A Study of Two-Party Certificateless
Authenticated Key-Agreement Protocols

Colleen Swanson! and David Jao?*

! David R. Cheriton School of Computer Science
2 Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
{c2swanso@cs,djao@math}.uwaterloo.ca

Abstract. We survey the set of all prior two-party certificateless key
agreement protocols available in the literature at the time of this work.
We find that all of the protocols exhibit vulnerabilities of varying sever-
ity, ranging from lack of resistance to leakage of ephemeral keys up to
(in one case) a man-in-the-middle attack. Many of the protocols admit
key-compromise impersonation attacks despite claiming security against
such attacks. In order to describe our results rigorously, we introduce
the first known formal security model for two-party authenticated cer-
tificateless key agreement protocols. Our model is based on the extended
Canetti-Krawczyk model for traditional authenticated key exchange, ex-
cept that we expand the range of allowable attacks to account for the
increased flexibility of the attacker in the certificateless setting.

Keywords: key agreement, certificateless public key cryptography.

1 Introduction

Certificateless public key cryptography was introduced by Al-Riyami and Pater-
son [I] to serve as a middle ground between traditional public key cryptography
based on PKI and the newer notion of identity-based cryptography in which a
third party generates users’ private keys. In certificateless public key cryptogra-
phy, a user generates his private key by combining a secret value with a partial
private key provided by the Key Generation Center (KGC). Similarly, to gen-
erate a public key, the user combines his secret value with public information
from the KGC. Unlike in the case of identity-based cryptography, public keys
are no longer easily computable by third parties, so they must be made available
in some other way, such as via a public directory. However, once made available,
the public keys do not need to be validated in any way; the security model for
certificateless public key cryptography assumes that an adversary can replace
public keys at will. Dent [4] has published a survey of the various certificateless
public key encryption schemes that have been published since the introductory
work of Al-Riyami and Paterson.

* The authors were partially supported by NSERC.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 57 2009.
© Springer-Verlag Berlin Heidelberg 2009

58 C. Swanson and D. Jao

In this work we focus on two-party key agreement schemes in the certificateless
setting. In such schemes, two parties can establish a shared secret via a certifi-
cateless public key protocol. Work in the area of certificateless key agreement
protocols is relatively limited. At the time this work was performed, we were
aware of only five such schemes: one from the original Al-Riyami and Paterson
paper [I], and four others by Mandt and Tan [1I], Wang et al. [I8], Shao [14],
and Shi and Lee [I5]. None of these works define a security model and therefore
all of them lack a rigorous proof of security.

The contributions of this article are twofold. In the first part of the paper, we
introduce a formal security model for certificateless authenticated key exchange
protocols. Our security model is an extended version of the extended Canetti
and Krawczyk model [7] for traditional authenticated key exchange. The modi-
fications consist of enhancing the powers of the adversary to take into account
the greater capabilities afforded in the certificateless setting. In the second part
of the paper, we examine all five extant two-party certificateless authenticated
key agreement protocols in the context of our security model. We find that all
existing certificateless protocols allow for practical attacks of varying severity,
ranging from relatively minor attacks involving leaked ephemeral secrets, up to
(in one case) an outright man-in-the-middle attack. These results indicate that
more work is required in order to fully realize the benefits of the certificateless
paradigm in the context of key agreement.

We remark that, based upon an earlier unpublished version of this work [16],
Lippold et al. [] have published a subsequent security model for certificate-
less key agreement schemes, as well as a two-party certificateless key agreement
scheme which is provably secure in their model (as well as ours). In Section @l
we explain the relationship between our security model and theirs. The prov-
able security of their protocol means that, in a theoretical sense, the question
of constructing a provably secure certificateless key agreement scheme in the
context of a suitable security model has been settled. However, their protocol
is slow, requiring each party to perform 10 pairing operations in order to com-
pute the common key (or 5 at the cost of a stronger assumption). Therefore, it
remains an open question whether there exists a provably secure certificateless
key agreement protocol having minimal performance penalty compared to the
alternatives. We discuss these and other issues in Section

2 Background

We recall the standard terminology of key agreement protocols. A key establish-
ment protocol is a protocol in which two or more parties gain access to a shared
secret. If the shared secret is a function of information provided by and/or asso-
ciated with each party (as opposed to the case where only one party is involved
in choosing and/or obtaining the secret), we say the protocol is a key agreement
protocol (KAP). We concern ourselves mainly with the two-party dynamic key
agreement setting, wherein the established key varies with each execution. We
refer to a protocol run as a session, and each message transmitted from one

Two-Party Certificateless Authenticated Key-Agreement Protocols 59

party to another as a flow. The shared secret resulting from a session is gener-
ally called (or used to determine) a session key. Protocols generally assume users
(or pairs of users) have long-term keys, which are static secrets that are usually
precomputed and stored securely. These are often used in conjunction with ran-
domized secret input, which we refer to as ephemeral or short-term keys. Many
key agreement protocols also assume the existence of a centralized server, known
as a Key Generation Center (KGC). We refer to this entity’s secret information
as the master secret key. We assume that the KGC communicates with users via
a secure channel, whereas protocol flows are sent via an open channel. That is,
eavesdroppers have no access to KGC/user communication, but can easily read
anything sent between protocol participants.

2.1 Bilinear Pairings

All of the protocols that we discuss make use of bilinear pairings. Let ¢ be a
prime, G a cyclic additive group of order ¢ generated by P, and Gp a multi-
plicative group of order q. Let e: G x G — G be an admissible pairing, namely,
one where e satisfies the following properties:

1. Bilinearity: VP,Q, R € G we have both e(P 4+ Q, R) = ¢(P, R)e(Q, R) and
e(P,Q+ R) =e(P,Q)e(P, R).

2. Non-degeneracy: For all P # 1, we have e(P, P) # 1g,.

3. The pairing is efficiently computable.

The hardness assumption required for the pairing varies depending on the pro-
tocol. The survey article of Boyen [3] contains a list of the standard assumptions
used in pairing-based protocols.

3 Security Attributes

Authenticated key agreement protocols satisfy the property that an entity is only
able to compute a shared secret key if it holds the claimed identity. In particular,
key agreement protocols should not allow an adversary to impersonate a user
without that user’s private key. The following security attributes apply to key
agreement protocols in general:

— Known session key security: Key agreement protocols should be dynamic:
each protocol run should result in a unique session key. An attacker who
learns a given number of session keys should not be able to discover other
session keys.

— Forward secrecy: Given the long-term private keys of one or more users, it is
clearly desirable that an attacker not be able to determine previously estab-
lished session keys. Perfect forward secrecy implies an attacker, even armed
with all participants’ long-term private keys, cannot determine old session
keys. Partial forward secrecy implies an attacker armed with some, but not
all, participants’ long-term private keys cannot determine old session keys.

60 C. Swanson and D. Jao

Similarly, KGC forward secrecy deals with the case in which the attacker
has the master secret key. Weak perfect forward secrecy deals with the case
where all long-term private keys are known, but the attacker was not ac-
tively involved in choosing ephemeral keys during the sessions of interest. It
has been shown by Krawezyk [6] that no 2-flow authenticated key agreement
protocol can do better than this weaker version of forward secrecy.

— Unknown key-share security: It should be impossible to coerce A into think-
ing he is sharing a key with B, when he is actually sharing a key with
another (honest) user C. That is, it should not be possible for A to believe
he is sharing a key with B # C, while C' correctly thinks the key is shared
with A.

— Resilience to key-compromise impersonation (KCI): If the long-term private
key of user A is compromised, the attacker should not be able to impersonate
another user B to A. Obviously, if a long-term private key of A is compro-
mised, we wish to replace this key as soon as possible, as the attacker can
certainly impersonate A to any other user; this property is nevertheless im-
portant in the sense that it minimizes the damage until the user can detect
that his key has been compromised.

— Resistance to leakage of ephemeral keys: If the attacker has access to the
ephemeral keys of a given protocol run, he should be unable to determine
the corresponding session key. As argued by Menezes and Ustaoglu [12],
adversaries may gain access to this information through a side-channel attack
or use of a weak random number generator; alternatively this information
might be stored insecurely. We refer to such attacks as known ephemeral key
attacks.

Additional security requirements arise in the case of certificateless key agreement
protocols. Since public keys are not validated as in ID-based schemes or tradi-
tional PKI, we must assume that an adversary can replace public keys at will,
and this attack must be incorporated into the security model. Now, if a KGC
replaces public keys, it will be able to impersonate any user, since it can easily
compute the corresponding private key. Thus, for all certificateless schemes, the
KGC can launch a man-in-the-middle attack. For this reason, security models
for certificateless schemes generally assume that the KGC never replaces public
keys. Al-Riyami and Paterson [2] argue that this amounts to roughly the same
amount of trust that is invested in a certificate authority (CA) in a traditional
PKI. They make the point that, while often not stated explicitly, we usually
trust that CAs do not produce certificates binding arbitrary public keys to a
given identity. In any case, CL-PKC amounts to less trust than in an ID-based
scheme, where the KGC has access to users’ private keys by definition.

One way to avoid the issue of the KGC replacing public keys is to bind a
user’s public and private keys, as noted in Al-Riyami and Paterson [I]. This
technique requires the user to send his fixed public key to the KGC, which is
then incorporated into the partial private key. The result is that there can be
only one working public key per user, so the existence of more than one implies
that the KGC created more than one partial private key binding the user to

Two-Party Certificateless Authenticated Key-Agreement Protocols 61

different public keys. In fact, with this binding technique, the partial private
keys do not need to be kept secret. The corresponding unique public key was
computed with the user’s secret value—this value is necessary to compute the
full private key and cannot be determined from the exposed partial private key.
While this binding technique has certain advantages, it comes at the added cost
of reduced flexibility. With the binding technique in place, users must establish
their public key before receiving their partial private key from the KGC.

4 Security Model

In this section, we give an extension of the extended Canetti-Krawczyk (eCK) [7]
model suitable for the certificateless key agreement setting. In particular, the
eCK model (and our model as well) captures all of the basic security attributes
mentioned in Section

We note that Al-Riyami and Paterson give a security definition relevant to
certificateless encryption in [II2], but our key agreement model is based on the
eCK model and is not the natural extension of their definition to key establish-
ment protocols. The treatment of the long-term secret information of the user is
different in Al-Riyami and Paterson’s definition, as their adversary is not allowed
to know only part of a user’s private key, an issue which restricts the treatment of
leakage of ephemeral information. In particular, Al-Riyami and Paterson’s model
does not account for the attacks given in the following section, so this model is
not sufficient when we consider several real-world attacks. Nevertheless there are
some similarities, and we owe the general adversarial model to Al-Riyami and
Paterson: we consider two possible types of adversaries, namely those without
the master secret key, who can replace public keys at will, and those with the
master secret key, who are not allowed to replace public keys at any time.

Informally, we refer to these types of attackers as either outside or inside
attackers, in the following sense:

— An adversary is an outside attacker if the adversary does not have the master
secret key; an outside attacker is able to replace public keys of users.

— An adversary is an inside attacker if the adversary has access to the master
secret key; an inside attacker cannot replace public keys of users.

The formal adversarial model is as follows.

As in the eCK model, we consider a finite set of parties Py, P, ..., P, modeled
by probabilistic Turing machines. The adversary, also modeled by a probabilistic
Turing machine, controls all communication—parties give outgoing messages to
the adversary, who has control over their delivery via the Send query. Parties
are activated by Send queries, so the adversary has control over the creation
of protocol sessions, which take place within each party. We call the initiator
of a session the owner, the responder the peer, and say both are partners of
the given session. We define a conversation for a given session to be the ordered
concatenation of all messages (both incoming and outgoing), and say two sessions
s and s’ have matching conversations if the outgoing messages of one are the

62 C. Swanson and D. Jao

incoming messages of the other, and vice versa. In particular, we assume that
the public keys of the parties are a part of the message ﬂowsE[

We borrow the queries EphemeralKeyReveal and SessionKeyReveal from the
eCK model. The EphemeralKeyReveal(s) query allows the adversary to obtain
the ephemeral private key of the session s; this is not equivalent to issuing
the query EphemeralKeyReveal on the session matching to s (if it exists), as
only the ephemeral information chosen by the session owner is revealed. The
SessionKeyReveal(s) query allows the adversary to obtain the session key for the
specified session s (so long as s holds a session key).

In addition to these queries, we allow the adversary the queries RevealMas-
terKey, ReplacePublicKey, RevealPartialPrivateKey(party), and RevealSecretValue
(party). The adversary can gain access to the master secret key via the query Re-
vealMasterKey and replace the public key of a given party via ReplacePublicKey
query. Unlike in the eCK model, this does not mean the adversary has control
over the party. Instead, it implies that all other parties will use the adversary’s
version of the party’s public key, while the given party will continue to use the
correct public key in any calculations P The RevealPartialPrivateKey(party) query
gives the adversary access to the given party’s partial private key, which is gen-
erated from the master secret key. (Note that this command is redundant if the
RevealMasterKey query has been issued.) Lastly, the RevealSecretValue(party)
query gives the adversary access to the party’s chosen secret value (which is
used to generate the party’s public key). We assume that an adversary cannot
issue a RevealSecretValue query against a party which has already received the
ReplacePublicKey query.

We consider an adversary-controlled party to be one against which the adver-
sary has issued both the ReplacePublicKey and RevealPartialPrivateKey queries.
If the RevealMasterKey query has been issued, any party issued the ReplacePub-
licKey query is considered to be adversary-controlled; in this way, we capture
the intent of the requirement that adversaries holding the master key should
not be allowed to replace public keys. In particular, we say a party that is not
adversary-controlled is honest. Formally, we define a fresh session as follows:

Definition 1. Let s be a completed session owned by party P; with peer P;,
both of whom are honest. Let s* denote the matching session (if such a session
exists). We say s is fresh if none of the following conditions hold, where E denotes
the adversary:

1. E issues a SessionKeyReveal(s) or SessionKeyReveal(s*) query (provided s*
exists);

! The thesis version of this work [16], as pointed out by Lippold et al. [9], did not
include public keys in the definition of a matching conversation. This is an oversight
in our original model, as it does not allow an adversary to replay conversations with
replaced public keys without detection.

In Lippold et al. [9]’s model, the given party will use the replaced public key instead
of his chosen key. While their model is strictly stronger than ours because of this,
we feel it is a more natural choice to assume that a party knows his own public key.

N

Two-Party Certificateless Authenticated Key-Agreement Protocols 63

2. s* exists and E either makes queries:
(a) both RevealPartialPrivateKey(P;) and RevealSecretValue(FP;) as well as
EphemeralKeyReveal(s) or
(b) both RevealPartialPrivateKey(P;) and RevealSecretValue(P;) as well as
EphemeralKeyReveal(s*);
3. No matching session s* exists and E either makes queries:
(a) both RevealPartialPrivateKey(P;) and RevealSecretValue(F;) as well as
EphemeralKeyReveal(s) or
(b) both RevealPartialPrivateKey(P;) and RevealSecretValue(P;).

This definition encompasses both types of adversaries. In the case where the
adversary has issued the RevealMasterKey query, he cannot issue replace public
key queries without making the involved parties dishonest. Moreover, as this
adversary automatically has access to users’ partial private keys, he is assumed
unable to issue both the RevealSecretValue(P;) and EphemeralKeyReveal(s) or
the RevealSecretValue(P;) and EphemeralKeyReveal(s*) queries (provided that
s* exists).

As in the eCK model, we allow the adversary E a single Test(s) query, which
can be issued at any stage to a completed, fresh session s. A bit b is then picked at
random. If b = 0, the test oracle reveals the session key, and if b = 1, it generates
a random value in the key space. F can continue to issue queries as desired, with
the requirement that the test session remain fresh. At any point, the adversary
can try to guess b. Let GoodGueSSE(k) be the event that F correctly guesses b,

and Advantage” (k) = max {0, ‘Pr[GoodGuessE(k)] - %‘} , where k is a security

parameter. We are now ready to formally define our notion of a secure session.

Definition 2. We say a certificateless key establishment protocol is secure if
the following conditions hold:

1. If honest parties have matching sessions and no ReplacePublicKey queries
have been issued, these sessions output the same session key (except with
negligible probability).

2. For any polynomial time adversary F, AdvantageE (k) is negligible.

5 Attacks

In this section we explore several two-party certificateless authenticated key
agreement protocols from the literature, as well as one “self-certified” protocol
(which on closer analysis actually appears to be certificateless). We first establish
notation and give a summary of the protocols in Section [B.Il We then discuss
each protocol in detail and present relevant attacks, modeled within the frame-
work given in Section @l We pay particular attention to the existence of key
compromise impersonation attacks and whether or not the protocols have resis-
tance to leakage of ephemeral keys, and in one case we show the protocol to be
entirely insecure.

64 C. Swanson and D. Jao

Table 1. Parameters for user 7

Scheme P; Qi Si X
AP m <x7;P, Jiipxc,c> h(IDl) SQi a:zSz
MT [T0JIT] z; P h(ID;) sQi (s+x:)Qq

Shao M I7;P h/(IDi, Pl) SQi <I7;, S7,>

SL[15] e(P,x;P) H(ID;) o' P xS

5.1 Protocol Summaries

In all of the following protocols, the Key Generation Center (KGC) has master
secret key s € Z; and master public key Pxgc = sP. The system parameters
(¢, G,Gr,e, P, Pkae) are as in Section 21 Let k& € N denote the number of bits
in the shared session key. We will need the following hash functions and key
derivation functions:

H:{0,1}* — Z;, H": Gp — Z;, h: {0,1}* — G, ’: {0,1}* x G — G, and
h': GT x G — {0,1}k, kdfMTI GT xGx G — {071}k7 kdfwcw: {071}* X
{0,1}* x Gr x G x G — {0,1}*, kdfspao: G % {0,1}* x {0,1}* — {0,1}*, and
kdeL: GT — {O, 1}k.

The certificateless protocols we study are given in Tables Il Bl and [3 and
include all certificateless protocols published at the time of our work, namely
those of Al-Riyami and Paterson (AP) [I], Mandt and Tan (MT) [I0I11], Wang,
Cao, and Wang (WCW) [1§], Shao [14], and Shi and Li (SL) [15].

In Table [, we give a summary of user parameters for each of the protocols.
For a given user i, we use P; to denote the public key of i and @; to denote
the mapping of ID; into G. Each user has two pieces of secret information, a
user-chosen secret value z; €Eg Z; and a partial private key S; € G, provided by
the KGC. We use X; to denote user ¢’s full private key, which is formed from a
combination of the user’s secret information S; and x;.

We give the shared secret and session key computation information in Ta-
bles 2l and [3] respectively. For each protocol we have users A and B, with com-
munication consisting of one message flow each. User A picks a € Z, and sends
Ta to B, and B similarly chooses b €r Z, and sends Tg to A. Some of the
protocols specifically send user public keys as part of the message flows, and
some assume the existence of a public directory for this purpose. For ease of
representation, we do not specify which. Similarly, we do not include all of the
computational checks that users perform during the protocol, but note that each
protocol has group membership checks in place to thwart subgroup membership
attacks, such as those of Lim and Lee [§], and the AP protocol includes a check
to ensure that user public keys are of the correct form.

5.2 Al-Riyami and Paterson (AP) Protocol

As pointed out by Mandt [I0], the AP protocol does not have resistance to
leakage of ephemeral keys. However, we can easily fix this by computing the

Two-Party Certificateless Authenticated Key-Agreement Protocols 65

Table 2. Shared secret computation

Scheme T Shared Secret K
AP Ta aP e(XB,Ta)e(Xa,Ts)
T bP e(@QB,raPrcc)%e(Xa,TB)
MT [II] Ta aP e(@p, Pxcc + Ps)*e(Qa, Pkac + Pa)’
Tr bP e(QB, Pkcc + Pp)*e(Xa,Th)
WCW [18] Ta aP e(Qa,QB)°
TB bP 6(SA, QB)
Shao [14] Ta aPp H'(e(Qa,Qp)*)abP
Ts bPa H'(e(Sa,Qp))az," (mod q)Tx
SL [I5] Ta a(Qs + Pxac) P4Pg
T b(Qa + Pkac) e(Tr, Xa)Pp

Table 3. Session key computation. Here K denotes the shared secret from Table 2.

Scheme Session Key

AP [1] R'(K||abP)

MT [I1] kdf(K||abP||zaxsP)
WCW [18] kdf(ID4,IDg, K, azg P, bz A P)
Shao [14] kdf(K||IDA || IDp)

SL [15] kdf(K)

session key to be h"(K||abP||xaxpP) instead of b’ (K||abP), modifying h" as
necessary (where Alice computes x4 (zpP) and Bob computes zpg(zaP)).

Our fix is not quite as strong as we would like, however. In the context of
our formal model from Section [an outside adversary (one who has not issued
the RevealMasterKey query) can still mount an attack on A. He simply issues
the ReplacePublicKey query on B and uses the EphemeralKeyReveal query on
both the test session and its matching session. The initial vulnerability of the
protocol to the leakage of ephemeral keys allows the attacker to compute K. He
can compute A’s version of x 4z g P by using his knowledge of the replaced public
key. Specifically, suppose he chooses to replace B’s public key with (25 P, 2’5 sP)
for some z'; €r Z;. Then A will compute zaxpP as xa(zpP) = vz (vaP). Tt
is clear that the adversary will be able to distinguish the session key held by A
from a randomly chosen element of the keyspace.

5.3 Mandt and Tan (MT) Protocol

The MT protocol [TO/IT] was designed to satisfy all the security properties of the
Al-Riyami and Paterson protocol, as well as the additional property of resistance
to leakage of ephemeral keys. Mandt and Tan argue heuristically that the MT
protocol has this property, as well as known session key security, weak forward
secrecy, and resistance to key compromise impersonation, unknown key share,
and key control attacks. We now show that resistance to leakage of ephemeral

66 C. Swanson and D. Jao

information does not hold, and that the protocol actually admits both a key
compromise impersonation and a known ephemeral key attack. The KCI attack
mentioned below was also independently discovered by Xia et al. [19].

Mandt and Tan provide two variations of the basic protocol given above, one
in which the protocol participants use separate KGCs and one which provides
key confirmation. The former is almost identical to the basic protocol, with the
substitution of the different master keys where appropriate. The latter uses a
MAC keyed under a value related to that of the session key, i.e., derived using a
different key derivation function on the same inputs. Both versions are vulnerable
to the attacks outlined below. We have included only the basic version of the
protocol as described in [I0] to improve readability.

We first show the protocol is vulnerable to a key compromise impersonation
attack from an outside attacker. In fact, it suffices for the adversary Eve (E) to
know a user’s secret value x;; she does not need the partial private key provided
by the KGC. As the flows in the protocol are symmetric, it does not matter
whether the adversary attempts to impersonate the initiator or responder of the
protocol run. Formally, we describe this attack sequence on a session held by
Alice as RevealSecretValue(A) and ReplacePublicKey(B) where no matching ses-
sion exists, i.e., the adversary uses the Send query to send messages purportedly
from B to A.

Assume Eve has access to 4. She impersonates Bob to Alice by selecting
B,b € Z; and sending Pj = —Pxgc + BP for B’s public key and Tp = bP as
usual. Since Pj € G*, Alice computes

K = e(Qp, Pkac + Pp)*e(Xa,Tp)

e(QB, Pxac — Pxac + BP)"e((s +24)Qa,bP)
e(Qp,BP)"e(bQa,(s+xa)P)
e(BQp,aP)e(bQa, Pkac + Pa).

We denote by K4 the value of K computed by Alice above; that is, Alice
thinks K4 is the correct value of K. Alice then derives the session key from
kdf (K allaTs||zAPB).

As Eve chooses both (8 and b, she can compute K4 and a1 = bT4. Note
that we have not needed knowledge of x4 up to this point. The only reason we
need x4 is to compute x4 Pp to input into the kdf, so this term is the only
preventative measure against a man-in-the-middle attack similar to the KCI
attack above. We see no clever substitution for Pg which allows for both the
calculation of e(@p, Pxcc + Pp)® and 24 Pp, however. The heuristic argument
against KCI attacks given in [I0] fails to consider the scenario where the public
key for B is replaced. The subsequent paper by Mandt and Tan [I1I] recog-
nizes the possibility of replacing public keys, but still fails to identify the above
attack.

Mandt and Tan also claim the protocol has the property of resistance to
leakage of ephemeral keys. However, it is an easy matter to mount an outsider
man-in-the-middle attack if given a and b. Suppose Eve substitutes P} = aP for
Py and Py = BP for Pp in the protocol run, where «, 3 €r Z;. From above we

Two-Party Certificateless Authenticated Key-Agreement Protocols 67

have that A and B will compute K4 = e(Qp, Pxac + P5)*e(Qa, Pxac + Py)?
and Kp = e(Qp, Pkac + Pp)*e(Qa, Pxac + Pj)?, respectively, so Eve will have
no problem calculating K 4 and Kp if she knows a and b.

Moreover, we have x4 P, = 43P = (P4, so Eve will establish the session key
kdf(K a|laTB||xaPf) = kdf (K 4]|abP||3P4) with A. Similarly she will establish
kdf (K p||abP||aPp) as the session key with B. Thus the protocol fails to have
resistance to leakage of ephemeral keys against outside attackers. If, on the other
hand, the attacker is passive or cannot replace public keys, the protocol remains
secure. The variants of the protocol are similarly vulnerable. Note that this is
essentially the same attack mentioned in Section on the improved version of
the Al-Riyami Paterson KAP.

Interestingly, the MT protocol is almost identical to the protocol of Wang and
Cao [I7]. The main difference between the two protocols is that in the latter, the
private keys are bound to the public keys, so the attacks presented above are not
possible in an ideal protocol specification of Wang and Cao’s protocol, whereas
the MT protocol allows adversaries to easily replace public keys. We achieve the
same scheme if we apply the binding technique of Al-Riyami and Paterson [1]
to Mandt’s protocol, although for cheating to be evident, we must require the
partial private keys (or users’ certificates) to be public.

5.4 Wang et al. (WCW) Protocol

Wang et al. [I§] claim the WCW protocol is secure against both man-in-the-
middle attacks mounted by the KGC and KCI attacks. Since all certificateless
key agreement protocols are vulnerable to a KGC man-in-the-middle attack (if
the KGC can replace public keys), the first claim is certainly false. We show the
second claim to be false by presenting a KCI-attack below; this attack was also
independently discovered by Meng and Futai [I3]. We mention that Wang et al.
also claim their protocol has known-key security, weak partial and KGC forward
secrecy, unknown key-share resistance, and key control.

We observe that use of the static shared secret K prevents the formal attack
outlined in Section B2, where knowledge of the matching sessions’ ephemeral
keys and one public key replacement allows a successful attack. This static
shared secret implies a successful attacker must have access to at least one of
the participating party’s partial private keys. However, the protocol does not
guard against an adversary who, for a test session s with owner A and matching
session s*, issues the queries RevealPartialPrivateKey(A), EphemeralKeyReveal(s),
and EphemeralKeyReveal(s*). The adversary will be able to compute the session
key kdf(ID4,IDp, K, axp P, bx s P).

We mount an outsider KCI attack as follows. As with the KCI attack on
the Mandt protocol, we can express this attack using the formal terminology of
Sectiondl The adversary chooses a test session owned by B and takes advantage
of the queries Send, RevealPartialPrivateKey(B) and ReplacePublicKey(A). The
(informal) details follow.

We assume that Eve is attempting to impersonate Alice to Bob, where Alice
is the initiator and Bob is the responder. For such an attack, we would generally

68 C. Swanson and D. Jao

assume our attacker Eve has access to all of B’s private key, that is, both zp
and Sg. Here we show that it is sufficient for Eve to have Sp.

Eve proceeds by sending T4 = aP as usual (for her own choice of a €g Z).
She completes the attack by replacing A’s public key entry with P} = aP for
some o € ZZ.

Note that Eve can easily compute K = e(Sp,Q4), as she has access to Sg.
Recall that B will use xpT'a and bP} in his computation of the secret key. Since
zpTa = aPp and bP} = baP = o', Eve can compute these as well, because a
and « were chosen by her, the term Pg is public, and B sends T to A during
the protocol run. Thus Eve can compute Kp = kdf(ID4,IDg, K, z5T4,bP}),
as desired. It is worth stressing that Eve cannot succeed without knowledge of
Sp, as without it she cannot compute K.

5.5 Shao Protocol

The Shao [I4] protocol purportedly provides weak forward secrecy, known-key
security, and resilience to a “masquerade attack,” which refers to KCI attacks
where not all of the user’s private key is compromised. We show that the latter
claim is false by providing a KCI attack that only requires the adversary to have
access to part of the user’s private key. Although Shao claims his protocol is self-
certified, the scheme is much closer to a certificateless protocol than Girault’s [5]
notion of a self-certified key agreement protocol. In contrast to Girault’s model,
the KGC has partial key escrow (in that it computes the partial private keys)
and requires a secure channel between itself and the users. Also, users cannot be
sure that they have the correct public key of another party, so the adversarial
model is equivalent to that of certificateless schemes.

Moreover, although at first glance it seems that Shao’s protocol has applied
the binding technique of Al-Riyami and Paterson mentioned in Section 2], given
his definition of Q; for user 4, this is not quite the case. The protocol relies in
an essential way on the secrecy of the partial private keys; if we make these keys
public, the scheme reduces to the basic Diffie-Hellman KAP (with a single extra
term H'(e(Sa,®@p)) that anyone can compute).

We observe that this protocol, like that of Section 4] does not hold up to
the following formal attack. Letting s denote the test session with owner A and
matching session s*, suppose the adversary issues the RevealPartialPrivateKey(A),
EphemeralKeyReveal(s), and EphemeralKeyReveal(s*) queries. The adversary
will be able to compute H'(e(Sa,Qp))abP, and hence the session key
as well.

Let us now consider Shao’s claim that the protocol is secure provided not all
of the user’s private key (z;,.5;) is compromised. We show the protocol is in fact
vulnerable in the scenario where S; is known, but z; and s remain secure.

We launch an outsider key compromise impersonation attack on Alice with
the knowledge of S4, but not x4, as follows. Since knowing S4 = sQa =
sH'(ID 4,z 4 P) is not the same as knowing s, replacing public keys is permissible
in this scenario. As the protocol messages are symmetric, there is a correspond-
ing attack on Bob, and thus it does not matter whether or not the attacker

Two-Party Certificateless Authenticated Key-Agreement Protocols 69

initiates the protocol run. The formal queries needed for this attack are similar
to the KCI attack outlined in Section [5.4] so we do not mention them here.
Our attacker Eve replaces Bob’s public key with Pg = P for 8 €r Z;
of her choosing. She then follows the protocol and sends IDg and Tp = bPa
for some b €g Z;. Alice will then compute Qp as @p = h/(IDg, Py), and
H'(e(Sa,Qp))ax," (mod g).
Alice calculates the session secret as

K =H'(e(Sa,Qp))ar, bPs
= H'(e(Sa,Qp))baz 'z s P
= H'(e(Sa,Qp))baP.

We see that Eve can compute H'(e(S4,@g))b, as she possesses Sy and chooses
b herself. Moreover, since A sends T4 = afP in the first round (and Eve knows
(), Eve can compute aP and thus K

5.6 Shi Li (SL) Protocol

In the SL protocol [I5], the session key is derived directly from P4 P&, so this
protocol certainly does not have resistance to leakage of ephemeral keys. The
authors claim that this protocol provides implicit key authentication, known
session key security, weak partial forward secrecy, key compromise imperson-
ation resistance, and unknown key share resistance. We show the protocol fails
to provide implicit key authentication by demonstrating a man-in-the-middle
attack by an outside attacker.

Our attacker Eve intercepts Alice’s (T4, P4) and instead sends (T, P}) to
Bob. Here T3 = a*(H(IDp)P + Pxcc) and Py = e(a(H(ID4)P+ Pkace), P) for
a*,a €g Zy of Eve’s choosing.

Similarly Eve replaces Bob’s message (I's, Pp) with (T, Pj), where T}, =
b*(H(IDA)P + Pkce) and Pp = e(B(H(ID4)P + Pxce), P) for b*, 8 €r Z;, of
her choosing.

Notice that P} € Gr, so Bob will compute

Kp = e(Th, Xp)(P3)’

% xr
=e (a (H(IDB)P + Pkcc), H(IDE) iy

=e(a*P,zpP)e(b(H(ID4)P 4+ Pxgc), aP)
= P& e(Tg,aP).

P) e(a(H(ID4)P + Pgce), P)°

As Eve chooses both a* and «, she can compute K g. Similarly, Eve will be able to
compute Alice’s key K4 = Pffe(TA7 BP). We have therefore shown the protocol
to be insecure. The corresponding formal attack on the protocol is modeled by
picking a test session with owner A and using the ReplacePublicKey(B) and Send
queries to alter the messages sent by B to A. As shown above, the adversary will
be able to compute the session key. Interestingly, this attack fails if we transform

70 C. Swanson and D. Jao

this protocol into a certificate-based protocol, whereby the public keys of users
are bound to the corresponding partial private keys and the latter are used as
public certificates.

6 Conclusion

Our work demonstrates that all existing CL-KAPs are insecure to some extent
in the sense of the security model of Section @l In our opinion, this model is a
natural one, and our findings provide motivation for developing new CL-KAPs
meeting this security definition. We remark that, since the initial version of this
work [16], new protocols have appeared [I3l9] which were designed to address
some of the shortcomings of the earlier protocols.

The existence of practical CL-KAPs remains an interesting open question,
given that these schemes are designed to avoid both the key escrow problem and
the high management costs of certificate distribution, storage, verification, and
revocation present in public key infrastructures. These protocols also have the
added advantage of flexibility—the user can generate his public key before or af-
ter receiving his partial private key. Consequently, while applying Al-Riyami and
Paterson’s binding technique fixes some of the security vulnerabilities mentioned
in Section [l doing so limits the advantages gained by using a certificateless
scheme in the first place.

Although Lippold et al. [9] have settled the question of whether a CL-KAP
exists that is secure in the extended eCK model given in Sectionfl (as well as their
strengthened version of this model), the question of whether a computationally
practical scheme exists remains. Lippold et al.’s scheme, which is secure given
the bilinear and computational Diffie-Hellman assumptions, requires 10 pairing
computations per party; even the version relying on the gap bilinear Diffie-
Hellman assumption is expensive, requiring 5 pairing computations per party.
In addition, the security of their scheme is proven using the random oracle model,
so it remains an open question to devise a scheme secure in the standard model.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452-473. Springer, Heidelberg
(2003)

2. Al-Riyami, S.S., Paterson, K.G.: CBE from CLE-PKE: A generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398—415.
Springer, Heidelberg (2005)

3. Boyen, X.: The uber-assumption family — a unified complexity framework for
bilinear groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 39-56. Springer, Heidelberg (2008)

4. Dent, A.W.: A survey of certificateless encryption schemes and security models.
Int. J. Inf. Secur. 7(5), 349-377 (2008)

5. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490-497. Springer, Heidelberg (1991)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Two-Party Certificateless Authenticated Key-Agreement Protocols 71

. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:

Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Hei-
delberg (2005)

. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key

exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a

prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249-263. Springer, Heidelberg (1997)

. Lippold, G., Boyd, C., Nieto, J.G.: Strongly secure certificateless key agreement. In:

Shacham, H. (ed.) Pairing 2009. LNCS, vol. 5671, pp. 206-230. Springer, Heidelberg
(2009)

Mandt, T.K.: Certificateless authenticated two-party key agreement protocols.
Master’s thesis, Gjgvik University College, Department of Computer Science and
Media Technology (2006)

Mandt, T.K., Tan, C.H.: Certificateless authenticated two-party key agreement
protocols. In: Okada, M., Satoh, I. (eds.) ASTAN 2006. LNCS, vol. 4435, pp. 37—
44. Springer, Heidelberg (2008)

Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800-56A standard. In: ASTACCS 2008: Proceedings of the 2008
ACM symposium on Information, computer and communications security, pp. 261—
270. ACM, New York (2008)

Meng, G., Futai, Z.: Key-compromise impersonation attacks on some certificateless
key agreement protocols and two improved protocols. In: International Workshop
on Education Technology and Computer Science, vol. 2, pp. 62-66 (2009)

Shao, Z.-h.: Efficient authenticated key agreement protocol using self-certified pub-
lic keys from pairings. Wuhan University Journal of Natural Sciences 10(1), 267-270
(2005)

Shi, Y., Li, J.: Two-party authenticated key agreement in certificateless public key
cryptography. Wuhan University Journal of Natural Sciences 12(1), 71-74 (2007)
Swanson, C.M.: Security in key agreement: Two-party certificateless schemes. Mas-
ter’s thesis, University of Waterloo, Department of Combinatorics and Optimiza-
tion (2008)

Wang, S., Cao, Z.: Escrow-free certificate-based authenticated key agreement pro-
tocol from pairings. Wuhan University Journal of Natural Sciences 12(1), 63-66
(2007)

Wang, S., Cao, Z., Wang, L.: Efficient certificateless authenticated key agreement
protocol from pairings. Wuhan University Journal of Natural Sciences 11(5), 1278
1282 (2006)

Xia, L., Wang, S., Shen, J., Xu, G.: Breaking and repairing the certificateless key
agreement protocol from ASIAN 2006. In: Okada, M., Satoh, I. (eds.) ASTAN 2006.
LNCS, vol. 4435, pp. 562-566. Springer, Heidelberg (2008)

	A Study of Two-Party Certificateless Authenticated Key-Agreement Protocols
	Introduction
	Background
	Bilinear Pairings

	Security Attributes
	Security Model
	Attacks
	Protocol Summaries
	Al-Riyami and Paterson (AP) Protocol
	Mandt and Tan (MT) Protocol
	Wang et al. (WCW) Protocol
	Shao Protocol
	Shi Li (SL) Protocol

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

