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Message from the General Chair

Starting with organizing the first International Conference on Cryptology in
India (INDOCRYPT) in 2000, Cryptology Research Society of India (CRSI)
has been spearheading these conferences in India every year in December at
different places within the country. This year, the tenth conference in this se-
ries - INDOCRYPT 2009 was held in Delhi. The event was organized jointly by
Scientific Analysis Group (SAG), Defense Research and Development Organiza-
tion (DRDO) and Delhi University (DU) under the aegis of CRSI.

As is apparent, INDOCRYPT has been emerging as a powerful forum for
researchers to interact, share their thoughts and their work with others for the
overall growth of cryptology research in the world, more specifically in India. The
overwhelming response in quality submissions to the conference and transparent
open review mechanism helped in keeping the standards high and also in inducing
researchers to participate in the conference and take up serious interest in the
subject and R&D in this area. The response from within the country as well as
from abroad was overwhelming, even from those participants who did not have
contributory papers.

The complete INDOCRYPT 2009 event spanned over four days from 13 to
16 December 2009. The very first day was totally dedicated to two tutorials,
whereas the main conference was held on the remaining three days with three
invited talks and presentation of 20 papers. The tutorials were delivered by
two eminent speakers—Willi Meier and Nicolas Sendrier provided insight of the
subject to young researchers and also stimulated the thinking of others. The
three invited talks were delivered by Dan Bernstein, Marc Girault and Thomas
Johansson. I am thankful to all these speakers.

A conference of this kind would not have been possible to organize without full
support from different people across different committees. While all logistic and
general organizational aspects were looked after by the Organizing Committee
teams, the coordination and selection of technical papers required dedicated and
time-bound efforts by the Program Chairs. I am thankful to Nicolas Sendrier and
Bimal Roy for their efforts in bringing out such an excellent technical program
for the participants.

I am indebted to my fellow Organizing Chairs, Neelima Gupta (DU) and
S.S. Bedi (SAG), and all other members of the organizing team from SAG and
DU, who worked hard in making all the arrangements. Special thanks are due to
the Organizing Secretary, S.K. Pal, for working tirelessly, shoulder to shoulder
with volunteers and other team members from SAG and DU to make the stay
of participants comfortable and the event enjoyable.

I express my heartfelt thanks to DRDO and DU for supporting us in all
possible manners and also to MCIT (DIT), MSRI, BEL and ITI for sponsoring
the event.



VI Message from the General Chair

Last but not the least, I extend my sincere thanks to all those who contributed
to INDOCRYPT 2009 and especially to the lucky ones who are now “authors”
in this prestigious LNCS series of conference proceedings.

December 2009 P.K. Saxena



Message from the Technical Program Chairs

We are glad to present the proceedings of the 10th International Conference on
Cryptology, INDOCRYPT 2009. This annual event started off nine years ago in
the year 2000 by the Cryptology Research Society of India and has gradually
matured into one of the topmost international cryptology conferences. This year
we received 104 proposals of contributed talks from all over the world. After
a rigorous review process, the Program Committee selected 28 papers out of
those submissions. Each paper was thoroughly examined by several independent
experts from the Program Committee or from the scientific community. The
papers along with the reviews were then scrutinized by the Program Committee
members during a discussion phase. We would like to thank the authors of all
the papers for submitting their quality research work to the conference. Special
thanks go to the Program Committee members and to the external reviewers for
the time and energy they spent throughout the selection process so as to offer a
conference and a volume of high scientific quality.

In addition to the contributed talks, we were fortunate to hear several keynote
speakers who presented two very instructive tutorials:

Willi Meier Analysis of Certain Stream Ciphers and Hash Functions
Nicolas Sendrier The Design of Code-Based Cryptosystems

There were also three insightful survey talks:

Daniel J. Bernstein High-speed Cryptography
Marc Girault Cryptology and Elliptic Curves: A 25-Year Love (?) Story
Thomas Johansson Coding Theory as a Tool in Cryptology

Finally, let us say that we are greatly indebted to Matthieu Finasz for setting
up and running the submission and review server and for his help in the handling
of the camera-ready versions of the published papers. We wish you a pleasant
reading.

December 2009 Bimal K. Roy
Nicolas Sendrier



Organization

General Chair

P.K. Saxena SAG, Delhi, India

Program Chairs

Bimal Roy ISI Kolkata, India
Nicolas Sendrier INRIA, France

Organizing Chairs

Neelima Gupta Delhi University, India
S.S. Bedi SAG, Delhi, India

Organizing Secretary

Saibal K. Pal SAG, Delhi, India

Organizing Committee

S.K. Muttoo Delhi University, India
Meena Kumari SAG, Delhi, India
Shrikant JCB, Delhi, India
Naveen Kumar Delhi University, India
N. Rajesh Pillai SAG, Delhi, India
Sarvjeet Kaur SAG, Delhi, India
Rajeev Thaman SAG, Delhi, India
P.D. Sharma Delhi University, India
S.K. Azad Delhi University, India
Noopur Shrotriya SAG, Delhi, India
Sanchit Gupta SAG, Delhi, India
Sandhya Khurana Delhi University, India
Rahul Johari Delhi University, India
Ajay Shrivastava SAG, Delhi, India



X Organization

Program Committee
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Secure Parameters for SWIFFT

Johannes Buchmann and Richard Lindner

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany

{buchmann,rlindner}@cdc.informatik.tu-darmstadt.de

Abstract. The SWIFFT compression functions, proposed by Lyuba-
shevsky et al. at FSE 2008, are very efficient instantiations of general-
ized compact knapsacks for a specific set of parameters. They have the
property that, asymptotically, finding collisions for a randomly chosen
compression function implies being able to solve computationally hard
ideal lattice problems in the worst-case.

We present three results. First, we present new average-case problems,
which may be used for all lattice schemes whose security is proven with
the worst-case to average-case reduction in either general or ideal lattices.
The new average-case problems require less description bits, resulting in
improved keysize and speed for these schemes. Second, we propose a pa-
rameter generation algorithm for SWIFFT where the main parameter n
can be any integer in the image of Euler’s totient function, and not nec-
essarily a power of 2 as before. Third, we give experimental evidence that
finding pseudo-collisions1 for SWIFFT is as hard as breaking a 68-bit
symmetric cipher according to the well-known heuristic by Lenstra and
Verheul. We also recommend conservative parameters corresponding to
a 127-bit symmetric cipher.

Keywords: post-quantum cryptography, hash functions, lattices.

1 Introduction

Collision-resistant hash functions play a key role in the IT world. They are an
important part of digital signatures as well as authentication protocols.

Despite their fundamental importance, several established hash designs have
turned out to be insecure, for example MD5 and SHA-1 [24,6]. To avoid this
lack of security in a central place for the future, we need efficient hash functions
with strong security guarantees.

One such hash function with an intriguing design is SWIFFTX [2]. In contrast
to all other practical hash functions, including all SHA-3 candidates, it remains
the only hash function, where the most prominent security property, namely
collision-resistance relies solely on the hardness of a well studied mathematical
problem. This guarantee on the collision-resistance of SWIFFTX is a feature

1 These pseudo-collisions were named by the SWIFFT authors and are not related to
the usual pseudo-collisions as defined in e.g. the Handbook of Applied Cryptography.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J. Buchmann and R. Lindner

derived directly from SWIFFT [17], the internal compression function, which
has the same guarantee.

SWIFFTX was part of a hash design competition by the National Institute
for Standards and Technology (NIST). It did not survive the competition, and
we suspect this is due to inefficiency, with the main bottleneck being SWIFFT.

Our paper has three contributions. First, we show that SWIFFT is even less
efficient than asserted by the authors, because their security analysis against
lattice-based attacks is too optimistic. We will show that sublattice attacks are
possible and analyze the implications on practical parameters.

Second, we present a variant of SWIFFT that is more efficient, since its
collision-resistance can be reduced from a new average-case problem which re-
quires less description bits, but can still be used to solve the same worst-case
problems that were used before. This improvement to space and time require-
ments applies universally to all lattice-schemes based on worst-case problems via
Ajtai’s reduction (e.g. [10,9,17,16,25]).

Third, we present the smallest parameter set for SWIFFT which gives 100-bit
symmetric security according to the heuristic by Lenstra and Verheul [14], it
does in fact give 127-bit.

The paper is organized as follows. Section 2 deals with basics about lattices.
Section 3 introduces the new average-case problems and reductions from SIS.
Section 4 describes the SWIFFT compression function family. Section 5 presents
the parameter generation algorithm and Section 6 discusses SWIFFT’s security.

2 Preliminaries

A lattice Λ is a discrete, additive subgroup of Rn. It can always be described as
Λ = {

∑d
i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd ∈ Rn are linearly independent. The

matrix B = [b1, . . . ,bd] is a basis of Λ and we write Λ = Λ(B). The number of
vectors in the basis is the dimension of the lattice.

For each basis B there is a decomposition B = B∗ μ, where B∗ is orthogonal
and μ is upper triangular. The decomposition is uniquely defined by these rules

μj,i = 〈bi,b∗
j 〉/‖b∗

j‖2, bi = μ1,ib∗
1 + · · ·+ μi−1,ib∗

i−1 + b∗
i , 1 ≤ j ≤ i ≤ n.

It can be computed efficiently with the Gram-Schmidt process and B∗ is the
Gram-Schmidt Orthogonalization (GSO) of B.

Conforming with notations in previous works, we will write vectors and ma-
trices in boldface. Special tuples of vectors will be denoted with a hat (for an
example see Section 4). The residue class ring Z/〈q〉 is denoted Zq.

3 Two Average-Case Problems

In this section we present a new average-case problem SIS’. We show that the
average-case small integer solution problem (SIS) reduces to SIS’. So, SIS’ can be
used, for example, to solve worst-case problems that reduce to SIS without any
loss in the parameters. The advantage is that SIS’ requires n2 log(q) less random
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bits. A similar construction is possible for the average-case problem LWE and
has indeed been suggested (without naming it or proving reductions) by Regev
and Micciancio in [18].

All cryptographic schemes, whose security relies on SIS, can switch to SIS’
resulting in a scheme with smaller keys, which is also slightly faster (due to the
structure of SIS’). This includes all systems based on worst-case lattice problems
via Ajtai’s reduction [1] or the adaptions thereof (e.g. [10,9]).

We will also show that the same idea can be adapted to the IdealSIS problem,
which is SIS restricted to the class of ideal lattices. The number of description
bits we save in this case is n log(q). So, all schemes based on worst-case prob-
lems in ideal lattices via the reduction of Lyubashevsky and Micciancio [16] can
benefit from using IdealSIS’ (e.g. [17,16,25,23]). How these improvements apply
to SWIFFT may be seen in Section 4.1.

The technical difference is that SIS chooses a somewhat random basis for a
random lattice, whereas SIS’ chooses only a random lattice and takes the basis
in Hermite normal form. This is analogous to using the standard form for linear
codes in coding theory.

Definition 1 (SIS). Given integers n, m, q, a matrix A ∈ Zn×m
q , and a real β,

the small integer solution problem (in the �r norm) is to find a nonzero vector
z ∈ Zm \ {0} such that

z ∈ Λ⊥
q (A) = {z ∈ Zm | Az = 0 (mod q)} and ‖z‖r ≤ β.

We will now define two probability ensembles over SIS instances and show that
these are essentially equivalent.

Definition 2. For any functions q(n), m(n), β(n) let

SISq(n),m(n),β(n) = {(q(n), U(Zn×m(n)
q(n) ), β(n))}n

be the probability ensemble over SIS instances (q(n),A, β(n)), where A is chosen
uniformly at random from all n×m(n) integer matrices modulo q(n). Alterna-
tively let

SIS′
q(n),m(n),β(n) = {(q(n), [ In, U(Zn×(m(n)−n)

q(n) )], β(n))}n

be the probability ensemble over SIS instances (q(n),A, β(n)), where A is an
n-dimensional identity matrix concatenated with a matrix chosen uniformly at
random from all n× (m(n)− n) integer matrices modulo q(n).

Theorem 1. Let n, q(n) ≥ 2, m(n) ≥ (1+ε)n be positive integers, and β(n) > 0
be a positive real, then SISq,m,β reduces to SIS′

q,m,β. Here, ε > 0 is some real
number independent of n.

The proof is given in Appendix A.
In the remainder of the section we will adept Theorem 1 to the case of ideal

lattices. Throughout this part, let ζn be a sequence of algebraic integers, such
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that the ring Rn = Z[ζn] is a Z-module of rank n, i.e. Rn
∼= Zn as an addi-

tive group. Since Rn = [1, ζn, . . . , ζn−1
n ] Zn, we can use any �r norm on ring

elements, by transforming them to integral coefficient vectors of this power ba-
sis. In order to apply �r norms on tuples of ring elements, we take the norm
of the vector consisting of the norms of each element, so for ẑ ∈ Rm

n we have
‖ẑ‖r = ‖(‖z1‖r , . . . , ‖zm‖r)‖r. We use the shorthand Rn,q = Rn/〈q〉 = Zq[ζn].

Definition 3 (IdealSIS). Given integers n, m, q, a tuple â = [a1, . . . , am] ∈
Rm

n,q, and a real β, the ideal shortest vector problem (in the �r norm) is to find
a nonzero vector ẑ = [z1, . . . , zm] ∈ Rm

n \ {0}, such that

ẑ ∈ Λ⊥
q (â) = {ẑ ∈ Rm

n |
m∑

i=1

aizi = 0 (mod q)} and ‖ẑ‖r ≤ β.

Analogous to the case of general lattices, we have two probability ensembles.

Definition 4. For any functions q(n), m(n), β(n) let

IdealSISq(n),m(n),β(n) = {(q(n), U(Rm(n)
n,q(n)), β(n))}n

be the probability ensemble over IdealSIS instances (q(n), â, β(n)), where â is
chosen uniformly at random from all m(n) tuples of ring elements modulo q(n).
Alternatively let

IdealSIS′
q(n),m(n),β(n) = {(q(n), [1, U(Rm(n)−1

n,q(n) )], β(n))}n

be the probability ensemble over IdealSIS instances (q(n), â, β(n)), where â is a
1 concatenated with a tuple chosen uniformly at random from all (m(n) − 1)
tuples of ring elements modulo q(n).

Theorem 2. Let n, m(n) ∈ Ω(log(n)) be positive integers, q(n) ∈ ω(n) be
prime, and β(n) > 0 be real, then IdealSISq,m,β reduces to IdealSIS′

q,m,β.

The proof is similar to the one before and can be found in Appendix B.

4 SWIFFT Compression Functions

The SWIFFT compression function family was proposed by Lyubashevsky et
al. at FSE 2008 [17]. They showed that for one set of parameters, its efficiency
is comparable to SHA-2, while its collision resistance is asymptotically based on
worst-case computational problems in ideal lattices.

Specifically, for a set of integer parameters (n, m, p), in their case (64, 16, 257),
they use the polynomial f(x) = xn+1, the ring Rp,n = Zp[x]/〈f〉, and the subset
Dn = {0, 1}[x]/〈f〉 to define the family

Hn,m,p =

{
hâ : Dm

n 	 x̂ 
−→
m∑

i=1

aixi (mod p)
∣∣∣∣ (a1, . . . , am) = â ∈ Rm

p,n

}
.
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These functions can be computed efficiently. Let ω0, . . . , ωn−1 be the roots of f
in Zp in any order, and V be the Vandermonde matrix generated by them

V =

⎛
⎜⎝

1 ω0 . . . ωn−1
0

...
...

...
1 ωn−1 . . . ωn−1

n−1

⎞
⎟⎠ .

Applying the Fast Fourier Transform over Zp to SWIFFT we get

z ≡
m−1∑
i=0

aixi mod f ≡ V−1

(
m−1∑
i=0

Vai Vxi

)
(mod p), (1)

where  is the pointwise multiplication in Zn
p . Since V is invertible, we may use

z′ = Vz as hash, instead of z. Since the compression function key â is fixed,
we may precompute a′

i = Vai for all i. So evaluating the compression function
amounts to computing all n components of z′ with

z′j =
m−1∑
i=0

a′
i,j x′

i,j mod p, x′
i,j =

n−1∑
l=0

ωl
j xi,l mod p.

Due to the form of f we can set ωj ← ω2j+1 for any element ω of order 2n in Zp.
We insert the parameters and split up the indices j = j0 + 8j1 and l = l0 + 8l1.

x′
i,j0+8j1 =

7∑
l0=0

7∑
l1=0

ω(l0+8l1)(2(j0+8j1)+1) xi,l0+8l1 mod p

=
7∑

l0=0

ω16l0j1 · ωl0(2j0+1)︸ ︷︷ ︸
ml0,j0

·
7∑

l1=0

ω8l1(2j0+1) xi,l0+8l1

︸ ︷︷ ︸
tl0,j0

modp (2)

The quantities tl0,j0 for all 28 possible xi,l0+8l1 and ml0,j0 can be precomputed.
The SWIFFT authors recommend using ω = 42, because then ω16 mod p = 4,
so some multiplications in the last expression can be realized with bit-shifts. A
single x′

i, i.e. the last expression for all j, can then be evaluated with a total
of 64 multiplications, 8 · 24 additions/subtractions using an FFT network. The
total number of operations (ignoring index-calculations and modular reduction)
for the standard SWIFFT parameters is

16 · 64︸ ︷︷ ︸
computing x′

i,j

+ 16 · 64︸ ︷︷ ︸
all a′

i,j · x′
i,j

= 2048 multiplications

16 · 8 · 24︸ ︷︷ ︸
computing x′

i,j

+ 16 · 64− 1︸ ︷︷ ︸
summing a′

i,j · x′
i,j

= 4095 additions/subtractions

Lyubashevsky and Micciancio showed in [15] that asymptotically these compres-
sion functions are collision resistant, as long as standard lattice problems in
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lattices corresponding to ideals of Z[x]/〈f〉 are hard in the worst-case. The ar-
guments given later by Peikert and Rosen in [19] can also be adapted to prove
collision resistance of SWIFFT with a tighter connection to the same worst-case
problem.

4.1 More Parameters

Let k > 0 be some integer, p be prime and n = ϕ(k), where ϕ is Euler’s totient
function. Furthermore, let f be the kth cyclotomic polynomial, which is monic,
irreducible over the integers, and has degree equal to n. Using the same structures
as above, i.e. the ring Rp,n = Zp[x]/〈f〉, and subset Dn = {0, 1}[x]/〈f〉 with this
new f , we can construct the same compression function family as above and
the asymptotic security argument given in [19,15] still holds. In order to apply
FFT as before, we need to ensure that elements of order k exist in Zp. This is
guaranteed whenever k | (p− 1).

Optimizations similar to the ones available for SWIFFT in this more gen-
eral setting are still an area of investigation. We show how this can be done
specifically for the parameters we recommend in Section 5.1.

For arbitrary parameters, we found that using additions in a logarithmic table
instead of multiplications in Zp is comparable in speed to the normal multipli-
cation and special bit shifting reduction modulo 257 used in SWIFFT.

Another very general optimization follows from the observations given in Sec-
tion 3. Using functions from the set

H′
n,m,p =

{
hâ : Dm

n � x̂ �−→ x1 +
m−1∑
i=1

aixi+1 (mod p)
∣∣∣∣ (a1, . . . , am−1) = â ∈ Rm−1

p,n

}
.

results in a slightly more efficient scheme, which uses less memory. Recall that
all entries in â′ can be precomputed in practice and having one of them equal 1
saves some multiplications during evaluation depending on the implementation.
In Equation (1), if we would computed z instead of z′ the speed-up is 1/m.
For m = 16 this is ≈ 6% and it may be further increased with the sliding
window method used for NTRU [3]. However, at the moment it is more efficient
to compute z′. In this case we save n multiplications, which is about 1% of all
operations for standard SWIFFT parameters.

We believe that optimizations are easiest to find in the cases where k is prime
or a power of two. Focusing on these two special cases, we can already see
much more variety in the choice of parameters. See Table 1 for comparison of
parameters where n is between 64 and 128.

4.2 SWIFFT Lattice

Let â ∈ Rp,n. Consider the function hâ ∈ Hn,m,p and extended the domain to
Rn = Z[x]/〈f〉. The coefficient vectors of periods of this function form the set

Λ⊥
p (â) =

{
(x1, . . . , xnm) ∈ Znm

∣∣∣∣ hâ

(
n−1∑
i=0

xi+1x
i, . . . ,

n−1∑
i=0

xm(i+1)x
i

)
= 0

}
.
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This is a lattice of dimension nm, since the extended hâ is Rn-linear. A basis for
this lattice can be found efficiently using a method described by Buchmann et
al. [4]. Collisions in the original (unextended) function hâ correspond exactly to
vectors in this lattice with �∞-norm bounded by 1. Therefore we refer to these
lattices as SWIFFT lattices.

A pseudo-collision is a vector in this lattice with Euclidean norm less than√
nm, i.e. all vectors in the smallest ball containing all collisions. So every colli-

sion is a pseudo-collision, but not vice versa.

5 Parameter Generation

We now describe an algorithm for generating parameter sets (n, m, p) for the
SWIFFT compression function families in Section 4. For the polynomial f we will
use the kth cyclotomic polynomial, such that n = ϕ(k). If multiple polynomials
are possible, we choose the one, where the resulting bitlength of the output is
shorter, i.e. the one with smaller p. For example, if n + 1 is prime, we will use
the polynomial f(x) = xn + xn−1 + · · · + 1, and if n is a power of two, we will
use the polynomial f(x) = xn + 1.

Input: Integer n, s.t. n = ϕ(k), k > 0
Output: Parameters (n, m, p)

l ← 1
p ← k + 1
while not isPrime(p) do

l ← l + 1
p ← l · k + 1

end
m ← �1.99 · log2(p)�

Algorithm 1. Parameter generation for n = ϕ(k), k > 0.

For each set of parameters, we may additionally compute the output bitlength
out = n(�log2(p)�+1), the compression rate cr = m/ log2(p), the Hermite factor
δ required for finding pseudo-collisions, and the minimal dimension d where we
can expect to find pseudo-collisions. These values are listed in Table 1.

The two latter values δ and d are computed in the following fashion. Consider
the function len(d) = pn/dδd. According to an analysis by Gama and Nguyen
[8]2 this is the Euclidean size of the smallest vector we are likely to find when
reducing a sublattice with dimension d of any SWIFFT lattice Λ⊥

p (â). Micciancio
and Regev observed in [18] that this function takes its minimal value

len(dmin) = δ2
√

n log(p)/ log(δ) for dmin =
√

n log(p)/ log(δ).

2 Their experiments were performed on random lattices following a different distribu-
tion, but experimentally their results apply here as well.
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Table 1. Parameters for 64 ≤ n ≤ 128, k prime or a power of two

k n m p out cr δ d

128 64 16 257 513 1.999 1.0084 206
67 66 17 269 529 2.106 1.0084 211
71 70 19 569 631 2.076 1.0073 248
73 72 17 293 577 2.074 1.0077 231
79 78 17 317 625 2.046 1.0072 251
83 82 15 167 575 2.032 1.0075 237
89 88 15 179 617 2.004 1.0071 255
97 96 18 389 769 2.092 1.0061 308

101 100 19 607 901 2.055 1.0056 340
103 102 19 619 919 2.049 1.0055 348
107 106 19 643 955 2.037 1.0053 361
109 108 21 1091 1081 2.081 1.0049 392
113 112 16 227 785 2.044 1.0058 325
127 126 18 509 1009 2.002 1.0047 408
256 128 16 257 1025 1.999 1.0051 373

A pseudo-collision is a vector in Λ⊥
p (â) with Euclidean norm

√
nm. In order to

find such a vector, we need a δ, s.t. len(dmin) =
√

nm. We say this is the Hermite
factor required for finding pseudo-collisions, and the corresponding dmin is the
minimal dimension, where we can expect to find a pseudo-collision.Note that these
minimal dimensions, which we will work in are about 5 times smaller than the
corresponding dimensions of the SWIFFT lattices. To give an intuition, Gama and
Nguyen state that the best lattice reduction algorithms known today can achieve
a Hermite factor of roughly δ = 1.01 in high dimension within acceptable time.

5.1 Recommended Parameters

We will give arguments in Section 6.2 that parameters with d ≥ 260 correspond
to SWIFFT instances, where finding pseudo-collisions is at least as hard as
breaking a 100-bit symmetric cipher. The smallest such parameters in Table 1
are (n, m, p) = (96, 18, 389). Finding pseudo-collisions for these parameters is
as hard as breaking a 127-bit symmetric cipher. Concerning all other known
attacks, these parameters are more secure than (64, 16, 257).

Note that most of the efficiency improvements we outlined in Section 5 for
the original SWIFFT function can be adapted to this setting. Recall Equation 2,
since k = 97 is prime we can set ωj ← ωj+1 for any element ω of order k in Zp.
We recommend to split up the indices l = l0 +8l1, where 0 ≤ l0 ≤ 7, 0 ≤ l1 ≤ 11,
j similar and use ω = 275, and since multiplying with ω8 = 16 can then be
realized with bit-shifts. Corresponding to Equation 2 we get

x′
i,j0+8j1 =

7∑
l0=0

ω8l0j1 · ωl0(j0+1)︸ ︷︷ ︸
ml0,j0

·
11∑

l1=0

ωl1(8j0+64j1+8) xi,l0+8l1

︸ ︷︷ ︸
tl0,j0,j1

modp.
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Note that the precomputed t part depends on j1 now, and needs to be available
for 212 possible xi,l. So this part will need 12 · 24 = 192 times the space it did
before. Doing the same reasoning as before, the number of operations is:

18 · 64︸ ︷︷ ︸
computing x′

i,j

+ 18 · 96︸ ︷︷ ︸
all a′

i,j · x′
i,j

= 2880 (+40%) multiplications

18 · 12 · 24︸ ︷︷ ︸
computing x′

i,j

+ 18 · 96− 1︸ ︷︷ ︸
summing a′

i,j · x′
i,j

= 6911 (+68%) additions/subtractions.

6 Security Analysis

The collision resistance of SWIFFT has the desirable property of being re-
ducible from a worst-case computational problem. In particular, this means an
algorithm which breaks random instances of SWIFFT compression functions
with main parameter n can also be used to find short nonzero vectors in all
ideals of the ring Z[x]/〈xn + 1〉. Finding such vectors is assumed to be in-
feasible for large n. However, for the current parameter, n = 64, exhaustive
search algorithms find these short vectors in less than one hour. In the lattice
challenge [4] open for all enthusiasts similar problems have been solved3 up to
n = 108. Gama and Nguyen even state that finding the shortest vector in n-
dimensional lattices for n ≤ 70 should be considered easy [8]. So the resulting
lower bound on the attacker’s runtime is insignificant. However, attacking not
the underlying worst-case problem, but a concrete SWIFFT instance is much
harder.

We will analyze the practical security of SWIFFT. As we have seen in Section
4.2, collisions in the SWIFFT compression functions naturally correspond to
vectors with �∞-norm bounded by 1 in certain lattices. These may be recovered
with lattice basis reduction algorithms. Since these algorithms are highly opti-
mized to find small vectors in the Euclidean norm, it is reasonable to analyze the
computational problem of finding pseudo-collisions instead of collisions. These
are vectors in the smallest ball which contains all vectors corresponding to col-
lisions, so an algorithm which minimizes the Euclidean norm cannot distinguish
between the two. In this section, we give experimental evidence that according
to a well-known heuristic by Lenstra and Verheul [14], finding pseudo-collisions
is comparable to breaking a 68-bit symmetric cipher. In comparison, all other
attacks analyzed by the SWIFFT authors take 2106 operations and almost as
much space.

In their original proposal of SWIFFT, Lyubashevsky et al. provide a first
analysis of all standard attacks. When it comes to attacks using lattice reduc-
tion however they state that the dimension 1024 of SWIFFT lattices is too big
for current algorithms. We start by showing that reducing sublattices of dimen-
sion 251, which corresponds to m = 4, is sufficient to find pseudo-collisions and

3 See http://www.latticechallenge.org

http://www.latticechallenge.org
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dimension 325 (m = 5) is sufficient for collisions and beyond this point as Mic-
ciancio and Regev observe in [18] “the problem [SVP] cannot become harder by
increasing m”. This means if we find a pseudo-collision in dimension 251, we can
pad it with zeroes to obtain a pseudo-collision for SWIFFT. In practice, even
dimension d = 205 is sufficient to find pseudo-collisions (cf. Table 1). In partic-
ular this means SWIFFTX, where internally SWIFFT is used with m = 32 is
not more secure.

6.1 Existence of (Pseudo-)Collisions in d-Dimensional Sublattices

The method we have given in Section 5 for choosing the dimension of the sub-
lattice we attack with lattice-basis reduction algorithms is a heuristic, because
it is based on extensive experiments by Gama and Nguyen. We will now give a
related result independent of experiments but dependent on the construction of
SWIFFT lattices and other lattices of the form {v ∈ Zd : Av ≡ 0 (mod p)},
where A is some integral matrix. These lattices are widely used in practice for
constructing provably secure cryptosystems (see e.g. [9,16,20]) and they originate
from Ajtai’s work [1].

Let hâ be a random SWIFFT compression function with parameters (n, m, p).
The range of this function has size |R| = pn. We change the domain of hâ to
all vectors in a d-dimensional subspace of Znm that have Euclidean norm less
than r =

√
nm/2. The size of this space can be very well approximated by the

volume of a d-dimensional ball with radius r, i.e. |D| ≈ rdπd/2/Γ (d/2 + 1).
Now any collision in the modified hâ corresponds to a pseudo-collision of the

corresponding SWIFFT function by the triangle inequality. These collisions exist
for certain by the pigeonhole principle for all d ≥ 251. So the dimension d = 205
suggested by the heuristic looks too optimistic, but remember that this argument
only gives an upper bound on the required d and doesn’t take into account the
randomness in the choice of â.

The situation for proper collisions is similar. Here, we shrink the input to all
vectors in a d-dimensional subspace that have coefficients in {0, 1}. The size of
this input space is |D| = 2d. Again, collisions exist by the pigeonhole principle
for all d ≥ 513.

A different analysis is possible here, which takes into account the randomness
of â and reveals that proper collisions exist for all d ≥ 325 (see Appendix C).

6.2 Experiments

For our experiments we chose the sublattice dimension where lattice basis re-
duction algorithms like LLL/BKZ behave optimal in practice (see Section 5).
We then proceeded to compare the following lattice basis reduction algorithms
to see which performs best in practice on the lattices in our experiment. BKZ as
implemented in version 5.5.1 of the “Number Theory Library”(NTL) by Shoup
[22], Primal-Dual (PD) as implemented by Filipović and Koy, and finally RSR
as implemented by Ludwig. Both latter algorithms are available on request from
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Table 2. Parameters used for our experiments

n m p δ d

64 16 29 1.0140 125
64 16 33 1.0135 130
64 16 37 1.0131 134
64 16 41 1.0127 138
64 16 45 1.0124 141
64 16 49 1.0121 144
64 16 53 1.0119 147
64 16 57 1.0117 150
64 16 61 1.0115 152

the authors4. It became apparent that Primal-Dual runs much slower than both
competitors, so for the main experiment we omitted it.

For our experiments, we fixed n = 64, m = 16 to their standard values and
chose the third parameter p variable. This results in a steady decrease in the
Hermite factor and increase in the dimension required to find pseudo-collisions
(see Table 2). We found that for smaller values of p, corresponding to smaller
values of d, pseudo-collisions were found too fast to make sensible measurements.

For each of these 9 parameter sets, we created 10 random SWIFFT lattices
using the PRNG, which is part of NTL. We then proceeded to break all instances
with the NTL floating-point variant of BKZ (bkzfp), by increasing the BKZ
parameter β until a pseudo-collision was found and recording the total time
taken in each case. We also broke all instances with a floating-point variant of
Schnorr’s random sampling reduction (RSR) algorithm [21] (rsrfp) implemented
by Ludwig [5] using the parameters δ = 0.9, u = 22 and again increasing β until
a pseudo-collision was found.

In all cases, we computed the average runtime of both algorithms and plotted
the base two log of this value relative to the dimension d. We also plotted a
conservative extrapolation (assuming linear growth in logscale) for the average
runtime of both algorithms (see Figure 1). The same growth assumption has
often been made when analyzing NTRU lattices [11].

All our experiments were run on a single 2.3 GHz AMD Opteron processor.
According to the predictions of Lenstra and Verheul [14] the computational
hardness of a problem solved after t seconds on such a machine is comparable
to breaking a k-bit symmetric cipher, where

k = log2(t) + log2(2300)− log2(60 · 60 · 24 · 365.25)− log2(5 · 105) + 56.

Using the data in Figure 1, we can compute the security level k corresponding
to the average runtime of each algorithm relative to the dimension d for each
parameter set.

4 PD, Bartol Filipović, bartol.filipovic@sit.fraunhofer.de
PSR, Christoph Ludwig, cludwig@cdc.informatik.tu-darmstadt.de

bartol.filipovic@sit.fraunhofer.de
cludwig@cdc.informatik.tu-darmstadt.de
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Fig. 1. Average runtimes of our experiments

The rightmost side of Figure 1 corresponds to p = 257, i.e. a real SWIFFT
lattice. The extrapolated symmetric bit security for finding pseudo-collisions on
these lattices is k = 68.202. Any parameter set, where d ≥ 260 would correspond
to a cipher with symmetric bit-security at least 100 according to our extrapola-
tion. Parameters realizing this paradigm are given in Section 5.1.

Some further speculations about the relevance of Hybrid Lattice Reduction
as introduced by Howgrave-Graham [12] in 2007 can be found in Appendix D.
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A SIS Reduces to SIS’

Theorem 3. Let n, q(n) ≥ 2, m(n) ≥ (1+ε)n be positive integers, and β(n) > 0
be a positive real, then SISq(n),m(n),β(n) reduces to SIS′

q(n),m(n),β(n). Here, ε > 0
is some real number independent of n.

Proof. Given an instance of SIS (q(n),A, β(n)), let E be the event, that there
are n column vectors in A which are linearly independent mod q(n).

Assuming E holds, there is a permutation matrix P ∈ {0, 1}m(n)×m(n), such
that AP = [A′,A′′] and A′ is invertible mod q(n). We let the SIS’ oracle solve
the instance (q(n), [In,A′−1A′′], β(n)). This instance is distributed according to
SIS’, when the matrix A′−1A′′ is distributed according to U(Zn×(m(n)−n)

q(n) ). This
is the case, since A′′ was distributed this way and A′−1 is invertible mod q(n),
so it is a permutation on the vectors Zn

q(n) which does not effect the uniform
distribution. From the SIS’ oracle, we obtain a solution z. The vector Pz solves
our SIS instance because

0 = [In,A′−1A′′]z = [A′,A′′]z = APz (mod q).

We will show that the probability of E not occurring is negligible. For brevity,
we will write q, m instead of q(n), m(n) for the remaining part. The number
of matrices A with n linearly independent columns is equal to the number of
matrices with n linearly independent rows. For E to occur, the first row may be
anything but the zero-row giving (qm − 1) possibilities, the second row, can be
all but multiples of the first giving (qm − q) possibilities and so on. The total
number of matrices is qnm, so we get

Pr[not E] = 1− q−nm
n−1∏
i=0

(qm − qi) = 1−
n−1∏
i=0

(1− qi−m).

Let c = −2 ln(1/2), we bound the probability

1−
n−1∏
i=0

(1− qi−m) = 1− exp((−1)2 ln(
n−1∏
i=0

(1− qi−m)))

(1)
≤

n−1∑
i=0

− ln(1− qi−m)
(2)
≤ c q−m

n−1∑
i=0

qi

= c(qn − 1)/(qm(q − 1)) ≤ c/qm−n
(3)
≤ c/2εn.

http://www.shoup.net/ntl/
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Inequality (1) holds, because for all real x, 1−exp(−x) ≤ x. Similarly, inequality
(2) holds because for all 0 ≤ x ≤ 1/2 we have− ln(1−x) ≤ cx. Finally, inequality
(3) follows from the conditions stated in the theorem. The resulting function is
negligible which completes the proof. ��

B IdealSIS Reduces to IdealSIS’

Theorem 4. Let n, m(n) ∈ Ω(log(n)) be positive integers, q(n) ∈ ω(n) be
prime, and β(n) > 0 be real, then IdealSISq,m,β reduces to IdealSIS′

q,m,β.

Proof. Given an instance of IdealSIS (q(n), â, β(n)), let E be the event, that
there is an index i, such that a′ = ai is invertible mod q(n).

Assuming E holds, there is a permutation P ∈ {0, 1}m(n)×m(n), such that
âP = [a′, â′′] and a′ is invertible mod q(n). We let the IdealSIS’ oracle solve
the instance (q(n), [1,a′−1â′′], β(n)). This instance is distributed according to
IdealSIS’, when the tuple a′−1â′′ is distributed according to U(Rm(n)−1

n,q ). This
is the case, since â′′ was distributed this way and a′−1 is invertible mod q(n),
so it is a permutation on the elements Rn,q(n) which does not effect the uniform
distribution. From the IdealSIS’ oracle, we obtain a solution ẑ. The vector Pẑ
solves our IdealSIS instance.

0 = [1,a′−1â′′]ẑ = [a′, â′′]ẑ = âPẑ (mod q).

We will show that the probability of E not occurring is negligible. For brevity, we
will write q, m instead of q(n), m(n) for the remaining part. Let f be the minimal
polynomial of ζn, and f1, . . . , fk be the irreducible factors of f over Zq. Since q is
prime, for any invertible element in a ∈ Rn,q, it is necessary and sufficient that
a mod fi �= 0. So, the number of invertible elements is |R∗

n,q| =
∏k

i=1(q
deg(fi)−1).

The total number of ring elements is |Rn,q| = qn. For E to occur, only one of
the m ring elements must be invertible, so we get

Pr[not E] = (1 − q−n
k∏

i=1

(qdeg(fi) − 1))m = (1−
k∏

i=1

(1− q− deg(fi)))m

Let c = −2 ln(1/2), we bound (Pr[not E])1/m

1−
k∏

i=1

(1− q− deg(fi))
(1)
≤

k∑
i=1

− ln(1− q− deg(fi))
(2)
≤ c

k∑
i=1

q− deg(fi)

= ck/q ≤ cn/q
(3)
∈ 1/ω(1).

Inequality (1) holds, because for all real x, 1−exp(−x) ≤ x. Similarly, inequality
(2) holds because for all 0 ≤ x ≤ 1/2 we have− ln(1−x) ≤ cx. Finally, (3) follows
from the conditions stated in the theorem. Since m(n) ∈ Ω(log(n)), Pr[not E]
is negligible. ��
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C Existence of Collisions in d-Dimensional Sublattices

This section represents an analysis of the probability of the existence of collisions
in a SWIFFT instance. This is similar the analyses found in Section 6.1. Unlike
before however, we now take into account the randomness of the hash-function
key â.

For simplicity, we deal with the case, that the key defining the hash-function
(written as a matrix) A is unstructured and chosen completely at random. An
adaption to the case of skew-circulant keys (used in SWIFFT) yields similar re-
sults. The following Lemma gives the probability that a randomly chosen SWI-
FFT instance has no collisions.

Lemma 1. Let T = {0,±1}d \ {0} and A ∈ Zn×d
q be chosen uniformly at

random, then Pr[ ∀v ∈ T,Av mod q �= 0] =
∏d−1

i=0 max{qn − 3i, 0}.

Proof. Consider the columns of A being drawn consecutively. We count the
number of cases where the condition we check for holds. Certainly the condition
is true iff the first drawn column is non-zero, giving (qn − 1) positive cases.
Let the fist column we drew be a1. For the condition to remain true, the second
column must not be in the set {0,±1}a1, giving (qn−3) positive cases. Similarly,
the third column must not be in {0,±1}a1 + {0,±1}a2, which yields qn − 32

positive cases. An induction on d validates the given formula. ��

Some exemplary probabilities for the existence of SWIFFT collisions in a given
sublattice dimension d are:

d 273 · · · 299 · · · 325

Pr 2−80 2−39 1

D Hybrid Lattice Reduction

There is a strong similarity between NTRU lattices and SWIFFT lattices which
we will make explicit. According to the most recent NTRU flavor [11], an NTRU
trapdoor one-way function family is described by the parameters

(qNTRU , pNTRU , NNTRU , dNTRU
f , dNTRU

g , dNTRU
r ).

These relate to SWIFFT families in the following way. Choose n = NNTRU , m =
2, p = qNTRU . Use the polynomial f(x) = xn − 1 for the ring Rp,n. Let Td be
the set of trinary polynomials of degree n− 1 with d+1 entries equal to 1 and d
entries equal to −1. In the NTRU setting, we choose our hash-keys (a1, a2) not
uniformly from R2

p,n but rather from (1 + pNTRUTdNTRU
f

) × TdNTRU
g

which are
the NTRU secret key spaces.

The strong limitation on the choice of keys allows the trapdoor to work. The
use of a reducible polynomial does not guarantee collision resistance anymore
[15], but one-wayness is sufficient for NTRUs security. In summation, the step
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from NTRU to SWIFFT is exchanging a huge NNTRU = 401, qNTRU = 2048
with n = 64, p = 257 but in turn increase m from 2 to 16. This seems risky
because as we mentioned at the beginning of this section, the problem cannot
become harder by increasing m beyond some unknown threshold which is at most
8. This upper bound for the threshold given by the dimension d of a sublattice
in which short enough lattice vectors must exist (see Section 6.1).

The strongest attack on NTRU lattices is a hybrid method presented at
CRYPTO 2007 by Howgrave-Graham [12]. It combines both Meet-in-the-middle
(MITM) attacks by Odlyzko [13] and lattice reduction attacks by Coppersmith
and Shamir [7]. In our brief summary of the attack we describe three distinct
phases.
1. Reduce the public NTRU lattice and save the result in B.
2. Reduce the maximal sublattice of B, which satisfies the geometric series

assumption (GSA), i.e. for which the ‖b∗
i ‖ descend linearly in logscale.

3. Let k be the last index of a length contributing vector in B∗, meaning ‖b∗
i ‖ ≈

0 for all i > k. Howgrave-Graham introduced a modification of Babai’s
Nearest Plane algorithm that allows us to perform a MITM attack on the
final dim(B)− k entries of the secret keys.

Phases 1–2 ensure that ‖b∗
k‖ is as big as possible. This allows Babai’s original al-

gorithm, and the modification to better approximate CVP in the lattice spanned
by the first k basis vectors.

Stated in this form the same algorithm can be used to search for collisions
(not pseudo-collisions) in SWIFFT lattices. However, preliminary experiments
show that this methodology is not helpful. At the end of phase 2 we find that
k ≈ 128. Obviously, even if the CVP oracle works perfectly we would still have
to do a MITM attack on the last dim(B)− k ≈ 896 entries. This is too much to
be practical.

We are currently working on a generalization of the attack, where step 2 is
iterated for m− 1 different overlapping parts of the basis, namely

[b1, . . . ,b2n], [bn+1, . . . ,b3n], . . . , [b(m−2)n+1, . . . ,bmn].

This modification is only sensible for SWIFFT and not NTRU. It should bring
k closer to dim(B) possibly at the expense of CVP approximation quality. It
remains to be seen if this is a good strategy.
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The hash function FSB [2] uses a compression function based on error-correcting
codes. This paper describes, analyzes, and optimizes a parallelized generalized
birthday attack against the FSB compression function.

This paper focuses on a reduced-size version FSB48 which was suggested as
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implemented and carried out successfully, confirming our performance analysis.
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A straightforward implementation of Wagner’s generalized birthday attack
[12] would need 20 TB of storage. However, we are running the attack on 8
nodes of the Coding and Cryptography Computer Cluster (CCCC) at Technische
Universiteit Eindhoven, which has a total hard-disk space of only 5.5 TB. We
detail how we deal with this restricted background storage, by applying and
generalizing ideas described by Bernstein in [6] and compressing partial results.
We also explain the algorithmic measures we took to make the attack run as
fast as possible, carefully balancing our code to use available RAM, network
throughput, hard-disk throughput and computing power.

We are to the best of our knowledge the first to give a detailed description of
a full implementation of a generalized birthday attack. We have placed all code
described in this paper into the public domain to maximize reusability of our
results. The code can be found at http://www.polycephaly.org/fsbday.

Hash-function design. This paper achieves new speed records for generalized
birthday attacks, and in particular for generalized birthday attacks against the
FSB compression function. However, generalized birthday attacks are still much
more expensive than generic attacks against the FSB hash function. “Generic
attacks” are attacks that work against any hash function with the same output
length.

The FSB designers chose the size of the FSB compression function so that
a particular lower bound on the cost of generalized birthday attacks would be
safely above the cost of generic attacks. Our results should not be taken as any
indication of a security problem in FSB; the actual cost of generalized birthday
attacks is very far above the lower bound stated by the FSB designers. It appears
that the FSB compression function was designed too conservatively, with an
unnecessarily large output length.

FSB was one of the 64 hash functions submitted to NIST’s SHA-3 competition,
and one of the 51 hash functions selected for the first round. However, FSB was
significantly slower than most submissions, and was not one of the 14 hash func-
tions selected for the second round. It would be interesting to explore smaller and
thus faster FSB variants that remain secure against generalized birthday attacks.

Organization of the paper. In Section 2 we give a short introduction to Wag-
ner’s generalized birthday attack and Bernstein’s adaptation of this attack to
storage-restricted environments. Section 3 describes the FSB hash function to
the extent necessary to understand our attack methodology. In Section 4 we de-
scribe our attack strategy which has to match the restricted hard-disk space of
our computer cluster. Section 5 details the measures we applied to make the at-
tack run as efficiently as possible dealing with the bottlenecks mentioned before.
We evaluate the overall cost of our attack in Section 6, and give cost estimates
for a similar attack against full-size FSB in Section 7.

Naming conventions. Throughout the paper we will denote list j on level i as
Li,j . For both, levels and lists we start counting at zero.

Logarithms denoted as lg are logarithms to the base 2.

http://www.polycephaly.org/fsbday
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Additions of list elements or constants used in the algorithm are additions
modulo 2.

In units such as GB, TB, PB and EB we will always assume base 1024 instead
of 1000. In particular we give 700 GB as the size of a hard disk advertised as
750 GB.

2 Wagner’s Generalized Birthday Attack

The generalized birthday problem, given 2i−1 lists containing B-bit strings, is
to find 2i−1 elements — exactly one in each list—whose xor equals 0.

The special case i = 2 is the classic birthday problem: given two lists con-
taining B-bit strings, find two elements — exactly one in each list— whose xor
equals 0. In other words, find an element of the first list that equals an element
of the second list.

This section describes a solution to the generalized birthday problem due to
Wagner [12]. Wagner also considered generalizations to operations other than
xor, and to the case of k lists when k is not a power of 2.

2.1 The Tree Algorithm

Wagner’s algorithm builds a binary tree as described in this subsection starting
from the input lists L0,0, L0,1, . . . , L0,2i−1−1 (see Figure 4.1). The speed and
success probability of the algorithm are analyzed under the assumption that
each list contains 2B/i elements chosen uniformly at random.

On level 0 take the first two lists L0,0 and L0,1 and compare their list elements
on their least significant B/i bits. Given that each list contains about 2B/i

elements we can expect 2B/i pairs of elements which are equal on those least
significant B/i bits. We take the xor of both elements on all their B bits and
put the xor into a new list L1,0. Similarly compare the other lists — always two
at a time — and look for elements matching on their least significant B/i bits
which are xored and put into new lists. This process of merging yields 2i−2 lists
containing each about 2B/i elements which are zero on their least significant B/i
bits. This completes level 0.

On level 1 take the first two lists L1,0 and L1,1 which are the results of merging
the lists L0,0 and L0,1 as well as L0,2 and L0,3 from level 0. Compare the elements
of L1,0 and L1,1 on their least significant 2B/i bits. As a result of the xoring
in the previous level, the last B/i bits are already known to be 0, so it suffices
to compare the next B/i bits. Since each list on level 1 contains about 2B/i

elements we again can expect about 2B/i elements matching on B/i bits. We
build the xor of each pair of matching elements and put it into a new list L2,0.
Similarly compare the remaining lists on level 1.

Continue in the same way until level i − 2. On each level j we consider the
elements on their least significant (j+1)B/i bits of which jB/i bits are known to
be zero as a result of the previous merge. On level i−2 we get two lists containing
about 2B/i elements. The least significant (i−2)B/i bits of each element in both
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lists are zero. Comparing the elements of both lists on their 2B/i remaining bits
gives 1 expected match, i.e., one xor equal to zero. Since each element is the
xor of elements from the previous steps this final xor is the xor of 2i−1 elements
from the original lists and thus a solution to the generalized birthday problem.

2.2 Wagner in Memory-Restricted Environments

A 2007 paper [6] by Bernstein includes two techniques to mount Wagner’s attack
on computers which do not have enough memory to hold all list entries. Various
special cases of the same techniques also appear in a 2005 paper [4] by Augot,
Finiasz, and Sendrier and in a 2009 paper [9] by Minder and Sinclair.

Clamping through precomputation. Suppose that there is space for lists of
size only 2b with b < B/i. Bernstein suggests to generate 2b·(B−ib) entries and
only consider those of which the least significant B − ib bits are zero.

We generalize this idea as follows: The least significant B − ib bits can have
an arbitrary value, this clamping value does not even have to be the same on all
lists as long as the sum of all clamping values is zero. This will be important if
an attack does not produce a collision. We then can simply restart the attack
with different clamping values.

Clamping through precomputation may be limited by the maximal number
of entries we can generate per list. Furthermore, halving the available storage
space increases the precomputation time by a factor of 2i.

Note that clamping some bits through precomputation might be a good idea
even if enough memory is available as we can reduce the amount of data in later
steps and thus make those steps more efficient.

After the precomputation step we apply Wagner’s tree algorithm to lists con-
taining bit strings of length B′ where B′ equals B minus the number of clamped
bits. For performance evaluation we will only consider lists on level 0 after clamp-
ing through precomputation and then use B instead of B′ for the number of bits
in these entries.

Repeating the attack. Another way to mount Wagner’s attack in memory-
restricted environments is to carry out the whole computation with smaller lists
leaving some bits at the end “uncontrolled”. We then can deal with the lower
success probability by repeatedly running the attack with different clamping
values.

In the context of clamping through precomputation we can simply vary the
clamping values used during precomputation. If for some reason we cannot clamp
any bits through precomputation we can apply the same idea of changing clamp-
ing values in an arbitrary merge step of the tree algorithm. Note that any solution
to the generalized birthday problem can be found by some choice of clamping
values.

Expected number of runs. Wagner’s algorithm, without clamping through
precomputation, produces an expected number of exactly one collision. However
this does not mean that running the algorithm necessarily produces a collision.
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In general, the expected number of runs of Wagner’s attack is a function of
the number of remaining bits in the entries of the two input lists of the last
merge step and the number of elements in these lists.

Assume that b bits are clamped on each level and that lists have length 2b.
Then the probability to have at least one collision after running the attack once
is

Psuccess = 1−
(

2B−(i−2)b − 1
2B−(i−2)b

)22b

,

and the expected number of runs E(R) is

E(R) =
1

Psuccess
. (2.1)

For larger values of B−ib the expected number of runs is about 2B−ib. We model
the total time for the attack tW as being linear in the amount of data on level
0, i.e.,

tW ∈ Θ
(
2i−12B−ib2b

)
. (2.2)

Here 2i−1 is the number of lists, 2B−ib is approximately the number of runs,
and 2b is the number of entries per list. Observe that this formula will usually
underestimate the real time of the attack by assuming that all computations on
subsequent levels are together still linear in the time required for computations
on level 0.

Using Pollard iteration. If because of memory restrictions the number of
uncontrolled bits is high, it may be more efficient to use a variant of Wagner’s
attack that uses Pollard iteration [8, Chapter 3, exercises 6 and 7].

Assume that L0 = L1, L2 = L3, etc., and that combinations x0 + x1 with
x0 = x1 are excluded. The output of the generalized birthday attack will then
be a collision between two distinct elements of L0 + L2 + · · · .

We can instead start with only 2i−2 lists L0, L2, . . . and apply the usual Wag-
ner tree algorithm, with a nonzero clamping constant to enforce the condition
that x0 �= x1. The number of clamped bits before the last merge step is now
(i− 3)b. The last merge step produces 22b possible values, the smallest of which
has an expected number of 2b leading zeros, leaving B − (i− 1)b uncontrolled.

Think of this computation as a function mapping clamping constants to the
final B− (i− 1)b uncontrolled bits and apply Pollard iteration to find a collision
between the output of two such computations; combination then yields a collision
of 2i−1 vectors.

As Pollard iteration has square-root running time, the expected number of
runs for this variant is 2B/2−(i−1)b/2, each taking time 2i−22b (cmp. (2.2)), so
the expected running time is

tPW ∈ Θ
(
2i−22B/2−(i−1)b/2+b

)
. (2.3)
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The Pollard variant of the attack becomes more efficient than plain Wagner with
repeated runs if B > (i + 2)b.

3 The FSB Hash Function

In this section we briefly describe the construction of the FSB hash function.
Since we are going to attack the function we omit details which are necessary
for implementing the function but do not influence the attack. The second part
of this section gives a rough description of how to apply Wagner’s generalized
birthday attack to find collisions of the compression function of FSB.

3.1 Details of the FSB Hash Function

The Fast Syndrome Based hash function (FSB) was introduced by Augot, Fini-
asz and Sendrier in 2003. See [3], [4], and [2]. The security of FSB’s compression
function relies on the difficulty of the “Syndrome Decoding Problem” from cod-
ing theory.

The FSB hash function processes a message in three steps: First the message is
converted by a so-called domain extender into suitable inputs for the compression
function which digests the inputs in the second step. In the third and final step
the Whirlpool hash function designed by Barreto and Rijmen [5] is applied to
the output of the compression function in order to produce the desired length
of output.

Our goal in this paper is to investigate the security of the compression func-
tion. We do not describe the domain extender, the conversion of the message to
inputs for the compression function, or the last step involving Whirlpool.

The compression function. The main parameters of the compression func-
tion are called n, r and w. We consider n strings of length r which are chosen
uniformly at random and can be written as an r×n binary matrix H . Note that
the matrix H can be seen as the parity check matrix of a binary linear code. The
FSB proposal [2] actually specifies a particular structure of H for efficiency; we
do not consider attacks exploiting this structure.

An n-bit string of weight w is called regular if there is exactly a single 1 in
each interval [(i−1) n

w , i n
w −1]1≤i≤w. We will refer to such an interval as a block.

The input to the compression function is a regular n-bit string of weight w.
The compression function works as follows. The matrix H is split into w blocks

of n/w columns. Each non-zero entry of the input bit string indicates exactly one
column in each block. The output of the compression function is an r-bit string
which is produced by computing the xor of all the w columns of the matrix H
indicated by the input string.

Preimages and collisions. A preimage of an output of length r of one round
of the compression function is a regular n-bit string of weight w. A collision
occurs if there are 2w columns of H — exactly two in each block —which add
up to zero.



24 D.J. Bernstein et al.

Finding preimages or collisions means solving two problems coming from cod-
ing theory: finding a preimage means solving the Regular Syndrome Decod-
ing problem and finding collisions means solving the so-called 2-regular Null-
Syndrome Decoding problem. Both problems were defined and proven to be
NP-complete in [4].

Parameters. We follow the notation in [2] and write FSBlength for the version
of FSB which produces a hash value of length length. Note that the output of
the compression function has r bits where r is considerably larger than length.

NIST demands hash lengths of 160, 224, 256, 384, and 512 bits, respectively.
Therefore the SHA-3 proposal contains five versions of FSB: FSB160, FSB224,
FSB256, FSB384, and FSB512. We list the parameters for those versions in Ta-
ble 7.1.

The proposal also contains FSB48, which is a reduced-size version of FSB
and the main attack target in this paper. The binary matrix H for FSB48 has
dimension 192×3 ·217; i.e., r equals 192 and n is 3 ·217. In each round a message
chunk is converted into a regular 3 · 217-bit string of Hamming weight w = 24.
The matrix H contains 24 blocks of length 214. Each 1 in the regular bit string
indicates exactly one column in a block of the matrix H . The output of the
compression function is the xor of those 24 columns.

A pseudo-random matrix. In our attack against FSB48 we consider a pseudo-
random matrix H which we constructed as described in [2, Section 1.2.2]: H
consists of 2048 submatrices, each of dimension 192×192. For the first submatrix
we consider a slightly larger matrix of dimension 197 × 192. Its first column
consists of the first 197 digits of π where each digit is taken modulo 2. The
remaining 191 columns of this submatrix are cyclic shifts of the first column.
The matrix is then truncated to its first 192 rows which form the first submatrix
of H . For the second submatrix we consider digits 198 up to 394 of π. Again we
build a 197× 192 bit matrix where the first column corresponds to the selected
digits (each taken modulo 2) and the remaining columns are cyclic shifts of the
first column. Truncating to the first 192 rows yields the second block matrix of
H . The remaining submatrices are constructed in the same way.

We emphasize that this is one possible choice for the matrix H . The attack
described in our paper does not make use of the structure of this particular
matrix. We use this construction in our implementation since it is also con-
tained in the FSB reference implementation submitted to NIST by the FSB
designers.

3.2 Attacking the Compression Function of FSB48

Coron and Joux pointed out in [7] that Wagner’s generalized birthday attack
can be used to find preimages and collisions in the compression function of FSB.
The following paragraphs present a slightly streamlined version of the attack of
[7] in the case of FSB48.
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Determining the number of lists for a Wagner attack on FSB48. A
collision for FSB48 is given by 48 columns of the matrix H which add up to
zero; the collision has exactly two columns per block. Each block contains 214

columns and each column is a 192-bit string.
We choose 16 lists to solve this particular 48-sum problem. Each list entry

will be the xor of three columns coming from one and a half blocks. This ensures
that we do not have any overlaps, i.e., more than two columns coming from
one matrix block in the end. We assume that taking sums of the columns of H
does not bias the distribution of 192-bit strings. Applying Wagner’s attack in a
straightforward way means that we need to have at least 2�192/5 entries per list.
By clamping away 39 bits in each step we expect to get at least one collision
after one run of the tree algorithm.

Building lists. We build 16 lists containing 192-bit strings each being the xor
of three distinct columns of the matrix H . We select each triple of three columns
from one and a half blocks of H in the following way:

List L0,0 contains the sums of columns i0, j0, k0, where columns i0 and j0
come from the first block of 214 columns, and column k0 is picked from the
following block with the restriction that it is taken from the first half of it. Since
we cannot have overlapping elements we get about 227 sums of columns i0 and
j0 coming from the first block. These two columns are then added to all possible
columns k0 coming from the first 213 elements of the second block of the matrix
H . In total we get about 240 elements for L0,0.

We note that by splitting every second block in half we neglect several solu-
tions of the 48-xor problem. For example, a solution involving two columns from
the first half of the second block cannot be found by this algorithm. We justify
our choice by noting that fewer lists would nevertheless require more storage and
a longer precomputation phase to build the lists.

The second list L0,1 contains sums of columns i1, j1, k1, where column i1 is
picked from the second half of the second block of H and j1 and k1 come from
the third block of 214 columns. This again yields about 240 elements.

Similarly, we construct the lists L0,2, L0,3,. . . , L0,15.
For each list we generate more than twice the amount needed for a straight-

forward attack as explained above. In order to reduce the amount of data for the
following steps we note that about 240/4 elements are likely to be zero on their
least significant two bits. Clamping those two bits away should thus yield a list of
238 bit strings. Note that since we know the least significant two bits of the list
elements we can ignore them and regard the list elements as 190-bit strings. Now
we expect that a straightforward application of Wagner’s attack to 16 lists with
about 2190/5 elements yields a collision after completing the tree algorithm.

Note on complexity in the FSB proposal. The SHA-3 proposal estimates
the complexity of Wagner’s attack as described above as 2r/ir where 2i−1 is the
number of lists used in the algorithm. This does not take memory into account,
and in general is an underestimate of the work required by Wagner’s algorithm;
i.e., attacks of this type against FSB are more difficult than claimed by the FSB
designers.
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Note on information-set decoding. The FSB designers say in [2] that Wag-
ner’s attack is the fastest known attack for finding preimages, and for finding
collisions for small FSB parameters, but that another attack —information-set
decoding —is better than Wagner’s attack for finding collisions for large FSB
parameters.

In general, information-set decoding can be used to find an n-bit string of
weight 48 indicating 48 columns of H which add up to zero. Information-set
decoding will not take into account that we look for a regular n-bit string.
The only known way to obtain a regular n-bit string is running the algorithm
repeatedly until the output happens to be regular. Thus, the running times given
in [2] provide certainly lower bounds for information-set decoding, but in practice
they are not likely to hold.

4 Attack Strategy

In this section we will discuss the necessary measures we took to mount the
attack on our cluster. We will start with an evaluation of available and required
storage.

4.1 How Large Is a List Entry?

The number of bytes required to store one list entry depends on how we represent
the entry. We considered four different ways of representing an entry:

Value-only representation. The obvious way of representing a list entry is as
a 192-bit string, the xor of columns of the matrix. Bits we already know to be
zero of course do not have to be stored, so on each level of the tree the number
of bits per entry decreases by the number of bits clamped on the previous level.
Ultimately we are not interested in the value of the entry — we know already
that in a successful attack it will be all-zero at the end — but in the column
positions in the matrix that lead to this all-zero value. However, we will show
in Section 4.3 that computations only involving the value can be useful if the
attack has to be run multiple times due to storage restrictions.

Value-and-positions representation. If enough storage is available we can
store positions in the matrix alongside the value. Observe that unlike storage re-
quirements for values the number of bytes for positions increases with increasing
levels, and becomes dominant for higher levels.

Compressed positions. Instead of storing full positions we can save storage
by only storing, e.g., positions modulo 256. After the attack has successfully
finished the full position information can be computed by checking which of the
possible positions lead to the appropriate intermediate results on each level.

Dynamic recomputation. If we keep full positions we do not have to store the
value at all. Every time we need the value (or parts of it) it can be dynamically
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recomputed from the positions. In each level the size of a single entry doubles
(because the number of positions doubles), the expected number of entries per
list remains the same but the number of lists halves, so the total amount of data
is the same on each level when using dynamic recomputation. As discussed in
Section 3 we have 240 possibilities to choose columns to produce entries of a list,
so we can encode the positions on level 0 in 40 bits (5 bytes).

Observe that we can switch between representations during computation if
at some level another representation becomes more efficient: We can switch be-
tween value-and-position representation to compressed-positions representation
and back. We can switch from one of the above to compressed positions and we
can switch from any other representation to value-only representation.

4.2 What List Size Can We Handle?

To estimate the storage requirements it is convenient to consider dynamic re-
computation (storing positions only) because in this case the amount of required
storage is constant over all levels and this representation has the smallest mem-
ory consumption on level 0.

As described in Section 3.2 we can start with 16 lists of size 238, each con-
taining bit strings of length r′ = 190. However, storing 16 lists with 238 entries,
each entry encoded in 5 bytes requires 20 TB of storage space.

The computer cluster used for the attack consists of 8 nodes with a storage
space of 700 GB each. Hence, we have to adapt our attack to cope with total
storage limited to 5.5 TB.

On the first level we have 16 lists and as we need at least 5 bytes per list
entry we can handle at most 5.5 · 240/24/5 = 1.1 × 236 entries per list. Some
of the disk space is used for the operating system and so a straightforward
implementation would use lists of size 236. First computing one half tree and
switching to compressed-positions representation on level 2 would still not allow
us to use lists of size 237.

We can generate at most 240 entries per list so following [6] we could clamp
4 bits during list generation, giving us 236 values for each of the 16 lists. These
values have a length of 188 bits represented through 5 bytes holding the positions
from the matrix. Clamping 36 bits in each of the 3 steps leaves two lists of length
236 with 80 non-zero bits. According to (2.1) we thus expect to run the attack
256.5 times until we find a collision.

The only way of increasing the list size to 237 and thus reduce the number of
runs is to use value-only representation on higher levels.

4.3 The Strategy

The main idea of our attack strategy is to distinguish between the task of finding
clamping constants that yield a final collision and the task of actually computing
the collision.
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Finding appropriate clamping constants. This task does not require storing
the positions, since we only need to know whether we find a collision with a
particular set of clamping constants; we do not need to know which matrix
positions give this collision.

Whenever storing the value needs less space we can thus compress entries by
switching representation from positions to values. As a side effect this speeds up
the computations because less data has to be loaded and stored.

Starting from lists L0,0, . . . , L0,7, each containing 237 entries we first compute
list L3,0 (see Figure 4.1) on 8 nodes. This list has entries with 78 remaining bits
each. As we will describe in Section 5, these entries are presorted on hard disk
according to 9 bits that do not have to be stored. Another 3 bits are determined
by the node holding the data (see also Section 5) so only 66 bits or 9 bytes of
each entry have to be stored, yielding a total storage requirement of 1152 GB
versus 5120 GB necessary for storing entries in positions-only representation.

We then continue with the computation of list L2,2, which has entries of 115
remaining bits. Again 9 of these bits do not have to be stored due to presorting,
3 are determined by the node, so only 103 bits or 13 bytes have to be stored,
yielding a storage requirement of 1664 GB instead of 2560 GB for uncompressed
entries.

After these lists have been stored persistently on disk, we proceed with the
computation of list L2,3, then L3,1 and finally check whether L4,0 contains at
least one element. These computations require another 2560 GB.

Therefore total amount of storage sums up to 1152 GB + 1664 GB + 2560 GB
= 5376 GB; obviously all data fits onto the hard disk of the 8 nodes.

If a computation with given clamping constants is not successful, we change
clamping constants only for the computation of L2,3. The lists L3,0 and L2,2 do
not have to be computed again. All combinations of clamping values for lists
L0,12 to L0,15 summing up to 0 are allowed. Therefore there are a large number
of valid clamp-bit combinations.

With 37 bits clamped on every level and 3 clamped through precomputation
we are left with 4 uncontrolled bits and therefore, according to (2.1), expect 16.5
runs of this algorithm.

Computing the matrix positions of the collision. In case of success we
know which clamping constants we can use and we know which value in the lists
L3,0 and L3,1 yields a final collision. Now we can recompute lists L3,0 and L3,1
without compression to obtain the positions. For this task we decided to store
only positions and use dynamic recomputation. On level 0 and level 1 this is
the most space-efficient approach and we do not expect a significant speedup
from switching to compressed-positions representation on higher levels. In total
one half-tree computation requires 5120 GB of storage, hence, they have to be
performed one after the other on 8 nodes.

The (re-)computation of lists L3,0 and L3,2 is an additional time overhead
over doing all computation on list positions in the first place. However, this cost
is incurred only once, and is amply compensated for by the reduced data volume
in previous steps. See Section 5.2.
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5 Implementing the Attack

The computation platform for this particular implementation of Wagner’s gen-
eralized birthday attack on FSB is an eight-node cluster of conventional desktop
PCs. Each node has an Intel Core 2 Quad Q6600 CPU with a clock rate of
2.40 GHz and direct fully cached access to 8 GB of RAM. About 700 GB mass
storage are provided by a Western Digital SATA hard disk with 20 GB reserved
for system and user data. The nodes are connected via switched Gigabit Ethernet
using Marvell PCI-E adapter cards.

We chose MPI as communication model for the implementation. This choice
has several virtues:

– MPI provides an easy interface to start the application on all nodes and to
initialize the communication paths.

– MPI offers synchronous message-based communication primitives.
– MPI is a broadly accepted standard for HPC applications and is provided

on a multitude of different platforms.

We decided to use MPICH2 [1] which is an implementation of the MPI 2.0
standard from the University of Chicago. MPICH2 provides an Ethernet-based
back end for the communication with remote nodes and a fast shared-memory-
based back end for local data exchange.

We implemented two micro-benchmarks to measure hard-disk and network
throughput. The results of these benchmarks are shown in Figure 5.1. Note
that we measure hard-disk throughput directly on the device, circumventing
the filesystem, to reach peak performance of the hard disk. We measured both
sequential and randomized access to the disk.

 0

 20

 40

 60

 80

 100

 120

210 215 220 225 230

ba
nd

w
id

th
 in

 M
B

yt
e/

s

packet size in bytes

hdd sequential
hdd randomized

mpi

Fig. 5.1. Micro-benchmarks measuring hard-disk and network throughput
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The rest of this section explains how we parallelized and streamlined Wagner’s
attack to make the best of the available hardware.

5.1 Parallelization

Most of the time in the attack is spent on determining the right clamping con-
stants. As described in Section 4 this involves computations of several partial
trees, e.g., the computation of L3,0 from lists L0,0, . . . , L0,7 (half tree) or the
computation of L2,2 from lists L0,8, . . . , L0,11 (quarter tree). There are also com-
putations which do not start with lists of level 0; the computation of list L3,1 for
example is computed from the (previously computed and stored) lists L2,2 and
L2,3.

Lists of level 0 are generated with the current clamping constants. On every
level, each list is sorted and afterwards merged with its neighboring list giving
the entries for the next level. The sorting and merging is repeated until the final
list of the partial tree is computed.

Distributing data over nodes. This algorithm is parallelized by distributing
fractions of lists over the nodes in a way that each node can perform sort and
merge locally on two lists. On each level of the computation, each node contains
fractions of two lists. The lists on level j are split between n nodes according to
lg(n) bits of each value. For example when computing the left half-tree, on level
0, node 0 contains all entries of lists 0 and 1 ending with a zero bit (in the bits
not controlled by initial clamping), and node 1 contains all entries of lists 0 and
1 ending with a one bit.

Therefore, from the view of one node, on each level the fractions of both lists
are loaded from hard disk, the entries are sorted and the two lists are merged.
The newly generated list is split into its fractions and these fractions are sent
over the network to their associated nodes. There the data is received and stored
onto the hard disk. The continuous dataflow of this implementation is depicted
in Figure 5.2.

Presorting into parts. To be able to perform the sort in memory, incoming
data is presorted into one of 512 parts according to the 9 least significant bits
of the current sort range. This leads to an expected part size for uncompressed
entries of 640 MB (0.625 GB) which can be loaded into main memory at once to
be sorted further. The benefit of presorting the entries before storing them is:

1. We can sort a whole fraction, that exceeds the size of the memory, by sorting
its presorted parts independently.

2. Two adjacent parts of the two lists on one node (with the same presort-bits)
can be merged directly after they are sorted.

3. We can save 9 bits when compressing entries to value-only representation.

Merge. The merge is implemented straightforwardly. If blocks of entries in both
lists share the same value then all possible combinations are generated: specifi-
cally, if a b-bit string appears in the compared positions in c1 entries in the first
list and c2 entries in the second list then all c1c2 xors appear in the output list.
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5.2 Efficient Implementation

Cluster computation imposes three main bottlenecks:

– the computational power and memory latency of the CPUs for computation-
intensive applications

– limitations of network throughput and latency for communication-intensive
applications

– hard-disk throughput and latency for data-intensive applications

Wagner’s algorithm imposes hard load on all of these components: a large
amount of data needs to be sorted, merged and distributed over the nodes occu-
pying as much storage as possible. Therefore, demand for optimization is primar-
ily determined by the slowest component in terms of data throughput; latency
generally can be hidden by pipelining and data prefetch.

Finding bottlenecks. Our benchmarks show that, for sufficiently large packets,
the performance of the system is mainly bottlenecked by hard-disk throughput
(cmp. Figure 5.1). Since the throughput of MPI over Gigabit Ethernet is higher
than the hard-disk throughput for packet sizes larger than 216 bytes and since
the same amount of data has to be sent that needs to be stored, no performance
penalty is expected by the network for this size of packets.

Therefore, our first implementation goal was to design an interface to the
hard disk that permits maximum hard-disk throughput. The second goal was to
optimize the implementation of sort and merge algorithms up to a level where
the hard disks are kept busy at peak throughput.

Persistent data storage. Since we do not need any caching-, journaling- or
even filing-capabilities of conventional filesystems, we implemented a throughput-
optimized filesystem, which we call AleSystem. It provides fast and direct access to
the hard disk and stores data in portions of Ales. Each cluster node has one large
unformatted data partition sda1, which is directly opened by the AleSystem using
native Linux file I/O. Caching is deactivated by using the open flag O DIRECT:
after data has been written, it is not read for a long time and does not benefit
from caching. All administrative information is persistently stored as a file in the
native Linux filesystem an mapped into the virtual address space of the process.
On sequential access, the throughput of the AleSystem reaches about 90 MB/s
which is roughly the maximum that the hard disk permits.

Tasks and threads. Since our cluster nodes are driven by quad-core CPUs, the
speed of the computation is primarily based on multi-threaded parallelization.
On the one side, the receive-/presort-/store, on the other side, the load-/sort-
/merge-/send-tasks are pipelined. We use several threads for sending/receiving
data and for running the AleSystem. The core of the implementation is given by
five threads which process the main computation. There are two threads which
have the task to presort incoming data (one thread for each list). Furthermore,
sorting is parallelized with two threads (one thread for each list) and for the
merge task we have one more thread.
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Memory layout. Given this task distribution, the size of necessary buffers can
be defined. The micro-benchmarks show that bigger buffers generally lead to
higher throughput. However, the sum of all buffer sizes is limited by the size of
the available RAM. For the list parts we need 6 buffers; we need two times 2×8
network buffers for double-buffered send and receive, which results in 32 network
buffers. To presort the entries double-buffered into 512 parts of two lists, we need
2048 ales.

When a part is loaded from disk, its ales are treated as a continuous field
of entries. Therefore, each ale must be completely filled with entries; no data
padding at the end of each ale is allowed. Thus, we must pick a size for the ales
which enables the ales to be completely filled independent of the varying size of
entries over the whole run of the program. Valid sizes of entries are 5, 10, 20,
and 40 bytes when storing positions and 5, 10, 13, and 9 bytes when storing
compressed entries. Furthermore, since we access the hard disk using DMA, the
size of each ale must be a multiple of 512 bytes. A multiple of a full memory
page (4096 bytes) is not mandatory.

For these reasons, the size of one ale must be a multiple of 5× 9 × 13× 512.
The size of network packets does not necessarily need to be a multiple of all
possible entry sizes; if network packets happen not to be completely filled we
merely waste some bytes of bandwidth.

In the worst case, on level 0 one list containing 237 entries is distributed over
2 nodes and presorted into 512 parts; thus the size of each part should be larger
than 237/2/512× 5 bytes = 640 MB. The actual size of each part depends on
the size of the ales since it must be an integer multiple of the ale size.

Finally, we chose a size of 220 · 5 bytes = 5 MB for the network packets
summing up to 160 MB, a size of 5 × 9× 13× 512× 5 = 1497600 bytes (about
1.4 MB) for the ales giving a memory demand of 2.9 GB for 2048 ales, and a
size of 5× 9× 13× 512× 5× 512 = 766771200 bytes (731.25 MB) for the parts
summing up to 4.3 GB for 6 parts. Overall our implementation requires about
7.4 GB of RAM leaving enough space for the operating system and additional
data as stack and the administrative data for the AleSystem.

Efficiency and further optimizations. Using our rough splitting of tasks to
threads, we reach an average CPU usage of about 60% up to 80% peak. Our av-
erage hard-disk throughput is about 40 MB/s. The hard-disk micro-benchmark
(see Figure 5.1) shows that an average throughput between 45 MB/s and 50 MB/s
should be feasible for packet sizes of 1.25 MB. Since sorting is the most complex
task, it should be possible to further parallelize sorting to be able to use 100%
of the CPU if the hard disk permits higher data transfer. We expect that further
parallelization of the sort task would increase CPU data throughput on sort up to
about 50 MB/s. That should suffice for maximum hard-disk throughput.

6 Results

We have successfully carried out our FSB48 attack. This section presents (1) our
estimates, before starting the attack, of the amount of time that the attack would
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need; (2) measurements of the amount of time actually consumed by the attack;
and (3) comments on how different amounts of storage would have changed the
attack time.

6.1 Cost Estimates

Step one. As described before the first major step is to compute a set of clamp-
ing values which leads to a collision. In this first step entries are stored by
positions on level 0 and 1 and from level 2 on list entries consist of values.

Computation of list L3,0 takes about 32h and list L2,2 about 14h, summing
up to 46h. These computations need to be done only once.

The time needed to compute list L2,3 is about the same as for L2,2 (14h), list L3,1
takes about 4h and checking for a collision in lists L3,0 and L3,1 on level 4 about
another 3.5h, summing up to about 21.5h. The expected value of repetitions of
these steps is 16.5 and and we thus expected them to take about 355h.

Step two. Finally, computing the matrix positions after finding a collision,
requires recomputation with uncompressed lists. We only have to compute the
entries of lists L3,0 and L3,1 until we have found the entry that yields the collision.
In the worst case this computation with uncompressed (positions-only) entries
takes 33h for each half-tree, summing up to 66h.

Total. Overall we expected to find a collision for the FSB48 compression function
using our algorithm and cluster in 467h or about 19.5 days.

6.2 Cost Measurements

We ran the code described above on our cluster and were lucky: In step one
we found clamping constants after only five iterations (instead of the expected
16.5). In total the first phase of the attack took 5 days, 13 hours and 20 minutes.

Recomputation of the positions in L3,0 took 1 day, 8 hours and 22 minutes
and recomputation of the positions in L3,1 took 1 day, 2 hours and 11 minutes.
In total the attack took 7 days, 23 hours and 53 minutes.

Recall that the matrix used in the attack is the pseudo-random matrix defined
in Section 3. We found that matrix positions (734, 15006, 20748, 25431, 33115,
46670, 50235, 51099, 70220, 76606, 89523, 90851, 99649, 113400, 118568, 126202,
144768, 146047, 153819, 163606, 168187, 173996, 185420, 191473 198284, 207458,
214106, 223080, 241047, 245456, 247218, 261928, 264386, 273345, 285069, 294658,
304245, 305792, 318044, 327120, 331742, 342519, 344652, 356623, 364676, 368702,
376923, 390678) yield a collision.

6.3 Time-Storage Tradeoffs

As described in Section 4, the main restriction on the attack strategy was the
total amount of background storage.

If we had 10496 GB of storage at hand we could have handled lists of size 238,
again using the compression techniques described in Section 4. As described in
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Section 4 this would give exactly one expected collision in the last merge step
and thus reduce the expected number of required runs to find the right clamping
constants from 16.5 to 1.58. With a total storage of 20 TB we could have run a
straightforward Wagner attack without compression which would eliminate the
need to recompute two half trees at the end.

Increasing the size of the background storage even further would eventually
allow to store list entry values alongside the positions and thus eliminate the
need for dynamic recomputation. However, the performance of the attack is
bottlenecked by hard-disk throughput rather than CPU time so we don’t expect
any improvement through this measure.

On clusters with even less background storage the computation time will
(asymptotically) increase by a factor of 16 with each halving of the storage size.
For example a cluster with 2688 GB of storage can only handle lists of size 236.
The attack would then require (expected) 256.5 computations to find appropriate
clamping constants.

Of course the time required for one half-tree computation depends on the
amount of data. As long as the performance is mainly bottlenecked by hard-disk
(or network) throughput the running time is linearly dependent on the amount
of data, i.e., a Wagner computation involving 2 half-tree computations with lists
of size 238 is about 4.5 times as fast as a Wagner computation involving 18
half-tree computations with lists of size 237.

7 Scalability Analysis

The attack described in this paper including the variants discussed in Section 6
are much more expensive in terms of time and especially memory than a brute-
force attack against the 48-bit hash function FSB48.

This section gives estimates of the power of Wagner’s attack against the larger
versions of FSB, demonstrating that the FSB design overestimated the power of
the attack. Table 7.1 gives the parameters of all FSB hash functions.

A straightforward Wagner attack against FSB160 uses 16 lists of size 2127 con-
taining elements with 632 bits. The entries of these lists are generated as xors of 10
columns from 5 blocks, yielding 2135 possibilities to generate the entries. Precom-
putation includes clamping of 8 bits. Each entry then requires 135 bits of storage
so each list occupies more than 2131 bytes. For comparison, the largest currently
available storage systems offer a few petabytes (250 bytes) of storage.

To limit the amount of memory we can instead generate, e.g., 32 lists of size
260, where each list entry is the xor of 5 columns from 2.5 blocks, with 7 bits
clamped during precomputation. Each list entry then requires 67 bits of storage.

Clamping 60 bits in each step leaves 273 bits uncontrolled so the Pollard
variant of Wagner’s algorithm (see Section 2.2) becomes more efficient than the
plain attack. This attack generates 16 lists of size 260, containing entries which
are the xor of 5 columns from 5 distinct blocks each. This gives us the possibility
to clamp 10 bits through precomputation, leaving B = 630 bits for each entry
on level 0.
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Table 7.1. Parameters of the FSB variants and estimates for the cost of generalized
birthday attacks against the compression function. Storage is measured in bytes.

Number Size Bits Total
n w r of lists of lists per entry storage Time

FSB48 3 × 217 24 192 16 238 190 5 · 242 5 · 242

FSB160 7 × 218 112 896 16 2127 632 17 · 2131 17 · 2131

16 (Pollard) 260 630 9 · 264 9 · 2224

FSB224 221 128 1024 16 2177 884 24 · 2181 24 · 2181

16 (Pollard) 260 858 13 · 264 13 · 2343

FSB256 23 × 216 184 1472 16 2202 1010 27 · 2206 27 · 2206

16 (Pollard) 260 972 14 · 264 14 · 2386

32 (Pollard) 256 1024 18 · 260 18 · 2405

FSB384 23 × 216 184 1472 16 2291 1453 39 · 2295 39 · 2295

32 (Pollard) 260 1467 9 · 265 18 · 2618.5

FSB512 31 × 216 248 1987 16 2393 1962 53 · 2397 53 · 2397

32 (Pollard) 260 1956 12 · 265 24 · 2863

The time required by this attack is approximately 2224 (see (2.3)). This is sub-
stantially faster than a brute-force collision attack on the compression function,
but is clearly much slower than a brute-force collision attack on the hash function,
and even slower than a brute-force preimage attack on the hash function.

Similar statements hold for the other full-size versions of FSB. Table 7.1 gives
rough estimates for the time complexity of Wagner’s attack without storage
restriction and with storage restricted to a few hundred exabytes (260 entries per
list). These estimates only consider the number and size of lists being a power
of 2 and the number of bits clamped in each level being the same. The estimates
ignore the time complexity of precomputation. Time is computed according to
(2.2) and (2.3) with the size of level-0 entries (in bytes) as a constant factor.

Although fine-tuning the attacks might give small speedups compared to the
estimates, it is clear that the compression function of FSB is oversized, assuming
that Wagner’s algorithm in a somewhat memory-restricted environment is the
most efficient attack strategy.
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Abstract. Contrary to conventional cryptographic wisdom, the NIST
SP 800-56A standard explicitly allows the use of a static key pair in more
than one of the key establishment protocols described in the standard. In
this paper, we give examples of key establishment protocols that are in-
dividually secure, but which are insecure when static key pairs are reused
in two of the protocols. We also propose an enhancement of the extended
Canetti-Krawczyk security model and definition for the situation where
static public keys are reused in two or more key agreement protocols.

1 Introduction

Conventional cryptographic practice dictates that keying material should never
be used in more than one protocol. For example, Principle 2 of Anderson and
Needham’s robustness principles for public key protocols [3] advises:

If possible avoid using the same key for two different purposes (such as
signing and decryption)...

Section 13.5.1 of the Handbook of Applied Cryptography [18] states:

The principle of key separation is that keys for different purposes should
be cryptographically separated.

Several examples of the pitfalls of reusing keying material can be found in [3] and
[18]. Kelsey, Schneier and Wagner [13] introduced the notion of a ‘chosen-protocol
attack’ whereby an attacker designs a new protocol based on an existing protocol
in such a way that sharing of keying material between the two protocols renders
the existing protocol insecure. More recently, Gligoroski, Andova and Knapskog
[11] showed that using a secret key in more than one mode of operation of a
block cipher can have an adverse effect on security.

Despite the potential security vulnerabilities, many systems today reuse key-
ing material for different protocols and applications. As mentioned in [13], one
of the reasons behind this phenomenon is that certification and maintenance of

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 39–56, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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public keys can be a costly process, and therefore it is cost-effective to use the
same public key for multiple protocols. Of course, reuse of keying material does
not necessarily result in a loss of security. For example, Coron et al. [9] proved
that there is no security loss if RSA key pairs are reused in the PSS versions
of the RSA signature and encryption schemes. Two examples were provided by
Vasco, Hess and Steinwandt [24], who proved that the Pointcheval-Stern [22]
and Fujisaki-Okamoto [10] variants of the ElGamal signature and encryption
schemes remain secure when key pairs are reused, as do the Boneh-Franklin
identity-based encryption scheme [5] and Hess’s identity-based signature scheme
[12].

The objective of this paper is to investigate the security issues that can arise
when static (long-term) asymmetric key pairs are reused in more than one key
agreement protocol. Our work is motivated by the NIST SP 800-56A standard
for key establishment [23]. This standard specifies several variants of the Diffie-
Hellman protocol, including one-pass, two-pass and three-pass versions of the
Unified Model (UM) (see [4] and [19]) and MQV [16] key agreement protocols.
Section 5.6.4.2 of [23] explicitly allows the reuse of static key pairs:

A static key pair may be used in more than one key establishment
scheme. However, one static public/private key pair shall not be used
for different purposes (for example, a digital signature key pair is not to
be used for key establishment or vice versa) with the following possible
exception: when requesting the (initial) certificate for a public static key
establishment key, the key establishment private key associated with the
public key may be used to sign the certificate request.

The allowance of the reuse of static public keys is somewhat surprising since
the UM and MQV protocols are quite different, and also because the protocols
have different security attributes. For example, the MQV protocols appear to be
resistant to key-compromise impersonation attacks, while the UM protocols are
not. Also, the three-pass protocols achieve (full) forward secrecy, the two-pass
protocols achieve weak forward secrecy, while the one-pass protocols have neither
full nor weak forward secrecy. Thus it is conceivable that reusing static public
keys results in a situation where a stronger protocol may inherit the weaknesses
of a protocol that was not intended to provide certain security attributes.

The remainder of this paper is organized as follows. In §2 we give three ex-
amples of pairs of key agreement protocols where the protocols in each pair are
individually secure, but where one protocol in each pair becomes insecure when
static public keys are reused for both protocols in that pair. The first example
shows that the three-pass UM protocol as described in SP 800-56A [23] can be
successfully attacked if parties reuse their static key pairs with the one-pass UM
protocol described in [23]. Similarly, the three pass MQV protocol as described
in [23] can be successfully attacked if parties reuse their static key pairs with
the one-pass MQV protocol. In §3 we describe a ‘shared’ model — an enhance-
ment of the extended Canetti-Krawczyk security model and associated definition
[7,14] that aims to capture the assurances guaranteed by multiple key agreement
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protocols when each party uses the same static key pair in all the protocols. §4
presents two protocols, which are proven secure in our shared model in [8].

Notation and terminology. Let G = 〈g〉 denote a multiplicatively-written cyclic
group of prime order q, and let G∗ = G \{1}. The Computational Diffie-Hellman
(CDH) assumption in G is that computing CDH(U, V ) = guv is infeasible given
U = gu and V = gv where u, v ∈R [1, q − 1]. The Decisional Diffie-Hellman
(DDH) assumption in G is that distinguishing DH triples (ga, gb, gab) from ran-
dom triples (ga, gb, gc) is infeasible. The Gap Diffie-Hellman (GDH) assumption
in G is that the CDH assumption holds even when a CDH solver is given a DDH
oracle that distinguishes DH triples from random triples.

With the exception of Protocols 1 and 2 in §2.3, all key agreement protocols
in this paper are of the Diffie-Hellman variety where the two communicating
parties Â and B̂ exchange static public keys. Party Â’s static private key is
an integer a ∈R [1, q − 1], and her corresponding static public key is A = ga.
Similarly, party B̂ has a static key pair (b, B), and so on. A certifying authority
(CA) issues certificates that binds a party’s identifier to its static public key. We
do not assume that the CA requires parties to prove possession of their static
private keys, but we do insist that the CA verifies that static public keys belong
to G∗. See §2.1 for a discussion on the format of certificates in the context of static
key reuse. A party Â called the initiator commences the protocol by selecting
an ephemeral (one-time) key pair and then sends the ephemeral public key (and
possibly other data) to the second party. In our protocols, the ephemeral private
key is either a randomly selected integer x ∈ [1, q − 1] or a randomly selected
binary string x̃ which is used together with the static private key to derive an
integer x ∈ [1, q − 1], and the corresponding ephemeral public key is X = gx.
Upon receipt of X , the responder B̂ selects an ephemeral private key y or ỹ and
sends Y = gy (and possibly other data) to Â; this step is omitted in the one-pass
UM protocol of §2.2. The parties may exchange some additional messages, after
which they accept a session key. We use I and R to denote the constant strings
“initiator” and “responder”. (The NIST SP 800-56A standard uses the strings
“KC 1 U” and “KC 1 V”.)

2 Examples

We provide three examples of interference between a pair of key agreement pro-
tocols in the situation where parties are allowed to reuse their static keys. Since
static keys are assumed to be certified, such reuse needs to take into account
certificate format; this issue is discussed in §2.1.

The pair of protocols considered in the first two examples in §2.2 and §2.3
belong to the same family — Unified Model for the former and the so-called
Generic 2-pass KEM for the latter. In each case we exploit — albeit in a different
manner — their structural similarity together with the fact that the same static
key is reused to mount an attack on one protocol based on our knowledge of a
session key in the other. Our third example in §2.4, in contrast, does not involve
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protocols of the same family. They are derived from two existing provably secure
protocols to emphasize the danger of static key reuse. The session keys in these
two protocols are computed in different fashions and the attack, though active,
does not involve any SessionKeyReveal query like the other two examples.

2.1 Certificate Format

As already mentioned, a certifying authority (CA) issues certificates binding a
user’s identifier to its static public key. We consider a scenario where parties are
permitted to reuse their static public keys in two key agreement protocols, Π1
and Π2. There are essentially two cases depending upon whether the certificate
also binds the protocol(s) for which that public key will be used. We emphasize
that our attacks are equally valid in both cases. However, a certificate formatted
according to Case 2 gives the adversary additional power, namely the ability to
replay the certificate, which is not possible in Case 1.

Case 1. The certificate specifies the protocol(s) for which the public key will be
used. This can be further sub-divided into two cases as follows.

(a) Parties obtain a single certificate for each static public key. For example,
if Â wishes to reuse her static public key A in both Π1 and Π2 then this
information should be included in Â’s certificate for A. When another party
B̂ wishes to establish a session key with Â using Π1, then he will learn from
Â’s certificate that Â reuses the public key A in Π2.

(b) Parties obtain separate certificates for each protocol pertaining to the same
static public key. If Â wishes to reuse her static public key A in both Π1 and
Π2 then she obtains two different certificates, where each certificate specifies
for which particular protocol A will be used. In this case, when B̂ wishes to
establish a session key with Â using Π1 then he retrieves Â’s certificate for
Π1 and may not be aware that A is being reused in Π2.

All three examples of protocol interference mentioned in this section work in
either of these subcases. In the first two examples both parties have to reuse
their static keys in the two protocols. An interesting feature of the third example,
which distinguishes it from the other two examples, is that even if only one of
the parties reuses its static key amongst the two protocols then that will lead to
the compromise of the session key at another party in one of the protocols even
though that party does not reuse its static key.

Case 2. The certificate does not specify for which protocol(s) the public key will
be used. When Â obtains a certificate for her public key A then the certificate
itself does not contain any information about the protocol(s) for which A will
be used. For example, Â can reuse the public key in both Π1 and Π2 or use it
only in one protocol. Suppose, Â reserves the public key A for use in Π1 only.
Since the certificate on A does not bind it to Π1, an adversary can easily pass it
as the public key of Â in Π2. In this scenario, the attacks described here work
even if none of the parties reuse their public key in more than one protocol.
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2.2 The One-Pass and Three-Pass Unified Model Protocols

The ‘unified model’ is a family of two-party Diffie-Hellman key agreement pro-
tocols that has been standardized in ANSI X9.42 [1], ANSI X9.63 [2], and NIST
SP 800-56A [23]. In [23], the one-pass protocol is called ‘dhHybridOneFlow’ when
the underlying group G is a DSA-type group, and ‘One-Pass Unified Model’ when
G is an elliptic curve group. One-pass UM is suitable for applications such as
email, where the intended receiver is not online and therefore unable to con-
tribute an ephemeral key. In [23], the three-pass protocol, which consists of the
two-pass protocol combined with bilateral key confirmation, is called ‘dhHybrid1’
when G is a DSA-type group, and ‘Full Unified Model’ when G is an elliptic curve
group.

One-pass UM. The protocol is depicted in Figure 1. Here, keydatalen is an in-
teger that indicates the bitlength of the secret keying material to be generated,
AlgorithmID is a bit string that indicates how the deriving keying material will
be parsed and for which algorithm(s) the derived secret keying material will be
used, and Λ denotes optional public information that can be included in the key
derivation function H . The session key is κ1.

x, X

B̂, b, BÂ, a, A

κ1 = H(gxb, gab, keydatalen, AlgorithmID, Â, B̂, Λ)

Â, X

Fig. 1. The one-pass UM protocol

Three-pass UM. The protocol is depicted in Figure 2. Here, MAC is a message
authentication code scheme such as HMAC, and Λ1 and Λ2 are optional strings.
The session key is κ2, whereas κ′ is an ephemeral secret key used to authenticate
the exchanged ephemeral public keys and the identifiers.

Â, X

y, Y

B̂, b, BÂ, a, A

x, X

(κ′, κ2) = H(gxy , gab, keydatalen, AlgorithmID, Â, B̂, Λ)

TA=MACκ′ (I, Â, B̂, X, Y, Λ2)

B̂, Y , TB=MACκ′ (R, B̂, Â, Y, X, Λ1)

Fig. 2. The three-pass UM protocol
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The attack. We describe an attack against the three-pass UM protocol in the
situation where parties reuse their static keys in the one-pass UM protocol. The
attack makes the following plausible assumptions. First, the one-pass protocol
is used to derive 256 bits of keying material κ1, which is then divided into a
128-bit HMAC key κm and a 128-bit AES key κe; these keys are subsequently
used in an application to encrypt and authenticate data. Second, the three-pass
protocol uses HMAC with a 128-bit key κ′ for key confirmation, and produces
a 128-bit AES session key κ2. Third, both protocols use the same AlgorithmID
— this is consistent with the description of the AlgorithmID field in [23, Section
5.8.1] where it is stated:

For example, AlgorithmID might indicate that bits 1-80 are to be used
as an 80-bit HMAC key and that bits 81-208 are to be used as a 128-bit
AES key.

Finally, it is assumed that the attacker is able to use a SessionKeyReveal query
to obtain session keys produced by the one-pass protocol, but is unable to obtain
session keys generated by the three-pass protocol; this assumption is reasonable
if the one-pass protocol is used in relatively low security applications, whereas
the three-pass protocol is reserved for high security applications.1

The attack proceeds as follows:

1. The adversary M initiates a session sid1 of the three-pass UM protocol at
Â and receives (Â, X).

2. M forwards (Â, X) to B̂ in a session sid2 of the one-pass UM protocol.
3. B̂ computes a session key κ1 following the one-pass UM protocol.
4. M issues a SessionKeyReveal query to session sid2 at B̂ to obtain κ1 =

(κm, κe).
5. M sets Y = B; note that κ1 = (κ′, κ2) under our assumptions. M then

computes TB using κ′ and sends (B̂, Y, TB) to session sid1 at Â.
6. Â computes a session key κ2 following the three-pass UM protocol. Note

that M knows this session key.

We note that such an attack can also be launched on the three-pass MQV pro-
tocol as specified in [23] if parties reuse their static keys with the one-pass MQV
protocol. Such protocol interference attacks can be prevented by following the
general advice given in [13] – each protocol should have its own unique identifier
that is included in the cryptographic operations. In the case of the one-pass and
three-pass UM protocols, the attack we described can be thwarted by including
the protocol identifiers in the optional input Λ to the key derivation function. As
a further safeguard against potential interference attacks with other protocols,
the protocol identifier can be included in the optional inputs Λ1 and Λ2 to the
MAC algorithm.
1 A well-designed key agreement protocol should achieve its security goals even if an

attacker is able to learn some session keys. This is because a key agreement protocol
cannot guarantee that session keys won’t be improperly used in an application (e.g.,
to encrypt messages with a weak symmetric-key encryption scheme, or in applica-
tions where expired session keys may not be securely destroyed).
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2.3 Generic 2-Pass KEM Protocols

Boyd et al. [6] proposed two generic key agreement protocols based on a pseudo-
random function family and an arbitrary identity-based key encapsulation mech-
anism (IB-KEM) that is secure against chosen-ciphertext attack. Both protocols
are proven secure in the Canetti-Krawczyk security model [7], which the authors
extend to the identity-based setting. The second protocol provides a stronger
security guarantee, namely weak forward secrecy under the DDH assumption.
The authors also mention that their protocols can be easily adapted to the PKI
setting where the IB-KEM is replaced by a CCA-secure KEM. We show that a
modified version of the second protocol can be easily broken if the same static
key is reused by the parties amongst the protocols. We emphasize that our at-
tack does not illustrate any weakness in the Boyd et al. protocols which were
designed and analyzed for the stand-alone setting.

In the following description Enc() (resp. Dec()) is the encapsulation (resp.
decapsulation) algorithm of the underlying IB-KEM. The function Exctκ(·) is
chosen uniformly at random from a strong (m, ε)-strong randomness extractor,
while ExpdK(·) is a pseudorandom function family. See Definitions 2, 3 and
4 in [6] for their exact descriptions. In the protocol descriptions, dA and dB

denote the private keys of Â and B̂, while pk is the master public key of the Key
Generation Center (KGC) of the underlying IB-KEM.

Protocol 1. In Figure 3, the actual order in which the parties Â, B̂ exchange
their messages is irrelevant. If Â < B̂ under some predetermined lexicographic
ordering, then the session identifier is defined as s = Â||CA||B̂||CB . We note in
passing that this definition of session identifier deviates from that in the original
CK model [7]. In particular, the session initiator cannot know in advance the
complete session identifier.

B̂, CB

Â, CA B̂, dB

(CA, KA) ∈R Enc(pk, B̂)

Â, dA

(CB, KB) ∈R Enc(pk, Â)

Â computes session key κ1 as follows: B̂ computes session key κ1 as follows:
1. KB = Dec(pk, dA, CB)
2. K′

A = Exctκ(KA)
3. K′

B = Exctκ(KB)
4. s = Â||CA||B̂||CB

5. κ1 = ExpdK′
A
(s) ⊕ ExpdK′

B
(s)

1. KA = Dec(pk, dB , CA)
2. K′

B = Exctκ(KB)
3. K′

A = Exctκ(KA)
4. s = Â||CA||B̂||CB

5. κ1 = ExpdK′
B

(s) ⊕ ExpdK′
A

(s)

Fig. 3. Protocol 1 from [6]

Protocol 2. The description of Protocol 2 in Figure 4 differs slightly from the de-
scription in [6] in that session identifiers are defined in a manner analogous to that
of Protocol 1. Incidentally, this modified version is identical to an earlier version
of Protocol 2 (see the March 1, 2008 version of [6] in the IACR ePrint Archive).
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(CB, KB) ∈R Enc(pk, Â)

y, Y

B̂, dB

(CA, KA) ∈R Enc(pk, B̂)

x, X

Â, dA Â, CA, X

B̂, CB , Y

Â computes session key κ2 as follows: B̂ computes session key κ2 as follows:
1. KB = Dec(pk, dA, CB)
2. K′

A = Exctκ(KA)
3. K′

B = Exctκ(KB)
4. K′

AB = Exctκ(Y x)
5. s = Â||CA||B̂||CB

6. κ2 = ExpdK′
A
(s) ⊕ ExpdK′

B
(s)⊕

ExpdK′
AB

(s)

1. KA = Dec(pk, dB , CA)
2. K′

B = Exctκ(KB)
3. K′

A = Exctκ(KA)
4. K′

BA = Exctκ(Xy)
5. s = Â||CA||B̂||CB

6. κ2 = ExpdK′
B

(s) ⊕ ExpdK′
A

(s)⊕
ExpdK′

BA
(s)

Fig. 4. Protocol 2 from [6]

The attack. The following attack can be mounted against Protocol 2 when static
keys are reused in both the protocols.

1. The adversaryM initiates a session of Protocol 1 at Â and receives (Â, CA).
2. M chooses (x, X) and sends (Â, CA, X) to B̂ in a session of Protocol 2.
3. B̂ responds with (B̂, CB , Y ) and accepts a session key κ2 following Proto-

col 2.
4. M forwards (B̂, CB) to Â in Protocol 1.
5. Â computes a session key κ1 following Protocol 1.
6. M issues a SessionKeyReveal query to Â to obtain κ1.
7. M computes κ2 given κ1 and x.

Remark 1. For the above attack to be successful, it is necessary that both parties
reuse their static keys (and the same IB-KEM, Exctκ(·), and ExpdK(·)). In the
identity-based setting, the unique identity of a user is treated as her public key
and the corresponding private key is derived from this identity string by the
KGC. It is natural in such a setting to use the same identity-private key pair for
two different key agreement protocols.

Remark 2. The above attack per-se does not work against Protocol 2 as it is
described in [6]. However, we would like to note that the (informal) protocol
description in [6] is not exactly suitable for analysis in the Canetti-Krawczyk
model. If instead we define the session identifier s according to the original
Canetti-Krawczyk model, then the security argument remains unaffected in the
stand-alone setting and the attack goes through if the static key is reused.

2.4 KEA+h and τ

We provide another example of a pair of protocols where reuse of the static key
pair by one of the communicating parties leads to the compromise of a session
key of the other communicating party in one of the protocols.
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KEA+h. Lauter and Mityagin introduced the authenticated key exchange
(AKE) protocol KEA+ in [15] — this is a modification of the KEA proto-
col introduced earlier by the National Security Agency [21]. They showed that
KEA+ achieves, under the GDH and random oracle assumptions, what they call
AKE security against a strong adversary along with a form of weak forward se-
crecy and resistance to key compromise impersonation. Figure 5 depicts a slight
modification of the KEA+ protocol, which we call the KEA+h protocol, where
the key derivation function is modified by introducing a new hash function H1.
Interested readers are referred to [15] for a description of the original KEA+ and
its security argument. We note that it is easy to verify that KEA+h achieves all
the security attributes of KEA+.

x, X

Â, X B̂, b, B

y, Y

Â, a, A

B̂, Y

κ = H(H1(gay), H1(gbx), Â, B̂)

Fig. 5. Protocol KEA+h

τ-Protocol. The τ -protocol is a new protocol derived from the μ-protocol (see [20,
§3.1]) augmented with key confirmation. It was designed to highlight the prob-
lems that can arise from reusing the same static key among different protocols.
The τ -protocol is informally presented in Figure 6, and formally given in Ap-
pendix A. It uses an MTI/C0-like exchange of messages [17] to confirm the re-
ceipt of ephemeral public keys. It can be proven secure in the Canetti-Krawczyk
model [7] under the GDH and random oracle assumptions — the proof is straight-
forward but tedious, and so it is omitted.

y, Y

B̂, b, B

κ=H(gxy, X, Y )

Y = H1(Y a)

B̂, Y , TB=H2(gab, Y, B̂, Â,R), X=H1(Xb)

Â, X, TA=H2(gab, X, Â, B̂, I)Â, a, A

x, X

Fig. 6. Protocol τ

The attack. We can mount the following attack against KEA+h when one of
the communicating parties (namely B̂) shares a static key with the τ protocol.

1. The adversary M initiates a KEA+h session at Â with B̂ as the peer and
obtains the outgoing ephemeral public key X .

2. M controls a party Ê with static key pair (e, E = ge) and initiates a τ -session
with B̂ by sending the message X , TE = H2(Be, X, Ê, B̂, I).
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3. B̂ responds with (Y, TB, H1(Xb)) from which M obtains H1(Xb).
4. M selects an ephemeral key pair (z, Z = gz) and sends (B̂, Z) to Â in

KEA+h.
5. Â computes the KEA+h session key as κ = H(H1(Za), H1(Bx), Â, B̂).
6. M computes the same session key as κ = H(H1(Az), H1(Xb), Â, B̂).

Note that the attack does not rely on Â reusing her static public key A in the two
protocols even when Â’s certificate for A does bind it to a particular protocol,
thus preventing the adversary from passing A as the public key of the other
protocol. It suffices that B̂ shares his static key between the two protocols to
attack a KEA+h session at Â. In fact, it is not difficult to imagine a scenario
where Â uses the KEA+h protocol in a stand-alone setting while B̂ uses both
KEA+h and τ and moreover reuses his static key in the two protocols. Â may
not even be aware of this reuse on the part of B̂ in case B̂ uses two separate
certificates for KEA+h and τ . Under such a circumstance, Â will end up getting
her session key compromised by just trying to establish a KEA+h session with B̂.
Also note that adding the protocol identifier as an argument in the key derivation
function H for KEA+h is not sufficient to prevent this kind of attack. We will
revisit the issue of adding protocol identifiers in the key derivation function
as a safeguard against protocol interference attacks in more detail in the next
section.

3 Security Model

This section describes a “shared” model and associated security definition that
aims to capture the security assurances guaranteed by d distinct key agreement
protocols Π1, Π2, . . . , Πd, in the case where each party uses the same static
key pair in all the d protocols. The individual protocols are assumed to be of
the two-party Diffie-Hellman variety, where the communicating parties Â and
B̂ exchange static and ephemeral public keys (and possibly other data) and
use the static and ephemeral keying information to derive a session key κ ∈
{0, 1}λ. The model enhances the extended Canetti-Krawczyk model [7,14], and
the description closely follows that of [20] in the pre-specified peer model.

Notation. We assume that messages are represented as binary strings. If m is
a vector then #m denotes the number of its components. Two vectors m1 and
m2 are said to be matched, written m1 ∼ m2, if the first t = min{#m1, #m2}
components of the vectors are pairwise equal as binary strings.

Session creation. A party Â can be activated via an incoming message to create
a session. The incoming message has one of the following forms: (i) (Πi, Â, B̂)
or (ii) (Πi, Â, B̂, In), where Πi identifies which protocol is activated. If Â was
activated with (Πi, Â, B̂) then Â is the session initiator ; otherwise Â is the
session responder.
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Session initiator. If Â is the session initiator then Â creates a separate ses-
sion state where session-specific short-lived data is stored, and prepares a re-
ply Out that includes an ephemeral public key X . The session is labeled ac-
tive and identified via a (temporary and incomplete) session identifier sid =
(Πi, Â, B̂, I, Comm) where Comm is initialized to Out. The outgoing message is
(Πi, B̂, Â, Out).

Session responder. If Â is the session responder then Â creates a separate session
state and prepares a reply Out that includes an ephemeral public key X . The
session is labeled active and identified via a (temporary and incomplete) session
identifier sid = (Πi, Â, B̂,R, Comm) where Comm = (In, Out). The outgoing
message is (Πi, B̂, Â, I, In, Out).

Session update. A party Â can be activated to update a session via an incom-
ing message of the form (Πi, Â, B̂, role, Comm, In), where role ∈ {I,R}. Upon
receipt of this message, Â checks that she owns an active session with iden-
tifier sid = (Πi, Â, B̂, role, Comm); except with negligible probability, Â can
own at most one such session. If no such session exists then the message is re-
jected, otherwise Â updates Comm by appending In. The session identifier sid is
(Πi, Â, B̂, role, Comm) where the updated Comm is used. If the protocol requires
a response by Â, then Â prepares the required response Out; the outgoing mes-
sage is (Πi, B̂, Â, role, Comm, Out) where role is B̂’s role as perceived by Â. The
session identifier is further updated by appending Out to Comm. If the protocol
specifies that no further messages will be received, then the session completes
and accepts a session key.

Aborted sessions. A protocol may require parties to perform some checks on in-
coming messages. For example, a party may be required to perform some form of
public key validation or verify a signature. If a party is activated to create a ses-
sion with an incoming message that does not meet the protocol specifications, then
that message is rejected and no session is created. If a party is activated to update
an active session with an incoming message that does not meet the protocol spec-
ifications, then the party deletes all information specific to that session (including
the session state and the session key if it has been computed) and aborts the ses-
sion. Abortion occurs before the session identifier is updated. At any point in time
a session is in exactly one of the following states: active, completed, aborted.

Matching sessions. Since ephemeral public keys are selected at random on a per-
session basis, session identifiers are unique except with negligible probability. A
session sid with identifier (Πi, . . .) is called a Πi-session. Party Â is said to be
the owner of a session (Πi, Â, B̂, ∗, ∗). For a session (Πi, Â, B̂, ∗, ∗) we call B̂ the
session peer ; together Â and B̂ are referred to as the communicating parties. Let
sid = (Πi, Â, B̂, roleA, CommA) be a session owned by Â, where roleA ∈ {I,R}.
A session sid∗ = (Πj , Ĉ, D̂, roleC , CommC), where roleC ∈ {I,R}, is said to be
matching to sid if Πi = Πj , Â = D̂, B̂ = Ĉ, roleA �= roleC , and CommA ∼
CommC . It can be seen that the session sid, except with negligible probability,
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can have more than one matching session if and only if CommA has exactly one
component, i.e., is comprised of a single outgoing message.

Adversary. The adversary M is modeled as a probabilistic Turing machine and
controls all communications. Parties submit outgoing messages toM, who makes
decisions about their delivery. The adversary presents parties with incoming
messages via Send(message), thereby controlling the activation of parties. The
adversary does not have immediate access to a party’s private information, how-
ever in order to capture possible leakage of private information M is allowed to
make the following queries:

– StaticKeyReveal(Â): M obtains Â’s static private key.
– EphemeralKeyReveal(sid): M obtains the ephemeral private key held by

session sid. We will henceforth assume that M issues this query only to
sessions that hold an ephemeral private key.

– SessionKeyReveal(sid): If sid has completed then M obtains the session key
held by sid. We will henceforth assume that M issues this query only to
sessions that have completed.

– EstablishParty(Â, A): This query allows M to register an identifier Â and a
static public key A on behalf of a party. The adversary totally controls that
party, thus permitting the modeling of attacks by malicious insiders. Parties
that were established by M using EstablishParty are called corrupted or
adversary controlled. If a party is not corrupted it is said to be honest.

Adversary’s goal. To capture indistinguishability M is allowed to make a spe-
cial query Test(sid) to a ‘fresh’ session sid. In response, M is given with equal
probability either the session key held by sid or a random key. If M guesses
correctly whether the key is random or not, then the adversary is said to be suc-
cessful and meet its goal. Note that M can continue interacting with the parties
after issuing the Test query, but must ensure that the test session remains fresh
throughout M’s experiment.

Definition 1 (Π-fresh). Let sid be the identifier of a completed Π-session,
owned by an honest party Â with peer B̂, who is also honest. Let sid∗ be the
identifier of the matching session of sid, if the matching session exists. Define sid
to be Π-fresh if none of the following conditions hold:

1. M issued SessionKeyReveal(sid) or SessionKeyReveal(sid∗) (if sid∗ exists).
2. sid∗ exists and M issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(sid).
(b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and M issued one of the following:
(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(sid).
(b) StaticKeyReveal(B̂).

Definition 2. Let Π1, Π2, . . . , Πd be a collection of d distinct key agreement
protocols. The protocol collection is said to be secure in the shared model if the
following conditions hold:
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1. For any i ∈ [1, d] if two honest parties complete matching Πi-sessions then,
except with negligible probability, they both compute the same session key.

2. For any i ∈ [1, d] no polynomially bounded adversary M can distinguish the
session key of a fresh Πi-session from a randomly chosen session key, with
probability greater than 1

2 plus a negligible fraction.

We emphasize that our shared model assumes that all parties reuse their static
keys in each of the d protocols. If a collection Π1, Π2, . . . , Πd of key agreement
protocols is shown to be secure with respect to Definition 2, then each of the
protocols Πi is individually secure in the extended Canetti-Krawczyk model.
Moreover, the collection of protocols is also secure in the situation where a subset
of parties use their static keys in only one protocol (and do not participate in
runs of the other protocols); this was the setting of the attack in §2.4.

4 The NAXOS-C and DHKEA Protocols

The purpose of presenting the NAXOS-C and DHKEA protocols is to demon-
strate that the security definition of §3 is useful (and not too restrictive) in the
sense that there exist practical protocols that meet the definition under reason-
able assumptions. The protocols were designed to allow a straightforward (albeit
tedious) reductionist security argument, and have not been optimized.

In the protocol descriptions and the security argument, γ is the security pa-
rameter and H : {0, 1}∗ → {0, 1}γ × {0, 1}γ, H1 : {0, 1}∗ → [1, q − 1] and
H2 : {0, 1}∗ → {0, 1}2γ are hash functions.

(κm, κ) = H(gay , gbx, gxy, Â, B̂, X, Y, Π1)

x̃, X = gH1(a,x̃) ỹ, Y = gH1(b,ỹ)

Â, X B̂, b, BÂ, a, A

Â, TA=H2(κm, I, Â, B̂, X, Y, Π1)

B̂, Y , TB=H2(κm,R, B̂, Â, Y, X, Π1)

Fig. 7. The NAXOS-C protocol

Definition 3 ([20]). The NAXOS-C protocol, identified by Π1, proceeds as
follows (cf. Figure 7):

1. Upon receiving (Π1, Â, B̂, I), party Â (the initiator) does the following:
(a) Select an ephemeral private key x̃ ∈R {0, 1}γ and compute X = gH1(a,x̃).
(b) Initialize the session identifier to (Π1, Â, B̂, I, X).
(c) Send (Π1, B̂, Â,R, X) to B̂.

2. Upon receiving (Π1, B̂, Â,R, X), party B̂ (the responder) does the following:
(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key ỹ ∈R {0, 1}γ, and compute y = H1(b, ỹ)

and Y = gy.
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(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.
(d) Compute (κm, κ)= H(σ1, σ2, σe, Â, B̂, X, Y, Π1) and TB = H2(κm,R, B̂,

Â, Y, X, Π1).
(e) Destroy ỹ, y, σ1, σ2 and σe.
(f) Initialize the session identifier to (Π1, B̂, Â,R, X, Y, TB).
(g) Send (Π1, Â, B̂, I, X, Y, TB) to Â.

3. Upon receiving (Π1, Â, B̂, I, X, Y, TB), party Â does the following:
(a) Verify that an active (Π1, Â, B̂, I, X) session exists and Y ∈ G∗.
(b) Compute x = H1(a, x̃).
(c) Compute σ1 = Y a, σ2 = Bx and σe = Y x.
(d) Compute (κm, κ) = H(σ1, σ2, σe, Â, B̂, X, Y, Π1).
(e) Destroy x̃, x, σ1, σ2 and σe.
(f) Verify that TB = H2(κm,R, B̂, Â, Y, X, Π1).
(g) Compute TA = H2(κm, I, Â, B̂, X, Y, Π1).
(h) Destroy κm.
(i) Send (Π1, B̂, Â,R, X, Y, TB, TA) to B̂.
(j) Update the session identifier to (Π1, Â, B̂, I, X, Y, TB, TA) and complete

the session by accepting κ as the session key.
4. Upon receiving (Π1, B̂, Â,R, X, Y, TB, TA), party B̂ does the following:

(a) Verify that an active (Π1, B̂, Â,R, X, Y, TB) session exists.
(b) Verify that TA = H2(κm, I, Â, B̂, X, Y, Π1).
(c) Destroy κm.
(d) Update the session identifier to (Π1, B̂, Â,R, X, Y, TB, TA) and complete

the session by accepting κ as the session key.

If any of the verifications fail, the party erases all session-specific information
and marks the session as aborted.

Definition 4 (DHKEA). The DHKEA protocol, identified by Π2, proceeds
as follows (cf. Figure 8):

1. Upon receiving (Π2, Â, B̂, I), Â (the initiator) does the following:
(a) Select an ephemeral private key x̃ ∈R {0, 1}γ and compute X = gH1(a,x̃).
(b) Initialize the session identifier to (Π2, Â, B̂, I, X).
(c) Send (Π2, B̂, Â,R, X) to B̂.

2. Upon receiving (Π2, B̂, Â,R, X), B̂ (the responder) does the following:

(κm, κ) = H(gxy , Â, B̂, X, Y, Π2)

Â, X

Â, TA=H2(κm, gay , I, Â, B̂, X, Y, Π2)

B̂, Y , TB=H2(κm, gbx,R, B̂, Â, Y, X, Π2)
ỹ, Y = gH1(b,ỹ)

B̂, b, B

x̃, X = gH1(a,x̃)

Â, a, A

Fig. 8. The DHKEA protocol
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(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key ỹ ∈R {0, 1}γ, and compute y = H1(b, ỹ)

and Y = gy.
(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.
(d) Compute (κm, κ) = H(σe, Â, B̂, X, Y, Π2) and TB = H2(κm, σ2,R, B̂, Â,

Y, X, Π2).
(e) Destroy ỹ, y, σ1, σ2 and σe.
(f) Initialize the session identifier to (Π2, B̂, Â,R, X, Y, TB).
(g) Send (Π2, Â, B̂, I, X, Y, TB) to Â.

3. Upon receiving (Π2, Â, B̂, I, X, Y, TB), Â does the following:
(a) Verify that an active (Π2, Â, B̂, I, X) session exists and Y ∈ G∗.
(b) Compute x = H1(a, x̃).
(c) Compute σ1 = Y a, σ2 = Bx and σe = Y x.
(d) Compute (κm, κ) = H(σe, Â, B̂, X, Y, Π2).
(e) Destroy x̃, x, σ1, σ2 and σe.
(f) Verify that TB = H2(κm, σ2,R, B̂, Â, Y, X, Π2).
(g) Compute TA = H2(κm, σ1, I, Â, B̂, X, Y, Π2).
(h) Destroy κm.
(i) Send (Π2, B̂, Â,R, X, Y, TB, TA) to B̂.
(j) Update the session identifier to (Π2, Â, B̂, I, X, Y, TB, TA) and complete

the session by accepting the session key κ.
4. Upon receiving (Π2, B̂, Â,R, X, Y, TB, TA), B̂ does the following:

(a) Verify that an active (Π2, B̂, Â,R, X, Y, TB) session exists.
(b) Verify that TA = H2(κm, σ1, I, Â, B̂, X, Y, Π2).
(c) Destroy κm.
(d) Update the session identifier to (Π2, B̂, Â,R, X, Y, TB, TA) and complete

the session by accepting the session key κ.

If any of the verifications fail, the party erases all session-specific information
and marks the session as aborted.

A proof of the following can be found in [8].

Theorem 1. If H, H1 and H2 are modeled as random oracles, and G is a
group where the GDH assumption holds, then the pair of protocols (NAXOS-
C,DHKEA) is secure in the shared model.

5 Concluding Remarks

Our shared model assumes that each party has exactly one static key pair, which
is reused in all the d key agreement protocols. It would be interesting to consider
the more general scenario where each party may have multiple static key pairs,
each of which may be reused for a subset of the d protocols. A further refinement
of the shared model worthy of study is for the situation in which the protocols
have different security attributes, as is the case with one-pass and three-pass
protocols.
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A The τ Protocol

Let γ denote the security parameter. In the protocol description, H : {0, 1}∗ →
{0, 1}γ and H2 : {0, 1}∗ → {0, 1}γ are hash functions. The full description of the
τ protocol is in the original Canetti-Krawczyk model [7] in which a session has
identifier (Â, B̂, Ψ, role), where Ψ is a string that is unique to that session and
its matching session.

Definition 5 (τ-protocol). The protocol proceeds as follows:

1. Upon activation (Â, B̂, Ψ, I), Â (the initiator) does the following:
(a) Create a session with identifier (Â, B̂, Ψ, I), provided that no session

with identifier (Â, B̂, Ψ, ∗) exists.
(b) Select an ephemeral private key x ∈R [1, q − 1] and compute the corre-

sponding ephemeral public key X = gx.
(c) Compute σs = Ba and commitment for X , TA = H2(σs, Ψ, X, Â, B̂, I).
(d) Destroy σs and send (B̂, Â, Ψ,R, X, TA) to B̂.

2. Upon activation (B̂, Â, Ψ,R, X, TA), B̂ (the responder) does the following:
(a) Create a session with identifier (B̂, Â, Ψ,R), provided that no session

with identifier (B̂, Â, Ψ, ∗) exists.
(b) Verify that X ∈ G∗.
(c) Compute σs = Ab and verify that TA = H2(σs, Ψ, X, Â, B̂, I).
(d) Select an ephemeral private key y ∈R [1, q − 1] and compute the corre-

sponding ephemeral public key Y = gy.

http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://eprint.iacr.org/2008/466
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(e) Compute commitment for Y , TB = H2(σs, Ψ, Y, B̂, Â,R) and verification
value X = H1(Xb).

(f) Destroy σs and send (Â, B̂, Ψ, I, Y, TB, X) to Â.
3. Upon activation (Â, B̂, Ψ, I, Y, TB, X), Â does the following:

(a) Verify that (Â, B̂, Ψ, I) exists and Y ∈ G∗.
(b) Compute σs = Ba and verify that TB = H2(σs, Ψ, Y, B̂, Â,R).
(c) Verify that X = H1(Bx).
(d) Compute verification value Y = H1(Y a).
(e) Compute the session key κ = H(Y x, X, Y ).
(f) Destroy σs and x.
(g) Send (B̂, Â, Ψ,R, Y ) to B̂.
(h) Complete session (Â, B̂, Ψ, I) with output (Â, B̂, Ψ, κ).

4. Upon activation (B̂, Â, Ψ,R, Y ), B̂ does the following:
(a) Verify that (B̂, Â, Ψ,R) exists and that the session state contains X .
(b) Verify that Y = H1(Ay).
(c) Destroy y.
(d) Compute the session key κ = H(Xy, X, Y ).
(e) Complete the session (B̂, Â, Ψ,R) with output (B̂, Â, Ψ, κ).

If any of the verifications fail, the party erases all session-specific information
including the corresponding ephemeral private key.
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Abstract. We survey the set of all prior two-party certificateless key
agreement protocols available in the literature at the time of this work.
We find that all of the protocols exhibit vulnerabilities of varying sever-
ity, ranging from lack of resistance to leakage of ephemeral keys up to
(in one case) a man-in-the-middle attack. Many of the protocols admit
key-compromise impersonation attacks despite claiming security against
such attacks. In order to describe our results rigorously, we introduce
the first known formal security model for two-party authenticated cer-
tificateless key agreement protocols. Our model is based on the extended
Canetti-Krawczyk model for traditional authenticated key exchange, ex-
cept that we expand the range of allowable attacks to account for the
increased flexibility of the attacker in the certificateless setting.
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1 Introduction

Certificateless public key cryptography was introduced by Al-Riyami and Pater-
son [1] to serve as a middle ground between traditional public key cryptography
based on PKI and the newer notion of identity-based cryptography in which a
third party generates users’ private keys. In certificateless public key cryptogra-
phy, a user generates his private key by combining a secret value with a partial
private key provided by the Key Generation Center (KGC). Similarly, to gen-
erate a public key, the user combines his secret value with public information
from the KGC. Unlike in the case of identity-based cryptography, public keys
are no longer easily computable by third parties, so they must be made available
in some other way, such as via a public directory. However, once made available,
the public keys do not need to be validated in any way; the security model for
certificateless public key cryptography assumes that an adversary can replace
public keys at will. Dent [4] has published a survey of the various certificateless
public key encryption schemes that have been published since the introductory
work of Al-Riyami and Paterson.
� The authors were partially supported by NSERC.
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In this work we focus on two-party key agreement schemes in the certificateless
setting. In such schemes, two parties can establish a shared secret via a certifi-
cateless public key protocol. Work in the area of certificateless key agreement
protocols is relatively limited. At the time this work was performed, we were
aware of only five such schemes: one from the original Al-Riyami and Paterson
paper [1], and four others by Mandt and Tan [11], Wang et al. [18], Shao [14],
and Shi and Lee [15]. None of these works define a security model and therefore
all of them lack a rigorous proof of security.

The contributions of this article are twofold. In the first part of the paper, we
introduce a formal security model for certificateless authenticated key exchange
protocols. Our security model is an extended version of the extended Canetti
and Krawczyk model [7] for traditional authenticated key exchange. The modi-
fications consist of enhancing the powers of the adversary to take into account
the greater capabilities afforded in the certificateless setting. In the second part
of the paper, we examine all five extant two-party certificateless authenticated
key agreement protocols in the context of our security model. We find that all
existing certificateless protocols allow for practical attacks of varying severity,
ranging from relatively minor attacks involving leaked ephemeral secrets, up to
(in one case) an outright man-in-the-middle attack. These results indicate that
more work is required in order to fully realize the benefits of the certificateless
paradigm in the context of key agreement.

We remark that, based upon an earlier unpublished version of this work [16],
Lippold et al. [9] have published a subsequent security model for certificate-
less key agreement schemes, as well as a two-party certificateless key agreement
scheme which is provably secure in their model (as well as ours). In Section 4
we explain the relationship between our security model and theirs. The prov-
able security of their protocol means that, in a theoretical sense, the question
of constructing a provably secure certificateless key agreement scheme in the
context of a suitable security model has been settled. However, their protocol
is slow, requiring each party to perform 10 pairing operations in order to com-
pute the common key (or 5 at the cost of a stronger assumption). Therefore, it
remains an open question whether there exists a provably secure certificateless
key agreement protocol having minimal performance penalty compared to the
alternatives. We discuss these and other issues in Section 6.

2 Background

We recall the standard terminology of key agreement protocols. A key establish-
ment protocol is a protocol in which two or more parties gain access to a shared
secret. If the shared secret is a function of information provided by and/or asso-
ciated with each party (as opposed to the case where only one party is involved
in choosing and/or obtaining the secret), we say the protocol is a key agreement
protocol (KAP). We concern ourselves mainly with the two-party dynamic key
agreement setting, wherein the established key varies with each execution. We
refer to a protocol run as a session, and each message transmitted from one
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party to another as a flow. The shared secret resulting from a session is gener-
ally called (or used to determine) a session key. Protocols generally assume users
(or pairs of users) have long-term keys, which are static secrets that are usually
precomputed and stored securely. These are often used in conjunction with ran-
domized secret input, which we refer to as ephemeral or short-term keys. Many
key agreement protocols also assume the existence of a centralized server, known
as a Key Generation Center (KGC). We refer to this entity’s secret information
as the master secret key. We assume that the KGC communicates with users via
a secure channel, whereas protocol flows are sent via an open channel. That is,
eavesdroppers have no access to KGC/user communication, but can easily read
anything sent between protocol participants.

2.1 Bilinear Pairings

All of the protocols that we discuss make use of bilinear pairings. Let q be a
prime, G a cyclic additive group of order q generated by P , and GT a multi-
plicative group of order q. Let e : G×G → GT be an admissible pairing, namely,
one where e satisfies the following properties:

1. Bilinearity: ∀P, Q, R ∈ G we have both e(P + Q, R) = e(P, R)e(Q, R) and
e(P, Q + R) = e(P, Q)e(P, R).

2. Non-degeneracy: For all P �= 1G, we have e(P, P ) �= 1GT .
3. The pairing is efficiently computable.

The hardness assumption required for the pairing varies depending on the pro-
tocol. The survey article of Boyen [3] contains a list of the standard assumptions
used in pairing-based protocols.

3 Security Attributes

Authenticated key agreement protocols satisfy the property that an entity is only
able to compute a shared secret key if it holds the claimed identity. In particular,
key agreement protocols should not allow an adversary to impersonate a user
without that user’s private key. The following security attributes apply to key
agreement protocols in general:

– Known session key security: Key agreement protocols should be dynamic:
each protocol run should result in a unique session key. An attacker who
learns a given number of session keys should not be able to discover other
session keys.

– Forward secrecy: Given the long-term private keys of one or more users, it is
clearly desirable that an attacker not be able to determine previously estab-
lished session keys. Perfect forward secrecy implies an attacker, even armed
with all participants’ long-term private keys, cannot determine old session
keys. Partial forward secrecy implies an attacker armed with some, but not
all, participants’ long-term private keys cannot determine old session keys.
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Similarly, KGC forward secrecy deals with the case in which the attacker
has the master secret key. Weak perfect forward secrecy deals with the case
where all long-term private keys are known, but the attacker was not ac-
tively involved in choosing ephemeral keys during the sessions of interest. It
has been shown by Krawczyk [6] that no 2-flow authenticated key agreement
protocol can do better than this weaker version of forward secrecy.

– Unknown key-share security: It should be impossible to coerce A into think-
ing he is sharing a key with B, when he is actually sharing a key with
another (honest) user C. That is, it should not be possible for A to believe
he is sharing a key with B �= C, while C correctly thinks the key is shared
with A.

– Resilience to key-compromise impersonation (KCI): If the long-term private
key of user A is compromised, the attacker should not be able to impersonate
another user B to A. Obviously, if a long-term private key of A is compro-
mised, we wish to replace this key as soon as possible, as the attacker can
certainly impersonate A to any other user; this property is nevertheless im-
portant in the sense that it minimizes the damage until the user can detect
that his key has been compromised.

– Resistance to leakage of ephemeral keys : If the attacker has access to the
ephemeral keys of a given protocol run, he should be unable to determine
the corresponding session key. As argued by Menezes and Ustaoglu [12],
adversaries may gain access to this information through a side-channel attack
or use of a weak random number generator; alternatively this information
might be stored insecurely. We refer to such attacks as known ephemeral key
attacks.

Additional security requirements arise in the case of certificateless key agreement
protocols. Since public keys are not validated as in ID-based schemes or tradi-
tional PKI, we must assume that an adversary can replace public keys at will,
and this attack must be incorporated into the security model. Now, if a KGC
replaces public keys, it will be able to impersonate any user, since it can easily
compute the corresponding private key. Thus, for all certificateless schemes, the
KGC can launch a man-in-the-middle attack. For this reason, security models
for certificateless schemes generally assume that the KGC never replaces public
keys. Al-Riyami and Paterson [2] argue that this amounts to roughly the same
amount of trust that is invested in a certificate authority (CA) in a traditional
PKI. They make the point that, while often not stated explicitly, we usually
trust that CAs do not produce certificates binding arbitrary public keys to a
given identity. In any case, CL-PKC amounts to less trust than in an ID-based
scheme, where the KGC has access to users’ private keys by definition.

One way to avoid the issue of the KGC replacing public keys is to bind a
user’s public and private keys, as noted in Al-Riyami and Paterson [1]. This
technique requires the user to send his fixed public key to the KGC, which is
then incorporated into the partial private key. The result is that there can be
only one working public key per user, so the existence of more than one implies
that the KGC created more than one partial private key binding the user to
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different public keys. In fact, with this binding technique, the partial private
keys do not need to be kept secret. The corresponding unique public key was
computed with the user’s secret value—this value is necessary to compute the
full private key and cannot be determined from the exposed partial private key.
While this binding technique has certain advantages, it comes at the added cost
of reduced flexibility. With the binding technique in place, users must establish
their public key before receiving their partial private key from the KGC.

4 Security Model

In this section, we give an extension of the extended Canetti-Krawczyk (eCK) [7]
model suitable for the certificateless key agreement setting. In particular, the
eCK model (and our model as well) captures all of the basic security attributes
mentioned in Section 3.

We note that Al-Riyami and Paterson give a security definition relevant to
certificateless encryption in [1,2], but our key agreement model is based on the
eCK model and is not the natural extension of their definition to key establish-
ment protocols. The treatment of the long-term secret information of the user is
different in Al-Riyami and Paterson’s definition, as their adversary is not allowed
to know only part of a user’s private key, an issue which restricts the treatment of
leakage of ephemeral information. In particular, Al-Riyami and Paterson’s model
does not account for the attacks given in the following section, so this model is
not sufficient when we consider several real-world attacks. Nevertheless there are
some similarities, and we owe the general adversarial model to Al-Riyami and
Paterson: we consider two possible types of adversaries, namely those without
the master secret key, who can replace public keys at will, and those with the
master secret key, who are not allowed to replace public keys at any time.

Informally, we refer to these types of attackers as either outside or inside
attackers, in the following sense:

– An adversary is an outside attacker if the adversary does not have the master
secret key; an outside attacker is able to replace public keys of users.

– An adversary is an inside attacker if the adversary has access to the master
secret key; an inside attacker cannot replace public keys of users.

The formal adversarial model is as follows.
As in the eCK model, we consider a finite set of parties P1, P2, . . . , Pn modeled

by probabilistic Turing machines. The adversary, also modeled by a probabilistic
Turing machine, controls all communication—parties give outgoing messages to
the adversary, who has control over their delivery via the Send query. Parties
are activated by Send queries, so the adversary has control over the creation
of protocol sessions, which take place within each party. We call the initiator
of a session the owner, the responder the peer, and say both are partners of
the given session. We define a conversation for a given session to be the ordered
concatenation of all messages (both incoming and outgoing), and say two sessions
s and s′ have matching conversations if the outgoing messages of one are the
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incoming messages of the other, and vice versa. In particular, we assume that
the public keys of the parties are a part of the message flows.1

We borrow the queries EphemeralKeyReveal and SessionKeyReveal from the
eCK model. The EphemeralKeyReveal(s) query allows the adversary to obtain
the ephemeral private key of the session s; this is not equivalent to issuing
the query EphemeralKeyReveal on the session matching to s (if it exists), as
only the ephemeral information chosen by the session owner is revealed. The
SessionKeyReveal(s) query allows the adversary to obtain the session key for the
specified session s (so long as s holds a session key).

In addition to these queries, we allow the adversary the queries RevealMas-
terKey, ReplacePublicKey, RevealPartialPrivateKey(party), and RevealSecretValue
(party). The adversary can gain access to the master secret key via the query Re-
vealMasterKey and replace the public key of a given party via ReplacePublicKey
query. Unlike in the eCK model, this does not mean the adversary has control
over the party. Instead, it implies that all other parties will use the adversary’s
version of the party’s public key, while the given party will continue to use the
correct public key in any calculations.2 The RevealPartialPrivateKey(party) query
gives the adversary access to the given party’s partial private key, which is gen-
erated from the master secret key. (Note that this command is redundant if the
RevealMasterKey query has been issued.) Lastly, the RevealSecretValue(party)
query gives the adversary access to the party’s chosen secret value (which is
used to generate the party’s public key). We assume that an adversary cannot
issue a RevealSecretValue query against a party which has already received the
ReplacePublicKey query.

We consider an adversary-controlled party to be one against which the adver-
sary has issued both the ReplacePublicKey and RevealPartialPrivateKey queries.
If the RevealMasterKey query has been issued, any party issued the ReplacePub-
licKey query is considered to be adversary-controlled; in this way, we capture
the intent of the requirement that adversaries holding the master key should
not be allowed to replace public keys. In particular, we say a party that is not
adversary-controlled is honest. Formally, we define a fresh session as follows:

Definition 1. Let s be a completed session owned by party Pi with peer Pj ,
both of whom are honest. Let s∗ denote the matching session (if such a session
exists). We say s is fresh if none of the following conditions hold, where E denotes
the adversary:

1. E issues a SessionKeyReveal(s) or SessionKeyReveal(s∗) query (provided s∗

exists);

1 The thesis version of this work [16], as pointed out by Lippold et al. [9], did not
include public keys in the definition of a matching conversation. This is an oversight
in our original model, as it does not allow an adversary to replay conversations with
replaced public keys without detection.

2 In Lippold et al. [9]’s model, the given party will use the replaced public key instead
of his chosen key. While their model is strictly stronger than ours because of this,
we feel it is a more natural choice to assume that a party knows his own public key.
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2. s∗ exists and E either makes queries:
(a) both RevealPartialPrivateKey(Pi) and RevealSecretValue(Pi) as well as

EphemeralKeyReveal(s) or
(b) both RevealPartialPrivateKey(Pj) and RevealSecretValue(Pj) as well as

EphemeralKeyReveal(s∗);
3. No matching session s∗ exists and E either makes queries:

(a) both RevealPartialPrivateKey(Pi) and RevealSecretValue(Pi) as well as
EphemeralKeyReveal(s) or

(b) both RevealPartialPrivateKey(Pj) and RevealSecretValue(Pj).

This definition encompasses both types of adversaries. In the case where the
adversary has issued the RevealMasterKey query, he cannot issue replace public
key queries without making the involved parties dishonest. Moreover, as this
adversary automatically has access to users’ partial private keys, he is assumed
unable to issue both the RevealSecretValue(Pi) and EphemeralKeyReveal(s) or
the RevealSecretValue(Pj) and EphemeralKeyReveal(s∗) queries (provided that
s∗ exists).

As in the eCK model, we allow the adversary E a single Test(s) query, which
can be issued at any stage to a completed, fresh session s. A bit b is then picked at
random. If b = 0, the test oracle reveals the session key, and if b = 1, it generates
a random value in the key space. E can continue to issue queries as desired, with
the requirement that the test session remain fresh. At any point, the adversary
can try to guess b. Let GoodGuessE(k) be the event that E correctly guesses b,
and AdvantageE(k) = max

{
0,
∣∣∣Pr[GoodGuessE(k)]− 1

2

∣∣∣} , where k is a security
parameter. We are now ready to formally define our notion of a secure session.

Definition 2. We say a certificateless key establishment protocol is secure if
the following conditions hold:

1. If honest parties have matching sessions and no ReplacePublicKey queries
have been issued, these sessions output the same session key (except with
negligible probability).

2. For any polynomial time adversary E, AdvantageE(k) is negligible.

5 Attacks

In this section we explore several two-party certificateless authenticated key
agreement protocols from the literature, as well as one “self-certified” protocol
(which on closer analysis actually appears to be certificateless). We first establish
notation and give a summary of the protocols in Section 5.1. We then discuss
each protocol in detail and present relevant attacks, modeled within the frame-
work given in Section 4. We pay particular attention to the existence of key
compromise impersonation attacks and whether or not the protocols have resis-
tance to leakage of ephemeral keys, and in one case we show the protocol to be
entirely insecure.
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Table 1. Parameters for user i

Scheme Pi Qi Si Xi

AP [1] 〈xiP, xiPKGC〉 h(IDi) sQi xiSi

MT [10,11] xiP h(IDi) sQi (s + xi)Qi

WCW [18] xiP h(IDi) sQi 〈xi, Si〉
Shao [14] xiP h′(IDi, Pi) sQi 〈xi, Si〉
SL[15] e(P, xiP ) H(IDi) 1

Qi+s
P xiSi

5.1 Protocol Summaries

In all of the following protocols, the Key Generation Center (KGC) has master
secret key s ∈ Z∗

q and master public key PKGC = sP . The system parameters
〈q, G, GT , e, P, PKGC〉 are as in Section 2.1. Let k ∈ N denote the number of bits
in the shared session key. We will need the following hash functions and key
derivation functions:

H : {0, 1}∗ → Z∗
q , H ′ : GT → Z∗

q , h : {0, 1}∗ → G, h′ : {0, 1}∗ × G → G, and
h′′ : GT × G → {0, 1}k, kdfMT : GT × G × G → {0, 1}k, kdfWCW : {0, 1}∗ ×
{0, 1}∗×GT ×G×G → {0, 1}∗, kdfShao : GT × {0, 1}∗× {0, 1}∗ → {0, 1}k, and
kdfSL : GT → {0, 1}k.

The certificateless protocols we study are given in Tables 1, 2, and 3, and
include all certificateless protocols published at the time of our work, namely
those of Al-Riyami and Paterson (AP) [1], Mandt and Tan (MT) [10,11], Wang,
Cao, and Wang (WCW) [18], Shao [14], and Shi and Li (SL) [15].

In Table 1, we give a summary of user parameters for each of the protocols.
For a given user i, we use Pi to denote the public key of i and Qi to denote
the mapping of IDi into G. Each user has two pieces of secret information, a
user-chosen secret value xi ∈R Z∗

q and a partial private key Si ∈ G, provided by
the KGC. We use Xi to denote user i’s full private key, which is formed from a
combination of the user’s secret information Si and xi.

We give the shared secret and session key computation information in Ta-
bles 2 and 3, respectively. For each protocol we have users A and B, with com-
munication consisting of one message flow each. User A picks a ∈R Zq and sends
TA to B, and B similarly chooses b ∈R Zq and sends TB to A. Some of the
protocols specifically send user public keys as part of the message flows, and
some assume the existence of a public directory for this purpose. For ease of
representation, we do not specify which. Similarly, we do not include all of the
computational checks that users perform during the protocol, but note that each
protocol has group membership checks in place to thwart subgroup membership
attacks, such as those of Lim and Lee [8], and the AP protocol includes a check
to ensure that user public keys are of the correct form.

5.2 Al-Riyami and Paterson (AP) Protocol

As pointed out by Mandt [10], the AP protocol does not have resistance to
leakage of ephemeral keys. However, we can easily fix this by computing the
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Table 2. Shared secret computation

Scheme Ti Shared Secret K

AP [1] TA aP e(XB, TA)e(XA, TB)
TB bP e(QB, xAPKGC)ae(XA, TB)

MT [11] TA aP e(QB, PKGC + PB)ae(QA, PKGC + PA)b

TB bP e(QB, PKGC + PB)ae(XA, TB)
WCW [18] TA aP e(QA, QB)s

TB bP e(SA, QB)
Shao [14] TA aPB H ′(e(QA, QB)s)abP

TB bPA H ′(e(SA, QB))ax−1
A (mod q)TB

SL [15] TA a(QB + PKGC) P b
AP a

B

TB b(QA + PKGC) e(TB, XA)P a
B

Table 3. Session key computation. Here K denotes the shared secret from Table 2.

Scheme Session Key

AP [1] h′′(K||abP )
MT [11] kdf(K||abP ||xAxBP )

WCW [18] kdf(IDA, IDB , K, axBP, bxAP )
Shao [14] kdf(K|| IDA || IDB)
SL [15] kdf(K)

session key to be h′′(K||abP ||xAxBP ) instead of h′′(K||abP ), modifying h′′ as
necessary (where Alice computes xA(xBP ) and Bob computes xB(xAP )).

Our fix is not quite as strong as we would like, however. In the context of
our formal model from Section 4, an outside adversary (one who has not issued
the RevealMasterKey query) can still mount an attack on A. He simply issues
the ReplacePublicKey query on B and uses the EphemeralKeyReveal query on
both the test session and its matching session. The initial vulnerability of the
protocol to the leakage of ephemeral keys allows the attacker to compute K. He
can compute A’s version of xAxBP by using his knowledge of the replaced public
key. Specifically, suppose he chooses to replace B’s public key with 〈x′

BP, x′
BsP 〉

for some x′
B ∈R Z∗

q . Then A will compute xAxBP as xA(x′
BP ) = x′

B(xAP ). It
is clear that the adversary will be able to distinguish the session key held by A
from a randomly chosen element of the keyspace.

5.3 Mandt and Tan (MT) Protocol

The MT protocol [10,11] was designed to satisfy all the security properties of the
Al-Riyami and Paterson protocol, as well as the additional property of resistance
to leakage of ephemeral keys. Mandt and Tan argue heuristically that the MT
protocol has this property, as well as known session key security, weak forward
secrecy, and resistance to key compromise impersonation, unknown key share,
and key control attacks. We now show that resistance to leakage of ephemeral
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information does not hold, and that the protocol actually admits both a key
compromise impersonation and a known ephemeral key attack. The KCI attack
mentioned below was also independently discovered by Xia et al. [19].

Mandt and Tan provide two variations of the basic protocol given above, one
in which the protocol participants use separate KGCs and one which provides
key confirmation. The former is almost identical to the basic protocol, with the
substitution of the different master keys where appropriate. The latter uses a
MAC keyed under a value related to that of the session key, i.e., derived using a
different key derivation function on the same inputs. Both versions are vulnerable
to the attacks outlined below. We have included only the basic version of the
protocol as described in [10] to improve readability.

We first show the protocol is vulnerable to a key compromise impersonation
attack from an outside attacker. In fact, it suffices for the adversary Eve (E) to
know a user’s secret value xi; she does not need the partial private key provided
by the KGC. As the flows in the protocol are symmetric, it does not matter
whether the adversary attempts to impersonate the initiator or responder of the
protocol run. Formally, we describe this attack sequence on a session held by
Alice as RevealSecretValue(A) and ReplacePublicKey(B) where no matching ses-
sion exists, i.e., the adversary uses the Send query to send messages purportedly
from B to A.

Assume Eve has access to xA. She impersonates Bob to Alice by selecting
β, b ∈ Z∗

q and sending P ∗
B = −PKGC + βP for B’s public key and TB = bP as

usual. Since P ∗
B ∈ G∗, Alice computes

K = e(QB, PKGC + P ∗
B)ae(XA, TB)

= e(QB, PKGC − PKGC + βP )ae((s + xA)QA, bP )
= e(QB, βP )ae(bQA, (s + xA)P )
= e(βQB, aP )e(bQA, PKGC + PA).

We denote by KA the value of K computed by Alice above; that is, Alice
thinks KA is the correct value of K. Alice then derives the session key from
kdf(KA||aTB||xAPB).

As Eve chooses both β and b, she can compute KA and aTB = bTA. Note
that we have not needed knowledge of xA up to this point. The only reason we
need xA is to compute xAPB to input into the kdf, so this term is the only
preventative measure against a man-in-the-middle attack similar to the KCI
attack above. We see no clever substitution for PB which allows for both the
calculation of e(QB, PKGC + PB)a and xAPB , however. The heuristic argument
against KCI attacks given in [10] fails to consider the scenario where the public
key for B is replaced. The subsequent paper by Mandt and Tan [11] recog-
nizes the possibility of replacing public keys, but still fails to identify the above
attack.

Mandt and Tan also claim the protocol has the property of resistance to
leakage of ephemeral keys. However, it is an easy matter to mount an outsider
man-in-the-middle attack if given a and b. Suppose Eve substitutes P ∗

A = αP for
PA and P ∗

B = βP for PB in the protocol run, where α, β ∈R Z∗
q . From above we
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have that A and B will compute KA = e(QB, PKGC + P ∗
B)ae(QA, PKGC + PA)b

and KB = e(QB, PKGC +PB)ae(QA, PKGC +P ∗
A)b, respectively, so Eve will have

no problem calculating KA and KB if she knows a and b.
Moreover, we have xAP ∗

B = xAβP = βPA, so Eve will establish the session key
kdf(KA||aTB||xAP ∗

B) = kdf(KA||abP ||βPA) with A. Similarly she will establish
kdf(KB||abP ||αPB) as the session key with B. Thus the protocol fails to have
resistance to leakage of ephemeral keys against outside attackers. If, on the other
hand, the attacker is passive or cannot replace public keys, the protocol remains
secure. The variants of the protocol are similarly vulnerable. Note that this is
essentially the same attack mentioned in Section 5.2 on the improved version of
the Al-Riyami Paterson KAP.

Interestingly, the MT protocol is almost identical to the protocol of Wang and
Cao [17]. The main difference between the two protocols is that in the latter, the
private keys are bound to the public keys, so the attacks presented above are not
possible in an ideal protocol specification of Wang and Cao’s protocol, whereas
the MT protocol allows adversaries to easily replace public keys. We achieve the
same scheme if we apply the binding technique of Al-Riyami and Paterson [1]
to Mandt’s protocol, although for cheating to be evident, we must require the
partial private keys (or users’ certificates) to be public.

5.4 Wang et al. (WCW) Protocol

Wang et al. [18] claim the WCW protocol is secure against both man-in-the-
middle attacks mounted by the KGC and KCI attacks. Since all certificateless
key agreement protocols are vulnerable to a KGC man-in-the-middle attack (if
the KGC can replace public keys), the first claim is certainly false. We show the
second claim to be false by presenting a KCI-attack below; this attack was also
independently discovered by Meng and Futai [13]. We mention that Wang et al.
also claim their protocol has known-key security, weak partial and KGC forward
secrecy, unknown key-share resistance, and key control.

We observe that use of the static shared secret K prevents the formal attack
outlined in Section 5.2, where knowledge of the matching sessions’ ephemeral
keys and one public key replacement allows a successful attack. This static
shared secret implies a successful attacker must have access to at least one of
the participating party’s partial private keys. However, the protocol does not
guard against an adversary who, for a test session s with owner A and matching
session s∗, issues the queries RevealPartialPrivateKey(A), EphemeralKeyReveal(s),
and EphemeralKeyReveal(s∗). The adversary will be able to compute the session
key kdf(IDA, IDB, K, axBP, bxAP ).

We mount an outsider KCI attack as follows. As with the KCI attack on
the Mandt protocol, we can express this attack using the formal terminology of
Section 4. The adversary chooses a test session owned by B and takes advantage
of the queries Send, RevealPartialPrivateKey(B) and ReplacePublicKey(A). The
(informal) details follow.

We assume that Eve is attempting to impersonate Alice to Bob, where Alice
is the initiator and Bob is the responder. For such an attack, we would generally
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assume our attacker Eve has access to all of B’s private key, that is, both xB

and SB. Here we show that it is sufficient for Eve to have SB.
Eve proceeds by sending TA = aP as usual (for her own choice of a ∈R Z∗

q).
She completes the attack by replacing A’s public key entry with P ∗

A = αP for
some α ∈R Z∗

q .
Note that Eve can easily compute K = e(SB, QA), as she has access to SB.

Recall that B will use xBTA and bP ∗
A in his computation of the secret key. Since

xBTA = aPB and bP ∗
A = bαP = αTB, Eve can compute these as well, because a

and α were chosen by her, the term PB is public, and B sends TB to A during
the protocol run. Thus Eve can compute KB = kdf(IDA, IDB, K, xBTA, bP ∗

A),
as desired. It is worth stressing that Eve cannot succeed without knowledge of
SB, as without it she cannot compute K.

5.5 Shao Protocol

The Shao [14] protocol purportedly provides weak forward secrecy, known-key
security, and resilience to a “masquerade attack,” which refers to KCI attacks
where not all of the user’s private key is compromised. We show that the latter
claim is false by providing a KCI attack that only requires the adversary to have
access to part of the user’s private key. Although Shao claims his protocol is self-
certified, the scheme is much closer to a certificateless protocol than Girault’s [5]
notion of a self-certified key agreement protocol. In contrast to Girault’s model,
the KGC has partial key escrow (in that it computes the partial private keys)
and requires a secure channel between itself and the users. Also, users cannot be
sure that they have the correct public key of another party, so the adversarial
model is equivalent to that of certificateless schemes.

Moreover, although at first glance it seems that Shao’s protocol has applied
the binding technique of Al-Riyami and Paterson mentioned in Section 2, given
his definition of Qi for user i, this is not quite the case. The protocol relies in
an essential way on the secrecy of the partial private keys; if we make these keys
public, the scheme reduces to the basic Diffie-Hellman KAP (with a single extra
term H ′(e(SA, QB)) that anyone can compute).

We observe that this protocol, like that of Section 5.4, does not hold up to
the following formal attack. Letting s denote the test session with owner A and
matching session s∗, suppose the adversary issues the RevealPartialPrivateKey(A),
EphemeralKeyReveal(s), and EphemeralKeyReveal(s∗) queries. The adversary
will be able to compute H ′(e(SA, QB))abP , and hence the session key
as well.

Let us now consider Shao’s claim that the protocol is secure provided not all
of the user’s private key (xi, Si) is compromised. We show the protocol is in fact
vulnerable in the scenario where Si is known, but xi and s remain secure.

We launch an outsider key compromise impersonation attack on Alice with
the knowledge of SA, but not xA, as follows. Since knowing SA = sQA =
sH ′(IDA, xAP ) is not the same as knowing s, replacing public keys is permissible
in this scenario. As the protocol messages are symmetric, there is a correspond-
ing attack on Bob, and thus it does not matter whether or not the attacker
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initiates the protocol run. The formal queries needed for this attack are similar
to the KCI attack outlined in Section 5.4, so we do not mention them here.

Our attacker Eve replaces Bob’s public key with P ∗
B = βP for β ∈R Z∗

q

of her choosing. She then follows the protocol and sends IDB and TB = bPA

for some b ∈R Z∗
q . Alice will then compute QB as QB = h′(IDB, P ∗

B), and
H ′(e(SA, QB))ax−1

A (mod q).
Alice calculates the session secret as

K = H ′(e(SA, QB))ax−1
A bPA

= H ′(e(SA, QB))bax−1
A xAP

= H ′(e(SA, QB))baP.

We see that Eve can compute H ′(e(SA, QB))b, as she possesses SA and chooses
b herself. Moreover, since A sends TA = aβP in the first round (and Eve knows
β), Eve can compute aP and thus K.

5.6 Shi Li (SL) Protocol

In the SL protocol [15], the session key is derived directly from P b
AP a

B, so this
protocol certainly does not have resistance to leakage of ephemeral keys. The
authors claim that this protocol provides implicit key authentication, known
session key security, weak partial forward secrecy, key compromise imperson-
ation resistance, and unknown key share resistance. We show the protocol fails
to provide implicit key authentication by demonstrating a man-in-the-middle
attack by an outside attacker.

Our attacker Eve intercepts Alice’s 〈TA, PA〉 and instead sends 〈T ∗
A, P ∗

A〉 to
Bob. Here T ∗

A = a∗(H(IDB)P +PKGC) and P ∗
A = e(α(H(IDA)P +PKGC), P ) for

a∗, α ∈R Z∗
q of Eve’s choosing.

Similarly Eve replaces Bob’s message 〈TB, PB〉 with 〈T ∗
B, P ∗

B〉, where T ∗
B =

b∗(H(IDA)P + PKGC) and P ∗
B = e(β(H(IDA)P + PKGC), P ) for b∗, β ∈R Z∗

q of
her choosing.

Notice that P ∗
A ∈ GT , so Bob will compute

KB = e(T ∗
A, XB)(P ∗

A)b

= e

(
a∗(H(IDB)P + PKGC),

xB

H(IDB) + s
P

)
e(α(H(IDA)P + PKGC), P )b

= e(a∗P, xBP )e(b(H(IDA)P + PKGC), αP )

= P a∗
B e(TB, αP ).

As Eve chooses both a∗ and α, she can compute KB. Similarly, Eve will be able to
compute Alice’s key KA = P b∗

A e(TA, βP ). We have therefore shown the protocol
to be insecure. The corresponding formal attack on the protocol is modeled by
picking a test session with owner A and using the ReplacePublicKey(B) and Send
queries to alter the messages sent by B to A. As shown above, the adversary will
be able to compute the session key. Interestingly, this attack fails if we transform
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this protocol into a certificate-based protocol, whereby the public keys of users
are bound to the corresponding partial private keys and the latter are used as
public certificates.

6 Conclusion

Our work demonstrates that all existing CL-KAPs are insecure to some extent
in the sense of the security model of Section 4. In our opinion, this model is a
natural one, and our findings provide motivation for developing new CL-KAPs
meeting this security definition. We remark that, since the initial version of this
work [16], new protocols have appeared [13,9] which were designed to address
some of the shortcomings of the earlier protocols.

The existence of practical CL-KAPs remains an interesting open question,
given that these schemes are designed to avoid both the key escrow problem and
the high management costs of certificate distribution, storage, verification, and
revocation present in public key infrastructures. These protocols also have the
added advantage of flexibility—the user can generate his public key before or af-
ter receiving his partial private key. Consequently, while applying Al-Riyami and
Paterson’s binding technique fixes some of the security vulnerabilities mentioned
in Section 5, doing so limits the advantages gained by using a certificateless
scheme in the first place.

Although Lippold et al. [9] have settled the question of whether a CL-KAP
exists that is secure in the extended eCK model given in Section 4 (as well as their
strengthened version of this model), the question of whether a computationally
practical scheme exists remains. Lippold et al.’s scheme, which is secure given
the bilinear and computational Diffie-Hellman assumptions, requires 10 pairing
computations per party; even the version relying on the gap bilinear Diffie-
Hellman assumption is expensive, requiring 5 pairing computations per party.
In addition, the security of their scheme is proven using the random oracle model,
so it remains an open question to devise a scheme secure in the standard model.
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Abstract. Although Differential Fault Analysis (DFA) led to powerful
applications against public key [15] and secret key [12] cryptosystems,
very few works have been published in the area of stream ciphers.

In this paper, we present the first application of DFA to the software
eSTREAM candidate Rabbit that leads to a full secret key recovery. We
show that by modifying modular additions of the next-state function,
32 faulty outputs are enough for recovering the whole internal state in
time O (234

)
and extracting the secret key. Thus, this work improves

the previous fault attack against Rabbit both in terms of computational
complexity and fault number.

Keywords: Stream cipher, Rabbit, fault attacks, carry analysis.

1 Introduction

The stream cipher Rabbit has been selected in the final portfolio of the ECRYPT
stream cipher project (eSTREAM) [13]. It was first presented at FSE 2003 [14],
targeting both hardware and software environments. It has been selected as a
software candidate for the third evaluation phase of the project.

Rabbit has a 128-bit key (also supports 80-bit key), 64-bit initialization vec-
tor (IV), and 513-bit internal state. Although it has been designed to be faster
than commonly used ciphers, the level of security provided by this stream cipher
has not been disregarded by the designers. Indeed, they made the efforts of a
deep security analysis [13] and published a series of white papers [1,2,3,4,5,6]
to prove the robustness of Rabbit to the well-known attacks (i.e. algebraic,
correlation, guess-and-determine, differential). Until now, only two papers dis-
cussing the cryptographic security of Rabbit have been published. Both propose
to exploit the bias of the core function ”g”. In [7], the function ”g” was firstly
shown to be unbalanced. The resulting distinguishing attack requires the analy-
sis of 2247 keystream sub-blocks generated from random keys and IV’s, which is
higher than the complexity of the key exhaustive search (i.e. 2128). The second
article provides an improved distinguishing attack based on the use of the Fast
Fourier Transform (FFT) for computing the exact Rabbit keystream bias. This

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 72–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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reduces the complexity of the distinguishing attack from O
(
2247
)

to O
(
297.5

)
in the multi-frame extension [7]. Recently, the security of Rabbit in the context
of faults has been discussed in [23]. Under a classical fault model, the authors
demonstrated that the complete internal state can be recovered from 128 – 256
faults in O

(
238
)

steps. The attack also requires to precompute a table of size
O
(
241.6

)
bytes. From our knowledge, it was the best known attack against Rab-

bit.
In this paper, we propose a new method to exploit faults against Rabbit

implementations. We show that, if an attacker is able to perturb transiently
modular additions in the next-state function, then he can recover the whole
internal state and predict the keystream. The analysis can also lead to a full key
recovery if the first two iterations of Rabbit are targeted.

We provide evidences that this attack does not only improves the previous
result in terms of fault number but in terms of complexity. Indeed, from 32
faults injected according to our model, the attacker is able to recover the whole
internal state in time O

(
234
)
.

After a brief presentation of the Rabbit stream cipher, Sect. 3 provides an
overview of previous fault attacks against implementations of stream ciphers.
Then, we describe in Sect. 4 the fault model we have chosen and a complete
differential analysis of the faulty keystreams. The final part of the paper provides
the attack algorithm and an analysis of its performance.

2 The Stream Cipher Rabbit

2.1 Notations

The notations we use in this paper to describe Rabbit are extracted from the
original description of the stream cipher presented at FSE 2003 [14].

– ⊕ denotes logical XOR,
– ∧ denotes logical AND,
– ∨ denotes logical OR,
– � and � denote respectively left and right logical bit-wise shift,
– ≪ and ≫ denote respectively left and right logical bit-wise rotation,
– A[g..h] denotes the part of the vector A from bit g to bit h,
– A[k] denotes the value of A mod k.

2.2 Description of Rabbit

Rabbit is a synchronous stream cipher. It takes as input a 128-bit secret key
and a 64-bit public initialization vector (IV). For each iteration, it generates
a 128-bit pseudo-random output block. This output block, usually referred as
the keystream, is XOR-ed with a plaintext/ciphertext to perform the encryp-
tion/decryption.

The internal state of Rabbit is composed of 513 bits:
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– Eight 32-bit state variables denoted by (xj,i)0≤j≤7 at iteration i,
– Eight 32-bit counters (cj,i)0≤j≤7,
– One counter carry bit φ7,i.

At epoch i = 0, the state variables and the counters are initialized with the Key
Setup and IV Setup schemes. We recall neither Key Setup nor IV Setup schemes
since our attack does not rely on the initialization process. Further details are
provided in [14,13].

Then, for i ≥ 1, state variables and counters are updated according to the
following schemes. Each iteration produces 128 bits of the keystream.

Next-State Function

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16)
x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16)
x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16)
x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16)
x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i

Where gj,i is defined by the following expression:

gj,i = (xj,i + cj,i+1)
2 ⊕
(
(xj,i + cj,i+1)

2 � 32
)

mod 232 (1)

All additions are performed modulo 232 and squaring modulo 264.

Counter System

c0,i+1 = c0,i + a0 + φ7,i mod 232, (2)
cj,i+1 = cj,i + aj + φj−1,i+1 mod 232, for 0 < j < 8.

where the counter carry bit φj,i+1 is obtained as follows:

φj,i+1 =

⎧⎪⎨
⎪⎩

1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0,

1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0,

0 otherwise

Furthermore, the constants (aj)0≤j≤7 are defined as:

– a0 = a3 = a6 = 0x4D34D34D,
– a1 = a4 = a7 =0xD34D34D3,
– a2 = a5 = 0x34D34D34.
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Extraction Scheme. For each iteration i of the next-state function, the current
output keystream si

[127..0] is extracted as follows:

si
[15..0] = x0,i

[15..0] ⊕ x5,i
[31..16]

si
[31..16] = x0,i

[31..16] ⊕ x3,i
[15..0]

si
[47..32] = x2,i

[15..0] ⊕ x7,i
[31..16]

si
[63..48] = x2,i

[31..16] ⊕ x5,i
[15..0]

si
[79..64] = x4,i

[15..0] ⊕ x1,i
[31..16]

si
[95..80] = x4,i

[31..16] ⊕ x7,i
[15..0]

si
[111..96] = x6,i

[15..0] ⊕ x3,i
[31..16]

si
[127..112] = x6,i

[31..16] ⊕ x1,i
[15..0]

2.3 Previous Work on Rabbit

The stream cipher Rabbit has been designed to be faster than commonly used
ciphers and to justify a key size of 128 bits for encrypting up to 264 blocks of
plaintext. In a series of white papers [1,2,3,4,5,6] and in [14], the designers gave
convincing arguments to claim that Rabbit is resistant against algebraic, corre-
lation, differential, guess-and-determine, and statistical attacks. Particularly, in
[13], authors claim that Rabbit is immune to the replacement of all additions
performed in the next-state function by XORs (see Sect. 2.2). Indeed, since all
possible byte-wise combinations of the output depend on at least four different
g-functions, they conclude that ”it seems to be impossible to verify a guess of
fewer that 128 bits against the output”.

In 2007, J-P. Aumasson raised a statistical weakness on Rabbit and more
specifically on the core function ”g” [7]. Although this function, based on a
modular square, was expected to be strongly non-linear, J-P. Aumasson high-
lighted the non-uniformity of the bit distribution given a random initial state.
The complexity of the resulted distinguishing attack is about O

(
2247
)

which is
much bigger than the complexity of a key exhaustive search (i.e. 2128). That is
why he concluded that the bias of the function ”g” does not represent a real
threat for Rabbit. Inspired by this work, L. Yi et al. used Fast Fourier Trans-
formed (FFT) to compute the exact bias of Rabbit’s keystream based on the bias
of ”g” [28]. That way, the distinguishing attack complexity equals to O

(
2158
)
,

which is much closer to the key exhaustive search complexity. Moreover they
extended their distinguishing attack to a multi-frame key recovery attack. This
evolution has a O

(
232
)

memory complexity and O
(
297.5

)
time complexity. It is

the first known key-recovery attack on Rabbit.
The first paper about the robustness of Rabbit implementations in the con-

text of faults is due to A. Kirkanski and A. M. Youssef at SAC 09 [23]. They
showed that by randomly flipping bits of the internal state, an attacker is able
to recover the whole internal state from 128 – 256 faulty keystreams in O

(
238
)

steps with a precomputed table of size O
(
241.6

)
bytes. Nevertheless, the analysis

does not succeed if more than one bit of the internal state is flipped at a time.
Furthermore the proposed fault analysis is limited to the recovery of the sole
internal state.
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In this paper, we propose to improve these results by considering another
fault model. This new fault model is inspired by the design change studied in
the context of a guess-and-verify attack [13]. Under this model, we prove that
an attacker can completely recover the internal state from 32 faulty keystreams
and in time O

(
234
)
. The attack can also lead to a full secret key recovery (see

Sec. 4.6).

3 Fault Attacks on Stream Ciphers

At the end of the nineties, a new class of active side channel attack appeared
when Bellcore researchers proposed a way for recovering secret data by perturb-
ing the behavior of public key cryptographic algorithms [15]. Then E. Biham
and A. Shamir [12] proposed an application to the DES and named this class of
attack Differential Fault Analysis (DFA).

Although fault attacks have been shown to be powerful against implementa-
tions of both public key [8,27,16] and secret key cryptosystems [12,18,24], few
attacks have been published against the implementation of stream ciphers.

J. Hoch and A. Shamir [21] first addressed the issue of injecting fault to
perturb the behavior of stream ciphers. They published in [21] a method for
exploiting perturbations of LFSR based stream ciphers, and successful applica-
tions to LILI-128, SOBER-t32 and RC4. The fault attack against RC4 was later
improved by Biham et al. [11]. In this paper, they showed how to use faults for
setting the internal state of RC4 in an ”impossible” state and a way to exploit
it. Thus, they improved previous results both in terms of fault number and in
terms of complexity. So, they concluded that the simplicity of the design of RC4
makes it weak against fault attacks.

The security against perturbations of the pseudo-random bit generator A5/1
has also been evaluated [20]. This stream cipher used in GSM networks for
its cheap and efficient hardware implementation is composed of three LFSRs.
The authors suggested to stop one of the shift register from clocking at a given
moment and exploit the faulty output. According to this model, the use of faults
speeds up the previous resynchronization attack on A5/1 by a factor 100.

A fault attack against Trivium was presented at FSE 2008 [22]. This hardware
eSTREAM candidate is based on a 288-bit internal state split into three non-
linear shift registers. The principle of this DFA is to perturb the internal state
by flipping one bit at a random position. Then, the attacker obtains a system
of equations in the internal state bits and takes advantage of the simplicity of
the Trivium non-linear feedback function for solving it. According to this fault
model, 43 fault injections (12 in the optimized version) are enough for recovering
the secret key and the IV. This attack against Trivium is also the first application
of DFA to a non-linear shift register based stream cipher.

A variant of an other eSTREAM finalist, Grain-128, has been evaluated in
the context of fault attacks [10]. From an average of 24 consecutive bit-flips in
the Grain-128 LFSR, A. Berzati et al. showed that it is possible to recover the
secret key in a couple of minutes. Since the best known mathematical attack
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against Grain-128 is the brute force key-search, fault injections dramatically
improve the efficiency of the key recovery.

The fault attack against Rabbit presented at SAC 09 [23] and the one proposed
in this paper complete the state-of-the-art of fault attacks against stream ciphers
(see Sect. 2.3).

4 Fault Attack on Rabbit

4.1 Preliminaries

Theorem 1. If an attacker knows the values of the (gj,i)0≤j≤7 for two consec-
utive iterations i and i + 1, then he can reduce the number of candidates for the
remaining part of the internal state from 2256+1 to 80 in average, and predict
the keystream.

Proof. We assume that the attacker knows all the values of (gj,i−1)0≤j≤7 and
(gj,i)0≤j≤7. From these values, he can compute respectively (xj,i)0≤j≤7 and
(xj,i+1)0≤j≤7 by using the relations described in Sect. 2.2.

To completely determine the internal state at iteration i + 1, the attacker
has to find the counter variables (cj,i+1)0≤j≤7 and the carry bit φ7,i+1. But, the
counters are the input of the function g (see (1)). Although this function is not
bijective [7], previous results [28] emphasized by our own experimentation have
shown that there are in average only 1.59 possible inputs that map to the same
output gi,j . Hence, as the attacker already knows all the (gj,i)0≤j≤7 and a part
of the input (xj,i)0≤j≤7, he will find in average 1.59 candidate values for each
cj,i+1. As a consequence, he will find only 1.598 = 40 candidate values for all
the (cj,i+1)0≤j≤7 among 28·32. Then, it remains the carry bit φ7,i+1 that can
be found by exhaustive search or by comparing c7,i+1 to a7

1. Thus the average
number of candidates for the remaining part of the keystream is 2× 40 = 80. �

4.2 Motivations

To evaluate the level of security of Rabbit, the designers have considered in [13] a
guess-and-verify attack on a weak version of Rabbit. Indeed, they slightly mod-
ified the design of Rabbit by replacing all additions performed in the next-state
function by XORs (see Sect. 2.2). Under this assumption they showed that this
weaker Rabbit was also immune against this kind of attack since all possible byte-
wise combinations of the output depend on at least four different g-functions.
But authors have not considered the security of Rabbit if only one addition is
punctually replaced by a XOR. In the following study, we show that this state
can be obtained by injecting faults and that it can be exploited to recover the
secret key.

1 Indeed, if c7,i+1 < a7, it means that a modular reduction occurs in the addition, and
then φ7,i+1 = 1.



78 A. Berzati, C. Canovas-Dumas, and L. Goubin

4.3 Fault Model

The principle of our attack is based on the recovery of all the values of (gj,i)0≤j≤7,
for two consecutive iterations. Then Theorem 1 is applied to predict the key-
stream. These values are involved in the next-state function (see Sect. 2.2), as a
consequence, we have chosen to perturb the behavior of that specific function.

According to the next-state scheme, the computation of each xj,i+1 requires
two consecutive modular additions (i.e. mod 232) that involves three values: gj,i ,
g(j+7)[8],i and g(j+6)[8],i. In our fault model, we assume that the attacker is able to
perturb transiently one of these additions such that it becomes a bit-wise XOR only
for the current operation. Indeed, all subsequent additions performed must result
error-free. As several faults are necessary for recovering the key, the attacker must
have the ability to run the stream cipher with the same initialization vector (not
necessarily chosen). Like this, the state remains always the same.

Moreover we suppose the attacker can choose the iteration i and the index j
of the affected value xj,i+1 and which addition will be corrupted. This implies a
preliminary fault setup stage. First as the algorithm implementation is software,
the operations are executed sequentially and locating the time of the computa-
tion of the chosen value xj,i+1 is possible. A transient fault generated by power
glitches or light stimulation can produce various effects [9,19,26,25]. In our case,
the transformation of addition to XOR can occur by two ways:

– Corruption of the carry register: if it is cleared, the addition is equivalent to
a binary addition, i.e. an exclusive or, if the carry is set to 1, the addition
is changed into a binary addition followed by a complement operation.

– Corruption of the processed code: The non volatile memory where the op-
erating code is supposed to be stored can be modified while the reading of
the memory is performed. For example, from the instruction set of the 8051
microprocessor, we can see that the code for ADD is 0x20 while it is 0x60 for
XRL, so only one bit is distinctive. Let’s note that the fetch code can also be
corrupted in the cache memory of the internal register of the CPU.

If the attacker has a reference device, he can precompute the different expected
bitstreams with a known key and compare the faulty ciphertexts until he obtains
the setup corresponding to the fault model.

Otherwise, among the different faulty ciphertexts obtained by the attacker,
some of them correspond to our fault model, and some others must be discarded.
As our model corresponds to only 32 different faults, the attacker must only
obtain 32 different faulty ciphertexts and can thus try the different combinations
(see Appendix B).

Depending on the modified addition, the faulty state variable x̂j,i+1 can be
expressed by:

– If j is even,

x̂j,i+1 =

⎧⎪⎨
⎪⎩

(
gj,i +

(
g(j+7)[8],i ≪ 16

))
⊕
(
g(j+6)[8],i ≪ 16

)

or
(
gj,i ⊕

(
g(j+7)[8],i ≪ 16

))
+
(
g(j+6)[8],i ≪ 16

)
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– Else, if j is odd,

x̂j,i+1 =

⎧⎪⎨
⎪⎩

(
gj,i +

(
g(j+7)[8],i ≪ 8

))
⊕ g(j+6)[8],i

or
(
gj,i ⊕

(
g(j+7)[8],i ≪ 8

))
+ g(j+6)[8],i

In Rabbit, the output keystream si
[127..0] depends on the values of the internal

state. Thus, depending on which x̂j,i that is perturbed, the output keystream
will be infected as:

– If j is even, then the faulty part of the keystream is ŝi
[(16·(j+2)−1)..(16·j)],

– Else, if j is odd, the faulty parts of the keystream are
ŝi

[16·((j−2)[8]+1)−1..16·(j−2)[8]] and ŝi
[16·((j+3)[8]+1)−1..16·(j+3)[8]]

This effect of the fault is helpful in case of a wrong time location. Indeed by
computing si

[127..0]⊕ ŝi
[127..0] and analyzing the position of non-zero values, one

can immediately identify the state variable that has been infected by the fault
during its update.

4.4 Fault Analysis

In the previous section, we have detailed the fault model used to perform our
attack and the different ways to practice it. In this section, we provide the
different steps for exploiting a set of faulty outputs.

Useful Propositions. This section provides some propositions that are used
in the following description of our fault attack.

Proposition 1. For all pairs (x, y) ∈ (Z/nZ)2, the resulted carry vector of the
operation x + y mod 2n, denoted by Carry (x, y), can be obtained by computing:

Carry (x, y) = (x + y)⊕ (x⊕ y) (3)

Proof. This is just a rewriting of the additional carry definition.

Proposition 2. For all pairs (x, y) ∈ (Z/nZ)2, the i-th carry bit of the operation
x + y mod 2n, Carryi(x, y), can be defined recursively as:

– For i = 0, Carry0(x, y) = 0
– For i = 1, Carry1(x, y) = x0 ∧ y0
– For 1 < i ≤ n, Carryi(x, y) = xi−1 ∧ yi−1 ∨

(
Carryi−1(x, y) ∧ (xi−1 ∨ yi−1)

)
Proof. This is the formula of the additive carry propagation.

Proposition 3. For all triplets (x, y, z) ∈ (Z/nZ)3, we have:

(x + y + z)⊕ ((x + y)⊕ z) = Carry (x + y, z) (4)

Proof. This equality is a direct consequence of Proposition 1.
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Proposition 4. For all triplets (x, y, z) ∈ (Z/nZ)3, we have:

(x + y + z)⊕ ((x⊕ y) + z) (5)
= Carry (x + y, z)⊕ Carry (x⊕ y, z)⊕ Carry (x, y)

Proof. This is also a consequence of Proposition 1. For a given triplet (x, y, z) ∈
(Z/nZ)3, x + y + z can be written as:

x + y + z = (x + y)⊕ z ⊕ Carry (x + y, z)
= x⊕ y ⊕ Carry (x, y)⊕

z ⊕ Carry (x + y, z)

Moreover, ((x⊕ y) + z) = x⊕ y ⊕ z ⊕ Carry (x⊕ y, z). Finally, we have:

(x + y + z)⊕ ((x⊕ y) + z)
= x⊕ y ⊕ z ⊕ Carry (x, y)⊕ Carry (x + y, z)⊕

x⊕ y ⊕ z ⊕ Carry (x⊕ y, z)
= Carry (x + y, z)⊕ Carry (x⊕ y, z)⊕ Carry (x, y)

Differential Analysis. Fault attacks are often based on exploiting differences
between a correct and a faulty output. Our attack is not different from it. We
assume that the attacker is able to access the keystream2. Hence to perform the
analysis, he differentiates the faulty keystream block with a correct block. In
Sect. 4.3, we concluded that a fault injected according to our model only infects
32 bits of the output keystream. As a consequence, the difference is null except
for the 32 infected bits:

– If j is even, then

s
[(16·(j+2)−1)..(16·j)]
i ⊕ ŝi

[(16·(j+2)−1)..(16·j)]

= x
[31..0]
j,i ⊕ x̂

[31..0]
j,i (6)

and 0 elsewhere,
– Else, if j is odd, then

s
[16·((j−2)[8]+1)−1..16·(j−2)[8]]
i ⊕ ŝi

[16·((j−2)[8]+1)−1..16·(j−2)[8]]

= x
[15..0]
j,i ⊕ x̂

[15..0]
j,i , (7)

s
[16·((j+3)[8]+1)−1..16·(j+3)[8]]
i ⊕ ŝi

[16·((j+3)[8]+1)−1..16·(j+3)[8]]

= x
[31..16]
j,i ⊕ x̂

[31..16]
j,i (8)

and 0 elsewhere,

2 The attacker knows a pair plaintext/ciphertext.
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Furthermore, depending on the modular addition that has been modified, the
difference x

[31..0]
j,i ⊕ x̂

[31..0]
j,i can be reformulated thanks to Propositions 3 and 4.

As an example, we obtain for the perturbation of the second addition:

– If j is even,

x
[31..0]
j,i ⊕ x̂

[31..0]
j,i

= Carry ((gj,i−1 + g(j+7)[8],i−1 ≪ 8), g(j+6)[8],i−1) (9)

– Or if j is odd,

x
[31..0]
j,i ⊕ x̂

[31..0]
j,i

= Carry ((gj,i−1 + g(j+7)[8],i−1 ≪ 16), g(j+6)[8],i−1 ≪ 16) (10)

Similar expressions can be obtained if the first addition is perturbed by applying
Proposition 4. The complete system of equations obtained after gathering faulty
outputs modified at different locations in the next-state function is described
in Appendix A. Hence, the differential fault analysis of the faulty output pro-
vides a set of particular equations that involves carries from the computation of
additions in the next-state function (see Sect. 2.2).

Carry Analysis. The purpose of the attack is to use faults to recover the values
of (gj,i)0≤j≤7. Thus, the attacker has modified both first and second modular
additions in the next-state function one-by-one at iteration i for all 0 ≤ j ≤ 7.
This means that the attacker has to gather 8 + 8 = 16 faulty keystream blocks
modified at the same iteration i. Hence, the attacker can extract a system of
equations that involves all the (gj,i)0≤j≤7 (see Appendix A). The number of
obtained binary equations is3 16× 31 = 496 for 8 × 32 = 512 binary unknowns
(gj,i)0≤j≤7.

Because of the carry propagation, the degree of multivariate polynomials in
the equations increases with the depth of the carry bit to analyze (i.e. the de-
gree of the multivariate polynomial obtained by expressing Carryi is i + 1). So,
relinearization method like XL algorithm [17] are not relevant. The best way we
found to solve this system is performing an exhaustive search on each 8-bit parts
of xj,i+1 ⊕ x̂j,i+1 and so, on the 4 resulting sub-equations:

xj,i+1 ⊕ x̂j,i+1 ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xj,i+1⊕x̂
[7..0]
j,i+1

xj,i+1⊕x̂
[15..8]
j,i+1

xj,i+1⊕x̂
[23..16]
j,i+1

xj,i+1⊕x̂
[31..24]
j,i+1

(11)

Depending on the infected modular addition, each 8-bit sub-equation may have
two different expressions (see Appendix A) that involves 8 bits of gj,i, g(j+7)[8],i,

3 ∀(x, y) ∈ (Z/232Z
)2

, Carry0(x, y) = 0, so the number of binary equations that results
from a carry is 31.
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and g(j+6)[8],i. As an example, for the expression x0,i+1 ⊕ x̂
[7..0]
0,i+1, the attacker

will simultaneously search g
[7..0]
0,i , g

[23..16]
7,i and g

[23..16]
6,i that satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = Carry
((

g
[7..0]
0,i + g

[23..16]
7,i

)
, g

[23..16]
6,i

)

Δ2 = Carry
((

g
[7..0]
0,i + g

[23..16]
7,i

)
, g

[23..16]
6,i

)

⊕ Carry
((

g
[7..0]
0,i ⊕ g

[23..16]
7,i

)
, g

[23..16]
6,i

)

⊕ Carry
(
g
[7..0]
0,i , g

[23..16]
7,i

)

where Δ1 and Δ2 are equal to x0,i+1 ⊕ x̂
[7..0]
0,i+1 respectively when the second and

first modular additions of the next state function are modified. Then, four pairs
of equations have to be solved for each 0 ≤ j ≤ 7. So, the obtained system of
equations is considered as a 8-bit system of 2×4×8 = 64 equations of 8×4 = 32
unknowns, as each gj,i is split in four 8-bit windows.

Solving each 8-bit sub-equation requires to search simultaneously 8 bits of three
gj,i. Moreover sub-equations from bit 8 to 31, the attacker has to speculate on
Carry7(gj,i, g(j+7)[8],i), Carry15(gj,i, g(j+7)[8],i) and Carry23(gj,i, g(j+7)[8],i)
since their values are unknown at the beginning of the search. As a consequence,
for each j, the computational complexity equals to O

(
4× 23×8+3

)
= O

(
229
)
. To

solve the whole system, the resolution has to be performed for all the eight j. So,
the computational complexity of the resolution is O

(
232
)
.

In order to study the characteristics of the system, and particularly, if the
number of solutions for all the (gj,i)0≤j≤7 is bounded, we have randomly gener-
ated 20000 possible faulty outputs and counted the number of solutions provided
by the system of equations. The experimental results show that the real 32-bit
system of equations has an average of 213.72 solutions. To recover the whole state
of Rabbit, two systems from consecutive iterations have to be solved. Hence,
the average number of possible solutions for (gj,i−1)0≤j≤7 and (gj,i)0≤j≤7 is
22×13.72 = 227.44. By combining these results with Theorem 1, the number of
possible Rabbit states is the number of (gj,i)0≤j≤7 obtained for two consecu-
tive iterations multiplied by the number of associated ((cj,i+1)0≤j≤7 and φ7,i+1)
found to complete the internal state: 227.44 × 80 ≈ 234.

Finally, for determining the attacked Rabbit state, at iteration i + 1, among
the 234 candidates, the attacker has just to compute the corresponding internal
state

(
(xj,i+1)0≤j≤7, (cj,i+1)0≤j≤7, φ7,i+1

)
, generate the output keystream block

for iterations i + 1 and i + 2, for each candidate, and compare it to the attacked
Rabbit keystream at same iterations.

4.5 Attack Algorithm

Algorithm. Our fault attack against Rabbit can be divided into 5 distinguish-
able steps that have been presented in previous sections. This paragraph provides
a summary that lists these steps:
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Step 1: Gather faulty outputs, for iterations i and i + 1, by perturbing one-by-
one, all the sixteen additions of the next-state function. As a consequence,
the attacker has to execute (with the same initialization vector) and perturb
the Rabbit algorithm according to our model 2× 16 = 32 times,

Step 2: Differentiate the faulty outputs ŝ
[127..0]
i and ŝ

[127..0]
i+1 , with correct out-

puts, si
[127..0] and si+1

[127..0]. Then, check that faults were correctly injected
(see Sect. 4.4),

Step 3: Built two systems of equations (see Appendix A) from the difference
between faulty and correct outputs at iteration i and i + 1. Then, recover
possible candidates for (gj,i−1)0≤j≤7 and (gj,i)0≤j≤7. Compute (xj,i)0≤j≤7
and (xj,i+1)0≤j≤7,

Step 4: Solve (cj,i+1)0≤j≤7 and φ7,i+1 from previously recovered (gj,i−1)0≤j≤7
and (gj,i)0≤j≤7 (see Theorem 1),

Step 5: For each possible Rabbit state candidate at iterations i + 1, compare
the output keystream to the expected one until they are equal. When it is
satisfied, the attacker has recovered the whole Rabbit state at iteration i+1
and can predict the subsequent keystream blocks.

Complexity. The efficiency of a fault attack is not only based on the fault
model but in the number of faults to inject for obtaining secret information.
Theoretically, to have an exploitable number of equations and performing the
resolution, the attacker has to inject 32 faults that suits the model, at different
locations of the next-state function and two consecutive iterations of the algo-
rithm. In practice, the fault number can be more important, depending on its
ability for reproducing the attack and the targeted device (see Sect. 4.3).

In terms of computational complexity, the overall complexity of the attack is
dominated by the complexity for testing the possible solutions obtained from the
differentiation of faulty outputs. So, the computational complexity of our attack
is O

(
234
)
. Moreover, since our analysis does not require any precomputation, the

memory complexity of our fault attack is negligible compared to A. Kirkanski and
A. M. Youssef proposal [23]. Hence, our new fault attack improves the best known
time complexity from 238 to 234 [23] with a negligible memory consumption.

4.6 Extension to a Full Key Recovery

The fault attack against Rabbit presented in this article allows the attacker to
recover the whole Rabbit state at a given iteration i. As we previously noticed, it
can be used to predict the keystream, but, if i is small enough, the attacker can
recover the secret key. According to [28], if i = 2 then the attacker can recover
the secret key used to generate the keystream in time O

(
232
)
. To do it, the

attacker guesses the values of the missing φi,j ’s to revert the Rabbit next-state
function (see Sect. 2.2) and the key setup scheme. More details about the key
recovery are provided in [28]. Hence, if i = 2 the complexity of this additional
step is dominated by the full internal state recovery, and so, the global time
complexity of this attack remains O

(
234
)
.
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5 Conclusion

This paper introduces an improved fault attack against implementations of Rab-
bit. Our theoretical results emphasized by our experimentation show that the
fault analysis reduces the best known attack complexity against Rabbit from
O
(
238
)

to O
(
234
)

[23]. This improvement is also effective in terms of mem-
ory consumption. Moreover, our attack requires only 32 faulty outputs, and we
provide evidence that the fault model is practicable on various devices. The al-
gorithm can be protected against faults by adding redundancy in the next-state
function. As our attack only uses an addition corruption, the result of the addi-
tions can also be doubled and computed differently. Since this operation is faster
than ”g” function, this countermeasure does not increase the global complexity
of Rabbit.

As a consequence, we can conclude that Differential Fault Analysis is a real
threat for Rabbit implementations. Hence, protecting it against DFA is now
challenging.
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A System Extracted

We assume that the attacker has injected a fault, at iteration i + 1, on different
modular additions of the next-state function.

A.1 First Set of Equations

By modifying the second addition for all eight equations of the next-state func-
tion at iteration i + 1, computing the difference si+1 ⊕ ˆsi+1 (see Sect. 4.4), and
using Proposition 3 the attacker obtains the following set of equations:

x0,i+1 ⊕ x̂0,i+1 = Carry((g0,i + (g7,i ≪ 16)),
(g6,i ≪ 16))

x1,i+1 ⊕ x̂1,i+1 = Carry ((g1,i + (g0,i ≪ 8)) , g7,i)
x2,i+1 ⊕ x̂2,i+1 = Carry((g2,i + (g1,i ≪ 16)),

(g0,i ≪ 16))
x3,i+1 ⊕ x̂3,i+1 = Carry ((g3,i + (g2,i ≪ 8)) , g1,i)
x4,i+1 ⊕ x̂4,i+1 = Carry((g4,i + (g3,i ≪ 16)),

(g2,i ≪ 16))
x5,i+1 ⊕ x̂5,i+1 = Carry ((g5,i + (g4,i ≪ 8)) , g3,i)
x6,i+1 ⊕ x̂6,i+1 = Carry((g6,i + (g5,i ≪ 16)),

(g4,i ≪ 16))
x7,i+1 ⊕ x̂7,i+1 = Carry ((g7,i + (g6,i ≪ 8)) , g5,i)

A.2 Second Set of Equations

This second set of equations results from the perturbation of all the eight first
additions of the next-state function and the application of Proposition 4:

– If j is even, xj,i+1 ⊕ x̂j,i+1 equals to:

Carry((gj,i + (g(j+7)[8],i ≪ 16)),
(g(j+6)[8],i ≪ 16))

⊕ Carry((gj,i ⊕ (g(j+7)[8],i ≪ 16)),
(g(j+6)[8],i ≪ 16))

⊕ Carry(gj,i, (g(j+7)[8],i ≪ 16))

– Else, if j is odd, xj,i+1 ⊕ x̂j,i+1 equals to

Carry
((

gj,i +
(
g(j+7)[8],i ≪ 8

))
, g(j+6)[8]

)

⊕ Carry
((

gj,i ⊕
(
g(j+7)[8] ≪ 8

))
, g(j+6)[8]

)

⊕ Carry
(
gj,i,

(
g(j+7)[8] ≪ 8

))
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B Case of Unexploitable Faults

Among the different faulty ciphertexts obtained by the attacker, some of them
correspond to our fault model, and some others must be discarded. This case
happens when the faults have not been injected according to our model. We have
simulated this situation by trying to solve the system of equations with wrong
ones. With our detection strategy no 8-uplet for (gj,i)0≤j≤7 was found for such
wrong systems.

So the attacker has to try to withdraw some equations until the system has so-
lutions. Thus he determines the wrong equations. Once identified, the equations
must replaced by other ones obtained from new faults.
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1 Introduction

Physical Obfuscated Keys (POK) [14] are a means to store keys inside an Inte-
grated Circuit (Section 2). Their use is based on the paradigm that an unau-
thorized access to a value represented by a POK will affect the behavior of this
POK and make it non-operational. This way, when an adversary compromises a
chip to read a key, he will not be able to use the same POK again. In particular,
when different values are represented by the same POK, a compromise at some
time will render activation of further values impossible. This type of situation
has been considered in [14] with a general line of defense for POKs: split the
computations with a key K in two steps, one related to a random key K ′ and
the other one to another key K ′′ where the pair (K ′, K ′′) depends solely on the
chip implementing the POK. Doing that, when a chip is tampered with, this will
not allow an adversary to recover the key K or to interfere on the value of K
contained in another chip. Here the difficulty is to find a way to split the cryp-
tographic computations. This is illustrated with public key encryption schemes
based on exponentiation by the key in [14]. [7] describes the modification of an
existing protocol relying on an XOR with a key to incorporate POKs’ trick.
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In the paper, we extend this idea by combining physical obfuscated keys and
classical masking techniques, similar to that used to counter Side Channel Anal-
ysis (SCA) attacks, to construct physically obfuscated ciphers. Indeed splitting
the computation in several steps is essentially the goal of masking techniques or
masked logic to thwart SCA attacks (see for instance [29, 3] for masked AND
and XOR applied to the AES). And we illustrate here how this strategy can be
employed successfully via POKs for obfuscating the secret material of a cipher.
Some other related techniques are secret sharing techniques [31].

As a proof-of-concept, we apply this strategy to the general case of linear
feedback shift registers (LFSR). LFSRs are easy to design and to implement
with low hardware requirements. The operations of a LFSR are deterministic,
which means that a polynomial and a state completely determine the next output
values. For a system with shared materials between several tags, the use of the
same LFSR and initial value, for instance to generate a key stream, would thus
face the problem of resistance of tags against compromise: the opening of one
tag gives the possibility to know the key stream of other tags. We explain here
how to hide the value of the state and the polynomial during the execution by
implementing the operations with POKs.

Our main achievement is to show that it is possible to hide their content and
their connections by making use of POKs (Section 3). As an immediate applica-
tion of our proposal, we introduce an implementation of LFSR-based hashing for
message authentication [23] (Section 4.1). As LFSR is a very popular primitive
in the design of stream-ciphers, we also give examples in this context and ex-
plain how POKs can be adapted to handle some small non-linear operations. As
a relevant example, we give details of an obfuscated version of the Self-Shrinking
Generator [27] (Section 4.2). Finally, we modify further our techniques to be able
to protect the Trivium stream-cipher [8] with POKs (Section 4.3). Moreover our
strategy is quite general and can be applied to other ciphers.

To conclude, we want to stress the fact that POKs do not make use of mem-
ories to store keys and need only few hardware resources to be implemented.
They are well-suited for very constrained chips or those only allowing a small
amount of their capacity to cryptographic computations. Our constructions show
that they can also provide some inherent resistance against tampering. We thus
think that RFID tags are targets of choice for implementing the results of our
paper.

2 Physically Obfuscated Key

In [14], it is shown how to implement a key with a Physical Unclonable Function
(PUF) by applying a fixed hard-wired challenge to the PUF (cf. Appendix A
for description of the notion of PUF); this implementation is called a Physically
Obfuscated Key (POK). In fact, using different challenges, several POKs can be
obtained from one PUF. In the sequel, we refer to a POK as a value, stored in a
tag, which is accessible only after the underlying PUF is stimulated; once erased
from volatile memory, the value of the key is no longer available.
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Fig. 1. Example of POK

To be able to set a POK to a chosen value, the output of the PUF – which
cannot be chosen – can be combined to some fuse (or any data stored in the
EEPROM) via an exclusive-or operation (Figure 1). In the sequel, we assume
that any implemented POK is obtained via an I-PUF (cf. Appendix A), which
gives us the following property.

Property 1. Any corruption of or intrusion into the chip leads to the end-of-life
of the chip: an adversary could not continue to use the chip, particularly he can
only obtain information on the content of the memory at this time and could
not access the others POKs (if any) implemented in it.

More generally, inside a chip, we say that a primitive is physically obfuscated
when it is implemented via some POKs so that an adversary could not learn any
secret information from an intermediate result obtained by opening the chip.

3 Physically Obfuscated Linear Feedback Shift Register

A linear feedback shift register (LFSR) is a binary shift register where the up-
date of the input bits are made via a linear function of the previous ones. The
initial value of a LFSR is called the seed, the current input bits in the register
are the current state and the update of the state is the result of the evaluation
of a feedback function – represented by a so-called feedback polynomial – corre-
sponding to exclusive-or of some bits at given positions (the connecting taps) of
the state.

We consider here a linear feedback shift register (LFSR) of length L with
a feedback polynomial P ∈ GF (2)[X ] of degree L. The polynomial is often
chosen to be primitive to obtain a LFSR of maximal period 2L − 1. This avoids
the occurrence of repeating cycle after a short delay. Let P =

∑L
k=0 akXk, let

S0 = (s0, . . . , sL−1) be the initial state of the LFSR. Then the next state is
S1 = (s1, . . . , sL−1, sL) where sL is the value a0s0 ⊕ · · · ⊕ aL−1sL−1, and s0 is
outputted. More generally, Sn denotes the n-th state.

3.1 Obfuscation of Basic Operations

Let l ≥ 1. For i ∈ {1, 2, 3}, let K[i] be a l-bit vector, implemented by two POKs
K[i]′, K[i]′′ such that K[i] = K[i]′ ⊕K[i]′′. Let x and y be two l-bit vectors.

Definition 1. A physically obfuscated XOR, denoted by POXOR, corresponds to
the computation of a masked XOR of two masked inputs. POXORl(x⊕K[1], y⊕
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Table 1. POXORl(x ⊕ K[1], y ⊕ K[2], K[1], K[2], K[3]) implementation

1. Set z = (x ⊕ K[1]) ⊕ (y ⊕ K[2]) = (x ⊕ y) ⊕ (K[1] ⊕ K[2])
2. For i = 1 to 3 do

activate K[i]′, update z ← z ⊕ K[i]′, erase K[i]′ from memory
End For
3. For i = 1 to 3 do

activate K[i]′′, update z ← z ⊕ K[i]′′, erase K[i]′′ from memory
End For
4. Output z

K[2], K[1], K[2], K[3]) is the computation of x⊕y⊕K[3] with the inputs x⊕K[1]
and y ⊕K[2] and is implemented as in Table 1.

It is straightforward to check that POXORl(x ⊕K[1], y ⊕K[2], K[1], K[2], K[3])
outputs the desired value, x⊕ y⊕K[3]. Moreover, thanks to the POKs Property
1 (see page 90), we ensure the physical obfuscation of the XOR.

Lemma 1. POXOR is a physically obfuscated primitive.

Proof. (sketch) The implementation of POXOR does not leak information to an
adversary on x, y, x ⊕ y, K[1], K[2] or K[3]. Indeed, recall that an adversary A
can eavesdrop on the memory only once before destroying the chip. We assume
that A already knows the inputs x ⊕ K[1] and y ⊕ K[2] and the output x ⊕
y ⊕K[3]. If he corrupted the chip in step 1, he would learn nothing more. If he
corrupted the chip during the step 2, say when i = 2, he would learn K[2]′ and
(x⊕y)⊕ (K[1]′′⊕K[2]′′). If he corrupted the chip during the step 3, say whence
i = 1, he would learn K[1]′′ and (x ⊕ y) ⊕K[2]′′ ⊕ K[3]′. In any case, A does
not gain information on the un-masked result x⊕ y or on the un-masked inputs
x, y. ��
From POXOR, we deduce another interesting physically obfuscated operation,
POConvert, which converts the mask of a physically masked value into another
mask. POConvertl(x⊕K[1], K[1], K[3]) takes as input x⊕K[1] and outputs x⊕
K[3]; it is implemented via POXORl(x⊕K[1], 0, K[1], 0, K[3]). And the property
of lemma 1 holds.

Let now K[3] be restricted to a 1-bit vector.

Definition 2. We define the function SemiPOScalar as the masked scalar product
of a first non-masked input with a second masked input (the term Semi underlines
this asymmetry). SemiPOScalarl(x, y⊕K[2], K[2], K[3]) is the computation of (x ·
y)⊕K[3] with the inputs x and y ⊕K[2] (cf. Table 2).

As for POXOR, this implementation with sequential activation of the POKs im-
plies that SemiPOScalar is physically obfuscated: no information on y, K[2], K[3]
or (x · y) are leaked.

Lemma 2. SemiPOScalar is a physically obfuscated primitive.
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Table 2. SemiPOScalarl(x, y ⊕ K[2], K[2], K[3]) implementation

1. Set z = x · (y ⊕ K[2])
2. Activate K[2]′, update z ← z ⊕ (x · K[2]′), erase K[2]′ from memory
3. Activate K[3]′, update z ← z ⊕ K[3]′, erase K[3]′ from memory
4. Activate K[2]′′, update z ← z ⊕ (x · K[2]′′), erase K[2]′′ from memory
5. Activate K[3]′′, update z ← z ⊕ K[3]′′, erase K[3]′′ from memory
6. Output z

For l = 1, SemiPOScalar corresponds to a AND operator. Here only one input can
be masked; for both inputs to be masked, i.e. for a general obfuscated scalar
product, we need a slightly more complex implementation as the operations
related to the POKs are not linear anymore. This is illustrated on the AND
operator in section 4.3.

For all above primitives, note that no mask (KS[3]) needs to be applied to
the output whence the latter does not need to be protected. In that case, it does
not alter the physical obfuscation of the others values (un-masked inputs, K[1]
and K[2]).

3.2 Obfuscating the Taps

We now represent the operation of the feedback polynomial P =
∑L

k=0 akXk as
a scalar product by its coefficients, sn+L = Sn ·KF , with KF = (a0, . . . , aL−1)
and Sn = (sn, . . . , sn+L−1). KF can be seen as a feedback key and for some
cryptographic primitives (cf. section 4) we want to thwart an adversary to recover
it by opening a tag.

Let KF ′ be a random L-bit vector and KF ′′ = KF ⊕KF ′; we also assume
that KF ′, KF ′′ are implementing as physically obfuscated keys (POKs). The
computation of sn+L is thus seen as

sn+L = SemiPOScalarL(Sn, 0, KF, 0).

In contrast to the general use of SemiPOScalar in section 3.1, the output is not
masked here; only KF is to be kept obfuscated during execution. In addition to
the value of sn+L, an adversary who opens a tag during execution only learns
information either on KF ′ or KF ′′, but not both at the same time, thanks to
the POKs property 1. As the separation of KF into KF ′ ⊕KF ′′ can be made
different for each tag, he cannot recover KF from this information.

However from the knowledge of the value of sn+L, he gains some information
on KF if he also knows the value of Sn. And from about L values Sni and sni+L

obtained by opening as many tags sharing the same KF , it is easy to recover
KF by solving a linear system. This issue is addressed in the sequel.

3.3 Towards Obfuscating the Taps and the State Simultaneously

To hide the state during execution of the register, we introduce another key KS,
called key state, with the intended goal to manage the state S masked by the
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key KS = (KS0, . . . , KSL−1) without letting the state appearing in clear. Here
the key KS can be different from one tag to another. It is the state S which
may be shared and consequently has to be protected, in particular if the initial
state corresponds to a shared key for a set of tags within the system.

Rather than the state Sn, we store the value Mn = Sn ⊕ KS and want
to update the register directly via the masked state Mn and the feedback key
KF . We think again of the SemiPOScalar solution, but as explained in section
3.1, it is not straightforward to apply it when both inputs are masked. Here, we
choose KS such that KS ·KF = 0 which leads to the simplification Mn ·KF =
(Sn ⊕ KS) · KF = Sn · KF . To enable the update of the masked register, we
split the key KS into two POKs as in the previous section for KF . Let KS′ be
a random L-bit vector and KS′′ = KS ⊕KS′. The operations of the previous
section are completed as follows.

After the computation of sn+L = SemiPOScalarL(Mn, 0, KF, 0), the register
outputs mn = sn ⊕KS0 and the state becomes

temp = ((sn+1 ⊕KS1, . . . , sn+L−1 ⊕KSL−1, sn+L)).

Then, POConvertL(temp, K[1], K[3]) is run to update temp where K[3] = KS
and K[1] = (KS1...L−1||0) the vector resulting from the concatenation of the
bits KS1, . . . , KSL−1 and the bit 0. Subsequently, the register state is updated
as Mn+1 = temp which is equal to Sn+1 ⊕KS.

This doing and thanks to the splitting of the operations with two POKs, the
state is not available in clear for an adversary in the second step. Note that the
value sn+L is not hidden in the first step. In the next section, we fuse the two
previous process to enable obfuscation of this value too.

3.4 Fill in the Gap

Given 2L consecutive bits of an outputted stream from an LFSR, it is known
that one can reconstruct an LFSR by using the Berlekamp-Massey [26] algorithm
which will produce the same stream. It emphasizes the interest to mask any bit
of the state whence the tags share the same feedback function and the same
initial state. We describe now the whole process which achieves obfuscation of
the feedback key and the state, including the new input bits sn+L and the
outputted bits.

We assume below that within a tag the LFSR is used as a key stream generator
to encrypt a message by xoring it. In the sequel, let x be the current bit to be
encrypted and assume that the current masked state is Mn = Sn ⊕ KS =
(sn ⊕ KS0, sn+1 ⊕ KS1, . . . , sn+L−1 ⊕ KSL−1). Note that all bits KSi of KS
can be seen as well as a combination of two 1-bit POKs, KSi = KS′

i ⊕ KS′′
i .

The algorithm is split in consecutive steps as detailed in Table 3.

Lemma 3. The LFSR implementation of Table 3 leads to a physically obfus-
cated primitive.

Proof. (sketch) Assume that x is unknown by the adversary then all bit values
of the state are always masked along the different steps, either by x, or a bit of



94 J. Bringer, H. Chabanne, and T. Icart

Table 3. A physically obfuscated LFSR implementation

1. Set z = SemiPOScalarL(Mn, 0, KF, KSL−1).
2. The register outputs mn = sn ⊕ KS0 and the state becomes temp =

(sn+1 ⊕ KS1, . . . , sn+L−1 ⊕ KSL−1, z) with z = sn+L ⊕ KSL−1.
3. Then set y = x ⊕ mn = x ⊕ sn ⊕ KS0, erase x from memory, and output

POConvert1(y, KS0, 0).
4. Finally, temp ← POConvertL(temp,K[1], K[3]) is run to update the reg-

ister with Mn+1 = temp where K[1] = (KS1...L−1||0) and K[3] =
(KS0...L−2||0).

KS, KS′ or KS′′. The important point now is that all these values are different
from one tag to another one, this means that even if an adversary succeeds in
obtaining N consecutive masked values, say sk+1 ⊕ αk+1, . . . , sk+N ⊕ αk+N of
the state by opening several tags (at least N , as opening a tag implementing
a POK implies its end-of-life prematurely), he cannot recover the value of the
state thanks to the bitwise independence of the bits αk+1, . . . , αk+N . ��

Corollary 1. The implementation above without the execution of the step 3
remains physically obfuscated, i.e. the state and the feedback key stay hidden;
which implementation we denote by POLFSRupdate.

4 Applications

4.1 Krawczyk’s MACs and LFSR-Based Hashing

[23] describes an efficient construction for Message Authentication Codes relying
on traditional hashing techniques. The basic idea is to use a family H of linear
hash functions which map {0, 1}m to {0, 1}L in a balanced way. Interestingly,
such hashing family can be constructed as LFSR-based hashing. See Appendix
B for a quick description of the MAC mechanism and the related notions.

An efficient solution using multiplication by matrices provided in [23] is to use
specific Toeplitz matrices which can be described by a LFSR. Let the LFSR be
represented by its feedback polynomial P , a primitive polynomial over GF (2) of
degree L, and an initial state S0 = (s0, . . . , sL−1) �= 0. Then hP,S0 ∈ H is defined
by the linear combinations hP,s(X) =

⊕m−1
j=0 xj .S

j where X = (x0, . . . , xm−1)
and Sj is the j-th state of the LFSR. This leads to an ε-balanced family H (see
Definition 4 in Appendix B) for at least ε ≤ m

2L−1 as proved by [23]. Moreover,
a hash function hP,S0 is easily implemented as the message authentication can
be computed progressively with an accumulator register which is updated after
each message bit: the implementation does not depend on the size m of X .

Let X = (x0, . . . , xm−1) be the message to be authenticated. We can man-
age the computation of hP,S0(x) in an obfuscated way thanks to the previous
algorithm for LFSR obfuscation. All updates of the LFSR are made thanks
to POLFSRupdate (modification of the method of section 3.4 where the step 3
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Table 4. A physically obfuscated LFSR-based hashing implementation

counter ← 0
result ← (0, . . . , 0)
For n = 0 to m − 1 do

If (xj == 1) then
result ← result ⊕ Mn

counter ← counter ⊕ 1
End If
execute POLFSRupdate() to obtain Mn+1

n ← n + 1
End For
If (counter == 0) then Output result

Else Output POConvertL(result, KS, 0)
End If

is skipped). Let result be the variable which will correspond to the value of
hP,S0(x) at the end of the execution. Starting from the initial masked state
M0 = S0⊕KS, we update the register m−1 times and before each clocking, we
update the value of result. The execution is summarized in Table 4. All compu-
tations to obtain hP,S0 are made directly on the masked states and if necessary
(when the weight of x is odd) KS is used at the end to unmask the result.
Thanks to lemma 1 and corollary 1, we have the following results.

Lemma 4. The LFSR-based hashing implementation in Table 4 is a physically
obfuscated primitive.

Remark 1. This obfuscation can be for instance applied to the implementation
of an authentication protocol which makes use of LFSR-based hashing. It would
be a way to answer the possible weakness of use of LFSR in RFID tags as
underlined in [13] where the LFSR feedback polynomial is assumed to be known
as soon it is the same in all tags. With our obfuscation technique this is not
anymore the case.

4.2 Self-shrinking Generator

The self-shrinking generator (SSG) [27] consists of one LFSR combined with
a so-called shrinking function. Let KF be the feedback function of the LFSR
and S0 = (s0, . . . , sL−1) be its initial state. The shrinking function f : GF (2)×
GF (2) → GF (2)∪{ε} is defined as follows: for (x, y) ∈ GF (2)×GF (2), f(x, y) =
y if x = 1, f(x, y) = ε if x = 0, which could be interpreted as f(0, y) outputs
nothing. Hence a given output stream s0, . . . , s2N of length 2N from the LFSR
is split in N couples and the shrinking function acts on each of them to output
at the end the bitstream f(s0, s1) . . . f(s2N−1, s2N ) of length ≤ N . As empty
output may appear, the exact length is in fact hard to know in advance.
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The solutions described in section 3 can be applied to the LFSR of the self-
shrinking generator, thus protecting the state and the feedback function1 against
an intrusive adversary. Nevertheless, one constraint arises with the use of the
shrinking function on the output bits: the value of the output bit in the algorithm
of section 3.4 can not be masked anymore by x in order to be able to compare it
with 0 or 1, which leads to a potential source of leakage. We have to distinguish
two situations:

– The tags share at most one of the following data – feedback key or (exclusive)
initial state, which means that the opening of different tags will not give
enough information to recover the shared data.

– The tags share both data, feedback key and initial state, and in that case,
the leakage of the output bit can afford to an adversary the possibility to
reconstruct the LFSR via Berlekamp-Massey, by opening many tags. To
avoid this, we suggest below a small modification of the SSG.

Masked SSG. We consider the algorithm POLFSRupdate of section 3.4 for the
execution of the LFSR assuming that it outputs the value mn = sn ⊕KS0. We
operate two bits by two bits for the shrinking function. I.e. we use the output
bits mn = sn ⊕KS0 and mn+1 = sn+1 ⊕KS0.

Let x be the current bit to be encrypted, i.e. to be xored with the keystream
generated by the SSG. In our modification the shrinking check sn == 1 is
replaced by the check sn ⊕KS0 == 1 (cf. Table 5). Note that this modification
does not change the standard analysis of SSG as KS0 is a constant.

Table 5. A physically obfuscated SSG implementation

While mn 	= 1
execute POLFSRupdate() twice to output two new bits (mn, mn+1) (where

n ← n + 2)
End While
Set y = x ⊕ mn+1

Output POConvert1(y, KS0, 0) (i.e. x ⊕ sn+1).

Lemma 5. The above implementation of our modification of the SSG is physi-
cally obfuscated.

Remark 2. All LFSR-based stream ciphers are possible targets for our obfusca-
tion method as soon as operations remain linear. For instance, it can be adapted
for the shrinking generator [10] or for some generalizations of the self-shrinking
generator [24, 25]. LFSR-based stream ciphers with irregular clocking are also
good targets. These include as examples the Alternating Step Generator [18],

1 Note that for analysis of the SSG security, it is generally assumed that the feedback
polynomial is known; here we consider the case where the system may try to hide it
too.
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A5/1 [4], or W7 [33]. To activate the clocking of some registers, clocking bits at
fixed position are used. If all initial data (states and feedback polynomials) are
not shared between several tags then those bits may be managed unmasked (in
some cases) to check whether a register might clock (e.g. for A5/1 this check is
made by a majority vote between the values of 3 bits coming from the 3 registers
of the cipher). If all data are shared, then to avoid the risk of compromise we
can modify slightly the scheme by checking the clocking condition directly on
the masked bits.

4.3 Trivium

Trivium [8, 9] is a stream cipher which has been elected as one of the three
hardware oriented stream ciphers of the eStream project portfolio (http://www.
ecrypt.eu.org/stream/). This is thus natural to consider it as a possible cipher
for implementation into tags. Technically, it is not a linear LFSR-based stream
cipher, but its structure remains quite simple and the small number of non-linear
operations enables us to adapt our obfuscation technique.

Trivium is roughly a concatenation of 3 registers which are updated via
quadratic feedback functions. It contains a 288-bit internal state (s0, . . . , s287)
and once initialized, the key stream generation of a bit y and the update of the
state follow the algorithm in Table 6 (where ⊗ stands for a product of bits, i.e.
a AND). Here, the feedback function is fixed, so we do not need to mask the
feedback key KF in the same way as in section 3.2 but to simplify the analy-
sis we can keep the method described in section 3.4 as a baseline. The method
is similar for handling all the linear computations above. The only specificity
concerns the steps (5), (6), (7) where a general obfuscated AND is needed.

AND obfuscation. Here we focus on an AND of two bits (this is easily general-
izable to l-bit vectors). For i ∈ {1, 2, 3}, let K[i] be a binary value, implemented
by two POKs K[i]′, K[i]′′ such that K[i] = K[i]′⊕K[i]′′. Compare to the XOR,

Table 6. Trivium key stream generation

t1 ← s65 ⊕ s92 (1)

t2 ← s161 ⊕ s176 (2)

t3 ← s242 ⊕ s287 (3)

y ← t1 ⊕ t2 ⊕ t3 (4)

t1 ← t1 ⊕ (s90 ⊗ s91) ⊕ s170 (5)

t2 ← t2 ⊕ (s174 ⊗ s175) ⊕ s263(6)

t3 ← t3 ⊕ (s285 ⊗ s286) ⊕ s68 (7)

(s′0, s
′
1, . . . , s

′
92) ← (t3, s0, . . . , s91) (8)

(s′93, s
′
94, . . . , s

′
176) ← (t1, s93, . . . , s175) (9)

(s′177, s
′
178, . . . , s

′
287) ← (t2, s177, . . . , s286) (10)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
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we also introduce a couple of POKs K[4]′, K[4]′′. Also let x and y be two binary
values.

Definition 3. A physically obfuscated AND, denoted by POAND, corresponds to
the computation of a masked AND of two masked bits. POAND(x ⊕ K[1], y ⊕
K[2], K[1], K[2], K[3], K[4]) is the computation of (x⊗ y)⊕K[3] with the inputs
x⊕K[1] and y ⊕K[2] and is implemented as in Table 7.

The implementation is based on the following relation:

x ⊗ y =
(

(x ⊕ K[1]) ⊗ (y ⊕ K[2])
)
⊕
(
K[1] ⊗ (y ⊕ K[2])

)

⊕
(

(x ⊕ K[1]) ⊗ K[2]
)
⊕
(
K[1] ⊗ K[2]

)

Table 7. POAND(x ⊕ K[1], y ⊕ K[2], K[1], K[2], K[3], K[4]) implementation

1. Set z = ((x ⊕ K[1]) ⊗ (y ⊕ K[2]))
2. z ← z⊕ SemiPOScalar1(x⊕K[1], 0, K[2], 0)⊕ SemiPOScalar1(y⊕K[2], 0, K[1], 0)
3. z ← POConvert1(z, 0, K[3])
4. Activate K[1]′ and K[2]′, update z ← z ⊕ (K[1]′ ⊗ K[2]′)
5. Erase K[1]′ and K[2]′ from memory
6. Activate K[1]′′ and K[2]′′, update z ← z ⊕ (K[1]′′ ⊗ K[2]′′)
7. Activate K[4]′, K[4]′′, set temp1 = K[4]′⊕K[1]′′ and temp2 = K[4]′′⊕K[2]′′

8. Erase K[1]′′, K[2]′′, K[4]′ and K[4]′′ from memory
9. Activate K[1]′, K[2]′, update temp1 ← temp1 ⊗ K[2]′, temp2 ← temp2 ⊗
K[1]′

10. Update z ← z ⊕ temp1 ⊕ temp2, erase temp1, temp2 from memory
11. Activate K[4]′, K[4]′′, update z ← z ⊕ (K[4]′ ⊗ K[2]′) ⊕ (K[4]′′ ⊗ K[1]′)
12. Erase K[4]′, K[4]′′, K[1]′ and K[2]′ from memory
13. Output z

The steps 4 to 12 are used to compute K[1]⊗K[2] as the XOR of K[1]′⊗K[2]′,
K[1]′ ⊗K[2]′′, K[1]′′ ⊗K[2]′ and K[1]′′ ⊗K[2]′′.

Lemma 6. POAND is a physically obfuscated primitive.

With this additional physically obfuscated primitive, it becomes possible to ob-
fuscate non linear stream-ciphers such as Trivium.

Whole Description of Trivium Obfuscation. As in section 3.4, we assume
that the current masked state is M = (s0, . . . , s287) ⊕ (KS0, . . . , KS287) where
the key state KS is computed thanks to the two POKs KS′ and KS′′.

Let x be the current bit to be encrypted, the obfuscated key stream generation
is made as follows.

– Set t′1 = M65 ⊕M92,
– t′2 ← M161 ⊕M176,
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– t′3 ← M242 ⊕M287,
– set y = t′1 ⊕ t′2 ⊕ t′3, y ← y ⊕ x and erase x from memory.
– Output POConvert1(y, KS65 ⊕KS92 ⊕KS161 ⊕KS176 ⊕KS242 ⊕KS287, 0).

At this stage the encrypted version of x has been obtained correctly.

– Update t′1 = t′1 ⊕M170, t′2 = t′2 ⊕M263, t′3 = t′3 ⊕M68.
– Update t′1 = t′1 ⊕ POAND(M90, M91, KS90, KS91, KS93, K[4])
– Update t′2 = t′2 ⊕ POAND(M174, M175, KS174, KS175, KS177, K[4])
– Update t′3 = t′3 ⊕ POAND(M285, M286, KS285, KS286, KS0, K[4])

where KS93, KS177 and KS0 corresponds to the bits of KS whose indexes
are the future positions of t′1, t′2, t′3 for the register updating) and with K[4]
corresponding to a couple of two POKs as in Table 7.

– Update t′1 = POConvert1(t′1, KS170 ⊕KS65 ⊕KS92 ⊕KS93, KS93)
– Update t′2 = POConvert1(t′2, KS177 ⊕KS263 ⊕KS161 ⊕KS176, KS177)
– Update t′3 = POConvert1(t′3, KS0 ⊕KS68 ⊕KS242 ⊕KS287, KS0)

At this stage, this leads to the equality between t′1 and s65 ⊕ s92 ⊕ s170 ⊕ (s90 ⊗
s91)⊕KS93, i.e. the value of t1 at the original step (9) xored with KS93 (similar
for t′2, t′3 with the values t2⊕KS177 and t3⊕KS0). To finish the register updating,
we run these last operations.

– Compute M ′ as
(M ′

0, M
′
1, . . . , M

′
92) ← (t′3, M0, . . . , M91),

(M ′
93, M

′
94, . . . , M

′
176) ← (t′1, M93, . . . , M175),

(M ′
177, M

′
178, . . . , M

′
287) ← (t′2, M177, . . . , M286)

– Then update M ′ with

POConvert
(
M ′, (0, KS0, . . . , KS91, 0, KS93, . . . , KS175, 0, KS177, . . . , KS286),

(0, KS1, . . . , KS92, 0, KS94, . . . , KS176, 0, KS178, . . . , KS287)
)

This leads to the update version of the state register obfuscated by KS.

Lemma 7. This implementation of the key stream generation of Trivium is
physically obfuscated.

5 Conclusion

We describe in this paper physical obfuscation of binary operations (XOR, AND,
Scalar Product) with a study of their applications to stream ciphers. As these
binary operations enable any boolean operations to be computed, our ideas are
useful for other kind of cryptographic primitives which use basic operations and
where increasing resistance of tags against compromise is required. For instance,
the HB-related RFID protocols (HB [21], HB+ [22] and modified version [6, 12,
16,28, 30, 5]) are good targets for our obfuscation techniques which can be seen
as a enhancement of [20, 19] where PUF are introduced. Other RFID protocols
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based on binary operations can be improved as well, e.g. the scheme [11]. Efficient
hash functions such as [2, 1] are also of interest.

Further works would include the analysis of the implementation overhead
to achieve such physical resistance. In many settings, one chooses connection
polynomials for LFSRs such that their Hamming weight is small. This lowers
the cost of computing the state change. But the obfuscation technique essentially
randomizes the state change. The expected Hamming weight of the masked
connection polynomial is then half the length of the LFSR.

Acknowledgements. The authors thank the referees for their helpful com-
ments.
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3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

4. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of A5/1
(1999), http://jya.com/a51-pi.htm

5. Bringer, J., Chabanne, H.: Trusted-HB: A low-cost version of HB+ secure against
man-in-the-middle attacks. IEEE Transactions on Information Theory 54(9), 4339–
4342 (2008)

6. Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication protocol
secure against some attacks. In: SecPerU, pp. 28–33. IEEE Computer Society, Los
Alamitos (2006)

7. Bringer, J., Chabanne, H., Icart, T.: Improved privacy of the tree-based hash proto-
cols using physically unclonable function. In: Ostrovsky, R., De Prisco, R., Visconti,
I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 77–91. Springer, Heidelberg (2008)

8. De Cannière, C., Preneel, B.: Trivium specifications. eSTREAM, ECRYPT Stream
Cipher Project (2005)

9. De Cannière, C., Preneel, B.: Trivium - a stream cipher construction inspired by
block cipher design principles. In: eSTREAM, ECRYPT Stream Cipher Project
(2006)

10. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

11. Dolev, S., Kopeetsky, M., Shamir, A.: RFID authentication efficient proactive in-
formation security within computational security. Technical Report 08-2007, De-
partment of Computer Science, Ben-Gurion University (July 2007)

12. Duc, D.N., Kim, K.: Securing HB+ against GRS man-in-the-middle attack. In:
Proceedings of the Symposium on Cryptography and Information Security (SCIS
2007) (2007)

13. Frumkin, D., Shamir, A.: Un-trusted-HB: Security vulnerabilities of trusted-HB.
Cryptology ePrint Archive, Report 2009/044 (2009), http://eprint.iacr.org/

14. Gassend, B.: Physical random functions. Master’s thesis, Computation Structures
Group, Computer Science and Artificial Intelligence Laboratory. MIT (2003)

http://jya.com/a51-pi.htm
http://eprint.iacr.org/


On Physical Obfuscation of Cryptographic Algorithms 101

15. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications
Security, pp. 148–160. ACM, New York (2002)

16. Gilbert, H., Robshaw, M., Seurin, Y.: HB#: Increasing the security and efficiency
of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378.
Springer, Heidelberg (2008)

17. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

18. Günther, C.G.: Alternating step generators controlled by de bruijn sequences. In:
Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 5–14.
Springer, Heidelberg (1988)
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A Physical Unclonable Function

Gassend in [14] introduces the concept of Physical Unclonable Function (PUF):
a function that maps challenges (stimuli) to responses, that is embodied by a
physical device, and that has the following properties:

1. easy to evaluate,
2. hard to characterize, from physical observation or from chosen challenge-

response pairs,
3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness of
characterization and reproduction means that it is impossible to reproduce or to
characterize the PUF thanks to a reasonable amount of resources (time, money,
. . .). PUF can thus be viewed as pseudo-random function (note however that they
can be limited in the number of possible challenge-response pairs as explained
in [17]) where the randomness is insured thanks to physical properties.

[34] defines an Integrated Physical Unclonable Function (I-PUF) as a PUF
with the additional interesting properties listed below:

1. The I-PUF is inseparably bound to a chip. This means that any attempt to
remove the PUF from the chip leads to the destruction of the PUF and of
the chip.

2. It is impossible to tamper with the communication (measurement data) be-
tween the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties ensure the impossibility to analyze physically a PUF without
changing its output. Hence, physical attacks corrupt the PUF and the chip leav-
ing the attacker without any information about the PUF. Particularly, volatile
memory cannot be read out without destroying the I-PUF. Silicon PUF have been
already described in [15] and can be taken as relevant examples of I-PUF, they
are based on delay comparison among signals running through random wires.
Moreover, they only require a few resources to be implemented. A practical ex-
ample of implementation is described in [32]. The final output of a PUF should
not contain any errors, whatever the external conditions are. This problem is
generally handle thanks to error correcting techniques (cf. [34]).

B Krawczyk’s MACs

The MAC mechanism described by [23] works as follows.
If two parties share a common key consisting of a particular function h ∈ H

and a random pad e of length L, then the MAC of a message X is computed as
t = h(X) ⊕ e. To break the authentication, an adversary should find X ′ and t′

such that t′ = h(X)⊕ e. For this, h and e must remain secret.

Definition 4. A family H of hash functions is said ε-balanced (or ε-almost uni-
versal) if: ∀X ∈ {0, 1}m, X �= 0, c ∈ {0, 1}L, Pr[h ∈ H, h(X) = c] ≤ ε.

[23] proves the property below.
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Proposition 1. If H is a family of linear hash functions and if H is ε-balanced
then the probability of success of an adversary is lower than ε.

The scheme is then said ε-secure.

Following the principle of a one-time pad, the same h can be reused but e must
be a random pad different each time.



Cache Timing Attacks on Clefia

Chester Rebeiro1, Debdeep Mukhopadhyay1, Junko Takahashi2,
and Toshinori Fukunaga2

1 Dept. of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{chester,debdeep}@cse.iitkgp.ernet.in
2 NTT Information Sharing Platform Laboratories

Nippon Telegraph and Telephone Corporation, Japan
{takahashi.junko,fukunaga.toshinori}@lab.ntt.co.jp

Abstract. The paper discusses the performance of cache timing attacks
on Clefia, which is based on the generalized Feistel structure and imple-
mented using small tables. We mention the difficulties on mounting a
timing based cache attack on the cipher, and then explain why a cache
attack is still possible. To the best of our knowledge, no reported work
on cache attacks target ciphers which are implemented with small tables.
Our attack uses the fact that parallelization and pipelining of memory
accesses can only be done within a single round of a cipher, but not
across rounds. Our findings show that 121 bits of the 128 bit key can be
revealed in 226.64 Clefia encryptions on an Intel Core 2 Duo machine.

1 Introduction

The biggest threat to crypto systems is from information leaking through side
channels such as power, radiation, timing, etc. A class of side channel attacks
that makes use of information leakages due to the processor’s cache memory is
called cache attacks. Cache memory is a small high speed memory that stores
recently used data and instructions. The time required to access data present in
the cache (cache hit) is much lesser than when the data is not present in cache
(cache miss). This differential timing between a hit and a miss is used in cache
attacks.

The idea of using the nonuniform memory access timings to launch attacks
on crypto systems was first proposed by Kelsey et. al.[11]. A model for such
attacks based on the cipher’s structure was then formulated and simulated by
Page in [16]. The first successful cache attack was demonstrated by Tsunoo et.
al. on Misty1 [19]. They then extended the attack to DES and 3-DES[18]. AES
was the next target with cache attacks by Bernstein [3] and Osvik [15]. Since
then there have been several works that have analyzed, enhanced, and provided
countermeasures for these attacks.

All cache attacks can be categorized into three classes: cache trace attacks,
cache access attacks, and cache timing attacks. Trace attacks [1,4,9] require de-
tailed profiling of cache access patterns during encryption. Traces are generally

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 104–118, 2009.
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obtained from power measurements and require sophisticated measuring equip-
ment. Access driven attacks such as [13,15] rely on spy processes to gain informa-
tion about the cache access pattern of the cipher. Timing attacks [3,5,14,18,19]
on the other hand just require knowledge of the overall execution time of the
cipher. This timing information can be easily captured, even over a network,
thus resulting in remote attacks [2,6].

As on date, the only block ciphers that have been attacked by the cache are
Misty1, DES, 3-DES, and AES. Little work has been done on cache attacks for
other block ciphers. In this paper we present a cache timing attack on Sony’s
block cipher Clefia [17], which is used for copyright protection and authentica-
tion. Clefia has a generalized Feistel structure in which 64 bits of the first set
of round keys are ex-ored with whitening keys. In order to break the cipher, it
is essential to separate these round keys from the whitening keys. This is not
straight forward. In our attack on Clefia, we show how 57 out of the 64 bits of
the round keys can be extracted from the whitening keys.

All cache timing attacks published so far are based on the large table assump-
tion, where the cipher’s execution time is proportional to the number of misses
during encryption[11,18]. This assumption does not hold for ciphers implemented
with small tables, as at every encryption the entire table gets loaded into cache.
This makes the number of misses a constant. This limitation was stated in [18],
where larger than required DES tables were used to obtain results. In this paper
we show how cipher implementations, such as Clefia, which use small tables,
can be still attacked on microprocessors that support parallel and overlapped
memory accesses and out-of-order execution. These memory access features are
present in most modern day microprocessors as they increase execution perfor-
mance. Our attack is based on the fact that these memory access features are
effective only within a round of the cipher, while memory accesses across rounds
cannot be accelerated due of data dependencies.

The paper is organized as follows : the next section is the related work. Sec-
tion 3 discusses the difficulties in attacking Clefia compared to other ciphers,
in particular AES. Section 4 analyzes the processor features which could cause
cache attacks on ciphers that are implemented with small tables. Section 5 de-
scribes our attack on Clefia. Section 6 presents experimental results while the
final section is the conclusion.

2 Related Work

In this section an overview of three main cache attack methodologies is given.
These attacks form the base on which several other attacks on AES were devised.

The first practical cache attack was on DES[18] where ex-or of the round keys
were deduced from the encryption timing. The analysis was done by correlating
the number of misses with the encryption time. To obtain this correlation, the
authors used large tables of 256 bytes instead of standard 64 byte DES tables.
In addition, the small number of look-ups (16 per table) per encryption, and the
small cache line of the experimental machine (Pentium III, with 32 bytes cache
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line) were critical to make the required deductions. Our attack on the other hand
uses an implementation1 of Clefia with 256 byte tables, and is implemented on
a processor with 64 byte cache line. Thus the table is much smaller than in
[18] considering the cache size. Moreover, 72 look-ups are done on each table
during a single encryption. These factors result in a high probability that the
entire table is loaded into cache at every encryption, thus making the number
of cache misses a constant and independent of the inputs. In contrast in [18],
the probability that the entire table loads into the cache during an encryption is
lesser thus the number of misses are not a constant and have a strong correlation
with the encryption.

In [15], the attacker loads an array into cache before the start of encryption.
Immediately after the encryption, the array elements evicted from the cache
is determined thus revealing the cache access patterns for the encryption. The
attack will fail on ciphers implemented with small tables because all array data
will be evicted from the cache at every encryption, thus leaking no patterns in
the cache access.

The attack by Bernstein [3] was the first timing attack on AES. It requires
the attacker to have access to an exact replica of the machine running the cryp-
tographic algorithm. There are two phases in the attack. In the first phase, a
template [7] is created by profiling the execution time for each byte of the known
key. In the second phase, the attacker determines the execution time profile for
bytes of the unknown key. A set of candidates for the unknown key are ob-
tained by a statistical correlation between the two profiles. Performing brute
force search through every possible combination of candidate keys reveals the
unknown key. On cipher implementations which use small tables, the number
of cache misses is a constant, therefore there is small variations in execution
time. A straight forward implementation of [3] is unable to capture such small
execution time variations, therefore it has to be modified to suit ciphers with
small table implementations.

2.1 The Clefia Structure

Clefia is a 128 bit block cipher with a generalized Feistel structure. The specifi-
cation [17] defines three key lengths of 128, 192, and 256 bits. For brevity, this
paper considers 128 bit keys though the results are valid for the other key sizes
too. The structure of Clefia is shown in Figure 1. The input has 16 bytes, P0 to
P15, grouped into four 4 byte words. There are 18 rounds, and in each round, the
first and third words are fed into nonlinear functions F0 and F1 respectively.
The output of F0 and F1, collectively known as F functions, are ex-ored with
the second and fourth words. Additionally, the second and fourth words are also
whitened at the beginning and end of the encryption.

The non-linearity in the F functions are created by two sboxes S0 and S1.
These sboxes are in the form of 256 byte look-up tables, and are invoked twice
in each F function, making a total of eight table look-ups per round and 144

1 The reference implementation (http://www.sony.net/Products/cryptography/clefia)
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Fig. 1. Structure of Clefia

(= 8∗18) look-ups per encryption. Equations for functions F0 and F1 are shown
in Equation 1.

F0 :{y0, y1, y2, y3} = (S0[x0 ⊕ k0], S1[x1 ⊕ k1], S0[x2 ⊕ k2], S1[x3 ⊕ k3]) ·M0
F1 :{y0, y1, y2, y3} = (S1[x0 ⊕ k0], S0[x1 ⊕ k1], S1[x2 ⊕ k2], S0[x3 ⊕ k3]) ·M1

(1)

The F functions take 4 input bytes, x0, x1, x2, and x3, and 4 round keys, k0, k1,
k2, and k3. After the sbox look-ups, the bytes are diffused by multiplying them
with (4 × 4) matrices M0 and M1 respectively. The M0 and M1 matrices are
defined as follows:

M0 =

⎛
⎜⎜⎝

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

⎞
⎟⎟⎠ M1 =

⎛
⎜⎜⎝

1 8 2 A
8 1 A 2
2 A 1 8
A 2 8 1

⎞
⎟⎟⎠ (2)

The Clefia encryption requires 4 whitening keys WK0, WK1, WK2, and WK3,
and 36 round keys RK0, · · · , RK35. Key expansion is a two step process. First
a 128 bit intermediate key L is generated from the secret key K, using a GFN
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function [17]. From this the round keys and whitening keys are generated as
shown below.

Step 1: WK0|WK1|WK2|WK3 ← K
Step 2: For i ← 0 to 8

T ← L⊕(CON24+4i|CON24+4i+1 |CON24+4i+2 |CON24+4i+3)
L ← Σ(L)
if i is odd: T ← T ⊕ K
RK4i|RK4i + 1|RK4i + 2|RK4i + 3 ← T

The function Σ, known as the double swap function, rearranges the bits of L as
shown in Equation 3.

Σ(L) ← L(7···63)|L(121···127)|L(0···6)|L(64···120) (3)

From the structure of Clefia it is obvious that the knowledge of any set of 4 round
keys (RK4i, RK4i + 1, RK4i + 2, RK4i + 3), where i mod 2 = 0, is sufficient to
revert the key expansion process to obtain the secret key. In the attack on Clefia
described in this paper, round keys RK0, RK1, RK2, and RK3 are determined
from which L is computed. K can then be obtained from L by the inverse GFN
function.

3 Complications in Cache Attacks on Clefia

In this section we justify why attacking Clefia using the cache is more difficult
than attacking AES using similar techniques.

3.1 Small Tables

Conventionally, execution time for a block cipher encryption (T ) was said to
depend on the number of cache hits (nh) and misses (nm) as shown in Equation
4. Th and Tm are the data access time when there is a hit and miss respectively,
while k is a constant.

T = nhTh + nmTm + k (4)
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Fig. 3. Timing Profiles for RK00 of Clefia

Generally Th << Tm, leading Kelsey et. al. to make the prophecy that attacks
based on cache hit ratio are possible on ciphers which use large look-up tables[11].
This prophecy has come true, for example in AES implementations that use five
1024 byte tables. However in Clefia, the two tables used in the reference imple-
mentation are much smaller with just 256 bytes each. On most modern systems
which have 64 byte cache lines, each Clefia table requires just 4 cache lines.
The implication of this can be seen in Figure 2, which shows the distribution
of the average number of misses for OpenSSL’s AES and the reference imple-
mentation of Clefia. The y axis has the number of plaintexts taken(normalized
to 100). Both experiments were simulated with 65536 plaintexts and a 64 byte
cache line. AES shows a normal distribution for the number of misses, while
Clefia has a single spike at 8 misses. The result of the constant misses is that the
variation in execution time is small. Figures 3(a) and 3(b) show deviations from
average encryption time (as was done in [3]) for the first byte of RK0 for Clefia.
Figure 3(a) was taken by padding each element of the sbox with 31 bytes, thus
having a huge table of 8KBytes. Figure 3(b) is for the standard sized table of
256 bytes. The figures clearly show that for large tables the deviation from av-
erage encryption time is much more significant than that for small tables. This
makes most cache attacks that were successful on AES fail on Clefia with its
sbox implemented as it is. In Section 4 we provide an intuition on why cache
timing attacks still work on ciphers with small tables. In Section 5 we present a
modification of Bernstein’s cache timing attack [3] that is successful on Clefia.

3.2 Extraction of Round Keys RK2 and RK3

For cache timing attacks to work, one or more structures such as that in Figure
4 should be present in the cipher [20]. Figure 4 shows two accesses to the same
sbox table with indices (in0 ⊕ k0) and (in1 ⊕ k1), where in0 and in1 are the
inputs and k0 and k1 are the key. Cache hits occur when (in1 ⊕ k1) fall in the
same cache line as (in0 ⊕ k0), in all other cases cache misses occur. To gain
information about the key, the attacker should be able to control in0 and in1.
1 http://www.sony.net/Products/cryptography/clefia/
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S S

in0 in1

k1k0

Fig. 4. Simple Sbox Look-up Structure

This is possible only in the first few rounds of the cipher. In AES for example,
most cache timing attacks target the first round where 16 bytes of key are ex-ored
with the plaintext in a manner similar to Figure 4.

In Clefia, determination of RK2 and RK3 is not trivial, because the input
to the F functions in round 2 not only depend on the plaintext P4 · · ·P7 and
P11 · · ·P15 (Figure 1), but also on the outputs of the first round F functions and
the whitening keys WK0 and WK1 respectively. Moreover, even if the effect of
the F functions is nullified, it is still impossible to extract RK2 and RK3 from
RK2 ⊕ WK0 and RK3 ⊕ WK1 respectively. In our attack we show how the
whole of RK2 and 25 bits of RK3 are obtained by taking advantage of the key
expansion algorithm of Clefia.

4 Cache Attacks on Small Table Cipher Implementations

The biggest design challenge for cache memory with respect to cache reads is to
reduce the miss penalty. There are several techniques which are supported by
today’s microprocessors in order to reduce the miss penalty. Most important of
them are speculative loading, out-of-order loading, prefetching, parallelization,
and overlapping[10]. Speculative loading enables data to be loaded into the pro-
cessor before preceding branches are resolved. For a block cipher, speculative
loading has no effect on the execution time. Prefetching is done when the pro-
cessor detects a sequence of memory accesses in a specific order. This again has
no effect on block ciphers because the key dependent load operations are random
in nature.

With out-of-order loading, the microprocessor can access memory in a se-
quence not strictly specified by the program. Additionally cache misses can be
handled out of order. In block ciphers, outputs from one round are used in the
next, while operations within a round can in general be made independent of
each other. This implies that memory accesses within a round can be done out
of order, while accesses in adjacent rounds have to follow the sequence. For ex-
ample, consider the memory access dependency diagram for the first four rounds
of Clefia (Figure 5). Each circle specifies a memory access, while each row spec-
ifies a round. It may be noted that the table accesses in function F0 (or F1) in
the second or third round cannot be done before the accesses to F0 (or F1) of
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Fig. 5. Memory Access Dependency Diagram for First 4 Rounds of Clefia

the previous round is completed. Moreover, the fourth round memory accesses
cannot be done until the third round is completed. However, the 8 look-ups in
any particular round can be done out of order.

By parallelization, the microprocessor will be able to perform multiple loads,
and even service multiple misses simultaneously. For example, Intel Core 2 is ca-
pable of handling two cache misses simultaneously. That is, two cache lines can
be loaded into the L1 cache in parallel [8]. Overlapping of memory reads allows
pipelining of reads so that on an average, back-to-back memory accesses are com-
pleted faster than scattered accesses. During a back-to-back access, only the first
read will have to wait for the whole cache miss duration ([10], Section 8.5.4).

Parallelization and overlapping have an effect on the encryption time of a block
cipher. Two misses that happen in the same round completes faster compared
to when the two misses are in different rounds. This is because misses that occur
in the same round can be parallelized while misses in different rounds cannot be
due to dependencies of data.

From the above discussions it can be concluded that the encryption time not
only depends on the number of hits and misses but also on the distribution of
misses across the rounds. It is now left to be shown that the distribution of the
misses depend on the key.

To do this, let nh and nm be the number of hits and misses during a Clefia
encryption. Because of the small tables, it can be safely assumed that the whole
table gets loaded into cache at each encryption. Due to the 8 cache lines (as-
suming 64 byte cache line) required to hold the two 256 byte Clefia tables, the
expected value for nm is 8, which matches with the observed value (Figure 2).
These 8 cache misses are distributed across the rounds with most cache misses
occurring in the first round, and least cache misses occurring in the final round.
We found experimentally that the number of cache misses in the first round is
correlated to the encryption time, with encryptions having maximum number of
first round misses take least encryption time.
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To understand why this happens, consider an example in which the first round
has 3 cache misses and the next 5 rounds have one miss each. All the other
accesses are hits. In the first round, 2 cache misses are due to the compulsory
misses in the first accesses to tables S0 and S1, ie. P0 ⊕ RK0 and P1 ⊕ RK1.
The third is due to the second access in S0, ie. P2 ⊕RK2. Therefore,

< P0 ⊕RK0 > �=< P2 ⊕RK2 > (5)

where < > indicates the cache line accessed by the operand. The three cache
misses are independent of each other and can be serviced in parallel resulting in
a total encryption time Ta. Consider another encryption with encryption time
Tb having two misses in the first round and the next 6 rounds having one miss
each. This means that the second access in S0 is a hit. Therefore,

< P0 ⊕RK0 >=< P2 ⊕RK2 > (6)

The misses in the 6 rounds cannot be parallelized, as a result Tb > Ta. This
shows that although the number of misses are equal, the distribution of misses
across rounds leak information about the key.

5 The Attack

The proposed attack has four steps. The first is the determination of round
keys RK0 and RK1. Then RK2 ⊕ WK0 and RK3 ⊕ WK1 is found. Using
this information RK4 and RK5 are determined. Exploiting the key expansion
algorithm the whole of RK2 and 25 bits of RK3 can be computed from RK4 and
RK5. With the knowledge of RK0, RK1, RK2, RK3, it is trivial to obtain the
secret key. Our attack follows the method of Bernstein’s, which was demonstrated
on AES[3]. The original attack however fails for Clefia because the variations in
encryption time for Clefia (Figure 3(b)) is significantly lesser than that in AES.
It was therefore required to modify Bernstein’s attack in order to increase the
accuracy of the timing profile.

5.1 Modifications of Bernstein’s Attack

In [3], Bernstein observed that the indices to the sbox in the first round is
the ex-or of the plaintext byte with the corresponding key byte: xi = pi ⊕ ki.
Additionally, the entire encryption time depends on whether other first round
table accesses, xj = pj⊕kj , cause cache hits with xi. This observation is used to
build a timing profile for key byte ki by varying pi. The average time required
for each pi is obtained from several encryptions done with all other plaintext
bytes varying randomly.

We modify Bernstein’s technique based on the fact that in the first round,
the timing profile for ki can be affected only by those plaintexts which access
the same table as xi. That is, if xi and xj access different tables, then pj has
no affect on the timing profile of ki. However cache accesses in tables other than
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the table used by ki cause unrequired deviations in the encryption time. This
increases the error in the profile for ki. Therefore, while taking the timing profile
for ki, it is sufficient to vary only those bytes of plaintext which use the same
sbox as ki. This results in more accurate timing profiles.

Another modification to improve the accuracy is in the timing measurement.
Bernstein used the rdtsc instruction to make the time measurements. However
this is known to have errors in measurement due to the out-of-order execution in
the pipeline. In our timing measurement, the cpuid instruction is invoked before
the rdtsc to flush the pipeline thus reducing errors[12].

5.2 Determining RK0 and RK1

In the first round, each sbox S0 and S1 is accessed four times; twice inside each
function F0 and F1 (Equation 1). The indices to the tables are solely determined
by the plaintext and the round keys RK0 and RK1 as shown in Equation 7.
Ixz

Sy is the index of the zth access to sbox Sy in round x.

I10
S0 = P0 ⊕RK00 I10

S1 = P1 ⊕RK01

I11
S0 = P2 ⊕RK02 I11

S1 = P3 ⊕RK03

I12
S0 = P9 ⊕RK11 I12

S1 = P8 ⊕RK10

I13
S0 = P11 ⊕RK13 I13

S1 = P10 ⊕RK12

(7)

Round keys RK0 and RK1 can be easily determined by correlating the timing
profiles for a known RK0 and RK1 with the unknown RK0 and RK1.

5.3 Determining RK2 ⊕ WK0 and RK3 ⊕ WK1

Indices to the table accesses in function F0 in round 2 are shown in Equation 8.
In the equations P(q,r,s,t) = Pq|Pr|Ps|Pt.

I20
S0 = P4 ⊕RK20 ⊕WK00 ⊕ F0(P(0,1,2,3), RK0)0

I20
S1 = P5 ⊕RK21 ⊕WK01 ⊕ F0(P(0,1,2,3), RK0)1

I21
S0 = P6 ⊕RK22 ⊕WK02 ⊕ F0(P(0,1,2,3), RK0)2

I21
S1 = P7 ⊕RK23 ⊕WK03 ⊕ F0(P(0,1,2,3), RK0)3

(8)

In order to obtain RK2 ⊕ WK0, a structure similar to Figure 4 is essential.
However, as seen in Equation 8, an additional term F0 is present. In order to
get the required results, this term has to be cancelled. This is done by taking
timing profiles for a known RK2⊕WK0 keeping P(0,1,2,3) constant, and using
the RK0 determined in the first step of the attack. The timing profiles for the
unknown RK2⊕WK0 is then taken maintaining the same constants. Correlating
the two timing profile will cancel out the effect of the first round F0 revealing
RK2⊕WK0.

The indices to the table look-ups in function F1 in the second round is given by
Equation 9. RK3⊕WK1 can be derived in a manner similar to RK2⊕WK0 by
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taking timing profiles keeping P(8,9,10,11) constant, and using the predetermined
value of RK1.

I22
S1 = P12 ⊕RK30 ⊕WK10 ⊕ F1(P(8,9,10,11), RK1)0

I22
S0 = P13 ⊕RK31 ⊕WK11 ⊕ F1(P(8,9,10,11), RK1)1

I23
S1 = P14 ⊕RK32 ⊕WK12 ⊕ F1(P(8,9,10,11), RK1)2

I23
S0 = P15 ⊕RK33 ⊕WK13 ⊕ F1(P(8,9,10,11), RK1)3

(9)

5.4 Determining RK4 and RK5

From the Clefia structure (Figure 1), it can be noted that the input to the
third round F0 function, X0-3, is (Y0-2⊕P(8,9,10,11)). The value of Y0-2 can
be computed for a given plaintext from the values of RK0 and WK0 ⊕ RK2
that were determined in the previous steps of the attack. If P(8,9,10,11) are kept
constant, then we have a structure similar to Figure 4, with Y0-2 as the input
and RK4 as the key. Thus a correlation of a known RK4 with the unknown
RK4 will give the desired result.

In a similar manner RK5 can be determined by keeping P(0,1,2,3) constant
and obtaining the timing profile for RK5 with respect to Y1-2.

5.5 Computing RK2 and RK3

In the key expansion algorithm, if i = 0 then T = RK0|RK1|RK2|RK3, and

T = L⊕ (CON24|CON25|CON26|CON27)

64 bits of the key dependent constant L can be computed using the values of
RK0 and RK1, which were determined in the first stage of the attack.

(L0|L1) = (RK0|RK1)⊕ (CON24|CON25) (10)

The double swap operation on L places 57 known bits of L in the lower bit
positions. Let the new L after double swap be denoted by L′.

L′
(0···56) = L(7···63) (11)

Again, in the key expansion algorithm, if i = 1, then T = RK4|RK5|RK6|RK7.
This is represented in equation form as

T = L′ ⊕ (CON28|CON29|CON30|CON31)⊕ (WK0|WK1|WK2|WK3) (12)

Therefore,

WK0|WK1(0···24) = L′(0 · · · 56)⊕ (CON28|CON29(0···25))⊕ (RK4|RK5) (13)

Thus it is possible to ascertain WK0 and 25 bits of WK1. WK0 ⊕ RK2 and
WK1⊕ RK3 have been determined in the second step of the attack. With the
knowledge of WK0 and WK10···24 the whole of RK2 and 25 bits of RK3 can
be determined.
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6 Results

A 3GHz Intel Core 2 Duo processor with processor number E8400 and specifica-
tion number SLB9J was used for the attack. The processor had 32MB L1 data
cache, configured in 8 way associativity and 64 bytes in each cache line. Sony’s
reference code for Clefia was attacked using a non networked implementation as
was done in [12]. Moreover an assumption was made that each encryption starts
with a clean cache.

In order that the correct key appears with sufficiently good correlation, a
minimum of 221 samples needs to be taken. However for Clefia, the result of a
step in the attack depends on the correctness of the previous steps, therefore the
timing profiles need to be strongly correlated. In our experiments we built timing
profiles using 224 samples for the known key and 222 samples for the unknown
key, this most often resulted in the right key having a correlation value at least
twice that of any other key. The complexity for obtaining all the keys RK0,
RK1, RK2⊕WK0, RK3⊕WK1, RK4, and RK5 required 226.64 encryptions.
In addition to this, 27 possible options for RK3 are to be explored, as 25 out of
32 bits of RK3 were discovered.

Consider the Clefia key : 12 11 20 09 24 d6 8f a4 fa 45 89 13 7f 0c 26 09.
Table 1 shows the top 5 correlation results for each round key along with their
correlation value within braces. It can be seen that the correct result is strongly
correlated compared to other keys and can easily be distinguished. This shows
that cache timing attacks are possible even on cipher implementations that use
small tables. This contradicts the popular belief that only cipher implementa-
tions with large table are vulnerable to cache attacks [11,18].

Table 1. Correlation Results for the Attacked Key

Key Byte Correct Obtained Correlation results
Key (with correlation value)

RK00 0a 0a(884.6), 6b(469.7), 5f(368.3), 20(357.3), ef(263.7) . . .
RK01 96 96(1853.4), 7b(438.0), bc(437.5), 4a(366.7), ee(361.8) . . .
RK02 c1 c1(1942.1), 93(672.7), 98(598.3), f9(573.2), 24(559.5) . . .
RK03 68 68(1680.3), 23(415.9), 9e(414.1), 6e(398.9), 99(375.9) . . .
RK10 ac ac(4077.6), c1(853.4), 11(843.5), 7c(650.9), 71(639.2) . . .
RK11 b0 b0(3089.8), 73(740.8), 07(716.7), f7(677.1), 01(658.1) . . .
RK12 7a 7a(5721.0), 0a(1539.1), 08(1230.2), 6f(967.8), 05(931.3) . . .
RK13 79 79(5361.6), fb(1202.0), 2b(1196.0), 9a(1106.6), 07(1007.9) . . .

RK20 ⊕ WK00 6e 6e(4194.0), f9(1526.2), 07(1491.3), 96(1257.9), 2f(1194.3) . . .
RK21 ⊕ WK01 b1 b1(4344.0), 39(1197.5), 59(1056.8), 63(980.9), f9(926.9) . . .
RK22 ⊕ WK02 9f 9f(2662.0), d4(1327.9), 68(1071.1), 1b(1056.2), 89(1000.0) . . .
RK23 ⊕ WK03 61 61(6840.2), 0a(1783.8), 97(1587.3), 8c(1555.8), 87(1491.4) . . .
RK30 ⊕ WK10 c3 c3(21042.8), 38(4644.1), ea(4429.9), d3(3999.8), 01(3995.1) . . .
RK31 ⊕ WK11 85 85(34258.3), 7d(8695.1), 83(8576.9), 3a(8401.3), ec(8318.5) . . .
RK32 ⊕ WK12 2c 2c(37773.2), 3c(7131.3), 28(6804.1), 05(6263.3), b5(5906.3) . . .
RK33 ⊕ WK13 4d 4d(37267.7), f2(9903.8), 33(9625.5), 24(8613.2), cf(8595.4) . . .

RK40 3f 3f(1321.7), 5e(535.2), 39(328.4), 83(302.9), 04(276.8) . . .
RK41 df df(2066.6), e6(510.7), 69(463.6), ad(441.4), 5a(399.3) . . .
RK42 d7 d7(1367.1), 09(331.8), b5(322.7), be(319.7), 39(313.6) . . .
RK43 5f 5f(1530.7), cb(409.6), ae(392.4), 1e(373.3), ee(365.7) . . .
RK50 66 66(5056.0), 4e(938.3), 01(924.7), b6(886.9), 05(870.5) . . .
RK51 97 97(3577.9), e4(795.5), 54(794.1), 42(674.6), 4a(633.2) . . .
RK52 2d 2d(6248.1), 5f(1313.0), 5d(1274.5), b3(1180.1), 38(1134.4) . . .
RK53 4e 4e(6405.4), cc(1363.7), 8d(1173.4), ff(1147.6), 1a(1140.9) . . .
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7 Conclusion

The paper presents a cache timing attack on the Clefia cipher, which is designed
by Sony Corporation. Contrary to the belief that ciphers implemented with
smaller tables are more resistant against cache timing attacks, we show that
they still leak information about the key, and can be attacked with the same
complexity required for a cipher implemented with large tables. Detailed analysis
and experimentation have been performed on an Intel Core 2 Duo processor to
establish that the Clefia key can be revealed using 226.64 encryptions.
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Appendix

Experimental Setup

In order to test our results, we used a 3GHz Intel Core 2 Duo platform with
32KB L1 cache, 1GB RAM running Linux (Ubuntu 8.04). The code was com-
piled with gcc− 4.2.4 with the O3 optimization enabled.

In the first phase, data was collected for the known key. This took around
1300 seconds with each step requiring 224 iterations. The second phase, which is
the actual attack on the unknown key, was done with randomly generated secret
keys. 1000 tests were done with different random keys. Data collection for each
test took 312.5 seconds on an average with a standard deviation of 4.01 seconds.
Table 2 shows few of the sample keys which were attacked, along with the time
required.

In the 1000 tests that were conducted, in more than half of the cases all the
16 bytes of the key were successfully obtained. For the remaining cases, there
were error in mostly 1 byte and in few cases in 2 bytes.
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Table 2. Sample Timing for Determining Unknown Keys

Random Key Running Time
(seconds)

48 61 44 66 26 21 12 47 47 53 56 91 31 75 27 16 314.7
35 31 28 74 94 57 50 57 82 28 99 37 87 01 49 21 309.3
49 85 50 32 61 14 79 09 53 19 13 92 20 67 35 26 310.6
53 68 46 82 72 48 72 03 86 87 44 18 37 41 83 74 318.4
42 89 94 63 15 24 77 22 04 56 82 02 21 04 92 20 310.7
05 98 65 05 11 60 68 27 06 03 19 07 41 17 93 03 310.0
56 43 17 14 80 14 35 89 92 92 20 43 21 50 54 91 308.8
28 67 10 98 19 58 40 19 64 78 39 09 11 45 59 58 309.6
03 48 04 68 40 79 59 37 70 32 61 02 38 94 44 68 318.3
69 43 65 74 38 40 62 87 15 91 29 57 54 72 02 12 310.8

...
...

...
...
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Abstract. Feedback with Carry Shift Registers (FCSRs) are a promis-
ing alternative to LFSRs for the design of stream ciphers. Most of the
FCSR-based stream ciphers use a Galois representation. In this case, the
control of a single bit leads to the control of the feedback values. This
particular property was exploited to break most of the existing propos-
als. Recently, a new representation for FCSR automata was presented.
This representation is a generalization of both Galois and Fibonacci rep-
resentations. In this representation any cell can be used for a feedback
for any other cell. With a good choice for the parameters, those new
FCSR automatas are resistant to the previous attacks and the internal
diffusion is significantly improved. Using this approach, a new hardware
oriented version of F-FCSR has been recently proposed.

In this paper, we propose a new design for FCSRs suitable for software
applications. Using this approach, we present a new version of X-FCSR-
128 suitable for software applications which is really efficient in software.

Keywords: stream cipher, FCSRs, software design, cryptanalysis.

Introduction

Whereas a LFSR performs x-or additions, a FCSR performs additions with car-
ries leading to a non-linear transition function. Any cell of the main register of
such automaton computes the 2-adic expansion of some 2-adic rational number
p/q. This can be used to prove several interesting properties such as proven
period, non-degenerated states, good statistical properties [14,18,12]. The high
non-linearity of the FCSR transition function provides an intrinsic resistance to
algebraic attacks and seems to prevent correlation attacks. There exists a hard-
ware efficient family of stream ciphers based on FCSRs: the filtered FCSR or
F-FCSR [3,1,4,6]. In these ciphers, the internal state of the FCSR is filtered by
a linear function to provide from 1 to 16 output bits at each iteration. There
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exists also a software version of FCSR-based stream cipher: the X-FCSR family,
which uses an extraction function based on block cipher design [5].

FCSRs are usually represented using either the Fibonacci representation or
the Galois one [13]. In the Fibonacci representation, all the feedback bits influ-
ence a single cell. In the Galois mode, a single feedback bit influences all the
carry cells. As noticed in [11], the Fibonacci mode is not suitable for crypto-
graphic applications since most of cells have a linear transition function. The
Galois mode has a quadratic transition function which seems better for cryp-
tographic applications. However, and as noticed in [16], due to the dependency
between the carries and the single feedback bit, a Galois FCSR could be easily
linearized during some clocks. This weakness that happens with a non-negligible
probability, leads to LFSRization of FCSRs and to powerful attacks against all
the versions of stream ciphers based on FCSRs [28].

In [2], Arnault et al. have responded to this attack by introducing a new
FCSR representation called ring representation. In this case, any cell can be
used as a feedback bit for any other cell. The attacks introduced in [16,28] are
thus totally discarded when this new mode is used. Many other advantages have
also appeared with this new representation if the automaton is well-chosen. For
hardware implementations, the new representation leads to a better path in the
circuit (equal to 1) and a better fan-out (equal to 2). The circuit is naturally
more resistant to side-channel attacks, and the diffusion of differences is quicker
in the circuit. This leads to new versions of F-FCSR stream ciphers designed for
hardware applications.

In this paper, we are interested in software applications. In Section 1 we
introduce the ring representation for FCSR, and give a particular realization
suitable for software utilization. This realization uses a specific circuit which acts
essentially on 32-bits words. An equivalent design can naturally be constructed
for 64-bits architectures. As an application in Section 2, we present a new version
of X-FCSR-128 efficient in software.

1 FCSR Automata in Ring Representation

A FCSR as defined in [14,18] is composed of a binary main register and of a
carry register but contrary to LFSRs the performed operations are no more x-
ors over F2 but additions with carry in the set of 2-adic integers Z2 (i.e. the set
of power series:

∑∞
i=0 si2i, si ∈ {0, 1}). Note that each cell of the main register

produces a sequence S = (sn)n∈N that is eventually periodic if and only if there
exist two numbers p and q in Z, q odd, such that s = p/q. This sequence is
strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|. The period of S is the
order of 2 modulo q, i.e., the smallest integer P such that 2P ≡ 1 (mod q). The
period satisfies P ≤ |q| − 1. If q is prime and if P = |q| − 1, the sequence S
is called an �-sequence. �-sequences have many proved properties that could be
compared to the ones of m-sequences: known period, good statistical properties,
fast generation, etc.
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Usually, FCSRs are represented using Galois or Fibonacci representations. In
this section, we generalize this approach via matrix definition. Those results hold
also for LFSRs where in this last case all the operations are x-ors over F2 and
no more additions with carry in the set Z2.

1.1 Diversified FCSR Automata

The following definition is an extension of the one given in [2] and introduces
the update function of an FCSR via a matrix definition.

Definition 1. A (diversified or ring) FCSR is an automaton composed of a
main shift register of n binary cells m = (m0, . . . , mn−1), and a carry register
of n integer cells c = (c0, . . . , cn−1). It is updated using the following relations:{

m(t + 1) = Tm(t) + c(t) mod 2
c(t + 1) = Tm(t) + c(t) ÷ 2 (1)

where T is a n×n matrix with coefficients 0 or 1 in Z, called transition matrix.
Note that ÷2 is the traditional expression: X ÷ 2 = X−(X mod 2)

2 .

The main property of such automaton is the following:

Theorem 1 ([2] Theorem 1). The series Mi(t) observed in the cells of the
main register are 2-adic expansion of pi/q with pi ∈ Z and with q = det(I−2T ).

The T transition matrix completely defines the ring FCSR as shown in Theorem
1, the only common element for all ring FCSRs is the over-diagonal full of 1 (to
guarantee the shifted elementary structure) whereas some other 1s appear in the
rest of the matrix as shown below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1
∗ 1 (∗)

∗ 1
. . .

. . .
(∗) ∗ 1

1 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The Galois and Fibonacci representations are special cases of ring FCSR with
the following respective transition matrices TG and TF :

TG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d0 1
d1 0 1 (0)
d2 0 1
...

. . .
. . .

dn−2 (0) 0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

TF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1 (0)

0 1

(0)
. . .

. . .
0 1

1 dn−2 . . . d2 d1 d0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where (d0, . . . , dn−1) is the binary representation of d = (1+|q|)/2 and represents
all the non null carry bits.
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1.2 Main Advantages of Diversified FCSRs

The diversified FCSRs have many advantages detailed below (the reader can
refer to [2] for more details).

– Any cell can be used for a feedback for any other cell. Under the condition
that the FCSR automaton is sufficiently diversified, this property ensures a
full resistance to the recent attacks on previous FCSR stream ciphers [16].
Sufficiently diversified means that there are a significant number of rows and
columns with more than one 1.

– The critical path (i.e. a shorter longest path) of the corresponding hardware
circuit is given by the row ai of the matrix T with the largest number of 1.
It is equal to
max(�log2(wH(ai))�).

– the fan-out is given by the column bi with the largest number of 1. This is
the number of 1 of this column. By limiting the number of 1 per row and
per column, it is possible to design ring FCSR with a critical path of 1 and
a fan-out of 2.

– The diffusion of differences is generally quicker than for the Galois or Fi-
bonacci representations. It could be computed as the diameter Di of the
graph associated to the transition matrix T . Typically this value is close to
n/4 instead of n in the Galois or Fibonacci cases.

However, for a given connection integer q, to build a good transition matrix T
and thus a good diversified FCSR seems to be really difficult. The authors of
[2] obtained good diversified FCSRs trying randomly many T matrix under the
following constraints: the ring structure, a critical path of 1, a fan-out of 2, a
small diameter, and a connecting integer q such that the automaton generates
maximal �-sequences (see [2] for more details).

1.3 Design of a Diversified FCSR for Software Applications

The question is now how to find a way to build a software oriented FCSR. First,
let us introduce previous works done for the LFSR case to optimize software
performances.

LFSR case. The LFSR case has been widely studied in the literature espe-
cially for pseudo random number generation. A LFSR is simply an automa-
ton composed of a main register with n binary cells m = (m0, . . . , mn−1) with
an update function that could be written with our generalized representation
m(t + 1) = Tm(t) over F2 where T is a n × n matrix over F2. As previously
studied for the FCSR case, T could be a random matrix or could be written to
lead to a Galois or a Fibonacci representation.

Firstly, the Generalized Feedback Shift Registers were introduced in [19] to
increase the throughput. The main idea here was to parallelize w Fibonacci
LFSRs. More formally, the corresponding matrix of such a construction is:
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T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Iw

0 Iw (0)
0 Iw

(0)
. . . . . .

0 Iw

Iw an−2Iw . . . a2Iw a1Iw a0Iw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where Iw represents the w×w identity matrix over F2 and where the ai for i in
[0, .., n− 2] are binary coefficients. The T matrix could be seen at bit level but
also at w-bits word level, each bit of the w-bits word is in fact one bit of the
internal state of one Fibonacci LFSR among the w LFSRs.

In [27], Roggeman applied the previous definition to LFSRs to obtain the Gen-
eralized Linear Feedback Shift Registers but in this case the matrix T is always
defined at bit level. In 1992, Matsumoto in [21] generalized this last approach
considering no more LFSR at bit level but at vector bit level (called word). This
representation is called Twisted Generalized Feedback Shift Register whereas
the same kind of architecture was also described in [22] and called the Mersenne
Twister. In those approaches, the considered LFSRs are in Fibonacci mode seen
at word level with a unique linear feedback. The corresponding matrices are of
the form:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Iw

0 Iw (0)
0 Iw

(0)
. . . . . .

0 Iw

A Iw 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where Iw represents the w × w identity matrix and where A is a w × w binary
matrix. In this case, the matrix is defined over F2 but could also be seen at
w-bits word level. This is the first generalization of LFSR specially designed for
software applications due to the word oriented structure.

The last generalization was introduced in 1995 in [23] with the Multiple-
Recursive Matrix Method and used in the Xorshift Generators described in [20].
In this case, the used LFSRs are in Fibonacci mode with several linear feedbacks.
The matrix representation is:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Iw

0 Iw (0)
0 Iw

(0)
. . .

. . .
0 Iw

A1 A2 A3 . . . Ar−2 Ar−1 Ar

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where Iw is the identity matrix and where the matrices Ai are software efficient
transformations such as right or left shifts at word level or word rotation. The
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main advantage of this representation is its word-oriented software efficiency but
it also preserves all the good LFSRs properties if the underlying polynomial is
primitive. As for the FCSR case and as shown in [20], this polynomial could
be directly computed using the matrix representation: P (X) = det(I − XT ).
Indeed, the word oriented representation does not change the intrinsic LFSRs
properties.

First, applying our ring representation to word oriented LFSR case leads to
ring LFSRs with high diffusion efficient for software applications. However, our
main goal consists in considering the same kind of representations but no more
for LFSRs but for FCSRs to improve usual software performances of FCSRs and
to guarantee a non-linear update function.

FCSR case. We could directly apply the results of the previous subsection to
build software efficient ring FCSRs working on Z2 instead of F2. Those FCSRs
would be completely determined by the choice of the matrix T . The willing size
of words k is determined by software constraints and could be equal to 8, 16,
32 or 64 bits according the targeted architecture. As seen in the LFSR case, the
ring structure of the transition matrix T need to be defined in a “word-ring”
way. We consider a FCSR and its associated transition matrix defined on k-bits
word. In this case, the main register of the FCSR could be seen as r k-bits words
M0, ..., Mr−1 with feedback words C0, · · · , Cr−1, the r × r matrix T represents
the new word oriented structure:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ik R0
R1 Ik (0)

Ik R2

(0)
. . .

Rr−2 Ik

Ik Rr−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where Ik denotes the identity matrix of binary size k × k at word level whereas
the Ri represent particular word oriented operations on k-bits words such as
shifts or rotations for software efficiency.

As noticed in [24] and in [20] for the LFSR case, the simplest operations that
could be easily represented at word level are right and left shift and rotations.
Following this approach, the FCSR chosen in the stream cipher described in this
paper follows this rule. More precisely, if left and right shift are used at word
level, they could be represented by the following matrices SL and SR for a k-bits
word: {

SL · (x0, · · · , xk−1)t = (x1, · · · , xk−1, 0)t

SR · (x0, · · · , xk−1)t = (0, x0, x1, · · · , xk−2)t

whereas the rotations could be represented by the following matrices RL and
RR at bit level:{

RL · (x0, · · · , xk−1)t = (xk−1, x0, x1, · · · , xk−2)t

RR · (x0, · · · , xk−1)t = (x1, · · · , xk−1, x0)t



Software Oriented Stream Ciphers Based upon FCSRs in Diversified Mode 125

In this case, the Ri parameters of the matrix T are equal to SLa, SRb, RLc

or RRd where a, b, c and d represent the desired shifts or rotations. Thus for
example, the following matrix T for k = 8 bits word

T =

⎛
⎜⎜⎜⎜⎝

0 I SR4 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 SL1 I
I SL2 0 0 0

⎞
⎟⎟⎟⎟⎠

completely defines the associated FCSR represented in Figure 1 with n = 40 and
k = 8.

88
m4 m3

8
m2

8
m1

8
m0

� 4

� 1

� 2

Fig. 1. A diversified FCSR with efficient software design

The corresponding q value could be directly computed using the formula given
in Theorem 1 and is equal to −1375125994241. This number is prime but has not
a maximal order. Thus the corresponding FCSR does not produce �-sequences,
but is efficient in software due to the word oriented structure.

Software performances of word ring FCSRs. Word ring FCSRs are of
course more efficient than classical ring FCSRs. More precisely, when clocking
a classical ring FCSR, a vector containing the feedback values is built. Each
feedback is computed in this case applying a mask and shifting the vector until
the correct bit places. Once done, the content of the main register is shifted
using rotations with carries. Then, the additions with carries are performed. For
a word ring FCSR, feedbacks are computed first. This step is faster than for
classical ring FCSRs due to the use of shifts and rotations. Then, the content
of the main register is shifted at word level using only memory copies. And the
last step is the same: additions with carries.

Of course, the first and the second steps are more efficient when word ring
FCSRs are used. The gain between the two structures is about 200 cycles/clock
for a 256-bits ring FCSR (25 cycles for clocking one time a word ring FCSR
whereas one clock requires 221 cycles for a classical ring FCSR). It is directly
linked with the first step that requires about twice as many operations for a
classical ring FCSR.

We are thus particularly interested in using the word ring FCSR for designing
a stream cipher efficient in software. In [2], the proposed versions of F-FCSR
using classical ring FCSR have been specially design for hardware purpose. Us-
ing the software efficient ring representation previously presented, it is really
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easy to directly adapt the F-FCSR construction for software applications. This
construction called F-FCSR-32 supports key of length 128 bits and an IV with
the same length. It is composed of a 256-bits word ring FCSR (composed of
16 32-bits words for the main register and also for the carry register) described
in Figure 2 in Appendix B. This FCSR is built on the elementary operations
“shifts” and “rotations”. F-FCSR-32 outputs 32 bits (a word) at each clock using
the following linear extraction function:

Output32(t) = M1(t)⊕ (M2(t) >>> 3)⊕ (M4(t) >>> 5)⊕ (M5(t) >>> 7)
⊕(M6(t) >>> 11)⊕ (M7(t) >>> 13)⊕ (M8(t) >>> 17)
⊕(M9(t) >>> 19)⊕ (M10(t) >>> 23)

where (M0(t), · · · , M15(t)) represents the 16 32-bits words of the main register.
We do not detail here the key and IV injection that are very simple and could
be easily deduced from [2]. We have integrated F-FCSR-32 to the eSTREAM
benchmark suite ([10]) and have obtained the results summed up in Table 1 when
comparing F-FCSR-32 with the AES in counter mode and with F-FCSR-16 v3
(see [2]) that uses a classical ring FCSR. As anyone can notice, the gain between
F-FCSR-32 and F-FCSR-16 is rather important due to the dedicated design of
F-FCSR-32.

Table 1. Performances computed using the eSTREAM benchmark suite

cycles/byte cycles/key cycles/IV
Algorithm Keystream speed 40 bytes 576 bytes 1500 bytes Key setup IV setup
F-FCSR-32 11.92 104.23 18.05 14.63 13.42 3717.39

AES-CTR (128) 12.4 18.27 12.64 12.52 336.54 16.73
F-FCSR-16 v3 130.81 1682.56 243.12 170.56 43.44 61719.00

2 Design of X-FCSR-128 v.2

In [28], Paul Stankovski, Martin Hell and Thomas Johansson presented an effi-
cient attack against X-FCSR-256. This attack is less efficient against X-FCSR-
128 even if its theoretical bound is under the exhaustive key search (see [5] for
the specifications of the various versions of X-FCSRs). Those two attacks are
based on the same principles that the one described in [16] and always exploit
the dependencies between the feedback bit and all the other carries bits leading
to LFSRization of FCSRs. In this section, a new version of X-FCSR-128 is pro-
posed that completely discards the previous attacks using always a well-chosen
ring FCSR.

As done for the other X-FCSR versions, the design exploits particular op-
erations (S-boxes and linear operations) coming from the block cipher world
to improve the efficiency of the structure as done in the previous version of
X-FCSR-128. X-FCSR takes a 128-bit length secret key K and a public
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initialization vector IV of bitlength ranging from 64 and 128 as inputs and
outputs 128 bits at each clock. The X-FCSR primitive is composed of one FCSR
of bitlength 512 seen as 16 32-bits words.

2.1 FCSR Choice

The core of the design is composed of one single ring FCSR of length n = 512
bits acting on 32-bits words. It can be represented at word level with the 16×16
transition matrix T given in Figure 2 in Appendix B.

This ring FCSR has been randomly chosen using algorithm 1 described in
Appendix A. It verifies the following condition: log2(q) ≥ n, q = det(I − 2T ) is
prime, the order of 2 modulo q is equal to |q| − 1 and is maximal to ensure that
the outputs are composed of �-sequences. Moreover, q has been chosen such that
the diameter Di is sufficiently small to ensure a quick diffusion. The q value is
given in Appendix B.

At time t, we denote by M(t) = (M0(t), · · · , M15(t)) the content of the main
register composed of 16 32-bits words and by C(t) = (C0(t), · · · , C15(t)) the
content of the carry register.

2.2 Extraction Function

The extraction function is constituted of a function Round128 (already used for
X-FCSR-128 v1) working on 128-bit input/output words, and a memory of 16
128-bit words which stores the output of Round128 that will be used 16 iterations
later. More formally, the full extraction function works as follows:

– compute the 128-bit word Y (t) = (Y0(t)|| · · · ||Y3(t)) with:

Y0(t) = M0(t)⊕ (M4(t) >>> 11)⊕ (M8(t) >>> 19)⊕ (M12(t) >>> 23)
Y1(t) = M1(t)⊕ (M5(t) >>> 11)⊕ (M9(t) >>> 19)⊕ (M13(t) >>> 23)
Y2(t) = M2(t)⊕ (M6(t) >>> 11)⊕ (M10(t) >>> 19)⊕ (M14(t) >>> 23)
Y3(t) = M3(t)⊕ (M7(t) >>> 11)⊕ (M11(t) >>> 19)⊕ (M15(t) >>> 23)

– Thus, compute Z(t) = Round128(Y (t)).
– Store Z(t) in memory (keep it during 16 iterations).
– Output the 128-bit word Output128(t) = Y (t)⊕ Z(t− 16).

Round128 (already described in [5]) is a one-round function from {0, 1}128 into
itself: Round128(a) = Mix128(SR128(SL128(a))). If the 128-bit word a is repre-
sented at byte level by a 4× 4 matrix M where each byte is represented by the
word ai,j with 0 ≤ i, j ≤ 3, then the function Round128 works as follows:

– SL128() is a S-box layer applied at byte level: each byte ai,j is transformed
into an other byte bi,j with bi,j = S(ai,j) where S is the S-box given in
Appendix C chosen for its good properties (see Appendix C for the details).

– The SR128() operation corresponds with the AES ShiftRows() operation.
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– the Mix128() operation is the one used in [15] computed using the operations
over GF (2). More precisely for each column of a, we compute ∀j, 0 ≤ j ≤ 3:

Mix128

⎛
⎜⎜⎝

a0,j

a1,j

a2,j

a3,j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a3,j ⊕ a0,j ⊕ a1,j

a0,j ⊕ a1,j ⊕ a2,j

a1,j ⊕ a2,j ⊕ a3,j

a2,j ⊕ a3,j ⊕ a0,j

⎞
⎟⎟⎠ .

Even if this function is not fully optimal for a diffusion purpose, its branch
number is however equal to 4 and its computation is significantly faster than
the MixColumns of the AES: Mix128 can be computed with only six 32-bit
bitwise XORs.

2.3 Key and IV Injection

As shown in [2], using a ring FCSR leads to a new problem: we can not ensure
the entropy of the automaton. In the case of F-FCSR with Galois or Fibonacci
structure, zeroing the content of the carry register prevents collisions (i.e. one
point of the states graph with two preimages) and warrants a constant entropy.
This is no more the case for ring FCSRs because no more structure exists in the
adjacency matrix of T . In this last case, an attacker could search direct collisions
and time memory data trade-off attacks for collisions search built upon entropy
loss. As noticed in [2], the first attack becomes an instance of the subset sum
problem, with a complexity equals to 2n/2 (if the carries are zeroes) or 23n/2

(in the general case). With n = 512, this attack is more expensive than the
exhaustive search for a 128-bit key. For the second attack and as noticed in [2]
and in [26], considering that the key and IV setup are random function, the
induced entropy loss is about 1 bit, so considering an initial entropy equal to n
bits, the entropy after the key and IV setup is close to n − 1 bits. Thus, with
n = 512, this attack is discarded.

Thus, under all those conditions, we have decided to build the key and IV
setup as previously done for X-FCSR-128 v1 and as previously done in [7]. We
have split the initialization process into two steps to speed up the IV injection:

– The key schedule, which processes the secret key but does not depend on
the IV .

– The IV injection, which uses the output of the key schedule and the IV .

This initializes the stream cipher internal state. Then, the IV setup for a fixed
key is less expensive than a complete key setup, improving the common design
since changing the IV is more frequent than changing the secret key.

Key schedule. The key setup process used here corresponds to a classical key
schedule of a block cipher and is inspired by the one of the DES due to its good
resistance against related key attacks [9] and against related key rectangle attacks
[17]. The key expansion produces 25× 128-bit subkeys denoted K0, · · · , K24. It
works as follow:
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– the subkey K0 is deduced from the master key: K0 = (Round128(K))<<<23
where <<<j denotes a 128-bit left rotation of j positions.

– then Ki is deduced from Ki−1: Ki = Round128((Ki−1)<<<j) where j = 23
if i ≡ 3 mod 4 and j = 11 otherwise.

IV injection. If necessary the IV is extended to a 128-bit word by adding
leading zeros. Then, this value is considered as a plaintext that is first enciphered
12 times using the Round128 function and then xored with the subkey of the
round Kj . More precisely, the process is the following if we denote by Vi the
ciphertext after the round i:

V0 = IV ⊕K0; for i from 1 to 24 do Vi = Round128(Vi−1)⊕Ki.
Then, the values V12, V16 V20 and V24 are used to initialize the main register

of the FCSR as follows: M(0) = (V12||V20, V16||V24) whereas the carry register is
initialized to zero. The FCSR is then clocked 16 times to fill the sixteen memory
registers of the extraction function.

2.4 Security

Design rational of X-FCSR-128. In [8], the authors prove that the key and
IV setup (parametrized by the key K) of an IV -dependent stream cipher must
be a pseudo-random function to obtain a sufficient security level. We have tried
to achieve this goal designing our key and IV setup as a block cipher using the
round function Round128. Under those conditions, the secret key of the cipher
cannot be easily recovered from the initial state of the generator. Once the initial
state is recovered, the attacker is only able to generate the output sequence
for a particular key and a given IV. Moreover, the use of the new ring FCSR
construction leads to some possible collisions after the key and IV setup due to
a loose of entropy. In X-FCSR-128v.2, to find a collision becomes as difficult as
a block cipher cryptanalysis (i.e. inverting a block cipher without knowing the
key).

The use of an FCSR in the ring mode prevents the attack described in [16]
and [11] to happen: the LFSRization of Galois FCSRs is no more possible as
previously described.

The round function Round128 has been chosen for its good diffusion and non-
linear properties. The use of 16 memory registers is a good compromise between a
better security and a limited performance cost and introduces high non-linearity
in the outputs. Even if there exists dependencies between Y (t) and Y (t − 16),
it is computationally infeasible to determine the values of the main registers at
time t + 16 from the values at time t using the transition function.

Resistance against known attacks. The good statistical properties (period,
balanced sequences and so on) of our constructions are provided by the 2-adic
properties.

We do not discuss here resistance against traditional attacks such as guess and
determine attacks, algebraic attacks, etc. Some details about this can be found
in [4]. Resistance against TMDTO attacks was considered in Section 2.3. As
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noticed in [2], recent attacks against FCSRs and F-FCSRs described in [16] and
[11] are also discarded. More precisely, the attack of [16,28] against F-FCSR using
Galois representation exploits the control of the feedback bit over all the other
feedbacks. This relation is no more true in the case of a ring FCSR: the linear
behavior is observed with probability about 2−t during t clocks for a Galois
FCSR whereas it becomes 2−t·k for k feedbacks for a ring FCSR. Moreover,
the attack described in [11] could only be applied when a Fibonacci FCSR is
used. Moreover, correlation and fast correlation attacks are also really difficult
to mount due to the inherent non-linearity of a ring FCSR and due to the design
of the Round function.

To sum up all the previous analyses, the ring representation prevents all the
previous known attacks from happening because previous dependencies that pro-
duce weaknesses for Fibonacci and Galois modes do no more occur due to the
intrinsic new definition of ring FCSRs. More precisely, in the ring case, the de-
pendencies are no more localized at special places but are completely distributed
through all the cells leading to a better non-linear behavior. We think that tradi-
tional attacks against stream cipher that exploit linear relations built upon the
transition function are not realistic in our case. Thus, wanting to cryptanalyse
ring FCSRs leads to create new attacks exploiting other sorts of relations.

2.5 Performances

We have integrated the X-FCSR-128 v2 stream cipher to the eSTREAM bench-
mark suite ([10]). We gather the results in Table 2 comparing the different stream
ciphers based on FCSRs with the AES in counter mode and the software oriented
stream ciphers of eSTREAM. The gain provided by word ring FCSR design (X-
FCSR-128 v2 and F-FCSR-32) is important when comparing with F-FCSR-16 v3
that uses a classical ring FCSR. X-FCSR-128 v2 has really good performances
compared with the AES-CTR and is also the fastest stream cipher based on
FCSRs for software applications.

Table 2. Performances computed using the eSTREAM benchmark suite

cycles/byte cycles/key cycles/IV
Algorithm Keystream speed 40 bytes 576 bytes 1500 bytes Key setup IV setup

Rabbit 2.35 17.94 3.06 2.81 412.04 347.57
HC-128 2.38 502.69 36.84 15.70 54.40 19851.28

Salsa 20/12 2.56 12.67 2.80 3.02 27.27 16.47
Sosemanuk 3.43 25.16 6.07 5.08 793.65 651.30

X-FCSR-128 v2 7.54 114.70 16.16 11.59 1478.94 3968.20
X-FCSR-128 v1 11.21 78.37 15.61 15.17 1256.70 2954.88

F-FCSR-32 11.92 104.23 18.05 14.63 13.42 3717.39
AES-CTR (128) 12.4 18.27 12.64 12.52 336.54 16.73
F-FCSR-16 v3 130.81 1682.56 243.12 170.56 43.44 61719.00
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3 Conclusion

We have proposed in this paper a new stream cipher construction based upon
ring FCSR designed for software applications. The new ring FCSR representation
was introduced in [2] and prevent all the previous known attacks against FCSRs
and F-FCSRs to happen due to a reduced dependency between particular bits
(the feedback one and the carries). Moreover, software efficiency is reached due to
the use of a new word oriented representation of FCSRs leading to really simple
and efficient implementations. As shown in the performances results presented
along this paper, the software performances of the new stream ciphers are really
good.
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A Random Algorithms to Pick Good qs

Algorithm 1. Algorithm to pick randomly a FCSR with a good software
design
Input: k the word size. n the length of the FCSR to seek with k|n.

f ≤ n/k the number of word-feedbacks to place.
Output: A transition matrix T define by block with a cost of f shift and

word-adder operations and such that its feedback polynomial is
primitive of degree n.

begin
repeat

T ← (ti,j)0≤i,j<n/k where ti,j =
{

Ik if j ≡ i + 1 mod n/k
0 otherwise ;

From← Random([0, n/k]f);
To← Random([0, n/k]f);
Shift← Random

((
[−k/2, k/2] \ {0}

)f);
for l← 0 to f − 1 do

tTo[l],From[l] ← tTo[l],From[l] +
{

SLShift[l] if Shift[l] > 0
SR−Shift[l] otherwise

;

q ← det(I − 2 · T );
until q is primitive ;
return T ;

end

This algorithm picks random word-feedbacks positions and shift values, and
computes the associated feedback polynomial.
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B The T Matrix

The following matrix T is the one used in X-FCSR-128 v2. It is a 32 bit word
16× 16 matrix:

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I SL

10 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 SR

7 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 0
0 0 SL

7 0 0 0 I 0 0 0 0 0 0 0 0 0
0 SR

10 0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 SR

6 0 0
0 0 0 0 0 0 0 0 0 I 0 SL

3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I 0 0 0 SL

8 0
SR

4 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

Fig. 2. The matrix used in X-FCSR-128 v2

This matrix has 9 feedbacks words. |q| is equal in hexadecimal notation to

0x1 596D 63EF BD0C 36EF 147B FB44 F791 685C A2BB 4832
E9B7 A021 291E 421C C180 0C67 473D 5FF9 ED90 818A 2B1D

AB66 9AB9 7B9A AA50 2A32 D3F4 7E30 96FE 1382 8781 121D

The diameter Di of the graph corresponding with the matrix T is Di = 37.
We also have log2(q) = 512.432238323 and 2 is primitive mod q leading to a
maximal order and producing �-sequences.
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C The S-Box S

We have designed our S-box using the requirements defined in [15] except that
all the steps are performed here on GF (2)8 into itself. The S-box is given in
tab. 3 in hexadecimal notation. It has been chosen to have a good resistance
against differential and linear cryptanalyses, an high algebraic degree, an high
nonlinear order and a degree between inputs and outputs equal to three. The
S-box was generated using the key schedule algorithm KSA of RC4 ([25]) algo-
rithm initialized with a key of 26 bytes length equal to the string “To design
our streamcipher”. Then after 48574 iterations of this algorithm, we obtain the
following S-box:

Table 3. the chosen S-box

52 c3 45 ce 9 cf a8 f8 fd ab b8 6d 95 2 31 8
56 f4 cb 40 61 7 12 39 62 bb ef 5d 3a a9 fb 2c
78 ad 75 77 10 ca 55 66 9e 65 7b 9b 13 76 c7 1c
71 d 18 3f 50 6c 28 64 a3 b7 d0 be e6 9c b9 94
fc bc a1 cd 3b 48 4c 99 cc 3e 79 24 f2 c1 da d8
de f e8 67 2e 16 53 c4 9d 57 c0 4f f0 d6 4e 81
69 8a ae f9 8b ee 43 3d e4 23 97 68 b 32 e1 b2
ec e9 59 1 c2 34 b5 1f 2a 29 d7 d5 b0 96 11 c6
7d 91 2d 72 8f 87 1d e7 ba 19 25 15 5e d9 98 70
4a ed 51 a6 88 86 58 c5 5f eb 49 0 ff 1b 2f 6a
82 1a af 9f 8c 6b a2 f1 e 5 7f 73 92 3c f5 d2
54 14 ac 83 20 90 c9 22 fa 74 d3 27 37 38 a5 33
85 6 4 b3 e2 5b e3 47 1e 8d 4b b1 36 46 bd 35
dc 6e d1 7c a7 41 c 42 a0 aa 26 5a 4d e5 5c 80
21 3 f3 63 ea 44 dd 89 8e 7e b4 30 a a4 60 f6
bf fe e0 f7 c8 d4 9a db 84 7a 6f 2b b6 17 93 df

The chosen S-box has the following properties:

– The best differential trail is DP (S) = Maxa,b∈(GF (2)8)2\{0,0}#{x|S(x⊕ a)⊕
S(x) = b} = 10.

– The best linear trail is LP (S) = Maxa,b∈(GF (2)8)2\{0,0}|#{x|a · S(x) = b ·
x} − 128| = 32.

– The algebraic degree is equal to 7.
– The non-linear order is equal to 6.
– The degree between inputs and outputs is equal to three. There is no equation

of degree two.
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Abstract. We study the negabent Boolean functions which are sym-
metric. The Boolean function which has equal absolute spectral values
under the nega-Hadamard transform is called a negabent function. For
a bent function, the absolute spectral values are the same under the
Hadamard-Walsh transform. Unlike bent functions, negabent functions
can exist on odd number of variables. Moreover, all the affine functions
are negabent.

We prove that a symmetric Boolean function is negabent if and only
if it is affine.
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1 Introduction

In 1976, Rothaus [6] introduced the class of bent functions which have the max-
imum possible distance from the affine functions. These functions exist only on
even number of variables and an n-variable bent function can have the degree at
most n

2 . If a function is bent, then all the spectral values under the Hadamard-
Walsh transformation are equal in absolute term.

Negabent functions have been studied in [2,8,3,4]. These functions have equal
absolute spectral values under the nega-Hadamard transform. In [2] some classes
of Boolean functions which are both bent and negabent have been identified. In
another paper [8], construction of negabent functions has been shown in the
class of Maiorana-McFarland bent functions. It is interesting to note that all the
affine functions (both odd and even variables) are negabent [2, Proposition 1].

Symmetric Boolean functions form a subclass of Boolean functions. A Boolean
function is called symmetric if the outputs of the function are the same for all
the inputs of the same weight. In [7], Savicky showed that a symmetric function
is bent if and only if it is quadratic.

In this paper, we study the symmetric negabent Boolean functions. We prove
that a symmetric function is negabent if and only if it is affine. This also tells
that there is no symmetric Boolean function on even number of variables which
is both bent and negabent.
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2 Preliminary

Let Fn
2 be the vector space formed by the 2n binary n-tuples. An n-variable

Boolean function is a mapping f : Fn
2 → F2. Let Bn denote the set of all n-

variable Boolean functions. The Hamming weight of a binary string S is the
number of 1’s in S and it is denoted by wt(S). A function f ∈ Bn can be written
as a function of x1, . . . , xn variables as follows

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

μa(
n∏

i=1

xai

i ), where μa ∈ F2.

This is called the algebraic normal form (ANF) of f . The algebraic degree,
deg(f), of f is defined as maxa∈Fn

2
{wt(a) : μa �= 0}.

Let λ = (λ1, . . . , λn) and x = (x1, . . . , xn) be two elements in Fn
2 and λ · x =

λ1x1 ⊕ . . . ⊕ λnxn. Then the Hadamard-Walsh transform value of f ∈ Bn at λ
is given by

Hf (λ) =
1

2
n
2

∑
x∈Fn

2

(−1)f(x)⊕λ·x. (1)

The function f is called bent if |Hf (λ)| = 1 for all λ ∈ Fn
2 . For a ∈ Fn

2 , the
autocorrelation spectrum value of f is computed as

τa =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕y).

A Boolean function f is bent if and only for all a ∈ Fn
2 the value τa is 0. The

value τa is referred to as the periodic autocorrelation coefficient of f at a ∈ Fn
2

[2].
The nega-Hadamard transform value of f ∈ Bn at λ ∈ Fn

2 is given by

Nf (λ) =
1

2
n
2

∑
x∈Fn

2

(−1)f(x)⊕λ·xiwt(x), (2)

where i =
√
−1. A function f ∈ Bn is called negabent [2] if |Nf (λ)| = 1 for all

λ ∈ Fn
2 . We state the following result from [8, Lemma 1].

Lemma 1. [8] For any λ ∈ Fn
2 ,

∑
x∈Fn

2

(−1)λ·xiwt(x) = 2
n
2 ωni−wt(λ),

where ω = 1√
2

+ i√
2

is a primitive 8-th root of unity.

Note that |ω| = 1 and |i| = 1. Then the following result directly follows from
this lemma which is also stated in [2,8].

Proposition 1. All the affine functions are negabent.
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Therefore, negabent functions exist on odd number of variables too.
The negaperiodic autocorrelation coefficient [2] of f ∈ Bn is defined as,

na =
∑
x∈F2

(−1)f(x)⊕f(x⊕a)(−1)wt(x⊕a)(−1)x·a.

In [2, Theorem 2], it was shown that a Boolean function is negabent if and
only if all its negaperiodic autocorrelation values are 0 which is analogous to
the result concerning the autocorrelation values of a bent function. Therefore,
functions which are both bent and negabent are interesting and these functions
exist in deed. For instance ([2, Example 2]), x1x2 ⊕ x2x3 ⊕ x3x4 is both bent
and negabent function on 4-variables.

A Boolean function f ∈ Bn is said to be symmetric if f(x) = f(y) for all
x, y ∈ Fn

2 such that wt(x) = wt(y). Therefore, f can be represented by the
(n+1)-length binary string [c0, c1, . . . , cn], called the value vector of f , where ci

is the output of f at an input of weight i. If one monomial of degree k is present
in the ANF of a symmetric function, then all the other monomials of degree k
are also present.

A Boolean function with degree at most 1 is called affine. For each n, there
are exactly 4 affine n-variable symmetric Boolean functions. They are as follows.

(i) f(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Fn
2 .

(ii) f(x1, . . . , xn) = 1 for all (x1, . . . , xn) ∈ Fn
2 .

(iii) f(x1, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn.
(iv) f(x1, . . . , xn) = 1⊕ x1 ⊕ x2 ⊕ . . .⊕ xn.

If [c0, . . . , cn] is the value vector of the symmetric function f(x1, . . . , xn) = x1⊕

x2 ⊕ . . .⊕ xn, then ci =

{
0 if i = 0 mod 2
1 if i = 1 mod 2

.

Savicky [7] showed that the Hadamard-Walsh coefficients of a symmetric
Boolean function are directly related to the Krawtchouk polynomials as fol-
lows. Let f be an n-variable symmetric Boolean function with the value vector
[c0, . . . , cn]. From (1) we get,

Hf (λ) =
1

2
n
2

n∑
k=0

(−1)ck

∑
wt(x)=k

(−1)λ·x. (3)

We have,

∑
wt(x)=k

(−1)λ·x =
k∑

j=0

(−1)j

(
wt(λ)

j

)(
n− wt(λ)

k − j

)
= Pk(wt(λ), n), (4)

where Pk(wt(λ), n) is the Krawtchouk polynomial [1]. Therefore,

Hf (λ) =
1

2
n
2

n∑
k=0

(−1)ckPk(wt(λ), n).
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Thus,Hf (λ′) = Hf (λ′′) if wt(λ′) = wt(λ′′), for λ′, λ′′ ∈ Fn
2 . Therefore, the values

of Hf (λ) for different weights of λ’s describe the whole spectrum. Note that the
Krawtchouk polynomials have the following generating function

(1− z)j(1 + z)n−j =
n∑

k=0

Pk(j, n)zk. (5)

Using the above results, Savicky proved that a symmetric function is bent if and
only if it is of degree 2.

3 Symmetric Negabent Function

In this section, we study the symmetric negabent functions. Let f be an n-
variable symmetric Boolean function whose value vector is [c0, . . . , cn]. Then
from (2) we get

Nf (λ) =
1

2
n
2

n∑
k=0

(−1)ckik
∑

wt(x)=k

(−1)λ·x.

Then using (4), we have

Nf (λ) =
1

2
n
2

n∑
k=0

(−1)ckikPk(wt(λ), n). (6)

This also implies that Nf (λ′) = Nf (λ′′) if wt(λ′) = wt(λ′′), for λ′, λ′′ ∈ Fn
2 .

In the following lemma, we state the values of Pk(j, n) for all k = 0, 1, . . . , n
and for some values of j which we require later.

Lemma 2. Let k be an integer in the range {0, 1, . . . , n}.

(i) Let n be even, then Pk(n
2 , n) =

{
0 if k odd
(−1)l

(n
2
l

)
if k = 2l

.

(ii) Let n be even, then

Pk(
n

2
− 1, n) =

{
2(−1)l

(n
2 −1

l

)
if k = 2l + 1

(−1)l[
(n

2 −1
l

)
−
(n

2 −1
l−1

)
] if k = 2l

.

(iii) Let n be odd, then

Pk(
n− 1

2
, n) =

{
(−1)l

(n−1
2
l

)
if k = 2l + 1

(−1)l
(n−1

2
l

)
if k = 2l

.

Proof. The proofs of (i), (ii) and (iii) follow from (5) by replacing j = n
2 , j =

n
2 − 1 and j = n−1

2 respectively.

The following lemmas are useful in proving our main result.



140 S. Sarkar

Lemma 3. Let n be even and f be an n-variable symmetric Boolean function
with the value vector [c0, . . . , cn]. If |Nf (λ)| = 1 for a λ ∈ Fn

2 such that wt(λ) =
n
2 , then c2r+2 = c2r holds for all integer r = 0, . . . , n

2 − 1.

Proof. From (6) we have

Nf (λ) =
1

2
n
2

⎡
⎣

n
2∑

l=0

(−1)c2li2lP2l(
n

2
, n) +

n
2 −1∑
l=0

(−1)c2l+1i2l+1P2l+1(
n

2
, n)

⎤
⎦ .

Then using (i) of Lemma 2, we get

Nf (λ) =
1

2
n
2

[

n
2∑

l=0

(−1)c2l(−1)l(−1)l

(n
2
l

)
+ 0]

=
1

2
n
2

n
2∑

l=0

(−1)c2l

(n
2
l

)
. (7)

If we assume that c2r+2 = c2r ⊕ 1 holds for some r ∈ {0, . . . , n
2 − 1}, then (7)

contains two nonzero integers of opposite sign. In that case,

|Nf (λ)| < 1
2

n
2

n
2∑

l=0

(n
2
l

)
=

1
2

n
2
· 2 n

2 = 1.

This contradicts that |Nf (λ)| = 1 for wt(λ) = n
2 . Therefore, c2r+2 = c2r holds

for all integer r = 0, . . . , n
2 − 1.

Lemma 4. Let n be even and f be an n-variable symmetric Boolean function
with the value vector [c0, . . . , cn]. Let |Nf (β)| = 1 for a β ∈ Fn

2 such that wt(β) =
n
2 . If |Nf (λ)| = 1 for a λ ∈ Fn

2 such that wt(λ) = n
2 − 1, then c2r+3 = c2r+1

holds for all integer r = 0, . . . , n
2 − 2.

Proof. From (6) we have

Nf (λ) =
1

2
n
2

[

n
2∑

l=0

(−1)c2li2lP2l(
n

2
− 1, n) +

n
2 −1∑
l=0

(−1)c2l+1i2l+1P2l+1(
n

2
− 1, n)].

Since |Nf (β)| = 1, where wt(β) = n
2 , then by Lemma 3, we have c2r+2 = c2r for

all r = 0, . . . , n
2 − 1. Therefore,

Nf (λ) =
1

2
n
2

[(−1)c0

n
2∑

l=0

i2lP2l(
n

2
− 1, n) +

n
2 −1∑
l=0

(−1)c2l+1i2l+1P2l+1(
n

2
− 1, n)].

Then using (ii) of Lemma 2 we get
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Nf (λ) =
1

2
n
2

[(−1)c0

n
2∑

l=0

(−1)l(−1)l

[(n
2 − 1

l

)
−
(n

2 − 1
l − 1

)]

+

n
2 −1∑
l=0

(−1)c2l+1i(−1)l2(−1)l

(n
2 − 1

l

)
]

=
1

2
n
2

[(−1)c0

n
2∑

l=0

[(n
2 − 1

l

)
−
(n

2 − 1
l − 1

)]
+ 2i

n
2 −1∑
l=0

(−1)c2l+1

(n
2 − 1

l

)
]

=
1

2
n
2

[0 + 2i

n
2 −1∑
l=0

(−1)c2l+1

(n
2 − 1

l

)
]. (8)

If we assume that c2r+3 = c2r+1 ⊕ 1 holds for some r ∈ {0, . . . , n
2 − 2}, then

in the sum
∑n

2 −1
l=0 (−1)c2l+1

(n
2 −1

l

)
, there are two nonzero integers with opposite

sign. Therefore,

|Nf (λ)| < 1
2

n
2
· 2

n
2 −1∑
l=0

(n
2 − 1

l

)
=

1
2

n
2
· 2 · 2 n

2 −1 = 1.

Thus we reach at a contradiction. Therefore, c2r+3 = c2r+1 holds for all integer
r = 0, . . . , n

2 − 2.

Lemma 5. Let n be odd and f be an n-variable symmetric Boolean function with
the value vector [c0, . . . , cn]. If |Nf (λ)| = 1 for a λ ∈ Fn

2 such that wt(λ) = n−1
2 ,

then c2r+2 = c2r holds for all integer r = 0, . . . , n−3
2 and c2r+3 = c2r+1 holds for

all integer r = 0, . . . , n−3
2 .

Proof. From (6) we have

Nf (λ) =
1

2
n
2

[

n−1
2∑

l=0

(−1)c2li2lP2l(
n− 1

2
, n) +

n−1
2∑

l=0

(−1)c2l+1i2l+1P2l+1(
n− 1

2
, n)].

Then using (iii) of Lemma 2, we get

Nf (λ) =
1

2
n
2

[

n−1
2∑

l=0

(−1)c2l(−1)l(−1)l

(n−1
2
l

)
+

n−1
2∑

l=0

(−1)c2l+1(−1)l(−1)li

(n−1
2
l

)
]

=
1

2
n
2

[

n−1
2∑

l=0

(−1)c2l

(n−1
2
l

)
+ i

n−1
2∑

l=0

(−1)c2l+1

(n−1
2
l

)
].

Therefore,

|Nf (λ)| = 1
2

n
2

√√√√√(

n−1
2∑

l=0

(−1)c2l

(n−1
2
l

)
)2 + (

n−1
2∑

l=0

(−1)c2l+1

(n−1
2
l

)
)2.
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If we assume that c2r+2 = c2r⊕1 holds for some r ∈ {0, . . . , n−3
2 }, then there will

be two nonzero integers of opposite sign in the sum
∑n−1

2
l=0 (−1)c2l

(n−1
2
l

)
. On the

other hand, if we assume that c2r+3 = c2r+1⊕1 holds for some r ∈ {0, . . . , n−3
2 },

then the sum
∑n−1

2
l=0 (−1)c2l+1

(n−1
2
l

)
, contains two nonzero integers of opposite

sign. Then in both of the cases,

|Nf (λ)| < 1
2

n
2

√√√√√(

n−1
2∑

l=0

(n−1
2
l

)
)2 + (

n−1
2∑

l=0

(n−1
2
l

)
)2

=
1

2
n
2

√
2n−1 + 2n−1 = 1

Thus we reach at a contradiction. Hence the result follows. Therefore, c2r+2 = c2r

holds for all integer r = 0, . . . , n−3
2 and c2r+3 = c2r+1 holds for all integer

r = 0, . . . , n−3
2 .

Now we prove our main result.

Theorem 1. An n-variable symmetric Boolean function is negabent if and only
if it is affine.

Proof. From Proposition 1 we know that all the affine functions are negabent.
Next we prove that if an n-variable symmetric Boolean function f with the

value vector [c0, c1, . . . , cn] is negabent then it is affine.
First we consider that n is even. Then by Lemma 3 and Lemma 4 we have,

c2r+2 = c2r for all r = 0, . . . , n
2 −1 and also c2r+3 = c2r+1 for all r = 0, . . . , n

2 −2.
Therefore, when c0 = c1, then c0 = c2 = . . . = cn = c1 = c3 = . . . = cn−1, in
this case f is a constant function. On the other hand, when c0 = c1 ⊕ 1, then
c0 = c2 = . . . = cn = c1 ⊕ 1 = c3 ⊕ 1 = . . . = cn ⊕ 1, in this case f is the linear
function or its complement. Thus in both the cases we see that f is affine.

If we consider that n is odd, then by Lemma 5, we have c2r+2 = c2r for
all r = 0, . . . , n−3

2 and c2r+3 = c2r+1 for all r = 0, . . . , n−3
2 . If c0 = c1, then

c0 = c2 = . . . = cn−1 = c1 = c3 = . . . = cn, in this case, f is a constant function.
On the other hand, if c0 = c1⊕ 1, then c0 = c2 = . . . = cn−1 = c1⊕ 1 = c3⊕ 1 =
. . . = cn ⊕ 1. In this case, f is the linear function or its complement. Therefore,
in both the cases, f is affine.

Hence the theorem.

Corollary 1. For even n, there is no n-variable symmetric Boolean function
which is both bent and negabent.

4 Conclusions

Savicky [7] showed that the Hadamard-Walsh transform values of a symmetric
Boolean function are related to the Krawtchouk polynomial and using this he
proved that all the symmetric bent functions are quadratic. In this paper we
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have shown that the nega-Hadamard transform values of a symmetric Boolean
function are also related to the Krawtchouk polynomial. Then we have used the
properties of the Krawtchouk polynomial to prove that the symmetric negabent
Boolean functions are all affine. This also tells that there is no symmetric Boolean
function on even number of variables which is both bent and negabent. So to
construct new classes of functions which are both bent and negabent we have to
look beyond the class of symmetric Boolean functions. On the other hand, for
odd number of variables, quadratic negabent functions have been characterized
in [5,2]. It is interesting to construct higher degree negabent functions on odd
number of variables for which we have to look at the Boolean functions which
are not symmetric.

Acknowledgments. The author would like to thank the anonymous reviewers
for their valuable suggestions on this paper.
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Improved Meet-in-the-Middle Attacks on AES
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Abstract. We improve the existing distinguishers of AES. Our work
is mainly built upon the works by Gilbert& Miner [17] and Demirci &
Selçuk [14]. We find out that some part of the inner encryption func-
tion of AES can be expressed with relatively few constants under certain
conditions. These new distinguishers are exploited to develop a meet-
in-the-middle attack on 7 rounds of AES-128 and AES-192, and on 8
rounds of AES-256. The proposed attack is faster than the existing at-
tacks [15,17] for key size of 128 at the expense of an increase in the
complexities of memory and precomputation.

Keywords: AES, Rijndael, cryptanalysis, meet-in-the-middle attack.

1 Introduction

Rijndael has been announced as the Advanced Encryption Standard (AES) in
2001. After DES, it is one of the most widely used and analyzed ciphers in the
world. AES is a 128-bit block cipher and accepts key sizes of 128, 192 and 256
bits. These versions of AES are called AES-128, AES-192 and AES-256 and the
number of rounds for these versions are 10, 12 and 14 respectively. It has an SP-
network structure. The interaction between the operations is chosen so that after
two rounds full diffusion is satisfied. The AES S-box has been chosen considering
differential and linear cryptanalysis.

There has been recent developments in the cryptanalysis of AES. In [8] there
is a related key attack on 10 rounds of AES-192 and AES-256 with practical
complexity. Biryukov et al. [9,10] have constructed related key attacks on the
full AES-192 and AES-256. Moreover, chosen plaintext attacks work up to 7
rounds of AES-128 and 8 rounds of AES-192 and AES-256 [1,2,13,14,17,21,27].
Also timing cache attacks are an important threat againts AES [3].

In [17] it has been observed that one entry after 3 rounds of AES encryption
can be expressed using 10 bytes if 15 entries of the plaintexts are fixed, only one
entry takes every possible value. In [14] the expressions of [17] has been carried to
a 4 round property. An entry after 4 rounds of encryption can be expressed with
26 bytes, which makes to attack on AES-128 unfeasible using this property. In
this paper, we show that these expressions can be simplified for some instances.
Hence we are able to carry the meet in the middle attacks on AES. To the best
of our knowledge, this is the best attack on AES-128 with respect to online time
complexity excluding related key attacks.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 144–156, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This paper proceeds as follows: In Section 2 we briefly explain the AES block
cipher and give a survey of the previous attacks. Section 3 is dedicated to previous
work [17] and [14] which are related to our study. In Section 4, first we point
out some errors in [14]. We show that under some conditions, the expression of
the encryption function for one entry can be simplified in Section 4.1. Hence,
we are able to reduce the number of constants used in this expression. Section
4.2 presents a meet-in-the middle attack on 7 rounds of AES by exploiting this
reduced formula. In Section 4.3, we use Gilbert and Minier’s collision property
in a differential scenario to reduce the number of constants in the encryption
function. Next, we extend the attack to 8 rounds of AES-256 in Section 4.4.
In Section 4.5 we compare the results of this work with previous studies. We
conclude the paper with a summary of the results in Section 5.

2 The AES Encryption Algorithm

In the encryption function of AES, 128-bit plaintext is considered as a 4 × 4
matrix in GF (28), and the entries of the matrix are represented as 1-byte values.
Each round function, except the final one, consists of 4 inner functions; the S-
box substitution (SB), shift row (SR), mix column (MC), and add round key
(ARK) operations, applied in that order. These functions make use of the finite
field arithmetic and some matrix operations. The single S-box substitution is
used for all entries of the table, and it is based on the inverse mapping in GF (28),
and an affine mapping, which is strong against differential and linear attacks [23].
In the SR operation, rows are shifted to the left by 0, 1, 2, and 3 bytes, from
the first row to the last. MC operation provides efficient confusion on columns
of the matrix, since it is an MDS matrix multiplication. The MDS matrix used
in AES is ⎛

⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

In the ARK, the state is simply XORed with the 128-bit round key. This design
of AES round function guarantees full diffusion after two round function calls.
The AES encryption function consists of an initial key addition (whitening),
necessary number of round functions, and the final round which is a round func-
tion without the MC operation. For the details of the encryption, decryption,
and key scheduling algorithms, one can refer to [16].

There has been many attempts to analyze AES. First, the designers of AES
break the 6 round version of AES-128 by the square attack using 232 chosen
plaintexts with about complexity of 272 encryptions [13]. This attack has been
improved and the workload has been reduced to 244 in [15]. For AES-192 and
AES-256, by the help of the key schedule, the attack of [22] can be successful
for 7 rounds. In [17], Gilbert and Minier found an attack based on a collision
property after three rounds of encryption. 7 rounds of AES-192 and AES-256 are
broken using 232 chosen plaintexts, and with the complexity of 2140 encryptions.



146 H. Demirci et al.

Moreover, the attack is faster than exhaustive search for AES-128. In [6,11,24]
[26,25], the so called impossible differential attack is proposed for 7 rounds of
AES, but it has higher complexity than the square attack. There are some new
impossible differential attacks [1,2,21,27] on AES which reduces the time com-
plexities of the previous attacks. Boomerang attack is applied by Biryukov [7] for
the 5 and 6 rounds of the cipher. It breaks 5 rounds of AES-128 using 246 adap-
tive chosen plaintexts in 246 steps of analysis, whereas the 6-round attack needs
278 chosen plaintexts, 278 steps of analysis, and 236 bytes of memory. A class of
algebraic attacks on AES is examined in [12]. In this paper, the AES S-box is
written as a system of implicit quadratic equations, resulting the conversion of
the cryptanalysis to solving a huge system of quadratic equations. In [12], XSL
method is suggested if the system of equations is overdefined and sparse which
is the case for AES. Recently, related key attacks, which work up to 10 rounds
of AES-192 and AES-256, have been applied to the cipher [4,5,8,18,19,20,28].
Finally, Biryukov et al. [9,10] have succeeded to attack the full AES-192 and
AES-256.

2.1 Notation

Throughout the paper, we use K(r) and C(r) to denote the round key and the
ciphertext of the rth round; K

(r)
ij and C

(r)
ij denote the byte values at row i,

column j. The arithmetic operations among table entries are in GF (28), where
addition is the same as bit-wise XOR. By one round AES encryption, we mean an
inner round without whitening or exclusion of the mixcolumn operation unless
otherwise stated. By an active entry, we mean an entry that takes all byte values
between 0 and 255 exactly once over a given set of plaintexts. By a passive entry
we mean an entry that is fixed to a constant byte value. We use Δ to denote the
difference with respect to XOR operation.

3 A 4-Round Distinguisher of AES

In [17], Gilbert and Minier showed an interesting distinguishing property for
4 rounds of AES: Consider the evolution of the plaintexts with 15 entries are
passive but the first entry is active over 4 inner rounds, with no whitening.
Let aij denote the ith row, jth column of the plaintext. After the first S-box
transformation, define tij = S(aij). At the end of round 1, the state matrix is of
the form:

2t11 + c1 m12 m13 m14

t11 + c2 m22 m23 m24

t11 + c3 m32 m33 m34

3t11 + c4 m42 m43 m44

where mij and ci, 1 ≤ i ≤ 4, 2 ≤ j ≤ 4, are fixed values that depend on the
passive entries and subkey values. At the end of the second round, the first main
diagonal entry C

(2)
11 can be determined by the following equation:
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C
(2)
11 = 2S(2t11 + c1) + 3S(m22) + S(m33) + S(m44) + K

(2)
11

= 2S(2t11 + c1) + c5,

for some fixed value c5. Applying round function, similar equations can be writ-
ten for the other main diagonal entries. At the end of the second round, the
main diagonal entries are of the form:

C
(2)
11 = 2S(2t11 + c1) + c5

C
(2)
22 = S(3t11 + c4) + c6

C
(2)
33 = 2S(t11 + c3) + c7

C
(2)
44 = S(t11 + c2) + c8

for some fixed values c5, c6, c7, c8. Since

C
(3)
11 = 2S(C(2)

11 ) + 3S(C(2)
22 ) + S(C(2)

33 ) + S(C(2)
44 ) + K

(3)
11 ,

we can summarize the above observations with the following proposition:

Proposition 1 ([17]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Encrypt this set with 3 rounds of
AES. Then, the function which maps a11 to C

(3)
11 is entirely determined by 9

fixed 1-byte parameters.

Remark 1. Proposition 1 can be generalized: Note that the argument preceding
the proposition applies to any other third round ciphertext entry and hence the
statement is true for any C

(3)
ij . Similarly, any other aij can be taken as the active

byte instead of a11.

Gilbert and Minier [17] observed that the constants c1, c2, c3, and c4 depend on
the values (a21, a31, a41) on the first column, whereas the other constants c5, c6,
c7, and c8 are independent of these variables. They used this information to find
collisions over 3 rounds of the cipher:

Proposition 2 ([17]). Assume that c1, c2, c3, and c4 behave as random func-
tions of the variables (a21, a31, a41). If about 216 random (a21, a31, a41) values are
taken and the other passive entries of the plaintext are fixed, then there is a non
negligible probability that two different values of (a21, a31, a41) produce identical
functions f, f ′ : a11 → C

(3)
11 .

This distinguishing property was used to build attacks on AES up to 7 rounds.
Furthermore, Demirci and Selçuk developed the observations of Gilbert and
Minier [17] and found a 4-round distinguisher of AES in [14]. Namely, the func-
tion which maps a11 to C

(4)
11 is entirely determined by 25 fixed 1-byte parameters

under certain assumptions.

Proposition 3 ([14]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Encrypt this set with 4 rounds of
AES. Then, the function which maps a11 to C

(4)
11 is entirely determined by 25

fixed 1-byte parameters.
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4 A New Attack on AES

In this section, we show how to improve the observations of Demirci and Selçuk
[14]. This improvement makes it possible to apply the attack on 7 rounds of all
versions of AES. We have two different approaches to advance the distinguishing
properties. The first method is based on reducing the number of parameters
which determine the function of the output of the 4-rounds of AES. The other
approach exploits the Gilbert and Minier’s collision property and considers the
difference of two sets. Before stating these, we point out some corrections in
previous work [14].

In [14] it has been stated that 3 rounds of encryption can be expressed with
the following 9 constants:

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(2S(2t11 + c4) + c6)

+S(S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (1)

We observe that the equation (1) has 2 errors. These errors do not affect the
applicability of the attacks of [14]. However, in case (1) had been true, then we
would have

C
(3)
11 = S(2S(2t11 + c1) + c5) (2)

when c1 = c4, c5 = c6, c2 = c3 and c7 = c8. Thus, it would show that the
function which maps the active entry a11 to C

(3)
11 is wholly determined by two

byte constants only with probability 2−32.
The correct form of the equation (1) is

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(S(3t11 + c4) + c6)

+S(2S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (3)

Hence, such a direct simplification of the equation is impossible. Moreover, there
are also errors in C

(3)
22 and C

(3)
44 . The right formulas for these are:

C
(3)
22 = S(S(3t11 + c4) + c9) + 2S(3S(t11 + c3) + c10)

+3S(S(t11 + c2) + c11) + S(3S(2t11 + c1) + c12) + K
(3)
22 (4)

C
(3)
44 = 3S(3S(t11 + c2) + c17) + S(S(2t11 + c1) + c18)

+S(3S(3t11 + c4) + c19) + 2S(S(t11 + c3) + c20) + K
(3)
44 . (5)

There is no fault in C
(3)
33 that is:

C
(3)
33 = S(S(t11 + c3) + c13) + S(2S(t11 + c2) + c14)

+2S(S(2t11 + c1) + c15) + 3S(2S(3t11 + c4) + c16) + K
(3)
33 . (6)

Although there is no scenario that the parameters are annihilated directly, we
can still reduce the number of parameters under certain assumptions. In the
following sections, we will provide alternative methods for this reason.
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4.1 A 4-Round Differential Distinguisher

In this part, we present how Proposition 3 is improved. First, we obtain the
improved 4-round distinguisher of AES. We utilize an advantageous map

Δ : (a11, ã11)→ f(a11) + f(ã11) = C
(4)
11 + C̃

(4)
11 = Δ(C(4)

11 )

to get an efficient attack. The next proposition gives this distinguishing property.

Proposition 4. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Encrypt this set with 4 rounds of AES.
Then, the function which maps a11 to Δ(C(4)

11 ) is entirely determined by 15 fixed
1-byte parameters with probability 2−72.

Proof. One can consider all constants c1, c2, · · · , c20 in (3),(4),(5) and (6) as
random variables. Hence,

Pr(c12 =3c5 =3c15 =3c18, 2c17 =3c14=6c8=6c11, 3c7 =2c10=6c13=6c20)=2−72.(7)

If we take

S(2t11 + c1) = x1

S(t11 + c2) = x2

S(t11 + c3) = x3

S(3t11 + c4) = x4

and

d1 = c5, d2 = c6, d3 = c8, d4 = c9

d5 = c16, d6 = c19, d7 = c20

then

C
(3)
11 = 2S(2x1 + d1) + S(x2 + d3) (8)

+S(2x3 + 2d7) + 3S(x4 + d2) + K
(3)
11 .

C
(3)
22 = 3S(3x1 + 3d1) + 3S(x2 + d3)

+2S(3x3 + 3d7) + S(x4 + d4) + K
(3)
22 , (9)

C
(3)
33 = 2S(x1 + d1) + S(2x2 + 2d3)

+S(x3 + d7) + 3S(2x4 + d5) + K
(3)
33 (10)

C
(3)
44 = S(x1 + d1) + 3S(3x2 + 3d3)

+2S(x3 + d7) + S(3x4 + d6) + K
(3)
44 . (11)

with a probability 2−72. Since

C
(4)
11 = 2S(C(3)

11 ) + 3S(C(3)
22 ) + S(C(3)

33 ) + S(C(3)
44 ) + K

(4)
11 , (12)
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the terms K
(4)
11 are canceled by taking a difference Δ(C(4)

11 ) from two different
C

(4)
11 with respect to + . Thus, the fixed values

(
c1, c2, c3, c4, d1, · · · , d7, K

(3)
11 , K

(3)
22 , K

(3)
33 , K

(3)
44

)
(13)

are sufficient to express the function a11 → Δ(C(4)
11 ) with a probability 2−72. ��

Note that chosen relations about parameters do not have any specific meaning.
The number of equalities in (7) are chosen so that the complexity of resulting
attack in Section 4.2 does not exceed exhaustive search.

4.2 The Attack

In this section, we describe a meet-in-the-middle attack on 7-round AES based
on the distinguishing property observed in Section 4.1. In this attack, we first
precompute a11 → Δ(C(4)

11 ) = f(i)+f(0) for all 1 ≤ i ≤ 32 instead of 1 ≤ i ≤ 255
according to Proposition 4 which not only reduces the precomputation time
complexity in [14] but also gives sufficiently small probability explained in the
sixth step. Then we choose and encrypt a suitable plaintext set. We search certain
key bytes, do a partial decryption on the ciphertext set, and compare the values
obtained by this decryption to the values in the precomputed set. When a match
is found, the key value tried is most likely the right key value. The details of the
attacks are as follows:

1. For each of the 2120 possible values of the parameters in (13), calculate the
function f : a11 → C

(4)
11 , for each 0 ≤ a11 ≤ 32 according to equations (8–11)

and (12). Compute and store

Δ(C(4)
11 ) = f(i) + f(0)

for 1 ≤ i ≤ 32.
2. Choose 248 sets of 232 plaintexts where the main diagonal entries take every

possible value and the other entries are constant. Then at the end of round 1,
there are 272 different sets of 256 plaintexts having active first entry. Encrypt
all chosen plaintexts with 7 rounds AES.

3. Let Kfinal denote the subkey blocks (K(7)
11 , K

(7)
24 , K

(7)
33 , K

(7)
42 , k(6)), where k(6)

denotes 0E ·K(6)
11 +0B ·K(6)

21 + 0D ·K(6)
31 + 09 ·K(6)

41 . Search over all possible
values of Kfinal. Using Kfinal, do a partial decryption of the ciphertext
bytes C

(7)
11 , C

(7)
24 , C

(7)
33 and C

(7)
42 to obtain the entry C

(5)
11 . Store all the values

of C
(5)
11 .

4. Let Kinit denote the initial whitening subkey blocks (K(0)
11 , K

(0)
22 , K

(0)
33 , K

(0)
44 ).

For each possible value of Kinit and K
(1)
11 encrypt all chosen plaintexts with

single round to guess the value of C
(1)
11 . This step classifies 272 sets of 256

plaintexts to satisfy that the first entry takes every value from 0 to 255 and
all the other entries are fixed at the end of round 1.
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5. For each of 272 sets containing 256 plaintexts obtained in step 4, select the
plaintexts of which the first entries of the first round output takes all the
values from i = 0 to 32 and accordingly collect the 33 values of C

(5)
11 via

using step 3. Next, calculate the values of Δ(C(5)
11 ).

6. Compare the sequence of the 32 Δ(C(5)
11 ) values obtained in Step 5 to the

sequences obtained in precomputation. Now if the Kinit, K
(1)
11 and Kfinal

subkeys are guessed correctly, the function C
(1)
11 → Δ(C(5)

11 ) must match
one of the functions obtained in the precomputation stage. Once a match
is found, corresponding Kinit and Kfinal are correct keys by an overwhelm-
ing probability, since the probability of having a match for a wrong key is
approximately

28×15 2−8×32 = 2−136.

7. Repeat the attack one more time with different target value, C
(5)
21 , C

(5)
31 ,

or C
(5)
41 , instead of C

(5)
11 , using the same plaintext set. This attack gives us

another 5 key bytes from the final two rounds.
8. The remaining keybytes can be searchedafter recoveringmost of the keybytes.

Summary of the attack can be given as follows:

Step 1. (Precomputation Phase) Construct the table having 32 rows and 2120

columns. This table determines f(i) + f(0) for any f : a11 → C
(4)
11

where 1 ≤ i ≤ 32.
Step 2. (Selection of Plaintexts and Encryption Phase ) Choose 272 sets of

256 plaintexts satisfying suitable conditions. Then, encrypt all chosen
plaintexts with 7 rounds AES.

Step 3. (Decryption and Collection) Search Kfinal values and do partial de-
cryption of the ciphertext bytes to store all the values of C

(5)
11 .

Step 4. Search Kinit and K
(1)
11 values. Then, for each possible value of these

keys encrypt all chosen plaintexts with single round.
Step 5.-6. (Matching Phase) Calculate Δ(C(5)

11 ) for chosen plaintexts and com-
pare the results with the precomputed table.

Step 7. (Discovery of More Key Bytes ) Repeat the attack one more time with
different target value.

Step 8. (Final Phase) For remaining key bytes, search exhaustively.

Since a set of 232 plaintexts which are active in the diagonal entries gives 224

plaintext sets which will be used in Step 2 in our attack, this attack requires 280

chosen plaintexts. Therefore, we expect that the event

3c5 = c12 = 3c15 = 3c18, 6c8 = 6c11 = 3c14 = 2c17, 3c7 = 210 = 6c13 = 6c20

occurs, the first entry C
(1)
11 takes every possible value and the rest remain con-

stant. There is a precomputation step which calculates 2120 possible values for
32 plaintexts. Therefore the complexity of this step, which will be done only
once, is 2125 evaluations of the function f . As the 7 round encryption of AES
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takes approximately four times evaluation of f , complexity of the precomputa-
tion reduces to 2123.

In the key search phase, for every combination of Kfinal, we do partial decryp-
tion over 280 ciphertexts which makes 2120 partialdecryptions and for every combi-
nation of Kinit and K

(1)
11 , we do partial encryption over 280 plaintexts which makes

2120 partial encryptions. As in [13] and [15], we assume that 28 partial decryptions
take approximately the time of a single encryption. Also, we assume that 28 par-
tial encryptions take approximately the time of a single encryption. Therefore the
processing complexity of the attack is comparable to 2113 encryptions.

As we take the target entries used in Step 7 to be on the same column as
C

(5)
11 , such as C

(5)
21 , equations (8–11) will remain identical in these computations,

and the only change will be on a few coefficients in equation (12). Hence, there
won’t be a need for a separate precomputation; the necessary values for C

(1)
11 →

Δ(C(5)
21 ) can be obtained with a slight overhead. However, we will need separate

memory to store the obtained values. Thus, the memory requirement of the
precomputation phase, the dominant factor of the memory complexity, is 2 ×
2125 = 2126 bytes, which is equivalent to 2122 AES blocks.

Note that the complexities above are for average expected values with approx-
imately 50 % success rate. One can apply the attack using more sets of chosen
plaintexts to increase the success probability.

4.3 A 4-Round Collision-Differential Distinguisher of AES

According to the work of Gilbert and Minier [17], it is possible to find a collision
over 3 rounds of the cipher for a fixed entry (See Section 3.3 in [17]). That
is if we take about 216 sets which consist of 256 plaintexts, then one can find
c1 = c̃1, · · · , c8 = c̃8 with nonnegligible probability. Next proposition uses this
fact to reduce the number of parameters expressing the encryption function.

Proposition 5. Assume that a collision for C
(3)
11 holds. Then the probability to

find a collision also for C
(3)
22 and C

(3)
33 is 2−64.

Proof. By the assumption, we have c1 = c̃1, · · · , c8 = c̃8. Observe that

ci = c̃i for any 9 ≤ i ≤ 16

occurs with probability 2−64.

Corollary 1. Suppose we have a collection of 280 sets consisting of 32 plaintexts
as follows:

1. The first entry a11 takes 32 different value.
2. The other entries of the first column (a21, a31, a41) change over 216 different

combinations.
3. The remaining entries change over 264 different values.

Then, after 4 rounds of AES encryption, there exists some function which maps
a11 to Δ(C(4)

11 ) is entirely determined by 13 fixed 1-byte parameters with non
negligible probability.
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Proof. We may find c1 = c̃1, · · · , c8 = c̃8 with nonnegligible probability via
Proposition 2 and the second assumption in corollary. By applying Proposition
5 and the third assumption in corollary,

∀i, 1 ≤ i ≤ 3, C
(3)
ii + C̃

(3)
ii = 0

takes place with a significant probability. Therefore,

Δ(C(4)
11 ) = S(C(3)

44 ) + S(C̃(3)
44 ).

If we fix c1 = c̃1 = d1, c2 = c̃2 = d2, c3 = c̃3 = d3, c4 = c̃4 = d4, c17 = d5,
c̃17 = d6, c18 = d7, c̃18 = d8, c19 = d9, c̃19 = d10, c20 = d11, c̃20 = d12, then

(
d1, d2, . . . , d12, K

(3)
44

)
(14)

are sufficient to express the function a11 → Δ(C(4)
11 ) with a non negligible prob-

ability. ��

Note that we could use Corollary 1 to prepare an attack on AES. But, the
complexity of such an attack exceeds the key length of AES-128.

4.4 Extension to 8 Rounds

We can successfully attack 8 rounds of AES using almost the same steps of
the 7-round attack followed by an exhaustive search of the last round key. The
only difference is the computation of the function Δ(C(4)

11 ) for each 0 ≤ a11 ≤ 64
instead of 0 ≤ a11 ≤ 32 in step 1. We use these 64 values in the comparison phase
to increase the elimination power of the attack. In this case, the precomputation
and memory complexities are doubled and the complexity of the key search phase
rises by a factor of 2128 in spite of the fact that the data complexity does not alter.
Therefore, the time complexity of the attack on 8-round AES-256 becomes 2241.
Our attack has more time complexity than [15] and [14]. However, our attack
is more advantageous in terms of precomputation and memory than [14]. When
compared to [15], there is a significant improvement in terms of the number of
plaintexts needed.

4.5 Comparison of Attacks on AES

There are six previous attacks [1,2,15,17,21,27] on 7-round AES-128. The attack
[17] by Gilbert and Minier uses 232 plaintexts and 296 memory but is slightly
faster than exhaustive search. On the other hand, the attack of Ferguson et al.
[15] uses almost the entire codebook with 2120 time and 264 memory complexity.
The remaining attacks [1,2,21,27] are in type of impossible differential attacks.
Our attack has a precomputation phase having 2123 complexity, but the con-
structed table can be used for any AES key. The data complexity is between [17]
and [21]. The online time complexity of the proposed attack is the best among
the others. The comparison of the results are illustrated in Table 1.
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Table 1. Summary of Attacks on AES Excluding the Related-Key Model

Complexity
Block Cipher Paper Rounds Type Data (CP) Memory Time Pre.

AES-128 [17] 7 Collision 232 296 < 2128 296

[1] 7 Impossible Differential 2117.5 2121 –
[2,27] 7 Impossible Differential 2115.5 2119 –
[15] 7 Square 2128 − 2119 264 2120 –
[21] 7 Impossible Differential 2112.2 289.2 2117.2 MA –

This paper 7 MitM 280 2122 2113 2123

AES-192 [17] 7 Collision 232 284 2140 284

[25] 7 Imp. Differential 292 2153 2186 –
[22] 7 Square 232 232 2184 –
[15] 7 Square 19 · 232 232 2155 –
[15] 7 Square 2128 − 2119 264 2120 –
[27] 7 Impossible Differential 2115.5 2119 –
[27] 7 Impossible Differential 292 2162 –
[21] 7 Impossible Differential 2113.8 289.2 2118.8 MA –
[21] 7 Impossible Differential 291.2 261 2139.2 –
[14] 7 MitM 232 2206 272 2208

[14] 7 MitM-TM 234+n 2206−n 274+n 2208−n

[15] 8 Square 2128 − 2119 264 2188 –
This paper 7 MitM 280 2122 2113 2123

AES-256 [22] 7 Square 232 232 2200 –
[17] 7 Collision 232 284 2140 284

[15] 7 Square 21 · 232 232 2172 –
[15] 7 Square 2128 − 2119 264 2120 –
[25] 7 Imp. Differential 292.5 2153 2250.5 –
[27] 7 Impossible Differential 2115.5 2119 –
[27] 8 Impossible Differential 2116.5 2247.5 –
[21] 7 Impossible Differential 2113.8 289.2 2118.8 MA –
[21] 7 Impossible Differential 292 261 2163 MA –
[21] 8 Impossible Differential 2111.1 2112.1 2227.8 MA –
[21] 8 Impossible Differential 289.1 297 2229.7 MA –
[14] 7 MitM 232 2206 272 2208

[14] 7 MitM-TM 234+n 2206−n 274+n 2208−n

This paper 7 MitM 280 2122 2113 2123

[15] 8 Square 2128 − 2119 2104 2204 –
[14] 8 MitM 232 2206 2200 2208

[14] 8 MitM-TM 234+n 2206−n 2202+n 2208−n

This paper 8 MitM 280 2123 2241 2124

MA-Memory Accesses, CP-Chosen plaintext.

Time complexity is measured in encryption units unless mentioned otherwise. The unit
of memory complexity is AES block.

5 Conclusion

In this work we have found two different methods that one entry of the ci-
phertext after 4 rounds of AES encryption is expressed with only 15 or 13
fixed bytes respectively, rather than 25 bytes [14]. The first method utilizes
the equality of the parameters to reduce the number of parameters. The second
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approach exploits the collision property [17] in a differential scenario. Using the
first method, we have developed an attack on 7 rounds of AES-128, AES-192 and
8 rounds of AES-256. The proposed attack on AES-128 is advantageous from
the existing attacks in terms of time complexity.
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Abstract. In this paper we investigate the security of the encryption
mode of the HAS-160 hash function. HAS-160 is a Korean hash standard
which is widely used in Korean industry. The structure of HAS-160 is
similar to SHA-1 besides some modifications. In this paper, we present
the first cryptographic attack that breaks the encryption mode of the full
80-round HAS-160. SHACAL-1 and the encryption mode of HAS-160 are
both blockciphers with key size 512 bits and plain-/ciphertext size of 160
bits.

We apply a key recovery attack that needs about 2155 chosen plain-
texts and 2377.5 80-round HAS-160 encryptions. The attack does not aim
for a collision, preimage or 2nd-preimage attack, but it shows that HAS-
160 used as a block cipher can be differentiated from an ideal cipher
faster than exhaustive search.

Keywords: differential cryptanalysis, related-key rectangle attack,
HAS-160.

1 Introduction

HAS-160 is a hash function that is widely used by the Korean industry. It is a
hash function standardized by the Korean government (TTAS.KO-12.0011/R1)
[1]. Based on the Merkle-Damgård structure [9, 17], it uses a compression
function with input size of 512 bits and a chaining and output value of 160 bits.
HAS-160 consists of a round function which is applied 80 times for each input
message block. The overall design of the compression function is similar to the
design of SHA-1 [18] and the MD family [19, 20], except some modifications in
the rotation constants and in the message expansion.

Up to now there are only a few cryptographic results on HAS-160. Yun et al.
[23] found a collision on 45-round HAS-160 with complexity 212 by using the
techniques introduced by Wang et al. [22]. Cho et al. [7] extended the previous
result to break 53-round HAS-160 in time 255. At ICISC 2007 Mendel and Rijmen
[15] improved the attack complexity of the attack in [7] to 235 hash computations
and they were able to present a colliding message pair for the 53-round version
of HAS-160. They also showed how the attack can be extended to 59-round
HAS-160 with a complexity of 255.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 157–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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HAS-160 in encryption mode is resistant to many attacks that can be ap-
plied to SHACAL-1, since its rotation constants are different and in each round
its key schedule (which is equal to the message expansion) does not offer any
sliding properties. Nevertheless, it has a high degree of linearity which makes it
vulnerable to related-key attacks.

In this paper we analyze the internal block cipher of HAS-160 and present
the first cryptographic result on the full HAS-160 in encryption mode. Using
a related-key rectangle attack with four related keys we can break the full 80-
rounds, i.e., recovering some key bits faster than exhaustive search. Our attack
uses about 2155 chosen plaintexts and runs in time of about 2377.5 80-round
HAS-160 encryptions, while an exhaustive key search requires about 2512 80-
round HAS-160 encryptions.

The paper is organized as follows: In Section 2 we give a brief description
of the HAS-160 encryption mode. Section 3 discusses some crucial properties of
HAS-160. In Section 4 we describe the related-key rectangle attack. Section 5
presents our related-key rectangle attack on the full HAS-160 encryption mode.
Section 6 concludes the paper.

2 Description of the HAS-160 Encryption Mode

2.1 Notation

The following notations are used in this paper:

⊕ : bitwise XOR operation
∧ : bitwise AND operation
∨ : bitwise OR operation
X≪k : bit-rotation of X by k positions to the left.
� : addition modulo 232 operation
¬ : bitwise complement operation
ei : a 32-bit word with zeros in all positions except for bit i, (0 ≤ i ≤ 31)
ei1,...,il

: ei1 ⊕ · · · ⊕ eil

The bit positions of a 32-bit word are labeled as 31, 30, . . . , 1, 0, where bit 31 is
the most significant bit and bit 0 is the least significant bit.

2.2 HAS-160

Now we show the structure of HAS-160 an how it is used as a block cipher. The
inner block cipher operates on a 160-bit message block and a 512-bit master key.
A 160-bit plaintext P0 = A0||B0||C0||D0||E0 is divided into five 32-bit words
A0, B0, C0, D0, E0. HAS-160 consists of 4 passes of 20 rounds each, i.e., the round
function is applied 80 times in total. The corresponding ciphertext P80 is denoted
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by A80||B80||C80||D80||E80. The round function at round i (i = 1, . . . , 80) can
be described as follows:

Ai ← A
≪s1,i

i−1 � fi(Bi−1, Ci−1, Di−1) � Ei−1 � ki + ci,

Bi ← Ai−1,

Ci ← B
≪s2,i

i−1 ,

Di ← Ci−1,

Ei ← Di−1,

where ci and ki represents the i-th round constant and the i-th round key re-
spectively, while fi(·) represents a boolean function. The function fi(·) and the
constant ci of round i can be found in Table 1.

Table 1. Boolean functions and constants

Pass Round (i) Boolean function (fi) Constant (ci)

1 1 – 20 (x ∧ y) ∨ (¬x ∧ z) 0
2 21 – 40 x ⊕ y ⊕ z 0x5a827999
3 41 – 60 (x ∨ ¬z) ⊕ y 0x6ed9eba1
4 61 – 80 x ⊕ y ⊕ z 0x8f1bbcdc

The rotation constant s1,i used in round i are given in Table 2.

Table 2. The bit rotation s1

Round (i mod 20) + 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1,i 13 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5

The rotation constant s2,i depends on the pass, i.e., it changes the value if the
pass is changed but it is constant in each pass. The pass-dependent values of s2,i

are:

• Pass 1: s2,i = 10
• Pass 2: s2,i = 17
• Pass 3: s2,i = 25
• Pass 4: s2,i = 30

The 80 round keys ki, i ∈ {1, 2, . . . , 80} are derived from the master key K,
which consists of sixteen 32-bit words K = x0, x1, . . . , x15. The round keys ki

are obtained from the key schedule described in Table 3.
Figure 1 shows the round function of HAS-160.
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Table 3. The key schedule

Round (i mod 20) + 1 Pass 1 Pass 2 Pass 3 Pass 4

1 x8 ⊕ x9 x11 ⊕ x14 x4 ⊕ x13 x15 ⊕ x10

⊕x10 ⊕ x11 ⊕x1 ⊕ x4 ⊕x6 ⊕ x15 ⊕x5 ⊕ x0

2 x0 x3 x12 x4

3 x1 x6 x5 x2

4 x2 x9 x14 x13

5 x3 x12 x7 x8

6 x12 ⊕ x13 x7 ⊕ x10 x8 ⊕ x1 x11 ⊕ x6

⊕x14 ⊕ x15 ⊕x13 ⊕ x0 ⊕x10 ⊕ x3 ⊕x1 ⊕ x12

7 x4 x15 x0 x3

8 x5 x2 x9 x14

9 x6 x5 x2 x9

10 x7 x8 x11 x4

11 x0 ⊕ x1 x3 ⊕ x6 x12 ⊕ x5 x7 ⊕ x2

⊕x2 ⊕ x3 ⊕x9 ⊕ x12 ⊕x14 ⊕ x7 ⊕x13 ⊕ x8

12 x8 x11 x4 x15

13 x9 x14 x13 x10

14 x10 x14 x6 x5

15 x11 x4 x15 x0

16 x4 ⊕ x5 x15 ⊕ x2 x0 ⊕ x9 x3 ⊕ x14

⊕x6 ⊕ x7 ⊕x5 ⊕ x8 ⊕x2 ⊕ x11 ⊕x9 ⊕ x4

17 x12 x7 x8 x11

18 x13 x10 x1 x6

19 x14 x13 x10 x1

20 x15 x0 x3 x12

Ai−1 Bi−1 Ci−1 Di−1 Ei−1

Ai Bi Ci Di Ei

≪ s1,i

≪ s2,i
f

ci

ki

Fig. 1. The round function of HAS-160
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3 Properties in HAS-160

Property 1. (from [10]) Let Z = X � Y and Z∗ = X∗ � Y ∗ with X, Y, X∗, Y ∗

being 32-bit words. Then, the following properties hold:

1. If X ⊕ X∗ = ej and Y = Y ∗, then Z ⊕ Z∗ = ej,j+1,··· ,j+k−1 holds with
probability 2−k (j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case
j = 31, Z ⊕ Z∗ = e31 holds with probability 1.

2. If X ⊕X∗ = ej and Y ⊕ Y ∗ = ej , then Z ⊕ Z∗ = ej+1,··· ,j+k−1 holds with
probability 2−k (j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case
j = 31 Z = Z∗ holds with probability 1.

A more general description of these properties can be derived from the following
theorem.

Theorem 1. (from [14]) Given three 32-bit XOR differences ΔX, ΔY and ΔZ.

If the probability Pr[(ΔX, ΔY ) �→ ΔZ] > 0, then

Pr[(ΔX, ΔY ) �→ ΔZ] = 2−k,

where the integer k is given by k = #{i|0 ≤ i ≤ 30, not ((ΔX)i = (ΔY )i =
(ΔZ)i)}.

Property 2. Consider the difference ΔPi = (ΔAi, ΔBi, ΔCi, ΔDi, ΔEi) of a
message pair in round i. Then we know some 32 differences in round i + 1, i +
2, i + 3 and i + 4. The known word differences are as follows:

(ΔBi+1, ΔCi+1, ΔDi+1, ΔEi+1) = (ΔAi, ΔBi ≪ s2,i+1, ΔCi, ΔDi),
(ΔCi+2, ΔDi+2, ΔEi+2) = (ΔAi ≪ s2,i+2, ΔBi ≪ s2,i+1, ΔCi),

(ΔDi+3, ΔEi+3) = (ΔAi ≪ s2,i+2, ΔBi ≪ s2,i+1),
(ΔEi+4) = (ΔAi ≪ s2,i+2)

4 The Related-Key Rectangle Attack

The boomerang attack [21] is an extension to differential cryptanalysis [5] using
adaptive chosen plaintexts and ciphertexts to attack block ciphers. The amplified
boomerang attack [12] transforms the ordinary boomerang attack into a chosen
plaintext attack. This attack can be improved by using all possible differentials in-
stead of two. The resulting attack is called the rectangle attack [3]. The related-key
rectangle attack was e.g. published in [13, 4, 11]. It is a combination of the related-
key attack [2] and the rectangle attack. The attack can be described as follows.

A block cipher E : {0, 1}n × {0, 1}k → {0, 1}n with EK(·) := E(K, ·) is
treated as a cascade of two sub-ciphers EKi(P ) = E1Ki(E0Ki(P )), where P
is then plaintext encrypted under the key Ki. It is assumed that there exists
a related-key differential α → β which holds with probability p for E0, i.e.,
Pr[E0Ka(P a)⊕E0Kb(P b) = β|P a⊕P b = α] = p, where Ka and Kb = Ka⊕ΔK∗
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are two related keys and ΔK∗ is a known key difference (the same holds for
Pr[E0Kc(P c)⊕E0Kd(P d) = β|P c⊕P d = α] = p, where Kc and Kd = Kc⊕ΔK∗

are two related keys). Let X i = E0Ki(P i), i ∈ {a, b, c, d} be an intermediate
encryption value. We assume a related-key differential γ → δ which holds with
probability q for E1, i.e., Pr[E1Ka(Xa)⊕E1Kc(Xc) = δ|Xa⊕Xc = γ] = q, where
the keys Ka and Kc are related as Ka ⊕ Kc = ΔK ′ and ΔK ′ is a known key
difference (the same holds for Pr[E1Kb(Xb)⊕E1Kd(Xd) = δ|Xb⊕Xd = γ] = q
where the keys Kb and Kd are related as Kb ⊕ Kd = ΔK ′). In our attack we
use four different keys but one can also apply the attack with more or less keys.

Let a plaintext quartet (P a, P b, P c, P d) with P a ⊕ P b = α = P c ⊕P d, where
P i is encrypted under the key Ki, i ∈ {a, b, c, d}. Out of N pairs of plaintexts
with the related-key difference α about N · p pairs have an output difference β

after E0. These pairs can be combined into about (N ·p)2

2 quartets, such that each
quartet satisfies E0Ka(P a) ⊕ E0Kb(P b) = β and E0Kc(P c) ⊕ E0Kd(P d) = β.
We assume that the intermediate values after E0 distribute uniformly over all
possible values. Thus, E0Ka(P a) ⊕ E0Kc(P c) = γ holds with probability 2−n.
If this occurs, E0Kb(P b) ⊕ E0Kd(P d) = γ holds as well, since the following
condition holds:

(E0Ka(P a)⊕ E0Kb(P b))⊕ (E0Kc(P c)⊕ E0Kd(P d))
⊕(E0Ka(P a)⊕ E0Kc(P c)) =

(Xa ⊕Xb)⊕ (Xc ⊕Xd)⊕ (Xa ⊕Xc) =
β ⊕ β ⊕ γ = γ

αα

ββ
γ

γ

δ

δ

E0Ka

E1Ka

E0Kb

E1Kb

E0Kc

E1Kc

E0Kd

E1Kd

P a

Ca

P b

Cb

P c

Cc

P d

Cd

Xa

Xb

Xc

Xd

Fig. 2. The related-key rectangle distinguisher
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The expected number of quartets satisfying both E1Ka(Xa) ⊕ E1Kc(Xc) = δ
and E1Kb(Xb)⊕ E1Kd(Xd) = δ is

∑
β,γ

(N · p)2 · 2−n · q2 = N2 · 2−n · (p · q)2.

For a random cipher, the expected number of correct quartets is about N2 ·2−2n.
Therefore, if p · q > 2−n/2 and N is sufficiently large, the related-key rectangle
distinguisher can distinguish between E and a random cipher. Figure 2 visualizes
the structure of the related-key rectangle distinguisher.

5 Related-Key Rectangle Attack on the Full HAS-160
Encryption Mode

In this section, we give a 71-round related-key rectangle distinguisher, which
can be used to mount a related-key rectangle attack on the full 80-round HAS-
160 encryption mode. We can use Property 2 to partially determine whether a
candidate quartet is a right one or if it is not. A wrong quartet can be discarded
during the stepwise computation, which reduces the complexity of the subsequent
steps and also the overall complexity of the attack. Thus, our technique is in some
way similar to the early abort technique presented by Lu et al. [14].

5.1 A 71-Round Related-Key Rectangle Distinguisher

Let K be a master key which can be written as K = x0, x1, . . . , x15, where xi is
a 32-bit word. We use four different – but related – master keys Ka, Kb, Kc and
Kd to mount our related-key rectangle attack on the full HAS-160 encryption
mode. The master key differences are as follows:

ΔK∗ = Ka ⊕Kb = Kc ⊕Kd = (e31, 0, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0), (1)
ΔK ′ = Ka ⊕Kc = Kb ⊕Kd = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, e31, 0).

Since the key schedule of HAS-160 offers a high degree of linearity we can easily
determine all the 80 round key differences derived from the master key differences
ΔK∗ and ΔK ′ respectively. We observe that if we choose Δx0 = Δx10 and the
remaining word differences as zero, i.e., Δxi = 0, i = 1, 2, . . . , 8, 9, 11, 12, . . . , 15,
then a zero difference can be obtained starting from round 14 up to round 37.
We use this observation for the related-key differential for E0. Moreover, we can
observe that if Δx12 = Δx14 holds and the remaining word differences in ΔK ′

are all zero, then a zero difference can be obtained from round 44 to round 65.
This observation is used in our related-key differential for E1.

Considering Property 1 and Theorem 1 we have found a 39-round related-key
differential from round 0 to 39 for E0 (α → β) using the master key difference
ΔK∗. The related-key differential is:

(e7, e1, 0, e5,19,31, e12,26,31)→ (e4,31, e31, 0, 0, 0).
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The related-key differential E0 is shown in Table 4.1

Table 4. The Related-Key Differential E0

i ΔAi ΔBi ΔCi ΔDi ΔEi Δki Prob.

0 e7 e1 0 e5,19,31 e12,26,31 – 2−7

1 e26 e7 e11 0 e5,19,31 e31 2−5

2 e19 e26 e17 e11 0 e31 2−6

3 0 e19 e4 e17 e11 0 2−5

4 e11 0 e29 e4 e17 0 2−3

5 e23 e11 0 e29 e4 0 2−4

6 e21 e23 e21 0 e29 0 2−4

7 0 e21 e1 e21 0 0 2−3

8 0 0 e31 e1 e21 0 2−3

9 e21 0 0 e31 e1 0 2−3

10 0 e21 0 0 e31 0 2−2

11 0 0 e31 0 0 e31 2−1

12 0 0 0 e31 0 0 2−1

13 0 0 0 0 e31 0 1
14 0 0 0 0 0 e31 1
15 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
37 0 0 0 0 0 0 1
38 e31 0 0 0 0 e31 2−1

39 e4,31 e31 0 0 0 0

We exploit a 32-round related-key differential for E1 (γ → δ) that covers rounds
39 to 71 using the key difference ΔK ′. The related-key differential is:

(e6, 0, 0, 0, e19)→ (e5,6,7,14,17,18,19,28,29,30, e5,8,9,19,21,29, e5,26,27, e19, e5)

The 160-bit difference δ can be written as a concatenation of five 32-bit word
differences

δ = (δA, δB, δC , δD, δE) = (ΔA71, ΔB71, ΔC71, ΔD71, ΔE71). (2)

The related-key differential E1 is shown in Table 5. The probability for the
differential E0 is 2−48 due to Table 4, while the probability for E1 is 2−24 from
Table 5. Thus, the probability of our related-key rectangle distinguisher for round
1–71 is: (

2−48 · 2−24)2 · 2−160 = 2−304

1 Note that Pr[(Δci, Δki)
�→ Δki] = 1 always holds due to Property 1. This is true

since Δci is equal to zero for all i and Δki is either zero or e31.
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Table 5. The Related-Key Differential E1

i ΔAi ΔBi ΔCi ΔDi ΔEi Δki Prob.

39 e6 0 0 0 e19 – 2−1

40 0 e6 0 0 0 0 2−1

41 0 0 e31 0 0 0 1
42 0 0 0 e31 0 e31 2−1

43 0 0 0 0 e31 0 1
44 0 0 0 0 0 e31 1
45 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
65 0 0 0 0 0 0 1
66 e31 0 0 0 0 e31 2−1

67 e7 e31 0 0 0 0 2−1

68 e21 e7 e29 0 0 e31 2−3

69 e7,28,29 e21 e5 e29 0 0 2−6

70 e5,8,9,19,21,29 e7,28,29 e19 e5 e29 0 2−10

71 e5,6,7,14,17,18,19,28,29,30 e5,8,9,19,21,29 e5,26,27 e19 e5 0

However, the correct difference δ occurs in two ciphertext pairs of a ciphertext
quartet for a random cipher with probability (2−160)2 = 2−320.

5.2 The Attack on the Full HAS-160 Encryption Mode

Our attack uses four related keys Ka, Kb, Kc and Kd where each two of the four
master keys are related as stated in (2). It is assumed that an attacker knows the
two master key differences ΔK∗ and ΔK ′, but not the maser keys themselves.
In the first step we apply our 71-round related-key rectangle distinguisher to
obtain a small amount of subkey candidates in rounds 72, 73, 74, 76, 77, 78, 80.
In the second step we find the remaining subkey candidates by an exhaustive
search for the obtained subkey candidates and the remaining subkeys to recover
the four 512-bit master keys Ka, Kb, Kc and Kd.
The attack works as follows:

1. Choose 2155 plaintexts P a
i = (Ai, Bi, Ci, Di, Ei), i = 1, 2, . . . , 2155. Compute

2155 plaintexts P b
i , i.e., P b

i = P a
i ⊕α, where α is a fixed 160-bit word as stated

above. Set P c
i = P a

i and P d
i = P b

i . In a chosen plaintext attack scenario ask
for the encryption of the plaintexts P a

i , P b
i , P c

i , P d
i under Ka, Kb, Kc and Kd,

respectively and obtain the ciphertexts Ca
i , Cb

i , Cc
i and Cd

i .
2. Guess seven 32-bit round keys ka

80, k
a
79, k

a
78, k

a
77, k

a
76, k

a
75, k

a
74 and compute

kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, l ∈ {b, c, d} using the known round key differ-

ences.
2.1. Decrypt each of the ciphertexts Ca

i , Cb
i , C

c
i , Cd

i under kl
80, k

l
79, k

l
78, k

l
77, k

l
76,

kl
75, k

l
74, l ∈ {a, b, c, d} respectively and obtain the intermediate encryption
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values Ca
73,i, C

b
73,i, C

c
73,i and Cd

73,i, respectively. From Property 2 we know
the value of the 96-bit difference δA≪30 , δB≪30 and δC , see (2).

2.2. Check whether the following conditions are fulfilled for any quartet
(Ca

73,j , C
b
73,j , C

c
73,j , C

d
73,j):

Ca
73,j ⊕ Cc

73,j = δA≪30 = Cb
73,j ⊕ Cd

73,j ,

Da
73,j ⊕Dc

73,j = δB≪30 = Db
73,j ⊕Dd

73,j,

Ea
73,j ⊕ Ec

73,j = δC = Eb
73,j ⊕ Ed

73,j

Record kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, l ∈ {a, b, c, d} and discard all the

quartets that do not satisfy the above conditions and discard the quartets
that do not satisfy this condition.

3. Guess a 32-bit round key ka
73 and compute kl

73, l ∈ {b, c, d} using the known
round key differences.

3.1. Decrypt each remaining quartet (Ca
73,j , C

b
73,j , C

c
73,j , C

d
73,j) under kl

73, l ∈
{a, b, c, d}, respectively and obtain the quartets (Ca

72,j , C
b
72,j , C

c
72,j , C

d
72,j).

From Property 2 we know the value of the 32-bit difference δD.
3.2. Check whether Ea

72,j ⊕ Ec
72,j = δD = Eb

72,j ⊕ Ed
72,j holds. Record

kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, k

l
73, l ∈ {a, b, c, d} and discard all the quar-

tets that do not satisfy the above condition.
4. Guess one 32-bit round keys ka

72 and compute kl
72, l ∈ {b, c, d} using the known

round key differences.
4.1. Decrypt each remaining quartet (Ca

72,j , C
b
72,j , C

c
72,j , C

d
72,j) under kl

72, l ∈
{a, b, c, d} respectively and obtain the quartets (Ca

71,j , C
b
71,j , C

c
71,j , C

d
71,j).

From Property 2 we know the value of the 32-bit difference δE .
4.2. Check whether Ea

71,j ⊕ Ec
71,j = δE = Eb

71,j ⊕ Ed
71,j holds. If there exist

at least 21 quartets passing the above condition, record kl
80, k

l
79, k

l
78, k

l
77,

kl
76, k

l
75, k

l
74, k

l
73, k

l
72, l ∈ {a, b, c, d} and go to Step 5. Otherwise go to Step

4 with another guessed round key. If all the possible round keys for ka
72 are

tested, then repeat Step 3 with another guessed round key ka
73. If all the

possible round keys for ka
73 are tested, then go to Step 2 with another guess

for the round keys ka
80, k

a
79, k

a
78, k

a
77, ka

76, k
a
75, k

a
74.

5. For a suggested (kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, k

l
73, k

l
72), do an exhaustive key

search for the remaining 512−9 ·32 = 224 key bits by trial encryption. If a 512-
bit key is suggested, output it as the master key of the full HAS-160 encryption
mode. Otherwise restart the algorithm.

5.3 Analysis of the Attack

There are 2155 pairs (P a
i , P b

i ) and 2155 pairs (P c
i , P d

i ) of plaintexts, thus we
have (2155)2 = 2310 quartets. The data complexity of Step 1 is 22 · 2155 =
2157 chosen plaintexts. The time complexity of Step 1 is about 22 · 2155 = 2157

encryptions. Step 2.1 requires time about 2224 · 22 · 2155 · (7/80) ≈ 2377.5 eighty
round encryptions. The number of remaining quartets after Step 2.2 is 2310 ·
(2−96)2 = 2118, since we have a 96-bit filtering condition on both pairs of a
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quartet. The time complexity of Step 3.1 is about 2256 · 22 · 2118 · (1/80) ≈ 2370

encryptions. After Step 3.2 about 2118 · (2−32)2 = 254 quartets remain, since we
have a 32-bit filtering condition on both pairs of a quartet. The time complexity
of Step 4.1 is 2288 · 22 · 254 · (1/80) ≈ 2337.5 encryptions. After Step 4.2 the
number of remaining quartets is about 254 · (2−32)2 = 2−10, since we have a 32-
bit filtering condition on both pairs of a quartet. Thus, we do not expect wrong
quartets after the distinguisher step remaining either for the correct or the false
round keys. The expected number of quartets that remain for the correct round
keys are about 2310 · 2−304 = 26.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger then 21 is Yi ∼ Poisson(μ = 2−10), Pr(Yi ≥ 22) ≈ 0, where
i indicates a wrong key. Thus, for all the 2288 − 1 wrong keys we expect that
about 2188 ·2189 = 2−1 quartets are counted. The probability that the number of
quartets counted for the correct key bits is at least 21 is Z ∼ Poisson(μ = 26),
Pr(Z ≥ 22) ≈ 1. The data complexity of our attack is 2155 · 22 = 2157 chosen
plaintexts, while the time complexity is about 2377.5 full HAS-160 encryptions.
Our attack has a success rate of 1.

6 Conclusion

In this paper we present the first cryptanalytic result on the inner block cipher of
the Korean hash algorithm standard HAS-160. Our related-key rectangle attack
can break the full 80-round HAS-160 encryption mode. A more complex and non-
linear key schedule would have defended our attack. Moreover, to strengthen the
cipher against differential attacks, we propose to use the f -function more often
in each round and so the f -function may influence more than one word in each
round. Note that this analysis does not seem to say anything about the collision,
preimage or 2nd-preimage resistance of HAS-160, but it shows some interesting
properties that occur if HAS-160 is used as a block cipher. It shows that HAS-160
as a block cipher can be differentiated efficiently from a random cipher and the
key bits can be found much faster than exhaustive search.
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Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 85–100. Springer, Heidelberg
(2006)

[15] Mendel, F., Rijmen, V.: Colliding Message Pair for 53-Step HAS-160. In: Nam,
K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 324–334. Springer, Hei-
delberg (2007)

[16] Menezes, A., Vanstone, S.A. (eds.): CRYPTO 1990. LNCS, vol. 537. Springer,
Heidelberg (1991)

[17] Merkle, R.C.: One Way Hash Functions and DES. In: Brassard (ed.) [6], pp. 428–
446

[18] National Institute of Standards and Technology. FIPS 180-1: Secure Hash Stan-
dard (April 1995), http://csrc.nist.gov

[19] Rivest, R.: The MD5 Message-Digest Algorithm. Request for Comments: 1321
(April 1992), http://tools.ietf.org/html/rfc1321

[20] Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone,
S.A. (eds.) [16], pp. 303–311

[21] Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

[22] Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) [8], pp. 1–18

[23] Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S., Cho, H.-S.: Finding Collision
on 45-Step HAS-160. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 146–155. Springer, Heidelberg (2006)

http://csrc.nist.gov
http://tools.ietf.org/html/rfc1321


Second Preimage Attack on SHAMATA-512

Kota Ideguchi and Dai Watanabe

Systems Development Laboratory, Hitachi, LTD
{kota.ideguchi.yf,dai.watanabe.td}@hitachi.com

Abstract. We present a second preimage attack on SHAMATA-512,
which is a hash function of 512-bit output and one of the first round
candidates of the SHA-3 competition. The attack controls several mes-
sage blocks to fix some variables of internal state and uses a meet-in-the-
middle approach to find second preimages. The time complexity is about
2452.7 computations of the step function and the memory complexity is
about 2451.4 blocks of 128 bits.

Keywords: hash function, second preimage attack, SHAMATA, SHA-3
candidate.

1 Introduction

Cryptographic hash functions are important cryptographic primitives and used
in many applications including HMAC, PRNG and signature schemes. After
the discovery of the attacks [1,2] on NIST’s standard hash function SHA-1,
cryptographic community has much interest in building secure and efficient hash
functions. Indeed, NIST demands a new standard hash function, SHA-3 [3],
which will be selected through a competition among the hash functions proposed
by researchers from all over the world. The hash functions are expected to have
preimage, second preimage and collision resistances. For the hash functions of
n-bit output, it is expected that a preimage, a second preimage and a collision
are not found faster than 2n, 2n and 2n/2 operations, respectively.

There are several types of hash functions proposed to SHA-3 competition.
Among them, one of the most interesting designs is the sponge structure [4].
Several hash functions based on the sponge structure adapt stream-cipher de-
sign and thus these hash functions are more likely to have good performance of
throughput speed. Besides, hash functions based on the sponge structure use a
permutation as a update transformation of internal state. Due to invertibility
of the permutation, a meet-in-the-middle technique [5] becomes a powerful tool
to attack these hash functions. Indeed, several candidates of SHA-3 competition
were attacked by this technique in the paper [6].

SHAMATA [7] is the hash function based on sponge structure and stream-
cipher design which is proposed by Atalay et al. and one of the first round can-
didates of SHA-3 competition. There were some cryptanalyses on SHAMATA.
An internal component of SHAMATA was analyzed as a block cipher in the pa-
pers [8,9]. However, this result does not give direct implication about security of
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SHAMATA as a hash function. A collision attack was mounted on SHAMATA
by Indesteege et al [10]. They found a collision of SHAMATA-256 with time com-
plexity of about 240 and proposed a theoretical collision attack on SHAMATA-
512 with time complexity of about 2110. To our knowledge, there is no published
work on other security criteria, such as second preimage resistance and preimage
resistance, of SHAMATA. Our main contribution is to give a security analysis
about second preimage resistance of SHAMATA.

In this paper, we analyze SHAMATA and propose a second preimage attack
on SHAMATA-512 requiring 2452.7 computations of the step function. This is
less than 2512 computations required for generic attack. Our attack fixes some
variables of internal state by controlling several message blocks and uses a meet-
in-the-middle technique to obtain second preimages. Furthermore, we point out
some properties of the hash function which enable our attack. Interestingly, the
designers of the hash function adopted these properties with an aim to increase
security.

The paper is organized as follows. In Section 2, the specification of SHAMATA
is briefly explained. In Section 3, we observe some properties of SHAMATA that
are used in our attack. In Section 4, a second preimage attack on SHAMATA-512
is presented, and then some discussion about designer’s security claim is given
in Section 5. Finally, we conclude this paper in Section 6.

2 The SHAMATA Hash Function

In this section, we briefly describe the specification of SHAMATA. We skip
details that are not relevant to our attack. We refer to the original paper [7] for
these.

The hash function SHAMATA is a hash function based on stream-cipher de-
sign. A message is padded to a multiple of 128 bits and the message blocks are
processed by a step function sequentially. Let pad(x) = M0||M1|| · · · ||Ml−1 be
a l-block padded message. The hash function consists of three stages; Initializa-
tion, Update and Finalization stages. The hash value y = H(x) is computed as
follows:

Initialization Stage: S0 = Initialization(IV ),
Update Stage: Si+1 = StepFunction(Si,Mi, i), i = 0, 1, . . . , l − 1,
Finalization Stage: y = Finalization(Sl, l),

where Si is the internal state before the i-th step is applied1. We call the update
process, described by Si+1 = StepFunction(Si,Mi, i), the i-th step. We will not
explain details of the initialization and finalization stages because our attack
does not need the details.

The internal state is of 2048-bit length and stored in sixteen 128-bit registers;
four B registers {B[0], . . . , B[3]} and twelve K registers {K[0], . . . ,K[11]}. We
1 The StepFunction is called UpdateRegister in the specification [7] of the hash func-

tion.
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Fig. 1. The shift register of StepFunction

denote values of the registers B[n] and K[n] before the i-th step by B[n]i and
K[n]i, respectively. Hence, the internal state Si before i-th step is {B[0]i, . . .,
B[3]i, K[0]i, . . ., K[11]i}.

In a process of the step function, firstly register values are xored with linear
transformations of a message block and then the shift register is clocked twice.
The step function is depicted at Figure 1 and can be expressed as the following
equations.

B[0]i+1 = B[2]i ⊕ P (Mi) ⊕ (i+ 1),
B[1]i+1 = B[3]i ⊕Q(Mi) ⊕ (i+ 1),

B[2]i+1 = K[0]i ⊕K[9]i ⊕B[0]i ⊕ARF 2(B[2]i ⊕ P (Mi) ⊕ (i+ 1)),

B[3]i+1 = K[1]i ⊕K[10]i ⊕B[1]i ⊕ARF 2(B[3]i ⊕Q(Mi) ⊕ (i+ 1)),
K[n]i+1 = K[n+ 2]i, n = 0, 2, 4, 6, 7, 8,
K[1]i+1 = K[3]i ⊕ P ′(Mi),
K[3]i+1 = K[5]i ⊕Q(Mi),
K[5]i+1 = K[7]i ⊕ P (Mi),
K[9]i+1 = K[11]i ⊕Q′(Mi),

K[10]i+1 = B[0]i ⊕ARF 2(B[2]i ⊕ P (Mi) ⊕ (i+ 1)),

K[11]i+1 = B[1]i ⊕ARF 2(B[3]i ⊕Q(Mi) ⊕ (i+ 1)),

where the functions P and Q are linear and invertible functions, P ′ and Q′ are
linear functions and ARF is the AES round function without AddRoundKey.

3 Observation: Another Description of the Shift Register

In this section, we give another description of the shift register in Figure 1.
We divide the registers into two sets, the registers with even number index

and the registers with odd number index. The step function can be described by
two shift registers interacting with each other only at the points of the feedbacks.
This is depicted in Figure 2. One shift register is formed by the even registers
and the other is formed by the odd registers. In the step function, firstly the
register values are xored with the linear transformations of the message block
and then two shift registers are clocked simultaneously and once.
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Fig. 2. Another description of StepFunction

We can see the following two properties from this description.

Property 1. For the even register part, a message block is xored only with B[2]
register. Especially, K registers with even number indices are not xored with
message blocks.

Property 2. The linear transformation of the message block which is xored
with K[7] register is the same as that of the message block xored with B[2]
register.

As will be seen in Section 4.3 and 4.4, these properties are used in our attack.

4 Second Preimage Attack on SHAMATA-512

In this section, we describe a second preimage attack on SHAMATA-512. First,
we describe notations and basic setting of the attack in Section 4.1. Then, we
present a main procedure of the attack in Section 4.2 and sub-procedures which
are used in the main procedure in Section 4.3 and 4.4. Finally, the computational
complexity of the attack is shown in Section 4.5.

4.1 Notations and Setting of Second Preimage Attack

Let x(0) and y(0) be the target message and its hash value respectively.

y(0) = H(x(0)). (1)

Let the padded message of x(0) consist of l 128-bit message blocks, pad(x(0)) =
M

(0)
0 ||M (0)

1 || · · · ||M (0)
l−1. The internal state before the i-th step is denoted by S(0)

i .

The values of registers B[n] and K[n] before the i-th step are denoted by B[n](0)i

and K[n](0)i , respectively.
The goal of the attack is to find a message x which is not equal to x(0) and

gives the same hash value as x(0) does, i.e.

y(0) = H(x), x �= x(0). (2)

Our attack aims to find a second preimage x such that the block length of pad(x)
is the same as that of pad(x(0)), which is l. We denote the padded message of x by
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pad(x) = M0||M1|| · · · ||Ml−1. The internal state before the i-th step is denoted
by Si. The values of registers B[n] and K[n] before the i-th step is denoted by
B[n]i and K[n]i, respectively. The differences between the values related to x(0)

and those related to x are defined as follows:

b[n]i = B[n]i ⊕B[n](0)i , k[n]i = K[n]i ⊕K[n](0)i , mi = Mi ⊕M
(0)
i ,

σi = Si ⊕ S
(0)
i = {b[0]i, . . . , b[3]i, k[0]i, . . . , k[11]i}.

where Si ⊕ S
(0)
i is defined as component-wise differences.

The finalization function depends on the internal state after processing the
last message block and the total number of messages blocks. Hence, if the internal
state difference σl after processing the last message block is zero, the difference
of the hash value is also zero. Our attack aims to obtain the message which cause
this internal collision, σl = 0.

4.2 Procedure of Second Preimage Attack

Our attack controls message blocks over several blocks and can be applied when
the length of the padded message is greater than or equal to 27, that is l ≥ 27.
We assume that this condition holds.

Our attack uses a meet-in-the-middle approach. The attacker divides a message
into two segments: the first λ message blocks M0|| · · · ||Mλ−1 and the last (l −
λ) message blocks Mλ|| · · · ||Ml−1. The integer λ is arbitrarily determined by the
attacker under the conditions, λ ≥ 13 and (l − λ) ≥ 14. Such a λ exists, because
l ≥ 27. It is explained in Section 4.3 and 4.4 why these conditions are needed.

A procedure of the attack is as follows.

Step 1. As candidates of the first segment M0|| · · · ||Mλ−1, we build 2448 mes-
sages of λ blocks such that when each of these message is used to update the
initial internal state difference σ0 = 0, an internal state after the λ − 1-th
step, σλ, satisfies the following equations:

b[0]λ = k[0]λ = k[2]λ = k[4]λ = k[6]λ = k[8]λ = k[10]λ = 0,
b[2]λ = k[7]λ, k[5]λ = 0. (3)

The message candidates and the corresponding internal states σλ are stored
in pairs on a storage. The set of 2448 pairs is denoted by V1. A way to build
message candidates of the first segment is described in section 4.3.

Step 2. As a candidate of the second (last) segment Mλ|| · · · ||Mk−1, we build a
message of (l− λ) blocks such that when this message is used to reverse the
final internal state difference σl = 0, an internal state difference before the
λ-th step, σλ, satisfies the equations (3). A way to build message candidates
of the second segment is described in section 4.4.

Step 3. We check the obtained internal state σλ is found in V1 which is made in
Step 1. If found, the message candidate of the first segment paired with this
internal state in V1 and the message candidate of the second segment which
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Fig. 3. Overview of attack

is now tested are concatenated to form a second preimage. If not found, go
back to Step 2.

An overview of the attack is depicted in Figure 3.
Because the space of the internal state difference restricted by the equa-

tions (3) is 896-bit volume and the number of the internal state belonging to
V1 is 2448, we need to build about 2896−448 message candidates of the second
segment at Step 2 before a second preimage is obtained.

4.3 Building Message Candidates of the First Segment of Message

In this section, we show how to obtain message candidates of λ blocks M0|| · · ·
||Mλ−1 that are used to update the initial internal state difference σ0 to an
internal state differences σλ satisfying equations (3).

Firstly, let us see the update of an internal state difference by the step function.

b[0]i+1 = b[2]i ⊕ P (mi), (4)
b[1]i+1 = b[3]i ⊕Q(mi), (5)
b[2]i+1 = k[0]i ⊕ k[9]i ⊕ b[0]i ⊕Δ

X
(0)
i

(b[2]i ⊕ P (mi)), (6)

b[3]i+1 = k[1]i ⊕ k[10]i ⊕ b[1]i ⊕Δ
Y

(0)
i

(b[3]i ⊕Q(mi)), (7)

k[n]i+1 = k[n+ 2]i, n = 0, 2, 4, 6, 8 (8)
k[1]i+1 = k[3]i ⊕ P ′(mi), (9)
k[3]i+1 = k[5]i ⊕Q(mi), (10)
k[5]i+1 = k[7]i ⊕ P (mi), (11)
k[7]i+1 = k[9]i, (12)
k[9]i+1 = k[11]i ⊕Q′(mi), (13)
k[10]i+1 = b[0]i ⊕Δ

X
(0)
i

(b[2]i ⊕ P (mi)), (14)

k[11]i+1 = b[1]i ⊕Δ
Y

(0)
i

(b[3]i ⊕Q(mi)), (15)

where ΔX(r), X(0)
i , and Y (0)

i are defined as follows,

ΔX(r) = ARF 2(r) ⊕ARF 2(X ⊕ r),



Second Preimage Attack on SHAMATA-512 175

X
(0)
i = B[2](0)i ⊕ P (M (0)

i ) ⊕ (i+ 1),

Y
(0)
i = B[3](0)i ⊕Q(M (0)

i ) ⊕ (i+ 1).

By controlling nine message block differences, we can fix nine variables of the
internal state as the following theorem.

Theorem 1. Consider any internal state difference before the j-th step σj. If
nine message block differences mj , . . . ,mj+8 are set by the equations P (mi) =
b[2]i for i = j, j+1, . . . , j+8, then an internal state difference after the (j+8)-th
step σj+9 satisfies the following equations:

b[0]j+9 = k[0]j+9 = k[2]j+9 = k[4]j+9 = k[6]j+9 = k[8]j+9 = k[10]j+9 = 0,
b[2]j+9 = k[7]j+9, k[5]j+9 = 0. (16)

Proof. We prove the theorem by using the equations (4)-(15) and P (mi) = b[2]i,
for i = j, . . . , j + 8.
First, by using the equation (4) and P (mi) = b[2]i, for i = j, . . . , j + 8, the
following equations hold:

b[0]i = 0, i = j + 1, . . . , j + 9. (17)

If P (mi) = b[2]i, the input difference of ARF 2 at the equation (6) becomes zero
and then the output difference of ARF 2 also becomes zero. Therefore, by using
the equations (14) and (17), the following equations hold:

k[10]i = 0, i = j + 2, . . . , j + 9. (18)

Then, by using the equations (8) and (18), the following equations hold.

k[8]i = 0, i = j + 3, . . . , j + 9, (19)
k[6]i = 0, i = j + 4, . . . , j + 9, (20)
k[4]i = 0, i = j + 5, . . . , j + 9, (21)
k[2]i = 0, i = j + 6, . . . , j + 9, (22)
k[0]i = 0. i = j + 7, . . . , j + 9. (23)

Next, by using the equations (6), (17), (23) and P (mi) = b[2]i for i = j+7, j+8,
b[2]i+1 is equal to k[9]i for i = j + 7, j + 8. Then, together with the equation
(12), the following equations hold.

k[7]i = b[2]i, i = j + 8, j + 9. (24)

Finally, we obtain the following equation by using the equations (11) and (24).

k[5]j+9 = k[7]j+8 ⊕ P (mj+8) = k[7]j+8 ⊕ b[2]j+8 = 0. (25)

��
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This message control is well understood in the description of the step function in
Section 3. From Property 1, it is expected that the even registers can be easily
controlled. Indeed, by setting P (mi) = b[2]i, the difference at B[2] is cancelled
before a clock of the shift register and an input of ARF function at the even
register part has no difference. Repeating this cancellation between b[2]i and
P (m)i during nine steps for i = j, . . . , j+8, all differences after (j+8)-th step of
even register values except that of B[2] become zero and the value b[2]j+9 is the
same as the value k[7]j+9. Furthermore, since the linear transformation of the
message difference at K[7] is the same as that at B[2] (Property 2), the value
k[7]j+9 vanishes. This is what happens in the message control in Theorem 1.

Now, we present the procedure to obtain message candidates required in Step 1
in Section 4.2.

Step 1-1. We arbitrarily fix a message-block difference of (λ−13)-block length,
m0|| · · · ||mλ−14. Using this, we update the internal state difference σ0 = 0
and obtain σλ−13.

Step 1-2. We randomly choose a message-block difference of four-block length,
mλ−13|| · · · ||mλ−10, and update the internal state difference σλ−13 to σλ−9.

Step 1-3. We determine a message-block difference of nine-block length,mλ−9||
· · · ||mλ−1, by using Theorem 1 with j = λ − 9 and obtain the internal
state difference σλ satisfying the equations (3). Then, a message candidate
is obtained by xoring M (0)

0 || · · · ||M (0)
λ−1 with m0|| · · · ||mλ−1.

In order to build 2448 message candidates of the first segment, we execute Step 1-1
once and repeat 2448 times the procedure from Step 1-2 to Step 1-3. Because
message-block differences of four-block length, mλ−14|| · · · ||mλ−10, is of 512-
bit length, we can choose 2448 different message-block differences at Step 1-2.
Therefore, we can build different 2448 message candidates. Of course, a way to
generate random internal state differences σλ−9 is more flexible. We can use any
448-bit degrees of freedom from m0, . . . ,mλ−10.

The value λ should be greater or equal to 13 because Step 1-2 and 1-3 require
4 and 9 message blocks, respectively. When λ = 13, Step 1-1 is omitted.

Because an execution of Step 1-2 and Step 1-3 needs 4 and 9 evaluations of the
step function respectively, building a message candidate and the corresponding
internal state difference requires 13 evaluations of the step function. Thus, Step 1
in Section 4.2 requires 13 × 2448 evaluations of the step function.

4.4 Building Message Candidates for the Second Segment of
Message

In this section, we show how to obtain message candidates of (l − λ) blocks
Mλ|| · · · ||Ml−1 that is used to reversely update the internal state difference σl =
0 after processing the last message block to an internal state difference σλ before
the λ-th step satisfying the equations (3).

Let us see the inverse transformation of the step function. Solving the equa-
tions (4)-(15) for b[n]i’s and k[n]i’s, the inverse function of the step function is
described by the following equations,
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b[0]i = k[10]i+1 ⊕Δ
X

(0)
i

(b[0]i+1), b[2]i = b[0]i+1 ⊕ P (mi),

k[0]i = b[2]i+1 ⊕ k[10]i+1 ⊕ k[7]i+1, k[n]i = k[n− 2]i+1, n = 2, 4, 6, 8, 10
b[1]i = k[11]i+1 ⊕Δ

Y
(0)

i

(b[1]i+1), b[3]i = b[1]i+1 ⊕Q(mi),

k[1]i = b[3]i+1 ⊕ k[11]i+1 ⊕ k[8]i+1, k[3]i = k[1]i+1 ⊕ P ′(mi), (26)
k[5]i = k[3]i+1 ⊕Q(mi), k[7]i = k[5]i+1 ⊕ P (mi),
k[9]i = k[7]i+1, k[11]i = k[9]i+1 ⊕Q′(mi).

Theorem 2. Consider any internal state difference after the (j + 8)-th step
σj+9. For simplicity of notation, we denote this internal state difference by

b[n]j+9 = rn, (n = 0, 1, 2, 3) k[n]j+9 = sn, (n = 0, . . . , 11)

If the nine message block differences mj , . . . ,mj+8 is set by the equations (28)-
(36), then the internal state difference before j-th step σj , that is obtained by
reversely updating σj+9, satisfies the equations (27).

b[0]j = k[0]j = k[2]j = k[4]j = k[6]j = k[8]j = k[10]j = 0,
b[2]j = k[7]j, k[5]j = 0, (27)

Q(mj+8) =s̃10 ⊕ s6 ⊕ s3 ⊕Δ
X

(0)
j

(r̃0), (28)

Q(mj+7) =s̃8 ⊕ s4 ⊕ s1 ⊕ P ′(mj+8), (29)
Q(mj+6) =s8 ⊕ s̃6 ⊕ s2 ⊕ r3 ⊕ s11 ⊕ P ′(mj+7), (30)
Q(mj+5) =s6 ⊕ s̃4 ⊕ s0 ⊕ r1 ⊕ s9 ⊕ P ′(mj+6) ⊕Q(mj+8) ⊕Q′(mj+8), (31)
Q(mj+4) =r2 ⊕ s10 ⊕ s4 ⊕ s̃2 ⊕ s̃11 ⊕ P ′(mj+5) ⊕Q(mj+7) ⊕Q′(mj+7), (32)
Q(mj+3) =r0 ⊕ s8 ⊕ s2 ⊕ s̃0 ⊕ s̃9

⊕ P (mj+8) ⊕ P ′(mj+4) ⊕Q(mj+6) ⊕Q′(mj+8) ⊕Q′(mj+6), (33)
Q(mj+2) =r̃2 ⊕ s̃10 ⊕ s6 ⊕ s0 ⊕ s7 ⊕Δ

Y
(0)

j+6
(s̃9 ⊕Q′(mj+8))

⊕ P (mj+7) ⊕ P ′(mj+3) ⊕Q(mj+5) ⊕Q′(mj+5) ⊕Q′(mj+7), (34)
Q(mj+1) =r2 ⊕ r̃0 ⊕ s10 ⊕ s7 ⊕ s5 ⊕ s1⊕

Δ
Y

(0)
j+5

(s7 ⊕Δ
Y

(0)
j+6

(s̃9 ⊕Q′(mj+8)) ⊕Q′(mj+7))

⊕ P (mj+8) ⊕ P (mj+6) ⊕ P ′(mj+8) ⊕ P ′(mj+2) ⊕Q(mj+4)
⊕Q(mj+7) ⊕Q′(mj+4) ⊕Q′(mj+6), (35)

Q(mj) =r0 ⊕ r3 ⊕ s11 ⊕ s5 ⊕ s3

⊕Δ
Y

(0)
j+4

(s5 ⊕Δ
Y

(0)
j+5

(s7 ⊕Δ
Y

(0)
j+6

(s̃9 ⊕Q′(mj+8))

⊕Q′(mj+7)) ⊕ P (mj+8) ⊕Q′(mj+6))

⊕ P (mj+5) ⊕ P (mj+7) ⊕ P ′(mj+1) ⊕ P ′(mj+7)
⊕Q(mj+8) ⊕Q(mj+3) ⊕Q(mj+6) ⊕Q′(mj+3) ⊕Q′(mj+5), (36)
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where s̃n’s and r̃0 are defined as follows:

s̃10 = s10 ⊕Δ
X

(0)
j+8

(r0), s̃8 = s8 ⊕Δ
X

(0)
j+7

(s̃10),

s̃6 = s6 ⊕Δ
X

(0)
j+6

(s̃8), s̃4 = s4 ⊕Δ
X

(0)
j+5

(s̃6),

s̃2 = s2 ⊕Δ
X

(0)
j+4

(s̃4), s̃0 = s0 ⊕Δ
X

(0)
j+3

(s̃2),

r̃2 = r2 ⊕ s10 ⊕ s7 ⊕Δ
X

(0)
j+2

(s̃0), r̃0 = r0 ⊕ s8 ⊕ s5 ⊕Δ
X

(0)
j+1

(r̃2),

s̃11 = s11 ⊕Δ
Y

(0)
j+8

(r1), s̃9 = s9 ⊕Δ
Y

(0)
j+7

(s̃11).

Before proving Theorem 2, we show that the equations (28)-(36) are solved for
mj , . . . ,mj+8 in negligible computational cost. First, mj+8 is determined by the
equation (28) because Q is invertible. Then, mj+7 is determined by the equation
(29) because mj+8 is already determined. Like this, mj+6, mj+5, mj+4, mj+3,
mj+2, mj+1 and mj are determined by the equations (30), (31), (32), (33), (34),
(35) and (36), respectively and sequentially.

Now, we prove Theorem 2.

Proof (of Theorem 2). First, using the equations of the inverse transformation
of the step function (26) nine times iteratively, we can express the internal state
difference before the λ + 1-th step, σj , by σj+9 and mj , . . . ,mj+8. Especially,
b[0]j, k[10]j, k[8]j, k[6]j , k[4]j , k[2]j, k[0]j, b[2]j , k[7]j and k[5]j are expressed as
the follows:

b[0]j =s̃10 ⊕ s6 ⊕ s3 ⊕Δ
X

(0)
j

(r̃0) ⊕Q(mj+8), (37)

k[10]j =s̃8 ⊕ s4 ⊕ s1 ⊕ P ′(mj+8) ⊕Q(mj+7), (38)
k[8]j =s8 ⊕ s̃6 ⊕ s2 ⊕ r3 ⊕ s11 ⊕ P ′(mj+7) ⊕Q(mj+6), (39)
k[6]j =s6 ⊕ s̃4 ⊕ s0 ⊕ r1 ⊕ s9

⊕ P ′(mj+6) ⊕Q(mj+8) ⊕Q′(mj+8) ⊕Q(mj+5), (40)
k[4]j =r2 ⊕ s10 ⊕ s4 ⊕ s̃2 ⊕ s̃11

⊕ P ′(mj+5) ⊕Q(mj+7) ⊕Q′(mj+7) ⊕Q(mj+4), (41)
k[2]j =r0 ⊕ s8 ⊕ s2 ⊕ s̃0 ⊕ s̃9 ⊕ P (mj+8) ⊕ P ′(mj+4)

⊕Q(mj+6) ⊕Q′(mj+8) ⊕Q′(mj+6) ⊕Q(mj+3), (42)
k[0]j =r̃2 ⊕ s̃10 ⊕ s6 ⊕ s0 ⊕ s7 ⊕Δ

Y
(0)

j+6
(s̃9 ⊕Q′(mj+8)) ⊕ P (mj+7)

⊕ P ′(mj+3) ⊕Q(mj+5) ⊕Q′(mj+5) ⊕Q′(mj+7) ⊕Q(mj+2), (43)
b[2]j =r̃0 ⊕ P (mj), (44)
k[7]j =r2 ⊕ s10 ⊕ s7 ⊕ s5 ⊕ s1

⊕Δ
Y

(0)
j+5

(s7 ⊕Δ
Y

(0)
j+6

(s̃9 ⊕Q′(mj+8)) ⊕Q′(mj+7))

⊕ P (mj+8) ⊕ P (mj) ⊕ P (mj+6) ⊕ P ′(mj+8) ⊕ P ′(mj+2)
⊕Q(mj+4) ⊕Q(mj+7) ⊕Q′(mj+4) ⊕Q′(mj+6) ⊕Q(mj+1), (45)

k[5]j =r0 ⊕ r3 ⊕ s11 ⊕ s5 ⊕ s3
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⊕Δ
Y

(0)
j+4

(s5 ⊕Δ
Y

(0)
j+5

(s7 ⊕Δ
Y

(0)
j+6

(s̃9 ⊕Q′(mj+8))

⊕Q′(mj+7)) ⊕ P (mj+8) ⊕Q′(mj+6))
⊕ P (mj+5) ⊕ P (mj+7) ⊕ P ′(mj+1) ⊕ P ′(mj+7) ⊕Q(mj+8)
⊕Q(mj+3) ⊕Q(mj+6) ⊕Q′(mj+3) ⊕Q′(mj+5) ⊕Q(mj). (46)

From the equations (28) and (37), the equation b[0]j = 0 follows. Similarly,
k[10]j = 0 is derived from the equations (29) and (38), k[8]j = 0 from the
equations (30) and (39), k[6]j = 0 from the equations (31) and (40), k[4]j = 0
from the equations (32) and (41), k[2]j = 0 from the equations (33) and (42),
k[0]j = 0 from the equations (34) and (43), b[2]j = k[7]j from the equations (35),
(44) and (45), and k[5]j = 0 from the equations (36) and (46). ��
Now, we present a procedure to obtain message candidates of the second segment
required in Step 2 in Section 4.2.

Step 2-1. We arbitrarily fix a message-block difference of (l − λ − 13)-block
length, mλ+13|| · · · ||ml−1. Using this difference, we reversely update the final
internal state difference σl = 0 and obtain σλ+13.

Step 2-2. We randomly choose a message-block difference of four-block length,
mλ+9|| · · · ||mλ+12, and reversely update the internal state difference σλ+13
to σλ+9.

Step 2-3. We determine a message-blockdifference of nine-block length,mλ|| · · ·
||mλ+8, by using Theorem 2 with j = λ and obtain the internal state difference
σλ satisfying equations (3). Then, a message candidate is obtained by xoring
M

(0)
λ || · · · ||M (0)

l−1 with mλ|| · · · ||ml−1.

In order to build 2448 message candidates of the second segment, we execute
Step 2-1 once and repeat 2448 times the procedure from Step 2-2 to Step 2-3.
Because message-block differences of four-block length, mλ+9|| · · · ||mλ+12, is of
512-bit length, we can choose 2448 different message-block differences at Step 2-2.
Therefore, we can build different 2448 message candidates. Of course, a way to
generate random internal state differences σλ+9 is more flexible. We can use any
448-bit degrees of freedom from mλ+9, . . . ,ml−1 except for padding bits.

The value l − λ should be greater or equal to 14 because Step 2-2 and 2-3
require 4 and 9 message blocks respectively and Step 2-1 requires at least 1
message block containing padding bits.

Because an execution of Step 2-2 and Step 2-3 needs 4 and 9 evaluations of the
step function respectively, building a message candidate of the second segment and
the corresponding internal state difference requires 13 evaluations of the step func-
tion. Thus, Step 2 in Section 4.2 requires 13×2448 evaluations of the step function.

4.5 Complexity of the Attack

Here, we show complexity of the attack.
For Step 1 of the attack, as will be explained in Section 4.3, we need 13 com-

putations of the step function to build a message candidate of the first segment.
Thus, 13× 2448 step function evaluations are required for Step 1. As of memory
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complexity, we need to store four message blocks Mλ−13||Mλ−12||Mλ−11||Mλ−10
and seven variables of internal state σλ which are not fixed by the equations (3)
per a pair of a message candidate and an internal state. Thus, we need 11×2448

128-bit memory to store V1.
For Step 2 and 3 of the attack, as will be explained in Section 4.4, we need 13

computations of the inverse of the step function to build a message candidate
of the second segment. Thus, 13 × 2448 inverse step function evaluations are
required for Step 2 and 3. Notice that the time complexity of an invocation of
the inverse step function is the same as that of the step function.

Thus, total time complexity of the attack is 13 × 2448 + 13 × 2448 ≈ 2452.7

evaluations of the step function and total memory requirement is 11 × 2448 ≈
2451.4 128-bit blocks.

5 Discussion about Designer’s Security Claim

The designers of SHAMATA prove the following statement (Corollary 1 in Sec-
tion 5.1 in the specification [7]):

“It is impossible to find a collision on CV’s by imposing differences only
on eighth consecutive blocks.”

We would like to point out that our attack does not contradict with this state-
ment because the attack needs 27 message blocks at least.

In the proof of the above statement, the designers use two properties mentioned
in Section 3. One property is thatK registers with even indices are not xored with
message blocks, and the other is that the linear transformation of the message
blocks at register B[2] is the same as that at register K[7]. These properties play
an important role for the hash function to resist attacks based on internal collision
using up to eight consecutive message blocks. On the contrary, when 27 or more
message blocks are used, it is these properties to make our attack possible.

6 Conclusion

In this paper, we presented a second preimage attack on SHAMATA-512. The at-
tack uses differential paths that hold with a probability one and a meet-in-the-
middle approach to find second preimages. The time complexity is about 2452.7

computations of the step function and the memory complexity is about 2451.4

blocks of 128 bits. Our attack uses two properties of SHAMATA, which the design-
ers seem to consider, make the function more resistant to cryptographic attacks.
Our results reveal that the effect of the properties is opposite to their expectation.
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Abstract. In this paper, some practical problems with the Message Authenti-
cation Codes (MACs), which are suggested in the current security architectures
for wireless sensor network (WSN), are reconsidered. The analysis exploits the
fact that the recommended MACs for WSN, e.g., TinySec (CBC-MAC), MiniSec
(OCB-MAC), and SenSec (XCBC-MAC), are not exactly suitable for body sensor
network (BSN). Particularly a dedicated attack is elaborated on the XCBC-MAC.
Considering the hardware limitations of BSN, we propose a tunable lightweight
MAC based on the PRESENT block cipher, which is named TuLP. A 128-bit
variant TuLP-128 is proposed for a higher resistance against internal collisions.
Compared to the existing schemes, our lightweight MACs are time and resource
efficient on hardware-constrained devices.

1 Introduction

Traditional wireless sensor networks (WSNs) are used to collect public information in
the environment, such as temperature, humidity, fire alarm, etc. Body sensor network
(BSN, also called wireless medical sensor network) [33], which can be developed from
WSN, is a key technology for long term monitoring of biological events or any abnor-
mal condition of patients for realizing the Ambient Assisted Living (AAL) vision [1].
Since monitored health data from a person with BSN will be a part of personal Elec-
tronic Health Record (EHR), a higher level of assessment and protection is required for
BSN communications. The existing EHR standards (ISO 27001, 27799, openEHR/ISO
18308, etc.) oblige BSN to be secured with strong cryptography. However, strong cryp-
tography entails more resources. Since BSN nodes are either worn or implanted by
a patient, the power consumption should be low to minimize radiation and maximize
durability. Moreover, BSN sensors also have limited computational ability and memory,
typically with a low-end CPU and RAM in KBytes level. These factors are important
not only in the implantable but also in the external sensor settings because they deter-
mine how “hidden” and “pervasive” the sensors are.

Considering the highly constrained resources that a BSN node can have, a better
trade-off has to be found such that the security is maximized, while minimizing the
resource requirement. Unfortunately, because of the heterogeneity of BSN, the secure
protocols for static networks might not applicable for BSN. Also the methods proposed

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 182–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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for ad hoc networks such as asymmetric cryptography techniques would be costly for
BSN applications. Due to the constraints in power consumption and computational abil-
ity, it remains a great challenge to design secure and practical cryptographic primitives
which are both time and resource efficient for BSN applications.

To ensure the authenticity and integrity of WSN communication, security protocols
via different Message Authentication Codes (MACs, different from the term “Medium
Access Control”) are proposed. MAC is a symmetric-key primitive that inputs a key-
message pair to produce a unique tag. The integrity and the authenticity of the message
are protected by the tag and the key respectively. One widely used method is the Se-
curity Protocol for Sensor Networks (SPINS) [29], which consists of μTESLA (micro
version of the Timed, Efficient, Streaming, Loss-tolerant Authentication) and SNEP (Se-
cure Network Encryption Protocol) for broadcasting messages. Following SPINS, many
lightweight security architectures have been proposed for WSN, e.g., TinySec [21],
SenSec [24] and MiniSec [25]. All these architectures considered which MAC will be
suitable in the WSN packet/message authentication. For instance, TinySec and MiniSec
recommend the well-known CBC-MAC [19] and OCB-MAC [30] respectively, whilst
SenSec uses a novel scheme called XCBC-MAC [24]. All the recommended MACs are
based on the operation modes of block cipher, and suggest 32-bit length tag for WSN.
In contrast, since dedicated hash functions (such as MD5 and SHA-1) are primarily de-
signed to be collision resistant for preventing forgery of digitally signed documents,
it was exploited that MACs based on hash functions (e.g., HMAC [16]) might be less
competitive than block-cipher-based ones for highly constrained devices [10]. Never-
theless, it is recognized by the BSN research community that authentication in BSN
protocols is usually for short messages in network processing [33]. This property im-
plies that the candidates of MACs, which focus more on the one-wayness than on the
collision-resistance, will be more practical for BSN applications.

Since typical BSN nodes have limited resources, an appropriate security level should
be imposed to realize authenticity and confidentiality in applications. Intuitively, 32-
bit security level for WSN is not suitable even for the one-wayness of the transmitted
data in BSN. As a comparable case for sensitive data authenticity, the authentication of
Electronic Funds Transfer in the US Federal Reserve System uses a 64-bit CBC-MAC,
and additionally a secret value for IV is daily changed and synchronized by the mem-
ber banks. In other applications, certain authorities even recommended to implement a
MAC with a longer length of 128-bit. Although an appropriate security level for BSN
applications will be ensured case by case, a 64-bit security bound is widely-accepted
for resisting sensible threats in such hardware-limited devices. As power and RAM are
normally the most constrained resources on a BSN node, the design of a MAC should
consider applicable trade-offs towards time and resource efficient in practice.

The contributions of this work are three-fold. Firstly, we describe some practical
problems of the MACs recommended in popular security architectures for WSN, such
as TinySec (CBC-MAC), MiniSec (OCB-MAC) and SenSec (XCBC-MAC). In particu-
lar, we demonstrate an existential forgery attack on XCBC-MAC, which implies that the
authenticity of SenSec is broken. Secondly, a performance comparison is presented on
efficient MACs from different design principles, e.g., CBC-MAC, OCB-MAC, ALPHA-
MAC [12]. Thirdly, taking into account the requirements for authenticity in BSN, we
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propose a tunable lightweight MAC based on the PRESENT block cipher [9], which
is named TuLP. The structure of TuLP is inspired by the generic construction ALRED
[12]. A 128-bit variant TuLP-128 is proposed for the higher resistance against internal
collisions. Compared to the existing schemes, our lightweight MACs show a better per-
formance on MICAz node with less memory costs, and also energy-efficient in the level
of gate equivalents.

The remainder of this paper is organized as follows. Section 2 describes some def-
initions and notions which will be used throughout the paper. The problems with the
MACs recommended in the proposed security architectures for WSN are described in
Section 3. Section 4 gives a performance comparison of some efficient MACs for BSN
authenticity. The designs of TuLP and TuLP-128 follow in Section 5 along with a de-
tailed analysis of the security and the performance. Section 6 concludes the paper.

2 Preliminaries

Here we review some definitions and primitives which will be used in the following
sections. Exclusive-or (xor) will be denoted by ⊕. A message M = a||b denotes the
concatenation of two strings a and b. Let M and K be the message and key spaces
respectively.

ALRED. The ALRED construction is a generic MAC design introduced by Daemen
and Rijmen [12]. The ALRED construction consists of the following steps:

1. Initialization: Fill the state with an all-zero block and encrypt it with a full encryp-
tion E with an authentication key k.

2. Chaining: For each message, iteratively perform an injection layout to map the bits
of the message to the same dimensions as a sequence of r round keys of E. Then
apply a sequence of r times round function of E to the state by using the output of
the injection layout as the round keys.

3. Finalization: Apply a full encryption E with the authentication key k to the final
state. The tag is the first �m bits of the output.

By using AES as the underlying block cipher, Daemen and Rijmen also presented two
paradigms called ALPHA-MAC [12] and Pelican [13] based on ALRED. Recently,
many papers exploited that ALPHA-MAC and Pelican might be threatened under the
internal collisions [18], the side-channel attack [5] and the impossible differential anal-
ysis [32]. We note that all those cryptanalyses are based on the internal structures of
ALPHA-MAC and Pelican, which do not endanger the security of ALRED.

PRESENT. At CHES 2007, Bogdanov et al. proposed an ultra-lightweight block cipher
which is named PRESENT [9]. PRESENT is an example of an SP-network and consists
of 31 rounds. The block length is 64 bits and two key lengths of 80 and 128 bits are
supported. The hardware requirements for PRESENT are competitive. Using the Virtual
Silicon (VST) standard cell library based on UMC L180 0.18μm 1P6M Logic Process
(UMCL18G212T3), PRESENT-80 and PRESENT-128 are estimated to require 1570
and 1886 gate equivalents, respectively [9]. Since Bogdanov et al. do not expect the
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128-bit key version to be used until a rigorous analysis is given, the term PRESENT
means 80-bit key version in hereafter.

Further details about the specification of PRESENT can be found in Bogdanov et
al. [9], including basic results of the differential and linear cryptanalyses, which can be
summarized as follows.

Theorem 1. Any five-round differential characteristic of PRESENT has a minimum of
10 active S-boxes.

Theorem 2. Let ε4R be the maximal bias of a linear approximation of four rounds of
PRESENT. Then ε4R ≤ 2−7.

Based on PRESENT, Bogdanov et al. [10] propose some low-energy block-cipher-
based hash functions (e.g., single and double block length construction DM-PRESENT
and H-PRESENT respectively) which are more practical than dedicated or AES-based
hash functions on highly constrained devices, such as RFID tags.

Recently, many cryptanalysis results have been given on the PRESENT block cipher.
Wang [31] presents a differential attack on 16-round PRESENT with the complexities
of about 264 chosen plaintexts, 232 6-bit counters, and 264 memory accesses. Collard
and Standaert [11] show a statistical saturation attack against 24-round PRESENT. The
saturation attack [11] depends on a simplified key schedule algorithm such that the same
subkey should be used in each round. Özen et al. [27] provide a related-key rectangle
attack on 17-round PRESENT-128. Albrecht and Cid [2] present an algebraic differen-
tial attack on 19-round PRESENT-128. However the known attacks on PRESENT with
80-bit keys, without any simplification, so far are bounded with 16 rounds [31].

3 Problems with the MACs Recommended for WSN

For ensuring the security of the communication in WSN, many schemes have been
proposed for the different layers of WSN. Basically, data link layer security is funda-
mental for other security properties in the higher layers, e.g., secure routing in network
layer and non-repudiation in application layer. In practice, there exist three widely-cited
schemes for the security of data link layer, which are TinySec [21], SenSec [24], and
MiniSec [25]. For confidentiality, all the three schemes suggest using a lightweight
block cipher for data encryption. But for authenticity, three totally different MAC func-
tions are recommended, which are claimed to be suitable for WSN. In this section, we
will give a comparative analysis of the three recommended MAC functions in the three
schemes [21,24,25].

CBC-MAC. In TinySec [21], Karlof et al. suggest to use CBC-MAC [19] as the un-
derlying MAC function. CBC-MAC uses a cipher block chaining construction for com-
puting and verifying MACs. The first advantage of CBC-MAC is simplicity, as it relies
on a block cipher which minimizes the number of cryptographic primitives that must
be implemented on BSN nodes with a limited memory. For BSN applications, the dis-
advantage of CBC-MAC is that independent keys should be used for encryption and
authentication. Furthermore, the one-key CBC-MAC construction [4] is not secure for
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Fig. 1. The XCBC algorithm proposed in SenSec [24]

arbitrary length messages, which allows adversaries can forge a tag for certain messages.
To preserve the provable security for arbitrary length messages, a variant of CBC-MAC
uses three different keys for the authentication [7]. Although the three-key construction
solves the arbitrary length message problem and avoids unnecessary message padding,
it raises another typical risk with respect to the key management in BSN. Compared
to the one-key construction, the extra keys will impose a heavy burden on key genera-
tion, distribution and storage. The risk of the key management indicates that a provably
secure CBC-MAC might be less practical for BSN applications.

XCBC-MAC. The XCBC-MAC algorithm proposed by Li et al. [24] is part of the
authenticated encryption mode for SenSec. Let kA and kE be the authentication key
and the encryption key, respectively. Let message M = m1||m2||...||mt. Figure 1 de-
picts the construction of XCBC-MAC. In general, the XCBC-MAC algorithm can be
viewed as a variant of the two-key CBC mode. Unfortunately, we have found a practi-
cal existential forgery on XCBC-MAC by implementing a chosen-message attack. One
can easily build two different messages with the same tag under the XCBC mode. The
forgery can be described in the following steps:

1. First, adversaryA obtains IV, EkE (IV) from the first block of any former ciphertext
under kE .

2. Next, A requests the encryptions on the two different blocks EkE (IV) ⊕ m1 and
EkE (IV) ⊕ m′

1 in the XCBC mode. The ciphers will be EkE (m1) ⊕ IV and
EkE (m′

1) ⊕ IV. A obtains EkE (m1) and EkE (m′
1) by xoring the ciphers with IV.

3. Finally,A arbitrarily selects a messageM ′, and then outputs two different messages
M1,M2, where M1 = EkE (IV) ⊕ m1||EkE (m1)||0||M ′ and M2 = EkE (IV) ⊕
m′

1||EkE (m′
1)||0||M ′.

It is easy to see that two different prefixesEkE (IV)⊕m1||EkE (m1)||0 and EkE (IV)⊕
m′

1||EkE (m′
1)||0 will produce the same zero output to the next step. Thus the two dif-

ferent messages M1 and M2 will have the same tag. The attack is difficult to detect
since IV is a publick-known value and the prefixes are computationally indistinguish-
able from a randomized query. Although the above attack can be avoided by using a
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one-time randomized IV, this assumption is impractical in WSN and BSN. If IV can
frequently be updated, all nodes should immediately synchronize the value. Otherwise
the receiver cannot correctly decrypt any packet from the sender. Since synchronization
is costly in sensor networks, it is impractical for an IV to be distributed just for one-time
usage. Due to the above analysis, the XCBC-MAC algorithm proposed in SenSec [24]
is insecure under the chosen message attack and should be abandoned in any circum-
stance of WSN/BSN authentication.

OCB-MAC. In MiniSec [25], Luk et al. suggest using the OCB mode [30], which is
an efficient authenticated encryption scheme, as the MAC function for message authen-
ticity and integrity. Since its publication OCB has received some attention, but little
cryptanalysis. We believe this has two reasons. First, the security proof of OCB [30]
seems to imply that cryptanalysis is useless. The proof is quite complicated and analy-
sis of the proof details is restricted to those people who are well-versed in formal proof
techniques. Second, the OCB mode has been patented. There is a significant cost, both
directly and indirectly, associated with using a patented algorithm. The last reason is
the main reason for the lack of rigorous cryptanalysis. Spending time on OCB will only
help the patent-holders to sell their licenses without any further compensation to the
cryptanalyst. Moreover, Ferguson also presents a collision attack on OCB with arbi-
trary length messages [15]. To keep adequate authentication security of OCB, one has
to limit the amount of data that the MAC algorithm processes. Since the offset values
used in OCB require extra time/memory costs with respect to the message length, the
area and the power consumption will be increased for the computation and storage.
The above reasons are relevant to real-life applications on BSN, and cast doubts on the
wisdom of using OCB.

4 A Comparison of Some Practical MACs for BSN

We have shown that the MAC functions proposed for WSN in the literature are not ex-
actly suitable for BSN. Many different MAC Functions have been proposed in the past
decades. Driven by the highly constrained resources of BSN node, the performance
and security of those candidates should be rigorously examined before they are imple-
mented. Basically, there are three approaches towards designing MAC functions. The
first is to design a new primitive from scratch, such as UMAC [6]. The second is to
define a new mode of operation for existing primitives. Such as variants of encryption
modes of block ciphers: CBC-MAC [19] and OCB-MAC [30]; Or variants mode of hash
functions: HMAC/NMAC [3,16]. The third approach, which can be viewed as a hybrid
of the first and the second approach, is to design new MAC functions using components
of existing primitives, such as ALPHA-MAC [12].

Based on the security and performance requirements of BSN, we will give a detailed
comparison of some popular MAC candidates, which are claimed to be efficient from
the three different approaches. To be fair, all MACs based on block cipher use AES-128
as the underlying block cipher, as well as input messages can be of arbitrary length. The
timing of the keysetup and the message processing are estimated from the performance
data given by the NESSIE consortium [26] (Pentium III/Linux Platform), such that the
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Table 1. The comparison of some practical MAC functions

CBC-MAC [19] OCB-MAC [30] ALPHA-MAC [12] HMAC (SHA-1) [16]
Based on cipher mode cipher mode AES components hash mode
Keysetup 616 644 1032 1346

Finalization 1440 1444 416 3351
Message processing 26 30 10.6 15

Area in GE (estimate) 4764 6812 4424 8120 [14]

message processing time is measured in cycles/byte, while the keysetup and keysetup +
finalization are measured in cycles. The area in gate equivalents (GE) can be calculated
from two parts: the area of the underlying component or primitive, and the area for in-
ternal operations and storages. In order to compare the area requirements independently
it is common to state the area in GE, where one GE is equal to the area which is required
by two-input NAND gate with the lowest driving strength of the appropriate technology
[28]. By following the same method [10,14], we also use the Virtual Silicon (VST) stan-
dard cell library based on UMC L180 0.18μm 1P6M Logic Process (UMCL18G212T3)
to estimate each area in GE of the candidates. According to the related experiments
[14], the area for AES-128 encryption is estimated to be 3400 GE, as well as 64-bit
storing and exclusive-or require 512 GE and 170 GE, respectively.

For chips built with CMOS technology, the power consumption is the sum of two
parts: the static and the dynamic costs. The static part is roughly proportional to the
area, namely the larger size of the chip the larger energy costs, whilst the dynamic
part is proportional to the operating frequency. For the devices with a lower operating
frequency, the static power consumption is the most significant. For this reason, the area
of gate equivalents is often used as a simplified benchmark for energy efficiency. The
comparison in Table 1 shows that ALPHA-MAC has merits on both of the message
processing speed and the area of GE, which indicates that one could also build a time
and energy efficient MAC from the ALRED construction by using a lightweight block
cipher.

5 Two New Lightweight MACs from ALRED

In this section, we will propose a tunable lightweight MAC based on PRESENT, which
is named TuLP. To raise the security bound of resisting internal collisions, we will also
give a wide-pipe version of TuLP, which is called TuLP-128. Both of our schemes
use the experiences of ALPHA-MAC [12] and Pelican [13]. Next, the security of our
schemes will be analyzed. Finally, the performance of our lightweight schemes will be
given. Compared to the results in Table 2, our new MAC functions are time-efficient
with less memory usage, and also energy-efficient in the number of gate equivalents.

5.1 TuLP and TuLP-128

By using the round function of PRESENT [9], first a new MAC function TuLP is built
from a modification of the ALRED construction. TuLP is a lightweight MAC function
with an 80-bit key length at maximum and 64-bit block length, which consists of the
following steps:



Towards Secure and Practical MACs for Body Sensor Networks 189

1. Padding. Let k be an authentication key such that |k| ≤ 80 bits. If |k| is less than
80 bits, it should be iteratively padded with 1 and 0 as 10101 · · · . First pad M with
λ(M,k) where λ(M,k) returns the concatenation of bitwise lengths of M and k.
Then pad the concatenated string to a multiple of 64 bits, e.g., appending a single
bit 1 followed by necessary d bits 0. Finally Split the result pad(M) into 64-bit
blocks m1,m2, · · · ,mt, t = |pad(M)|

64 , such that

pad(M) = M ||λ(M,k)||10d.

2. Initialization. Apply one full-round PRESENT encryption E to the initial value
IV with the (padded) authentication key k, then obtain s0 = Ek(IV) as the initial
state.

3. Compression. For each message block mi where i ∈ {1, 2, · · · , t}, xor mi with
the current state si as the 64 most significant bits of the key ki for current r times
PRESENT round function ρ. The rest 16 bits of the key ki is derived from the
16 most significant bits of the authentication key k (denote by MSB16(k)). By
executing the same key schedule algorithm of PRESENT, apply r times ρ on the
state si−1, such that

si = ρr
mi⊕si−1||MSB16(k)(si−1).

4. Finalization. Apply one full-round PRESENT encryption to the state st under the
key k, and then truncate the first �m bits of the final state st+1 as the tag of the
message M .

st+1 = Ek(st), tagM = Trunc�m(st+1).

Since the length of internal state is only 64 bits, TuLP is not strong enough to resist the
birthday attack on internal states for an existential forgery. Although this “weakness”
is not fatal in some BSN applications, we still provide a wide-pipe version, which is
called TuLP-128, to increase the state and the maximum tag lengths to be 128 bits. The
key length of TuLP-128 is up to 160 bits. We note that the design principle is inspired
by MDC-2 [20] and the padding rule is identical to TuLP.

1. Padding. Let k be an authentication key such that |k| ≤ 160 bits. By using the
same padding rule of TuLP, split the result pad(M) = M ||λ(M,k)||10d into 64-
bit blocks m1,m2, · · · ,mt, t = |pad(M)|

64 .
2. State Initialization. Divide the (padded) authentication key k into two 80-bit key
kl||kr. Then apply one full-round PRESENT encryption to two different 64-bit
initial values IV1 and IV2 under kl and kr, respectively. Obtain the outputs as the
left and right initial states sl,0 and sr,0, such that

sl,0 = Ekl
(IV1), sr,0 = Ekr (IV2).

3. Compression. For each message block mi where i ∈ {1, 2, · · · , t}, first split the
last left and right states sl,i−1 and sr,i−1 into four 32-bit blocks. Then exchange
the least significant 32 bits of the left state (denoted by LSB32(.)) with the most
significant 32 bits of the right state. The exchanged input states are denoted by
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ŝl,i−1 and ŝr,i−1. By following the same algorithm of the compression in TuLP,
apply r PRESENT round functions on the exchanged input states ŝl,i−1 and ŝr,i−1
respectively.

ŝl,i−1 = MSB32(sl,i−1)||MSB32(sr,i−1),
ŝr,i−1 = LSB32(sl,i−1)||LSB32(sr,i−1);
sl,i = ρr

mi⊕sl,i−1||MSB16(kl)(ŝl,i−1),

sr,i = ρr
mi⊕sr,i−1||MSB16(kr)(ŝr,i−1).

4. Finalization. Apply one full-round PRESENT encryption to the left and the right
states under the divided keys kl and kr respectively. Then truncate the first �m bits
of the concatenation of the final states as the tag of the message M .

ŝl,t = MSB32(sl,t)||MSB32(sr,t),
ŝr,t = LSB32(sl,t)||LSB32(sr,t);

sl,t+1 = Ekl
(ŝl,t), sr,t+1 = Ekr (ŝr,t);

tagM = Trunc�m(sl,t+1||sr,t+1).

Figure 2 and 3 depict the high-level algorithms of TuLP and TuLP-128, respectively.
Referring to the security issues of ALPHA-MAC and Pelican [5,10,32], the advantages
of our schemes are as follows.

– In ALPHA-MAC [12], all message blocks directly become the round keys after the
message injections, so the attacker can execute side-channel attacks in the known
message scenario. Biryukov et al. [5] present a side-channel attack on ALPHA-
MAC, which relies on the fact that the round keys of ALPHA-MAC are public-
known by the attacker. In TuLP, round keys are not computed from a deterministic
function of input message blocks. Thus, a side-channel attack is unlikely to make a
hypothesis on any intermediate states of the algorithm. The xor operation between
the state and the input message block can resist the attacker to implement similar
side-channel attacks [5] on TuLP and TuLP-128.

– Like in Pelican [13], the message injection layer is also removed in TuLP and
TuLP-128 for simplicity. Because it can hardly improve the resistance against lin-
ear and differential attacks. In Pelican, the message block is xored with the last
output state as the input for current round. But in our schemes, the message block
is xored with the state as a part of the subkey for next round. We note that the iter-
ation of Ek⊕m(k) is proven to be collision and preimage resistant in the black-box
analysis of the PGV constructions [8].

– The bitwise lengths of message and key are appended to the end of the message.
This message padding rule can avoid some trivial attacks on the internal collision
and the extension. ALPHA-MAC and Pelican only pad message with a single 1
followed by the minimum number of 0 bits to suffice a block.

– Benefit from the ALRED construction, the security of our schemes can be reduced
to the security of PRESENT if internal collisions are not involved. The proofs are
provided in the security analysis of Section 5.2. Since the compressions in TuLP
and TuLP-128 are different from the PRESENT encryption, encryption and au-
thentication can use the same secret key.
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– TuLP is designed for rapid message processing. The computational costs of the
message processing are equivalent to r

31 of one PRESENT encryption. Whilst
TuLP-128 provides a wider intermediate state and maximum 128-bit tag length
for collision resistance, such that the costs of message processing only require 2·r

31
of one PRESENT encryption.

– The choice of r rounds PRESENT in the compression is tunable by consideration of
the practical balance of security and performance. Since key management in sensor
network is expensive on computation and energy, the length of authentication key
is tunable since the padding rules considered dynamic key length. To give practical
instances for the analysis in the following section, we will consider r=16 in the
compression of TuLP and TuLP-128, whilst IV = IV1 = 0123456789ABCDEF
and IV2 = FEDCBA9876543210.

5.2 Security Analysis

In this section, we first prove that TuLP is as strong as the PRESENT block cipher with
respect to key recovery and existential forgery attacks without internal collisions. Then
we give a synthetic analysis of TuLP when internal collisions are considered. Finally, a
similar security analysis is given on TuLP-128.

Since the ALRED construction has a similar internal structure with the CBC mode,
which typically implies the security between the construction and the underlying cryp-
tographic primitives. Derived from the provability results of the ALRED construction
in [12], it is easy to derive a similar result on TuLP as follows.

Theorem 3. Any key recovery attack on TuLP requiring t (adaptively) chosen mes-
sages, can be converted to a key recovery attack on the PRESENT block cipher requir-
ing t+ 1 adaptively chosen plaintexts.

Proof. Let A be a successful attacker requiring t tag values corresponding to t (adap-
tively) chosen messagesmi yielding the key k, where i ∈ {1, 2, · · · , t}. Then we derive
a key recovery attack on the PRESENT block cipher as follows.

1. Request the first state s0 = Ek(IV).
2. For i = 1 to t, compute the intermediate state si = χ(s0,mi), where χ denotes the

compression function of TuLP.
3. For i = 1 to t, request tagi = Trunc(Ek(si)).
4. Submit t tag values to A to recover the key k.

The above attack requires t chosen messages and one chosen message on Ek(IV). So
the theorem follows. ��
Similar to Theorem 3, the provability of TuLP can be extended to the existential forgery
attack and the fixed point attack as follows. The proofs are omitted here due to the page
limit.

Lemma 1. Any existential forgery attack on TuLP without internal collisions requiring
t (adaptively) chosen messages, can be converted to a ciphertext guessing attack on the
PRESENT block cipher requiring t+ 1 adaptively chosen plaintexts.
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Lemma 2. Any existential forgery attack on TuLP, requiring t (adaptively) chosen
messages for a fixed point {(m, s)|Em⊕s(s) = s,m ∈ M, s ∈ K}, can be converted
to a fixed point attack {(m′, k)|Em′(k) = k,m ∈ M, k ∈ K} on the PRESENT block
cipher requiring t+ 1 adaptively chosen plaintexts.

Now we analyze the security with respect to internal collisions. The reason why we
choose r=16 in the compression of TuLP (and TuLP-128) to resist the internal colli-
sions from the linear and differential cryptanalysis are briefly described as follows.

Theorem 4. Consider r=16 in the compression of TuLP. The minimum extinguish-
ing differential in TuLP imposes a differential characteristic of about 2−64. Whilst the
maximum bias of the linear analysis with the probability of about 2−28 with 256 known
plaintext/ciphertext pairs.

Proof. Based on the differential and the linear cryptanalyses that are given by Bogdanov
et al. [9], any 5 rounds differential characteristic of PRESENT has a minimum of 10
active S-boxes. One round PRESENT has one S-box, all 31 rounds use the same. For
differential cryptanalysis, we have:

1. One S-box provides maximum 2−2 possibility for differential characteristic, thus
16 rounds provide a lower bound (2−2)r∗10/5 = 2−64 for the probability of a char-
acteristic. The probability is not greater than the birthday attack on the intermediate
states (2−32 and 2−64 for TuLP and TuLP-128 respectively).

2. This differential cryptanalysis would require the memory complexity of about 264

known plaintext/ciphertext pairs.

For linear cryptanalysis, we have:

1. Any 4 rounds provide the maximal bias of a linear approximation ε4R ≤ 2−7.
Hence 16 rounds provide the maximum bias of a linear approximation (2−7)r/4 =
2−28.

2. This linear cryptanalysis would require the memory complexity of about 1/(2−28)2

= 256 known plaintext/ciphertext pairs.

So the theorem follows. ��
Consider a typical BSN application consisting of 100 nodes, each node transfers an
8-byte message under the same authentication key per 15 seconds for monitoring. Al-
though the above linear analysis has a non-negligible bias, the time and the memory
complexities of obtaining 256 plaintext/ciphertext pairs (about 219 TB) would be im-
practical.

By using multi-collisions, Knudsen et al. [22] provide a collision attack and preimage
attacks on the MDC-2 construction with the time complexities of about (log2(n)/n)·2n

and 2n where the block length is n. The preimage attacks make new trade-offs so that
the most efficient attack requires time and memory of about 2n. Whilst the meet-in-the-
middle attack on MDC-2 [23] requires time and memory about 23n/2 and 2n. Based on
the security analysis of the MDC-2 construction and TuLP, the security of TuLP-128
with the internal collisions is as follows.
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Theorem 5. Consider r=16 in the compression of TuLP-128. The internal collision
and preimage attacks on TuLP-128 have the complexities of about 261.3 and 264, re-
spectively.

Proof. The proof is based on the security that r=16 in the compression of TuLP-128.
One S-box provides a maximum 2−2 possibility for differential characteristic, 16-round
PRESENT provide a lower bound 2−64 for the probability of a characteristic. The min-
imum extinguishing differential in TuLP-128 imposes a differential characteristic of
about 2−64 in the left state and the same in the right state. 16 rounds provide a maximum
bias of a linear approximation 2−28. But both the differential analysis and the linear
cryptanalysis require a memory complexity no less than 256 known plaintext/ciphertext
pairs, which is impractical in BSN. Since PRESENT is an SP-network block cipher and
the iteration of Ek⊕m(k) is proven to be collision and preimage resistant in the black-
box analysis by Black et al. [8], and TuLP-128 has a MDC-2 like construction. Each
round of the compression in TuLP-128 exchanges the right most 32 bits of the left state
with the left-most 32 bits of the right state. Due to Knudsen et al.’s cryptanalysis of
MDC-2 [22], the internal collision attack and the preimage attack on TuLP-128 would
require the time complexity of about (log2(64)/64) · 264 ≈ 261.3 and 264, respectively.
Therefore, the complexity of an internal collision is about 2−61.3 via the multi-collision
attack with a negligible memory requirement. Whilst the preimage attack requires time
and memory of about 264. So the theorem follows. ��
Although TuLP-128 does not achieve the ideal upper bounds of collision and preimage
resistances, the MDC-2 like structure in TuLP-128 still yields many practical advan-
tages. For example, symmetric left and right pipes can minimize the area in hardware,
or the memory usage in software implementation. And the simple permutation layer be-
tween left and right states saves redundant logical gates. Nevertheless, a 261.3 level of
time complexity on finding an internal collision is still beyond the computational bound
in practice. Now we consider the security of TuLP-128 without internal collisions.

Theorem 6. Any key recovery attack on TuLP-128 requiring t (adaptively) chosen
messages, can be converted to a key recovery attack on PRESENT requiring t + 2
adaptively chosen plaintexts.

Proof. Consider the situation that kl = kr = k. Let A be a successful attacker requiring
t tag values corresponding to t (adaptively) chosen messages mi yielding the key k,
where i ∈ {1, 2, · · · , t}. Let χ be the compression function of TuLP. MSB32(·) and
LSB32(·) denote the truncation of the most and the least significant 32 bits, respectively.
Then we derive a key recovery attack on the PRESENT block cipher as follows.

1. Request the initial left and right states sl,0 = Ek(IV1) and sr,0 = Ek(IV2).
2. For i = 1 to t, compute the left state sl,i = χ(MSB32(sl,i)||MSB32(sr,i),mi) and

the right state sr,i = χ(LSB32(sl,i)||LSB32(sr,i),mi).
3. For i = 1 to t, request tagi = Trunc(Ek(sl,i)||Ek(sr,i)).
4. Submit t tag values to A to recover the key k.
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The above attack needs t chosen messages except Ek(IV1) and Ek(IV2). So the theo-
rem follows. ��
Similar to Theorem 6, it is easy to obtain the following lemmas on TuLP-128. The
proofs are omitted here due to the page limit.

Lemma 3. Any existential forgery attack on TuLP-128 without internal collisions of
requiring t (adaptively) chosen messages, can be converted to a ciphertext guessing
attack on PRESENT requiring t+ 2 adaptively chosen plaintexts.

Lemma 4. Any existential forgery attack on TuLP-128 with a fixed point of requiring
t (adaptively) chosen messages, can be converted to a fixed point attack on PRESENT
requiring t+ 2 adaptively chosen plaintexts.

5.3 Performance

Before we study the performance of TuLP and TuLP-128, first we program an opti-
mized implementation of PRESENT by using 1K bytes look-up table on MICAz nodes.
From our performance tuning, we find that the bit permutation of PRESENT is costly in
software implementation. Compared to the best known result of AES-128 software im-
plementation on MICAz nodes [17], our optimized implementation of PRESENT still
shows a competitive processing speed per block and promising lower memory costs.
Since PRESENT has already been proven to be a better choice than AES in hardware
implementation [10], our optimized implementation shows that PRESENT is also prac-
tical in software.

Table 2. The comparison of AES and PRESENT implementations

Software (MICAz) Hardware [10]
Encryption RAM (byte) ROM (byte) Processing speed Logic process Cycles per block Area

AES-128 [10,17] 1915 12720 1.46ms / 16Bytes 0.35μm 1032 3400 GE
PRESENT-80 1040 1926 1.82ms / 8Bytes 0.18μm 32 1570 GE

As a point of comparison, we select DM-PRESENT [10], which is derived from
the Davies-Meyer construction and the PRESENT with an 80-bit key, as the under-
lying hash function for HMAC [16]. We also choose one-key CBC-MAC based on
PRESENT as a benchmark for comparability. The area in GE is estimated by using the
Virtual Silicon (VST) standard cell library based on UMC L180 0.18μm 1P6M Logic
Process (UMCL18G212T3). All experiments are based the MICAz nodes (TinyOS ver-
sion 2.10), which are popular in both of WSN and BSN. The results in the entries
of processing speed (in milliseconds) are averaged by iterating 100 times experiments
with/without the optimization in the keysetup.

If we choose r=16 in the compression of TuLP, TuLP will be about 2 times faster than
PRESENT encryption in message processing. Table 3 shows that TuLP approaches 1.6
and 1.8 times faster than HMAC with DM-PRESENT and one-key CBC-MAC based on
PRESENT respectively, where message length from 8 bytes to 1024 bytes. The keysetup
costs in our schemes, which require one (or two) PRESENT encryption(s) to generate an
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Table 3. The comparison amongst some PRESENT-based MAC functions

TuLP TuLP-128
CBC-MAC
(PRESENT)

HMAC
(DM-PRESENT)

Key length (bit) 80 160 80 80
Intermediate state (bit) 64 128 64 64

RAM / ROM (byte) 1048 / 3302 1056 / 3718 1040 / 2970 1056 / 3484
Area in GE (estimate) 2252 2764 2252 2213 [10]

Processing Speed (ms) TuLP TuLP-128
CBC-MAC
(PRESENT)

HMAC
(DM-PRESENT)

8 bytes 4.46 / 6.63 8.91 / 13.24 6.51 10.90
16 bytes 5.59 / 7.75 11.17 / 15.49 8.70 13.08
32 bytes 7.87 / 10.03 15.72 / 20.05 13.05 17.43
64 bytes 12.39 / 14.56 24.76 / 29.09 21.77 23.97

128 bytes 21.43 / 23.59 42.84 / 47.17 39.20 37.04
256 bytes 39.50 / 41.67 79.00 / 83.33 74.06 65.35
512 bytes 75.65 / 77.81 151.53 / 155.66 143.78 122.01
1024 bytes 147.94 / 150.10 295.97 / 300.31 283.21 233.04

encrypted IV, mainly lack TuLP (or TuLP-128) in processing the messages shorter than
32 bytes. We note that the keysetup can be optimized by precomputing the encrypted
IV before the authentications with the same keys, and the values can be reused in the
latter authentication with the same keys. Same optimization can be implemented in
TuLP-128 to boost the processing of short messages. We note that HMAC also can
precompute the initialization values for optimization, but the values must be treated and
protected (128 bits for a certain key in DM-PRESENT) in the same manner as secret
keys [16]. While the optimization for our schemes only increases a smaller storage (one
encrypted IV is 64-bit) without need to be insulated. Although the lengths of internal
state and tag are doubled, the performance of TuLP-128 is still comparable to one-
key CBC-MAC based on PRESENT. Obviously, TuLP-128 will be faster than HMAC
with a double block length hash function based on PRESENT. Nevertheless, if a higher
security bound is required, one can tweak the rounds in the compressions of TuLP
and TuLP-128. For instance, increase 16 rounds to 20 will decrease about 4/16=25%
performance in message processing. In return, a 20-round PRESENT will have a lower
bound (2−2)20∗10/5 = 2−80 for a differential characteristic. And the maximal bias of a
linear approximation (2−7)20/4 = 2−35, which requires 270 known plaintext/ciphertext.

6 Conclusion

By considering the restrictions of BSN, two lightweight MACs TuLP and TuLP-128
have been proposed. The security of our schemes is analyzed with respect to the crypt-
analyses on ALRED and the results on PRESENT. The key length and the number of
round functions in the compression are tunable in our lightweight schemes, which sup-
port practical trade-offs between security and performance in BSN applications. The
statistics strongly support that TuLP and TuLP-128 are promising on devices with con-
strained resources. Since both PRESENT and ALRED are new proposals, we suggest
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that rigorous analysis should be imposed to avoid any potential weakness inside the
cryptosystems based on them.
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2 Université du Luxembourg, Luxembourg
avradip.mandal@uni.lu

3 NIST, USA
mridul.nandi@gmail.com

Abstract. Understanding the principle behind designing a good hash function is
important. Nowadays it is getting more importance due to the current SHA3 com-
petition which intends to make a new standard for cryptogrpahic hash functions.
Indifferentiability, introduced by Maurer et al in TCC’04, is an appropriate no-
tion for modeling (pseudo)random oracles based on ideal primitives. It also gives
a strong security notion for hash-designs. Since then, we know several results
providing indifferentiability upper bounds for many hash-designs. Here, we in-
troduce a unified framework for indifferentiability security analysis by providing
an indifferentiability upper bound for a wide class of hash designs GDE or gener-
alized domain extension. In our framework, we present an unified simulator and
avoid the problem of defining different simulators for different constructions. We
show, the probability of some bad event (based on interaction of the attacker with
the GDE and the underlying ideal primitve) is actually an upper bound for indif-
ferentiable security. As immediate applications of our result, we provide simple
and improved (in fact optimal) indifferentiability upper bounds for HAIFA and
tree (with counter) mode of operations. In particular, we show that n-bit HAIFA
and tree-hashing with counter have optimal indifferentiability bounds Θ(qσ/2n)
and Θ(q2 log �/2n) respectively, where � is the maximum number of blocks in
a single query and σ is the total number of blocks in all q queries made by the
distinguisher.

Keywords: Indifferentiability, Merkle-Damgård , HAIFA, Tree mode of oper-
ations with counter.

1 Introduction

Random Oracle method, introduced by Bellare and Rogaway [1], is a very popular
platform for proving security of cryptographic protocol. In this model all the partici-
pating parties, including the adversary, is given access to a truly random function R.
Unfortunately, it is impossible to realize a truly random function in practice. So while
implementing the protocol the most natural choice is to instantiate R by an ideal hash
functionH . The formal proofs in Random Oracle model indicate that there is no struc-
tural flaw in the designed protocol. But how can we make sure, that replacing the ran-
dom function R with a good hash function H will not make the protocol insecure? In
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fact recent results [13,16] show that theoretically it is possible to construct some patho-
logical protocols that are secure in random oracle model but completely insecure in
standard model. Fortunately those separation results do not imply an immediate serious
threat to any widely used cryptosystem, proven to be secure in random oracle model.
So one can hope that any attack, which fails when a protocol is instantiated with R but
succeeds when the protocol is instantiated with H , will use some structural flaw of H
itself. So the above question boils down to the following. How can we guarantee the
structural robustness of a hash function H?

Indifferentiability of Hash Functions: Motivated by above question, Coron et al. stud-
ied Indifferentiability of some known iterated hash designs[5], based on Maurer’s indif-
ferentiability framework [15]. Informally speaking, to prove indifferentiability of an
iterated hash function C (based on some ideal primitive f ), one has to design a sim-
ulator S. The job of S is to simulate the behavior of f while maintaining consistency
with R. Now if no distinguisher D can distinguish the output distribution of the pair
(Cf , f) from that of (R,SR), the construction C is said to be indifferentiable from
an RO. In [5], the authors proved that the well known Merkle-Damgård Hash func-
tion is indifferentiable from a random oracle under some specific prefix free padding
rule. Subsequently, authors of [2,4,9,12] proved indifferentiability of different iterated
hash function constructions. Today indifferentiability is considered to be an essential
property of any cryptographic hash function.

Related Work: In [14], Maurer introduced a concept of random systems and showed
some techniques of proving indistinguishability of two random systems which can
be useful to prove indistinguishability or even indifferentiability. However, Maurer’s
methodology can only be applied once one can prove the conditional probability distri-
bution of the view (input/output) given non-ocurrance of bad event, remain identical in
the two worlds. So far there is no known generic technique for finding the bad event and
proving the distributions are actually identical. In [11], the authors introduced the con-
cept of preimage awareness to prove the indifferentiability of MD with post-processor
(modeled as an independent random oracle). More precisely, it was shown that if H is
preimage-aware (a weaker notion than random oracle model) and R is a post-processor
modeled as a random oracle then R(H(·)) is indifferentiable. In[10], a particular tree
mode of operation (4-ary tree) with specific counter scheme is shown to be indifferen-
tiable secure.

Our Motivation: Although many known hash function constructions have been shown
to be indifferentiable from an RO, the proof of these results are usually complicated
(many times, due to numerous game hopings and hybrid arguments). Also, they require
different simulators for each individual hash design. There are no known sufficient con-
ditions for hash functions to be indifferentiable from an RO. From a different perspec-
tive, the existing security bounds for different constructions are not always optimal. In
fact, to the best of our knowledge none of the known bounds was proven to be tight.
The results of [11,14] do not directly imply to improve the indifferentiability bounds for
general iterated hash functions based on a single random oracle. The methods of [10]
does not give us any optimal bound either. So a natural question to ask is: Can we char-
acterize the minimal conditions of a cryptographic hash function to be indifferentiable
from a Random Oracle and achieve optimal bound?
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Our Result: In this paper, we present a unified technique of proving indifferentiabile
security for a major class of iterated hash functions, called Generalized Domain Exten-
sions. We extend the technique of [14] to the indifferentiability framework. We identify
a set of events (called BAD events) and show that any distinguisher, even with un-
bounded computational power, has to provoke the BAD events in order to distinguish
the hash function C from a random function R. Moreover we prove that, to argue in-
differentiability of a construction Cf , one has only to show that the probability that
any distinguisher invokes those BAD events, while interacting with the pair (Cf , f), is
negligible. We avoid the cumbersome process of defining simulator for each con-
struction separately by providing a unified simulator for a wide range of construc-
tions. To prove indifferentiability one simply need to compute the probability of
provoking the BAD event when interacting with (Cf , f).

In the second part of this paper, we apply our technique to some popular domain exten-
sion algorithms to provide optimal indifferentiable bounds. In particular, we consider
Merkle-Damgård with HAIFA and tree mode with specific counter scheme.Many of
candidates of SHA3 competition actually use these two modes of operations. So, our
result can also be viewd as an optimal indifferentiability guarantee of these candidates.
We briefly describe our results below:

1. MD with counter or HAIFA: Let Cf be MD with counter where the last block
counter is zero (all other counters are non-zero). Many SHA3 candidates such as
BLAKE, LANE, SHAvite-3 etc are in this category. In Theorem 3 and Theorem 5,
we show that the (tight) indifferentiable bound for C is Θ(σq/2n) where q is the
number of queries, n is the size of the hash output and σ is total number of blocks
in all the queries. The so far best known bound for HAIFA mode is σ2/2n [5].

2. Tree-mode with counter: Tree mode with counter (e.g. the mode used in MD6) is
known to be indifferentiable secure with upper bound q2�2/2n [10]. In Theorem 4
and Theorem 6, we are provide an optimal indifferentiable boundΘ(q2 log �/2n).

2 Notations and Preliminaries

Let us begin with recalling the notion of indifferentiability, introduced by Maurer in
[15]. Loosely speaking, if an ideal primitive G is indifferentiable from a construction
C based on another ideal primitive F , then G can be safely replaced by CF in any
cryptographic construction. In other terms if a cryptographic construction is secure in
G model then it is secure in F model.

Definition 1. Indifferentiability [15]
A Turing machineC with oracle access to an ideal primitiveF is said to be (t, qC , qF , ε)
indifferentiable from an ideal primitive G if there exists a simulator S with an oracle
access to G and running time at most t, such that for any distinguisherD, |Pr[DCF ,F =
1]−Pr[DG,SG

= 1]| < ε. The distinguisher makes at most qC queries to C or G and at
most qF queries to F or S. Similarly,CF is said to be (computationally) indifferentiable
from G if running time of D is bounded by some polynomial in the security parameter
k and ε is a negligible function of k.
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F C S G

D

Fig. 1. The indifferentiability notion

We stress that in the above definition G and F can be two completely different prim-
itives. As shown in Fig 1 the role of the simulator is to not only simulate the behavior
of F but also remain consistent with the behavior of G. Note that, the simulator does
not know the queries made directly to G, although it can query G whenever it needs.

For the rest of the paper C represents the domain extension algorithm of an iterated
hash function. We consider G and F to be the same primitive; a random oracle. The
only difference is F is a fixed length random oracle whereas G is a variable length
random oracle. Intuitively a random function (oracle) is a function f : X → Y chosen
uniformly at random from the set of all functions from X to Y .

Definition 2. f : X → Y is said to be a random oracle if for each x ∈ X the value of
f(x) is chosen uniformly at random from Y . More precisely, for x /∈ {x1, . . . , xq} and
y, y1, · · · , yq ∈ Y we have

Pr[f(x) = y | f(x1) = y1, f(x2) = y2, · · · , f(xq) = yq] =
1
|Y |

Most of the hash functions used in practice are iterated hash functions. The construc-
tion of an iterated hash function starts with a length compressing function f : {0, 1}m′

→ {0, 1}n. Then we apply a domain extension technique, like the well known Merkle-
Damgård , to realize a hash function Cf : {0, 1}∗ → {0, 1}n. Intuitively, any prac-
tical domain extension technique applies the underlying compression function f in
a sequence, where inputs of f are determined by previous outputs and the message
M ∈ {0, 1}∗ (for parallel constructions, inputs only depend on the message). Finally
the outputCf (M) is a function of all the previous intermediate outputs and the message
M . The Generalized Domain Extension (GDE) are the domain extension techniques
where u� is the input to final invocation of f and Cf (M) = f(u�). A domain exten-
sion algorithm from the class GDE is completely characterized by the following two
functions:

1. Length function: � : {0, 1}∗ → N is called length function, which actually mea-
sures the number of invocation of f . More precisely, given a messageM ∈ {0, 1}∗,
� = �(M) denotes the number of times f is applied while computing Cf (M).

2. Input function: For each j ∈ N, Uj : {0, 1}∗ × ({0, 1}n)j → {0, 1}m′
, called

jth input function. It computes the input of jth invocation of f . This is com-
puted from the message M and all (j − 1) previous outputs of f . In other words,
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Uj(M, v0, v1, · · · , vj−1) is the input of jth invocation of f while computing
Cf (M), where v1, · · · , vj−1 denote the first (j − 1) outputs of f and v0 is a con-
stant depending on the construction. The input function usually depend on message
block, instead of whole message and hence we may not need to wait to get the
complete message to start invoking f .

The above functions are independent of the underlying function f . Note that the padding
rule of a domain extension is implicitly defined by the input functions defined above. At
first sight, it may seem that GDE does not capture the constructions with independent
post processor. But we argue that, when the underlying primitive is modeled like a
random oracle, then queries to the post processor can be viewed as queries to same
oracle (as in the intermediate queries) but with different padding. Namely in case of
NMAC like constructions, we can consider a GDE construction where the inputs to the
intermediate queries are padded with 1 and the final query is padded with 0. Similarly,
one can incorporate domain extensions which use more than one random oracle.

Definition 3. (GDE: Generalized Domain Extension)
Let S = (�, 〈Uj〉j≥1) be tuple of deterministic functions as stated above. For any func-
tion f : {0, 1}m′ → {0, 1}n and a message M , GDEf

S(M) is defined to be v�, where
� = �(M) and for 1 ≤ j ≤ �,

vj = f
(
Uj(M, v0, v1, · · · , vj−1)

)
.

The uj = Uj(M, v0, v1, · · · , vj−1) is called the jth intermediate input for the message
M and the function f , 1 ≤ j ≤ �. Similarly, vj = f(uj) is called jth intermediate
output, 1 ≤ j ≤ �− 1. The last intermediate input u� is also called final (intermediate)
input. The tuple of functions S completely characterizes the domain extension and is
called the structure of the domain extension GDES .

Note that we can safely assign v0 = IV , the Initialization Vector, used in many domain
extensions. In Fig 2 we describe the concept of GDE. Each Gi is an algorithm which
computes the ith intermediate input ui, using the input-function Ui defined above. The
wires between Gi and Gi+1 is thick. In fact it contains all the previous input, output
and the state information. In this paper we describe sufficient conditions to make a
Generalized Domain Extension technique indifferentiable from a Random Oracle (RO).
In the next section we show a hybrid technique to characterize the conditions and prove
its correctness.

G1 G2 G3 G�

f f f

u1 v1 u2 v2 u�

v� Cf (M)

M

Fig. 2. The Generalized Domain Extension Circuit



204 R. Bhattacharyya, A. Mandal, and M. Nandi

3 Indifferentiability of GDE

In this section we discuss the sufficient condition for a domain extension algorithm
C of the class GDE to be indifferentiable from a random oracle R. Let C queries a
fixed input length random oracle f . Recall that to prove the indifferentiability, for any
distinguisherD running in time bounded by some polynomial of the security parameter
κ, we need to define a simulator S such that

|Pr[DCf ,f = 1] − Pr[DR,SR
= 1]| < ε(κ).

Here ε(κ) is a negligible function and the probabilities are taken over random coin
tosses of D and randomness of f and R. Let right query denote the queries to R/Cf

and left query denote the queries to SR/f . The simulator keeps a list L, initialized to
empty. If ui is the ith query to the simulator and the response of the simulator was vi

then the ith entry of L is the tuple (i, ui, vi).

Definition 4. Let C ∈ GDE. We say that Cf (M) for a message M is computable from
a list L = {(1, u1, v1), · · · , (k, uk, vk)} if there are � = �(M) tuples (i1, ui1 , vi1),· · · ,
(i�, ui�

, vi�
) ∈ L such that for all t ∈ {1, 2, · · · , �},

uit = Ut(M, v0, vi1 , · · · , vit−1 ).

Intuitively for any simulator to work, C must have the following property:

Message Reconstruction: There should an efficient algorithm P1 such that given a
set L = {(1, u1, v1), · · · , (k, uk, vk)}, input-output of k many f queries and an input
u ∈ {0, 1}m′

(in the domain of f ); P(L, u) outputs M if Cf (M) is computable from
L∪ {(k+ 1, u, v)} for all v ∈ {0, 1}n where u� = u (as in Definition 4). If no such M
exists P outputs ⊥. If there are more than one such M , we assume P outputs any one
of them.2

We argue that this is a very general property and is satisfied by all known secure
domain extensions. In fact, the Message reconstruction algorithm P defined above is
similar to the extractor of Preimage Awareness (PrA) of [11]. This is very natural as
the notion of PrA is much relaxed notion than that of PRO and every PRO is essentially
PrA [11]. However existence of such an algorithm does not guarantee indifferentiability
from a Random Oracle. For example, the traditional Merkle-Damgård construction is
PrA but not PRO. In fact, The method of [11] is only applicable to prove indifferentia-
bility when the final query is made to an independent post processor. On the other hand,
Our contribution in this paper is to show a set of sufficient conditions along with the
existence of extractor for a domain extension of the class GDE (where the final query
can be made to that same function) to be a PRO.

Our simulator works as follows. Suppose the kth query to the simulator is u. Then

– If (i, u, v) ∈ L for some i < k and some v ∈ {0, 1}n, then L = L∪ {(k, u, v} and
return v.

1 Note that the exact description of P depends on specific implementation.
2 For example, P can choose a message randomly among all such messages. However, it will

actually invoke BAD event.
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– If P(L, u) = M
• L = L ∪ {(k, u,R(M))}
• return R(M)

– If P(L, u) =⊥
• Sample h ∈R {0, 1}n

• L = L ∪ {(k, u, h)}
• return h

Without loss of generality, we can assume adversary maintains two lists Lright and
Lleft to keep the query-responses made to R/Cf and SR/f respectively.

3.1 Security Games

To prove the indifferentiability of GDE we shall use hybrid technique. We start with
the scenario when the distinguisher D is interacting with Cf , f .

A left query S(u)

1. return COM RO(u).

COM RO(u)

1. return f(u).

A right query C(M)

1. v0 = λ.
2. � = �(M).
3. for i = 1 to �

(a) ui = Ui(M, v0, v1, · · · , vi−1).
(b) vi = COM RO(ui).

4. return v�.

Fig. 3. Procedures of Game 0

Game 0: In this game the distinguisher is given access to an oracle S for the left queries.
Additionally, both C and S is given access to another oracle COM RO which can
make f queries. Note that C or S do not have direct access to f . S on an input (u),
queries COM RO(u). COM RO on input u returns f(u). Formally, Game 0 can be
viewed as Fig 3. Since the view of the distinguisher remains unchanged in this game
we have

Pr[DCf ,f = 1] = Pr[G0 = 1]

where G0 is the event when the distinguisher outputs 1 in Game 0.

Game 1: Now we change the description of the subroutine COM RO and gives it an
access to random oracleR as well. In this game COM RO takes a 3-tuple (u,M, tag)
as input where u ∈ {0, 1}m′

,M ∈ {0, 1}m and tag ∈ {0, 1}. COM RO returns f(u)
when tag = 0 and returns R(M) otherwise. We also change the procedure to handle
left and right query. In this game, the algorithm S maintains a list L containing the
query number, input, output of previous left queries. While processing a right query
M , the algorithm queries COM RO with tag = 1 when querying with u� and makes
tag = 0 for all other queries. Informally speaking, for a right queryM , the algorithmC
behaves almost similarly as game 0, except it returns R(M) as the response. Similarly
when a left query is a trivially derived from L and some message M , the algorithm sets
tag = 1 before queryingCOM RO and sets tag = 0 otherwise. FormallyGame1 can
be viewed as Figure 4.
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A left query S(u)

1. If (j, u, v) ∈ L for some v, j, return
v.

2. If P(L, u) = M 	=⊥
(a) v = COM RO(u, M, 1).
(b) index = index + 1.
(c) ADD (index, u, v) to L
(d) return v

3. else \\P(L, u) =⊥
(a) v = COM RO(u, λ, 0).
(b) index = index + 1.
(c) ADD (index, u, v) to L
(d) return v

A right query C(M )

1. v0 = IV .
2. � = �(M).
3. for i = 1 to � − 1

(a) ui = Ui(M, v0, v1, · · · , vi−1).
(b) vi = COM RO(ui, λ, 0).

4. u� = Ui(M, v0, v1, · · · , v�−1).
5. v� = COM RO(u�, M, 1).
6. return v�.

COM RO(u, M, tag)

1. if tag = 0 return f(u).
2. else return R(M)

Fig. 4. Procedures of Game 1. The variable index represents the number of distinct queries made
to S, so far; i. e. index is the size of the list L. Initially index is set to 0. λ represent the empty
string.

Definition 5. Trivial Query
A left query u is said to be a trivially derived query (in short, trivial query) if there exist
a M ∈ Lright and k tuples (i1, ui1 , vi1), · · · , (ik, uik

, vik
) ∈ Lleft such that

– uit = Ut(M, v0, vi1 , · · · , vit−1) for all t ∈ {1, 2, · · · , k}
– u = Uk+1(M, v0, vi1 , · · · , vik

)

Similarly a right query M is said to be a trivial query if M is computable from Lleft.
Any other queries are said to be nontrivial queries.

Definition 6. BAD Events for Game 0 and Game 1
Let D make q queries to a game (either Game 0 or Game 1). Let uj be the jth query
when it is a left query and Mj be the jth query when it is a right query. For ith right
query Mi, let uf

i be the input to final COM RO query and ui
in,1, u

i
in,2, · · · be the

inputs to the non-final intermediate COM RO queries. The ith query is said to set the
BAD event if one of the following happens

– for nontrivial right query (Mi, right)
• Collision in final input The final input is same as final input of a previous right

query. uf
i = uf

j ; i �= j and Mi �= Mj .
• Collision between final and non-final intermediate input

∗ The final input is same as intermediate input of a previous right query,
uf

i = uk
in,j for some k ≤ i and j < l(Mk).

∗ One of the intermediate input is same as the final input of a previous right
query. ui

in,k = uf
j for some j < i and k ≤ l(Mi)

• Collision between final input and nontrivial left query The final input is same
as a non-trivial left query uj; uf

i = uj for some j < i but uj is not a trivial
query for Mi.

– for left query (ui, left)
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• Collision between nontrivial left query and final input of a right query ui =
uf

j for some j < i but ui is not trivially derived.

Let us concentrate on how each of the event defined above can help the distinguisher.
When nontrivial collision between the final input of two right (say Mi and Mj) query
happens, the output of two queries will surely be a collision in Game 0. But in case of
Game 1, the collision probability will be negligible. When final intermediate input of
right query Mi collides with non-final intermediate input of another right query Mj , it
may not be obvious how D can exploit this event. But we note that in that case output
distribution of these two queries may not be independent in Game 0. The well known
length extension attack can also be seen as exploiting this event. Finally if the final input
of some right queryMj collides with input of some nontrivial left query ui, the outputs
of these two queries are same in Game 0. But it is easy to check that, in Game 1, they
will be same with negligible probability. We stress that unless the nontrivial left query
is same as the final input , adversary cannot gain anything. In fact in both of the games
the output distribution remains same, even if the nontrivial left query collides with some
non-final intermediate input of some right query.

Theorem 1. Let C ∈ GDE be a domain extension algorithm. Let BAD event be as
defined in Definition 6. Then for any distinguisherD,

|Pr[DCf ,f = 1] − Pr[DR,SR

= 1]| ≤ Pr[BADCf ,f ]

where BADCf ,f denotes the BAD event when D is interacting with (Cf , f).

Proof. To prove the theorem we will show the following relations. Let G1 denote the
event that the distinguisher outputs 1 in Game 1,

1. |Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BAD0].
2. Pr[G1 = 1] = Pr[DR,SR

= 1]

As Pr[DCf ,f = 1] = Pr[G0 = 1] and Pr[BAD0] = Pr[BADCf ,f ], the theorem will
follow immediately. First we shall prove that if BAD events do not happen, then the
input output distributions of Game 0 and Game 1 are identical. It is easy to check that
¬BAD is a monotone event as once BAD event happens (flag is set) it remains so for
future queries. Now if the BAD events do not happen, then the final input of a right
query is always “fresh” in both the games. So the output distribution remains same.
On the other hand, if an input to a nontrivial left query is not same as the final input
of a previous right query, then in both the cases the outputs are same and the output
distribution of the left query is consistent with the previous outputs. Similar to [14], we
view each input, output and internal states as random variables. We call the set of input,
output and internal states as the transcript of the game. Let T j

i denote the transcript of
Game j after ith query, j = 0, 1. Let BAD0

i and BAD1
i be the random variable of BAD

event in ith query in Game 0 and Game 1 respectively. The following lemma shows that
the probability of BAD event occuring first in ith query is same in both Game 0 and
Game 1. Moreover if BAD does not happen in first i queries then the transcript after ith

query is identiaclly distributed in both the games.
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Lemma 1. 1. Pr[BAD0
i ∧ ¬(∪i−1

k=1BAD0
k)] = Pr[BAD1

i ∧ ¬(∪i−1
k=1BAD1

k)]
2. Pr[T 0

i |¬ ∪i
k=1 BAD1

k] = Pr[T 1
i |¬ ∪i

k=1 BAD1
k]

For a detail proof of the above Lemma, we refer the reader to Appendix A. As a direct
application of this Lemma, we get the following results.

Corollary 1. Let BADj denote the event that, D invokes BAD in Game j. Then we
have,

1. Pr[BAD0] = Pr[BAD1]
2. Pr[DG0 ∧ ¬BAD0] = Pr[DG1 ∧ ¬BAD1]

Using Corollary 1 one can get the following lemma.

Lemma 2. Let G1 denote the event that the distinguisher outputs 1 in Game 1.

|Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BAD0]

For the proof of Lemma 2 we refer the reader to the full version of the paper.
Now we shall prove that Pr[G1 = 1] = Pr[DR,SR

= 1]. We prove it by hybrid argu-
ments.

Game 2: In this game we change the description of C. Here we remove the lines 1 − 4
in the description ofC in Game 1 and change the query in line 5 toCOM RO(λ,M, 1)
where λ is an empty string. So C does not anymore query COM RO with tag = 0.

D D D

D D D

Game (Cf , f) Game 0 Game 1

Game 2 Game 3 Game 4

f C S C

COM RO

f

S C

COM RO0 COM RO1

f R

S C

COM RO0 COM RO1

f R

S C

f R

S R

f

Fig. 5. Security Games
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Note that output of C is still R(M). So the changes does not affect the input output
distribution of the game. Hence

Pr[G2 = 1] = Pr[G1 = 1]

where G2 is the event D outputs 1 in Game 2.

Game 3: Now we give S and C a direct access to f and R. So we replace the query
COM RO(u,M, 0) by f(u). Similarly we write R(M) in place of COM RO
(u,M, 1). As D did not have direct access to COM RO and COM RO did not mod-
ify any list, Game 3 is essentially same as Game 2. So

Pr[G3 = 1] = Pr[G2 = 1]

where G3 is the event D outputs 1 in Game 3.

Game 4: In this game we remove the subroutine C. So the distinguisher D has direct
access to R. Now as the simulator S had no access to internal variables of C, the input
output distribution remains same after this change. So

Pr[G4 = 1] = Pr[G3 = 1]

where G4 is the event D outputs 1 in Game 4.
The final observation we make is that S need not query f . Instead it can choose

a uniform random value from {0, 1}n. Note that f is modeled as random function.
So we changed a random variable of the game with another random variable of same
distribution. Hence all the input, output, internal state distribution remains same. This
makes S exactly the same simulator we defined.

Pr[G4 = 1] = Pr[DR,SR

= 1].

As the Game 0 is equivalent to the pair (Cf , f) we obtain our main result of the section
(using triangle inequality):

|Pr[DCf ,f = 1] − Pr[DR,SR

= 1]| ≤ Pr[BAD0] = Pr[BADCf ,f ] ��

4 Applications to Popular Mode of Operations

In this section we show the indifferentiability of different popular mode of operations
from a Random Oracle. We note that, according to Theorem 1 to upper bound dis-
tinguisher’s advantage one needs to calculate the probability of BAD event defined in
previous section. Moreover we can only concentrate on the specific mode of operation
rather than the output of the simulator.

4.1 Merkle-Damgård with Prefix Free Padding

It is well known that the usual Merkle-Damgård domain extension fails to satisfy indif-
ferentiability property because of the length extension attacks. So we need to use some
prefix free padding on the input message. Let g be the padding function. On input of
message M and with oracle access to f : {0, 1}m′ → {0, 1}n, the MD domain exten-
sion computes the hash value using the following algorithm.
Merkle-Damgård (MDf(M))
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1. let y0 = 0n (more generally, some fixed IV value can be used)
2. let g(M) = (M1, ...,Ml)
3. for i = 1 to l

– do yi = f(yi−1,Mi)
4. return yl.

In [6], Coron et. al. proved indifferentiability of Merkle-Damgård Construction for pre-
fix free padding. We reprove the result using Theorem 1 in a simpler way.

Theorem 2. The prefix free Merkle-Damgård construction is (tS , qC , qF , ε) - indiffer-
entiable from a random oracle, with tS = � · O(q2) and ε = O(σ2

2n ), where � is the
maximum length of a query made by the distinguisher D, σ is the sum of the lengths of
the queries made by the distinguisher and q = qC + qF .

Note that for prefix free Merkle-Damgård constructions our simulator defined in Section
3 is similar to that of [12]. As shown in that paper, the simulator’s running time is
� · O(q2). For the proof of the above Theorem, the reader is referred to the full version
of the paper. In this paper we concentrate on MD with a special padding rule, HAIFA.

4.2 Merkle-Damgård with HAIFA

Now we consider Merkle-Damgård mode of operation another variant of prefix free
padding; HAIFA. In this padding we append a counter (indicating the block number)
with each but last block of the message. The last block is padded with 0 (see Fig 6). It
is easy to check that Merkle-Damgård with HAIFA belongs to GDE. In this case the
reconstruction algorithm works as follows. Let t denote the length of the padding. On
input of a f query u; check whether the last t bit of u is 0. If not return ⊥. Otherwise
parse u as h0||m0 where h0 is of n bits. Find, whether h0 is in the output column of
a query in the list L. If no return ⊥. If such a query exists select corresponding input
ui. Now last t bit of ui will be � − 1, where � is the number of blocks in possible
message. We call such an ui as u�−1. Now for j = � − 1 to 2; parse uj as hj−1||mj .
find whether hj−1 exist in the output column of L where the corresponding input has
padding j − 1. If no return ⊥. Else select the input and call it uj−1. Repeat the above
three steps until we find a uj with padding 1. If we can find such uis, then construct
the message M = m1||m2|| · · ·m�||m0 and return M . Check that for ith query the
algorithm P runs in time O(i�) where � is the maximum block length of a query. Hence
the total running time of P and hence of the simulator is O(q2�).

For finding the probability of BAD events, the HAIFA padding rule gives us the
following advantage. While computingCf (M) for any messageM , all the intermediate

Fig. 6. Merkle-Damgård with padding rule HAIFA
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inputs are unique. In fact the final input is always different from any intermediate input.
So if no f query with same counter padding has collision in the output, the output of
the penultimate f queries do not have collision in output and no nontrivial left query
input is same as the final input of some right query, BAD event does not happen. If BAD

event does not happen in ith query, the output of ith query is uniformly distributed over
Y = {0, 1}n. Without loss of generality, we assume that D does not make any trivial
query as trivial queries do not raise a BAD event. Moreover we can consider only a
deterministic (albeit adaptive) distinguisher as the general case can easily be reduced to
this case [17]. So input to the ith query is uniquely determined by previous i−1 outputs.
We represent the output of the nontrivial queries as the view (V ) of the distinguisher. Let
f : {0, 1}m′ → {0, 1}n be a fixed input length random oracle. If D makes q nontrivial
queries and V is the set of all possible views then |V| = |Y |q . We write V as ∩q

i=1Vi,
where Vi is the output corresponding to ith query. Now for any V ∈ V , we define an
event BAD′V which occurs whenever there is a collision between intermediate inputs,
final inputs and left query inputs. In fact, ¬BAD′V ∩ V ⊆ ¬BAD ∩ V . We split, BAD′V

as ∪q
i=1BAD′V

i . BAD′V
i occurs whenever any intermediate input (final or non-final) of

ith right query collides with any intermediate inputs of any other distinct right query
or with input of any nontrivial left query. Although we are working with an adaptive
attacker, future query inputs are fixed by V . Note that, if ith query is left query BAD′V

i

never occurs. Suppose �i is the number of blocks in ith query.
Suppose the ith query made by the distinguisher is a right query. For ¬BAD′V

i to
happen, any intermediate input (final or non-final) has to be different from previous
intermediate/final inputs. Because of HAIFA padding, no final input will be same with
any intermediate input. So if ¬BAD′V

i has to be true, every intermediate input of ith has
to be different from the intermediate inputs with same counter of previous i−1 queries.
Also any intermediate input can not be same as future left query inputs or future right
query intermediate inputs fixed by the view. There only q many such candidates. So for
any intermediate(final) input there are at most i− 1 + q < 2q bad values. Hence,

Pr[¬BAD′V
i ∩ Vi| ∩i−1

j=1 (¬BAD′V
j ∩ Vj)] ≥

(
|Y | − 2q

|Y |

)�i−1

· 1
|Y | .

(1, 1)‖M1 (1, 2)‖M2 (1, 3)‖M3 (1, 4)‖M4

(2, 1)‖f11‖f12

f f

(2, 2)‖f13‖f14

f f

(0, 0)‖f21‖f22

f f

Cf (M1‖M2‖M3‖M4)

f

Fig. 7. Tree Mode of Operation with Sequential Padding where m′
n

= 2
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If the ith query is nontrivial left query,

Pr[¬BAD′V
i ∩ Vi| ∩i−1

j=1 (¬BAD′V
j ∩ Vj)] =

1
|Y | .

So one can calculate the probability of ¬BAD as

Pr[¬BAD] =
∑
V ∈V

Pr[¬BAD ∩ V ] ≥
∑
V ∈V

Pr[¬BAD′V ∩ V ]

=
∑
V ∈V

Pr[∩q
i=1(¬BAD′V

i ∩ Vi)]

=
∑
V ∈V

Pr[¬BAD′V
1 ∩ V1]

q∏
i=2

Pr[¬BAD′V
i ∩ Vi| ∩i−1

j=1 (¬BAD′V
j ∩ Vj)]

≥
∑
V ∈V

q∏
i=1

(
|Y | − 2q

|Y |

)�i−1

· 1
|Y |

≥
∑
V ∈V

(
1 −O(

σq

|Y | )
)
· 1
|Y |q = 1 −O(

σq

|Y | )

Here Y = {0, 1}n and σ =
∑q

i=1 �i. So Pr[BAD] ≤ O(σq
2n ).

Theorem 3. The Merkle-Damgård construction with HAIFA padding rule based on a
FIL-RO is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS = � · O(q2)
and ε = O(σq

2n ), where � is the maximum length of a query made by the distinguisher
D, σ is the sum of the lengths of the queries made by the distinguisher and q = qC +qF .

In [5], Coron et al. considered a specific prefix-free padding rule which is similar to
HAIFA. There they proved indifferentiability bound as O(σ2

2n ). So Theorem 3 can be
seen as improving that bound as well. In Section 5.1 we show that the bound we prove
in Theorem 3 is tight.

4.3 Tree Mode of Operation with Counter

Tree mode of operation is another popular mode of operation. MD6, a SHA3 candidate
uses this mode of operation. Let f : {0, 1}m′ → {0, 1}n. The input message is divided
in blocks and can be viewed as the leaf nodes. The edges are the function f . Any
internal node can be viewed as the concatenation of the outputs of f on its child nodes.
The output of the hash function is the output of f applied on the root.

Now with each node we associate a tag 〈height, index〉 where height denotes the
height of the node in the tree and index represents the index of the node in the level it is
in (see Figure 7). Each node is padded with the tag. This padding makes, like HAIFA,
each input unique in the evaluation tree of Cf (M) for any fixed message M . One can
easily construct the computable algorithm P using the same method as in HAIFA. Due
to space constraint we don’t describe the it here. Let Mi and Mj be two distinct right
queries (for simplicity, both of length �) made by distinguisher. Let k be an index such
that kth block ofMi andMj is different. Consider the path from node (1, k) to the root.
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It is easy to check that if no collision happens in this path, the final input of f query
does not collide while computing Cf (Mi) and Cf (Mj). Length of this path is log �
(height of the tree). On the other hand a nontrivial left query input can collide with at
most one intermediate input of a right query. Hence, using a method similar to proof of
Theorem 3, one can prove the following theorem

Theorem 4. Let F be a FIL-RO and C be the tree mode of operation with the counter
padding. CF is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS =
� · O(q2) and ε = O( q2 log �

2n ), where � is the maximum length of a query made by the
distinguisher D and q = qC + qF .

We refer the reader to the full version of the paper for a proof of the above theorem.

5 Indistinguishability Attacks on Popular Mode of Operations

In this section we show a lower bound for the advantage of a distinguishing attacker
against Merkle-Damgård constructions with HAIFA padding and Tree mode of oper-
ations with counter padding scheme. The bound we achieve actually reaches the cor-
responding upper bound shown before. Note, if all the queries are of length �, then
q2� = qσ.

5.1 Distinguishing Attacks on Merkle-Damgård Constructions

Consider q messages M1, · · · ,Mq such that,

PAD(M1) = M1
1 ||M2|| · · · ||M �

PAD(M2) = M1
2 ||M2|| · · · ||M �

...

PAD(Mq) = M1
q ||M2|| · · · ||M �

Let COLL be the event denoting collision among Cf (M1), · · · , Cf (Mq). We shall

prove that, Pr[COLL] = Ω( q2�
2n ) Let COLLij be the event denoting the collision be-

tween Cf (Mi) and Cf (Mj). Hence,

Pr[COLL] = Pr[
⋃

1≤i<j≤q

COLLij ].

Using principle of inclusion-exclusion we get,

Pr[
⋃

1≤i<j≤q

COLLij ] ≥
∑

1≤i<j≤q

Pr[COLLij ] −
∑

1≤i<j<k≤q

(
Pr[COLLij ∩ COLLjk]

+ Pr[COLLij ∩ COLLik] + Pr[COLLik ∩ COLLjk]
)

−
∑

1≤i<j<k<r≤q

(
Pr[COLLij ∩ COLLkr] + Pr[COLLik ∩ COLLjr ]

+ Pr[COLLir ∩ COLLjk]
)

(1)

In the full version of the paper, we prove the following Lemma.
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Lemma 3. Let Y = {0, 1}n and 1 ≤ i < j < k < r ≤ q. If �− 1 ≤ 2n, then

1. Pr[COLLij ] ≥ �
2|Y |

2. Pr[COLLij ∩ COLLjk] ≤ 2�2

|Y |2
3. Pr[COLLij ∩ COLLkr] ≤ �2

|Y |2 + 6�3

|Y |3

Using Equation 1 and Lemma 3 one can prove,

Pr[COLL] ≥
(
q

2

)
�

2|Y | − 3
(
q

3

)
2�2

|Y |2 − 3
(
q

4

)
(
�2

|Y |2 +
6�3

|Y |3 ) ≈ α

4
− α2

8
≥ α

8

where α = q2�
2n < 1. By Birthday Bound, for a random function R, the collision prob-

ability for q different messages is Θ( q2

2n ). Hence for a distinguisher D which queries

messages M1, · · · ,Mq, the advantage of the distinguisher is Ω( q2�
2n ). Also we can eas-

ily construct such q messages for any prefix free Merkle-Damgård scheme, specifically
HAIFA.

Theorem 5. Let C be the Merkle-Damgård domain extension with a prefix free
padding. There exist a distinguisher D, such that

|Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω(
q2�

2n
)

where D makes q queries and length of each query is at most �.

5.2 Distinguishing Attacks on Tree Mode

Similar to previous attack we choose q messages M1, · · · ,Mq such that after padding
only first block of these messages are different. Formally

PAD(Mi) = M1
i ||M2|| · · · ||M �.

Now for these massages the tree mode works like a Merkle-Damgård mode with mes-
sages M1, · · · ,Mq where

PAD(Mi) = M1
i ||M

2|| · · · ||Mh ∀i = 1, 2, · · · , q

h = �log �� is the height of the tree. Hence using the similar method to previous section
we get the following Theorem.

Theorem 6. Let C be the Tree mode domain extension with the sequential counter
padding. There exist a distinguisher D, such that

|Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω(
q2 log �

2n
)

where D makes q queries and length of each query is atmost �.
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6 Conclusion and Future Work

In this paper we proposed a unified method to prove indifferentiability of a wide class
of iterated hash function, called GDE. Using our method we proved optimal indiffer-
entiability bounds for Merkle-Damgård construction with counter (e.g. HAIFA) mode
and for Tree Mode constructions with a similar sequential padding. This result shows
tight indifferentiability bound (when the underlying compression functions are realized
as random oracles) for many SHA3 candidates like BLAKE, LANE, SHAvite-3, MD6
etc. We strongly believe that tight indifferentiability bounds for MD constructions with
independent post-processor [11] can also be proved using our method.
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8. Damgård, I.: A Design Principles for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers and length-
preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 198–219.
Springer, Heidelberg (2008)

10. Dodis, Y., Reyzin, L., Rivest, R., Shen, E.: Indifferentiability of Permutation-Based
Compression Functions and Tree-Based Modes of Operation, with Applications to MD6. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–123. Springer, Heidelberg (2009)

11. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for Practical Applica-
tions. In: Ghilardi, S. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer,
Heidelberg (2009)

12. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popular hash
functions with prefix-free padding. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC
1998. ACM, New York (1998)

http://cs.nyu.edu/~dodis/ps/merkle.ps


216 R. Bhattacharyya, A. Mandal, and M. Nandi

14. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

15. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reduc-
tions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

16. Nielsen, J.: Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 191–
214. Springer, Heidelberg (2002)

17. Nandi, M.: A Simple and Unified Method of Proving Indistinguishability. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer, Heidelberg
(2006)

18. SHA 3 official website,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/
submissions rnd1.html

Appendix A Proof of Lemma 1

Let Xj
1 , X

j
2 , · · · ,Xj

q ∈ X and Y j
1 , Y

j
2 , · · · , Y j

q ∈ Y be input random variables and

output random variables respectively of Game j; j ∈ {0, 1}. Let U j
1,i, U

j
2,i, · · · , U

j
�i,i

be the internal random variables (output of internal queries) of ith query in Game j. As
previously We call the set of input,output and internal states, the transcript of the game.
Let T j

i denote the transcript of Game j after ith query.
In this proof,w.l.g., we assume that Distinguisher does not repeat queries. Let q be

the number queries the adversary make. We shall prove the Lemma 1 by induction on i.
CASE i = 1: We start from the observation that
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If X1 is a right query (M1, right)
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It is easy to check that for the first query BAD event can only be set by a right query.
Also note that it happens when the final query is same with some non-final intermediate
query. So
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Hence
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[BAD0
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1]

If ¬BAD1 is true then uf
1 /∈ IM1 . As f and R are random oracles, we have

Pr
f

[f(uf
1 ) = v] = Pr

R
[R(M1) = v]∀v ∈ {0, 1}n.
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On the other hand if the first query is (u, left) for any u, then Y1 = f(u) in both the
games. So, ∀v ∈ {0, 1}n
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Hence,
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This Implies that the distribution of transcript after first query is identical in both the
games if ¬BAD1 is true. This finishes the proof of the case i = 1.

Suppose the lemma is true for all i < t.
CASE i = t:By Induction Hypothesis, we have,

Pr
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As the input/output distribution of two games are same if ¬(∪t−1
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k) is true, the
distribution of tth query must be same for both the games.
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When Xt = (ut, left) is a non trivial left query then Yt = f(ut) in both the games.
Now if ¬(∪t−1

i=1BADi) is true then, from induction hypothesis, the transcript distribution
after t queries is same for both the games. The probability that uf

t collides with some
final input of any previous query is same for both the games. So for the left query
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When Xt = (Mt, right) then we have,
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Notice that if the distribution of tth query is same for both the games then the distribu-
tion of internal queries is also same for both the games. Hence
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For a non-trivial left query (ut, left), both the game queries f(ut). if ¬(∪t
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k)
is true then ut �= uf

j for all j < t. On the other hand , for a right query (Mt, right), if
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Abstract. SIMD is one of the round 2 candidates of the public SHA-3
competition hosted by NIST. It was designed by Leurent et al.. In this
paper, we present a distinguisher attack on the compression function of
SIMD-512. By linearizing the compression function we construct a linear
code. Using techniques from coding theory to search for low Hamming
weight codewords, we can find differential characteristics with low Ham-
ming weight (and hence high probability). In the attack the differences
are introduced only in the IV . Such a characteristic is the base for our dis-
tinguisher, which can distinguish the compression function of SIMD-512
from random with a complexity of 5 · 2425.28 compression function calls.
Furthermore, we can distinguish the output transformation of SIMD-512
from random with a complexity of about 22 · 2425.28 compression func-
tion calls. So far this is the first cryptanalytic result for the SIMD hash
function.

Keywords: SHA-3 candidate, SIMD, cryptanalysis, distinguisher.

1 Introduction

Recently, the NIST hash function competition [12] has started. In this public
competition to find an alternative hash function to replace the SHA-1 and SHA-2
hash functions, many new designs have been proposed. In November 2008, round
one has started and in total 51 out of 64 submissions have been accepted. Re-
cently, the 14 round 2 candidates were announced. SIMD, designed by Leurent
et al. [8], is one of them. It is an iterative hash function based on the Merkle-
Damg̊ard design principle [5,11]. It is a wide-pipe design [9] producing a hash
value up to 512 bits, denoted by SIMD-n, where n is the output length. For the
remainder of this paper wherever we mention SIMD we refer to SIMD-512. The
design of the compression function is similar to the MD4 family. Furthermore,
there exist several proofs [4,10] for the mode of operation used by SIMD. The de-
signers additionally provide bounds for a large class of differential attacks. Most
of the security is based on the message expansion. In this paper, we present a
distinguisher attack on the compression function of SIMD-512 with a complexity
of 5 · 2425.28 compression function calls. Including the output transformation we
can distinguish the output of SIMD-512 from random with a complexity of about

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 219–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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22 ·2425.28 compression function calls. The distinguisher is based on a differential
characteristic with differences only in the IV . A characteristic with high success
probability is found by using techniques from coding theory. By linearizing the
compression function we define a linear code where each codeword represents
a differential characteristic. Using an algorithm to find low Hamming weight
codewords, we found characteristics which lead to the above attack complexity.

Even if we do not attack the whole hash function, we show unexpected non-
random properties of the SIMD-512 compression function. However, our attack
does not invalidate the security claims of the designers, since most of the security
comes from the message expansion, but note that the non-randomness of the
compression function of SIMD effects the applicability of the proofs for the mode
of operation build upon it.

The structure of this paper is as follows. A short description of SIMD is given
in Section 2. Section 3 gives an overview of the basic attack strategy. Section 4
shows in which way we linearized the compression function of SIMD. Followed
by Section 5 containing the description of the techniques from coding theory to
find good characteristics. Finally, the distinguisher for full SIMD is presented in
Section 6.

2 Description of SIMD

SIMD is an iterative hash function that follows the Merkle-Damg̊ard design.
The main component of a Merkle-Damg̊ard hash function is the compression
function. In the case of SIMD-512 to compute the hash of a message M , it
is first divided into k chunks of 1024 bits. By the use of a message expansion
one block is expanded to 8192 bits. Then the compression function is used to
compress the message chunks and the internal state. The padding rule to fill
the last blocks is known as the Merkle-Damg̊ard strengthening. The initial value
of the internal state is called IV and is fixed in the specification of the hash
function. The output of the hash function is given by computing a finalization
function on the last internal state, which is a truncation for SIMD. The internal
state of SIMD contains 32 32-bit words and is therefore twice as large as the
output. SIMD consist of 4 rounds where each round consist of 8 steps. The feed-
forward consists of four additional steps with the IV as message input. Since we
apply a compression function attack independent from the message expansion,
we omit the description of the message expansion. For a detailed description of
the hash function we refer to [8].

2.1 SIMD Step Function

The core part of SIMD is the step function of the state update. Figure 1 il-
lustrates the step function at step t. The state update consists of eight step
functions in parallel. To make the step function dependent from each other,
(At−1

pt(i) ≪ rt) is included in a modular addition, where pt(i) is a permutation,
which is different for each step.
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At−1
i Bt−1

i Ct−1
i Dt−1

i

At
i Bt

i Ct
i Dt

i

≪ rt

≪ st

wt
i

Φt

At−1
pt(i) ≪ rt

Fig. 1. Update function of SIMD at step t. i = 0, · · · , 7

Equation (1) is the formal definition of the step function, where � denotes
the addition modulo 232.

At
i = (Dt−1

i � wt
i � Φ(At−1

i .Bt−1
i , Ct−1

i )) ≪ st � (At−1
pt(i) ≪ rt)

Bt
i = At−1

i ≪ rt

Ct
i = Bt−1

i

Dt
i = Ct−1

i

(1)

The permutation p is separated in 4 different permutations:

p0(x) =

{
x+ 1 (mod 8), if x = 0 (mod 2)
x− 1 (mod 8), otherwise

p1(x) =

{
x+ 2 (mod 8), if x = 0 (mod 4) or x = 1 (mod 4)
x− 2 (mod 8), otherwise

p2(x) = 7 − x (mod 8)

p3(x) = x+ 4 (mod 8)

The permutation used at step t is pt mod 4. As mentioned before, the 32 steps of
SIMD are divided into 4 rounds, each consisting of 8 steps. The boolean function
Φ and the rotation constants (s and r) for a round are given in Table 1. In Table 2
the rotation constants for each round are given. The feed-forward consist of four
steps using the same step function. Table 3 lists the used Boolean function and
the rotation constants for the feed-forward.
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Table 1. Φ and rotation constants for a round

step Φ r s

0 IF π0 π1

1 IF π1 π2

2 IF π2 π3

3 IF π3 π0

4 MAJ π0 π1

5 MAJ π1 π2

6 MAJ π2 π3

7 MAJ π3 π0

Table 2. Rotation constants for each round

round π0 π1 π2 π3

0 3 20 14 27
1 26 4 23 11
2 19 28 7 22
3 15 5 29 9

Table 3. Φ and rotation constants for the feed-forward of SIMD

step Φ r s

0 IF 15 5
1 IF 5 29
2 IF 29 9
3 IF 9 15

3 The Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a distinguisher
for the compression function. The attack can be summarized as follows:

1. Find a differential characteristic for the compression function of SIMD with
differences in the IV , which holds with high probability.

2. Use message modification technique to increase the probability.

To find a good characteristic for the compression function, we use a linearized
model of it. Finding a characteristic in a linear code is not difficult. Since the
security of SIMD is heavily based on the message expansion, we concentrate on
characteristics with differences only in the IV . The probability that the char-
acteristic holds in the original compression function is related to the Hamming
weight of the characteristic. In general, a differential characteristic with low
Hamming weight has a higher probability than one with a high Hamming weight.
Finding a characteristic with high probability (low Hamming weight) is related
to finding a low weight word in linear codes. Therefore, we use the probabilis-
tic algorithm from Canteaut and Chabaud [2] to find a good characteristic for
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the compression function of SIMD. It has been shown in the past, for instance
the cryptanalysis of SHA-0 [3], SHA-1 [13] or EnRUPT [7] that this technique
works well for finding differential characteristics with low Hamming weight. Fur-
thermore, we can improve the probability of the characteristic using message
modification, which was introduced by Wang et al. in [15].

4 Linearization of SIMD

Since we have only differences in the IV , we can omit the message expansion and
assume that the message words have no differences. The step function (1) is the
only part of SIMD which has to be linearized. The nonlinear parts of this function
are the modular additions and the Boolean function Φ. In the attack, we replace
all modular addition by XORs. The function Φ depends on the current step and
is either the IF function or the MAJ function. To have a good approximation
for those, we have to take a closer look on the differential behavior of them.

4.1 Differential Behavior of IF and MAJ

The differential behavior of IF and MAJ is already discussed in [6]. IF and MAJ
have three inputs. Table 4 shows the differential propagation of the Boolean
functions regarding XOR-differences.

Table 4. Differential propagation of IF and MAJ

Δx Δy Δz ΔIF ΔMAJ

0 0 0 0 0
0 0 1 x ⊕ 1 x ⊕ y

0 1 0 x x ⊕ z

0 1 1 1 y ⊕ z ⊕ 1
1 0 0 y ⊕ z y ⊕ z

1 0 1 x ⊕ y ⊕ z x ⊕ z ⊕ 1
1 1 0 x ⊕ y ⊕ z ⊕ 1 x ⊕ y ⊕ 1
1 1 1 y ⊕ z ⊕ 1 1

Since we aim for a low weight characteristic, we replace the Boolean function
Φ with the 0-function, i.e. we block each input difference in Φ, no matter if
IF or MAJ is used. This has probability 1/2 in most cases. One can see that
there is exactly one input difference for IF and one for MAJ where the output
difference is always one. We discard characteristics with such properties, except
in the feed-forward. There we manually correct the characteristic, resulting in a
slightly higher Hamming weight. Furthermore, we use the non-linearity of the IF
function in the feed-forward to decrease the Hamming weight significantly (see
Section 6.2).
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Finally, the linearized step function looks as follows:

At
i = (Dt−1

i ⊕ wt
i ⊕ 0) ≪ st ⊕ (At−1

pt(i) ≪ rt)

Bt
i = At−1

i ≪ rt

Ct
i = Bt−1

i

Dt
i = Ct−1

i

(2)

Note that for the feed-forward wt
i is equal to one word of the IV .

5 Finding Good Characteristics

As observed by Rijmen and Oswald [14], all differential characteristics for a
linearized hash function can be seen as the codewords of a linear code. Our aim
is to find good characteristics. Therefore, we have to include each part where
differences could decrease the success probability. Let the vector

Δcvt := (ΔAt
i|ΔBt

i |ΔCt
i |ΔDt

i), (3)

for i = 0, · · · , 7 and cvt ∈ {0, 1}1024 be the concatenated difference of all chaining
values (in bit representation) at step t. Then the vector

Δdc := (ΔIV,Δcv1, · · · , Δcv36),

where Δdc ∈ {0, 1}37·1024, represents the differences in the IV, chaining values
after each step and the output of the SIMD compression function, including the
feed-forward. Δdc is one codeword of the linear code and therefore a differential
characteristic. To construct the generator matrix for the linear code, we proceed
as follows:

1. Compute Δdcj with the input difference ΔIVj = ej , where ej ∈ {0, 1}1024 is
the j-th unit vector.

2. Repeat the computation for j = 1, . . . , 1024.

The resulting systematic generator matrix of the linear code for the linearized
SIMD compression function is defined in the following way:

G1024×37·1024 := [I1024×1024|CV ], (4)

where CV is defined by ⎛
⎜⎝

Δdc1
...

Δdc1024

⎞
⎟⎠ .
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5.1 Reducing the Code Length

Depending on the number of steps, the linear code can get large. If we take a
closer look on the dependencies of each chaining value, one can see that only
the Ai’s are updated at each step and the other values only depend on them.
Therefore, we can reduce the code size by only considering the Ai’s at each step
function. The definition of Δcvt in Equation (3) changes to

Δcvt := (ΔAt
i), (5)

Following the same procedure above, the resulting generator matrix is much
smaller, namely

G1024×10240 := [I1024×1024|CV ]. (6)

Therefore, the performance of the search for low Hamming weight codewords is
increased.

5.2 Low Weight Search

We implemented the probabilistic algorithm from Canteaut and Chabaud [2]
to search for codewords with low Hamming weight and applied some optimiza-
tions to speed up the search. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered
as a good candidate for a low Hamming weight codeword for the whole code.
Considering a systematic generator matrix like (6) the algorithm randomly se-
lects σ columns of it and split the selection in two submatrices of equal size. By
computing all linear combination of p rows (usually 2 or 3) for each submatrix
and storing their weight, the algorithm searches for a collision of both weights
which allow to search for codewords of 2p. Then two randomly selected columns
are interchanged, followed by one Gaussian elimination step. This procedure is
repeated until a sufficiently small Hamming weight was found. Additionally, we
check for each codeword if each difference at the input of the Boolean function
can be blocked. If it is not possible we discard the codeword. We omit this check
in the feed-forward (see Section 4.1).

In the case of the codes originating from the linearized SIMD compression
function we found several low weight codewords in less than an hour on a PC.

5.3 Estimating the Probability for a Characteristic

To compute the probability of the found differential characteristic, we have
to consider the differences entering the Boolean function Φ and the modular
additions.

The Boolean function Φ. The probability for blocking a difference in one
bit at the input of Φ is 1/2 or 0 for some cases, but then the characteristic is
discarded (see Section 4.1). Hence, the total probability is determined by the sum
of all differences at the input. Note, that differences at the same bit positions are
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counted only once. The overall probability for step t is defined by 2−x, where x
is given by

7∑
i=0

hw(ΔAt−1
i ∨ΔBt−1

i ∨ΔCt−1
i )

and hw(·) is the bit-wise Hamming weight of a 32-bit word.

The modular additions. Consider the additions (7) from the step function (1).

(ΔDt−1
i �Δwt

i) ≪ st � (ΔAt−1
pt(i) ≪ rt) (7)

We could consider each modular addition separately and prevent a carry for
each bit difference, but this would result in a rather conservative approximation.
Therefore, we want to give a more detailed analysis. By allowing carries in the
first addition, we can compensate them at the second addition. However, this is
not that easy, because of the rotation after the first modular addition.

First we take a look at the following addition:

ΔDt−1
i �Δwt

i .

If we have a difference at the same bit position, we can cancel them out with
probability 1/2. The overall probability to cancel out such differences for step t
is 2−y, where y is defined by

7∑
i=0

hw(ΔDt−1
i ∧Δwt

i).

Note that Δwt
i �= 0 only for the feed-forward. If there is only a difference in one

input of the modular addition (bit-wise), we allow carries. However, we do not
want that the carry expansion is destroyed, due to the rotation to left by st bits,
since we cannot compensate this in the second addition. To take care of this
problem we have to consider two cases.

Let be lj the bit position of the j-th difference in ΔDt−1
i before the rotation,

l′j after the rotation and dMSB(lj) (dMSB(l′j)) the distance of lj (l′j) to the most
significant bit (MSB). The first case is dMSB(lj) < st, i.e. the difference is rotated
over the MSB. Therefore, we have to ensure that the carry expands at most to
the MSB from the position of the difference before the rotation. The probability
for that is

1 − 2−dMSB(lj).

The second case considers dMSB(lj) ≥ st, i.e. the difference is not rotated over
the MSB. In this case we have to ensure that the carry expands at most to the
MSB from the position of the difference after the rotation. The probability for
that is

1 − 2−dMSB(l′j).

This differentiation has to be done for each difference in ΔDt−1
i . The overall

probability is given by the product of all single probabilities.
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In the last modular addition

(ΔDt−1
i ≪ st) � (ΔAt−1

pt(i) ≪ rt)

we first cancel out differences at the same bit positions of both variables with
probability 1/2 for each such difference. In the last step we compensate the
carries from the first addition with the same probability. Finally, the overall
success probability for the second modular addition is 2−z, where z is defined as
follows:

7∑
i=0

hw(ΔDt−1
i ≪ st ∨ΔAt−1

pt(i) ≪ rt).

Note, that we ignore differences in the MSB for these calculations, which results
in a small improvement.

Message modification. To improve the success probability of the differential
characteristic we use message modification. We have the freedom to choosing the
actual values of the IV and the message words. Regarding the message words,
we assume that we can increase the success probability in the first 4 steps to
1. Since one message block in SIMD has 1024 bit and is expanded to 8192, we
can at least choose the first 32 expanded message words w, but not completely
arbitrary. The message modification for the first 4 steps results in a significant
improvement of the overall success probability, since this probability is low in
these steps. However, the message expansion needs to be studied in more detail
to get a good view on the security of SIMD. It might be possible to improve the
attack by using more sophisticated message modification techniques.

6 Distinguisher for Full SIMD

In this section, we present a distinguisher for the full (32 steps and feed-forward)
compression function of SIMD. It is based on the differential multicollision dis-
tinguisher introduced by Biryukov et al. [1] and high probability differential
characteristics for the compression function of SIMD. This characteristic was
found by using the techniques described in the previous section. Before describ-
ing the differential characteristic in detail, we first have to discuss the setting we
use to show non-randomness in the compression function of SIMD.

6.1 Differential q-Multicollision

The notion of differential q-multicollision was introduced by Biryukov et al. in
the cryptanalysis of AES-256. They show that differential q-multicollision can
be found for AES-256 with a complexity of q · 267, while for an ideal cipher an
adversary needs at least

O(q · 2
q−2
q+2 ·n) (8)
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time. Note that in [1] the attack is described for a block cipher. However, it can
be easily adapted for a random function. Below we repeat the basic definition
and lemma, we need for the distinguishing attack for the compression function
of SIMD.

Definition 1. A set of two differences and q pairs

{ΔIV,ΔM ; (IV1,M1), (IV2,M2), · · · , (IVq,Mq)}

is called a differential q-multicollision for fIV (·) if

fIV1(M1) ⊕ fIV1⊕ΔIV (M1 ⊕ΔM) = fIV2(M2) ⊕ fIV2⊕ΔIV (M2 ⊕ΔM)
= · · · = fIVq(Mq) ⊕ fIVq⊕ΔIV (Mq ⊕ΔM).

In the case of SIMD, f is the compression function and ΔM is equal 0.

Lemma 1. To construct a differential q-multicollision for an ideal function with

an n-bit output an adversary needs at least O(q · 2
q−2
q+2 ·n) queries on the average.

The proof for Lemma 1 works similar as in [1] for an ideal cipher.
In this section, we show how to find a differential q-multicollision for the

SIMD compression function with a complexity of about q · 2425.28 instead of the
expected

q · 2
q−2
q+2 ·1024

.

This is described in detail in the subsequent sections.

6.2 The Differential Characteristic

We have found several characteristics with low Hamming weight. The best ones
have a weight of 504 in all chaining variables. We can further reduce the weight by
using the non-linearity of the IF function in the feed-forward. If we do not block all
input differences in the Boolean function, we can cancel out additional differences,
which results in a lower Hamming weight for the subsequent steps. Thus, the over-
all success probability of the characteristic is increased. In that waywe can improve
the characteristics to a weight of 486. By a detailed analysis (see Section 5.3) we
determine the success probability of the characteristics with ≈ 2−507.34 without
message modification. If we use additionally message modification as described
in Section 5.3, we increase the probability to ≈ 2−425.28. Table 5 presents one of
the differential characteristics with weight 486. Due to space restriction we do not
show the complete characteristic but the differences in the IV , which is enough
to reconstruct the whole differential path. In Appendix A the characteristic in the
steps of the feed-forward, including the above modifications, is given.

Table 6 splits the probability estimation into rounds and steps (for readability
the probabilities are given in log2).

The characteristic in Table 5 leads to a guaranteed difference in one bit at the
output of Φ in the third step of the feed-forward. By correcting this manually,
the success probability is slightly decreased, which is already included in the
overall probability.
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Table 5. Differences in the IV

i A0
i B0

i C0
i D0

i

0 00000000 00000000 00000000 00000000

1 00000000 00000000 00000000 00000000

2 00000000 00000000 00000000 00000000

3 00000000 104804a0 00000000 00000000

4 00000000 00000000 050e0010 00000000

5 00000000 00000000 00000000 00000000

6 00000000 00000000 00000000 68801201

7 04004400 00000000 00000000 00000000

Table 6. Probabilities in log2 for each round and step

�������round
step

0 1 2 3 4 5 6 7

0 −23.85 −23.03 −19.09 −16.19 −15.12 −12.09 −9 −8.03
1 −7.09 −5 −4 −4 −3 −2 −2 −2
2 −1 −1 −1 −2 −3 −4 −4 −3
3 −4.19 −6 −9 −12 −16 −19.42 −19 −23.30

feed-forward −31.05 −46.09 −69.46 −77.34

6.3 The Complexity of the Attack

The differential characteristic described in the previous section can be used to
construct a distinguisher for the compression function of SIMD. It is easy to
see that by using the differential characteristic q times one can find a differen-
tial q-multicollision with a complexity of about q · 2507.34 compression function
evaluations. Furthermore, by using message modification (see Section 5.3) in the
first 4 steps the complexity of the attack can be significantly reduced, resulting
in a complexity of about q ·2425.28. Note that the generic attack has a complexity
of about

q · 2
q−2
q+2 ·1024

compression function evaluations. Hence, one can distinguish the compression
function of SIMD from a random function with a complexity of about q · 2507.34

and q · 2425.28 for q = 6 and q = 5, respectively.
In a similar way as we can distinguish the compression function of SIMD from

random, we can alsodistinguish the output transformation (last iteration ofSIMD)
from random. While the complexity for constructing a differential q-multicollision
for the output transformation using the differential characteristic described in the
previous section is the same as before, the complexity of the generic attack has
changed, since the output is only 512 instead of 1024 bits in the last iteration due
to the truncation at the end. Hence, the complexity of the generic attack is

q · 2
q−2
q+2 ·512

.



230 F. Mendel and T. Nad

Table 7. Summary of the attack complexities

compression function output transformation
message modification generic our attack generic our attack

no 6 · 2 4
8
·1024 6 · 2507.34 438 · 2 436

440
·512 438 · 2507.34

yes 5 · 2 3
7
·1024 5 · 2425.28 22 · 2 20

24
·512 22 · 2425.28

However, by setting q = 438 and q = 22 for the case with message modification in
the first 4 rounds, we can distinguish the output transformation of SIMD from
random with a complexity of about 438 · 2507.34 and 22 · 2425.28, respectively.
Table 7 provides a summary of the complexities for our distinguisher and the
generic complexities.

7 Conclusions

In this paper, we presented a distinguishing attack on the compression function
of SIMD-512. We used techniques from coding theory to search for differential
characteristics with low Hamming weight. We have found several characteris-
tics with weight 486. Our attack strategy for the distinguisher is similar to the
multicollision distinguisher introduced by Biryukov et al. [1]. By using the char-
acteristic with the highest success probability, we are able to construct a dis-
tinguisher, which complexity is below the generic bound in [1], even with a still
conservative probability estimation. We are able to distinguish the compression
function from random with a complexity of 5 ·2425.28 compression function calls.
Including the output transformation the complexities are still below the generic
bound, i.e. we can distinguish the output transformation of SIMD from random
with a complexity of about 22 · 2425.28 compression function calls.

Even if we do not attack the whole hash function, we show unexpected prop-
erties for the SIMD-512 compression function. However, our attack does not
invalidate the security claims of the designers, since most of the security comes
from the message expansion, but note that the non-randomness of the com-
pression function of SIMD effect the applicability of the proofs for the mode of
operation build upon it.

This is the first external cryptanalysis of the SIMD hash function. However,
the desigerns have tweaked the design to avoid this attack.
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The authors wish to thank Gaëtan Leurent for validating our attack, Christian
Rechberger, Vincent Rijmen and the anonymous referees for useful comments
and discussions. The work in this paper has been supported in part by the
European Commission under contract ICT-2007-216646 (ECRYPT II) and by
the Austrian Science Fund (FWF), project P19863.



A Distinguisher for the Compression Function of SIMD-512 231

References
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A Differential Characteristic for the 4 Steps in the
Feed-Forward

Table 8. Differences in the chaining values in the feed-forward

(t, i) At
i Bt

i Ct
i Dt

i

(33, 0) 00000000 00000000 00000000 00000000

(33, 1) 00000000 00000000 00000000 00000000

(33, 2) 00000000 00000000 00000000 00000000

(33, 3) 00000000 00000000 83801001 00000000

(33, 4) 00000000 00000000 00000000 0000c008

(33, 5) 00000000 00000000 00000000 00000000

(33, 6) 84d0c901 00000000 00000000 00000000

(33, 7) 80088000 8410c1c0 00000000 00000000

(34, 0) 00000000 00000000 00000000 00000000

(34, 1) 00000000 00000000 00000000 00000000

(34, 2) 00000000 00000000 00000000 00000000

(34, 3) 02090094 00000000 00000000 83801001

(34, 4) 9a193831 00000000 00000000 00000000

(34, 5) 01100010 00000000 00000000 00000000

(34, 6) 00000000 9a192030 00000000 00000000

(34, 7) 00000000 01100010 8410c1c0 00000000

(35, 0) 00000000 00000000 00000000 00000000

(35, 1) 00000000 00000000 00000000 00000000

(35, 2) 00220002 00000000 00000000 00000000

(35, 3) 21620401 80412012 00000000 00000000

(35, 4) 8c010008 33432706 00000000 00000000

(35, 5) 00000000 00220002 00000000 00000000

(35, 6) 00000000 00000000 9a192030 00000000

(35, 7) 20000000 00000000 01100010 8410c1c0

(36, 0) 02001118 00000000 00000000 00000000

(36, 1) 00000000 00000000 00000000 00000000

(36, 2) 00000000 44000400 00000000 00000000

(36, 3) 00000040 c4080242 80412012 00000000

(36, 4) 00000000 02001118 33432706 00000000

(36, 5) 00000000 00000000 00220002 00000000

(36, 6) 4d00b040 00000000 00000000 9a192030

(36, 7) a4e04042 00000040 00000000 01100010
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Abstract. Rivest (TCC 2004) explored the notion of a pseudo-free
group from cryptographic perspective. He made the conjecture that the
RSA group Z∗

N is a plausible pseudo-free group. Daniele Micciancio
proved that (to appear in Journal of Cryptology), under strong RSA
assumption, Z∗

N is pseudo-free. The proof uses the fact that N is the
product of two safe primes, and elements are sampled uniformly at
random from the subgroup QRN of quadratic residues. He asked
whether the proof can be carried over if elements are sampled uniformly
at random from the whole of Z∗

N . In this article, we show that one can
sample uniformly at random from the subgroup QR+

N of signed quadratic
residues to prove that Z∗

N is pseudo-free. Consequently, we believe one
can show Z∗

N pseudo-free where elements are sampled from QRN ∪QR+
N ,

thus enlarging the set from which elements are sampled.

Keywords: RSA Group, Free Group, Quadratic Residues.

1 Introduction

Given a computational problem (Computational Assumption: this problem is
“hard” to solve) over a finite group, often a cryptographic scheme is designed
over this group in such a way that security (of the scheme) could be achieved
without extra assumptions. The only way to formally prove such a fact is by
showing that an attacker against the scheme can be used as a sub-part in an
algorithm that can break the underlying computational assumption.

For example, the RSA public-key cryptosystem [23] is based on the multi-
plicative group Z∗

N , where N is the product of two large primes. The security
of RSA scheme depends upon the “RSA assumption” [23]. Informally this as-
sumption is that it is hard to solve the equation xe ≡ a (mod N) given only
N, a ∈ N∗

N and e(gcd(e, φ(N) = 1)). Similarly, the Cramer-Shoup cryptosys-
tem and signature scheme [6], [7] depend upon the “Strong RSA Assumption”,
[10], [3], which similarly assumes the hardness of solving the equation xe ≡ a
(mod N), though here the adversary is allowed to solve the equation for exponent
e > 1 of her choice.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 233–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Within Z∗
N , Rivest [22] takes this progression one step further. He examine

the situation where the adversary may choose whatever equation (as long as the
equation is “nontrivial”-unsatisfiable in the ”corresponding” free group, with
appropriate care for some details) and try to solve. The Z∗

N
is pseudo-free

assumption is that the adversary will succeed with at most negligible probability.
The notion of pseudo-free group was introduced by Hohenberger [12]. Rivest
[22], explored this notion and provided an alternative stronger definition. He
defined pseudo-freeness of a “family of computational groups”. The assumption
of pseudo-freeness may be made for arbitrary finite group, such as an elliptic
curve group or even a noncommutative group.

Rivest [22], studied the assumption that a group is pseudo-free or, more specif-
ically, pseudo-free abelian, and showed how it implies some known standard
assumptions on the group. Thus assuming that a finite group is pseudo-free
appears to be quite a strong assumption and formulating and studying such a
strong assumption may indicate a course taken against the traditional style of
making only the minimal complexity theoretic assumptions necessary for a cryp-
tographic scheme. Rivest [22], provides motivation and justifications for studying
pseudo-free groups and some of them are as follows:

– Z∗
N is possibly a natural candidate for pseudo-free group.

– It may turn out that the pseudo-freeness is in fact not a ”stronger” assump-
tion. It may be implied by some standard assumptions and in fact in [14],
Micciancio vindicated the belief by proving that Z∗

N is pseudo-free is implied
by the strong RSA assumption [3].

– Using a stronger assumption may make proofs easier.
– Reasoning in a free group can be quite simple and intuitive, so assuming

pseudo-freeness allows one to capture “natural” security proofs in a plau-
sible framework. This was Hohenberger’s [12] motivation. In [12], pseudo-
freeness has been linked to the construction of specific cryptographic prim-
itives, like directed transitive signature schemes, for which no solution is
currently known. See [18] for a recent work in this area.

Free groups are widely used in computer science, and most modern cryptography
relies on the hardness of computational problems over finite groups. As argued
in [22], pseudo-free groups can be a very interesting notion from a cryptographic
perspective. As pointed out by Micciancio [14], (non abelian) free groups are
used in the so called Dolev-Yao model [8] for the symbolic analysis of public
key cryptographic protocols. In the last few years, there have been several effort
to bridge the gap between the symbolic model of [8] and the standard compu-
tational model used in cryptography (see for example [1],[2],[13],[15],[16],[17]).
An intersting question is whether pseudo-free groups can be used to extend (in
a computationally sound way) the Dolev-Yao model (in which encryption and
decryption are viewed as black-box operations with no algebraic properties) with
richer data structures and cryptographic functions (e.g., homomorphic encryp-
tion schemes) that make fundamental use of computational groups.

The main question left open by Rivest in [22] is: do pseudo-free group exists?
Rivest [22], made the conjecture that the RSA group Z∗

N (where N = P ·Q is the
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product of two large primes) is pseudo-free and nicknamed the their conjecture
the super strong RSA assumption.

In [14], Micciancio very elegantly resolved this conjecture by providing an af-
firmative answer. Micciancio proved that Z∗

N is pseudofree under the strong RSA
assumption, at least when N = P · Q is the product of two “safe primes” (i.e., P
andQ are of the form 2p+1 and 2q+1 respectively such that p and q are primes).
In other words Z∗

N is pseudo-free is implied by strong RSA assumption. Micciancio
[14], further proved that the RSA group Z∗

N satisfies an even stronger version of
the pseudo-freeness property than the one defined in [22]: he proved that no ad-
versary can efficiently compute an unsatisfiable system of equations (as opposed
to a single equation) together with a solution in the given computational group.

In order to successfully work out pseudo-freeness of Z∗
N , [14] considered the

computational group Z∗
N together with a different sampling procedure that

chooses elements at random from the subgroup QRN , the set of quadratic
residues modulo N . One of the questions asked by Micciancio is that if one
can prove pseudo-freeness of Z∗

N if elements are sampled uniformly at random
from the whole group Z∗

N .

Our Contribution: We prove that one can show Z∗
N to be pseudo-free when

elements are sampled uniformly at random from a different subgroup of Z∗
N .

This subgroup is set of signed quadratic residues modulo N , denoted as QR+
N .

Consequently, we believe one can show Z∗
N pseudo-free where elements are sam-

pled from QRN ∪QR+
N , thus enlarging the set from which elements are sampled.

The group QR+
N has been suggested by Fischlin and Schnorr in [9] (in the dif-

ferent context of hard-core bits of generalized Rabin functions [21],[9]) and later
Hoftheinz and Kiltz [11] demonstrated the usefulness of this group for crypto-
graphic purpose.

2 Preliminaries

Statistical Distance
Let X and Y be two random variables tamking values in a finite set S. The
statistical distance between X and Y is defined to be

Dist(X,Y ) = 1
2 ·
∑
s∈S

|Prob[X = s] − Prob[Y = s]|

Mathematical Group
We recall the definition of a mathematical group. A group G = (S, ◦) consists
of a set S of elements together with a binary operation ◦ on S satisfying the
following properties. Closure property requires that for all x, y ∈ S, we have
x ◦ y ∈ S. There should be an identity element in S, denoted as 1, such that for
all elements x ∈ S, we have x ◦ 1 = 1 ◦ x = 1. Associativity requires that for all
elements x, y, z ∈ S, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z and finally for every element
x ∈ S, there should be a element y ∈ S (y is called inverse of x often denoted as
x−1) such that x ◦ y = y ◦ x = 1. G is called abelian if ◦ is commutative i.e., for
all x, y ∈ S, we have x ◦ y = y ◦ x.
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Computational Group
In cryptography, for a mathematical group G, often a “suitable” representation
〈·〉 : G → {0, 1}∗ of G is what one looks for. Such a representation 〈·〉 : G →
{0, 1}∗ is called a computational group implementing the underlying mathemat-
ical group. Clearly many computational groups may implement the same mathe-
matical group. Below we define, a family of computational groups implementing
a family of finite mathematical groups.

Let G = {GN}N∈N be a family of finite mathematical groups indexed by
N ∈ N ∈ {0, 1}∗. A computational group family implementing G is defined by
a collection of representations 〈·〉N : GN → {0, 1}∗ (for N ∈ N ) such that the
following operations can be carried out in polynomial time in the bit-size of N .

– Composition: given N ∈ N , representations 〈x〉N and 〈y〉N of group ele-
ments x, y ∈ GN , compute representation 〈x ◦ y〉N of x ◦ y.

– Identity: given N , compute a representation 〈1〉N of the identity element 1
of the group GN .

– Inverses: given N and 〈x〉N (for some x ∈ GN ), compute 〈x−1〉N .
– Recognizing elements from a group: givenN ∈ N and x ∈ {0, 1}∗, determine

if there exists a y ∈ GN such that x = 〈y〉N .
– Sampling group elements: on input N ∈ N , output the representation 〈x〉N

of a randomly chosen group element x ∈ GN (with not necessarily uniform
probability distribution).

2.1 Free Abelian Groups

Let G be a mathematical abelian group and A = {a1, . . . , ak} ⊂ G. Consider the
subgroup 〈A〉 of G generated by A,

〈A〉 =
{
at1
1 · · · atk

k : ti ∈ Z
}

If 〈A〉 = G, then we call A to be a generating set of G. Assume that G = 〈A〉.
We call G a free group if

at1
1 · · · atk

k = 1 implies ti = 0 for all i.

We then denote G by F(A). Thus for a free group G, for any two distinct tuples
(t1, . . . , tk), (u1, . . . .uk) ∈ Zk the corresponding group elements at1

1 · · ·atk

k and
au1
1 · · · auk

k are distinct. We call G to be a free group of rank k and clearly it is
isomorphic to k copies of Z. Thus free groups are necessarily infinite.

We remark that the fundamental property of a free group is that there does-
not exists a non-trivial relation among its generators (inparticular � a

nonzero tuple (t1, . . . , tk) ∈ Zk such that
k∏

i=1

ati

i = 1).

So if for some finite group G, given any randomly chosen elements g1, . . . , gn ∈
G, it is “computationally” hard to find a non-trivial relation (we will show later
that it correspond to some non-trivial equation over the “corresponding” free
group) among g1, . . . , gn, then G captures the fundamental property of a free
group and informally we call G a pseudo-free group.
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2.2 Pseudo Free Abelian Groups

First we describe equations in free groups. Let X and A be two disjoint set of
variable and constant symbols. A group equation over variables X and constants
A, is E : w1 = w2, where w1 and w2 are words over alphabets (X ∪X−1)∗ and
(A ∪ A−1)∗ respectively. Note that (A ∪ A−1)∗ is nothing but the free abelian
group F(A) generated by A. Unless otherwise specified, we interpret E as an
equation over the free group F(A). A solution to E : w1 = w2 (over the free
group F(A)) is a function σ : X → F(A) such that σ(w1) = w2 (in F(A)), where
σ is extended to words over X ∪X−1 homomorphically in the natural way. We
say that an equation E : w1 = w2 is satisfiable over the free group F(A) if it
admits a solution. We say it is unsatisfiable otherwise.

Let G be a computational group. A group equation over G is defined by an
equation E over variables X and constants A, and a function α : A→ G (α will
sample |A| many element from the group G) and is denoted as Eα. A solution
to equation Eα : w1 = w2 is a function ξ : X → G such that ξ(w1) = α(w2).

Before we formally introduce pseudo-free groups, observe that for any finite
group G, given any element a ∈ G, the following equation E : x|G|+1 = a is un-
satisfiable over the free group F({a}) but has solution x = a over G. In order to
properly define pseudo-free groups we need to consider families of groups {GN}
(N is chosen at randomen) so that given a randomly chosen N , it should be hard
to compute the corresponding group order |GN |. Technically, we assume the set
of indexes N is endowed with a sequence of probability distributions (Nk)k such
that Nk can be sampled in (expected) polynomial (in k) time. Typically, Nk is
the uniform distribution over all strings in N of length k, but other distributions
are possible. The set of indexes N together with the polynomial time sampling
algorithm and associated probability distribution Nk is called a probability
ensemble.

Definition 1. [22],[14] Let G = {GN}N∈N be a family of computational groups.
G is called pseudo-free if for any probabilistic polynomial (in k, security param-
eter) time algorithm A, the probability that on input a polynomial sized set A
(|A| = p(k)), a randomly chosen group index N ∈ Nk, and α : A → GN

(it chooses independently at random |A| many group elements according to the
computational group sampling procedure), A outputs (E, ξ) such that E (equation
over variables X and constans A) is unsatisfiable over F(A) and ξ : X → GN

is a solution to Eα over GN is a negligible function in k.

3 Signed Quadratic Residues

Let N be an odd integer. Elements of ZN are represented as signed integers in
the set {−N−1

2 , . . . ,−1, 0, 1, . . . , N−1
2 }. For x ∈ ZN , we define |x| as the absolute

value of x
For a subgroup G of Z∗

N , consider the following set:

G+ := {|x| : x ∈ G}
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Define an operation ‘◦’ on G+ as follows. For g, h ∈ G+, g ◦h = |g ·h (mod N)|.
One may check that (G+, ◦) becomes a group. One may note that elements in
G+ are not necessarily in G. For completeness we work out the closure property.
The rest of the group properties can be checked easily.

Closure Property: Given g, h ∈ G+, show g ◦ h ∈ G+

Case-1: g, h ∈ G. This trivially shows that g ◦ h belongs to G+.
Case-2: Either of g or h is not in G. Without loss of generality say g is not in

G and h ∈ G. As g ∈ G+, clearly −g ∈ G. Thus −g · h (mod N) ∈ G. Therefor
| − g ·h (mod N)| ∈ G+. But | − g ·h (mod N)| = |g ·h (mod N)| = g ◦ h. Thus
g ◦ h ∈ G+.

Case-3: Both g, h are not in G. Then −g,−h ∈ G. Thus (−g)·(−h) (mod N) ∈
G. Therefor |(−g) · (−h) (mod N)| ∈ G+. But |(−g) · (−h) (mod N)| = |g · h
(mod N)| = g ◦ h. Thus g ◦ h ∈ G+.

For an integer x we define,

gx = g ◦ · · · ◦ g = |gx (mod N)|

More complicated expressions in the exponents are computed modulo the group
order. For example,

g1/2 = g2
−1 mod ord(G+)

Define the following map φ : G → G+ as follows: For x ∈ G, φ(x) = |x|. One
may check that, for x, y ∈ G

φ(x · y) = φ(x) ◦ φ(y)

i.e. φ is a group homomorphism. The kernel of this homomorphism is trivial if
−1 is not in G and else it is {−1, 1} and for the former case, φ becomes an
isomorphism.

3.1 Our Choice for N and G

We take N = P · Q, the product of two prime numbers where P and Q are
of the form 2p+ 1 and 2q + 1 respectively with p, q themselves primes. Clearly
P,Q ≡ 3 (mod 4) i.e. N is a Blum integer. We study the RSA group Z∗

N . For
the rest of this paper the elements of ZN are represented as signed integers in
the set {−N−1

2 , . . . ,−1, 0, 1, . . . , N−1
2 }. For x ∈ ZN , we define |x| as the absolute

value of x. We will take G to be the group QRN of quadratic residues modulo
N . Thus

QR+
N = {|x| : x ∈ QRN}

As N is a Blum integer, −1 is not a quadratic reside and thus φ becomes
isomorphism. Now as QRN is a cyclic group of order pq and φ is an isomorphism,
QR+

N is also a cyclic group of order pq. Another fundamental
property of the group QR+

N , where it is different from QRN , is, that mem-
bership in QR+

N is efficiently recognizable whereas computing square root still
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remains hard. It is due to the fact that as a set QR+
N = J(N) ∩ (0, N−1

2 ] where
J(N) =

{
x ∈ Z∗

N : Jacobi symbol
(

x
N

)
= 1
}
. One may note that recognizing

membership of elements in J(N) can be performed efficiently as in particular
Jacobi symbols can be efficiently computed. Thus QR+

N is a “gap group” [19],
in which the computational problem (i.e computing a square root) is as hard
as factoring, whereas the corresponding decisional problem (i.e., deciding if an
element is a signed square) is easy.

As we noted earlier in the general case, x ∈ QR+
N does not imply that x is

a quadratic residue modulo N . For −y ∈ QRN implies | − y| = y ∈ QR+
N . But

as y = (−1) · (−y) and −1 is quadratic non-residue, y is quadratic non-residue.
Thus for the rest of this article elements of QR+

N will be characterized as follows.
For an element x ∈ QR+

N , either x ∈ QRN or there exists a unique quadratic
residue y ∈ QRN such that −x ≡ y (mod N). This y is nothing but the element
N − x.

4 Strong Signed QR-RSA (SQR-RSA) Assumption

We let, for k ≥ 1, Nk be the set of all safe prime products of bit-size bounded
by k with some standard probability distribution (used in cryptography) on
Nk. We first recall some computational assumptions that are conjectured to be
asymptotically hard and are related to this work.

Strong RSA problem [3]: given a random integer N ∈ Nk, and a randomly
chosen group element γ ∈ Z∗

N , output an integer e > 1 and a group element
ξ ∈ Z∗

N such that ξe ≡ γ (mod N).
Strong QR-RSA problem [7]: given a random integer N ∈ Nk, and a randomly

chosen quadratic residue γ ∈ QRN , output an integer e > 1 and a group
element ξ ∈ Z∗

N such that ξe ≡ γ (mod N).

In [7], it has been observed that strong QR-RSA problem is as hard as strong
RSA problem. For our work we propose a new variant of strong RSA problem.
We call it strong signed QR-RSA problem.

Strong SQR-RSA problem: given a random integer N ∈ Nk, and a ran-
domly chosen γ ∈ QR+

N , output an integer e > 1 and a group element ξ ∈ Z∗
N

such that ξe ≡ γ (mod N).

We will show below that this problem is as hard as Strong QR-RSA problem.

Theorem 1. If the strong QR-RSA problem is asymptotically hard where the
underlying modulus N is chosen randomly from the set Nk of all safe prime
products of bit size bounded by k, then the strong SQR-RSA problem is also
asymptotically hard for the same N .

Assume the existence of a PPT algorithm A which, given a input (N, γ), where
γ ∈ QR+

N , outputs a element ξ ∈ Z∗
N and an integer e > 1 such that ξe ≡ γ

(mod N). We will use A as an oracle to solve strong QR-RSA problem. Let
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an input of the strong QR-RSA problem be given as (N, γ) where γ ∈ QRN .
Consider the following cases:
Case-1: Check if 0 < γ ≤ N−1

2 . If yes, then γ ∈ QR+
N . Pass (N, γ) to A. Clearly

the solution given by A will also be a solution to this strong QR-RSA instance.
Case-2: Let −N−1

2 ≤ γ < 0. Then γ = −t where 0 < t ≤ N−1
2 . As γ ∈ QRN ,

t= |γ|∈QR+
N . With (N, t) as an input to A, it will output an element ξ ∈ Z∗

N and
a positive integer e > 1 such that ξe ≡ t (mod N). Here we claim that this e is
necessarily odd. If e is even, t becomes a quadratic residue which is not possible as
−t = γ ∈ QRN . Thus we now output ξ′ = −ξ as a solution to (N, γ) as we can see,

(ξ′)e ≡ (−ξ)e ≡ −1 · ξe ≡ −t ≡ γ (mod N) ��

We also need the following lemma in the proof of our main theorem.

Lemma 1. Let N = p · q, product of two safe primes. QRN and QR+
N denotes

the subgroup of quadratic residues and signed quadratic residues respectively. For
an element x, chosen randomly from QR+

N , the probability that x also belongs to
QRN is 1

2 + o(1), where o(1) is negligible.

Proof: In 1918, Polya[20] and Vinogradov[24], proved independently the follow-
ing remarkable inequality, ∣∣∣∣∣

N+M∑
a=N+1

(
a

p

)∣∣∣∣∣ ≤
√
p · log p

where p is prime and N,M are arbitrary (0 ≤ N < N + M < p). Putting
N = 0, M = p−1

2 and N = p−1
2 , M = p−1

2 respectively, we have the following
inequalities,

∣∣∣∣∣∣
p−1
2∑

a=1

(
a

p

)∣∣∣∣∣∣ ≤
√
p · log p and

∣∣∣∣∣∣
p−1∑

a= p+1
2

(
a

p

)∣∣∣∣∣∣ ≤
√
p · log p

The above inequality clearly shows that for an element x, chosen randomly in the
range 1 ≤ x ≤ p−1

2 (resp. p−1
2 < x ≤ p−1), the probability that x is a quadratic

residue modulo p is 1
2 +o(1) (resp. 1

2 +o(1)). Also note that for x chosen uniformly
at random in an interval [1,m], wherem is a multiple of p (p is prime), x (mod p)
is uniformly distributed in [0, p− 1]. So for x ∈R Z∗

N ∩ [1, N−1
2 ], x (mod p) and

x (mod q) are independent and approximately (elements not co-prime to N are
ignored) uniformly distributed in [1, p− 1] and [1, q − 1] respectively.

So for x chosen uniformly at random in Z∗
N∩[1, N−1

2 ], Prob[x ∈ QRN ]=Prob[x
(mod p) ∈ QRp and x (mod q) ∈ QRq]=Prob[x (mod p) ∈ QRp] · Prob[x
(mod q) ∈ QRq].

Now Prob[x (mod p) ∈ QRp]=Prob[x (mod p) ∈ QRp|1 ≤ x (mod p) ≤
p−1
2 ] ·Prob[1 ≤ x (mod p) ≤ p−1

2 ] +Prob[x (mod p) ∈ QRp|p−1
2 < x (mod p) ≤

p − 1] · Prob[p−1
2 < x (mod p) ≤ p− 1]=(1

2 + o(1))(1
2 + o(1)) + (1

2 + o(1))(1
2 +

o(1))= 1
2 + o(1). Similarly, Prob[x (mod q) ∈ QRq] = 1

2 + o(1). Thus,
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Prob[x ∈ QRN ]=Prob[x (mod p) ∈ QRp] ·Prob[x (mod q) ∈ QRq]=(1
2 + o(1)) ·

(1
2 + o(1))= 1

4 + o(1).
So QRN constitutes approximately 1

4 th of Z∗
N ∩ [1, N−1

2 ]. The cardinality of
Z∗

N ∩ [1, N−1
2 ] and J(N) ∩ [1, N−1

2 ] are φ(N)
2 and φ(N)

4 respectively. As QRN ∩
[1, N−1

2 ] ⊂ J(N)∩ [1, N−1
2 ], the proportion of QRN ∩ [1, N−1

2 ] in J(N)∩ [1, N−1
2 ]

is approximately (i.e. modulo a negligible quantity) 1
2 . Hence for an element

x, chosen randomly from QR+
N = J(N) ∩ [1, N−1

2 ], the probability that x also
belongs to QRN is 1

2 + o(1).
��

Remark: Vinogradov also proved a generalization of their result in which the
prime p is replaced by a composite k. Sharper estimate of the above inequality
for prime modulus was obtained by D.A. Burgess [4],[5].

5 Z∗
N Is Pseudo-free

The proof of our main Theorem below is along the lines of the proof of Theorem-
2 in [14] with necessary modifications. We have essentially managed to sample
elements uniformly at random from a isomorphic copy (QR+

N ) of QRN in Z∗
N

to prove Z∗
N is pseudo-free.

Theorem 2. Assume the strong RSA problem is asymptotically hard with re-
spect to a distribution ensemble N over the safe prime products. Then the com-
putational group family of Z∗

N of invertible integers modulo N ∈ N (with the
modular multiplication group operation, and uniform sampling procedure over
the signed quadratic residue group QR+

N ) is pseudo-free with respect to the same
distribution ensemble N .

Assume that Z∗
N is not pseudofree, i.e. there is a PPT algorithm A that on input

a randomly chosen N ∈ Nk and random group elements α : A→ QR+
N (for some

polynomial sized set A), outputs an equation E : w1 = w2 (over constants in A
and variables in X) which is unsatisfiable over F(A), together with a solution
ξ : X → Z∗

N to Eα over the group Z∗
N .

We use A to solve the strong SQR-RSA problem for the same distribution
of the modulus N . Thus, given a randomly chosen N ∈ Nk and γ ∈ QR+

N ,
we compute an integer e > 1 and a group element ξ ∈ Z∗

N such that ξe ≡ γ
(mod N). By Theorem 1 this also implies an algorithm to solve the strong QR-
RSA Problem and which in turn yield an algorithm [7] which will solve strong
RSA problem. The reduction works as follows.

Let (N, γ) be an instance of the strong SQR-RSA problem. We begin by
checking if γ is a generator of QR+

N . Below we outline a sufficient condition for
γ to be a generator of QR+

N . For this we need the following result [14] which for
elements γ in QRN checks if γ is a generator for QRN .

Lemma 2. [14] Let N = P · Q be the products of two distinct safe primes, and
γ ∈ QRN a quadratic residue. Then γ is a generator forQRN iff gcd(γ−1, N) = 1.
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Lemma 3. Let N = P · Q be the products of two distinct safe primes, and
γ ∈ QR+

N . If,

gcd(γ − 1, N) = 1 and gcd(−γ − 1, N) = 1

then γ is a generator for QR+
N .

Proof: We know for a Blum integer N , the map φ : QRN → QR+
N (φ(x) = |x|)

is a group isomorphism. The inverse of φ (φ−1 : QR+
N → QRN ) is defined as

follows:

φ−1(x) =
x if x ∈ QRN

−x if x /∈ QRN

We are given a Blum integer N and γ ∈ QR+
N such that gcd(γ − 1, N) = 1 and

gcd(−γ − 1, N) = 1. We will show that γ is a generator of QR+
N .

Case-1: Say γ ∈ QRN . Then φ−1(γ) = γ. Now as gcd(γ−1, N) = 1, by Lemma-
2, γ is a generator of QRN . Now as a generator is mapped into a generator under
isomorphism and φ(γ) = |γ| = γ ∈ QR+

N , γ is a generator of QR+
N .

Case-2: Say γ /∈ QRN . Then φ−1(γ) = −γ ∈ QRN . Now as gcd(−γ−1, N) = 1,
by Lemma-2, −γ is a generator of QRN . Similarly as generators are mapped into
generators under isomorphism and φ(−γ) = | − γ| = γ ∈ QR+

N , γ is a generator
of QR+

N . ��
So for given γ ∈ QR+

N we first compute g = gcd(γ− 1, N) and g′ = gcd(−γ−
1, N). Since N = P ·Q, we have g, g′ ∈ {1, P,Q, PQ}. We consider below all the
cases.

– Case-1: Either of g or g′ is in {P,Q}. W.l.o.g. say g ∈ {P,Q}. Then we can
easily compute φ(N) = (P − 1) · (Q − 1) and output (ξ, e) = (γ, φ(N) + 1)
as a solution to the strong SQR-RSA problem input (N, γ).

– Case-2: As γ ∈ QR+
N , therefore 0 < γ ≤ N−1

2 . Thus gcd(−γ − 1, N) will
never be N . So if g′ /∈ {P,Q} then g′ must be equal to 1. Now if g = N , then
γ ≡ 1 (mod N) and we can immediately output a solution to the strong
SQR-RSA problem input (N, γ), e.g. (ξ, e) = (1, 2)

– Case-3: g and g′ are both equal to 1. Then by Lemma-3, γ is a generator
for QR+

N .

For rest of the proof we assume that γ is a generator of QR+
N . Now we generate

an input instance (N,α) for algorithm A where for a polynomial sized set A, α
samples |A| many elements from QR+

N . Since A works only with non negligible
probability, we need the input values α(a) to be distributed (almost) uniformly
at random over QR+

N . The following lemma shows that γ, being a generator of
QR+

N , can be used to sample QR+
N almost uniformly at random.

Lemma 4. [14] For any cyclic group G and generator γ ∈ G, if ν ∈ {0, . . . , B−
1} is chosen uniformly at random, then the statistical distance between γν and
the uniform distribution over G is at most |G|

2B .
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So for any polynomial sized set A, we sample |A| many elements almost uniformly
at random from QR+

N as follows. For a ∈ A, choose νa ∈ {0, . . . , N · |A| ·K − 1}
uniformly at random for some super polynomial function K(k) = kω(1) and set
α(a) = γνa (note that γνa = |γνa (mod N)|). There are two things to check here.

1. α(a) is uniformly distributed over QR+
N

2. Among all the assignments α : A→ QR+
N to sample QR+

N almost uniformly
at random, our choice of α where α(a) = γνa is uniformly selected.

For the first property, By Lemma-4, the statistical distance between α(a) and

the uniform distribution over QR+
N is at most |QR+

N |
2N |A|K ≤ 1

2|A|K . For later, we
know that algorithm A will be successful with non-negligible probability on
input N and assignment α : A → QR+

N provided α is distributed uniformly at
random. Since the value α(a) are independently chosen, the statistical distance
between α and a uniformly chosen assignment is at most 1

2K = 1
kω(1) and thus

A succeeds on input α (α(a) = γνa) with non-negligible probability δ(k)− 1
K(k)

where δ(k) is the non-negligible probability of A’s success on input (N,α) when
the assignment α is distributed uniformly at random.

In the rest of the proof, we assume A is successful, and we consider the
conditional success probability of the reduction and show that it will turn out
to be at least 3

16 + o(1), where o(1) is negligible.
We now first workout some more details about our assignment α. We know, for

every a ∈ A, we set α(a) = γνa for a randomly chosen νa ∈ {0, . . . , N ·|A|·K−1}.
With each of this νa one can associate two unique numbers modulo φ(N)

4 = pq.
They are respectively, the remainder wa and the quotient za of νa when divided
by pq. Thus wa ≡ νa (mod pq) and za = νa−wa

pq . Eventhough they exists, given
νa, it is hard to compute za and wa due to the unavailability of φ(N). Thus we
will use wa and za only in the analysis of the reduction.

Notice that, given wa, the conditional distribution of za is uniform over the set

Sa =
{
0, . . . , �N ·|A|·K−1−wa

pq �
}

The size of Sa is at least

|Sa| ≥ 1 + �N ·|A|·K−1−wa

pq �
[wa≤pq−1]

≥ �N ·|A|·K
pq �

[N>4pq]
≥ 4|A|K ≥ 4

Also, given wa, the value of α(a) = γνa = γwa is uniquely determined, and za

is uniformly distributed over the set Sa independently from α, E and ξ.
Assume that A is successful, i.e., E : w1 = w2 is not satisfiable over F(A), and

ξ : X → Z∗
N is a valid solution to Eα, i.e. ξ(w1) = α(w2). Like typical reduction,

we use equation E and solution ξ to output a solution to strong SQR-RSA
problem input (N, γ). This is done in two steps. First, we transform equation
E and solution ξ (to Eα) into a new equation E′ (unsatisfiable over the same
F(A)) containing only one variable and a solution ξ′ to E′

α. Then E′ and ξ′

will be used to solve the given instance (N, γ) of strong SQR-RSA problem.The
following lemma will show how to transform (E, ξ) into a univariate equation
and solution (E′, ξ′).
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Lemma 5. [14] For any computational group family G, there is a polynomial
time algorithm that on input a group G from G, and an equation E, over a set
X of variables and set A of constants, and a variable assignment ξ : X → G,
outputs a univariate equation E′, over the same set A of constants, and a value
ξ′ ∈ G, such that

Prop-1: if E is unsatisfiable over the free group F(A), then E′ is also unsatis-
fiable over F(A), and

Prop-2: for any assignment α : A → G, if ξ is a solution to Eα then ξ′ is a
solution to E′

α.
In particular for input equation E :

∏
x∈X

xex =
∏
a∈A

ada , where ex, da ∈ Z and in-

put assignment ξ : X → G, the algorithm A outputs equation E′ : xe =
∏
a∈A

ada

and the value ξ′ in G, ξ′ =
∏
x∈X

ξ(x)
ex
e .

At this point, as an output of Lemma-5, we are having an univariate equationE′ :
xe =

∏
a∈A

ada which is unsatisfiable over F(A) and a solution ξ′ ∈ Z∗
N to E′

α, i.e.,

(ξ′)e =
∏
a∈A

α(a)da = γd (1)

where d =
∑
a∈A

νada. Notice that E′ is satisfiable over the free group F(A) iff

e | gcd(da : a ∈ A). So necessarily here, e � gcd(da : a ∈ A).
In the rest of the proof we distinguish various cases, depending on the all

possible values of gcd(e, pq) and they are,

Case-1: e = 0 (=> gcd(e, pq) = pq)
Case-2: e �= 0 and gcd(e, pq) = pq
Case-3: e �= 0 and gcd(e, pq) ∈ {p, q}
Case-4: e �= 0 and gcd(e, pq) = 1

Case-1: e = 0.
In this case we first calculate the probability that d =

∑
a

νada = 0.

Lemma 6. [14] Given α, e = 0 and {da : a ∈ A} such that e � gcd{da : a ∈ A},
the conditional probability that d =

∑
a∈A

νada �= 0 is at least 3
4

Assuming d �= 0 (which, by Lemma-6, happens with probability at least 3
4 ), we

have |d| + 1 > |d| ≥ 1. Now,

γ|d| = γ±d [Equation−1]
= (ξ′)±e = (ξ′)±0 = 1

But γ±d = 1
=> |γ±d (mod N)| = 1
=> γ±d (mod N) = ±1.
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We want to rule out the case when γ±d (mod N) = −1. γ is given in QR+
N .

By Lemma-1, the probability that γ is also in QRN is 1
2 + o(1). Now assume

γ ∈ QRN (happens with probability 1
2 + o(1)), then γ±d (mod N) �= −1 as

−1 /∈ QRN . Thus we have γ±d (mod N) = 1. Now we can output (γ, |d|+ 1) as
a valid solution to strong SQR-RSA problem input (N, γ) as

γ|d|+1 = γ · γ|d| = γ · γ±d [γ±d (mod N)=1]
= γ

Thus (γ, |d| + 1)) is a valid solution provided d �= 0 and γ ∈ QRN . These two
events are clearly independent. Thus
Prob [(γ, |d| + 1) is a valid solution]
≥ Prob [d �= 0 and γ ∈ QRN ]

= Prob [d �= 0] · Prob [γ ∈ QRN ]
[Lemma−6,Lemma−1]

≥ 3
4 · (1

2 + o(1)) = 3
8 + o(1)

Case-2: e �= 0 and gcd(e, pq) = pq.
As γ ∈ QR+

N , γφ(N)/4 = γpq = 1 and therefore as pq | e, γe = 1. Now γe = |γe

(mod N)|. Thus γe = 1 implies |γe (mod N)| = 1, i.e., γe (mod N) = ±1. We
want to rule out the case when γe (mod N) = −1. Like earlier, assuming γ to
be quadratic residue will help us rule out this case and γ ∈ QRN happens with
probability 1

2 + o(1). So we now assume that γ ∈ QRN and out put (γ, |e| + 1)
as a valid solution to the strong SQR-RSA problem instance (N, γ) as

γ|e|+1 = γ · γ±e = γ · 1 = γ

So Prob[(γ, |e|+1) is a valid solution] ≥ Prob[γ ∈ QRN ] = 1
2 + o(1). We remark

that, although we cannot compute gcd(e, pq) (or even check if gcd(e, pq) = pq)
because pq is not know, we can guess that this is the case, and simply check
if (γ, |e| + 1) is indeed a solution to the given strong SQR-RSA problem input.
Similar remarks apply to the other cases below.
Case-3: e �= 0 and gcd(e, pq) ∈ {p, q}.
Here o(γe) = pq

gcd(e,pq)
∈ {p, q}. Thus γe is not a generator ofQR+

N . Assume that

γe also belongs to QRN and this happens with probability 1
2 + o(1). Now as γe

is not a generator of QR+
N , it is also not a generator of QRN . Then by Lemma-2

gcd(γe − 1, N) �= 1. Again as γ is a generator of QR+
N and gcd(e, pq) ∈ {p, q}

implies that γe � 1 (mod N). Thus gcd(γe−1, N) �= N . Then gcd(γe−1, N) ∈
{P,Q}. So we can compute φ(N), and output the solution (γ, φ(N) + 1) to
the strong SQR-RSA problem input (N, γ). So the probability of success in
outputting a valid solution in this case is depends on the probability that given
γ ∈ QR+

N is also in QRN and this probability is 1
2 + o(1).

Case-4: e �= 0 and gcd(e, pq) = 1
In this case first we see that e � d with probability at least 3

8 .

Lemma 7. [14] Given α, gcd(e, pq) = 1, and {da : a ∈ A} such that e � gcd{da :
a ∈ A}, the conditional probability that e does not divide d =

∑
a∈A

νada is at least 3
8

Let e′ = e
t and d′ = d

t where t = gcd(e, d). Assuming e � d (which, by Lemma-7,
happens with probability at least 3

8 ), we have t �= e, and consequently e′ = e
t > 1.
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Also note that from gcd(e, pq) = 1 and t | e, we get gcd(t, o(QR+
N )) = gcd(t, pq) =

1. Now we have as output (equation-1) from the algorithm A,

(ξ′)e = γd

i.e. (ξ′)e ≡ ±γd (mod N)
i.e. ((ξ′)e)2 ≡ (±γd)2 ≡ γ2d (mod N)
i.e. (ξ′)2e′t ≡ γ2d′t (mod N).
Now clearly (ξ′)2e′

, γ2d′ ∈ QRN , and as gcd(t, o(QRN ) = o(QR+
N )) = 1 we

have (ξ′)2e′ ≡ (ξ′)2et−1 (mod o(QRN )) ≡ γ2dt−1 (mod o(QRN )) ≡ γ2d (mod N). At
this point, we have (γ, ξ′, e′, d′) such that (ξ′)2e′ ≡ γ2d′

(mod N), e′ > 1 and
gcd(e′, d′) = 1. (ξ′)2e′ ≡ γ2d′

(mod N) tells that N | ((ξ′)e′ − γd′
)((ξ′)e′

+ γd′
).

If (ξ′)e′ �= ±γd′
, then computing gcd(N, (ξ′)e′ −γd′

) and gcd(N, (ξ′)e′
+γd′

) will
surely yields {P,Q} and we can immediately output a solution (γ, φ(N) + 1)
to the strong SQR-RSA problem input (N, γ). Now we consider the case when
(ξ′)e′

= ±γd′
. If (ξ′)e′

= γd′
, use the Euclidean algorithm to compute two

integers e′′ and d′′ such that e′e′′ + d′d′′ = gcd(e′, d′) = 1. Now we output
((ξ′)d′′γe′′

, e′) as a valid solution to the strong SQR-RSA problem input (N, γ)
as e′ > 1 (as a consequence of Lemma-7) and ((ξ′)d′′γe′′

)e′
= (ξ′)e′d′′

γe′e′′
=

γd′d′′+e′e′′
= γ. Finally we consider the case when (ξ′)e′

= −γd′
. In this case we

assume that γ belongs to QRN and this happens with probability 1
2 + o(1). As

γ ∈ QRN , implies γd′
is also in QRN . Also as N is a Blum integer, −1 /∈ QRN

and thus −γd′
/∈ QRN . As (ξ′)e′

= −γd′
, therefor e′ is necessarily odd (e′ even

implies (ξ′)e′
= −γd′ ∈ QRN). Thus γd′

= −(ξ′)e′
= (−1)e′ · (ξ′)e′

= (−ξ′)e′
. So

by replacing ξ′ with −ξ′, this last case (ξ′)e′
= −γd′

reduces to the previous one
(ξ′)e′

= γd′
.

So in Case-4 (e �= 0 and gcd(e, pq) = 1), the probability that we will success-
fully output a valid solution depends on the two independent events and they are
e � d and γ ∈ QRN and the probability that both these events occur is atleast
3
8 · (1

2 + o(1)) = 3
16 + o(1).
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Abstract. The software implementation of cryptographic schemes for
wireless sensor networks poses a challenge due to the limited capabilites
of the platform. Nevertheless, its feasibility has been shown in recent
papers. In this work we describe a software implementation of pairing-
based cryptography and elliptic curve cryptography for the MSP430 mi-
crocontroller, which is used in some wireless sensors including the Tmote
Sky and TelosB. We have implemented the pairing computation for the
MNT and BN curves over prime fields along with the ECDSA scheme.
The main result of this work is a platform-specific optimization for the
multiplication and reduction routines that leads to a 28% speedup in the
field multiplication compared to the best known timings published. This
optimization consequently improves the speed of both pairing computa-
tion and point multiplication.

Keywords: pairing based cryptography, wireless sensor networks,
software implementation.

1 Introduction

Wireless sensor networks (WSN) have been the subject of a lot of research re-
cently due to their vast number of applications. One of the challenges they bring
is how to secure their communication against eavesdropping or malicious ma-
nipulation. These can be addressed through many cryptographic schemes; but
since these nodes are highly constrained environments, these schemes must be
implemented with great efficiency.

The advantages of asymmetric over symmetric cryptography for WSNs is well
established in the literature. For that reason, we chose to implement two types of
asymmetric cryptosystems: pairing-based and elliptic curve cryptography. The
security levels being considered are the 64/70-bit, being the most feasible and
where most of the work so far has focused; and the 128-bit, which can be expen-
sive but may be necessary in the coming years and has not been well explored
for WSNs. The main contributions of this work are a platform-specific opti-
mization to improve the speed of both types of cryptosystems and timings for
computations in those two different security levels.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 248–262, 2009.
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The remainder of this work is organized as follows. In Section 2 we give an
introduction to the MSP430 microcontroller, describing its features and limita-
tions. Subsequently, in Section 3, the fundamental operations of multiplication
and reduction are described along with our proposed optimization. The imple-
mentation and results of pairing-based cryptography is described in Section 4.
In Section 5, the implementation and results of elliptic curve cryptography is
detailed. Finally, this paper in concluded in Section 6.

2 The MSP430 Microcontroller

The MSP430 from Texas Instruments is a family of 16-bit microcontrollers
mostly known for its low power consumption and it is used in wireless sensors
such as the Tmote Sky from Moteiv and the TelosB from Crossbow. It features
12 general purpose registers and a 27 instructions set including one bit only shifts
and byte swapping. Memory (bytes and words) can be addressed through four
addressing modes: register direct, register indexed (with an offset word), register
indirect and register indirect with post-increment. Destination operands can be
addressed only with register direct and indexed modes.

Each instruction can be represented by up to three words (one for the instruc-
tion and two offset words). With only a few exceptions, it is relatively simple to
calculate the number of cycles spent in each instruction: one for each word in
the instruction, plus one for each memory read and two for each memory write.
Short immediate constants (−1, 0, 1, 2, 4 and 8) can be encoded without using
offset words with a clever usage of two special registers (for example, zeroing a
register the “naive way” – moving 0 to it – takes only one cycle).

Still, there is a critical issue with the instruction set: it lacks both multiply
and divide. This is partially addressed with a hardware multiplier present in
some of the MSP430 models. It is a memory mapped peripheral that supports
four operations: multiply, signed multiply, multiply and accumulate and signed
multiply and accumulate. In order to use them, it is necessary to write the first
operand into one of four specific addresses (MPY, MPYS, MAC, MACS; respec-
tively) according to the operation to be issued. Then, the second operand can
be written into another specific address (OP2) and the double precision result
will be available with a two cycle delay in two addresses (RESLO, RESHI). The
multiply and accumulate operations also set the carry flag of the addition into
another address (SUMEXT).

An important consequence of the hardware multiplier is that it implies an
unusual overhead since the operands must be written to and read from memory.
Also, there is no instruction for division, therefore it must be carried out in
software which is rather expensive.

When timing the algorithms, we have measured the number of cycles taken
by the procedures. Timings in seconds or milliseconds are calculated assuming
a 8,000,000 Hz clock; the exact maximum clock varies in each device from the
MSP430 family. For that reason, it is recommended to compare running times
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by their number of cycles. We have used the MSPGCC compiler version 3.2.3
with the -O2 optimization flag unless noted otherwise.

3 Multiplication and Reduction

Field multiplication over IFp sums about 75% of the running time of point mul-
tiplication and pairing computation. Consequently, it is crucial to implement
it using assembly language since this leads to a speedup greater than two-fold,
according to our experiments. Multiplication in IFp consists of two operations:
the plain multiplication of the operands into a double precision number and its
subsequent reduction modulo a prime.

3.1 Multiplication

The standard algorithm for multiplication is the Comba method [1], which is a
column-wise variant of the row-wise standard schoolbook version that reduces
memory accesses. Recently, it has been suggested a variant of the Comba method,
the Hybrid method [2], that mixes the row-wise and column-wise techniques. It
can be seen as the plain Comba method, with the difference that each “digit”
is now stored in multiple machine integers, and the digit-digit multiplication is
carried out with the row-wise schoolbook technique. Both methods are illustrated
in Figure 1.

The advantage of the Hybrid method is that, in a digit-digit multiplication,
all of the integers of the first digit can be stored in registers, reducing memory
reads. Consequently, this method is appropriate for platforms with a relatively
large number of registers. In [3], the authors present an even more optimized
version of the Hybrid method, using carry-catcher registers in order to simplify
its carry handling. They have also studied its application on many platforms, in-
cluding the MSP430, where they were able to obtain a 15.4% speed improvement
compared to the Comba method.

It appears that the Hybrid method is always superior to the plain Comba
method when there are sufficient registers available, but this fails to take into
account the characteristics of the platform. Analyzing the running time of the
Comba method, it can be concluded that the majority of the time is spent at
one repeated step: multiply and accumulate. For each column of the result, it is
necessary to compute many products and accumulate them in order to obtain the
result of that column and the carries of the next two columns. The importance
of the multiply and accumulate step (which we will refer to as “MulAcc”) was
noted before in [2,4]. However, what has been overlooked so far is the fact that
the MulAcc is exactly what is provided by the MAC (Multiply and Accumulate)
operation of the MSP430 hardware multiplier.

The MulAcc step is illustrated in Figure 2. It consists of the reading of two
integers, one from each operand, followed by their multiplication into a double
precision integer, and finally the addition of those two integers to a triple pre-
cision accumulator (the third only accumulates the carries of those additions).
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Fig. 1. Comparison of multiplication methods: Comba to the left, Hybrid to the right

Fig. 2. The MulAcc step, using as example the step for words a1 and b2. The registers
r14 and r15 hold the pointers to the two 4-word operands
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The pseudo-assembly code for the MulAcc step without using MAC is listed
in Algorithm 1 and using MAC in Algorithm 2. Compared to Algorithm 1,
Algorithm 2 has two less instructions, one less memory read and one less ad-
dress in extension words, saving four cycles in total. This leads to a great speedup
since the MulAcc step is repeated n2 times with n being the size of the operands
in machine integers.

Algorithm 1. Plain MulAcc step
Input: x, the offset address of an integer in the first operand (pointed by r14);

y, the offset address of an integer in the second operand (pointed by r15)
Ouput: The multiplication of the integers and their accumulation into r4, r5, r6
mov x(r14),& MPY ;move first operand, specify unsigned multiplication

mov y(r15),& OP2 ;move second operand

add & RESLO,r4 ;add low part of the result

addc & RESHI,r5 ;add high part of the result

adc r6 ;add the carry

Algorithm 2. MulAcc step using MAC
Input: x, the offset address of an integer in the first operand (pointed by r14);

y, the offset address of an integer in the second operand (pointed by r15)
Ouput: Multiplication and accumulation into RESLO, RESHI, r6
mov x(r14),& MAC; move first operand; specify multiply and accumulate

mov y(r15),& OP2 ;move second operand

add & SUMEXT,r6 ;add the carry

The main advantage of using plain Comba with MAC compared to the Hybrid
method is that the latter uses all of the 12 available registers, while the former
leaves 8 free registers. These can be used as a simple cache for the operands.
Additionally, one register can be used to save the address of the SUMEXT in
order to add using the register indirect mode instead of register indexed, saving
one more cycle in each MulAcc step (this requires a reordering of the instruc-
tions since otherwise the SUMEXT is fetched before the two cycle delay of the
hardware multiplier). Table 1 compares the instruction counts of our implemen-
tation and those from [3]. It can be readily seen that the greatest savings come
from the smaller number of add instructions, since the hardware multiplier does
most of the additions by itself. Also, one cycle can be saved in each step due to
the linear nature of the access of the first operand, which can be read with the
register indirect with post-increment addressing mode (mov @reg+,&label).

The multiplication timings are detailed in Table 2, where is clear that the
Comba multiplier using the MAC optimization is indeed effective, and 9.2%
faster than the Hybrid multiplier given in [3]. We have found that using
Karatsuba multiplication with a 128-bit Comba multiplier is a little faster than
using 256-bit Comba, and it also requires less code space.
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Table 1. Comparison of instruction counts of 160-bit multiplication

Comba MAC Hybrid in [5]

Instruction CPI Instructions Cycles Instructions Cycles

add @reg,reg 2 99 198
Other additions 309 709
mov x(reg),&label 6 20 120 45 270
mov reg,x(reg) 4 20 80
mov reg,reg 1 27 27
mov reg,&label 4 89 356 100 400
mov x(reg),reg 3 13 39 45 135
mov @reg+,&label 5 100 500
mov @reg,&label 5 29 145
mov @reg,x(reg) 5 20 100
other 128 167

Totals 1586 1746

Table 2. Timings for multiplication and squaring

Algorithm Cycles Time (ms)

160-bit multiplication
Hybrid in [3] 1,746 0.22
Comba MAC 1,586 0.20

160-bit squaring
Comba MAC 1,371 0.19

256-bit multiplication
Hybrid (Karatsuba, 128-bit Comba) 4,025 0.50
Comba MAC (Karatsuba, 128-bit Comba) 3,597 0.45
Comba MAC (256-bit Comba) 3,689 0.46

256-bit squaring
Comba MAC (Karatsuba, 128-bit Comba) 2,960 0.37

3.2 Reduction

Traditional modular reduction can be an expensive operation because it needs
costly divisions. Since the MSP430 has no divide instruction at all, they would
need to be computed in software, which would be even more prohibitive. We
have selected two algorithms in the literature that do not require divisions:
Montgomery reduction [6] and Barrett reduction [7].

Montgomery reduction requires the operands to be transformed into a special
Montgomery form. This is often not a problem since we can use the Montgomery



254 C.P.L. Gouvêa and J. López

Table 3. Timings for reduction

Algorithm Cycles Time (ms)

Modulo 160-bit prime
Montgomery in [5] (estimated) 2,988 0.37
Montgomery MAC 1,785 0.22
SECG (prime: 2160 − 231 − 1) 342 0.04

Modulo 256-bit prime
Montgomery 4,761 0.60
Montgomery MAC 3,989 0.50
Barrett 4,773 0.60
NIST (prime: 2256 − 2224 + 2192 + 296 − 1) 709 0.09

form as the “official” representation of all numbers in the cryptographic protocol
being used and they would only need to be converted back, for example, to be
printed on the screen for human reading. Montgomery reduction also requires a
precomputed constant that is dependent of the machine integer size.

The Montgomery reduction algorithm has almost the same structure as the
Comba multiplication, with the first operand being the lower part of the double
precision number to be reduced and the second operand being the prime mod-
ulus. Therefore, one can employ the same MAC optimization to speed up the
reduction.

Barrett reduction is slightly more complex and it involves half precision
Comba multiplications. Each of these multiplications can also use the MAC
optimization. It also requires a precomputed constant which is dependent of the
prime modulus.

There also are specific algorithms for reduction when the prime modulus has
a special form. For primes of the form 2k − c such as the 160-bit primes from the
SECG standard [8] the algorithm is described in [9]. For “NIST primes” [10],
the algorithm is described in [11].

The reduction timings are presented in Table 3. The reduction timing from
[5] was estimated by subtracting the reported multiplication timing in [3] from
the field multiplication timing in [5]. While an exact comparison may be hard to

Table 4. Timings for field multiplication (using Montgomery reduction)

Algorithm Cycles Time (ms)

160-bit
Hybrid in [5] 4,734 0.59
MAC 3,389 0.42

256-bit
Hybrid 8,855 1.11
MAC 7,604 0.95
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make due to this inexact estimate, we notice again that the MAC optimization
is very effective. The Barrett reduction was slower than Montgomery reduction,
but since we have focused on optimizing Montgomery, we believe its speed can be
further improved. As expected, reduction modulo a special form prime is much
faster.

Finally, the running times of algorithms for field multiplication – multiplica-
tion followed by reduction – are given in Table 4. Compared to [5], field multi-
plication using MAC is about 28% faster.

4 Identity Based Cryptography Using Pairings

It has been shown recently that identity-based cryptography using bilinear pair-
ings is very appropriate in the wireless sensor network scenario [12]. There are
many identity-based cryptographic schemes, but the most useful in this context
probably is the non-interactive key agreement scheme [13,14,15] that allows two
parties to compute a mutual key without interaction in order to bootstrap a
secure channel using symmetric encryption, and will be described next.

Let e : G1 × G2 → GT be a bilinear pairing with G1 and G2 being additive
groups and GT a multiplicative group, all of them with a prime order r. Let
H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G2 be two hash functions. The master
key generation is done by the key generation center by choosing a random s ∈
{1, ..., r − 1}. The private key distribution is done before the deployment of
the sensors by assigning a sensor A the identity IDA and private keys S1A =
sH1(IDA) and S2A = sH2(IDA).

Now, suppose sensors A and B wish to compute a shared key. If G1 and G2
were the same group and the pairing was symmetric, then the two hash functions
would be the same and the two private keys of each node would be equal. There-
fore, A could compute e(S1A, H1(IDB)) and B could compute e(H1(IDA), S1B).
Due to the bilinearity and symmetry, we have

e(S1A, H1(IDB)) = e(sH1(IDA), H1(IDB))
= e(H1(IDA), sH1(IDB))
= e(H1(IDA), S1B)
= e(S1B, H1(IDA)) .

Then both parties can generate the same value, which can be used to derive
a shared key. In our case, though, the pairing is asymmetric since the elliptic
curves used are ordinary. Therefore, we need two private keys for each sensor, the
hash functions are different, and the last step in the equation is not valid. Still,
we have two useful equations which can be easily verified: e(S1A, H2(IDB)) =
e(H1(IDA), S2B) and e(H1(IDB), S2A) = e(S1B, H2(IDA)). In [14], it is suggested
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that each party should multiply their sides of those two equations in order to
compute the shared key, but this requires two pairing computations. In [5] it
is suggested that the sensors could agree on which equation they should use
with a little amount of communication. Instead, there is a simpler fix that main-
tains the non-interactive aspect of the protocol. It can be defined that the sen-
sor with the smaller ID in lexicographical order should use its first private key
in the first pairing parameter and the other its second private key in the sec-
ond pairing parameter, therefore choosing one of the equations without any
interaction.

4.1 MNT Curve over a 160-Bit Field

For 160-bit fields, we have implemented two security levels. To allow compar-
isons, the first one is the same described in [5] which uses a MNT curve of
embedding degree 4. These parameters where chosen in order to provide mini-
mum acceptable security; the 640-bit extension field used gives approximately 64
bits of security [16]. The authors chose the Tate pairing instead of the faster Ate
pairing since hashing a identity to a point in G2 is simpler in the Tate pairing.
The Miller loop is implemented using the sliding window technique with w = 3.
The second level of security chosen follows a similar implementation but using
a MNT curve with embedding degree 6. This results in a 960-bit extension field
that provides approximately 70 bits of security [17].

The respective finite field operation and pairing computation timings are de-
tailed in Table 5, which shows that the MAC optimization leads to a 20.2%
speedup in the 64-bit level. It is important to remark that in [5] the authors
chose to compile their code with optimization turned off; the reason given is
that the difference in speed obtained by using different compilers is very sig-
nificant when using optimization and that would make any comparisons harder.

Table 5. Timings for field operations and pairing computations on MNT curves

Algorithm Optimization Cycles Time (ms)

Field operations
Multiplication 3,389 0.42
Squaring 3,172 0.40
Inversion 187,575 23.45

MNT curve, k = 4
Tate [5] Off 37,739,040 4,717
Our Tate (MAC) Off 30,125,088 3,766
Our Tate (MAC) On 26,553,690 3,319

MNT curve, k = 6
Our Tate (MAC) Off 51,199,102 6,400
Our Tate (MAC) On 40,869,215 5,109
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Still, we feel that providing the timings for the optimized versions would lead to
more interesting comparisons.

4.2 BN Curve over a 256-Bit Field

For the 128 bits security level, the Barreto-Naehrig family of curves [18] was
chosen. They have an embedding degree of 12 and provide a sextic twist that
allows the doubling and adding of Miller’s algorithm to be performed on the
curve over IFp2 instead of the costly IFp12 . The curve chosen is the one generated
by the x value of −0x4080000000000001 suggested in [19]. Regarding the BN
formulas, one can find in the literature different values for p(x): the original
paper [18] uses p(x) = 36x4 +36x3 +24x2 +6x+1 but some other papers [19,20]
use p(x) = 36x4 − 36x3 + 24x2 − 6x+ 1, which gives the same value when using
x with inverted sign. We use the original version.

The pairings chosen were the Optimal Ate [21], R-ate [22] and Xate [19];
all of them optimal pairings as defined in [21]. They provide optimal speed by
truncating the Miller loop by a quarter. We follow the approach detailed in [20]
but using the final exponentiation optimization from [23]. Since the Miller loop
runs through the bits of 6x+ 2 (or x in Xate), which has low Hamming weight,
the sliding window technique is not appropriate and was not used.

We present the timings for the finite field operations and pairing computations
in Table 6. The pairing computation is much more expensive than in the MNT
curve, and probably unacceptable for the wireless sensor scenario. As noted in
[24], it is important to keep in mind that the pairing computation scales more-
or-less like RSA rather than like elliptic curve cryptography. It is also worth
noticing that the three kind of pairings give almost the same speed, with the
Xate pairing being a little faster. We describe the Xate pairing for BN curves in
Algorithm 3.

The ROM and RAM requirements of the pairing computation program are
listed in Table 7. To put them in perspective, we note that popular sensors
have such as Tmote Sky and TelosB have 48KB of ROM and 10K of RAM.
The code size is still large; though it is only possible to determine its feasibil-
ity by analyzing specific applications. The amount of RAM allocated is prob-
ably tolerable, since most of it is allocated from the stack and freed after the
computation.

5 Elliptic Curve Cryptography

While identity based schemes built with pairings seem ideal for the wireless sen-
sor scenario, they still are expensive, mainly in the higher 128-bit level of security.
For that reason, we have also implemented the cheaper elliptic curve cryptogra-
phy in order to allow comparison with pairing-based cryptography. To illustrate
a concrete use, the ECDSA (Elliptic Curve Digital Signature Algorithm) [10]
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Algorithm 3. Xate pairing for BN curves
Input: x ∈ ZZ (the BN parameter), Q ∈ E′(IFp2), P ∈ E(IFp)
Ouput: ζ(Q, P ) ∈ IFp12

1: v, xQ ⇐ f|x|,Q(P ) {fr,Q if the Miller function, it also computes rQ}
2: if x > 0 then
3: v ⇐ 1/v
4: xQ = −xQ
5: end if
6: v ⇐ v1+p+p3+p10

7: v, A ⇐ gxQ,pxQ(P ) {gP,Q is the line function from the Miller function, it also
computes P + Q }

8: v, B ⇐ gp3xQ,p10xQ(P )
9: v, C ⇐ gA,B(P )

10: return v(p12−1)/r

Table 6. Timings for field operations and pairing computations on the BN curve

Algorithm Cycles Time (ms)

Field operations
Multiplication 7,569 0.95
Squaring 6,952 0.87
Inversion 380,254 47.53

Pairings
Optimal Ate 117,597,798 14,700
R-ate 117,514,219 14,689
Xate 116,130,546 14,516

Table 7. ROM and maximum allocated RAM size for pairing programs

Version ROM (KB) RAM (KB)

BN 256 bits, Karatsuba w/ Comba 128 32.3 4.7
BN 256 bits, Comba 256 36.2 4.7
MNT 160 bits, Comba 160 28.9 2.3
MNT 160 bits, Comba 160 in [5] 34.9 3.4

was chosen for its popularity and wide standardization. However, it is important
to notice that elliptic curve cryptography still requires the expensive public key
authentication which is outside the scope of this work.

The ECDSA is composed by key generation, signature generation and ver-
ification. The key and signature generation require a fixed point multiplica-
tion that is their most expensive operation. In our implementation, we have
used the Comb algorithm with window size 4 [11] which requires the
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precomputation of 15 elliptic curve points. For the signature verification, we have
used the interleaving algorithm with NAF [11] of width 5 and 4 for the fixed and
random points, respectively.

At the 80-bit level of security, the secg160r1 [8] curve was chosen which allows
fast reduction [9] due to its special form modulus. This curve has −3 as its b
parameter to enable a known optimization in the point doubling. At the 128-
bit level of security, the P-256 curve [10] was chosen which also provides fast
reduction [11] due to its special form modulus (“NIST prime”). This curve also
has −3 as its b parameter.

We present the timings for the finite field operations and point multiplication
in Table 8 and the ECDSA timings in Table 9. The timings results of our imple-
mentation are faster than [25], but they do acknowledge that their work leaves
room for much optimization. Also notice that the 5NAF is not adequate since it
is just a little faster than 4NAF but requires double storage space. The Mont-
gomery ladder method [26], while secure against side-channel attacks (timing
and power analysis), is 40–50% slower than 4NAF.

The ROM and RAM requirements for the ECDSA program are listed in
Table 10. The ROM sizes are about 5% smaller than the pairing-based cryp-
tography, and seem to be acceptable, specially in the 80-bit level of security.
The RAM requirements are also realistic since most of it is freed after the
computation.

Table 8. Timings for field operations and point multiplication for the given curves

secg160r1 P-256

Algorithm Cycles Time (ms) Cycles Time (ms)

Field operations
Multiplication 1,952 0.24 4,327 0.54
Squaring 1,734 0.22 3,679 0.46
Inversion 187,575 19.27 292,170 36.52

Random point multiplication
4NAF 4,417,661 0.552 13,372,271 1.672
5NAF 4,433,104 0.554 13,188,903 1.649
Montgomery ladder 6.319,383 0.790 20,476,234 2.560
Unknown from [25] 0.800

Fixed point multiplication
Comb, w = 4 1,831,063 0.229 5,688,793 0.711
Comb, w = 4 in [27] 0.720
Sliding window, w = 4 in [25] 0.720

Simultaneous point mult.
Interleaved 5,204,544 0.651 15,784,176 1.973
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Table 9. Timings for ECDSA

secg160r1 P-256

Algorithm Cycles Time (s) Cycles Time (s)

Key Generation 1,849,903 0.231 5,682,433 0.710
Sign 2,166,906 0.270 5,969,593 0.746
Verify 5,488,568 0.686 16,139,555 2.017

Table 10. ROM and maximum allocated RAM size for elliptic curve programs

Version ROM (KB) RAM (KB)

256 bits, Karatsuba w/ Comba 128 25.7 3.5
256 bits, Comba 256 29.5 3.5
160 bits, Comba 160 23.5 2.5
160 bits, Comba 160 in [27] 31.3 2.9

6 Conclusion

Implementing efficient cryptographic schemes on wireless sensor networks is a
difficult task, but feasible. It is important to analyze every feature offered by
the platform in order to get the best results, as can be seen with the simple but
effective optimization using the MAC operation from the hardware multiplier of
the MSP430. Still, there is plenty of work to be done. As our implementation has
shown, there is a steep price to be paid in the 128-bit level of security pairing
computation (14.5 seconds). Some relevant future work that we would suggest is
to provide a fast implementation of identity based cryptography in other security
levels and implement in software the recently proposed method to speed up finite
field arithmetic for BN curves [28].
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Abstract. At EuroCrypt ’01, Catalano et al. [1] proved that for Paillier’s trapdoor
function if computing residuosity class is hard, then given a random w ∈ �∗

N2

the least significant bit of its class is a hard-core predicate. In this paper, we re-
consider the bit security of Paillier’s trapdoor function and show that under the
same assumption, the most significant bit of the class of w is also a hard-core
predicate. In our proof, we use the ”guessing and trimming” technique [2] to find
a polynomial number of possible values of the class and devise a result checking
method to test the validity of them.

Keywords: Paillier’s trapdoor function, Hard-core Predicate, Most significant
bit.

1 Introduction

Modern cryptography is based on the existence of one-way (trapdoor) functions. A
function is said to be one-way if it is easy to compute but hard to invert. A concept
tightly connected to one-way functions is the notion of hard-core predicates, introduced
by Blum and Micali [3]. A polynomial-time algorithm predicate B : {0, 1}∗ → {0, 1}
is called a hard-core predicate of a function f , if all efficient algorithm, given f(x), can
guess B(x) with success probability only negligibly better than half. Another way of
saying this is that if x is chosen at random then B(x) looks random (to a polynomial
time observer) even when given f(x). Blum and Micali [3] showed that for a finite
field �p and �∗

p’s generator g, the most significant bit (MSB) of the discrete logarithm
function DL(y) = x is a hard-core predicate, where x ∈ �p−1, y = gx mod p. This
was done by reducing the problem of inverting exponentiation function EXP(x) = gx

mod p (which is believed to be one-way) to the problem of guessing the most significant
bit of xwith any non-negligible advantage. Soon after, Alexi et al. [4] presented that the
least significant bit (LSB) in an RSA/Rabin encrypted message is a hard-core predicate.
In 1989, Goldreich and Levin [5] proved that every one-way function has a hard-core
predicate. Although such general result has already been proved, for some specific one-
way functions, we still need to find their hard-core predicates.

� This work is partially supported by National Natural Science Foundation of China
(No.60970154) and NGR Project ”973” of China (No.2007CB311202).

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 263–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



264 D. Su and K. Lv

The concept of the simultaneously security of bits is a generalization of hard-core
predicates. Intuitively, a sequence of bits associated to a one-way function f is said
to be simultaneously secure if no efficient algorithm can gain any information about
the given sequence of bits in x, given f(x). The simultaneous security of a one-way
function is beneficial to the construction of more efficient pseudorandom generators as
well as to the improvement of other cryptographic applications. Long and Wigderson
[6] and Peralta [7] showed that log log p bits of the discrete logarithm function modulo
a prime number p are simultaneous secure. Alexi et al. [4] showed that the RSA/Rabin
function hides log logN bits simultaneously, where N is an RSA modulus. For one
way function fN,g(x) = gx mod N , where N is an RSA modulus, Goldreich and
Rosen [2] presented the simultaneous hardness of upper half bits of fN,g(·). Although
this result is the same as the result proven by Håstad, Schrift and Shamir [8], Goldreich
and Rosen’s proof is much simple and elegant.

MOTIVATION AND PREVIOUS WORK. At Eurocrypt ’99, Paillier [9] proposed a new
homomorphic trapdoor permutation over �∗

N2 , where N is an RSA modulus, and use
it to construct a probabilistic public key encryption scheme. To encrypt a message c ∈
�N , one can choose a random integer y ∈ �

∗
N and compute w = gcyN mod N2,

where g ∈ �
∗
N2 whose order is a nonzero multiple of N . c is called the class of w

relative to g, denoted ClassN,g(w). It is shown in [9] that, knowing the factorization
of N , computing ClassN,g(w) = c is easy. Paillier defined Computational Composite
Residuosity Class Problem, denoted Class[N ], as the problem of computing the class c
given w and g, and thought it is hard to be solved.

In 2001, Catalano, Gennaro and Howgrave-Grahm [1] analyzed the bit security of
this scheme and showed that the LSB of the class is a hard-core predicate of Paillier’s
trapdoor function under the assumption that computing residuosity class is hard. They
also proved that Paillier’s trapdoor function hides n − b (up to O(n)) bits under the
assumption that computing the class c of a random w remains hard even when we
are told that c < 2b. This assumption is also called B-hard assumption. Their proof
technique, called ”zeroing and shifting”, can be briefly described below. Suppose an
adversary has a LSB oracle which given input w = gcyN mod N2, where c ∈ �N ,
predict the LSB of c. Once he knows the LSB of c from the oracle, he zeros it and shifts
c by one bit to the right. He iterates the above procedure to compute all bits of c. If the
LSB oracle is always correct in prediction, the above procedure goes well. But if the
oracle is erroneous, randomization is needed to amplify the statistical advantage of the
oracle on predicting the LSB. The way to learn the information of one bit of plaintext
from ciphertext w = gcyN mod N2 is to consider w′ = w · grsN = g(c+r)(ys)N

mod N2, where r is randomly selected from �N and s is randomly selected from
�

∗
N , then to query the LSB oracle on several randomized w′, and to count the oracle

answers on 1 or 0 to determine the bit. A natural question arises: dose the MSB of the
class is also a hard-core predicate for Paillier’s trapdoor function under the assumption
that computing residuosity class is hard? The above proof technique is infeasible for
studying the MSB of c, since we can not prevent the disturbance of carries from lower
bits and the wrap around problem when computing c + r mod N . We need to find
another way.
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In [2], Goldreich and Rosen devised a proof technique to solve the following prob-
lem: given a noisy MSB oracle and gx mod N , find a polynomial time algorithm to
recover x, where N is an n bits RSA modulus and x ∈R {0, 1}n. The basic idea is
that: for i = n, . . . , 1, guess all of the possible values of xn · · ·xi and group them into
a sorted list Li, then use the information from the MSB oracle to trim some invalid
list elements off in order to keep the size of Li bounded by a polynomial. On the last
stage, a polynomial size list L1 which contains x can be obtained. The way of trimming
invalid candidates off by using the MSB oracle is called ”trimming rule”. And we refer
to this proof technique as ”guessing and trimming”.

OUR CONTRIBUTION. In this paper, we find a new hard-core predicate of Paillier’s
trapdoor function. We prove that, assuming computing residuosity class is hard, given a
randomw ∈ �∗

N2 , the MSB of c = ClassN,g(w) is a hard-core predicate. In our proof,
we apply ”guessing and trimming” technique to find a polynomial number of possible
class values and we devise a method to test the validity of them.

1.1 Notations

Let a ∈R A denote selecting an element a from the set A randomly and uniformly.
For an integer x, let lsb(x) denote the least significant bit of x and let msb(x) denote
the most significant bit of x. Let Nn be the set of all n bits integers N = P · Q,
where P and Q are two large primes of equal length. Let Pn be the set of pairs 〈N, g〉,
where N ∈R Nn, and g is an element of �∗

N2 whose multiplicative order is a nonzero
multiple of N . We use log to denote the logarithm function with base 2. We use ε(n)
to represent some non-negligible function with ε(n) > 1

p(n) for some polynomial p(n).
We use ε instead of ε(n) for simplicity. For x ∈ {0, 1}n, we denote by xn . . . x2x1 the
bit expansion of x, by xi the ith bit of x, and by xi,j the substring of x including the bits
from position j to position i, where 1 ≤ j ≤ i ≤ n. Let x ◦ y denote the concatenation
of two binary strings x and y.

1.2 Organization

The paper is orgainzed as follows. In section 2, we give a brief description of Paillier’s
scheme and the definition hard-core predicate. In section 3, we show that the most
significant bit of the class is a hard-core bit of Paillier’s trapdoor function.

2 Preliminaries

2.1 Paillier’s Scheme

In [9], Paillier proposed a new probabilistic encryption scheme based on computations
in the group�∗

N2 , where N is an RSA modulus. This scheme is homomorphic, seman-
tic secure against chosen plaintext attack and efficient in decryption. Specifically, for
〈N, g〉 ∈ Pn, consider the following map:

EN,g : �N ×�∗
N → �

∗
N2 EN,g(c, y) = gcyN mod N2.



266 D. Su and K. Lv

Paillier showed that EN,g is a trapdoor permutation. The trapdoor information is the
factorization ofN . By the bijective property of EN,g, given 〈N, g〉 ∈ Pn, for an element
w ∈ �∗

N2 , there exists an unique pair (c, y) ∈ �N×�∗
N such thatw = gcyN mod N2.

Here c is said to be the class of w relative to g, we denote it with ClassN,g(w). And y
is called Paillier N -th root. We define the Computational Composite Residuosity Class
Problem as the problem of computing c given w, and assume it is hard to solve.

Definition 1. We say that computing the functionClassN,g(·) is hard if, for every prob-
abilistic polynomial time algorithm A, there exists a negligible function negl(·) such
that

Pr

⎡
⎣ 〈N, g〉 ∈R Pn; c ∈R �N ;
y ∈R �

∗
N ;w = gcyN mod N2;

A(N, g, w) = c

⎤
⎦ ≤ negl(n).

If the factorization of N = PQ is known, one can solve this problem. Indeed, let

λ = λ(N) = lcm(P −1, Q−1), thenClassN,g(w) = L(wλ mod N2)
L(gλ mod N2) mod N, where

L is defined as L(u) = (u − 1)/N . On the other hand, if the factorization of N is not
known, no polynomial strategy to solve the problem has been discovered. This leads to
the following assumption.

Assumption 1. If N is a modulus of unknown factorization, there exists no proba-
bilistic polynomial time algorithm for the Computational Composite Residuosity Class
Problem.

2.2 Hard-Core Predicate

Definition 2. (from [10]) A polynomial-time-computablepredicate b : {0, 1}∗ → {0, 1}
is called a hard-core predicate of a function f : {0, 1}∗ → {0, 1}∗ if for every prob-
abilistic polynomial-time algorithm A′, every positive polynomial p(·), and all suffi-
ciently large n’s,

Pr[A′(f(Un)) = B(Un)] <
1
2

+
1

p(n)
,

where Un is a random variable uniformly distributed over {0, 1}n.

3 The Most Significant Bit of Class Is Hard

In this section, we present the hardness of the most significant bit of Paillier’s trapdoor
function’s class.

Theorem 1. Let 〈N, g〉 ∈ Pn. If the function ClassN,g(·) is hard, then the predicate
msb(·) is hard for it.

Proof. Suppose that predicate msb(·) is not hard, we assume that there exist an MSB
oracle for predicting msb(·), then this oracle can be used to construct a probabilistic
polynomial time algorithm to compute the hard function ClassN,g(·). That is, given
w ∈ �

∗
N2 such that w = EN,g(c, y) = gcyN mod N2, and an oracle ON,g(w) =

msb(c), we show how to compute c = ClassN,g(w) in probabilistic polynomial time.
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Our proof can be divided into two cases, depending on whether the MSB oracle is
erroneous or not.

The perfect oracle case: Suppose that oracle ON,g is perfect, that is, Prw[ON,g(w) =
msb(ClassN,g(w))] = 1, we can use it to find ClassN,g(w), given w ∈ �∗

N2 . We use
two strategies:

Left shifting: By w = w2 mod N2, we can shift class c by one bit to the left.

Zeroing: By computing w = w · g−2(n−1)
mod N2, we can zero the n-st bit

of class c, if this bit is 1.

Fig.1 is the detailed description of this algorithm.

FindingClass-usingPerfectOracle (ON,g ,N ,g,w)

1. c = ();
2. for(i = 1 to n)
3. b = ON,g(w);
4. append(c,b); (append bit b to the end of string c)
5. if(b==1) then
6. w = wg−2(n−1)

mod N2; (bit zeroing)
7. w = w2 mod N2; (bit left shifting)
8. end for
9. return c;

Fig. 1. Finding Class using a Perfect Oracle

The imperfect oracle case: In this case, the MSB oracle might give some erroneous
answers, that is, Prw[ON,g(w) = msb(x)] ≥ 1

2 + ε(n), where ε(n) > 1
p(n) for some

polynomial p(n). A straightforward way to learn the MSB of class c, as illustrated in [1],
is to use randomization to amplify the statistical advantage of the oracle in guessing the
bit. This is done by considering w′ = w · grsN , where r ∈R �N and s ∈R �

∗
N ,

querying ON,g(w′) on several randomized w′, and counting 1-answers and 0-answers
to decide c’s MSB. However, it is infeasible since there exist the disturbance of carries
from lower bits and the wrap around problem, when we perform c+ r mod N . So, we
need to find another way.

A proof technique developed by Goldreich and Rosen [2] can be applied here. One of
the features in this technique is to use ”guessing and trimming” strategy rather than use
the ”zeroing and shifting” strategy as illustrated in the perfect oracle case. The formal
description of our class finding algorithm using an imperfect oracle is presented in Fig. 2.

First, we guess the m most significant bits of class c to create the environment to
invoke the Trimming-Rule algorithm [2] (see Fig. 3), where m = 1 − log ε. Note that
2m = 2/ε is a polynomial number of choices. And we denote by d the correct as-
signment of the m leading bits of c. Second, we iterate from the (n −m)th bit down
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FindingClass-usingImperfectOracle(ON,g, N , g, w)

1. for every possible assignment d of the m MSBs of ClassN,g(w), where m = 1 − log ε;
2. let list Ln−m = {0, 1}; (list forming and trimming)
3. for(l = n − m − 1 to 1)
4. let Ll = {2u, 2u + 1 : u ∈ Ll+1};
5. sort Ll from the largest element vl

max to the smallest element vl
min;

6. while(vl
max − vl

min > 2m)
7. Trimming-Rule(N , g, Ll, vl

max, vl
min, n − m);

8. end while
9. end for

10. y1 ∈R �
∗
N ; (results checking)

11. for(v ∈ L1)
12. valid=true; v′ = d ◦ v; (concatenate v to the end of d)

13. compute w1 = (w/gv′
)2

(n−m) · yN
1 mod N2;

14. for(i = 1 to m)
15. x = Randomized-Query(ON,g , N, g, w1);
16. If(x == 1)
17. valid=false;
18. break;
19. else
20. w1 = w2

1 ;
21. end for
22. if(valid==true)
23. return v′;
24. end for
25. return Error;
26. end for

Fig. 2. Finding Class Using Imperfect Oracle

to the 1st bit, that is, letting index l go down from n−m to 1, and creating sorted lists
Ll = {e|c−e·2l ∈ {0, . . . , 2l−1}}. In other words, listLl contains all of the possible bits
of class c from positionn−m to position l. Initially,Ln−m = {0, 1}. The transformation
from the (l+1)st list to the lth list is done by letting Ll contain all the values v such that
v = 2u or v = 2u+1, where u ∈ Ll+1. This makes the size ofLl twice the size ofLl+1.
But the size of Ll should be small. So we use the Trimming-Rule algorithm [2] (see Fig.
3) to keep the size of Ll bounded by a polynomial. Roughly speaking, this rule use the
partial information from the MSB oracle to eliminate those invalid elements from list
Ll. Since Ll is sorted, it must contains two extreme elements: the largest candidate vl

max
and the smallest candidate vl

min. At least one of them is not the correct value of cn−m,l.
If vl

max − vl
min ≤ 2m, the size of Ll is less than 2m. So, if vl

max − vl
min > 2m, we

repeatedly use the Trimming-Rule algorithm to discard one of them until the difference
is less than 2m. (See line 3-9 in Fig. 2.) In the Trimming-Rule algorithm (See Fig. 3), a
special position of c′ determines validity of vl

max and vl
min, where

gc′ = (gc · g−vmin·2l

)e mod N and e = �22m/(vl
max − vl

min)�.
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Trimming-Rule (ON,g , N , g, Ll, vl
max, vl

min, n)

1. Compute Y ′ = gc′ = (Y gvl
min2l

)e, where Y = gcyN , y ∈R �
∗
N and

e = �22m/(vl
max − vl

min)�;
2. cp = l + 2m + 1; (Set crucial point)

3. Y ′′ = (Y ′)2
n−cp

; (Shift c′’s crucial position to nth bit)
4. Randomly pick t(n) = n4/ε2 elements r1, . . . , rt(n) ∈ {0, 1}n−1;
5. Set b = 0;
6. for(k = 1 to t(n))
7. bk = ON,g(Y ′′grk);
8. b = b + bk;
9. end for

10. M = b/t(n);
11. If(M ≤ 1/2) then
12. discard vl

max from the list Ll;
13. else
14. discard vl

min from the list Ll;

Fig. 3. Trimming Rule

Randomized-Query (ON,g ,N ,g,w)

1. τ = 2n
ε2

;
2. countZero = 0, countOne = 0;
3. for(i = 1 to τ )
4. r ∈R �N , s ∈R �

∗
N ;

5. ŵ = w · grsN = gc+r(ys)N mod N2;
6. b = ON,g(ŵ);
7. if(b == msb(r)) then
8. countZero = CountZero + 1;
9. else

10. countOne = CountOne + 1;
11. end for
12. If(countZero > countOne)
13. return 0;
14. else
15. return 1;

Fig. 4. Randomized-Query
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This special position of c′, also called crucial position (shortly denoted cp), is defined
to be cp = l + 2m+ 1. It is shown in [2] that:

1. If cn−m,l = vmin, the cp-bit of x′ is 0, and the m bits to its right are also 0;

2. If cn−m,l = vmax, the cp-bit of x′ is 1, and the m bits to its right are 0.

Therefore, we can shift c′ by n − cp bits to the left to place the cp of c′ on n location.
Then, we can call the imperfect MSB oracle to learn the cp bit of c′. We use random-
ization to amplify the statistical advantage of the oracle. For further detail, please refer
to [2].

On the last iteration, we can have a polynomial size list L1 which contains a value
equal to cn−m · · · c1.

HOW TO CHECK THE RESULTS? Once we obtain the class candidates list L1 =
{v1, . . . , vt}, where t ≤ 2m, we must check each element v in L1 to see whether
v′ = d ◦ v = ClassN,g(w). But since w = gcyN mod N2 and we do not have any
knowledge of y, we can not check any value in L1 by simply encrypting it. We use
the Randomized-Query algorithm [1] (see Fig. 4) to resolve this difficulty. Catalano
et al. [1] used this procedure to amplify the statistical advantage of an imperfect LSB
oracle.

Specifically, for any v ∈ L1, we randomly select y1 ∈ �
∗
N2 , then we compute

v′ = d ◦ v and

w1 = (w/gv′
)g2n−m

yN
1 = g(c−v′)·2n−m

(y · y1)N mod N2.

By doing these, all those remaining non-zerom bits of c−v′ mod N have been shifted
to the left end, since the trimming rule assures that |c − v′| ≤ 2m. Next, we invoke
Randomized-Query algorithm m times to see whether ClassN,g(w1) is zero or not.
If it is not zero, we discard this candidate and try another one. This is because that
ClassN,g(w1) is non-zero if and only if the algorithm returns one non-zero answers
during m calls, regardless of the wrap around and carrying problems brought by com-
puting (c− v′)2n−m mod N .

Now we give the probability and time analysis of the whole class finding algorithm
with an imperfect MSB oracle (see Fig. 2). According to [2], the error probability of
the Trimming-Rule algorithm is exponentially small, specifically, less than 2−n. And
its overhead is O(n4/ε2). In the class class finding algorithm, the while loop (lines 6-
8) calls the trimming rule algorithm at most 2m = 21−log ε = 2/ε times. The results
checking part (lines 10-25) takes time at most m2m. Since at the beginning of the
algorithm we must guess the m most significant bits of c, the whole algorithm takes
time O(n5

ε4 ). Since the error probability of the trimming rule algorithm is exponentially
small and this algorithm is called polynomial times, we can get correct c with a very
high probability.

In sum, we construct a polynomial time algorithm to compute class c with the help
of a MSB oracle, whether it is perfect or not, which contradicts Assumption 1. Now we
complete the proof. �
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4 Conclusion

In this paper, we present the bit security analysis of Paillier’s trapdoor function and
show that, for w ∈ �∗

N2 , the most significant bit of w’s class is a hard-core bit. There
are several open questions in this area. Are all n bits of the class ofw are simultaneously
hard-core bits under the assumption that computing residuosity class is hard? This will
be an improvement of the simultaneous security result proven by Catalano [1] under
the B-hard assumption. Another intriguing direction is to study the bit security of the
Paillier N -th root under the RSA assumption or factoring assumption.
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Julien Bringer1, Hervé Chabanne1,2, Gérard Cohen2, and Bruno Kindarji1,2

1 Sagem Sécurité
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Abstract. Consider a device that wants to communicate with another
device (for instance a contactless one). We focus on how to withstand
privacy threats in such a situation, and we here describe how to query the
device and then identify it, with a new identification protocol solution.
The interrogation step uses the concept of identification codes introduced
by Ahlswede and Dueck. We show that this probabilistic coding scheme
indeed protects the device against an eavesdropper who wants to track
it. In particular, when using a special class of identification codes due
to Moulin and Koetter that are based on Reed-Solomon codes, we di-
rectly depend on the hardness of a cryptographic assumption known as
the Polynomial Reconstruction problem. We analyse the security and
privacy properties of our proposal in the privacy model for contactless
devices introduced by Vaudenay at ASIACRYPT 2007. We finally ex-
plain how to apply our scheme with very low-cost devices.

Keywords: Identification, Privacy, Polynomial Reconstruction Problem.

1 Introduction

In the field of contactless communication, a verifier (often called a sensor or
reader of devices) is used to identify the objects by verifying the validity of
the attached contactless devices. This is the case for Radio Frequency IDenti-
fication (RFID) systems, where devices are attached to physical objects. The
verification is realized through an authentication protocol between a device and
the verifier. Once authenticated, the verifier manages the object and allows the
owner of the object to access some service. Applications examples include in
stock management application for real-time item identification and inventory
tracking, e-passport applications, etc. Devices can also be part of a sensor net-
work that gives information on the related infrastructure around a geographical
zone.

In this context, a verifier has often to manage many devices at the same
time in the same area. Main issues are then efficiency, security and cost, and,
of course, the problem very specific to the field of contactless communication:
privacy. Many schemes to handle the latter problem have been proposed so far
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(e.g. [17,20,30,28,22,19,11,7,27,24,26,21,3]; see [8] for a more exhaustive list),
but finding an efficient solution enabling privacy of devices is still an active field
of research.

Contactless devices are generally assumed to respond automatically to any
verifier scan. We follow, in this work, an idea [23] that suggests that the verifier
directly addresses the device with which it wants to communicate. To this aim,
the verifier broadcasts the device identifier and then the corresponding device
responds accordingly. However, the emission of the device identifier enables an
eavesdropper to track it. We here look for a solution which does not require many
computations and many communications efforts, while preventing an eavesdrop-
per to be able to track a particular device. Changing the paradigm from the
situation where a device initiates the protocol to a situation where the device
identifies first the interrogation request enables to envisage new solutions.

We show that Identification Codes [1] perfectly fit to our needs. They were
introduced by Ahlswede and Dueck to enable the identification of an element
out of {1, . . . , n} by only conveying log logn bits. While transmission codes en-
able to correct messages under some noise tolerance property – i.e. to answer
the question What is the received message?, an identification code detects if a
particular message m has been transmitted – i.e. answers the question Is it the
message m?. We show that such a probabilistic coding scheme increases a lot
the job of the eavesdropper as the same identifying bit string is not used twice
except with a small probability. In particular, for the class of identification codes
of [18], a reduction to the cryptographic assumption of [15] is possible.

Our introduction of Identification Codes for authenticating devices can be
viewed in the more general context of challenge-response protocols. Each device
has an identifier m and the prover broadcasts a challenge associated to m. Here
our scheme does not rely neither on hash functions nor on a random generator
on the device side. Moreover, our work shows that our solution is very efficient
in terms of channel usage.

We first describe a general scheme based on these identification codes and
show that our scheme satisfies good security and privacy properties by analysing
it in the privacy model defined in [28]. We then explain how the scheme is suited
to very low-cost devices.

Note that the problematic of this article is not limited to interrogation of low-
cost devices; in fact, we focus on interrogation protocols and any independent
component that communicates over a noisy broadcasting channel is a potential
target (as e.g. in [4]).

2 Identification Codes

We wish to communicate mainly with contactless devices, which means that all
the communications are to pass through radio waves. As a direct consequence, a
message that is sent over the channel is publicly available to any eavesdropper.
In a realistic model where a verifier sequentially communicates with wireless
devices, it is the verifier that will initiate the communication. To that purpose,
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the verifier first beckons the device with which it wants to communicate. The
most efficient way for doing so is to use an identification code.

2.1 General Definition

Let X ,Y be two alphabets, and W η a channel from X η to Yη. W η is defined
as the probability to receive a message yη ∈ Yη given a transmitted message
xη ∈ X η. By extension, for a given subset E ⊂ Yη, W η(E|xη) is the probability
to receive a message belonging to E when xη has been transmitted.

Definition 1 (Identification Code, [1]). A (η,N, λ1, λ2)-identification code
from X to Y is given by a family {(Q(·|i),Di)}i with i ∈ {1, . . . , N} where:

– Q(·|i) is a probability distribution over X η, that encodes i,
– Di ⊂ Yη is the decoding set,
– λ1 and λ2 are the first-kind and second-kind error rates, with

λ1 ≥
∑

xη∈X η

Q(xη|i)W η(Di|xη)

and
λ2 ≥

∑
xη∈X η

Q(xη|j)W η(Di|xη)

(where W η(Di|xη) is the probability to be in the decoding set Di given a
transmitted message xη and W η(Di|xη) the probability to be outside the de-
coding set)

for all i, j ∈ {1, . . . , N} such that i �= j.

Given Q(·|i), the encoding set of i is defined as the set of messages xη for which
Q(xη|i) > 0.

Informally, an identification code is given by a set of (probabilistic) coding
functions, along with (deterministic) decoding sets. The error rate λ1 gives the
probability of a false-negative, and λ2, of a false-positive identification. We stress
that the use of an identification code in our case is more interesting than using
a transmission code for the following reasons:

– The efficiency in terms of information rate: the rate of such a code is defined
as R = 1

η log logN and can (see [1, Theorem 1]) be made arbitrary close
to the (Shannon) capacity of the channel. This means that it is possible to
identify N = 22Rη

devices with a message of length η, with constant error
rates (λ1, λ2). A regular transmission code permits only to identify 2Rη

devices.
– The transmission of an element of Di to identify the device i permits its iden-

tification without completely giving away the identity i. Indeed, an eaves-
dropper only gets the message sent xη ∈ Y η, not the associated index i. The
use of an identification code is thus a good way to enhance privacy in the
beckoning of wireless devices. This notion is formalized in Section 3.
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The proof of the result stated in [1, Theorem 1] is based on a generic construction,
exhibited hereafter. Let A1, . . . , AN ⊂ Xη be N subsets such that each Ai has
cardinal n and each intersection Ai ∩Aj for i �= j contains at most λn elements.
The encoding distribution Q(·|i) is defined as the uniform distribution over Ai;
in the noiseless case (the channel W η is the identity function) the decoding sets
are also the Ai’s. Note that in that case the false-negative rate λ1 is equal to 0
and the false-positive rate λ2 is λ.

This theoretical construction gives way to multiple practical identification
codes based on constant-weight codes, such as [16, 29, 6]. We focus on [18]
which provides a simple though efficient identification code well suited to our
application.

2.2 Moulin and Koetter Identification Codes Family

We here recall a simple construction of identification codes proposed by Moulin
and Koetter [18].

The identification code detailed in [18] is based on an Error-Correcting Code
C of length n, size N = |C| and minimum distance d over some alphabet. For
a word ci = (c(1)i , . . . c

(n)
i ) ∈ C, the corresponding set Ai is the collection of all

(u, c(u)
i ), for u ∈ {1, . . . , n}. Note that we indeed have sets Ai of constant size n;

moreover, the intersection of two different sets Ai ∩ Aj contains at most n − d
elements, which induces λ2 = n−d

n = 1 − d
n .

A Reed-Solomon code over a finite field A = Fq, of length n < q − 1, and
dimension k, is the set of the evaluations of all polynomials P ∈ Fq[X ] of degree
less than k−1, over a subset F ⊂ Fq of size n (F = {α1, . . . , αn}). In other words,
for each k-tuple (x0, . . . , xk−1) ∈ Fk

q , the corresponding Reed-Solomon word is
the n-tuple (y1, . . . , yn) where yi =

∑k−1
j=0 xjα

j
i . In the sequel, we identify a source

word (x0, . . . , xk−1) ∈ Fk
q with the corresponding polynomial P =

∑k−1
j=0 xjX

j ∈
Fq[X ].

Definition 2 (Moulin-Koetter RS-Identification Codes). Let Fq be a fi-
nite field of size q, k ≤ n ≤ q− 1 and an evaluation domain F = {α1, . . . , αn} ∈
Fq. Set AP = {(j, P (αj))| j ∈ {1, . . . , n}} for P any polynomial on Fq of degree
at most k − 1.

The Moulin-Koetter RS-Identification Codes is defined by the family of encod-
ing and decoding sets {(AP , AP )}P∈Fq [X],deg P<k.

This leads to a (log2 n + log2 q, q
k, 0, k−1

n )-identification code from {0, 1} to
{0, 1}.
Using a Reed-Solomon code of dimension k, this gives λ2 = k−1

n since d = n−k+1
(Reed-Solomon codes are Maximum Distance Separable).

2.3 Application to Our Setting

Back to our original problem of devices interrogation, here comes a brief descrip-
tion of a set-up that enables the use of identification codes to initiate a protocol
between a verifier and a device. A more formal description is given in Section 4.
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A set of M < qk devices is constructed, and each of them is associated with a
different random polynomial pl ∈ Fq[X ] of degree less than k − 1. The memory
of these devices is then filled with a set of pl(αj), for αj ∈ F , with F a public
subset of Fq, i.e. the devices contain the evaluation of pl over a subset of Fq.
The verifier is given the polynomial pl.

When the verifier wants to initiate communication with the device number l
associated with the identifier pl, it selects a random αj ∈ F and sends (j, pl(αj))
over the wireless channel. A device that receives this message checks whether the
value stored in its memory at the corresponding address is equal to pl(αj), i.e.
computes an equality test of two bit strings. If the test is successful, it replies
and goes through the authentication protocol described in Section 4. Otherwise,
it remains silent.

Consequently, only a legitimate verifier can interrogate a specific device. Next
sections emphasize the security properties reached thanks to this principle.

3 Vaudenay’s Model for Privacy

We briefly recall in this section the model for privacy, correctness and soundness
described in [28]. Our main concern is interrogation of devices, but it can be
easily seen as an authentication protocol, so we use almost the same model.

Following [28], we consider that provers are equipped with ContactLess Device
(CLD) to identify themselves. CLDs are transponders identified by a unique
Serial Number (SN). During the identification phase, a random virtual serial
number (vSN) is used to address them.

An identification protocol is defined as algorithms: First to setup the system
made of a verifier and several CLDs, secondly to run a protocol between CLDs
and verifiers. Note that we need an authority who publishes a mathematical
structure.

Setup Algorithms

– SetupAuthority(1k) �→ (KAs,KAp) generates the system parameters de-
fined by an authority (KAs stands for the private parameters and KAp for
the parameters publicly available).

– SetupVerifierKAp initializes a verifier. It may generate a private/public
set of parameters (KVs, KVp), associated to the verifier.

– SetupCLDb
KAp,KVp

(SN) generates the parameters of the CLD identified by
SN. This algorithm outputs a couple (s, I) where s denotes the secret (if
any) parameters of the CLD, I its identity within the system. It enables to
initialize the internal state of the CLD, which may be updated afterwards
during an execution of the protocol. If b = 1, it also stores the pair (I,SN)
in a database which may be made available to the verifier. If b = 0 it is a
illegitimate device.

Communication Protocol P. Along with these setup algorithms, the identifica-
tion protocol between a CLD and a verifier consists of messages sent by the two
parties. Protocol instances are hereafter denoted by π.
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Oracles. To formalize possible actions of an adversary, different oracles are de-
fined to represent ways for him to interact with verifiers or CLDs, or to eavesdrop
communications. The use of different oracles leads to different privacy levels.

Given a public set of parameters KVp, the adversary has access to:

– CreateCLDb(SN): creates a CLD with serial number SN initialized via
SetupCLDb. At this point, it is a free CLD, i.e. not yet in the system.

– DrawCLD(distr)�→((vSN1,b1),...,(vSNn,bn)): this oracle moves a random
subset of n CLDs according to a given distribution from the set of free CLDs
into the set of drawn CLDs in the system. Virtual serial numbers vSNi can
be used to refer to these CLDs. If bi is one, this indicates whether a CLD is
legitimate. This oracle creates and keeps a table of correspondences T where
T (vSN)=SN. Adversary has no knowledge of this table T .

– Free(vSN): moves the drawn CLD vSN to the set of free CLDs, i.e. vSN
cannot be used any more to query the CLD.

– Launch �→ π: makes the verifier launch a new protocol instance π.
– SendVerifier(m,π) �→ m′: sends the message m for the protocol instance
π to the verifier who may respond m′.

– SendCLD(m′, π) �→ m: sends the message m′ to the CLD who may respond
m.

– Result(π) �→ x: when π is a complete instance of P , it returns 1 if the
verifier succeeds in identifying a CLD from π and 0 otherwise.

– Corrupt(vSN)�→ S: returns the internal state S of the CLD vSN.

Types of Adversary

– Strong adversary is allowed to use all of the above oracles.
– Destructive adversary cannot use a corrupted CLD another time.
– Forward adversary cannot use any oracle after one Corrupt query, i.e.

destroys the system when he corrupts one CLD.
– Weak adversary is not allowed to use the Corrupt oracle.
– Narrow adversary is not allowed to use the Result oracle.

This defines 8 kinds of adversaries because a narrow adversary may also have
restrictions on the use of the Corrupt oracle. For instance, an adversary can
be narrow and forward, he is then denoted by narrow-forward.

Remark 1. The notion of destructive adversary is an intermediate notion be-
tween strong and forward adversaries. As explained in [19], destructive no-
tion is different from forward notion only when the system enables the intro-
duction of some correlated secrets between CLDs. This is not our case in the
sequel, so we will no further distinguish these two notions.

Three security notions are defined in this model: correctness, resistance against
impersonation and privacy.

Definition 3. A scheme is correct if the identification of a legitimate CLD
fails only with negligible probability.
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Resistance against Impersonation Attacks. The definition of resistance against
impersonation attacks (Definition 4) deals with active adversaries. Active ad-
versaries may impersonate verifiers and CLDs, and eavesdrop and modify com-
munications. This property of resistance against impersonation attacks has also
repercussions regarding privacy properties (cf. Lemma 1).

Definition 4. A scheme is resistant against Impersonation Attacks if any
polynomially bounded strong adversary is not identified by a verifier except with
a negligible probability. Adversaries are authorized to use different devices at the
same time while they communicate with the verifier. Nevertheless, the resulting
protocol transcript must neither be equal to an outputted one between a legitimate
CLD and the verifier nor lead to the identification of a corrupted CLD.

Remark 2. Obviously this means that a scheme is not resistant against imper-
sonation attacks if an adversary is able to modify on the fly outputs from a
prover without affecting the identification result.

In addition to this definition, in order to mitigate replay attacks, a legiti-
mate verifier should not output twice the same values in two complete protocol
instances, except with a negligible probability.

Note that following Remark 1, the Corrupt oracle will be useless for im-
personation attacks against our scheme (as secret are not correlated between
devices).

Similarly, and as in [22], we introduce the resistance against impersonation
of verifier where an adversary should not be able to be identified as a legitimate
verifier by a non-corrupted CLD except by replaying an eavesdropped transcript.
This is related to the notion of verifier authentication. Note that we introduce a
slight restriction in Section 5.3 as our scheme aims only at ensuring validity of
the verifier against a pre-fixed CLD.

Privacy. Privacy is defined as an advantage of an adversary over the system. To
formalize this, [28] proposes to challenge the adversary once with the legitimate
oracles and a second time with simulated oracles. In this setting, the adversary is
free to define a game and an algorithm A to solve his game. If the two challenges
results are distinguishable, i.e. if the system cannot be simulated, then there is a
privacy leakage. A game with three phases is imposed. In the first phase, A has
access to the whole system using oracles. In a second phase, the hidden table T
of correspondences is transmitted to A (note that this table is never learned by
the simulator). In a third phase, A, who is no longer allowed to use the oracles,
outputs its result. A scheme is defined as private if for any game, all adversaries
are trivial (the formal definition is given in Appendix A, Definition 7 ).

The following lemma established by Vaudenay in [28] emphasizes the link
between impersonation resistance and privacy:

Lemma 1. A scheme secure against impersonation attacks and narrow-weak
(resp. narrow-forward) private is weak (resp. forward) private.

The proof relies on the fact that an adversary is not able to simulate any CLD
if the scheme is sound. This implies that the Result oracle is easily simulated.
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Remark 3. Our model aims at dealing with identification of multiple devices. It
is therefore reasonable to amend the privacy model by stating that the Send-
CLD(m′, π) oracle cannot communicate with a single CLD, but broadcasts the
messagem′ to all the CLDs in the vicinity. Moreover, as it was shown in D’Arco et
al. [5], no privacy is possible if the adversary can deactivate a CLD, which is
possible if we allow the adversary to manipulate the CLDs one by one.

[28] proves also that narrow-strong privacy implies the use of public key cryptog-
raphy and that strong privacy is impossible in this model. In the sequel we stick
to symmetric cryptography, and that is why we do not analyse the narrow-strong
privacy any further. Furthermore, as explained in the previous remark, we ex-
clude from our model of threats the situation where the adversary communicates
with one isolated device.

4 Our Protocol for Interrogation

Our aim is for a CLD to recognize itself into a verifier request, but authentication
of the CLD toward the verifier is handled as well. That is how we set-up the
system:

– SetupAuthority(1�) generates a set of parameters KAp defining two in-
tegers η, N , two alphabets X , Y, and two error rates λ1, λ2. No private
parameter is defined.

– SetupVerifierKAp constructs an (η,N, λ1, λ2)-identification code from X
to Y following Definition 1, IC = {(Q(·|i),Di)}i∈{1,...,N}, and sets KVp =
IC. IC is based on the Moulin-Koetter construction [18] (cf. Definition 2).

– SetupCLDKVp(SN) first returns randomly chosen (i, j) ∈ {1, . . . , N}, i �= j
as the parameters of the CLD identified by SN. It then initializes the CLD
with the storage of a description of the decoding set Di of the identifier i and
the description of Q(·|j), the encoding probability mass function for index
j. It also stores (i, j, SN) in the verifier database.

A verifier and a set of devices are set-up as above and the following steps are
then processed to interrogate and authenticate a specific CLD.

– The verifier, who wants to interrogate the CLD of identifier SN, recovers its
identifier i in the database and encodes it via Q(·|i) into a message x ∈ X η.
The verifier broadcasts the message (ACK, x), where ACK is an acknowl-
edgement number which will help the verifier to sort the received answers
when it emits simultaneously several such messages.

– Any listening CLD that receives the message (ACK, y) uses its own decoding
set DiCLD to determine whether y encodes iCLD.

– If a CLD identifies y as an encoding of its identifier iCLD, then it sends the
message (ACK, x′) to the verifier, where ACK is the incoming acknowledge-
ment number and x′ is an encoding of jCLD obtained via Q(·|jCLD).
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– Upon receiving this message, the verifier then checks whether the received
message y′ is a member of the decoding set Dj of the aimed CLD. If so, then
the CLD is declared as authenticated.

Note that here x′ has to be chosen in relation with the value of y so that imper-
sonation of a CLD is not easy.

Remark 4. As a practical assumption, our interrogation protocol works as a
broadcast channel and we assume that a legitimate verifier is interrogating sev-
eral CLDs during the same period. Although it might look restrictive, recall
that our goal is to address applications where a verifier has to manage effi-
ciently a cloud of CLDs. More formally, we assume that a cloud of M CLDs is
present in the broadcast area of the verifier and that the verifier interrogates
them uniformly in a random order. In particular, an adversary is not able to a
priori distinguish the devices without trying to exploit the content of messages
exchanged.

4.1 Specifications Using Reed-Solomon Based Identification Codes

We now consider only the Moulin-Koetter setting, in particular for the security
analysis in the next sections. The description is given below (see also Fig. 1).

In this setting, a set of CLDs is constructed where each of them – say CLDl

– is associated with two different random polynomial identifiers pl, p
′
l ∈ Fq[X ]

of degree at most k − 1. Here pl and p′l are good descriptions of the associated
encoding functions and the decoding sets; they are both stored on the CLD side
and on the verifier database.

When the verifier wants to initiate communication with CLDl (with identifiers
pl, p′l), it selects a random αj ∈ F ⊂ Fq[X ] and broadcasts (ACK, j, pl(αj))
over the wireless channel. A CLD with identifiers p, p′ that receives this message
checks whether the polynomial p stored in its memory evaluated in αj is equal
to pl(αj). If the test is successful, it responds with the value (ACK, p′(αj)).
Otherwise, it remains silent. The verifier authenticates the CLD if the received
value p′(αj) is equal to p′l(αj).

Remark 5. For privacy purposes, we do not want replay attacks to be possible at
all. In order to avoid them, we add to each devices a flag bit that tells if the αj

CLD parameters Verifier
identifiers p, p′ Fq, (α1, . . . , αn) (l, pl, p

′
l)

(ACK, j, a=pl(αj))←−−−−−−−−−−−−−−−−−− Pick j

If p(αj) = a
(ACK, b=p′(αj))−−−−−−−−−−−−−−−−−−−−→ Check whether p′

l(αj) = b

Fig. 1. CLD identification via Moulin-Koetter identification codes



Private Interrogation of Devices via Identification Codes 281

was already used or not; this bit is flipped on at the reception of (j, p(αj)); after
that, a device no longer accepts such a message. This can be seen as coupons
enabling a limited number of interrogations by a legitimate verifier.

When communicating with an isolated device, it may enable an adversary to
track the device via a replay attack by listening whether the device responses.
In our situation, this does not lead to a privacy threat as the adversary is only
able to interrogate a cloud of devices which is continuously evolving.

5 Security Analysis

Remark first that the scheme is correct: In the Moulin-Koetter construction (cf.
Section 2.2) the false-negative error rate (λ1) is zero, thus the correct CLD will
always answer and be authenticated.

5.1 Assumptions

Part of our results are directly linked to solving the problem of polynomial
reconstruction (PR) [15, 14, 13, 12]:

Definition 5 ( [15]). Given n, k, t such that n ≥ t ≥ 1, n ≥ k and z, y ∈ Fn
q ,

with zi �= zj for i �= j, output all (p, I) where p ∈ Fq[X ], deg(P ) < k, I ⊂
{1, . . . , n}, |I| ≥ t, and ∀i ∈ I, p(zi) = yi. Such an instance of this problem is
noted PRz

n,k,t.

The Guruswami-Sudan algorithm [10] for the list decoding of Reed-Solomon
codes gives a way to solve the polynomial reconstruction problem when t ≥√
kn. However, no efficient solution to this problem exists when t <

√
kn and

it is reputed hard. If t < k, PR is unconditionally secure (in the information-
theoretical meaning).

Based on the assumed intractability of PR, [15] derives the Decisional PR
(DPR) problem which consists, given an instance y of PRz

n,k,t for which there
exists a solution (p, I), in determining whether a given i ∈ {1, . . . , n} is in I.
Thanks to the DPR assumption (hardness of the DPR problem), it is shown [15]
that PR instances are pseudo-random and that they do not leak any partial
information on the polynomial values.

Remark 6. In the sequel we assume that the PR and DPR problems remain hard
(with respect to the security parameter �) even in our setting – where the noise
is generated by the other queries and responses. M will be chosen so that the
DPR assumption holds when the noise is assumed to be random. To justify this
choice, we can refer to [9] which explains the link between Reed-Solomon list
decoding and the previous works on polynomial reconstruction in the mixture
model. An algorithm to reconstruct polynomials from mixed values is designed
in [2]. When considering mixed evaluations of M polynomials of degree at most
k− 1, it enables to reconstruct one of these polynomials when at least M(k− 1)
related values are available in the mixture. In the sequel, we set M greater than√

n
k so that M(k − 1) is approximately greater than

√
nk, i.e. that we obtain
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the same bound as for the solvability of PR instances. This algorithm is the
basis – although a bit simpler – of the list decoding algorithm [10] and this fact
suggests that when we get less than M(k−1) values for each polynomial with M
large, the problem of reconstructing one polynomial remains hard even without
a perfectly random noise.

5.2 Effect of Passive Eavesdropping

When listening on the channel to the queries made by a legitimate verifier and
the replies produced by legitimate CLDs, an eavesdropper sees messages of this
kind: (ACKi, ji, plji

(αji)), (ACKi, p
′
l′ji

(αji )) (for l′j such that pl′j(αj) = plj (αj)),

for some number of i’s (say i ∈ {1, . . . , T}). Note that we may also have collisions
on the αj used (i.e. ji = ji′ may occur for some i �= i′). This means that the
adversary obtains a set S of several PR instances of length less or equal to n (the
length of the overall code, see Section 2.2). Targeting a specific CLD, of identifier
p and p′, then there are at least two corresponding PR instances, PRz1

n1,k,t1
and

PRz2
n2,k,t2

where p is one solution of the first one and p′ a solution of the latter,
among the set S of all those PR instances. One difficulty for the adversary is
to sort the different messages and to deal with the collisions to extract such
instances. If we assume that there is no collision (then necessarily T ≤ n) and
that the verifier queries uniformly the M CLDs (cf. Remark 4), then it implies
that the adversary can recover these instances, but with ti ≈ ni

M . So if M is
greater than

√
n
k then the PR instances are hard.

Moreover, when the number of received messages is large, the ti’s above may
be greater than

√
kn but the adversary has to deal with the collisions and to

try all the different instances until the recovery of a solvable instance. Another
strategy is to see the problem as one longer PR instance. This is related to the
list recovery problem which is analysed in [25]. This is hard as well given some
restriction on the number of eavesdropped messages. In the sequel, we assume
that the list recovery problem in the mixture model is hard when t <

√
nk × l

with l the maximum number of collisions per zi.

Proposition 1. Assume that the number M of devices simultaneously queried
by the verifier is such that

√
q ≥ M ≥ e

√
n
k (with e = exp(1)). Then a passive

adversary, who eavesdrops at most T requests with T < M2k, cannot reconstruct
the polynomial identifiers, except with a negligible probability.

Proof. Assume that the adversary has eavesdropped T different requests with
T/M ≥

√
kn, then there may exist solvable PR instances. Now he has to find

these solvable instances among all possible instances. Following Remark 4 on
uniformity of the queries made by a verifier, we assume that the number of
different requests to each device is exactly t = T/M . (Due to the false-positive
error rate of the underlying identification code, one request will address several
additional devices and imply as many replies. In fact, as the polynomials are
chosen independently and uniformly, the number of devices addressed by one
query is strictly greater than 1 only if there is a collision during the evaluation
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of several polynomials. The assumptionM ≤ √
q enables us to neglect this point,

but the result is easily generalizable to the case M >
√
q.)

Let M ≥ γ
√

n
k where γ will be determined later. Note that if T/M < k then

it is unconditionally secure and if T < γn then T/M <
√
nk so that the PR

instances are hard. Assume that T ≥ γn, thus the number of collisions per αj

is expected to be about T/n (note that T/M ≤ n as each device is linked to
at most n different requests). To make computation more tractable, we assume
below that the number of collisions per αj is exactly T/n.

The adversary has to reconstruct one polynomial corresponding to some part
of the eavesdropped values.

The first strategy for the adversary is to find a solvable PR instance in the
classical meaning, i.e. without any collision. The number of possible PR instances
is then expected to be B =

(
T
n

)n
whereas the number of solvable instances is

A = M ×
( T/M

�√kn�
) (

T
n

)n−�√kn�. If the ratio ρ = A
B of the number of solvable

instances over the number of all possible instances is negligible then the adversary
would not find a solvable instance in polynomial time. In fact ρ is equal to

M

(
T/M

�
√
kn�

)(
T

n

)−�√nk�
.

To approximate ρ, note R = k
n the rate of the Reed-Solomon code as eaves-

dropped by the adversary. We also introduce θ > 1 such as T
M = θ

√
kn. The

notations give M = γ√
R

and T
n = θγ. A good approximation of

( T/M

�√kn
)

is, for

θ > 2, 2
T
M h2

(
M

√
kn

T

)
= 2n

√
Rθh2( 1

θ ) where h2 is the binary entropy function. This
shows that ρ can be fairly approximated by

ρ ≈ γ√
R

2n
√

R(θh2( 1
θ )−log2(θγ)).

Taking a closer look at the exponent, we see that θh2(1
θ ) − log2(θγ) = (θ −

1) log2(
θ

θ−1 )− log2(γ) is negative only if γ >
(
1 + 1

θ−1

)θ−1
. As ∀x ∈ R�, log(1+

1
x) < 1

x , we deduce that if γ ≥ e, then θh2(1
θ ) − log2(θγ) < 0. Thus, ρ ≤

M2−n
√

R log2(
γ
e ) is negligible.

This gives a negligible probability for the adversary to find a solvable instance.
This conclusion can be generalized to non-constant number of collisions as soon
as the j picked by the verifier is chosen uniformly and independently among the
different requests.

The general strategy is to apply the list recovery technique [25] derived from
the list decoding algorithm [10]. This becomes tractable as soon as T/M is
greater than

√
nk × l with l the maximum number of collisions per αj (roughly,

this corresponds to solving a PR instance of length nl). Here l = T/n and the
condition T/M ≥

√
nkl =

√
Tk is equivalent to the condition T ≥M2k. Due to

our hypothesis on the number of eavesdropped messages, the algorithm cannot
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be applied. Finally if there exists an adversary able to reconstruct a polynomial
with any other strategy, then we can exploit it to simplify the list recovery
problem within the mixture model. This would contradict its difficulty when
T/M <

√
nk × l. ��

Note that in practice, the cloud of devices is dynamic, some devices may exit or
enter the cloud around a verifier, so that the difficulty for the attacker can only
increase.

Following this proposition and via the DPR problem, then a passive adversary
cannot distinguish the answers as soon as the same interrogation request does
not appear twice. The proofs of the following results are in Appendix B.

Proposition 2. Assume
√
q ≥ M ≥ e

√
n
k and T < M2k. A passive adversary

cannot determine whether two requests correspond to the same CLD except if
there is a collision, that happens only with probability 1/

√
n.

5.3 Security against Impersonation

In our protocol, a CLD replies to the verifier only if it believes that the verifier is
legitimate. It is thus close to mutual authentication – although here the authen-
tication of the verifier is only probabilistic with respect to the false-positive error
rate of an identification code. It is a weaker result than general verifier authen-
tication: a verifier cannot be impersonated in order to interrogate a pre-fixed
CLD.

Proposition 3. Assume
√
q ≥M ≥ e

√
n
k and T < M2k. In our scheme, given

a non-corrupted CLD, an adversary cannot impersonate a verifier to interro-
gate this specific CLD, without replaying an eavesdropped transcript, except with
probability 1

q .

Of course, if no specific CLD is fixed, then impersonation of an interrogation
towards a member of a large set of CLDs is easier. With M CLDs, the probability
to reach one of them correctly is M

q .
Given this difficulty of impersonating a verifier against a chosen CLD and

the uselessness of eavesdropping (cf. Proposition 1), we deduce the resistance of
CLDs against impersonation attacks.

Proposition 4. Assume
√
q ≥M ≥ e

√
n
k and T < M2k. Our scheme is secure

against impersonation of a CLD, i.e. an adversary will fail with probability 1− 1
q .

Replay attacks on the verifier side are not important from a security point of
view as replaying a query does not give additional information to the adversary.
However, they are prevented in the scheme to maintain privacy (with replay
attacks, an adversary could track a device).

5.4 Privacy

Proposition 5. If
√
q ≥ M ≥ e

√
n
k and T < M2k, then our scheme is weak

private.
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See the proofs in Appendix B.
Moreover, even if not forward private, as the identifiers are independently

chosen among devices, the corruption of one device directly affects only this
device. Although, this level of privacy could seem low, it is exactly what we
intended to achieve and it is important to notice that contrary to the protocols
described in [28], devices do not need the use of any internal random number
generator to implement the protocol.

6 Advantages for Very Low-Cost Devices

For low-cost devices, instead of storing the two polynomial identifiers p, p′, we
store directly the values p(α1), . . . , p(αn) and p′(α1), . . . , p′(αn) within the de-
vice. So doing, no computation is needed on the device side. Depending on
the amount of memory available per device, we can also limit the number of
such values by restricting ourselves to a basis of evaluation of size L < n, e.g.
(α1, . . . , αL).

An additional advantage is that the scheme can be adapted simply to work
over a noisy channel by storing encoded versions – through some error-correcting
code – of these values p(α1), . . . , p(αL) and p′(α1), . . . , p′(αL) and the corre-
sponding index 1, . . . , L. The devices will only have to compute the distance
between the received message and the stored one.

7 Practical Parameters

For real-life low-cost CLDs, we can imagine a non-volatile memory of about
218 = 256k bits. We aim at a field size q = 264, which permits to store 212 =
4096 fields elements in the memory, i.e. 2048 evaluations of the two polynomials
pl, p′l (which implies that the length n ≤ q − 1 of the corresponding code is
n = 211).

With these parameters, we suggest the use of polynomials of dimension k = 28.
Using such a dimension permits to define qk = 264×256 possible polynomials; the
number M of devices needed in the cloud around a verifier has then to be greater
than e×

√
n
k , i.e. at least 8. With M = 256, this leads to the restriction T < 224,

which is automatically satisfied here as T ≤Mn = 219.
These parameters enable 2048 interrogations of the same device without com-

promising the device identity - both in terms of impersonation and of weak
privacy.

Remark 7. We can suppress the identification-code structure, and replace it with
a random one (i.e. replace p(αi), p′(αi) by random βi, β

′
i ∈ {0, 1}log2 q). However,

instead of storing k · log2 q bits per device at the verifier’s side, we need to store
for each device the n · log2 q bits that are stored in it. With these parameters,
this implies a storage space 8 times larger.
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8 Conclusion

Finally, it is possible to further extend the scheme toward reaching forward
privacy (equivalent to destructive privacy in this context of non-correlated iden-
tifiers): we store L < k values for each identifier p, p′ of degree at most k−1 and
erase the values p(αj) and p′(αj) after replying to the associated query. Because
we erase the values after, a corruption will not give direct access to these values
and because L < k, it is unconditionally impossible for an adversary to recover
the missing values by polynomial interpolation. Hence, the destructive privacy is
fulfilled. In this case, the false-positive rate should be quite small to avoid quick
waste of the coupons of the devices.

Acknowledgements. The authors thank the referees for their helpful com-
ments.
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A Formal Definition of Privacy

The definition given in [28] follows.

Definition 6. A blinded adversary uses simulated oracles instead of the ora-
cles Launch, SendVerifier, SendCLD and Result. Simulations are made
using an algorithm called a blinder denoted B.

To simulate oracles, a blinder has access neither to the provers secrets nor to the
secret parameters KVs. We denote AO the algorithm A when executed using
legitimate oracles and AB the algorithm A when executed using the blinder.

Definition 7. An adversary is trivial if there exists a blinder B such that the
difference ∣∣Pr

[
AO wins

]
− Pr

[
AB wins

]∣∣
is negligible.

Hence, to prove privacy, it suffices to prove that an adversary cannot distinguish
between the outputs of the blinder B and outputs made by legitimate oracles.
As stated in [28], this definition of privacy is more general than anonymity and
untraceability. To the different kinds of adversaries enumerated above correspond
accordingly as many notions of privacy.

Note that Corrupt queries are considered to always leak information on
the CLDs’ identity. For instance, an adversary can systematically open CLDs in
order to track them. In this model, such an adversary is considered as a trivial
one because a blinded adversary will succeed in the same way, as the Corrupt
oracle is not simulated. Strong privacy is defined only to ensure that CLDs
cannot be tracked using their outputs even if their secrets are known.

B Security Proofs

B.1 Security against Impersonation

Proposition 3. Assume
√
q ≥M ≥ e

√
n
k and T < M2k. In our scheme, given

a non-corrupted CLD, an adversary cannot impersonate a verifier to interro-
gate this specific CLD, without replaying an eavesdropped transcript, except with
probability 1

q .

Proof. To interrogate a CLD, the only useful information for an adversary are
the requests made by the verifier. Proposition 1 implies that this does not give
an efficient solution to the adversary for obtaining information on one identifier.

Hence, the remaining solution to interrogate a CLD is to try at random to
initiate a communication without prior knowledge of its identifier. The question
is what is the probability to succeed out of a random couple (j, a)? If a specific
CLD with identifier p is targeted, this probability is equal to Pr [p(αj) = a] = 1

q .
��
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Proposition 4. Assume
√
q ≥M ≥ e

√
n
k and T < M2k. Our scheme is secure

against impersonation of a CLD, i.e. an adversary will fail with probability 1− 1
q .

Proof. As stated in the previous proposition, impersonation of a verifier is not
possible except with probability 1

q and an adversary would need to succeed at
least k times to reconstruct the p′ polynomial of a CLD. Moreover, eavesdropping
the devices responses does not give a solution to reconstruct an identifier or to
obtain information on an identifier, as stated in Proposition 1. Furthermore
corruption is not useful here as identifiers are not correlated between CLDs
(following Definition 4, the adversary is not allowed to impersonate a corrupted
CLD). The best choice for an adversary is thus to try at random. ��

B.2 Privacy

Proposition 5. Assume
√
q ≥ M ≥ e

√
n
k and T < M2k, then our scheme is

weak private.

Proof. We first prove the narrow-weak privacy; then, Lemma 1 together with
Proposition 4 enables us to conclude. It is clear that all oracles are easy to
simulate except SendCLD and SendVerifier (Result is not simulated in
the narrow case). Concerning the latter, SendVerifier is used to generate an
interrogation request; it is simulated simply by sending a random value. As PR
instances are not distinguishable from random sequences (cf. [15]), an adversary
cannot distinguish the requests from non-simulated ones.

Concerning SendCLD, the simulator needs to simulate the output of a CLD.
For this, it can answer only on average to one request over M with a random
value. As the adversary cannot impersonate a verifier, he cannot determine if
a CLD is answering when beckoned or not. He cannot either distinguish the
answered values from PR instances as above. ��
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Abstract. Distance bounding protocols aim at avoiding relay attacks
during an authentication process. Such protocols are especially important
in RFID, where mounting a relay attack between a low-capability prover
and a remote verifier is a realistic threat. Several distance bounding pro-
tocols suitable for RFID have been recently suggested, all of which aim to
reduce the adversary’s success probability and the number of rounds exe-
cuted within the protocol. Peinado et al. introduced an efficient distance
bounding protocol that uses the concept of void challenges. We present
in this paper a generic technique called MUltiState Enhancement that
is based on a more efficient use of void challenges. MUSE significantly
improves the performances of the already-published distance bounding
protocols and extends the void challenges to p-symbols.
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1 Introduction

Radio Frequency IDentification (RFID) is a well-known technology that is used
to identify or authenticate objects or subjects wirelessly. RFID systems consist
of transponders called tags, and transceivers called readers. The proliferation of
RFID technology during the last decades results from the decreasing cost and size
of the tags and the increased volume in which they are deployed. Most of RFID
systems deployed today are passive, meaning that the RFID tags do not carry a
battery and harvest the power of the carrier wave generated by the RFID reader.

The capabilities of the tags are restricted and application-dependent. For
example, a 10-cent tag only transmits a short unique identifier upon reception of
a reader’s request, while a 2-euro tag such as those used in electronic passports
has an embedded microprocessor. The latter is able to perform cryptographic
operations within a reasonable time period. Those in current electronic passports
are typically able to compute RSA-1024 signatures. RFID tags are often also used
in applications such as mass transportation, building access control, and event
ticketing. In such applications, the computation capabilities of the tag rely on
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wired logic only. Computations are thus restricted but, nevertheless, the tags
allow for on-the-fly encryption of a few thousand bits. Strong security can thus
also be achieved with tags that offer mid-range computational resources.

While identification is the primary purpose of RFID, authentication via an
RFID tag is an important application. The common RFID-friendly authentica-
tion protocols implemented in practice are usually based on the ISO/IEC 9798
standard. Although these protocols are secure in a classical cryptographic model,
they are susceptible to Mafia fraud [4]. This attack, presented by Desmedt,
Goutier, and Bengio at Crypto 1987, actually defeats any authentication pro-
tocol because the adversary passes the authentication by relaying the messages
between the legitimate verifier (in our case the reader) and the legitimate prover
(in our case the tag). Mafia fraud is a major security issue for RFID systems,
precisely because the tags answer to any query from a reader without the consent
or awareness of their tag owner.

As illustrated by Avoine and Tchamkerten in [1], Mafia fraud may have a
real impact in our daily lives. To illustrate the problem, the authors considered
an RFID-based theater ticketing system. To buy a ticket, the customer needs
to stay in the field of the ticket machine during the transaction. The presence
of the customer in the vicinity of the machine is an implicit agreement of the
transaction. Now, let’s assume there is a line of customers waiting for a ticket.
Bob and Charlie are the adversaries: Bob is at the end of the queue, close to the
victim Alice, and Charlie is in front of the ticketing machine. When the machine
initiates the transaction with Charlie, the latter transmits the received signal to
Bob who transmits it in turn to Alice. Alice’s card automatically replies to Bob
and the signal is sent from Bob to the machine through Charlie. The transaction
is thus transparently relayed between Alice and the machine.

Mafia fraud is not caught by the classical cryptographic models because it
comprises a relay of the low-layer signal without any attempt to tamper with
the carried information. Thwarting relay attacks can thus not only rely on cryp-
tographic measures, but requires the evaluation of the distance between the
prover and the verifier. This must be done without significantly increasing the
required capabilities of the RFID tags, which eliminates computationally or re-
source intensive approaches, such as the use of global positioning systems. To
decide whether the prover is in the neighborhood of the verifier, a common ap-
proach consists for the latter to measure the round trip time (RTT) of a message
transmitted from the verifier to the prover, and then back from the prover to
the verifier. Assuming that the signal propagation speed is known, the prover
can define Δtmax that is the maximum expected RTT including propagation
and processing delays. An RTT less than Δtmax demonstrates that the prover
necessarily stays in the verifier’s neighborhood.

The work presented in this paper is based on the 3-state approach introduced
by Munilla, Ortiz, and Peinado [8,9]. Our contribution is three-fold. We show
that, based on the assumptions provided in [8,9], the 3-state approach can be
significantly improved, i.e., the number of rounds in the protocol can be re-
duced while maintaining the same security level. We then generalize the 3-state
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approach and introduce the generic concept of multistate that improves all exist-
ing distance bounding protocols. We demonstrate the effectiveness of our solution
by applying it to some well-known protocols.

In Section 2, we introduce some background related to distance bounding,
especially the protocols designed by Hancke and Kuhn [5] on one hand, and by
Munilla and Peinado [9] on the other hand. In Section 3 our 3-state enhancement
is presented, followed in Section 4 by its generalization to the p-state case. We
show in Section 5 that the case p = 4 provides a fair trade-off between security
and practicability, and analyze it when it is applied to the most common distance
bounding protocols.

2 Primer on Distance Bounding

In this section, some background about RTT-based distance bounding protocols
are provided. We present Hancke and Kuhn’s protocol (HK) [5], then Munilla
and Peinado’s protocol (MP) [8,9] is detailed. The latter improves HK using the
concept of void challenges.

As stated in [4], the measurement of the RTT should not be noised by arbi-
trary processing delays, including delays due to cryptographic operations. It is
suggested in [4] that (a) Δtmax is computed from the speed of light, (b) each
message used for the RTT measurement contains only one bit, and (c) there
are no other computation processed during the measurement of the round trip
time. These assumptions still apply today and are the foundations of all the
published distance bounding protocols for RFID [1,2,3,5,6,7,10,11,12,13]. The
protocol originally suggested by Munilla, Ortiz, and Peinado [8,9] is an excep-
tion in that it considers messages carrying three states: 0, 1, or void.

2.1 Hancke and Kuhn’s Protocol

The HK protocol [5], depicted in Figure 1, is a key-reference protocol in terms of
distance bounding devoted to RFID systems. HK is a simple and fast protocol,
but it suffers from a high adversary success probability.

Initialization. The prover (P ) and the verifier (V ) share a secret x and agree
on (a) a security parameter n, (b) a public pseudo random function H whose
output size is 2n, and (c) a given timing bound Δtmax.

Protocol. HK consists of two phases: a slow one followed by a fast one. Dur-
ing the slow phase V generates a random nonce NV and sends it to P . Re-
ciprocally, P generates NP and sends it to V . V and P then both compute
H2n := H(x,NP , NV ). In what follows, Hi (1 ≤ i ≤ 2n) denotes the ith bit of
H2n, and Hi . . . Hj (1 ≤ i < j ≤ 2n) denotes the concatenation of the bits from
Hi to Hj . Then V and P splitH2n into two registers of length n: R0 := H1 . . . Hn

and R1 := Hn+1 . . . H2n. The fast phase then consists of n rounds. In each of the
rounds, V picks a random bit ci (the challenge) and sends it to P . The latter
immediately answers ri := Rci

i that is the ith bit of the register Rci.
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Slow Phase

Prover

x, H

Verifier

x, H

NP

NV

H2n = H(x,NP ,NV )

R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n

H2n = H(x,NP ,NV )

R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n

ci

ri = Rci
i

Measure of the round-trip

time: Δti

Picks ci

For i = 1, . . . , n:

Fast Phase

Generates NP Generates NV

Fig. 1. Hancke and Kuhn’s protocol

Verification. At the end of the fast phase, the verifier checks that the answers
received from the prover are correct and that: ∀ i, 1 ≤ i ≤ n, Δti ≤ Δtmax..

Computation of the adversary success probability. The best known at-
tack is based on querying the tag with n 1-bit challenges between the slow and
fast phases in order to obtain a full register. Without loss of generality, we can
assume that the adversary obtains R0 sending only 1-bit challenges equal to zero.
Afterwards, when she tries to trick the reader, two cases occurs: (a) if ci = 0 she
definitely knows the right answer, (b) if ci = 1, she has no clue about the right
answer but she can try to guess it with probability 1

2 . Thereby, the adversary
success probability, as explained in [5], is:

PHK =
(

3
4

)n

. (1)

2.2 Munilla and Peinado’s Protocol

In order to decrease the adversary success probability of HK, Munilla and
Peinado [8,9] introduce the concept of void challenges. The basic idea is that
challenges can be 0, 1, or void, where void means that no challenge is sent.
Prover and verifier agree on which challenges should be void. Upon reception of
0 or 1 while a void challenge was expected, the prover detects the attack and
gives up the protocol. Figure 2 describes MP.

Initialization. The prover (P ) and the verifier (V ) share a secret x and agree
on (a) a security parameter n, (b) a public pseudo random function H whose
output size is 4n, and (c) a given timing bound Δtmax.
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Ti =

{
0 if H2i−1H2i = 00

1 otherwise

Prover

x, H

Verifier

x, H

NP

NV

Generates NP Generates NV

Confirmation Phase
If nothing was detected:

If Ti = 0 void challenge.
For i = 1, . . . , n,

Else:

time: Δti

Measure of the round-trip
ri

ci

Picks a bit ci

ri = Rci
i

Slow Phase

Fast Phase

H(x,R0, R1)

H4n = H(x,NP ,NV ) H4n = H(x,NP ,NV )

R0 = H2n+1 . . . H3n

R1 = H3n+1 . . . H4n

R0 = H2n+1 . . . H3n

R1 = H3n+1 . . . H4n

Ti =

{
0 if H2i−1H2i = 00

1 otherwise

Fig. 2. Munilla and Peinado’s protocol

Protocol. As with HK, V and P exchange nonces NV and NP . From these
values, they compute H4n = H(x,NP , NV ). 2n bits are used to generate a n-bit
register T as follows: if H2i−1H2i = 00, 01, or 10 then Ti = 1, otherwise Ti = 0.
Each Ti decides whether ci is a void challenge (Ti = 0) or not (Ti = 1). In the
latter case, ci will be either 0 or 1, and will be called a full challenge. The 2n
remaining bits are used to generate the two registers R0 = H2n+1 . . . H3n and
R1 = H3n+1 . . . H4n as done by HK. Upon termination of the fast phase, if the
prover did not detect any attack, he sends H(x,R0, R1) to the verifier.

Verification. The verifier checks that the received H(x,R0, R1) is correct, i.e,
the prover did not detect an attack. Then the verifier checks the Δtis and all
the values ris as it is done in HK.

Computation of the adversary success probability. In what follows, pf

denotes the probability that Ti = 1 (1 ≤ i ≤ n), i.e., a full challenge is expected in
the ith round of the protocol. The adversary success probability clearly depends
on pf . It is shown in [9] that the optimal adversary success probability is obtained
when pf = 3

5 . However, obtaining such a probability is not trivial because T is
obtained from the output of the random function H . Consequently, Munilla and
Peinado suggest to take pf = 3

4 , which is close to 3
5 and easier to generate

from H .
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To compute the success probability of an adversary, one must know that an
adversary may consider two strategies. The first strategy relies on the adversary
querying the prover before the fast phase starts. In the second one, the adversary
does not query the prover at all. In HK, it was clear that the best adversary’s
strategy was to query the prover in advance. In MP, the problem is more diffi-
cult because the prover aborts the protocol when he receives a challenge while
expecting a void one.

In the case where the adversary does not ask in advance, the adversary suc-
ceeds if no void challenge appears and if he guesses the challenge. The probability
is equal to pask =

(
pf · 3

4

)n.

On the other side, without asking the tag in advance, pnoask =
i=n∑
i=0

p(i) ·
(

1
2

)i

,

where p(i) is the probability that exactly i full challenge appears. This latter is
equal to p(i) =

(
n
i

)
· pi

f · (1 − pf )(n−i). At last pnoask =
(
1 − pf

2

)n. When pf = 3
4

the adversary chooses the no-asking strategy and his success probability is:

PMP =
(

5
8

)n

. (2)

3 MUSE-3 HK

MP is designed such that the prover always sends a void answer upon recep-
tion of a void challenge. We prove below that this approach does not exploit
the full potential of the 3-state message approach. We also introduce an im-
provement which decreases the adversary success probability while the number
of exchanged messages remains unchanged. This new protocol, called MUSE-3
HK, is an improvement over the 3-state message approach of HK. Throughout
this paper, given a protocol P , we denote by MUSE-p P , the enhancement of P
with p-state messages, where MUSE stands for MUltiState Enhancement.

In MUSE-3 HK, the initialization and verification steps do not differ from HK.
We restrict our description of the core step which differs from the HK approach.

Protocol. Our enhancement is just like in MP [9] based on the introduction
of 3-state messages rather than binary messages. However, in our approach the
three states are not used in the same way. 0,1 and the void state are no longer
treated differently and we simply refer to them as a 3-symbol. We denote these
3-symbols by {0, 1, 2}. Throughout this paper, given a protocol MUSE-p P , we
refer to a p-symbol as one of the p different p-states. We denote, by {0, . . . , p−1},
the set of these p-symbols.

As with HK and MP, V and P exchange nonces NV and NP . From these
values, they compute a bit string H(x,NP , NV ). We will discuss the length of
H(x,NP , NV ) in a following section. With this bit string H(x,NP , NV ), they
generate 3n 3-symbols {S1, . . . , S3n}. These 3-symbols are used to fill up three
registers R0, R1 and R2. In fact, each one of the three registers Rj contains n
3-symbols {Sj+1, . . . , Sj+n}.
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Slow Phase

Prover

x, H

Verifier

x, H

NP

NV

ci

ri = Rci
i

Measure of the round-trip

time: Δti

Picks ci

For i = 1, . . . , n:

Fast Phase

H(x,NP ,NV )

R0 = S1 . . . Sn

R1 = Sn+1 . . . S2n

R2 = S2n+1 . . . S3n

H(x,NP ,NV )

R0 = S1 . . . Sn

R1 = Sn+1 . . . S2n

R2 = S2n+1 . . . S3n

Generates NP Generates NV

Fig. 3. Hancke and Kuhn’s protocol with MUSE-3

After the fast phase begins, the verifier picks at random ci from {0, 1, 2}
and sends it to the prover. The prover immediately answers ri = Rci

i . Figure 3
illustrates this protocol.

Computation of the adversary success probability. In MUSE-3 HK, the
prover is not able to abort the protocol because he has no means to detect an
attack. Consequently, the success probability of the adversary is always higher
when she queries the prover before the fast phase. In such a case, the adversary
obtains one of the three registers, say R0 without loss of generality. During the
fast phase, when the adversary is challenged in a given round by the verifier
with the challenge 0, she can definitely provide the right response; otherwise she
answers randomly. Thereby, her success probability is 1

3 · 1 + 2
3 · 1

3 = 5
9 , for each

round, and the overall probability is so:

PMUSE-3 HK =
(

5
9

)n

. (3)

From equations (2) and (3), we deduce that MUSE-3 HK performs better than
MP: it provides a smaller adversary success probability with neither increasing
the number of exchanges, nor adding new assumptions compared to [9]. This
behavior can be explained by the fact that in MP the adversary earns some
information with the use of void challenges. This leak of information is no longer
an issue with MUSE-3, because the three different 3-states are used in an iden-
tical way. One may nevertheless stress that MUSE-3 HK needs more memory
than MP since 3 registers are required in MUSE-3 HK while 2 registers are
enough in MP. In the next section, we generalize the three-state enhancement
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to the p-state enhancement and analyze both success probability and memory
consumption.

4 MUSE-p HK

4.1 Hancke and Kuhn’s Protocol with MUSE-p

In this section, we consider MUSE-p HK, where p ≥ 2. The new protocol, which
generalizes MUSE-3 HK, is similar to it except that it uses:

– p-symbols from {0, 1, 2, ..., p− 1},
– p registers containing n p-symbols,
– challenges and answers are p-symbols.

There is a perfect match between MUSE-2 HK and HK, when p = 2, .

4.2 Computation of the Adversary Success Probability

In the case of HK, two different attacks strategies exist: to either query or not
query the tag in advance. If the adversary chooses to not ask in advance, at
each round she tries a response at random, so her success probability is

(
1
p

)n

.
Therefore, the best strategy for the adversary to perform a Mafia fraud when
HK is used consists in querying the prover with some arbitrary bits before the
fast phase starts. In MUSE-p HK, the same strategy is used, i.e., the adversary
queries the prover with some random p-symbols obtaining thus one register of
size n of a total of p registers. Without loss of generality, we assume that the
adversary obtains R0. When the adversary is challenged with 0, she is definitely
able to provide the right answer, otherwise she correctly answers with probability
1/p. We deduce the overall success probability of the adversary (depicted in
Figure 4) as being:

PMUSE-p HK =
(

2p− 1
p2

)n

. (4)

4.3 Generation of the Registers

We assume that the prover – in our framework, an RFID tag – is not able
to directly generate and store p-symbols. Consequently, he must generate the
symbols using a hash function that outputs bits only. The same problem occurs
for the storage: the memory needed to store one p-symbol is �log2(p)� bits. In
other words, real p-symbols exist in practice only during their transit on the
channel.

In order to generate the p-symbols, an arbitrary set A ⊆ F2�log2(p)� is defined,
such that the cardinality of A is equal to p i.e., A consists of p combinations
of �log2(p)� bits. Then the prover uses the following deterministic technique:
firstly, he defines a bijection between the set {0, . . . , p− 1} of p-symbols and A.
Secondly, he generates a stream of bits and regroups them by blocks of �log2(p)�
bits. A block belonging to A supplies one p-symbol; otherwise it is dropped.



298 G. Avoine, C. Floerkemeier, and B. Martin

Fig. 4. Success probability for the Mafia fraud depending on the number of states

Let q be the probability of picking a given element of A. Clearly, A is included
in the set of all possible combinations of �log2(p)� bits. Given that there is
2�log2(p) such combinations, we conclude that q is equal to p

2�log2(p)� .
We now define Ai the event of picking an element of A at the ith draw. If this

event happens, it means that the (i − 1)th first draws failed (no element of A
has been picked), and the ith succeeded (an element of A has been picked). As
the draws are independent, we had shown that P (Ai) = (1 − q)i−1q. According
to these observations, we deduce that P (Ai) follows a geometric distribution.
So the expectation of P (Ai) (i.e., the average number of bit blocks of length
�log2(p)� needed to pick an element of A) is 1

q .
Thanks to the previous results we know that we need 1

q ·�log2(p)� bits to create
a p-symbol. In order to filling up a register, n p-symbols have to be picked. At
last the average number of bits to be generated in order to obtain a full register
of n p-symbols is not n · �log2(p)� but:

n · �log2(p)� ·
2�log2(p)

p
.

4.4 Memory Consumption

From a theoretical point of view, using MUSE allows to decrease the adversary
success probability towards zero by increasing the value p. However the increase
of p is bounded by the memory. So, if n is the number of rounds, HK needs to
store 2n bits, MP 4n bits, and MUSE-p HK np�log2(p)� bits. Figure 5 depicts the
memory consumption given n and p. We see that memory grows quickly with the
number of states. Large values of p are thus not realistic in practice. Moreover, in
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Fig. 5. Number of bits depending on the number of states

order to optimize the memory consumption, and the generation of the registers,
and so ease the implementation, p has to be a power of two. Consequently, in
Section 5 we provide an analysis of the performance of MUSE when p = 4. This
is a good candidate because it is a small power of two which allows us to have a
good trade-off between memory consumption, number of rounds and adversary
success probability. Such a choice for p avoids the problem of generating symbols
for the registers, because all of the 2-bits combinations represent a 4-symbol.

5 MUSE-4 Applied to Some Protocols

In this section, we apply MUSE-4 to some well-known distance bounding proto-
cols and compare their performances with their original form.

5.1 Hancke and Kuhn

We begin by analyzing the performance of MUSE-4 HK with respect to mem-
ory and adversary’s success probability. We then compare the results with the
performances of the original HK, MUSE-3 HK, and MP.

Since MUSE-4 HK is a special case of MUSE-p HK analyzed in Section 4,
the evaluation of the performances is trivial. From Section 4.4, we know that
MUSE-4 HK requires the tag to store 4n bits where n is the number of rounds
and from formula (4), we get:

PMUSE-4 HK =
(

7
16

)n

. (5)
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Fig. 6. Adversary’s success probability

Table 1. Memory consumption, number of rounds, and adversary success probability

HK MP MUSE-3 HK MUSE-4 HK
Probability Memory Rounds Memory Rounds Memory Rounds Memory Rounds

10−2 32 16 36 9 42 7 40 5
10−4 64 32 76 19 90 15 88 11
10−6 94 47 116 29 138 23 128 16
10−8 128 64 156 39 186 31 176 22
10−10 160 80 192 48 234 39 216 27

The adversary success probabilities of HK, MP, MUSE-3 HK and MUSE-4 HK
are respectively given in equations (1), (2),(3), and (5). Figure 6 shows that
MUSE-4 HK clearly decreases the number of rounds of the protocol compared
to HK, MUSE-3 HK, and MP, for any fixed adversary’s success probability.

Figure 7 depicts the memory consumption according to the number of rounds.
It shows that MUSE consumes more memory than the original versions of the
protocols, but the loss is partly compensated by the reduced number of rounds.
In particular, one may notice that MUSE-4 uses the memory optimally compared
to MUSE-3 because 3 is not a power of 2. Table 1 summarizes our analysis for
different values of adversary’s success probability. It points out that MUSE-4
HK performs better than all the other candidates. For example, HK needs 32
fast phase rounds to get an adversary’s success probability as low as 10−4, while
MUSE-4 HK needs only 11 rounds to reach the same security level.
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Fig. 7. Memory consumption and success probability according to the number of
rounds

5.2 Kim and Avoine

Kim and Avoine’s protocol (KA) [6] basically relies on predefined challenges.
Predefined challenges allow the prover to detect that an attack occurs. However,
contrarily to MP, the prover does not abort the protocol upon detection of
an attack, but sends random responses to the adversary. The concept of the
predefined challenges works as follows: the prover and the verifier agree on some
predefined 1-bit challenges; if the adversary sends in advance a challenge to the
prover that is different from the expected predefined challenge, then the prover
detects the attack. The complete description of KA is provided below.

Initialization. The prover (P) and the verifier (V) share a secret x and agree on
(a) a security parameter n, (b) a public pseudo random function H whose output
size is 4n, and (c) a given timing bound Δtmax and summarized in Figure 8.

Protocol. As previously, V and P exchange nonces NP and NV . From these
values they compute H4n = H(x,NP , NV ), and split it in four registers: R0 :=
H1 . . . Hn and R1 := Hn+1 . . .H2n are the potential responses; the register
D := H3n+1 . . . H4n constitutes the potential predefined challenges; finally, the
register T := H2n+1 . . .H3n allows the verifier (resp. prover) to decide whether
a predefined challenge should be sent (resp. received): in round i, if Ti = 1 then
a random challenge is sent; if Ti = 0 then the predefined challenge Di is sent
instead of a random one.
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R0 = H1 . . . Hn
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Verifier
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time: Δti

Generates NP Generates NV

For i = 1, . . . , n:

ci =

{
Si if Ti = 1

Di otherwise
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If Ti = 1,
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i if Ci = Di

random else (error detected)

ri = Rci
i

Else,

Slow Phase

Fast Phase

H4n = H(x,NP ,NV ) H4n = H(x,NP ,NV )

R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n

T = H2n+1 . . . H3n

D = H3n+1 . . . H4n D = H3n+1 . . . H4n

T = H2n+1 . . . H3n

R1 = Hn+1 . . . H2n

Fig. 8. Kim and Avoine’s protocol

Verification. At the end of the fast phase, the verifier checks that the answers
received from the prover are correct and that: ∀ i, i ∈ {1, . . . , n}, Δti ≤ Δtmax.

MUSE-4 KA. Applying MUSE to KA does not significantly modify the pro-
tocol. Except that R0, R1, two additional registers R2, R3, and D contain 4-
symbols instead of bits, the basic principle of KA remains unchanged. In or-
der to create these registers, 11n random bits must be generated instead of 4n
for KA: Rj = H2jn+1 . . . H2n(j+1) for j ∈ {0, 1, 2, 3}, T = H8n+1 . . . H9n, and
D = H9n+1 . . .H11n. During the fast phase, the only difference between KA and
MUSE-4 KA is that in the latter case the verifier (resp. prover) sends 4-symbol
challenges (resp. responses) instead of binary challenges (resp. responses).

Comparison. In what follows, pr is the probability that Ti = 1, i.e., a ran-
dom challenge is expected in the ith rounds of the protocol. In the original
paper [6], an adversary can choose to ask or not to ask the tag in advance. If
she does not ask in advance, her success probability is

( 1
2

)n for the original pro-
tocol, and it is

( 1
4

)n with MUSE-4. If the adversary queries the tag in advance,
the cumulated probability of not being detected by the reader in the ith round is
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Fig. 9. Adversary’s success probability when pr = 1/2

Table 2. Memory consumption, number of rounds, and adversary success probability,
when pr = 1/2

KA MUSE-4 KA
Probability Memory Rounds Memory Rounds

10−2 48 12 66 6
10−4 76 19 99 9
10−6 88 22 121 11
10−8 116 29 154 14
10−10 140 35 187 17

1
2 + 1

4 ·
( 1

2 + 1
2 · pr

)i−1. With MUSE-4, and following the same computations as
done in [6], we find that the cumulated probability of not being detected by the
reader in the ith round is:

1
4

+
3
16

·
(

1
4

+
3
4
· pr

)i−1

.

Figure 9 shows how the adversary’s success probability evolves, depending on
the number of rounds, when pr = 1/2.

As previously explained with HK, MUSE-4 KA requires the tag to store more
bits than KA per round (11 bits instead of 4 per round). However, this drawback
is partly compensated by the fact that MUSE-4 KA reduces the number of
rounds, and so the total required memory. Table 2 points out that MUSE-4
divides by 2 the number of rounds when used with KA, while keeping the same
security level.
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5.3 Brands and Chaum

Brands and Chaum’s protocol (BC) [2] is the earliest distance bounding protocol.
BC is the protocol that provides the lowest adversary success probability for a
given number of rounds that is

( 1
2

)n. This nice property is explained by the
fact that BC requires a final signature after the fast phase of the protocol, as
described below and summarized in Figure 10.

Initialization. The prover and the verifier share a secret x and agree on (a) a
security parameter n, (b) a commit scheme, and (c) a given timing bound Δtmax.

Protocol. Both of the prover and the verifier generate n bits, ci for the verifier
and mi for the prover. Then the prover commits on n bits mi using a secure
commitment scheme. Afterwards, the fast phase begins. The verifier sends ci to
prover. The latter immediately answers ri = ci ⊕ mi. Once the n rounds are
completed, an additional phase, called the authentication phase is executed: the
prover opens the commitment, concatenates the 2n bits ci and ri into m, and
signs it with his secret x.

Verification. After the commitment opening the verifier checks that the ris are
those he expected. Then he computes m in the same way than the prover did,
and verifies that the signature is valid and that no adversary have changed the
challenges or the responses. He finally checks that: ∀ i, 1 ≤ i ≤ n, Δti ≤ Δtmax.

MUSE-4 BC. When using MUSE-4 BC, prover and verifier must each generate
n 4-symbols, that is 2n bits: instead of picking some bits, they pick at random
the mi for the prover, and the ci for the verifier in {0, 1, 2, 3}. The commit is
done as usual, but the mi are no longer encoded on one bit but on two bits.

For the fast phase, ri is still equal to ci +mi, except that the is done modulo
4 instead of modulo 2.

Concatenates c1r1 . . . cnrn = m

Prover

x, H

Verifier

x, H

ci

ri

Measure of the round-trip

time: Δti
ri = ci ⊕ mi

Slow Phase

Fast Phase
For i = 1, . . . , n:

Authentication Phase

open commit, msign

commit(m1, . . . ,mn)

Generates c1, . . . , cnGenerates m1, . . . ,mn

Fig. 10. Brands and Chaum’s protocol
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Fig. 11. Adversary success probability depending on the number of rounds for BC

For the authentication phase, the length of m is 4n bits: we have to map F4
on F2 × F2. Afterwards the prover can send the signed bit-string.

Comparison. The use of MUSE-4 highly decreases the adversary success prob-
ability. For the original protocol [2], it is:

PBC =
(

1
2

)n

. (6)

This probability is explained by the fact that the adversary fails as soon as she
sends a wrong challenge to the prover, due to the final signature. With MUSE-4,
the adversary succeeds with probability 1

4 at each round instead of 1
2 . We so

obtain:

PMUSE-4 BC =
(

1
4

)n

. (7)

Formulas (6) and (7), represented in Figure 11, point out the advantage of
MUSE-4 BC over the original BC. Table 3 shows how the number of rounds
and the memory consumption evolve for a given level of security. We can see
that in the case of BC, MUSE-4 BC consumes the same memory than the orig-
inal protocol, while it is twice faster.

6 On the Implementability of MUSE

Most RFID protocols in the HF and UHF frequency bands use amplitude modu-
lation between two different states for signalling between reader and tag. For the
reader-to-tag channel, the signal is typically modulated between one level that
represents the carrier-wave amplitude and an attenuated level. Pulse duration
coding where the duration for which the signal is attenuated is varied is used
to encode two different logical symbols. For the tag-to-reader signaling, the tags
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Table 3. Memory consumption, number of rounds and adversary success probability

BC MUSE-4 BC
Probability Memory Rounds Memory Rounds

0.0156 12 6 12 3
0.0000153 32 16 32 8
3.81 · 10−6 36 18 36 9
1.49 · 10−8 52 26 52 13
2.33 · 10−10 64 32 64 16

either load modulate the reader signal (at LF and HF) or backscatter some of
incident electromagnetic wave (UHF). Coding schemes used include Manchester,
Miller, and FM0 encoding.

To accommodate MUSE-3, we need to encode three different symbol states on
the reader-to-tag and tag-to-reader channel. This can be accomplished by using
the existing coding schemes that define logical 0 and logical 1 and interpreting the
absence of a modulated signal in the predefined timeslot for either the challenge
or the response as the third symbol. This assumes that there is all other tags in
the range of the reader will remain silent. Encoding MUSE-p with p ≥ 4 using
the same overall symbol periods require either more than two modulation levels,
additional phase modulation or the use of higher bandwidth signals. All of which
come at the expense of the signal-to-noise ratio required for reliable decoding of
the signals and required complexity of the decoder.

The turn-around-times between reader and tag signaling are typically of the or-
der of a few milliseconds in HF protocols and microseconds in UHF systems. The
turn-around-times are needed to allow for the decoding of reader commands in the
tag microchip and to reduce noise in the reader receiver circuitry resulting from
the modulation of the reader signal. Detecting additional propagation delays re-
sulting from relay attacks over short distances such as a few meters (corresponding
to delays of the order of a tens of nanoseconds)will thus be difficult due to the large
turn-around-times. In a sophisticated relay attack, the adversary can also reduce
the processing delays resulting from the decoding of the original reader commands
significantly by operating the tag emulator at a higher clock speed. This is possible
because the emulated tag can be battery-powered and is thus not constrained by
the limited power budget of an ordinary passive tag.

7 Conclusion

We introduced in this paper the concept of p-symbol that extends the void
challenges suggested by Munilla, Ortiz, and Peinado, and we provided a generic
p-symbol-based technique that behaves better than the original Munilla et al.’s
protocol. Our solution, called MUSE, is generic in the sense that it can be used
to improve any distance bounding protocols. We provided a formal analysis of
MUSE in the general case, and illustrated it when p = 3 and p = 4.

We definitely believe that distance bounding protocols require further analysis
since they form the only countermeasure known today against relay attacks.We are
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already surrounded by several billion RFID tags and so potential victims of relay
attacks, especially when our tags serve as access keys or credit cards. Contactless
smartcard manufacturers, and more generally RFID manufacturers, recently un-
derstood the strength of relay attacks and the threat for their business.
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Abstract. This paper investigates a new family of RFID protocols called
Ff that grew out of a proposal made at ESORICS 2007. This family has
the property of having highly efficient implementations and simultane-
ously providing some security arguments which shares some features with
the HB protocol family. In this work, we exhibit links between the Ff

protocol and the LPN problem, and demonstrate two attacks against the
Ff family of protocols which run with a time complexity of about 252

and 238 respectively against the instance proposed by the designers that
has a 512-bit secret key. Our two attacks have the nice property that
they only require interactions with the tag alone and does not involve
the reader.

1 Introduction

Radio Frequency IDentifiers (RFID) are tiny electronic tags attached to items
that allow them to be identified in an automatic way, without requiring physical
access or line of sight. The main incentive to their introduction has been the
ease and simplification of the supply chain management, but RFID tags already
found a great variety of applications: postal tracking, tickets in transportation
networks, airline luggage tracking, counterfeits fighting. . . The economics behind
the above mentioned use-cases requires that RFID tags can be built at a very
low cost, which translates into very strong design constraints for security. In
particular, the memory available is very limited and the overall number of gates
must be lower than a few thousand for most of the applications.

These constraints explain why the first RFID tags basically only hold a unique
identifier. This however, posed a security threat as the RFID tags entered more
and more into the life of end users, attached to the items they carry around.
To solve these security issues, several proposals have been made, with different
trade-offs between security and efficiency. As an example, forward-privacy was
reached at the expense of embedding hash functions [15], whereas several authors
tried to reduce the resources needed by common cryptographic primitives as
much as possible: a lightweight block cipher, PRESENT, was proposed in [4], a
clever tweak of Rabin’s mapping, SQUASH, was introduced in [17]. One line of
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cryptographic designs that looked very promising is built around the problem
of learning parity with noise (LPN) and was initiated by the introduction of the
HB protocol [10]. But reaching high security requirements proved to be hard as
shown by the cryptanalysis of the members of this family. The HB protocol is
secure against passive attackers, but fails against a simple active attack. The
HB+ protocol introduced in [11] corrected this but succumbed a more subtle
active attack [7]. Almost every other proposals were flawed in some way [8], and
the most robust proposal to date might be [9].

Although the simplicity of protocols from the HB family and the fact that
they build on the LPN hard problem make them very attractive, they have the
main drawback of requiring quite long secret keys to be able to reach a given
level of security. Some alternatives to the HB family have recently appeared. One
of these was introduced by Chichoń, Klonowski, and Kuty�lowski in [6] where the
secret consists in the knowledge of linear subspaces, but this proposal has been
recently broken [12]. Another recent proposal that shares some features with
HB-like protocols is the Ff protocol recently proposed in [2] which aims for an
implementation that fits about 2kGE for which best known attacks require a
time complexity of more than 2130.

In this work, we study the security of the Ff protocol, and exhibit two key-
recovery attacks on it. For the parameters chosen by the authors (512-bit secret
keys) our best attack runs in time 238. Moreover, our two attacks only require to
query the tag and do not need to interact with the reader. In order to explain our
attacks, we first expose the LPN problem and give the best known algorithms
to solve it. We then briefly describe the Ff protocol which shares some features
with the HB protocol together with its main underlying building block, the
f function, very similar in spirit to a universal hash function family. After this
preliminary descriptions, we explain the connexions between the Ff protocol and
the LPN problem. We then proceed to a study of the f function that unveils
some of its properties that we use in our attacks. The first of our attacks indeed
directly relies on the particularities of the function f to lower the complexity of
the LPN problem underlying the Ff protocol. Our second attack relies on the
existence of collisions in the random number generator used in Ff to mount a
low complexity key-recovery.

2 Learning Parity with Noise

We now describe the problem of learning parity with noise (hereafter the LPN
problem). To this end, let us denote the scalar product of two vectors x and y
of GF(2)n by x · y. The problem of recovering a binary vector s ∈ GF(2)n given
the parity of a · s for randomly chosen vectors a of GF(2)n is easy: given any set
{(ai, ai · s)} where the ai span GF(2)n, the value of s can be found by Gaussian
elimination. In the case of LPN, the problem consists in learning the parity in
the presence of noise: given enough values (a, a·s⊕ν) where a is randomly chosen
and Pr[ν = 1] = ε, recover the value s. The LPN problem is much more difficult
and the best currently known algorithms have a time complexity of 2Θ(n/ log(n)).
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Let us denote by x Δ←− X the random choice of an element x from X according
to the probability distribution Δ. We also denote by $ the uniform distribution,
by Berε the Bernouilli distribution of parameter ε ∈]0, 1

2 [, that is Pr[ν = 1] = ε

and Pr[ν = 0] = 1 − ε for ν Berε←−−− GF(2). The LPN problem can be stated more
formally as follows:

Definition 1 (LPN Problem). Let s be a vector randomly chosen from GF(2)n,
ε ∈]0, 1/2[ be some noise parameter, and Os,ε be an oracle that outputs indepen-
dent values according to the following distribution:{

a
$←− GF(2)n; ν Berε←−−− GF(2) : (a, a · s⊕ ν)

}

An algorithm A such that

Pr
[
s

$←− GF(2)n : AOs,ε(1n) = s
]
≥ δ ,

running in time at most T using at most M memory and making at most
q queries to oracle Os,ε is said to (q, T,M, δ)-solve the LPNn,ε problem.

The LPN problem can be reformulated as the problem of decoding a random
linear code, which is well-known to be NP-complete [1]. Combined to the ex-
treme simplicity of implementation of scalar products over GF(2)n, this hard-
ness makes it a problem of choice for the design of cryptographic primitives. It
has served, among other cryptographic uses, as main building block of various
RFID protocols designs [10,11,9,5].

As stated above, the best known algorithms have a complexity of 2Θ(n/ log(n)).
The first algorithm to reach this complexity has been proposed by Blum, Kalai,
and Wasserman in [3] and uses ideas similar to that put into use in the general-
ized birthday paradox [20]. By introducing the Walsh-transform during the last
step of the BKW algorithm, Levieil and Fouque were able in [13] to give a sen-
sible improvement of the complexity. Typical values of the complexity of the LF
algorithm and stated in terms of memory sorting are given in Table 1. Finally,
both algorithms given above require 2Θ(n/ log(n)) queries. As noted in [14], it is
possible to lower this number of queries to Θ(n) by first generating very low-
weight linear combinations of the original set of queries; the loss of independence
does not seem to have a great impact in practice [13].

Table 1. Complexity of the algorithm LF1 from [13] to solve an LPN problem over
vectors of n bits and with an error probability of ε. The table should be read in the
following way: it takes 2130 bytes of memory to solve LPN problem with n = 512 and
a noise parameter of ε = .49.

ε\n 128 192 256 512 640

0.0001 13 17 21 36 44

0.2500 34 41 55 89 109

0.4375 44 53 66 105 130

0.4900 55 67 88 130 162
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3 The Ff Family of Protocols

At ESORICS 2007, a new RFID protocol was proposed [16] that relies on a
lightweight function called DPM in order to perform identification. DPM is a
function of degree two in the secret key and is very weak as it only involves very
few of the set of possible monomials of degree two. Even more problematic is
the fact that an attacker is able to access the output of the DPM function for
various inputs, leading to very simple algebraic attacks [19,18].

In order to deal with these issues, a new family [2] of lightweight functions Ff

was designed, and the RFID protocol was reworked. The rationale behind the
design of this protocol is to minimize the workload on the tag. To this end,
it uses a lightweight function with an output of very small size instead of the
usual cryptographically strong hash functions. This, however, implies colliding
outputs for a large number of the secret keys; the resulting ambiguity is resolved,
as usual, by using a large number of interactions. The most interesting feature of
this new protocol lies in the way it prevents an attacker from having direct access
to Ff ’s output: instead of providing the reader (and thus, the attacker) with a
lightweight function of a known random R and the secret key K, it manages
to keep some level of uncertainty. This calls for a parallel with the HB family
of protocols [10,11,9,5] where at each pass, a very simple function is used—a
scalar product between R and K, but some uncertainty is ensured by adding
noise.

Before describing the protocol that relies on it, let us first describe the Ff func-
tion family. The Ff function is built around a small fan-in function f : GF(2mt)×
GF(2mt) → GF(2t). The function f operates on the t-bit blocks of its mt-bit
inputs. As described in Figure 1, Ff in turn operates on mt-bit blocks of lmt-bit

Fig. 1. The Ff function
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inputs. Denoting by x[i] the i-th mt-bit block of any lmt-bit value X , we can
define Ff as:

Ff (K,R) =
l⊕

i=1

f
(
k[i], r[i]

)
.

We now turn to the description of the protocol itself. Each tag TID in the system
is initialized with a pair of secret keys (KID,K

′
ID) and the back-end system

stores the corresponding tuples (ID,KID,K
′
ID) in its database. An execution of

the protocol proceeds as follows:

– the reader sends a nonce N ∈ GF(2lmt) to the tag TID;
– the tag TID replies with a seed ρ, and the following q values:

v1 = Ff (KID, R
a1
1 ) ⊕ Ff (K ′

ID, N1) ,

v2 = Ff (KID, R
a2
2 ) ⊕ Ff (K ′

ID, N2) ,
...

vq = Ff (KID, R
aq
q ) ⊕ Ff (K ′

ID, Nq) .

The seed ρ is used to generate q sets {R1
i , . . . , R

d
i } consisting of d random values

computed by the tag using a simple LFSR. To generate the i-th value sent to
the reader, the tag TID first secretly selects a number ai in {1, . . . , d} and then
computes

Ff (KID, R
ai

i ) ⊕ Ff (K ′
ID, Ni)

using the corresponding Rai

i , one out of the d random values from the i-th set.
The rational behind generating the q sets of d randoms is to avoid sending them
over the air and thus, to prevent an active attacker from tampering with them.
(In a similar way, the tag uses the same LFSR to derive the values N1, . . . , Nq

from the nonce N .)
On the reader side, the answer of the tag is processed as follows. From the

seed ρ, the reader first derives the q sets of d random values {R1
i , . . . , R

d
i }. Then,

for each of the q received values vi, the reader discards from its database every
identity j such that:

∀a ∈ {1, . . . , d} Ff (Kj , R
a
i ) ⊕ Ff (K ′

j, Ni) �= vi .

Obviously, a valid tag is never discarded as vi is obtained at least when a = ai.
Additionally, if the f function is well balanced, the parameters d and t can be
chosen in such a way that by increasing q, the probability of accepting invalid
tag is negligible, see [2] for further details.

Since it is well known how to design identification protocols with crypto-
graphically strong hash functions, the main advantage of the Ff protocol is to
allow for highly compact implementations. As cryptographic hash functions and
lightweight block ciphers currently respectively require around 7 kGE and 5 kGE,
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the Ff protocol targets implementations of size about 2 kGE. The practical set
of parameters given in [2] is

lmt l m t

256 64 1 4
d q

8 60

and the function f : GF(24) × GF(24) → GF(24), (r, k) �→ z is such that

z1 = r1k1 ⊕ r2k2 ⊕ r3k3 ⊕ r4k4 ⊕ r1r2k1k2 ⊕ r2r3k2k3 ⊕ r3r4k3k4 ,
z2 = r4k1 ⊕ r1k2 ⊕ r2k3 ⊕ r3k4 ⊕ r1r3k1k3 ⊕ r2r4k2k4 ⊕ r1r4k1k4 ,
z3 = r3k1 ⊕ r4k2 ⊕ r1k3 ⊕ r2k4 ⊕ r1r2k1k4 ⊕ r2r3k2k4 ⊕ r3r4k1k3 ,
z4 = r2k1 ⊕ r3k2 ⊕ r4k3 ⊕ r1k4 ⊕ r1r3k3k4 ⊕ r2r4k2k3 ⊕ r1r4k1k2 ,

(1)

where (r1, r2, r3, r4), (k1, k2, k3, k4), and (z1, z2, z3, z4) respectively stand for a
representation of r, k, and z in GF(2)4. Let us also note the projection πi

from GF(24) to GF(2) that, according to this representation, sends any element
of GF(24) to its i-th output bit: πi(z) = zi.

Our two attacks given below work for other values of t, but in order to ease
the exposition, we focus on the choice of t = 4 made by the authors of Ff .

4 Preliminary Remarks for the Attacks

4.1 On the LPN Problem Underlying Ff

If we discard the anti-replay nonce, the problem of recovering the key K in the
Ff protocol can be seen as an LPN problem. Indeed, each of the q values vi sent
by the tag to the reader yields an equation involving some R among d possible
values R1

i , . . . , Rd
i . Therefore, the attacker can always collect the equations

Ff (R1
i ,K) = vi, . . . , Ff (Rd

i ,K) = vi for i = 1, . . . , q and for several executions
of the protocol. Each equation (which is defined over GF(2t)) can be projected
over GF(2). Then, for each i and each execution, at least one of the d values Rj

i

yields t correct boolean equations, whereas the other ones are uniformly wrong
or false when Ff is well balanced, as requested by the design. Therefore, the
probability that a boolean equation from the set collected by the attacker is
true is 1

d + d−1
d

1
2 . Now the equations contain terms of degree 2 in the key bits:

for the parameters chosen by the authors (t = 4 and 256-bit keys), there are
6 · 64 monomials of degree exactly two, and 4 · 64 linear terms. Moreover, the
choice of d = 8 yields a huge noise of ε = .4375. Therefore, as stated in Table 1,
a direct tentative to solve the LPN problem underlying Ff by linearization of
the 640 monomials would have a complexity of 2130.

4.2 Structure of the f Function

The f function at the core of the Ff protocol is strongly constrained, and con-
sequently exhibits a quite specific structure. Indeed, for the protocol to be both
complete and sound (i.e. reject invalid keys with overwhelming probability), the
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f function must be well balanced on its inputs. We now study the effect of the
following function τ on the output values of f :

τ : GF(24) → GF(2) , x �→ π1(x) ⊕ π2(x) ⊕ π3(x) ⊕ π4(x) .

According to the definition (1) of f , we derive the following facts:

∀r ∈ {0x0, 0xf} , τ
(
f(k, r)

)
= 0

∀r ∈ {0x1, 0x2, 0x4, 0x8} , τ
(
f(k, r)

)
= k1 ⊕ k2 ⊕ k3 ⊕ k4

∀r ∈ {0x5, 0xc} , τ
(
f(k, r)

)
= k1k3 ⊕ k3k4

∀r ∈ {0x6, 0xa} , τ
(
f(k, r)

)
= k2k3 ⊕ k2k4

∀r ∈ {0x3, 0x9} , τ
(
f(k, r)

)
= k1k2 ⊕ k1k4

and

τ
(
f(k, 0xe)

)
= (k1 ⊕ k2 ⊕ k3 ⊕ k4) ⊕ (k1k3 ⊕ k3k4)

τ
(
f(k, 0xb)

)
= (k1 ⊕ k2 ⊕ k3 ⊕ k4) ⊕ (k2k3 ⊕ k2k4)

τ
(
f(k, 0xd)

)
= (k1 ⊕ k2 ⊕ k3 ⊕ k4) ⊕ (k1k2 ⊕ k1k4)

τ
(
f(k, 0x7)

)
= (k1 ⊕ k2 ⊕ k3 ⊕ k4) ⊕ (k1k3 ⊕ k3k4) ⊕ (k2k3 ⊕ k2k4) ⊕ (k1k2 ⊕ k1k4)

where, in order to save space, an element (z1, z2, z3, z4) of GF(2)4 is denoted by
the corresponding nibble ‘0xz1z2z3z4’. Therefore, τ

(
f(k, r))

)
is always a linear

combination of the four bits c1, c2, c3, and c4 defined as

c1 = k1 ⊕ k2 ⊕ k3 ⊕ k4 ,

c2 = k1k3 ⊕ k3k4 ,

c3 = k2k3 ⊕ k2k4 ,

c4 = k1k2 ⊕ k1k4 .

Our two attacks against the Ff protocol both lead to a step where we have to
solve for the values of c1, . . . , c4 instead of the values of k1, . . . , k4. Although
the underlying mapping that sends k to c is not one-to-one, we will show that k
can be derived from the knowledge of c and a few interactions with the system,
this for a very low computational complexity.

Direct implications for the Ff protocol. It is interesting to note that the
structural property of f uncovered by τ reveals a whole set of weak keys. Indeed,
it is easy to check that: ∀r, ∀k, τ(f(r, k)) = τ(f(k, r)). As an example, if K is
such that for all i, k[i] ∈ {0x0, 0xf} then ∀r, τ(f(r, k)) = 0, a property that
can be easily distinguished. Also, if k[i] ∈ {0x1, 0x2, 0x4, 0x8, 0x0, 0xf} for all i,
τ(f(r, k)) is a linear combination of r, for any r; again, this can be distinguished.
There are 264 keys of the first type and 664 � 2165 keys of the second type.

Also, the symmetry of f with respect to r and k shows that there is a very
large class of randoms N such that Ff (K ′, N) = 0. This fact can be used
by an attacker to get information about Ff (K,R) directly instead of through
Ff (K,R) ⊕ Ff (K ′, N).
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5 LPN Solving Attack

In the description of our first attack, we make use of the following property
that was exhibited at the end of Section 4.2: while the tag answers with a
value Ff (KID, R

ai

i ) ⊕ Ff (K ′
ID, Ni) to the reader, the attacker—when simulat-

ing a reader—is able to choose “nonces” N (such as N = 0 for instance) so that
Ff (K ′

ID, N) = 0 for any K ′
ID. In the following, we therefore assume without loss

of generality that the tag directly answers with Ff (KID, R
ai

i ), and thus, that the
attacker’s goal is to recover the part KID of the tag’s secret key. (We also note
that once KID has been recovered, it is immediate to additionally recover K ′

ID as
the answers of the tag become deterministic in the bits of K ′

ID and the solving
complexity of a simple linearisation is negligible compared to the complexity of
the rest of the attack.)

5.1 The LPN Problem through τ

As we have seen in Section 4.1, it is possible to put the Ff protocol into the
framework of the LPN problem. However, the protocol parameters have been
chosen to escape a straightforward attack. In order to lower the complexity, we
take advantage of the properties of f exhibited in Section 4.2. This requires to
consider the LPN problem associated with τ ◦ f instead of with f .

Let us recall that during an execution of the protocol, the tag sends q values
vi defined over GF(24) as vi = Ff (KID, R

ai

i ). An attacker who collects equations
of the type τ(vi) = τ

(
Ff (KID, R

a)
)

for every possible a ∈ {1, . . . , d} will get
noisy equations on the bits of KID. What is exactly the corresponding noise ε ?
The probability that the above boolean equation is true is 1 in the case where
a = ai and 1

2 otherwise, so that 1 − ε = 1
8 + 7

8
1
2 , that is ε = 0.4375.

5.2 Lowering the Complexity of the LPN Problem

In order to lower the complexity of the above LPN attack, we seek to lower
the number of unknowns involved, as this is the parameter having the strongest
impact on the complexity. We can achieve a 25% reduction of the number of
unknowns using the following fact stated in Section 4.2:

Prr

[
τ(f(k, r)) = 0

]
= 2

16 , Prr

[
τ(f(k, r)) = c1

]
= 4

16

Prr

[
τ(f(k, r)) = c2

]
= 2

16 , Prr

[
τ(f(k, r)) = c3

]
= 2

16 ,

Prr

[
τ(f(k, r)) = c1 ⊕ c2

]
= 1

16 , Prr

[
τ(f(k, r)) = c1 ⊕ c3

]
= 1

16 .

Indeed, the above values show that the probability over the randoms r that a
4-bit block contribution f(k, r) to Ff (K,R) only involves c1, c2, and c3 instead
of all four unknowns c1, . . . , c4 is equal to μ = 12

16 � 2−0.415. In order to lower the
number of unknowns involved in the LPN problem from 4 · 64 bits to 3 · 64 bits,
the attacker seeks a seed ρ such that at least one value among the qd randoms
R1

1, . . . , Rd
1 , R

1
2, . . . , Rd

q has all its 4-bit blocks of the requested form. This
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happens with probability 1− (1−μ64)qd � qdμ64. Thus, about 217.6 interactions
with the tag will give one boolean equation to solve the underlying LPN problem
with noise ε = 0.4375 on 192 unknowns. As explained in Section 2, it is enough
to collect 4 · 192 equations to produce the number of samples by considering
all linear combinations of weight four, yielding a total number of interactions
with the tag lower than 228. As shown in Table 1, the cost for solving the LPN
problem becomes about 253—to be compared to the complexity of 2130 of the
original LPN problem.

Once the values of c1, . . . , c3 are known, the attacker derives a new set of
equations by interacting with the tag, this time removing the constraints on
the initial random seed ρ chosen by the tag. This provides the attacker with a
set of equations in the four values c1, . . . , c4 for each 4-bit block in which the
attacker substitutes the value of c1, . . . , c3 just recovered: this yields another
LPN problem with 64 unknowns the complexity of which is negligible compared
to the complexity of the previous LPN problem. After this step, the attacker
knows c1, . . . , c4 for every 4-bit block of the key K.

5.3 Recovering the Key K

At this point, the attacker gained knowledge of c1, . . . , c4 for each of the 64 blocks
of 4 bits, and thus is able to predict the value τ

(
f(R,K)

)
for any R. However,

there still remains to get the value of the bits of K to be able to predict Ff (R,K)
and as explained in Section 4.2, the mapping from (k1, k2, k3, k4) to (c1, c2, c3, c4)
is not one-to-one.

One possibility for the attacker to overcome this issue is to use her knowl-
edge of c1, . . . , c4 for each 4 bits block that allows her to predict with absolute
certainty the value τ(Ff (R,K)) for any R. Therefore, the attacker enters a
few additional interactions with the tag (once again using nonces N0 such that
Ff (N0,K

′) = 0). For each of the q values vi = Ff (Ra
i ,K) returned by the tag

during an interaction, the attacker computes the d values bj = τ(Ff (Rj
i ,K))

for j = 1, . . . , d. If exactly one of {b1, . . . , b8}, say bj0 , is equal to τ(vi), then
we know that necessarily a = j0. This yields an exact equation over GF(24),
namely Ff (Rj0 ,K) = vi, involving all the bits of K. As this event happens only
when the d− 1 values bj where j �= a are equal to vi ⊕ 1, it occurs with proba-
bility 1

2
d−1. In order to collect N exact equations on the key bits, the attacker

needs N 1
q 2d−1 interactions with tag, which is lower than 210 for the parameters

chosen by the authors of Ff (these parameters yields N = 640 different monomi-
als in the key bits). The resulting system can then be solved with a complexity
of N3 � 226.

6 A Resynchronization Attack

Contrary to the previous attack which recovers K, our second attack aims to
recover K ′: even without the knowledge of K, the attacker is able to replay any
valid execution of the protocol (this includes traces obtained when the attacker
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takes the role of the reader) by removing the contribution involving K ′ and an
incorrect nonce from the trace and incorporating the correct value involving K ′

and the nonce challenged by the reader.
The starting point of our second attack to recover K ′ is the internal generator

that produces the random numbers R1
1, . . . , Rd

1, . . . , R1
q , . . . , Rd

q of an execution
of the protocol. As the goal of Ff is to fit under the 3kGE limit, this number
generator was chosen with a 64-bit internal state. As this generator does not
directly manipulate the key bits, the designers claimed that the uniformity of
its output is the only constraint, and that the generator does not need to be
cryptographically secure [2]:

“We do not care about the secrecy or predictability of the internal state
of PRNG, but only require (pseudo-)random properties for the Rs for
statistical purposes as discussed in the next sections. Therefore, we can
safely use a cheap LFSR to derive R with good enough randomness.”

The authors therefore chose to implement it as an LFSR, but our attack only
relies on its reduced entropy; it remains valid with any other pseudo-random
generator with a 64-bit internal state.

6.1 Deriving Noisy Information on K′

The main idea of the attack to recover information about K ′ is to find collisions
on the random seed ρ used to generate the randoms R1

1, . . . , R1
d, . . . , Rq

d. Indeed,
the set of d randoms {R1

i , . . . , R
d
i } used at the i-th round of one execution of

the protocol will be identical for any two traces for which the random seeds ρ
collide. As the generator producing the Rj

i has an internal state of 64 bits, it
requires 232 interactions with a tag to find such a collision on the seeds ρ.

Therefore, the attacker first chooses two nonces N1 and N2 and challenges
the tag with each of these nonces 232 times so that the seeds ρ will collide
for an execution of the protocol involving the nonce N1 and another execution
involving the nonce N2 about once. This way, the attacker is able to collect
values v(1)

i = Ff (K,Rai,1
i ) ⊕ Ff (K ′, N1) and v

(2)
i = Ff (K,Rai,2

i ) ⊕ Ff (K ′, N2)
for i = 1, . . . , q. In order to get information on K ′ alone, the attacker hopes that
Ff (K,Rai,1

i ) = Ff (K,Rai,2
i ) so that:

v
(1)
i ⊕ v

(2)
i = Ff (K ′, N1) ⊕ Ff (K ′, N2) .

When the seeds ρ collide however, this equation only holds when ai,1 = ai,2
or when ai,1 �= ai,2 but Ff (K,Rai,1

i ) = Ff (K,Rai,2
i ) over GF(2t). There are

d2 possible couples (Rai,1
i , R

ai,2
i ) and the first case happens with probability

d
d2 while the second one happens with probability 1

2t

(
1 − d

d2

)
since Ff is well

balanced and the Ri are randomly chosen.

6.2 Decreasing the Noise and Solving for K′

A major issue with the approach described above is that the equations on K ′

collected by the attacker are very noisy—projected over GF(2) they are true
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with probability 1
8 + 7

8
1
2 = 1

2 + 1
16 for the parameters chosen by the authors.

As explained earlier, the number of monomials in the bits of K ′ that occur in
Ff (K ′, N) is 640, and Table 1 shows that trying to solve the corresponding LPN
problem requires a complexity of 2130.

One possibility to overcome this issue is to decrease the noise affecting the
collected equation. In contrast with what happened for our first attack, it is
possible to get several noisy samples of the same equation. Therefore, by finding
several collisions on ρ, the value v(1)

i ⊕ v
(2)
i obtained by the attacker is more likely

to be equal to Ff (K ′, N1) ⊕ Ff (K ′, N2) than to any other value. With enough
collisions, the attacker is thus able to recover the value Ff (K ′, N1)⊕Ff (K ′, N2)
by voting for the value that appears the most often. As the analysis of such a
strategy is a little bit involved over GF(2t), we instead project each collected
equation over GF(2)t and consider each of the t boolean equations independently:
this yields a very lose upper-bound for the complexity of our attack.

Let us determine the probability that the majority vote for N versions of a
boolean equation is correct. Recall that each boolean equation collected by the
attacker is true with probability 1

2 + ε where ε = 1
16 . Therefore, let us assume

that the constant member is a random variable b distributed according to the
probabilities Pr[b = 0] = 1

2 + ε and Pr[b = 1] = 1
2 − ε. If we denote by bi the

constant member for the i-th version of the boolean equation, the mean value of
the random variable B =

⊕N
i=1 bi is (1

2 − ε)N and so the majority vote is wrong
when B > N

2 . The Chernoff bound shows that:

Pr
[
B > N

2

]
< e−Nε2(1+2ε)−1

.

To make the probability of getting a wrong equation become η, the attacker has
to perform a majority vote on N = −2ε2 ln(η) samples. To solve the linearized
system of 640 monomials, we need to get 640 correct equations, which happens
with probability (1 − η)640. As there are q = 60 rounds in one execution of the
protocol, the attacker needs Ñ = 232N 1

q (1 − η)−640 interactions with the tag to
get a linearized system in the 640 monomials which is correct with probability
greater than 1

2 . For the parameters chosen by the authors, setting N = 4096 leads
to an error probability η = 0.00018, and thus to a total number of interactions
with the tag of Ñ = 238.4. The complexity to solve the linearized system is less
than 228 and thus negligible compared to the above complexity.

7 Conclusion

In this paper we studied the connections between the Ff RFID protocol and
the LPN problem. We showed several properties of the f function underlying
the Ff protocol and described two key-recovery attacks that build on these
properties. In our attacks, the adversary only requires interactions with the tag
and does not need to interact with the reader.
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Abstract. In this paper, we investigate simple but efficient construc-
tions of signcryption schemes. Firstly, we show how symmetric primi-
tives can be used to efficiently achieve outsider multi-user security, lead-
ing to a signcryption scheme with the currently lowest ciphertext and
computational overhead. For the mixed security notions outsider confi-
dentiality/insider unforgeability and insider confidentiality/outsider un-
forgeability, this approach yields lower ciphertext overhead and a higher
level of security, respectively, compared to the current schemes. Secondly,
we show a simple optimization to the well known “sign-then-encrypt”
and “encrypt-then-sign” approaches to the construction of signcryption
schemes by using tag-based encryption. Instantiations with our proposed
tag-based schemes yield multi-user insider secure signcryption schemes
in the random oracle model which is at least as efficient as any other
existing scheme both in terms of ciphertext overhead and computational
cost. Furthermore, we show that very efficient standard model signcryp-
tion schemes can be constructed using this technique as well. Lastly,
we show how signatures and encryption can be combined in a non-black-
box manner to achieve higher efficiency than schemes based on the above
approach. We refer to signature and encryption schemes which can be
combined in this way as signcryption composable, and we show that a
number of the most efficient standard model encryption and signature
schemes satisfy this, leading to the most efficient standard model sign-
cryption schemes. Since all of our constructions are fairly simple and
efficient, they provide a benchmark which can be used to evaluate future
signcryption schemes.

Keywords: signcryption, multi-user security, generic construction.

1 Introduction

The notion signcryption was introduced by Zheng [47] as a primitive providing
the combined functionality of signatures and encryption i.e. unforgeability, mes-
sage confidentiality, and possibly non-repudiation. The main motivation given
in [47] for introducing signcryption as a new primitive was to achieve higher
efficiency than simply combining signature and encryption. While the scheme
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proposed in [47] was not formally proved secure, this was done in subsequent
works [5,6]. Furthermore, An et al. [3] formally analyzed the security of the
simple composition of signature and public key encryption (PKE).

Since the introduction of the primitive, many signcryption schemes have been
proposed, e.g. [47,3,24,29,30,18,8,28,20,42,43,44]. However, these schemes pro-
vide different security levels depending on the used security model. The simplest
security model for a signcryption scheme considers a two-user system consisting
only of a single sender and a single receiver. While two-user security models have
been considered in some of the earlier papers (e.g. [3,18]), they are of limited in-
terest since most practical systems will include many users, and for signcryption
schemes, two-user security does not imply multi-user security1. Another aspect
of the security model is whether the adversary is considered to be an insider,
possibly playing the part of either the sender or receiver, or an outsider trying
to attack an uncompromised sender and receiver pair. Note that many schemes
are proved secure using a “mix” of these security notions. e.g. insider confiden-
tiality and outsider unforgeability [5,6], or outsider confidentiality and insider
unforgeability [24,20]. The efforts to construct schemes providing security in the
strongest sense, i.e. insider security for both confidentiality and unforgeability,
have met some challenges. For example, the scheme proposed in [31] was shown
to be insecure in [38,46], “fixed” in [46], only to be broken again in [39]. Finally,
Libert et al. [29] updated the original scheme [31] while Li et al. [28] indepen-
dently proposed a scheme based on [46], which both seem to be resistant to the
attacks in [38,46,39]. In a similar way, the scheme proposed in [32] was shown
to be insecure in [40], updated in [33], only to be shown insecure in [41]. Lastly,
Libert et al. [30] updated the original scheme to be resistant to the attack in
[40]. This illustrates that care must be taken when designing fully insider secure
signcryption schemes.

Except the composition results by An et al. [3] and the relation between key
agreement and signcryption key encapsulation mechanisms (signcryption KEMs)
studied by Gorantla et al. [20], most constructions of signcryption schemes make
very little use of existing primitives and the established security properties of
these. Furthermore, the proposed signcryption schemes are rarely compared to
the often simpler constructions of signcryption using existing primitives and the
efficiency achieved by these. As the proposed constructions get increasingly com-
plex, as in the case of the recently proposed standard model schemes [42,43,44],
this leaves open the question whether the direct constructions provide any ad-
vantages compared to the signcryption schemes relying on other primitives, when
these are instantiated properly.

Our Contribution. We focus on simple but efficient constructions of signcryption
using existing primitives or simple extension of these. Firstly, we show how the

1 E.g. see [6] for a discussion of this. Furthermore, note that An et al. [3] showed how
a simple composition of signatures and encryption achieving two-user security can
be transformed into a scheme achieving multi-user security, but this transformation
is not applicable in general.
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properties of symmetric key encryption (SKE) and message authentication codes
(MAC) can be used to provide outsider security. As a tool, we use a tag-based
non-interactive key exchange (TNIKE) scheme, which is a simple extension of
an ordinary non-interactive key exchange (NIKE) scheme [19,15] and is easy to
instantiate in the random oracle model. The resulting scheme has a lower com-
putational cost and ciphertext overhead than any of the existing signcryption
schemes. If insider unforgeability is required (and only outsider confidentiality),
this approach still yield the lowest ciphertext overhead (roughly 25% shorter
than the scheme by Zheng [47]), but is not as computationally efficient as [47].
If insider confidentiality is required (and only outsider unforgeability), this ap-
proach yields a scheme with exactly the same ciphertext overhead and slightly
more expensive computational cost than the currently most efficient scheme by
Gorantla et al. [20] instantiated with HMQV [27]. However, our approach is
secure in a stronger security model.

We furthermore propose a simple optimization of the “sign-then-encrypt”
and “encrypt-then-sign” constructions of signcryption, using tag-based encryp-
tion (TBE) [34,25]2. While both constructions are shown to be insider secure,
the latter requires a special one-to-one property of the signature scheme which,
in practice, limits instantiations to the random oracle model. However, the ad-
vantage of this approach is that it achieves strong unforgeability which is not
achieved by the former approach. To instantiate these schemes, we show how the
most efficient standard and random oracle model PKE schemes can be turned
into TBE schemes with practically no additional cost. This leads to an insider
secure random oracle model scheme that is at least as efficient as any other ex-
isting scheme both in terms of ciphertext overhead and computational cost, as
well as efficient standard model schemes.

Lastly, we show how a signature scheme and an encryption scheme which
satisfy a few special requirements can be combined in a non-black-box way to
achieve higher efficiency than a simple composition. The basic idea of this ap-
proach is simple and essentially lets the signature and encryption use “shared
randomness”. We call schemes that can be combined in this way signcryption-
composable, and we show that some of the most efficient standard model encryp-
tion and signature schemes satisfy this. The resulting signcryption schemes are
the most efficient insider secure standard model schemes.

We emphasize that the advantage of the above compositions lies not only in
the achieved efficiency by the obtained signcryption schemes, but also in their
simplicity, which allows us to prove security using already established security
results for the underlying primitives. We believe that the constructions obtained
via our compositions can be used as a benchmark to evaluate future signcryption
schemes.

While in this paper we concentrate on schemes providing the basic secu-
rity properties of signcryption, i.e. confidentiality and unforgeability, we con-
jecture that schemes providing additional properties, such as non-repudiation
and anonymity, can be constructed using similar techniques.

2 TBE has previously been introduced under the name encryption with labels [37].
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2 Building Blocks

In our constructions of signcryption schemes we will make use of a number of
different primitives including tag-based encryption (TBE), tag-based key encap-
sulation mechanism (TBKEM), signatures, symmetric key encryption (SKE),
data encapsulation mechanism (DEM), message authentication codes (MAC),
and tag-based non-interactive key establishment (TNIKE).

A TBE scheme is a public key encryption scheme in which the encryption
and decryption algorithm take a tag as an additional input, and has been used
in several other papers (e.g [37,34,25]). We will use TBE schemes which provide
full CCA security [25] and a weaker selective tag variant, which we will denote
IND-tag-CCA and IND-stag-CCA, respectively. A TBKEM3 is the key encapsu-
lation analogue of a TBE scheme for which we will also consider the security
notions IND-tag-CCA and IND-stag-CCA.

For signatures, we use the standard security definitions of weak and strong
unforgeability [3], denoted wUF-CMA and sUF-CMA, for SKE we use the security
notions IND-CPA, IND-CCA and INT-CTXT as defined in [7], and for MAC we use
the security notions wUF-CMA and sUF-CMA [7]. We define a DEM to be a special
case of a SKE in which the encryption algorithm is deterministic.

A non-interactive key exchange (NIKE), introduced in [19] and formally de-
fined in [15], is given by a setup algorithm Setup which returns a set of public
parameters par, a key generation algorithm KG which on input par returns a
public/private key pair (pk, sk), a shared key generation algorithm Share which
on input par, a public key of one entity pk1 and a private key of another en-
tity sk2, returns a shared key K. It is required for all par ← Setup(1k) and
all (pk1, sk1) and (pk2, sk2) output from KG(par) that Share(par, pk1, sk2) =
Share(par, pk2, sk1). A TNIKE is a tag-based extension of a NIKE in which the
shared key generation algorithm takes as additional input a tag. We require a
(T)NIKE to be secure against active attacks [15].

Due to space limitations, the formal definitions of these primitives are not
included, and we refer the reader to the full version of the paper [35] for these.

3 Signcryption

A signcryption scheme is given by the following algorithms: a setup algorithm
Setup which on input 1k returns a set of public parameters par; a sender key
generation algorithm KGS which on input par returns a public/private sender
key pair (pkS , skS); a receiver key generation algorithm KGR which on input par
returns a public/private receiver key pair (pkR, skR); a signcryption algorithm
SC which on input par, skS , pkR, and a message m, returns a ciphertext c; an
unsigncryption algorithm USC which on input par, pkS , skR, and c, returns either
m or an error symbol ⊥.
3 Note that this primitive is different from the Tag-KEM introduced in [2], although

they are closely related. It is easy to see that every IND-CCA Tag-KEM can be used
as an IND-tag-CCA TBKEM.
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It is required for all par ← Setup(1k), all (pkS , skS) ← KGS(par), all (pkR, skR)
← KGR(par),andallmessagesm thatm= USC(par, pkS , skR, SC(par, skS , pkR,m)).

3.1 Security

As mentioned in the introduction, a multi-user security definition is required for
signcryption schemes. However, a number of slightly different models have been
introduced in the literature (e.g. see [3,6,31,20]). In the following definitions, the
differences of these will be highlighted. We firstly consider security models with
insider security, and then discuss the weaker outsider counterparts.

Confidentiality. The strongest notion of confidentiality was introduced in [31]
and is based on a security model in which the adversary can freely choose all user
keys, except the challenge receiver key. We refer to this model as the dynamic
multi-user model, and in this model we consider the notion indistinguishability
against insider chosen ciphertext attacks (dM-IND-iCCA). More specifically, for a
signcryption scheme SC = (Setup, KGS , KGR, SC, USC) and a security parameter
1k, dM-IND-iCCA security is defined via the experiment ExpdM-IND-iCCASC,A (k) shown
in Fig. 1 (upper left). In the experiment, the adversary A = (A1,A2) has access
to an unsigncryption oracle O = {Unsigncrypt} which is defined as follows:

– Unsigncrypt: Given a public sender key pkS and ciphertext c, the oracle
returns m/⊥ ← USC(par, pkS , sk

∗
R, c) where sk∗R is the private receiver key

generated in the beginning of the experiment. A query of the form (pk∗S , c
∗),

where pk∗S is the challenge sender key specified by A and c∗ is the challenge
ciphertext, is not allowed.

A security model defining a slightly weaker security notion was used in [3,5]. In
this security model, which we will refer to as the fixed challenge key multi-user
model, the adversary cannot choose the challenge sender key. More specifically,
in this model we define indistinguishability against insider chosen ciphertext
attacks (fM-IND-iCCA) for a signcryption scheme SC and security parameter
1k via the experiment ExpfM-IND-iCCASC,A (k) shown in Fig. 1 (upper right). In the
experiment, A = (A1,A2) has access to an unsigncryption oracle as defined
above.

Definition 1. A signcryption scheme SC is said to be X-IND-iCCA secure, if
|Pr[ExpX-IND-iCCASC,A (k) = 1]−1/2| is negligible in k for any probabilistic polynomial-
time algorithm A, where X ∈ {dM, fM}.

Unforgeability. Like the confidentiality definition above, we consider unforge-
ability in both the dynamic and the fixed challenge key multi-user models. For
a signcryption scheme SC and security parameter 1k, we define (weak) un-
forgeability against insider chosen message attacks in the dynamic multi-user
model (dM-wUF-iCMA) via experiment ExpdM-wUF-iCMASC,A (k) shown in Fig. 1 (lower
left). In the experiment, the adversary A has access to a signcryption oracle
O = {Signcrypt} defined as follows:
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ExpdM-IND-iCCASC,A (k) :
par ← Setup(1k)
(pk∗

R, sk∗
R) ← KGR(par)

(pk∗
S, sk∗

S, m0, m1, st) ← AO
1 (par, pk∗

R)
b ← {0, 1}; c∗ ← SC(par, sk∗

S, pk∗
R, mb)

b′ ← AO
2 (st, c∗)

If b = b′ return 1
Else return 0

ExpfM-IND-iCCASC,A (k) :
par ← Setup(1k)
(pk∗

S, sk∗
S) ← KGS(par)

(pk∗
R, sk∗

R) ← KGR(par)
(m0, m1, st) ← AO

1 (par, pk∗
S, sk∗

S , pk∗
R, )

b ← {0, 1}; c∗ ← SC(par, sk∗
S, pk∗

R, mb)
b′ ← AO

2 (st, c∗)
If b = b′ return 1
Else return 0

ExpdM-wUF-iCMASC,A (k) :
L ← ∅; par ← Setup(1k)
(pk∗

S, sk∗
S) ← KGS(par)

(pk∗
R, sk∗

R, c∗) ← AO(par, pk∗
S)

m∗ ← USC(par, pk∗
S, sk∗

R, c∗)
If m∗ 	= ⊥ ∧ (m∗, pk∗

R) 	∈ L return 1
Else return 0

ExpfM-wUF-iCMASC,A (k) :
L ← ∅; par ← Setup(1k)
(pk∗

S, sk∗
S) ← KGS(par);

(pk∗
R, sk∗

R) ← KGR(par)
c∗ ← AO(par, pk∗

S, pk∗
R, sk∗

R)
m∗ ← USC(par, pk∗

S, sk∗
R, c∗)

If m∗ 	= ⊥ ∧ (m∗, pk∗
R) 	∈ L return 1

Else return 0

Fig. 1. Experiments for confidentiality and unforgeability

– Signcrypt: Given a public receiver key pkR and a message m, the oracle
returns c ← SC(par, sk∗S , pkR,m), where sk∗S is the secret sender key gener-
ated in the beginning of the experiment. Furthermore, (pkR,m) is added to
the list L.

Likewise, we define (weak) unforgeability against insider chosen message at-
tacks in the fixed challenge key multi-user model (fM-wUF-iCMA) via experiment
ExpfM-UF-iCMASC,A (k) shown in Fig. 1 (lower right), where A has access to a signcryp-
tion oracle as defined above.

Definition 2. A signcryption scheme SC is said to be X-wUF-iCMA secure, if
Pr[ExpX-wUF-iCMASC,A (k) = 1] is negligible in k for any probabilistic polynomial-time
algorithm A, where X ∈ {dM, fM}.

Strong insider unforgeability (dM-sUF-iCMA and fM-sUF-iCMA security) is de-
fined in a similar way to the above, with the only change that the list L now
contains (pkR,m, c) for signcryptions queries made by A, and it is required that
(pk∗R,m

∗, c∗) �∈ L for the forgery output by A.
Note that Libert et al. [32,30] uses a different unforgeability definition which

is concerned about signature extracted from a ciphertext. However, this does
not imply the unforgeability mentioned here. (In fact, the scheme proposed in
[30] is insecure according to the above definition.)

Outsider Security. While insider security is inherent in the dynamic multi-user
model, we can consider a weaker version of the fixed challenge key multi-user
model in which the adversary knows neither the private sender key nor the pri-
vate receiver key for the challenge key pairs. This is modeled by limiting the input
given to the adversary A to (par, pk∗S , pk

∗
R) in the experiments ExpfM-IND-iCCASC,A (k)
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and ExpfM-wUF-iCMASC,A (k) defined above. However, with this limited input, A can
no longer compute signcryptions using the challenge private sender key sk∗S in
ExpfM-IND-iCCASC,A (k), and can no longer compute unsigncryptions using the challenge
private receiver key sk∗R in ExpfM-wUF-iCMASC,A (k). Hence, in both experiments, A is
given access to oracles O = {Signcrypt, Unsigncrypt} defined as in the above.

We denote these modified experiments ExpfM-IND-oCCASC,A (k) and ExpfM-wUF-oCMASC,A (k),
and define the outsider security notions fM-IND-oCCA and fM-wUF-oCMA in a sim-
ilar way to the corresponding insider security notions. We furthermore consider
the strong variant of the unforgeability notion fM-wUF-oCMA which will be de-
noted fM-sUF-oCMA, and is defined in a similar way to the corresponding insider
notion fM-sUF-iCMA.

Key Registration. In the above experiments, the adversary can freely choose the
public keys submitted to signcryption and unsigncryption oracles. However, in
systems based on a traditional PKI, users are required to obtain a certificate by
registering their public key at a certificate authority before the public key can
be used in interaction with other users. This allows additional security measures
such as requiring that a user prove knowledge of the secret key corresponding to
the public key he is registering. To model security in this scenario, we give the
adversary access to a key registration oracle in addition to normal queries. The
key registration oracle maintains a list LPK of registered key pairs and interacts
with A as follows:

Register-key: Given a key pair (pk, sk), the oracle checks if (pk, sk) is a valid
key pair. If not, the oracle returns 0. Otherwise, it adds (pk, sk) to LPK ,
and returns 1.

When A submits a signcryption query (pkR,m) or an unsigncryption query
(pkS , c), it is then required that (pkR, ∗) ∈ LPK and (pkS , ∗) ∈ LPK , respec-
tively. We write, for example, dM-sUF-iCMA(KR) to mean dM-sUF-iCMA security
with key registration in order to distinguish it from ordinary dM-sUF-iCMA.

Key registration has been used in connection with the dynamic multi-user
model in [44]. Furthermore, Gorantla et al. [20] defines a multi-user security
model in which the adversary cannot choose any of the keys used in the system,
but is only given a list of public user keys and access to a corruption oracle. This
model implicitly implies key registration and we refer to this as the static multi-
user model (see [20] for the details of the security definitions in this model).
Furthermore, we use the prefix sM- to denote this model. We note that dynamic
and fixed challenge key multi-user security with key registration trivially implies
the static multi-user security.

Comparison of Security Notions. The hierarchy of the above mentioned security
notions is shown in Fig. 2. The proofs of the implications shown in the figure
are straightforward and are not given here. We furthermore conjecture that a
separation exists between all of the security notions shown in the figure.
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sM-X-iY X-iY

dM-X-iY(KR) fM-X-iY(KR) fM-X-oY(KR) sM-X-oY X-oY

dM-X-iY fM-X-iY fM-X-oY

� �

� � � �

� �

� � �

� �

Fig. 2. Implications between security notions. In the figure, “A → B” means that se-
curity wrt. security notion A implies security wrt. security notion B. (X, Y) is (IND, CCA)
for confidentiality, and is either (wUF, CMA) or (sUF, CMA) for unforgeability. The security
notions without any prefix {dM-, fM-, sM-} indicate the two-user security notion.

Setupsc(1
k) :

parn ← Setupn(1k)
parte ← Setupte(1

k)
Output par ← (parn, parte).

KGS(par) :
Output (pkS, skS) ← KGn(parn).

KGR(par) :
(pkR1, skR1) ← KGn(parn)
(pkR2, skR2) ← KGte(parte)
pkR ← (pkR1, pkR2)
skR ← (skR1, skR2)
Output (pkR, skR).

SC(par, skS , pkR, m) :
tag ← pkS

cE ← TEnc(parte, pkR2, tag, m)
K ← Share(parn, pkR1, skS)
σ ← Mac(K, (pkR2||cE))
Output c ← (cE, σ).

USC(par, pkS , skR, c) :
Parse c as (cE, σ). tag ← pkS

K ← Share(parn, pkS, skR1)
If MVer(K, (pkR2||cE), σ) = ⊥

then output ⊥ and stop.
Output TDec(parte, skR2, tag, cE).

Fig. 3. Simple composition using symmetric key primitives: TEtK&M

4 Simple Composition Using Symmetric Key Primitives

In this section we show that if only outsider security is required for either confi-
dentiality or unforgeability (or for both), then symmetric key primitives can be
used to construct efficient signcryption schemes. However, in order to make use
of symmetric key primitives, sender and receiver must share a symmetric key. To
achieve this, we employ a (T)NIKE which has the advantage of not requiring the
sender and receiver to exchange messages to compute a shared key. As we will
see, the combination of symmetric key primitives and (T)NIKE schemes secure
against active attacks provides the strongest notion of outsider security. These
constructions are only interesting if efficient instantiations of (T)NIKE schemes
secure against active attacks can be constructed. However, in Section 7 we show
that this is indeed possible. Due to space limitations, all proofs of the theorems
in this section are given in the full version [35].

Tag-based-Encrypt then Key-exchange and MAC (TEtK&M). Firstly, we con-
sider a construction in which outsider unforgeability is achieved by the combined
use of a NIKE and a MAC scheme, and which we call “Tag-based-Encrypt then
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Setupsc(1
k) :

partn ← Setuptn(1k)
parsig ← Setupsig(1k)
Output par ← (partn, parsig).

KGS(par) :
(pkS1, skS1) ← KGtn(partn)
(pkS2, skS2) ← KGsig(parsig)
pkS ← (pkS1, pkS2)
skS ← (skS1, skS2)
Output (pkS, skS).

KGR(par) :
Output (pkR, skR) ← KGtn(partn).

SC(par, skS, pkR, m) :
tag ← pkS2

K ← TShare(partn, pkR, skS1, tag)
cE ← SEnc(K, m)
σ ← Sign(parsig, skS2, (pkR||cE))
Output c ← (cE , σ).

USC(par, pkS, skR, c) :
Parse c as (cE , σ), tag ← pkS2

If SVer(parsig, pkS2, (pkR||cE), σ) = ⊥
then output ⊥ and stop.

K ← TShare(partn, pkS1, skR, tag)
Output SDec(K, cE).

Fig. 4. Simple composition using symmetric key primitives: TK&SEtS

Setupsc(1
k) :

Output par ← Setupn(1k).
KGS(par) :

Output (pkS, skS) ← KGn(par).
KGR(par) :

Output (pkR, skR) ← KGn(par).

SC(par, skS, pkR, m) :
K ← Share(par, pkR, skS)
Output c ← SEnc(K, m).

USC(par, pkS, skR, c) :
K ← Share(par, pkS, skR)
Output SDec(K, c).

Fig. 5. Simple composition using symmetric key primitives: K&SE

Key-exchange and MAC” (TEtK&M). More specifically, let N = (Setupn, KGn,
Share) be a NIKE scheme, let TE = (Setupte, KGte, TEnc, TDec) be a TBE scheme,
and letM = (Mac, MVer) be a MAC scheme. Then TEtK&M is defined as shown in
Fig. 3. The security of the scheme is provided by the following theorems. Note that
the MAC scheme M is required to be one-to-one4 to guarantee confidentiality.

Theorem 3. Assume TE is IND-tag-CCA (resp. IND-stag-CCA) secure and M
is one-to-one. Then TEtK&M is dM-IND-iCCA (resp. fM-IND-iCCA) secure.

Theorem 4. Assume N is secure against active attacks and M is sUF-CMA
(resp. wUF-CMA) secure. Then TEtK&M is fM-sUF-oCMA (resp. fM-wUF-oCMA)
secure.

Tag-based-Key-exchange and Symmetric-key-Encrypt then Sign (TK&SEtS). Us-
ing a similar approach to the above, we consider a signcryption scheme in which
outsider confidentiality is achieved by the combined use of a TNIKE scheme and
a SKE scheme, and which we call “Tag-based-Key-exchange and Symmetric-
key-Encrypt then Sign” (TK&SEtS). For this scheme, the tag-based property
of TNIKE is required to ensure that a ciphertext is only valid under a single
public sender key. Specifically, let TN = (Setuptn, KGtn, TShare) be a TNIKE

4 A MAC is said to be one-to-one if given a key K and a message m, there is only one
MAC tag σ such that MVer(K, m, σ) = �.
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scheme, let S = (Setupsig, KGsig, Sign, SVer) be a signature scheme, and let
SE = (SEnc, SDec) be a SKE scheme. Then TK&SEtS is defined as shown in
Fig. 4. The security of this scheme is provided by the following theorems. Note
that the SKE scheme SE is only required to be IND-CPA secure to guarantee
confidentiality.

Theorem 5. Assume S is sUF-CMA secure, TN is secure against active attacks,
and SE is IND-CPA secure. Then TK&SEtS is fM-IND-oCCA secure.

Theorem 6. Assume S is sUF-CMA (resp. wUF-CMA) secure. Then TK&SEtS is
dM-sUF-iCMA (resp. dM-wUF-iCMA) secure.

Key-exchange then Symmetric-key-Encrypt (K&SE). Finally, we consider a sign-
cryption scheme providing outsider unforgeability and outsider confidentiality.
This scheme, which we call “Key-exchange and Symmetric-key-Encrypt” (K&SE),
consists only of a NIKE scheme and a SKE scheme satisfying the security
of authenticated encryption [7]. Interestingly, in this scheme a ciphertext con-
sists only of the output of the underlying SKE scheme. Specifically, let N =
(Setupn, KGn, Share) be a NIKE scheme, and let SE = (SEnc, SDec) be a SKE
scheme. Then K&SE is defined as shown in Fig. 5. The following state that K&SE
satisfies both outsider confidentiality and outsider unforgeability.

Theorem 7. Assume N is secure against active attacks and SE is IND-CCA
secure. Then K&SE is fM-IND-oCCA secure.

Theorem 8. Assume N is secure against active attacks and SE is INT-CTXT
secure. Then K&SE is fM-sUF-oCMA secure.

5 Simple Composition Using Tag-Based Encryption

An et al. [3] analyzed the security of the simple composition of signature and en-
cryption, and showed that both sign-then-encrypt and encrypt-then-sign are se-
cure, but only for a weaker notion of confidentiality termed generalized
IND-CCA security. If ordinary IND-CCA security is required, the latter becomes
insecure, even if the used signature scheme is strongly unforgeable and the en-
cryption scheme is IND-CCA secure. Furthermore, simple composition does not
yield multi-user security. In [3], this is overcome by including the public sender
key in the plaintext, and the public receiver key in the input to the signing
algorithm. While this achieves multi-user security, it also introduces additional
ciphertext overhead.

Here we show that by using a TBE scheme, multi-user security can be achieved
without introducing additional ciphertext overhead. This is of course only useful
if it is possible to construct TBE schemes which do not have a higher cipher-
text overhead than ordinary PKE schemes. In Section 7 we show that this is
indeed possible for the currently most efficient encryption schemes in both the
standard and the random oracle model. Due to space limitations, the proofs of
the theorems in this section are given in the full version [35].
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Setupsc(1
k) :

parte ← Setupte(1
k)

parsig ← Setupsig(1k)
Output par ← (parte, parsig).

KGS(par) :
Output (pkS, skS) ← KGsig(parsig).

KGR(par) :
Output (pkR, skR) ← KGte(parte).

Sign-then-Tag-based-Encrypt StTE

SC(par, skS, pkR, m) :
σ ← Sign(parsig, skS, (pkR||m))
tag ← pkS

c ← TEnc(parte, pkR, tag, (m||σ))
Output c.

USC(par, pkS , skR, c) :
tag ← pkS

(m||σ)/⊥ ← TDec(parte, skR, tag, c)
(if output is ⊥, then output ⊥ and stop.)

If SVer(parsig, pkS, (pkR||m), σ) = �
then output m, otherwise output ⊥.

Tag-based-Encrypt-then-Sign TEtS
SC(par, skS, pkR, m) :

tag ← pkS

cE ← TEnc(parte, pkR, tag, m)
σ ← Sign(parsig, skS, (pkR||cE))
Output c ← (cE , σ).

USC(par, pkS , skR, c) :
Parse c as (cE, σ), tag ← pkS

If SVer(parsig, pkS, (pkR||cE), σ) = ⊥
then output ⊥ and stop.

Output TDec(parte, skR, tag, cE).

Fig. 6. Simple composition of signature and TBE. Note that StTE and TEtS use the
same setup and key generation algorithms.

Let TE = (Setupte, KGte, TEnc, TDec) be a TBE scheme and let S =
(Setupsig , KGsig , Sign, SVer) be a signature scheme. Then the “Sign-then-Tag-
based-Encrypt” (StTE) and “Tag-based-Encrypt-then-Sign” (TEtS) schemes are
defined as shown in Fig. 6. We achieve the following security results for StTE.

Theorem 9. Assume TE is IND-tag-CCA (resp. IND-stag-CCA) secure. Then
StTE is dM-IND-iCCA (resp. fM-IND-iCCA) secure.

Theorem 10. Assume S is wUF-CMA secure. Then StTE is dM-wUF-iCMA secure.

Note that the receiver trivially obtains a publicly verifiable signature of the
sender on the sent message m when unsigncrypting a valid ciphertext. Hence,
the receiver can convince any third party that the message m was indeed sent
by the sender (this provides a similar type of non-repudiation to [32], which
introduces the notion of detachable signatures).

Like the encrypt-then-sign approach, TEtS will generally not achieve IND-CCA
security, even if the used TBE scheme is IND-CCA secure. However, if the signa-
ture scheme is one-to-one5 the following results can be obtained.

Theorem 11. Assume TE is IND-tag-CCA (resp. IND-stag-CCA) secure and
S is one-to-one. Then TEtS is dM-IND-iCCA (resp. fM-IND-iCCA) secure.

Furthermore, unlike StTE, if a strongly unforgeable signature scheme is used,
TEtS will also be strongly unforgeable (note that the one-to-one property is not
required in the following theorem).
5 A signature scheme is said to be one-to-one if given public parameters par, a

public key pk, and a message m, there exists only one signature σ such that
SVer(par, pk,m, σ) = �.
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Theorem 12. Assume S is sUF-CMA (resp. wUF-CMA) secure. Then TEtS is
dM-sUF-iCMA (resp. dM-wUF-iCMA) secure.

Currently, only random oracle model signature schemes, like BLS [10], have the
one-to-one property. However, BLS is one of the most efficient schemes in terms
of signature size and signing cost, and as we will see in Section 9, constructing
TEtS using BLS and a tag-based variant of DHIES [1] (see also Section 7) will
yield an insider secure signcryption scheme in the random oracle model, which
is at least as efficient as the currently most efficient insider secure schemes by
Libert et al. [29] and by Li et al. [28] which are also inspired by BLS and the
DHIES scheme.

6 Signcryption Composability

While the simple composition of signature and TBE yields signcryption schemes
which are at least as efficient as any other insider secure signcryption scheme
(see Section 9), a part of the original motivation for considering signcryption as
a separate primitive, is to achieve higher efficiency than such black-box composi-
tions. In this section we show how to achieve insider secure signcryption schemes
in the standard model which is more efficient than a black-box composition of
the most efficient standard model signature and encryption schemes.

The idea behind our approach is fairly simple. Since both signature and en-
cryption in the standard model are probabilistic, the sender could potentially
reuse the same “randomness” for both signing and encryption. By doing so, both
ciphertext and computational overhead can potentially be reduced. Naturally, a
signature and an encryption schemes need to “match” to enable this, and to be
able to prove security of the resulting signcryption scheme, we require the indi-
vidual schemes to have a few special properties. We say that a pair of schemes
satisfying these requirements are signcryption composable (SC-composable), and
we will formally define the requirements below. Since we adopt the KEM/DEM
approach, our SC-definition will be concerned with a signature scheme and a
TBKEM scheme. We furthermore assume that both the TBKEM and the signa-
ture scheme are patitionable6 i.e. for a TBKEM, it is required that the encapsu-
lation algorithm can be divided into two deterministic algorithms TE1 and TE2
such that an encapsulation of a key can be computed by picking random r ← R
(the randomness space R is specified by par), computing c1 ← TE1(par, r) and
(c2,K) ← TE2(par, pk, tag, r), and returning the encapsulation c ← (c1, c2) and
the encapsulated key K, and given c1 and a tag, there is at most one c2 and one
K such that TDecap(par, sk, tag, (c1, c2)) = K. Partitionability of a signature
scheme is defined in a similar way, and we let S1 and S2 denote the message
independent part (taking only par and r as input) and the message dependent
part of the signing algorithm, respectively.

Definition 13. We say that a partitionable TBKEM TK = (Setuptk, KGtk,
TEncap, TDecap) and a partitionalble signature scheme S = (Setupsig, KGsig ,

6 Partitionability of a signature scheme has previously been defined in [11].
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Sign, SVer) are signcryption composable (SC-composable) if they satisfy the fol-
lowing:

– Property 1. (Compatible Setup) There exists an algorithm Setup′tk that,
given public parameters parsig ← Setupsig(1k) as input, generates partk
distributed identically to the output of Setuptk(1k). Furthermore, there exists
an algorithm Setup′sig that, given partk ← Setuptk(1k) as input, generates
parsig distributed identically to the output of Setupsig(1k).

– Property 2. (Shared Randomness) Let Rtk and Rsig be the randomness
spaces specified by partk and parsig used by TEncap of TK and Sign of S,
respectively. It is required that
• Rsig = Rtk×R+

sig i.e. the randomness space for TK is shared by both TK
and S (in the following we will use R to denote the common randomness
space). We allow R+

sig to be empty.
• For all choices of (r, s) ∈ R × R+

sig and all σ1 ← S1(parsig , (r, s)),
it is required that σ1 can be written as σ1 = (c1, σ′

1) such that c1 =
TE1(partk, r). We allow σ′

1 to be an empty string.
– Property 3. (Signature/Ciphertext Simulatability) There exist algorithms

S′
1, S′

2 and TE′
2 with the following properties:

• TE′
2: Given partk, a public/private key pair (pktk, sktk) ← KGtk(partk),

a tag tag, and c1 = TE1(partk, r) for some r ∈ R, this algorithm outputs
c2 and K such that (c2,K) = TE2(partk, pktk, tag, r).

• S′
1: Given parsig, c1 = TE1(partk, r) for some r ∈ R, and s ∈ R+

sig ,
this algorithm outputs σ′

1 such that (c1, σ′
1) = S1(parsig, (r, s)). If R+

sig

is empty, we do not consider this algorithm.
• S′

2: Given parsig , (pksig , sksig) ← KGsig(parsig), a message m, c1 =
TE1(partk, r) for some r ∈ R, and s ∈ R+

sig , this algorithm outputs
σ2 such that σ2 = S2(parsig , sksig,m, (r, s)).

Although the requirements might seem somewhat restrictive, as shown in Section
8, tag-based variants of many of the existing standard model KEMs are in fact
SC-composable with a number of standard model signature schemes.

6.1 Signcryption from SC-Composable Schemes

Let TK = (Setuptk, KGtk, TEncap, TDecap) be a partitionable TBKEM scheme
in which TEncap = (TE1,TE2), let S = (Setupsig , KGsig, Sign, SVer) be a parti-
tionable signature scheme in which Sign = (S1, S2), and let D = (DEnc, DDec) be
a DEM. Furthermore, let TK and S be SC-composable with shared randomness
space R. We assume that the encapsulated-key space of TK and the key space
of D is the same (if this is not the case, we can use an appropriate key derivation
function).

Then, we construct a signcryption scheme SC as shown in Fig. 7. We note that
our scheme allows c2 in TK and σ′

1 in S to be empty strings. The security of SC
is guaranteed by the following theorems. To prove unforgeability, we require key
registration, as introduced in Section 3.1.
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Setupsc(1
k) :

partk ← Setuptk(1k)
parsig ← Setup′sig(partk)
Output par ← (partk, parsig)

KGS(par) :
Output (pkS, skS) ← KGsig(parsig).

KGR(par) :
Output (pkR, skR) ← KGtk(partk).

SC(par, skS, pkR, m) :
(r, s) ← R×R+

sig , tag ← pkS

(c1, σ
′
1) ← S1(parsig, (r, s))

σ2 ← S2(parsig, skS, (pkR||m), (r, s))
(c2, K) ← TE2(partk, pkR, tag, r)
c3 ← DEnc(K, (m||σ′

1||σ2))
Output c ← (c1, c2, c3).

USC(par, pkS, skR, c) :
Parse c as (c1, c2, c3). tag ← pkS

K ← TDecap(partk, skR, tag, (c1, c2))
(m||σ′

1||σ2) ← DDec(K, c3)
σ ← (c1, σ

′
1, σ2)

If SVer(parsig, pkS, (pkR||m), σ) = �
then output m, otherwise output ⊥.

Fig. 7. Proposed composition SC from SC-composable TBKEM and signature schemes

Theorem 14. Assume TK is IND-tag-CCA (resp. IND-stag-CCA) secure, D is
IND-CCA secure, and TK and S are SC-composable. Then SC is dM-IND-iCCA
(resp. fM-IND-iCCA) secure.

Theorem 15. Assume S is sUF-CMA (resp. wUF-CMA) secure and TK and S are
SC-composable. Then SC is dM-sUF-iCMA(KR) (resp. dM-wUF-iCMA(KR)) secure.

The proofs of the above theorems are given in the full version [35]. Note that,
unlike the simple compositions in the previous section, SC achieves strong un-
forgeability without imposing any restrictions which forces instantiations to be
in the random oracle model. Note also that, like StTE, in the unsigncryption
process the receiver obtains σ = (c1, σ′

1, σ2) which is a publicly verifiable signa-
ture of the sender on the sent message m, and hence, the scheme can provide
non-repudiation.

7 How to Obtain Tag-Based Primitives

The constructions in Sections 4, 5 and 6 depend on the existence of efficient
(T)NIKE schemes, TBE schemes and TBKEM schemes. In this section we will
show how existing schemes can be extended to tag-based schemes by exploiting
their internal structure. Although this approach is not generic, it is simple, ap-
plicable to many of the existing schemes and, importantly, achieves tag-based
schemes at practically no additional cost.

7.1 (T)NIKE Schemes in the Random Oracle Model

Consider the Hashed Diffie-Hellman (HDH) scheme which is defined as follows:
The setup algorithm Setup picks a group G with prime order p, a generator
g ∈ G, and a hash function H : {0, 1}∗ → {0, 1}k. The key generation algorithm
KG picks x ← Zp and sets (pk, sk) ← (gx, x). Suppose one party’s key pair is
(pk1, sk1) = (gx, x) and the other’s is (pk2, sk2) = (gy, y), and suppose gx is
lexicographically smaller than gy. Then the shared key algorithm Share outputs
K ← H(gx, gy, gxy).
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It is relatively easy to show that this scheme is secure against active attacks
in the random oracle model assuming the gap Diffie-Hellman (GDH) assump-
tion holds in G, using a proof similar to [15]. Furthermore, if the shared key is
computed as K ← H(gx, gy, gxy, tag) where tag is a tag given as input to Share,
the resulting scheme will be a TNIKE scheme which we will denote tHDH. In a
similar manner to the HDH scheme, the security of tHDH can be shown assuming
the GDH assumption holds in G, using a proof similar to [15].

Lastly, note that a TNIKE scheme secure under the computational Diffie-
Hellman (CDH) assumption can be obtained by making a similar modification
to the Twin Diffie-Hellman protocol by [15], but at the cost of an increase in
computational cost compared to tHDH.

7.2 TBE and TBKEM Schemes

It is possible to generically transform any IND-CCA secure PKE scheme into an
IND-tag-CCA secure TBE scheme, simply by encrypting the tag together with
the message [25]. Since a TBE is trivially a TBKEM, this approach also leads
to a generic construction of TBKEMs. However, a drawback of this approach is
that it leads to ciphertext expansion and possibly inefficient TBKEMs, and since
our main concern is efficiency, we take a different approach in the following.

TBE Schemes in the Random Oracle Model. To construct an efficient TBE
scheme, we consider the IND-CCA secure PKE schemes in the random oracle
model which have hybrid structure i.e. they can be rewritten in the KEM/DEM
style, and a random oracle is used as a key derivation function for a key of the
DEM part. Typical examples of such schemes are the DHIES scheme [1] and the
Twin ElGamal scheme [15]. We can turn such PKE schemes into IND-tag-CCA
secure TBE schemes simply by inputting a tag into the key derivation function.

Here, as an example, we show in Fig. 8 a tag-based variant of the DHIES
scheme which we denote tDHIES. We note that similar modification to the twin
ElGamal scheme [15] will result in a corresponding secure tag-based variant
(which we denote tTwin).

Since the standard KEM/DEM composition theorem [16] trivially applies to
the composition of an IND-tag-CCA secure TBKEM and an IND-CCA secure
DEM, it is sufficient to see that the TBKEM part of the tDHIES is actually
IND-tag-CCA secure. It is known that the KEM part of the original DHIES
is IND-CCA secure in the random oracle model based on the GDH assump-
tion [17,21]. Since the proof of the IND-tag-CCA security of the TBKEM part of
tDHIES is essentially the same as the IND-CCA security proof for the ECIES-KEM
in [17], we omit the proof here.

TBKEM Schemes in the Standard Model. Here, we consider existing IND-CCA
secure KEM schemes in the standard model that use a collision resistant hash
function (CRHF) or a target CRHF (TCRHF) in the construction of an en-
capsulation. Specifically, we consider the very efficient and recently proposed
schemes [13,26,23,22] which all use a (T)CRHF as a building block (to make
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Setupte(1
k) :

Pick a group G (order p) and g ← G.
Pick a DEM D = (DEnc, DDEM)

with key space {0, 1}k

Pick H : {0, 1}∗ → {0, 1}k.
Output par ← (p, g,G, D, H).

KGte(par) :
x ← Zp, X ← gx

Output (pk, sk) ← (X, x).

TEnc(par, pk, tag, m) :
r ← Zp, c1 ← gr, K ← H(tag||c1||Xr)
c2 ← DEnc(K, m)
c ← (c1, c2)
Output (c, K).

TDec(par, sk, tag, c) :
Parse c as (c1, c2). K ← H(tag||c1||cx

1 )
Output m ← DDec(K, c2).

Fig. 8. A TBE scheme based on the DHIES scheme (tDHIES)

Setuptk(1k) :
Pick bilinear groups (G, Ĝ, GT ) (order p)

with e : G × Ĝ → GT and ψ : Ĝ → G
Pick ĝ ← Ĝ, and set g ← ψ(ĝ).
Pick a CRHF CR : {0, 1}∗ → {0, 1}n.
Output par ← (p,G, GT , e, ψ, g, ĝ, CR).

KGtk(par) :
u′, u1, . . . , un ← Zp

U ′ ← gu′
, Ui ← gui for 1 ≤ i ≤ n

α ← Zp, ĥ ← ĝα, Z ← e(g, ĝ)α

pk ← (Z, U ′, U1, . . . , Un)
sk ← (ĥ, u′, u1, . . . , un)
Output (pk, sk).

TEncap(par, pk, tag) :
r ← Zp, c1 ← gr, t ← CR(tag||c1)
Let t be an n-bit string t1||t2|| . . . ||tn

c2 ← (U ′∏n
i=1 U ti

i )r

c ← (c1, c2), K ← Zr

Output (c, K).
TDecap(par, sk, tag, c) :

Parse c as (c1, c2).
t ← CR(tag||c1)
Let t be an n-bit string t1||t2|| . . . ||tn

If c2 = c
u′+

∑n
i=1 uiti

1

Output K ← e(c1, ĥ)
Otherwise output ⊥.

Fig. 9. TBKEM scheme based on the Boyen-Mei-Waters PKE (tBMW1)

[23] IND-CCA secure, we have to apply the technique from [4]). In these schemes,
if we simply add a tag as an additional input to the hash function, we can
achieve secure TBKEM schemes. As an example, we show in Fig. 9 a partition-
able TBKEM scheme obtained from the practical PKE proposed by Boyen, Mei,
and Waters [13] which we denote tBMW1 (note that the original scheme is a
PKE scheme but here, we turn it into a TBKEM scheme).

Since the security proof is essentially the proof of the original BMW PKE
scheme (whose proof is almost identical to that of the Waters IBE [45] which is
adaptive identity chosen plaintext secure), the details are omitted here.

Several other KEMs share a similar structure to the Boyen et al. KEM [12]
(e.g. [26,23,22,21]), and can be modified in a similar way to achieve TBKEMs.
However, whether IND-tag-CCA or IND-stag-CCA security is achieved is depen-
dent on how the original KEM is proved secure. In particular, the TBKEMs
obtained from [26,23,22,21] will only achieve IND-stag-CCA security.

8 Concrete SC-Composable Schemes

We will now introduce a number of signature/TBKEM pairs which are SC-
composable, using the TBKEMs introduced in the previous section. Consider the
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TBKEM tBMW1 shown in Fig. 9. The scheme is partitionable with the algorithms
TE1(par, r) = gr and TE2(par, pkR, tag, r) = (c2,K) where c2 ← (U ′∏n

i=1 U
ti

i )r,
K ← Zr and t← CR(tag||gr). An example of a suitable signature scheme to com-
bine with this TBKEM is the scheme by Waters [45] (Waters). Here, we assume
that Waters is implemented with the same bilinear groups as tBMW1 in Fig. 9.
Signatures are of the form σ = (gr, gα · ψ(V̂ ′∏n

i=1 V̂
mi

i )r) ∈ (G)2 where gα ∈ G
and (V̂ ′, V̂1, . . . , V̂n) ∈ (Ĝ)n+1 are elements of the private and public signer key,
skS and pkS , respectively, and mi is the i-th bit of the message m (see [45] for
a full description of the scheme). Furthermore, the scheme is partitionable with
S1(par, r) = gr and S2(par, skS ,m, r) = gα · ψ(V̂ ′∏n

i=1 V̂
mi

i )r, where r ∈ Zp.
It is relatively easy to check that the two schemes satisfy the requirements

about compatible setup (property 1) and shared randomness (property 2) of Defi-
nition 13 with shared randomness space Zp. Furthermore the algorithms TE′

2 and
S′

2 for the scheme are defined as TE′
2(sk, tag, g

r) = ((gr)u′+
∑n

i=1 uiti , e(gr, ĝα))
and S′

2(sk,m, g
r) = gα · (gr)u′+

∑n
i=1 uimi , and satisfy the requirement about ci-

phertext/signature simulatability (property 3). Taking into account that tBMW1
is IND-tag-CCA secure and that Waters is wUF-CMA secure, Theorem 14 and 15
yields that the signcryption scheme SC shown in Fig. 7 is dM-IND-iCCA and
dM-wUF-iCMA(KR) secure when instantiated with these schemes.

However, there are many other SC-composable pairs. For example, if a strongly
unforgeable signcryption scheme is desired, Waters signatures can be replaced
by the sUF-CMA secure variant proposed by Boneh et al. [11] (BSW). Alterna-
tively, the signatures by Camenisch et al. [14] (CL) can be used to achieve a
scheme with compact public sender keys (this scheme can furthermore be made
sUF-CMA secure using the techniques from [11]). Likewise, the TBKEM can be
replaced by any of the TBKEMs mentioned in the previous section to achieve
signcryption schemes with various properties. Note that any combination of the
mentioned signature schemes and TBKEMs will be SC-composable (see the full
version [35] for details).

9 Comparison

In Fig. 10, we list the achieved security notions, underlying security assumptions
and computational and ciphertext overhead for previously proposed signcryption
schemes as well as the constructions discussed in this paper. All schemes are
instantiated to obtain minimal ciphertext and computational overhead. Specifi-
cally, we assume that an IND-CCA secure DEM has no ciphertext overhead (i.e. is
length preserving) and IND-CPA and IND-CCA secure SKE have ciphertext over-
heads which are of the size |IV | and |IV |+ |MAC| [7], respectively. In the original
schemes of LYWDC [28] and LQ [29], the public sender key is included as part of
the plaintext. However, this is only needed when considering anonymity, and we
leave out the sender key from the plaintext in these schemes. Dent [18] and GBN
[20] require a “signcryption DEM” which is a DEM that satisfies both IND-CCA
and INT-CTXT security. To achieve this we assume that the Encrypt-then-MAC
approach is used as discussed in [18].
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The scheme K&SE(HDH)has the lowest ciphertext and computational overhead
of all signcryption schemes, while providing outsider multi-user security. This im-
proves upon the Dent scheme [18] which is furthermore only shown to be secure
in the two-user setting. If unforgeability against insiders is required, the scheme
TK&SEtS(tHDH,BLS) provides the lowest ciphertext overhead, but the Zheng
scheme [47,5,6] has lower computational cost. On the other hand, if confidentiality
against insiders is required (butonly outsider unforgeability), the schemesTEtK&M
(HDH,tDHIES) and GBN [20] provides the same ciphertext overhead but GBN pro-
vides slightly lower computational overhead. However, GBN is only shown to be
secure in the weaker static multi-user model which implies key registration, and in
this aspect we consider TEtK&M(HDH,tDHIES) as an improvement upon GBN.

Considering schemes which provides full insider security, TEtS(tDHIES,BLS)
improves upon LYWDC [28] and LQ [29] by providing slightly lower ciphertext
overhead while having practically the same computational cost (an IND-CCA
secure DEM vs. a one-time pad). The ciphertext overhead is in fact lower than
BD [8] and only 11 bits larger than Zheng although these schemes provides a
lower level of security.

The schemes based on SC-composable TBKEMs and signatures improves
upon the previous standard model schemes by providing both lower ciphertext
and computational overhead. The lowest overhead is achieved by SC(tBMW1,Waters)
(and SC(tBMW2,Waters)). However, if strong unforgeability is desired, the slightly
less efficient SC(tBMW1,BSW) is required. The only drawback of the schemes
based on SC-composability is that key registration is required to guarantee un-
forgeability (note that previous standard model schemes requires key registration
as well). If key registration is not feasible, the most efficient scheme would be
StTE(tBMW1,Waters) or StTE(tBMW1,BB) where BB denotes the short signa-
ture scheme by Boneh et al. [9]. Lastly note that the schemes based on tBMW2
TBKEM and the signature scheme by Camenisch et al. [14] (CL) (or CL [14]
modified with the technique from [11], denoted by CL’) have the advantage of
compact public sender and receiver keys.
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Abstract. Designated Confirmer signatures were introduced to limit
the verification property inherent to digital signatures. In fact, the veri-
fication in these signatures is replaced by a confirmation/denial protocol
between the designated confirmer and some verifier. An intuitive way
to obtain such signatures consists in first generating a digital signature
on the message to be signed, then encrypting the result using a suitable
encryption scheme. This approach, referred to as the “encryption of a
signature” paradigm, requires the constituents (encryption and signa-
ture schemes) to meet the highest security notions in order to achieve
secure constructions.

In this paper, we revisit this method and establish the necessary and
sufficient assumptions on the building blocks in order to attain secure
confirmer signatures. Our study concludes that the paradigm, used in its
basic form, cannot allow a class of encryption schemes, which is vital for
the efficiency of the confirmation/denial protocols. Next, we consider a
slight variation of the paradigm, proposed in the context of undeniable
signatures; we recast it in the confirmer signature framework along with
changes that yield more flexibility, and we demonstrate its efficiency by
explicitly describing its confirmation/denial protocols when instantiated
with building blocks from a large class of signature/encryption schemes.
Interestingly, the class of signatures we consider is very popular and has
been for instance used to build efficient designated verifier signatures.

Keywords: Designated Confirmer signatures, Generic construction,
Reduction/meta-reduction, Zero Knowledge.

1 Introduction

Digital signatures capture most of the properties met by signatures in the paper
world, for instance, universal verification. However, in some applications, this
property is not desired or at least needs to be controlled. Undeniable signatures
were introduced in [12] for this purpose; they proved critical in situations where
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privacy or anonymity is a big concern, such as licensing software [12], electronic
cash and electronic voting, and auctions. In these signatures, the verification can
be only attained by means of a cooperation with the signer, called the confir-
mation/denial protocols. Unfortunately, this very virtue (verification with only
the signer’s help) became its major shortcoming for many practical applications.
The flaw was later repaired in [10] by introducing the concept of designated con-
firmer signatures. In fact, this concept involves three entities, namely the signer
who produces the signature, the designated confirmer who confirms or denies an
alleged signature and finally the recipient of the signature. Designated confirmer
signatures, or confirmer signatures for brevity, can have the additional feature
of being converted, by the confirmer, to ordinary digital signatures.

1.1 Related Work

Since the introduction of confirmer signatures, researchers sought ways of pro-
ducing them from digital signatures and other cryptographic primitives such as
encryption and/or commitment schemes. We briefly review in this paragraph, in
chronological order, the most important such attempts:

Okamoto (1994) [28]. The result proposes a construction of confirmer signa-
tures from digital signatures, public key encryption, bit-commitment schemes
and pseudo-random functions. The construction was used to prove equiva-
lence between confirmer signatures and public key encryption with respect
to existence. Thus, efficiency was not taken into account in the framework.

Michels and Stadler (1998) [25]. This approach builds efficient confirmer
signatures from signatures obtained from the Fiat-Shamir paradigm and
from commitment schemes. Thus, the resulting confirmer signatures can be
only proven secure in the random oracle model (ROM), inheriting this prop-
erty from the use of the Fiat-Shamir paradigm, which constitutes their major
shortcoming. Actually, it is well known, according to [32], that most discrete-
logarithm-based signatures obtained from the Fiat-Shamir technique are
very unlikely to preserve the same level of security in the standard model.

Camenisch and Michels (2000) [8]. The authors present the “encryption
of a signature” idea along with a security analysis of the resulting confirmer
signatures. In fact, they require existentially unforgeable signatures and in-
distinguishable encryption in the strongest attack model (EUF-CMA signa-
tures and IND-CCA secure encryption) to achieve unforgeable, invisible, and
transcript-simulatable confirmer signatures. The major weakness of the con-
struction lies in the resort, in the confirmation/denial protocols, to general
concurrent zero knowledge (ZK) proofs of NP statements.

Goldwasser and Waisbard (2004) [23]. This result manages to circum-
vent partially the weakness of the above construction. In fact, from a large
class of digital signatures, the authors propose a transformation to confirmer
signatures by encrypting the former items under an IND-CCA secure encryp-
tion during the confirmation protocol. They consequently achieve an efficient
confirmation, but at the expense of the transcript-simulatability, the invisi-
bility and the length of the resulting signatures. For instance, the signature
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contains at least twice the number of the confirmation protocol’s rounds
of encryptions. Moreover, the denial protocol of the construction has still
recourse to general concurrent ZK proofs of NP statements.

Gentry et al. (2005) [21]. This work gives the possibility of building con-
firmer signatures from digital signatures, encryption (IND-CCA) and com-
mitment schemes. Although the resulting construction does not use random
oracles, it still does not get rid completely of general ZK proofs since the
confirmer has to prove in concurrent ZK the knowledge of the decryption of
an IND-CCA encryption and of a string used for commitment.

Wang et al. (2007) [38]. In this work, the authors present two construc-
tions. The first one fixes some flaws noticed in [21], however, it still requires
concurrent ZK proofs of NP statements. The second construction does not
require any encryption, but at the expense of the underlying security assump-
tion. In fact, it has its invisibility resting on the decisional Diffie-Hellman
assumption, which rules out using the scheme in bilinear groups and thus
benefiting from the attractive features they present such as achieving short
group elements. Moreover, the construction suffers also the recourse to the
ROM. Finally, these constructions as well as the construction in [21] are not
anonymous, as we will point later in this document.

Wikström (2007) [40]. The author in his work proposes a new model for
convertible confirmer signatures along with a generic construction analyzed
in this new model. The construction is similar to the one given in [8] with the
exception of considering cryptosystems with labels. Although the construc-
tion requires a weaker security notion on the cryptosystem than IND-CCA,
namely Δ-IND-CCA, it still resorts to general proofs of NP statements.

El Aimani (2008) [14]. This construction is a slight variation of the “encryp-
tion of a signature” paradigm which uses cryptosystems from the KEM/DEM
paradigm and requires them to be only IND-CPA secure. The author claims
that this impacts positively the efficiency of the confirmation/denial pro-
tocols by allowing homomorphic schemes in the design. However, such a
claim lacks justification since the only illustrations provided in the paper
(or in its full version [16]) are generic constructions from a class of pairing-
based signatures, which are used with a specific cryptosystem (El Gamal
encryption or the linear Diffie-Hellman KEM/DEM). Furthermore, one of
the constructions uses a cryptosystem which operates on messages from Z×

p

(for some prime p), thus, the resulting signatures will be quite long because
of the size contrast between ring cryptography and elliptic-curve cryptogra-
phy. This seems to violate the main expectation from appealing to elliptic
curve cryptography, namely achieve short signatures.

Summing up the state-of-the art in confirmer signatures, we deduce that the most
mountainous obstacle that faces the potentially anonymous generic constructions
without ROM, namely those derived from variants of the “encryption of a signa-
ture” paradigm, lies in the resort to general zero knowledge (ZK) proofs of NP
statements, e.g., proving in ZK the knowledge of the decryption of an IND-CCA
encryption. In this paper, we revisit this paradigm. We basically address two
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questions: does the paradigm, used in its basic form [8], allow building blocks
with weaker security assumptions, for instance IND-CPA cryptosystems and thus
achieves efficient signatures as claimed in [14]? The second question concerns the
alleged efficiency of the construction in [14]; how important is the contribution of
the IND-CPA requirement to the efficiency of the confirmation/denial protocols?

1.2 Our Contributions

The results in this paper are twofold. First, we consider the plain “encryption
of a signature” paradigm as described in [8]. We actually prove that EUF-CMA
secure signatures are a sufficient and necessary requirement to obtain EUF-CMA
secure convertible confirmer signatures. Next, we show that indistinguishable
cryptosystems under a plaintext checking attack (IND-PCA) are already enough
to obtain invisible signatures under a chosen message attack (INV-CMA). This
contrasts the wide belief that the cryptosystems should be IND-CCA secure.
We also show that this assumption on the cryptosystem (IND-PCA secure) is
necessary to obtain invisible signatures. This rules out automatically from the
design homomorphic cryptosystems, a class of cryptosystems which proved later
to be vital for the efficiency of the confirmation/denial protocols.

Next, we consider the proposal in [14] which builds a universally convertible
undeniable signature scheme from secure digital signatures and IND-CPA secure
cryptosystems obtained from the KEM/DEM paradigm. We propose a recast
of the construction in the confirmer signature framework and we demonstrate
its efficiency by explicitly describing the confirmation/denial protocols when
instantiated from a large class of signature/encryption schemes. Interestingly,
the class of signatures we consider has been already defined as an ingredient of
an efficient construction of designated verifier signatures [36]. We conclude that
our recast of [14] betters the previous constructions of confirmer signatures in
terms of both efficiency and security. In fact, it gets rid of general ZK proofs
of NP statements in the confirmation and/or the denial protocol, oppositely
to the constructions in [28,8,23,21,38]. Moreover, the resulting signatures are
not proven secure in the random oracle as in [25,38], and they enjoy a strong
invisibility which captures both the traditional invisibility, defined in [8], and
anonymity which was later defined in [19]. We prove for instance that the latter
property is not met by the constructions in [21,38].

2 Convertible Designated Confirmer Signatures (CDCS)

Since their introduction, many definitions and security models for CDCS have
emerged. We consider the default model adopted in most confirmer signature
proposals [8,23,21,38,14]. This model was primally described in [8], where the
sign then encrypt technique was first formally introduced.

We refer to the full paper [15] for reminders of the necessary cryptographic
primitives that will come into use, that are, digital signatures, public key en-
cryption schemes, KEM/DEM mechanisms, and finally Σ protocols.
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2.1 Syntax

A CDCS scheme consists of the following procedures:

Key generation. Generates probabilistically key pairs (skS , pkS) and (skC , pkC)
for the signer and for the confirmer respectively, consisting of the private
and the public key.

ConfirmSign. On input skS , pkC and a message m, outputs a confirmer sig-
nature μ, then interacts with the signature recipient to convince him of the
validity of the just generated signature.

Confirmation/Denial protocols. These are interactive protocols between the
confirmer and a verifier. Their common input consists of pkS , pkC , the al-
leged signature μ, and the message m in question. The confirmer uses his
private key skC to convince the verifier of the validity (invalidity) of the
signature μ on m. At the end, the verifier either accepts or rejects the proof.

Selective conversion. This is an algorithm run by the confirmer using skC , in
addition to pkC and pkS . The result is either ⊥ or a string which can be
universally verified as a valid digital signature. Some models, e.g. [40], require
that the confirmer issues a protocol of the correctness of the conversion in
case of a valid signature1. It is easy to see that such a proof of correctness
is reduced, in case of constructions from the “encryption of a signature”
paradigm, to a proof that a given ciphertext decrypts to a given message.
This is theoretically possible since the last assertion is an NP statement
which accepts a ZK proof system.

Selective verification. This is an algorithm for verifying converted signatures.
It inputs the converted signature, the message and pkS and outputs 0 or 1.

2.2 Security Model

The above algorithms must be complete. Moreover the confirmSign, confirmation
and denial protocols must be complete, sound and non transferable (simulatable)
(see [8])2. In the sequel, we describe further properties that a CDCS scheme
should meet.

Security for the signer (unforgeability). It is defined through the following game:
the adversary A is given the public parameters of the CDCS scheme, namely
pkS and pkC , in addition to skC . A is further allowed to query the signer on
polynomially many messages, say qs. At the end, A outputs a pair consisting
of a message m, that has not been queried yet, and a string μ. A wins the
game if μ is a valid confirmer signature on m. We say that a CDCS scheme is
(t, ε, qs)-EUF-CMA secure if there is no adversary, operating in time t, that
wins the above game with probability greater than ε.

1 It is not the responsibility of the confirmer to provide proofs for ill-formed signatures.
2 In [40], the author points a flaw in the definition of non transferability of [8] and

proposes how to fix it (by having the simulator rewound). In all the constructions that
will follow, the property of non transferability will be met as a direct consequence
of using zero knowledge proofs.
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Security for the confirmer (invisibility). Invisibility against a chosen message
attack (INV1-CMA) is defined through the following game between an at-
tacker A and his challenger R: after A gets the public parameters of the
scheme from R, he starts Phase 1 where he queries the signing, confirma-
tion/denial, selective conversion oracles in an adaptive way. Once A decides
that Phase 1 is over, he outputs two messages m0 and m1 that have not
been queried before to the signing oracle and requests a challenge signature
μ�. R picks uniformly at random a bit b ∈ {0, 1}. Then μ� is generated using
the signing oracle on the message mb. Next, A starts adaptively querying
the previous oracles (Phase 2), with the exception of not querying m0 and
m1 to the signing oracle and (mi, μ

�), i = 0, 1, to the confirmation/denial
and selective conversion oracles. At the end, A outputs a bit b′. He wins the
game if b = b′. We define A’s advantage as adv(A) = |Pr[b = b′]− 1

2 |. We say
that a CDCS scheme is (t, ε, qs, qv, qsc)-INV1-CMA secure if no adversary
operating in time t, issuing qs queries to the signing oracle, qv queries to the
confirmation/denial oracles and qsc queries to the selective conversion oracle
wins the above game with advantage greater that ε.

Anonymity of signatures. In some applications, it is required that the confirmer
signatures are anonymous, i.e., do not leak the identity (public key) of the
signer. We refer to [19] for the formal definition of anonymity of confirmer
signatures under a chosen message attack (ANO-CMA).

A stronger notion of invisibility. To capture both anonymity and invisibility,
Galbraith and Mao introduced in [19] a notion, which we denote INV2-CMA,
that requires the confirmer signatures to be indistinguishable from random
elements in the signature space. This new notion is proven to imply both
INV1-CMA and ANO-CMA (Theorem 1 and Theorem 4 respectively of [19]).

3 The Plain “Encryption of a Signature” Paradigm

The paradigm devises a CDCS scheme by producing a digital signature on the
message to be signed, then encrypting the result using a suitable cryptosystem.
More precisely, let Σ be a digital signature scheme given by Σ.keygen which
generates a key pair (private key = Σ.sk, public key= Σ.pk), Σ.sign and Σ.verify.
Let furthermore Γ denote a cryptosystem described by Γ.keygen that generates
the key pair (private key = Γ.sk, public key= Γ.pk), Γ.encrypt and Γ.decrypt.
A confirmer signature on a message m is issued by first producing a digital
signature σ = Σ.signΣ.sk(m) on m, then encrypting it using Γ.pk. The result is
μ = Γ.encryptΓ.pk(σ). It is obvious that Σ.sk forms the (DCSC) signer’s private
key, whereas Σ.pk is his public key. To confirm (deny) a confirmer signature μ,
the confirmer uses Γ.sk to prove the knowledge of the decryption of μ which
does (not) satisfy the equation defined by the algorithm Σ.verify. Such a proof
of knowledge is possible as the considered statements are in NP (co-NP), and
therefore accept zero knowledge proof systems (see [22]).

This technique was formally analyzed in [8]: it was shown that the construction
is EUF-CMA secure if the underlying (digital) signature scheme is also EUF-
CMA secure. Moreover, it is INV1-CMA secure if the underlying cryptosystem
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is IND-CCA secure. Finally, completeness, soundness and non-transferability of
the involved protocols follow from using ZK proofs of knowledge.

In the sequel, we prove that the condition on the underlying signature scheme
(EUF-CMA secure) is also necessary to achieve EUF-CMA secure confirmer sig-
natures. Furthermore, we prove that IND-PCA secure cryptosystems are already
enough, though mandatory, to achieve INV1-CMA signatures.

Theorem 1. The above generic construction is (t, ε, qs)-EUF-CMA secure if
and only if the underlying digital signature scheme is (t, ε, qs)-EUF-CMA secure.

Proof. The If direction has been already proved in [8]. We prove now the other
direction. Let (m�, σ�) be an existential forgery against the digital signature
scheme. One can derive a forgery against the confirmer signature by simply
encrypting the signature σ� using the public key of the confirmer. Simulation
of the attacker’s environment is easy; the reduction R (EUF-CMA attacker
against the confirmer signature) will forward the appropriate parameters (those
concerning the underlying digital signature) to the EUF-CMA attacker against
the underlying signature scheme, denoted A. For a signature query on a message
m, R will first request his challenger for a confirmer signature μ that he decrypts
using the universal trapdoor (R has access to such a trapdoor according to the
EUF-CMA security game described in 2.2 ) in σ. Finally, R outputs σ to A. ��

Invisibility. In this paragraph, we prove that IND-PCA secure cryptosystems
are mandatory and enough to achieve INV1-CMA secure undeniable signatures.
To prove this assertion, we proceed as follows. We first show that the INV1-CMA
security of the resulting signatures cannot rest on the NM-CPA security of the
underlying cryptosystem. We do this by means of an efficient meta-reduction
using such a reduction (the algorithm reducing NM-CPA breaking the underlying
cryptosystem to INV1-CMA breaking the construction) to break the NM-CPA
security of the cryptosystem. Thus, under the assumption that the cryptosystem
is NM-CPA secure, the meta reduction forbids the existence of such a reduction.
In case the cryptosystem is not NM-CPA secure, such a reduction will be useless.
This result will rule out automatically all the other notions that are weaker than
NM-CPA, namely, OW-CPA and IND-CPA. Next, we use a similar technique
to exclude the OW-CCA notion. The next security notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient to obtain INV1-CMA
secure signatures.

Note that meta-reductions have been successfully used in a number of impor-
tant cryptographic results, e.g., the result in [5] which proves the impossibility
of reducing factoring to the RSA problem, or the results in [32,30] which show
that some well known signatures, which are proven secure in the random oracle,
cannot conserve the same security in the standard model. All those impossibility
results are partial as they apply only for certain reductions. Our result is in a
first stage also partial since it requires the reduction R, trying to attack a certain
property of a cryptosystem given by the public key Γ.pk, to provide the adver-
sary against the confirmer signature with the confirmer public key Γ.pk. We



350 L. El Aimani

will denote such reductions by key-preserving reductions, inheriting the name
from a wide and popular class of reductions which supply the adversary with
the same public key as its challenge. Such reductions were for instance used
in [31] to prove a separation between factoring and IND-CCA-breaking some
factoring-based cryptosystems in the standard model. Our restriction to such a
class of reductions is not unnatural since, to our best knowledge, all the reduc-
tions stemming the security of the generic constructions of confirmer signatures
from the security of their underlying components, feed the adversary with the
public keys of these components (signature scheme, encryption scheme, commit-
ment scheme). Next, we use simular techniques to [31] to extend our impossibility
results to arbitrary reductions.

Lemma 1. Assume there exists a key-preserving reduction R that converts an
INV1-CMA adversary A against the above construction to an NM-CPA adver-
sary against the underlying cryptosystem. Then, there exists a meta-reduction
M that NM-CPA breaks the cryptosystem in question.

Let us first interpret this result. The lemma claims that under the assump-
tion of the underlying cryptosystem being NM-CPA secure, there exists no key-
preserving reduction R that reduces NM-CPA breaking the cryptosystem in
question to INV1-CMA breaking the construction, or if there exists such an
algorithm, the underlying cryptosystem is not NM-CPA secure, thus rendering
such a reduction useless.

Proof. Let R be a key-preserving reduction that reduces NM-CPA breaking the
cryptosystem underlying the construction to INV1-CMA breaking the construc-
tion itself. We will construct an algorithm M that uses R to NM-CPA break
the same cryptosystem by simulating an execution of the INV1-CMA adversary
A against the construction.

Let Γ be the cryptosystem M is trying to attack. M launches R over Γ with
the same public key, say Γ.pk. M, acting as the INV1-CMA adversary A against
the construction, queries R on m0,m1

R←− {0, 1}� for confirmer signatures. Then
he queries the resulting strings μ0, μ1 (corresponding to the confirmer signatures
on m0 and m1 respectively) for a selective conversion. Let σ0 and σ1 be the
output (digital) signatures on m0 and m1 respectively. At that point, M inputs
D = {σ0, σ1} to his own challenger as a distribution probability from which the
plaintexts will be drawn. He gets in response a challenge encryption μ�, of either
σ0 or σ1 under Γ.pk, and is asked to produce a ciphertext μ′ whose corresponding
plaintext is meaningfully related to the decryption of μ�. To do this, M chooses
uniformly at random a bit b R←− {0, 1}. Then, he queries the presumed confirmer
signature μ� on mb for a selective conversion. If the result is different from ⊥, i.e.,
μ� is the encryption of σb, then M will output Γ.encryptΓ.pk(σb) (σb refers to the
bit-complement of the element σb) and the relation R: R(m,m′) = (m′ = m).
Otherwise, he will output Γ.encryptΓ.pk(σ1−b) and the same relation R. Finally
M aborts the game (stops simulating an INV1-CMA attacker against the generic
construction). ��
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Lemma 2. Assume there exists a key-preserving reduction R that converts an
INV1-CMA adversary A against the above construction to a OW-CCA adversary
against the underlying cryptosystem. Then, there exists a meta-reduction M that
OW-CCA breaks the cryptosystem in question.

Proof. The proof is similar to the one above. Let R be the key-preserving re-
duction that reduces OW-CCA breaking the cryptosystem underlying the con-
struction to INV1-CMA breaking the construction itself. We will construct an
algorithm M that uses R to OW-CCA break the same cryptosystem by simu-
lating an execution of the INV1-CMA adversary A against the construction.

Let Γ be the cryptosystem M is trying to attack. M gets his challenge c
and is equipped with a decryption oracle that he can query on all ciphertexts
of his choice except of course on the challenge. M launches R over Γ with the
same public key Γ.pk and the same challenge c. Obviously all decryption queries
made by R, which are by definition different from the challenge ciphertext c,
can be forwarded to M’s own challenger. At some point, M, acting as an INV1-
CMA attacker against the construction, will output two messages m0,m1 and
gets as response a challenge signature μ� which he is required to tell to which
message it corresponds. With overwhelming probability, μ� �= c, in fact, the
challenge c is not the encryption of a certain σ such that σ is a valid (digital)
signature on the message m0 or the message m1. Therefore, M queries his own
challenger for the decryption of μ� (he can issue such a query since it is different
from the challenge ciphertext). He checks whether the result, say σ, is a valid
(digital) signature on m0 or m1. Then, he will simply output the result of this
verification. Finally, when R outputs his answer, decryption of the ciphertext c,
M will simply forward this result to his challenger. ��

Theorem 2. The cryptosystem underlying the above construction must be at
least IND-PCA secure, in case the considered reduction is key-preserving, in
order to achieve INV1-CMA secure signatures.

Proof. We proceed in this proof with elimination. Lemma 1 rules out the notion
NM-CPA and thus the notions IND-CPA and OW-CPA. Moreover, Lemma 2
rules out OW-CCA and thus OW-PCA (and also OW-CPA). Thus, the next
notion to be considered is IND-PCA. ��

Remark 1. The above theorem is only valid when the considered notions are
those obtained from pairing a security goal GOAL ∈ {OW, IND,NM} and an
attack model ATK ∈ {CPA,PCA,CCA}. Presence of other notions will require
an additional study, however, Lemmas 1 and 2 will be always of use when there
exists a relation between these new notions and the notions OW-CCA and NM-
CPA.

To extend the result to arbitrary reductions, we use the same techniques as in
[31]. Namely, we first define the notion of non malleability of a cryptosystem key
generator through the following two games:
In Game 0, we consider an algorithm R trying to break a cryptosystem Γ ,
w.r.t. a public key Γ.pk, in the sense of NM-CPA or OW-CCA using an adversary
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A which solves a problem A, perfectly reducible to OW-CPA breaking the cryp-
tosystem Γ . In this game, R launches A over his own challenge key Γ.pk and some
other parameters chosen freely by R. We will denote by adv0(RA) the success
probability of R in such a game, where the probability is taken over the ran-
dom tapes of both R and A. We further define succGame0

Γ (A) = maxR adv0(RA)
to be the success in Game 0 of the best reduction R making the best possi-
ble use of the adversary A. In Game 1, we consider the same entities as in
Game 0, with the exception of providing R with, in addition to A, a OW-
CPA oracle (i.e. a decryption oracle corresponding to Γ ) that he can query
w.r.t. any public key Γ.pk′ �= Γ.pk, where Γ.pk is the challenge public key of
R. Similarly, we define adv1(RA) to be the success of R in such a game, and
succGame1

Γ (A) = maxR adv0(RA) the success in Game 1 of the reduction R
making the best possible use of the adversary A and of the OW-CPA oracle.

Definition 1. A cryptosystem Γ has a non malleable key generator if
Δ = maxA|succGame1

Γ (A)−succGame0
Γ (A)| is negligeable in the security parameter.

This definition informally means that a cryptosystem has a non malleable key
generator if NM-CPA or OW-CCA breaking it w.r.t. a key pk is no easier when
given access to a decryption oracle w.r.t. any public key pk′ �= pk.

Theorem 3. If the cryptosystem underlying the above construction has a non
malleable key generator, then it must be at least IND-PCA secure in order to
achieve INV1-CMA secure confirmer signatures.

The proof is provided in [15].
One can give an informal explanation to the result above as follows. It is

well known that constructions obtained from the sign then encrypt paradigm
are not strongly unforgeable. I.e., a polynomial adversary is able to produce,
given a valid confirmer signature on a certain message, another valid confirmer
signature on the same message without the help of the signer. Indeed, given a
valid confirmer signature on a message, an attacker can request its corresponding
digital signature from the selective conversion oracle, then he encrypts it under
the cryptosystem public key and obtains a new confirmer signature on the same
message. Therefore, any reduction R from the invisibility of the construction to
the security of the underlying cryptosystem will need more than a list of records
maintaining the queried messages along with the corresponding confirmer and
digital signatures. Thus the insufficiency of notions like IND-CPA. In [8], the
authors stipulate that the given reduction would need a decryption oracle (of the
cryptosystem) in order to handle the queries made by the INV1-CMA attacker
A, which makes the invisibility of the construction rest on the IND-CCA security
of the cryptosystem. In our work, we remark that the queries made by A are not
completely uncontrolled by R. In fact, they are encryptions of some data already
released by R, provided the digital signature scheme is strongly unforgeable, and
thus known to him. Therefore, a plaintext checking oracle suffices to handle those
queries.
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Theorem 4. The above construction is (t, ε, qs, qv, qsc)-INV1-CMA secure if it
uses a (t, ε′, qs)-SEUF-CMA secure digital signature and a (t+ qsqsc(qsc + qv), ε ·
(1 − ε′)(qsc+qv), qsc(qsc + qv))-IND-PCA secure cryptosystem.

The proof is provided in [15].
Unfortunately, requiring the encryption scheme to be at least IND-PCA secure

seems to impact negatively the efficiency of the construction as it excludes homo-
morphic schemes from use (a homomorphic cryptosystem cannot be IND-PCA
secure). In fact, such schemes can be (as we will show later in this document) ef-
ficient decryption verifiable, i.e., they accept efficient ZK proofs of knowledge of
the decryption of a given ciphertext. In the next section, we discuss an attempt
to circumvent this problem.

Remark 2. There exists a simpler way to exclude homomorphic encryption from
the design which consists in proceeding as follows:
First rule out the notions OW-CPA, IND-CPA and OW-PCA by remarking
that ElGamal’s encryption meets all those notions (under the CDH, DDH and
GDH assumption resp. ) but still cannot be used as an ingredient in the con-
struction. In fact, ElGamal offers the possibility of, given a ciphertext, creat-
ing another ciphertext for the same message (multiply the first component by
gr, for some r, and the second one by yr, where (sk = x, pk = y = gx) is
the key pair of the scheme). Now, let (μ,m0,m1) be a challenge to an INV1-
CMA adversary A. By construction, μ is an ElGamal encryption of some σ,
which is a digital signature on either m0 or m1. By the argument above, A
can create another confirmer signature μ′, that is another encryption of σ, and
that he can query to the selective conversion oracle and then answer his own
challenge.
Next, conclude that the cryptosystem in constructions derived from the “encryp-
tion of signature” paradigm must be at least OW-CCA or NM-CPA or IND-PCA
secure in order to lead to secure constructions. Finally, conclude by the fact
that a homomorphic scheme cannot be NM-CPA nor OW-CCA nor IND-PCA
secure3.
However, in order to determine the exact security needed to achieve secure con-
structions from the mentioned paradigm, there seems no known simpler way to
exist than the study provided in this section.

3 Let E be a cryptosystem such that ∀m, m′ ∈ M : E.encrypt(m�m′) = E.encrypt(m)◦
E.encrypt(m′), where M is the message space, encrypt is the encryption algorithm
and finally � and ◦ are some group laws defined by E on the message and ciphertext
spaces resp. Let c be the NM-CPA challenge. An adversary can simply choose a
random message m′ R←− M, encrypt it in c′ and finally output c ◦ c′ and the relation
R = �. Now, let c be a OW-CCA challenge, an adversary can choose again a random
message m′ R←− M, encrypt it in c′ and then query c�c′ to the decryption oracle. Let
m” be the result, the adversary can simply output m” � m′−1 as the decryption of
c (we assume that computing inverses in M is efficient). Similarly, a homomorphic
scheme cannot be IND-PCA secure.
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4 Efficient KEM/DEM-Based Constructions

One attempt to circumvent the problem of strong forgeability of constructions
obtained from the plain “encryption of a signature” paradigm can be achieved
by binding the digital signature to its encryption. In this way, from a digital sig-
nature σ and a messagem, an adversary cannot create a new confirmer signature
on m by just reencrypting σ. In fact, σ forms a digital signature on m and some
data, say c, which uniquely defines the confirmer signature on m. Moreover, this
data c has to be public in order to issue the confirmSign/confirmation/denial
protocols. Such an idea has been implemented in [14] in the undeniable signature
framework, using the KEM/DEM paradigm; in fact, given a messagem, one first
fixes the session key k and its encapsulation c, then generates a digital signature
σ on the “augmented” message m‖c, finally encrypts σ using k and outputs the
result as an undeniable signature on m.

In this section, we propose a recast of this construction in the CDCS frame-
work. We also allow more flexibility without compromising the overall security
by encrypting only one part of the signature and leaving out the other part, pro-
vided it does not reveal information about the key or the message. Moreover, we
demonstrate the efficiency of the resulting construction by describing its confirm-
Sign/confirmation/denial protocols when the underlying components belong to a
wide class of encryption and digital signature schemes. Interestingly, the class of
digital signatures we consider has been already used in a recent proposal [36] as
an ingredient for a generic construction of designated-verifier signatures. Finally,
we conclude with a comparison with the existing generic constructions.

4.1 The Construction

Let Σ be a digital signature scheme given by Σ.keygen which generates a key
pair (Σ.sk, Σ.pk), Σ.sign and Σ.verify. Let furthermore K be a KEM given by
K.keygen which generates a key pair (K.pk, K.sk), K.encap and K.decap. Finally,
we consider a DEM D given by D.encrypt and D.decrypt.

Without loss of generality, we consider that a digital signature σ generated
using Σ on a message m, can be written on the form σ = (s, r) where r reveals
no information about m nor about (Σ.sk, Σ.pk). I.e., there exists an algorithm
that inputs a message m and a key pair (Σ.sk, Σ.pk) and outputs a string in-
distinguishable from r, where the probability is taken over the message and the
key pair spaces considered by Σ. Note that every signature scheme produces
signatures of the given form, since a signature can be always written as the con-
catenation of itself and of the empty string (the message-key-independent part).
We assume that s belongs to the message space of D.

Let ‖ denote the concatenation of two strings after appending to the first
one the special character !. Let m ∈ {0, 1}� a message not containing {!}, we
propose the following recast of the construction in [16]:

Key generation. Call Σ.keygen and K.keygen to generate Σ.sk, Σ.pk, K.pk
and K.sk respectively. Set the signer key pair to (Σ.sk, Σ.pk) and the con-
firmer key pair to (K.sk,K.pk).
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ConfirmSign. Fix a key k together with its encapsulation e. Then compute
a (digital) signature σ = Σ.signΣ.sk(m‖e) = (s, r) on m‖e. Finally, out-
put μ = (e,D.encryptk(s), r) and prove the knowledge of s, decryption of
(e,D.encryptk(s)), which satisfies together with r Σ.verify. This proof is pos-
sible because the signer knows k and (s, r), and the last assertion defines an
NP language which accepts a ZK proof system.

Confirmation/Denialprotocol.To confirm (deny)a signatureμ= (μ1, μ2, μ3),
issuedona certainmessagem, the confirmerfirst computesk = K.decapK.sk(μ1)
then calls Σ.verify on (D.decryptk(μ2), μ3) and m‖μ1 using Σ.pk. According
to the result, the signer issues a ZK proof of knowledge of the decryption of
(μ1, μ2) that, together with μ3, passes (does not pass) the verification algo-
rithm Σ.verify. Again this proof is possible because the given assertion is an
NP (co-NP) statement and thus accept a ZK proof system.

Selective conversion. To convert a given signature μ = (μ1, μ2, μ3) issued on
a certain message m, the confirmer first checks its validity. In case it is valid,
the confirmer computes k = K.decapK.sk(μ1) and outputs (D.decryptk(μ2), μ3)
and proves that k is the decapsulation of μ1, otherwise he outputs ⊥.

Theorem 5. The above construction is (t, ε, qs)-EUF-CMA secure if the under-
lying digital signature scheme is (t, ε, qs)-EUF-CMA secure.

Theorem 6. The proposed construction is (t, ε, qs, qv, qsc)-INV2-CMA secure if
it uses a (t, ε′, qs)-EUF-CMA secure digital signature, an INV-OT secure DEM
and a (t+ qs(qv + qsc), ε · (1 − ε′)qv+qsc)-IND-CPA secure KEM.

The proofs are similar to those provided in [16]. Note that the strong unforgeabil-
ity of the underlying signature scheme is not needed here to achieve invisibility.
In fact, if the adversary can come up with another digital signature σ′ on a
given m‖c, there is just one way to create the corresponding confirmer signa-
ture, namely, encrypt it using k = K.decap(c). Therefore, the reduction is able
to handle a query requesting the confirmation/denial or selective conversion of
such a signature by just maintaining a list of the queried messages, the issued
confirmer signatures and their corresponding digital signatures.

4.2 Efficient Instantiations Using Certain Signatures and
Cryptosystems

In this paragraph, we define the classes of signatures/cryptosystems that yield
efficient instantiations of the construction defined earlier in this section. The
class of digital signatures we consider is very similar to the one defined by [36] in
the context of designated verifier signatures, whereas the class of cryptosystems
spotlights the importance of homomorphic encryption in the framework.

Definition 2. (The class S of signatures) S is the set of all digital signatures
for which there exists a pair of algorithms, Convert and Retrieve, where Convert
inputs a public key pk, a message m, and a valid signature σ on m (w.r.t. pk)
and outputs the pair (s, r) such that:
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1. there exists an algorithm that inputs a public key from the key space and a
message from the message space, and outputs a string statistically indistin-
guishable from r.

2. there exists an algorithm Compute that on the input pk, the message m and
r, computes a description of a one-way function f : (G, ∗) → (H, ◦s) where:
– (G, ∗) is a group and H is a set equipped with the binary operation ◦s ,
– ∀S, S′ ∈ G: f(S ∗ S′) = f(S) ◦s f(S′).

and an I ∈ H, such that f(s) = I.

and Retrieve is an algorithm that inputs pk, m and the correctly converted pair
(s, r) and retrieves the signature σ on m.

The class S differs from the class C, introduced in [36], in the condition required
for the one way function f . In fact, in our description of S, the function f
should satisfy a homomorphic property, whereas in the class C, f should only
possess an efficient Σ protocol for proving knowledge of a preimage of a value
in its range. We show in Theorem 7 that signatures in S accept also efficient
Σ protocols for proving knowledge of preimages, and thus belong to the class
C. Conversely, one can claim that signatures in C are also in S, at least from a
practical point of view, since it is not known how to achieve efficient Σ protocols
for proving knowledge of preimages of f without having the latter item satisfy
some homomorphic properties. It is worth noting that similar to the classes
S and C is the class of signatures introduced in [23], where the condition of
having an efficient Σ protocol for proving knowledge of preimages is weakened
to having only a witness hiding proof of knowledge. Again, although this is a
weaker assumption on f , all illustrations of signatures in this wider class happen
to be also in C and S. Our resort to specify the homomorphic property on f
will be justified later when describing the confirmation/denial protocols of the
resulting construction. In fact, these protocols are parallel composition of Σ
protocols and therefore need a careful study as it is known that zero knowledge
is not close under concurrent composition. Finally, the class S encompasses most
proposals that were suggested so far, RSA-FDH [1], Schnorr [35], GHR [20],
Modified ElGamal [33], Cramer-Shoup [13], Camenisch-Lysyanskaya-02 [6] and
most pairing-based signatures such as [4,7,2,41,39].

1. The prover chooses s′ R←− G, computes and sends t1 = I ◦s f(s′) to the verifier.
2. The verifier chooses c

R←− {0, 1} and sends it to the prover.
3. If c = 0, the prover sends s′.

Otherwise, he sends s ∗ s′.
4. If c = 0, the verifier checks that t1 is computed as in Step 1.

Otherwise, he (verifier) accepts if f(s ∗ s′) = t1.

Fig. 1. Proof system for membership to the language {s : f(s) = I} Common input: I
and Private input : s
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Theorem 7. The protocol depicted in Figure 1 is an efficient Σ protocol for
proving knowledge of preimages of the function f described in Definition 2.

The proof is given in [15].

Definition 3. (The class E of cryptosystems) E is the set of encryption
schemes Γ , obtained from the KEM/DEM paradigm, such that:

1. The message space is a group M = (G, ∗) and the ciphertext space C is a set
equipped with a binary operation ◦e.

2. Let m ∈ M be a message and c its encryption with respect to a key pk. On
the common input m and c, there exists an efficient ZK proof of m being
the decryption of c with respect to pk. The private input of the prover is
either the private key sk, corresponding to pk, or the randomness used to
encrypt m in c (the randomness which is input to the KEM encapsulation
algorithm).

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m′).
Moreover, given the randomness used to encrypt m in Γ.encryptpk(m) and
m′ in Γ.encryptpk(m′), one can deduce (using only the public parameters)
the randomness used to encrypt m∗m′ in Γ.encryptpk(m)◦e Γ.encryptpk(m′).

Examples of cryptosystems in the above class are ElGamal’s encryption [17], or
the cryptosystem defined in [3] which uses the linear Diffie-Hellman KEM. In
fact, both cryptosystems are homomorphic and possess an efficient protocol for
proving that a ciphertext decrypts to a given plaintext: the proof of equality of
two discrete logarithms [11]. Paillier’s [29] cryptosystem cannot be viewed as an
instance of this class as it is not based on the KEM/DEM paradigm, however
in [15], we provide a modified variant which belongs to the class E and thus is
suitable for use in the construction.

Note that with this considered class of cryptosystems, the correctness of the
selective conversion becomes easy since one can efficiently prove that a given
ciphertext decrypts to a given message. In the sequel, we will see that, with this
class it is also easy to prove knowledge of the decryption of a given ciphertext.

Theorem 8. Let Γ be a OW-CPA secure cryptosystem from the class E. Let
furthermore c be an encryption of some message under some public key pk. The

1. The prover chooses s′ R←− G, computes and sends t2 = Γ.encrypt(s′) ◦e (c, sk) to the verifier

2. The verifier chooses c
R←− {0, 1} and sends it to the signer.

3. If c = 0, the prover sends s′ and the randomness used to encrypt it in Γ.encrypt(s′).
Otherwise, he sends s′ ∗ s and proves that t2 is an encryption of s′ ∗ s.

4. If c = 0, the verifier checks that t2 is computed as in Step 1.
Otherwise, he checks the proof of decryption of t2:

It it fails, he rejects the proof.

Fig. 2. Proof system for membership to the language {(e, sk) : ∃m : m =
Γ.decrypt(e, sk)} Common input: (e, sk, Γ.pk) and Private input: Γ.sk or randomness en-
crypting m in (e, sk)
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protocol depicted in Figure 2 is an efficient Σ protocol for proving knowledge of
the decryption of c.

The proof is similar to the one of Theorem 7. ��

The confirmation/denial protocols. We combine an EUF-CMA secure sig-
nature scheme Σ ∈ S and a cryptosystem Γ ∈ E, where the underlying KEM
K and DEM D are IND-CPA and INV-OT secure respectively, in the way de-
scribed in Section 4. Namely, we first compute an encapsulation e together with
its corresponding key k. Then compute a signature σ on the message to be signed
concatenated with e. Finally convert σ to (s, r) using the Convert algorithm de-
scribed in Definition 2 and encrypt s using k. The resulting confirmer signature
is (e,D.encryptk(s), r). We describe in Figure 3 the confirmation/denial protocols
corresponding to the resulting construction. Note that the confirmation proto-
col can be also run by the signer who wishes to confirm the validity of a just
generated signature.

Remark 3. The prover in Figure 3 is either the confirmer of the signature (e, sk, r)
who can run the above protocols with the knowledge of his private key, or the
signer who wishes to confirm the validity of a just generated signature (dur-
ing the confirmSign protocol). In fact, with the knowledge of the randomness
used to encrypt s in (e, sk), where (s, r) is the converted pair obtained from
σ = Σ.sign(m‖e), the signer can issue the above confirmation protocol thanks
to the properties satisfied by Γ .

Theorem 9. The confirmation protocol (run either by the signer on a just gen-
erated signature or by the confirmer on any signature) described in Figure 3 is
a Σ protocol if the underlying cryptosystem is OW-CPA secure.

Theorem 10. The denial protocol described in Figure 3 is a Σ protocol if the
underlying cryptosystem is IND-CPA secure.

The proofs of both theorems are given in [15].

1. The prover and verifier, given the public input, compute I as defined in Definition 2.

2. The prover chooses s′ R←− G, computes and sends t1 = f(s′) ◦s I and
t2 = Γ.encrypt(s′) ◦e (e, sk) to the verifier

3. The verifier chooses c
R←− {0, 1} and sends it to the prover.

4. If c = 0, the prover sends s′ and the randomness used to encrypt s′ in Γ.encrypt(s′).
Otherwise, he sends s′ ∗ s and proves that t2 is an encryption of s′ ∗ s.

5. If c = 0, the verifier checks that t1 and t2 are computed as in Step 1.
Otherwise, he checks the proof of decryption of t2:

It it fails, he rejects the proof.
Otherwise:

If the prover is confirming the signature, the verifier accepts if f(s′ ∗ s) = t1.
If the prover is denying the given signature, the verifier accepts the proof if f(s′ ∗ s) �= t1.

Fig. 3. Proof system for membership (non membership) to the language
{(e, sk, r) : ∃s : s = Γ.decrypt(e, sk) ∧ Σ.verify(Retrieve(s, r),m‖e) = ( 	=)1}
Common input: (e, sk, r,Σ.pk, Γ.pk) and Private input: Γ.sk or randomness encrypting
s in (e, sk)
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4.3 Comparisons and Possible Extentions

sign then encrypt variants. The construction presented in this section improves
the plain paradigm [8] as it weakens the assumption on the underlying cryptosys-
tem from being IND-CCA secure to only being IND-CPA secure. This impacts
positively the efficiency of the construction from many sides. In fact, the re-
sulting signature is shorter and its generation cost is smaller, since IND-CPA
cryptosystems are simpler and allow faster encryption and shorter ciphertexts
than IND-CCA ones. An illustration is given by ElGamal’s encryption and its
IND-CCA variant, namely Cramer-Shoup’s encryption where the ciphertexts are
at least twice longer than ElGamal’s ciphertexts. Also, there is a multiplicative
factor of at least two in favor of ElGamal’s encryption/decryption cost. Moreover,
the confirmation/denial protocols are rendered more efficient by the allowance of
homomorphic cryptosystems as shown in 4.2. Such cryptosystems were not pos-
sible to use before, since a homomorphic scheme can never attain the IND-CCA
security. Besides, even when the IND-CCA cryptosystem is decryption verifi-
able, e.g., Cramer-Shoup or the IND-CCA variant of Paillier’s encryption [9],
the involved protocols are much more expensive than the ones corresponding to
their IND-CPA variant: in case of ElGamal, this protocol amounts to a proof of
equality of two discrete logarithms, and in case of our modified variant of Pail-
lier (described in [15]), this protocol comes to a proof of knowledge of an N -th
root. The construction achieves also better performances than the proposal of
[23], where the confirmer signature comprises k commitments and 2k IND-CCA
encryptions, where k is the number of rounds used in the confirmation protocol.
Moreover, the denial protocol presented in [23] suffers the resort to proofs of
general NP statements (where the considered encryption is IND-CCA). Finally,
the resulting signatures are not invisible.

Commitment-based constructions. Our construction does not use ROM, unlike
the constructions in [25,38]. Moreover, it enjoys the strongest notion of invisibil-
ity (INV2-CMA) which captures both invisibility as defined in [8], and anonymity
as defined in [19]. As mentioned in subsection 2.2, anonymity can be an impor-
tant requirement for confirmer signatures in some settings. Unfortunately, many
of the efficient generic constructions are not anonymous. In fact, constructions
like [25,21,38] have a confirmer signature containing a commitment on the mes-
sage to be signed and a valid digital signature on this commitment. Therefore,
such constructions leak always a part of the signing key, namely the public key
of the underlying digital signature. More precisely, an anonymity attacker A,
will get two public keys and a confirmer signature on a given message and has
to tell the key under which the confirmer signature was created. To answer such
a challenge, A will simply check the validity of the digital signature on the com-
mitment (both are part of the confirmer signature) with regard to one public
key (the confirmer signature public key includes the public key of the underlying
digital signature). The result of such a verification is sufficient for A to conclude
in case the two confirmer public keys do not share the same public key for the
digital signature scheme.
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The upshot is, our recast of the construction [14] achieves both maximal se-
curity (strong invisibility) without random oracles, and efficiency in terms of
the signature length, generation, confirmation/denial and conversion cost. Fur-
thermore, the construction readily extends to directed signatures [24] or undeni-
able confirmer signatures [26] by simply having the confirmer share his private
key with the signer. Furthermore, one can extend the analysis provided in this
paper to the other constructions instantiating the “encryption of a signature”
paradigm, e.g., [23,40]. In fact, both constructions are not strongly unforgeable,
thus the necessity of CCA or Δ-CCA security. To circumvent this problem, one
can use similarly a cryptosystem derived from the hybrid encryption paradigm,
and produce a signature on the message concatenated with the encapsulation.
Hence, the resulting constructions will thrive on CPA or Δ-CPA security while
conserving the same security, and thus will achieve better performances as we
described above (short signature, small cost and many practical instantiations).
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Abstract. Verifiably encrypted signature (VES) schemes allow a signer
to encrypt a signature under the public key of a trusted party, the adju-
dicator, while maintaining public signature verifiability without interac-
tive proofs. A popular application for this concept is fair online contract
signing.

This paper answers the question of whether it is possible to implement
a VES without pairings and zero-knowledge proofs. Our construction is
based on RSA signatures and a Merkle hash tree. Hence, the scheme is
stateful but relies on relatively mild assumptions in the random oracle
model. Thus, we provide an alternative that does not rely on pairing-
based assumptions.

The advantage of our approach over previous schemes is that
widespread efficient hard- and software implementations of hash func-
tions and RSA signatures can be easily reused for VES, i.e., we can avoid
costly redevelopment. Furthermore, in contrast to using non-interactive
zero-knowledge proofs, we only need a constant, small number of modu-
lar exponentiations.

Keywords: Online contract signing, Merkle hash trees, RSA.

1 Introduction

Verifiably encrypted signature (VES) schemes were introduced by Boneh, Gen-
try, Lynn, and Shacham [7]. They are built upon regular, i.e., non-encrypted,
signature schemes and preserve their public verifiability, while hiding the sig-
nature itself from the public. There are three parties involved: the signer, the
receiver, and a passive adjudicator. The signer computes a signature σ on a doc-
ument m and outputs a masked signature �. The general public can verify that
� contains a signature on m, but is unable to extract a valid regular signature.
This also holds for the designated receiver. A popular application of this con-
cept is online contract signing — an optimistic fair exchange protocol [3,1]. We
assume two signers, who do not unconditionally trust each other, want to sign
a contract. However, neither of them wants to sign first because each fears that
� This work was supported by CASED (www.cased.de).
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the other party might back out at the last possible moment with a partly signed
contract. Such a one-sided commitment to a contract may be used for blackmail
or simply for negotiating a better deal elsewhere. In order to avoid this situation,
both parties agree on the following protocol: 1. Exchange verifiably encrypted
signatures; 2. Verify the encrypted signatures; 3. Exchange regular signatures.

In the case of a dispute, either party can appeal to the adjudicator, who is able
to disclose both regular signatures. In contrast to other fair exchange protocols,
VES schemes perform the initial signature exchange step more efficiently, in a
single move.

Security of verifiably encrypted signatures comprises unforgeability and opac-
ity [7], as well as extractability and abuse-freeness [18]. In [15], Huang et al. state
that such protocols should be “ambiguous”, which is not guaranteed by VES.

Along with the first security model, Boneh et al. proposed the BGLS con-
struction that is provably secure in the random oracle model. Later on, Zhang
et al. described a more efficient solution (ZSNS) [22] that seems to be provably
secure in the random oracle model but lacks a formal proof of opacity. Lu et
al. presented the first verifiably encrypted signature scheme (LOSSW) [16] that
is secure in the standard model. The LOSSW scheme is based on the Waters
signature scheme [21], which has a fairly large public key. In [18], Rückert and
Schröder (RS) show a construction in the standard model with short keys. Lu et
al. also sketch a generic construction using non-interactive zero-knowledge proofs
(NIZKs). Since such constructions are typically very inefficient with respect to
computational cost (esp. the number of modular exponentiations) and signature
size, our work strictly focuses on direct and practical instantiations.

There is a second line of work on “verifiable encryption” in a more general
scenario as described in, e.g., [11] or [2]. However, their objectives differ from
the one in [7] as Boneh et al.’s work demands that transmitting and verifying an
encrypted signature can be done in a single move. In particular, the verification
process does not involve interactive zero-knowledge proofs as required in both
[11] and [2]. Therefore, we focus on the line of research coming from Boneh et
al.’s model.

To the best of our knowledge, all previous schemes use bilinear maps that
yield very elegant constructions at the cost of new cryptographic assumptions,
i.e., the bilinear Diffie-Hellman assumptions discussed in [6,13,19]. All these
papers suggest that correctly applying and fully understanding these assump-
tions involves some pitfalls and it is safe to assume that this also applies to
hardware and software implementations of the respective schemes. Furthermore,
compared to hash functions and RSA signatures, the field of pairing based cryp-
tography is young, which makes the newly developed complexity assumptions
questionable.

Our contribution. Until now, it has been an open question whether efficient VES
schemes in the sense of Boneh et al. can be realized without bilinear maps by
using well-understood assumptions instead. We positively answer this question
with our construction using full-domain hash RSA signatures [5] and a Merkle-
style hash tree [17], which makes our scheme stateful. We also suggest a change
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Table 1. Comparison of the different verifiably encrypted signature schemes. The col-
umn “R.O.” states whether security is proven in the random oracle model. Let ham(m)
be the hamming weight of a message m, mul a multiplication, and ex an exponentiation
in the respective group or ring. Let pair be the cost for a pairing evaluation and hash
be the cost for a hash function evaluation. The sizes are measured in group elements
(G), ring elements (R), and hash values (H). S is the random seed to a pseudo random
number generator. The parameter � is a tree constant, e.g., � = 20 for 220 verifiably
encrypted signatures.

VES R.O. Keys (sk/pk) Signature Create VesVf

BGLS YES G / G 2 G 2 ex+ mul 3 pair
ZSNS YES 2G / 2G G ex 2 pair

LOSSW NO G / > 160 G (*) 3 G 4 ex + (ham(m) + 3) mul 3 pair
RS NO 2G / 4G 3 G 4 ex + 1mul 2 pair

Section 3 YES R + S / 3R + H 3R + � H 2 ex + mul + O(�) hash 2 ex + (� + 1) hash

(*) Depends on the size of the message space.

to the signer’s key generation algorithm that involves an initial registration with
the adjudicator, which be believe to be a sensible and practical extension.

When instantiated correctly, our construction is efficient and can even be im-
plemented on smartcards, having RSA and hash co-processors. Compared to the
previous constructions, our approach yields competitive performance for creation
and verification of verifiably encrypted signatures. The key generation process
in our construction, however, is costly and should be done on a more power-
ful device. This recommendation does not contradict the common requirement
that private signing keys are not allowed to leave the signing device, such as a
a smartcard, as the involved tree can be computed independently of the secret,
security-sensitive RSA key.

Table 1 shows that only ZSNS has a faster Create method when omitting the
constant (independent of the security parameter) number of hash evaluations
in our scheme. NIZK constructions for RSA are not considered here because
they involve many inefficient modular exponentiations and the number of ring
elements in the signature grows with the security parameter. Moreover, using
the secret key that often might increase the chance of a successful side-channel
attack. Performance of the verification functions is hardly comparable but pre-
vious works suggest that pairing evaluations are costly. We, however, only need
a constant number of typically very fast hash evaluations here.

As for the storage requirements, we state that they are slightly elevated in
our scheme because of the authentication tree. The secret key can be compressed
into a single random seed (for the secret leaves of the tree) and a secret RSA
exponent. The public key comprises the public RSA key, an RSA signature, and
one additional hash value. Note that a certain part of the user’s key has to be
trusted and will therefore be generated by the adjudicator. However, this does
not limit the security of the signature scheme but merely allows the adjudicator
to work correctly in case of a dispute.

As for the signature size, our scheme requires an overhead due to the Merkle
authentication path. The overhead, however, is constant and does not grow with
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the security parameter. For instance, the tree depth � can be set as small as 12,
even if we assume that the signer works 365 days a year and signs 11 documents
per day, where the key is also valid for one year. By increasing �, the signa-
ture capability (2�) quickly becomes virtually unlimited. In the Merkle signature
context, one typically sets � = 20, which allows for over a million signatures at
manageable computational cost. In our case, we can manage even larger �.

Finally, we state that it remains unclear whether it is possible to avoid both
pairings and the random oracle methodology, which is encouraged by the famous
work of Canetti, Goldreich, and Halevi [12].

Organization. We start by introducing our notation and some basic definitions
in Section 2 before presenting our instantiation of verifiably encrypted signatures
and proving its security in Section 3.

2 Preliminaries

In this section, we recall the specifications of digital signature schemes and of
verifiably encrypted signature schemes along with their respective security model
as well as Merkle authentication trees. Throughout the paper, n always denotes
the security parameter.

2.1 Digital Signatures

The well-known definition of digital signatures along with its security model
[14] and a specification of full-domain hash RSA signatures [5] can be found in
Appendix A.1.

2.2 Verifiably Encrypted Signature Schemes

Verifiably encrypted signatures are specified in [7], which we slightly modify at
the clearly marked spots below. A verifiably encrypted signature scheme VES =
(AdjKg,Kg, Sign,Vf,Create,VesVf,Adj) consists of the following seven efficient
algorithms.

Adjudicator Key Generation. AdjKg(1n) outputs a key pair (ask, apk), where
ask is the private key and apk the corresponding public key.

Key Generation, Signature Verification. Signature verification Vf is de-
fined as with a digital signature scheme DSig (cf. Appendix A.1). The key
generation algorithm of the signer is Kg(1n, apk), which yields the secret key
sk′ and the public key pk′. In [7], it is Kg(1n). In addition, we need the signer
to register with the adjudicator once, sending pk and receiving and additional
key pair (sk′′, pk′′). The output is sk = (sk′, sk′′) and pk = (pk′, pk′′).

VES Creation. Create(sk, apk,m) takes as input a secret key sk, the adjudica-
tor’s public key apk, and a message m ∈ M. It returns a verifiably encrypted
signature � for m.
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VES Verification. The algorithm VesVf(apk, pk, �,m) takes as input the ad-
judicator’s public key apk, a public key pk, a verifiably encrypted signature
�, and a message m. It returns a bit.

Adjudication. The algorithm Adj(ask, apk, pk, �,m) accepts as input the key
pair (ask, apk) of the adjudicator, the public key of the signer pk, a verifiably
encrypted signature �, and a message m. It extracts an ordinary signature
σ on m and returns σ.

A verifiably encrypted signature scheme is complete if for all adjudication key
pairs (ask, apk) ← AdjKg(1n) and for all signature key pairs (sk, pk) ← Kg(1n, apk)
the following holds:

VesVf(apk, pk,Create(sk, apk,m),m) = 1 and
Vf(pk,Adj(ask, apk, pk,Create(sk, apk,m)),m) = 1 for all m ∈ M .

Security of verifiably encrypted signatures is defined via unforgeability and opac-
ity as described in [7], as well as extractability and abuse-freeness as defined in
[18]. Unforgeability requires that it is hard to forge a verifiably encrypted signa-
ture and opacity implies that it is difficult to extract an ordinary signature from
a verifiably encrypted signature without the secret adjudication key. Extractabil-
ity requires that the adjudicator can always extract valid regular signatures from
valid verifiably encrypted signatures, even if the signer’s key is not chosen hon-
estly. The weaker definition, weak-extractability, assumes that the signer key is
chosen correctly. As described in [18], weak-extractability can be improved to
extractability by common key registration techniques. In Section 3, however, we
follow the above modified model and let the adjudicator choose a non-critical
part of the user’s key that does not limit the security of the signature scheme.

The first two intuitions are formalized in experiments, where the adversary
is given the public keys of the signer and of the adjudicator. Moreover, the
adversary has access to two oracles: oracle Create returns a verifiably encrypted
signature for a given message; oracle Adj extracts a regular signature from a
valid verifiably encrypted signature.

A verifiably encrypted signature scheme VES is secure if the following holds:

Unforgeability. For any efficient algorithm A, the probability that the follow-
ing experiment evaluates to 1 is negligible.

Experiment Expves-forge
A,VES (n)

(ask, apk) ← AdjKg(1n)
(sk, pk) ← Kg(1n, apk)
(m∗, �∗) ← ACreate(sk,apk,·),Adj(ask,apk,pk,·,·)(pk, apk)
Return 1 iff VesVf(apk, pk, �∗,m∗) = 1 and

A has never queried Create or Adj on m∗.

Opacity. For any efficient algorithm A, the probability that the following ex-
periment evaluates to 1 is negligible.
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Experiment Expves-opac
A,VES (n)

(ask, apk) ← AdjKg(1n)
(sk, pk) ← Kg(1n, apk)
(m∗, σ∗) ← ACreate(sk,apk,·),Adj(ask,apk,pk,·,·)(pk, apk)
Return 1 iff Vf(pk, σ∗,m∗) = 1 and

A has never queried Adj(ask, apk, pk, ·, ·) on m∗.

A scheme is called (t, qCreate, qAdj, ε)-unforgeable (-opaque), if no adversary A,
running in time at most t, making at most qCreate verifiably encrypted signature
oracle queries, and at most qAdj adjudication oracle queries, can succeed with
probability at least ε in the Expves-forge

A,VES (Expves-opac
A,VES ) experiment.

The scheme is extractable if for all adjudication keys (ask, apk) ← AdjKg(1n),
for all signing key pairs (sk, pk), and for all verifiably encrypted signatures �
on some message m the following holds: VesVf(apk, pk, �,m) = 1 =⇒ Vf(pk,
Adj(ask, apk, pk, �,m),m) = 1. In [18], the authors introduce abuse-freeness as
an additional property. It guarantees that even if signer and adjudicator collude,
they cannot forge verifiably encrypted signatures on behalf of a third party. Due
to a theorem in [18], we do not have to deal with abuse-freeness explicitly if a
VES scheme is unforgeable, extractable, and key-independent. Key-independence
is a property of the Create algorithm and states that it can be separated into a
signing algorithm and an encryption algorithm, where the encryption algorithm
is independent of the secret signature key. This is the case in Section 3.

2.3 Merkle Authentication Trees

A discussion of Merkle trees [17] and their efficient implementation can be found
in Appendix A.2.

3 Our Construction

We present an efficient verifiably encrypted signature scheme based on RSA
signatures in the random oracle model. Whereas previous constructions exploit
the special properties of pairings in order to verifiably encrypt regular signatures,
we use a Merkle hash tree to verifiably link encrypted signatures with regular
ones. The core idea is that the signer masks the signature using a secret value x,
encrypts x under the public key of the adjudicator, and attaches the encryption
to the verifiably encrypted signature. Then, the signer uses authentication paths
in a special Merkle tree to prove that x has been honestly encrypted. Observe
that we make a sensible extension to the model of Boneh et al. and let the
adjudicator generate a part of the user’s key. This is a practical assumption
because in real-world contract signing applications, the users simply register
with the escrow beforehand. In the unlikely scenario, where there is more than
one adjudicator, the signer has to create one public key per adjudicator.

Let c = 2� for an � ∈ N be the maximum number of messages to be signed
under a single key and let G : {0, 1}∗ → {0, 1}k(n), k(n) = ω(log(n)), and
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H : {0, 1}∗ → ZNS be collision resistant, one-way hash functions. The pro-
posed verifiably encrypted signature scheme VERSA is a tuple (AdjKg,Kg, Sign,
Vf,Create,VesVf,Adj), which is defined as follows.

Adjudicator Key Generation. AdjKg(1n) uses RSA.Kg(1n) to compute (NE ,
e, d) and a second set (authsk,authpk) of RSA keys for key authenticity. It
outputs (NE , e, authpk) as the public key and (NE , d, authsk) as the secret
key.

Key Generation. Kg(1n, (NE , e, authpk)) uses RSA.Kg(1n) to compute (NS , v,
s), such that NS > NE . Upon registration with the adjudicator, the author-
ity randomly chooses c secret values x1, . . . , xc ← ZNE , such that they are
invertible in ZNS , and builds a binary tree T . The leaves of T are

G(xe
1 mod NE||xv

1 mod NS), . . . ,G(xe
c mod NE ||xv

c mod NS) .

T can be represented by a single random seed to a pseudo random number
generator that was used to generate the values x1, . . . , xc.
Each inner node η has two children, left(η) and right(η). The value of η is
formed recursively: η ← G(left(η)||right(η)). Let ρ be the root of T . The
adjudicator computes a signature: σρ ← RSA.Sign(authsk, ρ) and sends it to
the user. The user’s output is the private key (NS , s, T ) and the public key
(NS , v, ρ, σρ). The algorithm sets up a state comprising a signature counter
ı ← 0 and a small cache of O(�) tree nodes in order to speed up the path
computation (cf. Appendix A.2).

Signing, Signature Verification. As in RSA.

VES Creation. Create((NS , s, T ), (NE, e, authpk),m) increments the signature
counter ı and computes

σ ← RSA.Sign((NS , s),m) ,
α← σ xı mod NS ,

β ← xe
ı mod NE ,

and γ ← xv
ı mod NS .

Then, it generates the authentication path π for xı in T , which is used to
prove the relation between β and γ via the collision-resistance of G. The
output is � = (α, β, γ, π).

VES Verification. VesVf((NE , e, authpk), (NS , v, ρ, σρ), (α, β, γ, π),m) is 1 iff
1. 0 ≤ α < NS ,

2. αv ≡ H(m) γ (mod NS) ,
3. π correctly authenticates the leaf G(β||γ) for the given root ρ.
4. RSA.Vf(authpk, σρ, ρ) = 1.

Adjudication. Adj((NE , d, authsk), (NE , e, authpk), (NS , v, ρ, σρ), (α, β, γ, π),m)
checks that the presented verifiably encrypted signature is valid. If so, it com-
putes x′ ← βd mod NE , σ ← α/x′ mod NS , and returns σ.
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See Appendix B for the proof of completeness. In the following paragraphs, we
show that VERSA satisfies extractability, unforgeability, and opacity according
to the model of Boneh et al. and its modifications in [18]. Due to the fact that
Create works in two key-independent steps — sign with RSA.Sign and verifiably
encrypt with additional secret values — our scheme is abuse-free according to
[18, Theorem 5.4].

Extractability. We show that our scheme is extractable. For

all adjudication keys: (NE , e, d, authsk, authpk) ← AdjKg(1n) ,
all signing keys: (NS , v, ρ, s, T, σρ) ,

and all encrypted signatures: � = (α, β, γ, π) on some message m,

VesVf((NE , e, authpk), (NS , v, ρ, σρ), �,m) = 1 guarantees the correctness of β
and γ by conditions 3 and 4, i.e., they were computed from the same secret value
x as long as G is collision resistant and RSA is unforgeable. In consequence, the
adjudicator can always unmask α with the decryption of β. The resulting regular
signature σ is always valid because of conditions 1 and 2 in VesVf.

For the following proofs, let TAdjKg(n) and TKg(n) be the cost functions for ad-
judication and signature key generation and let TCreate(n), TVesVf(n), and TAdj(n)
be the cost functions for creation, verification, and adjudication of verifiably
encrypted signatures.

Unforgeability. We show that our scheme is unforgeable, provided that the un-
derlying signature scheme is unforgeable.

Theorem 1 (Unforgeability). VERSA is (t, qCreate, qAdj, ε)-unforgeable if the
RSA signature scheme is (t′, qCreate, ε − δ)-unforgeable with t′ = TAdjKg(n) +
TKg(n)+qCreate TCreate(n)+qAdj TAdj(n) and there is no polynomial-time adversary
that can find collisions under G with probability ≥ δ.

Proof. Towards contradiction, let’s assume that there exists a successful poly-
nomial time adversary A against the unforgeability of VERSA, running in time t
and with success probability ε. Furthermore, assume that A makes qCreate verifi-
ably encrypted signature queries and qAdj adjudication queries. Via a black box
simulation of A, we construct an efficient and equally successful adversary B
against the underlying signature scheme in the Expeu-cma

A,RSA experiment.

Setup. B gets as input the public verification key (NS , v) and has access to
a signing oracle RSA.Sign((NS , s), ·). It generates its own adjudication key
(NE , e, d, authsk, authpk) and executes Kg in order to generate the secret
values (x1, . . . , xc) as well as ρ and σρ, accordingly. B simulates A with the
input (NS , v, ρ, σρ), (NE , e, authpk).

VES Queries. Whenever A queries the verifiably encrypted signature oracle
Create on some message m, algorithm B invokes its signing oracle σ ←
RSA.Sign((NS , s), ·) on m, masks the signature as described in Create, and
outputs (α, β, γ, π).
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Adjudication Queries. If A invokes the adjudication oracle Adj on a message
m and on a verifiable encrypted signature (α, β, γ, π), B verifies it. If it is
invalid, B returns fail. Otherwise, it extracts the signature by computing
x′ ← βd mod NE , σ ← α/x′ mod NS , and returns σ.

Output. Finally, A halts, outputting a forged verifiably encrypted signature
(m∗, �∗), such that VesVf((NE , e, authpk), (NS , v, ρ, σρ), �∗,m∗) = 1 with
�∗ = (α∗, β∗, γ∗, π∗) . B extracts σ∗ ← Adj((NE , d, authsk), (NE , e, authpk),
(NS , v, ρ, σρ), �∗,m∗) and stops, outputting (m∗, σ∗).

Analysis. Since B acts honestly on all queries and all keys are generated honestly,
the environment of A is perfectly simulated. According to the security model,
A is only successful if it returns a verifiably encrypted signature for a message
which has never been signed before. In addition, extractability ensures that every
verifiably encrypted signature yields a regular signature via adjudication. This
step only fails if A can find collisions under G. Thus, B’s success probability is
at least ε − δ. As for the detailed complexity analysis, note that B queries the
signature oracle whenever A queries the verifiably encrypted signature oracle.
When A queries the adjudication oracle, B decrypts the query if it is valid. The
overall overhead, including key generation, encryption, and adjudication, is at
most TAdjKg(n) + TKg(n) + qCreate TCreate(n) + qAdj TAdj(n), which completes the
proof. ��

Opacity. We prove that breaking opacity of VERSA implies being able to invert
the RSA trapdoor. In order to emphasize the interesting case in the proof of
opacity, where the adversary extracts a regular signature from an encrypted
one, we omit the straightforward proof for the type of adversary that simply
forges the underlying signature scheme. Inverting the RSA trapdoor with non-
negligible probability, is assumed to be infeasible for all polynomially bounded
algorithms, i.e., the problem is (t, ε)-hard for every non-negligible ε and any
t = poly(n).

Theorem 2 (Opacity). The VERSA scheme is (t, qCreate, qAdj, ε)-opaque if the
RSA signature scheme is (t′, qCreate, ε − δ)-unforgeable, inverting the RSA trap-
door is (t′, qCreate, ε

′)-hard with t′ = t + TKg(n) + TAdjKg(n) + qCreate TCreate(n) +
qAdj TAdj(n) and ε′ = ε/qCreate, and there is no polynomial-time adversary that
can find collisions under G with probability ≥ δ.

Proof. Assume there is a successful polynomial time adversary A against opacity
of VERSA, running in time t and with success probability ε, which makes qCreate

verifiably encrypted signature queries and qAdj adjudication queries. Using A,
we construct an efficient algorithm B that is able to invert an RSA challenge
y ∈ Z∗

NS
. Thus, the goal of B is to find a value x ∈ ZNS with xv ≡ y (mod NS)

— see [4] for a formal definition.

Setup. B gets as input the public RSA key (NS , v) and a challenge y. The algo-
rithm executes AdjKg and Kg in order to generate (NE , e, d, authsk, authpk)
and (x1, . . . , xj−1,�, xj+1, . . . , xc), where j ← {1, . . . , qCreate}, qCreate ≤ c, is
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chosen uniformly at random. Then, it chooses z ← ZNS uniformly at random.
Root ρ and signature σρ of T is generated from

(G(xe
1||xv

1), . . . ,G(xe
j−1||xv

j−1),G(y||zv/y),G(xe
j+1||xv

j+1), . . . ,G(xe
c ||xv

c )) ,

where G(a||b) is shorthand for G(a mod NE ||b mod NS). Algorithm B runs A
on input (NS , v, ρ, σρ), (NE , e, authpk) in a black box simulation. B initializes
a signature counter ı ← 0. Furthermore, B maintains a list LH of triples
(m, r, σ) in order to simulate a consistent random oracle and the signature
oracle.

Random Oracle Queries. On inputm, algorithm B searches an entry (m, r,�)
in LH. If it does not exist, B randomly chooses an σ ← Z∗

NS
and adds

(m, r ← σv mod NS , s) to LH. The oracle returns r.
VES Queries. When A queries the oracle on a message m, algorithm B incre-

ments j.
– Case ı = j: B adds (m, y, 0) to LH and sets

α← z mod NS ,

β ← y mod NE ,

γ ← zv/y mod NS .

– Case ı �= j: B executes H(m), yielding a triple (m, r, σ) ∈ LH, and sets

α← σ xı mod NS ,

β ← xe
ı mod NE ,

γ ← xv
ı mod NS .

In both cases, the outputs is (α, β, γ, π), where π authenticates the ı-th leaf.
Adjudication Queries. Whenever A invokes the adjudication oracle Adj on

a message m and on a verifiable encrypted signature � = (α, β, γ, π), algo-
rithm B verifies its validity. If it is invalid, B answers with fail. If H(m) = y, B
stops and returns fail. Otherwise, it searches the list LH for an entry (m, r, σ)
and outputs σ. If it does not exists, B extracts the signature σ∗ from �. It
stops and outputs the forgery (m,σ∗).

Output. When A halts, outputting a forged signature (m∗, σ∗). If m∗ was never
queried to Create, algorithm B outputs the forgery (m∗, σ∗). If m∗ is in LH,
algorithm B returns σ∗ as the v-th root of y modulo NS .

Analysis. First, we have to show that A’s queries are correctly answered by B.
The keys are chosen honestly except for the j-th leaf of T . However, this deviation
is not efficiently recognizable as the distribution of the arguments under G stays
uniform. The random oracle and adjudication queries are perfectly simulated
because B returns random hash values and valid signatures.

As for verifiably encrypted signature queries, we deal with the two cases sep-
arately. For ı �= j, we use a standard random oracle technique for RSA signa-
ture simulation. The returned encrypted signatures are always valid. In case
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ı = j, algorithm A is given a tuple (α, β, γ, π) that is valid for m because
αv ≡ zv ≡ zv y/y ≡ H(m) γ (mod NS). Therefore, A’s environment is simulated
as expected. The computational overhead TKg(n)+TAdjKg(n)+qCreate TCreate(n)+
qAdj TAdj(n) of the reduction is induced by the fact that B initially executes parts
of Kg and AdjKg and that the simulation of Create and Adj can be performed at
least as efficient as in the original scheme. As for Adj, the list-based simulation
is even more efficient. Note that for brevity, our overhead analysis does not take
the simulation of the random oracle into account. The success probability of B
depends on the type of adversary A. It may be an adversary that never queried
m∗ to Create. In this case, however, we have a direct forgery against the RSA
signature scheme. The same holds in case that A queries Adj with a fresh mes-
sage m because VERSA is extractable but with probability δ. In the interesting
case, i.e., A queried m∗ to Create, the success probability of B depends on the
correct guess of the index j. If the guess is correct, A outputs (m∗, σ∗) with
σ∗v ≡ H(m∗) ≡ y (mod NS).

In consequence, if A is successful with noticeable probability ε then B is
successful with probability ε/qCreate, which is still noticeable. ��

4 Conclusions

With our construction, we have shown that verifiably encrypted signatures can
be constructed without pairings by using simple and efficient primitives instead.
The main benefit of our result is that existing widespread hard- and software
implementations of hash functions and RSA signatures can be easily reused in the
VES setting. From a theoretical point of view, we introduced a new construction
principle at the expense of making the scheme stateful. The remaining open
question is whether the scheme can be made stateless and whether we can avoid
the random oracle methodology.
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A Preliminaries

A.1 Digital Signatures

A signature scheme consists of a triple of efficient algorithms DSig = (Kg, Sign,
Vf), where

Key Generation. Kg(1n) outputs a private signing key sk and a public verifi-
cation key pk.

Signing. Sign(sk,m) outputs a signature σ on a message m from the message
space M under sk.

Verification. The algorithm Vf(pk, σ,m) outputs 1 if σ is a valid signature on
m under pk, otherwise 0.

Signature schemes are complete if for any (sk, pk) ← Kg(1n), any message m ∈
M, and any σ ← Sign(sk,m), we have Vf(pk, σ,m) = 1. Security of signature
schemes is proven against existential forgery under chosen message attacks [14].
In this model, an adversary adaptively invokes a signing oracle and is successful
if he outputs a valid signature on a new message.

A signature scheme DSig = (Kg, Sign,Vf) is called existentially unforgeable
under chosen message attacks (EU-CMA) if for any efficient algorithm A, the
probability that the experiment Expeu-cma

A,DSig evaluates to 1 is negligible.

Experiment Expeu-cma
A,DSig(n)

(sk, pk) ← Kg(1n)
(m∗, σ∗) ← ASign(sk,·)(pk)
Let (mi, σi) be the answer of Sign(sk, ·) on input mi, for i = 1, . . . , k.
Return 1 iff Vf(pk, σ∗,m∗) = 1 and m∗ �∈ {m1, . . . ,mk}.

A signature scheme DSig is (t, qSig, ε)-unforgeable if no adversary running in time
at most t, invoking the signing oracle at most qSig times, outputs a valid forgery
(m∗, σ∗) with probability at least ε.

Recall the definition of secure RSA signatures. Let H : {0, 1}∗ → Z∗
N be a

collision resistant hash function for a given modulus N . The full-domain hash
RSA signature scheme RSA [5] is a 3-tuple (Kg, Sign,Vf), which is defined as
follows.

Key Generation. Kg(1n) receives the security parameter n and generates two
primes p, q of bit length n/2. Let N = p q be the public modulus. It chooses
v relatively prime to (p − 1) (q − 1), s ← v−1 (mod (p − 1) (q − 1)), and
returns the secret key (N, s) and the public key (N, v).

Signing. Sign((N, s),m) receives the modulus N , the private key s and a mes-
sage m ∈ {0, 1}∗. It computes σ ← H(m)s mod N and returns σ.

Verification. Vf((N, v), σ,m) receives the public key (N, v), a signature σ and
a message m. It returns 1 iff 0 ≤ σ < N and σv ≡ H(m) (mod N).

It is well-known that RSA is complete and unforgeable in the random oracle
model, when following the “hash-then-sign” paradigm [5].
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A.2 Merkle Authentication Trees

In [17], Merkle describes a tree-based construction for digital signature schemes
based on the collision-resistance of hash functions. Recall collision-resistance as
a property of a hash function G : D → R, which states that it is computationally
infeasible to find distinct x1, x2 ∈ D, such that G(x1) = G(x2).

At its core, Merkle’s scheme relies on authenticating a large amount of data,
the 2� leaves of a binary tree of depth �, with a single public hash value, the root
ρ of the binary tree, by providing authentication paths. The authentication path
comprises all inner nodes, along with the relative position w.r.t. to their parent
nodes, that are necessary to compute the value ρ. The path can be written as
π = [(I1, E1), . . . , (I�, E�)], where Ii ∈ {left, right} and Ei ∈ R for i = 1 . . . , �.
For an example, see Figure 1.

The verification of the authentication path for a leaf X can be done by check-
ing whether η� = ρ, where

η0 ← X ,

ηi ←
{

G(Ei||ηi−1) if Ii = left

G(ηi−1||Ei) if Ii = right
for i = 1, . . . , � .

While authentication path creation and verification can be implemented using
O(�) hash evaluations by using a small cache of O(�) hash values [17,20,9], the
initial tree generation is rather costly. Setting � = 20, however, has proven to be
a reasonable trade-off between signature capability and efficiency in the Merkle
signature scheme [10] but there generalized constructions that allow for 240 or
even 280 signatures without having to compute 240 respectively 280 hash values
during the set-up phase [8].

In order to keep it more accessible, we do not apply these generalizations to
our construction and state that leaf computation in our case is far less expensive
than leaf computation in a Merkle signature scheme. Therefore, one can expect
that the upper bound for the number of verifiably encrypted signatures can be

���
���

�� �� �� ��

ρ = G
(
G(A||B)

∥∥∥G(C||D)
)

G(A||B) G(C||D)

A B C D

The authentication path for the leaf C: in order to compute ρ, it is necessary to
publish D and G(A||B) along with their relative positions. The resulting path is π =
[(right, D), (left, G(A||B))]. Note that instead of publishing the relative position (left or
right), it is sufficient to publish the zero-based index (2) of C.

Fig. 1. Merkle authentication tree
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raised to 230. On a 2.4 GHz Opteron CPU, the overhead for tree generation with
height � = 30 is about 30 minutes without further optimization or parallelization.
Taking into account that hardly anyone will ever issue that many signatures in a
lifetime, the computational overhead of our tree construction can be significantly
reduced to 1 minute (� = 25), 1.5 seconds (� = 20), and 50 milliseconds (� = 15).
Observe that, like the Merkle signature scheme, our construction scales well with
the individual requirements of different application scenarios.

B Completeness of Our Construction

For

all adjudication keys (NE , e, d, authsk, authpk) ← AdjKg(1n) ,
all signing keys (NS , v, ρ, s, T, σρ) ← Kg(1n, (NE , e, authpk)) ,

all messages m ∈ {0, 1}∗ ,
and encrypted signatures � ← Create((NS , s, T ), (NE, e, authpk),m),

we have

� = (α, β, γ, π) ,
α ≡ H(m)s x (mod NS) ,
β ≡ xe (mod NE) ,
γ ≡ xv (mod NS) ,
π = [(I1, E1), . . . , (I�, E�)] .

As for VesVf, condition 2 is satisfied because αv ≡ σv xv
ı ≡ H(m) γ (mod NS)

and condition 1 holds trivially. Conditions 3 and 4 are satisfied by construction
of ρ and σρ. Thus, VesVf((NE , e, authpk), (NS , v, ρ, σρ), (α, β, γ, π),m) = 1. As
for Vf and Adj, we state state that Adj computes

x′ ← βd mod NE , x
′ ≡ xe d ≡ x (mod NE), x′ ∈ Z∗

NS
,

σ′ ← α/x′ mod NS , σ
′ ≡ H(m)s x/x′ ≡ H(m)s (mod NS)

and that, therefore, Vf((NS , v), σ′,m) = 1. Thus, VERSA is complete.
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Abstract. An identity-based signature scheme allows any pair of users
to communicate securely and to verify each others signatures without ex-
changing public key certificates. For achieving both confidentiality and
authenticity simultaneously, signcryption schemes are used. An aggregate
signature scheme is a digital signature scheme that supports aggregation
of individual signatures. Given n signatures on n distinct messages signed
by n distinct users, it is possible to aggregate all these signatures into
a single signature. This signature will convince the verifier that all the
n signers have signed the corresponding n messages. In this paper, we
introduce the concept of aggregate signcryption which achieves confiden-
tiality, authentication and aggregation efficiently. This helps in improving
the communication and the computation efficiency. Also, we extend the
scheme to achieve public verifiability with very efficient aggregate verifi-
cation, that uses fixed number of pairings.
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1 Introduction

The two most important functionalities offered by cryptography are authenti-
cation and confidentiality. In 1997 Zheng introduced the concept of signcryp-
tion which provides both confidentiality and authentication [22]. Signcryption is
more efficient than performing sign and encrypt independently on a single mes-
sage using the most efficient signing and encryption algorithms. The first formal
security model and security proof was given by Baek et al. in 2002 [1]. Identity
based signcryption with formal security proof was introduced by Malone-Lee
in his paper [11]. But Malone-Lee’s scheme was not secure and its weakness
was pointed out in [10]. Signcryption also provides several additional properties
such as cipher-text unlinkability, non repudiation and public verifiability. Many
efficient signcryption schemes have been proposed till date [4] [5] [8].
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There are two major constraints to design an efficient signcryption scheme,
namely computation and communication efficiency. With the advent of super
computers, computational efficiency is not of a serious issue, but with increased
technology, speed and density, the bandwidth is more a limiting condition. Thus
communication efficiency is very important in the present scenario. The amount
of data sent must be kept as close to the theoretical minimum for getting effi-
ciency. For example in banking scenarios one may have to verify many signatures
quickly and simultaneously. In order to reduce the verification cost and overhead
of transmission, we use aggregate signatures.

In aggregate signatures multiple signatures from various users are combined
into a single compact signature. Aggregation can be used to reduce the certificate
chains in PKI settings. In the scheme in [9], multiple signatures from different
signers on different documents can be aggregated to a single compact aggregate
signature. The aggregate signatures has many real world applications ranging
from traffic control to documents signed by directors of a company for official
purpose. Another additional advantage of aggregate signature is that an adver-
sary cannot remove a single signature from a set of signatures. There are two
types of aggregation. In the first one the signatures can be aggregated in any
order. On the other hand in sequential aggregation a signer adds his signature to
the previous aggregate signature sent by the previous signer. Though sequential
aggregation is comparatively weaker to the general signcryption, it has more
practical applications in business scenario. Many aggregate signature schemes
have been proposed till date [13] [20][9][2] [6][20]. Certain aggregate and batch
verification schemes have been broken which is shown in [16].

In certain scenarios one may need to hide the message which he is sending
so that only the receiver will be able to get back the message. In such cases
signcryption comes into picture. We introduce the first identity based aggregate
signcryption along with formal security model and formal security proof in this
paper. Consider the scenario of online opinion poll. One may want his opinion
to be secret. But the verifier has to ensure that all the concerned persons have
polled their votes, in an efficient way. Only the verifier will be able to decrypt the
messages and get the opinions. Consider another case where the directors of a
company have to vote on some controversial issue. Each of them want their vote
to be hidden from others since it may disrupt the friendly atmosphere prevailing
in the company. In all these circumstances aggregate signcryption can be used
to increase efficiency, provide secrecy and decrease the communication overhead.
It has application in military communication also.

The idea of IdentityBasedCryptography is toderive the public keyof a user from
an arbitrary string that uniquely identifies the user. It reduces the overheadof stor-
ing the public keys and the certificates of all the users. A central trusted authority
called the Private Key Generator(PKG) is required to generate the private keys
for the corresponding public keys. Identity based cryptography was introduced by
Shamir in 1984 in [19]. Since then several ID based schemes have been proposed
for both encryption and signatures. In 2001, Boneh and Franklin proposed the first
practical identity-based encryption scheme based on Bilinear pairings [3].



380 S.S.D. Selvi et al.

Motivation: We give the various scenarios where this primitive will be useful.

1. Consider an online polling event which is a very common technology. The
voters want to make sure that their vote is hidden and only the vote count
register will be able to view the vote. The count register would also want to
make sure that this is a valid vote by a valid user of the system. This calls
for signcryption primitive which provides both confidentiality for the sender
and authentication to the receiver. The count register will be a secure device
but the computation power of the device might be limited. Providing high
security and high computation power has a huge cost demand. But security
of such devices cannot be relaxed and hence by relaxing the computation
power, one can save a lot of cost involved. So with limited computation
power, a count register will find it very difficult to verify the authenticity of
each and every vote separately (since it may have millions of users voting).
But by aggregate signcryption, the count register will easily be able to verify
the authenticity of all the votes using a single verification step. Since a part
of all the signcryptions are aggregated, the bandwidth is also saved. Thus
aggregate signcryption can play a very important role in this scenario.

2. Consider a traffic management system. Assume in a particular area there
are n traffic cameras. These traffic cameras collect the information about
traffic in a particular zone. All these information has to be sent to the main
server which requires instant updates about the traffic to monitor the traffic
signals accordingly. These information are sensitive information and should
not be sent in the open. The server also has to know that these information
are authentic since an adversary in the middle should not be able to manip-
ulate the data. This calls for the signcryption primitive. The server however
powerful it is needs to execute instructions within matter of milli seconds
and it should not waste any time in checking for authenticity of the data.
By using aggregate signcryption technique, the server can easily verify all
the data from the cameras instantly leading to no delay. This enables quick
functioning of the server.

3. Aggregate signcryption can be used in routing scenarios. If many routers in
the same locality wants to send some message to a particular computer in
some other network and the routers also wants confidentiality since they do
not want their message to be viewed by other routers in their own network
(for e.g.. online bidding), then the routers can signcrypt their correspond-
ing messages, then aggregate their signatures which saves them communi-
cation overhead and provides both authentication and confidentiality. Even
anonymity is needed in certain scenarios which can be provided by signcryp-
tion.

4. Banking scenarios need both security and really fast computations. Signcryp-
tion is a necessity for online transactions. A common server can aggregate
all the signcryptions before sending it to the bank which can unsigncrypt it
and run the authenticate tests much faster than trying to test each signa-
ture separately for its validity. The banks can save a lot of time by using
aggregation.
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5. This primitive may also be used in Digital rights management (DRM). The
interaction between the client/user and the rights providing authority usually
takes place through a dealer. A dealer is an intermediate party who forwards
the users request to the rights provider along with the appropriate funds. In
this manner the rights providing authority (RPA)’s job is reduced and there
is no direct interaction between the user and service provider. The users send
their request signcrypted to the dealer. The dealer checks the authenticity of
the users and forwards it to the rights provider. The rights provider having
checked the reception of funds and authentication provides the license rights
back to the user. Now consider the situation where each dealer deals with
about 50 clients and the RPA is connected to about 50 dealers. If we use
only signcryption, then the total number of verifications done by the RPA
will be about 2500. But by using aggregation technique both at the dealer
end and RPA end, we can reduce it to single verification step thus saving a
lot of time and computation.

6. Aggregate signcryption can be used in many other similar scenarios such
as military operations, online orders, medical reports communication and in
many other major fields.

Related works: There is an established primitive called multi-signcryption
where many singers encrypt and sign the same message m, such that the signa-
ture can be aggregated and also only one ciphertext is output by all n signers.
This primitive is used in cases where many users needs to authenticate a single
message like a certificate. There are few multi-signcryption schemes in the PKI
based settings like [18] [14] [12]. So far, to the best of our knowledge there is
only one multi-signcryption scheme in identity based settings by Jianhong et
al. reported in [21]. But this scheme is proved insecure by Sharmila et al. [17].
Sharmila et al. in [17] proposed a fix to this identity based multi-signcryption
which is secure. But the scheme in [17] requires interaction among the signers to
generate a multi-signcryption. This interaction is undesirable in certain scenar-
ios. If the signers are half way across the globe, this interaction could cause a
lot of communication overhead. As of now, there has been no multi-signcryption
scheme in identity based settings without any interaction among the signers.

Our Contribution: In this paper, we propose an aggregate signcryption scheme
IBAS-1, which is a modification of Sakai et al.’s signature scheme [15]. We ex-
tend IBAS-1 to achieve public verifiability and sequential aggregation. Public
verifiability is an important property in sequential aggregation. For a user to
aggregate his signcryption to the aggregate signcryption from previous senders,
the current user should be able to test the validity of the previous aggregate
signcryption and then aggregate his signcryption to the verified aggregate sign-
cryption. This is achieved in the second scheme IBAS-2 proposed in this paper.
Finally, in IBAS-3, we present a new scheme which reduces the cost involved in
unsigncryption, irrespective of the number of senders. IBAS-3 requires constant
number of pairings for aggregate verification. Also, it is to be noted that un-
signcryption is done by a single user and hence reducing the number of pairing
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operation during verification greatly improves the efficiency of the system. Also
none of our schemes involve any kind of interaction among the signers which is
an added advantage. To the best of our knowledge there is no scheme in aggre-
gate signatures which achieves constant verification cost without any interaction
among the signers. We formally prove all the aggregate signcryption schemes
presented in this paper are unforgeable and is CCA-2 secure in the random
oracle model. The existing secure aggregate signature schemes requires interac-
tion between the signers before generating the aggregate signature, in order to
perform efficient aggregate verification, which incorporates additional overhead
to the system. We avoid such interaction between the signers in our aggregate
signcryption scheme which is a major advantage.

2 Preliminaries

2.1 Bilinear Pairing

Let G be an additive cyclic group generated by P , with prime order q, and GT

be a multiplicative cyclic group of the same order q. Let ê be a pairing defined
as ê : G × G → GT . It satisfies the following properties.
For any P, Q, R εG and a, b εZ∗

q.

– Bilinearity : ê(aP, bQ) = ê(P, Q)ab.
– Non Degenerate : ê(P, P ) �= 1.
– Easily Computable : ê(P,Q) must be easily and efficiently computable.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear
maps that are relevant to the protocols we discuss.

Bilinear Diffie-Hellman Problem (BDHP)
Given (P, aP, bP, cP ) ε G4 for unknown a, b, c ε Z∗

q , the BDH problem in G
is to compute ê(P, P )abc. The advantage of any probabilistic polynomial time
algorithm A in solving the BDH problem in G is defined as

AdvBDH
A = Pr[A(P, aP, bP, cP ) = ê(P, P )abc|a, b, c ε Z∗

q ]

The BDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvBDH

A is negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP)
Given (P, aP, bP, cP, α) ε G4×GT for unknown a, b, c ε Z∗

q , the DBDH problem

in G is to decide if α ?= ê(P, P )abc. The advantage of any probabilistic polynomial
time algorithm A in solving the DBDH problem in G is defined as

AdvDBDH
A = |Pr[A(P, aP, bP, cP, ê(P, P )abc) = 1]− Pr[A(P, aP, bP, cP, α) = 1]|
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The DBDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDBDH

A is negligibly small.

Computation Diffie-Hellman Problem (CDHP)
Given (P, aP, bP ) ε G3 for unknown a, b ε Z∗

q , the CDHP problem in G is to
compute abP . The advantage of any probabilistic polynomial time algorithm A
in solving the CDH problem in G is defined as

AdvCDH
A = Pr[A(P, aP, bP ) = abP |a, bεZ∗

q]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Modified Bilinear Diffie-Hellman Problem (MBDHP)
Given (P, aP, bP ) ε G3 for unknown a, b ε Z∗

q , the MBDHP problem in G

is to compute ê(P, P )a2b. The advantage of any probabilistic polynomial time
algorithm A in solving the MBDHP in G is defined as

AdvMBDHP
A = Pr[A(P, aP, bP ) = ê(P, P )a2b|a, bεZ∗

q ]

The MBDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvMBDH

A is negligibly small.

3 Identity Based Aggregate Signcryption(IBAS)

In this section, we define the general model for identity-based aggregate sign-
cryption scheme. We then provide the security model for IBAS scheme.

3.1 Model for Identity Based Aggregate Signcryption(IBAS)

An IBAS consists of the following six algorithms,

– IBAS.Setup : The Private Key Generator(PKG) uses this algorithm to
generate the system parameters Params and master private key Msk, by
providing the security parameter κ as input. The PKG makes Params public
and keeps Msk secret.

– IBAS.KeyGen : On providing the identity IDi of user Ui, master private
key Msk and system parameters Params as input by PKG, this algorithm
outputs private key Di corresponding to the user Ui. The PKG sends Di to
user Ui through a secure channel.

– IBAS.Signcrypt : For generating the signcryption of a message mi from
user Ui to UB, the user Ui with identity IDi provides the message mi,
sender identity IDi, private key Di of IDi, the receiver identity IDB of
user UB and the system parameters params as input to this algorithm. The
IBAS.Signcrypt algorithm outputs the valid signcryption σi for the message
mi from user Ui to UB
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– IBAS.Aggregate : By taking different signcryptions σi (for i = 1 to n)
(from the corresponding user Ui with identity IDi to the user UB with
identity IDB) as input , this algorithm outputs the aggregate signcryption
σAgg. This algorithm is executed by any user Ui, i ∈ 1, 2, . . . , n or by any
other member who is not in the senders list.

– IBAS.Unsigncrypt : On input of a signcryption σi (from sender Ui to
receiver UB) with sender identity IDi, receiver identity IDB and private
key DB of the receiver UB , this algorithm outputs the message mi if σi is a
valid signcryption of message mi from user Ui to UB.

– IBAS.AggregateUnsigncrypt : This algorithm takes, the aggregate sign-
cryption σAgg from set of users with identity {IDi}(i=1,... n) to IDB, the
receiver identity IDB and the private key DB of the receiver UB as input
from the user UB. Then IBAS.AggregateUnsigncrypt outputs mi (for i =
1 to n) if σAgg is a valid ciphertext on message mi from user IDi to IDB

(for i = 1 to n).

4 Security Model for Identity Based Aggregate
Signcryption Scheme

4.1 Unforgeability

An IBAS scheme is existentially unforgeable under adaptive chosen identity and
adaptive chosen message attack (EUF-IBAS-CMA) if no probabilistic polyno-
mial time adversary A has a non-negligible advantage in the following game.

– Setup Phase: The challenger B runs the Setup algorithm, sets the system
public parameters Params and master private key Msk. B gives Params
to A and keeps the master private key Msk secret.

– Training Phase : A is allowed to access all the oracles with the queries of
A’s choice. The only restriction for A during training is, A should not query
the private key corresponding to any target identities. If A asks such a query
B aborts. A is given access to the following oracles.
• KeyGen Oracle : When A makes a query with IDi, B outputs the

private key Di corresponding to IDi to A.
• Signcrypt Oracle: When A makes a query with the message mi, the

sender identity IDi, the receiver identity IDB as input. B outputs the
signcryption σi on mi from IDi to IDB.

• Unsigncrypt Oracle: A submits the signcryption σi (from IDi to IDB)
and receiver identity IDB as input. B outputs corresponding messagemi

if σi is a valid signcryption of mi from IDi to IDB.
• AggregateUnsigncrypt Oracle : A submits the aggregate signcryp-

tion σAgg which is the aggregate signcryption from users IDi,(for i=1
to n) to the receiver IDB . The challenger returns all the corresponding
messages, mi (for i = 1 to n) if σAgg is a valid aggregate signcryption on
(mi, IDi) with IDB as receiver.
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Note that Aggregate oracle is not provided because it does not involve the
private keys of any users.

– Forgery : The adversary A after having access to all the above oracles,
outputs the aggregate signcryption σ∗

Agg on message mi (i=1 to n) from
users IDi (for i=1 to n), to the receiver IDB. A wins the game if σ∗

Agg is
a valid forgery if A has not queried the private key of atleast one of the
identities in the list of senders and A has not queried the signcrypt oracle
for the corresponding message, user pair (m, IDi), which is a part of the
forgery (i.e., σ∗Agg).

4.2 Confidentiality

An IBAS scheme is semantically secure against adaptive chosen identity and
adaptive chosen ciphertext attack (IND-IBAS-CCA2) if no probabilistic polyno-
mial time adversary A has a non-negligible advantage in the following game.

– Setup Phase : The challenger B runs the Setup algorithm and sets the
public parameters Params and the master private keyMsk. B gives Params
to A and keeps Msk secret.

– Phase 1 : A can have access to all the oracles as in the Unforgeability
game.

– Challenge : After having sufficient training from the various oracles, A
submits ({m0i,m1i}, IDi)n

i=1,IDB to B. B checks if IDB is one of target
identity. If not, B aborts. Else the challenger chooses a random bi ε {0, 1},
for i = 1 to n and signcryptsmbi using the sender private keyDi and receiver
public key QB. B returns the aggregate signcryption σ∗

Agg to A.
– Phase 2 : A makes similar kind of queries as in Phase 1. But it cannot

make aggregate unsigncryption query on the challenge aggregate signcryp-
tion σ∗

Agg.
– Output : A outputs a bit b

′
i for i = 1 to n. A wins the game if b

′
i = bi for

(i = 1 to n).
The advantage of A is given by ADVA = [Πn

i=1Pr[bi = b
′
i] − 1

2n ].

5 Identity Based Aggregate Signcryption Scheme
(IBAS-1)

5.1 IBAS-1 Scheme

We present the IBAS-1 in this section. As mentioned in the general model of
IBAS, the proposed IBAS-1 has six algorithms,

– IBAS-1.Setup : Let κ be the security parameter of the system. Let G1 be
a additive group and G2 be a multiplicative group, both of same prime order
q. Let ê be a bilinear map defined by ê : G1×G1 → G2. There are three hash
functions defined as H1 : {0, 1}∗ → G1, H2 : {0, 1}∗×G2×G1×{0, 1}∗ → G1
andH3 : G2×{0, 1}∗ → {0, 1}n̄, where n̄ is |ID| + |m|. Let the master private
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key Msk be s ∈R Z∗
q . Let P ∈R G1 be a generator of the group G1 and the

master public key Ppub = sP . Therefore, the public parameters Params =
〈P, Ppub,G1,G2, ê, H1, H2, H3〉 and the master private key is s.

– IBAS-1.KeyGen : On getting a request for private key corresponding to
IDi, PKG generates Qi = H1(IDi) and the private key Di = sQi. PKG
then delivers Di to the user with identity IDi over a secure channel.

– IBAS-1.Signcrypt : The signcryption of message mi from IDi to IDB is
performed by the user Ui as follows.
• Selects a random ri from Z∗

q .
• Computes Ui = riP .
• Computes αi = ê(riPpub, QB) and Ĥi = H2(mi, αi, Ui, IDB).
• Computes Vi = riĤi +Di.
• Computes ci = H3(αi, IDB) ⊕ (IDi ‖ mi).

The signcryption of mi from IDi to IDB is σi = 〈ci, Ui, Vi〉.
– IBAS-1.AggregateSigncrypt : The aggregation is done by any of the

sender or by any third party. On receiving n individual signcryptions σi =
〈ci, Ui, Vi〉, where i = 1 to n, the aggregation is done as follows,
• Compute Vagg = Σn

i=1Vi

• Output σAgg = 〈{ci, Ui, IDi}n
i=1, Vagg〉.

– IBAS-1.Unsigncrypt : The receiver IDB executes this algorithm with
σi = 〈ci, Ui, Vi〉, the sender identity IDi and the private key DB as input.
The unsigncryption is done as follows,
• αi = ê(Ui, DB).
• IDi ‖ mi = H3(αi, IDB) ⊕ ci.
• Ĥi = H2(mi, αi, Ui, IDB).
• Verifies ê(Vi, P ) ?= ê(Ĥi, Ui)ê(Qi, Ppub). If this check passes, output the

message (mi, IDi), else output “Invalid”
– IBAS-1.AggregateUnsigncrypt : The receiver IDB for unsigncrypting
σAgg = 〈{ci, Ui, IDi}n

i=1, Vagg〉, uses his private key DB and performs the
following:
For all i = 1 to n, do the following
• αi = ê(Ui, DB)
• IDi ‖ mi = H3(αi, IDB) ⊕ ci
• Ĥi = H2(mi, αi, Ui, IDB)
• Verifies ê(Vagg, P ) ?=

∏n
i=1 ê(Ĥi, Ui)ê(Σn

i=1Qi, Ppub). If this check passes
output (mi, IDi)(for i=1 to n), else output “Invalid”

Correctness :

ê(Vagg, P )= ê(Σn
i=1(riĤi +Di), P )

= ê(Σn
i=1riĤi, P )ê(Σn

i=1Di, P )
= ê(Σn

i=1Ĥi, Σ
n
i=1riP )ê(Σn

i=1Qi, Ppub)
= Πn

i=1ê(Ĥi, Ui)ê(Σn
i=1Qi, Ppub)

5.2 Security Proof of IBAS-1

In this section, we give the formal security proof for IBAS-1.
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Unforgeability

Theorem 1. Our identity based aggregate signcryption scheme IBAS-1 is secure
against any EUF-IBAS-CMA adversary A under adaptive chosen identity and
adaptive chosen message attack in the random oracle model if MBDHP is hard
in G1.

Proof. The unforgeability proof is based on the Modified bilinear Diffie-Hellman
Problem (MBDHP). MBDHP is the problem of computing ê(P, P )a2b from the
given instance (P, aP, bP ) where a, b are chosen at random from Z∗

q and P is the
generator of G1. We show how an algorithm B can solveMBDHP by interacting
with an adversary A that can break the existential unforgeability of IBAS-1
scheme.
Setup Phase : B sets the master public key Ppub = aP and gives the system
public parameters to A.
Training Phase : During the training phase A can make polynomially bounded
number of queries to the various oracles provided by B. To maintain the consis-
tency of the oracle responses, B maintains four lists namely LH1list, LH2list,
LH3list and Slist. The oracles and their responses are explained below,
H1 Oracle : When A makes a request with IDi, B does the following,

– B tosses a coin coini and Pr[coini = 0] = μ
– If coini = 0, B generates a random value xi ∈ Z∗

q and responds with Qi =
xibP ,

– Otherwise, B generates a random value xi ε Z∗
q and outputs Qi = xiP to A.

Also, B stores IDi, Qi, xi, coini in the LH1List.

H2 Oracle : When A makes a request with (mi, αi, Ui, IDB), B outputs the
corresponding value Ĥi if a tuple of the form 〈mi, αi, Ui, IDB, Ĥi, r

′
i〉, is already

available in LH2List. Else, B obtains QB from LH1List and then chooses a
random r

′
iεZ

∗
q and outputs Ĥi = rQB + r

′
iP to A(Here r in randomly cho-

sen from Z∗
q and is common for all H2 oracle queries). B stores the tuple

〈mi, αi, Ui, IDB, Ĥi, r
′
i〉 in LH2List.

H3 Oracle : When A request with (αi, IDB), B outputs the corresponding h if
an entry 〈αi, IDB, h〉 is available in LH3List, else chooses a random h ε {0, 1}n,
outputs h to A and adds (αi, IDB, h) in the LH3List.
Extract Oracle : When A makes an extract query with IDi as input, B goes
through the LH1List to retrieve coini corresponding to IDi.

– If coini = 0, it is one of the target identities, so B aborts.
– If coini = 1, B responds with Qi = xiPpub where xi is from LH1 list.

Signcrypt Oracle : When A makes a signcryption query for the signcryption
mi with IDi as sender and IDB as receiver, B responds as follows:

– Checks the LH1list corresponding to IDi. If coini = 1, then B computes
(ci, Ui, Vi) as per the normal signcryption algorithm.
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– If coini = 0, B performs the following,
• Computes Ĥi = a1P −a2Qi, where a1, a2 are chosen at random from Z∗

q

and Qi is obtained from LH1List.
• Computes Ui = a−1

2 Ppub, αi = ê(Ui, DB), Vi = a1a
−1
2 Ppub.

• Finally, B computes ci = H3(αi, IDB)⊕ (IDi ‖ mi), where H3(αi, IDB)
is obtained by querying the H3Oracle.

We show that σi=〈ci, Ui, Vi〉 is a valid signcryption, since it passes the veri-
fication test

ê(Ĥi, Ui)ê(Qi, Ppub)= ê(a1P − a2Qi, a
−1
2 Ppub)ê(Qi, Ppub)

= ê(a1P, a
−1
2 Ppub)ê(−a2Qi, a

−1
2 Ppub)ê(Qi, Ppub)

= ê(a1a
−1
2 Ppub, P )ê(Qi, Ppub)−1ê(Qi, Ppub)

= ê(a1a
−1
2 Ppub, P )

= ê(Vi, P )

B outputs σi=〈ci, Ui, Vi〉 and stores 〈mi, αi, Ui, Vi, IDB〉 in the list, Slist.
Unsigncrypt Oracle : Note that unsigncryption during the unforgeability
game is done in a different order from the actual protocol, because C does not
know the private key of the identities with coini = 0 in list LH1list. When A
makes a unsigncryption query with σi=〈ci, Ui, Vi)〉, IDi as sender and IDB as
receiver, B responds as follows:

– Checks LH1list for IDB. If coinB = 1, then B unsigncrypts σi as per the
algorithm(as B knows the private of IDB) and outputs mi, IDi if σi is a
valid signcryption of mi from IDi to IDB, Else output “Invalid” .

– If coinB = 0, then IDB is one of target identities. The B performs the
following,
1. Searches the LH3List for the tuples corresponding to IDB. If no match-

ing tuple is present in LH3list, then return “Invalid”
2. For each entry 〈αi, IDB, h1i〉 corresponding to IDB in LH3list, compute
cj ⊕ h1j and parse it as IDj‖mj and check whether IDj = IDi. If no
tuple with IDi = IDj is found, output “Invalid”.

3. For each mj , where IDj‖mj = cj ⊕ h1j in the previous step obtained
from the LH3list, find the matching tuples of the form 〈mi, αi, Ui, IDB,
Ĥi, r

′
i〉 in LH2list. If no matching tuple is present for any mi in LH2list,

output “Invalid”.
4. For the matching tuple of the form 〈mi, αi, Ui, IDB, Ĥi, r

′
i〉 found in the

previous step, check whether the following relationship holds.
αi

?= ê(Vi−Di

r , Ppub)ê(
r
′
iPpub

r , Ui)−1

We will prove that this check will be true for the correct tuple.
αi = ê(Ui, DB),

ê(Vi−Di

r , Ppub)ê(
r
′
iPpub

r , Ui)−1

=ê(xiQB, Ppub)ê(
r
′
ixiP

r , Ppub)ê(
r
′
ixiP

r , Ppub)−1

=ê(sQB, xiP )
=ê(DB, Ui)
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Then B checks whether ê(Vi, P ) ?= ê(Ĥi, Ui)ê(Qi, Ppub). If both the above
checks are true the tuple is accepted. Otherwise, the tuple is rejected.

5. If all tuples are rejected, then output “Invalid” else from the accepted
tuple output mi.
Note : There will exactly one tuple for which the tests will pass. Hence,
only one mi will be output from the above test.

Aggregate Unsigncrypt Oracle : When A makes aggregate unsigncrypt query
with the signcryption σAgg = 〈{ci, Ui, IDi}n

i=1, VAgg〉 and IDB as receiver, B
responds as follows:

– Checks LH1list for IDB. If coinB = 1, B knows the private key DB and
hence follows the aggregate unsigncrypt algorithm of IBAS-1.

– If coini = 0, B does not know the private key, so B cannot use the aggregate
unsigncrypt algorithm of IBAS-1. Instead B does the following.

– B gets as input σAgg = 〈{ci, Ui, IDi}n
i=1, VAgg〉. B also knows the private

key of all senders {IDi}i=1,...,n

– First, B collects the tuples of the form 〈αi, IDB, h1i〉 from LH3List.
– Computes ci ⊕ h1i and parse it as mi‖IDi, Check whether the IDi belongs

to sender list of σAgg.
– B collects all such mi, IDi pair corresponding to σAgg. If at least n such

pairs are not present, then output “Invalid”
– B searches the LH2List to find tuples of the form 〈mi, αi, Ui, IDB, Ĥi, r

′
i〉

corresponding to (mi, Ui), 1 ≤ i ≤ n and performs the following operations.
• Computes β =

∏n
i=1 αi.

• Computes X = VAgg −Σn
i=1Di = ΣriĤi

= Σn
i=1{ri(rQB + r′iP )}

• Computes β
′
= (ê(X,Ppub)

∏n
i=1 ê(Ui, Ppub)−r

′
i )1/r

=
∏n

i=1 ê(riQB, Ppub)
=
∏n

i=1 ê(riDB, P )
=
∏n

i=1 αi

• Checks whether ê(Vagg, P ) ?=
∏n

i=1 ê(Ĥi, Ui)ê(Σn
i=1Qi, Ppub) and β

′ ?= β.
• If both the check passes, then B output mi, IDi, for all i = 1, . . . , n.
• Else, output “Invalid”

Forgery : A chooses n sender identities {IDi}(i=1,...,n) and a receiver identity
IDB and outputs the aggregate signcryption σ∗

Agg = 〈{ci, Ui, IDi}n
i=1, V

∗
agg〉 to

B. A wins the game if at least one of the identities is one of a target identities
(coini = 0) and A has not asked for a signcryption query of the corresponding
mi, IDi pair (it is not a trivial forgery).

B has V ∗
agg and B knows the private key of all the senders other than set of

users who are the target identities. Let us assume these set of users form the
first k identities of the list. Therefore B can compute,

V ∗
agg −Σn

i=k+1Di = Σn
i=1riĤi +Σk

i=1Di. B has,
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ê(V ∗
Agg−Σn

i=k+1Di, Ppub) =
= ê(Σn

i=1riĤi +Σk
i=1Di, ppub)

= ê(Σn
i=1rirQB + rir

′
iP, Ppub)ê(Σk

i=1Di, Ppub)
= ê(Σn

i=1rirQB , Ppub)ê(Σn
i=1rir

′
iP, Ppub)ê(Σk

i=1Di, Ppub)
= ê(rDB , Σ

n
i=1Ui)Πn

i=1ê(Ui, r
′
iPpub)ê(Σk

i=1Di, Ppub)

B knows the values of r(stored in LH2list), {r
′
i, Ui}i=1 to n, where Ui is available

in the forged aggregate signcryption and r‘i stored in LH2list, DB (private key
of IDB is known to B , IDB is the identity of the receiver of σ∗

Agg) and Ppub

(master public key).
Therefore, B can compute the inverse of the first two components in above

equation. By multiplying
ê(rDB , Σ

n
i=1Ui)−1Πn

i=1ê(Ui, r
′
iPpub)−1 with ê(V ∗

agg −Σn
i=k+1Di, Ppub), B gets

ê(Σk
i=1Di, Ppub). However, since each Di = xiabP and Ppub = aP , ê(Σk

i=1Di,

Ppub) = ê(P, P )a2b.Σk
i=1xi . By raising this component to 1

Σk
i=1xi

(All xi’s are

obtained from the list LH1list), B gets ê(P, P )a2b which is the solution to the
instance of the hard problem. �

Confidentiality

Theorem 2. The identity-based aggregate signcryption scheme IBAS-1 is se-
cure against IND-IBAS-CCA2 adversary A under adaptive chosen message and
adaptive chosen identity attack in the random oracle model if BDHP is hard in
G1.

Proof. On getting a BDHP instance P, aP, bP, cP as challenge, the challenger
B uses A who is capable of breaking the confidentiality of IBAS-1 to solve the
Bilinear Diffie Hellman Problem(BDHP).

– Setup Phase: The challenger B sets the public parameters as follows. Sets
two groups G1 and G2. B sets Ppub = aP and gives system public parameters
params to A.

– Phase 1: A can ask all kinds of queries to the oracles. All the oracle are
similar to the oracles in the Unforgeabilty game of IBAS-1.
• ForH1 oracle, whenA queries for IDi,B tosses a coin such thatPr[coini =

0] = μ.
• If coini = 0, B sets QID = xibP for some random xi ∈ Z∗

q returns QID

to A.
• Else B sets QID = xiP and returns QID to A and adds the tuple
〈IDi, Qi, xi, coini〉 to the H1list.

– Challenge: After getting sufficient training, A submits
(m0i,m1i, IDi)i=1,...,n, receiver identity IDB to B. B checks the LH1list for
IDB. If coini = 1, then B aborts.
If not, B does the following.
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• B chooses a random kε [1,n].
• For each i B checks whether i = k. If not, B chooses a random b ∈ {0, 1}

and signcrypts mbi as per the signcrypt algorithm using the senders
private key and receivers public key.

• If i = k then, B
∗ Sets Ui = cP .
∗ Choose xi ∈ Z∗

q and sets Ĥi = xiP .
∗ Compute Vi = xicP +Di.
∗ Updates LH2list and LH3list.
∗ Chooses a random ci and sets the signcryption of message mb as

(ci, Ui, Vi).
• B aggregates all the signatures σi, for i = 1 to n and gives the challenge

aggregate signcryption σ∗
Agg= 〈{ci, Ui, IDi}n

i=1, V
∗
Agg〉 to A .

– Phase 2 : This phase is similar to phase 1, But in phase 2, A cannot
ask for aggregate unsigncryption on the challenge aggregate signcryption
σ∗

Agg=〈{ci, Ui, IDi}n
i=1, V

∗
Agg〉.

– Output : After A has made sufficient number of queries A outputs the
guess b

′
i for each i = 1 to k − 1. For the kth output, if the adversary aborts

then the adversary has found out that it is not a valid signcryption of either
of the messages. (We assume that the adversary is capable of doing this). If
so, B gets 〈h1i, αi, IDB〉 from LH2list (such a tuple exists because A must
have queried the H2 oracle with such a query to unsigncrypt the challenge
ciphertext successfully and find out the error. The probability that A guesses

the hash value is negligible) and outputs α
1

xi

i as the solution to BDH problem
where xi is corresponding to IDB in the LH1list.

α
1

xi

i =ê(Ui, DB)
1

xi

=ê(cP, xiabP )
1

xi

=ê(P, P )abc

Note : Assume there are n such αi’s in the LH2list. One of them must be
the solution to the BDH problem, without that hash value, A would not be
able to unsigncrypt the challenge ciphertext. �

6 Identity Based Aggregate Signcryption with Public
Verifiability (IBAS-2)

6.1 IBAS-2 Scheme

The IBAS-2 scheme is a variant of IBAS-1, with the additional features such as
public verification and sequential aggregation. Public verifiability is an impor-
tant property in signcryption in certain scenarios. Achieving public verifiability
without revealing any information about the message encrypted is a difficult
task. IBAS-2 achieves it in sequential aggregation technique. Sequential aggre-
gation is a weaker model compared to normal aggregation but has its practical
applications like business scenarios and routing scenarios. IBAS-2 consists of the
following algorithms.
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– IBAS-2.Setup : Let κ be the security parameter of the system. Let G1
and G2 be two GDH groups of same prime order q. Let ê be a bilinear
map defined by ê : G1 × G1 → G2. The Hash Functions used in IBAS-2 are
H1 : {0, 1}∗ → G1,H2 : {0, 1}∗×G2×G1×{0, 1}∗ → G1, H3 : G2×{0, 1}∗ →
{0, 1}n where n̄ is |ID| + |m|, H4 : {0, 1}∗×G1 → Z∗

q . Let the master private
keys be s1, s2εR Z∗

q and let P be a generator of G1. Let the master public
keys be Ppub1 = s1P and Ppub2 = s2P . The public parameters params pf the
system are 〈P, Ppub1, Ppub2,G1,G2, ê, H1, H2, H3, H4〉 and the master private
keys are s1 and s2.

– IBAS-2.KeyGen : When user Ui submits his identity IDi to the PKG, the
PKG runs this algorithm to generate Di1 = s1Qi and Di2 = s2Qi, where Qi

= H1(IDi). PKG sends Di= 〈Di1, Di2〉 to the user Ui over a secure channel.
– IBAS-2.AggregateSigncrypt : Let the sequence of users who will partici-

pate in the sequential aggregation be {U1,U2, . . . ,Un}, i.e user Ui−1 does the
aggregation of signcryption obtained from previous user Ui−2} with his own
signcryption and generates σi−1

Agg. Then Ui−1 passes σi−1
Agg to user Ui for further

aggregation or generation of σi
Agg by Ui. For a user Ui to signcrypt a message

mi to receiver UB, the user Ui provides the message mi, the sender identity
IDB, the private keyDi of sender IDi, the receiver identity IDB and the pre-
vious aggregate signcryption σ(i−1)

Agg = 〈{cj, Uj , IDj}j=1,...,(i−1), V
i−1
Agg ,Wi−1〉

generated by user Ui as input and runs this algorithm.

• First verifies whether σ(i−1)
Agg is valid by using IBAS − 2.PublicV erify

algorithm. If it is valid then proceeds.
• Selects a random ri from Z∗

q .

• Sets Ui = riP.

• Computes αi = ê(riPpub, QB)
• Computes Ĥi=H2(mi, αi, Ui, IDB) and hi=H4(ci ‖ ci−1 ‖ · · · c1, Σi

j=1Uj)

• Computes Vi = riĤi +Di1

• Computes V i
Agg = V

(i−1)
Agg + Vi

• Computes Wi = 1
ri+hi

Di2 and ci = H3(αi, IDB) ⊕ (IDi ‖ mi)

• Outputs the aggregate signcryptionσ(i)
Agg=〈{cj, Uj , IDj}j=1,...,i),V

(i)
agg ,Wi〉

– IBAS-2.PublicVerify : The ith user on getting an aggregate signcryption
σ

(i−1)
Agg = 〈{cj , Uj , IDj}(i−1)

j=1 , V (i−1)
agg , Wi〉 from i− 1 users and the list indi-

cating the order in which the users have signed, uses this algorithm to check
the validity of the aggregate signcryption. The verifier checks the following
equality:

ê(W, (Ui−1 + hi−1P ) ?= ê(Qi−1, Ppub2), where hi−1 = H4(ci−1 ‖ ci−2 ‖
· · · c1, Σi−1

j=1Uj)

Since {Ui}i=1,...,i−1, W are available in σ
(i−1)
Agg and P, Ppub2 are public pa-

rameters, the above test can be performed by any user.
If the above check passes, this algorithm outputs “V alid”, Else outputs
“Invalid”
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Correctness of the Verification :

ê(W, (Ui−1 + hi−1P )= ê( 1
ri−1+hi−1

Di2, (ri−1 + hi−1)P )
= ê(Di2, P )
= ê(Qi, Ppub2)

– IBAS-2.AggregateUnsigncrypt : The receiver UB for unsigncrypting the
aggregate signcryption σ(n)

Agg = 〈{ci, Ui, IDi}i=1,...,n), V
(n)
agg ,Wn〉 performs the

following.
For each i = (1, . . . , n) calculates
• Computes αi = ê(Ui, DB1)
• Computes IDi ‖ mi = H3(αi, IDB) ⊕ ci

• Checks ê(V (n)
Agg , P ) ?=

∏n
i=1 ê(Ĥi, Ui)ê(Σn

i=1Qi, Ppub), where Ĥi = H2(mi,
αi, Ui, IDB) and hi = H4(ci ‖ ci−1 ‖ · · · c1, Σi

j=1Uj).
• Outputs all 〈mi, IDi〉 pairs for i=1 to n.

Correctness of the Verification :

ê(V (n)
Agg, P )= ê(Σn

i=1(riĤi +Di), P )
= ê(Σn

i=1riĤi, P )ê(Σn
i=1Di, P )

= ê(Σn
i=1Ĥi, Σ

n
i=1riP )ê(Σn

i=1Qi, Ppub)
= Πn

i=1ê(Ĥi, Ui)ê(Σn
i=1Qi, Ppub)

6.2 Security Proof

The security proof for this scheme is very much similar to IBAS-1 scheme. We
are using the similar construct as the IBAS-1 in IBAS-2 with additional features,
public verifiability.

7 Identity Based Aggregate Signcryption with Constant
Verification Cost (IBAS-3)

7.1 IBAS-3 Scheme

IBAS-3 achieves constant number of pairing operation for aggregate verification
irrespective of the number of senders. Hence this scheme is computationally ef-
ficient. This scheme consists of the following eight algorithms.

– IBAS-3.Setup : Let κ be the security parameter and let G1 and G2 be
two GDH groups of the same prime order q. Let ê be a bilinear map de-
fined by ê : G1 × G1 → G2. The hash functions in IBAS-3 are defined
as H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ × G2 × G1 × {0, 1}∗ → Z∗

q , H3 :
G2 × {0, 1}∗ → {0, 1}n̄ where n̄=| ID | + | m |, and H4 : {0, 1}∗ × G2 ×
G1 ×{0, 1}∗×Z∗

q → Z∗
q . Let P be a random generator of G1 and the master

private keys are s1, s2 ∈R Z∗
q . The master public keys are Ppub1 = s1P and

Ppub2 = s2P . The system public parameters params of the IBAS-3 system
are 〈P, Ppub1, Ppub2,G1,G2, ê, H1, H2, H3, H4〉.
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– IBAS-3.KeyGen : When user Ui with identity IDi submits his identity to
the PKG, the PKG runs this algorithm to generate Di = s1Qi, where Qi =
H1(IDi). PKG sends Di to the user Ui over a secure channel.

– IBAS-3.Signcrypt : When the user Ui with identity IDi provides the mes-
sage mi, the receiver identity IDB and his private key as input to this algo-
rithm, signcryption of the message mi is performed as follows.
• Selects a random ri from Zq∗ .

• Sets Ui = riP.

• Computes αi = ê(riPpub1 , QB)
• Compute ci = H3(αi, IDB) ⊕ (IDi ‖ mi)
• Computes h1i = H2(mi, αi, Ui, IDB) and h2i = H4(mi, αi, Ui, IDB, h1i)
• Computes Vi = rih1iPpub2 + h2iDi

• The signcryption σi =〈ci, Ui, Vi〉
– IBAS-3.AggregateSigncrypt : On providing n distinct signcryption σi=

〈ci, Ui, Vi〉, for i=1 to n, the aggregate signcryption is formed as follows:

VAgg = Σn
i=1Vi

Now 〈{ci, Ui, IDi}n
i=1, VAgg〉 is send as the aggregate signcryption to the

receiver. It is to be noted that his algorithm can be run by one of the senders
or any third party.

– IBAS-3.Unsigncrypt : The user IDB to unsigncrypt σ = 〈ci, Ui, Vi〉, (for
i = 1 to n) uses his private key and does the following:
• Computes αi = ê(Ui, DB).
• Retrieves IDi ‖ mi = H3(αi, IDB) ⊕ ci.
• Computesh1i = H2(mi, αi, Ui, IDB)andh2i = H4(mi, αi, Ui, IDB, h1i).

• Verifies ê(Vi, P ) ?= ê(Ppub2 , h1iUi)ê(h2iQi, Ppub1 ).
• If the above test holds, the algorithm outputs (mi, IDi). Else, Outputs

“Invalid”
– IBAS-3.AggregateUnsigncrypt : The user with identity IDB, to un-

signcrypt σAgg = 〈{ci, Ui, IDi}n
i=1, VAgg〉, uses his private key and does the

following:
Unsigncryption is carried out if σAgg passes public verification. For each i
the user UB calculates the following:
• Computes αi = ê(Ui, DB).
• Retrieves IDi ‖ mi = H3(αi, IDB) ⊕ ci.
• Computesh1i = H2(mi, αi, Ui, IDB)andh2i = H4(mi, αi, Ui, IDB, h1i).

• Verifies ê(VAgg , P ) ?= ê(Ppub2 , Σ
n
i=1h1iUi)ê(Σn

i=1h2iQi, Ppub1).
• If the verification passes returns (mi, IDi) (for i = 1 to n). Else, Outputs

“Invalid”
– IBAS-3. Correctness : The correctness of our scheme is proved as follows.
ê(VAgg, P ) = ê(Σn

i=1rih1iPpub2 , P )ê(Σn
i=1h2iDi, P )

=ê(Ppub2 , Σ
n
i=1rih1iP )ê(Σn

i=1h2iQi, Ppub1 )
=ê(Ppub2 , Σ

n
i=1h1iUi)ê(Σn

i=1h2iQi, Ppub1).
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7.2 Security Proof of IBAS-3

Due to page restrictions we omit the proof here and provide it in the full version
of this paper.

8 Efficiency

We have compared the efficiency of our scheme with the existing identity based
signature scheme. From the table it is clear that our schemes are highly effec-
tive in computation. Also, the communication cost is highly reduced since the
signature size is reduced by half. It cannot be completely reduced to constant
value since one part of signature is needed for decryption. So only part of the
signature can be aggregated.

Pt Mul - Scalar Point Multiplication.
Exp - Exponentiation in G2.
Pairing - Bilinear Pairing Operation.

In all the proposed schemes, we have aggregated only part of the signature. This
provides sufficient amount of efficiency over sending each signcryption separately.
Also, verification of number of signatures can be done in a single step rather than
verifying each signature separately. This greatly reduces cost involved in verifica-
tion. For example in banking systems, the verification of various transactions can
be done in a single step rather than doing each verification separately. Secondly, in-
stead of sending 2n components of signatureswe send onlyn components. For large
values of n this provides reduced cost with less bandwidth requirement in trans-
mission. Though the number of components is still linear with respect to number
of signers, it does save good amount of computation cost by reducing it into half.

The major advantage of our scheme is that the senders does notwant to have any
interactions as in Cheng et al.’s scheme [6] and Gentry et al.’s scheme [9], where all
the senders agree upon a common random value R before performing the individ-
ual signatures which requires prior communication with all senders. In any aggre-
gation scheme, different users must communicate the signcryption to the user who
carries out the aggregation. This is the basic minimal cost inherent to the scheme.

Table 1. Efficiency comparison of Aggregate Signature Schemes

Signing Aggregate verify
Schemes Pt Mul Pairing Pt Mul Exp Pairing

Gentry et al.[9] 3 n 3
Bhaskar et al. [2] 1 n n+1
X.Cheng et al. [6] 3 n 2
H.Yoon et al. [7] 3 n n+1

Jing Xu et al. [20] 2 n+2
Our scheme IBAS-1 2 n+2
Our scheme IBAS-3 2 n 3
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Any other communication done between the users/aggregator may be referred to
as communication overhead. In our schemes, there isNO communication overhead.
This also means that individual users may generate the signcryption in an off line
fashion, except in the sequential aggregation scheme IBAS-2.

9 Conclusion and Open Problems

We have proposed the concept of aggregate signcryption by combining the func-
tionalities of aggregate signature and signcryption. We have given three schemes
each having its own advantage. We have formally proved the security of all the
proposed schemes using adaptive identity in the random oracle model. These
schemes have various practical applications. We leave as an open problem to
device an efficient identity based aggregate signcryption scheme in the standard
model. It will be interesting to investigate whether it is possible to reduce the
number of pairing operations. It will be interesting to see a public verifiable
aggregate signcryption with efficient aggregation and verification technique.
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Abstract. In information theoretic model, unconditionally secure mul-
tiparty computation (UMPC) allows a set of n parties to securely com-
pute an agreed function f , even upto t < n/2 parties are under the
control of an active adversary having unbounded computing power. The
bound on the resilience/fault tolerance (i.e t < n/2 ) is optimal, as long
as each party is connected with every other party by a secure channel
and a common physical broadcast channel is available to the parties and
a negligible error probability of 2−Ω(κ) (for some security parameter κ)
is allowed in the computation. Any UMPC protocol designed under the
above settings is called as optimally resilient UMPC protocol. In this pa-
per, we propose an optimally resilient UMPC protocol with n = 2t + 1,
which requires only O(D) rounds, where D is the multiplicative depth of
the arithmetic circuit representing f . To the best of our knowledge, our
protocol is the first UMPC protocol with optimal resilience, to attain a
round complexity that is independent of n. When D is constant, then
our protocol requires only constant number of rounds. Our protocol is to
be compared with the most round efficient, optimally resilient, UMPC
protocol of [16] that requires O(log n + D) rounds in the same settings
as ours.1 Thus our UMPC significantly reduces the round complexity
of [16]. Moreover, our UMPC protocol requires the same communication
complexity as that of [16]. As a tool for designing our UMPC protocol, we
propose a new and robust multiplication protocol to generate t-sharing
of the product of two t-shared secrets.

As an interesting, practically-on-demand MPC problem, we present a
protocol for unconditionally secure multiparty set intersection (UMPSI)
with optimal resilience; i.e., with n = 2t + 1, having a negligible er-
ror probability in correctness. This protocol adapts the techniques used
in our proposed general UMPC protocol. The protocol takes constant
number rounds, incurs a private communication of O(m2n4κ) bits and
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broadcasts O((m2n4 + n5)κ) bits, where each party has a set of size m.
To the best of our knowledge, this is the first ever UMPSI protocol with
n = 2t+1. This solves an open problem posed in [15] and [17], urging to
design an UMPSI protocol with n = 2t+1. Our UMPSI protocol is to be
compared with the best known UMPSI protocol of [17] with n = 3t + 1
(i.e., non-optimal resilience), which takes constant number rounds, in-
curs a private communication of O((m2n3 + n4κ)κ) bits and broadcasts
O((m2n3 + n4κ)κ) bits. So even though the communication complexity
of our UMPSI protocol is slightly larger than that of [17], our UMPSI
protocol significantly improves the resilience of UMPSI protocol of [17];
i.e., from t < n/3 to t < n/2.

Keywords: Multiparty Computation, Information Theoretic Security,
Error Probability.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation
(MPC) [19] allows a set of n parties P = {P1, . . . , Pn} to securely compute an
agreed function f , even if some of the parties are under the control of a central-
ized adversary. More specifically, assume that f can be expressed as f : Fn → Fn

and party Pi has input xi ∈ F, where F is a finite field. At the end of the com-
putation of f , each honest Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn),
irrespective of the behavior of the corrupted parties (correctness). Moreover,
the adversary should not get any information about the input and output of the
honest parties, other than what can be inferred from the input and output of the
corrupted parties (secrecy). MPC is one of the most important and fundamen-
tal problems in secure distributed computing and has been studied extensively in
different settings (see [19,11,5,6,18,1,12,10,2,4,3,16] and their references). In any
general MPC protocol, the function f is specified by an arithmetic circuit over
F, consisting of input, linear (e.g. addition), multiplication, random and output
gates. We denote the number of gates of each type by cI , cA, cM , cR and cO,
respectively. Among all the different types of gate, the evaluation of a multipli-
cation gate requires the most communication complexity. So the communication
complexity of any general MPC is usually given in terms of the communication
complexity per multiplication gate [4,3,2,16].

In this paper, we study MPC in the presence of a threshold, adaptive, active
adversary At, having unbounded computing power in synchronous network. The
adversary At can actively corrupt at most t parties out of the n parties. To
actively corrupt a party mean to take full control over the party and make
it behave arbitrarily during any protocol execution. Moreover, At can corrupt
parties during run time and the choice of the adversary (to corrupt a party)
depends upon the data which is seen from the parties, currently under the control
of At (with the restriction that total number of corrupted parties should not go
beyond t). We assume that each party is directly connected to every other party
by a secure channel and a common physical broadcast channel is available to all
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the parties. The broadcast channel allows any party to send some information
identically to all other parties. Any protocol in such a network operates in a
sequence of rounds. In each round, a party performs some computation, sends
messages to neighbours over private channel, broadcasts information (if any) to
everybody. After this, the party receives the information sent by the neighbours
over private channel in this round and collect any information, which is broadcast
in this round. We assume At to be rushing [8], who in a particular round first
listens all the messages addressed to him, before sending/broadcasting his own
message(s) for the current round.

It is known that perfectly secure MPC tolerating At is possible iff n ≥ 3t+ 1
and every two parties are directly connected by a secure channel [5]. Any per-
fectly secure MPC satisfies the correctness and secrecy condition, without any
error. When a negligible error probability of 2−Ω(κ) (for a security parameter κ)
is allowed in correctness, then we arrive at the notion of unconditional MPC
(UMPC), which is also known as information theoretically secure MPC with sta-
tistical security. It is known that UMPC tolerating At is possible iff n ≥ 2t+ 1
and a common broadcast channel is available to all the parties (in addition to
secure point to point channel between every two parties) [18]. Any UMPC de-
signed in these settings (i.e., with a completely connected network of n = 2t+ 1
parties, along with the presence of a physical broadcast channel and allowance of
a negligible error probability in correctness) may be called as optimally resilient
UMPC. In this paper, we investigate optimally resilient UMPC.

Our Motivation and Contribution: Round complexity and communication
complexity are two important complexity measures of any distributed computing
protocol. Looking at the recent trend in the literature of UMPC, we find that
round complexity has been increased tremendously to reduce communication
complexity [8,2]. If we every hope to practically implement UMPC protocols,
then we should try to design a protocol, which tries to simultaneously optimize
both round and communication complexity. Motivated by this, Patra et.al [16]
have designed an optimally resilient UMPC protocol, which tries to simultane-
ously optimize both round and communication complexity. To the best of our
knowledge, the UMPC protocol of [16] is the most round efficient optimally re-
silient UMPC protocol. In this paper, we further reduce the round complexity
of the round efficient optimally resilient UMPC protocol of [16]. Moreover, our
UMPC protocol has the same communication complexity as the UMPC pro-
tocol of [16]. In the following table, we compare our UMPC protocol with the
best known optimally resilient UMPC protocols. In the table, the communication
complexity denotes the total number of field elements communicated to evaluate
the multiplication gates in the circuit and D is the multiplicative depth of the
circuit. Notice that the best known communication efficient optimally resilient
UMPC protocol of [2] has a broadcast communication, which is independent of
number of multiplication gates in the circuit.
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Reference Communication Complexity Round Complexity
[8] Private: O(cMn5); Broadcast: O(cMn5) O(nD)
[2] Private: O(cMn2); Broadcast: O(n3) O(n2 + D)
[16] Private: O(cMn3); Broadcast: O(cMn3) O(log n + D)

This Article Private: O(cMn3); Broadcast: O(cMn3) O(D)

From the table, we find that our UMPC protocol has the best round complexity
among the best known optimally resilient UMPC protocol. The round complexity
of our protocol is independent of n (which may be huge in most of the practical
situations). Though there exists perfectly secure MPC with n = 3t + 1, whose
round complexity is independent of n (i.e., O(D)) [5,13], to the best of our
knowledge, our UMPC protocol is the first optimally resilient UMPC protocol
with n = 2t+1, to provide the same. If D is constant, then our protocol requires
only constant number of rounds.

As an interesting practically-on-demand MPC problem, we present a protocol
for unconditionally secure multiparty set intersection (UMPSI) with optimal
resilience; i.e., with n = 2t+1, having a negligible error probability in correctness.
Informally in UMPSI problem, there are n parties, each with a private data set
of m field elements. The goal is to design a protocol, such that at the end of the
protocol, each honest party correctly gets the intersection of the n sets with very
high probability. Moreover, this should hold in the presence of a computationally
unbounded At. Furthermore, At should not get any extra information, other
than what can be computed from the data set of t corrupted parties and the
intersection of the n sets. Our UMPSI protocol adapts the techniques used in
our proposed general UMPC protocol and takes constant number rounds, incurs
a private communication of O(m2n4κ) bits and broadcasts O((m2n4 + n5)κ)
bits, where each party has a set of size m. To our knowledge, this is the first ever
UMPSI protocol with n = 2t+ 1. This solves an open problem posed in [15,17],
urging to get an UMPSI protocol with n = 2t+ 1.

Remark 1. We prefer to divide this article into two parts: the first part consist-
ing of Section 2, Section 3 and Section 4 are related to our proposed UMPC
protocol. The second part, comprising Section 5 describes the existing literature
for multiparty set intersection and our proposed UMPSI protocol.

Notations: For a given security parameter κ, our protocols provide information
theoretic security with a negligible error probability of 2−Ω(κ) in correctness.
To bound the error probability by 2−Ω(κ), all our computation and communi-
cation are done over a finite field F = GF (2κ). Thus each field element can be
represented by O(κ) bits. Moreover, without loss of generality, we assume that
n = poly(κ). We also assume that the messages sent through the channels are
from the specified domain. Thus if a party receives a message which is not from
the specified domain (or no message at all), he replaces it with some pre-defined
default message. Thus, we separately do not consider the case when no message
or syntactically incorrect message is received by a party.

2 Overview of Our UMPC Protocol
Our UMPC protocol is a sequence of following three phases: preparation phase,
input phase and computation phase. In the preparation phase, t-2D(+)-sharing
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(the formal definition of t-2D(+)-sharing will be given in Section 3.2) of cM + cR
random multiplication triples will be generated. A triple (a, b, c) is called random
multiplication triple if a and b are random and c = ab holds. Our preparation
phase requires only constant number of rounds. Each multiplication gate and
random gate of the circuit will be associated with a t-2D(+)-sharing of random
multiplication triple. In the input phase the parties t-2D(+)-share their inputs.
In the computation phase, based on the inputs of the parties, the actual circuit
will be computed gate by gate, such that the outputs of the intermediate gates
are always kept as secret and are properly t-2D(+)-shared among the parties.
Due to the linearity of the used t-2D(+)-sharing, the parties can locally evaluate
linear gates without doing any communication. Each multiplication gate will be
evaluated with the help of the multiplication triple associated with it, using the
so called Beaver’s circuit randomization technique [1].

The input and computation phase of our protocol are exactly same as in [16]
and takes O(D) rounds. However, our preparation phase is completely different
from the preparation phase of [16]. Specifically, in [16], the preparation phase was
divided into a sequence of �logn� segments, where each segment is responsible for
generating t-2D(+)-sharing of cM+cR

�log n random multiplication triples. The compu-
tation of those segments were non-robust in the sense that the computation may
be unsuccessful in case certain number of parties misbehave (the misbehaving
parties are identified and removed for computations in subsequent segments).
Specifically, their multiplication protocol used in each segment for generating
multiplication triples was non-robust. They showed that there may be at most
�logn� unsuccessful attempts for the segment computations; after which identi-
ties of all corrupted parties will be revealed and hence all segment computations
will be successful thereafter. Clearly, the computation of their preparation phase
require Θ(log n) rounds as the segments were executed sequentially.

We replace the non-robust multiplication protocol of [16] by a robust proto-
col, which will be always successful, irrespective of the behavior of the corrupted
parties. Moreover, we do not divide our preparation phase into segments. These
two facts together lead to the efficient implementation of our preparation phase,
which requires only constant number of rounds. Moreover, while doing so, we
keep the communication complexity intact; i.e., the communication complexity
of our round efficient preparation phase is same as that of [16]. It is this re-
duction in the number of rounds during preparation phase, which further allows
our UMPC protocol to gain in number of rounds, in comparison to the UMPC
protocol of [16]. We borrow all other sub-protocols used in [16] will minor mod-
ifications. Nevertheless, for the sake of completeness, we briefly recall all these
sub-protocols, when ever they are appropriate.

3 Robust Generation of Multiplication Triples

Before presenting our robustmultiplicationprotocol,we explain few sub-protocols,
which will be used as a black-box. Some of these sub-protocols are borrowed from
[16], while others are proposed by us for the first time.
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3.1 Information Checking Protocol and IC Signatures

The Information Checking Protocol (ICP) is a tool for authenticating messages
in the presence of computationally unbounded corrupted parties. The notion of
ICP was first introduced by Rabin [18]. As described in [18,8], an ICP is executed
among three parties: a dealer D ∈ P , an intermediary INT ∈ P and a verifier
R ∈ P . The dealer D hands over a secret value s ∈ F to INT . At a later stage,
INT is required to hand over s to R and convince R that s is indeed the value
which INT received from D.

The basic definition of ICP involves only a single verifier R and deals with only
one secret s [18,8]. In [16], this notion is extended to multiple verifiers, where
entire set P acts as verifiers [16]. Moreover, ICP of [16] is extended to deal
with multiple secrets, denoted by S, which contains � ≥ 1 secret values. Thus,
ICP of [16] is executed with respect to multiple verifiers and deals with multiple
secrets concurrently (when appropriate). We rename their ICP as Multi-Verifier-
ICP. Now similar to the ICP defined in [18,8], Multi-Verifier-ICP is a sequence of
following three protocols:

1. Distr(D, INT,P , S): is initiated by D, who hands over secret S = {S(1) . . .
S(�)}, containing � ≥ 1 elements from F to INT . In addition, D hands over some
authentication information to INT and verification information to the
individual parties (verifiers) in P .

2. AuthVal(D, INT,P , S): is initiated by INT to ensure that in protocol Reveal-
Val, secret S held by INT will be accepted by all the (honest) verifiers in P .

3. RevealVal (D, INT,P , S): is carried out by INT and the verifiers. Here INT
produces S and authentication information, while individual verifiers pro-
duce verification information. Depending upon the values produced by INT
and the verifiers, either S is accepted or rejected by all the (honest) verifiers.

The authentication information, along with S, held by INT at the end of
AuthVal is called D’s IC signature on S, denoted as ICSig(D, INT, S). Multi-
Verifier-ICP satisfies the following properties [16]:

1. If D and INT are honest, then S will be accepted in RevealVal by each
honest verifier.

2. If INT is honest, then S held by INT at the end of AuthVal will be accepted
in RevealVal by each honest verifier, except with probability 2−Ω(κ).

3. If D is honest, then every S′ �= S produced by a corrupted INT will be
rejected by each honest verifier, except with probability 2−Ω(κ).

4. If D and INT are honest, then at the end of AuthVal, At has no information
about S.

Protocol Multi-Verifier-ICP of [16] with n = 2t+ 1 is presented in next page.

Lemma 1 ([16]). Protocol Multi-Verifier-ICP takes five rounds and correctly
generates IC signature on � field elements, by privately communicating O((� +
n)κ) bits and broadcasting O((� + n)κ) bits. The protocol satisfies all the above
properties, except with error probability of 2−Ω(κ).
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Notation 1. In the rest of the paper, whenever we say that D hands over ICSig
(D, INT, S) to INT , we mean that Distr and AuthVal are executed in the back-
ground. Similarly, INT reveals ICSig(D, INT, S) can be interpreted as INT ,
along with other parties, invoking RevealVal

Multi-Verifier-ICP(D, INT,P , S = {s(1), . . . , s(�))}
Distr(D, INT,P , S = {s(1), . . . , s(�)}): Round 1: D selects a random � + t − 1 degree
polynomial F (x) over F, whose lower order � coefficients are s(1), . . . , s(�). In addition,
D selects another random �+ t−1 degree polynomial R(x) over F. D selects n distinct,
random elements α1, α2, . . . , αn such that each αi ∈ F − {0}. D privately gives F (x)
and R(x) to INT . To verifier Pi ∈ P , D privately gives αi, vi and ri, where vi = F (αi)
and ri = R(αi). The polynomial R(x) is called authentication information, while
for 1 ≤ i ≤ n, the values αi, vi and ri are called verification information.

AuthVal(D, INT,P , S = {s(1), . . . , s(�)}): Round 2: INT chooses a random d ∈ F\{0}
and broadcasts d,B(x) = dF (x) + R(x).

Round 3: For 1 ≤ j ≤ n, D checks dvj + rj
?= B(αj). If D finds any inconsistency,

he broadcasts F (x). Parallely, verifier Pi broadcasts ”Accept” or ”Reject”, depending
upon whether dvi + ri = B(αi) or not.

Local Computation (by each party): if F (x) is broadcasted in Round 3 then
accept the lower order � coefficients of F (x) as D’s secret and terminate the protocol.
else construct an n length bit vector V Sh, where the jth, 1 ≤ j ≤ n bit is 1(0), if
Pj ∈ P has broadcasted ”Accept” (”Reject”) during Round 3. The vector V Sh is
public, as it is constructed using broadcasted information. If V Sh does not contain
n − t 1’s, then conclude that D is corrupted and fails to give any signature to INT
and IC protocol terminates here.

If F (x) is not broadcasted during Round 3 and the protocol has not terminated,
then (F (x),R(x)) is called D’s IC signature on S = {s(1), . . . , s(�)} denoted by
ICSig(D, INT, S).

RevealVal(D, INT,P , S = {s(1), . . . , s(�)}): (a) Round 4: INT broadcasts F (x),R(x);
(b) Round 5: Pi broadcasts αi, vi and ri.

Local Computation (by each party): For the polynomial F (x) broadcasted by
INT , construct an n length vector V Rec

F (x) whose jth bit contains 1 if vj = F (αj),
else 0. Similarly, construct the vector V Rec

R(x) corresponding to R(x). Finally compute
V Rec

F R = V Rec
F (x) ⊗ V Rec

R(x), where ⊗ denotes bit wise AND. If V Rec
F R and V Sh matches at

least at t + 1 locations (irrespective of bit value at these locations), then accept the
lower order � coefficients of F (x) as S = {s(1), . . . , s(�)}. In this case, INT is able to
prove D’s signature on S. Otherwise INT fails to prove D’s signature on S.

Protocol Multi-Verifier-ICP satisfies linearity property as specified by the follow-
ing lemma:

Lemma 2 (Linearity of Protocol Multi-Verifier-ICP [16]). The IC signa-
ture generated byMulti-Verifier-ICP satisfies linearity property; i.e., INT can com-
pute ICSig(D, INT, ((r1s(1,1) + r2s

(2,1)), . . . , (r1s(1,�) + r2s
(2,�)))) from ICSig

(D, INT, (s(1,1), s(1,2) . . . , s(1,�))) and ICSig(D, INT, (s(2,1), s(2,2) . . . , s(2,�)))
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and Verifiers can compute verification information corresponding to ICSig
(D, INT, ((r1s(1,1) + r2s

(2,1)), . . . , (r1s(1,�) + r2s
(2,�)))), without any interaction,

where r1, r2 are any two publicly known elements from F.

3.2 Unconditional Verifiable Secret Sharing

We now recall the following definitions from [16].
Definition 1 (d-1D-Sharing [16]). A value s ∈ F is d-1D-shared among the
parties in P if there exists a degree-d polynomial f(x) over F with f(0) = s
such that every honest Pi ∈ P is holding a share si = f(i) of s. The vector
(s1, s2, . . . , sn) of shares is called a d-1D-sharing of s and is denoted by [s]d. A
set of shares/values is d-consistent if they lie on a unique degree-t polynomial.

Definition 2 (t-1D(+)-sharing [16]). Let D ∈ P be a party called dealer, who
has a value s ∈ F. We say that s is correctly t-1D(+)-shared among the parties
in P, denoted by 〈s〉Dt , if there exists degree-t polynomial f(x) held by D with
f(0) = s and every honest party Pi ∈ P holds a share si = f(i) of s and IC
signature ICSig(D,Pi, si) of D on si.

Definition 3 (t-1D(+,�)-sharing [16]). Let S = {s(1), . . . , s(�)}, where each
sl ∈ F. We say that the values in S are correctly t-1D(+,�)-shared among the
parties in P, denoted as 〈s1, . . . , s�〉Dt , if every secret s(l) is individually t-
1D(+)-shared. But now, instead of (honest) Pi holding separate IC-signatures
ICSig(D,Pi, s

(1)
i ), . . . , ICSig(D,Pi, s

(�)
i ) of D, party Pi holds a single IC sig-

nature ICSig(D,Pi, s
(1)
i , . . . , s

(�)
i ).

Definition 4 (t-2D(+)-sharing [2,16]). A value s ∈ F is correctly t-2D(+)-
shared among the parties in P, denoted as 〈〈s〉〉t, if there exists degree-t poly-
nomials f, f1, f2 . . . , fn with f(0) = s and for i = 1, . . . , n, f i(0) = f(i) such
that every honest party Pi ∈ P holds a share si = f(i) of s, the polynomial
f i(x) for sharing si and a share-share sji = f j(i) of the share sj of every honest
Pj ∈ P. In addition, every (honest) Pi ∈ P holds (honest) Pj’s IC Signature on
share-share sji = f j(i) of Pj’s share sj, i.e., ICSig(Pj , Pi, sji) for every honest
Pj ∈ P. Note that in [2], the authors called this sharing as 2D∗-sharing.

Definition 5 (t-2D(+,�)-sharing [16]).Aset of values s(1), . . . , s(�) are t-2D(+,�)-
shared among the parties inP if every secret s(l) is individually t-2D(+)-shared. But
now, instead of (honest) Pi holding separate IC-signatures ICSig(Pj , Pi, s

(1)
ji ), . . . ,

ICSig(Pj , Pi, s
(�)
ji )of (honest)Pj , partyPi holds a single ICsignature ICSig(Pj , Pi,

s
(1)
ji , . . . , s

(�)
ji ). The t-2D(+,�)-sharing is denoted as 〈〈s1, . . . , s�〉〉t.

If s is t-2D(+)-shared by a dealer D ∈ P (any party from P may perform the
role of a dealer), then we denote it by 〈〈s〉〉Dt . Similarly if a set of � secrets
s(1), . . . , s(�) are t-2D(+,�)-shared by D ∈ P , we denote it by 〈〈s1, . . . , s�〉〉Dt .

Generating t-2D(+,�)-sharing of � secrets: In [16] a protocol called 2D(+,�)

Share is given, which allows a dealer D ∈ P to t-2D(+,�)-share secret S = {s(1),
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s(2), . . . , s(�)}. Theprotocolhas the following properties: (a) IfD is honest, then the
protocol generates 〈〈s(1), . . . , s(�)〉〉Dt with high probability, such that s(1), . . . , s(�)

remain secure fromAt. (b) IfD is corruptedandhasnot generated t-2D(+,�)-sharing
of secrets, then with high probability,Dwill be detected as corruptedduring a pub-
lic verification process. The protocol is given on next page

Lemma 3 ([16]). 2D(+,�)Share generates t-2D(+,�)-sharing of � field elements,
except an error probability of 2−Ω(κ). The protocol takes ten rounds, privately
communicates and broadcasts O((�n2 + n3)κ) bits.

(〈〈s(1), . . . , s(�)〉〉Dt = 2D(+,�)Share(D,P , t, S = {s(1), . . . , s(�)})
1. For every l = 1, . . . , �, D picks a random bivariate polynomial H(l)(x, y) of degree
t in both the variables, with H(l)(0, 0) = s(l). Let f

(l)
i (x) = H(l)(x, i) and g

(l)
i (y) =

H(l)(i, y). For i = 1, . . . , n, D hands over ICSig(D,Pi, f
(1)
i (j), f (2)

i (j), . . . , f (�)
i (j)) and

ICSig(D,Pi, g
(1)
i (j), g(2)

i (j), . . . , g(�)
i (j)) to party Pi for all j ∈ {1, . . . , n}.

2. For l = 1, . . . , �, party Pi checks whether the values f
(l)
i (1), . . . , f (l)

i (n)
and g

(l)
i (1), . . . , g(l)

i (n) are t-consistent. If the values are not t-consistent, for
some l ∈ {1, . . . , �} then Pi reveals ICSig(D, Pi, f

(1)
i (j), f (2)

i (j), . . . , f (�)
i (j)) and

ICSig(D,Pi, g
(1)
i (j), g(2)

i (j), . . . , g(�)
i (j)), for all j ∈ {1, . . . , n}. If the signatures pro-

duced by Pi are valid and for some l ∈ {1, . . . , �}, either f
(l)
i (1), . . . , f (l)

i (n) or
g
(l)
i (1), . . . , g(l)

i (n) is not t-consistent, then everybody concludes that D is corrupted
and the protocol terminates without generating desired output.

3. For every pair of parties (Pi, Pj) in P , the following is executed:

(a) Pi acting as a dealer and considering Pj as INT , hands over
ICSig(Pi, Pj , f

(1)
i (j), . . . , f (�)

i (j)) to Pj . Upon receiving the signature, Pj

checks whether f
(l)
i (j) ?= g

(l)
j (i) for l = 1, . . . , �. If there is an inconsistency then Pj

raises a complaint by revealing ICSig(D, Pj , g
(1)
j (i), g(2)

j (i), . . . , g(�)
j (i)) as INT .

(b) If Pj has raised a complaint but fails to produce
ICSig(D,Pj , g

(1)
j (i), g(2)

j (i), . . . , g(�)
j (i)) as an INT in the previous step, then

all the parties in P conclude that Pj is corrupted and ignore the IC signatures
received from Pj as a dealer in the previous step. Otherwise, if Pj is able to
produce ICSig(D,Pj , g

(1)
j (i), g(2)

j (i), . . . , g(�)
j (i)), then g

(1)
j (i), g(2)

j (i), . . . , g(�)
j (i)

become public. Using the public values Pi checks whether f
(l)
i (j) ?= g

(l)
j (i) for

l = 1, . . . , �. If Pi finds any inconsistency, then Pi raises a complaint and reveals
ICSig(D,Pi, f

(1)
i (j), f (2)

i (j), . . . , f (�)
i (j)) as an INT .

(c) If Pi has raised a complaint but fails to correctly produce
ICSig(D,Pi, f

(1)
i (j), f (2)

i (j), . . . , f (�)
i (j)) as an INT in previous step, then

all the parties from P conclude that Pi is corrupted and ignore the IC
signatures received from Pi as a dealer in step 3(a). Else if Pi is able to
correctly produce ICSig(D,Pi, f

(1)
i (j), f (2)

i (j), . . . , f (�)
i (j)), then the values

f
(1)
i (j), f (2)

i (j), . . . , f (�)
i (j) become public. Every party then verifies f

(l)
i (j) ?= g

(l)
j (i)

for l = 1, . . . , �. If f
(l)
i (j) 	= g

(l)
j (i) for some l ∈ {1, . . . , �} then everybody concludes

that D is corrupted and the protocol terminates without generating any output.
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Notation 2. We now define few notations which will be used heavily in the subse-
quent sections (these notations are also commonly used in the literature). By saying
that the parties in P compute (locally) ([y(1)]t, . . . , [y(�′)]t) = ϕ([x(1)]t, . . . , [x(�)]t)
(for any function ϕ : F� → F�′), we mean that each Pi computes (y(1)

i , . . . , y
(�′)
i ) =

ϕ(x(1)
i , . . . , x

(�)
i ), where xl(i) and yl(i) denotes the ith share of xl and yl respectively.

Note that applying an affine (linear) function ϕ to a number of t-1D-sharings, we
get t-1D-sharings of the outputs. So by adding two t-1D-sharings of secrets, we get
t-1D-sharing of the sumof the secrets, i.e. [a]t +[b]t = [a+b]t.However, bymultiply-
ing two t-1D-sharings of secrets, we get 2t-1D-sharing of the product of the secrets,
i.e. [a]t[b]t = [ab]2t.

Since protocol 2D(+,�)Share is one of the important sub-protocols, which is going
to be used in our multiplication protocol, we now briefly summarize the outcome
of protocol 2D(+,�)Share. For proof, see [16].

Remark 2 (Outcome of Protocol 2D(+,�)Share [16]). In protocol 2D(+,�)Share
if D is not detected to be corrupted and S = {s(1), . . . , s(�)} is t-2D(+,�)-
shared, then it implies the following with very high probability: none of the
honest parties will be detected as corrupted. There exists bi-variate polynomi-
als H1(x, y), . . . , H�(x, y) of degree t in both x and y, such that H l(0, 0) =
s(l), f l

i (x) = H l(x, i) and gl
i(y) = H l(i, y) for l = 1, . . . , �, where each hon-

est Pi will hold the degree-t univariate polynomials f l
i (x) and gl

i(y). Moreover,
f

(l)
i (j) = g

(l)
j (i) for every two honest parties Pi, Pj .

For l = 1, . . . , �, the secret s(l) is t-1D-shared using f l
0(x). Each honest Pi will

hold the ith share s(l)i =gl
i(0)=f l

0(i) and ith share-share s(l)ji =f l
i (j) = gl

j(i) cor-

responding to every other honest Pj ’s share s(l)j . Moreover, each Pi who is not de-
tected to be corrupted will hold the IC signature ICSig(Pj , Pi, f

1
j (i), . . . , f �

j (i)) of
every other party Pj , such that f l

i (j) = gl
j(i), provided that Pj is not detected

to be corrupted during the protocol. Furthermore, each honest Pi will also have
ICSig(D,Pi, f

1
i (j), . . . , f �

i (j)) and ICSig(D,Pi, g
1
i (j), . . . , g�

i (j)). Thus protocol
2D(+,�)Share generates 〈〈s(1), . . . , s(�)〉〉Dt as well as 〈s(1)i , . . . , s

(�)
i 〉Dt , correspond-

ing to each partyPi who is not detected to be corrupted. Moreover, it also generate
〈s(1)j , . . . , s

(�)
j 〉Pj

t , corresponding to every party Pj , who is not detected to be cor-
rupted.

Also note that given 〈〈a(1), . . . , a(�)〉〉t and 〈〈b(1), . . . , b(�)〉〉t, which are gen-
erated by two separate instances of protocol 2D(+,�)Share, the parties in P
can compute 〈〈c(1), . . . , c(�)〉〉t without any interaction, where for l = 1, . . . , �,
c(l) = F(a(l), b(l)) and F denotes any linear function. This follows from the
previous notation and linearity of protocol Multi-Receiver-ICP. �

3.3 Public Reconstruction of t-2D(+,�)-sharing of � Values

Let s(1), . . . , s(�) be �values,whichare t-2D(+,�)-sharedusingprotocol2D(+,�)Share.
We now present protocol Recon-t-2D(+,�)-sharing, which publicly reconstruct
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s(1), . . . , s(�). Before reading the protocol, we request the reader to recall the out-
come of protocol 2D(+,�)Share, as given in Remark 2.

Lemma 4. Recon-t-2D(+,�)-sharing correctly recovers each s(l), except with prob-
ability 2−Ω(κ). The protocol takes two rounds and broadcasts O((�n2 +n3)κ) bits.

Proof: From properties of 2D(+,�)Share given in Remark 2, each Pi ∈ CORE
is holding ICSig(Pj, Pi, f

1
j (i), . . . , f �

j (i)) corresponding to every Pj ∈ CORE.
Moreover, each f l

j(i) will lie on a unique degree-t polynomial gl
i(y). In the worst

case, there can be n parties in CORE and hence there will be n2 revelation of
IC signatures. The rest follows from the properties of the ICP. �

(s(1), . . . , s(�)) = Recon-t-2D(+,�)-sharing(P , 〈〈s(1), . . . , s(�)〉〉t)
Let CORE denote the set of parties which were not detected to be corrupted during
the generation of 〈〈s(1), . . . , s(�)〉〉t (see the description of 2D(+,�)Share). Only the
parties in CORE are allowed to participate.

1. Each Pi ∈ CORE reveals ICSig(Pj , Pi, f
1
j (i), . . . , f �

j (i)), corresponding to each
Pj ∈ CORE (see Remark 2 for the description of f l

j(i)).
2. Each party does the following local computation:

(a) Let REC denote the set of all parties from CORE, who have successfully
revealed all the signatures during previous step.

(b) For each Pi ∈ REC, check whether the f l
j(i)’s for l = 1, . . . , �, produced by

Pi during step 1 corresponding to Pj ’s in CORE are t-consistent. If not, then
remove Pi from REC.

(c) Corresponding to Pi ∈ REC, let gl
i(y) be the degree-t polynomial passing

through t-consistent f l
j(i)’s, for l = 1, . . . , �.

(d) Interpolate H l(x, y) of degree t in x and y by using gl
i(y)’s corresponding to

Pi’s in REC for l = 1, . . . , � and output s(l) = H l(0, 0).

3.4 Public Reconstruction of t-1D(+,�)-sharing of � Values

Let s(1), . . . , s(�) be � be t-1D(+,�)-shared by D ∈ P ; i.e., 〈s(1), . . . , s(�)〉Dt . We
present a protocol called Recon-t-1D(+,�)-sharing that tries to reconstruct s(1), . . . ,
s(�). The protocol has the following features: (a) If D is honest then with very
high probability, the protocol will succeed to publicly reconstruct s(1), . . . , s(�);
(b) If the protocol fails to reconstruct the secrets then with very high probability
D is corrupted, which every honest party will come to know.

(s(1), . . . , s(�)) = Recon-t-1D(+,�)-sharing(P , 〈s(1), . . . , s(�)〉Dt )

1. Given 〈s(1), . . . , s(�)〉Dt , party Pi holds ICSig(D, Pi, (s
(1)
i , . . . , s

(�)
i )), where s

(l)
i de-

notes ith share of s(l).
2. Each party Pi reveals ICSig(D, Pi, (s

(1)
i , . . . , s

(�)
i )).

3. Each party Pj either reconstruct s(l) or decide that D is corrupted as follows:
(a) For l = 1, . . . , �, consider s

(l)
i values corresponding to all Pi’s, who are suc-

cessful in producing the IC signature in step 2 and check whether they define
a unique degree-t polynomial. If yes then the constant term of the degree-t
polynomial is taken as s(l). Otherwise, D is decided to be corrupted.
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Lemma 5. In protocol Recon-t-1D(+,�)-sharing if D is honest, then with very
high probability the secrets (s(1), . . . , s(�)) will be reconstructed correctly. If the
protocol fails to reconstruct the secrets then with very high probability, D is cor-
rupted. The protocol takes two rounds and broadcasts O((�n+ n2)κ) bits.

Proof: Communication and round complexity is easy to analyze. If D is honest,
then by property of IC signature, every Pi that succeeded to reveal ICSig(D,Pi,

(s(1)i , . . . , s
(�)
i )) has disclose correct (s(1)i , . . . , s

(�)
i ) with high probability. Hence

the s(l)i values will lie on degree-t polynomial and thus the secrets will be recon-
structed correctly with high probability.

If the secrets are not reconstructed then there is some l, such that s(l)i values
do not lie on a degree-t polynomial. This is possible if D is corrupted and some

corrupted party Pi forged corruptedD’s IC signature on (s(1)i , . . . , s
(�)
i ) such that

s
(l)
i �= s

(l)
i for some l. �

3.5 Generating Random t-2D(+,�)-sharing

The authors of [16] have presented a protocol called Random which allows the
parties in P to jointly generate a random t-2D(+,�)-sharing 〈〈r(1), . . . , r(�)〉〉t,
about which At will have no information. The protocol is as follows:

〈〈r(1), . . . , r(�)〉〉t = Random(P , t)

Each Pi ∈ P acts as a dealer and invokes 2D(+,�)Share(Pi,P , t, r(1,Pi), . . . , r(�,Pi))
to generate 〈〈r(1,Pi), . . . , r(�,Pi)〉〉Pi

t , where r(1,Pi), . . . , r(�,Pi) are randomly se-
lected from F. Let Pass denote the set of parties Pi in P such that t-
2D(+,�)Share(Pi,P , t, r(1,Pi), . . . , r(�,Pi)) is executed successfully. Now all the parties
in P jointly compute 〈〈r(1), . . . , r(�)〉〉t =

∑
Pi∈Pass〈〈r(1,Pi), . . . , r(�,Pi)〉〉Pi

t . Hence
r(l) =

∑
Pi∈Pass r(l,Pi), for l = 1, . . . , �.

Lemma 6 ([16]). With overwhelming probability, Random generates random
〈〈r(1), . . . , r(�)〉〉t in ten rounds, such that At has no information about any r(l).
The protocol privately communicates and broadcasts O((�n3 + n4)κ) bits.

3.6 Proving c = ab

Let D ∈ P has already t-1D(+,�)-shared a(1), . . . , a(�) and b(1), . . . , b(�) among the
parties in P . Now D wants to t-2D(+,�)-share c(1), . . . , c(�) without leaking any
additional information about a(l), b(l) and c(l), such that every (honest) party
knows that c(l) = a(l)b(l) for l = 1, . . . , �. The authors of [16] have proposed a
protocol called ProveCeqAB for this task. Due to space constraints we do not give
the formal details of protocol ProveCeqAB and state only the following lemma.
For complete details see [16].

Lemma 7 ([16]). In ProveCeqAB, if D does not fail, then with overwhelming
probability, every (a(l), b(l)), c(l) satisfies c(l) = a(l)b(l). ProveCeqAB takes twenty
six rounds, privately communicates and broadcasts O((�n2+n4)κ) bits. Moreover,
if D is honest then a(l), b(l) and c(l) are secure from At.
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3.7 Robust Multiplication Protocol: Our Main Contribution

We now finally present our protocol called Mult, which allows the parties to gen-
erate 〈〈a(1), . . . , a(�)〉〉t, 〈〈b(1), . . . , b(�)〉〉t and 〈〈c(1), . . . , c(�)〉〉t, where a(l)’s and
b(l)’s are random and c(l) = a(l)b(l) for l = 1, . . . , �. For simplicity, we first explain
the idea of the protocol to generate 〈〈a〉〉t, 〈〈b〉〉t and 〈〈c〉〉t.

To generate random 〈〈a〉〉t and 〈〈b〉〉t, we invoke two parallel executions of
protocol Random with � = 1. We call these executions as Randoma and Randomb

respectively. Before proceeding further, let us closely look into Randoma and
Randomb. In Randoma, each party Pi would have executed 2D(+,�)Share as a
dealer with � = 1 to generate 〈〈a(Pi)〉〉Pi

t , where a(Pi) is a random element from
F. Similarly, in Randomb, each party Pi would have executed 2D(+,�)Share as a
dealer with � = 1 to generate 〈〈b(Pi)〉〉Pi

t , where b(Pi) is a random element from
F. Let Passa (Passb) denote the set of parties whose instance of 2D(+,�)Share
as a dealer is successful in Randoma (Randoma). For the ease of presentation,
let Passa and Passb contain all the n parties. Thus everyone has computed
〈〈a〉〉t =

∑n
i=1〈〈a(Pi)〉〉Pi

t and 〈〈b〉〉t =
∑n

i=1〈〈b(Pi)〉〉Pi
t . This implies that each

ai =
∑n

i=1 a
(Pi)
i and bi =

∑n
i=1 b

(Pi)
i . Here ai and bi are the ith shares of a and b

respectively. Moreover, the parties hold 〈a(Pj)
i 〉Pj

t and 〈b(Pj)
i 〉Pj

t , for i, j = 1, . . . , n.
Furthermore, the parties hold 〈ai〉Pi

t and 〈ai〉Pi
t for i = 1, . . . , n.

Now to generate 〈〈c〉〉t, we use the following idea from [8]: every party Pi

computes aibi and generates 〈〈aibi〉〉Pi
t by executing ProveCeqAB. Notice that

at most t corrupted parties may fail to generate 〈〈aibi〉〉Pi
t . Since a1b1, . . . , anbn

are n points on a 2t degree polynomial, say C(x), whose constant term is c,
by Lagrange interpolation formula [7], c can be computed as c =

∑n
i=1 ri(aibi)

where ri =
∏n

j=1,j �=i
−j
i−j . The vector (r1, . . . , rn) is called recombination vector

[7] which is public and known to every party. So for shorthand notation, we write
c = Lagrange(a1b1, . . . , anbn) =

∑n
i=1 ri(aibi). Now all parties can compute

〈〈c〉〉t = Lagrange(〈〈a1b1〉〉P1
t , . . . , 〈〈anbn〉〉Pn

t ) =
∑n

i=1 ri〈〈aibi〉〉Pi
t , to obtain

the desired output. Notice that since C(x) is of degree 2t, we need all the n =
2t + 1 Pi’s to successfully generate 〈〈aibi〉〉Pi

t (a 2t degree polynomial requires
2t+ 1 points on it to be interpolated correctly) in order to successfully generate
〈〈c〉〉t using the above mechanism. Even if a single corrupted party Pi fails to
generate 〈〈aibi〉〉Pi

t , protocol Mult fails to work. In [16], the multiplication protocol
was non-robust for this reason. To make Mult robust, we reconstruct ai and bi
publicly when Pi fails to generate 〈〈aibi〉〉Pi

t in ProveCeqAB. All the parties then
assume default 〈〈aibi〉〉Pi

t and proceeds with the above mentioned computation.
So assume that a corrupted party Pi fails to generate 〈〈aibi〉〉Pi

t in ProveCe-
qAB. We then try to publicly reconstruct ai and bi as follows: as explained earlier,
ai =

∑n
j=1 a

(Pj)
i and bi =

∑n
j=1 b

(Pj)
i . Moreover, the parties hold 〈a(Pj)

i 〉Pj

t and

〈b(Pj)
i 〉Pj

t . So we first try to publicly reconstruct aPj

i and b
Pj

i corresponding to
every Pj , using 〈a(Pj)

i 〉Pj

t and 〈b(Pj)
i 〉Pj

t . For this, we use protocol Recon-t-1D(+,�)-
sharing. From the properties of protocol Recon-t-1D(+,�)-sharing, corresponding
to every honest Pj , the values aPj

i and bPj

i will be reconstructed correctly. How-
ever, corresponding to a corrupted Pj , the protocol may not
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output aPj

i and bPj

i , in which case, everybody will come to know that Pj is cor-
rupted. Like this, there can be at most t corrupted Pj ’s, corresponding to which
the protocol Recon-t-1D(+,�)-sharing may fail to output aPj

i and/or bPj

i . Let C
be the set of such corrupted parties. Now corresponding to the parties in C,
everyone computes 〈〈

∑
Pj∈C a

(Pj)〉〉t, 〈〈
∑

Pj∈C b
(Pj)〉〉t and use protocol Recon-

t-2D(+,�)-sharing to publicly reconstruct
∑

Pj∈C a
(Pj) and

∑
Pj∈C b

(Pj). Once∑
Pj∈C a

(Pj) and
∑

Pj∈C b
(Pj) are known, the ith shares of these values, namely∑

Pj∈C a
(Pj)
i and

∑
Pj∈C b

(Pj)
i are also publicly known. Now everyone computes

ai =
∑

Pj∈P\C a
(Pj)
i +

∑
Pj∈C a

(Pj)
i and bi =

∑
Pj∈P\C b

(Pj)
i +

∑
Pj∈C b

(Pj)
i . Our

protocol Mult follows the above ideas for � pairs concurrently.

〈〈a(1), . . . , a(�)〉〉t, 〈〈b(1), . . . , b(�)〉〉t, 〈〈c(1), . . . , c(�)〉〉t = Mult(P)

1. Invoke Random(P , t) twice in parallel to generate 〈〈a(1), . . . , a(�)〉〉t and
〈〈b(1), . . . , b(�)〉〉t. Let in these two executions of Random, Pi try to generate
〈〈a(1,Pi), . . . , a(�,Pi)〉〉Pi

t and 〈〈b(1,Pi), . . . , a(�,Pi)〉〉Pi
t respectively. Moreover, with-

out loss of generality, let all Pi’s are successfully able to to do so. This implies
that a(l) =

∑n
j=1 a(l,Pj) and b(l) =

∑n
j=1 b(l,Pj), for l = 1, . . . , �. Let a

(l)
i and

b
(l)
i denote the ith share of al and bl respectively. Clearly a

(l)
i =

∑n
j=1 a

(l,Pj)

i and

b
(l)
i =

∑n
j=1 b

(l,Pj)

i , where a
(l,Pj)

i and b
(l,Pj)

i are ith shares of a(l,Pj) and b(l,Pj).

2. Given 〈〈a(1), . . . , a(�)〉〉t and 〈〈b(1), . . . , b(�)〉〉t, we have 〈a(1)
i , . . . , a

(�)
i 〉Pi

t

and 〈b(1)
i , . . . , b

(�)
i 〉Pi

t for each Pi ∈ P . So party Pi invokes
ProveCeqAB(Pi,P , t, 〈a(1)

i , . . . , a
(�)
i 〉Pi

t , 〈b(1)
i , . . . , b

(�)
i 〉Pi

t ) to generate
〈〈c(1)

i , . . . , c
(�)
i 〉〉Pi

t .
3. If party Pi fails during his instance of ProveCeqAB, then with high probability, Pi

must be corrupted and hence we reconstruct a
(1)
i , . . . , a

(�)
i and b

(1)
i , . . . , b

(�)
i publicly

by executing the following steps. We describe the steps with respect to a
(1)
i , . . . , a

(�)
i

only. The same should be executed for b
(1)
i , . . . , b

(�)
i .

(a) First, we try to reconstruct a
(1,Pj)

i , . . . , a
(�,Pj)

i corresponding to each Pj ∈ P
from 〈a(1,Pj)

i , . . . , a
(�,Pj)

i 〉Pj
t . Since Pj had generated 〈〈a(1,Pj), . . . , a(�,Pj)〉〉Pj

t in
Random, it implies that parties hold 〈a(1,Pj)

i , . . . , a
(�,Pj)

i 〉Pj
t . So parties execute

Recon-t-1D(+,�)-sharing(P , 〈a(1,Pj)

i , . . . , a
(�,Pj)

i 〉Pj
t ) corresponding to every Pj ∈

P to either publicly reconstruct a
(1,Pj)

i , . . . , a
(�,Pj)

i or detect Pj as corrupted.
(b) If no Pj has been detected as corrupted then everybody get a

(l)
i =

∑n
j=1 a

(l,Pj)

i

for all l = 1, . . . , �. Otherwise let C denotes the set of all Pj ’s which are
detected as corrupted (i.e., all Pj ’s, corresponding to which, Recon-t-1D(+,�)-

sharing(P , �, 〈a(1,Pj)

i , . . . , a
(�,Pj)

i 〉Pj
t ) fails).

(c) The parties execute Recon-t-2D(+,�)-sharing(P , 〈〈∑Pj∈C a(1,Pj), . . . ,∑
Pj∈C a(�,Pj)〉〉t) to publicly reconstruct

∑
Pj∈C a(1,Pj), . . . ,

∑
Pj∈C a(�,Pj).

(d) Finally every party computes a
(l)
i =

∑
Pj∈C a

(l,Pj)

i +
∑

Pi∈P\C a
(l,Pj)

i .

(e) Every party finds c
(l)
i = a

(l)
i b

(l)
i and assumes some default t-2D(+,�)-sharing

〈〈c(1), . . . , c(�)〉〉Pi
t .

4. All the parties compute: 〈〈c(1), . . . , c(�)〉〉t =
∑2t+1

i=1 ri〈〈c(1)
i , . . . , c

(�)
i 〉〉Pi

t , where
(r1, . . . , r2t+1) represents the recombination vector [7].
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Lemma 8. With overwhelming probability, protocol Mult produces 〈〈a(1), . . . ,
a(�)〉〉t, 〈〈b(1), . . . , b(�)〉〉t and 〈〈c(1), . . . , c(�)〉〉t, where a(l)’s and b(l)’s are random
and c(l) = a(l)b(l) for l = 1, . . . , �. Moreover, At will have no information about
a(l), b(l) and c(l) for l = 1, . . . , �. The protocol takes forty rounds, privately com-
municates O((�n3 + n5)κ) bits and broadcasts O((�n3 + n5)κ) bits.

Proof: Round and communication complexity is easy to analyze. The ran-
domness of 〈〈a(1), . . . , a(�)〉〉t and 〈〈b(1), . . . , b(�)〉〉t follows from the properties of
protocol Random. The correctness follows from the protocol steps and the ex-
planation given before the protocol. The secrecy follows from protocol steps and
secrecy of protocol ProveCeqAB. �

4 Our Round Efficient UMPC Protocol
We now present our UMPC protocol. As in [16], our UMPC protocol is also
divided into three phases. We now give the details of each of these phases.

4.1 Preparation Phase

The goal of this phase is to generate correct t-2D+-sharing of (cM + cR) secret
multiplication triples. Due to space constraints, we only present the overall
idea of the protocol for this phase. We first execute our robust protocol Mult
with � = cM + cR to generate 〈〈a(1), . . . , a(cM+cR)〉〉t, 〈〈b(1), . . . , b(cM+cR)〉〉t and
〈〈c(1), . . . , c(cM+cR)〉〉t, where for l = 1, . . . , cM + cR, a(l), b(l) are random and
cl = albl. Now to get 〈〈a(1)〉〉t, . . . , 〈〈a(cM+cR)〉〉t from 〈〈a(1), . . . , a(cM+cR)〉〉t,
we use a protocol called Convert presented in [16]. Similarly, by using Con-
vert, we get 〈〈b(1)〉〉t, . . . , 〈〈b(cM+cR)〉〉t and 〈〈c(1)〉〉t, . . . , 〈〈c(cM+cR)〉〉t from
〈〈b(1), . . . , b(cM+cR)〉〉t and 〈〈c(1), . . . , c(cM+cR)〉〉t respectively.

Protocol Convert [16]: Given 〈〈s(1), . . . , s(�)〉〉t which is either generated using
protocol 2D(+,�)Share or protocol Random, the authors of [16] have presented a
protocol called Convert2D(+,�)to2D+ which produces the t-2D+-sharing of the
individual � secrets, namely 〈〈s(l)〉〉t for l = 1, . . . , �.

Lemma 9 ([16]). Protocol Convert2D(+,�)to2D+ takes five rounds, privately
communicates O((�n3 + n4)κ) bits and broadcasts O((�n3 + n4)κ) bits. Given
〈〈s(1), . . . , s(�)〉〉t, the protocol correctly produces 〈〈s(l)〉〉t for l = 1, . . . , � with
very high probability.

Lemma 10. With overwhelming probability, protocol Preparation Phase produces
correct t-2D+-sharing of (cM + cR) secret multiplication triples in forty five
rounds, privately communicates O((cM+cR)n3+n5)κ bits and broadcasts O((cM+
cR)n3 + n5)κ bits.

Remark 3 (Comparison with the Preparation Phase of [16]). The Preparation
Phase of [16] has the same communication complexity as ours (see Lemma
11, page 196 of [16]). However, the Preparation Phase of [16] takes Θ(log t)
rounds, where as our Preparation Phase takes Θ(1) rounds. It is this reduction
in the number of rounds, which finally contributes to the reduction in the number
of rounds in our final UMPC protocol, in comparison to the UMPC of [16].
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4.2 Input and Computation Phase

Once the Preparation Phase is over, the Input and Computation Phase
are same as in [16]. Due to this similarity, we only recall the high level idea of
these phases. For complete details see [16].

The goal of the Input Phase is to generate t-2D+-sharing of the inputs (to
the circuit representing function f) of each party. Assume that Pi ∈ P has ci
inputs. So total number of input gates cI =

∑n
i=1 ci. We stress that though some

parties might have been detected to be corrupted during Preparation Phase,
we still allow them to feed their input. In Input Phase, each Pi on having input
s(i,1), s(i,2), . . . , s(i,ci), acts as a dealer and executes an instance of 2D(+,�)Share
with � = ci to generate 〈〈s(i,1), . . . , s(i,ci)〉〉t. If Pi is corrupted and fails in his
instance of 2D(+,�)Share, then everybody accepts a default t-2D(+,ci) sharing
on behalf of Pi. After this, protocol Convert2D(+,ci)to2D+ is called to generate
〈〈s(i,l)〉〉t, for l = 1, . . . , ci from 〈〈s(i,1), . . . , s(i,ci)〉〉t.

Lemma 11. With overwhelming probability, the protocol for Input Phase pro-
duces correct t-2D+-sharing of cI inputs in fifteen rounds by privately commu-
nicating O((cIn3 + n5)κ) bits and broadcasting O((cIn3 + n5)κ) bits. Moreover,
At gets no information about the inputs of the honest parties.

Once Preparation Phase and Input Phase are over, the computation of the
circuit (of the agreed upon function f) proceeds gate-by-gate. First, to every
random and every multiplication gate, a prepared t-2D+-shared random mul-
tiplication triple (generated during Preparation Phase) is assigned. A gate
(except output gate) g is said to be computed if a t-2D+-sharing 〈〈xg〉〉t is com-
puted for the gate. Note that all the random and input gates will be computed
as soon as we assign t-2D+-shared random triples (generated in Preparation
Phase) and t-2D+-shared inputs (generated in Input Phase) to them respec-
tively. A gate is said to be in ready state, when all its input gates have been com-
puted. In the Computation Phase, the circuit evaluation proceeds in rounds
wherein each round all the ready gates will be computed parallely. Evaluation
of input and random gates do not require any communication. Due to linearity
of t-2D+-sharing, linear gates can be computed without any communication.

For evaluating a multiplication gate, we use Beaver’s Circuit Randomization
technique [1]. Let x and y be input of a multiplication gate, such that parties
hold 〈〈x〉〉t and 〈〈y〉〉t. Moreover, let (〈〈a〉〉t, 〈〈b〉〉t, 〈〈c〉〉t) be the multiplication
triple (generated during Preparation Phase), which is associated with the
multiplication gate. Now the parties want to generate 〈〈z〉〉t, where z = xy.
Moreover, if x and y are unknown to At, then x, y and z should be still unknown
to At. This can be done using Beaver’s Circuit Randomization technique as
follows: notice that xy = {(x − a) + a}{(y − b) + b}. Let α = (x − a) and
β = (y−b). The parties compute 〈〈α〉〉t and 〈〈β〉〉t. Then the parties reconstruct
α and β. For this the parties execute protocol 2D+Recons 2. Once α and β are
2 Given 〈〈s〉〉t, the authors in [16] have presented protocol 2D+Recons, which allows

each party to privately reconstruct s with very high probability. The protocol takes
takes one round and privately communicates O(n3κ) bits.
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known to every body, the parties compute 〈〈z〉〉t = αβ+α〈〈b〉〉t +β〈〈a〉〉t+〈〈c〉〉t.
The secrecy of x, y and z follows from the fact a, b are completely random and
unknown to At [1]. As soon as an output gate becomes ready, the input to the
output gate is reconstructed by every party by executing protocol 2D+Recons.
It is easy to see that protocol takes O(D) rounds of communication, where D is
multiplicative depth of the circuit.

Lemma 12 ([16]). Given t-2D+-sharing of (cM + cR) secret multiplication
triples, the protocol for Computation Phase correctly evaluates the circuit
gate-by-gate in a shared fashion and outputs the desired outputs with overwhelm-
ing probability. The protocol takes O(D) rounds and privately communicates
O((cM + cO)n3κ) bits, where D is the multiplication depth of the circuit.

4.3 Our Final UMPC Protocol

Now our new UMPC protocol for evaluating function f is: (1). Invoke Prepa-
ration Phase (2). Invoke Input Phase (3). Invoke Computation Phase.
Theorem 1. With overwhelming probability, our new UMPC protocol can eval-
uate an agreed upon function securely against an active adaptive rushing ad-
versary At with t < n/2 and requires O(D) rounds, privately communicates
O((cI + cR + cM + cO)n3κ) bits and broadcasts O(((cI + cM + cR)n3 +n5)κ) bits.

5 Unconditionally Secure Multiparty Set Intersection

We now show how to use the ideas presented in our UMPC protocol to de-
sign an unconditionally secure multiparty set intersection (MPSI) protocol with
n = 2t + 1. In MPSI problem, each party Pi has a private data set Si =
{e(1)i , e

(2)
i , . . . , e

(m)
i }, containingm field elements. The goal is to design a protocol

that can compute the intersection of these n sets, satisfying the following prop-
erties: (1) Correctness: At the end of the protocol, each honest party correctly
gets the intersection of n sets, irrespective of the behavior of At; (2) Secrecy:
The protocol should not leak any extra information to At, other than what is
implied by the input of the corrupted parties (i.e., the data-sets possessed by
corrupted parties) and the final output (i.e., the intersection of n data-sets).

Existing Literature on MPSI: The MPSI problem was first studied in cryp-
tographic model in [9,14], under the assumption that At has bounded comput-
ing power. By representing the data-sets as polynomials, the set intersection
problem is converted into the task of computing the common roots of n poly-
nomials in [9,14] as follows: Let S = {s1, s2, . . . , sm} be a set of size m, where
∀i, si ∈ F. Now set S can be represented by a polynomial f(x) of degree m,
where f(x) =

∏m
i=1(x − si) = a0 + a1x + . . . + amx

m. It is obvious that if an
element s is a root of f(x), then s is a root of r(x)f(x) too, where r(x) is a
random polynomial of degree-m over F. Now for MPSI, party Pi represents his
set Si, by a degree-m polynomial f (Pi)(x) and supplies its m+ 1 coefficients as
his input, in a secure manner. Then all the parties jointly and securely compute

F (x) = (r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . .+ r(n)(x)f (Pn)(x)) (1)
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where r(1)(x), . . . r(n)(x) are n secret random polynomials of degree-m over F,
jointly generated by the n parties. Note that F (x) preserves all the common
roots of f (P1)(x), . . . , f (Pn)(x). Every element s ∈ (S1∩S2∩ . . .∩Sn) is a root of
F (x), i.e. F (s) = 0. Hence after computing F (x) in a secure manner, it can be
reconstructed by every party, who locally checks if F (s) = 0 for every s in his
private set. All s’s at which the evaluation of F (x) is zero forms the intersection
set (S1 ∩ S2 ∩ . . . ∩ Sn). In [14], it has been proved formally that F (x) does not
reveal any extra information to the adversary, other than what is deduced from
(S1 ∩ S2 ∩ . . . ∩ Sn) and input set Si of the corrupted parties.

Remark 4 ([17]). Even though every s ∈ (S1∩S2∩. . .∩Sn) is a root of F (x), there
may exist some s′ ∈ F, such that F (s′) = 0, even though s′ �∈ (S1∩S2∩ . . .∩Sn).
This is possible if s′ happens to be the common root of all r(i)(x)’s. However, as
stated in [14], the probability of this event is negligible.

In [15], the authors presented the first information theoretically secure protocol
for MPSI, assuming At to be computationally unbounded and n ≥ 3t+1. Specif-
ically, the authors have shown how to securely compute F (x) in the presence of
a computationally unbounded At. Notice that, although not explicitly stated in
[15], the MPSI protocol of [15] involves a negligible error probability in Correct-
ness. This is due to the argument given in Remark 4. Hence, the MPSI protocol
of [15] is not perfectly secure. Thus the MPSI protocol of [15] is unconditionally
secure, having a negligible error probability in Correctness. From here onwards,
we call unconditionally secure multiparty set intersection as UMPSI.

Recently in [17], Patra et.al have shown that the round complexity and com-
munication complexity of the UMPSI protocol of [15] is much more than what
is claimed in [15]. Specifically, in [17], it is shown that in the presence of a
physical broadcast channel in the system (in addition to point to point se-
cure channels between every two parties), the UMPSI protocol of [15] takes
Ω(n) rounds, privately communicates Ω(n5m) field elements and broadcast
Ω(n5m) field elements. In addition, Patra et.al [17] have given a new UMPSI
protocol with n = 3t + 1, which takes Θ(1) rounds, privately communicates
O((m2n3 +n4log(|F|)) field elements and broadcasts O((m2n3 +n4log(|F|)) field
elements. In our context, |F| = 2κ. Thus, the UMPSI protocol of [17] privately
communicates and broadcasts O((m2n3 + n4κ)κ) bits, having a negligible error
probability in correctness. To the best of our knowledge, the UMPSI protocol of
[17] is the best known UMPSI protocol.

Our Results: Notice that the UMPSI protocol of [15] as well as [17] are un-
conditional and designed with n = 3t+ 1 and thus have non-optimal resilience.
In fact, in [15] and [17], the authors have left it as an open problem to design
an UMPSI protocol with optimal resilience; i.e., with n = 2t+ 1. In this article,
we make a positive step towards solving this problem. Specifically, we design
a new UMPSI protocol with n = 2t + 1. To design our UMPSI protocol, we
use several ideas from our proposed UMPC protocol, specifically the new robust
multiplication protocol Mult. Our UMPSI protocol takes Θ(1) rounds, privately
communicates O(m2n4κ) bits and broadcasts O((m2n4 + n5)κ) bits. So even
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though the communication complexity of our UMPSI protocol is slightly larger
than that of [17], it significantly improves the resilience of the UMPSI of [17].

As in [15,17], our UMPSI protocol tries to securely evaluate the function given
in (1) and is divided into following three phases:

1. Preparation Phase: Let for i = 1, . . . , n polynomial r(i)(x) be expressed as
r(i)(x) = b(0,i)+b(1,i)x+ . . .+b(m,i)xm. Each of the random coefficients of r(i)(x)
polynomials can be interpreted as a random gate. So there are cR = n(m + 1)
random gates (n polynomials r(1), . . . , r(n) have in total n(m + 1) random co-
efficients). Also there are cM = n(m + 1)2 multiplication gates (computing
r(i)(x)f (Pi)(x) requires (m + 1)2 co-efficient multiplications). So in preparation
phase we will generate t-2D+-sharing of cR + cM = n(m+ 1) + n(m+ 1)2 ran-
dom multiplication triples following the protocol for Preparation Phase of
our UMPC protocol. Now consider the first cR triples generated in Prepara-
tion Phase. The first component of these triples can be directly interpreted as
〈〈b(0,i)〉〉t, . . . , 〈〈b(m,i)〉〉t for i = 1, . . . , n.

Theorem 2. Withoverwhelmingprobability, theprotocol forPreparationPhase
produces correct t-2D+-sharing of n(m+1)+n(m+1)2 secretmultiplication triples
in forty five rounds, privately communicates O((n4m2 + n5)κ) bits and broadcasts
O((n4m2 + n5)κ) bits.
2. Input Phase: Once Preparation Phase is over, the parties execute Input

Phase. Here every Pi ∈ P represents his set Si = {e(1)i , e
(2)
i , . . . , e

(m)
i } by poly-

nomial f (Pi)(x) = (x− e
(1)
i ) . . . (x− e

(m)
i ) = a(0,Pi) + a(1,Pi)x+ . . .+ a(m,Pi)xm.

Since a(m,Pi) = 1 always, every party in P assumes a predefined t-2D+-sharing
of 1, namely 〈〈1〉〉t on behalf of a(m,Pi), for i = 1, . . . , n. Now for i = 1, . . . , n
and j = 0, . . . ,m− 1, the parties generate 〈〈a(j,Pi)〉〉t by executing the protocol
for Input Phase of our UMPC protocol, with cI = nm.

Theorem 3. The protocol for Input Phase allows party Pi to generate t-2D+-
sharings of all the coefficients of his polynomial f (Pi)(x) with overwhelming prob-
ability. The protocol takes fifteen rounds, privately communicates O((n4m+n5)κ)
bits and broadcasts O((n4m+n5)κ) bits. Moreover, At gets no information about
the inputs of the honest parties.
3. Computation and Output Phase: After preparation and input phase, the
parties jointly compute the coefficientsof thepolynomialF (x) =

∑n
i=1 r

(i)f (Pi)(x)
in a shared manner. And finally the coefficients of F (x) are reconstructed by each
party. In the Output Phase, each party locally evaluates F (x) at each element of
his private set. All the elements at which F (x) = 0 belongs to the intersection of
the n sets with very high probability.

Theorem 4. The protocol for Computation and Output phase takes two rounds
and privately communicates O(n4m2κ) bits.

Proof: Follows from Lemma 12 by substituting cM = O(nm2), cO = O(nm)
and D = 1. �

Now our final UMPSI protocol is: (a) Invoke Preparation Phase; (b) Invoke
Input Phase; and (c) Invoke Computation and Output Phase.
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Theorem 5. MPSI protocol with 2t+1 parties takes sixty four rounds, privately
communicates O(m2n4κ) bits and broadcasts O((m2n4 + n5)κ) bits.
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Non-committing Encryptions Based on Oblivious
Naor-Pinkas Cryptosystems

Huafei Zhu and Feng Bao

I2R, A*STAR, Singapore

Abstract. Designing non-committing encryptions tolerating adaptive adver-
saries, who are able to corrupt parties on the fly in the course of computation
has been a challenge task. In this paper, we make progress in this area. First,
we introduce a new notion called oblivious Naor-Pinkas cryptosystems that
benefits us to extract the randomness used to generate local public keys and thus
enable us to construct corresponding simulator for a given adaptive adversary
in a real-world protocol. We then give a simple construction of non-committing
encryptions based on oblivious Naor-Pinkas cryptosystems. We show that the
proposed non-committing encryption scheme is provably secure against an
adaptive PPT adversary assuming that the decisional Diffie-Hellman problem is
hard.

Keywords: adaptive security, non-committing encryption, oblivious Naor-Pinkas
cryptosystem, Naor-Pinkas randomizer.

1 Introduction

Designing protocols securely computing any function dates back to the papers by Yao
[18] and Goldreich, Micali and Wigderson [11]. Goldreich, Micali and Wigderson [12]
have shown how to securely compute any function in the computational setting. Ben-
Or, Goldwasser and Wigderson [3] and independently Chaum, Crépeau and Damgård
[6] have shown how to securely compute any function in the secure channel setting.
These constructions are secure in the presence of non-adaptive adversaries. In contrary
to folklore believes, problems are encountered when attempting to prove security in
the adaptive adversary setting. Consider the scenario where an honest sender S sends
a ciphertext c to a receiver R in an insecure channel. All communications are seen by
an adaptive adversary. As long as the adversary A obtains c, it corrupts the sender S.
By the security definition, a simulator S has to generate a dummy ciphertext and sends
it to the uncorruptedR since it has no prior knowledge about the sender’s input. When
the adversary corrupts the simulated sender S, it expects to see all of S’s internal data
including the random bits used for the encryption. Thus, it may be the case that the
dummy ciphertext c was generated as an encryption of m0, and the simulated sender
S now needs to convince the adversary that the ciphertext c is in fact an encryption of
m1. This task is impossible if standard public-key encryption schemes are used since a
classic public-key encryption is a committed encryption in essence.

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 418–429, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 The State-of-the-Art

At STOC’96, Canetti, Feige, Goldreich and Naor [4] introduced a new cryptographic
primitive called non-committing encryptions to deal with adaptive adversary in the con-
text of multi-party computation. A non-committing encryption scheme is a two-party
function f(m,⊥) =(⊥,m) for communicating a message m over an insecure channel.
Nielsen [17] has shown that no non-interactive communication protocol can be adap-
tively secure in the asynchronous model.

The research on non-committing encryption problem date back to the paper by
Beaver and Haber [2]. Beaver and Haber’s protocol depends on the use of erasure.
Canetti et al [4] proposed the first non-committing encryption protocol in the non-
erasure model. To encrypt 1 bit,Θ(k2) public key bits are communicated. Later, Beaver
[1] and Damgård and Nielsen [7] proposed more efficient constructions such that for
communicating 1 bit only Θ(k)-bit are communicated. We stress that all mentioned
non-committing encryption schemes are formalized and analyzed in the stand-alone
framework.

1.2 This Work

This paper constructs non-committing encryptions from oblivious Naor-Pinkas cryp-
tosystems in the computational setting where all communications among parties are
seen by adversaries. An oblivious Naor-Pinkas cryptosystem, as its name indicates,
is in turn constructed from an instance of Naor and Pinkas randomizer. We will give
a simple construction of non-committing encryptions based on oblivious Naor-Pinkas
cryptosystems and show that the proposed non-committing encryption scheme is prov-
ably secure against any PPT adaptive adversary in the computational setting assuming
that the decisional Diffie-Hellman problem is hard.

The idea: The communication channel in our model is insecure and asynchronous. The
adversary adaptively corrupts a party during an execution of a real world protocol. The
idea of our constructions is sketched below (please refer to Section 4.1 for more details):

– Let G be a cyclic group with order q, where p =2q+ 1, p and q are prime numbers.
To communicate a bitm ∈ {0, 1},S first generates a Diffie-Hellman quadruple pkα

and a non-Diffie-Hellman quadruple pk1−α in G independently, where α ∈ {0, 1}
is chosen uniformly at random by the sender S.

– Upon receiving (pk0, pk1), a receiver R chooses a bit β ∈ {0, 1} uniformly at
random and then produces (u0, v0) and (u1, v1), where (uβ, vβ) is computed from
Naor-Pinkas randomizer while (u1−β , v1−β) is chosen randomly from G2.

– Upon receiving (u0, v0) and (u1, v1), S checks the relationship R(uα, vα) using
its secret key skα. If R= 1, S sends Success to R, otherwise sends Unsuccess
to the receiver R. Once a bit γ (=α = β) is communicated successfully, S sends a
ciphertext c (= m⊕ γ) to R and R decrypts c to obtain the message m.

A crucial feature of Naor-Pinkas randomizer is that it can be transferred into an oblivi-
ous cryptosystem immediately. The resulting oblivious Naor-Pinkas cryptosystem ben-
efits us to extract randomness that is used to generate Diffie-Hellman quadruples and
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thus enables us to construct corresponding simulator for a given adaptive adversary in
the real world non-committing encryption protocol.

What’s new? The novelty of our implementation relies on the Naor-Pinkas randomizer
rather than oblivious public-key encryptions. The application of Naor-Pinkas random-
izer enables us to define a global key generator and local key generator in a separate
way. The global key of an oblivious Naor-Pinkas cryptosystem will be used by all par-
ties involved in the real-world protocol execution. The local public keys are oblivious.
Thus, to simulate an adaptive adversary’s behavior, we need only to extract randomness
used to generate local key pkα or local key pk1−α without predetermination of α (hence
the proposed scheme is secure against an adaptive adversary). The separation of a global
public key and a local key generation algorithm of oblivious Naor-Pinkas cryptosystem
benefits us for efficient randomness extraction. This is the most significant feature of
our implementation differing from the state-of-the-art solutions.

We remark that the randomness used to generate global public-key (say, a large prime
number p for generating Z∗

p and a cyclic groupG ⊆ Zq) must be extracted in the state-
of-the-art constructions for communicating a bit. For example, to extract a randomness
rp for p, Damgård and Nielsen [7] use the following approach: picking p by drawing
random numbers in some interval until a number is tested to primality by some proba-
bilistic test. The rp is set to these bits p, and bits used to test p using the primality. The
extraction of random strings for generating generators of G and random elements in G
is chosen in a natural way.

Our contribution: This paper aims to construct non-committing encryption schemes
securely against any PPT adaptive adversary. The contribution of this paper is two-fold:

– in the first fold, a new notion which we call oblivious Naor-Pinkas cryptosystems
is introduced and formalized. The oblivious Naor-Pinkas cryptosystem captures
the following intuition − we can generate public keys without knowing the cor-
responding secret keys and interpret an non-obliviously generated public-keys as
obliviously generated one, i.e., the randomness used to generate public-key can be
efficiently extracted. The oblivious Naor-Pinkas cryptosystem comprise a global
key generation algorithm and a local key generation algorithm in our model. The
separation of key generation algorithms benefits us to extract randomness in a more
efficient way since we need not to extract the global randomness (it is sufficient for
us to extract randomness used to generate local keys since no encryption algorithm
and decryption algorithm is defined in the oblivious Naor-Pinkas cryptosystem).

– in the second fold, a new implementation of non-committing encryption schemes
is described and analyzed. We show that the proposed scheme is secure against
any PPT adaptive adversary assuming that the classic decisional Diffie-Hellman
problem is hard in G. That is, the simulator S in our proof does not rewind the
real-world adversary A and thus it reaches the universally composable security.

Efficiency: According to the protocol described in Section 4.1, for communicating a bit,
we need to communicate total 12k bits, where 8k is sent by S and 4k byR in a Success
execution and 12k bits are wasted in a Unsuccess execution, where k is a security
parameter. Thus, for communicating 1 bit, the expected 24k bits are communicated. To
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communicate 1 bit by applying the best implementation (say, [7]), the expected 32k bits
are communicated.

Road-map: The rest of this paper is organized as follows: In Section 2, oblivious
Naor-Pinkas cryptosystem is introduced and formalized; The functionality and security
definition for non-committing encryption protocol is presented in Section 3. Our imple-
mentation of non-committing encryption scheme is described and analyzed in Section
4. We conclude our work in Section 5.

2 Oblivious Naor-Pinkas Cryptosystems

Naor-Pinkas randomizer: Let p be a large safe prime number, i.e., p=2q + 1, p and q
are prime numbers and G ⊆ Z∗

p be a cyclic group of order q. For any 0 �= x ∈ Zq, we
define DLogG(x) ={(g, gx) : g ∈ G}. On input (g1, h1) ∈ DLogG(x1), and (g2, h2) ∈
DLogG(x2), a mapping φ which we call Naor-Pinkas randomizer is defined below:

φ((g1, g2, h1, h2) × (s, t)) = (gs
1g

t
2 mod p, hs

1h
t
2 mod p), where s, t ∈ Zq

Denote u= gs
1g

t
2 mod p and v =hs

1h
t
2 mod p. Naor and Pinkas [14] have shown that

– if x1 = x2 (=x), then (u, v) is uniformly random in DLogG(x);
– if x1 �= x2, then (u, v) is uniformly random in G2.

The Naor-Pinkas randomizer is a useful tool not only in cryptography and but also in
other application scenarios. For example, Peikert, Vaikuntanathan and Waters [15] have
presented a framework for efficient and composable oblivious transfer based on Naor-
Pinkas randomizer. Freedman et. al [9] used the Naor-Pinkas randomizer for construct-
ing keyword search and oblivious pseudo-random functions. Pinkas [16], Lindell and
Pinkas [13] and Freedman [9] have successfully applied the Naor-Pinkas randomizer to
privacy preserving data mining.

Naor-Pinkas encryption scheme: Given an instance of Naor-Pinkas randomizer φ,
an encryption scheme can be derived immediately (such a derived encryption scheme
is called Naor-Pinkas encryption scheme inherently, denoted by Φ). The Naor-Pinkas
encryption scheme, consists of the following PPT algorithms: a global public-key gen-
eration algorithm Kgpk , a local key generation algorithm K (simply abbreviated as a
key generation algorithm throughout the paper), an encryption E and a decryption al-
gorithm D. More precisely,

– global public-key Kgpk: on input a security parameter 1k, (G, p, q) ← Kgpk(1k),
where p =2q + 1, p and q are large prime numbers, and G ⊆ Z∗

p is a cyclic group
of order q; The global public-key gpk is (p, q,G).

– Encryption algorithm E : on input gpk and a message m ∈ G, E invokes a local
key generation algorithm K to generate two random generators g1 and g2 of G,
and two elements h1 and h2 in G such that (g1, h1) ∈ DLogG(x), and (g2, h2) ∈
DLogG(x). The public key pk is ((g1, h1), (g2, h2)), and the secret key sk is x.
Let (u, v) = φ((g1, g2, h1, h2) × (s, t)), where s, t ∈r Zq. The output of encryption
algorithm is a ciphertext (u,mv);
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– Decryption algorithm D: on input a secret key x, gpk, pk and a ciphertext c
=(c0, c1), D outputs m by computing c1/cx0 .

Considering the following two distributions over G ⊆ Z∗
p (p=2q + 1, p, q are prime

numbers and < g > =G is a cyclic group with order q):

– Given a Diffie-Hellman quadruple g, gx, gy and gxy , where x, y ∈ Zq, are strings
chosen uniformly at random;

– Given a random quadruple g, gx, gy and gr, where x, y, r ∈ Zq, are strings chosen
uniformly at random.

An algorithm that solves the decisional Diffie-Hellman problem is a statistical test that
can efficiently distinguish these two distributions. The decisional Diffie-Hellman as-
sumption means that there is no such a polynomial statistical test. This assumption is
believed to be true for many cyclic groups, such as the prime sub-group of the multi-
plicative group of finite fields. As an immediate application of Naor-Pinkas randomizer,
we have the following claim

Lemma 1. The derived Naor-Pinkas encryption scheme is semantically secure assum-
ing that the decisional Diffie-Hellman problem is hard in G.

Oblivious Naor-Pinkas cryptosystem: A simplified cryptosystem can be further de-
rived from Naor-Pinkas encryption scheme. That is, we eliminate the encryption al-
gorithm and decryption algorithm in Φ. Such a derived cryptosystem is called as an
instance of oblivious Naor-Pinkas cryptosystem (see Fig.1 for details). The interesting
feature of oblivious Naor-Pinkas cryptosystem is that it allows us to generate public
keys without knowing the corresponding secret keys and to explain a non-obliviously
generated public-keys as one which is obliviously generated, i.e., the randomness used
to generate public-key can be efficiently extracted.

Oblivious Naor-Pinkas Cryptosysems

Let Kgpk be a global public-key generator. Let K be a local key generation algorithm.

– on input a security parameter 1k, Kgpk outputs a large safe prime number p (p=2q + 1,
q is also a prime number) and a cyclic group G ⊆ Z∗

p of order q. The global key gpk is
(p, q, G).

– on input gpk=(p, q, G), K outputs two random generators g1 and g2 of G, and two elements
h1 and h2 in G such that hi =gx

i mod p (i = 1, 2). The public key pk is ((g1, h1), (g2, h2))
and the secret key sk is x ∈ Zq.

Naor-Pinkas Cryptosysems On input the public key pk (=(g1, h1), (g2, h2)), Naor-Pinkas ran-
domizer φ outputs φ((g1, g2, h1, h2) × (s, t)) =(gs

1g
t
2 mod p, hs

1h
t
2 mod p), where s, t ∈r Zq .

Let u= gs
1g

t
2 mod p and v =hs

1h
t
2 mod p. The ciphertext (u, v) of oblivious Naor-Pinkas Cryp-

tosysem can be viewed as a random ciphertext of the dummy message 1.

Fig. 1. Description of Oblivious Naor-Pinkas Cryptosystem
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Definition 1. Let (Kgpk , K, φ) be an instance of Naor-Pinkas cryptosystem with public-
key generation algorithm Kgpk, key generation algorithm K and randomizer φ. The
Naor-Pinkas cryptosystem is called oblivious if there exists a PPT oblivious key gener-
ator Fk and a PPT oblivious output (or ciphertext) generator Fc such that the following
conditions hold:

– oblivious key generator Fk: Let gpk←Kgpk(1k), (pk, sk) ←K(1k, gpk), and pk′

← Fk(1k, gpk). The random variables pk and pk′ are computationally indistin-
guishable;

– oblivious ciphertext generator Fc: Let gpk ← Kgpk(1k), (pk, sk) ← K(gpk), c1
← φ(gpk, pk) and c2 ← Fc(gpk), the random variables (pk, c1) and (pk, c2) are
computationally indistinguishable;

Lemma 2. The Naor-Pinkas cryptosystem is oblivious assuming that the decisional
Diffie-Hellman problem is hard.

Proof. On input gpk, Fk chooses (g′1, g′2, h′1, h′2) uniformly at random in G4. Let
(g1, g2, h1, h2) be a Diffie-Hellman quadruple generated by the genuine key generator
K (recall that K is a Diffie-Hellman quadruple generator). As a result, assuming that the
decisional Diffie-Hellman problem is hard overG, the random variables (g1, g2, h1, h2)
and (g′1, g

′
2, h

′
1, h

′
2) are computationally indistinguishable.

Let (u, v) be an output (ie., a ciphertext) generated by Naor-Pinkas randomizer φ on
input pk (recall that pk is a Diffie-Hellman quadruple generator overG). Let (u′, v′) be
an element chosen uniformly at random in G2. Let c1 ← (u, v) and c2 ← (u′, v′). As
a result, (pk, c1) and (pk, c2), are computationally indistinguishable assuming that the
decisional Diffie-Hellman problem is hard over G.

We remark that the idea for oblivious public key generation, i.e., generation of public-
key without knowing the secret key, is not new. It seems to date back to De Santis and
Persiano [8] in the context of non-interactive zero-knowledge proof.

3 Non-committing Encryptions: Functionality and Security
Definition

The universally composable framework was proposed by Canetti for defining the se-
curity and composition of protocols [5]. In this framework one first defines an ideal
functionality of a protocol and then proves that a particular implementation of this pro-
tocol operating in a given environment securely realized this functionality. The basic
entities involved are n players, an adversary A and an environment Z . The environ-
ment has access only to the inputs and outputs of the parties of π. It does not have
direct access to the communication among the parties, nor to the inputs and outputs of
the subroutines of π. The task of Z is to distinguish between two executions sketched
below.

In the real world execution, the environment Z is activated first, generating partic-
ular inputs to the other players. Then the protocol π proceeds by having A exchange
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messages with the players and the environment. At the end of the protocol execution,
the environment Z outputs a bit.

In the ideal world, the players are replaced by dummy parties, who do not commu-
nicate with each other. All dummy parties interact with an ideal functionality F . When
a dummy party is activated, it forwards its input to F and receives the output from the
functionality F . In addition, F may receives messages directly from the ideal world
adversary S and may contain instructions to send message to S. At the end of the ideal
world execution, the environment Z outputs a bit.

Let REALπ,A,Z be Z’s output after interacting with adversary A and players run-
ning protocol π; Let IDEALF ,S,Z be Z’s output after interacting with S and F in the
ideal execution. A protocol π securely realizes an ideal functionality F if REALπ,A,Z
and IDEALF ,S,Z are computationally indistinguishable. For further details on the uni-
versally composable framework, please refer to [5].

The notion of non-committing encryption scheme introduced in [4] is a protocol
used to realize secure channel in the presence of an adaptive adversary. In particular,
this means that a simulator can build a fake transcript to the environment Z , in such a
way that the simulator can open this transcript to the actual inputs, that the simulator
receives from the functionality when the parties get corrupted.

Let N be a non-information oracle which is a PPT Turing machine that captures
the information leaked to the adversary in the ideal-world. That is, N is the oracle
which takes (Send, sid, P,m) as input and outputs (Send, sid, P, |m|). Let ChSetup
be a channel setup command which on inputs (ChSetup, sid, S) produces no output
and (Corrupt be a corruption command which takes (Corrupt, sid, P ) produces no
output. The functionality of non-committing encryption secure channels defined below
is due to Garay, Wichs and Zhou [10].

The ideal functionality FN
SC

Channel setup: upon receiving an input (ChSetup, sid, S) from party S, initialize the machine
N and record the tuple (sid,N ). Pass the message (ChSetup, S) to R. In addition, pass this
message to N and forward its output to S;

Message transfer: Upon receiving an input (Send, sid, P, m) from party P , where P ∈
{S, R}, find a tuple (sid,N ), and if none exists, ignore the message. Otherwise, send the
message (Send, sid, P, m) to the other party P ={S, R} \ {P}. In addition, invoke N with
(Send, sid, P, m) and forwards its output (Send, sid, P, |m|) to the adversary S.

Corruption: Upon receiving a message (Corrupt, sid, P ) from the adversary S, send
(Corrupt, sid, P ) to N and forward its output to the adversary. After the first corruption, stop
execution of N and give the adversary S complete control over the functionality.

Definition 2. (due to [10]) We call the functionality FN
SC a non-committing encryption

secure channel. A real-world protocol π which realizes FN
SC is called a non-committing

encryption scheme.
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4 Non-committing Encryptions from Oblivious Naor-Pinkas
Cryptosystems

In this section, we first describe an implementation of non-committing encryptions from
oblivious Naor-Pinkas Cryptosystems. We then prove that the proposed non-committing
scheme is secure against any PPT adaptive adversary in the standard computation com-
plexity model assuming that the classic decisional Diffie-Hellman problem is hard inG.

4.1 Description of Non-committing Protocol

We sketch the idea for implementing non-committing encryptions based on oblivious
Naor-Pinkas cryptosystems. A sender S with a bit m ∈ {0, 1} first generates a Diffie-
Hellman quadruple pkα and a non-Diffie-Hellman quadruple pk1−α independently,
where α ∈ {0, 1} is chosen uniformly at random. Upon receiving (pk0, pk1), a re-
ceiver R chooses a bit β ∈ {0, 1} uniformly at random and then produces (u0, v0) and
(u1, v1), where (uβ, vβ) is computed from Naor-Pinkas randomizer while (u1−β , v1−β)
is chosen randomly from G2. Upon receiving (u0, v0) and (u1, v1), S checks the rela-
tionship R(uα, vα) using its secret key. If R= 1, S sends Success to R, otherwise
sends Unsuccess to the receiver R. Once a bit γ (=α = β) is communicated success-
fully, S sends a ciphertext c (= m ⊕ γ) to R and R decrypts c to obtain m. The details
of the protocol is depicted below:

Step 1: S chooses a bit α ∈ {0, 1} uniformly at random and then performs the fol-
lowing computations (running an instance of Naor-Pinkas oblivious cryptosystems de-
scribed in Section 2):

– on input a security parameter 1k, S runs a global public-key generator Kgpk . Let
(p, q,G) ← Kgpk(1k) and gpk = (p, q,G), where p is a large safe prime number
(i.e., p=2q + 1, q is a prime number) and G is a cyclic group with order q. We
assume that the discrete logarithm problem over G is hard;

– on input gpk, a key generator algorithm K outputs (pkα, skα), where pkα=
(g1, g2, h1, h2), g1 and g2 are two random generators of G, and h1 and h2 are
two elements in G such that (g1, h1) ∈ DLogG(xα), and (g2, h2) ∈ DLogG(xα).
skα =xα ∈ Zq;

– on input a security parameter gpk and α ∈ {0, 1}, an oblivious key generator Fk

outputs (g′1, g
′
2, h

′
1, h

′
2) which is chosen uniformly at random in G4. Let pk1−α =

(g′1, g
′
2, h

′
1, h

′
2);

– S keeps the secret key skα, and sends (pk0, pk1) to R;

Step 2: Upon receiving (pk0, pk1), R chooses a bit β ∈ {0, 1} uniformly at random
and then performs the following computations:

– R chooses a random string rβ = (sβ , tβ) ∈ (Zq)2 and runs Naor-Pinkas randomizer
φ on pkβ ; Let (uβ , vβ) = φ(pkβ , rβ);

– R also chooses (u1−β, v1−β) ∈ G2 uniformly at random;
– R then sends (u0, v0) and (u1, v1) to S.



426 H. Zhu and F. Bao

Step 3: Upon receiving (u0, v0) and (u1, v1), S checks vα
?= uxα

α . If the equation is
valid, then S outputs an index σ =1 and sends σ to R indicating Success of 1-bit
exchange (in case of Success, β =α); Otherwise, S outputs an index σ =0 and sends σ
to R indicating Unsuccess of 1-bit exchange. S then goes back to Step 1 and starts a
new session with R;

Step 4: In case of Success, S sends a ciphertext c of a message m ∈ {0, 1} by
computing c =m⊕ α;

Step 5: Upon receiving a ciphertext c, R obtainsm by computing c⊕ β;

This ends the description of non-committing protocol.

4.2 The Proof of Security

Theorem 1. The non-committing encryption scheme described in Section 4.1 is secure
against any PPT adaptive adversary assuming that the decisional Diffie-Hellman prob-
lem is hard in G.

Proof. There are four cases defined in the following proof, depending on when the real
world adversary A makes its first corruption request:

– Case 1: the real world adversary A makes its first corruption request after a secure
channel has been set up successfully;

– Case 2: the real world adversaryA makes its first corruption request after the sender
S has received R’s first message;

– Case 3: the real world adversary A makes its first corruption request after S has
generated its first message, but before S receivesR’s first message;

– Case 4: the real world adversary A makes its first corruption request before any
messages are generated.

We show that in each case above there exists an ideal-world adversary S such that
no environment Z , on any input, can tell with non-negligible probability whether it is
interacting with A and players running π, or with S and FN

SC in the ideal execution if
the decisional Diffie-Hellman assumption holds.

To simplify the description of a simulator, we omit the explicit description of the
non-information oracle N here and what follows since the non-commitment encryp-
tion scheme described in this paper is a well-structured protocol (informally, a well-
structured protocol requires the message sizes and the number of rounds are completely
determined by the protocol and are independent of the input values or random coins of
the parties. For the details definition of well-structured protocol, please refer to [10]).
We here and what follows, also omit the explicit checks that the simulator has seen the
previous steps of the protocol.

Case 1: the real world adversary A makes its first corruption request after a secure
channel has been set up successfully; The corresponding simulator S is defined below:

– The simulator S runs Kgpk to generate an instance of global public-key gpk, where
gpk =(p, q,G).
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– Let Pi ∈ {S,R} be the first corrupted party. The simulator corrupts the correspond-
ing dummy party P̃i in the ideal world and learns a message m ∈ {0, 1} from the
non-committing encryption functionality. Let γ← c⊕m. Since σ=1, it follows that
α = β = γ, and thus this value is consistent with values c =m⊕α andm =c⊕β. Let
γ denote the common value of α and β. S runs K independently to generate (pkγ ,
skγ) and (pk1−γ , sk1−γ), where pkγ =(g1, g2, h1, h2) and pk1−γ =(g′1, g

′
2, h

′
1, h

′
2)

such that h1 = gxγ

1 , h2 =gxγ

2 and h′1 =g′1
x1−γ , h′2 =g′2

x1−γ , skγ = xγ and sk1−γ =
x1−γ .

– on input Diffie-Hellman quadruples pkγ and pk1−γ , S runs Naor-Pinkas random-
izer as honest parties to generate (uγ , vγ) and (u1−γ , v1−γ).

Given (pk1−γ , (u1−γ , v1−γ)), the task of simulator S now is to convince the adver-
sary A that pkγ is a Diffie-Hellman quadruple and (uγ , vγ) is a random element in
DLogG(xγ) while pk1−γ is a random quadruple and (u1−γ , v1−γ) is a random element
in G2.

To convince the adversary A that pkγ is a Diffie-Hellman quadruple and (uγ , vγ)
is a random element in DLogG(xγ), the simulator provides xγ to A. To convince the
adversary A that pk1−γ is a random quadruple and u1−γ , v1−γ) is a random element
in G2, S will extract the random string r1−γ that has been used for generating (pk1−γ ,
(u1−γ , v1−γ)) and show the existence of an oblivious key generation algorithm Fk

such that the random variables Fk(r1−γ) and (pk1−γ ,u1−γ , v1−γ) are computationally
indistinguishable.

To extract a random string from pk1−γ , (u1−γ , v1−γ), we define a random string
rg′

1
that is a binary representation of g′1 in Z∗

p . Similarly, we define the string rg′
2

rep-
resenting for g′2, rh′

1
for h′1, rh′

2
for h′2, and ru1−γ for u1−γ and rv1−γ for v1−γ . Let

r1−γ = (rg′
1
, rg′

2
, rh′

1
, rh′

2
, ru1−γ , rv1−γ ). Let (g′1, g′2, h′1, h′2, u1−γ , v1−γ) ← Fk(r1−γ)

(i.e., Fk is defined as an inverse mapping of the binary representation). It follows that
the random variables Fk(r1−γ) and (pk1−γ ,u1−γ , v1−γ) are computationally indistin-
guishable assuming that the decisional Diffie-Hellman problem is hard. Consequently,
the output simulator S is computationally indistinguishable from that of the real world
execution. An earlier corruption in the course of a Success execution can be simulated
similarly.

Case 2: a party is corrupted after σ =0 is communicated in the course of a Unsuccess
execution.

To simulate a party is corrupted after σ =0 is communicated, we must construct a
simulator S such that S outputs a bit α while R outputs a bit β (= 1-α). The detailed
description of simulator S is described as below:

– S runsKgpk to generate an instance of global public-key gpk, where gpk =(p, q,G).
– S chooses a bit α ∈ {0, 1} uniformly at random (for the output of S in case that
σ =0). S runs K independently to generate (pkα, skα) and (pk1−α, sk1−α), where
pkα =(g1, g2, h1, h2) and pk1−α =(g′1, g

′
2, h

′
1, h

′
2) such that h1 = gxα

1 , h2 =gxα
2 and

h′1 =g′1
x1−α , h′2 =g′2

x1−α , skα = xα and sk1−α = x1−α.
– on input Diffie-Hellman quadruples pkα and pk1−α, S runs Naor-Pinkas random-

izer φ on input pkα to generate (uα, vα) and chooses (u1−α, v1−α) ∈ G2 uniformly
at random.
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Our task now is to show that the randomness used by the simulator S to generate pk1−α

and (u1−α, v1−α) can be extracted. This is an easy task since the same technique pre-
sented in Case 1 can be applied here.

Using the same technique above, we can construct the corresponding simulator in
Case 3 and Case 4. Under the decisional Diffie-Hellman assumption is hard, no envi-
ronment Z , on any input, can tell with non-negligible probability whether it is interact-
ing with A and players running π, or with S and FN

SC in the ideal execution.

5 Conclusion

In this paper, we have introduced and formalized a new notion called oblivious Naor-
Pinkas cryptosystems which in turn, is constructed from Naor-Pinkas randomizer and
proposed a novel implementation of non-committing encryptions based on oblivious
Naor-Pinkas cryptosystems. The Naor-Pinkas oblivious cryptosystem benefits us to ex-
tract the randomness used to generate Diffie-Hellman quadruples and thus enables us to
construct corresponding simulator for a given adaptive adversary in the real-world pro-
tocol execution. We have shown that the proposed non-committing encryption scheme
is provably secure against an adaptive PPT adversary assuming that the decisional
Diffie-Hellman problem is hard.
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Abstract. In this paper, we propose a protocol for Oblivious Polyno-
mial Evaluation (OPE) considering a multi-variate polynomial. There
are two parties, Alice who has a secret multi-variate polynomial f and
Bob who has an input x = (x1, ..., xT ). Thus, Bob wants to compute f(x)
without any information leakage: Alice learns nothing about x and Bob
learns only what can be inferred from f(x). In [4], the authors proposed a
solution for this problem using Oblivious Transfer (OT) protocol only. In
this paper, we propose efficient OPE protocols for the multi-variate case
based upon additive and multiplicative homomorphic encryption schemes
defined on the same domain. Our protocol only reveals the number of
monomials.

Keywords: Homomorphic encryption schemes, Oblivious Polynomial
Evaluation (OPE), semantic security.

1 Introduction

Multi-Party computation (MPC) has been widely studied in the last few decades
in the cryptographic community. It refers to a game where several players P1, · · ·
Pn knowing respectively private values (x1, · · · , xn) want to evaluate the value
f(x1, · · · , xn) where f is some publicly known function with n variables. Each
player does not learn anything about the private inputs of the other players,
except what is implied by the output result f(x1, · · · , xn).

The basic block of MPC is Oblivious Transfer (OT) introduced by Rabin in
[17] and widely studied by Even, Goldreich et Lempel in [7]. In this last paper, a
1-out-2 OT protocol is proposed. It involves two parties, a sender, Alice, whose
inputs are 2 secret values x0 and x1 and a receiver, Bob, whose input is a value
b ∈ {0, 1}. At the execution end of the protocol Bob receives xb without knowing
x1−b and Alice does not know b. The generalization of this problem known under
the name of MPC was solved by Yao in [19] for every function f with finite
domain and finite image in a constant-round protocol. This result was improved
in [10] with weaker assumptions (i.e. the existence of OT is sufficient for general
oblivious function evaluation). In [13], the authors improved the Yao result.
They proposed efficient interactive evaluation of generic functions in a constant

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 430–442, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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set of rounds in the presence of malicious adversaries. However, according to
the authors, these general protocols “can not compete with protocols that are
constructed for specific tasks”.

Among the MPC problems, a particular one concerns Oblivious Polynomial
Evaluation (OPE) first introduced by Naor and Pinkas in [14] and by Kiayias
and Yung in [12]. In this case, one player possesses a polynomial P (P (x) ∈ F [x]
where F is a finite field) and the other player has a value a ∈ F . The second
player wants to evaluate P (a) without learning anything on P whereas the first
player learns nothing about a. In [14] and in [1], the authors solve this problem
describing three particular protocols based on two intractability assumptions: the
polynomial reconstruction problem and the polynomial list reconstruction prob-
lem. The proposed protocols rely on hiding first the polynomial P in a bivariate
polynomial and the value a in an univariate polynomial. In the multi-variate
case, using this technique leads to an exponential complexity (all monomials of
degree less than d should be considered in the circuit1). Moreover, in most of
existing protocols, the degree d of P must be publicly known. In [6], Cramer and
al. propose secure protocols to evaluate arithmetical circuits. They can be used
to build OPE protocols. The protocols used to evaluate the multiplication gates
are interactive. Thus, the computational complexity is really high.

In this paper, we focus on the multivariate version of OPE, i.e. the input a
becomes a vector of T components a = (a1, · · · , aT ) belonging to a same set F
(most of times a finite field). In this case, f becomes a multi-variate polynomial
from FT into F . Two particular cases could be considered: the non-interactive
case which is a really hard problem solved in [18] and the interactive one where
the two parties interact as proposed in [4], [16] or in [1].

In this paper, we develop an OPE protocol for the multi-variate case (denoted
by OMPE) revealing only m the number of monomials; where the set F is the
group Z∗

n where n is the product of two large primes. The main idea is to
use here two homomorphic encryption functions defined over the same domain.
The first homomorphic encryption function is an additive semantically secure
one defined over Zn (denoted by E0) and the second one defined over Z∗

n is
multiplicatively homomorphic (denoted by E1). As noticed in [18], homomorphic
encryption schemes are closely related to and useful in secure circuit evaluation
and the existence of a fully homomorphic function will solve the problem of a
non-interactive OMPE protocol secure in the malicious model. Such a “perfect”
function has been recently proposed by C. Gentry in [9] using ideal lattices.

This paper is organized as follows. Section 2 introduces classical homomorphic
schemes and the underlying security notions used in public key cryptography.
Section 3 deals with the modified versions of some homomorphic public key
encryption schemes and especially introduces a new multiplicative semantically
secure homomorphic encryption scheme defined over Z∗

n. In Section 4, we present
our OMPE protocol based upon the previous homomorphic functions E0 and E1
and proved secure in the semi-honest model. It is also shown that parties don’t

1 The number of monomials of degree d is equal to Cd
T+d−1 where T is the variables

number.
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get any advantage by deviating from the protocol. Moreover, in Section 4.3, we
compare our protocol with the existing ones before concluding in Section 5.

2 Homomorphic Encryption Schemes

Several encryption schemes have been shown homomorphic. Concretely, this
means that Dec(Enc(x1) ⊗ Enc(x2)) = x2 $ x2.

If $ is the addition (resp. multiplication), the encryption scheme is additively
(resp. multiplicatively) homomorphic. Such homomorphic property is willing as
soon as computations over encrypted data are requested. As far as we know,
there does not exist a secure encryption scheme either multiplicatively and addi-
tively homomorphic. Finding such a protocol is very challenging and this paper
can be interpreted in this sense. Indeed, we propose to build an interactive
multiplicatively and additively homomorphic encryption scheme by considering
homomorphic encryption schemes defined over the same domain Z∗

n. Generally,
additive homomorphic encryption schemes are defined over Zn while multiplica-
tive ones are defined over Z∗

n. Furthermore, in order to ensure security, these
encryption schemes should be semantically secure. This security notion is based
on the well-known notion of indistinguishability between random variables fam-
ilies.

Definition 1. (Semantic security) We say that a Public Key Encryption
scheme S = (Gen,Enc,Dec) is semantically secure if for every p.p.t algorithm
A, for every M (such that for any public key pk, M(pk) ∈ D2

pk with Dpk the
definition domain of Encpk) and for every polynomial p, for all k sufficiently
large,

P

[
A(1k, pk, x0, x1, c) = x|(pk, sk) ← Gen(1k);

{x0, x1} ←M(pk);x← {x0, x1}; c← Encpk(x)

]
≤ 1

2
+

1
p(k)

.

In other words, finding two messages x0, x1 such that a polynomial time algo-
rithm can distinguish between c ∈ Encpk(x0) and c ∈ Encpk(x1) is impossible.
We have to notice that any semantically secure encryption scheme should be
probabilist. The above definition is based on indistinguishability of the distribu-
tion of ciphertexts created by encrypting two different values. Stronger security
notions have been defined. However, this notion is sufficient to prove the secu-
rity of the protocols of this paper. Let us now shortly describe the main famous
homomorphic schemes.

Paillier’s encryption scheme [15]. The public key pk is a k-bit RSA modulus
n = pq chosen at random and an element g ∈ Z∗

n2 of order divisible by n.
The secret key sk is λ(n) = (p − 1)(q − 1). A value x ∈ Zn is encrypted by
Encpk(x) ∈ Z∗

n2 as follows: Encpk(x) = gxrn mod n2 where r is an integer
randomly chosen in Z∗

n For a given cipher c, the encrypted value can be recovered
with the following function Decsk
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Decsk(c) =
L(cλ(n) mod n2)
L(gλ(n) mod n2)

mod n

with L(u) = u−1
n and λ(n) the Carmicharel function. This scheme is additively

homomorphic. This encryption scheme has been shown semantically secure under
the DCRA assumption.

Goldwasser-Micali encryption scheme [11]. This scheme encrypts a bit
b ∈ {0, 1}. let n = pq, with p and q unknown large prime numbers. The private
key is (p, q) and the public key (n, y) such that y ∈ Jn and y /∈ QR(n). Then, b
is encrypted as follows: Encpk(b) = ybx2

i where xi randomly chosen in Jn.
The decryption function consists in noticing that (Encsk(b) ∈ QR(n)) ⇔

(b = 0). This encryption scheme is additively (boolean addition) homomorphic
and semantically secure under the DQRA assumption.

El Gamal’s encryption scheme [8]. Let G be a cyclic group, u a generator
of G, s a number randomly chosen in {1, · · · , |G|} and v = us. The public
key is (u, v) and the private key is s. For all x ∈ G, the encryption process is:
Encpk(x) = (ur, vrx) where r is randomly chosen in {1, · · · , |G|}. The decryption
function consists in computing vr = (us)r = (ur)s. Then, by inverting vr, the
encrypted value is given by Decsk(c1, c2) = c2c

−s
1 .

This encryption scheme is multiplicatively homomorphic and semantically
secure if and only if the DDH assumption holds forG. However, DDH assumption
is not satisfied for G = Z∗

n [5].

3 El Gamal’s Encryption Scheme over Z∗
n

As seen previously, El Gamal is secure if the underlying group G satisfies the
DDH property. It is well-known that groups Z∗

n do not satisfy this property.
In this section, by assuming that subgroups of Z∗

n satisfy this property, new
encryption schemes based on the DDH problem are proposed. Those schemes
are proved to be multiplicatively homomorphic and semantically secure.

3.1 Domains Z∗
p

In this section, let p be a large strong prime number and Jp is the set of x ∈ Z∗
p

having a Jacobi symbol equal to +1. In this case, -1 has a Jacobi symbol equal
to -1 (as p is a strong prime number, (p − 1)/2 is odd). Thus, if x ∈ Jp then
−x /∈ Jp. El Gamal’s encryption scheme defined over the cyclic group G = Z∗

p is
not semantically secure. Indeed, 2 encrypted values with different Jacobi symbol
can be distinguished (see [5]). We propose to extend El Gamal’s encryption
scheme over Z∗

p .

Assumption. DDH property holds over Jp.
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According to this assumption, El Gamal’s encryption scheme defined over Jp

is semantically secure. As we have seen in the previous section, it consists in
choosing a generator u ∈ Jp and to encrypt a value x ∈ Jp by (ur, vrx) where v =
us for a secret s ∈ {1, · · · , |Jp|} and r a number randomly chosen in {1, · · · , |Jp|}.
The challenge is to extend the domain from Jp to Z∗

p . To achieve this, bx, instead
of x, is encrypted with the previous encryption function where b is a random
bit. The random bit b is encrypted with the homomorphic Goldwasser-Micali
encryption function. The following definition precises it.

Definition 2. Let SEGZ = (Gen,Enc,Dec) be the encryption scheme defined
by,

– Gen(1k) = (pk, sk) with pk = (pk1, p, u, v) and sk = (sk1, s) where s is ran-
domly chosen {1, · · · , (p− 1)/2}, u a generator of Jp, v = us and (pk1, sk1)
generated by Goldwasser-Micali cryptosystem.

– for x ∈ Z∗
p , Encpk(x) = (ur, (−1)bvrx,Encpk1(b)) where r is randomly cho-

sen in {1, · · · , (p− 1)/2} and b randomly chosen in {0, 1}.
– Let (c1, c2, c3) a cipher. Decsk = (−1)Decsk1 (c3)c−s

1 c2

First, the correctness of this scheme is straightforward. The encryption
scheme is also homomorphic: let x, x′ ∈ Z∗

p and ((c1, c2, c3), (c′1, c
′
2, c

′
3)) =

(Encpk(x), Encpk(x′)). By using homomorphic properties of El Gamal’s and
Goldwasser-Micali’s encryption schemes we state the homomorphic property

Decsk(c1c′1, c2c
′
2, c3c

′
3) = (−1)Decsk1 (c3c′3)(urur′

)−svrvr′
(−1)bx(−1)b′x′

= (−1)b⊕b′u−s(r+r′)us(r+r′)(−1)b+b′xx′

= xx′

The security of this encryption scheme can be reduced to the security of the
Goldwasser-Micali encryption scheme and to the DDH assumption over Jp.

Theorem 1. If Goldwasser-Micali encryption scheme is semantically secure and
if DDH holds over Jp then SEGZ is semantically secure.

Proof. The proof is given in Appendix A.

3.2 Domains Z∗
pq

This encryption scheme can be extended to domain Z∗
n with n = pq, with p and

q large strong prime numbers. We denote by QR(n) the cyclic group of quadratic
residues (this group is cyclic because p and q are strong prime numbers). The
following assumption is made.

Assumption. DDH property holds over QR(n).

Let u be a generator ofQR(n), s a secret number randomly chosen in {1, · · · , (p−
1)(q − 1)/4}, and v = us. Let’s consider a square root unit β which does not
belong to Jn. As p and q are strong primes, −1 ∈ Jn. Thus β �= −1. As before,
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the idea consists in encrypting x(−1)b1βb2 (instead of x) where b1 and b2 are
random bits. Encrypting the two bits b1 and b2 with the Micali-Golwasser scheme
ensures homomorphic properties:

Definition 3. Let SGZ = (Gen,Enc,Dec) be the encryption scheme defined by,

– Gen(1k) = (pk, sk) with pk = (pk1, n = pq, u, v) and sk = (sk1, s) where s is
randomly chosen {1, · · · , (p− 1)(q− 1)/4}, u a generator of QR(n), v = us,
p and q strong prime numbers of size k and (pk1, sk1) public and private key
generated by the Goldwasser-Micali cryptosystem.

– for x ∈ Z∗
n, Encpk(x) = (ur, vr(−1)b1βb2x,Encpk1(b1), Encpk1(b2)) where r

is randomly chosen in {1, · · · , (p− 1)(q − 1)/4} and b1, b2 randomly chosen
in {0, 1}.

– Let (c1, c2, c3, c4) a cipher.
Decsk(c1, c2, c3, c4) = βDecsk1 (c4)(−1)Decsk1 (c3)c−s

1 c2

Theorem 2. Assuming DDH over QR(n) and assuming the semantic security
of Goldwasser-Micali’s encryption scheme, SGZ is multiplicatively homomorphic
and semantically secure.

Proof. (Sketch) First, we prove that the encryption scheme is secure over Jn by
arguing in the same way than in the proof of theorem 1. Then, by considering
the square root unit β, the security over Z∗

n can be proven by the same way. �

Remark 1. Let’s notice that the factorization of n is neither public nor private. If
the factorization of n is unknown then |QR(n)| = (p−1)(q−1)/4 is also unknown.
However, to encrypt a value, it is needed to randomly choose an integer r such
that r mod |QR(n)| is uniform over {0, .., |QR(n)| − 1}. It suffices to notice
that r mod |QR(n)| is indistinguishable to the uniform distribution when r is
randomly chosen in {1, ..., n2}.

4 Oblivious Multivariate Polynomial Evaluation (OMPE)

In this section, we will describe an OMPE protocol based on two homomor-
phic public key encryption schemes defined on the same domain. For instance,
we could consider the domain Zn where n is a RSA modulus. Over such a do-
main, Paillier’s scheme is an additively homomorphic encryption scheme and El
Gamal’s encryption scheme (adapted in the previous section) is multiplicatively
homomorphic. Now, let us see how to use those two schemes to build an OMPE
secure protocol.

So first, Alice has a multi-variate polynomial function f : Z∗T
n → Zn and Bob

has a vector x = (xi)i=1..T ∈ Z∗
n. Alice’s polynomial f is written as a sum of

monomials mj .

mj(x1, · · · , xT ) = aj

dj∏
k=1

xijk
and f(x1, · · · , xT ) =

m∑
j=1

mj(x1, · · · , xT )
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where dj is the degree of the monomial mj and m is the monomials number.
In our protocol, m is revealed while the coefficients ai, the degree d of the
polynomial and the variables belonging to each monomial (mj)j=1...m are kept
secret.

Bob generates an additively homomorphic encryption function E0 and a mul-
tiplicatively homomorphic one E1 defined over Z∗

n. Alice has an encryption E1(x)
for an unknown value x ∈ Z∗

n. The protocol Mult2Add allows Alice to get E0(x)
while nothing is leaked about x.

4.1 The Protocol Mult2Add

Algorithm 1. Mult2Add protocol
Require: Let k be a security parameter. Alice has an encrypted value E1(x) of an

unknown value x ∈ Z∗
n

Alice generates a k-uplet of random bits (ai)i=1..k such that ∃i0 ∈ {1, ..., k}, ai0 = 1
and a k-uplet of random numbers (ri, si)i=1..k with ri, si ∈ Z∗

n. Let A be the set
defined as A = {i = 1...k|ai = 1}
Alice sends Yi = E1(rix

ai) for i = 1...k
Bob sends Si = E0(D1(Yi)) for i = 1...k

Alice outputs Y = S
r−1

i0
i0

∏
i/∈A(SiE0(−ri))si

∏
i∈A\{i0}((S

r−1
i0

i0
)−1S

r−1
i

i )si

It is easy to check the correctness of the protocol in the semi-honest model.
Furthermore, if Bob sends a wrong vector S then the output is an (encrypted)
random number with a high probability. Bob should guess the ai values: if there
exists i /∈ A such that Si �= E0(ri) or i ∈ A such that Si and Si0 does not encrypt
the same values then the output Y encrypts a random value. The probability to
guess if ai = 0 or 1 for all i = 1...k exponentially decreases with k.

Proposition 1. Mult2Add satisfies the following properties:

1. It is secure in the semi-honest model.
2. If Bob does not follow the protocol then Alice (assumed honest) outputs a

random encrypted value with probability closed to 1.

Proof. Let’s prove the two assertions.

1. The correctness can be deduced by homomorphic properties. Indeed, S
r−1

i0
i0

=
E0(r−1

i0
ri0x) = E0(x)

∀i /∈ A, SiE0(−ri))si = (E0(ri − ri))si = E0(0)

∀i ∈ A \ {i0}, ((S
r−1

i0
i0

)−1S
r−1

i

i )si = ((E0(x))−1E0(x))−si

= E0(0)si = E0(0)
Bob receives k random values and Alice k encryptions. As the homomorphic
encryption schemes are assumed semantically secure, Alice’s view and Bob’s
view can be simulated by generating k random numbers.
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2. Let’s suppose that Bob does not follow the protocol by sending invalid en-
cryptions. In this case, Alice stops the protocol. The second way to not
follow the protocol is to send valid encryptions of wrong values. Let’s denote
by vi the encrypted value by Si, i.e D0(Si) = vi and let’s suppose there is
i′ ∈ {1, · · · , k} such that vi′ �= ri′x

ai′ . We can distinguish two cases:
– First case : i′ /∈ A. Thus, Si′E0(−ri′))si′ = E0(vi′−ri′ ))si′ = E0(si′(vi′−
ri′ ))) is a random number (because si′ was chosen randomly). So the
output Y encrypts a random value.

– Second case : i′ ∈ A. If there is j ∈ A such that vi = rix
ai then

((S
r−1

i0
i0

)−1S
r−1

i′
i′ )si′ or ((S

r−1
i0

i0
)−1S

r−1
j

j )sj is a randomly drawn over Z∗
n.

The output Y encrypts a random value.

Thus, in order to not output a random value without following the protocol,
Bob should encrypt the correct value for each i /∈ A and an incorrect value
for each i ∈ A. So, Bob should guess if i ∈ A or i /∈ A for all i = 1...k.
As Alice chooses A secretly and Bob only receives encrypted random values
independent of A, the probability to achieves this is equal to (2k − 1)−1

because there are 2k − 1 non-empty sets A ⊆ {1, · · · , k}. �

4.2 The Complete OMPE Protocol

The OMPE protocol (described in Alg. 2) could thus be directly deduced
from the Mult2Add protocol. Using homomorphic properties of E1, Alice com-
putes the encryption E1(mj(x1, · · · , xT )) for all monomial values (mj)j=1...m.
Then, she executes Mult2Add to get E0(mj(x1, · · · , xT )). Thus, she can compute
E0(f(x1, · · · , xT )) by using homomorphic properties. The Mult2Add executions
number is equal to the number of monomials. This number is learnt and out-
putted by Bob.

Algorithm 2. OMPE protocol
Require: Alice has a polynomial function f(x1, · · · , xT ) =

∑m
j=1 mj(x1, · · · , xT )

where mj is a monomial function of degree dj , i.e. mj = aj

∏dj

k=1 xijk .
Require: Bob has a vector x = (xi)i=1...T

Bob sends E1(xi) for all i = 1..T

Alice computes E1(mj(x1, · · · , xT )) =
∏dj

k=1 E1(xijk ) for all j = 1...m
Alice and Bob execute Mult2Add on the input E1(mj(x1, · · · , xT )) for all j = 1...m

Alice computes E0(f(x)) =
∏m

j=1(E0(mj(x1, · · · , xT )))aj and sends it.
Bob outputs D0(E0(f(x))) and m.

Theorem 3. OMPE satisfies the following properties.

1. It is secure in the semi-honest model.
2. It is private against any adversary controlling Alice.
3. It is secure against any adversary controlling Bob.
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Proof. Let’s prove the three assertions.

1. The security in the semi-honest model is implied by the security of Mult2Add
(see proposition 1). Knowing the output m and f(x), the simulation of Bob’s
view simply consists in generating km random numbers. As encryptions
schemes are assumed semantically secure, encryptions are indistinguishable
from random values. So, the simulation of Alice’s view consists in generating
T + km random numbers.

2. Let A be an adversary controlling Alice. It does not learn anything in proto-
col OMPE because it only receives encrypted values. The semantic security
of the encryption schemes ensures privacy.

3. Let A be an adversary controlling Bob. The only way to deviate from the
protocol is to send wrong values in protocol Mult2Add. By doing this, accord-
ing to proposition 1, the last received encryption encrypts a random values.
Consequently, as the km previous ones are also random, A received only
random values. As Alice (the honest party) does not outputs anything, the
protocol is secure against A (the simulation of the protocol simply consists
in generating km+ 1 random values to A). �

Remark 2. The protocol is private but not secure against an adversary A con-
trolling Alice. Indeed, in each execution of Mult2Add, A can compute k monomial
values. So f can be a polynomial with km monomials (instead of m). As A can
choose f arbitrarily (f is not committed), this advantage is not relevant is many
applications.

Remark 3. To be rigorous, Bob should prove to Alice that n is an RSA modu-
lus. Zero-knowledge proofs based on Boneh’s test [2] can be built. In few words,
Bob sends an encryption (with an additively homomorphic encryption function
defined over a large domain, e.g. Z6n) of p and q. By using the protocol Mul-
tiplication in [6], Alice gets encryptions of n = pq and λ(n) = (p − 1)(q − 1).
Then, she checks that the first encryption encrypts (she asks to Bob to decrypt
it) n, chooses α ∈ {n2, ..., n2 +n} and shares αλ(n), i.e. Alice chooses a random
values in s1 ∈ {0, ..., αλ(n)} ≡s {0, ..., n3} and Bob gets a random value s2 such
that s1 + s2 = αλ(n). Then, Alice and Bob randomly choose basis a ∈ Zn and
respectively compute v1 = gs1 mod n and v2 = gs2 mod n. Alice is convinced
that n is a RSA modulus if v1v2 = 1 mod n for several basis a.

4.3 Complexity Analysis

The complexity of the proposed protocol isO(Tm log d). To encrypt all monomial
values, Alice makesO(Tm log d) modular multiplications. The number of encryp-
tions/decryptions/exponentiations made in Mult2Add is bounded by T + 5mk
(k being the security parameter of Mult2Add2).

2 Note that if the monomial number m is large, Mult2Add can be modified in order
reduce the constant k by computing all the encryptions E0(mj/aj) in the same time.
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When compared to the other approaches, this protocol is still efficient. Obliv-
ious evaluation of polynomials was initially proposed by Naor and Pinkas in
[14]. They proposed efficient OPE protocols based on polynomial reconstruc-
tion. This approach has been extended to multivariate case by Ben-Ya’akov in
[1]. The computational complexity of this last protocol is about O

(
CT

d+TT
3
)

elementary operations without taking into account the OT evaluations.
Other approaches deal with homomorphic encryptions schemes. Several inter-

active protocols as the one described in [6] have been built to securely evaluate
arithmetical circuits. Addition gates evaluation are directly ensured by homo-
morphic properties. Multiplication gates are evaluated by using an interactive
protocol. Thus, the multiplicative gates number is revealed while our protocol
reveals the additive gates number. So these protocols can not be directly com-
pared. In [6], a multiplication gate requires 6 modular exponentiations. So the
modular exponentiations number is O(T +

∑m
j=1(dj − 1)) where dj is the degree

of the monomial mj whereas our protocol requires O(m+ T ) modular exponen-
tiations.

4.4 Extension over ZT
n

The OMPE protocol can be extended to polynomials f : ZT
n → Zn by decom-

posing an input xi = α + x′i where α ∈ Z∗
n is a random value ensuring that

x′i �= 0 for all i = 1...T . The polynomial f can be expressed as a sum of monomi-
als defined over the variables α, x′1, · · · , x′T . The problem is that the monomial
numbers exponentially grows with respect to the degree d of f . So only small
degree polynomials f : ZT

n → Zn can be considered.

5 Conclusion and Future Work

In this paper, we have proposed an interactive OMPE protocol for the multi-
variate case. Its complexity is linear with the variable numbers. So, it could be
considered as relatively efficient and it is proved to be secure in the malicious
case even if many SFE, OPE and OMPE schemes could be modified to be proved
secure in the malicious case as shown in [13].

The simple fundamental idea used in this paper is to combine an additively
homomorphic semantically secure encryption scheme and a multiplicatively one
defined over the same domain Z∗

n. We thus simply extend El Gamal’s in order
to get a secure multiplicatively homomorphic encryption over Z∗

n, with n being
a RSA modulus.

As specified in the introduction, fully homomorphic encryption schemes (en-
cryption scheme that allow both addition and multiplication) would provide non-
interactive OPE protocol. Boneh, Goh and Nissim propose in [3] an encryption
scheme for quadratic formulas. Obtaining an efficient additive and multiplica-
tive homomorphic encryption scheme (fully homomorphic) has for long been
known to be the perfect way to obtain OPE protocols, and a long-standing open
problem until Gentry proposed a solution [9]. However, this cryptosystem is not
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still practical: according to the author, making the full scheme practical remains
an open problem. Furthermore, its semantic security is based on new hardness
assumptions. However, this is a very promising step for practical applications.

In further works, we are interested in finding a way to not reveal the mono-
mials number and to see how the Gentry function could be used in our case.
Moreover, we will compare our protocol with more existing works. Finally, our
protocol only works with polynomials defined on Zn. In many applications, float-
ing numbers are required. It is very challenging to build protocols dealing with
floating numbers.
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A Proof (schetch) of Theorem 1

Proof. (sketch). Let k ∈ N be a security parameter. In the following, we will
denote by E,E1, E2, E3 the sets of p.p.t algorithms M such that respectively
M(pk) ∈ Z∗2

p , M(pk) ∈ J2
p , M(pk) ∈ (Z∗

p \ Jp) × (Z∗
p \ Jp) and M(pk) ∈

Jp × (Z∗
p \ Jp) ∪ (Z∗

p \ Jp) × Jp.
Let M ∈ E be a p.p.t algorithm and {x, y} = M(pk). To prove the se-

curity of the encryption scheme (see Definition 1) we have to prove that the
two random variables families XM,k = (1k, pk, x, y, Encpk(x)) and YM,k =
(1k, pk, x, y, Encpk(y)) indexed by k ∈ N are computationally indistinguishable
for any M ∈ E. In the following, in order to reduce notations, we consider
that any distinguisher implicitly knows k, pk, x, y (thus, XM,k = Encpk(x) and
YM,k = Encpk(y)). First, let’s prove the indistinguishability between Encpk(x)
and Encpk(y) for M ∈ E1, M ∈ E2, M ∈ E3.

• M ∈ E1 (x, y ∈ Jp). Assuming that DDH property holds for Jp, El Gamal’s
encryption scheme is semantically secure over Jp. It means (ur, vrx) ≡c (ur, vry)
which implies that (ur,−vrx) ≡c (ur,−vry).

It implies that (ur, bvrx+ (b − 1)vrx) ≡c (ur, bvry + (b − 1)vry) where b is a
random bit. As, Encpk(x) = (ur, bvrx+ (b− 1)vrx,Encpk1(b)) (idem for y), we
state that

Encpk(x) ≡c Encpk(y) (1)

• M ∈ E2 (x, y /∈ Jp). By arguing in the same way than previously, we prove
that

Encpk(x) ≡c Encpk(y) (2)

• M ∈ E3 (x /∈ Jp, y ∈ Jp or x ∈ Jp, y /∈ Jp). Let’s assume x /∈ Jp. First let’s
prove that Encpk(x) and Encpk(−x) are indistinguishable. Let b a random bit.
By definition, Encpk(−x) is equal to
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(ur, bvr(−x) + (b− 1)vr(−x), Encpk1(b))
= (ur, (1 − b)vrx+ ((1 − b) − 1)vrx,Encpk1(b))

The semantically security of Goldwasser-Micali encryption scheme ensures that
Encpk1(b) ≡c Encpk1(1−b). By noticing that 1−b is a random bit, the 2 previous
assertions implies that Encpk(x) ≡c Encpk(−x).

As −x ∈ Jp, by using (1), we can state that Encpk(−x) ≡c Encpk(y), thus

Encpk(x) ≡c Encpk(y) (3)

To conclude, we have to consider any M ∈ E. We could show that there exists
M1 ∈ E1, M2 ∈ E2 and M3 ∈ E3 and an (polynomial or not) algorithm C with
C(pk) = (p1, p2, p3) be a probability vector such that M can be simulated by
an (polynomial or not) algorithm M ′ (meaning that M and M ′ (indexed by pk)
are statistically indistinguishable M ′ ≡s M) defined by : M ′(pk) = Mi(pk) with
a probability pi = Ci(pk).3

We notice that M ′ ≡s M implies XM ′,k ≡s XM,k and YM ′,k ≡s YM,k. We
conclude by remarking that if there is a polynomial distinguisher between XM,k

and YM,k then there is a polynomial distinguisher between XM ′,k and YM ′,k then
there is a polynomial distinguisher between XM1,k and YM1,k or between XM2,k

and YM2,k or between XM3,k and YM3,k. This contradicts (1), (2) or (3). �

3 Straightforwardly, C estimates the probability that M(pk) ∈ J2
p , M(pk) ∈ Jp ×

(Z∗
p \ Jp) ∪ (Z∗

p \ Jp) × Jp or M(pk) ∈ (Z∗
p \ Jp)2 by executing M sufficiently (C

is not required to be polynomial). M1 (resp. M2, M3) consists in executing M(pk)
a number of rounds upper bounded by polynomial |pk| until M(pk) belongs to J2

p

(resp. (Z∗
p \ Jp)2, Jp × (Z∗

p \ Jp)∪ (Z∗
p \ Jp)× Jp) (return random values otherwise).

As deciding if x ∈ Jp or not can be decided by a p.p.t algorithm, Mi is a p.p.t
algorithm.
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