∈ {1, . . . , a}, compute a 3-approximate k-tour cover of the set Pb of points con-
tained in the marked rings. All the a computations take O(an log n) = O(n log n)
time by Corollary 1.

Fix b to that minimizing the length of the aforementioned tour. It follows
from Lemma 2 that the produced cover of Pb has length at most ε

2opt. Now
we will have to compute approximate solutions for each maximal sequence of
consecutive not marked rings. Let us denote the number of such sequences by
q. We can easily compute that q = O(ε−1 log n

ε / log 1
ε ). For i = 1, . . . , q, let Ii

denote the set of points contained in such i-th sequence. Note that these point
sets can be also easily computed in time O(n log n).

It follows from Lemma 2 that if we compute separately (1+ ε)-approximation
of the optimal cover with k-tours for each set Ii, then the union of these coverings
will have length at most (1 + O(ε))opt.

Note that for a given i, the number of locations in Ii is O(a · k
ε · log(1+ ε

k )
1
ε ) =

O(k2ε−3 log 1
ε ). Hence, by the discussion in Section 3, we can account to the

intended (1+ε)-approximation of opt(Ii) the trivial tours decreasing the point-
multiplicity in each location to O(k3ε−3 log 1

ε ). Thus, for each Ii we can reduce
the problem to one with O(k5ε−6(log 1

ε )2) points.
Each Ii consists of O(ε−1) consecutive rings and for a point in a ring the

maximum distance to the origin is at most O(ε−1) times larger than the mini-
mum one. Hence, for a point in Ii the maximum distance to the origin is at most
(1/ε)O(1/ε) times larger than the minimum one.

The appropriate q sets of points can be computed in time O(n log n) and they
specify the problems to which we approximately reduce the original k-tour cover
problem. �	

5 Final Remarks

The central open question left is whether there is a PTAS for the k-TC problem
for all values of k. While we have enlarged the set of values of k for which a
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PTAS exists, we still do not know how to reach polynomial values for k, even
k = n0.001. In particular, a PTAS k-TC for k = Θ(

√
n) is elusive. For arbitrary

values of k, the best currently known result is either a quasi-polynomial time
approximation scheme by Das and Mathieu [6] that runs in time nlogO(1/ε) n, or
the polynomial-time constant-factor approximation algorithm due to Haimovich
and Rinnooy Kan [8]. Similarly as in [3], we believe that the case k = Θ(

√
n) is

the hardcore of the difficulty in obtaining a PTAS for all values of k.
Following [8], let us observe that if we divide the range of k into a logarithmic

number of intervals of the form [ε−2i, ε−2(i+1)), then for k in at most one of the
intervals none of the inequalities TSP (P ) ≤ ε·rad(P ), rad(P ) ≤ ε·TSP (P ) hold.
Note that if any of the inequalities holds then by plugging any PTAS for TSP in
the iterated tour partitioning heuristic, we obtain an (1 + O(ε))-approximation
of k-TC. Thus, the aforementioned heuristic is a PTAS for a substantial range
of k depending on P : for every set of points P there is k0 such that there is a
polynomial-time (1 + O(ε))-approximation algorithm for k-TC for every k with
k0/ε < k < εk0. Despite this observation and despite recent progress in [3,6], the
problem of designing a PTAS for all k remains open: we believe that our paper
sheds the light on this problem and is a step towards a PTAS for arbitrary k.
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Abstract. In the paper we consider a generalized version of three well-
known problems: Selection Problem in computer science, Slope Se-

lection Problem in computational geometry and Maximum-Density

Segment Problem in bioinformatics. Given a sequence A = (a1, w1),
(a2, w2), . . . , (an, wn) of n ordered pairs (ai, wi) of real numbers ai and
wi > 0 for each 1 ≤ i ≤ n, two nonnegative real numbers �, u with � ≤ u
and a positive integer k, the Density Selection Problem is to find
the consecutive subsequence A(i∗, j∗) over all O(n2) consecutive subse-
quences A(i, j) satisfying width constraint � ≤ w(i, j) =

∑j
t=i wt ≤ u

such that the rank of its density d(i∗, j∗) =
∑j∗

t=i∗ at/w(i∗, j∗) is k. We
will give a randomized algorithm for density selection problem that runs
in optimal expected O(n log n) time.

1 Introduction

Let A = (a1, w1), (a2, w2), . . . , (an, wn) be a sequence of n ordered pairs (ai, wi)
of real numbers ai and width wi > 0 for each 1 ≤ i ≤ n. A segment A(i, j) is
a consecutive subsequence of A starting with index i and ending with index j.
The width w(i, j) of segment A(i, j) is

∑j
t=i wt. The density d(i, j) of segment

A(i, j) is
∑j

t=i at/w(i, j). Given a sequence A = (a1, w1), (a2, w2), . . . , (an, wn)
of n ordered pairs (ai, wi) of real numbers ai and wi > 0 for each 1 ≤ i ≤
n, two nonnegative real numbers �, u and a positive integer k, the Density

Selection Problem (DSP) is to find the feasible segment A(i∗, j∗) over all
feasible segments such that the rank of its density d(i∗, j∗) is k. We say that a
segment A(i, j) is feasible if its width satisfies � ≤ w(i, j) ≤ u. A sequence A
is called uniform width if all wi’s are identical for each i, otherwise it is called
non-uniform width.

The density selection problem for uniform width such that � = 1, u = 1
is the most well-known selection problem in computer science. Hoare [11] and
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Floyd and Rivest [9] gave an optimal expected O(n) time randomized algo-
rithm respectively. Blum, Floyd, Pratt, Rivest, and Tarjan [2] gave an opti-
mal O(n) time deterministic algorithm. The density selection problem such
that k is equal to the total number of feasible segments is exactly the exten-
sively studied maximum-density segment problem [4,10,12,14,15,18,20] which
arises from the problem of finding the biologically meaningful region, called the
most GC-ratio region, in a DNA sequence. When we let the input sequence
A = (a1, w1), (a2, w2), . . . , (an, wn) correspond to a given DNA sequence with
uniform width such that ai = 1 if the corresponding nucleotide in the DNA
sequence is G or C, and ai = 0 if the corresponding nucleotide in the DNA
sequence is A or T. It is obvious that the output feasible segment then corre-
sponds to the most GC-ratio region of the given DNA sequence. The density
selection problem for fixed � = 0, u = ∞, also known as the slope selection prob-
lem [3,5,8,13,16], has received much attention in computational geometry. Cole
et al. [5] first gave an optimal O(n log n) time deterministic algorithm for the
slope selection problem by combining an approximate counting scheme, the AKS
sorting network and parametric search technique. Brönnimann and Chazelle [3]
modified their approximate counting scheme combining ε-net to obtain another
optimal algorithm for this problem. Dillencourt et al. [8] and Matoušek [16] both
gave an optimal randomized Monte Carlo algorithm respectively using the ran-
dom sampling technique. Katz and Sharir [13] gave an optimal deterministic
algorithm using expander graph and approximation technique. In this paper we
will give an optimal randomized Monte Carlo algorithm for the density selection
problem, using the random sampling technique [8,16], that runs in O(n) space
and optimal expected O(n log n) time. Therefore, it can solve the slope selection
problem in optimal expected O(n log n) time as well.

On the other hand, it was observed that the compositional heterogeneity is
highly correlated to the GC content of the genomic sequences [18,21]. The GC-
ratios of the DNA sequences in all organisms vary from 25% to 75%. The typical
GC-ratios of mammalian genomes stay in 45-50% and the GC-ratios of human
DNA in 30-60%, but the GC-ratios have the greatest variations among bacteria’s
DNA sequences. Therefore, we are also interested in finding the range of the GC-
ratios of a DNA sequence for a species. We will consider the Density Range

Query Problem (DRQP) as follows. The input consists of a sequence A of n
ordered pairs, two width bounds �, u with � ≤ u and two real numbers dl, dr

with dl ≤ dr, the reporting mode of the DRQP is to report all feasible segments
A(i, j) satisfying dl ≤ d(i, j) ≤ dr and the counting mode is to count the total
number of feasible segments A(i, j) satisfying dl ≤ d(i, j) ≤ dr. We will show that
the reporting mode and counting mode can be solved in optimal O(n log m + h)
and optimal O(n log m) time respectively, where m = min{ u−�

wmin
, n} and h is the

output size. Clearly, when u = �, both DSP and DRQP can easily be solved in
O(n) time and space. Therefore, from here on we assume u > �.

The rest of the paper is organized as follows. Section 2 solves the density range
query problem. Section 3 gives an algorithm for the density selection problem.
Section 4 gives some conclusion.



1006 T.-C. Lin and D.T. Lee

2 Algorithm for Density Range Query Problem

In this section we consider the density range query problem. Without loss of
generality, we may assume wi ≥ 1 for each i and wmin = 1 for DRQP, since
the problem for a sequence A of n ordered pairs (ai, wi) with respect to width
bounds � and u is equivalent to the problem for a sequence B of n ordered pairs
( ai

wmin
, wi

wmin
) with respect to width bounds �

wmin
and u

wmin
.

We first transform the DRQP into a geometric slope range query problem in
O(n) time as follows. We define the point set P = {p0, p1, . . . , pn} in R2 accord-
ing to the prefix sums of the sequence A, where pi =(xi, yi)=(

∑i
t=1 wt,

∑i
t=1 at),

i = 1, 2, . . . , n and p0 = (0, 0). It is easy to see that the slope m(i, j) of the line
segment s(i, j) connecting pi and pj is equal to the density d(i+1, j) of segment
A(i + 1, j), so we can define a line segment s(i, j) is feasible if its corresponding
segment A(i + 1, j) is feasible.

Given a point set P = {p0, p1, . . . , pn} in R2, two width bounds �, u and
two density bounds dl, dr, find all feasible line segments s(i, j) such that
dl ≤ m(i, j) ≤ dr.

We can further transform this geometric slope range query problem into its dual
problem, by transforming points into lines and vice versa. Consider the dual
transform that maps the point pi = (xi, yi) into the dual line li : y = xix − yi.
For any two points pi, pj , their corresponding dual lines li, lj will intersect at the
point with abscissa xij = (yj−yi)/(xj −xi) = m(i, j). It means that the abscissa
of the intersection point of the two corresponding dual lines li, lj is equal to the
slope m(i, j) of line segment s(i, j). Again, we say that an intersection point of
two dual lines li, lj is feasible if � ≤ xj − xi ≤ u.

Given a set of dual lines L = {l0, l1, . . . , ln} in R2, where li : y = xix−yi,
two width bounds �, u and two density bounds dl, dr, find all feasible
intersection points pij = (xij , yij) such that their abscissae xij ∈ [dl, dr].

Let La,b denote the subset {la, la+1, . . . , lb} of L starting with left index a
and ending with right index b. For each dual line lj we have a set of feasible
dual lines Lcj,dj = {lcj , lcj+1, . . . , ldj}, such that each li ∈ Lcj,dj satisfies � ≤
xj −xi ≤ u. Without confusion we shall for simplicity denote Lcj,dj as Lj . Since
the slope sequence {xj}n

j=1 of L is monotonically increasing, the left and right
index sequences {cj}n

j=1 and {dj}n
j=1 are monotonically increasing respectively.

Therefore, we can obtain sequences {cj}n
j=1 and {dj}n

j=1 by a linear scan of the
sequence {xj}n

j=1. To solve the dual problem, it suffices to iterate on each j
finding all feasible intersection points pij = (xij , yij) of Lj and lj such that their
abscissae xij ∈ [dl, dr].

Instead of solving the dual problem directly we will further transform the dual
problem into an orthogonal range query problem in computational geometry. For
each dual line li : y = xix − yi in L, we let qi = (ui, vi) = (xidl − yi, xidr − yi)
be the point with abscissa ui defined by the intercept of li at x = dl and ordinate
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vi defined by the intercept of li at x = dr. Let Q = {q0, q1, . . . , qn} and Qj =
{qi ∈ Q | � ≤ xj − xi ≤ u}. By the monotonically increasing property of the
slope sequence {xj}n

j=0, we know that the slope of lj is larger than the slope of
li for each li ∈ Lj . Therefore, a dual line li in Lj will intersect lj in [dl, dr] if
and only if ui ≥ uj and vi ≤ vj . To solve the dual problem, it is now equivalent
to making an orthogonal range query of the form Rj = [uj ,∞) × (−∞, vj ] to
report all the points of Qj which lie in Rj for each j = 1, 2, . . . , n.

We first develop a reporting mode algorithm for the DRQP. Our reporting
mode algorithm for the DRQP will iterate from j = 1 to n. At any iteration
j, we will maintain a data structure ζ(Qj) in the current window Qj such that
we can make an orthogonal range query of the form Rj = [uj,∞) × (−∞, vj ],
and then we delete points qcj , qcj+1, . . . , qcj+1−1 from ζ(Qj) and insert points
qdj+1, qdj+2, . . . , qdj+1 into ζ(Qj) to obtain ζ(Qj+1). We will use a data structure
called priority search tree to support the above orthogonal range query. A priority
search tree [17] is a hybrid of a heap and a balanced binary search tree used
for orthogonal range query where at least one of sides of the query range is
unbounded. We will make the priority search tree ζ(Qj) dynamic to support
insertion and deletion operations as well. The priority search tree ζ(Qj) can be
constructed by using any balanced binary search tree and the performance of
the priority search tree is summarized in the following lemma.

Lemma 1 ( [7, Theorem 10.9, Page 221]). The priority search tree ζ(S)
for a set S of n points in R2 can be constructed in O(n log n) time and O(n)
space. Using the priority search tree we can report all points in a query range of
the form R = [u, w] × (−∞, v] in O(log n + h) time, where h is the number of
reported points that lie in R.

McCreight [17] shows that a balanced priority search tree can be made dynamic
to support both insertion and deletion operations in O(log n) time if the number
of rotations per updating operation can be bounded by a constant. Tarjan [22]
shows that a class of balanced binary trees can be updated in O(1) rotations. For
example, a red-black tree belongs to the class. Therefore, if we use a red-black
tree as our balanced binary search tree to implement dynamic priority search
tree, then both insertion and deletion operations can be updated in O(log n)
time. Since the reporting mode algorithm for the DRQP needs to do totally n
times range queries, insertions and deletions on the window Qj with |Qj | ≤ m,
the overall running time is therefore O(n log m + h) by Lemma 1, where m =
min{u − �, n} and h is the output size. We can also develop a counting mode
algorithm by using the order-statistics tree data structure similarly. Due to page
limitation, we omit it here. Thus, we obtain the following theorem.

Theorem 1. The reporting and counting mode of the density range query prob-
lem can be solved in O(n) space and optimal O(n log m + h) time and optimal
O(n log m) time respectively, where m = min{ u−�

wmin
, n} and h is the output size.

Now, we show that both reporting and counting algorithms of the DRQP are
optimal in the worst case. It is known that the Element Uniqueness Prob-

lem, i.e., to determine if a set of n real numbers y1, y2, ..., yn are all distinct,
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has a lower bound of Ω(n log n) time in the algebraic decision tree model of
computation [1]. We can transform an instance of element uniqueness problem
to an instance of the DRQP with � = 0, u = ∞, dl = dr = 0 and wi = 1 for
each i in O(n) time by letting a1 = y1, ai = yi − yi−1 for i = 2, . . . , n. The
output of the reporting mode of the DRQP is an empty set (or The output of
the counting mode of the DRQP is 0) if and only if y1, y2, ..., yn are all distinct.
Therefore, both the reporting and counting mode of the DRQP has a lower
bound of Ω(n log n) time in the algebraic decision tree model of computation.

3 Algorithm for Density Selection Problem

In this section we give an optimal randomized Monte Carlo algorithm for the
DSP based on three subroutines, random sampling subroutine, reporting mode
and counting mode algorithms for the DRQP. The DSP is equivalent to the
following problem.

Given a set of lines L = {l0, l1, . . . , ln} in R2, where li : y = xix−yi, find
the feasible intersection point pi∗j∗ = (xi∗j∗ , yi∗j∗) such that its abscissa
xi∗j∗ is the k-th smallest among all feasible intersection points.

For convenience we shall without confusion use the intersection point pij and
its abscissa xij interchangeably. We first develop a random sampling subroutine
running in expected O(n log n) time to randomly generate nNf

2N to 3nNf

2N feasible
intersection points allowing duplicates such that they all lie in a given interval
[dl, dr], where N and Nf are the total numbers of intersection points and feasible
intersection points in [dl, dr] respectively. Note that N and Nf can be obtained
by the counting algorithm for the DRQP. Dillencourt et al. [8] developed a
random sampling subroutine running in O(n log n) time by merge sort technique
to randomly generate n intersection points such that they all lie in a given
interval [dl, dr]. We summarize it in the following lemma.

Lemma 2 (Dillencourt et al. [8]). Let L = {l0, l1, . . . , ln} be a set of lines
in R2 and [dl, dr] be a given interval. We can obtain a random sampling S by
randomly generateing n intersection points of L allowing duplicates in O(n log n)
time such that all points of S are in [dl, dr].

We carefully analyze their random sampling subroutine and find that it can be
used to randomly generate nNf

2N to 3nNf

2N feasible intersection points allowing
duplicates such that they all lie in a given interval [dl, dr] with high probability
by using the well-known Chebyshev’s inequality in probability theory.

Whenever we select a random intersection point in [dl, dr], it has a probability
Nf

N such that it is feasible. Consider such an event as a ”success” in performing n

independent Bernoulli trials, each with a probability Nf

N . Let Xi be the random
variable, attaining value 1 with probability px = Nf

N and value 0 if otherwise.
Let X = X1 + X2 + · · ·+ Xn be the total number of feasible intersection points
for a random sampling S obtained by Lemma 2. The expected value of X is
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μ = npx = nNf

N and the standard deviation of X is σ =
√

npx(1 − px) =√
nNf

N (1 − Nf

N ) ≤
√

nNf

N . By Chebyshev’s inequality, for any λ ≥ 0 we have
Pr[|X − μ| ≥ λσ] ≤ 1

λ2 , so the probability Pr[μ + λσ ≥ X ≥ μ − λσ] ≥ 1 − 1
λ2 .

Therefore, if we choose nNf

2N ≥ 2λ2 = 4, we have Pr[3nNf

2N ≥ nNf

N + λ
√

nNf

N ≥

μ + λσ ≥ X ≥ μ − λσ ≥ nNf

N − λ
√

nNf

N ≥ nNf

2N ] ≥ 1
2 . Hence, if Nf ≥ 8N

n , we
can obtain a random sampling S of n intersection points in [dl, dr] such that it
contains nNf

2N to 3nNf

2N feasible intersection points with probability no less than
1
2 . Otherwise, if Nf < 8N

n we can solve the density selection problem directly
by using reporting algorithm for DRQP to enumerate Nf feasible intersection
points in O(n log m + Nf ) = O(n log m + 8N

n ) = O(n log m + n) = O(n log n)
time and then select the k-th smallest feasible intersection point d∗ from those
feasible intersection points by using any standard selection algorithm in O(n)
time. Thus, we can assume Nf ≥ 8N

n from now on. Therefore, we have the
following random sampling subroutine.

Lemma 3. Let L = {l0, l1, . . . , ln} be a set of lines in R2. Let N and Nf (assum-
ing Nf ≥ 8N

n ) be the total numbers of intersection points and feasible intersection
points of L in a given interval [dl, dr] respectively. We can randomly generate
in expected O(n log n) time a set of n intersection points allowing duplicates in
[dl, dr] such that they contain M to 3M feasible points, where M = nNf

2N .

We now start to solve the DSP. We shall consider a more general problem, called
Density Selection Range Query Problem (DSRQP) defined as follows.
Given an interval [dl, dr] which contains N = Nf + Ni intersection points where
Nf and Ni are the total number of feasible and infeasible intersection points in
[dl, dr] respectively, we would like to find the k-th smallest feasible intersection
point among the Nf feasible intersection points in the interval [dl, dr]. Let d∗

denote the k-th smallest feasible intersection point in the interval [dl, dr]. Note
that the DSP is just a special case of this problem such that N = n(n−1)

2 ,
Nf = O((u − �)n) and [d�, dr] = (−∞,∞).

The randomized algorithm for the DSRQP will contract the interval [dl, dr]
into a smaller subinterval [dl′ , dr′ ] such that it also contains d∗ and the new
subinterval [dl′ , dr′ ] contains at most O(Nf/

√
M) feasible intersection points.

It will repeat to contract the interval several times until the interval [dl′ , dr′ ]
contains not only d∗ but also at most O(n) feasible intersection points. It then
outputs all the feasible intersection points in [dl′ , dr′ ] by the reporting mode
algorithm for the DRQP and finds the feasible intersection point d∗ with an
appropriate rank by using any standard selection algorithm.

Our randomized algorithm for the DSRQP runs as follows: We first use our
random sampling subroutine to randomly generate a set of feasible intersection
points S′ = {s1, s2, . . . , sF } in [dl, dr]. If F is smaller than M or greater than 3M
we repeat our random sampling subroutine again. From Lemma 3 the probabil-
ity that the set of n randomly generated intersection points contains M to 3M
feasible intersection points is no less than 1/2, so we would perform the random
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sampling subroutine at most twice on average. Assume that we have obtained
a random sampling S′ which contains M to 3M feasible points. We then try to
use this random sampling S

′
to obtain a smaller subinterval [dl′ , dr′ ] as follows.

For each of the selected random feasible intersection point in S
′
, it has a proba-

bility k
Nf

such that it is smaller than or equal to d∗. Consider such an event as a
”success” in performing F independent Bernoulli trials, each with a probability
k

Nf
. Let Xi be the random variable, attaining value 1 with probability px = k

Nf

and value 0 with probability px = 1 − k
Nf

. Let X = X1 + X2 + · · · + XF be
the total number of sample feasible intersection points falling before d∗. The
expected value of X is μx = Fpx = Fk

Nf
and the standard deviation of X is

σx =
√

Fpx(1 − px). It means that the average number of feasible intersec-
tion points in S

′
which is smaller than or equal to d∗ is Fk

Nf
. Hence we expect

that the w-th smallest element in S
′
, where w = �Fpx� = �Fk

Nf
� should be

a good approximation for the k-th smallest feasible intersection point d∗. Let
l
′
= max{1, �Fk

Nf
− t

√
F
2 �} and r

′
= min{F, �Fk

Nf
+ t

√
F
2 �}, for some constant t to

be determined later. Therefore, after we get a successful random sampling S
′
,

we can find the l
′
-th smallest element d�′ and the r

′
-th smallest element dr′ in

S
′

by any standard selection algorithm in O(|S′ |) time to obtain a subinterval
[d�′ , dr′ ]. The key step of our randomized algorithm for the DSRQP is to check
whether the subinterval [d�′ , dr′ ] satisfies the following two conditions by the
counting algorithm for the DRQP:

(1) The density d∗ of the k-th smallest feasible intersection point lies in the
subinterval [d�′ , dr′ ].

(2) The subinterval [d�′ , dr′ ] contains at most t2Nf

(t−1)
√

M
(< 2tNf√

M
) feasible inter-

section points and contains at most 3t2N
2(t−1)

√
M

intersection points.

If either (1) or (2) is violated, we repeat our randomized algorithm for the
DSRQP from scratch again until both (1) and (2) are satisfied: i.e. we need
to randomly select F , where M ≤ F ≤ 3M , feasible intersection points with
replacement in the interval [d�, dr] by running the random sampling algorithm
again to obtain a new subinterval [d�′ , dr′ ] and then check the above two con-
ditions (1) and (2) for the new subinterval [d�′ , dr′ ]. Let k1 and k2 be the total
number of feasible intersection points lying in [d�, d�′ ) and [d�, dr′ ] respectively.
Note that d∗ lies in the subinterval [d�′ , dr′ ] if and only if k1 < k and k2 ≥ k.
If both of these conditions hold, we replace the current interval [d�, dr] by the
subinterval [d�′ , dr′ ] and let k

′
= k − k1.

Note that the density selection algorithm starts with N = n(n−1)
2 intersection

points and Nf = O((u − �)n) feasible intersection points in the initial interval
[d�, dr] = (−∞,∞). Therefore, after the first successful random sampling which
satisfies conditions (1) and (2) we have an interval [d�′ , dr′ ] which contains the
k

′
-th smallest feasible intersection point d∗ and it contains O( Nf√

M
) feasible inter-

section points and O( N√
M

) intersection points. That is in each iteration we try to
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prune the numbers of intersection points and feasible intersection points roughly

by a factor of O(
√

M) = O(
√

nNf

N ) respectively, so after one successful random
sampling we still maintain the ratio of the number of feasible intersection points
and the number of intersection points in [d�′ , dr′ ] to be O(Nf

N ). Therefore, we
can repeat the same procedure for the next iteration. After the second success-
ful random sampling which satisfies conditions (1) and (2) we have an interval
[d�′′ , dr′′ ] which contains the k

′′
-th smallest feasible intersection point d∗ and

which has O( Nf√
M

/
√

M) = O(Nf

M ) = O(N
n ) = O(n) feasible intersection points.

We can then enumerate all feasible intersection points from this interval [d�′′ , dr′′ ]
by the reporting mode algorithm for the DRQP and select the k

′′
-th smallest

feasible intersection point d∗ from those feasible intersection points by using any
standard selection algorithm. We now show that with a high probability the key
step of our randomized algorithm for the DSRQP is satisfied.

Lemma 4. Let N and Nf be the total numbers of intersection points and feasi-
ble intersection points in [dl, dr] respectively. For a random choice of F indepen-
dent feasible intersection points with replacement in the interval [d�, dr] where
M ≤ F ≤ 3M , we can find a subinterval [d�′ , dr′ ] containing at most t

√
F sam-

ple feasible intersection points such that the probability that it contains at least
t2Nf

(t−1)
√

M
feasible intersection points is at most e−

√
M/2(t−1) and the probability

that it contains at least 3t2N
2(t−1)

√
M

intersection points is at most e−
√

M/2(t−1).

Proof. To show the subinterval [d�′ , dr′ ] contains at most t2Nf

(t−1)
√

M
feasible in-

tersection points with high probability 1 − e−
√

M/2(t−1), we just need to show
[d�′ , dr′ ] contains at most t2Nf

(t−1)
√

F
(≤ t2Nf

(t−1)
√

M
) feasible intersection points with

high probability 1 − e−
√

M/2(t−1). Assume that a successful random sampling
S

′
= {s1, s2, . . . , sF } with replacement in [d�, dr] in the random sampling sub-

routine for the DSRQP gives a subinterval [d�′ , dr′ ] containing at most t
√

F

sample feasible intersection points. Let N
′

and N
′

f be the total numbers of in-
tersection points and feasible intersection points in [d�′ , dr′ ] respectively. Assume
that N

′

f ≥ t2Nf

(t−1)
√

F
. Hence, whenever we select a random feasible intersection

point si in [d�, dr], it has probability larger than t2Nf /(t−1)
√

F
Nf

= t2

(t−1)
√

F
such

that si lies in [d�′ , dr′ ]. We again think such an event as a ”success”, each with
a probability of success equal to p ≥ t2

(t−1)
√

F
. Let Xi be the random variable,

attaining value 1 with probability p ≥ t2

(t−1)
√

F
if the i-th selected feasible in-

tersection point falls in [d�′ , dr′ ] and value 0 with probability 1− p if otherwise.
Let X = X1 + X2 + · · · + XF be the total number of selected feasible inter-
section points falling in [d�′ , dr′ ]. The expectation of the random experiment is
μ = Fp ≥ t2F

(t−1)
√

F
= t2

√
F

t−1 . By the Chernoff bound, we have Pr[X ≤ t
√

F ] ≤
Pr[X ≤ (1 − 1

t )μ] ≤ e−μ/2t2 ≤ e−
√

F/2(t−1) ≤ e−
√

M/2(t−1). Therefore, we have
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the joint probability Pr[(N
′

f ≥ t2Nf

(t−1)
√

F
) ∩ (X ≤ t

√
F )] ≤ e−

√
M/2(t−1). On the

other hand, note that d�′ and dr′ are the l
′
-th and r

′
-th smallest elements in the

random sampling S
′

respectively. It means that the random sampling S
′

con-
tains exactly r

′ −�
′
(≤ t

√
F ) sample feasible intersection points lying in [d�′ , dr′ ].

Therefore, we have Pr[(N
′

f ≥ t2Nf

(t−1)
√

F
)∩ (S

′
contains exactly r

′ − �
′
sample fea-

sible intersection points in [d�′ , dr′ ])] ≤ Pr[(N
′

f ≥ t2Nf

(t−1)
√

F
) ∩ (X ≤ t

√
F )] ≤

e−
√

M/2(t−1). The first part of the lemma follows. Due to page limitation we
omit the proof of the second part here.

Lemma 5. Let N and Nf be the total numbers of intersection points and feasible
intersection points in [dl, dr] respectively. For a random choice of F independent
feasible intersection points with replacement in the interval [d�, dr] where M ≤
F ≤ 3M , we can find a subinterval [d�′ , dr′ ] containing at most t

√
F sample

feasible intersection points such that the probability that the k-th smallest feasible
intersection point d∗ not lying in the subinterval [d�′ , dr′ ] is at most 2e−t2/2.

Proof. Let Yi be the random variable, attaining value 1 with probability p = k
Nf

if the i-th sample feasible intersection point is no greater than d∗ and value 0
with probability 1−p if otherwise. If the r

′
-th smallest feasible intersection point

dr′ in S′ is smaller than d∗, it means that at least r
′

among the F randomly
sample feasible intersection points fall before d∗. Let Y = Y1 + Y2 + · · ·+ YF be
the total number of sample feasible intersection points falling before d∗. By the
Chernoff bound, we have Pr[Y ≥ r

′
] = Pr[Y ≥ μ+ t

√
F
2 ] ≤ e−t2/2. Similarly, by

the Chernoff bound we have Pr[Y ≤ l
′
] = Pr[Y ≤ μ − t

√
F
2 ] ≤ e−t2/2.

Now, we can choose t large enough such that 2e−t2/2 ≤ 1
4 and choose M large

enough such that 2e−
√

M/2(t−1) ≤ 1
4 , i.e. choose Nf ≥ 2cN

n for some large enough
constant c such that e−

√
M/2(t−1) ≤ e−

√
c/2(t−1) ≤ 1

8 . For example, we can choose
t = 2.1 and c = 21 respectively. Therefore, we just need to repeat the key step at
most twice on the average in the randomized algorithm for the DSP, otherwise
we can solve the DSP directly by using reporting algorithm for DRQP and any
standard selection algorithm.

Theorem 2. The Density Selection Problem can be solved in O(n) space
and expected O(n log n) time.

4 Conclusion

In the paper we considered an interesting density selection problem. It is a
generalization of three well known problems, the maximum density segment
problem, slope selection problem and selection problem. We have presented a
randomized algorithm for this problem running in expected O(n log n) time. But
whether the density selection problem can be solved by a deterministic algorithm
within the same time bound remains to be seen.
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Abstract. We study the problem of solving simple stochastic games,
and give both an interesting new algorithm and a hardness result. We
show a reduction from fine approximation of simple stochastic games to
coarse approximation of a polynomial sized game, which can be viewed
as an evidence showing the hardness to approximate the value of simple
stochastic games. We also present a randomized algorithm that runs in
Õ(

√
|VR|!) time, where |VR| is the number of RANDOM vertices and Õ

ignores polynomial terms. This algorithm is the fastest known algorithm
when |VR| = ω(log n) and |VR| = o(

√
min |Vmin|, |Vmax|) and it works

for general (non-stopping) simple stochastic games.

1 Introduction

1.1 Simple Stochastic Games

Simple stochastic games are games played by two players on a graph, it is a
restricted version of general stochastic games introduced by Shapley [1]. In a
simple stochastic game, two players (MAX and MIN) move a pebble along di-
rected edges in a graph. The vertices in the graph can have one of the three
labels: MAX, MIN or RANDOM. If the pebble is on a vertex labeled MAX(or
MIN), then MAX(or MIN) player decides through which out going edge the peb-
ble should move; if the pebble is on a vertex labeled RANDOM, then the pebble
moves along a randomly chosen edge. The graph also has a special vertex called
the “1-sink”. The MAX player wins if and only if the pebble is moved to 1-sink.

SSGs have many interesting applications. In complexity theory, SSGs are used
in the analysis of space bounded computations with alternations and random-
ness [2]. In practice, SSGs are used to model reactive systems. In such systems,
RANDOM vertices are used to model stochastic environmental changes, MAX
vertices are used to model adversary or arbitrary behaviors, MIN vertices are
used to model choices of the system. The 1-sink vertex represents a failure. The
goal of the system is thus minimizing the probability of failure (reaching 1-sink
vertex).
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Finding the optimal strategies for SSGs has been an interesting open problem
for a long time. A lot of algorithms have been purposed. Condon [2] proved the
decision version of SSG is in NP∩ coNP, and later in 1993, she showed several
iterative algorithms for SSG in [3], but all of these algorithms require exponential
time. She also suggested an approximation version of SSG problem, but there
are no polynomial time algorithms known. Our gap amplification result gives
an evidence on why the approximation problem is also difficult. Ludwig gave a
sub-exponential (Õ(2

√
n), Õ hides polynomial terms) time randomized algorithm

for SSGs in [4], which uses local search techniques. Somla [5] purposed a new
iterative algorithm in 2004 which might be better than previous algorithms,
however there’s no evidence that shows the algorithm runs in polynomial time.
Recently, Gimbert and Horn [6] presented a new non-iterative algorithm that
runs in time Õ(|VR!|). This highlights one of the main reasons the problem has
exponential complexity: the existence of random vertices.

1.2 Our Results

In this paper, we investigate the SSG problem in both hardness and algorithmic
aspects. On the hardness side, we show that a coarse approximation of SSGs is
as hard as a fine approximation. This is done by constructing a new game G′

from a game G, such that G′ has polynomial size and a coarse approximation
to G′ would give a fine approximation of game G. Viewed pessimistically this
can be an evidence that shows it is hard to even approximate SSGs; viewed
optimistically, this may give hope of deriving a good approximation algorithm
for SSGs.

At the algorithmic side, we present an algorithm based on the algorithm of
Gimbert and Horn [6]. They considered a set of strategies called f -strategies,
and showed at least one of f -strategies is optimal. However they were not able
to distinguish “good” f -strategies and “bad” f -strategies. By finding a way to
evaluate the “correctness” of f -strategies, we are able to apply local search algo-
rithms to find the optimal f -strategy, and reduce the running time to Õ(

√
|VR|!).

Our algorithm is the fastest known randomized algorithm for solving SSGs when
|VR| = ω(log n) and |VR| = o(

√
min{|Vmax|, |Vmin|}).

In Sect.2 we give definitions for Simple Stochastic Games and strategies. Then
we describe the reduction from fine approximation to coarse approximation in
Sect.3. After that, we give a brief introduction to f -strategies and then present
our algorithm.

2 Basic Definitions

There are many variations of SSGs, we define the game formally as follows

Definition 1 (Simple Stochastic Games). A simple stochastic game is spec-
ified by a directed graph G =< V, E > and a starting vertex vstart ∈ V . Each
vertex v ∈ V has 2 outgoing edges and a label (MAX, MIN or RANDOM).
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Vmin, Vmax, VR are the sets of vertices with label MIN, MAX and RANDOM
respectively. There’s a special vertex v1 (the 1-sink) in the graph.

Initially the pebble is at vstart. If the pebble is at a MAX/MIN vertex, then
the corresponding player moves the pebble along one of the outgoing edges. If the
pebble is at a RANDOM vertex, then the pebble moves along a random outgoing
edge (both edges are chosen with probability 1/2). If the pebble reaches v1 then
MAX player wins, otherwise MIN player wins.

Solving SSGs means calculating the winning probabilities for the players if they
all follow optimal strategy. Informally, the strategy of a player decides which edge
should the pebble follow in the game. Although a strategy can decide the edge by
considering history or using random coins, it’s well known that positional optimal
strategies exist for simple stochastic games ([1,2]). A positional strategy makes
the decision only by the current position of the pebble. Formally, a positional
strategy for MAX player α is a function from Vmax to V , for any vertex v ∈ V ,
(v, α(v)) is an edge and it is the outgoing edge that the MAX player would
choose if the pebble is currently at vertex v. Similarly, a positional strategy for
MIN player β is a function from Vmin to V . From now on when we mention
strategy we mean positional strategy.We define the value of a vertex to be the
winning probability of the MAX player if initially the pebble is at this vertex,
and denote this by val(v), the value of the game is val(vstart). When it’s not
clear which game we are talking about, we use val[G](v) to specify the value of
v in game G.

In simple stochastic games, MIN player wins the game by forcing the pebble
to move infinitely many steps without reaching the 1-sink. Sometimes it’s easier
to consider the situation that the game has two sinks: a 0-sink and a 1-sink. The
game guarantees no matter what strategies the players use, with probability 1
the game will reach one of the sinks in finitely many steps. The goal of MAX
player is to reach the 1-sink and the goal of MIN player is to reach the 0-sink.
This variation of SSG is called stopping simple stochastic games (stopping-SSG).
Condon showed in [2] that any SSG can be converted to a stopping-SSG in
polynomial time while the change in the value of the game is exponentially
small.

3 Coarse Approximation Is as Hard as Fine
Approximation

Since no polynomial time algorithms has been discovered for exactly solving
SSGs, Condon[2] purposed the following “approximation” version of the problem.
Consider the following sets,

Lyes = {G : the value of G is at least
1
2

+ ε} ,

Lno = {G : the value of G is at most
1
2
− ε} .
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An ε-gap SSG decision problem is to determine whether G is in Lyes or Lno

given it is in one of them.Intuitively it might seem for some large enough ε
this problem is easy to solve. However, we give a gap amplification reduction
showing that when enlarging ε from (1/ poly(n)) to (1/2 − e−nρ

) for any ρ < 1,
the problem does not become easier. This reduction is analogue to the hardness
amplification results for clique and chromatic number problem.

Theorem 1. For any fixed constant 0 < ρ < 1 and c > 0, if the (1/2 − e−nρ

)-
gap SSG decision problem is in P, then the (n−c)-gap SSG decision problem is
in P.

Proof. First we prove the theorem for stopping SSG.
Now let’s assume G = 〈V, E〉 is a stopping-SSG with n vertices. There are

3 special vertices in a stopping SSG: vstart, the starting vertex; v1, the 1-sink
vertex; v0, the 0-sink vertex. We construct another game G′ = 〈V ′, E′〉 of size
N (which is polynomial in n) such that,

– G′ has value larger than (1 − e−Nρ

) if G has value larger than (1/2 + n−c)
– G′ has value less than e−Nρ

if G has value less than (1/2 − n−c)

Let {G0, Gi,j |i ∈ {0, 1}, j ∈ {1, ..., K}} be 2K + 1 copies of G. We replace the
out-going edges for v0 and v1 in each of these games to connect them together
in the following way (their two outgoing edges will point to the same location,
so it doesn’t matter what label they have)

– Connect v0 in G0 to vstart in G0,1, connect v1 in G0 to vstart in G1,1.
– Connect v1 in G0,j(1 ≤ j ≤ K) to vstart in G0, connect v0 in G0,j(j < K)

to vstart in G0,j+1.
– Connect v0 in G1,j(1 ≤ j ≤ K) to vstart in G0, connect v1 in G1,j(j < K)

to vstart in G1,j+1.
– The starting vertex in G′ is vstart in G0, and the 0-sink vertex is v0 in G0,K

and the 1-sink vertex is v1 in G1,K .

In this constructed game G′, the MIN(MAX) player must win G0 and all
G0,j(G1,j) to win G′. Let p to be the value in G. By induction, it is easy to
prove the probability to reach v1 in G1,K is (pK)/(pK + (1 − p)K).

Let K = nd where d = (c + 1)/(1− ρ), then N = (2K + 1)n = O(nd+1) when
p ≤ 1/2 − n−c we have,

pK

pK + (1 − p)K
≤

(1
2 − n−c)K

(1
2 − n−c)K + (1

2 + n−c)K

≤ (1 − 2n−c)K ≤ e−nd−c

≤ e−Nρ

,

so the value of G′ is less than e−Nρ

in this case. Similarly, when p ≥ 1/2 + n−c,
we have the value of G′ is larger than 1 − e−Nρ

. That is,

val(G) ≤ 1
2
− n−c ⇒ val(G′) ≤ e−Nρ

,

val(G) ≥ 1
2

+ n−c ⇒ val(G′) ≥ 1 − e−Nρ

.
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Fig. 1. An example on constructing G′ from G, for K = 3. Every ellipse is a copy of
G. Three solid vertices are vstart,v0,v1. It is easy to check that the probability to reach
the v0 in G′ is exactly p3/(p3 + (1 − p)3), in which p = val[G](v0).

By applying the algorithm for (1/2− e−nρ

)-gap SSG decision problem on G′,
the algorithm would be able to distinguish between val(G) > 1/2 + n−c and
val(G) < 1/2 − n−c.

For general (possibly non-stopping) SSG, we use Condon’s reduction in [2]
that transforms a SSG G to a stopping SSG G′ whose value is arbitrarily
close to the value of G. The constructed stopping game G′ adopts all the ver-
tices of G and inserts cnm new vertices(m = |E| in G). For any vertex v,
|val[G](v)− val[G′](v)| ≤ 2(2−c)n. By combining these two constructions, we can
reduce solving the (n−c)-gap decision problem to (1/2− e−nρ

)-gap SSG decision
problem.

4 Fast Algorithm for SSGs with Few Random Vertices

An interesting case for solving simple stochastic games is when there are a few
random vertices. Gimbert and Horn[6] found an algorithm that runs in Õ(|VR|!)
time. Their algorithm is based on enumerating a special kind of strategies called
f -strategies. To avoid simple and time consuming enumerations, our algorithm
relies on the following Lemma:

Lemma 1 (Main Lemma). There’s a partial order in f-strategies such that
the following holds:

1. Any maximal f corresponds to a pair of optimal strategies.
2. Two f-strategies can be compared in polynomial time
3. If f is not maximal, then in polynomial time we can find g which is better

than f

The f -strategies are first introduced in [6], and they proved a theorem(Lemma
3 in this paper) on testing whether the f -strategy is optimal or not. The brute-
force idea is to enumerate all possible O(n!) f -strategies and use Lemma 3 to find



New Results on Simple Stochastic Games 1019

the optimal one. Our major contrubution is this Main Lemma, which reduces
the problem to a local maximal searching problem and thus enabled us to design
faster algorithms.

4.1 f-Strategies

In this section we’ll first briefly describe [6]’s ideas on what are f -strategies and
how to test their optimality; this is first introduced in [6] and we mention it again
for completeness. Then we show how the partial order in the Main Lemma is de-
fined and prove the Main Lemma. Finally we use existing randomized algorithms
for local search problems to improve the expected running time to Õ(

√
|VR|!).

Let f = 〈r1, . . . , rm〉 (for simplicity let r0 = v1) be a permutation of the
random vertices, where m = |VR| is the the number of the random vertices. A
f -strategy is a pair of positional strategies associated to f .

Let Ri be the first i random vertices in the permutation f . The consuming set
Ci is a set of vertices from which player MAX has a strategy σf for moving the
pebble to Ri and at the same time avoid touching any other random vertices, no
matter what strategy player MIN chooses. Similarly, there’s also a strategy τf for
player MIN, such that no matter what player MAX does, vertices outside Ci can
never reach a vertex in Ri without touching other random vertices.Obviously
C0 ⊆ C1 ⊆ . . . ⊆ Cm. This pair of strategies (σf , τf ) is called the f -strategy
regarding to the permutation f . For any permutation f , let valf (ri) be the prob-
ability for player MAX to win if the game starts at vertex ri, when players follow
the f -strategies (σf , τf ). The following lemmas are first proved in [6].

Lemma 2 (f-strategy). Given any permutation f , the corresponding σf and
τf always exist and can be found in polynomial time.

Lemma 3. If f satisfies the Consistency and Progressive conditions, then the
f-strategy is an optimal strategy for the game.

Consistency: valf (r1) ≥ · · · ≥ valf (rm)
Progressive: For any random vertex ri (i > 0) with valf (ri) > 0, at least one

of its outgoing edges points to a vertex in Ci−1.
There always exists a permutation f that satisfy both conditions.

For constructing {Ci} in polynomial time and more discussions about the Con-
sistency and Progressive conditions, see [6].

4.2 The Partial Order for f-Strategies

A natural way to improve the algorithm by Gimbert and Horn would be smartly
updating f when it is not Consistent or not Progressive. However, it is hard to
tell which permutation better by simply looking at the values for vertices.

To estimate whether a particular ordering is good or not, we construct a new
SSG with respect to the ordering.
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Fig. 2. (a)The game G, Δ are MIN vertices, � are MAX vertices, © are RANDOM
vertices. (b)The graph Gf , in which f = 〈r1, r2, r3, v1〉. 4 MAX vertices are added. The
dashed lines are the original edges and the solid lines are the added edges.

Definition 2 (value measure H(f)). Let G be a SSG and f be an ordering of
random vertices, Gf is a new SSG. Gf has all the vertices and edges in G and
m new vertices u1, u2, ..., um, all of them are MAX vertices. The two outgoing
edges of ui go to ri and ri+1 (both outgoing edges of um go to rm). All edges of
the form (v, ri) in G are replaced by (v, ui) in Gr. Let H(f) �

∑m
i=1 val[Gf ](ui).

Let HOPT =
∑m

i=1 val[G](ri). An example on how to compute H(f) is showed in
Fig 2. In G, the values are val(r1) = 0, val(r2) = 0.5, val(r3) = val(v1) = 1. In Gf ,
the values are val(r1) = val(r2) = val(r3) = val(v1) = 1. So H(f) = 4 > HOPT .

Lemma 4. For any permutation f , H(f) ≥ HOPT . When f is both Consistent
and Progressive, H(f) = HOPT

Proof. Consider a permutation f and its corresponding Gf , assume α, β is a pair
of optimal strategies for the original game G. Now we construct a strategy α′

for player MAX in Game Gf : α′(v) = α(v) for all v ∈ G; α′(ui) = ri for all
ui, 1 ≤ i ≤ m. When player MAX takes this strategy, it is easy to check β is
the also best response for player MIN in G′. So for every v ∈ G, val[Gα,β ](v) =
val[Gf ,α′,β](v) and

∑m
i=1 val(ui) =

∑m
i=1 val[Gf ,α′,β ](v) = HOPT . However, MAX

may have better strategies in Gf , so H(f) ≥ HOPT .
When f is Consistent and Progressive in G, we first prove that f is also

Consistent and Progressive in Gf . Let Ci be the consuming sets in G regarding
to f . By analyzing the structure of graph Gf , we have C′i = Ci ∪ {u1, u2, ..., ui}
are consuming sets in Gf . Consider the strategies (α′, β) as defined in the former
case. Using the definition of f -strategy, it is easy to verify that (α′, β) are f -
strategy for Gf . So val[Gf ](ri) = val[G](ri), which means f is still Consistent
and Progressive for Gf . Therefore H(f) = HOPT .

To compute the optimal strategy and values for Gf , we use the following Lemma.

Lemma 5. For any permutation f and the f-strategy (σ, τ) in G, there is an
optimal strategy (σ′, τ ′) for Gf such that for all v ∈ G, τ(v) = τ ′(v) and σ(v) =
σ′(v).
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Proof. Let the permutation f = 〈r0, . . . rm〉 and the corresponding f -strategy
(σf , τf ). Now we construct strategy for Gf satisfies the conditions.

Denote the consuming sets for f as {Ci}. Let g = (r0, rt1 , rt2 , ..., rtm) be a
permutation for Gf which is consistent and progressive (this ordering always
exists by Lemma 3). Since G and Gf have the same random vertices, f and g are
permutations over the same set. Denote the consuming sets for g as {C′i}, we
have

⋃
i Ci =

⋃
i C′i. By the construction of Gf , we have Ci = ∪i

j=1(Cj ∪ {uj})
and C′i = ∪max t1,t2,...,ti

j=1 (Cj ∪{uj}).This is because in the f -strategy in G, player
MAX’s strategy ensures Ci can reach Ri while MIN strategy ensures that no
other vertices outside Ci can reach Ri.

Now the optimal strategies (σ′, τ ′) are defined as follows.

σ′(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(v), if v ∈ G

rti , if v = uti and ti = max
j≤i

tj

uti+1, if v = uti and ti < max
j≤i

tj

(1)

Since the MIN vertices in Gf are the same with G, we simply let τ ′(v) = τ(v).
Then for any i, the strategy σ′ makes sure that no matter what strategy

the MIN player uses, C′i always reach a vertex in {r0, r1, ..., rti}. Similarly, the
strategy τ ′ makes sure that no matter what strategy that the MAX player uses,
vertices outside C′i can never reach a vertex in {r0, r1, ..., rti}. So (σ′, τ ′) is a
valid f -strategy for the permutation g. Since g is consistency and progressive,
(σ′, τ ′) is therefore optimal by Lemma 3.

By this lemma we can find the optimal strategy for MIN player in Gf in polyno-
mial time, because we know that the strategy for player MIN in f -strategy for G
is also an optimal strategy for MIN player in Gf . By using linear programming
we can find the optimal strategy for player MAX in polynomial time.

Definition 3 (progressiveness measure P(f)). For an permutation f =
〈r1, . . . rm〉, P (f) is the smallest i(i > 0) such that ri does not have an out-
going edge to Ci−1. If there’s no such i or val(ri) = 0 then P (r) = m + 1.

Denote the set of all permutations over the random vertices as Π . Searching
this space and output the consistent and progressive one takes Õ(m!) time. But
an partial order over Π may help us to find this ordering. We say f > g if (1)
H(f) < H(g) or (2) H(f) = H(g) and P (f) > P (g).

Any maximal element in (Π, >) corresponds to an permutation that is both
Consistent and Progressive. Therefore we have proved the first 2 parts of the
Main Lemma. To prove part 3 of the Main Lemma, we use the following lemma
as a tool to upperbound the H value.

Lemma 6. If function f : V → [0, 1] satisfy the following conditions, then
val(v) ≤ f(v) for every vertex v.
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1. For vertex v1, f(v1) = 1;
2. For vertex v ∈ VR, assume the two outgoing edges are (v, w1), (v, w2), f(v) ≥

(f(w1) + f(w2))/2;
3. For vertex v ∈ VMAX, assume the two outgoing edges are (v, w1), (v, w2),

f(v) ≥ max(f(w1), f(w2));
4. For vertex v ∈ VMIN, assume the two outgoing edges are (v, w1), (v, w2),

f(v) ≥ min(f(w1), f(w2)).

Due to the limit of space, we defer the proof to the full version of the paper.

Lemma 7. If an permutation f = 〈r1, . . . rm〉 is not maximal, then there exists
an element ri in f , by deleting ri and reinsert it in appropriate place we get a
new ordering g such that g > f .

Proof. If the ordering f is not consistent in Gf , then there exists some t such that
val[Gf ](rt) < val[Gf ](rt+1). Find a place q > t so that val[Gf ](uq) < val[Gf ](rt+1)
(if there’s no such place then let q = m + 1). Delete rt and reinsert it right
before q (if q = m + 1 then insert it at the tail). Define f(v) = val[Gf ](v),
then for graph Gg f is a valid value function that satisfy the requirements of
Lemma 6. Therefore for any vertex v val[Gr](v) ≥ val[Gg](v). Particularly for
the current position of rt, the corresponding u vertex is uq in Gg, f(uq) >
max(f(uq+1), f(rt)), so even after reducing f(uq) to max(f(uq+1), f(rt)), f is
still valid. That is, H(g) < H(f), g > f .

If the ordering f is consistent but not progressive, then assume P (f) = t.
Define a graph among the random vertices and r0 as follows: if an original
outgoing edge of ri goes to a vertex v that is in Cj\Cj−1, then there’s an edge
from ri to rj . Use breadth first search to find t′ > t, such that the following
holds:

1. There’s an edge from rt′ to {r0, r1, ..., rt−1}.
2. There’s a path from rt to rt′ .
Note that such t′ must exist because otherwise following the f -strategy, start-

ing from rt, the pebble will never be able to reach r0, and therefore the value of
rt is 0, which contradict with the fact that P (r) 
= m+1. Also, val(rt′) = val(rt),
because if the path from rt to rt′ is (w0, w1, ..., wk) (w0 = rt and wk = rt′), then
since val(wi) = (val(wi+1) + val(r∗))/2, both wi+1 and r∗ are ranked lower than
t, val(wi+1) ≤ val(rt), val(r∗) ≤ val(rt). But val(w0) = val(rt), by induction for
all i val(wi) = val(w0) = val(rt).

Now delete rt′ and insert it back before rt to get a new ordering g. Define
f(v) = val[Gf ](v), then for graph Gg f is a valid value function that satisfy the
requirements of Lemma 6. Therefore for any vertex v val[Gf ](v) ≥ val[Gg](v).
Either all values are equal, in this case H(f) = H(g) but P (g) > P (f) so g > f ;
or some values are different, in this case H(g) < H(f) so g > f .

Since there are only polynomially many ways to delete and reinsert an element,
a better ordering can always be found in polynomial time.
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4.3 The Randomized Algorithm

Now we can use the existed randomized local minimum searching algorithm to
solve the simple stochastic game. The algorithm to solve the value of a simple
stochastic game G = (V, E):

1. Randomly choose
√
|VR|! log(|VR|!) permutations, and let f0 be the maximal

permutation among them;
2. Starting from f0, repeatedly find better permutation until a maximal per-

mutation is found

By Lemma 7, we can always find a better permutations unless f is maxi-
mal, and there are only |VR|! permutations, the algorithm will eventually find a
maximal permutation and thus the optimal strategy.

The first step takes Õ(
√
|VR|!) time, after that, each iteration of the loop will

take poly(|VR|) time, so the key is how many iterations step 2 needs.

Lemma 8. The probability that step 2 needs more than
√

|VR|! steps is no more
than 1/(|VR|)!.

Proof. Consider any total ordering of the permutations that agrees with the
partial ordering we defined. The probability that none of the

√
|VR|! largest ele-

ments are chosen is at most (1−
√
|VR|!/(|VR|!))

√
|VR|! log(|VR|!) = e

− log(|VR|!) =
1/(|VR|)!.

Therefore, the expectation of number of iterations is at most
√
|VR|!. The run-

ning time is Õ(
√
|VR|!).
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tracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 206–209. Springer,
Heidelberg (2008)



Worst-Case and Smoothed Analysis of

k-Means Clustering with Bregman Divergences

Bodo Manthey1 and Heiko Röglin2,�

1 Department of Applied Mathematics, University of Twente
b.manthey@utwente.nl

2 Department of Quantitative Economics, Maastricht University
heiko@roeglin.org

Abstract. The k-means algorithm is the method of choice for clustering
large-scale data sets and it performs exceedingly well in practice. Most
of the theoretical work is restricted to the case that squared Euclidean
distances are used as similarity measure. In many applications, however,
data is to be clustered with respect to other measures like, e.g., relative
entropy, which is commonly used to cluster web pages. In this paper,
we analyze the running-time of the k-means method for Bregman di-
vergences, a very general class of similarity measures including squared
Euclidean distances and relative entropy. We show that the exponential
lower bound known for the Euclidean case carries over to almost every
Bregman divergence. To narrow the gap between theory and practice, we
also study k-means in the semi-random input model of smoothed anal-
ysis. For the case that n data points in Rd are perturbed by noise with
standard deviation σ, we show that for almost arbitrary Bregman di-

vergences the expected running-time is bounded by poly(n
√

k, 1/σ) and
kkd · poly(n, 1/σ).

1 Introduction

Clustering a set of objects into a certain number of classes so as to maximize the
similarity of objects in the same class is a fundamental problem with applications
in various areas like information retrieval, bioinformatics, and data compression.
Usually the objects are represented by points in Rd, and they are to be clustered
into k classes C1, . . . , Ck that can be represented by centers c1, . . . , ck ∈ Rd such
that the sum

∑k
i=1

∑
x∈Ci

d(x, ci) becomes minimal for some distance measure
d. A common distance function d are squared Euclidean distances but in many
practical applications other distance measures are required. For instance, when
clustering text documents like web pages often the bag-of-words model [7] is
applied, in which the objects to be clustered are probability distributions over
the set of all words. A popular distance measure for probability distributions
is the Kullback-Leibler divergence (KLD, also known as relative entropy). Both
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squared Euclidean distances and KLD are special cases of Bregman divergences,
a very general class that contains most practically important distance measures.

Even though a lot of theoretical research has been conducted on clustering
algorithms, the by far most successful algorithm in industrial and scientific appli-
cations is the seemingly ad hoc k-means method [6], a local search algorithm due
to Lloyd [12]: Start with an arbitrary set of k centers and repeat the following
two steps until the process stabilizes: 1) Assign every data point to its closest
center. 2) Readjust the positions of the centers such that they are optimal for
the current assignment. The k-means method works very well in practice. One
of its distinguished features is its speed: It has been observed that the number of
iterations it needs to find a local optimum is much smaller than the number of
objects to be clustered [8, Section 10.4.3]. This is in stark contrast to its worst-
case running-time: The only upper bound is nO(kd) [11], which is based on the
observation that no clustering appears twice in a run of k-means. On the other
hand, Vattani [15] showed that k-means can run for 2Ω(n) iterations in the worst
case. This lower bounds holds for all d ≥ 2.

To reconcile theory and practice, Arthur and Vassilvitskii considered the k-
means method for squared Euclidean distances in the framework of smoothed
analysis. This notion has been introduced by Spielman and Teng [14] and it is
based on a two-step input model: An adversary specifies an instance, which is
then subject to slight random perturbation. The smoothed running-time is de-
fined to be the worst expected running-time the adversary can achieve. If it is
small, then (artificial) worst-case instances might still exist, but they are encoun-
tered only with very small probability if inputs are subject to some small amount
of random noise. In practice, such noise can come, e.g., from measurement errors
or numerical imprecision. Unlike worst-case or average-case analyses, smoothed
analyses are neither dominated by single worst-case instances nor by completely
random instances, and they lead to more realistic conclusions. Arthur and Vas-
silvitskii [4] showed that for squared Euclidean distances the smoothed running-
time of k-means is poly(nk, 1/σ) if the data points are perturbed by Gaussian
noise with standard deviation σ. We improved this bound to poly(n

√
k, 1/σ) and

we additionally obtained a bound of kkd · poly(n, 1/σ) [13]. Recently, Arthur et
al. [3] showed that the smoothed running-time of k-means is polynomial in n
and 1/σ.

With only a few exceptions [1,2,5], the theoretical knowledge about k-means
clustering is limited to the case of squared Euclidean distances. In this paper, we
initiate the theoretical study of the k-means method for general Bregman diver-
gences. We show that the lower bound of 2Ω(n) for the worst-case running-time is
valid for almost every Bregman divergence, leading, as for squared Euclidean dis-
tances, to a huge discrepancy between theory and practice for many commonly
used distance measures like Kullback-Leibler divergence or Itakura-Saito diver-
gence. To obtain more realistic theoretical results, we also analyze the smoothed
running-time of k-means for general Bregman divergences. We show that for al-
most arbitrary Bregman divergences, the smoothed running-time of k-means is
upper-bounded by poly(n

√
k, 1/σ) and kkd · poly(n, 1/σ).
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1.1 k-Means Method

An instance for k-means clustering is a set X ⊆ Rd consisting of n points. The
aim is to find a clustering C1, . . . , Ck of X , i.e., a partition of X , as well as
cluster centers c1, . . . , ck ∈ Rd such that the potential

∑k
i=1

∑
x∈Ci

dΦ(x, ci) is
minimized, where dΦ denotes some distance measure on Rd. Given the cluster
centers, every data point should be assigned to the cluster whose center is closest
to it. The other way round, given the clusters, the centers c1, . . . , ck should be
chosen so as to minimize the potential. In the next section, we will see that for
Bregman divergences this is the case if the centers are chosen as the centers
of mass, i.e., ci = 1

|Ci|
∑

x∈Ci
x. The k-means method for Bregman divergences

proceeds now as follows (observe that since the potential decreases in every step,
no clustering occurs twice, and the algorithm eventually terminates):

1. Select cluster centers c1, . . . , ck ∈ Rd arbitrarily.
2. Assign every x ∈ X to the cluster Ci whose cluster center ci is closest to it.

(If the closest center is not unique and a point is already assigned to one of
the closest clusters, then do not change its assignment.)

3. Set ci = 1
|Ci|

∑
x∈Ci

x.
4. If clusters or centers have changed, goto 2. Otherwise, terminate.

1.2 Bregman Divergences

One of the most commonly used functions is dΦ(x, c) = ‖x−c‖2, i.e., squared Eu-
clidean distances. But also other distance measures are common, e.g., Kullback-
Leibler divergence [7]. Both are special cases of Bregman divergences [5].

Definition 1. Let X ⊆ Rd, and let Φ : X → R be a strictly convex function
such that Φ is differentiable on the relative interior ri(X) of X. The Bregman
divergence dΦ : X × ri(X) → [0,∞) is defined as

dΦ(x, c) = Φ(x) − Φ(c) − (x − c)T∇Φ(c) .

Here, ∇Φ(c) is the gradient of Φ at c. The basic intuition behind Bregman
divergences is the following: c corresponds to a cluster center and x to a data
point. Let Φ(x) = Φ(c) + (x− c)T∇Φ(c) be the linear interpolation of Φ(x) from
c. Then dΦ(x, c) measures how well this interpolation is: dΦ(x, c) = Φ(x)−Φ(x).
Since Φ is strictly convex, we have Φ(x) ≤ Φ(x) with equality only for x = c.
Thus, dΦ is non-negative and dΦ(x, c) = 0 if and only if x = c.

For a finite set of points C ⊆ X , we denote the center of mass of C by
cm(C) = 1

|C|
∑

x∈C x. For Bregman divergences the potential can be expressed
in terms of the center of mass in the following way [5, Proposition 1]: For every c,

∑

x∈C

dΦ(x, c) =
∑

x∈C

dΦ(x, cm(C)) + |C| · dΦ(cm(C), c) .

In particular, this means that the center of mass minimizes the potential for a
given cluster C, as it does for squared Euclidean distances.
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Another important property of Bregman divergences is that the bisector of
two centers c and c′, i.e., the set {x ∈ X | dΦ(x, c) = dΦ(x, c′)}, is a hyperplane,
which follows immediately from the definition of dΦ. The only known worst-
case bound for the running-time of k-means on squared Euclidean distances
comes from the observation that no clustering can repeat during the execution
of k-means. This yields a bound of W ≤ n3kd [3,11]. The proof of this bound
relies only on the fact that the bisectors are hyperplanes. Hence, also for general
Bregman divergences, the worst-case number of iterations cannot exceed W .

In the following, we present some prominent Bregman divergences.

Mahalanobis Distances. Let us assume that we want to cluster objects that are
each characterized by d quantities. If these quantities are independent, then clus-
ters should be hyperspherically-shaped and squared Euclidean distances provide
a good distance measure. However, if the coordinates are correlated, then clus-
ters are expected to have hyperelliptic shapes and squared Euclidean distances
are not the right measure. In that case, let B ∈ Rd×d be the covariance matrix of
the components of the data points and assume that it is invertible. This means
that the matrix B is symmetric and positive definite. Let A = B−1, then the
right distance measure taking into account the correlations is the Mahalanobis
distance dmA for mA(x) = xT Ax. The gradient of mA is ∇mA(c) = 2Ac, which
yields dmA(x, c) = (x − c)T A(x − c).

Kullback-Leibler Divergence and Generalized I-Divergence. The Kullback-Leibler
divergence (KLD, relative entropy) is a very popular Bregman divergence. Here,
X = {x ∈ Rd | x ≥ 0,

∑d
i=1 xi ≤ 1} and an element x = (x1, . . . , xd) ∈

X represents a probability distribution on a discrete set with d + 1 elements
(where (x1, . . . , xd+1) with xd+1 = 1 −

∑d
i=1 xi is the vector of probabilities).

For KLD(x) =
∑d+1

i=1 xi log(xi), we obtain dKLD(x, c) =
∑d+1

i=1 xi log(xi

ci
), where

xd+1 = 1 −
∑d

i=1 xi and cd+1 = 1 −
∑d

i=1 ci. Intuitively, the Kullback-Leibler
divergence is a measure for the expected difference in the number of bits that
are required to code samples drawn according to x when, on the one hand, we
use an optimal code based on c and, on the other hand, we use an optimal code
based on x. KLD plays a crucial role in a variety of applications like clustering
text documents and image classification [7].

We will also consider the generalized I-divergence (GID), which generalizes
KLD to a larger domain: For this, we have X = {x ∈ Rd | x ≥ 0}, the po-
tential function GID(x) =

∑d
i=1 xi log(xi), and dGID(x, c) =

∑d
i=1 xi log(xi

ci
) −

∑d
i=1(xi − ci).

Itakura-Saito Divergence. Another Bregman divergence that is commonly used
in signal processing and in particular in speech processing is the Itakura-Saito
divergence (ISD) [5,10]. We have again X = {x ∈ Rd | x ≥ 0}, and the potential
function is given by the Burg entropy ISD(x) = −

∑d
i=1 log(xi). From this, we

get the Bregman divergence dISD(x, c) =
∑d

i=1
xi

ci
− log(xi

ci
) − 1.
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1.3 Perturbation Models for Bregman Divergences

If the Bregman divergence is defined on the whole space Rd, i.e., if X = Rd, then
it is often natural to assume that the points are perturbed by adding Gaussian
noise to them. More precisely, we can assume that an adversary is allowed to
place initially n points in [0, 1]d, and that each of these points is perturbed by
adding a Gaussian with standard deviation σ to each of its coordinates.

On the other hand, if X is a proper subset of Rd, as it is the case for KLD or
GID, then such a perturbation model cannot be applied as it might yield points
outside the feasible region X . For this reason, we decided to consider very general
perturbation models that need to satisfy only a couple of properties, which we
will summarize in the following. In Section 2, we present concrete perturbation
models with these properties for some special Bregman divergences.

We assume that the perturbation model is parameterized by some σ ∈ (0, 1]
that measures the amount of randomness in the sense that the smaller σ is
chosen, the weaker is the perturbation. If every point is perturbed by Gaussian
noise, then σ can be chosen as the standard deviation. We assume that the
following properties are satisfied for σ ∈ (0, 1]:

– For any ε ≥ 0, any hyperplane H , and any point in x ∈ X ∩ [0, 1]d, the
probability that x has a distance of at most ε from H after the perturbation
is bounded from above by

√
ε/σ.

– For any x ∈ X ∩ [0, 1]d, the density of the perturbation of x is bounded from
above by (1/σ)d on Rd.

Let us remark two things about our assumptions on the perturbation model:
For Gaussian noise, the probability of a point being close to a hyperplane is even
bounded by ε/σ. However, to gain some flexibility for choosing other perturba-
tion models, we use the weaker bound of

√
ε/σ. Second, the bound on the density

immediately implies that for any ε ≥ 0, any c ∈ Rd, and any x ∈ X ∩ [0, 1]d,
the perturbed version of x lies in the hyperball with radius ε and center c with
probability at most (2ε/σ)d.

Additionally, we need the property that perturbed points cannot be too far
away from their initial positions in X ∩ [0, 1]d. For this, let D be chosen such
that with probability at least 1−W−1 every point from the perturbed point set
X is contained in the hypercube D = [−D, 1 + D]d, where W ≤ n3kd denotes
the worst number of steps. The bounds on the smoothed running-time that we
obtain depend polynomially on D. For Gaussian random vectors with mean in
[0, 1]d and standard deviation σ ≤ 1, D can be chosen polynomially in n.

1.4 Parameterization

In this section, we make precise what we mean by “almost arbitrary Bregman
divergences.” To do this, we define a couple of parameters of Bregman diver-
gences. For the remainder of the paper we assume that X , the domain of the
distance measure, is a convex set.
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For ε ≥ 0, let I(ε) be the interior of X ∩ D that has a distance of at least ε
to the boundary: I(ε) = {x ∈ X ∩ D | dist(x, ∂(X ∩D)) ≥ ε}.

For a given perturbation model, we choose ε∗ such that Pr
[
x /∈ I(ε∗)

]
≤ n−13,

where x denotes the perturbed version of an arbitrary point in X ∩ [0, 1]d. In the
following, we use the notations I = I(ε∗) and I ′ = I(ε∗/(2n)). An important
property of this definition is the following: If A ⊆ X is a subset of the data
points, and A contains a point from I, then cm(A) ∈ I(ε∗/n) ⊆ I′, i.e., the
center of mass of A is also at a distance of at least ε∗/n from the boundary.

To relate the Bregman divergence dΦ to squared Euclidean distances, we in-
troduce two parameters ξ and ξ′ such that

∀x, y ∈ X ∩D : dΦ(x, y) ≥ ξ · ‖x− y‖2 and ∀x, y ∈ I′ : dΦ(x, y) ≤ ξ′ · ‖x− y‖2 .

Observe that for the definition of ξ′, only the interior of X∩D is relevant. This is
important as otherwise ξ′ would be unbounded for many Bregman divergences.
The ratio ξ′/ξ is closely related to the μ in the notion of μ-similarity introduced
by Ackermann et al. [2]. However, Bregman divergences like KLD, GID, or ISD
are not μ-similar for any μ on their whole domain. To make them μ-similar, their
domains have been restricted such that all data points must be sufficiently far
away from the singularities. We emphasize that no such restrictions are necessary
for our smoothed analysis. There may be points close to the boundary of the
domain, but we can take special care of those points. This technical challenge is
the reason for the definition of I and I ′ above.

We also need the following lower bound on the “second derivative” of Φ, which
follows by a simple calculation from the previous definition: ‖∇Φ(x)−∇Φ(y)‖

‖x−y‖ ≥ 2ξ

for all x, y ∈ X ∩D with x 
= y. Similarly, we need an upper bound (only for the
interior): Q′ := supx,y∈I′,x �=y

‖∇Φ(x)−∇Φ(y)‖
‖x−y‖ .

1.5 Our Results

In the following, we assume d ≤ n, k ≤ n, and d ≥ 4, which are no severe
restrictions from a practical point of view. Let P be the maximal potential after
the first iteration of k-means, provided that all points of X lie in D.

Theorem 2. Let dΦ be a Bregman divergence. Then the smoothed running-time
of k-means is bounded from above by P

ξ · poly(n
√

k, 1
σ ) and by P · kkd · Q′2ξ′3

4ξ5ε∗2 ·
poly(n, 1

σ ), where the polynomials are independent of d, k, and the parameters.

The second bound in the theorem yields a polynomial smoothed running-time if
k, d ∈ O(

√
log n/ log log n). Indeed, k and d are usually much smaller than n in

practice.
On the negative side, in Section 3, we transfer the lower bound of 2Ω(n) for

squared Euclidean distances to all good-natured Bregman divergences, where
“good-natured” means that all third order derivatives exist and are bounded in
a small region, which includes Mahalanobis distances, KLD, GID, and ISD.
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1.6 Technical Contribution

In an earlier analysis [13], we presented two different approaches for analyzing
the smoothed running-time, leading to upper bounds of kkd · poly(n, σ−1) and
poly(n

√
k, σ−1) for squared Euclidean distances. Both of these approaches are

based on a novel lemma about perturbed point sets, stating that, given any
Voronoi partition of the point set, it is unlikely that many points are close to
the bisectors [13, Lemma 2.1]. Clearly, the structure of the smoothed analy-
sis presented in this paper is similar to the earlier one [13]. However, we had
to tackle several severe problems when transferring the results from squared
Euclidean distances to general Bregman divergences. First of all, the proof of
the aforementioned lemma about perturbed point sets cannot be generalized
directly to Bregman divergences. In the course of finding a generalization, we
found a shorter and simpler proof of the lemma. Given this result, the bound
of kkd · poly(n, σ−1) follows roughly in the same way as in the Euclidean case,
but some additional technical problems have to be addressed. Let us describe
the main problem by way of example: For KLD, the parameters ξ′ and Q′ can
become arbitrarily large for points close to the boundary of X . Even after the
perturbation, some of the points might still be too close to the boundary to
obtain reasonable upper bounds for ξ′ and Q′. Essentially, we show that the kd
points that are closest to the boundary can be handled separately and that all
other points are sufficiently far away from the boundary (i.e., they lie in I) to
bound ξ′ and Q′ in a reasonable way.

An obvious question is whether the smoothed polynomial bound [3] carries
over to Bregman divergences. The problem with adapting the proof of this bound
is that it exploits specific properties of Gaussian perturbations. It uses, in par-
ticular, the property that the projection of a Gaussian random vector onto a
lower-dimensional subspace is still a Gaussian with the same standard devia-
tion. It would be very interesting to see if it is possible to relax some of these
requirements or if it is possible to design more general perturbation models that
still meet the requirements needed for the smoothed polynomial bound.

In order to prove the lower bound, we first observe that all Mahalanobis
distances (in particular squared Euclidean distances) exhibit the same worst-case
behavior. Then we show that all “good-natured” Bregman divergences (including
all commonly considered examples like KLD, GID, or ISD) behave locally like
some Mahalanobis distance, which makes a transfer of the known lower bound
for the Euclidean case possible.

Due to lack of space, all proofs are deferred to the full version of this paper.
In the following section, we will only apply Theorem 3 to four common Bregman
divergences.

2 Applying the Smoothed Analysis

2.1 Mahalanobis Distances

For Mahalanobis distances, we use the same perturbation model that has been
used for squared Euclidean distances [4,13]: The adversary chooses n points in
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[0, 1]d. Then the d coordinates are perturbed by independent Gaussian pertur-
bations of standard deviation σ. We can choose D = poly(n). Then X ⊆ D =
[−D, D + 1]d with a probability of at least 1 − W−1 since Gaussians are con-
centrated around their mean, which is in [0, 1]d. After one iteration of k-means,
every point is assigned to a cluster center within a distance of at most poly(n).

Let A ∈ Rd×d be an arbitrary symmetric positive definite matrix, and con-
sider k-means using mA. Scaling the matrix does not change the behavior of
k-means. Thus, we assume that A is scaled such that the smallest eigenvalue,
which is positive, equals 1. Let λmax be the largest eigenvalue of A. A short
calculation shows that the parameters can be chosen such that Theorem 2 yields
the following bound:

Theorem 3. The smoothed running-time of k-means using mA is bounded from
above by λmax · poly(n

√
k, 1

σ ) and kkd · λ6
max · poly(n, 1

σ ).

2.2 Kullback-Leibler Divergence

We have to be more careful when choosing a perturbation model for Kullback-
Leibler divergence. KLD is defined on a simplex. Thus, we cannot use Gaussian
perturbations since these might result in points outside of the domain of KLD.

To get a perturbation model, we take into account that a point represents
a probability distribution on a finite set {1, 2, . . . , d + 1}. For instance, assume
that we want to classify web pages based on a list w1, . . . , wd+1 of words (the
so-called bag-of-words model [7]). For a specific web page, let ni be the number
of occurrences of wi. Then xi = ni∑d+1

j=1 nj
is the relative frequency of wi. Based on

the vectors x, web pages can be clustered according to their topics since pages
about similar topics are likely to contain similar words. To perturb instances,
the idea is to add a random number of each word to the web page.

Let us make this more precise. For a point x ∈ X , we obtain x′ ∈ Rd+1

by adding the component xd+1 = 1 −
∑d

i=1 xi. Then we draw random num-
bers y1, . . . , yd+1 independently according to some probability distribution to be
specified in a moment. Let S =

∑d+1
i=1 xi + yi = 1 +

∑d+1
i=1 yi. Then we obtain

the perturbed point z ∈ Rd by setting zi = xi+yi

S . By construction, z ≥ 0 and
∑d

i=1 zi ≤ 1. We use the exponential distribution [9], whose density is 1
θ ·exp

(
−x

θ

)

for a positive parameter θ.
In the full version of this paper, we show that this perturbation model satisfies

the requirements of Section 1.3 for θ = 8dσd/(d+1). Analyzing the parameters
ξ, ξ′, Q′, and ε∗ as well as the potential P after the first iteration yields the
following theorem.

Theorem 4. The smoothed running-time of k-means using KLD is bounded
from above by poly(n

√
k, 1

σ ). and kkd · poly(n, 1
σ ).

2.3 Generalized I-Divergence

For generalized I-divergence and Itakura-Saito divergence, we use the same per-
turbation model, except for rescaling. Since we do not have to rescale, this allows



1032 B. Manthey and H. Röglin

us to let the adversary choose any density function f bounded by 1
2
√

dσ
whose tail

bounds are sufficiently small: The probability of a number greater than poly(n)
must be bounded by 1

ndW . Then we perturb a point by adding independent ran-
dom numbers drawn according to f . For this perturbation model, Theorem 4
carries over to GID and ISD. Details can be found in the full version.

3 Lower Bound

In this section, we transfer the exponential lower bound proved by Vattani [15]
to almost arbitrary Bregman divergences.

Theorem 5 (Vattani [15]). For squared Euclidean distances, there exist sets
X ⊆ Rd of n points on which the k-means method requires 2Ω(n) iterations when
initialized with a particular set of cluster centers. Here, k depends on n and
d ≥ 2 is arbitrary.

First, we show that all Mahalanobis distances are equivalent in terms of the
worst-case number of iterations. Squared Euclidean distances are a special case
of Mahalanobis distances. Thus, we get an exponential lower bound for all Maha-
lanobis distances. Let W k,d

dΦ
(n) be the maximum number of iterations of k-means

on any instance of n points in Rd using dΦ as the distance measure.

Lemma 6. For every symmetric positive definite matrix A ∈ Rd×d, we have
W k,d

mA
(n) = W k,d

mI
(n) for all n, k, d ∈ N.

Now we transfer worst-case instances for Mahalanobis distances to instances for
arbitrary good-natured Bregman divergences. For this, we use the observation
that any good-natured Bregman divergence dΦ behaves locally at some point z0
like the Mahalanobis distance dmH , where H is the Hessian matrix of Φ at z0.
Hence, essentially we only need to scale down the worst-case instance for dmH

and embed it locally into a small space around z0.

Lemma 7. Let Φ : X → R be a strictly convex function with X ⊆ Rd and the
following properties: There exist a z0 ∈ X and a ζ > 0 such that

– Z = {z ∈ Rd | ‖z − z0‖∞ ≤ ζ} ⊆ X,
– all third-order derivatives of Φ exist on Z and their absolute values are

bounded, and
– the Hessian matrix of Φ at z0 is positive definite.

Then W k,d
dΦ

(n) ≥ W k,d
mI

(n).

Combining Vattani’s lower bound with Lemma 6 and Lemma 7, we obtain the
main result of this section.

Theorem 8. The worst-case number of iterations of k-means for the following
Bregman divergences is at least exp(Ω(n)) for n points and d ≥ 2: Mahalanobis
distances for any symmetric positive definite matrix A, Kullback-Leibler diver-
gence (KLD), generalized I-divergence (GID), Itakura-Saito divergence (ISD).
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Abstract. In this paper we revisit the dynamic dictionary matching
problem, which asks for an index for a set of patterns P1, P2, . . . , Pk that
can support the following query and update operations efficiently. Given
a query text T , we want to find all the occurrences of of these patterns;
furthermore, as the set of patterns may change over time, we also want
to insert or delete a pattern. The major contribution of this paper is
the first succinct index for dynamic dictionary matching. Prior to our
work, the most compact index is given by Chan et al. (2007), which
is based on the compressed suffix arrays (Grossi and Vitter (2005) and
Sadakane (2003)) and the FM-index (Ferragina and Manzini (2005)), and
it requires O(nσ) bits where n is the total length of patterns and σ is
the alphabet size. We develop a dynamic succinct index using a different
(and simpler) paradigm based on suffix sampling. The new index not only
improves the space complexity to (1 + o(1))n log σ + O(k log n) bits, but
also the time complexity of the query and update operations. Specifically,
the query and update operations respectively take O(|T | log n+ occ) and
O(|P | log σ + log n) times, where occ is the number of occurrences.

1 Introduction

Given a pattern P and a text T finding all the occurrences of P in T has been a
fundamental problem and has developed into a very mature research field. The
earliest work involved developing algorithms to solve the problem in O(|P |+ |T |)
time [14]. When the text remains relatively static but patterns keep changing,
one would like to build an index on the text T and treat the patterns as queries.
Data structures like suffix trees [16,20] and suffix arrays [15] achieve optimal
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query performance. The space for these structures was considered to be “linear”
but this was only when measured in terms of number of words and in asymptotic
sense. In the stricter information-theoretic sense (which measures space in bits),
this could be Θ(log n) times more than the optimal. Furthermore, the hidden
constants in the asymptotic notions often make these indexes about 20 to 60
times bigger than the original text.

Recently, Ferragina and Manzini [10] and Grossi and Vitter [11] presented
text indexes based on the concept of Burrows-Wheeler transform (BWT) [6]
whose space bounds are very close to the size of the compressed text. This
has evolved into a thriving research field with many new application-specific
compressed/succinct indexes developed.

The dictionary matching problem is an orthogonal problem to the text index-
ing problem. Here, some number of patterns are given beforehand and then a
text comes in as the query. We need to find which patterns appear in this query
text and at which locations. Hence, the index is built on the set of patterns.
More formally, the problem is defined as follows.

Index: A set of patterns P1, P2, ..., Pk with total n characters.
Query: A text T of size |T | characters.
Output: For each Pi occurring in T , all locations � where Pi matches T

beginning at position �.

In the dynamic version of the problem, we support two update operations,
namely insert(P ) and delete(P ). These operations, respectively, insert a new
pattern to the set and delete any of the existing patterns from the set.

Dictionary matching problem has a long history starting with Aho and Cora-
sick in 1975 [1] who solved the problem optimally for the case of static patterns.
Amir et al. [3] gave a solution for dynamic case where inserts and deletes of pat-
terns are allowed. Their approach consists of constructing a generalized suffix
tree of the patterns with suffix links. In particular, suffix links are exploited to
avoid repeatedly matching the characters of T when different positions of T are
examined for pattern occurrences.

However, a major problem with all the above solutions was that the index
takes too much space. With the advent of the field of compressed data struc-
tures, it remained to be shown that a space-efficient index can be designed for
dictionary matching. Also, the issue of dynamism was somewhat hard to achieve
with some of the earlier compressed indexing solutions. Chan et al. [7] were the
first to present O(nσ) bit index to solve this problem. Their solution mainly re-
lied on Compressed Suffix Arrays (CSA) [11,18] and the subsequent Compressed
Suffix Tree (CST) [19] with ingenious extension of suffix link operations. How-
ever, this solution remained from optimal in space (it only achieves big-O term)
usage.

In this paper, we take a different approach than CSA or BWT based indexes.
Our approach is based on directly sparsifying suffix links and using only sampled
suffixes. A similar approach, but with a rather different sampling criteria, was
considered by Kärkkäinen and Ukkonen [13] to solve the text indexing problem.
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1.1 Comparisons with Previous Results

The solution by Aho and Corasick for the static case required O(n log n) bits
and answered the queries in optimal O(|T |+ occ) time. When the dynamic case
was addressed by Amir et al., they achieved O(n log n)-bit index but their query
and update times had an extra multiplicative factor of O(log n/ log log n).

The first attempt to reduce index space for the dynamic dictionary matching
problem was given by Chan et al. [7]. Their approach builds on compressed
suffix arrays (CSA) and compressed suffix trees. They extend the compressed
suffix tree representation to use suffix links (using LCA queries). However, their
approach in a way uses CSA as a black-box tool and hence it not only remains
complicated but also that it does not attain the best possible bounds. For the
case of constant alphabet size (i.e., σ = O(1)), they achieve O(n) bits index.
However, their search and update times have an extra multiplicative factor of
O(log2 n) which comes from attempting to dynamize some of more sophisticated
data structures underlying the CSA based approach.

Hon et al. [12] introduced the suffix sampling technique to obtain stronger
bounds for the static version of this problem. Namely, they achieved O(n log σ)
bits index with O(|T | log log n + occ) time. They also showed that space bounds
like nHh + o(n log σ) + O(k log n) are achievable if the log log n multiplicative
factor can be increased to log n; here, Hh denotes the hth-order empirical entropy
of the set of patterns.

In this paper, we build on suffix sampling technique of [12] to achieve the
best known bounds for the dynamic dictionary matching problem. One of the
consequences of suffix sampling is that it results in sparsification of suffix links
which in turn results in the space savings. We also show that in our approach
we can split the data structure into two parts: one part is where the compressed
text can be stored separately and the other part is the indexing overhead. By
choosing the sampling rate appropriately, we can arbitrarily reduce the second
part of the data structure, achieving space very close to the one required for the
compressed representation of the text. Our space requirement and query times
are as given in Table 1. We also note that we can achieve the entropy-compressed
bound like nHh+o(n log σ)+O(k log n) under the assumption that the generative
model from which the dynamic pattern statistics are taken remains the same.
Not only our method is simpler to understand (and implement) but it may also
greatly enhance the understanding of the nature of this problem.

Table 1. Summary of Results

Result Space (bits) Query Time Update Time

[3] O(n log n) O((|T | + occ) log n/ log log n) O(|P | log n/ log log n)

[7] O(nσ) O((|T | + occ) log2 n) O(|P | log2 n)

this O(n log σ) O(|T | log n + occ) O(|P | log σ + log n)

this (1 + o(1))n log σ + O(k log n) O(|T | log n + occ) O(|P | log σ + log n)
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2 Preliminaries

2.1 Basic Notation

Let S = {S1, S2, . . . , Sr} be a set of r strings over an alphabet Σ of size σ. Let
$ and # be two characters not in Σ, whose alphabetic orders are, respectively,
smaller than and larger than any character in Σ. Let C be a compact trie such
that each string Si$ or Si# corresponds to a distinct leaf in C; also, each edge
is labeled by a sequence of characters, such that for each leaf representing some
string Si$ (or Si#), the concatenation of the edge labels along the root-to-leaf
path is exactly Si$ (or Si#). For each node v, we use path(v) to denote the
concatenation of edge labels along the path from root to v. Note that for each
Si, there must be some internal node vi such that path(vi) = Si.

Definition 1. For any string Q, the locus of Q in C is defined to be the lowest
node v (i.e., farthest from the root) such that path(v) is a prefix of Q.

2.2 Suffix Tree

The suffix tree [16,20] for a set S of strings {S1, S2, . . . , Sr} is a compact trie
storing all suffixes of each Si$ and each Si#. It can be stored in O(m log m)-bit
space where m = |S| denote the total number of characters in the strings of S.
For each internal node v in the suffix tree, it is shown that there exists a unique
internal node u in the tree, such that path(u) is equal to the string obtained
from removing the first character of path(v). Usually, a pointer is stored from v
to such a u; this pointer is known as the suffix link of v.

By utilizing the suffix links, the suffix tree can be updated according to the
insertion or deletion of Si in the set S with O(|Si| log σ) time [9].1 In addition,
we can efficiently find the loci of all suffixes of any text T within the suffix tree
in O(|T | log σ) time [3].

2.3 Review: Dictionary Matching with Suffix Trees

Let Δ = {P1, P2, . . . , Pk} be the set of patterns that are currently stored in the
collection. Let Σ be the alphabet, and σ be its size. Let n =

∑
|Pi| be the total

characters of the patterns in Δ. Suppose that we store the suffix tree for Δ; also
for each i, we mark the node vi with path(vi) = Pi. Then we have the following:

Lemma 1. Let T (j) denote the jth suffix of a text T and let u be the locus of
T (j) in the suffix tree of Δ. Then, Pi appears at position j in T if and only if
the marked node vi is an ancestor of u.

In case the set of patterns is static, we can store a pointer in each node of
the suffix tree, pointing to the nearest marked ancestor. Then by the previous
lemma, we can answer the dictionary matching query in O(|T | log σ + occ) time,

1 That is, we insert or delete all suffixes of Si in the suffix tree.
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since finding all loci of all suffixes of T can be done in O(|T | log σ) time. In
case the set of patterns is dynamic, the above scheme of storing pointers does
not work well, as in the worst case a single pattern update can cause many
nodes to change their nearest marked ancestors. Nevertheless, Amir et al. [3]
showed that with suitable maintenance of the marked ancestors, we can answer
the dictionary matching query in O((|T |+ occ) log n/ log log n) time and we can
update a pattern P in O(|P | log n/ log log n) time.2

3 Towards Succinctness with Sparse Suffix Tree

A major problem with the existing suffix-tree-based solutions is the index space,
requiring O(n log n) bits which can be Θ(log n) times more than the storage
of the patterns in the plain form. To achieve space reduction, our idea is to
selectively sample one suffix per every d suffixes, and maintain a compact trie C
from these sampled suffixes. Intuitively, the resulting trie is a suffix tree for the
original patterns, when we imagine every d characters of a pattern are merged
into a single meta-character.

Our query is answered analogously as in the original suffix tree scheme. Ba-
sically, when a text T is given, we shall locate T positions, say πi for i = 1 to
|T |, in the compact trie C which respectively represents the locus of T [i..|T |].
Because of the similarity of C and an ordinary suffix tree, finding the loci can be
done efficiently by exploiting “suffix links”. However, since each meta-character
represents d original characters, the computation of loci will be done by d sep-
arate traversals in C, where the jth traversal computes the loci of those suffixes
T [i..|T |] with i(mod d) = j. Afterwards, we report the occurrences by finding
the marked ancestors of each locus, using the data structure in Section 4.

3.1 Implementation Details

Various performance tradeoffs can be obtained by varying the sampling factor
d. We first consider the simple case where d is set to 0.5 logσ n. In this case, the
number of suffixes is reduced from n to at most �n/d� + k. Consequently, the
compact trie C has O(n/d+ k) nodes, so that its space is O((n/d+ k)× log n) =
O(n log σ + k log n) bits.

Recall that C is similar to an ordinary suffix tree; indeed, we can analogously
define suffix link for each internal node v in C, which is the node u such that
path(u) is the same as the string obtained by removal of first d characters of
path(v) (i.e., removal of its first meta-character). However, due to the effect of
merging characters, the alphabet size has increased from σ to σd =

√
n.

When a query text T is given, our target is to obtain the locus of each suffix
of T in C. We may first treat T as a meta-text T ′ by blocking every d characters.
Then, we can utilize the suffix links and find the loci of each suffix of T ′ in
O((|T |/d+1) logn) time, since there are O(|T |/d+1) meta-characters, each from
2 When σ is not a constant, an additive O(|T | log σ) and O(|P | log σ) term will be

added to the query time and update time, respectively.
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an alphabet of
√

n. Note that these loci may not be the same as the loci of those
T [i..|T |] with i(mod d) = 1, but they are closely related. For instance, the locus
of T can be at most d nodes further from the locus of T ′. In general, the locus
of each T [i..|T |] with i(mod d) = 1 can be obtained in an extra O(d log σ) =
O(log n) time through traversal in C. As a result, the loci of roughly 1/d of all
suffixes of T are obtained. To find the other loci, we can repeat the procedure
for d− 1 times, where at the jth time we search C with the meta-text formed by
blocking T [j + 1..|T |]. This gives the following lemma.

Lemma 2. When d = 0.5 logσ n, the compact trie C requires O(n log σ+k log n)
bits of space. On any input text T , the loci of all suffixes of T in C can be obtained
in O(|T | log n) time.

Next, we briefly discuss two ideas of further reducing the space terms. The first
one is to reduce the O(k log n) terms, under tha natural assumption that all
patterns in the set Δ are distinct. For this case, we shall classify patterns into
two groups, one for those longer than d, the other for those with length at most d.
The number of patterns, k1, in the first group is at most n/d, and these patterns
will be indexed by a compact trie C′ using Lemma 2. The number of patterns,
k2, in the second group is at most Θ(

√
n logσ n), whose total length is at most

Θ(
√

n(logσ n)2); these patterns will be stored in an ordinary suffix tree R, and
requires only o(n) bits of space. Once the loci of all suffixes of T are located in
both trees, we can proceed as before to output the marked ancestors of these
loci. We summarize the above discussion as follows:

Lemma 3. Assuming patterns in Δ are distinct. When d = 0.5 logσ n, we can
store the compact trie C′ and the o(n)-bit suffix tree R, in total O(n log σ) bits
of space, such that on any input text T , the loci of all suffixes of T in C′ and in
R can be obtained in O(|T | log n) time.

The second idea to reduce space is by raising the sampling factor d. In particular,
we set d = log n logσ n.3 Then, we can immediately obtain a lemma similar to
Lemma 2, such that the space of C is reduced to o(n log σ) + O(k log n) bits and
finding all loci is done in O(|T | log2 n) time. The increased in time to find loci is
due to the inefficiency in extending each of the “approximate” locus (obtained
from searching T ′ in C) to the true locus. In fact, each such extension can be
reduced to the prefix matching problem in [12], which can be solved more effi-
ciently using O(d/ logσ n + log k) = O(log n) time (see Lemma 4 of [12]).4 The
extra space required to support the reduction is O(k log n) bits in total. Thus,
we have the following lemma:

3 Due to the increase in d, we can no longer combine this idea with the first one; as a
result, we do not classify short and long patterns, and the O(k log n) term reappears.

4 The idea is to maintain an extra data structure, called String B-tree [9], to manage
the marked nodes so that once we obtain an approximate locus, we can easily jump
to the nearest marked ancestor of the true locus. Due to space limitation, we defer
the details to the full paper.
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Lemma 4. When d = log n logσ n, the compact trie C requires o(n log σ) +
O(k log n) bits of space. On any input text T , the loci of all suffixes of T in C
can be obtained in O(|T | log n) time.

4 New Approach for Dynamic Marked Ancestors

Let C be a rooted tree with m nodes, where some k nodes are marked. The
dynamic marked ancestor problem is to index C so that on given any node v, we
can report all the ancestors of v which are marked; in addition, the tree can be
updated by insertion or deletion of nodes, and by marking or unmarking nodes.
Existing solutions [3,2] are achieved by the reduction to parentheses maintenance
problem. In the following, we use an alternative approach where we solve the
problem via management of one-dimensional intervals.

4.1 Reduction for Semi-static Case: Intervals Management

When the structure of the tree is static, and the set of marked nodes is fixed,
the marked ancestor problem can be easily and optimally solved, simply by
maintaining a pointer in each node to its nearest marked ancestor. Nevertheless,
we shall show a non-optimal solution, which acts as a stepping stone towards an
efficient solution for the dynamic case.

First, we perform a pre-order traversal of the tree. Each node is assigned the
order in which it is first visited as its label. For instance, the root has label 1
and its leftmost child has label 2. For each marked node v, let v′ denote the
last node visited in the subtree rooted at v; also, let Lv and Lv′ be their labels,
respectively. It is easy to check that v is a marked ancestor of a node u if and
only if the label of u falls in the interval [Lv, Lv′ ].

Using the interval tree, we can maintain the k intervals corresponding to the
k marked nodes in O(k log m) bits, such that for any node u with label Lu, we
can report all occ intervals containing Lu in O(log k + occ) time; that is, we can
find all marked ancestors of u in O(log k + occ) time.

In fact, if the tree structure is static, the above scheme can also handle marking
or unmarking of a tree node. Each such operation simply corresponds to inserting
or deleting an interval in the interval tree. For this semi-static case, we can apply
the dynamic interval tree by Arge and Vitter [4], where each update can be
done in O(log k) time, while the query time and the space requirement remain
unchanged.

4.2 Reduction for Dynamic Case: Elastic Intervals Management

Note that the interval tree scheme cannot be directly used to handle the fully
dynamic case. In particular, when a node is inserted or deleted in the tree,5 it
5 Here, node insertion includes the case where a node is inserted into the middle of

an existing edge, thus splitting one edge into two edges. On the other hand, when a
degree-1 internal node is deleted, we reverse the process so that its parent edge and
its child edge will be merged to a single edge.
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can cause the pre-order label of many nodes to change, which in turn can cause
the intervals of many marked nodes to change.

However, observe that the relative order of the pre-order label of the existing
nodes, before and after the updates, are not changed. This motivates us to
represent each marked node v by an “elastic” interval (instead of a fixed interval
when v is marked), where endpoints are represented by pointers to v and v′, so
that its interval can be flexibly changed according to the current ranks of v and
v′ in the tree.

Now, suppose that the relative rank of two nodes can be compared online
in f(m) time, where m is the number of nodes in the tree. Then the dynamic
interval tree of Arge and Vitter can easily be adapted to support each update
in O(f(m) log k) time and each query in O(f(m)(log k + occ)) time. One simple
solution is to overlay a balanced binary tree for the nodes so that the exact rank
of any node can be computed in O(log m) time, thus comparison can be made
in O(log m) time. A more complicated solution is by Dietz and Sleator [8] or by
Bender el. [5], which is an O(m log m)-bit data structure for maintaining order in
a list of items. In this order-maintenance data structure, an item can be inserted
into the list in O(1) time when either its predecessor or its successor is given,
while it can be deleted (freely) in O(1) time; given two items, we can compare
their rank in the list in O(1) time. Thus, we can obtain a solution of dynamic
marked ancestor by interval tree without any sacrifice in query efficiency.

Yet, there are two important points to note for using the final scheme. First,
the insertion of a node v in a tree will require the knowledge of which node is v’s
predecessor or successor. This can be immediately done when v is the first child
of its parent (so that its predecessor is known), or v is inserted in the middle of
an existing edge (whose successor is known). However, it will be time-consuming
in case v is the last child of its parent, in which case we may need to find its
successor by traversing to the root and finding the first branch to the right. Thus,
the position of where a node is inserted will greatly affect the time in updating.

Second, as the endpoints of the interval for a marked node v is now replaced
by pointers to v and v′, it will cause a serious problem if v′ can be deleted while v
is marked (in that case, the endpoint becomes undefined). To avoid this problem,
whenever we mark a node v, we will create a dummy node v̂ and insert it as the
rightmost child of v; on the other hand, v̂ will be deleted only when v becomes
unmarked. As v̂ will always be the last node visited in the subtree rooted at v,
v̂ = v′ by definition, so that the interval of each marked nodes will always be
well-defined.

5 All in a Nutshell

We are now ready to combine the sparse suffix tree (Section 3) and the dynamic
marked ancestor data structures (Section 4) to see their overall performance.

When d = 0.5 logσ n and assuming the patterns are distinct, we can solve the
dictionary matching query as follows. Recall that we maintain a compact trie C′
for long patterns (length longer than d) and a suffix tree R for short patterns
(length at most d).
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1. We locate the loci of all suffixes of T in C′ in O(|T | log n) time. (Lemma 3)
2. Then, we apply the dynamic interval tree to report all marked ancestors of

these |T | loci in a total of O(|T | log n + occ�) time, where occ� denote the
number of occurrences of long patterns.

3. Next, we traverse the suffix tree in O(|T | log σ) time to locate the |T | loci of
all suffixes of T in R.

4. Then, we use a brute-force method to report all marked ancestors of these
|T | loci in a total of O(|T | × d) = O(|T | log n) time.

Thus, in total, O(|T | log n + occ) time is required.
To support the update when a pattern P is inserted, we perform the following.

Firstly, when P is shorter than d, we add P and its suffixes into the suffix tree
R, using O(|P | log σ) time. After that, we mark the node v with path(v) = P ,
using O(1) time. Otherwise, when P is long, we shall update the compact trie
C′ and the dynamic marked ancestor data structures as follows:

1. We first insert the �|P |/d� suffixes of P into C′, using O((|P |/d + 1) log n)
time, by exploiting the suffix links. In addition, we will ensure that for each
node inserted to the tree C, if it is not inserted into the middle of some
existing edge, then it will be inserted as the first child of its parent.

2. Then, for each node inserted, we find either its predecessor or its successor
in the pre-order traversal in O(1) time. Then, we make the corresponding
change in the Dietz-Sleator order-maintenance data structure, using an extra
O(1) time per node. In total, this takes O(|P |/d + 1) time.

3. Next, we mark the node v with path(v) = P in C′. This involves adding a
dummy node v̂ as the rightmost child of v. For this step, we find the successor
of v̂ in C′ by traversing from v̂ to the root, and finding the first branch to the
right. This takes O(|P |) time. After that, we update the order-maintenance
data structure in O(1) time. In total, adding v̂ takes O(|P |) time.

4. After that, we add the elastic interval corresponding to the marked node v
to the dynamic interval tree. This step takes O(log k) time.

As the most time-consuming step is Step 1, pattern insertion can be supported
in O((|P |/d + 1) log n) = O(|P | log σ + log n) time. To support pattern deletion,
it can be done similarly (and more easily) with the above steps, using the same
time bound. This gives the following theorem.

Theorem 1. Suppose that the patterns in Δ are distinct. Then we can maintain
an O(n log σ)-bit index for Δ, such that on any given text T , a dictionary match-
ing query can be answered in O(|T | log n + occ) time. Also, the index supports
insertion or deletion of a pattern in Δ in O(|P | log σ + log n) time.

When d = log n logσ n, answering a dictionary matching query will only involve
the search in the compact trie C for |T | loci, and subsequently finding the marked
ancestors of each locus using the data structures of Section 4. In total, this can be
done in O(|T | log n+occ) time. For updates due to pattern insertion or deletion,
it can be done in similar time as the above.6 This gives the following theorem.
6 Though we will need to handle a single update in the String B-tree data structure,

this can easily be done in O(|P |) time. Details are deferred in the full paper.
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Theorem 2. Suppose that patterns in Δ are stored separately in n log σ bits.
Then we can maintain an o(n log σ) + O(k log n)-bit index for Δ, such that dic-
tionary matching query can be answered in O(|T | log n + occ) time. The index
supports insertion or deletion of a pattern in O(|P | log σ + log n) time.
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Abstract. We study the non-overlapping indexing problem: Given a
text T , preprocess it in order to answer queries of the form: given a
pattern P , report the maximal set of non-overlapping occurrences of P in
T . A generalization of this problem is the range non-overlapping indexing
where in addition we are given two indexes i, j to report the maximal set
of non-overlapping occurrences between these two indexes. We suggest
new solutions for these problems. For the non-overlapping problem our
solution uses O(n) space with query time of O(m+occNO). For the range
non-overlapping problem we propose a solution with O(n logε n) space
for some 0 < ε < 1 and O(m + log log n + occij,NO) query time.

1 Introduction and Related Work

Given a text T of length n over an alphabet Σ, the text indexing problem is to
build an index on T which can answer pattern matching queries efficiently: Given
a pattern P of length m, we want to report all its occurrences in T . There are
some known solutions for this problem. For instance, the suffix tree, proposed by
Weiner [1], which is a compacted trie storing all suffixes of the text. A suffix tree
for text T of length n requires O(n) space and can be built in O(n) preprocessing
time. It has query time of O(m + occ) where occ is the number of occurrences of
P in T .

Range text indexing, also known as position restricted substring searching, is
the problem of finding a pattern P in a substring of the text T between two given
positions i, j. A solution for this problem was presented by Makinen and Navarro
[2]. It uses O(n logε n) space and has query time of O(m+ log log n+ occ). Their
solution is based on another problem - the range searching problem.

The range searching problem is to preprocess a set of points in a d-dimensional
space for answering queries about the set of points which are contained within
a specific range. Alstrup et al [3] proposed a solution for the orthogonal two
dimensional range searching problem when all the points are from n × n grid,
which costs O(n logε n) space and has O(log log n + k) query time, where k is
the number of points inside the range. Grossi and Iwona in [4] have shown how
to use Alstrup’s data structure to get all the points inside a particular range in
a specific order using some kind of rank function.

In text indexing we are sometimes interested in reporting only the non-
overlapping occurrences of P in T . There is such interest in fields such as
pattern recognition, computational linguistics, speech recognition, data com-
pression, etc. For instance, we might want to compress a text by replacing each

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1044–1053, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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non-overlapping occurrence of a substring of it with a pointer to a single copy
of the substring.

Another problem is the string statistics problem [5,6] which consists of pre-
processing a text T such that when given a query pattern P , the maximum
number of non-overlapping occurrences of P in T can be reported efficiently.
However, in the string statistics problem we only return the number of non-
overlapping occurrences not the actual occurrences. In this paper, we present
the first non-trivial solution for the non-overlapping indexing problem where we
want to report the maximal sequence of non-overlapping occurrences of P in T .

Keller et al [7] proposed a solution for a generalization of this problem called
the range non-overlapping indexing where we want to report the non-overlapping
occurrences in a substring of T . Their solution has query time of O(m+occij,NO

log log n) and uses O(n log n) space, where occij,NO is the number of the maximal
non-overlapping occurrences in the substring T [i : j].

Crochemore et al [8] suggested another solution for the range non-overlapping
indexing problem. Their solution has optimal query time of O(m+occij,NO) but
requires O(n1+ε) space.

In this paper, we present new solutions for the non-overlapping indexing prob-
lem, which use the periodicity of the text and pattern in order to minimize the
query time. Our solution for non-overlapping indexing problem uses O(n) space
with optimal query time of O(m+occNO). For the range non-overlapping index-
ing problem we present a solution of O(n logε n) space for some 0 < ε < 1 with
O(m + log log n + occij,NO) query time.

2 Preliminaries

Let n be the length of the text T . And let m be the length of the pattern P . For
two integers i, j (i ≤ j), T [i : j] is the substring of T from i to j.

We will use the Suffix Tree as our main data structure. Each leaf in the Suffix
Tree represents a suffix in the text. In each leaf we save two values: y - the start
location of its suffix in the text and x - the location of the leaf in a left to right
order of all the leaves of the Suffix Tree (lexicographic order, for example). We
have two orders on the leaves and therefore on the suffixes as well: x-order and
y-order. The y-order is the text order and the x-order is the suffix tree leaves
order.

When we search for a pattern P in a Suffix Tree ST of T , we finish searching
at some node v. The subtree rooted by v has all the occurrences of P in T in its
leaves. We denote by l and r the x-value of the leftmost leaf and the x-value of
the rightmost leaf of that subtree respectively. Therefore, the occurrences of P
in T are all the leaves with x-value between l and r.

We denote the number of occurrences of P in T by occ. The non-overlapping
occurrences will be denoted as occNO. The occurrences of P in T [i : j] and the
non-overlapping occurrences of P in T [i : j] will be denoted by occij and occij,NO

respectively.
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3 A Solution for Non-overlapping Indexing

We use a new approach for solving this problem. Our solution uses the periodicity
of the text and the pattern. We divide patterns for two types: periodic and
aperiodic. A different strategy will be used for each type.

Definition 1. A pattern that can appear more than twice overlapping is called a
periodic pattern. A pattern that can appear at most twice overlapping is called
an aperiodic pattern.

3.1 Aperiodic Pattern

In the aperiodic case we use the periodicity of the pattern to answer a query.
We use the familiar Suffix Tree to get all the leaves that correspond to the
given pattern. After we have all the leaves, we need to remove the overlapping
occurrences. This can be done by sorting the leaves in y-order, going over the
sorted list and filtering the overlapping occurrences. However, sorting occ items
costs O(occ log occ) which is greater than the optimal O(occ). In order to solve
this sorting part we use the following theorem.

Theorem 1. All occurrences of a pattern can be reported and sorted in text
order in O(m + occ) time using O(n) space.

Proof. We use a Suffix Tree to get all the occurrences in O(m + occ) time. For
sorting all the occurrences we will use a renaming method on the Suffix Tree.

Each leaf has its location, i.e., its y-value index, in the whole tree. Saving this
location for a leaf costs log n bits because the whole tree has n leaves. Hence,
the domain for the location is n. Nevertheless, we are interested in the order of
the leaves in a subtree of the occurrences and not in the whole tree. Thus, we
would like to save the location of a leaf for a subtree with less leaves. If we save
for each leaf its location in a subtree with less leaves, for example

√
n leaves, it

will cost us only log
√

n. Therefore, for each leaf, aside from keeping its location
in the whole suffix tree, we save its location in a subtree of size

√
n, its location

in a subtree of size 4
√

n, and so on for all subtrees of size 2i√
n for i ≥ 1 until we

reach a constant size.
We use Radix Sort which can sort n numbers in a domain of n2 in O(n) time

for sorting the leaves by their locations. Given a subtree whose leaves we wish
to sort in y-order, we can sort them by the locations of the subtree of size at
most O(occ2), this will cost us only O(occ) by using Radix Sort because we sort
occ items in a domain of at most occ2.
In each leaf we save:

log n bits for its location in the ST.
log

√
n bits for its location in the subtree of size

√
n.

log 4
√

n bits for its location in the subtree of size 4
√

n.
etc.
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This sums as following: log n + log
√

n + log 4
√

n + log 8
√

n... = log n + 1
2 log n +

1
4 log n + 1

8 log n + ... ≤ 2 log n.
Therefore, we save only 2 logn bits per leaf. We have n leaves summing up to

n · 2 logn = O(n log n) bits which is O(n) space. �	

Theorem 1 provides us a sorted list of all occurrences in O(m + occ) query time
and O(n) space. By filtering the overlapping occurrences which costs O(occ)
time, we are through. Because in an aperiodic pattern, O(occ) = O(occNO), the
query time equals to O(m + occNO).

3.2 Periodic Pattern

The periodic case is more complex. In this case we use the periodicity of the text
in order to answer a query.

Definition 2. A node in the Suffix Tree which represents a suffix which is a
periodic pattern is called period node.

Definition 3. Let s be a string. We define a period of s to be a string p, such
that s = ptṕ, for t ≥ 1 where ṕ is prefix of p.

Lemma 1. A period node has only one son which can also be a period node.

Proof. Let a be a period node. Therefore, the string represented by a has a
period p. For a son of a to be a period node too it must continue the period p.
If a ends with a character c than the node which has the next character in p
that is after that c is the period node. There can be only one child of a which
can start with this character. Thus, a period node can have only one son which
is also period node. �	

Note that by the period definition a string can have more than one period, by
taking pnew = pp for example. Nevertheless, each period must overlap with a
shorter period of the same string. Thus, there can’t be more than one such
character c.

Definition 4. The path that starts from the a period node and goes through all
nodes which continue that period in the Suffix Tree is called a period path. We
denote the number of nodes in a period path to be the period path length.

Lemma 2. Let pp2 be a period path on a path PT to the root in the Suffix Tree.
Than pp2 must be at least twice as long as the previous period path pp1 on PT .

Proof. On PT , between pp1 and pp2 there must be at least one node which is
not a period node. For pp2 to be a period path is must represent a period suffix
which must be started with the period of pp1. Moreover, pp2 period suffix should
be continued by the character of the next node after pp1 which is not a period
node. After it there must be the period of pp1 again. Therefore, pp2 length is at
least twice longer than pp1. �	
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Lemma 3. The largest number of different period paths contained in the path
from the root to a period node is log n.

Proof. Let PT be the path from the root to some period node in the Suffix Tree.
According to Lemma 2 each period path on PT must be at least twice as long
as the previous period path on PT . Therefore, if we have more than log n period
paths on PT , than the length of the last period path must be greater than n
which is the text length. Hence, the number of period paths on the same path
can’t be more than log n. �	

Definition 5. A period sequence is the maximum substring in the text of
some period which is repeated more than twice. We will mark it as [s, e], where
s and e are the start index and the end index of the period sequence accordingly.
The period sequences of a period pattern are all the period sequences which start
with that periodic pattern. The period length of a period sequence is the length
of the period inside repeated the sequence.

Example 1. Lets T be the text “abababcabababcabababc”. The period
sequences are: For the period “ab”, the period sequences are [1,6], [8,13], [15,20]
which have period length 2. For the period “abababc”, the period sequence is
[1,21] which has period length 7.

Lemma 4. Given a list L of all the period sequences of some periodic pattern
in the text. All the non-overlapping occurrences of that periodic pattern can be
retrieved from this list in O(occNO) time.

Proof. For a period sequence [s, e] with period length pl, the non-overlapping
occurrences of a periodic pattern P with length m are the group: s+i∗step|step =
�m

pl � ∗ pl, 0 ≤ i ≤ e−s−1
step which can be easily calculated.

We report all the occurrences in each period sequence in L. The number of
all occurrences we report is O(occNO), so the total time for reporting all the
non-overlapping occurrences from L is O(occNO). �	

For answering the non-overlapping indexing we use the following data structure.
We build a data structure for each period path on the Suffix Tree, saving a list
of all period sequences sorted by their length for each period path. Each period
node in the Suffix Tree is on a period path. We save a pointer from each period
node on the Suffix Tree to the period sequence list of its period path. This pointer
will point to the period node appropriate length on the period sequences list.

Theorem 2. Using the data structure described above, all period sequences of a
period pattern can be retrieved in O(m + occNO) time using O(n log n) space.

Proof. On a query we go to that data structure, get all the period sequences
and by Lemma 4 we calculate all the non-overlapping occurrences. This will
take O(occNO) time, because the number of the period sequences that we will
get is less than the number of the non-overlapping occurrences of the pattern.
If we come up with a long pattern we won’t get shorter period sequences which
don’t fit the pattern so we won’t get unnecessary period sequences.
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The space for this data structure is O(n log n). This is because there are n
nodes where each one can be at most in log n period paths. For each node, we
save all its period paths so it needs O(n log n). �	

Now, we will show how to reduce the space needed for this data structure.

Definition 6. Let’s define a degree of a period sequence to be the maximum
degree of a period sequence included in it plus one. A period sequence without
any period sequences in it will has the degree 0.

Lemma 5. The maximum degree of a period sequence can be at most log n.

Proof. Let ps be the period sequence with the maximum degree in the text. In
ps there is a period sequence with a degree decreased by one. In that period
sequence there is another period sequence with a degree decreased by one. And
so on until we receive a period sequence ps0 with the degree 0. The length of
each period sequence from ps0 to ps is at least twice the length of the period
sequence in it. The maximum length of ps can be at most n, therefore, its degree
can be at most log n. �	

Lemma 6. There are at most O(n) period sequences.

Proof. We will count the number of period sequences in each degree:

The number of period sequences of degree 0 can be at most n.
The number of period sequences of degree 1 can be at most n

2 .
The number of period sequences of degree 2 can be at most n

4 .
. . .
The number of period sequences of degree log n can be at most 1.

Summery: n + n
2 + .. + 1 ≤ 2n = O(n) �	

Theorem 3. The data structure in Theorem 2 can be saved using only O(n)
space.

Proof. We save all the period paths in a data structure. Each one with its
own period sequences. Each period sequence appears in only one period path.
From Lemma 6 we have O(n) period sequences. Therefore we save at most O(n)
space for all the period sequences. Thus, we need only O(n) space for this data
structure. �	

Corollary 1. Using these two different strategies for each type of pattern we can
solve the non-overlapping indexing problem in O(n) space with O(m + occNO)
query time.

4 A Solution for Range Non-overlapping Indexing

We propose a better solution for this problem. Our solution costs O(n logε n)
space for some 0 < ε < 1 and has query time of O(m + log log n + occij,NO).
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4.1 Rank Sensitive Range Searching

We use a data structure for answering the two-dimensional orthogonal range
searching problem. Alstrup et al [3] proposed a data structure for this problem
which requires O(n logε n) space with query time of O(log log n + k) where k is
the number of points in the range.

Nevertheless, this range query data structure reports all the points in the
range with no specific order. We want to get those points in a specific order.
Therefore, in addition to this data structure we will use a method suggested by
Grossi et al [4] for a rank sensitive data structure. This gives us a data structure
which uses O(n logε n) space with query time of O(log log n) and O(1) per point,
where the points will be reported in rank order. For simplicity we will call this
data structure RSDS from now on.

4.2 Aperiodic Pattern

We use a Rank Sensitive Data Structure to answer aperiodic queries. In the
RSDS we store all the occurrences as points by their x value and y value, where
the rank function of a point will be its y value. Given a pattern P and range
i, j we can get l, r from the Suffix Tree, the leftmost leaf and the rightmost leaf
which are occurrences of P . Then we will do a range query for points within
[i, j]x[l, r] to get all the correct occurrences. Because the rank in the RSDS is by
y value, we will get the points and therefore the occurrences, sorted in the text
order. The only remaining action is filtering the overlapping occurrences.

The RSDS costs O(n logε n) space. RSDS query time is O(log log n+k) where
k is the size of the output which is equal to O(occij). In our case k equals
O(occij,NO) because for an aperiodic pattern O(occij) = O(occij,NO). Therefore,
aperiodic pattern has query time of O(m) for searching the Suffix Tree plus
O(log log n + occij,NO) for the RSDS query. Concluded in O(m + log log n +
occij,NO).

4.3 Periodic Pattern

The periodic case is more complex. We save all period sequences in the text as
points in two RSDS. For a periodic sequence [s, e] with period length pl, we save
two points (x1, y1), (x2, y2) with the following values:

x1 = Index of the suffix of s in the left to right order of all the ST leaves
y1 = s
x2 = Index of the suffix of s in the left to right order of all the ST leaves
y2 = e − pl + 1

Point (x1, y1) will be saved in the first RSDS with a rank function of x value
in descending order. Point (x2, y2) will be saved in the second RSDS with a rank
function of x value in ascending order. Sometimes there will be multiple period
sequences with the same start index or end index, each with a different degree.
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When this happens we save only the one with the highest degree. We can easily
convert a period sequence [s, e] to these two points and vice versa.

Following Lemma 6 the number of points in the two RSDS is O(n). Hence,
each RSDS costs O(n logε n) space.

Given a pattern P of length m and range i, j we answer using Algorithm 1.

Get the range l, r from the Suffix Tree ;1

S ←− Query first RSDS for all points within [i, j]x[l, r] ;2

S ←− S ∪ Query second RSDS for all points within [i, j]x[l, r] ;3

S ←− S ∪ Query third RSDS for the first point within [i, j]x[l, r] ;4

PS ←− convertAllPointsToPeriodSequences(S) ;5

PS2 ←− ∅ ;6

for ps ∈ PS do7

x ←− ps ;8

while x period length is greater than m do9

x ←− the first period sequence inside x ;10

end11

PS2 ←− PS2 ∪ {x}12

end13

Algorithm 1. Periodic Pattern Range Query

Getting the first period sequence inside a period sequence can be done by
using another data structure saving for each period sequence its period length,
and a pointer to the first period sequence in it. Thus, given a period sequence
it costs O(1) to find the first period sequence inside it with a degree decreased
by one.

Lemma 7. The number of period sequences we have to go down in order to find
our appropriate period sequence is lower than the number of occurrences that
will be extracted from the period sequences inside the first period sequence we
received.

Proof. Each degree we get down means that there is another occurrence in the
next period sequence. Each step down, adds at least another occurrence. There-
fore, until we get to the appropriate period sequence we work at most O(k) where
k is the number of occurrences we will get from the period sequences inside the
first period sequence we encounter. �	

By Lemma 7 it does not cost us more time when we get a period sequence whose
period length is longer than the pattern length.

Theorem 4. All the non-overlapping occurrences can be calculated from the
period sequences got by these three queries.

Proof. First of all we will see that each period sequence we get from these queries
has at least one occurrence of P . Let (x, y) be the point we get. It corresponds
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to a period sequence [s, e]. We get only points which have x values between l
and r. The x value of a point is the index of the suffix of s in the left to right
order of all the ST leaves. So if we get a point (x, y) with x between l and r
it means that the corresponding period sequence [s, e] has an occurrence of P .
This happens because all the leaves in the ST between l and r are occurrences
of P .

Now, we need to prove two more things. The first is that all the period se-
quences we get from the RSDS are suitable for us and that we haven’t got
unnecessary period sequences, which don’t fit to P in the range i, j. The second
thing is that we didn’t miss any period sequence which can have some suitable
occurrences.

We start by proving that we get all the occurrences of P in the range [i, j]
from the period sequences we get in the three queries. Period sequences of P in
T can be in some cases. Let [s, e] be our period sequence.

The first case is that [s, e] is out of the range [i, j], s < e ≤ i < j or i <
j ≤ s < e. In this case we wouldn’t like to get this period sequences at all. The
first two queries will not resolve these period sequences because we do a query
on [i.j]x[l, r] but s is out of range and the points corresponding to this period
sequence have y value equals s. Nevertheless, we can get this period sequence in
the third query. However, it will be at most one period sequence which can be
checked in O(1) time.

The second case, which is the simplest, is that [s, e] is fully inside the range
[i, j], i ≤ s < e ≤ j. In this case we get all the suitable period sequences from
the first query. Nevertheless, we can get the same period sequence twice, first
from the first query and again from the second query. Therefore, we will have to
check any period sequence that we get in order to prevent duplicate occurrence
reporting.

The third case is when only e or s is out of range but not both, s < i < e ≤ j
or i ≤ s < j < e. This time if i ≤ s < j < e we will get the period sequence from
the first query. Otherwise, If s < i < e ≤ j we will get the period sequence from
the second query.

The fourth case is when the range [i, j] is fully inside the period sequence [s, e],
s < i < j < e. In order to solve this case we have the third query which will
resolve the last start of a period sequence which is before index i. This period
sequence can be checked in O(1) time. �	

Corollary 2. Using these two different strategies for each type of pattern, the
range non-overlapping text indexing problem can be solved in O(n logε n) space
for some 0 < ε < 1 and query time of O(m + log log n + occij,NO).

5 Conclusion

We have studied the problem of non-overlapping indexing. In this paper, we
provide the first non-trivial solution for this problem. In addition we proposed
a better solution for a generalization of this problem, the range non-overlapping
problem.
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Abstract. We consider a variant of two-point Euclidean shortest path query
problem: given a polygonal domain, build a data structure for two-point shortest
path query, provided that query points always lie on the boundary of the domain.
As a main result, we show that a logarithmic-time query for shortest paths be-
tween boundary points can be performed using Õ(n5) preprocessing time and
Õ(n5) space where n is the number of corners of the polygonal domain and the
Õ-notation suppresses the polylogarithmic factor. This is realized by observing
a connection between Davenport-Schinzel sequences and our problem in the pa-
rameterized space. We also provide a tradeoff between space and query time; a
sublinear time query is possible using O(n3+ε) space. Our approach also extends
to the case where query points should lie on a given set of line segments.

1 Introduction

A polygonal domains P with n corners and h holes is a polygonal region of genus h
whose boundary consists of n line segments. The holes and the outer boundary of P
are regarded as obstacles. Then, the geodesic distance between any two points p, q in
a given polygonal domain P is defined to be the length of a shortest obstacle-avoiding
path between p and q.

The Euclidean shortest path problem in a polygonal domain has drawn much at-
tention in the history of computational geometry [7]. In the two-point shortest path
query problem, we preprocess P so that we can determine a shortest path (or its length)
quickly for a given pair of query points p, q ∈ P . While we can compute a shortest
path in O(n log n) time from scratch [5], known structures for logarithmic time query
require significantly large storage [3]. Chiang and Mitchell [3] developed several data
structures that can answer a two-point query quickly with tradeoffs between storage
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Table 1. Summary of new and known results on exact two-point shortest path queries, where
ε > 0 is arbitrary and 0 < δ ≤ 1 is a parameter. [new] denotes our results

Query domain Preprocessing time Space Query time Ref.
P O(n11) O(n11) O(log n) [3]
P O(n10 log n) O(n10 log n) O(log2 n) [3]
P O(n5+10δ+ε) O(n5+10δ+ε) O(n1−δ log n) [3]
P O(n5) O(n5) O(log n + h) [3]
P O(n + h5) O(n + h5) O(h log n) [3]
∂P O(n4λ65(n) log n) O(n4λ66(n)) O(log n) [new]
∂P O(n3+δλ65(n

δ) log n) O(n3+δλ66(n
δ)) O(n1−δ log n) [new]

m segments O(m2n3+δλ65(n
δ) log n) O(m2n3+δλ66(n

δ)) O(n1−δ log(m + n)) [new]

usage and query time. Most notably, O(log n) query time can be achieved by using
O(n11) space and preprocessing time; sublinear query time by O(n5+ε) space and pre-
processing time. Their results are summarized in Table 1. For more results on shortest
paths in a polygonal domain, we refer to a survey by Mitchell [7].

In this paper, we focus on a variant of the problem, in which possible query points are
restricted to a subset of P ; the boundary ∂P of the domain P or a set of line segments
within P . In many applications, possible pairs of source and destination do not span
the whole domain P but a specified subset of P . For example, in an urban planning
problem, the obstacles correspond to the residential areas and the free space corresponds
to the walking corridors. Then, the query points are restricted to the spots where people
depart and arrive, which are on the boundary of obstacles.

Therefore, our goal is to design a data structure using much less resources than struc-
tures of Chiang and Mitchell [3] when the query domain is restricted to the boundary
of a given polygonal domain P or to a set of segments in P . To our best knowledge, no
prior work seems to investigate this variation. As a main result, in Section 3, we present
a data structure of size O(n4λ66(n)) that can be constructed in O(n4λ65(n) log n) time
and can answer a ∂P-restricted two-point shortest path query in O(log n) time. Here,
λm(n) stands for the maximum length of a Davenport-Schinzel sequence of order m
on n symbols [10]. It is good to note that λm(n) = O(n log∗ n) for any constant m as a
convenient intuition, while tighter bounds are known [10,8]. We also provide a tradeoff
between space and query time in Section 4. In particular, we show that one can achieve
sublinear query time using O(n3+ε) space and preprocessing time. New results in this
paper are also summarized in Table 1.

Our data structure is a subdivision of two-dimensional domain parameterized in a
certain way. The domain is divided into a number of grid cells in which a set of con-
strained shortest paths between query points have the same structure. Each grid cell is
divided according to the projection of the lower envelope of functions stemming from
the constrained shortest paths. With careful investigation into this lower envelope, we
show the claimed upper bounds.

Also, our approach readily extends to the variant where query points are restricted
to lie on a given segment or a given set of segments in P . We discuss this extension in
Section 5.
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2 Preliminaries

We are given as input a polygonal domain P with h holes and n corners. More precisely,
P consists of an outer simple polygon in the plane R2 and a set of h (≥ 0) disjoint
simple polygons inside P . As a set, P is the region contained in its outer polygon
excluding the holes, also called the free space. The complement of P in the plane is
regarded as obstacles so that any feasible path does not cross the boundary ∂P and
lies inside P . It is well known from earlier works that there exists a shortest (obstacle-
avoiding) path between any two points p, q ∈ P [6].

Letting V be the set of all corners of P , any shortest path from p ∈ P to q ∈
P is a simple polygonal path and can be represented by a sequence of line segments
connecting points in V ∪ {p, q} [6]. The length of a shortest path is the sum of the
Euclidean lengths of its segments. The geodesic distance, denoted by d(p, q), is the
length of a shortest path between p and q. Also, we denote by |pq| the Euclidean length
of segment pq.

A two-point shortest path query is given as a pair of points (p, q) with p, q ∈ P and
asks to find a shortest path between p and q. In this paper, we deal with a restriction
where the queried points p and q lie on the boundary ∂P .

A shortest path tree SPT (p) for a given source point p ∈ P is a spanning tree of
the corners V plus the source p such that the unique path to any corner v ∈ V from the
source p in SPT (p) is a shortest path between p and v. The complexity of SPT (p) for
any p ∈ P is at most linear in n. A shortest path map SPM(p) for the source p is a
decomposition of the free space P into cells in which any point x has a shortest path to p
through the same sequence of corners in V . Once SPT (p) is obtained, SPM(p) can be
computed as an additively weighted Voronoi diagram of V ∪ {p} with weight assigned
by the geodesic distance to p [6]; thus, the combinatorial complexity of SPM(p) is
linear. A cell of SPM(p) containing a point q ∈ P has the common last corner v ∈ V
along the shortest path from p to q; we call such a corner v the root of the cell or of
q with respect to p. An O(n log n) time algorithm, using O(n log n) working space, to
construct SPT (p) and SPM(p) is known by Hershberger and Suri [5].

An SPT-equivalence decomposition ASPT of P is the subdivision of P into cells
in which every point has topologically equivalent shortest path tree. An ASPT can be
obtained by overlaying n shortest path maps SPM(v) for every corner v ∈ V [3].
Hence, the complexity of ASPT is O(n4). Note that ASPT ∩ ∂P consists of at most
O(n2) points; they are intersection points between any edge of SPM(v) for any v ∈
V and the boundary ∂P . We call those intersection points, including the corners V ,
the breakpoints. The breakpoints induce O(n2) intervals along ∂P . We shall say that
a breakpoint is induced by SPM(v) if it is an intersection of an edge of SPM(v)
and ∂P .

Given a set Γ of algebraic surfaces and surface patches in Rd, the lower envelope
L(Γ ) of Γ is the pointwise minimum of all given surfaces or patches in the d-th coor-
dinate. The minimization diagram M(Γ ) of Γ is a decomposition of Rd−1 into faces,
which are maximally connected region over which L(Γ ) is attained by the same set of
functions. In particular, when d = 3, the minimization diagram M(Γ ) is simply a pro-
jection of the lower envelope onto the xy-plane. Analogously, we can define the upper
envelope and the maximization diagram.
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As we intensively exploit known algorithms on algebraic surfaces or surface patches
and their lower envelopes, we assume a model of computation in which several prim-
itive operations dealing with a constant number of given surfaces can be performed in
constant time: testing if a point lies above, on or below a given surface, computing the
intersection of two or three given surfaces, projecting down a given surface, and so on.
Such a model of computation has been adopted in many research papers; see [9,1,10,2].

3 Structures for Logarithmic Time Query

In this section, we present a data structure that answers a two-point query restricted on
∂P in O(log n) time. To ease discussion, we parameterize the boundary ∂P . Since ∂P
is a union of h + 1 closed curves, it can be done by parameterizing each curve by arc
length and merging them into one. Thus, we have a bijection p : [0, |∂P|) → ∂P that
maps a one-dimensional interval into ∂P , where |∂P| denotes the total lengths of the
h + 1 closed curves forming ∂P .

A shortest path between two points p, q ∈ P is either the segment pq or a polygonal
chain through corners in V . Thus, unless d(p, q) = |pq|, the geodesic distance is taken
as the minimum of the following functions fu,v : [0, |∂P|) × [0, |∂P|) → R over all
u, v ∈ V , which are defined as follows:

fu,v(s, t) :=

{
|p(s)u| + d(u, v) + |vp(t)| if u ∈ V P (p(s)) and v ∈ V P (p(t)),
∞ otherwise,

where V P (x), for any point x ∈ P , denotes the visibility profile of x, defined as the set
of all points y ∈ P that are visible from x; that is, xy lies inside P . The symbol ∞ can
be replaced by an upper bound of maxs,t d(p(s), p(t)); for example, the total length
|∂P| of the boundary of the polygonal domain P .

Since the case where p(s) is visible from p(t), so the shortest path between them is
just the segment p(s)p(t), can be checked in O(log n) time using O(n2 log n) space [3],
we assume from now on that p(s) /∈ V P (p(t)). Hence, our task is to efficiently com-
pute the lower envelope of the O(n2) functions fu,v on a 2-dimensional domain D :=
[0, |∂P|)× [0, |∂P|).

3.1 Simple Lifting to 3-Dimension

Using known results on the lower envelope of the algebraic surfaces in 3-dimension,
we can show that a data structure of size O(n6+ε) for O(log n) query can be built in
O(n6+ε) time as follows.

Fix a pair of intervals Is and It induced by the breakpoints. Since Is belongs to a cell
of an SPT-equivalence decomposition, it fixes the set Vs := V ∩ V P (p(s)) of corners
visible from p(s) for any s ∈ Is and further, for a fixed u ∈ Vs, a unique v ∈ V that
minimizes fu,v(s, t) for any (s, t) ∈ Is × It over all v ∈ V [3]. This implies that for
each such subdomain Is × It ⊂ D we extract at most n functions, possibly appearing
at the lower envelope. Moreover, in Is × It, such a function is represented explicitly;
for u ∈ Vs and v ∈ Vt,

fu,v(s, t) =
√

(x(s)−xu)2 + (y(s)−yu)2 + d(u, v) +
√

(x(t)−xv)2 + (y(t)−yv)2,
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where x(s) and y(s) are the x- and the y-coordinates of p(s), and xu and yu are the x-
and the y-coordinates of a point u ∈ R2. Note that x(s) and y(s) are linear functions in
s by our parametrization.

For each u ∈ V , let gu(s, t) := fu,v(s, t) be a function defined on Is × It, where
v ∈ Vt minimizes fu,v′ in Is × It over all v′ ∈ Vt. Observe that the graph of gu is an
algebraic surface with degree at most 4 in 3-dimensional space. Applying any efficient
algorithm that computes the lower envelope of algebraic surfaces in R3, we can compute
the lower envelope of the functions gu in O(n2+ε) time [9]. Repeating this for every
such subdomain Is × It yields O(n6+ε) space and preprocessing time.

Since we would like to provide a point location structure in domain D, we need to
find the minimization diagram M of the computed lower envelope. Fortunately, our
domain is 2-dimensional, so we can easily project it down on D and build a point
location structure with an additional logarithmic factor.

In another way around, one could try to deal with surface patches on the whole
domain D. Consider a fixed corner u ∈ V and its shortest path map SPM(u). The
number of breakpoints induced by SPM(u) is at most O(n), including the corners V
themselves. This implies at most an O(n2) number of combinatorially different paths
between any two boundary points p(s) and p(t) via u. That is, for a pair of intervals Is

and It, we have a unique path via u and its length is represented by a partial function
of (s, t) defined on a rectangular subdomain Is × It ⊂ D. Hence, we have O(n2) such
partial functions for each u ∈ V , and thus O(n3) in total. Each of them defines an
algebraic surface patch of constant degree on a rectangular subdomain. Consequently,
we can apply the same algorithm as above to compute the lower envelope of those
patches in O((n3)2+ε) = O(n6+ε) time and space.

3.2 O(n5+ε)-Space Structure

Now, we present a way of proper grouping of subdomains to reduce the time/space
bound by a factor of n. We call a subdomain Is × It ⊂ D, where both Is and It are
intervals induced by breakpoints, a grid cell. Thus, D consists of O(n4) grid cells. We
will decompose D into O(n3) blocks of O(n) grid cells.

Consider a pair of boundary edges S, T ⊂ ∂P and let bS and bT be the number of
breakpoints on S and on T , respectively. Let s0, . . . , sbS and t0, . . . , tbT be the break-
points on S and on T , respectively, in order s0 < s1 < · · · < sbS and t0 < t1 <
· · · < tbT . Take bT grid cells with s ∈ [s0, s1) and let C := [s0, s1) × [t0, tbT ) ⊆
[s0, sbS ) × [t0, tbT ) be their union. We redefine the functions fu,v on domain C. As
discussed above, for any s ∈ [s0, s1), we have a common subset Vs of corners visible
from p(s).

For any u ∈ Vs, let gu(s, t) := minv∈V fu,v(s, t) be a function defined on C and
bu
T be the number of breakpoints on T induced by SPM(u). The following is our key

observation.

Lemma 1. The graph of gu(s, t) on C consists of at most bu
T + 1 algebraic surface

patches with constant maximum degree.

Proof. If gu(s, t) = fu,v(s, t) for any (s, t) ∈ C and some v ∈ V , then p(t) lies in
a cell of SPM(u) with root v; by the definition of gu, the involved path goes directly
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from p(s) to u and follows a shortest path from u to p(t). On the other hand, when we
walk along T as t increases from t1 to tbT , we encounter bu

T breakpoints induced by
SPM(u); thus, bu

T + 1 cells of SPM(u). Hence, the lemma is shown.

Moreover, the partial function corresponding to each patch of γu is defined on a rect-
angular subdomain [s0, s1) × [ti, tj) for some 1 ≤ i < j ≤ bT . This implies that the
lower envelope of gu on C is represented by that of at most

∑
u(bu

T + 1) = n + bT

surface patches.
Though this envelope can be computed in O((n + bT )2+ε) time, we do further de-

compose C into � bT

n � blocks of at most n grid cells. This can be simply done by cutting
C at t = tin for each i = 1, . . . , � bT

n �. For each such block of grid cells, we have at
most 2n surface patches and thus their lower envelope can be computed in O(n2+ε)
time. Hence, we obtain the following consequence.

Theorem 1. One can preprocess a given polygonal domain P in O(n5+ε) time into a
data structure of size O(n5+ε) for O(log n)-time two-point shortest path queries re-
stricted to the boundary ∂P , where ε is an arbitrarily small positive number.

Proof. Recall that
∑

S bS =
∑

T bT = O(n2). For a pair of boundary edges S and T ,
we can compute the lower envelope of the functions fu,v in O(bS� bT

n �n2+ε). Summing
this over every pair of boundary edges, we have

∑

S,T

O(bS�
bT

n
�n2+ε) = O(n4+ε) ·

∑

T

(
bT

n
+ 1) = O(n5+ε).

A point location structure on the minimization diagram can be built with additional
logarithmic factor, which is subdued by O(nε).

3.3 Further Improvement

The algorithms we described so far compute the lower envelope of surface patches in
3-space in order to obtain the minimization diagram M of the functions fu,v. In this
subsection, we introduce a way to compute M rather directly on D, based on more
careful analysis.

Basically, we make use of the same scheme of partitioning the domain D into blocks
of (at most) n grid cells as in Section 3.2. Let C be such a block defined as [s0, s1) ×
[t0, tbT ) such that [s0, s1) is an interval induced by the breakpoints and [t0, tbT ) is a
union of bT ≤ n consecutive intervals in which we have bT − 1 breakpoints t1, . . . ,
tbT−1.

By Lemma 1, the functions gu = minv∈V fu,v restricted to C can be split into at
most 2n partial functions hi with 1 ≤ i ≤ 2n defined on a subdomain Ci ⊆ C. Each
hi(s, t) is represented explicitly as hi(s, t) = |p(s)ui| + d(ui, vi) + |vip(t)| in Ci, so
that we have hi(s, t) = fui,vi(s, t) for any (s, t) ∈ Ci and some ui, vi ∈ V . Note that it
may happen that ui = uj or vi = vj for some i and j; in particular, if ui = uj , we have
Ci ∩ Cj = ∅. Also, as discussed in Section 3.2, Ci is represented as [s0, s1) × [tk, tk′)
for some 0 ≤ k < k′ ≤ bT .

In this section, we take the partial functions hi into account, and thus the goal is to
compute the minimization diagram M of surface patches defined by the hi. We start
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with an ordering on the set Vs of corners visible from p(s) for any s ∈ [s0, s1) based
on the following observation.

Lemma 2. The angular order of corners in Vs seen at s is constant if s varies within
[s0, s1).

Without loss of generality, we assume that as s increases, p(s) moves along ∂P in
direction that the obstacle lies to the right; that is, p(s) moves clockwise around each
hole and counter-clockwise around the outer boundary of P . By Lemma 2, we order the
corners in Vs in counter-clockwise order at p(s) for any s ∈ [s0, s1); let ≺ be a total
order on Vs such that u ≺ u′ if and only if ∠p(s0)p(s)u < ∠p(s0)p(s)u′.

From now on, we investigate the set

B(i, j) := {(s, t) ∈ Ci ∩ Cj | hi(s, t) = hj(s, t)},

which is a projection of the intersection of two surface patches defined by hi and hj .
One can easily check that B(i, j) is a subset of an algebraic curve of degree at most 8.

Lemma 3. The set B(i, j) is t-monotone. That is, for fixed t, there is at most one s ∈
[s0, s1) such that (s, t) ∈ B(i, j).

Lemma 4. The set B(i, j) is either an empty set or an open curve whose endpoints lie
on the boundary of Ci ∩ Cj . Moreover, B(i, j) is either a linear segment parallel to the
t-axis or s-monotone.

Proof Sketch. Let Is and It be intervals such that Ci ∩ Cj = Is × It. Note that Is =
[s0, s1) and It = [tk, tk′) for some 0 ≤ k < k′ ≤ bT .

First, note that if ui = uj , Ci ∩ Cj = ∅ and thus B(i, j) = ∅, so the lemma is
true. Thus, we assume that ui 
= uj . Regarding vi and vj , there are two cases: vi = vj

or vi 
= vj . In the former case, we get |p(s)ui| − |p(s)uj | = d(uj , vj) − d(ui, vi)
from equation hi(s, t) = hj(s, t). Observe that variable t is readily eliminated from
the equation, and thus if there exists (s′, t′) ∈ Ci ∩ Cj with (s′, t′) ∈ B(i, j), we have
(s′, t) ∈ B(i, j) for every other t ∈ It. Hence, by Lemma 3, B(i, j) is empty or a
straight line segment in Ci ∩Cj which is parallel to t-axis, and thus the lemma is shown.

Now, we consider the latter case where vi 
= vj . Without loss of generality, we as-
sume that ui ≺ uj . Recall that if ui ≺ uj , then ∠p(s0)p(s)ui < ∠p(s0)p(s)uj for any s
in the interior of Is. We denote θi(s) := ∠p(s0)p(s)ui and θj(s) := ∠p(s0)p(s)uj . On
the other hand, we also have a similar relation for vi and vj . Let φi(t) := ∠p(t0)p(t)vi

and φj(t) := ∠p(t0)p(t)vj . Observe that φi(t) and φj(t) are continuous functions of
t, and if φi(t′) = φj(t′) at t = t′, then p(t′) is a breakpoint induced by SPM(ui) or
SPM(uj). Since It contains no such breakpoint induced by SPM(ui) or SPM(uj)
in its interior, either φi(t) < φj(t) or φi(t) > φj(t) for all t in the interior of It; that is,
the sign of φj(t) − φi(t) is constant.

Since for any s, s′ ∈ Is with s′ > s we have |p(s′)p(s)| = s′−s by our parametriza-
tion, we can represent |p(s)ui| =

√
(s + ai)2 + b2

i and |vip(t)| =
√

(t + ci)2 + d2
i ,

where ai, bi, ci and di are constants depending on ui, vi, and parametrization p. More
specifically, s+ai denotes a signed distance between p(s) and the perpendicular foot of
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p(s)

ui

uj

θj(s)

θi(s)

bi

s + ai

vi

vj

p(t)φi(t)

φj(t)

di

t + ci

Fig. 1. Illustration to the proof of Lemma 4

ui onto the line supporting p(Is), and bi is the distance between ui and the line support-
ing p(Is). See Figure 1. Thus, hi(s, t) can represented as hi(s, t) =

√
(s + ai)2 + b2

i +√
(t + ci)2 + d2

i + d(ui, vi).
The last step of the proof is done by analysis on derivative ds

dt : we have ds
dt =

− cos(φi(t))+cos(φj(t))
cos(θi(s))−cos(θj(s))

, and the sign of ds
dt is constant while t ∈ It.

Now, we know that B(i, j) can be seen as the graph of a partial function {s = γ(t)}.
Also, Lemma 4 implies that B(i, j) bisects Ci ∩ Cj into two connected regions R(i, j)
and R(j, i), where R(i, j) := {(s, t) ∈ Ci ∩ Cj | hi(s, t) < hj(s, t)} and R(j, i) :=
{(s, t) ∈ Ci ∩ Cj | hi(s, t) > hj(s, t)}. Let M(i) be the set of points (s, t) where
the minimum of hj(s, t) over all j is attained by hi(s, t). We then have M(i) = Ci \⋃

j R(j, i) for each i.
For easy explanation, from now on, we regard the s-axis as the vertical axis in D so

that we can say a point lies above or below a curve in this sense.
The idea of computing M(i) is using the lower and the upper envelopes of the bi-

secting curves B(i, j). In order to do so, we extend B(i, j) to cover the whole t-interval
It = [tk, tk′) in Ci ∩ Cj by following operation: For each endpoint of B(i, j), if it does
not lie on the vertical line {t = tk} or {t = tk′}, attach a horizontal segment to reach
the vertical line as shown in Figure 2(a). We denote the resulting curve by β(i, j); if
B(i, j) = ∅, define β(i, j) as the horizontal segment connecting two points (s0, tk) and
(s0, tk′) in Ci ∩ Cj . Observe now that β(i, j) bisects Ci ∩ Cj into regions R(i, j) and
R(j, i), which lie above and below β(i, j), respectively.

M(i)

(b)

(c)(d)

(a)

L(Li)

U(Ui)

Fig. 2. (a) How to extend B(i, j) (dashed line) to β(i, j) by attaching horizontal segments (solid
line); (b) L(Li), (c) U(Ui), and (d) the region M(i) between them. Here, the dotted boxes are
grid cells whose union is Ci and the s-axis appears vertical.
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Let β(i, j)+ ⊆ Ci ∩ Cj be the region above β(i, j) and β(i, j)− be the region below
β(i, j). For a fixed i with 1 ≤ i ≤ 2n, we classify the β(i, j) into two sets Li and Ui

such that β(i, j) ∈ Li if R(j, i) = β(i, j)+ or β(i, j) ∈ Ui if R(j, i) = β(i, j)−. Recall

that M(i) = Ci\
⋃

j R(j, i). Thus,M(i) is equal to Ci\
(⋃

β∈Li
β+ ∪

⋃
β∈Ui

β−
)

. The

boundary of
⋃

β∈Li
β+ is the lower envelope L(Li) of Li; symmetrically, the boundary

of
⋃

β∈Ui
β− is the upper envelopeU(Ui) of Ui. Therefore,M(i) = L(Li)−∩U(Ui)+,

the region below the lower envelopeL(Li) of Li and above the upper envelopeU(Ui) of
Ui, and it can be obtained by computing the overlay of two envelopesL(Li) and U(Ui).
See Figure 2(b)–(d). We exploit known results on the Davenport-Schinzel sequences to
obtain the following lemma [10, 4]. Proof is omitted due to lack of space.

Lemma 5. The set M(i) is of combinatorial complexity O(λ66(n)) and can be com-
puted in O(λ65(n) log n) time, where λm(n) is the maximum length of a Davenport-
Schinzel sequence of order m on n symbols.

We can compute the minimization diagram M by computing each M(i)
in O(nλ65(n) log n) time. In the same time bound, we can build a point location struc-
ture on M. Finally, we conclude our main theorem.

Theorem 2. One can preprocess a given polygonal domain P in O(n4λ65(n) log n)
time into a data structure of size O(n4λ66(n)) for O(log n)-time two-point shortest
path queries restricted on the boundary ∂P .

4 Tradeoffs between Space and Query Time

In this section, we provide a space/query-time tradeoff. We use the technique of parti-
tioning V , which has been used in Chiang and Mitchell [3].

Let δ be a positive number with 0 < δ ≤ 1. We partition the corner set V into
m = n1−δ subsets V1, . . . , Vm of near equal size O(nδ). For each such subset Vi of
corners, we run the algorithm described above with little modification: We build the
shortest path maps SPM(u) only for u ∈ Vi and care about only O(n1+δ) breakpoints
induced by such SPM(u). Thus, we consider only the paths from p(s) via u ∈ Vi and
v ∈ V to p(t), and thus O(n1+δ) functions fu,v for u ∈ Vi and v ∈ V .

Since we deal with less number of functions, the cost of preprocessing reduces
from O(n) to O(nδ) at several places. We take blocks of O(nδ) grid cells contained
in D and the number of such blocks is O(n2+δ). For each such block, we spend
O(nδλ65(nδ) log n) time to construct a point location structure for the minimization
map Mi of the functions. Iterating all such blocks, we get running time
O(n2+2δλ65(nδ) log n) for a part Vi of V . Repeating this for all such subsets Vi yields
O(n3+δλ65(nδ) log n) construction time.

Each query is processed by a series of m point locations on every Mi, taking
O(m log n) = O(n1−δ log n) time.

Theorem 3. Let δ be a fixed parameter with 0 < δ ≤ 1. Using O(n3+δλ65(nδ) log n)
time and O(n3+δλ66(nδ)) space, one can compute a data structure for O(n1−δ log n)-
time two-point shortest path queries restricted on the boundary ∂P .
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Remark that when δ = 1, we obtain Theorem 2, and that O(n3+ε) time and space is
enough for sublinear time query. Note that if O(n) time is allowed for processing each
query, O(n2) space and O(n2 log n) preprocessing time is sufficient.

5 Extensions to Segments-Restricted Queries

Let Ss and St be two sets of ms and mt line segments, respectively, within P . In
this section, we restrict a query pair (p, q) of points to lie on Ss and St each. We will
refer to this type of two-point query as a (Ss,St)-restricted two-point query. As we did
above, we take two segments S ∈ Ss and T ∈ St and let bS and bT be the number of
breakpoints — the intersection points with an edge of SPM(v) for some v ∈ V —
on S and T , respectively. Also, parameterize S and T as above so that we have two
bijections p : [0, |S|] → S and q : [0, |T |] → T .

Any path from a point on S leaves to one of the two sides of S. Thus, the idea of
handling such a segment within the free space P is to consider two cases separately.
Here, we regard S and T as directed segments in direction of movement of p(s) and
q(t) as s and t increases. Details can be found in a full version of the paper.

Theorem 4. Let Ss and St be two sets of ms and mt (possibly crossing) line seg-
ments, respectively, within P , and δ be a fixed parameter with 0 < δ ≤ 1. Then, using
O(msmtn

3+δλ65(nδ) log n) time and O(msmtn
3+δλ66(nδ)) space, one can compute

a data structure for O(n1−δ log(n + ms + mt))-time (Ss,St)-restricted two-point
queries.
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Abstract. Given two permutations π and σ, the NP-complete Permu-

tation Pattern problem is to decide whether π contains σ as a pattern.
In case both π and σ are 321-avoiding, we prove the Permutation Pat-

tern problem to be solvable in O(k2n6) time, where k = |σ| and n = |π|,
and give a O(kn4

√
k+12) time algorithm if only σ is 321-avoiding. Finally,

we show W[1]-hardness of a 2-colored version of this latter problem.

1 Introduction

A permutation π is said to contain the pattern (shorter permutation) σ, in
symbols σ � π, if there exists a subsequence of entries of π that has the same
relative order as σ (alternatively, σ is involved in π). Otherwise, π avoids σ. For
example, 3215674 contains the pattern 132 since the subsequence 154 is ordered
in the same way as 132. Pattern involvement in permutations has become a very
active area of research. For one, pattern containment restrictions are often used
to describe classes of permutations that are sortable under various conditions [8].
For another, a great deal of study has been devoted to counting pattern-avoiding
permutations [3].

We consider here the Permutation Pattern problem. Given two permuta-
tions σ and π, this problem is to decide whether σ � π (the problem is ascribed
to H. Wilf in [4]). The Permutation Pattern problem is NP-hard [4], but
is solvable in O(nk) time if σ has size k and π has size n. Improvements were
presented in [2] and [1], the latter describing a O(n0.47k+o(k)) time algorithm.
Also, the problem is known to be polynomial-time solvable (in k and n) if σ
is separable, i.e., σ contains neither the pattern 2413 nor 3142 [4]. In case σ is
monotone, a O(n log log n) time algorithm is known [7].

We focus in this paper on the Permutation Pattern problem in case σ
(possibly σ and π) avoids a pattern of length 3. Knuth proved in [9] that for
all six of the patterns of length 3 it is true that the number of permutations
of size n that avoid the pattern is the Catalan number. First, it is easy to see
that the Permutation Pattern problem is polynomial-time solvable if the
pattern σ avoids 132, 312, 213 or 231 since σ is clearly separable in this case.
Monotone patterns, i.e., 123 and 321, however, deserve separate consideration
(we focus here on 321-avoiding permutations but if a permutation avoids 123
then its reverse avoids 321). In case both π and σ are 321-avoiding, we prove the

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1064–1073, 2009.
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Permutation Pattern problem to be solvable in O(k2n6) time, where k = |σ|
and n = |π|, and give a O(kn4

√
k+12) time algorithm if only σ is 321-avoiding.

Finally, we show W[1]-hardness of a 2-colored version of this latter problem.
This paper is organized as follows. Section 2 briefly reviews the needed ma-

terial and some basic properties are derived. We consider in Section 3 the Per-

mutation Pattern problem in case both σ and π are 321-avoiding whereas
Section 4 is devoted to the case σ only is 321-avoiding. Due to space constraints,
complete proofs are deferred to the full paper.

2 Generalities

2.1 Permutation Patterns

We will use two different representations of permutations. The usual array rep-
resentation of π is simply the sequence π(1) . . . π(n). A second representation
describes a permutation π by its graph, i.e., a set of points in the plane where
no two two points are aligned horizontally or vertically. We will write p ∈ π to
mean that p is a point in the graph of π, and the x- and y-coordinates of p will
be denoted by x(p) and y(p), respectively.

Definition 1 (Embedding). Given two permutations σ and π, an embedding
of σ into π is an injective mapping φ : σ → π which is order-preserving for x-
coordinates and y-coordinates, i.e., for any two points p, p′ ∈ σ, it holds that: (i)
x(p) < x(p′) ⇒ x(φ(p)) < x(φ(p′)), and (ii) y(p) < y(p′) ⇒ y(φ(p′)) < y(φ(p′)).

When there exists an embedding of σ into π, we say that σ occurs in π, denoted
by σ � π. We also say that π contains σ; when this does not hold, we say that
π avoids σ. A permutation is k-increasing iff it can be partitioned in k increas-
ing subsequences. It is well-known that a permutation π is k-increasing iff its
longest decreasing subsequence has length at most k, or equivalently if π avoids
k+1 . . . 1. We focus here on 2-increasing permutations, which are also character-
ized as 321-avoiding permutations. These permutations were introduced by [8]
as queue-sortable permutations. This characterization yields a linear-time recog-
nition algorithm for this class, which can be turned into a certifying algorithm.

Proposition 1. Given a permutation π of size n, in O(n) time we can decide
if π is 2-increasing, and (i) output a partition in two increasing subsequences
(as a positive certificate), and (ii) or output an occurrence of 321 into π (as a
negative certificate).

2.2 Stair-Decompositions

We introduce here the notion of stair-decomposition that will play an important
role in our study of 2-increasing permutations.
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1 2 3 4 5 6 7 8 9 1011
1
2
3
4
5
6
7
8
9
10
11

Fig. 1. A stair-decomposition of the permutation π = 3 1 6 2 4 7 9 5 11 8 10. The
white blocks on the two diagonals contain increasing subsequences, while the grey
blocks contain no point.

Definition 2 (Stair-decomposition). A stair-decomposition of a permuta-
tion π consists of: (i) a partition of the horizontal axis in intervals I1, . . . , Ik,
and (ii) a partition of the vertical axis in intervals J1, . . . , Jk, such that: if we
let Si,j be the square at the intersection of intervals Ii and Jj, then the graph of
π contains points only in the squares Si,i or Si,i+1, and the points of π inside a
nonempty square form an increasing subsequence.

A stair-decomposition D can also be described by its blocks B1, . . . , Bk, where
for each i, B2i−1 is the points inside Si,i, and B2i is the points inside Si,i+1.
Figure 1 illustrates the definition.

Lemma 1. π is 2-increasing iff π has a stair-decomposition.

3 Both σ and π Are 2-Increasing

3.1 Preliminaries

Definition 3 (Ordered preforest). An ordered preforest consists of (i) a
forest F with node set N(F ), (ii) a depth dF (u) ∈ N∗ assigned to each node
u ∈ N(F ), (iii) a total order <F on N(F ) satisfying the following conditions.
For each i, the level Li of F is the set of nodes of depth i. We then require that:
(i) for each v ∈ N(F ) with parent u, it holds that dF (v) = dF (u) + 1; (ii) <F

ranks nodes by increasing depth, i.e. if dF (u) < dF (v) then u <F v; and (iii) for
each u ∈ N(F ), the children of u form an interval of <F .

Condition 3 amounts to say that there is a plane drawing of F such that (i) all
nodes of Li have their y-coordinate equal to i, (ii) in this drawing, <F orders the
nodes of Li from left to right. The total order <F can be seen as a breadth-first
traversal of F . Given u ∈ N(F ), we denote by parentF (u) its parent node, and
by childrenF (u) its set of child nodes. If all roots of F have depth 1, then F is
called an ordered forest. If F is an ordered preforest and if i ∈ Z, F ↑ i denotes
the ordered preforest which contains the nodes of F of depth ≥ i+1, and where
each such node has new depth dF ′(u) = dF (u) − i.
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We will also need the notion of split of an ordered forest. Suppose that F is
an ordered forest with n nodes. Let x = x1 . . . xn be the depth-first traversal of
F (defined in the standard way). A split of F is a partition A, B of N(F ) s.t. A
forms a prefix of x, and B forms a suffix of x. Note that the splits of F are in
number n + 1. From the ordered forest F , we can then define F [A], F [B] which
are ordered preforests.

3.2 Representation of 2-Increasing Permutations

We describe here a way to represent 2-increasing permutations by ordered forests.
Let F be an ordered forest with n nodes. Let L1, . . . , Lh be the levels of F . The
anchor of F is the leftmost node of L1. An odd-alternating traversal of F is a
traversal of F which proceeds as follows: start with i = 1; while i ≤ h, enumerate
the elements of Li ∪ Li+1 by a depth-first traversal, and increment i by 2. An
even-alternating traversal of F is defined in a similar way, except that it starts
at i = 0 (L0 = ∅ by convention).

(0,0) (2,1)

(1,2) (3,5) (4,7) (5,9)

(9,6) (11,8)

(10,11)

(6,3) (8,4)

(7,10)

Fig. 2. An ordered forest F ; the labeling of its nodes defines the permutation πF =
2 1 5 7 9 3 10 4 6 11 8

To the ordered forest F , we associate a permutation πF of size n− 1, defined
as follows: (i) label the nodes of F with increasing x-coordinates from 0 to n−1,
by an odd-alternating traversal of F ; (ii) label the nodes of F with increasing
y-coordinates from 0 to n− 1, by an even-alternating traversal of F ; (iii) ignore
the anchor of F , and consider the n − 1 remaining points as the graph of a
permutation πF . This process is illustrated in Figure 2. The following Lemma
shows that a stair-decomposition of πF can be obtained from the ordered forest
F ; it implies that the construction always produces a 2-increasing permutation.

Lemma 2. The sets L1, . . . , Lh form a stair-decomposition of πF .

The above result implies that πF is 2-increasing. The following proposition shows
that every 2-increasing permutation can be represented in this way.

Proposition 2. For any 2-increasing permutation π of size n, there exists an
ordered forest F with n + 1 nodes such that π = πF .
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3.3 Embeddings

We introduce here notions of embedding for ordered forests, and we character-
ize embeddings of 2-increasing permutations in terms of embeddings of their
associated forests (Proposition 3).

Definition 4 (Embedding). Let F be an ordered preforest with levels
L1, . . . , Lh, and let F ′ be an ordered preforest with levels L′1, . . . , L

′
h′ . An em-

bedding of F into F ′ is an injective mapping φ : N(F ) → N(F ′) such that for
each 1 ≤ i ≤ h: (i) φ(Li) ⊆ L′i; (ii) if p, p′ ∈ Li, then p <F p′ ⇔ φ(p) <F ′ φ(p′);
and (iii) if p ∈ Li and p′ ∈ Li+1, then p ≤F parentF (p′) ⇔ φ(p) ≤F ′

parentF ′(φ(p′)).

In words, the definition requires that φ maps points of F to points of F ′ on
the same level (Point 1), preserves the ordering between points on a same level
(Point 2), and preserves the parent-child ordering between points on consecutive
levels (Point 3). We write F � F ′ iff there exists an embedding of F into F ′. We
now define a second notion of embedding called twist embedding.

Definition 5 (Twist embedding). We say that there exists a twist embed-
ding of F into F ′ (denoted by F � F ′) iff there exists A, B split of F and A′, B′

split of F ′ s.t. (i) F [A] � F ′[B′] and (ii) F [B] � F ′[A′] ↑ 2.

Given two permutations π1, π2, their sum π1 ⊕ π2 is the permutation π whose
graph can be partitioned in two rectangles R1, R2, with R2 above and at the right
of R1, s.t. π|R1 = π1, π|R2 = π2. We say that π is simple iff it cannot be written
as π1 ⊕π2 (where π1, π2 are not empty). The following proposition characterizes
embeddings of 2-increasing permutations in terms of twist embeddings of their
associated forests.

Proposition 3. Let F, F ′ be two ordered forests, and let h be the height of F ′.
Suppose that πF and πF ′ are simple. Then: πF � πF ′ iff there exists 0 ≤ i ≤ h
s.t. F � F ′ ↑ i.

3.4 Finding an Embedding

We now describe a polynomial-time algorithm to decide if F � F ′ (Proposi-
tion 5). By Proposition 3, this will yield a polynomial-time algorithm for the
Permutation Pattern problem for 2-increasing permutations (Theorem 1).
For the purpose of deciding the embedding relation between forests, we need a
result on labeled dags (Proposition 4). Before stating this result, we introduce
the following definitions.

Definition 6 (Labeled dag). Let Σ be an alphabet, and let D be a symmetric
reflexive relation over Σ. A Σ, D-labeled dag consists in a dag G = (V, A),
together with a labeling λ : V → Σ, having the following property: for each
u, v ∈ V distinct, u, v are adjacent in G iff (λ(u), λ(v)) ∈ D.
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Definition 7 (Morphism). Let G, G′ be two Σ, D-labeled dags. A morphism
of G into G′ is an injective mapping φ : V (G) → V (G′) such that: (i) φ is
arc-preserving: for each u ∈ V (G), (u, v) ∈ A(G) ⇔ (φ(u), φ(v)) ∈ A(G′); (ii) φ
is label-preserving: for each u ∈ V (G), u and φ(u) have the same label.

We denote G � G′ iff there exists a morphism of G into G′. It turns out that this
property can be efficiently decided, thanks to an algorithm based on topological
sorting.

Proposition 4. Given two Σ, D-labeled dags G and G′, we can decide in poly-
nomial time if G � G′.

Proof (Sketch). We first perform a topological sorting of G′, which gives us a
linear extension of G′. Let y = y1 . . . yn be the labeling of this linear extension.
We now perform a topological sort of G as follows. We maintain Min the set
of minimal elements in G, and j a position in y; initially j = 0. At each step of
the topological sort, we need to pick the next element in Min. We proceed as
follows: (i) for each x ∈ Min labeled by a, we compute mx as the first position
i > j s.t. yj = a (if it exists), or ∞ otherwise; (ii) if all values mx are ∞, we
stop and we answer negatively. Otherwise, we choose the element x ∈ Min with
minimum mx, and we update j ← mx. Note that there is a unique choice for x
at each step, since no two elements of Min can have the same label. When the
algorithm completes the topological sort, it answers positively. The algorithm
clearly runs in polynomial-time and correctness is proved in the full version. �	

In fact, a more involved algorithm can solve the problem in linear O(|G| + |G′|)
time (see journal version). The following Proposition shows how these results
allow us to find embeddings (Point 1) and twist-embeddings (Point 2) between
two forests.

Proposition 5. Let F and F ′ be two ordered forests, with |F | = k and |F ′| = n.
Then: (i) We can decide in O(n) time if F � F ′, and (ii) we can decide in
O(kn2) time if F � F ′.

Proof. Point 1. Suppose that F has levels L1, . . . , Lh and that F ′ has levels
L′1, . . . , L

′
h. Let Σ = {1, . . . , h} and let D be the set of pairs (i, i), (i, i + 1).

We represent F by a labeled dag GF as follows: (i) GF has vertex set N(F ),
(ii) each vertex of GF is labeled by its depth in F , (iii) for each u, v ∈ Li, GF

contains an arc (u, v) iff u <F v, (iv) for each u ∈ Li, v ∈ Li+1, GF contains an
arc (u, v) iff u ≤F parentF (v). It is readily seen from Definitions 4 and 7 that
embeddings of F into F ′ correspond to morphisms of GF into GF ′ . It follows
that F � F ′ iff GF � GF ′ , which can be decided in O(|GF | + |GF ′ |) time by
the above algorithm. Note that GF may have size O(k2) and that GF ′ may
have size O(n2). However, we can apply the above algorithms to their transitive
reductions, whose size is now O(k) and O(n), and which can be constructed in
linear time from F and F ′. This is correct since GF and its transitive reduction
has the same linear extensions. We therefore obtain a O(k + n) = O(n) time
algorithm to decide if F � F ′.
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Point 2. It follows from Definition 5 that to decide if F � F ′, we need to
examine every split S = A, B of F , every split S′ = A′, B′ of F ′, and in each
case to test if F [A] � F ′[B′] and F [B] � F ′[A′] ↑ 2. For a given S, S′, the two
tests are carried out in O(n) time by Point 1. Now, the possible S are in number
k + 1 and the possible S′ are in number n + 1, leading to the claimed O(kn2)
running time. �	

Propositions 3 and 5 yield a polynomial-time algorithm for the Permutation

Pattern problem for 2-increasing permutations.

Theorem 1. Let σ, π be two 2-increasing permutations, with |σ| = k and |π| =
n. We can decide in O(k2n6) time if σ � π.

4 Only σ Is 2-Increasing

We now consider the restriction of the Permutation Pattern problem to the
case when σ is 2-increasing but π is arbitrary. For convenience, we define the
problem so that a stair-decomposition of σ is also given as input.

Name: 2-Increasing Permutation Pattern (2IPP)
Input: A 2-increasing permutation σ of size k, a stair-decomposition D of σ
with r blocks, each of size at most s, and a permutation π of size n.
Question: Decide if σ � π.

4.1 Algorithms

We show that the 2IPP problem can be solved in nO(
√

k) time. The algorithm is
by combining two different strategies for solving the problem. We will describe
a first strategy which solves the problem in nO(s) time, and a second strategy
which solves the problem in nO(r) time. Recall that s is the maximum size of
the blocks of D, and that r is the number of blocks of D. A combination of both
strategies will yield an algorithm with the claimed nO(

√
k) running time.

The first strategy uses a simple dynamic-programming approach. It stems
from the observation that to find an embedding of σ into π, it suffices to find
embeddings φi of Bi into π (for every i), and to check the consistency between
pairs of consecutive embeddings φi, φi+1. To formalize this idea, we need the
following definitions. Given a block Bi, a partial solution for Bi is a pair S =
(R, ψ), where R = (x1, y1, x2, y2) is a rectangle in the graph of π, and ψ is an
embedding of Bi into π whose image is included into R (i.e., for each p ∈ Bi,
it holds that x1 ≤ x(ψ(p)) < x2 and y1 ≤ y(ψ(p)) < y2). Intuitively, a partial
solution specifies the restriction of an embedding to Bi, as well as the region
to which the points of Bj (j ≥ i) are mapped. Let Si denote the set of partial
solutions for Bi.

Definition 8. Given a partial solution S = (R, ψ) ∈ Si with R = (x1, y1, x2, y2),
we define the predicate Π(i, S) to hold iff there exists an embedding φ of
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Bi ∪ . . . ∪ Br into π such that: (i) φ|Bi = ψ; (ii) if p ∈ Bj with j > i then:
(i) if j > i + 1: then x(φ(p)) ≥ x2 and y(φ(p)) ≥ y2; (ii) if j = i + 1 and i
odd: then x(φ(p)) ≥ x1 and y(φ(p)) ≥ y2; and (iii) if j = i + 1 and i even: then
x(φ(p)) ≥ x2 and y(φ(p)) ≥ y1.

The predicates Π(i, S) can be computed by dynamic programming thanks to the
following Lemma. Given partial solutions S = (R, ψ) ∈ Si and S′ = (R′, ψ′) ∈
Si+1, with R = (x1, y1, x2, y2), and R′ = (x′1, y′1, x′2, y′2), say that S and S′ are
compatible iff (i) either Bi, Bi+1 are on the same column (i odd), and it holds
that: x′1 = x1, x′2 = x2, y′1 = y2, and for any p ∈ Bi, p′ ∈ Bi+1, x(p) <
x(p′) ⇔ x(ψ(p)) < x(ψ′(p′)), or (ii) Bi, Bi+1 are on the same row (i even),
and it holds that: y′1 = y1, y′2 = y2, x′1 = x2, and for any p ∈ Bi, p′ ∈ Bi+1,
y(p) < y(p′) ⇔ y(ψ(p)) < y(ψ′(p′)).

Lemma 3. Suppose that i < r, and let S ∈ Si. Then: Π(i, S) holds iff there
exists S′ ∈ Si+1 compatible with S such that Π(i + 1, S′) holds.

The above lemma yields a polynomial-time algorithm for the 2IPP problem
when s is bounded.

Proposition 6. 2IPP is solvable in O(rn2s+5) time.

Proof. By dynamic-programming, we compute the predicates Π(i, S) for each
1 ≤ i ≤ r and each S ∈ Si, using Lemma 3. An element of Si consists of a
rectangle R and of an embedding ψ; there are O(n4) choices for R and O(ns)
choices for ψ (since |Bi| ≤ s). It follows that each Si has size O(ns+4). Consider
now the running time needed to compute a value Π(i, S) assuming that the
values Π(i + 1, S′) are available. By Lemma 3, we need to examine every S′ =
(R′, ψ′) ∈ Si+1 compatible with S. There are O(n) choices for R′ (since three of
the four coordinates are determined by R), and O(ns) choices for ψ′. It follows
that computing any Π(i, S) is O(ns+1) time. Therefore, the algorithm, as a
whole, runs in O(rns+4ns+1) = O(rn2s+5) time. �	
The second strategy solves the problem in nO(r) time, where r is the number of
blocks in the stair-decomposition D. For the sake of clarity, we formulate our
approach as a non-deterministic algorithm. This is an extension of the following
idea. If σ is increasing, then we can find an embedding of σ into π by the following
simple non-deterministic algorithm: (i) choose a point p1 in π; (ii) for i = 2 to
|σ|, choose a point pi in π such that x(pi) > x(pi−1) and y(pi) > y(pi−1). The
key idea in this algorithm is that we only need to memorize the image of the
last point of σ examined so far. We will extend this idea to the case where σ
has a stair-decomposition with r blocks: in this case, in each block Bi the points
will be examined from left to right, and we will memorize the image of the first
and last point in each row and each column of D. At the time of considering a
new point in Bi, we will choose an image for this point in π, and check that this
image is well-positioned with respect to the last points of the current row and
column, and with respect to the first points of the next row and column. We
need to specify the order in which the points of σ will be examined. This leads
us to the following definition.
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Definition 9. An insertion order for σ with respect to D is an enumeration of
the points of σ such that: (i) on each row, the points are ordered by increasing
y-coordinate, and (ii) on each column, the points are ordered by increasing x-
coordinate.

Lemma 4. There exists an insertion order for σ with respect to D.

Let us show how this notion of insertion order allows us to solve the problem.
Suppose that s = p1 . . . pk is an insertion order for σ with respect to D. Define
a configuration to be a tuple C consisting of: (i) two values firstri and lastri

(which may be equal to ⊥) for each row i, and (ii) two values firstci, lastci for
each column i. We then find an embedding of σ into π using (non-deterministic)
Algorithm 1. This yields a polynomial-time algorithm for the 2IPP problem
when the number of blocks r is bounded as shown in the following proposition.

Algorithm 1. A non-deterministic algorithm for the 2IPP problem
1: choose values firstri, firstci in {1, . . . , n} such that for each i,
2: firstri ≤ firstri+1, firstci ≤ firstci+1;
3: initialize the values lastri and lastci to ⊥;
4: for h = 1 to k do
5: if ph belongs to row i, column j of D, then:
6: choose p point of π;
7: check that x(p) < firstcj+1 and y(p) < firstri+1;
8: if lastri =⊥, check that y(p) = firstri; if lastri �=⊥, check that y(p) > lastri;
9: if lastcj =⊥, check that x(p) = firstcj ; if lastcj �=⊥, check that x(p) > lastcj ;

10: update lastcj ← x(p), lastri ← y(p).
11: end for
12: accept at the end of the algorithm.

Proposition 7. 2IPP is solvable in O(kn2r+3) time.

Proof. We perform a deterministic simulation of the non-deterministic Algo-
rithm 1. For each configuration C and each 0 ≤ i ≤ k, we compute a predicate
P (i, C) which holds iff there exists of an execution of the algorithm which reaches
configuration C at the beginning of loop h = i + 1. The predicates P (i, C) are
then computed by induction on i; (i) obtaining P (0, C) takes O(r) time; (ii) for
0 ≤ i < k, if the values P (i, C) have been previously computed then we can
deduce the values P (i + 1, C′), where each value P (i, C) gives rise to n values
P (i + 1, C′) (since we need to examine every possible choice of p in Line 6).
Finally, we accept iff P (k, C) holds for at least one C. The claimed running time
follows by observing that, if D has p rows and q columns, then the number of
configurations is bounded by n2(p+q) and that p+q ≤ r+1. Hence, the predicates
P (i, C) are computed in O(kn2r+3) time. �	

Combining the two above strategies in a nontrivial way, we achieve a nO(
√

k)

running time for solving 2IPP, as stated in the following Theorem.

Theorem 2. 2IPP can be solved in O(kn4
√

k+12) time.
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4.2 Hardness Results

While we are still unable to settle the parameterized complexity of the 2IPP

problem, we can show hardness results for a colored version of the problem. The
c-Colored 2IPP problem is defined as follows: given σ, D and π where σ and
π are c-colored permutations (i.e., a color in [c] is associated to each point of the
permutation), find a color-preserving embedding of σ into π. It is not difficult
to see that the algorithmic results of the previous section can be adapted to this
colored version. When c ≥ 2, we are able to prove the asymptotic optimality
of these algorithms, conditioned by the Exponential-Time Hypothesis (ETH).
Recall that ETH is the assumption that 3-Sat cannot be solved in 2o(n) time
(where n is the number of variables). It was shown in [5] that Clique cannot
be solved in no(k) time assuming ETH.

Theorem 3. (i) 2-Colored 2IPP parameterized by k is W[1]-hard and cannot
be solved in no(

√
k) time assuming ETH. (ii) 2-Colored 2IPP parameterized

by s is WNL-hard and cannot be solved in no(s) time assuming ETH.

The parameterized class WNL was introduced in [6] to capture the parameterized
complexity of problems solvable by k-dimensional dynamic programming.
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Abstract. Folding an n × n checkerboard pattern from a square of pa-
per that is white on one side and black on the other has been thought
for several years to require a paper square of semiperimeter n2. Indeed,
within a restricted class of foldings that match all previous origami mod-
els of this flavor, one can prove a lower bound of n2 (though a matching
upper bound was not known). We show how to break through this bar-
rier and fold an n×n checkerboard from a paper square of semiperimeter
1
2n2 + O(n). In particular, our construction strictly beats semiperimeter
n2 for (even) n > 16, and for n = 8, we improve on the best seamless
folding.

1 Introduction

Within the world of origami, the use of two-colored paper (white on one side,
colored on the other) has been widespread for many years, leading to creation of
origami figures in which both colors are used for artistic effect. In the early days
of western origami, two-colored figures tended to have relatively simple patterns
(the penguin [11] has been a perennial favorite), but with the 1993 publication of
John Montroll’s Origami Inside-Out [10], the genre received a significant boost,
as this book displayed much more complex patterns: striped tigers, spotted cows,
and most notably, an 8×8 checkerboard with squares alternating in color—each
folded from a single square sheet with no cuts.

The checkerboard, in fact, has a long history as an origami subject. The
smaller sizes—2 × 2 and 3 × 3—make interesting puzzles, accessible even to
relative beginners at folding. Larger checkerboards, and in particular the 8 × 8
used for chess, are significant challenges to the origami designer. Even so, there
are several solutions in the origami literature. To the best of our knowledge, the
earliest chessboard from a single uncut square was folded by Max Hulme [7] in
1977, but several other designs exist by now [1,8,2,5].
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One of the most important attributes of complex origami designs such as these
is their efficiency, which is simply a measure of the size of the finished figure
relative to the original sheet of paper. For the design of a checkerboard with unit
squares, a measure of the efficiency is the size, in the same units, of the square (or
other shape) of paper from which it is folded. For example, among 8× 8 boards,
Hulme’s [7] is folded from a 64 × 64 square, Casey’s [1] and Kirschenbaum’s [8]
are folded from 40 × 40 squares, Montroll’s [10] is folded from a 36× 36 square,
and Dureisseix’s [5] and Chen’s [2] are folded from 32 × 32 squares.

A secondary question, which plays more of an aesthetic role, is whether any
square of the folded board is crossed by a folded edge. The most aesthetically
pleasing checkerboards have seamless squares, in which each square is an unbro-
ken surface. If one or more squares is crossed by a folded edge, we call such a
solution unconstrained. The most common form of unconstrained square has a
folded edge crossing its diagonal.

We may then ask a general question: what is the smallest square of paper
required to fold an n× n checkerboard with unconstrained or seamless squares?

Origamists have experimented with this problem for specific values of n other
than just 8. Figure 1 shows sample foldings for n ∈ {2, 3, 4}. The 2 × 2 and
3 × 3 solutions are elegant and have been plausibly conjectured, although not
yet proved, to be optimal. Foldings become increasingly difficult as n grows.
Although the three examples in Figure 1 are all seamless, in the larger sizes both
seamless and unconstrained square solutions exist, with unconstrained solutions
often turning out to be slightly more efficient. In particular, an unconstrained
4 × 4 checkerboard can be folded from an 8 × 8 square [5,7].

Perimeter limit. An interesting property of many examples is that the perimeter
of the square in the folded form follows the edges of the colored/white boundary
(or exterior boundary) in the pattern. Indeed, finding a way to map the boundary
of the square to the colored/white boundary of the surface pattern has been a
powerful and fruitful design approach for checkerboards (as well as many other
two-colored origami figures). However, in many of the folded examples not all
of the boundary of the square is used to create colored/white boundary in the
pattern; there are often small bits of boundary that double back on themselves
or that remain hidden from view as part of the folding design. The significance
of the square perimeter in the construction of checkerboards was first explicitly
identified by Dureisseix [5] in his construction of an unconstrained-square 8 × 8
from a 32 × 32 square. See also [4, sec. 15.4.2, pp. 238–239] for a discussion.

For an n × n checkerboard of unit squares viewed as a pattern of white
squares on a colored field, the total boundary of the n2/2 white squares (both
white/colored and white/boundary) is 4(n2/2) = 2n2, which leads directly to
the following conjectured relationship between the size of a checkerboard and
the minimum size square (or, in general, any other convex shape) required to
fold it:
Conjecture 1 (Checkerboard Perimeter Limit). The minimum scaling of a convex
polygon required to fold an n×n checkerboard of unit squares has semiperimeter
at least n2.
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Fig. 1. Top left: Seamless 2 × 2 checkerboard from a 3 × 3 square, crease pattern (left)
and folded form (right). Top right: Seamless 3 × 3 checkerboard from a 5 × 5 square.
Bottom: Seamless 4 × 4 checkerboard from a 10 × 10 square. Dashed lines are valley
folds; solid lines are mountain folds.

For folding from a square, the minimum size square would have a side length
of Lmin = �n2/2�. Thus, for example, the paper required to fold an 8×8 checker-
board would have a semiperimeter of 64, and so the minimum size square would
be at least 32 × 32. This conjectured limit would seem to be borne out by the
published examples of 8×8 checkerboards. In particular the designs of Chen and
Dureisseix achieve this bound. Also, while Montroll’s published board is folded
from a 36×36 grid, he has reported in personal communication with the authors
that he has an unpublished design for a checkerboard from a 32×32 grid. On the
other hand, the best known seamless 8× 8 boards [1,8] use 40× 40 unit squares.

Table 1 lists the conjectured lower bounds for n from 2 to 8 for square paper,
along with the best known unconstrained and seamless solutions.

Our results. After a certain amount of experimentation, we found that these
limits seemed plausible, and a challenge to even meet. To our knowledge, the
only general construction for n×n checkerboards for arbitrary n is what follows
from a general construction of two-color patterns [3]. This construction starts
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Table 1. Checkerboard size, conjectured limit on square size, and sizes of best previous
known unconstrained and seamless solutions

conjectured best previous example
n limit unconstrained seamless

2 2 3 3
3 5 5 5
4 8 8 10
5 13 ? ?
6 18 ? ?
7 25 ? ?
8 32 32 [2,5] 40 [1,8]

by accordion-folding a paper square into a long rectangular strip, and “flips”
the strip at each color reversal. This method requires a square of side length
2n2 + O(n), or semiperimeter 4n2 + O(n), though it is at least seamless.

An improvement we developed, shown in Figure 2, asymptotically approaches
the conjectured lower bound for unconstrained squares. In this approach, the
perimeter of the checkerboard is mapped precisely to the checkerboard, with a
bit effectively “wasted” in the turns at the end. However, this excess material
increases only linearly with n. For an n × n checkerboard (n even), the amount
of “square diagonal” needed, including turns, can be shown to be 1

2n2 + 4n− 5,
which leads to a semiperimeter of

n2 + 8n− 10,

which, indeed, asymptotically approaches the limit of n2 for large n (though
exceeds n2 for all n ≥ 2). To our knowledge, this is the first construction for
general n other than the straightforward folding from a rectangular strip that
follows from a general construction of two-color patterns [3].

Based on these examples, algorithms, and many empirical folding tests, the
perimeter conjecture seemed to all of the present authors likely to be the true
limit for an n×n checkerboard. Thus, it was with some surprise that we discov-
ered a new approach to folding a checkerboard that beats the conjectured limit,
at least for sufficiently large n. This paper presents an algorithmic implementa-
tion of this approach and shows that it leads to a semiperimeter asymptotically
shorter than the conjectured limit by a factor of 2:

Theorem 1. A seamless n × n checkerboard can be folded from a square of
semiperimeter 1

2n2 + O(n).

Our construction strictly beats semiperimeter n2 for all (even) n > 16. Along
the way, we present a seamless checkerboard construction from a rectangle of
semiperimeter 1

2n2+O(n) but aspect ratio Θ(n). This construction achieves bet-
ter lower-order terms, in particular improving the best seamless 8 × 8 checker-
board folding from 40 × 40 to 34 + ε × 34 + ε for any ε > 0.

Finally, our approach suggests a general technique for folding an arbitrary
two-color pattern. This technique is based on solving a TSP-with-neighborhoods
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Path Path

Fig. 2. Top: A square is pleated diagonally to realize a strip of squares and half-squares.
Bottom: The diagonal is wound back and forth across the desired checkerboard, with
folded turns at the ends.

instance, which has the potential to beat the natural limit determined by perime-
ter length (an Euler tour). However, fully optimizing the construction does not
appear to be easy, and the TSP-with-neighborhoods solution provides only a
lower bound for the construction.

2 Construction

In the full paper, we give two efficient foldings of a checkerboard from paper
of semiperimeter 1

2n2 + O(n). The first construction uses a rectangle of paper
of aspect ratio Θ(n). The second construction is from a square of paper. We
focus here on details of the square construction, but touch on the rectangle
construction to build intuition and for its smaller lower-order terms.

2.1 Rectangular Paper

Figure 3 shows the idea of our efficient checkerboard folding from a rectangular
piece of paper. We fold the paper into an n×n square with n square tabs sticking
up in alternate rows, and with strips of length n/2 hanging off the sides of each
row. The back sides of the strips are colored, while the n × n square and tabs
are white. Thus folding the strips to cover the n×n square turns it colored, and
folding the white tabs alternating up and down makes a checkerboard pattern.

The effect of this approach is that, instead of tracing the boundary of the
white (or colored) regions with the paper perimeter, we use the paper perimeter
to create strips of color that can visit all the squares in the checkerboard. The
tabs can be constructed from the pleats introduced by strip folding, without
increasing the demand on perimeter.

The folding uses a 1
2n2 + 2 + ε × 4n + ε rectangle, for a semiperimeter of

1
2n2 + 4n + 2 + ε for any desired ε > 0. This bound beats the conjectured limit
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NN/2 N/2

Repeating
module (2 units)

Fig. 3. Efficient construction of a checkerboard from rectangular paper

for all n > 8. An 8 × 8 checkerboard would use a 34 + ε × 32 + ε rectangle,
better than the 40 × 40 of the best previous seamless checkerboards [1,8] and
respectably close to the 32 × 32 of the best unconstrained checkerboards [2,5].

2.2 Square Paper

2

2

2

n/2

n/2

n/2−m

n/2−m

2 2 2 2 2 2 2

2m

n/2−m

n/2−m

n

n

Fig. 4. Dissection pattern for an n × n square (n even)

Our construction from
a square piece of pa-
per uses the same over-
all approach, but re-
balanced using a dif-
ferent arrangement of
strips shown in Fig-
ure 4. The arrange-
ment is parameterized
by an integer m which
we will set to mini-
mize the aspect ratio
of the paper. Along the
left and right, we place
m strips of width 2
and length n/2, which
folded inward cover the middle of the square from left to right. Along the top
and bottom, we place n/2 strips of width 2 and length n/2 − m, which folded
inward cover the remaining area.

Figure 5 shows the necessary gadgets to fold this pattern of strips. All pleats
fall on the half-integer grid. Each depth-L slot between two strips consumes a
perimeter segment of length 2L+2. Turning a corner between a horizontal strip
of length Lw and a vertical strip of length Lh happens at a corner of the paper,
and consumes Lw + Lh + 1 of the vertical perimeter and Lh of the horizontal
perimeter. (This corner gadget can be flipped to consume more horizontal than
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2L+2

L

Lh

Lw+Lh+1

Lw

Lh

Fig. 5. Left: crease pattern and folded form for a slot (here with L = 2). Right: crease
pattern and folded form for a corner (here with Lw = Lh = 2).

vertical perimeter, but we use only the one orientation for simplicity; tuning here
would only improve by an additive constant.)

Although the construction is not yet complete, we compute the semiperimeter
used so far. The vertical edge consists of m strips of width 2, m−1 slots of depth
L = n/2, and two contributions from the upper and lower reflex corners with
Lw = n/2 and Lh = n − 2m, giving a total of

V1 = 2m + (m − 1) (2(n/2) + 2) + 2 (n/2 + (n − 2m) + 1) = mn + 2n.

The horizontal edge consists of n/2 strips of width 2, n/2 − 1 slots of depth
L = n/2 − m, and two contributions from the left and right reflex corners with
Lw = n/2 and Lh = n − 2m, giving a total of

H1 = 2(n/2)+(n/2 − 1) (2 (n/2 − m) + 2)+2(n−2m) = 1
2n2−mn+3n−2m−2.

In the middle of the square, we fold an n × n array of universal tabs as
shown in Figure 6. The universal tab creates a tab joined along a desired edge
of the square that it covers, with the additional feature that the crease pattern’s
interface is identical on all four sides, consisting of four pleats, two on each side
of the symmetry line, each pleat 1

2 unit wide. Thus, a universal tab, rotated into
any of the four possible orientations, can be folded from a 5×5 square (outlined
by the heavy dashed line in Figure 6) whose creases will mate with the creases
of adjacent universal tabs, no matter their orientations. Thus we can choose the
orientation of each universal tab independently.

We orient universal tabs covered by horizontal strips to join along a horizontal
edge (top or bottom), and we orient universal tabs covered by vertical strips to
join along a vertical edge (left or right). This choice enables the strips to thread
alternately above and below each universal tab it visits, forming the desired
checkerboard color pattern.

It may seem wasteful to fold n2 universal tabs when we need only half that
many, but the perimeter consumed by these tabs is only linear in n (in particular,
at most 5n). We also obtain the feature that the same model can form any n×n
bitmap of colored and white pixels: without changing the crease pattern, and just
changing the overlap order, the strips can go either over or under each universal
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(a)

(b) (c)

(d) (e)

Fig. 6. (a) Crease pattern for the left-oriented universal tab. (b) Collapse the crease
pattern to this, then spread two layers and fold the flap to the left. (c) Fold two layers
to the center line. (d) Fold the flap back to the right. (e) The completed universal tab
with hinge along the left side. The heavy dashed line in the crease pattern maps to the
boundary of the tab in the last figure.

tab, resulting in the two possible colors. This idea of a universal pixel display
was introduced to us by Masashi Tamaka1 who designed a 4 × 4 model.

n/2−m

n/2−m

2m

n/2−m

n/2−m

n

n

Fig. 7. Where pleats must be added to create universal
tabs. Each heavy dashed line indicates a pair of pleats
added at that location.

We can optimize the con-
struction by re-using the
pleats from the slots and re-
flex corners in the folding of
the tabs. Each slot creates
at least two pleats on either
side of the slot, with the im-
portant property that the
pleats have the correct par-
ity to join up with the
pleats in the universal tabs.
Figure 7 shows where addi-
tional pleats must be added;
each heavy dashed line indi-
cates a single pair of pleats
at that location, contribut-
ing two units to the perime-
ter along that side. Look-
ing first at the vertical di-
rection, we see that each of the m strips requires four additional pleats running
down the middle of the strip, adding 4m to the vertical dimension. There are
1 Personal communication, June 2009.
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also 4(n/2 − m) horizontal pleats in each of the sections above and below the
horizontal strips, for a total of V2 = 2n units added to the vertical edge length.
In the other dimension, we must add four vertical pleats running down the mid-
dle of each of the n/2 strips, plus two pleats along the left and right boundary,
for a total of H2 = 2n + 2 units added to the horizontal edge length.

One loose end to tie up: each universal tab requires exactly four pleats in each
direction, two on each side of the vertical and horizontal symmetry lines. For
the sets of pleats that come from slots or reflex corners, there will in general be
more than four pleats running in one, the other, or both directions. This issue
does not create any problems: we can put into place all but two pleats, then
overlay the universal tab crease pattern on the “sandwich” of layers to complete
the tab.

Therefore the entire crease pattern requires a rectangle of size

V = V1 + V2 = mn + 2n + 4m
H = H1 + H2 = 1

2n2 − mn + 3n− 2m − 2 + 2n + 2
= 1

2n2 − mn + 5n− 2m

Setting V = H , we obtain

m =
n(n + 6)
4(n + 3)

= 1
4n + 3

4 − O(1/n)

But m must be an integer, so we use either m = � 1
4 (n + 3)� or m = � 1

4 (n + 3)�.
In the first case, H dominates, while in the second case, V dominates. The best
construction is the minimum of these two options, which (for n even) works out
to a side length of

1
4n2 + 4n + 4 − 5

2 (n mod 4).

The resulting semiperimeter is

1
2n2 + 8n + 8 − 5(n mod 4),

which beats n2 for all (even) n > 16. For n = 8, this construction uses a 52 ×
52 square, worse than our rectangle construction, but for n > 16 the square
construction wins.

3 More General Patterns

Our construction can be generalized to arbitrary two-color patterns. We fold
the perimeter of the sheet into strips of lengths sufficient to reach every colored
region of the final design. In case the pleats formed during the strip folding
suffice to generate the tabs, we are done. Otherwise, we must make additional
pleats first, before folding the strips.

There are multiple new ingredients that would be necessary for an optimal
solution here. One issue is that these initial pleats and the strips together de-
termine the width of the strips. Another is that with an irregular design, it may
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be necessary to run a complex optimization procedure to determine an optimal
solution. A first attempt at formulating this optimization might be to notice
that every colored region in the design must be reached by a strip, and therefore
also by a point on the perimeter of the original sheet. Thus, in a solution, the
perimeter will hit every colored region. In other words, the perimeter will form
a solution to an instance of TSP with neighborhoods (also known as one-of-a-set
TSP and group TSP).

However, finding such a tour will not be enough in general. Namely, colored
regions of the folded design must be covered by the strips, not just touched by
them. Thus larger colored regions in the design may require special wider strips,
or multiple strips. We leave a more rigorous formulation of this optimization
problem as a topic for future research.
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Abstract. We study the problem of finding all maximal approximate
gapped palindromes in a string. More specifically, given a string S of
length n, a parameter q ≥ 0 and a threshold k > 0, the problem is to
identify all substrings in S of the form uvw such that (1) the Levenshtein
distance between u and wr is at most k, where wr is the reverse of w
and (2) v is a string of length q. The best previous work requires O(k2n)
time. In this paper, we propose an O(kn)-time algorithm for this prob-
lem by utilizing an incremental string comparison technique. It turns out
that the core technique actually solves a more general incremental string
comparison problem that allows the insertion, deletion, and substitution
of multiple symbols.

Keywords: palindrome, incremental string comparison, string
matching.

1 Introduction

A word is called a palindrome if it reads the same both forward and backward.
In other words, a palindrome is a word of the form uaur, where u is a string,
a is a symbol (or an empty word), and ur is the reverse of u. A palindrome in
a string is maximal if it can not be extended outward while preserving a palin-
dromic structure. The recognition of palindromes in a string has always been an
intriguing question both in theory and practice. For example, finding all maximal
palindromes in a string was studied and well solved in linear time with the help
of suffix tree [15] and constant-time LCA (least common ancestor) queries [12].
In [4,5], the authors studied the problems of palindromes in Sturmian words or
in ternary square-free words. Moreover, the problem of identifying palindromes
in compressed texts were investigated in [10].

In DNA and RNA sequences, there is a similar structure called quasi-
palindrome which plays an important role in genome research [3,8,16]. A quasi-
palindrome can be seen as a pair of reverse complementary repeats in a string
that are separated by a number of characters. The complementarity relation on
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nucleotides means that A is complementary to T (U) and C is complementary to
G. Several functions of the quasi-palindrome in genomes have been discovered.
For example, the quasi-palindromic structure is a sign of replication origins in
the nucleotide sequence [3]. By estimating the appearance of replication ori-
gins in advance, the biologists can avoid much labor-intensive work. A study
of quasi-palindromes also shows that they may control male germ-line gene ex-
pression [16]. Thus, the recognition of quasi-palindromic structure draws much
attention and raises interesting computational problems. For example, the gapped
palindrome problem is to recognize a word structure of the form uvur, where
strings u and ur are called arms and string v is called gap. In [8], the compu-
tation of gapped palindromes in a string, with some length constraints on the
arms and the gap, are done in linear time.

Since mutations may occur in DNA and RNA sequences during evolution,
looking for the approximate quasi-palindromes (or gapped palindromes) is in
a sense biologically more meaningful. A tool called Inverted Repeats Finder
(https://tandem.bu.edu/cgi-bin/irdb/irdb.exe) identifies approximate gapped
palindromes heuristically. The tool uses a set of statistically based criteria to
detect candidates of approximate gapped palindromes. By applying some align-
ment techniques, it then conforms whether these candidates are palindromes.

In this paper, we study the problem of finding all approximate gapped palin-
dromes in a string. More specifically, we allow the Levenshtein distance between
two arms to be at most k and the length of gap to be a fixed q. It should be
noted that we identify all such palindromes while a previous work [1] can only
identify a set of them. We show that solving our problem is essentially solving
the incremental string comparison problem. The research of incremental string
comparison was initiated by Landau et al.. The incremental approach proposed
in [9] allows one to append a single symbol to one string at a time. Throughout
the paper we aim to solve a more general incremental problem in which we allow
multiple symbols to be appended to and deleted from the strings. As a result,
our algorithm finds all maximal approximate gapped palindromes in O(kn) time
while the best previous work requires O(k2n) time [11], where n is the string
size.

2 Preliminaries

The Levenshtein distance (edit distance) between two strings is the minimum
number of editing steps that convert one string into another. Given two string
A[1..m] and B[1..n], one can calculate their edit distance by dynamic program-
ming. We refer to matrix D[0..m, 0..n] as the edit-distance table of strings A and
B. Initially, D[i, 0] = i for 0 ≤ i ≤ m and D[0, j] = j for 1 ≤ j ≤ n. Then the
cell D[i, j], where i, j > 0, stores the edit distance of strings A[1..i] and B[1..j].
We also say that the cells D[i, j] where j − i = d are on diagonal d of D. Be-
low we introduce some important properties of the edit-distance table that are
constantly used in later discussion.
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Lemma 1 ([13]). Given an edit-distance table D, we have D[i, j]−D[i−1, j−
1] ∈ {0, 1}.

In other words, Lemma 1 implies that D[i, j] ≥ D[i − 1, j − 1], i.e. the values of
the cells on the same diagonal are monotonically increasing. To compute table
D, as noticed by Ukkonen [13], it suffices to find the last cell that has value h, for
all h, on each diagonal of table D. In other words, all values in D are determined
when those last cells that have value h, for all h, are determined. To specify the
last cells with value h, the terms LD

d (h) and h-cell are defined as follows.

Definition 1. Given an edit-distance table D, we define LD
d (h) to be the last

cell on diagonal d that has value h. In other words, LD
d (h) is the cell D[i, j]

where i = max{i′ : D[i′, i′ + d] = h} and j = i + d. Furthermore, we refer to
such cell LD

d (h) as the h-cell on diagonal d of D.

As mentioned in [9,13], one can compute the index (i, j) of LD
d (h) for all h > 0

by the following recurrence:

i = Slided

⎛

⎝max

⎧
⎨

⎩

i1
i2 + 1,
i3 + 1

⎫
⎬

⎭

⎞

⎠ , j = i + d,

where Slided(i) = max{i′ : A[i..i′] = B[i + d, i′ + d]} and i1, i2, and i3 are the
row indices of LD

d−1(h − 1), LD
d (h − 1) and LD

d+1(h− 1). Notice that, for brevity
we do not explicitly specify the bounds of the value of h. However, all the h-cells
are assumed to be valid while mentioned. The following lemmas demonstrate the
relationship between the values of adjacent cells of D.

Lemma 2 ([14]). Given an edit-distance table D, we have D[i, j] − D[i −
1, j], D[i, j]− D[i, j − 1] ∈ {−1, 0, 1}.

Lemma 3. Given an edit-distance table D, we have D[i + 1, j], D[i, j + 1] ∈
{h, h + 1} for any h-cell D[i, j] in D.

Proof. Lemma 3 follows Lemmas 1, 2 immediately. �	

3 Incremental String Comparison

Recall that given a string S of size n, a parameter q ≥ 0 and a threshold k > 0,
our problem is to find all maximal approximate gapped palindromes in S that
are of gap size q and the edit distance between its two arms is at most k. Here
we sketch a basic algorithm for finding all approximate gapped palindromes.

Note that the maximal property implies that each pair of prefixes found in the
basic algorithm cannot be further extended. At iteration i, to find all pairwise
prefixes one can compute the edit-distance table of strings S[1..i]r and S[i +
q + 1..n]. At iteration i + 1, we need to compute the edit-distance table of
Cat(S[i + 1], S[1..i])r) and Del(1, S[i + q + 1..n]). Here Cat(Ŝ, S) denotes the
string obtained by concatenating string Ŝ and string S, and Del(c, S) denotes
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procedure Basic Algorithm

1 for i = 1 to n − q − 1 do
2 find all possible pairs of prefixes of (S[1..i])r and S[i + q + 1..n] such that
3 the edit distance of pairwise prefixes is at most k.
4 end for

Fig. 1. A basic algorithm for finding all approximate gapped palindromes

the string obtained by deleting the first c symbols from S. Thus the challenge
lies in, given two strings A and B how to compare Cat(a, A) and Del(1, B),
provided the comparison result of A and B, where a is an additional symbol.
That is we aim to solve an incremental string comparison problem. In what
follows we formulate this problem in a more general form.

Problem 1. The (+t1,−t2)-Incremental-String-Comparison Problem

(abbr. (+t1,−t2)-ISC). Given the edit-distance table of strings A and B, how to
efficiently compute the edit-distance table of strings Cat(Â, A) and Del(t2, B),
where Â is an arbitrarily appended string with size t1 (t1 = |Â|) and t2 is the
number of deleted symbols from B?

The (+1,0)-ISC problem has been studied by Landau et al.. In [9], they show that
there exist nice properties between the given edit-distance table and the desired
edit-distance table. Based on the properties observed, they further devise a clever
incremental algorithm to compute the h-cells for all h ≥ 0 on each diagonal of
the desired table. In this paper we extend their ideas and show that the same
properties hold even for the more general (+t1,−t2)-ISC problem, where t1 ≥ 0
and 0 ≤ t2 ≤ n.

Let D denote the edit-distance table of strings A[1..m] and B[1..n], and let D′

denote the edit-distance table of Cat(Â, A) and Del(t2, B), where |Â| = t1. The
(+t1,−t2)-ISC problem is to compute table D′ from table D. For convenience
of our discussion, we label the indices of table D′ by an offset. We assume that
the first row of D′ is of index −t1 and the first column of D′ is of index t2, i.e.
D′[−t1..m, t2..n]. Notice that D[i, j] stores the edit distance of A[1..i] and B[1..j],
and D′[i, j] stores the edit distance of Cat(Â, A[1..i]) and Del(t2, B[1..j]). We
define the difference table C of D and D′ as follows.

Definition 2. The difference table of D and D′ is table C[0..m, t2..n] whose
entry C[i, j] = D′[i, j] − D[i, j] for 0 ≤ i ≤ m and t2 ≤ j ≤ n.

In other words, table C can be obtained by (1) putting table D′ on the top
of table D such that the cells of the same indices between the two tables are
overlapped, and (2) storing the difference of values of two overlapped cells in a
cell of C. Figure 2 shows an example where t1 = 1 and t2 = 2.

Kim and Park [7] showed that for the case where either t1 = 1 or t2 = 1, the
value range of the cells in C is constrained. Besides, there exist some monotonic
properties in table C. We shall demonstrate that these properties hold for the
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Row  0

Diagonal  0
Diagonal 1

Diagonal  -1

Row  1

Row  2

Row  3

Row  m

Row  -1

nColumn

Table D[0..m,0..n]

Table D [-1..m, 2..n]

Table C[0..m, 2..n]

1 20

Fig. 2. Table D′[−1..m, 2..n] (gray cells) is placed on the top of table D[0..m, 0..n]
(white cells) and the overlapped region forms the difference table C[0..m, 2..n] (dark
cells)

more general cases where t1 ≥ 0 and 0 ≤ t2 ≤ n. Due to space limitations, the
proofs of the following lemmas are omitted.

Lemma 4. For 1 ≤ i ≤ m and t2 + 1 ≤ j ≤ n, min{C[i − 1, j], C[i − 1, j −
1], C[i, j − 1]} ≤ C[i, j] ≤ max{C[i − 1, j], C[i − 1, j − 1], C[i, j − 1]}.

Lemma 5. For any column j of C, we have C[0, j] ≤ C[1, j] ≤ . . . ≤ C[m, j].

Lemma 6. For any row i of C, we have C[i, t2] ≥ C[i, t2 + 1] ≥ . . . ≥ C[i, n].

We introduce the following notations for comparing the order of indices of cells
in D and D′.

Definition 3. Given cell D[i, j] and cell D′[i′, j′], we define D[i, j] 7 D′[i′, j′]
iff i ≥ i′. Similarly, we define D[i, j] ( D′[i′, j′] iff i > i′. Moreover, we define
D[i, j] ∼ D′[i′, j′] iff i = i′ and j = j′. We say cell D[i, j] coincides with cell
D′[i′, j′] iff D[i, j] ∼ D′[i′, j′]

Suppose that table D′ is placed on the top of D as before. For those h-cells
LD′

d (h) lying in the overlapped region, we define function f , analogous to the
notion of key values mentioned in [9].

Definition 4. For an h-cell LD′

d (h), we let f(LD′

d (h)) = g if LD′

d (h) ∼ LD
d (g)

for some integer g. Otherwise, we let f(LD′

d (h)) = g − 1
2 such that g = min{g′ :

LD
d (g′) ( LD′

d (h)}.

Now we prove the central theorem of our algorithm. Again, we only consider the
h-cells LD′

d (h) lying in the overlapped region.

Theorem 1. For h-cells LD′

d (h) and LD′

d+1(h), we have �f(LD′

d+1(h))� ≥
f(LD′

d (h)).
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Fig. 3. (a) Case 1: D′[i, j+1] = h (the gray cell). In this case, we show D[ih+1, jh+1] =
min{D[ih +1, jh]+ 1, D[ih, jh]+ δ(ih +1, jh +1), D[ih, jh +1]+1} > g. Note that each
circle represents two overlapped cells when table D′ is placed on the top of table D. The
top-right value in a circle indicates the value of the cell from D′ and the bottom-left
value in a circle indicates the value of the cell from D. (b) Case 2: D[i, i+d+1] = h+1
(gray cell). In this case, we show that D′[ig , jg ] ≤ h by first proving that D[ig+1, jg ] = g
and D′[ig + 1, jg ] ≤ h.

Proof. Let (i, j) be the position of LD′

d (h) and D[i, j] = g. To prove
�f(LD′

d+1(h))� ≥ f(LD′

d (h)), it must be shown that f(LD′

d+1(h)) ≥ g. By Lemma 1,
D′[i, j + 1] ∈ {h, h + 1}. Depending on the value of cell D′[i, j + 1], we divide
the proof into two cases.

Case 1: D′[i, j + 1] = h. (See Figure 3(a) for an illustration.)
Observe that, by definition, f(LD′

d+1(h)) ≥ g iff LD′

d+1(h) 7 LD
d+1(g). Let (ih, jh)

be the position of LD′

d+1(h). We have LD′

d+1(h) 7 LD
d+1(g) iff D[ih +1, jh +1] > g.

By the recursive relation, we have

D[ih+1, jh+1] = min{D[ih+1, jh]+1, D[ih, jh]+δ(ih+1, jh+1), D[ih, jh+1]+1}.

In the following, we show that the three parameters of function min are greater
than g, implying D[ih + 1, jh + 1] > g.

By Lemma 1, D[ih + 1, jh] ≥ D[i, j] = g since they both are cells on diagonal
d and ih + 1 is greater than i. Thus, D[ih + 1, jh] + 1 > g. We next show
that the second parameter, D[ih, jh] + δ(ih + 1, jh + 1), is greater than g. By
Lemma 6, C[i, j] ≥ C[i, j+1]. That is, D′[i, j]−D[i, j] ≥ D′[i, j+1]−D[i, j+1].
Because D′[i, j] = h, D[i, j] = g and D′[i, j + 1] = h, we have D[i, j + 1] ≥ g.
According to Lemma 1, D[ih, jh] ≥ D[i, j + 1] ≥ g (because they are cells
on diagonal d + 1 and ih ≥ i). Besides, since LD′

d+1(h) = cell D′[ih, jh], which
implies A[ih + 1] 
= B[ij + 1], we have δ(ih + 1, jh + 1) = 1. Hence we obtain
D[ih, jh] + δ(ih + 1, jh + 1) > g.
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Finally, we show that the third parameter, D[ih, jh +1]+1, is greater than g.
According to Lemma 6, C[ih, jh] ≥ C[ih, jh + 1]. That is, D′[ih, jh]−D[ih, jh] ≥
D′[ih, jh +1]−D[ih, jh +1]. Together with Lemma 3, we have (1) D′[ih, jh] = h,
(2) D[ih, jh] ≥ g and (3) D′[ih, jh + 1] ∈ {h, h + 1}. Thus, we conclude that
D[ih, jh + 1] ≥ g, implying D[ih, jh + 1] + 1 > g.

Case 2: D′[i, j + 1] = h + 1. (See Figure 3(b) for an illustration.)
If LD

d+1(g) does not exist, i.e. the smallest value of the cells on diagonal d+1 of D

is at least g +1, we have f(LD′

d+1(h)) ≥ g immediately. Thus, we assume LD
d+1(g)

exists. By definition, f(LD′

d+1(h)) ≥ g iff LD′

d+1(h) 7 LD
d+1(g). Let (ig, jg) be the

position of LD
d+1(g). We have LD′

d+1(h) 7 LD
d+1(g) iff h ≥ D′[ig, jg]. Hence, in

the following we show that h ≥ D′[ig, jg].
First we show that ig < i. By Lemma 6, D′[i, j]−D[i, j] ≥ D′[i, j+1]−D[i, j+

1]. Besides, we have (1) D′[i, j] = h, (2) D[i, j] = g and (3) D′[i, j+1] = h+1. It
follows that D[i, j+1] ≥ g+1, implying i > ig. Combining i > ig with Lemma 1,
we further evaluate D′[ig + 1, jg] and D[ig + 1, jg] as follows.

– Since D′[ig +1, jg] ≤ D′[i, j] by Lemma 1 and D′[i, j] = h, we derive D′[ig +
1, jg] ≤ h.

– Since D[ig + 1, jg] ≤ D[i, j] by Lemma 1 and D[i, j] = g, we derive D[ig +
1, jg] ≤ g. Moreover, since D[ig + 1, jg] ∈ {g, g + 1} by Lemma 3, it follows
that D[ig + 1, jg] = g.

By Lemma 5, D′[ig +1, jg]−D[ig +1, jg] ≥ D′[ig, jg]−D[ig, jg]. Since D′[ig +
1, jg] ≤ h, D[ig + 1, jg] = g, and D[ig, jg] = g, we conclude that h ≥ D′[ig, jg].

�	

4 The Algorithm

In this section, inspired by [9], we describe an algorithm for the (+t1,−t2)-ISC
problem as follows.

Given an edit-distance table D, for a fixed h we refer to the list of all h-cells
of D as the h-wave of D. A wave is implemented as a doubly-linked list, in which
each node stores the table index of an h-cell in D. Thus, we can access the h-cells
on diagonals d− 1 and d + 1 in constant time when provided the pointer to the
h-cell on diagonal d. Besides, we also construct links across the waves to connect
those cells on the same diagonal. Therefore, we can also access the (h-1)-cell and
(h+1)-cell on diagonal d in constant time when given the pointer to the h-cell
on diagonal d.

As mentioned before, let D denote the edit-distance table of strings A and
B, and let D′ denote the edit-distance table of Cat(Â, A) and Del(t2, B), where
|Â| = t1. Note that we label the indices of D′ by an offset, i.e. the first row is
labeled −t1 and the first column is labeled t2. The algorithm takes the waves of
D as input, and aims to compute the 0-wave, 1-wave, . . . , k-wave of D′. Below
we show how the scheme works.
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We partition a wave of D′ into a series of blocks according to their f ’s values,
i.e. the cells having the identical f ’s value are in the same block. By Theorem 1,
each block contains either a single cell or several consecutive cells of the wave.
For those cells in the same block, if their f ’s values are integer g, we know each
of those cells coincides with a certain g-cell of D. Observe that if two nodes
of the doubly-linked lists represent a cell x of D′ and x’s coincided cell in D
respectively, these two nodes store the same table index. That is, we can imitate
one node by the other node if they represent the coincided cells. Thus, in the
implementation we can construct this block by “cutting” a piece from the g-
wave. If the f ’s value of a cell is not an integer, i.e. g − 1

2 , we compute this cell
by the recurrence in Section 2.

Observe that the waves of D′ may include cells lying outside the overlapping
region of D and D′. We can not obtain those cells (which are outside the over-
lapping region) of D′ by cutting the waves of D; however, they can be computed
by the recurrence in Section 2.

Definition 5. For h ≥ 0, the partition of the h-wave can be parameterized as:

– s(h): the number of blocks;
– bi(h): the f ’s value of cells in the ith (for 1 ≤ i ≤ s(h)) block;
– li(h): the left boundary of the ith (for 1 ≤ i ≤ s(h)) block

(formally, li(h) is the smallest d such that f(LD′

d (h)) = bi(h));
– ri(h): the right boundary of the ith (for 1 ≤ i ≤ s(h)) block

(formally, ri(h) is the largest d such that f(LD′

d (h)) = bi(h)).

The number of blocks, s(h), depends on the possible f ’s values of cells.
Lemma 7 shows that the value of s(h) is bounded by O(t1 + t2). Besides, with
Lemma 8 and Corollary 1 we can obtain the f ’s values of h-cells by checking
the f ’s values of (h-1)-cells. As space is limited, the proofs of these lemmas are
omitted.

Lemma 7. For h ≥ 0, we have s(h) = O(t1 + t2).

Lemma 8. For diagonals d and d′, d < d′, if f(LD′

d (h−1)) = f(LD′

d′ (h−1)) = g,
we have f(LD′

d′′ (h)) = g + 1 for d < d′′ < d′.

Corollary 1. For boundaries li(h − 1) and ri(h − 1) of the ith block of the
(h − 1)-wave, we have f(LD′

d (h)) = bi(h − 1) + 1 for li(h − 1) < d < ri(h − 1).

By Corollary 1 we know how to obtain the f ’s values of h-cells lying in between
the boundaries of each block of the (h-1)-wave. These h-cells are called trivial
since we can immediately retrieve their f ’s values by examining the partition.
As for the remaining h-cells, we compute them by the recurrence in Section 2
and then obtain their f ’s values. As for the remaining h-cells, their f ’s values
can be obtained once we have their table indices, which can be computed by the
recurrence in Section 2. Moreover, those h-cells are called non-trivial.

Now we have the f ’s value (if exists) of each h-cell. The partition of the h-
wave is easily determined by checking the f ’s values of all the non-trivial h-cells.
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We then cut the corresponding pieces of waves of D to assemble the h-wave of
D′. Combining those pieces with the non-trivial h-cells computed, we derive the
whole h-wave.

Theorem 2. There exists an algorithm that computes the 0-wave, . . . , and
k-wave of D′ and their partitions in O((t1 + t2) × k) time.

Proof. We analyze the time of computing the non-trivial cells and the time of
doing the cutting operations.

For an h-cell, the (h-1)-cell on the same diagonal may (1) lie in the overlapped
region, (2) lie outside the overlapped region, or (3) not exist. Therefore, the non-
trivial h-cells can be divided into three groups. In the following we show that
there are in total O((t1 + t2) × k) non-trivial h-cells for h = 0, 1, . . . , and k.

The first group are those cells on the diagonals l1(h− 1), r1(h− 1), l2(h− 1),
r2(h − 1), . . . , ls(h−1)(h − 1), and rs(h−1)(h − 1). Thus, by Lemma 7 we know
that there are O(t1 + t2) cells for each fixed h, implying that there are in total
O((t1 + t2)× k) cells for h = 0, 1, . . . , and k. To calculate the size of the second
group, we count the number of (h-1)-cell lying outside the overlapped region.
We have that the number of 0-cells,1-cells , . . . , and (k-1)-cells lying outside
the overlapped region is O(t1 × k). The reasons are that (1) all the 0-cells,1-
cells , . . . , and (k-1)-cells lie on O(k) different diagonals and (2) each diagonal
of D′ contains at most t1 cells lying outside the overlapped region. The third
group only contains the leftmost and rightmost cells of each wave of D′, leading
to a total of O(k) cells for h = 1, 2, . . ., and k. With the help of suffix tree
(constructed in advance) and constant-time LCA queries, each non-trivial cell
can be computed in constant time. Thus, the computation time of those non-
trivial h-cells is O((t1 + t2) × k) time.

Due to the doubly-linked list structure, each cutting operation can be done
in constant time. Besides, for each wave of D′ there are O(t1 + t2) blocks by
Lemma 7. Therefore, we can do all the cutting operations in O((t1 + t2) × k)
time. �	

Theorem 3. Given a string S of size n and a threshold k, where k specifies the
edit distance between two arms, the problem of finding all maximal approximate
gapped palindromes (with fixed gap length) can be solved in O(kn) time.

Proof. We have shown that to solve the problem is essentially to solve the (+1,-
1)-ISC problem. We first construct the generalized suffix tree for strings S and
Sr (the reverse of S) in linear time. Thus, the Slided function in Section 2 can be
done in constant time. It immediately implies that during the process of solving
the (+1,−1)-ISC problem, we can compute the h-cell in constant time. Thus, by
Theorem 2 each iteration (except the first one) in the basic algorithm of Figure 1
spends O(k) time. By using the approach of [14], the first iteration can be done
in O(k2) time. Hence the total time is O(kn). �	
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5 Concluding Remarks

The core technique used in this paper is called incremental string comparison.
We generalize the previous result of Landau et al. [9] by allowing multiple sym-
bols appended to and removed from the heads of two strings simultaneously. In
fact, this technique can be extended to handle the substitute operation, since a
substitute operation can be seen as a remove operation followed by an append
operation. More specifically, we allow a prefix part of the string to be substituted
by another string.
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Abstract. The construction of pseudo-random generators (PRGs) has
been based on strong assumptions like the existence of one-way func-
tions or exponential lower bounds for the circuit complexity of Boolean
functions. Given our current lack of satisfactory progress towards
proving these assumptions, we study the implications of constructing
PRGs for weaker models of computation to the derandomization
of general classes like BPP. More specifically, we show how PRGs
that fool monotone circuits could lead to derandomization for general
complexity classes, and how the Nisan-Wigderson construction could use
hardness results for monotone circuits to produce pseudo-random strings.

Keywords: Pseudo-random generators, circuit complexity, monotone
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1 Introduction

One of the central issues in computational complexity is the understanding of
the the additional (if any) power randomization can offer to solving problems
efficiently. The investigation of the exact relations between randomized com-
putational classes like BPP and non-randomized ones (like P, NP, EXP) has
been the subject of intense research for the last two decades. One of the ma-
jor steps towards a better understanding of randomness in computation was the
realization [15] that hardness results can lead to the construction of good pseudo-
random generators. This observation led to the construction of pseudo-random
generators based on the (assumed) intractability of the discrete logarithm func-
tion [3] or the existence of one-way functions [18], [7]. The seminal paper by
Nisan and Wigderson [11] was the first to connect the existence of predicates
with high circuit complexity to the existence of good pseudo-random generators.
The hardness assumption of [11] was still very strong (although not as strong
as previous assumptions, e.g., the existence of one-way functions): the predi-
cate used by the generator had to be extremely hard on average. A series of
results based on hardness amplification techniques like Yao’s XOR lemma [18]
or error-correcting codes [16] can be used in order to relax this requirement
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for an extremely hard function to constant hardness [9], to mildly hard [5], to
worst-case hard functions [2].

Unfortunately, this spectacular progress towards weaker hardness assump-
tions for generators of a given power has not brought us close to resolving the
still open issue of the power of randomness in computation. This is due to the
bleak current state-of-the-art in lower bounds for general circuits. We are not
even close to proving any of the hardness assumptions above, and if the past is
an indication of the future, we shouldn’t expect their proof any time soon. Mo-
tivated by these difficulties, we ask whether looking for explicit hard functions
in the general circuit model in order to construct pseudo-random generators is
really an overkill. Indeed, let’s assume that we can show the following ‘theo-
rem’: if there is a (general) circuit of a certain size that can distinguish a truly
random string to a string produced by a generator that uses only a random
seed with some probability, then there is a construction in a restricted model
of computation (e.g., a monotone circuit) of a certain size that can distinguish
the two strings with a somewhat smaller probability. The contrapositive of the
above ‘theorem’ would imply that if we can construct a generator that fools all
restricted constructions (e.g., monotone circuits) of a certain size, then this gen-
erator would fool all general circuits of a certain size with a somewhat smaller
probability. We apply this general framework to the restricted model of mono-
tone circuits (in fact circuits that compute slice functions). There has been great
progress in proving strong unconditional lower bounds for monotone circuits, for
example [14], [10], [13], [4]. Razborov’s approximation technique has even been
extended to general circuits with only a few NOT gates [1]. In Section 2 we
formalize the intuition above as Theorem 1 and give its (almost trivial) proof.
Then we study the Nisan-Wigderson construction as a generator for monotone
circuits. The hardness requirements of this generator are much stronger than
just worst-case hardness, and there are no strong enough hardness amplification
techniques for monotone circuits yet (indeed, it may be the case that no such
techniques exist). Hence the generator still isn’t unconditionally pseudo-random.
Two facts though allow us to be optimistic about this approach: The first is the
tremendous success of proving lower bounds for monotone circuits. The second
fact is that the Nisan-Wigderson construction was built with fooling general cir-
cuits in mind. Once we set a more modest goal (fooling monotone circuits only,
for example), other constructions may do better in terms of hardness require-
ments. We discuss these issues together with other possible directions in what
we consider to be the most important part of this work, Section 4.

2 Monotone Circuit Tests from General Circuit Tests

In what follows, C and CM are the classes of (general) circuits and monotone
circuits respectively.

Definition 1. A function G : {0, 1}d → {0, 1}n is an (s, ε) pseudo-random
generator if no circuit of size s can distinguish G from the uniform distribution
Un with advantage greater than ε. That is, for every circuit C of size at most s,
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∣
∣∣Pr[C(Un) = 1]−Pr[C(G(Ud)) = 1]

∣
∣∣ ≤ ε

The circuit C in the definition above can be thought as a test that the alleged
PRG has to pass in order to be pseudo-random.

Lemma 1. If there is circuit C ∈ C of size s such that

∣
∣
∣Pry∈{0,1}n[C(y) = 1]−Prx∈{0,1}d[C(G(x)) = 1]

∣
∣
∣ > ε

then there is a monotone circuit CM ∈ CM of size |CM | = O(s + n log2 n) such
that

∣
∣
∣Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (G(x)) = 1]

∣
∣
∣ >

ε

2(n + 1)

Proof: W.l.o.g. we will assume that

Pry∈{0,1}n[C(y) = 1]−Prx∈{0,1}d[C(G(x)) = 1] > ε

Let yi, Gi(x) be the ith bit of y, G(x). Then

Pry∈{0,1}n[C(y) = 1]−Prx∈{0,1}d[C(G(x)) = 1] =
n∑

k=0

(

Pry[
∑

i

yi = k]Pry[C(y) = 1|
∑

i

yi = k]−

−Prx[
∑

i

Gi(x) = k]Prx[C(G(x)) = 1|
∑

i

Gi(x) = k]
)

> ε

Therefore there is 0 ≤ k0 ≤ n such that

Pry[
∑

i

yi = k0]Pry[C(y) = 1|
∑

i

yi = k0]−

−Prx[
∑

i

Gi(x) = k0]Prx[C(G(x)) = 1|
∑

i

Gi(x) = k0] >
ε

n + 1

(1)

Let CM be the following slice function of monotone circuit complexity O(s +
n log2 n) (see [17]):

CM (y) =

⎧
⎨

⎩

0, if
∑

i yi < k0
1, if

∑
i yi > k0

C(y), if
∑

i yi = k0
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Then we have

Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (G(x)) = 1] =

= Pry[
∑

i

yi < k0]Pry[CM (y) = 1|
∑

i

yi < k0]−

−Prx[
∑

i

Gi(x) < k0]Prx[CM (G(x)) = 1|
∑

i

Gi(x) < k0]+

+ Pry[
∑

i

yi > k0]Pry[CM (y) = 1|
∑

i

yi > k0]−

−Prx[
∑

i

Gi(x) > k0]Prx[CM (G(x)) = 1|
∑

i

Gi(x) > k0]+

+ Pry[
∑

i

yi = k0]Pry[CM (y) = 1|
∑

i

yi = k0]−

−Prx[
∑

i

Gi(x) = k0]Prx[CM (G(x)) = 1|
∑

i

Gi(x) = k0]

From the definition of CM we know that

Pry[CM (y) = 1|
∑

i

yi < k0] = Prx[CM (G(x)) = 1|
∑

i

Gi(x) < k0] = 0

Pry[CM (y) = 1|
∑

i

yi > k0] = Prx[CM (G(x)) = 1|
∑

i

Gi(x) > k0] = 1

hence

Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (G(x)) = 1] = Pry[
∑

i

yi > k0]−

−Prx[
∑

i

Gi(x) > k0] + Pry[
∑

i

yi = k0]Pry[CM (y) = 1|
∑

i

yi = k0]−

−Prx[
∑

i

Gi(x) = k0]Prx[CM (G(x)) = 1|
∑

i

Gi(x) = k0]

Let

A = Pry[
∑

i

yi > k0]−Prx[
∑

i

Gi(x) > k0]

B = Pry[
∑

i

yi = k0]Pry[CM (y) = 1|
∑

i

yi = k0]−

− Prx[
∑

i

Gi(x) = k0]Prx[CM (G(x)) = 1|
∑

i

Gi(x) = k0]

If |A| > ε
2(n+1) then the threshold function

Tk0+1(y) =
{

0, if
∑

i yi ≤ k0
1, if

∑
i yi > k0
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has the desired properties, and the lemma holds. So assume that |A| ≤ ε
2(n+1) .

Also, from (1) we know that B > ε
n+1 , therefore

Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (G(x)) = 1] = A + B >
ε

2(n + 1)

The proof is the same in case

Prx∈{0,1}d[C(G(x)) = 1]−Pry∈{0,1}n[C(y) = 1] > ε �

From the lemma above we get the following theorem:

Theorem 1. There is a constant γ > 0 such that if
∣
∣
∣Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}[CM (G(x)) = 1]

∣
∣
∣ ≤

ε

2(n + 1)

for all monotone circuits CM with size |CM | ≤ γs + γn2 log n for some s > 0,
then ∣

∣
∣Pry∈{0,1}n[C(y) = 1]−Prx∈{0,1}d[C(G(x)) = 1]

∣
∣
∣ ≤ ε

for all circuits C ∈ C of size |C| ≤ s.

Notice that nowhere in the above did we demand that G be a special kind of ciruit
(e.g. monotone). Also notice that we can strengthen Lemma 1 and Theorem 1 by
replacing the monotone circuit CM by a monotone slice function CM . Therefore
in order to construct PRG’s for general circuits, it is enough to construct PRG’s
for monotone (slice) circuits.

3 The Nisan-Wigderson Generator for Monotone Circuits

As an illustrative example, we demonstrate how one can use the Nisan-Wigderson
PRG for monotone circuits. We cannot stretch enough the fact that this PRG was
constructed in order to fool general Boolean circuits, and therefore it may very
well not be the appropriate way to go. Nevertheless, at this point this is one of the
most successful constructions (in terms of derandomization power) and a very
good example for pointing out some of the different issues one may encounter
during the design of a PRG for monotone circuits. Again, we emphasize that
in what follows we make assumptions some of which may possibly be proven
false, but we make them nevertheless, since they help us in illustrating our
ideas or they can be transformed to other assumptions which are not so easily
proven/disproved.

The main difficulty for applying the Nisan-Wigderson(NW) construction as is,
is our inability to use the standard conversion of a circuit that is a good distin-
guisher between a truly random sequence and the output of the NW generator,
to a circuit that approximates a hard function. This standard conversion uses
the XOR of the output of such a circuit with a random bit, to produce the ap-
proximator, but in a monotone setting we cannot simulate the XOR. Therefore
we need to modify the hardness assumption used by the NW generator:
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Assumption 1. There is a monotone predicate P : {0, 1}l → {0, 1} such that
no monotone circuit of size s can compute P or P̄ correctly on more than a
fraction 1

2 + ε
2n(n+1) of the 2l inputs (n is the number of (pseudo)-random bits

we need).1

This assumption differs from the usual hardness assumptions associated with
the NW generator in two major points: it is an assumption about the monotone
complexity of a (monotone) predicate P , and it is also an assumption on the
monotone complexity of the non-monotone complement of P . Also notice that
the hardness assumption is stronger as far as the fraction of correct answers is
concerned: it is 1

2 + ε
2n(n+1) instead of 1

2 + ε
n . The need for these modifications

will become apparent when we try to prove that the NW construction is indeed
a PRG. First we describe the Nisan-Wigderson construction.

Initially, this construction produces a collection of sets with small intersections
(called a design):

Lemma 2. [11] For every l, n ∈ N there exists a family of sets S1, . . . , Sn ⊂
{1, . . . , d} such that

1. d = O( l2

log n )
2. |Si| = l, ∀i
3. |Si ∩ Sj | ≤ log n, ∀i 
= j

Moreover, such a family can be computed by a deterministic TM in time
poly(n, 2d). In case l = C log n for some constant C > 0, there exists such a
design with d = O(C2 log n) that can be computed by a deterministic TM in time
poly(n).

The generator in [11] uses the fact that if we have a uniformly distributed string
x of length d, we can produce a family of substrings xSi with the above properties
that will behave as independent when they are used as inputs to a hard predicate.
The NW construction will output the string

NWP
l,n(x) = P (xS1)P (xS2) . . . P (xSn).

Following the approach of [11] we show that under our Assumption 1 the NW
construction is a PRG.

Theorem 2. Under Assumption 1 the NW construction is a (γs−O(n2 log n), ε)
PRG for some constant γ > 0.

Proof: The proof of the theorem is virtually the same as in [11], but we repeat
it here in order to illustrate new directions and open problems that arise from
the use of a weaker model (monotone circuits).
1 As stated, this assumption refers to monotone functions that are unbiased over all

inputs. In fact, we can relax it by just requiring them to be unbiased over a particular
distribution on all inputs that can be easily sampled. For example, we may talk about
Razborov’s CLIQUE function and the inputs to it are picked from only the ”good”
and ”bad” inputs of Razborov’s proof with equal probability.
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We will assume that the NW construction is not a PRG with the required
size-error parameters and will arrive at a contradiction. Since we assume that
the NW construction is not an (γs − O(n2 log n), ε) PRG (for some constant
γ > 0 to be picked later), there is a (possibly non-monotone) circuit C of size
γs − O(n2 log n) such that

∣
∣∣Pry∈{0,1}n[C(y) = 1]−Prx∈{0,1}d[C(NWP

l,n(x)) = 1]
∣
∣∣ > ε

From Lemma 1 and after an appropriate choice of γ above, we get that there is
a monotone circuit CM of size s − O(n2 log n) such that

∣
∣
∣Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (NWP

l,n(x)) = 1]
∣
∣
∣ >

ε

2(n + 1)

We assume that

Pry∈{0,1}n[CM (y) = 1]−Prx∈{0,1}d[CM (NWP
l,n(x)) = 1] >

ε

2(n + 1)
(2)

If this is not the case, we complement CM and we work with this complemented
monotone circuit (which now is non-monotone). Later we will see that this will
not affect our proof. Following closely previous proofs related to the NW con-
struction, we define the following hybrid distribution on {0, 1}n:

Distribution Di: The first i bits are the first i bits of NWP
l,n(x), where x is

chosen uniformly over d-bit strings, and the rest n − i bits ri+1, ri+2, . . . , rn are
chosen uniformly and independently at random.

Since D0 is Un and Dn is NWP
l,n(x), we have that there is an i such that

Pr[CM (Di) = 1]−Pr[CM (Di−1) = 1] >
ε

2n(n + 1)

or if we expand it

Prx,ri+1,...,rn[CM (P (xS1) . . . P (xSi−1)P (xSi)ri+1 . . . rn) = 1]−

−Prx,ri,...,rn[CM (P (xS1) . . . P (xSi−1)riri+1 . . . rn) = 1] >
ε

2n(n + 1)
(3)

At this point, the proof of the pseudorandomness properties of the NW construc-
tion when the hardness of general circuits is used, utilizes a standard transforma-
tion of a distinguisher satisfying inequality (3) to a predictor [18]. By renaming
ri to b we get that

Prx,b,ri+1,...,rn[CM (P (xS1) . . . P (xSi−1)bri+1 . . . rn) ⊕ b = P (xSi)] >
1

2
+

ε

2n(n + 1)

Using standard averaging arguments, we can fix b, ri+1, . . . , rn as well as the bits
of x not in Si while preserving this prediction probability. Unfortunately, if b is
fixed to 1, this transformation doesn’t work in our case if we had just assumed
the hardness of P (and not P̄ as well), because it results in a non-monotone
circuit approximating P (destroying our contradiction argument).
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We rename xSi to z and we notice that the values of P calculated by the NW
construction depend only on |Si ∩ Sj | ≤ log n, j 
= i bits of z. Therefore these
values are monotone functions Pj of z. So, depending on the (fixed) value of b,
we have that either

Prz[C′M (P1(z) . . . Pi−1(z)) = P (z)] >
1
2

+
ε

2n(n + 1)

or
Prz[ C′M (P1(z) . . . Pi−1(z)) = P (z)] >

1
2

+
ε

2n(n + 1)

for some monotone circuit C′M . Notice that we will also arrive at this point in
the case (2) doesn’t hold.

Each Pj can be computed by a DNF of size O(n log n), and there are at most
n such functions. If we plug in C′M the monotone circuits for each Pj , then we
get a monotone circuit C′M of size at most s−O(n2 log n)+ O(n2 log n) = s (for
an appropriate choice of the constant in the first big-O), and such that either

Prz[C′M (z) = P (z)] >
1
2

+
ε

2n(n + 1)

or
Prz[C′M (z) = P (z)] >

1
2

+
ε

2n(n + 1)
In either case, this contradicts Assumption 1. �

4 Discussion and Open Problems

In this section we explore some new directions and open problems suggested by
the use of hard monotone functions for the construction of PRGs for general
circuits.

4.1 Hardness Assumptions

The first (obvious) open question is whether there is indeed a monotone pred-
icate P with the hardness properties of Assumption 1. It seems plausible that
if a monotone function is very hard to approximate, then its non-monotone
complement is even harder to approximate with monotone circuits. Razborov’s
approximation technique has been extended to general circuits with a limited
number of NOT gates [1] quite naturally. Hence it is conceivable that techniques
which would prove hardness of approximation for monotone circuits can be ex-
tended to prove hardness of approximation for circuits with, say, only one NOT
gate before their output. Assumption 1 can be reformulated as follows:

Assumption 2. There is a predicate P : {0, 1}l → {0, 1} such that no monotone
circuit or circuit with exactly one NOT gate right before its output of size s can
compute P correctly on more than a fraction 1

2 + ε
2n(n+1) of the 2l inputs (n is

the number of (pseudo)-random bits we need).
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The monotonicity of P was necessary so that the circuit we get after plugging
in the DNF for each Pj is still monotone. But we can modify Assumption 1 as
follows:

Assumption 3. There is a (general) predicate P : {0, 1}l → {0, 1} such that no
monotone circuit of size s can compute P or P̄ correctly on more than a fraction
1
2 + ε

2n(n+1) of the 2l inputs, using as advice the output of oracles for P that have
l − log n input bits fixed (n is the number of (pseudo)-random bits we need).

Assumption 3 is a version of strong non-self-reducibility that trades the gener-
alization of the circuit family for which we need strong lower bounds (monotone
with advice instead of just monotone) for the generalization of the hard predicate
used in the NW construction.

How hard is it to design PRGs for monotone circuits? Impagliazzo,
Shaltiel and Wigderson [8] showed that derandomizing BPP using a pseudo-
random generator implies that EXP 
⊂ P/poly. Impagliazzo and Kabanets [6]
also show that derandomization of RP or BPP would imply superpolynomial
lower bounds for Boolean or arithmetic circuits. Since the assumptions used
above imply the construction of pseudo-random generators, their proof would
immediately imply strong circuit lower bounds. Therefore proving any of our
assumptions (provided any of them is true) is as difficult as proving such lower
bounds. Notice though that our assumptions are about a weaker model than
general boolean circuits, and in this model the development of (worst case)
lower bounds has been very successful so far.

4.2 Hardness Amplification for Monotone Predicates

Unfortunately the XOR function is not monotone, therefore Yao’s XOR lemma
cannot be applied directly in order to amplify the hardness of a function in a
way useful for Theorem 2. Nevertheless, there are already some (weak) hardness
amplification results for monotone functions. The recent work by O’Donnell [12]
is in fact an amplification that applies to monotone circuits and their com-
plements, in just the way we need it for Assumption 1. Instead of the XOR
of several copies of a function, [12] uses two monotone functions: first it uses
the REC − MAJ − 3l function (l is the depth of a ternary tree of majority-
of-3’s) of several copies of P to go from an (1 − 1/poly(n))-hard predicate
P for general polynomial-size circuits to a new (1/2 + o(1))-hard predicate
for polynomial circuits, and then it uses the Tribes function of Ben-Or and
Linial, to transform the new predicate to a new (1/2 + 1/n−1/2+ε)-hard pred-
icate for polynomial circuits. The definitions of the REC − MAJ − 3l and
Tribes functions can be found in [12]. An important property of these func-
tions is that REC − MAJ − 3l(P̄ , . . . , P̄ ) = REC − MAJ − 3l(P, . . . , P ) and
Tribes(P̄ , . . . , P̄ ) = Tribes(P, . . . , P ), therefore the construction can use a mild
version of Assumption 1 to produce a harder version of this same assumption.
The starting point of this amplification is Impagliazzo’s hard-core set theorem [5],
which holds with respect to any model of computation closed under majority
(therefore it also holds for our model of computation with respect to which we
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assume hardness of some predicate, namely monotone circuits). But O’Donnell’s
construction analysis seems to be an overkill for our case, since we only need
hardness against monotone circuits of some size. Nevertheless, this amplification
method probably doesn’t achieve the power of Yao’s XOR lemma. The exis-
tence of powerful amplification techniques for monotone predicates remains an
interesting open problem.

Acknowledgements. I am thankful to A. Viglas, I. Tourlakis, and N. Galesi
for helpful discussions, and V. Kabanets for pointing out [8],[6].
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Abstract. Connected bipartite permutation graphs without vertex labels are in-
vestigated. First, the number of connected bipartite permutation graphs of n ver-
tices is given. Based on the number, a simple algorithm that generates a connected
bipartite permutation graph uniformly at random up to isomorphism is presented.
Finally an enumeration algorithm of connected bipartite permutation graphs is
proposed. The algorithm is based on the reverse search, and it outputs each con-
nected bipartite permutation graph in O(1) time.

Keywords: Bipartite permutation graph, counting, Dyck path, enumeration,
Motzkin path, random generation.

1 Introduction

Recently we have to process huge amounts of data in the area of data mining, bioin-
formatics, etc. In most cases, we have to use some certain structure to solve problems
efficiently. We need three efficiencies to deal with the complex structure; it has to be
represented efficiently, essentially different instances have to be enumerated efficiently,
and its properties have to be checked efficiently. From the viewpoint of graph classes,
the previously studied structures are relatively primitive. Although trees are widely in-
vestigated as a model of such structured data [6,10,12,14], there are few results for
more complex graph classes. Recently, distance-hereditary graphs [11] and proper in-
terval graphs [16] are investigated from this viewpoint.

In this paper, we investigate counting, random generation, and enumeration of a
graph class called bipartite permutation graphs. More precisely, we aim to count, gen-
erate, and enumerate unlabeled connected bipartite permutation graphs. From the prac-
tical point of view, “unlabeled” and “connected” are reasonable properties to avoid re-
dundancy. On the other hand, however, they are also challenges to developing efficient
algorithms. Especially, unlabeled property requires us to avoid generating isomorphic
graphs. In other words, we have to recognize isomorphic graphs and suppress gener-
ating/counting/enumerating them twice or more. Roughly speaking, the graph isomor-
phism problem has to be solved efficiently for our target graph classes in this context.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1104–1113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The graph isomorphism problem is one of well-known basic problems, and it is still
hard on restricted graph classes [20]. There are two well known graph classes that the
graph isomorphism problem can be solved in polynomial time; interval graphs [13]
and permutation graphs [3]. Hence, they are the final goal in this framework. We men-
tion that these graph classes have been widely investigated since they are very basic
graph classes from the viewpoint of graph theory. Therefore many useful properties
have been revealed, and many efficient algorithms have been developed for them (see,
e.g., [2,7,17]). From the practical point of view, when an efficient algorithm for a graph
class is developed and implemented, we need many graphs belonging to the class to
check the reliability of the algorithm. Hence, for such popular graph classes, efficient
random generator and enumerator are required. On the other hand, the counting of such
graphs is rather mathematical. From the viewpoint of combinatorics, the counting of
graphs having a certain structure is an important issue. In combinatorics, the notion of
Dyck path is one of basic tools, and it appears in a number of areas [18,19]. One natu-
ral extension of the notion of Dyck path is known as Motzkin path; while a Dyck path
is a sequence of �1 and �1, a Motzkin path is a sequence of �1, �1, and 0. We will
show that an unlabeled connected bipartite permutation graph is strongly related to an
extension of a Motzkin path, which is known as a 2-Motzkin path [5], that consists of
�1, �1, �0, and �0. Our counting result also gives a new insight of this area.

Saitoh et al. have obtained such results for proper interval graphs which form a sub-
class of interval graphs [16]. We turn to bipartite permutation graphs that form a sub-
class of permutation graphs, and show the similar results for them. As we will see,
bipartite permutation graphs have a certain structure, which can be seen as a general-
ization of the structure appearing in proper interval graphs implicitly. That is, develop-
ing some new nontrivial techniques based on the results in proper interval graphs, we
advance the results in [16] to bipartite permutation graphs.

Due to space limitation, all proofs are omitted.

2 Preliminaries

Interval graph: A graph G � (V� E) with V � �v1� v2� � � � � vn� is an interval graph if
there is a finite set of intervals � � �Iv1 � Iv2 � � � � � Ivn� on the real line such that �vi� v j� � E
iff Ivi � Iv j � � for each i and j with 0 � i� j � n. We call the interval set � an interval
representation of G. For each interval I, we denote by L(I) and R(I) the left and right
endpoints of the interval, respectively. An interval representation is proper if no two
distinct intervals I and J exist such that I properly contains J or vice versa. An interval
graph is proper if it has a proper interval representation. If an interval graph G has an
interval representation � s. t. every interval in � has the same length, G is said to be a
unit interval graph. Such interval representation is called a unit interval representation.
It is well known that proper interval graphs coincide with unit interval graphs [15].
That is, given a proper interval representation, we can transform it to a unit interval
representation. A simple constructive way of the transformation can be found in [1].
We can assume without loss of generality that L(I) � L(J) (and hence R(I) � R(J)), and
R(I) � L(J) for any two distinct intervals I and J in a unit interval representation �.

Let � be an alphabet �‘[’� ‘]’�. We encode a unit interval representation � of a unit
interval graph G by a string s(�) in �� as follows; we sweep the interval representation
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from left to right, and for each I � � encode L(I) and R(I) by ‘[’ and ‘]’, respectively.
We call the encoded string a string representation of G. We say that string x in �� is
balanced if the number of ‘[’s in x equals that of ‘]’s. Clearly s(�) is a balanced string of
2n letters. Using the construction in [1], s(�) can be constructed from a proper interval
representation � in O(n) time and vice versa since the ith ‘[’ and the ith ‘]’ give the
left and right endpoints of the ith interval, respectively. (We assume that each interval
representation is given by a list of the endpoints of intervals from left to right.)

We define ‘[̄’ � ‘]’ and ‘]̄’ � ‘[’ respectively. For two strings x � x1x2 	 	 	 xn and
y � y1y2 	 	 	 ym in ��, we say that x is smaller than y if (1) n � m, or (2) n � m and
there exists an index i � �1� � � � � n� such that xi� � yi� for all i� � i and xi � ‘[’ and
yi � ‘]’. If x is smaller than y, we denote x � y. (This is so called “lexicographical
order with length preferred.”) For a string x � x1x2 	 	 	 xn we define the reverse x̄ of x
by x̄ � x̄n x̄n�1 	 	 	 x̄1. A string x is reversible if x � x̄. A connected proper interval graph
G is said to be reversible if its string representation is reversible.

Lemma 1 (See, e.g., [4, Corollary 2.5]). Let G be a connected proper interval graph,
and � and �� be any two unit interval representations of G. Then either s(�) � s(��)
or s(�) � s(��) holds. That is, the string representation of a proper interval graph is
unique up to isomorphism.

Permutation graph: A graph G � (V� E) with V � �1� 2� � � � � n� is said to be a permuta-
tion graph iff there is a permutation � over V such that �i� j� � E iff (i� j)(�(i)��( j)) � 0.
Intuitively, each vertex i in a permutation graph corresponds to a line �i joining two
points on two parallel lines L1 and L2. Then two vertices i and j are adjacent iff the
corresponding lines �i and � j intersect. The ordering of vertices gives the ordering of
the points on L1, and the ordering by permutation � over V gives the ordering of the
points on L2. We call the intersection model a line representation of the permutation
graph. For two line representations 
 and 
�, suppose 
 contains (i� j) iff 
� contains
(i� j). Then we call them isomorphic and denote by 
 � 
�.

1 2 3 4 5 6 7 8 9 10 11 12

L1

L2

Fig. 1. Bipartite permutation graph

When a permutation graph is bipartite, it is
said to be a bipartite permutation graph (see
Fig. 1). Then the following lemma holds:

Lemma 2. Let G � (X� Y� E) be a connected bi-
partite permutation graph with �X�� �Y � � 0 and

 � (L1� L2) its line representation. Without loss of generality, we assume that v1 � X
corresponds to (1� i) for some i with 1 � i � n. Then X and Y satisfy that X � �vi �

vi corresponds to (i� j) with i � j� and Y � �vi � vi corresponds to (i� j) with i � j�.

Let 
 � (L1� L2) be a line representation of a bipartite permutation graph G � (X� Y� E).
For a connected bipartite permutation graph G, we can construct essentially equivalent
representations by flipping
. There are three operations that play important roles in this
paper. On a horizontal flip 
H (H-flip for short) of 
, each line (i� j) on 
 is mapped to
the line (n� i� 1� n� j � 1). On a vertical flip 
V (V-flip for short) of 
, each line (i� j)
on 
 is mapped to the line ( j� i). For a line representation 
, (
H)V

� (
V )H gives us a
rotation of 
. Hence we denote the line representation by 
R after this operation.
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One important property is that they are unique up to isomorphism like Lemma 1:

Lemma 3. Let G � (V� E) be a connected bipartite permutation graph, and 
 and

� any two line representations of G. Then one of 
 � 
�, 
 � 
�H, 
 � 
�V , and

 � 
�R holds. That is, the line representation of G is unique up to isomorphism.

Let G � (V� E) be a connected bipartite permutation graph, and 
�
H �
V �
R its
four line representations. Then some of them can be isomorphic; G is H-symmetric,
V-symmetric, and R-symmetric if 
 � 
H , 
 � 
V , and 
 � 
R, respectively.

Here, we map each representation 
 to a string s(
) in �� as follows. We first sweep
the endpoints from left to right on L1, and construct a string s1(
) by adding ‘[’ when
the endpoint is in X, and ‘]’ when the endpoint is in Y (e.g., s1(
) � [[][]][]][]] in
Fig. 1). Next we sweep the endpoints from left to right on L2, and construct a string
s2(
) by adding ‘[’ when the endpoint is in Y, and ‘]’ when the endpoint is in X (e.g.,
s2(
) � [][][[[[][]] in Fig. 1). Finally, we concatenate s2(
) after s1(
) and obtain the
resultant string (e.g., s(
) � [[][]][]][]][][][[[[][]] in Fig. 1).

Using the string, we define a canonical representation of G as follows. We first sup-
pose that all strings s(
)� s(
H)� s(
V )� s(
R) are distinct. Then the canonical repre-
sentation is the one corresponding to the smallest string. When G satisfies exactly one
symmetricalness with respect to H-flip, V-flip, or rotation, then four possible represen-
tations gives two distinct strings. Then the canonical representation is the one corre-
sponding to the smaller string. If G satisfies two symmetricalnesses, the last symmetri-
calness is also satisfied. Hence, in the case, four representations are isomorphic and this
gives the unique canonical representation. By Lemma 3, this rule gives us a one-to-one
mapping between bipartite permutation graphs and canonical representations.

Dyck path, Motzkin path, and 2-Motzkin path: A path in the (x� y) plane from (0� 0)
to (2n� 0) with steps (1� 1) and (1��1) is called a Dyck path of length 2n if it never pass
below the x-axis. It is well known that the number of Dyck paths of length n is given by
the nth Catalan number �(n) :� 1

n�1

�
2n
n

�
(see [19, Corollary 6.2.3] for further details).

We will use one of the generalized notions of Catalan number; �(n� k) :� k�1
n�1

�
n�1

(n�k)�2

�
,

which gives us the number of subpaths of Dyck paths from (0� 0) to (n� k). This can be
obtained by a generalized Raney’s lemma about m-Raney sequences with letting m � 2;
see [8, Equation (7.69), p. 349] for further details. A path in the (x� y) plane from (0� 0)
to (n� 0) with steps (1� 0), (1� 1), and (1��1) is called a Motzkin path of length n if it never
go below the x-axis (see [19, Exercise 6.38] for further details). The number of Motzkin
paths of length n is called Motzkin number (n); e.g., (1) � 1�(2) � 2�(3) �
4�(4) � 9�(5) � 21�(6) � 51. A 2-Motzkin path is a Motzkin path that has two
kinds of step (1� 0). We distinguish them by (1��0) and (1��0). Deutsch and Shapiro
show that 2-Motzkin paths have correspondences to ordered trees and others [5].

In paths above, each step consists of (1� x) for some x in ��1��0�. Hence we will
denote a path by a sequence of such integers x in ��1��0�.

Machine Model: Time complexity is measured by the number of arithmetic operations.
Especially we assume that each binomial coefficient and each (generalized) Catalan
number can be computed in O(1) time. Moreover we assume that the basic arithmetic
operations of these numbers can be done in O(1) time. This assumption is out of the
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standard RAM model. We have to multiply the time complexity of calculation of these
numbers to the complexities we show to obtain the time complexity in the standard
RAM model. We employ the assumption only in Section 3 to simplify the discussion.
The enumeration algorithm in Section 4 does not require the assumption, and all the
results are valid on the standard RAM model.

3 Counting and Random Generation

Let P(n) be the set of permutations corresponding to connected bipartite permutation
graphs of n vertices, and �n the set of distinct (up to isomorphism) connected bipartite
permutation graphs of n vertices. We denote a (not necessarily canonical) line represen-
tation of a permutation � by
� � (L1� L2), and the graph of � by G� � (X� Y� E). Without
loss of generality, we assume that X contains the vertex corresponding to (1� �(1)) in 
�

for �(1) � 1. Now, we construct a 2-Motzkin path as follows. For each i with 1 � i � n,
we see the endpoints at i on L1 and L2. Let pi and qi be the endpoints on L1 and L2, re-
spectively. We say that pi is in X (and Y) if pi is the endpoint of a vertex corresponding
to (i� �(i)) in X (and Y, respectively). Similarly, we say that qi is in X (and Y) if qi is the
endpoint of a vertex corresponding to (��1(i)� i) in X (and Y, respectively). If G� is not
connected, in each connected component, we assume that the vertex corresponding to
the leftmost point on L1 belongs to X. Then the value zi is defined as follows;

zi �

�
���������
���������

�1 if pi is in X and qi is in Y�

�1 if pi is in Y and qi is in X�

�0 if pi and qi are in X�

�0 if pi and qi are in Y �

+1 -1 +0 -0

+1 +1 -1 -1 +1 -1 -1 +1+1 -1

Fig. 2. An example of the bijection

That is, two values �0 and �0 are distinguished (for counting) but have the same value.
From the sequence z1� � � � � zn, we can consider a path Z� � (z1� � � � � zn). (For example,
Z� � (�1��0��0��0��0��0��1��0��1��1��1��1) for the graph in Fig. 1.) Note that
� � �� iff Z� � Z�� . For the path Z�, we define its height at point i by

�i
j�1 z j. To

simplify, we define that the height at point 0 is 0. We show that Z� is a 2-Motzkin path
that has positive height at point i, 1 � i � n, iff � � P(n). To this end, we need a property
of connected permutation graphs.

Lemma 4 ([9, Lemma 3.2]). Let � be a permutation on �1� � � � � n�. Then G� is discon-
nected iff there exists k � n such that ��(1)� �(2)� � � � � �(k)� � �1� 2� � � � � k�.

Then we have the following lemma.

Lemma 5. A sequence Z � (z1� � � � � zn) on the alphabet ��1��1��0��0� is constructed
from � � P(n) in the above way iff Z is a 2-Motzkin path such that Z has height 0 at
point 0 and n, and positive height at point i with 0 � i � n.

From the above characterization, we can count the number of elements in P(n). Deutsch
and Shapiro [5] have shown the following bijection between 2-Motzkin paths of length
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n and Dyck paths of length 2(n � 1): In a 2-Motzkin path, we replace �1 by (�1��1),
�1 by (�1��1), �0 by (�1��1), and �0 by (�1��1); Then add �1 before the obtained
sequence, and add �1 after the sequence. Fig. 2 shows an example. Note that a 2-
Motzkin path has height k at point i iff the corresponding Dyck path has height 2k � 1
at point 2i� 1. The bijection gives the following lemma, which yields �P(n)� � �(n� 1).

Lemma 6 ([5]). The number of 2-Motzkin paths of length n is �(n � 1).

We can show that the bijection is also a bijection for restricted paths. For z �

��1��1��0��0�, we define �z naturally; �z � �b iff z � �b for b � �0� 1�. A Dyck
path D � (d1� � � � � d2n) is symmetric if zi � �zn�i�1 for 1 � i � n.

Lemma 7 ([16]). The number of symmetric Dyck paths of length 2n is
�

n
�n�2�

�
.

A 2-Motzkin path Z � (z1� � � � � zn) is semi-symmetric if zi � �zn�i�1 for 1 � i � n, and
Z is symmetric if zi � �zn�i�1 for zi � ��1��1� and zi � zn�i�1 for zi � ��0��0�. A 2-
Motzkin path can be semi-symmetric only if its length is even. Obviously, the bijection
is also a bijection between symmetric 2-Motzkin paths of length n and symmetric Dyck
paths of length 2(n � 1). Furthermore, if n is even, there is a bijection between semi-
symmetric 2-Motzkin paths of length n and symmetric Dyck paths of length 2(n � 1).
From the above observation and Lemma 7, we have the following corollary.

Corollary 1. The number of symmetric 2-Motzkin paths of length n is
�

n�1
�(n�1)�2�

�
. If n is

even, the number of semi-symmetric 2-Motzkin paths of length n is also
�

n�1
�(n�1)�2�

�
.

Any given � � P(n), Lemma 3 implies that there exist at most four line representations

�, 
H

� , 
V
� , and 
R

� for a graph G�. We define four subsets of P(n) as follows: (1)
PH(n) � �� � P(n) � 
� is H-symmetric�, (2) PV (n) � �� � P(n) � 
� is V-symmetric�,
(3) PR(n) � �� � P(n) � 
� is R-symmetric�, and (4) PF (n) � PH(n) � PR(n) � PV (n).

Proposition 1. (1) If n is odd, PH(n) and PV (n) are empty. (2) PF (n) � PH(n)�PV (n) �
PV (n) � PR(n) � PR(n) � PH(n).

Lemma 8. ��n� �
1
4

�
�P(n)� � �PH(n)� � �PV (n)� � �PR(n)�

�
.

Lemma 8 implies that it suffices to count the elements of P(n), PH(n), PV (n), and PR(n)
to show the size of �n. For the random generation, �PF(n)� is also necessary.

Lemma 9. (1) �PV(n)� � �(n�2 � 1) for even n. (2) �PR(n)� �
�

n�1
�(n�1)�2�

�
. (3) �PH(n)� ��

n�1
�(n�1)�2�

�
for even n. (4) �PF(n)� �

�
(n�2)�2
�(n�2)�4�

�
for even n.

Lemmas 8, 9, and Proposition 1 together show the number of elements of �n. We use a
well-known relation 2

�
2m�1
m�1

�
�

�
2m
m

�
for the even case.

Theorem 1. For n � 2, the number of connected bipartite permutation graphs of n
vertices is

��n� �

�������
1
4

�
�(n � 1) � �(n�2 � 1) �

�
n

n�2

��
if n is even�

1
4

�
�(n � 1) �

�
n�1

(n�1)�2

��
if n is odd�

Theorem 2. For any given positive integer n, a connected bipartite permutation graph
with n vertices can be generated uniformly at random in O(n) time and O(n) space.

The complexity in Theorem 2 is measured by the number of operations. However, the
algorithm runs in O(n) expected time even in the standard RAM model.
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4 Enumeration

In this section we give an efficient algorithm to enumerate all bipartite permutation
graphs of n vertices. Our algorithm can enumerate such graphs in O(1) time for each.

Our approach is to repeatedly enumerate all bipartite permutation graphs of the spec-
ified number of vertices. If we can enumerate all bipartite permutation graphs with
p � �X� and q � �Y �, such graphs of n vertices can be enumerated by repeating the
method for each pair of (p� q) � (� n

2 �� �
n
2 �)� (�

n
2 ��1� � n

2 ��1)� � � � � (n�1� 1). By the above
observation and Lemma 3, it is sufficient to enumerate all canonical representations of
bipartite permutation graphs with p � �X� and q � �Y �.

L1

L2

Fig. 3. R4�3 in S 4�3

We first define a tree structure, family tree, among the set of
canonical representations. The algorithm traverses the family tree
efficiently. We need some definitions. Let S p�q be the set of canoni-
cal representations of bipartite permutation graphs of p vertices in X
and q vertices in Y. We assume p � q without loss of generality. The
root Rp�q in S p�q is the smallest representation in S p�q; s(Rp�q) � [[	 	 	 []] 	 	 	 ][[	 	 	 []] 	 	 	 ]
(Fig. 3). As we will see, the root corresponds to the root vertex in a tree structure
among S p�q.

Let 
 � (L1� L2) be a representation in S p�q � �Rp�q�. Let s(
) � x1x2 	 	 	 x2n,
s1(
) � x1x2 	 	 	 xn, and s2(
) � xn�1xn�2 	 	 	 x2n. Now we define “the parent” P(
)
of the representation 
 in S p�q as follows. We have two cases.

L1

L2

(a)

L1

L2

(b)

i j

kl

L1

L2

L1

L2

Fig. 4. Examples of the parents

Case (a): s1(
) � s1(Rp�q). Let i be the index of
s1(
) s. t. xi � ‘]’ and xi� � ‘[’ for all i� � i, and
j be the index of s1(
) s. t. x j � ‘[’ and x j� � ‘]’
for all i � j� � j. Then j is the swappable point
of 
. P(
) is the representation obtained from 


by swapping two endpoints at j � 1 and j on L1

(Fig. 4(a)).

Case (b): s1(
) � s1(Rp�q). In this case we define
P(
) by swapping two points on L2 at the swappable point defined similar to the case
(a) (Fig. 4(b)).

P(
) is called the parent of 
 and 
 is called a child of P(
). We can observe that
s(P(
)) is smaller than s(
), and the parent P(
) of 
 in S p�q � �Rp�q� is always defined.
Since 
 is canonical, so is P(
). The next lemma shows we finally obtain the root in
S p�q by repeatedly finding the parent.

Lemma 10. Let 
 be a representation in S p�q � �Rp�q�. The sequence obtained by re-
peatedly finding the parent ends up with the root Rp�q.

By merging all these sequences we have the family tree Tp�q of S p�q; the root of Tp�q

corresponds to Rp�q, the vertices of Tp�q correspond to representations in S p�q, and each
edge corresponds to a relation between a representation in S p�q � �Rp�q� and its parent.

Now we give an algorithm that enumerates all representations in S p�q. The algorithm
traverses a family tree and enumerates canonical representations corresponding to the
vertices of the family tree. To traverse a family tree, we design finding all children of
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Algorithm 1. find-all-children(
)

begin1

for each nominated point i on L1 do2

if �1[i] is connected and canonical then find-all-children(�1[i])3

end4

for each nominated point i on L2 do5

if �2[i] is connected and canonical then find-all-children(�2[i])6

end7

end8

a given canonical representation. We need some definitions. 
1[i] is the line represen-
tation obtained from 
 by swapping two endpoints at i and i � 1 on L1, and similarly

2[i] is the line representation obtained from 
 by swapping two endpoints at i� 1 and
i on L2. If 
 � P(
1[i]) (and 
 � P(
2[i])), we say i is a nominated point on L1 (and
L2, respectively). 
1[i] (and 
2[i]) is a child of 
 only if i is a nominated point on L1

(and L2) and 
1[i] (and 
2[i], respectively) is connected and canonical.
For a string s(
) � x1x2 	 	 	 x2n, we define the connectivity value c(i) for i �

0� 1� � � � � 2n as follows: c(0) � c(n) � 0, and

c(i) �

�
c(i � 1) � 1 if (xi � ‘[’ and i � n) or (xi � ‘]’ and i � n)
c(i � 1) � 1 if (xi � ‘]’ and i � n) or (xi � ‘[’ and i � n)

Intuitively, c(i) for i � n is the number of ‘[’s minus the number of ‘]’s in x1 x2 	 	 	 xi, and
c(i) for i � n is the number of ‘]’s minus the number of ‘[’s in xn�1xn�2 	 	 	 xi. A bipartite
permutation graph is connected iff we have c(i) � c(n � i) for each i � 1� 2� � � � � n � 1.
We say 
 is connected if c(i) � c(n � i) for each i � 1� 2� � � � � n � 1.

All children can be enumerated as follows. We construct 
1[i] for each i �

1� 2� � � � � n � 1, then check whether or not (1) i is a nominated point on L1, (2) 
1[i]
is connected and (3) 
1[i] is canonical. If all conditions are satisfied, 
1[i] is a child.
Similarly, we check whether or not 
2[i] is a child for each i � 2� 3� � � � � n. We show
that (1) the list of nominated points can be maintained efficiently, and (2) efficient way
to check if a representation is connected and canonical.

Lemma 11. (1) Let 
 � (L1� L2) be a representation in S p�q. There exist at most 3
nominated points on L1 and L2. (2) Given 
 and its nominated points, we can construct
the list of nominated points of each child in O(1) time.

Now we have Algorithm 1, that generates all children of a given representation 
. For
each nominated point i on L1 (and L2), it first checks if 
1[i] (and 
2[i]) is connected
and canonical, and next recursively calls it for 
1[i] (and 
2[i], respectively) if it satis-
fies the conditions. By calling the algorithm recursively at Rp�q in S p�q, we can traverse
the family tree Tp�q and enumerate all representations in S p�q.

By Lemma 11, steps 2 and 5 can be done in O(1) time in each recursive call. The
remaining task is checking whether or not 
 is connected and canonical efficiently.

We first consider the check of connectivity of a representation. By symmetry we
only consider 
1[i] without loss of generality. Assume 
 is connected. Then 
1[i] is



1112 T. Saitoh et al.

connected only if c(i) � c(n� i) and c(i�1) � c(n� i�1). We can check such conditions
in O(1) time using an array of size 2n to maintain the sequences of connectivity values
of 
1[i]. Update of the array also can be done in O(1) time. Therefore, the connectivity
of 
1[i] can be checked in O(1) time.

Next we check whether or not 
 is canonical. When p � q, s(
) is canonical if
s(
) is the smallest string among s(
V ), s(
H) and s(
R). If p � q, we need more
discussions. Let 
 be a representation in S p�q and G be the bipartite permutation graph
corresponding to 
. Then there exists a line representation 
� obtained from 
 by
swapping lines corresponding to vertices in X and ones in Y. Similarly, we denote by

V �

, 
H�

, 
R�

the representations obtained from 
V , 
H , 
R by swapping lines corre-
sponding to vertices in X and ones in Y, respectively. Then 
 is canonical iff s(
) is the
smallest string among s(
V ), s(
H), s(
R), s(
�), s(
V �

), s(
H�

) and s(
R�

). Using a
similar idea in [16], we have the following lemma.

Lemma 12. One can determine whether or not 
 � (L1� L2) is canonical in O(1) time.

Therefore steps 3 and 6 in Algorithm 1 can be computed in O(1) time.

Lemma 13. Our algorithm uses O(n) space and runs in O(�S p�q�) time.

By Lemma 13, our algorithm generates each representation in O(1) time “on average”.
Algorithm 1 may return from the deep recursive calls without outputting any repre-
sentation after generating a representation corresponding to the leaf of a large subtree
in the family tree. This delay can be canceled by outputting the representations in the
“prepostorder” in which representation are outputted in the preorder (and postorder)
at the vertices of odd (and even, respectively) depth of a family tree (see [12] for the
further details). Thus we have the following lemma.

Lemma 14. After outputting the root in O(n) time, our algorithm enumerates every
representation in S p�q in O(1) time in worst case.

Now we turn to enumerate all canonical representations corresponding to bipartite per-
mutation graphs of n vertices. By applying Lemma 14 for each (p� q) � (� n

2 �� �
n
2 �)� (�

n
2 ��

1� � n
2 � � 1)� � � � � (n� 1� 1) in this order, we can enumerate all representations; every non-

root representation is generated in O(1) time. However, Rp�q in S p�q is not constructed
from the last outputted representation in S p�1�q�1 in O(1) time.

This delay can be canceled as follows. Let 
 � (L1� L2) be a representation in S p�q.
Then 
 is jump representation if s1(
) � s1(Rp�q) and s2(
) � []] 	 	 	 ][[	 	 	 [] (see
Fig. 5). When jump representation in S p�q is generated, we construct a representation
� in S p�1�q�1 by swapping the three lines (p� n), (n � 1� n � 2), (n� n � 1) to (p� n � 1),
(n � 1� n), (n� n � 2), respectively. We note that the line (n � 1� n � 2) is switched to
a line corresponding to a vertex in X, and � can be generated from 
 in O(1) time.

L1
L2

L1
L2

Fig. 5. Construction of a representation in S 7�4 from the jump
representation in S 6�5

Then we enumerate all rep-
resentations in S p�1�q�1 by
traversing Tp�1�q�1 as fol-
lows. After � is generated,
the descendants of � in
Tp�1�q�1 are enumerated by
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Algorithm 1, and we construct P(�). Then we traverse the descendants of P(�) ex-
cept the subtree rooted at � and construct P(P(�)). We repeat this process until the
root is generated. We note that P(�) can be generated in O(1) time by maintaining the
swappable point and its data structure can be updated in O(1) time.

We note that (1) swapping two endpoints of a canonical representation corresponds
to adding or removing one edge in the corresponding graph and (2) a graph can be con-
structed from the graph corresponding to a jump representation by a constant number
of operations to add and remove edges. Therefore we have the following theorem.

Theorem 3. (1) After outputting the root in S � n
2 ���

n
2 �

, one can enumerate every canon-
ical representation of a bipartite permutation graph of n vertices in O(1) time. (2)
The algorithm enumerates every connected bipartite permutation graph of n vertices
in O(1) time.
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Abstract. In this paper, we design and analyze a simple, greedy al-
gorithm for a class of linear programs called Horn programs. This al-
gorithm, which we term as the “Lifting Algorithm”, is a variant of the
Stressing Algorithm proposed for Difference Constraint systems in [5]
and runs in time O(m · n2) on a Horn system with m constraints and n
variables. Inasmuch as Horn constraints subsume difference constraints,
and all known algorithms for the problem of checking feasibility in Dif-
ference Constraint Systems run in time Ω(m · n), the running time of
our algorithm is only a factor n worse than the best known running
time for checking feasibility in Difference Constraint Systems. Horn pro-
grams arise in a number of application areas including econometrics and
program verification; consequently, their study is well-motivated. An im-
portant feature of our algorithm is that it uses only one operator, viz.,
addition. We also show that our algorithm can identify the linear and
lattice point feasibility of Extended Horn Systems in O(m · n2) time.

1 Introduction

In this paper, we analyze the “Lifting Algorithm” for solving a class of linear
programs called Horn programs. Horn programs are a specialized class of linear
programs that generalize three classes of constraints, viz., propositional Horn
formulas, renamable Horn formulas and Difference constraint systems [2]. Horn
programs arise in a number of application domains such as Program Verification
and Econometrics; hence, algorithmic improvements in feasibility checking of
these programs provide immediate impact. To the best of our knowledge, this
problem was solved through linear programming techniques to date [6].
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2 Statement of Problem and Preliminaries

Let

A · x ≥ b, x ≥ 0 (1)

denote a polyhedral system.
In System (1), A is an m × n integral matrix, b is an integral m-vector and

x = [x1, x2, . . . xn]T is a variable n-vector.

Definition 1. System (1) is said to be a Difference Constraint System (DCS),
if each row of A contains at most two non-zero entries with one of these entries
being 1 and the other being −1.

Definition 2. System (1) is said to be a Horn system or a Horn polytope if

(i) The entries in A belong to the set {0, 1,−1}.
(ii) Each row contains at most one positive entry.

The matrix A is said to satisfy the Horn structure.

Note that a Horn system could include absolute constraints, i.e., constraints of
the form: x1 ≥ 5 and −x2 ≥ −6. However, observe that a constraint of the form:
x1 ≥ 5 can be replaced by a constraint of the form: x′1 ≥ 0, where x′1 = x1−5. The
idea is that the resultant constraint system is feasible if and only if the original
system is. We will show later that any constraint with no positive coefficient
can be set aside until a solution to the remaining system is found. Accordingly,
we can assume that the Horn system under consideration does not have any
absolute constraints.

Let System (1) denote a Horn system. Assume that some column of A (say
A.1) has no negative entry. We can then rewrite System (1) as:

A =
−→1 C
−→0 Â

;−→b =
−→̃
b
−→̂
b

Lemma 1. System (1) is feasible if and only if the system

Â·−→̂x≥
−→̂
b ,

−→̂
x ≥ 0

is feasible.

Proof: Clearly
Â·−→̂x≥

−→̂
b ,

−→̂
x ≥ 0

is a necessary condition for System (1) to be feasible since these constraints are
included in System (1). To show that it is also sufficient, let

x1 = max{0, max
j:a1,j=1

[b̃j −
n∑

k=2

aj,kx̂k]}

It is easy to see that −→x = [x1,
−→̂
x ] is a feasible solution of System (1). �
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Lemma 2. If any column of A has no +1, and the system is feasible, then there
exists a solution for System (1) in which the corresponding variable is set to 0.

Proof: Let xa denote the variable corresponding to this column in A. Let t de-
note a solution to System (1); assume that ta 
= 0. Now consider the assignment
t′, which is constructed as follows: t′i = ti, i 
= a, ta = 0. Constraints not involv-
ing xa are trivially satisfied. Consider a constraint of the form: −xa − g() ≥ b;
since this constraint is satisfied by ta > 0, it is clearly satisfied by decreasing
the value of xa from ta to 0. Since the constraint was chosen arbitrarily, we can
reason similarly about every constraint in which xa appears. �

Definition 3. A Horn system is said to be standardized if every row and every
column of the defining matrix A has at least one positive entry and one negative
entry.

The justification for disregarding rows in which all entries are negative (including
absolute constraints of this type) will be provided in Section 4. For the rest of this
paper, we assume that the Horn polytope under consideration is standardized.

3 The Lifting Algorithm

Algorithm 3.1 describes the details of the Lifting Algorithm; the algorithm op-
erates in a series of (n − 1) phases. In each phase, every variable is processed
in two stages: In the first stage, the constraints in which the variable appears
positively are isolated. In the second stage, we determine the constraint with
the largest Right-Hand Side (RHS) from the isolated set. If (and only if) the
largest RHS is positive, we Lift() the variable. The lifting of a variable, say xi,
involves two steps: Assume that the variable being processed is xi and assume
that the largest RHS of a constraint in which it appears positively is r. If r is
non-positive, we proceed to process the next variable. Otherwise, the constraint
system is changed to reflect the following substitution: x′i = xi − r. Note that
under this substitution, the RHS of any constraint in which xi appears pos-
itively will decrease, whereas the RHS of any constraint in which xi appears
negatively will increase. Thus, if r = 7, a constraint of the form xi − xj ≥ 7
becomes x′i − xj ≥ 0, whereas a constraint of the form xk − xi − xj ≥ 3 becomes
xk − x′i − xj ≥ 10. Essentially, the origin of the Horn system has been lifted to
a new value and hence the name “Lifting Algorithm.”

Assume that the constraint matrix A is standardized. The coefficients of each
variable (i.e., each column of A) are stored in two lists, viz., the in-list which
contains the row indices in which the variable appears positively and the out-
list which contains the row indices in which the variable appears positively. We
assume that the RHS b is stored in column format for RAM access.

To process a variable, say xi, we only need to process the corresponding outlist,
inlist, and the components of b indexed by both lists. Clearly, this processing
can be accomplished in O(m) time; thus all variables can be processed in O(m ·
n) time and the algorithm itself runs in O(m · n2) time, since there are O(n)
iterations.
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Function Horn-Check (A, b, o)

1: {Note that the constraint system that we are trying to solve is A · x ≥ b, x ≥ 0.
Initially, o = 0. }

2: if (b ≤ 0) then
3: Set x = o
4:
5: return (x)
6: end if
7: for (r = 1 to (n − 1)) do
8: for (each variable xi, i = 1, 2, . . . , n) do
9: Let Fi denote the set of constraints of the form: xi − xk ≥ c, c > 0.

10: Let l′i : xi − xj ≥ r denote the constraint in Fi with the largest Right Hand
Side (RHS).

11: {l′i is called the pivot constraint.}
12: if (r > 0) then
13: Lift(b, o, i, r)
14: end if
15: end for
16: end for
17: if (any constraint has a positive RHS) then
18: assert(“System is infeasible.”)
19: Set x = −1
20:
21: return (x)
22: else
23: assert(“System is feasible”)
24: Set x = o
25:
26: return (x)
27: end if

Algorithm 3.1. A fast algorithm for checking non-emptiness of Horn polytopes

Function Lift (b, o, i, r)

1: Replace the variable xi by the variable x′
i = xi − r.

2: In each constraint that xi appears positively, the corresponding b value is decre-
mented by r.

3: In each constraint that xi appears negatively, the corresponding b value is incre-
mented by r.

4: The replacement will only change b; A will remain unaltered.
5: Set oi = oi + r

Algorithm 3.2. The Lifting Procedure
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4 Correctness

We need the following concepts from linear algebra to establish the correctness
of Algorithm 3.1.

Definition 4. Given a matrix A, a minor of A is the determinant of any square
sub-matrix obtained by deleting one or more rows and columns.

Definition 5. A linear diophantine equation is an equation of the form:∑n
i=1 αixi = n, where the variables are all integral. A conjunction of such equa-

tions is termed a simultaneous linear diophantine system and can be represented
in matrix form as: A · x = b.

The problem of solving a simultaneous linear diophantine system is in P, but
determining non-negative solutions to such a system is identical to Integer Pro-
gramming and hence strongly NP-complete [4].

Borosh and Treybig proved the following lemma about non-negative solutions
of simultaneous linear diophantine systems [1].

Theorem 1. Let A · x = b denote a polyhedral system with A having dimen-
sions m×n. Let Δ denote the maximum of the absolute value of all minors of the
augmented matrix [A | b]. Then the polyhedral system has an integral solution if
and only if it has one with all entries bounded by (n + 2) · Δ.

We now establish the solution-preserving nature of the Lift() procedure.

Lemma 3. Let System (1) represent a Horn system. Let A · x′ ≥ b′ denote the
resultant system after variable xi has been lifted. Then System (1) has a solution
if and only if the resultant system has one.

Proof: As per the hypothesis, xi is the variable that was lifted. Assume that the
pivot constraint is: xi − f(x1, x2, . . . , xn) ≥ r, r > 0, where f() denotes a sum of
some of the other variables in the system. This means that in every constraint
of the constraint system in which xi appears, either xi appears negatively or it
appears positively with a RHS not greater than r. From the constraint, xi−f() ≥
r, we can conclude that xi ≥ f() + r. Now observe that f() is a sum of positive
variables and its value is at least 0 is any satisfying solution. It therefore follows
that xi is at least r in any satisfying solution. Accordingly, replacing the variable
xi by the variable x′i = xi − r, xi ≥ 0 does not alter the solution space at all.
The Lift() procedure merely implements this change of origin by incrementing
oi by r and adjusting the b values to reflect this substitution. �

We can extend the above argument inductively to conclude that Algorithm 3.1
produces a sequence of polyhedra each of which is feasible if and only if System
(1) is. Alternatively, we can say that the Lift() procedure is sound, i.e., it
preserves the solution space of the original system. Inasmuch as Algorithm 3.1
is constituted exclusively of calls to the Lift() procedure, we can conclude that
Algorithm 3.1 is sound.
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Lemma 4. Let System (1) represent a Horn system enclosing a lattice point
(integral vector). Then at most (m + n) · (m + n + 2) · Δ calls to the Lift()

procedure can be made before the b vector becomes non-positive, where Δ is the
maximum of the absolute value of all minors of the augmented matrix [A, −I | b].

Proof: We can rewrite System (1) in the form:

A · x − I · z = b

x, z ≥ 0 (2)

Note that the matrix [A, −I] has m + n columns; applying Theorem 1, we
conclude that if System (2) encloses a lattice point, then it must have an integral
solution in which all components are bounded by (m + n + 2) · Δ.

Observe that each call to the Lift() procedure results in one component
increasing by at least unity. Therefore, if more than (m+n) · (m+n+2) ·Δ calls
are made to the Lift() procedure then the soundness of the Lift() procedure
assures us that in any solution to System (1), at least one component is greater
than (m + n) · (m + n + 2) · Δ and this contradicts Theorem 1. �

Essentially, Lemma 4 establishes that if executed sufficiently many times, the
Lift() procedure is complete from the perspective of lattice point feasibility in
Horn systems.

Lemma 5. Let System (1) denote a Horn system. Then it is feasible if and only
if it encloses a lattice point.

Proof: Clearly, if System (1) encloses a lattice point then it is feasible. Assume
that it does not enclose a lattice point, but does enclose a fractional solution.
From the theory of linear programming, we know that System (1) has a basic
feasible solution and that all basic feasible solutions have components that are
bounded by an exponential function of m and n and the elements of A and b [3];
let us call this bound Ξ. Now consider what happens when more than Ξ calls
are made to the Lift() procedure; the soundness of lifting implies that every
solution has to have at least one component greater than Ξ, and that contradicts
the linear programming bound in [3]. It follows that a fractional solution cannot
exist either. �

We have now established the following two facts:

(i) A Horn system of the form: A · x ≥ b, x ≥ 0, with b integral, is feasible if
and only if it contains a lattice point. The set of lattice points satisfying
the above Horn system is bounded below by 0.

(ii) The Lift() procedure is both sound and (if carried out sufficiently many
times) a complete procedure for the purpose of checking feasibility in Horn
systems.

Definition 6. Given a non-empty set of vectors S, a vector y ∈ S, is said to be a
minimal element, if x ∈ S ⇒ y ≤ x, where the ≤ relation holds componentwise.
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It is not hard to see that if a set contains a minimal element, then this element
is unique. Two elements u and v in S are incomparable, if neither u ≤ v nor
v ≤ u.

We remark that our definition of minimal element is different from the stan-
dard definition of minimal element; in the standard definition, an element of
a set y is declared to be minimal, as long as there is no element z, such that
z ≤ y and zi < yi, for at least one i = 1, 2, . . . , n. In other words, as per the stan-
dard definition, a set could have multiple minimal elements, which are mutually
incomparable. We will be using our definition for the rest of the paper.

Lemma 6. Given a non-empty set S of vectors, which is closed and bounded
below, and a partial order “≤” defined on the elements of S, either S has a
minimal element z, or there exists a pair of elements u, v ∈ S, such that u and
v are incomparable and there is no element z ∈ S, such that z ≤ u and z ≤ v.

Proof: Suppose that S does not have a minimal element. Then, as per our defi-
nition, there must be at least two elements, say u and v which are incomparable,
since if every pair of elements is comparable, then the elements would form a
chain under the “≤” relationship and every chain which is bounded below has a
minimal element. Now, consider the case in which corresponding to every pair of
incomparable elements (say (u, v)), there is an element z ∈ S, such that z ≤ u
and z ≤ v. We call z the dominator of u and v. Observe that we can create a set
of dominators of all pairs of elements that are mutually incomparable; either the
elements of this set form a chain or we can create the set of their dominators. As
this process repeats, we will be left with a single element, since S is closed and
bounded above or we will have two elements that are mutually incomparable
and which are not dominated by another element in S. If the process results in
a single element then this element is clearly the minimal element of S, violating
the hypothesis that S did not have a minimal element. �

The proof of the following lemma is available in the full paper.

Lemma 7. The solution set S of the Horn system {A · x ≥ b, x ≥ 0} contains
a minimal element if S 
= ∅.

Theorem 2. If the solution set S of the Horn system {A · x ≥ b, x ≥ 0} is
non-empty and if Algorithm 3.1 asserts that the Horn system is feasible, then
the solution returned is the minimal element of S.

Proof: The proof is available in the full version of the paper. �

Lemma 8. Suppose at some step of the algorithm, we have a vector −→o and the
RHS is

−→
b′ . Let the minimal element of the polyhedron {A · x ≥−→

b′ , x ≥ 0} be
−→̂x . The the minimal element of the system {A · x ≥ b, x ≥ 0} is x =−→o + −→̂x .

Proof: Follows readily from the previous lemma. �

Corollary 1. The minimal element of a feasible Horn system is integral.
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Proof: The only operation in Algorithm 3.1 is integer addition; given that we
start with o = 0 and that b is integral, it must be the case that the point returned
by Algorithm 3.1, which is minimal by the previous theorem, is integral. �

Observe that if a polyhedron P has a unique minimal element, then this element
is obtained by minimizing the linear function p · x over P, where p > 0 is an
arbitrary positive vector. Therefore, without loss of generality, we can assume
that Algorithm 3.1 is, in essence, solving the following linear program:

Ψ : min
n∑

i=1

xi

A · x ≥ b

x ≥ 0 (3)

We are now going to argue that if A in System (3) has a row with no positives,
then this row can be discarded. Assume that there is a row in A which has no
positives; let this row be li : −f(x1, x2, . . . , xn) ≥ bi, where f() is a sum function
of some of the variables. First observe that bi cannot be positive since the sum of
a collection of positive variables is at least 0 and hence the negation of this sum
is at most 0. Thus, if bi is positive, the Horn system is infeasible. Likewise, if bi is
0, then each variable in li must be 0 since the sum of non-negative variables can
be 0 if and only if each variable is individually 0. Thus bi must be negative; the
constraint is therefore imposing the condition f() ≤ −bi, where −bi > 0. Now if
we delete the constraint li and solve System (3), we get the minimal element of
the resultant Horn system, say u. If u does not satisfy li, then the original Horn
system is infeasible. Even if this row is not deleted and Lift() is performed,
if the value of the RHS b′i becomes positive, it will continue to stay positive,
and the sytem will be declared infeasible by the algorithm when it is infeasible.
Accordingly, we can focus our attention on standardized Horn systems only.

The only issue that we have to establish is that if we organize the Lift()

procedure as described in Algorithm 3.1, then (n − 1) phases, with each phase
examining each variable, are sufficient.

Lemma 9. If System (3) is feasible, then in the optimal basis xi = 0 for at least
one i.

Proof: Let z denote the solution to System (3), and let zi > 0, ∀i. We use
Ψz to denote the value of the objective function

∑n
i=1 xi at this point. Let

k = minn
i=1 zi. Observe that u = (z − k) is also a solution to System (3), and

u < z. Hence Ψu < Ψz, thereby contradicting the optimality of z. The lemma
follows. �

Claim. For each i = 1, 2, . . . , n, the oi value in Algorithm 3.1 increases mono-
tonically with each recursive call.
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Proof: Observe that the only operation performed on the oi values is the addi-
tion of a positive number in the Lift() procedure. �

We use Li to denote the state of the outermost for loop of Algorithm 3.1 when
the loop index r is i. We use Si to denote the set of variables that are lifted
during Li of Algorithm 3.1. By convention, S0 = X = {x1, x2, . . . , xn}, i.e., we
say that all the variables of the system are lifted during L0. Thus, if a variable
is lifted only during L0, it means that the variable is not lifted at all.

Definition 7. A variable in the Horn system (3) is said to be saturated at level
i, if it is lifted during Li, but never afterwards during Algorithm 3.1.

We use Zi to denote the set of variables that are saturated at level i. It is
important to note that there could exist a variable xa ∈ X, such that xa ∈ Si,
but xa 
∈ Zi. In other words, a variable which is lifted during Li need not
necessarily be saturated at Level i. However, if xa ∈ Zi, then xa is necessarily
part of Si since xa is lifted during Li. We thus have Zi ⊆ Si, ∀i = 0, 1, . . . , (n−1).

Lemma 10. If System (3) is feasible, then there exists at least one variable xi,
which is never lifted by Algorithm 3.1.

Proof: Observe that when variable xi is lifted, oi increases in value. From Claim
4, we know that oi can never decrease for any variable xi. Thus, if System (3)
is feasible and all the variables of X are lifted at least once, by Algorithm 3.1,
then on its termination, oi > 0, ∀i, thereby contradicting Lemma 9. �

Lemma 10 establishes that there is at least one variable which is saturated at
level 0.

Lemma 11. If Si = ∅, then Sj = ∅, j = (i+1), (i+2), . . . , (n−1). Furthermore,
System (3) is feasible and the unique minimal element is returned by Algorithm
3.1.

Proof: If no variable was lifted during Li, then no variable occurred positively
in a a constraint with a positive RHS. This situation will not change at the com-
mencement of Li+1, and hence Sj will be empty as well, for j = (i+1), . . . , (n−1).
Let T : A · x ≥ b′, x ≥ 0 denote the constraint system that results after Li
completes execution. Since all the entries in b′ are non-positive, T is feasible,
and as discussed in Theorem 2, Algorithm 3.1 returns the minimal element of
the Horn system. �

Theorem 3. Assume that System (3) has a feasible basis. Then,

(Si 
= ∅) → (Zi 
= ∅), i = 0, 1, 2, . . . n.

Proof: The proof of this theorem is provided in the full paper. �

The correctness of Algorithm 3.1 follows, since we have shown that if System (3)
has a feasible basis, then Algorithm 3.1 will detect this basis in (n− 1) iteration
of the outermost for loop.
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5 Conclusions

This paper presented a strongly polynomial algorithm called the “Lifting Algo-
rithm” for checking both linear feasibility and integer feasibility in Horn poly-
topes. Our algorithm is a variant of the Stressing Algorithm outlined in [5] for
detecting negative cost cycles and runs in O(m·n2) time, which is worse than the
best known time for checking the feasibility of difference constraint systems, by
a factor of n. Two features of the algorithm that bear mention are its greediness
and its simplicity (the algorithm uses only the addition operation). From the
polyhedral perspective, we showed that every feasible (extended) Horn system
had a minimal element and that if the RHS of a feasible Horn system is integral,
then it must enclose a lattice point. The Lifting Algorithm actually produces the
minimal element of the feasible Horn system. It must be noted that while min-
imizing a positive function over a Horn system is in P, optimizing an arbitrary
linear function over a Horn system is NP-hard.
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Abstract. We investigate a natural online version of the well-known
Maximum Directed Cut problem on DAGs. We propose a determinis-
tic algorithm and show that it achieves a competitive ratio of
3
√

3
2 ≈ 2.5981. We then give a lower bound argument to show that no

deterministic algorithm can achieve a ratio of 3
√

3
2 − ε for any ε > 0 thus

showing that our algorithm is essentially optimal. Then, we extend our
technique to improve upon the analysis of an old result: we show that
greedily derandomizing the trivial randomized algorithm for MaxDiCut

in general graphs improves the competitive ratio from 4 to 3, and also
provide a tight example.

1 Introduction

The Maximum Cut and Maximum Directed Cut problems are among the
most famous and widely studied problems in computer science and during the
past few decades countless papers have been devoted to them. Their objective
is to partition the vertices of an edge-weighted graph so that the weight of the
edges going from one side of the partition to the other is maximized.

Maximum Cut was one of the 21 original problems shown to be NP-complete
in Karp’s seminal paper [7]. Since then, many results have appeared in the
literature dealing with restrictions of the problem; for example in [10] it is shown
that the problem remains NP-hard for graphs of maximum degree 3, while in
[5] it is shown that it is solvable in polynomial time for planar graphs. The
approximability of both problems has also been well-studied. It has long been
known that MaxCut and MaxDiCut can be approximated within factors of 2
and 4 respectively with a trivial randomized algorithm which randomly places
each vertex on either side of the partition with equal probability (see e.g. [1]).
The celebrated paper of Goemans and Williamson [4] achieves an approximation
ratio of 1.1383 for MaxCut using semi-definite programming and improving
on its results a ratio of 1.165 is achieved for MaxDiCut in [3]. The ratio for
MaxCut is shown to be best possible under the Unique Games Conjecture in [8].
In addition to these results, several other results using combinatorial algorithms
are known for special cases of MaxCut (see for example [2]).

MaxDiCut is the less studied of the two problems, especially from the point
of view of combinatorial algorithms. One exception is the paper by Halperin and

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1124–1133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Zwick [6] which takes a combinatorial approach to the problem and gives a 2-
approximation algorithm via a reduction to matching and a 2.22-approximation
algorithm which runs in linear time. Few other combinatorial results are known
for this problem. In fact, the restriction of MaxDiCut to DAGs was only re-
cently shown to be NP and APX-hard in [9].

To the best of our knowledge, neither problem has been studied before in
an online setting and the only algorithms applicable in this case are the folklore
trivial randomized algorithms. In this paper we propose the study of MaxDiCut

as an online problem motivated by several reasons: First, studying a problem
in an online setting can often lead us to discover some unknown combinatorial
structure which we can then exploit, either in an online or an offline setting.
This is especially true in the case of MaxDiCut since the vast majority of
known results rely on complex tools such as semi-definite programming, while
ignoring the more combinatorial aspect of the problem. Second, studying hard
offline problems in an online setting makes sense because often in practice some
heuristic is used which makes a single pass over the input in an attempt to
find an approximate solution. Therefore, it would be useful to have some results
regarding the quality of the solution produced.

It should be clarified at this point what we mean by an online setting, since one
could potentially define countless online variations of MaxDiCut. The model we
propose is one where the vertices are revealed one by one. Along with each vertex,
all edges incident to it whose other endpoint has already been revealed are also
revealed. This description is very natural. However, if this is all the information
the adversary has to reveal, it is easy to force any deterministic algorithm to
have unbounded competitive ratio thus making the problem uninteresting (more
on this in Section 2). This is why we add an extra restriction: we force the
adversary to reveal along with each vertex the total weight of its incoming and
its outgoing edges. We believe that this model strikes a good balance: it only
gives the algorithm a little information about the future, just enough to make
the problem reasonable. It also fits well with our motivation from single-pass
algorithms, since in cases like that one would likely make decisions based on
past decisions and local information, such as the degree of a vertex.

Furthermore, motivated by the result of [9] mentioned above, we investigate
the problem restricted to DAGs. Motivated by the problem’s own structure we
impose one further restriction on the adversary: we require the vertices to be
revealed in an order consistent with the partial ordering implied by the DAG
itself. This can be an interresting restriction consistent with our above motivation
since this is probably the most natural order in which a single-pass algorithm
would examine the vertices of the DAG.

Our main results regarding the problem on DAGs are an algorithm with com-
petitive ratio 3

√
3

2 ≈ 2.5981 and an essentially matching lower bound, which also
applies in the case of general graphs. Thus, it follows from our results that 3

√
3

2
is the best ratio achievable for this problem. What is also interesting is that the
intuition gained from our analysis on DAGs is then applied in the general case
of the problem to give a deterministic 3-competitive algorithm. In fact, this can
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be interpreted as an improvement in the analysis of an old result: our algorithm
can be seen as a derandomization of the trivial randomized algorithm and we
show that this derandomization improves the competitive ratio from 4 to 3. To
the best of our knowledge, this result was not known before, even concerning the
analysis of this derandomized algorithm in the offline case (for example in [4] it
is mentioned that the best previously known algorithm for MaxDiCut has a
ratio of 4), and it is interesting to consider its contrast with the undirected case
where derandomizing the trivial algorithm does not improve its guarantee.

2 Definitions and Preliminaries

In the remainder we consider only directed graphs, so we will use the terms
graph and digraph interchangeably. Let us give the definition of MaxDiCut.

Definition 1. Given a digraph G(V, E) and a weight function on the edges w :
E → N, MaxDiCut is the problem of finding a partition of V into two sets
V0 and V1 so that the weight of the edge set C = {(u, v) | u ∈ V0, v ∈ V1} is
maximized. That is, the objective is to maximize

∑
e∈C w(e).

The restriction of the problem where all edges have the same weight is often
called cardinality or unweighted MaxDiCut. In this paper we focus on the
weighted version. Because we focus on the weighted problem when we refer to
the in-degree (resp. out-degree) of a vertex, we mean the total weight of its
incoming (resp. outgoing) edges. Also when we refer to the size of a cut, we
mean the total weight of the edges in the cut.

When a vertex u is placed in V0 (resp. V1) we will often say that 0 (resp. 1) was
assigned to u. We denote by win(u) the total weight of incoming edges at vertex
u and by wout(u) the total weight of outgoing edges. By w0

in(u) (resp. w1
in(u)) we

denote the incoming edges of u whose other endpoint has been assigned 0 (resp.
1). Similarly for w0

out(u) and w1
out(u). In a context where the solution produced

by an algorithm is compared with another (optimal) solution, when we use this
notation we refer to the algorthm’s choices, unless otherwise specified. That is,
w0

in(u) means the total weight of edges coming to u from vertices to which the
algorithm assigned 0. Some extra shorthand notation relevant in the case of our
algorithm for general graphs is defined in Section 5.

The online model

Definition 2. In the online MaxDiCut problem, an adversary chooses a graph
G(V, E) and an ordering of the vertices of V . Then, for each vertex u in this
order the adversary reveals to the algorithm win(u), wout(u) and the weights of
edges connecting u to previously revealed vertices. The algorithm then makes an
irrevocable decision to assign 0 or 1 to u and the process continues, until all of
G has been revealed.

Perhaps the detail of this definition which needs justification is why we demand
that the adversary reveal the total in-degree and out-degree each vertex will have
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in the final graph G, thus revealing some information about the future. Aside
from practical considerations (it could be argued that this is a more realistic
model for some applications) the main reason is that not revealing any such
information makes the problem impossible. Consider for example the setting
where the adversary does not reveal such information. So, when the first vertex
is given the algorithm must assign a value. If it picks 0 the adversary is free to
claim later that this vertex is a sink in G with many heavy edges going into
it, which are lost from the solution. Similarly, the adversary can respond to a 1
by revealing that the vertex is a source. This simple trick would be enough to
make the competitive ratio of any deterministic algorithm tend to ∞. That is
why revealing win(u) and wout(u) are necessary.

In the case of DAGs we restrict the setting a little bit more. Recall that the
edges of a DAG imply a partial ordering on its vertices. We demand that the
adversary must reveal the vertices of G in a way consistent with this partial
ordering. This eliminates the need to reveal win(u), since when this restriction is
followed the tails of all edges incoming to u must be revealed before u, therefore
the algorithm already has enough information to calculate win(u).

The motivation behind this restriction is once again single-pass algorithms. In
the case of DAGs it is quite likely that one would scan through the graph in the
order dictated by the directed edges. Moreover, this restriction seems natural
and may be interesting in its own right. Of course it should also be noted that,
as our results point out, this restriction does not have a huge impact on the
problem since we show a lower bound for this special case which is not very far
from the competitiveness of our algorithm even in the general case.

3 An Online Algorithm for MaxDiCut on DAGs

We present an algorithm (Algorithm 1 shown below) based on a weighted com-
parisons idea, leaving a parameter c > 1 to be fixed later to a value that will
achieve the best competitive ratio. After this optimization we will show a ratio
of 3

√
3

2 < 2.5981.

Algorithm 1. Weighted Comparison Online Algorithm
When a vertex u is revealed, compare wout(u) to cw0

in(u).

– If wout(u) > cw0
in(u) then assign 0 to u.

– Otherwise, assign 1 to u.

It is not hard to understand the motivation behind this algorithm, if one
considers the naive greedy algorithm which at every vertex compares w0

in(u),
which is the payoff that would be obtained by assigning 1, with wout(u), which
is the potential payoff of assigning 0. An adversary could easily fool this naive
algorithm into assigning a long string of consecutive 0s in a path, making its
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competitive ratio tend to ∞. However, in the algorithm we propose, we only
choose to assign 0 to a vertex when tempted by a payoff much larger (c times
larger) than what could be obtained by assigning 1. Even though the adversary
can still fool the algorithm into assigning a long string of consecutive 0s, it will
have to offer exponentially increasing edge weights to do so. Eventually, a vertex
will be encountered where the algorithm assigns 1, and the profit obtained by
doing so will (at least partially) outweigh the loss of edges that occured up to
that point.

Let us now provide a formal analysis of the algorithm’s performance to es-
tablish its competitive ratio. Suppose we are given a graph G(V, E), and let
(V0, V1) be the partition of V decided by the algorithm. Let Eij = {(u, v) ∈
E | u ∈ Vi, v ∈ Vj}. Thus, the cut produced by the algorithm has weight
SOL =

∑
e∈E01

w(e).
Consider the two subgraphs of G, G0(V0, E00) and G1(V, E01 ∪ E10 ∪ E11).

Let OPT be the size of an optimal cut of G and OPT0 (resp. OPT1) the size of
an optimal cut of G0 (resp. G1).

Lemma 1. OPT ≤ OPT0 + OPT1

We will compare SOL independently to OPT0 and OPT1. We use the follow-
ing Lemmas as intermediate steps (the proofs have been omitted due to space
constraints).

Lemma 2. cSOL ≥ OPT1

Lemma 3. SOL ≥ (c − 1)
∑

e∈E00
w(e)

Lemma 4. OPT0 ≤ c
c2−1SOL

Theorem 1. Algorithm 1 is (c + c
c2−1)-competitive.

Taking the derivative of c
c2−1 +c we find that a minimum is obtained for c =

√
3.

In that case the competitive ratio achieved is 3
√

3
2 .

The fact that the above analysis is tight for c =
√

3 will be confirmed in
Section 4 where it will be shown that this is in fact the best ratio achievable
by any algorithm. But before that, we could also give a simple example to show
that our analysis is tight for any c. First, let us point out that when looking
for such an example we may assume without loss of generality that in cases
where w0

in(u) = cwout(u) the algorithm assigns to u an arbitrary value chosen
by the adversary. This is because the adversary could easily adjust wout(u) by
±ε without affecting the size of the optimal solution significantly.

Consider a directed path with 2n edges and the vertices labeled 0, 1, . . . , 2n.
We give the edges weights w((i, i +1)) = ci. The algorithm assigns 0 to vertex 0
and then without loss of generality assigns 0 to all vertices until 2n− 2. Then it
assigns 1 to 2n−1 and 2n. The produced solution has weight w((2n−2, 2n−1)) =
c2n−2 = (c2)n−1. The optimal solution has weight c2n−1+c2n−3+c2n−5+. . .+c =
c (c2)n−1

c2−1 = c3

c2−1 (c2)n−1 − c
c2−1 .
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4 A 3
√

3/2 − ε Lower Bound

In this Section we show that the competitive ratio of 3
√

3/2 achieved by the
algorithm of Section 3 is essentially the best possible. We show this by giving a
strategy which the adversary can follow to force any deterministic algorithm’s
competitive ratio arbitrarily close to 3

√
3/2.

The construction we use is very simple: it is a directed path, similar to the
tight examples of the previous Section. However, now the edge weights are picked
so that any algorithm can be defeated. The adversary’s strategy is still to fool
the algorithm into assigning a long string of 0s thus worsening the competitive
ratio. But now the edge weights will eventually converge. We make use of the
following simple observation:

Lemma 5. If for some vertex w0
in(u) ≥ wout(u) then it is optimal to assign 1

to that vertex.

The adversary must find a sequence of edge weights for the path, call them
w0, w1, . . . , such that assigning a long string of 0s is inevitable for any algorithm
with a good competitive ratio. If the adversary can also make the sequence
of weights decrease at some point without violating this principle the previous
observation will complete the proof of a lower bound.

The above methodology is illustrated in the following Lemma.

Lemma 6. For a given number λ > 1, if the sequence defined by w0 = 1, w1 =
λ, w2 = λ2 − 1 and wi = λ(wi−1 − wi−3) is not always increasing, then no
deterministic online algorithm can achieve a ratio less than λ for MaxDiCut

on DAGs.

Proof. Suppose that for some i we have wi ≤ wi−1. The adversary will follow
this strategy: the graph used is a directed path with edge weights w0, w1, . . ..
While the algorithm has not yet assigned a 1 keep revealing vertices and set edge
weights according to the sequence wi. When the algorithm assigns 1 or when the
edge with weight wi is revealed, terminate the instance, that is reveal only the
other endpoint of the single outstanding edge and inform the algorithm that this
is the last vertex.

For this strategy to demonstrate a lower bound of λ it is sufficient to have
that for all k wk + wk−2 + . . . ≥ λwk−1. The left-hand side of this equation is
the optimal solution if we terminate after edge k (we will denote this by OPTk),
while wk−1 is the algorithm’s solution in that case (observe that we terminate
on the algorithm’s first 1 so the algorithm always picks exactly one edge in the
cut). Therefore, if this inequality holds for all k the competitive ratio will be at
least λ independent of the point where the instance was terminated.

Clearly, OPT1 = w1 = λw0 and OPT2 = w2 + w0 = λw1. Now, we can use
induction and we have OPTk = wk + OPTk−2 = λ(wk−1 − wk−3) + OPTk−2 ≥
λ(wk−1 −wk−3) + λwk−3 = λwk−1. Therefore, if the instance terminates at any
point, the competitive ratio is at least λ. Lemma 5 guarantees that the instance
will be terminated at i at the latest for any reasonable algorithm. �
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The question is for which λ the sequence wi decreases at some point and for
which it is always increasing. In order to answer this we would like to obtain a
closed form of wi. One way to obtain such a form is to solve the corresponding
equation x3 = λ(x2 − 1). If the roots of this equation are distinct, say r1, r2, r3
we get that wi = A1r

i
1 + A2r

i
2 + A3r

i
3 for some constants A1, A2, A3 determined

by w0, w1, w2.

Lemma 7. If λ < 3
√

3
2 the equation x3 = λ(x2−1) has three distinct roots. One

of them is real and belongs in (−1, 0) and the other two are complex.

Lemma 8. If λ < 3
√

3
2 there exists an i such that for the sequence w defined in

Lemma 6 we have wi ≤ wi−1.

Using Lemmata 6 and 8 we have the following result.

Theorem 2. No deterministic algorithm can achieve a competitive ratio of
3
√

3
2 − ε for any ε > 0 for the MaxDiCut problem on DAGs.

5 General Graphs

In this Section we show that a natural extension of the online algorithm for
DAGs of Section 3 results in a 3-competitive online algorithm for the case of
general digraphs.

Before we go on, let us first introduce some additional notation, which will be
needed in this case. Recall that in Section 3 we used the notation win(u), wout(u)
to refer to the total weight of edges incoming and outgoing from u respectively.
However, the online model we assumed in that case guaranteed that at the time
when a vertex u was revealed, the tails of its incoming edges had already been
revealed (and therefore assigned a value). Similarly, we knew that none of the
heads of edges coming out of u had been revealed yet at the time u was given.

In the online model for general graphs this is not necessarily the case. However,
we now make the assumption that whenever the adversary reveals a vertex, both
its total in-degree and its total out-degree are revealed. Therefore, we introduce
a shorter notation as follows: for a given vertex u and a specific assignment to all
the vertices revealed before u we will denote by C1(u) the certain payoff which
can be achieved by assigning 1 to this vertex. In other words, C1(u) is the total
weight of edges incoming to u with their tails already revealed and assigned 0.
Similarly, we denote by C0(u) the certain payoff of assigning 0, which is the total
weight of edges coming out of u whose heads have already been assigned 1. We
denote by P0(u), P1(u) the maximum additional payoff which can be achieved
by assigning 0 or 1 respectively to u. That is, P0(u) is the total weight of edges
outgoing from u to vertices not yet revealed, and P1(u) is the total weight of
edges incoming to u from such vertices.

Our proposed algorithm is Algorithm 2 (shown below). It is clear that using
this notation we would have in the online model for DAGs of Section 3 that
for all u, P0(u) = wout(u), P1(u) = 0, C1(u) = w0

in(u), C0(u) = 0. This new
notation will ease the analysis of our algorithm for general graphs.
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Algorithm 2. Doubling online algorithm for general graphs
When u is revealed calculate C0(u), C1(u), P0(u), P1(u).

– If C0(u) + P0(u)
2 > C1(u) + P1(u)

2 assign 0 to u.
– Otherwise, assign 1 to u.

Following our previous remark that in the model for DAGs ∀u, C0(u) =
P1(u) = 0 it is easy to see that, if restricted to DAGs, Algorithm 2 is exactly
Algorithm 1 with c = 2 (which implies that it would have a ratio of 8/3 for that
special case). Moreover, the intuition is essentially the same: give twice as much
weight to a certain payoff as you give to an uncertain one. The question is, what
is this algorithm’s competitive ratio for general graphs?

First, let us point out that Algorithm 2 is at most 4-competitive. This can be
seen if we compare its performance to the trivial randomized algorithm. (The
proof has been omitted due to space constraints)

Theorem 3. Let SOL be the solution produced by Algorithm 2 for a graph
G(V, E). Then SOL ≥ |E|

4 .

A competitive ratio of 4 immediately follows from Theorem 3. We will now show
that this can actually be improved to a ratio of 3.

Theorem 4. Algorithm 2 is 3-competitive.

Proof. Let SOL be the cut produced by the algorithm and OPT an optimal cut.
Once again we will gradually change OPT to SOL by bribing the adversary to
change the assignment for vertices on which OPT and SOL disagree. Then we
will bound the amount of bribing needed.

Number the vertices 1, 2, . . . , n in the order in which they were revealed. Let
OPT0, OPT1, . . . , OPTn be a sequence of cuts defined as follows: OPTi gives
the same assignment as SOL to the first i vertices and the same assignment as
OPT to the others. Therefore, OPT0 ≡ OPT and OPTn ≡ SOL.

Suppose that OPT and SOL agree on the assignment of some vertex i. Then
OPTi−1 ≡ OPTi.

Suppose that for some vertex i the optimal cut assigns 0 while the algorithm
assigned 1. Consider then the cut OPTi−1. From the edges incident on i the
cut OPTi−1 gets at most C0(i) + P0(i). The cut OPTi gets at least C1(i). The
cuts OPTi−1 and OPTi differ only in vertex i therefore we have OPTi−1 ≤
OPTi+C0(i)+P0(i)−C1(i). But the algorithm assigned 1 to i therefore, C0(i)+
P0(i)

2 ≤ C1(i) + P1(i)
2 ⇒ C0(i) − C1(i) ≤ P1(i)−P0(i)

2 . Using this we get that
OPTi−1 ≤ OPTi + P0(i)+P1(i)

2 .
Using similar arguments we can prove that in the symmetric case where the

optimal cut assigns 1 and the algorithm assigns 0 we again have OPTi−1 ≤
OPTi+

P0(i)+P1(i)
2 . Therefore, we have OPT = OPT0 ≤ OPTn+

∑n
i=1

P0(i)+P1(i)
2
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However, for a vertex i we have that P0(i) + P1(i) is the total weight of
edges whose first endpoint to be revealed is i. Therefore, taking the sum of
P0(i) + P1(i) for all vertices gives us exactly |E|, since then every edge’s weight
is counted exactly once (on its endpoint which was revealed first). Using also
Theorem 3 we have OPT ≤ SOL + |E|

2 ≤ 3SOL �

Even though it has been known for decades that the trivial randomized algorithm
is 4-competitive, to the best of our knowledge this is the first time that it has
been examined whether its greedy derandomization actually offers an improved
competitive ratio. We prove that it does, even in an online setting.

It should also be clear that, even though Algorithm 2 is a derandomization of
the trivial algorithm, Theorem 4 does not imply that the randomized algorithm
is also 3-competitive (it can be seen that it is in fact tightly 4-competitive by
taking a bipartite graph G(V1, V2, E) with all edges oriented from V1 to V2, so
that OPT = |E|). Quite interestingly, this is a case where derandomizing really
helps improve the guarantee on the algorithm’s performance.

Finally, let us point out that there is a simple example which demonstrates
that the analysis of Algorithm 2 is tight.

Theorem 5. There exists a graph G(V, E) for which the results of Theorems 3
and 4 are tight.

Proof. First, observe that without loss of generality we can assume that when
for some vertex C0(u) + P0(u)

2 = C1(u) + P1(u)
2 then the algorithm assigns to u

some arbitrary value chosen by the adversary. This is because simply by adding
a small ε to P0 or P1 the adversary can make the algorithm behave in either
way.

Now, the graph G we will use is a directed path on four vertices P4. We
label the vertices 1, 2, 3, 4 and set w((1, 2)) = w((2, 3)) = 1 and w((3, 4)) = 2.
The order in which the vertices are presented is 2, 1, 3, 4. When 2 is revealed,
without loss of generality, the algorithm assigns 0. So, the edge (1, 2) is lost
independent of the choice for 1. When 3 is revealed we have C0(3) = P1(3) = 0
and C1(3) = P0(3)

2 so again without loss of generality the algorithm assigns 1
and the edge (3, 4) is lost. Now SOL = 1 but OPT = 3 and |E| = 4. �

6 Conclusions and Further Work

In this paper we introduced a natural online setting for the study of MaxDiCut

and its restriction to DAGs. We completely solved the problem in DAGs for
deterministic algorithms by providing an algorithm and an essentially matching
lower bound. In addition, and perhaps more interestingly, we showed that the
intuition gained from this problem can help in the general case, by improving a
folklore result concerning the approximation ratio of the basic greedy algorithm
for general graphs.

Many other topics are worth considering. For the specific problem on DAGs
it would be interesting to consider randomized algorithms against an oblivious
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adversary. This would likely defeat our lower bound but it is not clear what
would be a better algorithm. For the general case, there is a small gap between
the competitiveness of our algorithm and the lower bound for DAGs. Could this
gap be closed? Finally, it would be interesting to see if and how any of the ideas
of this paper can be applied in the undirected case of the problem.
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Abstract. The problem of maintaining geometric structures for points
in motion has been well studied over the years. Much theoretical work
to date has been based on the assumption that point motion is con-
tinuous and predictable, but in practice, motion is typically presented
incrementally in discrete time steps and may not be predictable. We
consider the problem of maintaining a data structure for a set of points
undergoing such incremental motion. We present a simple online model
in which two agents cooperate to maintain the structure. One defines the
data structure and provides a collection of certificates, which guarantee
the structure’s correctness. The other checks that the motion over time
satisfies these certificates and notifies the first agent of any violations.

We present efficient online algorithms for maintaining both nets and
net trees for a point set undergoing incremental motion in a space of
constant dimension. We analyze our algorithms’ efficiencies by bounding
their competitive ratios relative to an optimal algorithm. We prove a
constant factor competitive ratio for maintaining a slack form of nets,
and our competitive ratio for net trees is proportional to the square of
the tree’s height.

1 Introduction

Motion is a pervasive concept in geometric computing. The problem of maintain-
ing discrete geometric structures for points in motion has been well studied over
the years. The vast majority of theoretical work in this area falls under the cate-
gory of kinetic data structures (KDS) [7]. KDS is based on the assumption that
points move continuously over time, where the motion is specified by algebraic
functions of time. This makes it possible to predict the time of future events, and
so to predict the precise time in the future at which the structure will undergo
its next discrete change. In practice, however, motion is typically presented in-
crementally over a series of discrete time steps by a black-box, that is, a function
that specifies the locations of the points at each time step. For example, this
black-box function may be the output of a physics integrator, which determines
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the current positions of the points based on the numerical solution of a system of
differential equations [1,12]. Another example arises in the use of Markov-chain
Monte-Carlo (MCMC) algorithms such as the Metropolis-Hastings algorithm [2]
and related techniques such as simulated annealing [10].

In this paper we consider the maintenance of two well known structures, nets
and net trees, for a set of moving points. Let P denote a finite set of points in
some (continuous or discrete) metric space M. Given r > 0, an r-net for P is
a subset X ⊆ P such that every point of P lies within distance r of some point
X , and no two points of X are closer than r. (We will actually work with a
generalization of this definition, which will present in Section 2.) Each point of
P can be associated with a covering point of X that lies within distance r. This
point is called its representative. We can easily derive a tree structure, by building
a series of nets with exponentially increasing radius values, and associating each
point at level i − 1 with its representative as parent at level i.

The net tree has a number of advantages over coordinate-based decomposi-
tions such as quadtrees. The first is that the net tree is intrinsic to the point
set, and thus the structure is invariant under rigid motions of the set. This is an
important consideration with kinetic point sets. Another advantage is that the
net tree can be defined in general metric spaces, because it is defined purely in
terms of distances. A number of papers have been written about improvements
to and applications of the above net-tree structure in metric spaces of constant
doubling dimension. (See, for example [11,8,4,6].) Note that the net tree is a
flexible structure in that there may be many possible choices for the points that
form the nets at each level of the tree and the assignment of points to parents.

Although there has been much research on maintaining geometric structures in
continuous contexts, such as KDS, there has been comparatively little theoretical
work involving efficiency of algorithms for incremental black-box motion. Gao
et al. [5] observe that their data structure (which is very similar to our net-tree
structure) can be updated efficiently in the black-box context, but they do not
consider the issue of global efficiency. A major issue here is the computational
model within which efficiency is to be evaluated. In the absence of any a priori
assumptions about the point motions, the time required to update the point
locations and verify the correctness of the data structure is already Ω(|P |). With
each time step the points could move to entirely new locations, thus necessitating
that the data structure be rebuilt from scratch. This need not always be the case,
however. It has been widely observed (see, e.g., [5,9,13]) that when the underlying
motion is continuous, and/or the time steps are small, the relative point positions
are unlikely to change significantly. Hence, the number of discrete structural
changes per time step is likely to be small. We desire a computational model
that allows us to exploit any underlying continuity in the motion to enhance
efficiency, without the strong assumptions of KDS.

We introduce such a computational model for the online maintenance of geo-
metric structures under incremental black-box motion. Our approach is similar
other models for incremental motion, such as the observer-tracker model of Yi
and Zhang [14] and the IM-MP model of Mount et al. [13]. Our model involves
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the interaction of two agents, an observer and a builder. The observer monitors
the motions of the points over time, and the builder is responsible for maintain-
ing the data structure. These two agents communicate through a set of boolean
conditions, called certificates, which effectively “prove” the correctness of the
current structure (exactly as they do in KDS). Based on the initial point posi-
tions, the builder constructs the initial structure and the initial certificates, and
communicates these certificates to the observer. The observer monitors the point
motion and, whenever it detects that a certificate has been violated, it informs
the builder which certificates have been violated. The builder then queries the
new locations the points, updates the data structure, and informs the observer
of any updates to the certificate set. An algorithm for maintaining a data struc-
ture in this model is essentially a communication protocol between the observer
and the builder. The total computational cost of an algorithm is defined to be
the communication complexity between these two agents. One advantage of this
model is that it divorces low-level motion issues from the principal algorithmic
issues involving the design of the net structure itself.

Our main results are efficient online algorithms for maintaining both nets and
net trees for a point set undergoing incremental motion. In each case, our al-
gorithm is allowed some additional slackness in the properties of the net to be
maintained. For example, while the optimal algorithm is required to maintain
all points within distance r of each net point, we allow our algorithm for nets to
maintain a covering distance of 2r for nets and 4r for net trees. (See Section 2
for the exact slackness conditions.) Because our principal motivation is in main-
taining net trees under motion, we impose the assumption that the input points
to our r-net algorithm arise from an (r/2)-net.

We establish the efficiency of our online algorithms by proving an upper bound
on the competitive ratio on the communication cost of our algorithm, that is, the
worst-case ratio between the communication costs of our algorithm (subject to
the slackness conditions) and any other algorithm (without the slackness). The
exact results are presented in Sections 3 and 4. Assuming that the points are in a
space of constant doubling dimension (e.g., Euclidean of constant dimension), we
achieve a competitive ratio of O(1) for the maintenance of a net and O(log2 Φ)
for the net tree, where Φ is the aspect ratio of the point set (the ratio between
the maximum and minimum interpoint distances). Our online algorithm makes
no a priori assumptions about the motion of the points. The competitive ratio
applies even if the optimal algorithm has full knowledge of point motion, and
it may even have access to unlimited computational resources. The constant
factors hidden by the asymptotic notation grow exponentially in the doubling
dimension of the underlying metric space.

2 Preliminaries

We begin with some basic definitions, which will be used throughout the paper.
Let M denote a metric space, with associated distance function dist:M×M →
R. (This means that dist is symmetric, positive definite, and satisfies the triangle



Maintaining Nets and Net Trees under Incremental Motion 1137

inequality.) Throughout, we let P be a finite subset of points in M. For a point
p ∈ M and a real r ∈ R+, let b(p, r) = {q ∈ M : dist(p, q) < r} denote the
open ball of radius r centered at p. The doubling constant of the metric space is
defined to be the minimum value λ such that every ball b in M can be covered
by at most λ balls of at most half the radius. The doubling dimension of the
metric space is defined as d = log2 λ. Throughout, we assume that M is a space
of constant doubling dimension.

Consider a point set P in M. Given r ∈ R+, an r-net for P [8] is a subset
X ⊆ P such that,

max
p∈P

min
x∈X

dist(p, x) < r and min
x,y∈X

x �=y

dist(x, y) ≥ r.

The first constraint is called the covering constraint, and the second is called the
packing constraint. Each point p ∈ P may be associated with a representative
x ∈ X (denoted by rep(p)) lying within distance r. No two representatives are
closer than r. Note that the choice of representative is not necessarily unique.

In order to establish our competitive ratio, we will need to relax the r-net
definition slightly. Given constants α, β ≥ 1, an (α, β)-slack r-net is a subset
X ⊆ P of points such that,

max
p∈P

min
x∈X

dist(p, x) < α r and ∀x ∈ X, |{X ∩ b(x, r)}| ≤ β.

Thus, we allow each point to be farther from the closest net point by a factor
of α, and we allow net points to be arbitrarily close to each other, but there
cannot be more than β points within distance r of any net point. Clearly, an
(α, β)-slack r-net is an (α′, β′)-slack r-net for α′ ≥ α and β′ ≥ β. When we wish
to make the distinction clearer, we will use the term strict r-net to denote the
standard definition, which arises as a special case when α = β = 1.

Before introducing net trees, we first introduce the concept of the aspect ratio
(or spread) of a kinetic point set P . Consider two positive reals δ and Δ, which
denote the minimum and maximum distances, respectively, between any two
points of P throughout the course of the motion. We define Φ(P ) to be Δ/δ. By
scaling distances, we may assume that δ = 1.

A net tree of P is defined as follows. The leaves of the tree consists of the
points of P . Note that by our assumption that δ = 1, these form a 1-net of
P itself, which we denote by P (0) = P . The tree is based on a series of nets,
P (1), P (2), . . . , P (m), where m = �log2 Φ�, and P (i) is a (2i)-net for P (i−1). Ob-
serve that |P (m)| = 1. Recall that, for each p ∈ P (i−1), there is a point x ∈ P (i),
called its representative, such that dist(p, x) ≤ 2i. We declare this point to be
a parent of p, which (together with the fact that |P (m)| = 1) implies that the
resulting structure is a rooted tree. An easy consequence of the packing and
covering constraints is that the number of children of any node of this tree is a
constant (depending on the doubling constant of the containing metric space).
Our definition is based on the simplest forms of net tree [5,11], in contrast to
more sophisticated forms given elsewhere [8,4,6].
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This definition can be easily generalized to assume that the nets forming each
level of the tree are (α, β)-slack nets. We refer to such a tree as an (α, β)-slack
net tree. Assuming that α and β are constants, this relaxation will affect only
the constant factors in the asymptotic complexity bounds.

Because our ultimate interest is in maintaining net trees under incremental
motion, it will be convenient to impose an additional constraint on the points P .
In a net tree, the input to the ith level of the tree is a (2i−1)-net, from which we
are to compute a 2i net. Thus, in our computation of an r-net, we will assume
that the point set P is an (r/2)-net.

Recall that we interested in maintaining points under incremental black-
box motion. More formally, we assume that the points change locations syn-
chronously at discrete time steps T = {0, 1, . . . , tmax}. Given a point p ∈ P and
t ∈ T , we use p to refer to the point in the symbolic sense, and (when time is
significant) we use pt to denote its position at time t.

Let us now consider the certificates used in the maintenance of an r-net. In
order to maintain an (α, β)-slack r-net, the observer must be provided enough
information to verify that the covering and packing constraints are satisfied. At
any time t, let Pt denote the current point set, and let Xt denote the current slack
net. We assume the incremental maintenance of any net is based on the following
two types of certificates, where the former validates the covering constraint and
the latter validates the packing constraint.

Assignment Certificate(p, x): For p ∈ P and x ∈ X , rep(p) = x, and there-
fore at each time t, dist(pt, xt) < αr.

Packing Certificate(x): For x ∈ X , at each time t we have |Xt∩b(xt, r)| ≤ β.

The first condition requires constant time to verify. The second condition
involves answering a spherical range counting query. Observe that O(|P |) cer-
tificates suffice to maintain the net.

3 Incremental Maintenance of a Slack Net

In this section we present an online algorithm for maintaining an r-net for a
set of points undergoing incremental motion, and we provide an analysis of
its competitive ratio. Given our metric space M, let β = β(M) denote the
maximum number of balls of radius r that can overlap an arbitrary ball of
radius r, such that the centers of these balls are at distance at least r from each
other. We shall show in Lemma 1(iii) below that β ≤ λ2 = 4d, where λ is the
doubling constant of M, and d is the doubling dimension of M. The main result
of this section is as follows.

Theorem 1. Consider any metric space M of constant doubling dimension, and
let β = β(M) be as defined above. There exists an incremental online algorithm,
which for any real r > 0, maintains a (2, β)-slack r-net for any point set P under
incremental motion in M. Under the assumption that P is a (2, β)-slack (r/2)-
net, the algorithm achieves a competitive ratio of at most (βλ3 + 2)(β + 2) =
O(λ7) = O(1).
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The algorithm begins by inputting the initial placements of the points, and it
communicates an initial set of certificates to the observer. (We will discuss how
this is done below.) Recall that the observer then monitors the point motions over
time, until first arriving at a time step t when one or more of these certificates
is violated or when a point of P is explicitly inserted or deleted. It then wakes
up the builder and informs it of the current event.

Our algorithm maintains the points of the slack r-net, which we denote by
X , and the assignment of each point p ∈ P to its representative rep(p) ∈ X . For
each point p ∈ P , we maintain a subset cand(p) ⊆ X , called the candidate list.
Before describing the update process, we present the following utility operations.

Reassign(p): If cand(p) 
= ∅, repeatedly extract elements from cand(p) until
finding a candidate x ∈ X that lies within distance 2r of p. If such a candidate
is found, set rep(p) ← x, and create a new assignment certificate involving
p and x. If no such candidate exists, invoke Create-net-point(p).

Create-net-point(p): We assume the precondition that cand(p) = ∅. Add p
to the current net X . Set rep(p) ← p. For each point p′ ∈ P \ {p} such that
dist(p′, p) < 2r, add p to cand(p′). Finally, create a packing certificate for p.

Remove-net-point(x): First, x is removed from both X and all the candidate
lists that contain it. Remove any packing certificate involving x. For all p ∈ P
such that rep(p) = x, invoke Reassign(p).

Note that the reassignment operation generates one new assignment certificate
(for p) and may create one packing certificate if p is added to X . Let us now
consider the possible actions of the builder, in response to any event (point
insertion or deletion) or a certificate violation (assignment or packing).

Insert-point(p): Set cand(p) to be the set of net points x ∈ X such that
dist(p, x) < 2r. Then invoke Reassign(p).

Delete-point(p): All certificates involving p are removed. If p ∈ X , then invoke
Remove-net-point(p). Finally, remove p from P .

Assignment-certificate-violation(p): Let x = rep(p). Remove x from p’s
candidate list and invoke Reassign(p).

Packing-certificate-violation(x): Invoke Remove-net-point(x), for each x ∈
X ∩ b(x, r). (This results in at least β + 1 removals.)

Observe that the processing of any of the above events results in a constant
number of changes to the certificate set, and hence in order to account for the
total communication complexity, it suffices to count the number of operations
performed.

Initially, X is the empty set, and we start the process off by invoking the
insertion operation for each p ∈ P , placing it at its starting location. Observe
that after the processing of each assignment- and packing-certificate violation,
the condition causing the violation has been eliminated, and therefore it is easy
to see that the above protocol maintains a (2, β)-slack r-net for P .

Recall that P denotes the point set, which is in motion of some finite time
period. For any time t, let Nt(o) denote the optimal neighborhood consisting
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of the points of P that have o assigned as their representative by the optimal
algorithm. We will show that each of the operations performed by our algorithm
can be charged to some operation of the optimal algorithm, in such a manner
that each optimal operation is charged a constant number of times.

We first present some geometric preliminaries, which will be useful later in
the analysis. Recall that λ denotes the doubling constant of the metric space.
Due to space limitations, the proofs of the lemmas appear in the full version of
this paper [3].

Lemma 1. (i) Given any (α, β)-slack r-net X, at most βλlg�2R/r� points of
X can lie within any ball of radius R.

(ii) Let P be an (α, β)-slack (r/2)-net, and let X be an (α, β)-slack r-net for
P . Then the number of points of X (respectively, P ) that lie within a ball
of radius 2kr is at most βλk+1 (respectively, βλk+2).

(iii) Let Z be a set of balls of radius r whose centers are taken from a (strict) r-
net. Then any ball b of radius r (not necessarily in Z) can have a nonempty
intersection with at most λ2 balls of Z.

Given the motion sequence for the point set P , let n denote the total number of
operations performed by our online slack-net algorithm, and let n∗ denote the
total number of operations processed by any correct (e.g., the optimal) algorithm.
In order to establish the competitive ratio, it suffices to show

n ≤ (βλ3 + 2)(β + 2)n∗. (1)

Let n∗A, n∗C , n∗R, n∗I , and n∗D, and denote, respectively, the total number of
assignments, net point creations, net-point removals, point insertions, and point
deletions performed by the optimal algorithm. Let nA, nC , nR, nI , and nD denote
corresponding quantities for our slack-net algorithm. Thus, we have n = nA +
nC + nR + nI + nD.

First, we bound the total number of assignments in terms of the number of
point insertions and slack-net creations. Changes in assignment in our algorithm
occur as a result of running of the reassignment operator. Since the assignment
is made to some point of the candidate list, it suffices to bound the total number
of insertions into candidate lists. This occurs when points are inserted and when
net points are created.

Lemma 2. nA ≤ βλ3nC + βλ2nI .

Since point insertions and deletions must be handled by any correct algorithm,
we have nI = n∗I and nD = n∗D. The total number of net point removals (nR)
cannot exceed the total number of net point creations (nC). Thus, it suffices to
bound nC , the total number of slack-net point creations.

Before bounding nC , we make a useful observation. Whenever a net point x
is created, it adds itself to the candidate list of all points that lie within distance
2r. Since (by strictness) the diameter of any optimal neighborhood is at most
2r, it follows that, in the absence of other events, the creation of net-point x
within an optimal neighborhood inhibits the creation of any other net points
within this neighborhood. Given t ≤ t′, let (t, t′] denote the interval [t + 1, t′].
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Lemma 3. Let o denote an optimal net point. Suppose that no optimal assign-
ments occur to the points of N(o) during the time interval (t, t′], x ∈ N(o) is
added to X at time t, and x is not removed from X throughout (t, t′]. Then, for
any time in (t, t′] no point p ∈ N(o) will be added to X.

This implies that, without optimal assignments, each optimal net point o can
have at most one corresponding slack net point x ∈ N(o). Furthermore, if x
is removed from X (e.g., as the result of a packing-certificate violation), only
one of the points of N(o) may replace it as a slack-net point. When a net point
within an optimal neighborhood is created to replace a removed net point, we
call this a recovery. Whenever a packing-certification violation occurs, at least
β+1 slack-net points are removed. The following lemma implies that the number
of recovered net points is strictly smaller.

Lemma 4. The number of net points recovered as a result of the processing of
a packing-certificate violation is at most β.

We say that an optimal neighborhood N(o) is crowded (at some time t) if |Nt(o)∩
Xt| ≥ 2. Our next lemma states that whenever a packing-certificate violation
occurs, at least two of removed net points lie in the same crowded neighborhood.

Lemma 5. Consider a packing-certificate violation which occurs in the slack
net but not within the optimal net, and let X ′ ⊆ X denote the net points that
have been removed as a result of its handling. Let O′ denote a subset of O of
overlapping neighborhoods, that is, O′ = {o | N(o)∩X ′ 
= ∅}. Then, there exists
o ∈ O′ such that |N(o) ∩ X ′| ≥ 2.

The handling of the packing-certificate violation removes the points of X ′, and by
Lemma 3, this optimal neighborhood will recover at most one net point. Thus,
in the absence of other effects (optimal reassignment in particular) the over-
all crowdedness of the system strictly decreases after processing each packing-
certificate violation. Intuitively, crowdedness increases whenever a point of the
slack net is moved from one optimal neighborhood to another. But such an event
implies that the optimal algorithm has modified an existing assignment. We can
therefore charge each slack-net point creation to such an optimal reassignment.

We summarize that above analysis to obtain the following bound.

Lemma 6. nC ≤ (β + 2) n∗A + n∗C + n∗D.

The proof of Theorem 1 follows by combining the observations of this section
with Lemmas 2 and 6.

4 Incremental Maintenance Algorithm for Net Tree

The main result of this section is presented below. In contrast to the results of
the previous section, the slackness parameter α in the net increases from 2 to 4
and the competitive ratio increases by a factor of O(λh2). Recall from Section 3
that β = λ2.
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Theorem 2. Consider any metric space M of constant doubling dimension.
There exists an online algorithm, which maintains a (4, β)-slack net tree for
any point set P under incremental motion in M. The algorithm achieves a
competitive ratio of at most (βλ4 + βλ3 + 4)(β + 3)h2 = O(λ8h2) = O(h2).

Intuitively, our algorithm for maintaining the net tree is based on applying the
algorithm of the previous section to maintain the net defining each level of the
tree. Creation and removal of net points at level will result in point insertions
and deletions at other levels of the tree. Let O(i) and X(i) denote nets at level i
of the tree generated by (strict) optimal algorithm and our slack-net algorithm,
respectively. It will be convenient to use P (i) as a pseudonym for X(i−1).

The competitive analysis of the previous section was based on the relationship
between slack-net points and neighborhoods of the optimal net. However, except
at the leaf level, the points of P (i) need not reside in level i of the optimal net tree.
Consider an optimal net point o ∈ O(i). We define the optimal neighborhood,
still denoted by N(o), to be the set of points of P lying in the leaves of the tree
that are descended from o. Because of the exponential decrease in the radius
values, it is easy to see that the descendants of o lie within distance of o of
2i + 2i−1 + · · ·+ 1 < 2i+1 = 2ri. Thus, the diameter of N(o) is at most 4ri. This
implies that, if we choose any point x ∈ N(o) to be in our (4, β)-slack net, it can
be used to cover all the points of the optimal neighborhood.

Let us now consider the operations performed by our algorithm at level i. Each
operation is defined in terms of the analogous single-net operation of Section 3
applied to the points at this level of the net tree. In each case the operation may
cause events to propagate to higher levels of the tree. We begin by describing a
few utility operations. Throughout i denotes the tree level at which the operation
is being applied.

Tree-reassign(p, i): Invoke Reassign(p) on X(i), but use Tree-create-net-point
at level-i (rather than Create-net-point).

Tree-create-net-point(p, i): Invoke Create-net-point(p) on X(i), with one dif-
ference. The point p is added to the candidate lists of points within distance
4ri (rather than 2ri). Invoke Tree-insert-point(p, i + 1).

Tree-remove-net-point(x, i): First, invoke Remove-net-point(x) on X(i), and
then invoke Tree-delete-point(x, i + 1).

With the aid of these utility operations, we now present the actions taken by
the builder in response to the various events.

Tree-insert-point(p, i): Invoke Insert-point(p) on P (i), but with the following
change. Set cand(p) to be the set of net points x ∈ X(i) such that dist(p, x) <
4ri (rather than 2ri).

Tree-delete-point(p, i): Invoke Delete-point(p) on P (i). If p ∈ X(i), invoke
Tree-remove-net-point(p, i).

Tree-assignment-certificate violation(p, i): Invoke the single-net assign-
ment certificate violation for p on P (i), but use Tree-reassign(p, i) (rather
than Reassign(p)).
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Tree-packing-certificate-violation(x, i): Invoke the single-net packing cer-
tificate violation on X(i), but use Tree-remove-net-point(x, i) (rather than
Remove-net-point(x)).

As with single-net operations, each operation may induce addition certificate
violations. These violations are stored in a priority queue, and violations are first
applied to the lower levels of the tree and then propagate upwards.

Due to space limitations, we have omitted the competitive analysis for above
the net tree algorithm. The analysis appears in the full version of the paper [3].
The analysis involves showing that each operation performed by our algorithm
can be charged to some operation performed by the optimal algorithm, such that
each optimal operation is charged at most O(h2) times, where h is the height of
the tree.
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Abstract. Multicore computing is fast becoming the norm. Improving parallel
programming productivity without compromising performance on multicores is
a serious challenge facing research community and systems vendors. Towards
this end, efficient run-time scheduling of parallel programs helps programmer by
dynamically mapping tasks onto processors and scheduling them in appropriate
order. Distributed scheduling of parallel computations on multiple places1 while
ensuring low time and message complexity in bounded space is a very challeng-
ing problem. We attempt to address this challenge for hybrid parallel computa-
tions which contain tasks that have pre-specified affinity to a place and also tasks
that can be mapped to any place in the system. This paper presents online dis-
tributed scheduling algorithms for hybrid parallel computations assuming both
unconstrained and bounded space per place. We also present the time and mes-
sage complexity for distributed scheduling of hybrid computations. To the best of
our knowledge, this is the first time distributed scheduling algorithms for hybrid
parallel computations have been presented and analyzed for time and message
bounds under both unconstrained space and bounded space.

Keywords: Work Stealing; Scheduling; Multithreaded Computation; Algorithm.

1 Introduction

Multicore computing is fast becoming the norm. Improving parallel programming pro-
ductivity without compromising performance on multicores is a serious challenge fac-
ing research community and systems vendors. Towards this end, efficient run-time
scheduling of parallel programs helps programmer by dynamically mapping tasks onto
processors and scheduling them in appropriate order. The DARPA HPCS2 program is
geared towards developing languages and run-time systems that increase programmer
productivity. These include X10 [1], Chapel3 and Fortress4 which are based on parti-
tioned global address space (PGAS5) paradigm. These languages have in-built support
for initial placement (mapping of tasks to places) of parallel programs and therefore

1 Place is a group of processors with shared memory.
2 www.highproductivity.org
3 http://chapel.cs.washington.edu
4 http://research.sun.com/projects/plrg
5 http://x10-lang.org/
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data locality comes implicitly with the programs. We refer to activities(threads) that
have pre-specified placement as affinity annotated activities. Further, there are activities
(threads) in the parallel program that can be run on any place. We call such activities
anyplace activities. Parallel computations that have both affinity annotated activities
and anyplace activities are referred to as hybrid parallel computations. The run-time
system needs to provide online distributed scheduling of large hybrid parallel computa-
tions on many-core and massively parallel architectures.

The two distributed scheduling problems we address are as follows: Given, (a) An in-
put hybrid computation DAG that represents a parallel computation with fine to medium
grained parallelism. It is assumed to have no logical deadlocks due to dependencies; (b)
A cluster of n SMPs (each SMP6 also referred to as place, has fixed number(m) of pro-
cessors and memory) as the target architecture on which to schedule the computation
DAG. For both problems one needs to map the anyplace activities onto places and gen-
erate a schedule for all the nodes of the computation DAG in an online and distributed
fashion. Specifically, for the first problem we assume that the input is a strict (section 2)
computation DAG and there is unconstrained(sufficient) space per place. Here, we need
to design a distributed scheduling algorithm that minimizes the time and message com-
plexity. For the second problem we assume that the input is a terminally strict(section 2)
parallel computation DAG and the space per place is bounded. Here, the aim is to ensure
physical (due to cyclic resource dependency) deadlock free execution while keeping low
time and message complexity for execution.

Scheduling of dynamically created tasks for shared memory multi-processors has
been a well studied problem. The work on Cilk [2] promoted the strategy of random-
ized work stealing. Here, a processor that has no work (thief ) randomly steals work
from another processor (victim) in the system. [2] proved efficient bounds on space
(O(P · S1)) and time (O(T1/P + T∞)) for scheduling of fully-strict (section 2) com-
putations in an SMP platform; where P is the number of processors, T1 and S1 are the
time and space for sequential execution respectively, and T∞ is execution time on infi-
nite processors. [3] analyzed time complexity (O(T1/P + T∞)) for scheduling general
parallel computations on SMP platform but does not consider space or message com-
plexity bounds. [4] considers data locality oriented work stealing in an SMP but does
not provide time complexity analysis.

[5] considers work-stealing algorithms in a distributed-memory environment, with
adaptive parallelism and fault-tolerance. Here task migration was entirely pull-based
(via a randomized work stealing algorithm) hence it ignored affinity and also didn’t
provide any formal proof for the deadlock-freedom or resource utilization properties.
The work in [6] described a multi-place(distributed) deployment for parallel compu-
tations for which initial placement based scheduling strategy is appropriate. A multi-
place deployment has multiple places connected by an interconnection network where
each place has multiple processors connected as in an SMP platform. [6] also provided
a scheduling strategy based on initial placement and proved space bounds for physical
deadlock free execution of terminally strict (section 2) computations. It resorted to a de-
generate mode called Doppelgänger mode to prevent physical deadlocks due to cyclic
resource dependency. The computation did not respect affinity in this mode and no time

6 Symmetric MultiProcessor: group of processors with shared memory.
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or communication bounds were provided. Also, the aspect of load balancing was not
addressed. [7] considers affinity driven distributed scheduling of multi-place parallel
computations with physical deadlock freedom (using distributed deadlock avoidance
strategy). It provides time and message complexity lower and upper bounds and dead-
lock freedom proof but the algorithms and proofs are limited to affinity driven activ-
ities and it assumes same distances between places on the cluster. Here, the assump-
tion of all activities to be affinity driven forces the programmer to ensure load-balance
across places which reduces productivity and performance especially when dynamic
load-balancing is needed.

In this paper, we relax this assumption by additionally allowing anyplace activities
in the input hybrid computation DAG. This generalization allows more parallel appli-
cations to be expressed easily by the programmer. Also, we design novel distributed
scheduling algorithms that incorporate inter-place prioritized random work stealing to
provide automatic dynamic load balancing across places. It is proved that with suitable
choice of probability distribution, the prioritized random work stealing across places is
efficient. Further, it leads to low average communication cost when the distances be-
tween the places are different (e.g. 3D torus interconnect). This paper leverages the dis-
tributed deadlock avoidance strategy for deadlock free execution and time and message
complexity proofs in [7] for efficient scheduling of hybrid parallel computations. To the
best of our knowledge this is the first work on distributed scheduling algorithms for hy-
brid parallel computations in a multi-place setup for both unconstrained and bounded
space. Our main contributions are:

– We present an online multi-place distributed scheduling algorithm for strict multi-
place hybrid parallel computations assuming unconstrained (sufficient) space per
place. This algorithm incorporates (a) intra-place work stealing, (b) remote place
work pushing for affinity annotated activities and (c) prioritized random work steal-
ing across places for anyplace activities. We show that prioritized random stealing
across places is efficient. We also present the time and message complexity bounds
of the scheduling algorithm.

– For bounded space per place, we present a novel distributed scheduling algorithm
for terminally strict multi-place hybrid computations with provable physical dead-
lock free execution.

2 System and Computation Model

The system on which the computation DAG is scheduled is assumed to be cluster of
SMPs connected by an Active Message Network. Each SMP is a group of processors
with shared memory. Each SMP is also referred to as place in the paper. Active Mes-
sages ((AM)7 is a low-level lightweight RPC(remote procedure call) mechanism that
supports unordered, reliable delivery of matched request/reply messages. We assume
that there are n places and each place has m processors(also referred to as workers).
Each place also has one processor called interface processor that deals with interac-
tion between the places during remote pushing or remote stealing of activities. The

7 Active Messages defined by the AM-2: http://www.lrr.in.tum.de/ weissc/am.html
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Fig. 1. (a) Hybrid Multi-Place Computation Dag. (b) Distributed Scheduling.

interconnection network connecting the places(SMPs) can in general provide
different distances (latencies) between the places such as 3D torus interconnect. Our
scheduling algorithm considers this asymmetry in distances between places to opti-
mize performance.

The parallel computation, to be dynamically scheduled on the system, is assumed
to be specified by the programmer in languages such as X10 and Chapel. To describe
our distributed scheduling algorithms, we assume that the parallel computation has a
DAG(directed acyclic graph) structure and consists of nodes that represent basic op-
erations like and, or, not, add and others. There are edges between the nodes in the
computation DAG (Fig. 1(a)) that represent creation of new activities (spawn edge),
sequential execution flow between nodes within a thread/activity (continue edge) and
synchronization dependencies (dependence edge) between the nodes. In the paper we
refer to the parallel computation to be scheduled as the computation DAG. At a higher
level the parallel computation can also be viewed as a computation tree of activities.
Each activity is a thread (as in multi-threaded programs) of execution and consists of a
set of nodes (basic operations). Each activity is either assigned to a specific place (called
AF activity) or, can be executed on any place (called AP activity). An AF activity shall
be executed on the assigned place only. Such computation is called hybrid multi-place
computation and DAG is referred to as hybrid multi-place computation DAG (Fig. 1(a):
v1..v20 denote nodes, T1..T6 denote activities and P1..P3 denote places).

The structure of dependencies between the nodes can vary depending on the input
parallel computation. In fully-strict and strict computations the dependencies can go
from a node to its immediate parent and to any of its ancestors in the computation DAG,
respectively. In a terminally strict computation, introduced in [6] and shown in Fig. 1(a),
the dependencies arise due to an activity waiting for the completion of its descendants.
Every dependency edge, therefore, goes from the last instruction of an activity to one
of its ancestor activities with the following restriction: In a subtree rooted at an activity
called Γr, if there exists a dependence edge from any activity in the subtree to the
root activity Γr, then there cannot exist any dependence edge from the activities in the
subtree to the ancestors of Γr. A terminally strict multi-place computation is defined as
a terminally strict computation where each activity has an affinity to a place.

2.1 Useful Notations

The set of places is denoted by P = {P1, · · · , Pn}. The set of workers at place Pi,
is denoted by {W 1

i , W 2
i ..Wm

i }. S1 denotes the space required by a single processor
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execution schedule. The size in bytes of the largest activation frame in the computa-
tion is denoted by Smax. If node u enables node v then we place an edge, referred as
enable edge from u to v. The tree formed over all nodes with enable edges is referred
to as enabling tree [3]. depth(u) denotes the distance of node u from the root in the
enabling tree. The root node is assumed to be at depth 0. T∞,n denotes the execution
time of the computation DAG over n places with infinite processors at each place. T k

∞
denotes the execution time for activities at place Pk using infinite processors. Note that,
T∞,n ≤

∑
1≤k≤n T k

∞. T k
1 denotes the minimum time taken by a single processor for

the activities assigned to place k. Dmax denotes the maximum depth of the computation
tree in terms of number of activities. The depth of an activity is defined as the distance
from the root activity in the computation tree.

3 Distributed Scheduling in Unconstrained Space

Consider a strict multi-place hybrid computation DAG. During execution, the computa-
tion DAG unfolds in an online fashion in a breadth-first manner across places when the
AF activities are pushed onto their respective remote places and when AP activities are
stolen from remote places. Stealing work from remote places helps in load balancing
across places. Within a place, the online unfolding of the computation DAG happens in
a depth-first manner to enable efficient space and time execution. Within a place ran-
domized work-stealing (referred as local stealing) of AF or AP activities, is enabled to
allow load-balanced execution. If the worker fails to obtain activities using local steals
then it tries to steal AP activities from other places in a distance prioritized random
fashion (referred as remote stealing). Here, the remote place is selected randomly us-
ing a probability distribution that prefers closer places over farther places. This helps
in reducing the communication cost associated with remote stealing on a cluster where
the distances between the places are different (such as 3D torus interconnect). Since
sufficient space is guaranteed to exist at each place, physical deadlocks due to lack of
space cannot happen in this algorithm.

3.1 Algorithm Design

Each place maintains one Fresh Activity Buffer (FAB) which is managed by the inter-
face processor at that place. An activity that has affinity for a remote place is pushed
into the FAB at that place. Each worker at a place has: (a) an APR Deque that contains
anyplace ready activities, (b) an AFR Deque that contains affinity annotated ready ac-
tivities and (c) Stall Buffer that contains stalled activities (refer Fig. 1(b)). The FAB at
each place as well as the AFR Deque and APR Deque at each worker are implemented
using concurrent deque data-structure. Each place also maintains a Worker List Buffer
(WLB) that is a list of workers that have anyplace activities ready to be stolen. WLB
is implemented as a concurrent linked list and is maintained by the interface processor.
WLB aids in remote stealing where the remote workers which attempt to steal activities
from this place get information about available workers for stealing from WLB. The
distributed scheduling algorithm is given in Fig. 2.
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At any step, an activity A at the rth worker (at place i) W r
i , may perform following actions:

1. Spawn:
(a) A spawns activity B at place,Pj , i �= j: A sends AM(B) (active message for B) to the interface processor

at the remote place. Since, the remote place, Pj , is guaranteed to have memory for activity B, it is
successfully inserted in the FAB at Pj and A continues execution (Fig. 1(b)).

(b) A spawns B locally: B is successfully created and starts execution whereas A is pushed into the bottom
of the APR Deque if A is an anyplace activity else push A into the bottom of the AFR Deque.

2. Terminates (A terminates): The worker at place Pi, W r
i , where A terminated, picks an activity from the

bottom of the AFR Deque for execution. If none available in its AFR Deque, then it picks activity from the
bottom of APR Deque. If none obtained then same as Empty Deque (case 3) below.

3. Empty Deque: Worker W r
i has both AFR Deque and APR Deque as empty.

(a) Local Stealing: Worker attempts stealing from the top of other local workers’ AFR Deque or APR Deque.
If successful, start execution of stolen activity and update WLB, else attempt pick from FAB.

(b) Pick from FAB: Pick from FAB at place Pi . If successful start execution of new activity and update FAB,
else attempt remote stealing.

(c) Remote Stealing: Worker attempts to steal from remote place chosen randomly, Pj . W r
i send remote

steal request to interface processor at Pj . Interface processor looks at the WLB at place Pj and attempts
local steal of anyplace activity from available worker, W s

j . If this succeeds it passes this stolen activity
to the worker, W r

i , which requested remote steal and updates WLB at Pj . W r
i starts execution of stolen

anyplace activity (Fig. 1(b)). If remote steal fails (no available anyplace activity) then repeat from start
Empty Deque (case 3).

4. Stalls (A stalls): An activity may stall due to dependencies in which case it is put in the stall buffer in a stalled
state. Then same as Terminates (case 2) above.

5. Enables (A enables B): The termination of an activity A may enable a stalled activity B in which case the
state of B changes to enabled and it is pushed onto the top of the APR Deque if it is an anyplace activity else
it is pushed on top of the AFR Deque.

Fig. 2. Distributed Scheduling Algorithm

3.2 Time Complexity Analysis

The detailed time complexity analysis using potential function on ready nodes in the
system follows as in [3] [7] . In this section, we give a brief intuitive explanation of
time and message complexity. Our unique contributions are (a) proof that prioritized
random inter-place work stealing is efficient using suitable probability density function,
(b) proof of the lower and upper bounds of time complexity and message complexity for
the multi-place distributed scheduling algorithm presented in section 3.1 that includes
(1) intra-place work stealing, (2) remote-place work stealing and (3) remote place
affinity driven work pushing.

Below, throw represents an attempt by a worker(thief ) to steal an activity. It can
be an intra-place throw when the activity is stolen from another local worker(victim),
or remote-place throw when it is stolen from a remote place. For potential function
based analysis, each ready node u is assigned a potential 32w(u)−1 or 32w(u) depending
upon whether it is assigned for execution or not (w(u) = T∞,n − depth(u)). The total
potential of the system at step i is denoted by φi and φi(Di) denotes potential of all
APR Deques and AFR Deques that have some ready nodes.

Prioritized Random Inter-Place Work Stealing. We prove that distance-prioritized
inter-place work stealing works efficiently with suitable choice of probability distribu-
tion across places. Consider a 2D torus interconnect across places. Let the place where
a processor attempts to steal be denoted by the start place. The places around the start
place can be viewed as rings. The rings increase in size as we move to rings at increas-
ing distance from the start place, i.e. there are more places in a ring farther away from
the start place than the ring closer to the start place. (refer Fig. 3). In a remote steal
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Fig. 3. 2D Torus with rings of places

attempt from the start place, the places on the same ring are chosen with equal proba-
bility. This probability decreases with increasing ring distance from the start place but
the total probability of choosing a processor over all processors across all places should
be equal to 1. In order to model this scenario, consider a generalized Balls and Weighted
Bins game where P balls are thrown independently but non-uniformly at random into P
bins. We derive an upper bound on the probability of the un-successful steal attempts
using Markov’s inequality.

Lemma 1. Prioritized Balls and Weighted Bins Game: Let there be n places arranged
in a 2D torus topology. Suppose that P balls are thrown independentlybut non-uniformly
at random into P bins, where for i = 1,...,P , bin i has a weight W (i). The total weight
is W =

∑
1≤i≤P W (i). For each bin i, define a random variable X(i) as: (1) X(i) =

W (i), if some ball lands in bin(i)
(2) X(i) = 0, otherwise
Let, lmax be the distance of the start place from the last ring. Define the probability
distribution of choosing rings as follows. Let, γ/lmax be the probability of choosing the
last ring at distance lmax from the source of the steal request, where 0 < γ < 1. The
probability of selecting other rings is chosen appropriately so that the sum of choosing
processor across all processors equals 1. (For example, let γ = 3/4. Here, we assign a
probability of 5/4lmax to each of the first lmax/2 rings and probability of 3/4lmax to
each of the last lmax/2 rings.)
If X =

∑
1≤i≤p X(i), then for β in the range 0 < β < 1, we have:

PrX ≥ β.W > 1 − 1/((1 − β)eγ/2.

Proof. A ring at distance l from the start place has 8l places. Since, each place has m
processors, the ring at distance l has 8lm processors and each of the processors have
equal probability that a ball will land in that processor(bin).

Now, for each bin i, consider the random variable, W (i) − X(i). It takes on a value
W (i) when no ball lands on bin(i) otherwise is take value 0. Thus, we have,

E[W (i) − X(i)] = W (i) ∗ Probability that no ball lands in bin(i) (3.1a)

≤ W (i) ∗ [1 − Min. prob. that any ball lands in bin(i)]P (3.1b)

≤ W (i) ∗ [1 − γ/(lmax · 8lmaxm)]mn (3.1c)

≤ W (i)/e(lmax+1).γ/(2.lmax) (3.1d)
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∵ n = 4lmax(lmax + 1); (1 − 1/x)x ≤ 1/e

≤ W (i)/eγ/2, for large lmax (3.1e)

It follows that: E[W − X ] ≤ W/eγ/2.
From Markov’s inequality we have:
Pr{(W − X) > (1 − β)W} < E[W − X ]/((1 − β).W )
⇒ Pr{X < β.W} ≤ 1/((1 − β).eγ/2)
⇒ Pr{X ≥ β.W} > 1 − 1/((1 − β)eγ/2

We can see that due to skewed probability of balls choosing which bin to go, the proba-
bility of successful attempts goes down compared to the case of uniform probability [7].
Even though we chose ring distance based probability variation, actual processor dis-
tance based probability variation can be similarly analyzed with suitable probability
distribution. By choosing β = 1/5, γ = 3/4 one can show that after O(mn) remote
place throws across the system, the potential of anyplace ready activities in φi(Di) de-
creases by at least 1/16. The time and message complexity lower and upper bounds are
given by theorems below. Detailed proofs follow by extending the analysis in [7].

Theorem 1. Consider a strict multi-place hybrid computation DAG with work for
place Pk, denoted by T k

1 , being executed by the distributed scheduling algorithm (sec-
tion 3.1). Let the critical-path length for the computation be T∞,n. The lower bound
on the expected execution time is O(maxk T k

1 /m + T∞,n) and the upper bound is
O(

∑
k(T k

1 /m + T k
∞)). Moreover, for any ε > 0, the lower bound for the execution

time is O(maxk T k
1 /m + T∞,n + log(1/ε)) with probability at least 1 − ε. Similar

probabilistic upper bound exists.

Theorem 2. Consider the execution of a strict hybrid multi-place computation DAG
with critical path-length T∞,n by the Distributed Scheduling Algorithm (section 3.1).
Then, the total number of bytes communicated across places has the expectation O(I ·
Smax · nd) + m · T∞,n · Smax · nd). Further, the lower bound on number of bytes
communicated within a place has the expectation O(m ·T∞,n ·Smax ·nd), where nd is
the maximum number of dependence edges from the descendants to a parent and I is the
number of remote spawns from one place to a remote place. Moreover, for any ε > 0,
the probability is at least (1−ε) that the lower bound on the intra-place communication
overhead per place is O(m · (T∞,n + log(1/ε)) · nd · Smax). Similarly message upper
bounds exist.

4 Distributed Scheduling of Hybrid Computation in Bounded
Space

Due to limited space on real systems, the distributed scheduling algorithm has to limit
online breadth first expansion of the computation DAG while minimizing the impact
on execution time and simultaneously providing deadlock freedom guarantee. Due to
bounded space constraints this distributed online scheduling algorithm has guaranteed
deadlock free execution for terminally strict multi-place hybrid computations. Due to
space constraints at each place in the system, the algorithm needs to keep track of space
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availability at each worker and place to ensure physical deadlock freedom. It does so
by ensuring that remote activity pushing, inter-place stealing and intra-place stealing
happen only when there is sufficient space to execute the remaining path to the leaf
in the current path. This tracking of available space and using depth based ordering of
activities for execution from FAB help in ensuring distributed deadlock avoidance [7].
An activity can be in one of the following stalled states: (a) local-stalled due to lack
of space at a worker, (b) remote-stalled due to failed spawn onto a remote place, (c)
depend-stalled due to synchronization dependencies.

We assume that maximum depth of the computation tree (in terms of number of activ-
ities), Dmax, can be estimated fairly accurately prior to the execution from the param-
eters used in the input parallel computation [7]. Dmax value is used in our distributed
scheduling algorithm to ensure physical deadlock free execution. The assumption on
knowledge of Dmax prior to execution holds true for the kernels and large applications
of the Java Grande Benchmark suite 8.

4.1 Distributed Data-Structures and Algorithm Design

The data structures used for bounded space scheduling algorithm are described in Fig. 4.
Let AM(T) denote the active message for spawning the activity T . The activities in

remote-stalled state are tracked using a linked list using activity IDs with the head and

Each worker has the following data-structures (Fig. 5(a)):

– AF PrQ, AP PrQ and StallBuffer: AF PrQ and AP PrQ are priority queues that contain AF activities and AP activities
respectively. These activities can be either in ready state or local-stalled state. The StallBuffer contains activities in
depend-stalled and remote-stalled states. The total current size of all these three data-structures is denoted by Br

i and
is kept bounded by O(Dmax · Smax) bytes.

– AFR Deque: This contains AF activities (affinity annotated activities) in the current executing path on this worker.
This has total space of O(S1) bytes.

– APR Deque: This contains AP activities (anyplace activities) in the current executing path on this worker. This has
total space of O(S1) bytes.

– AMRejectMap: This is a one-to-one map from a place-id,say Pj , to the tuple [U , AM(V ), head, tail]. This tuple
contains, AM(V ), the active message rejected in a remote-spawn attempt at place Pj ; U , the activity stalled due to
the rejected active message and head and tail of the linked list of activities in remote-stalled state due to lack of space
on the place, Pj . This map occupies O(n · Smax) space per worker.

Each place Pi, has the following data-structures (Fig. 5(a)):

– WLB: Work List Buffer is a map from activity depth to list of workers. This can be implemented using a concurrent
red-black tree and is managed by the interface processor. WLB is used to respond efficiently to remote steal requests
coming from other places by providing instant list of available workers that have at least one AP activity to steal of
the given or higher depth. From each worker the depth of the highest AP activity available to be stolen is kept at the
WLB. It needs to be kept updated with updates onto AP PrQ and AP Deque of the workers at that place. It occupies
O(Dmax + m) bytes in space.

– FAB: Fresh Activity Buffer is a concurrent priority queue that is managed by the interface processor. It contains the
fresh AF activities spawned by remote places onto this place. The current size of FAB is denoted by Fi and is bounded
by O(Dmax · Smax) bytes.

– WorkRejectMap: This is a one-to-many map from depth to list of workers. For each depth this map contains the list of
workers whose spawns were rejected from this place. It occupies O(m · n + Dmax) space.

The priority queue (used for AF PrQ, AP PrQ and FAB) uses the depth of an activity as the priority with higher depth
denoting higher priority. The depth of an activity is defined as the distance from the root activity in the computation tree.

Fig. 4. Multi-place Distributed Data-Structures

8 http://www.epcc.ed.ac.uk/research/activities/java-grande
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Fig. 5. (a) Distributed Data Structures For Bounded Space Scheduling. (b) Remote Spawn and
Empty Deque Case In Bounded Space Scheduling Algorithm.

At any time, a worker W r
i takes the following actions. It might be executing an activity T (@depth Dt).

1. Local Spawn: T spawns activity U locally. T is pushed to the bottom of the AF Deque or AP Deque
depending upon whether T is an AF activity or AP activity respectively. U starts executing.

2. Remote Spawn: T attempts remote spawn of U (@depth Du) at a remote place Pj , i �= j
// Refer Remote Spawn Case Flow Chart in Fig. 5(b)

3. Receives Notification: W r
i receives notification from place Pj on available space for spawn

(a) Get pair < Pj , < R, AM(V ), head(U), tail(S) >> from AMRejectMap(i,r).
(b) Send the tuple, < AM(V ), U >, to Place Pj . Put R in AFPrQ(i, r) or APPrQ(i, r) depend-

ing upon whether R is an AF activity or AP activity.
(c) Update head in the tuple for the pair with key as Pj as: head = U →Next().

4. Termination: T terminates
– if(AF Deque(i,r) is non-empty) then pick the bottommost activity from AF Deque(i,r)
– else if(AP Deque(i,r) is non-empty) then pick the bottommost activity from AP Deque(i,r)
– else { Same as case Empty Deque.}

5. Empty Deque: W r
i has both AF Deque and AP Deque as empty

// Refer Empty Deque Case Flow Chart in Fig. 5(b)
6. Activity Enabled: activity U gets enabled

(a) Set state of U to enabled.
(b) Insert U in AFPrQ(i, r) or APPrQ(i, r) depending upon whether U is an AF activity or AP

activity.
(c) if(activity enabled was in state remote-stalled) then perform other actions as in the case Receives

Notification.
7. Activity Stalled: T (@depth Dt) stalls

Let U (@depth Du) be the next bottommost activity in Deque(i,r).
– State of T is changed to an appropriate stalled state. T is removed from AF Deque / AP Deque. If

T is in local-stalled state (due to lack of space at worker) then it is moved into AF PrQ or AP PrQ
else it is moved into StallBuffer. Update Br

i . Br
i ← Br

i − Smax.
– if(Br

i > ((Dmax − Du) · Smax)) { Execute U . }
– else { Activity Stalled case for U .}

Fig. 6. Multi-place Distributed Scheduling Algorithm

tail of the list available at the tuple corresponding to the place in the map AMRejectMap.
For notation purpose, the suffix (i) and (i,r) denote that data-structure is located at place
Pi and worker W r

i respectively.
Computation starts with root of the computation DAG which is at depth 1. The com-

putation starts at a worker W s
0 , at the default place P0. At any point of time a worker at
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a place, W r
i , can either be executing an activity,T , or be idle. The detailed algorithm is

presented in Fig. 6. The actions taken by the interface processor have been kept implicit
in the description for sake of brevity.

Distributed deadlock freedom can be proved by induction as in [7] and has been left
for brevity. The essence lies in showing that when an activity gets rejected then a higher
depth activity must be executing at that place and then using induction one can show
that all activities eventually become leaf and get executed starting from maximum depth
activities and going backwards to lower depth activities as the space gets released by
completed activities. The following theorem gives the space bound.

Theorem 3. A terminally strict computation scheduled using algorithm in Fig 6 uses
O(m · (Dmax · Smax + n · Smax + S1)) bytes as space per place.

The inter-place message complexity is same as theorem 2 (assuming similar order of
number of throws for inter-place work stealing) as there is constant amount of work for
handling rejected remote spawns and notification of space availability. For intra-place
work stealing again the message complexity is same as theorem 2.

5 Conclusions and Future Work

We have presented the design of novel distributed scheduling algorithms for hybrid
parallel computations for both bounded and unconstrained space along with time and
message complexity bounds. This is the first work for distributed scheduling of hybrid
parallel computations. In future, we plan to look into time complexity, space-time trade
offs and multi-core implementations of the bounded space scheduling algorithm.
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Abstract. We present an I/O-efficient version of an algorithm for
simplifying contour trees of two- and three-dimensional scalar fields de-
scribed by Carr et al. [7]. Our algorithm uses optimal O(Sort(N)) =
O(N

B
logM/B

N
B

) I/Os, where N is the size of the contour tree, M the
size of main memory and B the disk block size.

1 Introduction

Many modern applications involve processing and analysis of massive data rep-
resenting two- and three-dimensional scalar fields. Since the data is often too
large to fit in main memory of even large machines, this highlights the need for
I/O-efficient algorithms, that is, algorithms which minimize movement of data
between fast main memory and slower external memory. Furthermore, the avail-
ability of large and detailed data naturally leads to focus on data simplification.
In this paper we develop I/O-efficient algorithms for simplifying contour trees of
two- and three-dimensional scalar fields. A key part of this algorithm is an I/O-
efficient algorithm for a batched version of a variant of the union-find problem,
which we believe is of independent interest.

Preliminaries. Algorithms designed to minimize I/O are normally designed
in the external-memory or I/O-model of computation [2]. In this model, the
machine consists of an infinite size external memory (disk) and a main mem-
ory of size M . A block of B consecutive elements can be transferred between
main memory and disk in one I/O operation (or simply I/O). Computation can
only occur on elements in main memory, and the complexity of an algorithm is
measured in terms of the number of I/Os it uses to solve a problem. Many funda-
mental problems have been considered in the I/O-model. For example, sorting N
elements takes Θ(Sort(N)) = Θ(N

B logM/B
N
B ) I/Os [2].Refer to recent surveys

for further results [10].
A d-dimensional scalar field f : Rd → R is a function that associates a real-

value with every point in the d-dimensional Euclidean space. A terrain is simply
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a two-dimensional scalar field. A terrain is often represented by a planar tri-
angulation M = (V, E), where a height is associated with each vertex of V .
By linearly interpolating heights in each triangle based on the heights associ-
ated with the vertices of the triangles, M defines a piecewise-linear scalar field h
(height function). For a given height l ∈ R, the l-level set of a two-dimensional
scalar field h is defined as {(x, y) ∈ R|h(x, y) = l}. A contour of h at height l
is then simply a connected component of the l-level set. In general a contour is
a closed polygonal curve, but a contour through a local minima or maxima of
h reduces to a single point, and at saddle points of h contours merge or split.
The Contour tree of h is a tree representation of the topological changes in the
l-level sets (the contours) of h as l increases; it encodes how contours are created
or destroyed at minima and maxima, and merge or split at saddle points. See
Section 3 for a formal definition. The definitions of l-level sets, contours and the
contour tree naturally extends to three-dimensional scalar fields [6,9].

Previous related results. The union-find problem is the problem of maintain-
ing a partition Π of a set U = {x1, x2, . . . } under UNION and FIND operations,
where a UNION(xi, xj) joins the set containing xi and the set containing xj , and
FIND(xi) determines the set in Π containing xi. Recently, Agarwal et al. [1] de-
scribed an O(Sort(N)) I/O algorithm for the batched version of the union-find
problem, provided that none of the union operations are redundant, that is, for
each UNION(xi, xj), xi and xj are in different sets. This is optimal [1]. Since
the developed algorithms are quite complicated, Agarwal et al. [1] also described
and implemented a simple O(Sort(N) log( N

M )) I/O algorithm.
Carr et al. [7] described an O(N log N) time internal-memory algorithm for

simplifying contour trees of two- and three-dimensional scalar fields. The simpli-
fication algorithm uses the fact that removal of a leaf in a contour tree naturally
corresponds to modifying a region around a local minima or maxima in the cor-
responding scalar field. Thus various geometric measures for this region, such
as e.g. height, area or volume, can be used to determine the significance of the
leaf. The simplification algorithm first computes the relevant geometric mea-
sures, and then it iteratively removes the least significant leaf (and superfluous
internal vertices), while updating the measures.

Our Results. In Section 3 we present an I/O-efficient version of the algorithm
for simplifying contour trees of two- and three-dimensional scalar fields described
by Carr et al. [7]. Our algorithm uses optimal O(Sort(N)) I/Os. A key to ob-
taining the I/O-efficient contour tree simplification algorithm is an O(Sort(N))
I/O algorithm for the batched (off-line) version of a problem we call union-find
with set properties We present this algorithm in Section 2.

We believe our solution to the batched union-find with set properties problem
is of independent interest. Recently, Agarwal et al. [1] described an O(Sort(N))
I/O algorithm for removing small height depressions in terrain models using
their efficient batched union-find algorithm. In the full version of this paper we
show how to use batched union-find with set properties to extend this result such
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that depressions can be removed based on any of a number of local geometric
measures, rather than only on the depth of the depression.

2 I/O-Efficient Batched Union-Find with Set Properties

Usually the find operation FIND(xi) is implemented such that it returns an
arbitrary (but unique) element in the set containing xi. Sometimes, like in our
contour tree simplification and flooding algorithms, one would like to maintain
a certain property of each set in Π , such that it is returned by a find operation.
This lead us to the following union-find with set properties problem.

Definition 1. A union-find with set properties problem is given by a universe
U = {x1, x2, . . . }, a property set P, a property function ω : P × P → P and
a sequence Σ = 〈σ1, σ2, . . . , σN 〉 of UNION(xi, xj) and FIND(xi) operations.
Furthermore, each element xi ∈ U is associated with a base property pi ∈ P.

The problem is to maintain a partition Π of the elements in U together with
a set property p ∈ P for each set in Π under the sequence of operations in Σ; if
xi is in set Si ∈ Π with set property pi and xj in set Sj ∈ Π with set property
pj then a UNION(xi, xj) operation in Σ creates Sk = Si ∪Sj and assigns Sk the
set property pk = ω(pi, pj); a FIND(xi) operation in Σ returns pi.

Below we show how to solve the batched union-find with set properties problem
in O(Sort(N)) I/Os. Our algorithm first constructs what we call a set tree forest
encoding the sequence Σ. To do so we use the batched union-find algorithm of
Agarwal et al. [1] (and thus we require that Σ does not contain any redundant
union operations). After that the problem is solved by applying an I/O-efficient
graph traversal techniques to the set tree forest.

Set Tree Forest FΣ . In the following, we will say that the i’th operation σi

in a batched union-find with set properties sequence Σ = 〈σ1, σ2, . . . , σN 〉 has
timestamp i. Let S be a set in the partition Π resulting from performing all union
operations in Σ, and consider the subset ΣS = 〈σi, σj , . . . , σk〉 of Σ consisting
of all operations that operate on an element in S, ordered by timestamp. Below
we define the set tree TΣS to be a tree with a leaf for each element in S and
an internal vertex v for each operation σl in ΣS . The set tree forest FΣ is then
simply the forest containing a set tree for every set in Π .

To define the edges of set tree TΣS , we first assume that all operations in ΣS

are union operations. Let σl be a union operation UNION(x′, x′′) where x′ and
x′′ belong to sets S′ and S′′ before σl is performed, respectively; we say that σl

is the creator of the set S′ ∪ S′′ and the destructor of both S′ and S′′. Then
the node v in TΣS corresponding to σl has edges to the nodes that are roots
in the set trees TΣ

S
′
l

and TΣ
S

′′
l

, where ΣS
′
l

and ΣS
′′
l

are the operations in ΣS

with time stamp less than l operating on elements in S′ and S′′, respectively.
In the general case where some of the operations in ΣS are find operations, we
replace some of the edges defined above with two edges. More precisely, let σl

be a find operation FIND(x′) where x′ belong to set S′ before σl is performed
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(that is, after all union operations in ΣS with timestamp less than l have been
performed), and let vc and vd be the nodes corresponding to the creator and
destructor of S′, respectively. Then the edge between vc and vd is replaced with
two edges between v in TΣS corresponding to σl and vc and vd, respectively.

Constructing FΣ. Obviously, constructing the edges is the hard part of con-
structing FΣ . The main idea in our solution is to encode each vertex in FΣ using
the unique elements returned by the find operations when using the standard
batched union-find algorithm [1] on a sequence Σ′ obtained from Σ. Our algo-
rithm for constructing FΣ works as follows. First we construct the union-find
sequence Σ′ by replacing each UNION(x′, x′′) operation in Σ with a sequence
of union and find operations 〈FIND(x′), FIND(x′′), UNION(x′, x′′), FIND(x′)〉.
Then we solve the batched union-find problem on Σ′, obtaining for each union
operation σt = UNION(x′, x′′) in Σ the unique elements rS′ , rS′′ for the sets
S′,S′′ destroyed by σt, and the unique element rS′∪S′′ for the set S′∪S′′ created
by σt. Similarly, for each σt = FIND(x′) operation in Σ we obtain a unique
element rS′ for the set S′ containing x′. We then encode the vertex v in FΣ

corresponding to the union operation σt as the tuple (rS′∪S′′ , t), and the vertex
v corresponding to a find operation σt as (rS′ , t). Finally, the leaf corresponding
to an element xi ∈ U is encoded as (xi, 0).

The encoding of the nodes in FΣ allows us to construct the edges relatively
easily. The key is that the children of a node (rS′∪S′′ , t) corresponding to the
union operation σt are the nodes of the form (rS′ , t′) and (rS′′ , t′′) with maximal
t′ and t′′ smaller than t. Similarly, the child of a node (rS′ , t) corresponding to
find operation σt is the node (rS′ , t′) with maximal t′ smaller than t. Thus to
construct the child edges ((rS′ , t′), (rS′∪S′′ , t)) and ((rS′′ , t′′), (rS′∪S′′ , t)) for each
union operation σt and ((rS′ , t′), (rS′ , t)) for each find operation in Σ, we first
construct edges ((rS′ , t), (rS′∪S′′ , t)), ((rS′′ , t), (rS′∪S′′ , t)) and ((rS′ , t), (rS′ , t))
with incorrect timestamps. Then we sort the vertices lexicographically and the
edges lexicographically according to their first vertex. Finally we simultaneously
process the two sorted lists in order; this way we will meet one of the edges
((rS′ , t), (rS′∪S′′ , t)) corresponding to union operation σt at the same time as we
meet node (rS′ , t′), and we can thus update the first t in the edge to t′. The
other edge for union operation σt, as well as the edge for a find operation, are
updated in the same way.

Besides performing a constant number of scans and sorts, our algorithm uses
O(Sort(N)) I/Os to solve the batched union-find problem on Σ′, so we construct
FΣ in O(Sort(N)) I/Os.

Traversing FΣ. After having constructed FΣ , we can solve our batched union-
find with set properties problem using a simple traversal of FΣ from the leaves
towards the roots, while applying the property function at each union node to the
properties already computed at the child nodes. Utilizing that the timestamps of
the nodes in FΣ define a topologically order on the nodes of the DAG obtained
from FΣ by directing each edge from the child to the parent vertex, the traversal
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can be performed in O(Sort(N)) using a standard technique called time-forward
processing [8]. Details are deferred to the full paper.

Theorem 1. The batched union-find with set properties problem can be solved in
O(sort(N)) I/O operations, provided that all union operations are non-redundant.

Remark. Since the O(Sort(N)) I/O batched union-find algorithm of Agar-
wal et al. [1] is quite complicated, they also described a simpler and practical
O(Sort(N) log(N/M)) algorithm. This algorithms can relatively easily be mod-
ified to solve the batched union-find with set properties problem.

3 I/O-Efficient Contour Tree Simplification

In this section we describe our I/O-efficient version of the contour tree simplifi-
cation algorithm of Carr et al. [7]. Before describing the algorithm, we first define
the contour tree and discuss how several geometric measures can be associated
with the edges of the tree. For simplicity and due to lack of space, we will only
consider terrains (two-dimensional scalar fields).

3.1 Preliminaries

Contour tree. Consider the l-level set of a two-dimensional scalar field (terrain)
h defined by a planar triangulation M; we denote this set hl. Recall that the
contours at level l is simply the connected components of hl. As l increases, new
contours are created in hl at local minima of h and destroyed at local maxima
of h; at saddle points of h contours will split or merge (in effect destroying
contours and creating new ones). Thus we call local minima, local maxima and
saddle points critical points of h. At all other regular points of h the topology
of hl does not change. Two contours c ∈ hl and c′ ∈ hl′ are said to be equivalent
if they are created and destroyed at the same critical points of h. We use cw

v

to denote the equivalence class of all contours created at critical point v and
destroyed at critical point w and refer to the specific contour of cw

v in the l-level
set as cw

v (l).
We define the contour tree C of h as the tree with a vertex for each crit-

ical vertex in M, and an edge e = (v, w) for each contour equivalence class
cw
v of h; refer to Figure 1. Let V w

v be the set of regular vertices in M con-
tained in a contour of cw

v . The augmented contour tree Caug is then obtained
by augmenting each edge e = (v, w) of C with the vertices in V w

v as follows: if
V w

v = {a1, a2, . . . , ak} is sorted in order of increasing height, then e is split into
edges (v, a1), (a1, a2) . . . (ak, w); refer again to Figure 1. In the following, when
referring to an edge e = (v, w) of C or Caug we will always have h(v) < h(w); w
is called an upper neighbor of v and v a lower neighbor of w. We say that e is
an upper leaf edge of C and Caug if e is the only incident edge of w; similarly, e
is lower leaf edge if e is the only incident edge of v.

Associating geometric measures with the edges of C. Carr et al. [7]
define the upstart region up(c) of a contour c to be the region of h reachable
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v1

Fig. 1. (a) A terrain where the visible critical vertices have been marked, and where
the contours through the regular vertices ai and aj are shown, along with the merging
of two contours into a new contour at the saddle vertex v4. (b) Contour tree of the
terrain. (c) Augmented contour tree of the terrain.

from a point on c by a path that initially ascends from c and never returns to c.
Similarly, the downstart region down(c) of c is the region of h reachable from a
point on c by a path that initially descends from c and never returns to c. Refer to
Figure 2(a). An upstart region hup

e = liml→h(v)(up(cw
v (l))) and downstart region

hdown
e = liml→h(w)(down(cw

v (l))) can also naturally be associated with each edge
e = (v, w) in C [5]. Refer to Figure 2. Since hup

e and hdown
e are regions of the two

dimensional scalar field h it makes sense to consider geometric measures (such
as height, area or volume [7]) of these regions. In general we will denote the
geometric measure of hup

e and hdown
e as σ(hup

e ) and σ(hdown
e ) respectively.

3.2 Simplification Algorithm

In this section we describe the contour tree simplification algorithm of Carr et
al. [7] and how it can be made I/O-efficient. The simplification algorithm consist
of two phases: In the first phase σ(hdown

e ) and σ(hup
e ) are computed for each edge

e of the contour tree C, and in the second phase C is simplified by iteratively
removing edges and vertices guided by the computed geometric measures. Below
we describe the two phases and how to perform them I/O-efficiently.

(a) (b) (c)

Fig. 2. (a) The downstart (dark) and upstart (light) regions of a contour through a
regular vertex. (b) The region hdown

e (dark) of e = (v3, v7) in the contour tree in Figure
1(b). (c) The region hup

e (dark) of e = (v3, v7) in the contour tree in Figure 1(b).
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Computing geometric measures. Let e = (v, w) be an edge in C and assume
that the regular vertices augmented to e in Caug are {a1, a2, . . . , ak} in order of
increasing height. Consider the set V up

e of vertices in Caug reachable from v by
paths that initially contain (v, a1); similarly consider the set V down

e of vertices
in Caug reachable from w by paths that initially contain (ak, w). To compute
geometric measures of hdown

e and hup
e for each edge e of C, Carr et al. [7] utilizes

that for a range of measures σ(hdown
e ) (and σ(hup

e )) can be expressed as the sum
of polynomial functions associated with each vertex in V down

e (V up
e ) [4] [7]. Their

algorithm repeatedly visits and (conceptually) removes a leaf from Caug until
all vertices have been visited (removed). At each visited vertex v it computes
two polynomial functions pup

v (l) and pdown
v (l) from the polynomial functions

computed for the already visited neighbors of v in Caug. Once the algorithm has
visited all vertices in Caug, it is easy to use the computed functions to obtain
the geometric measures associated with edges in C. The polynomial function
pup

ai
(l) for 1 ≤ i ≤ k expresses the relevant geometric measure of the upstart

region for contours cw
v (l) with h(ai−1) ≤ l < h(ai); similar pdown

ai
(l) expresses

the relevant geometric measure of the downstart region for contours cw
v (l) with

h(ai) < l ≤ h(ai+1). Therefore σ(hdown
e ) is simply pdown

ak
(h(w)) and σ(hup

e ) is
pup

a1
(h(v)). Refer to [7] and [5] for the details of the algorithm.
In terms of I/O, the main issues with the above algorithm are that the vertices

are visited in a somewhat unpredictable order, and that when visiting a vertex
v the functions for the already visited neighbors of v need to be obtained. Both
issues may result in the algorithm using Ω(N) I/Os. To obtain a predictable
order, we consider an Euler tour τ of Caug (rooted in an arbitrary vertex), where
all but the last occurrence of any vertex have been removed. By definition, v
appears in τ after each child of v and before the parent of v. Thus τ is equal
to one of the possible vertex orders one can obtain in the algorithm by Carr
et al. [7] when visiting the vertices in Caug by repeatedly visiting and removing
a leaf. Utilizing that τ defines a topological order on the vertices in the DAG
obtained by directing each edge in Caug from the vertex that occur first in τ
to the vertex that occur last in τ , the last issue (the traversal of Caug) can
be solved using the standard technique time-forward processing [8]. Since Euler
tour computation and time-forward processing can be performed in O(sort(N))
I/Os [8], we can obtain an algorithm for computing σ(hdown

e ) and σ(hup
e ) for

each edge e of C in O(sort(N)) I/Os. Details will appear in the full paper.

Simplification using geometric measures. Having computed geometric
measures, the simplification algorithm of Carr et al. [7] simplifies the contour
tree C of a terrain h, by iteratively removing leaf edges e of C. It is easily seen
that a leaf edge in C corresponds to an extremum (local minimum or maximum)
of h, and the main observation made by Carr et al. [7] is that removing a leaf
edge e corresponds to modifying h in the region hup

e (if e is an upper leaf edge) or
the region hdown

e (if e is a lower leaf edge). Thus it is natural to remove leaf edges
based on a significance associated with each leaf edge, equal to the geometric
measure of the region affected by removing the leaf edge (σ(hup

e ) for an upper
leaf edge e and σ(hdown

e ) for a lower leaf edge e).
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More precisely, the iterative algorithm works as follows [7]: In each iteration
the lowest significance leaf edge e = (v, w) is removed among all upper leaf edges
where v has more than one upper neighbor and all lower leaf edges where w has
more than one lower neighbor. The edge is removed by applying a leaf prune
operation on e. If the removal of e means that an internal vertex v only has one
upper neighbor w′ and one lower neighbor w′′, a vertex reduction operation is
then performed on v. The vertex reduction operation removes v by merging the
edges e′′ = (w′′, v) and e′ = (v, w′) into e′′′ = (w′′, w′). If either e′ or e′′ were
already leaf edges then the vertex reduction operation creates a new leaf e′′′. Note
that the regions associated with e′′′ are given by hup

e′′′ = hup
e′′ and hdown

e′′′ = hdown
e′

and that by definition hup
e′ is included in hup

e′′ and hdown
e′′ is included in hdown

e′ . The
iteration continues until all leafs with significance less than a given significance
threshold τ have been removed from C. We denote the obtained tree C(τ).

In terms of I/O, the problem with the above algorithm is not only to predict
the order in which leaf prune and vertex reduction operations are performed.
Actually performing the operations and obtaining the simplified contour tree
C(τ) also seems to be difficult to do in less than Ω(N) I/Os. Below we show
how to address the two above problems and obtain an O(sort(N)) algorithm.
We first show how to predict the sequence Sτ of leaf prune and vertex reduction
operations performed by the algorithm of Carr et al. [7] to obtain C(τ). Then we
describe how to perform the operations in Sτ to obtain C(τ) using our batched
union-find with set properties algorithm from section 2.

Constructing Sτ . Consider the contour tree C(t) for 0 ≤ t ≤ τ . Each edge
in C(t) is either an edge in C or it represents a number of edges in C that have
been joined by vertex reduction operations. In the following we will explicitly
consider an edge e′ in C(t) as a set of edges in C, and use the notation e ∈ e′ to
denote that the edge e in C is a member of e′ in C(t). Assume that σ is monotonic
increasing, any edge e′′′ created by a vertex reduction operation that merges the
edges e′ and e′′ will then have σ(hup

e′′′ ) ≥ σ(hup
e′ ) and σ(hup

e′′′) ≥ σ(hup
e′′ ). Using

this we can proof the following lemma (proof will appear in full paper).

Lemma 1. Let e be an edge with σ(hup
e ) < σ(hdown

e ) in the contour tree C.
There is an upper leaf edge e′ = (v′, w′) in C(σ(hup

e )) such that e ∈ e′ and such
that the significance of e′ is greater than or equal to σ(hup

e ).

Lemma 1 has a dual version which states that for an edge e in C where σ(hdown
e ) <

σ(hup
e ), there is a lower leaf edge e′ in C(σ(hdown

e )) such that e ∈ e′ and such
that the significance of e′ is greater than or equal to σ(hdown

e ). Using the edge
property shown in lemma 1, we can now prove a property of the vertices in C
that will allow us to construct Sτ .

Lemma 2. Consider an internal vertex v of C with r incident edges e1 . . . er

leading to upper neighbors and s incident edges ê1 . . . ês leading to lower neigh-
bors. Assume that the edges are sorted such that σ(hup

e1
) < . . . < σ(hup

er
) and

σ(hdown
ê1

) < . . . < σ(hdown
ês

).
When simplifying C to obtain C(τ), a leaf prune operation is performed on

an upper leaf with significance σ(hup
ei

), for each edge ei with σ(hup
ei

) < τ , where
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1 ≤ i ≤ r−1. Similarly, a leaf prune operation is performed on a lower leaf edge
with significance σ(hdown

êi
) for each edge êi with σ(hdown

êi
) < τ , where 1 ≤ i ≤

s − 1.

Proof (sketch). Consider the edge ei where 1 ≤ i ≤ r − 1. Since the region
hdown

ei
includes the region hup

ei+1
, we know that σ(hup

ei
) < σ(hdown

ei
) due to the

monotonicity of σ. Using lemma 1 we get that C(σ(hup
ei

)) has an upper leaf
edge e′i such that ei ∈ e′i with significance greater than or equal to σ(hup

ei
).

Applying lemma 1 to ei+1 gives that C(σ(hup
ei

)) also contains an edge e′i+1 such
that ei+1 ∈ e′i+1. Which essentially proves the first part of the lemma. Using the
dual version of lemma 1 we can prove the second part of the lemma. �	
Lemma 2 allows us to compute all leaf prune operations in Sτ . To compute
the vertex reductions we use that a vertex reduction operation on a vertex v is
enabled by a leaf prune operation that causes v to have exactly one upper and one
lower neighbor. From lemma 2 we get that the leaf prune operation that enables
a vertex reduction on v is the operation that removes a leaf with significance
equal to the largest of σ(hup

er−1
) and σ(hdown

ês−1
). Thus we can construct Sτ such

that each leaf prune operation is represented (implicitly) by an edge of C with a
timestamp equal to the significance of the leaf edge being removed, and such that
a vertex reduction is represented by two edges of C (the two being removed) with
a timestamp equal to the timestamp of the leaf prune operation that enables the
vertex reduction. The construction can easily be done in O(sort(N)) I/Os by
sorting and scanning the edges of C a constant number of times.

Computing C(τ) from Sτ . Having computed the sequence of leaf prune and
vertex reduction operations Sτ used to obtain C(τ) from C, we can now compute
C(τ) using an instance of batched union-find with set properties. From Sτ we
construct a sequence Στ of union and find operations. Στ contains a union
operation σt = UNION(e′′, e′) operation for each vertex reduction operation
in Sτ represented by the timestamp t and edges e′′ and e′. At the end of Στ

a find operation στ+1 = FIND(e) is appended for each edge e in C. The leaf
prune operations (which we only implicitly represented) in Sτ are ignored. The
partition Π0 consists of a singleton set with set property (v, w, σ(hup

e ), σ(hdown
e ))

for each edge e = (v, w) in C. The set property function ψ is defined such
that when unioning two sets with set properties (w′′, v, σ(hup

e′′ ), σ(hdown
e′′ )) and

(v, w′, σ(hup
e′ ), σ(hdown

e′ )), the new set property is (w′′, w′, σ(hup
e′′ ), σ(hdown

e′ )).
Let Πt be the partition resulting from performing the union operations in

Στ with timestamp less than or equal to t. We say that a set in Πt with set
property (v′, w′, σ(hup

e′ ), σ(hdown
e′ )) represents an edge e′ = (v′, w′) with associ-

ated geometric measures σ(hup
e′ ) and σ(hdown

e′ ), if and only if σ(hup
e′ ) > t and

σ(hdown
e′ ) > t. If the edges represented by sets in Πt are exactly the edges in

C(t), we say that Πt represents C(t). Note that the set property function is de-
fined such that if two sets representing edges (w′′, v) and (v, w′) are unioned
then the resulting set represents the edge (w′′, w′) resulting from performing a
vertex reduction on v. A simple induction proof on Sτ proves the following.

Lemma 3. The partition Πτ represents the simplified contour tree C(τ).
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Since Πτ represents C(τ) we can obtain the actual edges from the find operations
at the end of Στ sequence: We simply collect the edges represented by the set
properties returned by all the find operations and remove duplicate edges.

Constructing Στ from Sτ can be done in a simple scan using O(N
B ) I/Os. After

that the union-find with set properties problem is solved in O(sort(N)) I/Os
(Theorem 1), and finally duplicate edges can also be removed in a sorting step
using O(sort(N)) I/Os. Overall we have computed C(τ) from Sτ in O(sort(N))
I/Os. Thus we have our main Theorem.

Theorem 2. Given a significance threshold τ and a contour tree C of a 2d scalar
field, we can simplify C as described in [7] using O(sort(N)) I/O operations.

Remark 1. Our simplification algorithm (Lemma 1 and 2) requires that σ is
monotonically increasing. This is indeed the case for most interesting geometric
measures, but not all. For example, consider using height as geometric measure,
such that for e = (v, w) the measure σ(hup

e ) is given by the height difference
h(z) − h(v), where z is the highest leaf that can be reached from v by a path
in Caug that visit vertices of monotonically increasing height. In this case σ is
not monotonically increasing. However, we can relatively easy define another
monotone function σ′, such that simplifying C with the algorithm by Carr et
al [7] yields the same result for both σ and σ′. This way we can just use σ′ in
our algorithm.

Remark 2. Theorem 2 extends to 3d scalar fields.

Remark 3. Let tce be the time at which an edge e is created and tde the time
at which e is destroyed. By slightly changing the way we construct Στ from Sτ

(utilizing the implicit representation of leaf prune operations), we can compute
tce and tde for every edge e in a contour tree C(t) for t ≥ 0 using O(sort(N))
I/Os. By building an I/O-efficient interval tree [3] on the intervals [tce; t

d
e ], we

obtain a data structure that for any query threshold τ , can return C(τ) using
O(logB(N) + T

B ) I/Os, where T is the size of C(τ).
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Abstract. Motivated from the image segmentation problem, we consider the
problem of finding the maximum weight region with a shape decomposable into
elementary shapes in n × n pixel grid where each pixel has a real valued weight.
We give efficient algorithms for several interesting cases. This shows string con-
strast to the NP-hardness results to find the maximum weight union for the corre-
sponding cases.

1 Introduction

Let P be an n × n pixel plane, and consider a family F ⊂ 2P of pixel regions. A pixel
of P is the unit square p(i, j) = [i − 1, i]× [j − 1, j] where 1 ≤ i ≤ n and 1 ≤ j ≤ n.
The pixel p at the (i, j) position in the grid has a real value W (p) = W (i, j) called
the weight of p. We can regard the array (W (p))p∈P as a real-valued matrix W =
(W (i, j))(1 ≤ i, j ≤ n) where we count the indices of rows from bottom to top. For
conveniences’ sake, we define W (0, j) = W (n + 1, j) = W (i, 0) = W (i, n + 1) = 0
for each i and j. We consider the following maximum-weight region problem:

Find a region R ∈ F maximizing W (R) =
∑

p∈R W (p).

The maximum-weight region problem is considered in several applications such as
image processing [1], data mining [2,3], surface approximation [4,5,7], and radiation
therapy [5]. The difficulty of the problem depends on the family F . If F = 2P, the
problem is trivial, since R is obtained as the set of all pixels with positive weights. On
the other hand, the problem is NP-hard if F is the set of all connected regions in P (in
the usual 4-neighbor topology) [1].

The following is a list of previously known families for which the maximum-weight
regions can be computed efficiently (definitions will be given later): x-monotone re-
gions, based monotone regions, rectilinear convex regions, staircase convex regions
centered at a pixel r (called stabbed union of rectangles in [4,7]), and digital star-shaped
regions [6]. More generally, we can solve the problem if F can be represented as the
family of closures in a graph defined on P (see [5,9]). All of the above families can be
treated in this framework (although this approach might not lead to the most efficient
algorithm).

A natural question is to solve the maximum weight region problem for more general
families of regions. In this paper, we consider the problem of finding the maximum
weight region constructed as an aggregation of more than one basic region. Ideally, we

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1166–1174, 2009.
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would like to compute the maximum weight region represented as a union of basic re-
gions given in the above list. Unfortunately, we show a negative result even on the sim-
plest possible case: it is NP-hard to compute the maximum weight region represented
as a union of a based x-monotone region (based monotone region with the x-axis as its
base line) and a based y-monotone region. Moreover, it is NP-hard to have any finite
ratio approximation algorithm for computing the maximum weight region represented
as a union of two digital star-shaped regions with given two centers.

In order to have tractable computational problems, we consider a different formula-
tion: a region decomposable into pairwise disjoint basic regions (i.e., represented as a
disjoint union of basic regions). We give a series of novel algorithms listed as follows:

(1). Given k axis parallel base lines, the maximum-weight region decomposable into
base monotone regions corresponding to the base lines can be computed in O(N1.5)
time, where N = n2 is the number of pixels.
(2). If we consider k base segments instead of lines, we give a FPT algorithm for a
special case and an nO(k) algorithm for the general case.
(3). The maximum weight region decomposable into two digital star shaped regions
with given different centers can be computed in O(N3) time.

We also show that the maximum-weight region decomposable into k staircase convex
regions or k rectilinear convex regions can be computed in polynomial time (if k is a
constant). We also show that the union problem can be solved in a similar fashion for
these regions.

1.1 Motivation from Image Segmentation Applications

Separating an object in an image from its background is a central problem in pattern
recognition and computer vision. This operation is commonly called image segmenta-
tion and many practical methods are proposed in the literature. Consider a pixel plane
P representing a (say, monochromatic) picture, where each pixel p has a real value
f(p) represents the brightness level of the pixel p. The segmented image should be a
pixel region with a nice geometric property. Clearly, the quality of the segmentation de-
pends on the separation of brightness levels in the image and background. However, it is
non-trivial to formulate the image segmentation problem in the form of a nice optimiza-
tion problem (so as to have a trade off between the output quality and computational
complexity).

Asano et al. [1] proposed an optimization-based image segmentation method that
gives a robust solution with theoretical guarantee. The general mathematical frame-
work defines a family F of grid regions, and finds the region R ∈ F maximizing an
objective function Φ(R). The function Φ needs a kind of convexity (Asano et al. [1] par-
ticularly considered the intraclass variance), and solved the problem via a parametric
optimization framework.

Asano’s framework gives a method to compute the segmentation problem provided
that the following key problem can be solved efficiently: compute the region R ∈ F
maximizing

∑
p∈R(f(p)−θ). Once the parameter value θ is fixed, we assign the weight

W (p) = f(p) − θ to each pixel p, transforming the problem into the maximum weight



1168 J. Chun et al.

region problem. The optimal value of the parameter θ (among the O(N) possible val-
ues) is found using parametrization techniques.

Segmentation in color pictures can be also reduced to the maximum weight region
problem by using a three-dimensional parameter space.

Our positive results imply that shapes that are decomposable into two or more pair-
wise disjoint fundamental shapes can be treated in Asano et al.’s framework. This allows
a variety of objects to be handled in a robust fashion, and the authors believe that it gives
significant advancement to the theoretical aspect of image segmentation problem. On
the other hand, the NP-hardness says that it is difficult to segment an object that is an
overlay of two highly intersecting basic objects. Thus, the first picture of Figure 1 is
difficult to segment, while the second picture is easier since it can be decomposed into
two star shaped regions as shown in the rightmost picture.

2 Regions Decomposable to Base Monotone Regions

A base line of the pixel grid P is a vertical line x = i or horizontal line y = i where
0 ≤ i ≤ n. For a given horizontal base line � : y = i, its based monotone region is
the region {p(s, j) : 1 ≤ s ≤ n, g(s) < j ≤ f(s)} for a suitable pair of functions
satisfying g(j) ≤ i ≤ f(j) for each j. In other words, it is a union of segments of
columns intersecting the base line. It is a special case of x-monotone region, where the
intersection with each column can be any connected segment. Note that the j-th column
part is empty if g(j) = f(j), thus we do not assume connectivity of the region. The
vertical base line case is analogously defined. A based monotone region with the base
line x = 0 (resp. y = 0) is often called based x-monotone (resp. based y-monotone)
region.

A based monotone region with a horizontal base line � is subdivided into the based
monotone regions of the upper and lower halfplanes of �: They are the pixel region
defined by {p(s, j) : 1 ≤ s ≤ n, i ≤ j ≤ f(s)} and {p(s, j) : 1 ≤ s ≤ n, g(s) <
j ≤ i}, respectively. The family of base monotone region of the upper and lower half
planes of � are denoted by U(�) and D(�), respectively (meaning that each column
grows upward and downward from the base line, respectively). Similarly, for a vertical
base line m, we define families L(m) and R(m) of base monotone region in the left
and right halfplanes of m, respectively.

Given a set of k base lines, a region R is called a feasible region if it can be decom-
posed into pairwise disjoint base monotone regions with respect to the given base lines.
Figure 2 shows a feasible region of given six base lines, and Figure 3 gives intuition of
a segmentation using four grid boundary lines as base lines.

Fig. 1. Union and decomposition
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Fig. 2. A feasible region and its decomposition Fig. 3. A segmented flower
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Fig. 5. Computing UR(i, j)

2.1 Room-Edge Problem

First, we consider a special case (called room-edge problem) where we are given the
four (or less) boundary lines of P as the set of base lines. See Figures 3 and 4. We
abbreviate U , D, L and R for the families of base monotone regions of upper, lower,
left, and right halfplanes with respect to the bottom, top, right, and left boundary edges
of P. (note that R grows rightwards from the left edge, etc.) A feasible region R of
the room-edge problem can be decomposed into disjoint regions U,D,L,R such that
U ∈ U , D ∈ D, L ∈ L and R ∈ R. Imagine that we paint U, D, R, and L by blue,
green, yellow and red in a way that each color starts painting from a boundary edge in
the direction perpendicular to the edge without breaking or mixing of colors. Then, the
feasibility means that we can paint the region with the four colors. We would like to
maximize W (R) = W (U) + W (D) + W (L) + W (R).

2.2 Algorithms for the Room-Edge Problem

Painting with only one color is easy (and well known) to be solvable in linear time:
Suppose that we would like to maximize w(U) for U ∈ U . Now, it suffices to consider
the prefix sums prefix(s; j) =

∑s
k=0 W (k, j) for each column j, and compute the

array U(i, j) = max0≤s≤i prefix(s; j), which is the maximum prefix in j-th column
up to the i-th row. Then, W (U) =

∑
1≤j≤n U(n, j), and the region U is obtained as

{(i, j) : U(i−1, j) 
= U(n, j)}. This computation can be done in O(N) = O(n2) time.
Similarly to U(i, j), we compute tables of D(i, j), R(i, j), and L(i, j) to be utilized
later (definitions are rotated suitably).

Next, let us discuss painting with two colors. There are basically two cases: Painting
from opposite edges (e.g., D and U), and painting from adjacent edges (e.g., U and
R). It is easy to paint from opposite edges, since we can consider each column (or row)
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separately. Indeed, if we negate all the weights, the complement of the solution region
for this case is nothing but the maximum weight x-monotone region.

Thus, we consider the adjacent case using U (blue) and R (yellow). Let UR(i, j) be
the maximum weight if we color the pixel grid up to (i, j) by blue and yellow; that is,
we consider the submatrix of W with respect to the columns up to the j-th column and
the rows up to the i-th row.

Theorem 1. We can compute the matrix UR in O(N) time.

Proof. We compute the table UR(∗, ∗) by dynamic programming classifying the opti-
mal painting of UR(i, j) into two cases (as shown in Figure 5): if (i, j) ∈ U we have
UR(i, j) = UR(i, j − 1) + U(i, j) (Figure 5, left). Otherwise (Figure 5, center or
right), we have UR(i, j) = UR(i − 1, j) + R(i, j). Thus, using the recursive formula
UR(i, j) = max{UR(i, j−1)+U(i, j), UR(i−1, j)+R(i, j)} and the precomputed
tables U and R, we can compute UR(∗, ∗) in linear time. Also note that the optimal
region attaining UR(n, n) is given by backtracking. �

Next, let us consider painting with three colors. Suppose we paint from bottom, top and
left edges to maximize W (U ∪ D ∪ R). We precompute tables UR, UD and UL in
O(N) time and define UDR(j) as the maximum weight of coloring the pixels in the
first j columns using three colors.

Theorem 2. We can compute UDR(j) for all 1 ≤ j ≤ n in O(N) time.

Proof. If the j-th column of the region attaining UDR(j) does not intersect the left
region R, we have UDR(j) = UDR(j − 1) + UD(j). where UD(j) is the maxi-
mum weight painting of the j-to column from top and bottom. Otherwise, the picture
is divided into upper half and lower half by the intersecting row of R, and each half is
painted by two colors. Thus, we have UDR(j) = max0≤i≤n{DR(i, j)+UR(i+1, j)}
for this case. Since we prepared the tables UD, DR, UR, the above formula can be
computed in O(n) time for each j. Hence, each new entry of UDR can be computed
in O(n) time by taking the maximum of the above two cases, and the table UDR(∗) is
computed in O(n2) = O(N) time. �

Finally, we consider painting by four colors from four edges. If there exists a ver-
tical line x = j separating R and L, we can decompose the problem into two in-
stances of the three-color paintings. Thus, the optimal value for this case is computed
as max0≤j≤n{UDR(j) + UDL(j + 1)}, where UDL(j + 1) is the optimal region
of UDL painting of the region to the right of the partition line x = j. This type of
the solution region can be computed from the arrays UDR and UDL for the three-
color paintings in O(N) time. Similarly, we can solve in O(N) time if there exists a
separating horizontal line.

Thus, we need to consider the case where the solution does not allow such a partition
line. We guess the longest column/row length of each colored region, and decompose
the pixel plane into five rectangular parts as shown in the left picture of Figure 6. The
center rectangle cannot be painted by any color, since each color is blocked by another
region to paint. Moreover, in each other rectangular part, the painting is done by two
colors, and can be done independently of the painting of other regions. Therefore, we
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Fig. 6. Decomposition into two-colored rectangles and L-shaped regions

can obtain the optimal four-color painting by combining the two-color paintings of these
four rectangular parts. The optimal value is obtained by combining optimal solution of
each solution in O(1) time (since tables DL, DR, UL, UR are precomputed) for each
possible partitions. Since there are O(n4) = O(N2) possible partition patterns, we can
solve compute the maximum weight region for the room-edge problem in O(N2) time
with O(N) space.

The time complexity can be improved to O(N1.5) if we can use O(N1.5) space. We
use another decomposition as shown in the right picture of Figure 6, where the pixel
grid is decomposed into two L-shaped regions in which each region is painted by using
three colors. There are four types of L-shaped regions, each of which is union of two
rectangles containing a corner of the grid. Let us focus on the L-shaped regionL(s, t, u)
that is a union of two rectangles containing the left-lower corner: the tall rectangle has
height s and width u, and the short rectangle has a height t. Other types can be handled
analogously.

We define F (s, t, u) to be the optimal three color painting (from both sides and the
bottom edge). We have the following recursive formula

F (s, t, u) = max{F (s− 1, t, u) + R(s, u), UR(s, u) + UL(t, u + 1), F (s, t, u− 1)}.

The first case is where the s-th row is not penetrated by U; thus, the row can only be
reached from the left, and painted in the color of R. The second case is where the u-th
column is not penetrated by the L, thus we can cut the shape at the u-th column to have
two 2-colored rectangles; one has height s, and the other has t. The third case is where
the s-th row is penetrated by U, and the u-th column is penetrated by L; thus, the u-th
column beyond the t-th row is blocked, and cannot be colored.

We can compute each new entry of the table F (∗, ∗, ∗) in O(1) time using the
precomputed tables, and hence the time complexity for computing all entries of the
three-dimensional array F is O(n3) = O(N1.5). We need O(N1.5) space to store it.
Analogously, we can compute 3D-tables for other types of L-shaped regions. Then, we
can compute the weight UDLR of the maximum-weight four-color painting from them
in O(N1.5) additional time. Thus, we have the following:

Theorem 3. The room-edge problem can be solved either O(N1.5) time and space or
O(N2) time using O(N) space. If we use only three colors, the problem can be solved
in O(N) time.

2.3 Allowing k Base Lines

Now, let us consider the case where we are given k base (either vertical or horizontal)
lines. We solve the problem of finding the maximum weight (possibly non-connected)
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region that can be decomposed into base monotone polygons corresponding to the sepa-
rating lines. The arrangement of k separating lines decompose the pixel grid into O(k2)
cells that are rectangular subgrids.

Lemma 1. If we consider the union of the optimal solution of room-edge problem of
all cells of the arrangement, it is decomposable into pairwise disjoint base monotone
regions of the separating lines, and attains the maximum weight.

Proof. The key observation is taht each cell can be solved independently: suppose that
a monotone region R(�) based by a line � is cut by another base line �′ (parallel to �)
into R1 ∪R2 where R2 is separated from � by �′. Then, we can replace R(�) by R1 and
R(�′) by R(�′) ∪ R2 to obtain a new pair of based monotone regions, where the new
R(�) does not intersect �′. In this way, we can reform the decomposition such that its
each component do not intersect other parallel base lines. Cutting with partition lines
orthogonal to base lines into subregions does not affect because of definition of base
monotone regions. Thus, the union of the solutions of the room-edge problem gives the
global solution of the problem with k base lines. �

For each cell Gt, if it has O(Nt) pixels, the room-edge problem inside the cell can be
solved in O(N1.5

t ) time. Since the summation of Nt over all cells is O(N), the total
time complexity of solving the room-edge problem insider all cells is O(N1.5). Thus,
we have the following theorem.

Theorem 4. The maximum weight region decomposable into based monotone regions
of given k base lines can be computed in O(N1.5) time.

3 Other Types of Regions

Due to 10 pages limitation of this proceedings, proofs of theorems in this section will
be given in the full version.

Allowing k base segments
Let us consider a segment s of the base line �, and suppose that we only consider the
monotone regions R such that the intersection of the closure of R and � is contained in
s. Then, we call R has s as its base segment. Given a set of base segments, we consider
an analogous problem. Without loss of generality, we assume that the segments are
mutually non-intersecting in their interior, since we can refine segments if they intersect.
The algorithm given in the previous subsection does not work, since we cannot easily
decompose the problem into room problems. We also consider the restricted problem in
which the region can be build only on the right side of each vertical base segment and
on the upper side of each horizontal base segment.

Theorem 5. If we are given k non-intersecting base segments and consider based
monotone regions in upside (for horizontal segments) and right side (for vertical seg-
ments), the optimal region decomposable to these monotone regions can be computed
in O(kO(k)N2) time. If we use four directions, the optimal region is computed in
O(NO(k)) time.
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Digital star-shaped regions
G is the graph representing the adjacent relation of pixels of P. A digital ray system
is a rooted spanning tree T of G such that all leaves are located on the boundary of
the grid. A digital star-shaped region R associated with T is a rooted subtree of the
tree T . The path from root to a pixel is called the digital ray, and the digital star-shaped
region is characterized a region such that for any pixel in the region the digital ray to the
pixel is also in the region. A construction of T such that any digital star-shaped region
is an approximation of a real star-shaped region within O(log n) Hausdorff distance is
known [6]. For simplifying the presentation of time complexity, we consider the case
in which the diameter of T is O(n). Given two root positions r1 and r2 and digital ray
system T1 and T2, an admissible decomposition of a region R is a nonintersecting pair
of rooted subtrees of T1 and T2 such that the union of corresponding regions is R. We
say R is an admissible region if it has an admissible decomposition.

Theorem 6. The maximum weight admissible region can be computed in O(N3) time.

Union versus decomposition
We discuss the difference of complexities of the problems for union and decomposition.
The following theorem shows a strong contrast to the positive results in Theorems 1 and
6. An outline of the proof is implicitly given in [8], and is omitted in this version.

Theorem 7. It is NP-hard to compute the maximum weight union R = R1 ∪ R2 of
regions R1 ∈ U and R2 ∈ R. Moreover, the maximum weight union of two star-shaped
regions is hard to approximate within any given finite ratio.

Staircase/rectilinear convex regions
A region R is a staircase convex region centered at p if R is represented as a union
of rectangles containing p, in other words, for each q ∈ R, every L1 shortest path
between p and q is contained in R. A region R is a rectilinear convex region if it is both
x-monotone and y-monotone; in other words, the intersection of any column or row
and R is an interval (or empty). By definition, a staircase convex region is a rectilinear
convex region. It is known that the maximum weight staircase convex region for a given
center p can be computed in O(N) time, and the maximum weight rectilinear convex
region can be computed in O(N1.5) time [7,10].

Theorem 8. For any constant k, the maximum weight region decomposable into k
staircase pairwise disjoint convex (or rectilinear convex) regions can be computed in
O(Nk+1) time. Moreover, the problem can be solved in the same time complexity even
without the pairwise disjoint condition.

Note that the difference of computational complexities of the decomposition problem
and the union problem has not been revealed for these cases. We conjecture that there is
a fixed parameter tractable algorithm for the pairwise disjoint case (when the k center
points are given).
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4 Concluding Remarks

Study of complexity of combinatorial algorithms of segmenting a figure decompos-
able into k basic objects has just started by this work. Especially, development of FPT
algorithms is important and unsolved in many cases. The three dimensional extension
has a potential application to a variation of open-pit mining problem [9]. The authors
thank Martin Nöllenburg for fruitful discussions. This work is partially supported by
MEXT grant on basic research (B) 18300001 and young researcher grant (B) 21700004.
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Abstract. We present a technique for representing bounded-degree pla-
nar graphs succinctly while permitting I/O-efficient path traversal. To
represent a graph G on N vertices, each with an associated key of
q = O(lg N) bits1, we use Nq + O(N) + o(Nq) bits. Using this represen-
tation, a path of length K can be traversed with O(K/ lg B) I/Os, where
B is the disk block size. Our structure may be adapted to represent, with
similar space bounds, a terrain modeled as a triangular-irregular network
to support traversal of a path that visits K triangles using O(K/ lg B)
I/Os. This structure can be used to answer a number of useful queries
efficiently, such as reporting terrain profiles, trickle paths and connected
components.

1 Introduction

External-memory (EM) data structures and succinct data structures both ad-
dress the problem of representing very large data sets. In the EM model, the
amount of data required to solve a given problem exceeds internal memory. Data
structures and algorithms are designed to solve the problem, while minimizing
the transfer of data between internal and external memory. For succinct data
structures, the aim is to encode the structural component of the data structure
using as little space as is theoretically possible, while still permitting efficient
navigation. In addition to our own research on traversal in trees [1], the only
other research that merges these techniques is on succinct EM data structures
for text indexing [2,3].

Here we develop data structures for path traversal in planar graphs. Given
a bounded-degree planar graph G, we wish to report a path composed of K
vertices in G using a small number of I/O operations. We demonstrate practical
applications of our structure by showing how it can be applied to answering
queries on triangular irregular network (TIN) models.

1.1 Background

In the External Memory (EM) model [4], the number of elements in the problem
instance is denoted by N . Memory is divided into a two-level hierarchy, external
1 We use lg N to denote log2 N .

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1175–1184, 2009.
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and internal memory. The external memory is assumed to have effectively infinite
capacity, but accessing data elements in external memory is slow. The internal
memory permits efficient operations, but its capacity is limited to M < N ele-
ments. Data are transferred between internal and external memory in blocks of
size B, where 1 < B < M/2. In this paper, we assume that B = Ω(lg N), which
is true for all realistic values of N and B in an EM setting. We refer to such a
transfer as an I/O operation. The efficiency of algorithms in the EM model is
evaluated with respect to the number of I/O operations they require.

Nodine et al. [5] first considered the problem of blocking graphs in exter-
nal memory for efficient path traversal. Path traversal is measured in terms of
blocking speed-up—the worst-case number of vertices (path length) that can be
traversed before an I/O is required. They identified the optimal bounds for sev-
eral classes of graphs. An I/O-efficient algorithm that blocks a bounded-degree
planar graph so that any path of length K can be traversed in O(K/ lg B) I/Os
was proposed by Agarwal et al. [6].

Succinct data structures for trees and graphs were originally proposed by
Jacobson [7]; the goal is to represent data structures using space as near the
information-theoretic lower bounds as possible, while still permitting efficient
navigation. Numerous efforts have been made to improve this for graphs [8,9].
Recently, Chiang et al. [10] obtained a succinct data structure for planar graphs
that uses 2m + 2n + o(n) bits, where m and n are the number of edges and
vertices, respectively, in the graph.

2 Preliminaries

A key data structure used in our graph representation is a bit vector C[1..N ] that
supports rank and select operations efficiently. The operations rank1(C, i) and
rank0(C, i) return the number of 1s and 0s in C[1..i], respectively. The operations
select1(C, r) and select0(C, r) return the position of the rth occurrence of 1
and 0 in C, respectively. The problem of representing a bit vector succinctly
to support rank and select operations in constant time under the word RAM
model with word size Θ(lg N) bits has been considered in [7,2,11], and these
results can be directly applied to the external memory model:

Lemma 1. A bit vector C of length N containing R 1s can be represented using
(a) N + o(N) bits [2] or (b) lg

(
N
R

)
+ O(N lg lg N/ lgN) bits [11] to support the

access to the bits of C, as well as rank and select operations on C, in O(1)
time (or O(1) I/Os in external memory).

Frederickson [12] developed a technique for decomposing planar graphs. A planar
graph is divided into overlapping regions which contain two types of vertices,
interior and boundary vertices. Interior vertices occur in a single region and are
adjacent only to vertices within that region. Boundary vertices are shared among
two or more regions. Lemma 2 summarizes Frederickson’s result.

Lemma 2 ([12]). A planar graph with N vertices can be subdivided into Θ(N/r)
regions of no more than r vertices and with a total of O(N/

√
r) boundary vertices.
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3 Graph Representation

Let G be a planar graph of bounded degree d. Each vertex in G stores a q-bit
key. We assume that q = O(lg N). We perform a two-level partitioning of G
inspired by the approach in [13]. This results in a subdivision of G into regions
of fixed maximum size, which are subdivided into sub-regions of smaller fixed
maximum size. Within the regions and sub-regions, vertices fall into one of two
categories, interior vertices, and boundary vertices. A vertex is interior to a
region if all of its neighbouring vertices in G belong to the same region. A vertex
is a region boundary vertex if it has neighbouring vertices in G that belong to
different regions. Sub-region vertices are labeled as interior or boundary in the
same fashion. Due to the two-level partitioning, a sub-region boundary vertex
may also be a region boundary vertex.

Consider some vertex v ∈ G. Based on [6], we define the α-neighbourhood
of v as follows. Beginning with v, we perform a breadth-first search in G and
select the first α vertices encountered. The α-neighbourhood of v is the sub-
graph of G induced by these vertices. Analogous to the interior and boundary
vertices in a region or sub-region, we define internal and terminal vertices for
α-neighbourhoods. The neighbours of an internal vertex belong to the same
α-neighbourhood, while terminal vertices have neighbours external to the α-
neighbourhood.

In our representation of G, we store each sub-region and the α-neighbourhood
of each boundary vertex. When constructing the α-neighbourhood of a sub-
region boundary vertex that is not a region boundary vertex, we add an addi-
tional constraint that its α-neighbourhood cannot be extended beyond the region
it is interior to. Collectively, we refer to the sub-regions and α-neighbourhoods
as components of the graph. The regions are not explicitly stored, but rather
are a collection of their sub-region components. Each component is stored using
a succinct representation that allows efficient traversal of the component. To
enable traversal of G, each vertex is assigned a unique graph label.

3.1 Graph Labeling

In this section, we describe the labeling scheme that enables traversal across the
components of the graph. The scheme is based on Bose et al. [13] but uses the
technique of Frederickson [12] for graph decomposition.

Each vertex v of G is assigned a unique graph label, in addition to possibly
multiple (in the case of boundary vertices) region labels and sub-region labels. G
is partitioned into a set of regions. We denote the ith region by Ri. Each region
Ri is subdivided into sub-regions. We denote by qi the number of sub-regions in
Ri, and denote the jth sub-region of Ri as Ri,j . In partitioning G, the vertices
on the boundary of a sub-region (or region) appear in more than one sub-region
(region). Consider a boundary vertex v of Ri,j . We say that the instance of v
appearing in Ri,j defines v in Ri if there is no sub-region Ri,h in Ri, such that
v ∈ Ri,h and h < j. All subsequent instances of v in any other sub-region are
referred to as duplicates. Likewise, for a region boundary vertex v ∈ Ri, v is a
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defining vertex if there is no region Rh containing v, where h < i. In our labeling
at the region and graph levels, our strategy is to assign defining vertices a unique
label, while duplicate vertices are assigned the labels of the defining vertex.

The encoding of a sub-region Ri,j induces a permutation of the vertex set
within the sub-region. We let the position of each vertex within this permutation
serve as its sub-region label. Now we discuss the assignment of region labels to the
vertices within a region Ri with qi sub-regions. There are, including duplicates,
a total of

∑qi

j=1 |Ri,j | vertices in Ri. Let nb
i be the number of defining sub-

region boundary vertices in Ri. We visit each sub-region Ri,j for j = 1, 2, . . . , qi,
and assign each defining vertex the next available region label from the set
{1, . . . , nb

i}. This process is then repeated and the interior vertices are assigned
labels from the set {nb

i + 1, . . . , |Ri|}. Duplicate vertices are assigned the labels
of their defining vertices.

The assignment of graph labels mirrors that of region labels. Let nb be the
total number of region boundary vertices over all regions in G. We visit each
region Ri, for i = 1, 2, . . . , t, and assign each defining boundary vertex the next
available graph label from the set {1, . . . , nb}. As with the region labeling, we
then repeat this process and assign each interior vertex the next available label
from the set {nb + 1, . . . |G|}. This completes the labeling procedure.

Based on this labeling scheme, observe that the graph labels assigned to all
interior vertices of a region are consecutive. Likewise, the region and graph labels
assigned to all interior vertices of a sub-region are consecutive.

3.2 Data Structures

We wish to have each sub-region fit in a single disk block. Denote by A the
maximum number of vertices that may be stored in a block, and this becomes
our maximum sub-region size. Using Lemma 2, we first divide G into regions
of size A lg3 N by setting r = A lg3 N . We further divide each region into sub-
regions of size A by setting r = A. The sub-region Ri,j is encoded using:

1. A compact encoding of the graph structure of Ri,j . This involves a permu-
tation of the vertices in Ri,j .

2. A bit vector, B of length |Ri,j | for which B[i] = 1 if and only if the corre-
sponding vertex in the encoding’s permutation is a boundary vertex.

3. An array of length |Ri,j | that stores the q-bit key for each vertex in Ri,j .

We store two arrays LS and LR, which record for each sub-region and region,
respectively, the graph label of the sub-region’s (region’s) first interior vertex.

We select A such that a sub-region of size A will fit in exactly one block in
memory. However, we are only guaranteed that sub-regions will have at most
A vertices, therefore some sub-regions will occupy less than a full block. We do
not want to waste any bits by storing sub-regions in partially full blocks. We
store sub-regions to disk in the following fashion: Let �SR be a total order of the
sub-regions of G. Sub-region Rj,k comes before Rl,m in �SR if either j < k, or, if
j = k and k < m. We write the sub-regions to disk in this order. Prior to writing
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a sub-region we write its sub-region offset value, which is its size in vertices.
When we finish writing one sub-region to disk, we immediately start writing the
next sub-region. If we come to a block boundary, we skip a pre-defined number of
bits at the start of the next block, which we term the block offset, and continue
writing the bits for the current sub-region. When we overrun a block in this
fashion, we record the length of the overrun (in bits) in the block offset. If a
sub-region happens to end at a block boundary, we write 0 to the block offset of
the next block. Since a sub-region is no larger than a single block, a sub-region
will never span portions of more than two blocks. We continue this process until
all sub-regions have been written to disk.

Denote by Q the total number of sub-regions used to store G. To facilitate
efficient lookup of sub-regions within the disk blocks, we store two bit vectors:

1. Bit vector BR[1..Q], where BR[i] = 1 iff the ith sub-region in �SR is the first
sub-region in its region.

2. Bit vector BS [1..Q], where BS[i] = 1 iff the block in which the ith sub-region
starts differs from sub-region i − 1.

We store the α-neighbourhood for each region and sub-region boundary vertex
v by encoding the subgraph Gv that comprises v’s α-neighbourhood using:

1. An encoding of the graph structure of Gv. This encoding involves a permu-
tation of the vertices in Gv.

2. A bit array of length |Gv| that marks each vertex in Gv as internal or ter-
minal.

3. A variable that records the position of v within the permutation of the
vertices of Gv.

4. An array of length |Gv| that stores the key associated with each vertex.
5. An array, Lα, of length |Gv| that stores for each vertex w:

(a) its graph label if v is a region boundary vertex. Otherwise,
(b) a region offset of lg (A lg3 N) bits if w is interior to v’s region. This offset

is calculated as the difference between the graph labels of w and the first
interior vertex in v’s region (stored in LR). If w is a boundary vertex of
v’s region, we store w’s region label in this region using lg (A lg3 N) bits.

The α-neighbourhoods of all sub-region boundary vertices are stored together
in an array, SRα. Since the size of the compact encoding of the subgraph may
vary between α-neighbourhoods, we pad extra bits where necessary to ensure
that the elements of SRα are of fixed size. This array is created by visiting each
region in turn and appending the α-neighbourhoods of all sub-region boundary
vertices to SRα, ordered by region label. Additionally, we store a bit vector D
of length N where D[i] = 1 iff the vertex with graph label i is a sub-region
boundary vertex that is interior to its region.

Lemma 3. The data structures described above store a bounded-degree planar
graph G on N vertices, each with an associated q = O(lg N)-bit key, in O(N) +
Nq + o(Nq) bits.
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Proof (Sketch). Let c denote the number of bits per vertex required to store
the sub-graph and boundary bit-vector (this applies to both sub-region and α-
neighbourhood components). The exact value of c depends on the chosen succinct
representation for the graph used to store components. We have assumed blocks
of size B lg N bits, and for the sake of simplicity, we assume that c + q divides
B lg N . Thus (c + q)A = B lg N , and A = B lg N

c+q .
When splitting G into regions and sub-regions, we let r = A lg3 N for regions,

and r = A for sub-regions. By Lemma 2, this results in Θ
(

N
A lg3 N

)
regions with

O

(
N√

A lg3 N

)
region boundary vertices, and Θ

(
N
A

)
sub-regions with O

(
N√
A

)

sub-region boundary vertices. Regions are not explicitly stored, so consider the
space required to store the sub-regions. To store a single copy of each vertex, we
require N(c + q) bits, which accounts for all internal vertices plus the defining
copies of all boundary vertices. Additionally, we need to store the O

(
N/

√
A
)

duplicate boundary vertices, which requires O
(

N√
A

)
(c+q) = o(Nq) bits. Storing

the sub-regions also requires space for the bit arrays BR and BS, plus the block
and sub-region offsets when packing the sub-regions to disk. BR and BS are both
of length bounded by the number of sub-regions, of which there are O(N/A), and
as such require o(N) bits by Lemma 1. Each block offset requires lg B bits and
there are O(N/B) blocks, so block offsets use o(N) bits. Likewise, the O(N/A)
sub-region offsets use o(N) bits. Thus, the total cost for storing the sub-regions
is N(c + q) + o(Nq) bits.

We let α = A
1
3 be the size of the α-neighbourhoods for both region and sub-

region boundary vertices (in fact α = A
1
2−ε, for ε > 0, suffices for our analysis).

Cumulatively, the number of bits required to store the α-neighbourhoods of all re-
gion boundary vertices is Θ( N√

A lg3 N
)·A 1

3 ·(lg N+q+c) = Θ( N

A
1
6 lg

3
2 N

)·Θ(lg N) =

o(N). The space required by Lα to store the labels associated with each vertex
in the α-neighbourhood of a sub-region boundary vertex is lg (A lg3 N) bits. The
space requirement for all α-neighbourhoods of all sub-region boundary vertices
is thus Θ( N√

A
) · A 1

3 · (lg (A lg3 N) + q + c) = o(Nq) bits. It is easy to show that
the remaining auxiliary data structures, D, LR and LS , occupy o(N) bits. �	

3.3 Navigation

The traversal algorithm operates by loading either a sub-region or the α-neigh-
bourhood of a boundary vertex and traversing that component until a boundary
vertex (in the case of a sub-region) or a terminal vertex (in the case of a α-
neighbourhood) is encountered, at which time the next component is loaded
from memory and traversal continues. Traversal assumes that we have a function
step available, which, given a vertex v in G and the key value of v, determines
where to proceeded in the traversal. A call to the step function can have one of
three possible outcomes: termination of the traversal, selection of a neighbour of
the current vertex, or loading a new component from memory if not all of the
current vertices’ neighbours are in the currently loaded component.
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Now we analyze the I/O complexity. First we show that within each com-
ponent, labels can be reported at no additional I/O cost (Lemma 4). We then
describe how we ensure that components can be identified and loaded in O(1)
I/Os (Lemma 5). Finally, we demonstrate that visiting a constant number of
components guarantees a progress of O(lg A) steps along the path (Lemma 6).
We omit the proofs in the rest of this paper due to space constraints.

Lemma 4. Given a sub-region or α-neighbourhood, the graph labels of all inte-
rior (sub-regions) and internal (α-neighbourhoods) vertices can be reported with-
out incurring any additional I/Os beyond what is required when the component
is loaded into main memory.

When we arrive at a boundary/terminal vertex, conversions between labels are
necessary in order to locate the next component to load. Our labeling scheme is
derived from [13], and by Lemma 3.4 in their paper, conversion between these
labels can be performed in O(1) time. We can extend this to external memory,
and prove the following lemma:

Lemma 5. When the traversal algorithm encounters a terminal or boundary
vertex v, the next component containing v in which the traversal may be resumed
can be loaded in O(1) I/O operations.

Lemma 6. Using the data structures and navigation scheme described above, a
path of length K in graph G can be traversed in O

(
K

lg A

)
I/O operations.

Combining Lemmas 3 and 6, we have (note that A = Ω(B)):

Theorem 1. A bounded-degree planar graph G on N vertices, where each vertex
stores a key of q bits, can be represented using Nq+O(N)+o(Nq) bits to support
the traversal of a path of length K with O

(
K

lg B

)
I/O operations.

The only comparable work to ours is that of Agarwal et al. [6]. In addition to
storing keys, they use O(N lg N) bits to store the graph structure. In contrast,
we use only O(N) bits to store the graph structure, and we manage to show that
the path traversal and other operations can still be performed I/O-efficiently. For
very large data sets, this is an enormous saving in space.

4 Representing Triangulated Terrains

Let Σ be a terrain in R3. Let P be a set of points on the terrain Σ with
coordinates x, y and z, where z is the elevation of the point. The triangulation
T of the point set P is a model of Σ. By projecting T onto the x, y-plane, we
can view T as a planar graph with vertices being the point set P . Each triangle
of T is defined by three points from P . If a point is one of the defining points for
a triangle, we say that it is adjacent to that triangle. Two triangles are adjacent
if they share a common edge (and consequently two adjacent points).
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We can represent T in a compact fashion as follows. Let G = (V, E) be the
dual graph of T . G is a connected planar graph of bounded degree d = 3, with a
vertex corresponding to each triangle in T . There is no vertex corresponding to
the outer face, so edges along the perimeter of T do not have a corresponding
edge in the dual G. Starting with G we generate an augmented planar graph
G′ = (V ′, E′), by adding the point set P to G so that V ′ = V ∪ P . We form
the edge set E′ by adding an edge to E for each vertex pair (v, p) where v ∈ V
and p ∈ P and where p is adjacent to the face of T that corresponds to v. The
new graph G′ remains planar but is no longer of bounded degree. However, all
the vertices from the original vertex set V are still of degree at most six. In the
augmented graph, we refer to the vertices corresponding to triangles as triangle
vertices, and to the vertices corresponding to points as point vertices. In a similar
fashion, we refer to the edges of G as dual edges, and to those edges added to
connect the point and triangle vertices as point edges. We have the following
lemma that bounds the size of G′:

Lemma 7. Given the dual graph G of triangulation T with N vertices, the aug-
mented graph G′ has at most 2N + 2 vertices.

For the purpose of quantifying the bit cost of our data structures, we denote
by ϕ = O(lg N) the number of bits required to encode the coordinates of a
point. We encode G′ using a succinct planar graph data structure. The encoding
involves a permutation of the vertices of G′. Let the augmented graph label, �(v),
of the vertex v, be the position of v in this permutation. We store the point set
P in an array P ordered by the augmented graph labels of the points. Finally,
we create a bit vector π of length |V ′|, where π[v] = 0 if v is a triangle vertex
and π[v] = 1 if v is a point vertex. To summarize, we have:

Lemma 8. The data structures described above can represent a terrain T com-
posed of N triangles with ϕ-bit point coordinates, where ϕ = O(lg N), using
Nϕ + O(N) + o(Nϕ) bits, so that, given the label of a triangle, the adjacent
triangles and points can be reported in O(1) time.

4.1 Compact External-Memory TIN Representation

In this section, we extend our data structures for I/O-efficient traversal in
bounded-degree planar graphs (Section 3) to terrains. We represent T by its
dual graph G. Since the dual graph of the the terrain (and subsequently each
component) is a bounded-degree planar graph, it can be represented with the
data structures described in Section 3. Each component is a subgraph of G for
which we generate the augmented subgraph, as described above. To represent
a terrain we must store the augmented subgraph which includes points from
the point set P adjacent to the triangles represented by the vertices in the sub-
regions and α-neighbourhoods.

Lemma 9. The space requirement, in bits, to store a component (α-neighbour-
hood or sub-region) representing a terrain is within a constant factor of the space
required to store the terrain’s dual graph.
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We have the following theorem due to Theorem 1 and Lemma 9:

Theorem 2. A terrain T modeled as a TIN on N nodes, where the coordinates
of each point can be stored in ϕ bits, can be represented using Nϕ+O(N)+o(Nϕ)
bits to support the traversal of a path which crosses K faces in T with O

(
K

lg B

)

I/O operations.

For the case in which we wish to associate a q bit key with each triangle, we
can easily extend our approach to represent a terrain using N(ϕ + q) + O(N) +
o(N(ϕ + q)) bits to provide the same support for path traversals.

4.2 Applications on TIN Models

We now present a number of applications on TIN models represented using our
data structures. In this section, we assume that we are given a starting triangle,
t ∈ T , as a query parameter. We remove this assumption in Section 4.3.

Terrain Profiles and Trickle Paths: Terrain profiles are a common tool for
GIS visualization. The input is a line segment, or chain of line segments possibly
forming a polygon, and the output is a profile of the elevation along the line
segment(s). The trickle path, or path of steepest descent, from a point p is
the path on T that begins at p and follows the direction of steepest descent
until it reaches a local minimum or the boundary of T [14]. In analyzing these
algorithms, we measure the complexity of a path based on the number, K, of
triangles it intersects. When a path intersects a vertex, we consider all triangles
adjacent to that vertex to have been intersected. Given this definition, we have:

Lemma 10. Let T be a terrain stored using our representation. Then:

(a) Given a chain of line segments, S, the profile of the intersection of S with
T can be reported with O( K

lg B ) I/Os.
(b) Given a point p, the trickle path from p can be reported with O( K

lg B ) I/Os.

Connected Component Queries: In a connected component query, we are
given a convex terrain T and a triangle t ∈ T , and wish to report all triangles
in the connected component T ′ ⊂ T that share a common attribute or property
P(t) (the property of t). A triangle t′ is in T ′ iff P(t) = P(t′) and there exists a
path in G from t to t′ consisting only of triangles that share this property.

Theorem 3. A triangulation T with a q-bit key per triangle can be stored using
Nq + O(N) + o(Nq) bits such that a connected component, T ′, may be reported:

(a) Using O
(
|T ′|
lg B

)
I/Os if T ′ is convex.

(b) Using O
(
|T ′|
lg B + h logB h

)
I/Os, and O(h · (q + lg h)) bits of temporary stor-

age, if T ′ is non-convex and/or may contain holes. The value h denotes the
number of boundary edges around all the holes and the perimeter of T ′.

(c) Using O
(
|T ′|
lg B + h′ logB h′

)
I/Os and no additional storage if T ′ is non-

convex and/or may contain holes. The value h′ is the total number of trian-
gles touching all the holes and the perimeter of T ′.
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4.3 Terrain Representation with Point Location

For the various applications that we have described, we assumed that a starting
triangle in T is given as an input parameter. This is problematic because in
real applications, we will typically need to locate the triangle from which we will
begin reporting the result. To address this problem, we combine the succinct data
structure of Bose et al. [13] that supports point location in internal memory with
our data structures. This allows us to use o(Nϕ) bits of additional storage to
perform planar point location on a terrain, T , in O(logB N) I/Os. Asymptotically
this does not change the space requirement for T .

Theorem 4. A terrain T modeled as a TIN on N nodes, where each point
coordinate may be stored in ϕ bits, can be represented T using Nϕ+O(N)+o(Nϕ)
bits to support the traversal of a path crossing K faces in T with O

(
K

lg B

)
I/Os,

and to support point location queries incurring O(logB N) I/Os.
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1 Introduction

The problems that are related to string inclusion and non-inclusion have been
vigorously studied in such diverse fields as data compression [12,13], molecular
biology [2,10], and computer security [7].
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related strings; consider a set of strings W = {w1, · · · , wm} and a string α over
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is called the longest common substring of W. Finding the longest common
substring of W is solvable in polynomial time by dynamic programming or
using generalized suffix trees [4].

– shortest common superstrings: If α is a superstring of wi for all 1 ≤ i ≤ m,
then α is called a common superstring of W. Among such α’s, the shortest
one is called the shortest common superstring of W. The problem of finding
the shortest common superstring is NP-hard [8,3].

– shortest common nonsubstrings: If α is not a substring of any wi for all 1 ≤
i ≤ m, then α is called a common nonsubstring of W. Among such α’s, the
shortest one is called the shortest common nonsubstring of W. The problem
of finding the shortest common nonsubstring can be solved in polynomial
time [11].

– longest common nonsuperstrings: If α is not a superstring of any wi for
all 1 ≤ i ≤ m, then α is called a common nonsuperstring of W. Among
such α’s, the longest one is called the longest common nonsuperstring of W.
The problem of finding the longest common nonsuperstring is solvable in
polynomial time [11,6,9].

Meanwhile, there are some notions that consider string inclusion and non-
inclusion at the same time. Given a finite set of negative strings N and a finite
set of positive strings P, a string α is a consistent superstring for N and P if α is
both a common superstring of P and a common nonsuperstring of N.

– shortest consistent superstrings: Among the consistent superstrings for N and
P, the shortest one is called the shortest consistent superstring for N and P.
Jiang and Li [5] introduced the notion of the consistent superstring and
they provided approximation algorithms for finding the shortest consistent
superstring when |N| is bounded or when inclusion free holds, i.e., no string in
the set includes another as a substring. Jiang and Timkovsky [6] proposed an
algorithm for solving this problem using the directed graph model proposed
in [11]. There are two nontrivial assumptions in [6] for finding the shortest
consistent superstring for N and P. The first assumption is that every symbol
of the alphabet appears at the end of some negative string. The second
assumption is that N∪ P is inclusion free. Jiang and Timkovsky’s algorithm
runs in polynomial time when the graph is acyclic or when |P| is bounded
by a constant.

– longest consistent superstrings: Among the consistent superstrings for N and
P, the longest one is called the longest consistent superstring for N and P.
Under the same assumptions as above, Jiang and Timkovsky [6] proposed
a polynomial time algorithm for finding the longest consistent superstring
when the graph is acyclic.

In this paper, we first propose a new graph model based on the Aho-Corasick
algorithm to represent consistent superstrings for N and P. Then, we present im-
proved algorithms for finding the shortest consistent superstring and the longest
consistent superstring using the graph model.
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Our contributions are as follows:

– We propose a new model that represents consistent superstrings for N and
P without any of the nontrivial assumptions that were used in [6].

– We propose an algorithm for finding the shortest (or longest) consistent
superstring running in time linear to the sum of the lengths of the strings in
N and P when the graph is acyclic and either when |N| and |P| are bounded
by a constant or when N ∪ P is inclusion free.

The remainder of the paper is organized as follows. In Section 2, we describe
the various notations and definitions that we use in this paper. In Section 3,
we present a new graph model for consistent superstrings. In Section 4, we give
algorithms for finding the shortest and the longest consistent superstrings for
the given sets of strings.

2 Preliminaries

Let α be a string over a constant size alphabet Σ. We denote the length of α by
|α| and the ith (1 ≤ i ≤ |α|) character of α by α[i]. When a string β is α[i]α[i +
1] · · ·α[j], we denote β by α[i..j] and we call β a substring of α. Conversely, α is
called a superstring of β. Moreover, α[1..j] (1 ≤ j ≤ |α|) is called a prefix of α and
when j 
= |α|, α[1..j] is called a proper prefix of α. Similarly, we can define a suffix
of α and a proper suffix of α, respectively. For convenience, we assume the empty
string λ is both a prefix of α and a suffix of α.

Consider two given sets of strings N = {x1, x2, . . . , xt} and P = {y1, y2, . . . , yr}
over a constant size alphabet Σ. We call each xi (1 ≤ i ≤ t) a negative string,
and we call each yj (1 ≤ j ≤ r) a positive string. We assume that N does not
contain the empty string λ. Let n denote the sum of the lengths of all strings
in N and let p denote the sum of the lengths of all strings in P. We denote the
number of elements in a set X by |X|. Then, |N| = t and |P| = r.

When N and P are given as above, a consistent superstring (CSS) for N and
P is a string α that includes every positive string yi (1 ≤ i ≤ r) and no negative
string xj (1 ≤ j ≤ t) as a substring. We denote the set of all CSSs for N and P
by CS. The shortest consistent superstring (SCSS) for N and P is the shortest
string in CS. Similarly, if CS is a finite set, then the longest consistent superstring
(LCSS) for N and P is the longest string in CS. If we can make an arbitrarily
long CSS, then CS is an infinite set and thus the LCSS for N and P does not
exist. Note that when N = φ, α is called a common superstring for P, and when
P = φ, α is called a common non-superstring (CNSS) for N. We denote the set
of all CNSSs for N by CN. Note that CS ⊆ CN. If CN is a finite set, then the
longest common non-superstring (LCNSS) is the longest string in CN.

Now, we define the shortest consistent superstring problem and the longest
consistent superstring problem:

Problem 1. The shortest consistent superstring problem (the SCSS problem).
Input: A finite set of negative strings N = {x1, x2, . . . , xt} and a finite set of
positive strings P = {y1, y2, . . . , yr} over a constant size alphabet Σ.
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Output: If CS = φ, the output is ‘No SCSS exists.’ Otherwise, the output is the
SCSS for N and P.

Problem 2. The longest consistent superstring problem (the LCSS problem).
Input: A finite set of negative strings N = {x1, x2, . . . , xt} and a finite set of
positive strings P = {y1, y2, . . . , yr} over a constant size alphabet Σ.
Output: If CS = φ or an arbitrarily long CSS can be made, the output is ‘No
LCSS exists.’ Otherwise, the output is the LCSS for N and P.

To avoid some trivial cases, we assume that N and P satisfy the following three
conditions:

(1) For all xi and xj (i 
= j), xi is not a substring of xj .
(2) For all yi and yj , yi is not a substring of yj.
(3) For all xi and yj (i 
= j), xi is not a substring of yj.

Note that if xi is a substring of xj , then any non-superstring of xi is a non-
superstring of xj , and that if yi is a substring of yj, then any superstring of yj is
a superstring of yi. If xi is a substring of yj , then any superstring of yj cannot
be a non-superstring of xi, and thus any CSS for N and P cannot exist. However,
Jiang and Timkovsky [6] assumed two more conditions that are not trivial:

(4) For all yi and xj , yi is not a substring of xj .
(5) For every symbol a ∈ Σ, there exists x ∈ N such that a = x[|x|].

We say that N∪ P is inclusion free when N and P satisfy the conditions (1)–(4).
To solve the CSS problems, we utilize the well-known Aho-Corasick algorithm.

The Aho-Corasick algorithm (the AC algorithm for short) is an efficient algo-
rithm for finding all occurrences of any of a finite number of pattern strings in a
text string [1]. The AC algorithm consists of constructing a finite state pattern
matching machine (the AC machine for short) from the pattern strings, and
then finding the pattern strings from the text string in a single pass using the
AC machine.

The AC machine has three functions: the goto function, the failure function,
and the output function. The goto function can be represented by a trie of given
pattern strings. The failure function for a vertex (state) is defined when the
goto function for the vertex does not exist. The output function for a vertex
shows the pattern strings that have been found. Figure 1.(a) shows an example
of the machine that can find any string of {aa, abba, aba, bb} in any text string.
Note that v2, v4, v5, v6, and v8 are output vertices that indicate the given pattern
strings aa, aba, bb, abba, and bb, respectively.

Another representation of the AC machine is a deterministic finite automaton
that avoids all failure transitions. Figure 1.(b) shows the deterministic finite
automaton version of Figure 1.(a).

3 The Graph Model

In this section, we present our graph model, called GCSS , for consistent super-
strings for N and P. We first introduce the intermediate graph GAC and then
we define GCSS using GAC .
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Fig. 1. (a) The AC machine for {aa, abba, aba, bb}. (b) The deterministic finite automa-
ton version of the AC machine for {aa, abba, aba, bb}.

Let T denote a set of prefixes of all strings in N and P. For example, assume
N = {aa, abba} and P = {aba, bb}, then T = {λ, a, aa, ab, abb, abba, aba, b, bb}.
Given two sets N and P over a constant size alphabet Σ, we define a directed
graph GAC = (V, E) with the vertex set V and the edge set E as follows:

(1) For each string α ∈ T, we define a vertex v, and we do not define any other
vertices. Note that there is a one-to-one correspondence between each vertex
in V and each string in T. We denote a corresponding vertex of a string α
by ver(α) and a corresponding string of a vertex v by str(v). It is clear that
str(ver(α)) = α. We denote ver(λ) by v0 as a special vertex.

(2) For α ∈ T and σ ∈ Σ, we define a function δ : T × Σ → T. δ(α, σ) is the
longest suffix β of ασ such that β ∈ T. Then, a directed edge from ver(α)
to ver(β) labeled with σ is defined if and only if β = δ(α, σ). Note that for
each string α ∈ T and σ ∈ Σ, only one edge is defined, and thus there are
exactly |Σ| outgoing edges for each vertex.

Note that GAC is the deterministic finite automaton version of the AC machine
for N ∪ P.

We define VS(α) as a set of ver(γ) such that α is a suffix of γ and γ ∈ T.
Let VS(P) denote the union of VS(y) for every y ∈ P and let VS(N) denote the
union of VS(x) for every x ∈ N. Note that VS(yi) ∩ VS(yj) = φ for all i 
= j
(1 ≤ i, j ≤ r). Figure 2 shows GAC for N = {aa, abba} and P = {aba, bb}.
Since VS(aba) = {v4}, VS(bb) = {v5, v8}, VS(aa) = {v2} and VS(abba) = {v6},
VS(P) = {v4, v5, v8} and VS(N) = {v2, v6}.

The number of vertices |V | is O(n+p) since the number of prefixes of a string
is the same as the length of the string. The number of edges |E| is also O(n+ p)
because every vertex has at most |Σ| edges that is a constant.

Now we give some notations for GAC . A path in a graph is denoted by the
sequence A = (u1, u2, . . . , uk) of vertices such that for all i = 1, 2, . . . , k − 1,
(ui, ui+1) is an edge of the graph. The length of A is the number of edges in
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Fig. 2. GAC for N = {aa, abba} and P = {aba, bb}, when Σ = {a, b}

A, denoted by |A|. For two paths A1 = (u1, . . . , uk) and A2 = (uk, . . . , ul)
such that the last vertex of A1 is equal to the first vertex of A2, let A1A2 =
(u1, . . . , uk, . . . , ul) denote the merged path of A1 and A2. Let λ-path denote a
path that starts at v0. Let P-path denote a λ-path that passes at least one vertex
of VS(y) for every y ∈ P. Let N-path denote a λ-path that does not pass any
vertex in VS(N).

Given a path A = (u1, . . . , uk) in GAC , let pstr(A) denote a string l1 . . . lk−1
such that each li is the label of the edge (ui, ui+1) for 1 ≤ i ≤ k− 1. Conversely,
given a string α = l1 . . . lk−1, let path(α) denote a path (u1, . . . , uk) such that
each (ui, ui+1) is an edge labeled with li for 1 ≤ i ≤ k− 1. Let λ-path(α) denote
path(α) starting at v0. Note that path(α) as well as λ-path(α) always exists in
GAC for every α ∈ Σ∗ because for every v ∈ V , there exists an edge labeled
with σ for every σ ∈ Σ.

For a string α and λ-path(α) in GAC , the following lemmas show some prop-
erties of the graph GAC .

Lemma 1. For a string β ∈ N ∪ P, α includes β as a substring if and only if
λ-path(α) passes a vertex v ∈ VS(β).

Proof. It is clear by the definition of GAC .

Lemma 2. α ∈ CN if and only if λ-path(α) is an N-path in GAC .

Proof. (if) If λ-path(α) is an N-path in GAC , then λ-path(α) does not pass any
vertex in VS(N), which means pstr(λ-path(α)) does not include any string in N
by Lemma 1. Thus, α ∈ CN.

(only if) For λ-path(α) to be an N-path, it should not pass any vertex in
VS(N). Assume λ-path(α) passes ver(x) where x ∈ N. Then α includes x as a
substring by Lemma 1. It contradicts α ∈ CN. Thus λ-path(α) is an N-path
in GAC .

Lemma 3. α ∈ CS if and only if λ-path(α) is both an N-path and a P-path in
GAC .
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Proof. (if) If λ-path(α) is an N-path in GAC , then α ∈ CN by Lemma 2. If λ-
path(α) is a P-path in GAC , i.e., λ-path(α) passes at least one vertex of VS(y) for
every y ∈ P, then α includes every y as a substring by Lemma 1. Thus α ∈ CS.

(only if) Since α ∈ CS, α ∈ CN and thus by Lemma 2, λ-path(α) is an N-path
in GAC . Also, α includes every positive string y ∈ P as a substring. By Lemma
1 λ-path(α) passes one vertex of VS(y) for every y. Thus λ-path(α) is a P-path
in GAC .

Now we define a directed graph GCSS = (V ′, E′) such that V ′ = V − VS(N)
and E′ = E − {(va, vb)|va ∈ VS(N) or vb ∈ VS(N)}. That is, GCSS is made from
GAC by removing all the corresponding vertices of negative strings and all their
adjacent edges. Figure 3 shows an example of GCSS .

Corollary 1. α ∈ CS if and only if λ-path(α) is a P-path in GCSS

Proof. (if) If λ-path(α) is a P-path in GCSS , then λ-path(α) is also a P-path in
GAC since GAC includes every vertex and every edge in GCSS . Since λ-path(α)
is a path in GCSS , λ-path(α) does not pass any vertex in VS(N), i.e., λ-path(α)
is an N-path in GAC . Thus, by Lemma 3, α ∈ CS.

(only if) Since λ-path(α) for α ∈ CS is an N-path in GAC by Lemma 3, λ-
path(α) never passes any vertex in VS(N). Since GCSS is the same as GAC except
VS(N) and all their adjacent edges, λ-path(α) exists in GCSS . In addition, since
α includes every positive string y ∈ P as a substring, λ-path(α) passes at least
one vertex of VS(y) for every y. Thus, λ-path(α) is a P-path in GCSS .

4 CSS Problems and Algorithms

In this section, we present algorithms for the CSS problems. We can find CSSs
for N and P by finding P-paths in GCSS by Corollary 1. We will find P-paths
using the vertices in VS(P). Let us choose a vertex from each VS(yi) for 1 ≤ i ≤ r
and denote it by wi. Then, a P-sequence is a permutation of w1, w2, · · · , wr. Let
π = 〈u1, u2, · · · , ur〉 be a P-sequence of GCSS . When a P-path A passes all
vertices of π in order, i.e., A is the concatenation of paths from v0 to u1, from
u1 to u2, . . . , and from ur−1 to ur, we say that the P-path A embeds the P-
sequence π. If there exists a P-path embedding a P-sequence π, we call π a valid
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P-sequence. Otherwise, we call π an invalid P-sequence. Note that, for each P-
path, there exists at least one P-sequence embedded by the P-path, which means
we can find P-paths by considering P-sequences.

4.1 Finding the SCSS

Our algorithm for the SCSS problem consists of three phases.

1. Construct GCSS using the Aho-Corasick algorithm.
2. Find the shortest P-path using P-sequences.

For each P-sequence π = 〈u1, · · · , ur〉, we find the shortest P-path embedding
π by concatenating the shortest paths from v0 to u1, from u1 to u2, . . . , and
from ur−1 to ur.

3. Compute the SCSS using the shortest P-path found in Phase 2.
Concatenate the label of each edge on the shortest P-path while traversing it.

In Phase 2, we might have to consider all P-sequences in the worst case. Let
us consider the number of P-sequences. Since there are |VS(yi)| vertices for each
yi (1 ≤ i ≤ r), the number of possible P-sequences is r!

∏r
i=1 |VS(yi)|, which does

not exceed r!
(

n+r
r

)r due to the property of GCSS .
Consider a set Z = P ∪ {z|z is the longest proper prefix of x ∈ N}. Assume

α ∈ Z. For each i (1 ≤ i ≤ r), if a vertex ui ∈ VS(yi) is the first vertex on
λ-path(α) among all the vertices in VS(yi), we call ui a τ -vertex. If every vertex
in a P-sequence π is a τ -vertex, we call π a heading P-sequence.

Lemma 4. Every P-path embeds a heading P-sequence in GCSS.

Proof. Let A be a P-path in GCSS . For each yi ∈ P, let ui denote the first
appeared vertex in A among all the vertices in VS(yi). If λ-path(str(ui)) is the
subpath of A from v0 to ui for 1 ≤ i ≤ r, then ui is a τ -vertex and we are done
since the P-sequence 〈u1, · · · , ur〉 is the heading P-sequence. But λ-path(str(ui))
is not necessarily the subpath of A from v0 to ui. We will show that ui is a
τ -vertex even when λ-path(str(ui)) is not the subpath of A from v0 to ui. Let B
be the subpath of A from v0 to ui. Since str(ui) is a substring of pstr(B) by the
definition of GCSS , str(ui) includes yi only once as a suffix, i.e., ui is the first
vertex to appear in λ-path(str(ui)) among VS(yi). Therefore, ui is a τ -vertex.
Since for each yi there exists a τ -vertex in A, we can make a heading P-sequence
embedded by A. Thus every P-path embeds a heading P-sequence.

By Lemma 4, we can find a P-path by considering heading P-sequences. There
are at most t + 1 τ -vertices in each VS(yi) for 1 ≤ i ≤ r. Thus, the number of
possible P-sequences is at most min

{
r!(t + 1)r, r!

(
n+r

r

)r}.
When GCSS is acyclic, the number of P-sequences to consider may be dras-

tically reduced due to the following property of acyclic graphs. Consider a path
L = (z1, · · · , zq) in a directed acyclic graph (DAG). Then, in any topological
order of the DAG, zi must appear before zi+1 for all 1 ≤ i ≤ q − 1. Let A be
a P-path embedding a valid P-sequence in GCSS , and let TP be a topological
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order of GCSS . Then, by the above property of a DAG, the vertices in A appear
in the same order as in TP and so do the vertices in π. Thus, to find a P-path,
it suffices to check only the P-sequences appeared in the same order as in TP .
Therefore, the number of possible P-sequences is at most min

{
(t + 1)r,

(
n+r

r

)r}.
Now we analyze the time complexity of our algorithm for the SCSS problem.

Phase 1 takes O(n + p) time. GAC can be constructed in O(n + p) time since
the constructing part of the Aho-Corasick algorithm runs in time linear to the
sum of the lengths of the pattern strings. Removing ver(x) for every x ∈ N and
its incoming and outgoing edges also takes O(n + p) time since t ≤ n and the
number of edges is O(n + p).

Making τ -vertices also takes O(n + p) time. For each string α in Z = P∪ {z|z
is the longest proper prefix of x ∈ N}, we search α in GCSS and check the output
function for the vertices during searching α. If y ∈ P is included in the output
function for a vertex v, then v is in VS(y), and if v is the first vertex having y as
output, then v is a τ -vertex by the definition. Since any positive string is not a
substring of another positive string, each vertex has at most one positive string
as output, and thus checking the output function for one vertex needs only a
constant time. Since the traversing takes O(n + p) time and the checking takes
O(1) time, making τ -vertices takes O(n + p) time.

Phase 2 takes O(r! min
{
(t + 1)r,

(
n+r

r

)r}×r(n+p) log(n+p)) time in general
if we use Dijkstra’s algorithm to find the shortest path. Moreover, if GCSS is
acyclic, Phase 2 takes O(min

{
(t + 1)r,

(
n+r

r

)r}×(n+p)) time since the shortest
path in a DAG can be found in time linear to the number of vertices.

In the final phase, traversing the path takes O(r(n + p)) time in general and
if GCSS is acyclic, it takes O(n + p) time.

Theorem 1. Given two sets of negative strings N and positive strings P over
a constant size alphabet Σ, the SCSS for N and P can be found in O(r! min{
(t + 1)r,

(
n+1

r

)r}
r(n+p) log(n+p)) time when GCSS is cyclic, and in O((min{

t + 1, n+r
r

}
)r(n + p)) time when GCSS is acyclic.

Corollary 2. The SCSS for N and P can be found in polynomial time when |P|
is bounded by a constant.

Corollary 3. The SCSS for N and P can be found in O(n+p) time when GCSS

is acyclic and either when |N| and |P| are bounded by a constant or when N ∪ P
is inclusion free.

Proof. When |N| and |P| are bounded by a constant, t and r are constants,
and thus our algorithm runs in O(n + p) time. When N ∪ P is inclusion free,
yi (1 ≤ i ≤ r) is not a substring of any x ∈ N, and thus |VS(yi)| = 1 for all
1 ≤ i ≤ r. Therefore, our algorithm runs in O(n + p) time.

4.2 Finding the LCSS

To find the LCSS, our algorithm finds the longest path in GCSS , and it is almost
same as the previous algorithm that was used for the SCSS problem. Instead of
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finding the shortest path between every pair of vertices in P-sequences, we find
the longest path. In general, finding the longest path is NP-hard, and thus we
assume GCSS is acyclic.

1. Construct GCSS using the Aho-Corasick algorithm.
2. Find the longest P-path using P-sequences.

For each P-sequence π = 〈u1, · · · , ur〉, we find the longest P-path embedding
π by concatenating the longest paths from v0 to u1, from u1 to u2, and so on.

3. Compute the LCSS using the longest P-path found in Phase 2.

Theorem 2. Given two sets of negative strings N and positive strings P over
a constant size alphabet Σ, the LCSS for N and P can be found in O((min{
t + 1, n+r

r

}
)r(n + p)) time when GCSS is acyclic.

Corollary 4. The LCSS for N and P can be found in polynomial time when
GCSS is acyclic and when |P| is bounded by a constant.

Corollary 5. The LCSS for N and P can be found in O(n+p) time when GCSS

is acyclic and either when |N| and |P| are bounded by a constant or when N ∪ P
is inclusion free.
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Abstract. In this paper, we study the two-vertex connectivity augmen-
tation problem in an undirected graph whose vertices are partitioned
into k sets. Our objective is to add the smallest number of edges to the
graph such that the resulting graph is 2-vertex connected under the con-
straint that each new edge is between two different sets in the partition.
We propose an algorithm to solve the above augmentation problem that
runs in linear time in the size of the input graph.

1 Introduction

A graph is called be x-vertex connected if it remains connected after the removal
of any set of at most x − 1 vertices. The notion of x-vertex connectivity can
be similarly defined. Many algorithms have been developed to solve the prob-
lem of making general graphs x-vertex or x-edge connected for various values
of x [1, 4–9, 11, 13]. Eswaran and Tarjan [1] presented a linear-time algorithm
for the smallest bridge connectivity augmentation problem on general graphs
without a partition constraint. Huang et al. [10] introduced a linear-time al-
gorithm for bridge connectivity augmentation with a bipartite constraint. Hsu
and Kao [8] designed a linear-time algorithm for 2-vertex connectivity with a
bipartite constraint.

In this paper, we focus on augmenting graphs with a partition constraint,
which requires that the vertex set of an input graph must be partitioned into
k disjoint vertex subsets. Moreover, each edge in the augmentation must be
added between two different vertex subsets. We propose a linear-time algorithm
that adds the smallest number of edges to a graph G with a given partition
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Fig. 1. (a) A graph with a partition of 3 vertex subsets. (b) A smallest 2-vertex con-
nectivity augmentation for the graph and partition in (a) with the added edges marked
by dashed lines. (c) A smallest 2-vertex connectivity augmentation for the graph in (a)
without the partition constraint where the added edges are marked by dashed lines.

constraint to make G 2-vertex connected, while maintaining the constraint. A
smallest 2-vertex connectivity augmentation of G, denoted by aug2v(G), is a
set of edges with the minimum cardinality whose addition makes G 2-vertex
connected. Figure 1(a) shows an example of a graph with a partition of 3 vertex
subsets. A smallest 2-vertex connectivity augmentation of Figure 1(a) is shown
in Figure 1(b); and a smallest 2-vertex connectivity augmentation of Figure 1(a)
without a partition constraint is shown in Figure 1(c). Note that the set of added
edges in Figure 1(c) is not valid for the partition since vertices A and C are in
the same partition.

2 Preliminaries

2.1 Graph-Theoretical Definitions

Let G = (V, E) be a graph. A vertex with degree one of a graph is called a
leaf, and a vertex with degree zero of a graph is called an isolated vertex. An
edge whose endpoints are a vertex u and a vertex v is denoted as {u, v}. For an
edge set E′, G −E′ denotes G without edges in E′, and G ∪ E′ denotes G with
edges in E′ added to it. Most of our graph-theoretical definitions can be found
in [2, 3, 8, 12].

In this paper, all graphs are undirected and have neither self-loops nor multiple
edges. It is assume that a vertex set of an input graph is partitioned into k disjoint
subsets. Let Pi denote the ith vertex subset in the given partition of an input
graph; i.e., V = P1 ∪ P2 ∪ . . . ∪ Pk, and for all Pi, Pj with i 
= j, Pi ∩ Pj = ∅.

Our algorithmic problem is to add the smallest number of edges such that
the resulting graph is 2-vertex connected, and the two endpoints of each added
edge are in different vertex subsets of the given partition unless the two leaves
are the same partition.

We use a block forest BT(G) [1, 3, 8] to represent the graph obtained by
transforming the input graph G. Let BT(G) be the block forest of G, and let
each block in G be a vertex of BT(G). Let F ′ be a function that maps a new
edge set added to BT(G) into a corresponding edge set added to G. Therefore,
the solution of the problem can found by solving the problem of a smallest 2-
vertex-connectivity augmentation of BT(G), denoted by aug2v(BT(G)). Let E′
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be aug2v(BT(G)). If E′ is the edge set added to BT(G), then F ′(E′) is the
corresponding edge set added to G, i.e., aug2v(G) = F ′(E′).

To improve the readability of the paper, we assign a distinct color to a vertex
subset in the given partition of G; let Ci denote the color for the vertices in
Pi. The vertices and the leaves in BT(G) are classified according to the colors
as follows. A mono leaf (respectively, mono vertex) of color Ci in BT(G) is a
leaf (respectively, vertex) in BT(G), whose corresponding block consists only
of vertices in G of color Ci. A hybrid leaf in BT(G) is a leaf in BT(G), whose
corresponding block consists of at least two vertices in G of different colors. An
isolated vertex of color Ci in BT(G) is an isolated block of in G, whose vertices
are all of color Ci. A hybrid isolated vertex in BT(G) is an isolated block of G
that contains at least two vertices of different colors in G. A legal edge is added
to BT(G) according to the following rules. A edge can be added between Ci and
Cj , Ci and a hybrid vertex, or two hybrid vertices, where i 
= j.

2.2 Lower Bound on |aug2v(BT(G))|
First, we compute a lower bound for |aug2v(BT(G))|. Let Li and H denote the
set of mono leaves of color Ci and the set of hybrid leaves of BT(G), 1 ≤ i ≤ k,
respectively. In addition, let L∗i and H∗ be the set of isolated vertices of color
Ci and the set of hybrid isolated vertices of BT(G), 1 ≤ i ≤ k, respectively.

Let L̂max = max{|Li| + 2|L∗i ||1 ≤ i ≤ k}. In addition, let � =∑k
i=1 |Li| + |H |, I∗ =

∑k
i=1 |L∗i | + |H∗|. Let LOWf2v(BT(G)) = max{(q −

1) + maxn
i=1(D(vi, BT(G)) − 1), L̂max, �(� + 2I∗)/2�}, where q is the number of

connected components in BT(G), n is the number of vertices in BT(G), and
D(vi, BT(G)) is the degree of vi in BT(G).

Lemma 1. |aug2v(BT(G))| ≥ LOWf2v(BT(G)).

3 Recolor Vertices of Degree < 2 with Three Colors

In the section, we describes a method that recolors vertices with degree < 2 in a
forest so that only 3 colors among vertices of degree < 2 are left after recoloring.
First, we use only BT(G) to simplify the paper. Let F = BT(G) be a forest
with k different colors among vertices of Degree < 2, C1, C2, . . . , Ck, k ≥ 3. We
consider that Ci in F is saturated if |Li| + 2|L∗i | > �(� + 2I∗)/2�. If at least one
color is saturated, F is color-saturated; if no color is saturated, F is color-safe.
Note that at most one color is saturated. Therefore, we consider two cases: (1)
BT(G) is color-saturated; this case is discussed in Section 3.1, and (2) BT(G) is
color-safe; this case is discussed in Section 3.2.

3.1 BT(G) Is Color-Saturated

In this section, BT(G) is color-saturated. Without loss of generality, we assume
that the number of leaves and isolated vertices with the black color in BT(G) is
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more than the total number of leaves and isolated vertices with the other colors
in BT(G). We recolor the leaves and isolated vertices with the non-black colors
by the white color.

As shown Lemma 2 below, after this recoloring, the LOWf2v bound is un-
changed. Let F ′ be a bipartite graph obtained by recoloring F . By Theorem 1,
F ′ is the case when two colors among vertices of degree < 2 is solved.

Lemma 2. Assume that BT(G) is color-saturated. Let F ′ be the graph obtained
by recoloring BT(G). Then, LOWf2v(F ′) = LOWf2v(BT(G)).

Theorem 1 ([8]). Let F be a forest with two colors among vertices of degree
< 2. We can add the smallest number of edges, i.e., LOWf2v(F ), to make F
2-vertex connected while preserving its bipartiteness in linear time.

3.2 BT(G) Is Color-Safe

We now present a recoloring algorithm that transforms a tree with k colors,
k > 3, on vertices of degree < 2 to exactly 3 colors. The recoloring process
involves three phases.

3.2.1 Phase 1
To obtain F1 from F , we assign colors to vertices of degree < 2 in BT(G) as
follows: We keep the original color of the internal nodes in F , as well as the
original color of mono leaves and isolated vertices in F ; however, each hybrid
leaf and each hybrid isolated vertex is viewed as one distinct color. Therefore,
we assign one distinct color to each hybrid leaf and each hybrid isolated vertex.

3.2.2 Phase 2
We recolor F1 to obtain F ′1 so that the total number of colors among vertices of
degree < 2 in F ′1 is one less than in F1. Assume that the k different colors among
vertices of degree < 2 in F1 is C1, C2, . . . , Ck, where k ≥ 4. Let the colors with
the least and second least number of leaves and isolated vertices be denoted by
Ci and Cj , respectively. We replace all leaves and isolated vertices colored Ci or
Cj with a new color. Then, no color is saturated in F ′1, and the number of colors
in F ′1 is one less than in F1 in Lemma 3.

Lemma 3. The total number of colors among vertices of degree < 2 in F ′1 is
one less than in F1.

3.2.3 Phase 3
In the following Lemma 4, we show that we can simplify a problem instance of
more than 3 colors among vertices of degree < 2 in F1 by transforming it into a
problem instance of 3 colors among vertices of degree < 2. We can apply Lemma 3
iteratively until there are only 3 colors left, denoted as F2. In Lemma 4, we prove
that this iterative transformation only requires linear time. It is straightforward
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to prove that a lower bound of F1 is equal to a lower bound of F2. By Lemma 5,
if F2 ∪ E is 2-vertex connected, F ∪ F ′(E) is also 2-vertex connected, where E
is a set of edges added to F2, and F ′(E) is the corresponding set of edges added
to F .

Lemma 4. An iterative transformation of vertices of degree < 2 from k ≥ 4
colors for BT(G) to three colors by repeatedly applying the methods described
before Lemma 3 can be accomplished in O(n) time.

Lemma 5. (1) LOWf2v(BT(G))=LOWf2v(F2). (2) Let E be a set of edges.
If F2 ∪ E is 2-vertex connected, then F ∪ E′ is also 2-vertex connected, where
E′ = F ′(E).

Since the given forest F can always be transformed into F2, hereafter, we assume
that the given forest BT(G), i.e., F has three colors among vertices of degree
< 2, and F is color-safe.

4 BT(G) Is a Color-Safe Tree with Three Colors among
Vertices of Degree < 2

In this section, we focus on how to add edges to make BT(G) 2-vertex connected
when BT(G) is a color-safe tree with three colors among � leaves.

We define the following notations. Let T = BT(G) be a tree rooted at vr, and
Γ (T ) = {τi | τi is a vr-branch, i.e., the subtree of T rooted at a child of vr.}. A
chain leaf of T , is a vr-branch that contains exactly one leaf in the subtree. Let
A = {S1, S2, . . . , Ss}, s ≥ 2, and Si denote the set of the leaves in a subtree τi

rooted at a child of the root vr of T , 1 ≤ i ≤ s. If Si is a chain leaf, |Si| = 1.
A set Si in T is saturated if |Si| is greater than ��/2�, and we say that T is set-

saturated, i.e., 1 ≤ i ≤ s. If no subset is saturated, T is set-safe. If 2(s−1) > �, T
is degree-saturated; otherwise, T is degree-safe. Furthermore, if T is degree-safe,
color-safe and set-safe, we define that T is all-safe.

In the following, we consider two cases: (1) BT(G) is set-saturated; this case
is discussed in Section 4.1, and (2) BT(G) is set-safe; this case is discussed in
Section 4.2.

4.1 BT(G) Is Set-Saturated

Given a rooted tree T , a center vc is a vertex whose branches have at most ��/2�
leaves each. If the root is a center, we also call it a center root. D(vc, T ) equals
the degree of vc in T [1, 8].

Let T = BT(G) with � leaves be the input graph. Note that BT(G) is a tree
if and only if T is connected. Here, let the colors among vertices of degree < 2
in T be C1, C2 and C3, respectively. Assume that |Si| is greater than ��/2�, that
is, Si in T is set-saturated, where 1 ≤ i ≤ s.

Lemma 6. After rerooting T at a center vc, the resulting T is set-safe and the
rerooting can be done in linear time.
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4.2 BT(G) Is Set-Safe

Let T = BT(G) be a tree rooted at a center vc with � leaves and there are only
three colors among vertices of degree < 2, where the number of leaves with each
color is at most ��/2�. Assume that T has |s| sets, s ≥ 2. Here, the case s = 2
is trivial. Since the root vc of T is a center of T , the number of leaves for each
|S1|, |S2|, . . . , |Ss| is at most ��/2�, s ≥ 2, then no set is saturated.

In this section, T is not only set-safe but also color-safe. Thus, we consider
two cases. (1) T is degree-saturated; this case is discussed in Section 4.2.1, and
(2) T is degree-safe; this case is discussed in Section 4.2.2.

4.2.1 T Is Degree-Saturated
In this case, T is color-safe and set-safe, but degree-saturated. Let T ′ = T ∪Ed,
where Ed is the set of edges added to T such that T ′ is all-safe.

By Lemma 7, we always select and remove two chain leaves, aj and bj , of T at
a time such that T ′ is color-safe and set-safe. We continue adding edges in this
way until T ′ is degree-safe, τi ∈ Γ (T ). After removing aj and bj, D(vc, T

′) =
D(vc, T ) − 1. LOWf2v(T ′) = LOWf2v(T ) − 1.

Lemma 7. Let T be a color-safe, set-safe but degree-saturated tree. Let Ed be the
set of added edges. In addition, let T ′ = T ∪ Ed. LOWf2v(T ′) = LOWf2v(T ) −
|Ed| and T ′ is all-safe.

4.2.2 T Is Degree-Safe
In this section, we discuss the scenario where T is degree-safe. Since T is set-safe
and color-safe, T is all-safe.

4.2.2.1 High-level Description of the Proposed Algorithm. Here, we assume
that T is all-safe. Our goal is to add edges between the leaves of T such that no
added edge connects leaves of the same color or in the same set. To add an edge
between the leaves, we define a pair of leaves (ai, bi) as valid if it satisfies the
condition that ai and bi are different colors and in different sets. We remove a
valid pair of leaves from T each time. After connecting and removing each pair
of leaves, the resulting tree, denoted as T ′, is still all-safe.

We call a chain leaf of T a singular set, and a vc-branch that contains at least
two leaves a non-singular set. The leaf in a singular set is called a singular leaf.

Our algorithm is a greedy recursive one. We process one set at a time. To
present our algorithm, we create a ready queue, denoted as RQ. Let T be a tree
with |s| sets; and let A′ = A, initially. First, we partition all sets into two pools,
denoted as X and Y , respectively. All non-singular sets are placed in pool X and
all singular sets are placed in pool Y . Then, we find the smallest set, denoted as
Sx, in T , and add all the leaves in Sx to the ready queue. Next, we find a valid
pair to connect one leaf in the ready queue with one leaf in Pool X . If any set
in X becomes a singular set, we moved it to Pool Y . Therefore, after the ready
queue is empty, let A′ = A′ − Sx to remove Sx from the pool, so the number of
sets in A′ is reduced by one. We apply the above process to A′ repeatedly until
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the remaining leaves have been processed. The steps of algorithm are detailed in
Algorithm 1. Note that if the number of leaves is odd, we remove one leaf before
applying the Algorithm 1.

Algorithm 1. Pairing
1: Input: A tree T rooted at a center vc with � leaves, where � is even, the

colors among vertices of degree < 2, C1, C2 and C3 respectively, and let
A = {S1, S2, . . . , Ss}, where s ≥ 2, and let Si denote the set of the leaves
in a subtree τi rooted at a child of the root vr in T , where 1 ≤ i ≤ s, such that
T is all-safe;

2: Output: A set of added edges M = {〈ai, bi〉 | 1 ≤ i ≤ �/2, ai ∈ Sp and bi ∈
Sq, p �= q; };

3: Create a ready queue RQ;
4: Partition A into non-singular sets in Pool X and singular sets in Pool Y ;
5: Construct one linked-list data structure for X;
6: M = ∅; RQ = ∅;
7: while A �= ∅ do
8: Pick the smallest set Sx form the pools, and put all leaves of Sx into the ready

queue;
9: while RQ �= ∅ do

10: Pick a leaf ai from the ready queue;
11: Pick a leaf bi from Pool X such that ai and bi are different colors and no

color is saturated after removing (ai, bi);
12: M = M ∪ {〈ai, bi〉};
13: Remove (ai, bi) from T and A respectively;
14: if Some non-singular sets become singular sets then
15: Move these sets from Pool X to Pool Y ;
16: end if
17: if Only two singular sets exist in T then {∗ Assume that only aj and bj

are left. ∗}
18: M = M ∪ {〈aj , bj〉};
19: end if
20: end while
21: end while
22: return M ;

4.2.2.2 Finding a Valid Pair. Next, we explain how to find a valid pair of
leaves. If singular leaves exist, there are two cases. First, we pick a leaf ai from
the ready queue. Without loss of generality, we assume that ai ∈ C1. We also
choose a leaf bj ∈ C2 and a leaf bk ∈ C3 from X by Lemma 8. After removing
(ai, bj) or (ai, bk), we check whether T ′ is color-saturated in Lemma 9 and select
the pair that satisfies the above constraint. After this procedure is completed,
we remove this pair from T . Whenever any set in X becomes singular, we move
it from X to Y , and update all related counters accordingly.

Lemma 8. Let T be an all-safe tree. We can always find a valid pair (a, b) in
T , where a is removed from the ready queue and b is removed from Pool X.
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Proof. According to Algorithm 1, we always select a pair’s components, a and
b, from different sets, where a ∈ Si and b /∈ Si. To prove the lemma by contra-
diction, we assume a valid pair does not exist. Then, a and b must be the same
color and all leaves whose color is different to a must be in Si. Without loss of
generality, let a, b ∈ C1, all leaves with colors C2 and C3 be in Si. Then, |Si| >
the number of leave with C2 and C3 > ��/2�. However, since T is all-safe, this
is a contradiction. Therefore, the lemma is proven. �

Lemma 9. If T is all-safe, after we pick and remove a valid pair in Algorithm 1,
the resulting tree T ′ remains to be all-safe.

We implement a dynamic data structure to realize Algorithm 1 so that finding
a valid pairing from an all-safe T can be done in constant time. Due to space
limitation, we omit the details of the dynamic data structure in this extended
abstract.

Theorem 2. Let T be an input graph. T is an all-safe tree with three colors
among vertices of degree < 2. Algorithm 1 finds a smallest 2-vertex connectivity
augmentation of T in linear time.

5 Adding Edges to Make a Forest into a Tree

In this section, we present an algorithm for finding added edges to transform an
input forest F into a tree T in linear time. Let Ex be the set of added edges. We
prove that LOWf2v(F ) = LOWf2v(T ) + |Ex|.

Recall that F = BT(G) is an input graph with three colors among vertices
of degree < 2, denoted as C1, C2, and C3 respectively, and F is color-safe. We
assume that BT(G) is a forest F . F has m + n connected components, where
m is the number of trees {T1, T2, . . . , Tm} that are not isolated vertices in F ,
and n is the number of isolated vertices {I∗1 , I∗2 , . . . , I∗n} in F . Here, an isolated
vertex is viewed as a tree with two leaves. Let Â = {Ŝ1, Ŝ2, . . . , Ŝs}, where
s = (m + n) ≥ 3, be the set of the leaves of connected components in F ,
where Ŝi (respectively, Ŝm+j) denotes the set of the leaves of a component Ti

(respectively, I∗j ) in F , 1 ≤ i ≤ m and 1 ≤ j ≤ n. If Ŝi is an isolated vertex,
|Ŝi| = 2, 1 ≤ i ≤ s.

Our goal is to add edges between all connected components in F such that
all the components will be connected to form one connected component. Any
edge connects the leaves with different colors or in different sets. To add an
edge between these leaves, we define a pair of leaves (ai, bi) as valid if it satisfies
the condition that ai and bi are with different colors and in different sets Ŝj ,
1 ≤ j ≤ s. We pick a valid pair of leaves in F each time. After connecting the
leaves, the two trees associated with the leaves will be combined to form one
new tree and two leaves will be removed from the forest. The new tree will be
added to the forest. We denote the remaining forest as F ′. After this process, we
connect two connected components in F to obtain F ′ so that the total number
of connected components in F ′ is one less that of F .
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Algorithm 2. 2VC(G) Finding a smallest 2-vertex connectivity augmentation
with a partition constraint of a graph (G)
1: Input: A graph G with a partition of k vertex subtrees P1, P2, . . . , Pk with k ≥ 2;
2: Output: E is a set of added edges, and an edge is added between two different

colors;
3: Let F = BT(G);
4: E = ∅;
5: repeat
6: switch (F );
7: Case 1: F is color-saturated.
8: Use the method in Section 3.1 to find E′;
9: Case 2: F is a tree. {∗ F is color-safe. ∗}

10: Use the method in Section 3.2 to recolor;
11: if F is set-saturated then
12: Use the method in Section 4.1 to reroot;
13: end if
14: Case 2.1: F is degree-saturated.
15: Use the method in Section 4.2.1 to find E′;
16: Case 2.2: F is degree-safe. {∗ Algorithm 1 ∗}
17: Use the method in Section 4.2.2 to find E′;
18: Case 3: F is a forest. {∗ F is color-safe. ∗}
19: Transforming F into a tree by finding E′ using the method in Section 5;
20: Let E = E ∪ E′;
21: Let F = BT(F ∪ E′);
22: until Case 1 or 2 is executed;
23: return E

Next, we explain how to find a valid pair of leaves. First, we pick a leaf ai

from the smallest set Ŝx, and without loss of generality, assume that ai ∈ C1.
We also choose a leaf bj ∈ C2 and a leaf bk ∈ C3 from Â, bj /∈ Ŝx, bk /∈ Ŝx. Then,
we check whether F ′ is color-safe after removing (ai, bj) or (ai, bk), and pick the
pair that satisfies the above constraint. In the final step, we remove the selected
pair from F , and update all related counters.

Our algorithm is a greedy recursive one by finding a valid pair of leaves. By
using appropriate data structures, each such finding can be done in constant
time. Due to space limitation, the detailed algorithmic description is omitted.

Theorem 3. Let F be a forest, and we can find a set of edges Ex such that
LOWf2v(F ) = LOWf2v(F ∪ Ex) + |Ex| in linear time.

6 Finding an Optimal 2-Vertex Connectivity
Augmentation for a Graph

Let F be a forest as an input. We use F and BT(G) interchangeably to denote the
block forest of G. The steps of Algorithm 2 for finding an optimal augmentation
for 2-vertex connectivity of a graph BT(G) with a partition constraint are as
follows.
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Theorem 4. Let BT(G) be an input graph. The number of added edges returned
by Algorithm 2, which finds a smallest 2-vertex connectivity augmentation with
a partition constraint of a graph G, is equal to LOWf2v(BT(G)), and it can be
computed in linear time.
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Abstract. We investigate the computational complexity of a new com-
binatorial problem of inferring a smallest possible multi-labeled phyloge-
netic tree (MUL tree) which is consistent with each of the rooted triplets
in a given set. We prove that even the restricted case of determining if
there exists a MUL tree consistent with the input and having just one
leaf duplication is NP-hard. Furthermore, we show that the general min-
imization problem is NP-hard to approximate within a ratio of n1−ε for
any constant 0 < ε ≤ 1, where n denotes the number of distinct leaf la-
bels in the input set, although a simple polynomial-time approximation
algorithm achieves the approximation ratio n. We also provide an exact
algorithm for the problem running in O∗(7n) time and O∗(3n) space.

1 Introduction

1.1 Problem Definitions

A phylogenetic tree is a rooted, unordered tree in which every internal node has
at least two children and where each leaf is labeled by an element from a set
of leaf labels. A phylogenetic tree where each leaf label occurs at most once is
called a single-labeled phylogenetic tree; a phylogenetic tree where each leaf label
may occur more than once is called a multi-labeled phylogenetic tree, or MUL
tree for short [6,8,11].1 For any MUL tree M , denote the set of all leaf labels that
occur in M by L(M). For any leaf label x ∈ L(M), the number of duplications
of x is equal to the number of occurrences of x in M minus 1. The number of
leaf duplications in M , denoted by d(M), is the total number of duplications

� Funded by the Special Coordination Funds for Promoting Science and Technology.
�� Corresponding author.
1 MUL trees are called rl-trees in [6].
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of all leaf labels in L(M). Define m(M) as the number of leaves in M . Then,
d(M) = m(M) − |L(M)|.

For any two nodes u, v in a rooted tree, the notation u ≺ v means that u is a
proper descendant of v, and lca(u, v) denotes the lowest common ancestor (lca)
of u and v. (For convenience, any node is considered to be an ancestor of itself.)
A rooted triplet is a binary phylogenetic tree with exactly three distinctly labeled
leaves. The unique rooted triplet on leaf label set {x, y, z} where lca(x, y) ≺
lca(x, z) = lca(y, z) is denoted by xy|z. If xy|z is an embedded subtree of a MUL
tree M , i.e., if there exist three leaves �x, �y, �z in M labeled by x, y, and z,
respectively, such that lca(�x, �y) ≺ lca(�x, �z) = lca(�y, �z) then xy|z and M are
said to be consistent with each other; otherwise, xy|z and M are inconsistent.
A set R of rooted triplets and a MUL tree M are consistent with each other if
every xy|z ∈ R is consistent with M . See Fig. 1 for an example.

In this paper, we consider the following problem, named the smallest MUL
tree from rooted triplets problem (SMRT): Given a set R of rooted triplets over a
leaf label set L, output a MUL tree M with L(M) = L which is consistent with R
and which minimizes d(M). We also consider the following decision problem for
any positive integer d, termed d-SMRT: Given a set R of rooted triplets over
a leaf label set L, does there exist a MUL tree M with L(M) = L which is
consistent with R and which satisfies d(M) ≤ d? In the rest of this paper, we
define k = |R| and n = |L| for any given instance of SMRT or d-SMRT.

1.2 Motivation and Previous Work

The problem of determining whether there exists a single-labeled tree consistent
with all of the rooted triplets in a given set, and if so, constructing such a tree,
can be solved efficiently by a classical algorithm of Aho et al. [1]. When no such
tree exists because of conflicts in the branching information, one may try to select
a largest possible subset of the triplets which is consistent with some tree (the
maximum rooted triplets consistency problem (MRTC)), find a largest possible
subset of the leaves such that the restriction of the input triplets to those leaves is
consistent with some tree (the maximum agreement supertree problem (MASP)),
or build a phylogenetic network (a generalization of a phylogenetic tree in which
internal nodes may have more than a single parent) which contains all of the
rooted triplets. See [3] for a recent survey of related results and many references.
In this paper, we consider a new approach: Allow leaf labels to be repeated, but
try to minimize the number of such repetitions.

The main application of phylogenetic trees is to describe tree-like evolution
for a set of objects; leaves represent the objects while internal nodes correspond
to their common ancestors. In the study of evolutionary history, MUL trees arise
from the modeling of biological processes where it is necessary to use certain leaf
labels more than once. For example, a gene tree can contain several leaves labeled
by the same species due to gene duplication events [6,8,11]. As another example,
area cladograms, where the names of geographical areas are used to label the
leaves, may apply the same label to more than a single leaf (see, e.g., [2,8]). MUL
trees can also be useful for studying host-parasite cospeciation [8,10].
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Fig. 1. The set of rooted triplets {ab|c, ac|d, de|b, ce|b} is consistent with a MUL tree
containing one leaf duplication

Although the problem of inferring a MUL tree from an input set of single-
labeled phylogenetic trees that minimizes the number of leaf duplications has not
been studied before, several algorithms for manipulating already known MUL
trees have been published in the literature. Huber et al. [8] presented a method
for constructing a phylogenetic network from an input MUL tree. The network
output by their method is binary and has the fewest possible reticulation nodes
among all binary networks which exhibit the structural information of the input
MUL tree. Scornavacca et al. [11] considered some computational problems in-
volving the extraction of the unambiguous parts of an input MUL tree. More pre-
cisely, [11] proposed linear-time algorithms to identify every so-called observed
duplication node (odn) in a MUL tree, testing if two MUL trees are isomorphic,
and computing a largest duplication-free rooted subtree of a MUL tree. They
also showed that it is an NP-hard problem to prune each of the MUL trees in a
given set to a single-labeled tree at odns in such a way that the obtained set of
trees can be merged without conflicts into a single-labeled tree.

1.3 Our Results and Organization of the Paper

We present several negative and positive results regarding the computational
complexity and polynomial-time approximability of SMRT. Below, we say that
an algorithm A for SMRT is an α-approximation algorithm (and that the ap-
proximation ratio of A is at most α) if, for every input R, the MUL tree output
by A is consistent with R and contains at most α · d(M∗) leaf duplications,
where M∗ is an optimal MUL tree (i.e., having the fewest possible number of
leaf duplications) consistent with R.

The rest of the paper is organized as follows. Section 2 presents a simple
polynomial-time n-approximation algorithm for SMRT. On the negative side,
Section 3 proves that d-SMRT is NP-hard even if d = 1, and also that SMRT

cannot be approximated within a ratio of n1−ε for any constant 0 < ε ≤ 1 in
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polynomial time, unless P = NP. Finally, Section 4 presents an exact algorithm
for SMRT which runs in O∗(7n) time and O∗(3n) space.

2 Straightforward n-Approximation of SMRT

We start with the following simple observation.

Lemma 1. For any set R of rooted triplets over a leaf label set L with |L| = n,
there exists a MUL tree with 2n leaves which is consistent with R.

Proof. Let T be an arbitrary single-labeled phylogenetic tree with n leaves bijec-
tively labeled by L. Let M be the MUL tree obtained by taking two copies T1, T2
of T and joining the roots of T1 and T2 to a new parent root node. Clearly, M has
2n leaves and any rooted triplet xy|z over L is consistent with M since T1 con-
tains leaves labeled by x, y and T2 contains a leaf labeled by z. �	

Consequently, SMRT admits a trivial polynomial-time n-approximation
algorithm: Using the algorithm of Aho et al. [1], determine if there exists a
single-labeled tree consistent with R. If the answer is yes then output this
tree, otherwise output the MUL tree from Lemma 1 which has exactly n leaf
duplications.

Theorem 1. SMRT can be approximated within a ratio of n in polynomial time.

3 Hardness Results for SMRT

This section demonstrates that SMRT is computationally intractable. It is
shown that d-SMRT is NP-hard already for d = 1 and that SMRT is NP-hard
to approximate within a ratio of n1−ε for any constant 0 < ε ≤ 1. (Recall that
n denotes the number of distinct leaf labels in the input set R.) To obtain our
hardness results, we first prove strong inapproximability bounds for a problem
on directed graphs named Acyclic Tree-Partition (defined below) and then
give a measure-preserving reduction from Acyclic Tree-Partition to SMRT.

3.1 Hardness of Acyclic Partition and Acyclic Tree-Partition

Definition 1. Let D = (V, A) be a directed graph. An acyclic partition of D is
a partition of V into subsets V1, . . . , Vr called classes such that each class induces
an acyclic subgraph of D.

Definition 2. Let D = (V, A) be a directed graph. An acyclic tree-partition
of D consists of a binary rooted tree T with a node set N along with a partition
{V (x) : x ∈ N} of V (i.e., a subset V (x) of V is associated to each node x of
the tree T ) such that:
1. for every x ∈ N , V (x) induces an acyclic subgraph of D,
2. for any x, y ∈ N with x ≺ y, D has no arc from V (y) to V (x).
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Definitions 1 and 2 lead to the following natural problems. The Acyclic Par-

tition problem takes as input a directed graph D and seeks an acyclic partition
of D with the smallest possible number of classes; this number is denoted by
ap(D).2 Similarly, the Acyclic Tree-Partition problem seeks an acyclic tree-
partition of an input directed graph D with the minimum number of internal
nodes, denoted by atp(D). For any positive integer r, the two decision prob-
lems r-Acyclic Partition and r-Acyclic Tree-Partition ask if an input
directed graph D satisfies ap(D) ≤ r and atp(D) ≤ r, respectively.

Acyclic partitions and acyclic tree-partitions have some useful properties:

Lemma 2. Let D be a directed graph and let (T, {V (x) : x ∈ N}) be an
acyclic tree-partition of D. For any set X of ancestors of a leaf in T , the union⋃

x∈X V (x) induces an acyclic subgraph of D.

Lemma 3. For every directed graph D, atp(D) = ap(D) − 1.

Theorem 2. (i) r-Acyclic Partition is NP-hard for r = 2.
(ii) Acyclic Partition cannot be approximated within n1−ε for any constant
0 < ε ≤ 1 in polynomial time unless P = NP, where n is the number of vertices
in the input graph.

Proof. (i) Reduce from Not-all-equal 3SAT, which is known to be NP-
hard [7]. Let I be a given instance of Not-all-equal 3SAT with m clauses
and construct a directed graph D with 3m vertices as follows. For each clause C
in I, D contains three vertices C1, C2, C3 forming a directed cycle in D that
represent the literals of C. In addition, for each pair of conflicting literals Ci = x
and C′j = x, D contains the two arcs (Ci, C

′
j) and (C′j , Ci). It is easy to see that

there is a one-to-one correspondence between the valid truth assignments for I
and the acyclic bipartitions of D: given a truth assignment φ, define a biparti-
tion Vt, Vf of D by letting Vt (resp. Vf ) contain all literals which are assigned
the value true (resp. false) under φ.

(ii) Follows by giving a measure-preserving reduction from Chromatic Number

and applying known inapproximability results for this problem [5,13]. The reduc-
tion maps a given undirected graph G = (V, E) to a directed graph D = (V, A)
by replacing each edge {u, v} of G by two arcs (u, v), (v, u). Observe that for any
V ′ ⊆ V , V ′ is an independent set of G if and only if V ′ induces an acyclic sub-
graph of D. Therefore, colorings of G correspond to acyclic partitions of D. �	
Corollary 1. (i) r-Acyclic Tree-Partition is NP-hard for r = 1.
(ii) Acyclic Tree-Partition cannot be approximated within n1−ε for any
constant 0 < ε ≤ 1 in polynomial time unless P = NP, where n is the number of
vertices in the input graph.

3.2 Hardness of SMRT

We first reduce Acyclic Tree-Partition to a constrained variant of SMRT

that forbids duplications of certain labels (Proposition 1). We then reduce the
2 ap(D) is also referred to in the literature as the dichromatic number of D [9].
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constrained variant to the unconstrained SMRT problem (Proposition 2). When
combined, these reductions yield the desired hardness results for SMRT, as sum-
marized in Theorem 3. The constrained variant of SMRT is defined as follows.

Definition 3. Let R be a set of rooted triplets over a leaf label set L and U ⊆ L
a set of unique labels. A MUL tree M is consistent with the pair (R, U) if:
(i) M is consistent with R; (ii) M has only one occurrence of each label in U .

The Constrained-SMRT problem (C-SMRT) takes as input a pair (R, U)
and seeks a MUL tree consistent with (R, U) containing the fewest duplications.

Proposition 1. There exists a measure-preserving reduction from Acyclic

Tree-Partition to C-SMRT.

Proof. Given an instance D = (V, A) of Acyclic Tree-Partition, construct
a new instance (R, U) of C-SMRT with label set L := V ∪{z}, where z is a new
label not belonging to V . The set R contains exactly the following triplets: for
each arc (u, v) ∈ A, let zu|v ∈ R. The set of unique labels is U = V , meaning
that only z is allowed to be duplicated. To prove that the reduction is measure-
preserving, we show that for every r ≤ |V |, the following are equivalent:

1. D admits an acyclic tree-partition with r internal nodes;
2. (R, U) admits a consistent MUL tree with r duplications.

(1) ⇒ (2): Suppose D has an acyclic tree-partition consisting of a tree T =
(N, E) with r internal nodes and a partition {Vx : x ∈ N} of V . We construct a
MUL tree M from T by labeling each leaf by z, and then, above each node x of
T , attaching the elements of Vx in the order given by a topological ordering of
D[Vx] (where D[Vx] denotes the subgraph of D induced by vertices of Vx).

We introduce the following additional notation: given a MUL tree M , and a
sequence of labels s = x1 . . . xn, let R(M, s) be the tree obtained by starting
with a caterpillar with n + 1 leaves l0, . . . , ln (with l0, l1 being farthest from
the root), substituting l0 with M , and labeling each leaf li, i ≥ 1 by xi. We
inductively define two MUL trees Mx, M ′

x for each node x of T : (i) if x is a leaf
then Mx consists of a single leaf labeled by z; (ii) if x is an internal node with
two children y, y′ then Mx := (M ′

y, M
′
y′); (iii) for any node x of T , let sx be a

topological ordering of D[Vx] (which is acyclic by Point 1 of Definition 2), and
let M ′

x := R(Mx, sx). Finally, define M := M ′
t, where t is the root of T .

We now examine the constructed MUL tree M . Clearly, only z is duplicated
in M ; since {Vx : x ∈ N} is a partition of V , a label u ∈ Vx appears only once
in M (in the subtree between the root of Mx and the root of M ′

x). Moreover,
since the leaves of M labeled by z correspond to the leaves of T , their number is
r + 1, hence M has r duplications. Next, we show by a case analysis that M is
consistent with R. Consider zu|v ∈ R, then (u, v) ∈ A by the construction of R.
Let x, y be the nodes of T such that u ∈ Vx, v ∈ Vy. Four cases are possible:

– if x = y: Since (u, v) ∈ A, and since sx is a topological ordering of D[Vx], it
follows that u <sx v. Consider M ′

x = R(Mx, sx). Mx contains a leaf labeled
by z, and u, v appear in sx with u <sx v, so M ′

x (and thus M) contains zu|v.
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– if x ≺ y in T : Consider M ′
y = R(My, sy). My contains leaves labeled by z, u

and v appears in sy, therefore M ′
y (and thus M) contains zu|v.

– if y ≺ x in T : This is impossible according to Point 2 of Definition 2.
– if both x ⊀ y and y ⊀ x in T : Let c = lca(x, y) in T and let cx, cy be the two

(distinct) children of c such that x � cx, y � cy. Consider Mc = (M ′
cx

, M ′
cy

),
then M ′

cx
contains leaves labeled by z, u and M ′

cy
contains a leaf labeled by

v, hence Mc (and M) contains zu|v.

To conclude, M is a MUL tree with r duplications that is consistent with (R, U).

(2) ⇒ (1): Let M be a MUL tree with r duplications which is consistent with
(R, U). We may assume w.l.o.g. that M is binary. By definition, only the label z
is duplicated in M . Let T = (N, E) be the subtree of M which connects the
leaves labeled by z. For each node x of T , let Px be the path in M joining x to
its parent node in T (or to the root of M if x is the root of T ). Then, define Vx as
the set of labels appearing in a subtree along the path Px. It is straightforward
to verify that (T, {Vx : x ∈ N}) is an acyclic tree-partition of D with r internal
nodes (see the full version of this paper for a complete proof). �	

Proposition 2. There exists a measure-preserving reduction from C-SMRT to
SMRT.

Proof. Let (R, U) be any given instance of C-SMRT, where R is a triplet set
over a set L of n leaf labels and U ⊆ L is a set of unique labels. We construct an
instance R′ of SMRT by replacing each element of U by n + 1 copies. Formally,
R′ has a leaf label set L′ consisting of: (i) for each x ∈ U , labels xi (1 ≤ i ≤ n+1);
(ii) for each x ∈ L\U , a single element x1. The set R′ consists of the following
triplets: for each xy|z ∈ R and each i, j, k, let xiyj |zk ∈ R′. Assume w.l.o.g. that
r ≤ n. We show that (R, U) has a consistent MUL tree M with r duplications
if and only if R′ has a consistent MUL tree M ′ with r duplications.

(⇒): Let M be a MUL tree with r duplications consistent with (R, U). Con-
struct a MUL tree M ′ from M by substituting each leaf u having label x by an
arbitrary single-labeled binary tree Tu over {x1, . . . , xi}, where i equals either 1
or n + 1. Observe that: (i) for each x ∈ U , each label xi occurs exactly once in
M ′; (ii) for each x ∈ L\U , the number of occurrences of x in M equals the num-
ber of occurrences of x1 in M ′. It follows that d(M ′) = d(M) = r. In addition,
for any triplet xiyj |zk ∈ R′, the corresponding xy|z ∈ R is obtained from leaves
u, v, w of M ; hence xiyj |zk is obtained by selecting the corresponding leaves of
Tu, Tv, Tw in M ′. This proves that M ′ is consistent with every triplet in R′.

(⇐): Omitted due to space constraints. See the full version of this paper for
a complete proof. �	

Propositions 1 and 2 together with our hardness results for Acyclic Tree-

Partition in Corollary 1 give us the next theorem.

Theorem 3. (i) d-SMRT is NP-hard for d = 1;
(ii) SMRT cannot be approximated within n1−ε for any constant 0 < ε ≤ 1 in
polynomial time, unless P = NP.
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We remark that the analogous Minimum Duplication Supersequence prob-
lem [6] for strings behaves quite differently: it is equivalent to the Directed

Feedback Vertex Set problem, and as such it is FPT with respect to r (by a
result of [4]) and approximable within O(log n log log n) in polynomial time [12].

4 An Exact Algorithm for SMRT

Here, we present an exact exponential-time algorithm for SMRT.
We use a dynamic programming approach, exploiting the recursive structure

of the problem. More precisely, we consider pairs of subsets of L of the form
(A, B) such that B ⊆ A ⊆ L. Subproblems in our dynamic programming ap-
proach will correspond to pairs (A, B). For a given pair, we will restrict our
attention to specific MUL trees given by the following definition.

Definition 4. Let (A, B) be a pair of subsets of L with B ⊆ A ⊆ L. A binary
MUL tree M leaf-labeled by A complies with (A, B) if and only if for each uv|w ∈
R with u, v, w ∈ A and w /∈ B, it holds that uv|w is consistent with M .

For a given pair (A, B), let n(A, B) denote the minimum value of d(M) taken
over every binary MUL tree M leaf-labeled by A which complies with (A, B).
We compute the values n(A, B) by dynamic programming, and obtain n(L, ∅) as
the desired value at the end of the computation. To compute a value n(A, B), we
break the computation into two subproblems of the form (A1, ), (A2, ), where
A1, A2 are the label sets of the two child subtrees. In order to explain this in
detail, we will need the following definitions. A split of (A, B) is a pair (A1, A2) of
subsets of A such that A1∪A2 = A (observe here that A1, A2 are not necessarily
disjoint, and that the definition does not depend on B).

Definition 5. Let (A1, A2) be a split of (A, B). We say that (A1, A2) is a nice
split of (A, B) if and only if the following holds: for each u, v, w ∈ A, if u ∈
Ai\Aj, v ∈ Aj\Ai, w /∈ B with i 
= j then R does not contain the rooted triplet
uv|w.

From here on, we will denote by Bi the intersection of B with Ai. Also, we
define B′ = A1 ∩ A2. The next property describes the recursive structure of the
problem, characterizing the fact that M complies with (A, B) by conditions on
its child subtrees.

Lemma 4. Let (A, B) be a pair such that B ⊆ A ⊆ L with |A| ≥ 2 and let M
be a binary MUL tree over A, consisting of two MUL trees M1, M2 joined by
a parent root node. Write A1 = L(M1) and A2 = L(M2), B′ = A1 ∩ A2 and
Bi = B ∩ Ai. Then the following are equivalent:

1. M complies with (A, B);
2. (A1, A2) is a nice split of (A, B), and for i ∈ {1, 2}, Mi complies with

(Ai, Bi ∪ B′).
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Proof. (1) ⇒ (2): We first show that Mi complies with (Ai, Bi ∪ B′). Suppose
that uv|w ∈ R with u, v, w ∈ Ai and w /∈ Bi ∪B′. Then we also have u, v, w ∈ A
and w /∈ B, which implies that uv|w is consistent with M (since M complies
with (A, B)). Therefore, M has leaves �u, �v, �w labeled by u, v, w such that
lca(�u, �v) ≺ lca(�u, �w) = lca(�v, �w). What we need to show is that these three
leaves all appear in Mi. If this was not the case, we would have �w appearing
in Mj (j 
= i), which would imply that w ∈ B′, contradicting the hypothesis. It
follows that �u, �v, �w all appear in Mi, thus uv|w is consistent with Mi.

Next, we show that (A1, A2) is a nice split of (A, B). Let u, v, w ∈ A. Suppose
u ∈ Ai\Aj, v ∈ Aj\Ai, w /∈ B with i 
= j. If R contained the rooted triplet
uv|w, then uv|w would be consistent with M since M complies with (A, B) and
w /∈ B. But this is impossible since u only appears in Mi and v only appears
in Mj.

(2) ⇒ (1): To prove that M complies with (A, B), consider any uv|w ∈ R
with u, v, w ∈ A and w /∈ B and show that uv|w is always consistent with M .
There are four (partially overlapping) cases:

1. u, v, w ∈ Ai and w /∈ B′: Then w /∈ Bi∪B′. Since Mi complies with (Ai, Bi∪
B′), we conclude that uv|w is consistent with Mi, and thus with M .

2. u, v ∈ Ai, w ∈ Aj with i 
= j: Then u, v appear in Mi and w appears in Mj ,
hence uv|w is consistent with M .

3. u, w ∈ Ai, v ∈ Aj with i 
= j: We have three mutually exclusive subcases.
– u, v /∈ B′: Then R contains uv|w with u ∈ Ai\Aj, v ∈ Aj\Ai and w /∈ B.

This contradicts the assumption that (A1, A2) is a nice split of (A, B).
– v ∈ B′: Then u, v, w ∈ Ai, and we are in Case 1.
– u ∈ B′: Then u, v ∈ Aj , w ∈ Ai, and we are in Case 2.

4. v, w ∈ Ai, u ∈ Aj with i 
= j: This case is symmetric to the previous case. �	

Lemma 4 yields recurrence relations for n(A, B) as stated in Lemma 5 below.
Say that a split (A1, A2) of (A, B) is proper if and only if either: (i) A1, A2 are
proper subsets of A; or (ii) Ai = A and B′ � B, where B′ = A1 ∩ A2.

Lemma 5. The following recurrence relations for n(A, B) hold:

1. Let (A, B) be a pair with |A| ≤ 2. Then n(A, B) = 0.
2. Let (A, B) be a pair with B = A. Then n(A, B) = 0.
3. Let (A, B) be a pair with |A| ≥ 3 and B ⊂ A. Given a split S = (A1, A2) of

(A, B), let B′ = A1 ∩A2, Bi = B ∩Ai, and define m(S) = |B′|+ n(A1, B1 ∪
B′) + n(A2, B2 ∪B′). Then n(A, B) equals the minimum of the values m(S)
over all nice splits S of (A, B) which are proper.

Lemma 5 allows us to compute n(A, B) by dynamic programming on the
pairs ordered by: (A, B) ≤ (A′, B′) if and only if |A| < |A′| or (|A| = |A′| and
|B| ≥ |B′|). This yields a dynamic programming algorithm for solving SMRT.
At the end of the algorithm, n(L, ∅) gives the value of an optimal solution, and
a corresponding optimal MUL tree can be obtained by performing a traceback.

Theorem 4. SMRT can be solved using O∗(7n) time and O(3n) space.
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Proof. To prove the correctness of the algorithm, we can verify that the definition
of the relation ≤ on pairs is compatible with the above relations. Indeed, when
computing n(A, B) in point 3, we recursively call n(Ai, Bi∪B′). Then: (i) either
Ai ⊂ A, in which case we have (Ai, Bi∪B′) < (A, B); (ii) or Ai = A, then B′ � B
since the split is proper, therefore B ⊂ Bi ∪ B′ and (Ai, Bi ∪ B′) < (A, B).

We now analyze the complexity of the algorithm. Fix an integer p ≤ n. For
any A ⊆ L of size p, there are 2p pairs (A, B), so the number of pairs (A, B)
with |A| = p is

(
n
p

)
2p. It follows that the total number of pairs considered is

∑n
p=0

(
n
p

)
2p = 3n, giving the claimed space complexity. Next, for any pair (A, B)

with |A| = p, there are 3p splits to consider, and each split is processed in O(n3)
time (i.e., the time required to check that the split is nice and to perform the set
operations). Hence, the time complexity is O(

∑n
p=0

(
n
p

)
2p3pn3) = O(7nn3). �	
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Abstract. Suppose a graph G is given with two vertex-disjoint sets of
vertices Z1 and Z2. Can we partition the remaining vertices of G such
that we obtain two connected vertex-disjoint subgraphs of G that contain
Z1 and Z2, respectively? This problem is known as the 2-Disjoint Con-

nected Subgraphs problem. It is already NP-complete for the class of
n-vertex graphs G = (V, E) in which Z1 and Z2 each contain a connected
set that dominates all vertices in V \(Z1∪Z2). We present an O∗(1.2051n)
time algorithm that solves it for this graph class. As a consequence, we
can also solve this problem in O∗(1.2051n) time for the classes of n-
vertex P6-free graphs and split graphs. This is an improvement upon a
recent O∗(1.5790n) time algorithm for these two classes. Our approach
translates the problem to a generalized version of hypergraph 2-coloring
and combines inclusion/exclusion with measure and conquer.

1 Introduction

There are several natural and elementary algorithmic problems that check if the
structure of some fixed graph H shows up as a pattern within the structure of
some input graph G. One of the most well-known problems is the H-Minor

Containment problem that asks whether a given graph G contains H as a
minor. A celebrated result by Robertson and Seymour [11] states that the H-
Minor Containment problem can be solved in polynomial time for every fixed
pattern graph H . They obtain this result by designing an algorithm that solves
the following problem in polynomial time for any fixed input parameter k.

Disjoint Connected Subgraphs

Instance: A graph G = (V, E) and mutually disjoint nonempty sets Z1, . . . , Zt ⊆
V such that

∑t
i=1 |Zi| ≤ k.

Question: Do there exist mutually vertex-disjoint connected subgraphs G1, . . . , Gt

of G such that Zi ⊆ VGi for 1 ≤ i ≤ t?
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Our Focus. We are interested in finding a fast exact algorithm that solves
the 2-Disjoint Connected Subgraphs problem, which is a restriction of the
above problem to t = 2, and in which Z1 and Z2 may have arbitrary size.
This problem is already NP-complete however, if one of the sets Z1 or Z2 has
cardinality 2, as shown in a very recent paper [8]. A trivial algorithm solves the 2-
Disjoint Connected Subgraphs problem in O∗(2n) time. (The O∗-notation,
used throughout the paper, suppresses factors of polynomial order.) However,
since connectivity is a “global” property, this problem is an example of a “non-
local” problem. Such a problem is typically hard to solve exactly (see e.g. [6]).
Arguably the most well-known non-local problem is the Travelling Salesman

problem, for which no exact algorithm with better time complexity than O∗(2n)
is known. Another example of a non-local problem is the Connected Domi-

nating Set problem. The fastest known exact algorithm for the Connected

Dominating Set problem runs in O∗(1.9407n) time [6], whereas for the general
(unconnected) version of the Dominating Set problem an O∗(1.5048n) exact
algorithm is known [12].

Existing Results. In an attempt to design fast exact algorithms for non-local
problems, one can focus on restrictions of the problem to certain graph classes.
In [8] it has been shown that 2-Disjoint Connected Subgraphs is already
NP-complete for the class of P5-free graphs, whereas it is polynomially solvable
for P4-free graphs. There, it is also shown that this problem is NP-complete
for the class of split graphs. Let Gk,r denote the class of graphs all connected
induced subgraphs of which have a connected r-dominating set of size at most
k. Somewhat surprisingly, for any fixed k, the 2-Disjoint Connected Sub-

graphs problem for Gk,r can be solved in polynomial time if r = 1, or if one
of the given sets Z1 or Z2 of vertices has fixed size [8]. However, for any fixed
k and r ≥ 2, the 2-Disjoint Connected Subgraphs problem is NP-complete
and the authors of [8] present an algorithm that solves it for n-vertex graphs in
the class Gk,r in O∗((f(r))n) time, where

f(r) = min
0<c≤0.5

{
max

{ 1
cc(1 − c)1−c

, 21− 2c
r−1

}}
.

In particular, their algorithm solves the 2-Disjoint Connected Subgraphs

problem faster than O∗(2n) for any n-vertex P�-free graph. For example, for a
P6-free graph on n vertices it uses O∗(1.5790n) time and for a P7-free graph it
uses O∗(1.7737n) time. Also, for an n-vertex split graph, this algorithm runs in
O∗(1.5790n) time.

Our Results and Paper Organization. After explaining our notations and
terminology in Section 2, we propose to study the class of graphs G in which Z1
and Z2 both have a connected set that dominates VG\(Z1∪Z2). In Section 3 we
show that the 2-Disjoint Connected Subgraphs stays NP-complete under
this restriction and we present an algorithm that solves it in O∗(1.2051n) time for
this class of graphs. We also show how to use this algorithm to solve the problem
in O∗(1.2051n) time for the classes of P6-free graphs and split graphs. Hence,
we improved the O∗(1.5790n) time algorithm of [8] for these graph classes. Our



On Partitioning a Graph into Two Connected Subgraphs 1217

approach translates the problem to a generalized hypergraph 2-coloring prob-
lem, for which we design an exact algorithm with the above running time in
Section 4. It uses the recently introduced combined approach of [12] of inclu-
sion/exclusion [1,2,10] with fast measure and conquer based running times [5]
for solving the Dominating Set problem. Hence, our algorithm shows that this
approach is not restricted to Dominating Set only but has a larger applicabil-
ity within the field of covering and partitioning algorithms. Section 5 contains
the conclusions and mentions relevant open problems.

2 Preliminaries

All graphs in this paper are undirected, finite, and without multiple edges. Unless
explicitly stated otherwise, they do not contain loops. We write Pk to denote
the path on k vertices. Let G = (V, E) be a graph. For a subset S ⊆ V we write
G[S] to denote the the subgraph of G induced by S. Two subsets S, T ⊆ V
are adjacent if there is an edge between a vertex in S and a vertex in T . The
distance dG(u, v) between two vertices u and v in a graph G is the length |VP |−1
of a shortest path P between them. For any vertex v ∈ V and set S ⊆ V ,
we write dG(v, S) to denote the length of a shortest path from v to S, i.e.,
dG(v, S) := minw∈S dG(v, w). The neighborhood of a vertex u ∈ V is the set
NG(u) := {v ∈ V | uw ∈ E}. The set N r

G(S) := {u ∈ V | dG(u, S) ≤ r} is called
the r-neighborhood of a set S. A set S r-dominates a set S′ if S′\S ⊆ N r

G(S).
We also say that S r-dominates G[S′]. A subgraph H of G is an r-dominating
subgraph of G if VH r-dominates G. In case r = 1, we use “dominating” instead
of “1-dominating”. A set S ⊆ V is called a (k, r)-center of G if |S| ≤ k and
N r

G(S) = V . A set S is called connected if G[S] is connected. The class of
graphs all connected induced subgraphs of which have a connected (k, r)-center
is denoted by Gk,r . The graph G is called a split graph if V can be partitioned
into a clique and an independent set. A graph G is called H-free for some graph
H if G does not contain an induced subgraph isomorphic to H .

Observation 1 ([8]). The class of split graphs and the class of P�-free graphs
for � ∈ {5, 6} belong to G4,2, whereas the class of P�-free graphs for � ≥ 7 belongs
to G1,�−3.

Let G = (V, E) be a graph. Let V ′ ⊂ V and p, q ∈ V \V ′. The edge contraction
of edge e = uv in G removes the two end-vertices u and v from G, and replaces
them by a new vertex that is adjacent to precisely those vertices to which u or
v were adjacent. Let d(v) denote the degree of v ∈ V .

A hypergraph H = (Q,S) is a set Q = {q1, . . . , qm} of elements together
with a set S = {S1, . . . , Sn} of subsets of Q called hyperedges. A 2-coloring
of H is a partition of Q into Q1, Q2 such that Q1 ∩ S 
= ∅ and Q2 ∩ S 
= ∅
for each S ∈ S. These notions can be generalized as follows. A 2-hypergraph
H = (Q,L,R) is a set Q = {q1, . . . , qm} together with two (not necessarily
disjoint) sets L = {L1, . . . , Ls} and R = {R1, . . . , Rt} of subsets of Q. We call
L and R the partition classes of H . With a 2-hypergraph H = (Q,L,R) we
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associate its incidence graph I, which is a bipartite graph on Q ∪ L ∪ R, where
qS ∈ EI if and only if q ∈ S for q ∈ Q and S ∈ L ∪ R. Let the dimension of
a 2-hypergraph H = (Q,L,R) be d = |Q| + |L| + |R|. A 2-coloring of H is a
partition of Q into Q1, Q2 such that Q1 ∩L 
= ∅ for each L ∈ L and Q2 ∩R 
= ∅
for each R ∈ R. This leads to the following decision problem.

2-Hypergraph 2-Coloring

Input: a 2-hypergraph H .
Question: does H have a 2-coloring?

Note that a 2-hypergraph H = (Q,S,S) is 2-colorable if and only if hypergraph
H ′ = (Q,S) is 2-colorable. The Hypergraph 2-Colorability problem asks if
a hypergraph is 2-colorable and is NP-complete (cf. [9]).

Observation 2. The 2-Hypergraph 2-Coloring problem is NP-complete.

A path decomposition of a graph G is a sequence of bags (sets of vertices) X =
〈X1, . . . , Xr〉 with the following three properties. First,

⋃r
i=1 Xi = V . Second,

for each uv ∈ E, there exists a bag Xi such that {u, v} ⊆ Xi. Third, if v ∈ Xi

and v ∈ Xk then v ∈ Xj for all i ≤ j ≤ k. The width of X is max1≤i≤r |Xi| − 1
and the pathwidth pw(G) of G is the minimum over all widths.

3 The 2-Disjoint Connected Subgraphs Problem

Let (G, Z1, Z2) be an instance of the 2-Disjoint Connected Subgraphs prob-
lem. Let U = VG\(Z1∪Z2). We say that G is semi-connected with respect to Z1
and Z2 if Z1 and Z2 each contain a connected set that dominates U . We note
that the 2-Hypergraph 2-Coloring problem stays NP-complete for the class
of 2-hypergraphs H = (Q,L,R) with Ls = Rt = Q. These 2-hypergraphs have
an incidence graph I that is semi-connected with respect to L and R, because
Ls and Rt both dominate Q = VI\(L∪R). Because such a 2-hypergraph H has
a 2-coloring if and only if (I,L,R) is a Yes-instance of the 2-Disjoint Con-

nected Subgraphs problem, the following observation immediately follows
from Observation 2.

Observation 3. The 2-Disjoint Connected Subgraphs problem is even
NP-complete for semi-connected graphs.

For our main theorem we need the following result. We prove it in Section 4.

Theorem 1. The 2-Hypergraph 2-Coloring problem can be solved in
O∗(1.2051d) time for 2-hypergraphs of dimension d.

Here is our main theorem.

Theorem 2. The 2-Disjoint Connected Subgraphs problem can be solved
in O∗(1.2051n) time for the class of semi-connected graphs.
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Proof. Let (G, Z1, Z2) be an instance of the 2-Disjoint Connected Sub-

graphs problem with G semi-connected and U = VG\(Z1∪Z2). For i = 1, 2, let
Di be the connected set in Zi that dominates U . Transform each Di to a single
vertex by performing edge contractions. Do the same for any other component
of G[Z1] and G[Z2]. This results in two new sets Z ′1 and Z ′2 that are both inde-
pendent and contain a vertex that is adjacent to all vertices in U . This means
we may remove all edges in G[U ]. Then we obtain a 2-hypergraph (U, Z ′1, Z

′
2) of

dimension at most n, on which we apply Theorem 1. �	

As a consequence of Theorem 2 we find the following.

Corollary 1. For any fixed k ≥ 1, the 2-Disjoint Connected Subgraphs

problem can be solved in O∗(1.2051n) time for any n-vertex graph in Gk,2. In
particular, this is true for P6-free graphs and split graphs.

Proof. The latter statement immediately follows from Observation 1. Let G =
(V, E) be a graph in Gk,2 for some fixed k ≥ 1 with two vertex-disjoint sets
Z1 and Z2. Let U = V \(Z1 ∪ Z2). We guess a set D1 of up to k vertices in
G[Z1 ∪U ] and a set D2 of up to k vertices in G[Z2 ∪U ] such that D1 ∩D2 = ∅.
We check if G[D1] and G[D2] are both connected. If not, we guess other sets
instead. Otherwise, we form a new instance (G′, Z ′1, Z

′
2), where

• G′ is the subgraph of G obtained after removing all vertices from U that are
neither adjacent to D1 nor to D2. The reason we may remove these vertices
is that they are redundant in any possible solution (G1, G2) in which Di is
a (k, 2)-center of Gi for i = 1, 2.

• Z ′1 = Z1∪D1∪{u ∈ U | u is adjacent to D1 but not to D2.}. We may define
Z ′1 like this for a similar reason as above.

• Z ′2 = Z2 ∪ D2 ∪ {u ∈ U | u is adjacent to D2 but not to D1.}.

Then G′ is semi-connected with respect to Z ′1 and Z ′2 and we can use Theorem 2.
Since the total number of guesses is bounded by a polynomial in n, the result
follows. �	

4 The Proof of Theorem 1

We first sketch our algorithm for the 2-Hypergraph 2-Coloring problem that
runs in time O∗(1.2051d) for d-dimensional hypergraphs.

Phase 1. We exhaustively apply a series of reduction rules and afterwards
branch on the elements q ∈ Q: either give q color 1 or color 2. In both cases
we remove q and all hyperedges that are colored appropriately (color 1 for L,
and color 2 for R). We go to Phase 2 if every remaining element appears in at
most three hyperedges in L ∪R.

Phase 2. The algorithm switches to the counting variant of our problem. It
now uses a different set of reduction rules. If no such rule is applicable it applies
inclusion/exclusion based branching to the hyperedges in L and R. We go to
Phase 3 when we have sufficiently reduced the size of H .
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Phase 3. The algorithm solves the remaining problem by dynamic programming
over a path decomposition of the incidence graph of the remaining hypergraph.

4.1 The Algorithm in Detail

Throughout the description of the algorithm, we denote the 2-hypergraph under
consideration by H = (Q,L,R) and its incidence graph by I. So, H represents
the elements that have not yet a color and the hyperedges that still do not have
an element with the right color (color 1 for L ∈ L and color 2 for R ∈ R). All
other elements and hyperedges have been removed. If we say that an element in
Q or a hyperedge in L ∪R has a certain degree, we refer to its degree in I.

Phase 1: reduce and branch
We first introduce two reduction rules and exhaustively apply them to H .

Rule 1. Deal with elements q appearing in hyperedges of at most one partition
class
If q has degree zero, remove q. If q occurs in only one partition class, color it
with 1 if it belongs to an hyperedge in L and with 2 otherwise. Remove q and
all hyperedges containing q. If H becomes empty this way, return Yes.

Rule 2. Deal with hyperedges S of degree at most one
Let S = {q}. If S ∈ L color q with 1 and with 2 otherwise. Remove S and q. If
∅ ∈ L ∪R, then return No.

When Rule 1 and 2 cannot be applied anymore, select an element q of maximum
degree. If q has degree at most three, go to Phase 2. Otherwise, branch on q. In
one branch, color q with 1 and remove q and all hyperedges in L containing q.
In the other branch, color q with 2 and remove q and all hyperedges in R
containing q. After each branching, apply Rule 1 and 2 exhaustively. If in the
end the algorithm has returned output Yes then we are done. Otherwise, we go
to Phase 2 with each 2-hypergraph created after the branching has finished and
for which the algorithm has not returned No.

Phase 2: branch based on inclusion/exclusion
Note that all elements in Q now have degree two or three. Switch to the counting
variant: how many 2-colorings does H have? Apply the two new reduction rules
below exhaustively.

Rule 3. Deal with hyperedges S of degree at most one
If S = {q}, then q must get the right color for S in any 2-coloring for H . Suppose
w.l.o.g. that S ∈ L. Hence, the number of 2-colorings for H equals the number
of 2-colorings for H ′ = (Q\q,L′,R′), where L′, R′ denote the sets L, R minus
all hyperedges containing q, respectively. If S = ∅, return 0; no solutions exist.

Rule 4. Deal with elements q of degree one
Let q belong to S ∈ L ∪ R. Note that we can not just simply remove q and S.
The reason is that S may contain more than one element and these elements
can be colored in two ways. This might lead to different 2-colorings (recall that
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we want to determine this number). We circumvent this as follows. In Phase 3,
we compute the number of 2-colorings by dynamic programming over a path
decomposition of I. Adding a set of trees, each connected to only one vertex of
the graph, increases the pathwidth by at most a logarithmic factor [3]. This does
not influence the exponential running time of Phase 3 as we shall see. Hence, we
do remove q and store it in a special set C. If S then gets degree one, we can
not apply Rule 3, as S may get its right color from an element in C. Instead, we
put S in C as well, and so on. In Phase 3 we put all elements and hyperedges
in C back into I. These will correspond to trees adjacent to a single vertex in
I. Throughout the remainder of Phase 2, our algorithm updates C whenever it
takes some decision on H . If necessary, it removes elements and hyperedges from
C (e.g., after applying Rule 3).

When Rules 3 and 4 cannot be applied anymore, branch on hyperedges. Pick a
hyperedge of maximum degree if the maximum degree is at least six. Otherwise,
let di(S) be the number of elements in hyperedge S of degree i and o(S) be the
total number of appearances that elements in S have in the partition class not
containing S. Then let S ⊆ L∪R be the set of hyperedges S with either d(S) = 5
and d3(S) ≥ 3 or d(S) = d3(S) = 4. Pick an S ∈ S with o(S) maximum over all
S ∈ S. If S = ∅ go to Phase 3; otherwise branch on the selected S as below.

The optional branch computes the number of S-indifferent 2-colorings, i.e., in
which S may not have received its right color. In this branch, we only remove
S. The forbidden branch computes the number of S-incorrect 2-colorings, i.e., in
which S did not receive its right color. Here, we remove S, all its elements, and
all hyperedges that are in the partition class not containing S and that contain
an element of S, as these hyperedges have received their right color. After each
branching, apply Rule 3 and 4 exhaustively. We now compute the number of
2-colorings that correctly coloring S by taking the difference between the two
numbers from the two branches. We check if the final difference α at the root
of the branching tree is strictly positive. If so return Yes, otherwise return No.
Note that the exact value of α has no meaning because Rule 1 does not preserve
counting properties. To solve the subproblems obtained from Phase 2, the algo-
rithm requires results from Phase 3. Hence, all generated subproblems are given
to Phase 3 after which the described subtractions and checks are performed.

Phase 3: dynamic programming over path decompositions
Note that all elements have degree two or three and all hyperedges have degree
at most five with some extra constraints on their vertices in case their degree is
four or five. We restore C and compute a path decomposition of I (which will
have small enough width as we shall see). Using this path decomposition we
can count the number of 2-colorings and with these numbers we perform the
computations described in Phase 2.

4.2 Running Time Analysis

We analyze our algorithm using measure and conquer [5]. We start with the
following lemma, the proof of which we only sketch due to page restrictions.
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Lemma 4. Phase 3 starts with O(1.20509d−h) subproblems of complexity h ≤ d.

Proof Sketch. We assign a weight 0 ≤ w(i) ≤ 1 to an element q of degree i
and a weight 0 ≤ v(i) ≤ 1 to an hyperedge of degree i. This way we define
the complexity measure: k(Q,L,R) =

∑
q∈Q w(d(q)) +

∑
S∈(L∪R) v(d(S)). Let

Δv(i) = v(i) − v(i − 1) and Δw(i) = w(i) − w(i − 1). We use the following
constraints on the weights:

1. v(0) = v(1) = w(0) = w(1) = 0
2. Δv(i) ≥ 0 and Δw(i) ≥ 0 for all i ≥ 1
3. Δv(i) ≥ Δv(i + 1) and Δw(i) ≥ Δw(i + 1) for all i ≥ 2
4. v(2) ≥ 2Δv(5).

Using these constraints we obtain a set of recurrence relations describing the
complexity reductions. We need to choose weights that respect the constraints
and that minimize the solution to the set of recurrence relations (cf. [12]). It
turns out that the following weights give us the desired upper bound in the
statement of the lemma:

i 1 2 3 4 5 ≥ 6
v(i) 0 0.809607 0.963013 0.996566 1 1
w(i) 0 0.448902 0.767484 0.934782 0.992583 1

�	
Besides Proposition 1 from [4], the proof of Lemma 5 uses Proposition 2 which
is obtained by dynamic programming and whose proof we omit.

Proposition 1 ([4]). For any ε > 0, there exists an integer n∗ε such that for
every graph G with n > n∗ε vertices, its pathwidth pw(G) satisfies:

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + εn

where ni is the number of vertices of degree i in G for i ∈ {3, . . . , 6} and n≥7
is the number of vertices of degree at least 7. Moreover, a path decomposition of
the corresponding width can be constructed in polynomial time.

Proposition 2. Let p be the width of a path decomposition of the incidence
graph I of a 2-hypergraph H = (Q,L,R). Then the number of 2-colorings of H
can be counted in O∗(2p) time.

Lemma 5. The number of 2-colorings of each 2-hypergraph H of complexity h
in Phase 3 can be computed in O∗(1.1904h) time.

Proof. By Proposition 2, we can count the number of 2-colorings of H in O∗(2p)
time. Here, p denotes the width of a path decomposition from Proposition 1.
Hence, we need to prove an upper bound on p expressed in k. To this end, we
formulate the linear program:

max z =
1
6
(x3 + y3) +

1
3
y4 +

13
30

y5 + ε such that:
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1 =
3∑

i=2

w(i)xi +
5∑

i=2

v(i)yi

3∑

i=2

ixi =
5∑

i=2

iyi x2 ≥ 1
2
y4 +

3
2
y5

In this linear program, xi and yi represent the number of elements and hy-
peredges, respectively, that are of degree i per unit of complexity (unit of k as in
Lemma 4) in a worst case instance. Recall that all elements are of degree 2 and
3 and all hyperedges are of degree 2,3,4, or 5 in Phase 3. The objective function
comes directly from Proposition 1, now formulated in xi and yi. This function
gives an upper bound of the pathwidth per unit of complexity and we need the
worst case.

The first constraint guarantees that the variables use exactly one unit of com-
plexity. The second constraint counts the number of edges in I in two different
ways and demands that equality must hold. To get a good upper bound we add
the third constraint. The reason why we may do this is as follows. In Phase 3,
every hyperedge of degree four contains at least one element of degree two, and
every hyperedge of degree five contains at least three elements of degree two. So,
there must exist at least x2 ≥ 1

2y4 + 3
2y5 elements of degree two.

The solution to this linear program is z = 0.251446 with x2 = 0.251446,
x3 = 0.502892, y4 = 0.502892 and y2 = y3 = y5 = 0. As a result, p ≤ 0.251446h+
εh. We choose ε sufficiently small such that 2εh may be neglected due to the
rounding. If h ≤ n∗ε , the pathwidth of H is bounded by a constant and otherwise
by 0.251447h. Hence, the algorithm runs in the desired time. �	

Combining Lemma 4 and Lemma 5 proves Theorem 1.

Theorem 1. 2-Hypergraph 2-Coloring can be solved in O∗(1.2051d) time
for 2-hypergraphs of dimension d.

Proof. Let T (d) denote the running time of our algorithm on a 2-hypergraph H of
dimension d. Let J be the set of all possible complexities of the subproblems that
exist at the start of Phase 3. After all these subproblems have been processed
in Phase 3, the algorithm must compute the number of 2-colorings for each
hypergraph created after the end of Phase 1. These computations follow the
structure of the branching tree, and hence T (d) is dominated by the time spent
in Phase 3. This together with Lemma 4 and 5 implies that

T (d) ≤
∑

h∈J

O(1.2051d−h) · O∗(1.1904h) ≤
∑

h∈J

O∗(1.2051d) = O∗(1.2051d),

since |J | is polynomially bounded as we only use a finite number of weights. �	

5 Conclusions and Open Problems

We presented an O∗(1.2051n) time algorithm for the 2-Disjoint Connected

Subgraphs problem restricted to semi-connected graphs. We also showed how
to use this algorithm to solve this problem within the same time for graphs
in the class Gk,2 for any fixed k ≥ 1 and, in particular, for split graphs and
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P6-free graphs. We leave it as an open question how to obtain a faster algorithm
for graphs in a class Gk,r with r ≥ 3. Another natural question is to study the
class of instances (G, Z1, Z2) where only one of the subsets, say Z1, contains
a connected set that dominates U = V \(Z1 ∪ Z2). For solving this, a similar
approach as in [8] can be followed (where brute force techniques are applied
depending on the size of |Z1| and |Z2|). Another approach would be to apply
an algorithm that lists all minimal set covers (similar to [7]). By using such
an approach one can enumerate all sets U ′ ⊆ U that are minimal with respect
to dominating Z1. For each choice of U ′ one can check in polynomial time if
G[Z2 + (U ′\U)] is connected. We note that this approach also works for semi-
connected instances. However, this seems to lead to much worse running times.

We did not explore the above two questions in detail, as the main open ques-
tion is to find an exact algorithm for the 2-Disjoint Connected Subgraphs

problem for general graphs that is faster than the trivial O∗(2n) algorithm. For
solving this, new techniques that deal with the connectivity issue are necessary.
This will be future research.
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