

Lecture Notes in Computer Science 5913
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Anupam Datta (Ed.)

Advances in
Computer Science –
ASIAN 2009

Information Security and Privacy

13th Asian Computing Science Conference
Seoul, Korea, December 14-16, 2009
Proceedings

13

Volume Editor

Anupam Datta
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, USA
E-mail: danupam@cmu.edu

Library of Congress Control Number: 2009939838

CR Subject Classification (1998): F.3, E.3, D.4.6, K.6.5, C.2, D.2.4, J.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-10621-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10621-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12801756 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 13th Annual Asian Comput-
ing Science Conference (ASIAN 2009) held in Seoul, South Korea, December
14-16, 2009. The theme of this year’s conference was “Information Security and
Privacy: Theory and Practice.” The series of annual Asian Computing Science
Conferences (ASIAN) was initiated in 1995 by AIT, INRIA and UNU/IIST to
provide a forum for researchers in computer science from the Asian continent and
to promote interaction with researchers in other regions. Accordingly, the con-
ference moves every year to a different center of research throughout Asia. This
year ASIAN was co-located with the 7th Asian Symposium on Programming
Languages and Systems (APLAS 2009).

We received 45 submissions. Each submission was carefully reviewed by the
Program Committee. The committee decided to accept seven regular papers and
three short papers, which are included in the proceedings. The program also in-
cluded two invited talks by Jean Goubault-Larrecq (LSV, ENS Cachan, CNRS,
INRIA Saclay) and Naoki Kobayashi (Tohoku University); the corresponding pa-
pers are also included in this volume. I would like thank the Program Committee
members and external reviewers for their work in selecting the contributed pa-
pers. I would also like to thank the Steering Committee for their timely advice, in
particular, Kazunori Ueda and Iliano Cervesato. Finally, I would like to thank
the Local Arrangements Chair, Gyesik Lee, for ensuring that the conference
proceeded smoothly.

September 2009 Anupam Datta

Conference Organization

Steering Committee

Iliano Cervesato
Philippe Codognet
Joxan Jaffar

Mitsu Okada
R.K. Shyamasundar
Kazunori Ueda

Program Chair

Anupam Datta

Program Committee

Michael Backes
Adam Barth
Lujo Bauer
Bruno Blanchet
Iliano Cervesato
Stephen Chong
Hubert Comon-Lundh
Veronique Cortier
Yuxi Fu
Vinod Ganapathy
Masami Hagiya

Dilsun Kaynar
Steve Kremer
Ralf Kuesters
Sanjiva Prasad
R. Ramanujam
Andre Scedrov
Vitaly Shmatikov
Kazunori UEDA
Bogdan Warinschi
Yuqing Zhang
Liang Zhenkai

Local Arrangements Chair

Gyesik Lee

External Reviewers

Attrapadung, Nuttapong
Bursztein, Elie
Cai, Xiaojuan
Chadha, Rohit
Fuchsbauer, Georg
Hanaoka, Goichiro
Jayadeva, Jayadeva
Kalra, Prem
Long, Yu

Mitra, Niloy
O’Neal, Adam
Ota, Kazuo
Pereira, Olivier
Qi, Zhengwei
Rial, Alfredo
Sans, Thierry
Sarkar, Palash
Shi, Elaine

VIII Organization

Shin, SeongHan
Suresh, S.P.
Truderung, Tomasz
Tschantz, Michael Carl
Tsukada, Yasuyuki
Tuengerthal, Max
Umeno, Shinya

Vergnaud, Damien
Vogt, Andreas
Yang, Liu
Ying, Mingsheng
Zhang, Rui
Zhao, Jianjun

Table of Contents

“Logic Wins!” . 1
Jean Goubault-Larrecq

Higher-Order Program Verification and Language-Based Security
(Extended Abstract) . 17

Naoki Kobayashi

Deducibility Constraints . 24
Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune

Automated Security Proof for Symmetric Encryption Modes 39
Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and
Reihaneh Safavi-Naini

Noninterference with Dynamic Security Domains and Policies 54
Robert Grabowski and Lennart Beringer

A Critique of Some Chaotic-Map and Cellular Automata-Based Stream
Ciphers . 69

Matt Henricksen

A Logic for Formal Verification of Quantum Programs 79
Yoshihiko Kakutani

Reducing Equational Theories for the Decision of Static Equivalence . . . 94
Steve Kremer, Antoine Mercier, and Ralf Treinen

A Simulation-Based Treatment of Authenticated Message Exchange 109
Klaas Ole Kürtz, Henning Schnoor, and Thomas Wilke

Trusted Deployment of Virtual Execution Environment in Grid
Systems . 124

Deqing Zou, Jinjiu Long, and Hai Jin

A Dolev-Yao Model for Zero Knowledge . 137
Anguraj Baskar, R. Ramanujam, and S.P. Suresh

A Special Proxy Signature Scheme with Multi-warrant 147
Jianhong Zhang, Hua Chen, Shengnan Gao, and Yixian Yang

Author Index . 159

“Logic Wins!”

Jean Goubault-Larrecq�

LSV, ENS Cachan, CNRS, INRIA Saclay
ENS Cachan, 61, avenue du président Wilson, 94230 Cachan, France

goubault@lsv.ens-cachan.fr

Abstract. Clever algorithm design is sometimes superseded by simple encod-
ings into logic. We apply this motto to a few case studies in the formal verifica-
tion of security properties. In particular, we examine confidentiality objectives in
hardware circuit descriptions written in VHDL.

1 Introduction

As a computer scientist, I tend to be fond of clever, efficient algorithmic solutions to
any particular problem I may have. Probably like many computer scientists, I have long
thought that the key to success was clever algorithm design, together with well-crafted
data structures, clever implementation techniques and some hack power. I certainly did
not believe seriously that elegant semantic foundations, nice encodings into logic, or
similar mathematically enjoyable concerns could actually help in practice, although I
took some delight in these as well. Over the years, I came to realize I was wrong1, and I
will illustrate this on a few examples. In all these examples, my concern will be to find
algorithms to verify security properties of protocols, and logic will be instrumental in
finding elegant and efficient solutions.

Now, in this paper, by logic I will mean fragments of first-order logic expressible as
finite sets of Horn clauses. I will also concentrate on security properties, and in fact on
abstract interpretation frameworks for security properties. One sometimes loses preci-
sion in abstract interpretation, and I will take this for granted: I won’t use logic to solve

� Partially funded by RNTL project Prouvé.
1 An anecdote to explain the title. In 1996, I realized that binary decision diagrams (BDDs), an

extremely efficient way of handling Boolean functions [4], could be used to provide a basis for
tableaux-style proof search in non-classical (modal, intuitionistic) logics, only orders of mag-
nitude faster than previous implementations [13]. I needed to compare my algorithm to other
implementations. Since there were not too many non-classical provers available at that time, I
compared my clever implementation, specialized to the case of the run-of-the-mill system LJ
for intuitionistic propositional logic, to a quick, naive implementation of proof-search in Roy
Dyckhoff’s contraction-free sequent calculus LJT for intuitionistic logic [10]. Now LJT is
only meant to avoid a rather painful check for loops during proof search that is inherent to LJ,
but is otherwise not intended to be a basis for efficient implementations. Despite this, my naive
implementation of LJT beat my sophisticated, state-of-the-art BDD-based implementation of
LJ flat-handed. This has taught me a lesson, which I have been meditating over ever since.
When I told this to Roy Dyckhoff at the Tableaux conference in 1996, his reaction was simply
“Logic wins!”, in a deep voice, and with clear pleasure in his eyes.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

goubault@lsv.ens-cachan.fr

2 J. Goubault-Larrecq

security problems exactly but to obtain reasonably precise, terminating algorithms. One
may say that my motto is the infamous 80-20 rule: do 80% of the work with only 20%
of the effort. Logic will be crucial to reach this goal.

After some preliminaries, I’ll show how this motto helps us analyze weak secrecy
and correspondence assertions in the spi-calculus, expanding on work by Nielson,
Nielson and Seidl [19] (Section 2). I’ll then comment on generic abstraction algorithms
in Section 3, and proceed to something new in Section 4: verifying confidentiality ob-
jectives in hardware circuit descriptions written in VHDL. I’ll conclude by proposing
some open problems in Section 5.

Preliminaries. We shall consider terms s, t, u, v, . . . , over a fixed, usually implicit,
finite signature. We assume finitely many predicate symbols p, q, . . . , and countably
many variables X , Y , Z , . . . Atoms are expressions of the form p(t). Notice that all our
predicates are unary. This incurs no loss of generality, as e.g., p(t, u) is easily encoded
as p(c(t, u)) for some fresh binary function symbol c.

Substitutions σ are finite maps from variables to terms, e.g., [X1 := t1, . . . , Xn :=
tn], and substitution application tσ works in parallel, i.e., Xiσ = ti, Xσ = X if
X �∈ {X1, . . . , Xn}, f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Horn clauses C are of the form H ⇐ B where the head H is either an atom p(t) or
⊥, and the body B is a finite set A1, . . . , An of atoms. The meaning is that C is true iff
H is true whenever all of A1, . . . , An are. If B is empty (n = 0), then C = H is a fact.

We always assume that there is at least one constant, i.e., one function symbol of
arity 0, so that the set of ground atoms is non-empty. An atom or a term is ground iff it
contains no variable. A Herbrand model I of a set of clauses is a set of ground atoms;
intuitively, those that we want to consider as true. Any satisfiable set S of Horn clauses
has a least Herbrand model, in the sense that it is a Herbrand model, and is contained
in every other Herbrand model of S. This can be defined as the least fixpoint lfpTS

of the monotone operator TS(I) = {Aσ | A ⇐ A1, . . . , An ∈ S, Aσ ground, A1σ ∈
I, . . . , Anσ ∈ I}. If⊥ ∈ lfpTS , then S is unsatisfiable. Otherwise, S is satisfiable, and
lfpTS is a set of ground atoms, which happens to be the least Herbrand model of S.
Note that A ∈ lfp TS iff A is deducible by finitely many applications of clauses of S,
seen as rules allowing one to deduce heads from the corresponding bodies.

Given a finite set S of Horn clauses, it is undecidable whether S is satisfiable, i.e.,
whether⊥ �∈ lfpTS , even in very constrained cases [8]. However, some specific formats
of Horn clauses are decidable. One that I find most remarkable is the H1 class, which
was identified as such by Nielson, Nielson and Seidl [19], but had been introduced with
a different name by Weidenbach [21]. Using the presentation of [15], H1 clauses are
Horn clauses whose head is restricted to be of the form ⊥, p(X) for some variable X ,
or p(f(X1, . . . , Xn)) for pairwise distinct variables X1, . . . , Xn (f(X1, . . . , Xn) is
then called a flat term). Note that bodies of H1 clauses are not restricted in any way.
Deciding H1 clause sets is decidable, and EXPTIME-complete [19,15]. The h1 tool in
the h1 tool suite [14] is an efficient implementation of the resolution algorithm of [15].

We shall exert considerable freedom in writing formulae. For example, we shall use
predicates of the form P � e � , where the hole is meant to denote the missing
argument, and we shall write [P � e � t] instead of P � e � (t).

“Logic Wins!” 3

Let us quickly turn to abstract interpretation. All extensional and non-trivial proper-
ties of programs are undecidable, by Rice’s theorem. The reachability problem in the
more constrained world of cryptographic protocols is also undecidable [9]. In verifying
such properties, one must therefore choose between correct and complete procedures
that will fail to terminate on some inputs, or correct, terminating algorithms that cannot
be complete. The latter strand is the tradition in the so-called abstract interpretation
community. We also speak of over-approximation, because the set of inputs that are
accepted by an abstract interpretation algorithm is only guaranteed to be a superset of
those satisfying the intended property.

2 Reachability and Correspondence Assertions in the Spi-Calculus

Nielson et al. [19] introduced H1 as a convenient tool in deciding reachability in (an
over-approximated semantics of) the spi-calculus [1]. As such, they literally applied the
“Logic wins!” motto, going through logic instead of defining an ad hoc algorithm.

Reachability questions include so-called weak secrecy questions, since the message
M remains secret in the protocol P iff P |DY (I0, c) does not rewrite in any finite num-
ber of steps to a process where M is sent over channel c, where DY (I0, c) is a Dolev-
Yao observer, see below. We shall provide a slightly more precise over-approximation,
and also deal with authentication properties, inter alia.

The main trick is to express a few relatively trivial facts about spi-calculus processes,
in the guise of Horn clauses. Then, we pay special attention to the form of these clauses,
so that they fall into the H1 class.

P, Q,R, ... ::= stop stop
| !xP replication
| P | Q parallel composition
| νx;P fresh name creation
| out(e1, e2); P writing to a channel
| in(e1, x);P reading from a channel
| let x = e in P local definition
| case e1 of f(x1, . . . , xn) ⇒ P else Q constructor pattern-matching
| case e1 of {x}e2 ⇒ P else Q symmetric decryption
| case e1 of [x]

e−1
2

⇒ P else Q asymmetric decryption

| if e1 = e2 then P else Q equality test
| event f〈e1〉; P event

Fig. 1. The spi-calculus

Expressions e in the spi-calculus are defined as variables x (distinct from the logi-
cal variables X), constructor applications f(e1, . . . , en), symmetric encryptions {e1}e2

and asymmetric encryptions [e1]e2 , where e2 serves as key in the latter two forms.
Processes are described in Figure 1. Note that decryption is handled through pattern-
matching. In the case of constructor pattern-matching, x1, . . . , xn are pairwise distinct.
Replication !xP launches several copies of P in parallel, keeping a unique integer id of

4 J. Goubault-Larrecq

each in variable x; we write !P when x is irrelevant. We also write out(e1, e2) instead
of out(e1, e2); stop and similarly for other actions. Finally, events event f〈e1〉 are
meant to express correspondence assertions, i.e., certain forms of authentication.

The semantics of this language is standard: see [1]. The essential rules are the
communication rule out(e1, e2); P | in(e1, x); Q → (P | Q[x := e2]), the fact that
P ≡→≡ Q implies P → Q, where structural congruence≡ obeys some obvious laws,
plus the extrusion law (νx; P) |Q ≡ νx; (P |Q) if x is not free in Q.

The Dolev-Yao observer DY (I0, c) mentioned above, for example, is νid; !A, where
A is the parallel composition of out(c, I0) (the Dolev-Yao attacker can emit the ini-
tial knowledge expression I0 on channel c), out(c, id) (it can emit its own identity),
in(c, x); out(c, x); out(c, x) (it can duplicate messages), νN ; out(c, N) (emit fresh
names), in(c, x1); in(c, x2); out(c, {x1}x2) and in(c, x1); in(c, x2); out(c, [x1]x2)
(encrypt), in(c, x); in(c, x2); case x of {x1}x2 ⇒ out(c, x1) else stop and
in(c, x); in(c, x2); case x of [x1]x−1

2
⇒ out(c, x1) else stop (decrypt),

and various processes of the form in(c, x1); . . . ; in(c, xn); out(c, f(x1, . . . , xn)) or
in(c, x); case x of f(x1, . . . , xn) ⇒ (out(c, x1)| . . . |out(c, xn)) else stop, de-
pending whether f is a constructor or a function, and whether it is private or public in
the terminology of ProVerif [3].

Fix a spi-calculus process P0. We define an approximate semantics, specialized
to P0, as follows. First, for every subprocess P of P0, and every list of vari-
ables Ξ , meant to denote the list of variables bound above P in P0 (except by
ν, which will be dealt with differently), we collect all pairs (Q; Ξ ′) where Q is
a subprocess of P , and Ξ ′ is the list of variables bound above Q in P , in a set
SubΞ(P). Formally, let SubΞ(P) = {(P ; Ξ)} ∪ Sub+

Ξ(P), where Sub+
Ξ(stop) = ∅,

Sub+
Ξ(!xP) = Subx,Ξ(P), Sub+

Ξ(out(e1, e2); P) = Sub+
Ξ(event f〈e1〉; P) =

SubΞ(P), Sub+
Ξ(in(e1, x); P) = Subx,Ξ(P), Sub+

Ξ(P |Q) = Sub+
Ξ(if e1 =

e2 then P else Q) = SubΞ(P)∪SubΞ(Q), Sub+
Ξ(let x = e in P) = Subx,Ξ(P),

Sub+
Ξ(case e1 of pat ⇒ P else Q) = SubΞ′,Ξ(P) ∪ SubΞ(Q) (where Ξ ′ is

x1, . . . , xn in constructor pattern-matching, and x in the cases of decryption); finally, if
Ξ = x1, . . . , xk, we let Sub+

Ξ(νx; P) = SubΞ(P [x := �νx; P�(x1, . . . , xk)]), where
�νx; P� is a (fresh) function symbol, one for each process starting with a name creation
action. This is Blanchet’s fresh name creation as skolemization trick [3].

We shall also need to represent contexts ρ, i.e., finite mappings [x1 �→ t1, . . . , xk →
tk] from variables to terms, as terms. We choose to represent such mappings as
cΞ(t1, . . . , tk), where Ξ = x1, . . . , xk and cΞ is a fresh function symbol of arity k.

Without loss of generality, we shall assume that P0 is well-formed, in the intuitive
sense that the only expressions e that occur in P0 are either spi-calculus variables x
bound by !, in, let, or case (but not by ν), or are to the right of an equals sign = in
a let-expression. This is easily achieved by adding extra let constructs in P0. For-
mally, we require that whenever (Q; Ξ ′) ∈ Sub∅(P0), then Q is given by the grammar
obtained from Figure 1 by requiring e1 and e2, wherever they appear, to be variables
x, y; moreover, x and y must be in Ξ ′ and x �= y. We also require that whenever
(let x = e in Q; Ξ ′) ∈ Sub∅(P0), then all the variables in e must occur in Ξ ′.

Our approximate semantics will use the following predicate symbols. First,
→∗P 〈〈 〉〉, for each (P ; Ξ) ∈ Sub∅(P0): [→∗P 〈〈ρ〉〉] states that execution may reach

“Logic Wins!” 5

P , with values of variables given by context ρ; second, � : [t � u] means that message
u was sent on channel t; event f〈 〉: event f〈t〉 says that we have passed the cor-
responding event in P0; and auxiliary predicates ∈ N ([t ∈ N] means that t denotes
an integer process id), and for each expression e in P0, a predicate symbol P � e �
([P � e � t] means that expression e may have value t when we reach P in P0).

We now compile P0 to a set S(P0) of H1 clauses. First, execution starts at P0: write
the fact [→∗main〈〈cε()〉〉], where ε is the empty sequence, so that cε() is the empty con-
text. Then, for each (P ; Ξ) ∈ Sub∅(P0), do a case analysis on P . If P is a replication
!xP1, then create a fresh process identifier X and proceed to P1:

[→∗P1〈〈cx,Ξ(X, X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉], [X ∈ N] (1)

[0 ∈ N] [s(X) ∈ N] ⇐ [X ∈ N] (2)

If P is a parallel composition P1 | Q1, then state that from P , execution may proceed
to P1 or to Q1, as in [19], while the context, denoted by Z , does not change:

[→∗P1〈〈Z〉〉] ⇐ [→∗P 〈〈Z〉〉] [→∗Q1〈〈Z〉〉] ⇐ [→∗P 〈〈Z〉〉] (3)

If P = νx; P1, then use Blanchet’s skolemization trick. Write Ξ = x1, . . . , xk, and
output the clause:

[→∗P1[x := �νx; P1�(x1, . . . , xk)]〈〈Z〉〉] ⇐ [→∗P 〈〈Z〉〉] (4)

At this point, it is probably good to realize why these are H1 clauses. The head of (4)
is just one big predicate symbol →∗P1[x := �νx; P1�(x1, . . . , xk)]〈〈 〉〉 applied to the
logical variable Z , for instance. The spi-calculus variables x1, . . . , xk do not serve as
logical variables, and are only part of the name of the predicate. Similarly, the head of
(1) is the predicate→∗P1〈〈 〉〉 applied to the flat term cx,Ξ(X, X1, . . . , Xk).

Let us return to the subprocesses P of P0. When P is an out command, re-
member that P0 is well-formed, so P must be of the form out(xi, xj); P1, where
Ξ = x1, . . . , xk and 1 ≤ i �= j ≤ k. We then write one clause (5) to state that the
value Xj of xj has now been sent on (the value Xi of) the channel xi, and another one
(6) to state that execution should proceed to P1:

[Xi � Xj] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉] (5)

[→∗P1〈〈cΞ(X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉] (6)

The case of events, i.e., when P = event f〈xi〉; P1, is very similar:

event f〈Xi〉 ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉] (7)

When P = in(xi, x); P1, where again Ξ = x1, . . . , xk and 1 ≤ i ≤ k, we write one
clause stating that one may proceed to P1 after binding x to any value X found on (the
value Xi of) the channel xi:

[→∗P1〈〈cx,Ξ(X, X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉], [Xi � X] (8)

When P = let x = e in P1, we produce:

[→∗P1〈〈cx,Ξ(X, X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ (X1, . . . , Xk)〉〉], [P � e � X] (9)

6 J. Goubault-Larrecq

where we define the evaluation of expressions e, given a list of bound variables
Ξ = x1, . . . , xk, as follows. Clause (10) below states that xi equals Xi in any con-
text [x1 �→ X1, . . . , xk �→ Xk] (represented as the term cΞ(X1, . . . , Xk)). Names are
evaluated in clause (11), where we observe that the arguments to �νx; Q� must be a
suffix xi, . . . , xk of Ξ . Clause (12) deals with subexpressions where a function symbol
is applied to pairwise distinct variables (a special case where we can still write an H1
clause). Finally, clause (13) deals with the remaining cases.

[P � xi � Xi] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉] (10)

[P � �νx; Q�(xi, . . . , xk) (11)

� �νx; Q�(Xi, . . . , Xk)] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉]
[P � f(xi1 , . . . , xin) � f(Xi1 , . . . , Xin)] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉] (12)

(i1, . . . , ij pairwise distinct)

[P � f(e1, . . . , en) � f(X1, . . . , Xn)] ⇐ [P � e1 � X1], . . . , [P � en � Xn] (13)

(e1, . . . , en not pairwise distinct variables)

When P = case xi of f(y1, . . . , yn) ⇒ P1 else Q1, with Ξ = x1, . . . , xk and
1 ≤ i ≤ k, we write:

[→∗P1〈〈cy1,...,yn,Ξ(Y1, . . . , Yn, X1, . . . , Xk)〉〉] ⇐ (14)

[→∗P 〈〈cΞ (X1, . . . , Xi, . . .Xk)〉〉], [→∗P 〈〈cΞ(X1, . . . , f(Y1, . . . , Yn)︸ ︷︷ ︸
i

, . . .Xk)〉〉]

to handle the case of a match. In the second premise, the argument f(Y1, . . . , Yn) occurs
at argument position i, in lieu of Xi; we have made this explicit with an underbrace.
Our intent was really to write the clause:

[→∗P1〈〈cy1,...,yn,Ξ(Y1, . . . , Yn, X1, . . . , f(Y1, . . . , Yn), . . . , Xk)〉〉] ⇐
[→∗P 〈〈cΞ(X1, . . . , f(Y1, . . . , Yn), . . . Xk)〉〉] (15)

however (15) falls outsideH1. But (14) is a safe over-approximation of the latter, in the
sense that if [→∗P 〈〈cΞ(X1, . . . , f(Y1, . . . , Yn), . . . Xk)〉〉] holds, then certainly both
premises of (14) hold, with Xi = f(Y1, . . . , Yn), and assuming this equality, the head
of (14) implies that of (15). So (14) includes at least all the behaviors intended in (15).

The cases of a failed match are handled by the following clauses, where g ranges
over all function symbols other than f :

[→∗Q1〈〈cΞ (X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xi, . . . Xk)〉〉], (16)

[→∗P 〈〈cΞ(X1, . . . , g(Y1, . . . , Yn), . . . Xk)〉〉]

When P = case xi of [x]x−1
j
⇒ P1 else Q1 (with i �= j), we produce the following,

where we assume that the only keys that can be used are of the form pub(X) or prv(X),
and that each form is the inverse of the other:

[→∗P1〈〈cx,Ξ(X, X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉],
[→∗P 〈〈cΞ(X1, . . . , [X]prv(Y), . . . , pub(Y), . . . , Xk)〉〉] (17)

“Logic Wins!” 7

[→∗P1〈〈cx,Ξ(X, X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉],
[→∗P 〈〈cΞ(X1, . . . , [X]pub(Y)︸ ︷︷ ︸

i

, . . . , prv(Y)︸ ︷︷ ︸
j

, . . . , Xk)〉〉] (18)

Finally, we over-approximate the failed match case bluntly, by estimating that one can
always go from P to Q1; this is benign, as in most protocols Q1 = stop:

[→∗Q1〈〈Z〉〉] ⇐ [→∗P 〈〈Z〉〉] (19)

We leave symmetric decryption, P = case xi of {x}xj ⇒ P1 else Q1, as an
exercise to the reader. Tests P = if xi = xj then P1 else Q1 are handled similarly:

[→∗P1〈〈cΞ(X1, . . . , Xk)〉〉] ⇐ [→∗P 〈〈cΞ(X1, . . . , Xk)〉〉], (20)

[→∗P 〈〈cΞ(X1, . . . , Xi︸︷︷︸
i

, . . . , Xi︸︷︷︸
j

, . . . , Xk)〉〉]
[→∗Q1〈〈Z〉〉] ⇐ [→∗P 〈〈Z〉〉] (21)

This terminates our description of the set S(P0) of clauses.
Assume we wish to prove that some message M remains secret to the Dolev-Yao

attacker throughout the execution of some system, represented as a process P . This
is equivalent to saying that P |DY (I0, c) cannot ever send M over the public channel
c. (We assume that all public communications of P goes through channel c, which is
shared with the attacker.) In turn, this is implied by the fact that [c � M] is not a logical
consequence of S(P |DY (I0, c)), because the latter is an over-approximation of the
behavior of P |DY (I0, c). But [c � M] is not a logical consequence of S(P |DY (I0, c))
if and only if S(P |DY (I0, c)) plus the single clause ⊥ ⇐ [c � M] is satisfiable.

All these clauses are in H1, and satisfiability in H1 is decidable, so we have it: a
terminating, sound algorithm for weak secrecy in the spi-calculus, in an abstract inter-
pretation setting. In practice, just use h1 [14], for example, to decide S(P |DY (I0, c))
plus ⊥ ⇐ [c � M]. One may formalize this thus:

Theorem 1. Let Spi1 be the spi-calculus of Figure 1, with semantics of processes P0
given by predicates defined through the clause set S(P0). Then weak secrecy is decid-
able in Spi1, in exponential time.

One can do much more with H1. Nielson, Nielson and Seidl observed [19] that H1
defined strongly regular relations, and this makes a deep connection to automata theory.
The set S(P0) is a collection of definite clauses, i.e., no clause in S(P0) has head⊥. Sets
of definite clauses are always satisfiable: take the Herbrand model containing all ground
atoms. So S = S(P0) has a least Herbrand model lfpTS . Now, for each predicate
symbol p, let the language Lp(S) be the set of ground terms t such that p(t) ∈ lfpTS ;
we also say that t is recognized at p in S. This generalizes the corresponding notions for
tree automata to arbitrary satisfiable sets S of Horn clauses. In particular, we retrieve
tree automata [6] by encoding the transition f(q1, . . . , qn) → q (whose effect is that
whenever t1 is recognized at q1, . . . , tn is recognized at qn, then f(t1, . . . , tn) should
be recognized at state q) as the clause q(f(X1, . . . , Xn)) ⇐ q1(X1), . . . , qn(Xn).

8 J. Goubault-Larrecq

Nielson, Nielson and Seidl observed that, whenever S was a set of definite H1
clauses, Lp(S) was always a regular language, i.e., one of the form Lp(A) for some
tree automaton A, and that one could compute A from S in exponential time. In fact,
one can compute a tree automatonA that is equivalent to S in exponential time, mean-
ing that Lp(S) = Lp(A) for all predicate symbols p at once. This was refined, following
the “Logic wins!” motto, in [15], where I showed that no new algorithm was needed for
this: good old, well-known variants of the resolution proof-search rule [2] achieve this
already. This is in fact what I implemented in h1 [14].

We use this to decide correspondence assertions as follows. A correspondence asser-
tion is a (non-Horn) clause of the form A ⇒ A1 ∨ . . .∨Ak, for some atoms A, A1, . . . ,
Ak, and our goal will be to check whether such a clause holds in lfp TS(P0). Typically,
one checks authentication of Alice by Bob, in the form of (non-injective) agreement,
following Woo and Lam [22], by writing an event begin〈e1〉 at the end of a subprocess
describing Alice’s role, where she sent message e1, and event end〈e2〉 in Bob’s role,
where Bob just received message e2. We now check that end〈X〉 ⇒ begin〈X〉 holds in
lfpTS(P0), i.e., that there is no term t such that end〈t〉 holds in lfpTS(P0) (Bob received
t) but begin〈t〉 does not (i.e., Alice never actually sent t).

Although my purpose was different then, I have shown that the model-checking prob-
lem for clauses C (in particular, of the form A ⇒ A1 ∨ . . .∨Ak) against models lfpTS

described in the form ofH1 clause sets S, was decidable in [16]: convert S to an equiv-
alent so-called alternating tree automaton A, using the resolution algorithm of [15] for
instance, then check whether C holds in the least Herbrand model ofA. The latter takes
exponential time in the number of predicate symbols of A, equivalently of S, so that
the whole process still only takes exponential time. This was implemented in the h1mc
model-checker, another part of the h1 tool suite [14]. A bonus is that it also generates
a Coq proof of the fact that C indeed holds in lfpTS , which was the main topic of [16].
Anyway, these logical considerations immediately entail:

Theorem 2. Non-injective agreement is decidable in Spi1, in exponential time. This is
also true of any correspondence assertion A ⇒ A1∨. . .∨Ak , or in fact of any property
expressed as a finite set of (not necessarily Horn) clauses.

3 Logic Programs as Types for Logic Programs

However, we have not gone as far as we could in Section 2. In particular, we have been
careful so as to define clauses in the decidable classH1. But logic allows us not to care,
or at least to care less. The idea is to write general Horn clauses, and to let a generic
algorithm do the abstraction work for us. I.e., this algorithm must take any set S of
clauses, and return a new set S′ satisfying: (a) if S′ is satisfiable, then so is S, and (b)
S′ is in some fixed decidable class, e.g., H1.

That such generic abstraction algorithms (for different decidable classes) exist was
discovered by Frühwirth et al. [12] in a remarkable piece of work. In the case ofH1, the
generic abstraction algorithm is simple, and for the main part consists in introducing
fresh predicate symbols to name terms t in heads that are too deep [15]. Formally, let a

“Logic Wins!” 9

one-hole context C[] be a term with a distinguished occurrence of the hole []. C[u] is C[]
with u in place of the hole. C[] is non-trivial iff C[] �= []. Then define the rewrite relation
� on clause sets by:

p(C[t]) ⇐ B �
{

p(C[Z]) ⇐ B, q(Z) (Z fresh)
q(t) ⇐ B (22)

where t is not a variable, q is fresh, and C[] is a non-trivial one-hole context, and:

p(C[X]) ⇐ B � p(C[Y]) ⇐ B,B[X := Y] (23)

where X occurs at least twice in C[X], and Y is a fresh variable. The relation� termi-
nates, and any normal form S′ of a clause set S satisfies (a) and (b) [15].

So instead of writing clauses, carefully crafted to be in H1, one may be sloppier
and rely on the generic abstraction algorithm. (The h1 tool does this automatically
in case the clause set given to it as input is not in H1.) For example, we can write
clause (15) as we intended. While replacing it by clause (14) looked like a hack,
one can instead use rule (22) in the definition of �: take p = →∗P1〈〈 〉〉, C[] =
cy1,...,yn,Ξ(Y1, . . . , Yn, X1, . . . , [], . . . , Xk), t = f(Y1, . . . , Yn), then (15) rewrites to
clauses that are about as over-approximated as (14). (We let the reader do the exercise.)

Generic abstraction algorithms give us considerable freedom. I have long been inter-
ested in static analysis frameworks for the security of various actual languages, and an
early example is a piece of work I did with F. Parrennes in 2003–2005 [17]. Our csur
static analyzer takes a C program and security objectives as input, and outputs sets of
Horn clauses that over-approximate the system. However, these clauses are in general
not Horn, and we rely on the above generic abstraction algorithm to produceH1 clauses
that h1 can work on.

4 Analyzing Hardware Circuits in VHDL

Until now, I have only stated principles that I have been using in the past. What about
tackling a new problem? Over the past few years, several people from industrial and
military milieus have asked me whether one could design algorithms to verify cryp-
tographic hardware automatically. These are circuits, described in languages such as
VHDL [20], with modules implementing pseudo-random number generation, encryp-
tion, decryption, hashing, and signatures. One needs to check whether no sensitive da-
tum inside the circuit ever gets leaked out, and this is done by hand to this date.

However, it seems like techniques such as those that we have used above, or in [17],
should apply. The following is a first attempt, on a cryptographic variant of a small
subset of VHDL, and should be considered as a proof of concept.

Consider the following variant of behavioral VHDL, obtained by enriching the core
language used by Hymans [18] with additional cryptographic primitives. We assume
a finite set of signals x, y, z, . . . ; “signal” is the VHDL name for a program variable.
These will take values from a domain we leave implicit, but which should include

10 J. Goubault-Larrecq

cryptographic terms. Expressions e are built from signals as in Section 2. Processes are
now described by the following grammar:

P, Q, R, ... ::= stop stop
| proc; P loop
| x <= e; P signal assignment
| wait on W for m; P suspension
| if e1 = e2 then P else Q equality test
| x <= ν; P fresh name creation
| f(x1, . . . , xn) <= e1 in P else Q constructor pattern-matching
| {x}e2 <= e1 in P else Q symmetric decryption
| [x]e−1

2
<= e1 in P else Q asymmetric decryption

Constructs above the line are from [18], while constructs below the line are extra
cryptographic constructs. (Encryption, hashing, etc., are handled in expressions e,
e1, e2 as in Section 2, through specific function symbols.) E.g., f(x1, . . . , xn) <=
e1 in P else Q is similar to case e1 of f(x1, . . . , xn) ⇒ P else Q in the spi-
calculus, binding the signals x1, . . . , xn, except with a signal assignment semantics
(see below). In wait on W for m; P , W is a finite set of signals, and m ∈ N ∪ {∞}:
this process waits until some signal in W changes, or until m units of time have elapsed,
and then proceeds to P . (For complexity purposes, we assume m is written in unary.)
A VHDL program is a parallel composition of a fixed number of processes P1, . . . , Pn.

We assume that VHDL programs are well-formed. The critical point is that no two
processes in parallel are allowed to write to the same signal. We shall therefore assume
that we are given pairwise disjoint sets of signals A1, . . . , An, such that any signal
assignment x <= e; P in Pi satisfies x ∈ Ai (1 ≤ i ≤ n). Ai will be called the domain
of Pi; Hymans [18] uses a slightly more general definition.

Again, we won’t give a formal definition of the semantics, the non-cryptographic part
of which can be found in Hymans (op. cit.). The loop proc; P executes P in an infinite
loop, i.e., it behaves just like P ; proc; P , where P ; Q denotes sequential composition
of P and Q, obtained by replacing stop by Q everywhere in P . We need to explain the
peculiar semantics of signal assignment, and how suspension is achieved. One should
first realize that execution proceeds in successions of simulation cycles, where each
process Pi runs sequentially until it stops, i.e., until it reaches stop or a suspension
wait on Wi for mi; Qi; in this case we say that Pi is waiting on Wi for mi units of
time, and Qi is its continuation.

Signal assignment x <= e is peculiar in that it does not assign the value of e to
x, but instead schedules this change of values to happen at the next simulation cycle.
Several assignments to the same signal x are allowed in each process Pi, and the value
scheduled for the next simulation cycle is the last one to be assigned to x during the
simulation cycle. Say that x has changed during a simulation cycle if its scheduled new
value is different from its current value.

A simulation cycle terminates once every Pi has reached stop or a suspension; sim-
ulation cycles may fail to terminate, but this will be irrelevant. Let E be the set of
signals that have changed during the simulation cycle. At the end of the simulation cy-
cle, execution proceeds to the next one. First, all signals are updated to their scheduled

“Logic Wins!” 11

new values. Then, say that Pi is resumable if it is waiting on a set Wi of signals that
meets E, i.e., such that Wi ∩E �= ∅, or it is waiting for mi = 0 unit of time. (The latter
case is not considered in [18], since mi �= 0 there; allowing for mi = 0 will simplify
our clauses below.) If at least one process is resumable, then resume all resumable pro-
cesses, by executing their continuation. Otherwise, let time pass, and resume the first
processes whose timeout mi expires. Time passes in this case only.

We define an abstract semantics of a fixed VHDL program by writing clauses defin-
ing some predicates indexed by the simulation cycle number k, ranging from 0 to K . It
is indeed important not to abstract away this timing information. Practically, this means
that we shall write one clause set per simulation cycle, and we shall therefore be limited
to a fixed number K of simulation cycles, a situation not uncommon in model-checking.
(We shall lift this restriction later.)

Assume our fixed VHDL program P 0 is the parallel composition of P 0
1 , . . . , P 0

n , and
write the clause set SVHDL(P 0, K) defining our abstract semantics for P 0 during K
cycles. The process Pi starts at P 0

i in simulation cycle 0. It is customary to assume that
VHDL signals must be assigned before they are used, so that the initial context ρ is
irrelevant. We shall therefore start in a context mapping each signal in Ai to a dummy
value ⊥. Let Ξi be the domain list obtained by sorting Ai in some fixed way, and let ai

be the length of Ξ , i.e., the cardinality of Ai. We write:

[→∗
0P

0
i 〈〈cΞi(⊥, . . . ,⊥︸ ︷︷ ︸

ai times

)〉〉] (24)

where the subscript (0 here) to →∗ is the simulation cycle number. We shall need an-
other predicate©ki〈〈 〉〉 (“next cycle”) recognizing the scheduled environments for sim-
ulation cycle k, 1 ≤ k ≤ K , and process i, 1 ≤ i ≤ n. Initially:

©ki 〈〈cΞi(⊥, . . . ,⊥)〉〉 (25)

Now consider the various forms that a process P among P1, . . . , Pn may assume
at simulation cycle k, 0 ≤ k ≤ K − 1. We shall enumerate clauses, one for
each P ∈

⋃n
i=1 Sub(Pi), where Sub(P) is the set of subprocesses of P . We re-

quire wait on W for m′; Q to be a subprocess of wait on W for m; Q for
all m′ ≤ m, and Sub(proc; Q) to contain Q; proc; Q and all its subprocesses. A
definition such as Sub(proc; Q) = {proc; Q} ∪ Sub(Q; proc; Q) would be ill-
formed, so use the Fischer-Ladner closure trick [11]. Let Sub(Q) = Substop(Q)
where SubP (stop) = {P}, SubP (proc; Q) = {proc; Q; P} ∪ Subproc;Q;P (Q),
SubP (wait on W for m; Q) = {wait on W for m′; Q; P | m′ ≤ m} ∪ SubP (Q),
SubP (x <= e; Q) = {x <= e; Q; P} ∪ SubP (Q) (and similarly for x <= ν),
SubP (if e1 = e2 then P1 else Q1) = {if e1 = e2 then P1; P else Q1; P} ∪
SubP (P1)∪SubP (Q1), and similarly for constructor pattern-matching and decryption.
Clearly, SubP (Q) is finite. Moreover, an easy induction on Q shows that SubP (Q) =
Sub(Q; P), so that indeed Sub(proc; Q) = {proc; Q} ∪ Sub(Q; proc; Q).

Now enumerate i and k, 1 ≤ i ≤ n, 0 ≤ k ≤ K − 1, and then enumerate P ∈
Sub(Pi). If P = proc; Q, we just write:

[→∗
kQ; proc; Q〈〈Z〉〉] ⇐ [→∗

kproc; Q〈〈Z〉〉] (26)

12 J. Goubault-Larrecq

Assignment is subtler, as we have said. In general, let xij be the jth signal in Ξi. The
assignment P = xij <= e; Q will proceed to Q with its current context Z unchanged
(clause (27)); only the scheduled value of xij will change (clause (28)). Clause (29)
defines changedkij〈〈ρ〉〉 to over-approximate the cases where xij has changed during
simulation cycle k, with context ρ: we estimate that xij may have changed if some value
has been assigned to it, even when this is xij ’s old value.

[→∗
kQ〈〈Z〉〉] ⇐ [→∗

kxij <= e; Q〈〈Z〉〉] (27)

©(k+1)i〈〈cΞi(Y1, . . . , X︸︷︷︸
j

, . . . , Yai)〉〉 ⇐ ©(k+1)i〈〈cΞi (Y1, . . . , Yai)〉〉, (28)

[→∗
kxij <= e; Q〈〈Z〉〉],

[xij <= e; Q �k e � X]
changedkij〈〈Z〉〉 ⇐ [→∗

kxij <= e; Q〈〈Z〉〉] (29)

In (28), we need to make sense of the predicate P �k e � , and this is done by clauses
similar to (10), (12) and (13), only with the subscript k added to � and →∗.

The clauses for x <= ν, if and case constructs are obtained from the correspond-
ing clauses in the spi-calculus by adding k subscripts, and replacing updates of signals
by scheduling of new values. E.g., when P = xij <= ν; Q, we produce the clauses:

[→∗
kQ〈〈Z〉〉] ⇐ [→∗

kxij <= ν; Q〈〈Z〉〉] (30)

©(k+1)i〈〈cΞi(Y1, . . . , �P�(Z)︸ ︷︷ ︸
j

, . . . , Yai)〉〉 ⇐ [→∗
kxij <= ν; Q〈〈Z〉〉], (31)

©(k+1)i〈〈cΞi(Y1, . . . , Yai)〉〉
changedkij〈〈Z〉〉 ⇐ [→∗

kxij <= ν; Q〈〈Z〉〉] (32)

where �P� = �xij <= ν; Q� is a fresh function symbol. Note that (31) is not in H1
as we have defined it. However it is in Nielson et al.’s version of H1, and in this case
the generic abstraction algorithm of [15] is exact; i.e., although we could have given an
equivalent set of clauses in (our definition of) H1, we could afford to be lazy.

The case of resumptions is more interesting. Clause (33) handles the case where P
(which we recall is in Sub(Pi)) is of the form wait on W for m; Q, and some signal
xi′j in W , for some i′, 1 ≤ i′ ≤ n and j, 1 ≤ j ≤ ai′ , has changed during simulation
cycle k. We write one such clause for each value of i′ and j with xi′j ∈ W . Clause (34)
handles the case of a timeout.

[→∗
k+1Q〈〈Z ′〉〉] ⇐ [→∗

kwait on W for m; Q〈〈Z〉〉], (33)

changedki′j〈〈Z〉〉,©(k+1)i〈〈Z ′〉〉
[→∗

k+1Q〈〈Z ′〉〉] ⇐ [→∗
kwait on W for 0; Q〈〈Z〉〉],©(k+1)i〈〈Z ′〉〉 (34)

Finally, we must write clauses to handle the cases where time passes. We use our right
to over-approximate, and estimate that time may pass even when some subprocess was
resumable. Let P = wait on W for m′; Q ∈ Sub(Pi), where m′ = m + 1 is a
non-zero timeout, different from ∞, in (35):

[→∗
k+1wait on W for m; Q〈〈Z ′〉〉] ⇐©(k+1)i〈〈Z ′〉〉, (35)

[→∗
kwait on W for m + 1; Q〈〈Z〉〉]

“Logic Wins!” 13

For each P of the form wait on W for m; Q ∈ Sub(Pi) (m ∈ N ∪ {∞}), we also
add a clause (36) that states that, when execution is resumed at Q with context Z ′, the
context of scheduled values for the next simulation cycle starts out being just Z ′:

©(k+1)i 〈〈Z ′〉〉 ⇐ [→∗
kQ〈〈Z ′〉〉] (36)

This completes the description of the clause set SVHDL(P 0, K).
We still need to model interaction with an attacker, which we shall again take to

be a Dolev-Yao attacker. To this end, we use a predicate attk so that attk(t) holds
whenever the attacker is able to infer the value of t during simulation cycle k. Letting
I0 denote a predicate recognizing the messages initial known to the attacker, we write:

att0(X) ⇐ I0(X) (37)

attk+1(X) ⇐ attk(X) (38)

attk({X}Y) ⇐ attk(X), attk(Y) (sym. encryption) (39)

attk(X) ⇐ attk({X}Y), attk(Y) (sym. decryption) (40)

attk([X]Y) ⇐ attk(X), attk(Y) (asym. encryption) (41)

attk(X) ⇐ attk([X]pub(Y)), attk(prv(Y)) (asymmetric (42)

attk(X) ⇐ attk([X]prv(Y)), attk(pub(Y)) decryption) (43)

attk(f(X1, . . . , Xk)) ⇐ attk(X1), . . . , attk(Xk) (44)

attk(Xj) ⇐ attk(f(X1, . . . , Xn)) (45)

where 0 ≤ k ≤ K (except k ≤ K − 1 in (38)), 1 ≤ j ≤ n in (45), and f is usually
restricted to sets of so-called public functions in (44), and public constructors in (45),
in ProVerif parlance [3]. Note that clause (38) states that the attacker remembers from
one simulation cycle to the next one. Call this set of clauses SDY.

Next, we model which signals the attacker can read from and write to, yielding a
clause set Spub. For any signal xij that the attacker can read from, write the following
clause (46), and for any signal xij the attacker can write to, write (47), 1 ≤ k ≤ K:

attk(Xj) ⇐©ki〈〈cΞi(X1, . . . , Xai)〉〉 (46)

©ki〈〈cΞi(X1, . . . , X︸︷︷︸
j

, . . . , Xai)〉〉 ⇐ attk(X),©ki〈〈cΞi(X1, . . . , Xai)〉〉 (47)

This is the interface of the circuit to the attacker.
We finally write clauses stating which signals are sensitive, i.e., which signals hold

data that the attacker should never learn, and at which simulation cycles. Let Sens be a
set of triples (k, i, j): our goal is to ensure that the contents of signal xij at simulation
cycle k is secret for each (k, i, j) ∈ Sens. Then write the collection Ssec(Sens) of all
clauses of the following form, (k, i, j) ∈ Sens:

⊥ ⇐ attK(Xj),©ki〈〈cΞi(X1, . . . , Xai)〉〉 (48)

S = SVHDL(P 0, K) ∪ SDY ∪ Spub ∪ Ssec(Sens) is a collection of H1 clauses,
modulo our remark about (31). Moreover, if S is satisfiable, then no Dolev-Yao attacker
can ever obtain the values of sensitive signals at the designated simulation cycles.

14 J. Goubault-Larrecq

Taking the approximate semantics defined by SVHDL(P 0, K) as a reference seman-
tics for a language that we shall call VHDL1(K), we say that the confidentiality objective
Sens is met by P0 in VHDL1, with given interface, iff the Dolev-Yao attacker cannot
obtain the value of any signal xij at any simulation time k for any (k, i, j) ∈ Sens.

Theorem 3. For any K ∈ N, for any VHDL1(K) program P 0, any interface, and any
finite set Sens, it is decidable in exponential time whether the confidentiality objective
Sens is met by P 0 with the given interface.

This only deals with the case of at most K simulation cycles. One way want to overcome
this limitation. The standard cures in abstract interpretation are called widenings. Here,
there is a trivial, logic-based widening: fix k0 with 0 ≤ k0 < K , and decide to equate
all simulation cycles k ≥ k0 that are equal modulo K − k0. This is easy to achieve:
realizing that all our predicate symbols have a k subscript, say pk, just add the clauses
pk0(X) ⇐ pK(X) for all p, in effect adding a loop in time. Call VHDL2(k0, K) the
language whose semantics is defined by these clauses in addition to SVHDL(P 0), for
each VHDL program P0. Since these clauses are again in H1, we obtain:

Theorem 4. For any k0 < K , for every VHDL2(k0, K) program P 0, for any interface,
and any finite set Sens, it is decidable in exponential time whether the confidentiality
objective Sens is met by P 0 with the given interface.

5 Conclusion

We hope to have shown how logical encodings afforded us easy terminating abstract in-
terpretation algorithms for security. Doing so, we have made the first forays into the de-
sign of algorithms that verify cryptographic circuits. Much still has to be done, though.

For one, we have not considered equational theories; e.g., if one ever uses the bit-
wise exclusive-or⊕, a common practice in hardware circuits, one should really reason
modulo the fact that ⊕ is associative, commutative, idempotent, and has a unit. One
promising avenue stems from [16], where I showed that all that h1 did was essen-
tially looking for finite models. If one replaces h1 by a finite model-finder such as
Paradox [5], and applies the latter to the various clause sets described in this paper,
with additional equality clauses that axiomatize the ambient equational theory, one may
hopefully obtain proofs of security as finite models, with few states [16, Section 8].

Second, one should really consider computational proofs of security instead of the
useful, but unsatisfactory, Dolev-Yao model. Approximating a Hoare logic such as [7]
through Horn clauses is probably a good starting point for this.

Finally, when one comes to hardware circuits, one is led to evaluate the impact of
timing attacks (which we cannot yet, since time was left implicit in our model—only
simulation cycles, not time, were handled), but also of fault injections, of differential
power analysis, of electromagnetic leaks. . . this opens a whole can of worms.

Acknowledgments. We thank David Lubicz, Nicolas Guillermin, and Riccardo
Bresciani for fruitful interaction on the question of static analysis of VHDL for security.

“Logic Wins!” 15

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols. Information and Compu-
tation 148(1), 1–70 (1999)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. North-Holland,
Amsterdam (2001)

3. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: Proc.
14th Computer Security Foundations Workshop, pp. 82–96. IEEE, Los Alamitos (2001)

4. Bryant, R.E.: Graph-based algorithms for boolean functions manipulation. IEEE Trans.
Comp. C35(8), 677–692 (1986)

5. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model build-
ing. In: Baumgartner, P. (ed.) Proc. CADE-19 Workshop W4, Miami, Florida (July 2003)

6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree automata techniques and applications (1997),
http://www.grappa.univ-lille3.fr/tata (Version of September 6 2005)

7. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated
proofs for asymmetric encryption schemes in the random oracle model. In: Proc. 15th ACM
Conf. Computer and Communications Security, pp. 371–380. ACM Press, New York (2008)

8. Devienne, P., Lebègue, P., Parrain, A., Routier, J.-C., Würtz, J.: Smallest Horn clause pro-
grams. Journal of Logic Programming 27(3), 227–267 (1994)

9. Durgin, N.A., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: Undecidability of bounded security
protocols. In: Workshop on Formal Methods and Security Protocols (July 1999)

10. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic 57(3), 795–807 (1992)

11. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18, 194–211 (1979)

12. Frühwirth, T., Shapiro, E., Vardi, M.Y., Yardeni, E.: Logic programs as types for logic pro-
grams. In: Proc. 6th Symp. Logic in Computer Science, pp. 300–309. IEEE, Los Alamitos
(1991)

13. Goubault-Larrecq, J.: Implementing tableaux by decision diagrams. Interner Bericht 1996-
32, Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe (1996)

14. Goubault-Larrecq, J.: The h1 Tool Suite. LSV, ENS Cachan, CNRS, INRIA projet SECSI
(2003),
http://www.lsv.ens-cachan.fr/˜goubault/H1.dist/dh1index.html

15. Goubault-Larrecq, J.: Deciding H1 by resolution. Inf. Proc. Letters 95(3), 401–408 (2005)
16. Goubault-Larrecq, J.: Finite models for formal security proofs. Journal of Computer Security

(to appear 2009); Long version of Towards producing formally checkable security proofs, au-
tomatically. In: Proc. 21st Computer Security Foundations Symposium, pp. 224–238. IEEE,
Los Alamitos (2008)

17. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C code. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005);
Long version, with mistakes corrected, submitted to a journal (June 2005); available as LSV
Research Report 2009-18 (July 2009)

18. Hymans, C.: Checking safety properties of behavioral VHDL descriptions by abstract inter-
pretation. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477,
pp. 444–460. Springer, Heidelberg (2002)

19. Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn clauses, strongly recognizable rela-
tions and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477,
pp. 20–35. Springer, Heidelberg (2002)

http://www.grappa.univ-lille3.fr/tata
http://www.lsv.ens-cachan.fr/~goubault/H1.dist/dh1index.html

16 J. Goubault-Larrecq

20. VHDL synthesis interoperability working group (April 1998),
http://www.eda.org/siwg/

21. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order logic. In:
Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer,
Heidelberg (1999)

22. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: IEEE Symposium
on Security and Privacy, pp. 178–194. IEEE, Los Alamitos (1993)

http://www.eda.org/siwg/

Higher-Order Program Verification and
Language-Based Security

(Extended Abstract)

Naoki Kobayashi

Tohoku University

Abstract. Language-based security has been a hot research area of com-
puter security in the last decade. It addresses various concerns about soft-
ware security by using programming language techniques such as type
systems and program analysis/transformation. Thus, advance in pro-
gramming language research can also benefit language-based security.
This paper reports some recent advance in verification techniques for
higher-order programs, and discusses its applications to language-based
security. More specifically, we summarize the recent result on model-
checking of higher-order recursion schemes, and show how it may be
applied to language-based security such as secure information flow and
stack-based access control.

1 Recursion Schemes and Program Verification

A higher-order recursion scheme (recursion scheme, for short) is a grammar for
describing an infinite tree. Unlike regular tree grammars, non-terminal symbols
can take trees or higher-order functions on trees as parameters. For example,
the following is an order-1 recursion scheme, where the non-terminal F takes a
tree as a parameter.

S → F c
F x → a x (F (b x))

The start symbol S is reduced as follows:

S −→ F c −→ a c (F (b c)) −→ a c (a (b c) (F (b(b c))))) −→ · · · ,

and the following infinite tree is generated.

a

c a

b

c

a

b

..

a

.. ..

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 17–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 N. Kobayashi

From a programming language point of view, a higher-order recursion scheme
is a simply-typed call-by-name functional program with recursion and tree con-
structors (but without destructors).

A major breakthrough was brought by Ong [1], who showed that the modal
μ-calculus model checking of recursion schemes (“Given a recursion scheme G
and a modal μ-calculus formula ϕ, does the tree generated by G satisfy ϕ?”)
is decidable.1 The model-checking of recursion schemes subsumes finite-state
model checking and pushdown model checking, as recursion schemes are at least
as expressive as higher-order pushdown systems (for describing trees) [2]. We
have recently applied the model checking of recursion schemes to various verifi-
cation problems of higher-order programs, including reachability, flow analysis,
resource usage verification [3], and exact type checking of XML-processing pro-
grams [4,5,6]. The idea behind those pieces of work is that, given a simply-typed
functional program with recursion, one can transform it into a recursion scheme
that generates a tree containing all information about interesting event sequences
or program output. For example, consider the following program that accesses
file “foo” [4]:

let rec f x = if * then close(x) else read(x); f x in
let fp = open_in "foo" in f(fp)

It can be translated into the following recursion scheme G:

S → F fp end F xk → br (closek) (read (F xk))

It generates the following tree:

br

close

end

read

br

close

end

read

. . .

Note that the tree above represents all the access sequences to file “foo”, so that,
by model-checking the recursion scheme, one can verify that the file is accessed
in a valid manner.

The worst-case time complexity of model-checking recursion schemes is n-
EXPTIME (where n is the largest order of the type of a non-terminal: see [1,7]).
Thus, one may think that the model-checking of recursion schemes is only of
theoretical interest. A type-based model checking algorithm, however, has re-
cently been developed that actually runs reasonably fast for recursion schemes
obtained from various program verification problems [5,6].
1 In prior to Ong’s result, Knapik et al. [2] showed the decidability for a subclass of

recursion schemes called safe recursion schemes. From the viewpoint of application
to program verification, however, the safety restriction is rather restrictive.

Higher-Order Program Verification and Language-Based Security 19

2 Applications to Language-Based Security

Based on the results summarized above, it is natural to expect that one can also
apply model-checking of recursion schemes to language-based security. We con-
sider a simply-typed, call-by-value λ-calculus with recursion and booleans below,
and sketch that non-interference and stack-based access control are decidable for
that language.2

The syntax of the language is:

e ::= true | false | x | e0e1 | λx.e | fun(f, x, e) | if e1 then e2 else e3

Here, fun(f, x, e) denotes a recursive function. The type system and the call-by-
value operational semantics are defined as usual.

2.1 Non-interference

The non-interference property defined below is a formal criterion for secure in-
formation flow. It states that information about an input value does not flow to
the output; see [8] for a nice survey of secure information flow.

Definition 1 (non-interference). Let e be a term of type bool → bool. The
term e satisfies non-interference if, for every b ∈ {true, false}, e(true) evaluates
to b if and only if e(false) evaluates to b.

Given a term e′ of type bool, one can easily transform it into a recursion scheme
that generates a tree consisting of a single node b just if e′ evaluates to b. For
example, consider the following program:

let g x = if x then false else true in
let f x = if x then g x else false in
f true

As usual, let f(x) = e0 in e1 is an abbreviated form of (λf.e1)fun(f, x, e0). It
can be transformed into the following recursion scheme:

S → F True true false
G x t f → x False True t f
F x t f → x (G x) False t f
True t f → t
False t f → f

Here, S corresponds to the main body of the program, and G and F correspond
to functions g and f respectively. (The reason why G and F take additional
parameters is that both sides of each rule of a recursion scheme must have a
tree type.) Booleans true and false have been encoded into λt.λf.t and λt.λf.f
respectively. The conditional if∗ e0 e1e2 has been encoded into e0 e1 e2 as usual.
2 Formal proofs of the decidability are however deferred to a longer version of this

paper.

20 N. Kobayashi

It is easy to see that the recursion scheme generates a tree consisting of a single
node false, which is the same output as the original program.

Given a term e of type bool→ bool, one can transform e(true) and e(false)
into recursion schemes, and then apply the model checking to decide whether
e(true) and e(false) output b for each b ∈ {true, false}. Thus, we have:

Theorem 1. The non-interference property is decidable (for the language above).

Note that although e does not take a higher-order function, arbitrary higher-
order functions may be used inside e. The same result holds for the call-by-name
language.

The above decidability result does not extend to the higher-order case. Let us
write ≈τ for the standard observational equivalence at type τ .

Definition 2 (higher-order non-interference). Let e be a term of type
bool→ τ . The term e satisfies non-interference if e(true) ≈τ e(false).

From Loader’s result [9], it follows that ≈τ is undecidable in general,3 hence so
is the higher-order non-interference.

2.2 Stack-Based Access Control

Stack inspection [10,11,12] is a mechanism for controlling resource accesses based
on call sequences of functions or methods. Following Pottier et al. [11],4 we
extend the language as follows:

e ::= · · · | R[e] | enable R in e | check R in e

Here, R represents a set of access permissions. The expression R[e] updates the
current permissions (say, R0) with R∩R0, and executes e; after evaluating e, the
permissions R0 is restored. The expression enable R in e adds R to the current
permissions, and executes e, and check R in e checks whether R is a subset of
the current permissions, and if so, executes e; otherwise the program is aborted.
Please consult [11,12] for the formal semantics of those primitives.

Consider the following program.

let f x = Trusted[check Trusted then x else fail] in
let g x = Untrusted[f x] in
g true

Here, Trusted (Untrusted, resp.) is a set of permissions given to trusted prin-
cipals. The program first invokes g (which is untrusted), which in turn invokes

3 Loader’s undecidability is for call-by-name, finitary PCF, but one can modify it to
derive the undecidability of the observational equivalence for call-by-value, finitary
PCF.

4 Pottier et al. also allows permission testing test e0 then e1 else e2. We conjecture
that the decidability result below holds also with permission testing.

Higher-Order Program Verification and Language-Based Security 21

trusted code f. The permission test in f fails, since it has been invoked through
g, so that the current permission is the intersection of Untrusted and Trusted.

On the other hand, the permission test in the following program succeeds,
since f is invoked only after the call of h has returned.

let f x = Trusted[check Trusted in x] in
let h x = Untrusted[x] in
f(h true)

We consider the following stack-based access control problem (SBAC, for
short):

“Given a term e of type bool, will e be aborted (due to the failure of a
check opertion)?”

We show that SBAC can be encoded into a model-checking problem for a recur-
sion scheme.

The idea of the encoding is to transform a term e into a recursion scheme
that generates a tree consisting of sequences of framing (R[·]), enable, and check
operations.

For example, the first program above is transformed into the following recur-
sion scheme:

S → G True (λt.λx.t)
F x k → k (frameTrusted (checkTrusted end)) x
G x k → F x (λt.λx.k (frameUntrusted t) x)

Here, we have used λ-abstractions for the sake of readability. The idea is similar
to that of the CPS (continuation-passing-style) transformation. The function
F takes an additional parameter k, which takes a tree representing the event
sequences and a return value of F . The recursion scheme above generates the
following tree:

frameUntrusted

frameTrusted

checkTrusted

end

To checkwhether theprogram is aborted, it suffices tocheckwhethercheckTrusted
occurs below frameUntrusted.

The second program is transformed into the following recursion scheme.

S → H True (λt1.λx1.(F x1 (λt2.λx2.seq t1 t2)))
F x k → k (frameTrusted (checkTrusted end)) x
H x k → k (frameUntrusted end) x

22 N. Kobayashi

The tree generated by the recursion scheme is:

seq

frameUntrusted

end

frameTrusted

checkTrusted

end

Since checkTrusted does not occur below frameUntrusted, the second program
is safe.

As sketched above, one can always transform a term of type bool into a recur-
sion scheme that generates a tree representing sequences of framing, enabling,
and checking of permissions. SBAC is therefore decidable. (Note that the ac-
tual transformation is a little more complicated than sketched above, because of
the need to handle non-termination. More details will be described in a longer
version.)

Remark 1. Another way for encoding SBAC into a model chekcing problem for
a recursion scheme is to transform a program into a recursion scheme (extended
with finite data domains [6]) that computes the current permission eagerly and
passes it as an extra argument of each function, so that the recursion scheme
generates a tree consisting of a single node fail if and only if the original pro-
gram is aborted. This encoding is probably simpler, although the above encoding
may be more intuitive.

2.3 Further Directions

In this paper, we discussed two applications of higher-order model checking to
language-based security: secure information flow and stack-based access control.
We think higher-order model checking is applicable to many other problems in
language-based security. For example, we expect that our technique for SBAC
is also applicable to history-based access control [13,14].

At this moment, it is not clear how much our verification method scales in
practice. Even if automated verification does not scale, however, our method
may be useful in the context of proof-carrying code [15]. Our model-checking
algorithm for recursion schemes [5] is based on type inference. Therefore, if type
information is given as a certificate of the correctness of a program, then the
correctness can be checked efficiently by a type checking (instead of inference)
algorithm.

We have considered a simply-typed language having only booleans as base
values. For infinite data domains such as integers, predicate abstractions can be
used to obtain a sound (but incomplete) verification method. For a language with
more advanced types (such as recursive types), it is unclear whether a similar
approach is applicable (even if we give up the completeness of a verification
algorithm).

Higher-Order Program Verification and Language-Based Security 23

Acknowledgments

We would like to thank Luke Ong for pointing us to Loader’s work on the
undecidability of finitary PCF.

References

1. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes.
In: LICS 2006, pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)

2. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

3. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions on Pro-
gramming Languages and Systems 27(2), 264–313 (2005)

4. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 416–428 (2009)

5. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009 (to appear 2009)

6. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. Preprint (2009)

7. Kobayashi, N., Ong, C.H.L.: Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. In: Proceedings of ICALP 2009. LNCS.
Springer, Heidelberg (2009)

8. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Se-
lected Areas in Communications 21(1), 5–19 (2003)

9. Loader, R.: Finitary pcf is not decidable. Theoretical Computer Science 266(1-2),
341–364 (2001)

10. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. Addison
Wesley, Reading (1999)

11. Pottier, F., Skalka, C., Smith, S.F.: A systematic approach to static access control.
ACM Transactions on Programming Languages and Systems 27(2), 344–382 (2005)

12. Fournet, C., Gordon, A.D.: Stack inspection: Theory and variants. ACM Transac-
tions on Programming Languages and Systems 25(3), 360–399 (2003)

13. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings
of the Network and Distributed System Security Symposium (NDSS 2003). The
Internet Society, San Diego (2003)

14. Wang, J., Takata, Y., Seki, H.: HBAC: A model for history-based access control
and its model checking. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS
2006. LNCS, vol. 4189, pp. 263–278. Springer, Heidelberg (2006)

15. Necula, G.C.: Proof-carrying code. In: Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, pp. 106–119 (1997)

Deducibility Constraints�

Sergiu Bursuc1, Hubert Comon-Lundh1,2, and Stéphanie Delaune1

1 LSV, CNRS & ENS Cachan & INRIA project SECSI
2 AIST, Tokyo

Abstract. In their work on tractable deduction systems, D. McAllester
and later D. Basin and H. Ganzinger have identified a property of infer-
ence systems (the locality property) that ensures the tractability of the
Entscheidungsproblem.

On the other hand, deducibility constraints are sequences of deduction
problems in which some parts (formulas) are unknown. The problem
is to decide their satisfiability and to represent the set of all possible
solutions. Such constraints have also been used for deciding some security
properties of cryptographic protocols.

In this paper we show that local inference systems (actually a slight
modification of such systems) yield not only a tractable deduction prob-
lem, but also decidable deducibility constraints. Our algorithm not only
allows to decide the existence of a solution, but also gives a representation
of all solutions.

1 Introduction

Deciding whether a given statement can be derived from hypotheses, using a set
of formal inference rules, is one of the famous issues in proof theory, known as the
Entscheidungsproblem. This is undecidable for first-order logic and untractable
for propositional logic. There are however several formal proof systems for which
the problem is tractable, for instance Horn propositional logic, but also the so-
called Dolev-Yao intruder deduction rules. D. McAllester [13] observed that any
inference system which is local yields a tractable Entscheidungsproblem. D. Basin
and H. Ganzinger [1] proved that locality is equivalent to a saturation property
of the set of inference rules.

The Dolev-Yao inference system is local (and saturated with respect to the
subterm ordering). This is why deciding whether a message can be computed
by an attacker from a finite set of messages can be performed in polynomial
(actually linear) time in this formal proof system. Now, if we consider an active
attacker, we need not only to solve the Entscheidungsproblem, but a more general
problem in which some statements and proofs are unknown: this corresponds to
the attacker’s choices. This was formalized in [14], using deducibility constraints.
There are many historical examples of deducibility constraints in mathematics:
Fermat gave a proof of his famous theorem, in which parts were missing; filling
the holes amounts to solve a deducibility constraint (in formal arithmetic).

� This work has been partially supported by the ANR-07-SESU-002 AVOTÉ.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 24–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Deducibility Constraints 25

The starting point of the present work is the problem of lifting the results
of D. McAllester, D. Basin and H. Ganzinger from deducibility to deducibility
constraints. For the security protocols, this corresponds to moving from a passive
adversary to an active adversary.

We consider formal inference systems without AC-symbols (as in [1]). We also
assume that there is a single unary predicate symbol (this corresponds to the
attacker knowledge in security protocols). Then we prove that, for any inference
system that is saturated in some suitable way (we call it good), the deducibility
constraints are decidable. Actually, we prove more: we provide with a constraint
simplification algorithm that yields solved forms. This allows not only to decide
the existence of a solution, but also to represent all solutions. Such a feature is
used in [7] for deciding trace properties such as authentication and key cycles in
security protocols, and also in [11] for deciding game-theoretic security properties
such as abuse-freeness. Our results generalize [7] to any good inference system.
Finally, we claim that our transformation rules are simple: we simply guess the
last inference step and reflect this on the constraint solving. The difficult part is
then the design of a complete and terminating strategy.

As in [1], an advantage of our approach is the ability to complete the original
inference system; if the inference system is not good (hence we cannot apply
directly our results), we may run a saturation procedure, that will yield a good
inference system. Of course, such a procedure may not terminate, in which case
we can still use our results on the limit (infinite) inference system, but getting
an effective algorithm for solving deducibility constraints requires more work,
which is out of the scope of this paper.

Related work. The present work is a strict extension of [7]: we consider a class of in-
ference systems instead of a particular one. The intruder theories that are described
by a subterm convergent rewriting system can also be casted as good inference sys-
tems (but the converse is false). Hence, as far as trace properties are concerned, we
also generalize [2,4]. Note however that [2] also considers equivalence properties,
that are not covered (yet) by our work. There are also several examples of formal
(intruder) proof systems that yield decidable deducibility constraints [16,8,6,5,10].
All these works consider AC-symbols and are incomparable with our results.

Structure of the paper. In Section 2, we introduce good inference systems and their
properties. Then, in Section 3, we introduce deducibility constraints. In Section 4,
we provide with a set of constraint transformation rules, that is parametrized by
any good inference system and that we prove both sound and complete: the solu-
tions of the constraint are the same as the solutions of the solved forms that are
obtained by applying the transformation rules. In Section 5, we give a complete
and terminating strategy. Due to a lack of space, the proofs are given in [3].

2 Preliminaries

In what follows, we assume that F is a (ranked) alphabet of function symbols.
Terms are built on this set of function symbols and a set of variables X . Ground

26 S. Bursuc, H. Comon-Lundh, and S. Delaune

terms are terms without variables. For any term t (and, by extension, set of
terms or any formal expression), var (t) is the set of variable symbols occurring
in t and st(t) denotes the set of subterms of t defined as usual.

2.1 Inference Systems

We use a natural deduction style for inference systems. An inference rule consists
in a finite set of terms {u1, . . . , un}, the premises, and a term u, the conclusion
such that var (u) ⊆ var ({u1, . . . , un}). It is displayed

u1 · · · un

u
It may also be convenient to use a deducibility predicate symbol I, in which case
the inference rules are simply Horn clauses I(u1), . . . , I(un) → I(u).

Example 1. Consider the signature F = {enc/3, pub/1, priv/1, 〈 , 〉/2}. The
symbols enc and 〈 , 〉 represent respectively probabilistic encryption and pairing,
pub (resp. priv) represents the public key (resp. private key) construction. A
possible set of “Dolev-Yao” inference rules for public-key encryption is:

(E)
x y z

enc(x, y, z)
(D)

enc(pub(y), x, z) priv(y)

x
(K)

x

pub(x)

(P)
x y

〈x, y〉 (Proj1)
〈x, y〉

x
(Proj2)

〈x, y〉
y

Other relevant examples of inference systems are obtained by adding signature
schemes, hash functions, symmetric encryption . . .

A proof, with hypotheses H and conclusion t is a tree, whose nodes are labeled
with terms and such that, if a node is labeled s and its sons are labeled s1, . . . , sn,
then either n = 0 (this is a leaf node), and s ∈ H , or else there is an inference
rule whose premises are u1, . . . , un and conclusion is u and a substitution θ such
that uθ = s and, for every i, uiθ = si. We write H � t when there exists a proof
with hypotheses H and conclusion t.

We let step(π) be the set of terms labeling the proof π and leaves(π) be the
multiset of the terms that labels the leaves of π. If π is a proof, we let last(π)
be the last inference step in π, premises(π) be the proofs of the premises of
last(π) and conc(π) be its conclusion. More formally,

if π =
π1 · · · πn

u
then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
last(π) =

conc(π1) · · · conc(πn)

u
premises(π) = {π1, . . . , πn}

conc(π) = u

Deducibility Constraints 27

Example 2. Consider the following proof tree π. Actually, π is a proof in the
Dolev-Yao inference system presented in Example 1.

enc(pub(k), a, r)

〈priv(k), a〉
(Proj1)

priv(k)
(D)

a

We have that premises(π) = {enc(pub(k), a, r),
〈priv(k), a〉
priv(k)

}, conc(π) = a,

last(π)=
enc(pub(k), a, r) priv(k)

a
,leaves(π)={enc(pub(k), a, r), 〈priv(k), a〉}.

2.2 Good Inference Systems

In the following definitions, we introduce our notion of saturation. Informally, if
there is a proof such that some intermediate step is too large (we call this a bad
proof and the large step is called a bad pattern), then there must be a simpler
proof of the same statement.

If R =
s1 · · · sn

s0
is an inference rule, we let Max(R) be the multiset of the

maximal terms si, w.r.t. the subterm ordering �.

Definition 1 (bad proof / pattern). A bad proof is a proof π of the form:

u1 · · · un

v1 · · · vm
R1

un+1 un+2 · · · un+k
R2

v

such that R1 =
s1 · · · sm

s
, R2 =

t1 · · · tn+k

t
, s ∈ Max(R1) and tn+1 ∈ Max(R2).

A bad pattern in a proof π is a subproof of π of the form:

π1
2 · · · πi−1

2

π1
1 · · · πm

1
R1

conc(πi
2) πi+1

2 · · · πn
2

R2
v

such that the following proof is a bad proof.

conc(π1
2) · · · conc(πi−1

2)

conc(π1
1) · · · conc(πm

1)

conc(πi
2) conc(πi+1

2) · · · conc(πn
2)

v

If π = Rθ is an instance of an inference rule R and Max(R) = {s1, . . . , sk}, then
μ(π) is the multiset {s1θ, . . . , skθ}. If π is a proof, μ(π) is defined as the multiset
of μ(π′) for all inference steps π′ of π. Formally, if premises(π) = {π1, . . . , πn},
we have that:

μ(π) = μ(π1) � · · · � μ(πn) � μ(last(π)).

28 S. Bursuc, H. Comon-Lundh, and S. Delaune

Multisets are ordered using the multiset extensions of their elements: if � is an
ordering, we let �m be its multiset extension.

Definition 2 (good inference system). An inference system is good if there
is a total well-founded extension ≺ of the subterm ordering � such that, for
any bad proof π, there is a proof π′ of leaves(π) � conc(π) with leaves(π′) ⊆
leaves(π) (multiset inclusion), μ(π′) (≺m)m μ(π), and μ(π′) �= μ(π).

Example 3. The Dolev-Yao inference system described in Example 1 is good.
Indeed, all bad proofs are of one of the following forms

pub(u1) u2 u3

enc(pub(u1), u2, u3) priv(u1)

u2

u1 u2

〈u1, u2〉
ui

i = 1, 2

Obviously, for all such π there is a smaller, trivial, proof π′ of leaves(π) � conc(π)
such that leaves(π′) ⊆ leaves(π) and μ(π′) (≺m)m μ(π) for any total well-
founded extension ≺ of the subterm ordering.

Now, we give another example in which the inference system is no longer finite.
We consider blind signatures, as described in [9], that are used in some e-voting
protocols. The inference system is not good. However, we may complete it and
get an infinite, yet recursive, good inference system.

Example 4. We add the following rules to the system of Example 1:

(S)
x y

sign(x, y)
(C)

sign(x, y)

x

(B)
x y

blind(x, y)
(UB1)

blind(x, y) y

x
(UB2)

sign(blind(x, y), z) y

sign(x, z)

Because of the rule (UB2), the system not good. The following proof π is bad:

sign(blind(blind(x, x1), x2), y) x2

sign(blind(x, x1), y) x1

sign(x, y)

There is no other proof π′ of leaves(π) � sign(x, y) such that leaves(π′) ⊆
leaves(π). Thus, for any total well-founded extension ≺ of �, there is no
proof π′ of leaves(π) � sign(x, y) such that leaves(π′) ⊆ leaves(π) and
μ(π′) (≺m)m μ(π). However, we may add all shortcuts that correspond to
bad proofs. Let bn(x, x1, . . . , xn) be defined by b1(x, x1) = blind(x, x1) and
bn+1(x, x1, . . . , xn+1) = blind(bn(x, x1, . . . , xn), xn+1). We add the following
rules (for every n ≥ 1) and the resulting system is a good inference system.

sign(bn(x, x1, . . . , xn), y) x1 . . . xn

sign(x, y)

Deducibility Constraints 29

2.3 Some Properties of Good Inference Systems

Definition 3 (simple proof). Let H1 ⊆ H2 ⊆ · · · ⊆ Hn. A proof π of Hi � u
is left-minimal if for any j < i such that Hj � u, π is a proof of Hj � u. A
proof is simple if it does not contain any bad pattern and all its subproofs are
left-minimal.

Example 5. Consider the Dolev-Yao inference system given in Example 1. Let
H1 = {enc(pub(k), a, r), priv(k), a}, H2 = H1 ∪ {〈a, b〉}. We have that H2 � a.
Indeed, the proofs π1, π2 and π3 described below are witnesses of this fact:

〈a, b〉
a

enc(pub(k), a, r) priv(k)

a

a a

〈a, a〉
a

The proofs π2 is simple whereas π1 and π3 are not. Note that proof of H2 � a
reduced to a leaf is also a simple proof.

Lemma 1. Consider a good inference system. Let H1 ⊆ H2 ⊆ · · · ⊆ Hn be an
increasing sequence of sets of terms and i ∈ {1, . . . , n}. If π is a proof of Hi � u
then there is a simple proof of Hi � u.

From now on, we only consider good inference systems. The rules of such systems
can be divided in three sets.

– The composition rules whose conclusion is the only maximal term. Any rule
I(x1), . . . , I(xn) → I(f(x1, . . . , xn)) is a composition, e.g. (P), (E), (S).

– The decomposition rules whose all maximal terms are premises, e.g. (D).
– The versatile rules whose both the conclusion and some premises are maxi-

mal, e.g. (UB2).

In what follows, we also assume that:

1. any composition rule has a conclusion f(x1, . . . , xn) where x1, . . . , xn are
variables. This is the case in our application area: each function symbol is
either public (and there is such a rule) or private.

2. any versatile rule satisfies the following properties:
(a) each strict subterm of the conclusion is a subterm of some premise.
(b) each premise that is not maximal in the rule is a strict subterm of another

premise of that rule.

These conditions are satisfied in Examples 1 and 4. Besides these examples, any
intruder theory that can be presented by a finite subterm-convergent rewrite
system satisfies our hypotheses. These hypotheses might not be necessary for
our result, but we use them in our proof.

We now classify the proofs, according to the type of the last proof step. This
generalizes the classical composition/decomposition classification:

Lemma 2 (locality). Let π be a proof of H � u without bad pattern, one of
the following occurs:

30 S. Bursuc, H. Comon-Lundh, and S. Delaune

– last(π) is a composition and step(π) ⊆ st(H ∪ {u});
– π is reduced to a leaf or last(π) is a decomposition and step(π) ⊆ st(H);
– last(π) is (an instance of) a versatile rule and step(π′) ⊆ st(H) for any

strict subproof π′ of π.

This is proved by observing that any proof in which a maximal conclusion is also
a maximal premise of the next rule can be simplified, according to the definition
of good inference systems.

3 Deducibility Constraints

The following definition of (deducibility) constraints has been proved to be rel-
evant in the context of security protocols verification (see, e.g. [15,16,7]).

Definition 4. A constraint system D is a formula of the form ∃z̃.[[C | E]] where:

– z̃ is a sequence of variables;
– E(D) = E is a set of equations in solved form, identified to a substitution θE;
– C is a conjunction of deducibility constraints H1 � u1 ∧ . . .∧Hn � un where

var (C) ∩ dom(θE) = ∅, H1, . . . , Hn are finite sets of terms, u1, . . . , un are
terms, and such that monotony and origination are satisfied:
• Monotony: ∅ �= H1 ⊆ H2 ⊆ . . . ⊆ Hn;
• Origination: var(Hi) ⊆ var ({uj | Hj � Hi}) for 1 ≤ i ≤ n.

We let fvar (D) = var(D) � z̃ and LH(D) = {H1, . . . , Hn}.

Definition 5 (solution). Given an inference system, a solution of a constraint
system D = ∃z̃.[[C | E]] is a ground substitution σ with dom(σ) = fvar (D) such
that there is a ground substitution τ with dom(τ) = z̃ such that:

– H(σ ∪ τ) � u(σ ∪ τ) for every H � u ∈ C, and
– u(σ ∪ τ) = v(σ ∪ τ) for every u = v ∈ E.

We let Sol(D) be the set of solutions of D.

In the context of security protocols, any solution will correspond to a choice
of messages that are constructed by the attacker and that are accepted by the
honest parties.

Example 6. We consider the Dolev-Yao inference system given in Example 1.

D :=
{

H1 = a � x0 ∧ a � x1
H2 = enc(x0, 〈b, x1〉, r), priv(a), a � b

H1 ⊆ H2 and the variables x0, x1 occur first on the right. Thus, D is a constraint
system. σ = {x0 �→ pub(a), x1 �→ 〈a, a〉} is a solution of D. Here, there are no
bounded variables nor equations. This is the case for constraint systems that
represent the security protocol executions. Bounded variables and equations may
however be introduced by our constraint solving rules.

Deducibility Constraints 31

Putting together Definitions 4 and 5, we get the following problem, whose
decision is the subject of this paper:

Given an inference system and a constraint system D, does there exist a
substitution σ such that σ ∈ Sol(D) ? We also want to find an effective
representation of all solutions.

Notation. Let D = ∃z̃.[[C | E]] be a constraint system. For every variable x ∈
var(D), we let Hx be the smallest set H ∈ LH(D) such that there is a constraint
H � u ∈ D with x ∈ var (u) � var(H). In other words, Hx is the left hand side
of the deducibility constraint that introduced the variable x for the first time.
By origination and monotony, this is defined for all x ∈ var (C). By convention,
Hx = ∅ when x does not occur in C.

4 Transformation of Deducibility Constraints

We show here that we can solve deducibility constraints in such a way that we
do not miss any solution (as in [7]). The basic idea of the transformation rules
is very straightforward, and that is what makes it appealing: we simply guess
the last step of the proof, performing a backwards proof search together with
narrowing the variables of the constraint. If R = I(u1), . . . , I(un) → I(u) is
guessed as the last rule in the proof of Hσ � vσ, we simply perform:

∃z̃.[[C ∧H � v | E]]� ∃z̃′.[[Cθ ∧Hθ � u1θ ∧ . . . ∧Hθ � unθ | E′]]

where z̃′ = z̃ ∪ var(R), θ = mgu(u, v) and E′ = E ∪ θ.

This hardly terminates, even for very simple proof systems and ground goals.
Consider the rule (Proj1) only. We get:

H � v � ∃x1, x2.[[H � 〈v, x2〉 | x1 = v]]
� ∃x1, x2, y1, y2.[[H � 〈〈v, x2〉, y2〉 | x1 = v ∧ y1 = 〈v, x2〉]] � . . .

And similarly for (P) (below, we assume that H is a ground set of terms):

H � x� ∃x1, x2.[[H � x1 ∧H � x2 | x = 〈x1, x2〉]]� . . .

First, we do not aim at explictly enumerating all possible solutions, but only
compute solved forms, that are a convenient representation of all these solutions.
Typically, H � v will be solved when v is a variable. This rules out the second
above non-terminating example.

For decomposition or versatile rules, we may still get the first non-terminating
behavior. That is where we use locality: we control the application of such rules,
roughly requesting that maximal premises are subterms of H . This is however
not complete, as Lemma 2 shows only that, in case of a versatile or decomposition
rule, the premises are subterms of the hypotheses at the ground level. In other

32 S. Bursuc, H. Comon-Lundh, and S. Delaune

words, if we guessed that the last rule, in the proof of an instance σ of H � v,
is a decomposition, we only know that the premises of the last proof step are
in st(Hσ). We use then the property of subterms: st(Hσ) = st(H)σ ∪ st(σ). If
the premises are in st(H)σ, everything is fine: we can guess subterms of H that
are the premises. Otherwise, it is not so straightforward, as σ is unknown. That
is where we need some additional strategies.

Another difficulty comes from the introduction of variables. If we keep on in-
troducing variables and equations, the left hand sides of deducibility constraints
may grow, hence their subterms too. Then guessing a subterm of H as a premise
does not necessarily yield a bounded number of terms.

4.1 Transformation Rules

The rules of Figure 1 are applied non-deterministically. When new variables are
introduced (in the Dec rule) they are assumed to be fresh, by renaming.

(Axiom) ∃z̃.[[C ∧ H � u | σ]] � ∃z̃.[[Cθ | σ ∪ θ]]
where θ = mgu(u, v), v ∈ H and u ∈ X

(Triv) ∃z̃.[[C ∧ H � x ∧ H ′ � x | σ]] � ∃z̃.[[C ∧ H � x | σ]]
when H ⊆ H ′

(Comp) ∃z̃.[[C ∧ H � f(u1, . . . , un) | σ]] � ∃z̃.[[C ∧ H � u1 ∧ . . . ∧ H � un | σ]]
if f is a public symbol

(Dec) ∃z̃.[[C ∧ H � v | σ]] � ∃z̃ ∪ x̃.[[Cθ ∧ Hθ � w1θ ∧ . . . Hθ � wnθ | σ ∪ θ]]
∧H ′θ � v1θ ∧ . . . ∧ H ′θ � vmθ

where:

– R =
v1 . . . vm w1 . . . wn

w
is a decomposition or a versatile rule such that

Max(R) ⊆ {w1, . . . , wn} and x̃ = var(R);
– θ = mgu(〈w, w1, . . . , wn〉, 〈v, u1, . . . , un〉), u1, . . . , un ∈ st(H) � X , and v ∈ X ;
– H ′ is a left member of a deducibility constraint such that H ′ � H .

Fig. 1. Transformation of deducibility constraints

The Dec rule deserves some explanation. We guessed here a versatile or decom-
position rule. The premises w1, . . . , wn will be those whose instances correspond
to a term in st(H)σ: we can guess the corresponding terms in st(H), namely
u1, . . . , un. The other premises (that are then subterms in the substitution part)
are constrained to be proved with strictly less hypotheses. We will show that
this can always be assumed, hence that we get completeness.

Example 7. Consider the constraint system D given in Example 6. First, con-
sidering the rule (Proj1) and applying Dec to the third constraint yields:

∃x′, y′.[[a � x0, a � x1, enc(x0, 〈b, x1〉, r), priv(a), a �〈b, x1〉 | {x′ �→ b, y′ �→ x1}]].

Deducibility Constraints 33

Now, considering (D) and applying again Dec to the third constraint yields:

D′ =

⎧⎨⎩
∃x, y, z, x′, y′.[[a � x0θ, a � x1θ

H2θ � enc(x0θ, 〈b, x1θ〉, r)
H2θ � priv(a) | θ ∪ {x′ �→ b, y′ �→ x1}]]

where θ = mgu(〈x, enc(pub(y), x, z), priv(y)〉, 〈〈b, x1〉, enc(x0, 〈b, x1〉, r), priv(a)〉)
= {x �→ 〈b, x1〉, y �→ a, z �→ r, x0 �→ pub(a)}.

Lemma 3 (soundness). Let D be a constraint system such that D � D′, then
D′ is a constraint system and Sol(D′) ⊆ Sol(D).

The transformation rules of Figure 1 also preserve the following invariant.

Definition 6 (uniquely determined). Let D = ∃z̃.[[C | E]] be a constraint
system. D is uniquely determined if for any ground substitution σ such that
dom(σ) = fvar (D), there are ground terms u1, . . . , u� such that either mgu(Eσ) =
⊥ or mgu(Eσ) = {z1 = u1, . . . , z� = u�} where z̃ = {z1, . . . , z�}. In that case we
let σ be σ ∪mgu(Eσ). (σ is a solution of the constraint system [[C | E]].)

Example 8. Let D′ be the constraint system given in Example 7. We have that
fvar (D) = {x0, x1}. Once values are assigned to x0, x1, there is a unique substi-
tution τ that satisfies the equations in E(D′).

Lemma 4. Let D be a constraint system that is uniquely determined and D′ be
such that D � D′. Then D′ is uniquely determined.

Using our transformation rules, solving deducibility constraint systems can be
reduced to solving simpler constraint systems that we call solved.

Definition 7. A constraint system D = ∃z̃.[[H1 � x1 ∧ . . . ∧Hn � xn | E]] is in
solved form when x1, . . . , xn are distinct variables.

Solved deducibility constraint systems are particulary simple since they always
have a solution.

Lemma 5. A solved form has always at least one solution.

4.2 Completeness

Let H1 ⊆ H2 ⊆ . . . ⊂ Hnbe a sequence of sets of terms. Let π be a proof of Hi � u
for some i (1 ≤ i ≤ n). We associate to π, the minimal set Hyp(π) ∈ {H1, . . . , Hn}
containing the leaves of π. Note that Hyp(π) ⊆ Hi. Given a constraint sys-
tem D = ∃z̃.[[C | E]] that is uniquely determined and a solution σ, a simple proof
w.r.t. D is a simple proof w.r.t. the sequence of sets of terms LH(D)σ .

We first show that either the subterms occurring in proofs are subterms of
the hypotheses, or else their simple proofs end with a composition or a versatile
rule.

34 S. Bursuc, H. Comon-Lundh, and S. Delaune

Lemma 6. Let D be a constraint system of the form [[C | E]]. Let H ∈ LH(D) be
such that for every y ∈ var(H) there is a constraint Hy � y ∈ D. Let σ be a
solution of D and v be a term such that Hσ � v. Let u ∈ st(v). Then:

1. either u ∈ (st(H) � X)σ;
2. or Hσ � u and any simple proof π of Hσ � u ends with a composition or a

versatile rule.

To prove this lemma, we consider the set Π of simple proofs of Hσ � v and we
prove the lemma by induction on the pair (H, d) where d is the size of a minimal
proof in Π .

Now, we define the complexity of the proofs witnessing that σ is a solution
of D and show that there is always a rule yielding a strictly smaller complexity,
until we reach a solved form. Let D = ∃z̃.[[C | E]] be a uniquely determined
constraint system and σ be a solution of D.

– If H � u ∈ C then PS(H � u, σ) is the size (i.e. number of nodes) of a simple
proof of Hσ � uσ that has a minimal size.

– If LH(D) = {H1, . . . , Hn} with H1 � . . . � Hn, then the level lev(H � u, D)
of a deducibility constraint H � u ∈ C is the index i such that H = Hi.

The measure PS is extended to constraint systems by letting, for any solution σ
of D, PS(D, σ) be the multiset of pairs (lev(H � u, D), PS(H � u, σ)) for all
deducibility constraints H � u ∈ D. The multisets PS(D, σ) are compared using
the multiset extension of the lexicographic composition of the orderings.

Note that the number of different levels in a constraint system might decrease,
but it may never increase.

Lemma 7. If D is a constraint system that is uniquely determined and σ ∈
Sol(D), then either D is in solved form or else there is a D′ such that D � D′,
σ ∈ Sol(D′), and PS(D, σ) > PS(D′, σ).

Proof. (sketch) If D is not in solved form, there must be a constraint H � u ∈ D
such that u is not a variable. We consider such a constraint, with a minimal left
hand side. Then, depending on the last rule of a minimal size simple proof of
Hσ � uσ, we may apply some transformation, that yields a smaller PS:

– If the proof is reduced to a leaf, then we use the Axiom rule.
– If the last rule is a composition, then we apply Comp to D, yielding a

smaller PS.
– If the last rule is versatile or a decomposition, we have to show that the

conditions of Dec are met in order to conclude. To prove this, we rely on
Lemma 2 and Lemma 6. !

Then, we prove the following lemma by induction on PS(D, σ), applying Lemma 7
for the induction step. Lemma 4 allows us to ensure that the resulting constraint
system is uniquely determined and to apply our induction hypothesis.

Lemma 8 (completeness). If D is a constraint system that is uniquely de-
termined and σ ∈ Sol(D), then there is a solved deducibility constraint D′ such
that D �∗ D′ and σ ∈ Sol(D′).

Deducibility Constraints 35

(Active) ∃z̃.[[A | F | E]] �→A ∃z̃ ∪ x̃.[[A′ | F | E ∪ θ]]

if A� ∃x̃.[[A′ | θ]] using Axiom, Triv, Comp; or Dec on H � v and there exists
x ∈ var(v) such that lev(x,A) = lev(H,A).We assume that mgu(E ∪ θ) = ⊥.

(Freeze) ∃z̃.[[A ∧ H � v | F | E]] �→ ∃z̃ ∪ x̃.[[A ∧ H � u1 ∧ . . . H � un |
F ∧ H ′ � v1 ∧ . . . ∧ H ′ � vm | E ∪ θ]]

where:

– R =
v1 . . . vm w1 . . . wn

w
is a decomposition or a versatile rule such that

Max(R) ⊆ {w1, . . . , wn} and x̃ = var(R);
– θ = mgu(〈w, w1, . . . , wn〉, 〈v, u1, . . . , un〉), u1, . . . , un ∈ st(H) � X , and v ∈ X ;
– H ′ is a left member of a deducibility constraint in A such that H ′ � H ;
– mgu(E∪ θ) = ⊥ and lev(x, A∧H � v) < lev(H, A∧H � v) for any x ∈ var(v).

(Open) ∃z̃.[[A | F | E]] �→O ∃z̃.[[(A ∪ F)θ | ∅ | θ]]
when A in solved form and θ = mgu(E)

Fig. 2. Transformation of extended constraint systems

5 Termination

In order to get termination, we add some control on the transformation rules.

5.1 Our Strategy

For every variable x and constraint system D, the level lev(x, D) of x is the level
of Hx in D, if x ∈ var (D), and is 0 otherwise. The deducibility constraints of D
are split into an active part Act(D) and a frozen part Fr(D).

Definition 8 (extended constraint system). An extended constraint
system D is a formula ∃z̃.[[A | F | E]] where:

– z̃ is a sequence of variables;
– E(D) def= E is a set of equations (not necessarily in solved form)withmgu(E) �= ⊥;
– Act(D) def= A, the active part of D, and Fr(D) def= F, the frozen part of D, are

sets of deducibility constraints; A and (A∪F)mgu(E) are constraint systems.

Let θ = mgu(E). A solution of ∃z̃.[[A | F | E]] is a solution of ∃z̃.[[(A∪F)θ | θ]]. The
system D is in solved form when Fr(D) = ∅ and Act(D)θ is in solved form.

The rules are described in Figure 2. The transformation relation defined by these
rules is denoted �→. Sometimes, we use �→A/F instead of �→A ∪ �→F.

In the initial constraint system, nothing is frozen. All rules only apply to the
active part and all rules (except Dec) only modify the active part.

– When the rule Dec is applied to a constraint H � v such that, for some
variable x ∈ var (v), we have that lev(x, Act(D)) = lev(H, Act(D)), it also
contributes only to the active part.

36 S. Bursuc, H. Comon-Lundh, and S. Delaune

– Otherwise, when for all x ∈ var (v), lev(x, Act(D)) < lev(H, Act(D)), then
only the constraints H � u1 ∧ . . . ∧H � un are kept in the active part, and
the remainder falls in the frozen part.

When Act(D) is in solved form (and only then), we open the fridge and pour
the frozen part into the active one, performing all necessary replacements.

First, we have to establish the soundness of the transformation rules. The
main point is to show that the active part remains a constraint system.

Lemma 9 (soundness). Let D be an extended constraint system such that
D �→ D′ then D′ is an extended constraint system and Sol(D′) ⊆ Sol(D).

If there is a loop on the active part by using only Active and Freeze, i.e. D �→∗

D1 �→∗
A/F D2 and Act(D1) = Act(D2), we remove all the branches that begin

with this prefix. We will show that this strategy is both:

– complete: for any D, for any σ ∈ Sol(D), there is a sequence D �→∗ D′

authorized by the strategy such that σ ∈ Sol(D′) and D′ is in solved form.
– terminating: there are no infinite transformation sequences.

5.2 Termination of Our Strategy

Now, we clarify the role of the fridge, by showing that the level of a variable in
the active part is never increasing. Moreover, if new variables are introduced in
the active part, their level is strictly smaller than the level of an older variable,
whose respective level strictly decreased.

Lemma 10. If D �→A/F D′, then:

1. lev(x, Act(D′)) ≤ lev(x, Act(D)) for every x ∈ var(Act(D)).
2. Let M = var(Act(D′)) � var(Act(D)). If M �= ∅ then there exists x ∈

var (Act(D)) such that lev(z, Act(D′)) < lev(x, Act(D)) for any z ∈ M ∪ {x}.

Now, we get a first termination lemma:

Lemma 11. There is no infinite transformation sequence without opening the
fridge.

The reason for this is that either we do not introduce variables in which case there
must be a loop (this is forbidden by the strategy) or else, thanks to Lemma 10,
there is a level � such that the level of some variable at level � strictly decreases,
while all new variables have a strictly smaller level than �.

Finally, we cannot open very often the fridge:

Lemma 12. Let D be an extended constraint system such that E(D) = Fr(D) = ∅.
In any transformation sequence starting with D, we can open at most 2|LH(D)|+
|MLH(D)| times the fridge – MLH(D) is the maximal set of hypotheses in LH(D).

Deducibility Constraints 37

The idea is that the maximal level variables x occur in a constraint H � x
when we are about to open the fridge. Furthermore, in the fridge, all variables
have a strictly smaller level. It follows that H � x will not participate any more
in any transformation: further transformations only take place at lower levels.
More precisely, we show that between two openings, the number of levels or the
number of distinct terms in the maximal left hand side decreases; otherwise in
the resulting system further transformations only take place at lower levels.

From the previous lemmas, we derive the following corollary.

Corollary 1 (termination). Our strategy is strongly terminating: there is no
infinite transformation sequence of (extended) deducibility constraints.

5.3 Completeness of Our Strategy

For an extended constraint system D = ∃z̃.[[A | F | E]], we let:

Open(D) = ∃z̃.[[(A ∪ F)mgu(E) | mgu(E)]]

and we say that D is uniquely determined if Open(D) is uniquely determined.
Note that by definition of Open, we have that Sol(D) = Sol(Open(D)) and
“uniquely determined” is preserved by �→.

The following corollary ensures that PS is decreasing on the active part.

Corollary 2 (of Lemma 7). Let D be a uniquely determined extended con-
straint system such that Act(D) is not in solved form and σ ∈ Sol(D). Then
there is a D′ such that D �→A/F D′ and σ ∈ Sol(D′).

Moreover, PS(A, σ|var(A)) > PS(A′, σ|var(A′)) where A = Act(D), A′ = Act(D′)
and σ is the extension of σ w.r.t. D′.

Thanks to this, if there is a loop on the active part, we can close the branch,
still having a complete strategy:

Lemma 13. Our strategy is complete.

6 Conclusion

We gave a simple set of transformation rules that allows to derive a complete and
effective representation of all solutions of a deducibility constraint. This works
for any good inference system that satisfies some additional syntactic conditions.
We believe that this is the starting point of several further works:

1. It would be nice to remove the additional syntactic restrictions (or to prove
that they are necessary)

2. Getting a full generalization of [1], requires to introduce predicate symbols.
3. We need to enrich the syntax of constraints, in order to get effective algo-

rithms for infinite (recursive) good inference systems.

38 S. Bursuc, H. Comon-Lundh, and S. Delaune

4. Our transformation rules are not only preserving all solutions, but also all
simple proofs, i.e. some witnesses that they are indeed solutions. This sug-
gests that the same transformation rules can be used for the decision of the
symbolic equivalence of constraint systems.

5. Covering all current decision results requires an extension that includes AC-
symbols.

References

1. Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered reso-
lution. Journal of the ACM 48(1), 70–109 (2001)

2. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proc.12th ACM Conference on Computer and Communications Security (CCS
2005), Alexandria, Virginia, USA, pp. 16–25. ACM Press, New York (2005)

3. Bursuc, S., Comon-Lundh, H., Delaune, S.: Deducibility constraints. Research Re-
port LSV-09-17, LSV, ENS Cachan, France, 36 pages (2009)

4. Chevalier, Y., Kourjieh, M.: Key substitution in the symbolic analysis of crypto-
graphic protocols. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855,
pp. 121–132. Springer, Heidelberg (2007)

5. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 124–
135. Springer, Heidelberg (2003)

6. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with xor. In: Kolaitis [13]

7. Comon-Lundh, H., Cortier, V., Zalinescu, E.: Deciding security properties of cryp-
tographic protocols. application to key cycles. Transaction on Computational Logic
(to appear 2009)

8. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in preence of exclusive or. In: Kolaitis [12]

9. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

10. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for
monoidal equational theories. Information and Computation 206(2-4) (2008)

11. Kähler, D., Küsters, R.: Constraint Solving for Contract-Signing Protocols. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 233–247.
Springer, Heidelberg (2005)

12. Kolaitis, P. (ed.): 18th Annual IEEE Symposium on Logic in Computer Science.
IEEE Comp. Soc, Los Alamitos (2003)

13. McAllester, D.: Automatic recognition of tractability in inference relations. Journal
of the ACM 40(2) (1993)

14. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. 8th ACM Conference on Computer and Communica-
tions Security, CCS 2001 (2001)

15. Millen, J., Shmatikov, V.: Symbolic protocol analysis with products and Diffie-
Hellman exponentiation. In: Proc. 16th Computer Security Foundation Workshop
(CSFW 2003), pp. 47–62. IEEE Comp. Soc. Press, Los Alamitos (2003)

16. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theoretical Computer Science, 1-3 (2003)

Automated Security Proof for Symmetric
Encryption Modes�

Martin Gagné2, Pascal Lafourcade1, Yassine Lakhnech1,
and Reihaneh Safavi-Naini2

1 Université Grenoble 1, CNRS,Verimag, France
2 Department of Computer Science, University of Calgary, Canada

Abstract. We presents a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We
propose a simple programming language to specify encryption modes
and an assertion language that allows to state invariants and axioms and
rules to establish such invariants. The assertion language consists of few
atomic predicates. We were able to use our method to verify semantic
security of several encryption modes including Cipher Block Chaining
(CBC), Cipher Feedback mode (CFB), Output Feedback (OFB), and
Counter mode (CTR).

1 Introduction

A block cipher algorithm (e.g. AES, Blowfish, DES, Serpent and Twofish) is a
symmetric key algorithm that takes a fixed size input message block and pro-
duces a fixed size output block. A mode of operation is a method of using a
block cipher on an arbitrary length message. Important modes of operation are
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher FeedBack
mode (CFB), Output FeedBack (OFB), and Counter mode (CTR). Modes of op-
erations have different applications and provide different levels of security and
efficiency. An important question when a mode of operation is used for encryp-
tion is the level of security that the mode provides, assuming the underlying
block cipher is secure. The answer to this question is not straightforward. For
example if one uses the naive ECB mode with a “secure” block cipher, then the
encryption scheme obtained is not even IND-CPA secure. Others, like CBC or
CTR, will provide confidentiality only if the initial vector (IV) is chosen ade-
quately.

Recent years have seen an explosion of new modes of operation for block cipher
(IACBC, IAPM [19], XCB [23], TMAC [18,20], HCTR [5], HCH [7], EMU [15],
EMU* [12], PEP [6], OMAC [16,17], TET [13], CMC [14], GCM [24], EAX [4],
XEX [25], TAE, TCH, TBC [22,28] to name only a few). These new modes of op-
eration often offer improved security guarantees, or additional security features.
They also tend to be more complex than the traditional modes of operations,

� This work was supported by ANR SeSur SCALP, SFINCS, AVOTE and iCORE.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 39–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 M. Gagné et al.

and arguments for proving their security can similarly become much more com-
plicated – sometimes so complicated that flaws in the security proofs could go
unnoticed for years.

Proofs generated by automated verification tools can provide us with an in-
dependent argument for the security of modes of operation, thereby increasing
our confidence in the security of cryptographic protocols. While the rules used
by the prover must also be proven by humans, and are therefore also susceptible
to error, they tend to be much simpler than the protocols they will be used to
check, which ensures that mistakes are far less likely to go unnoticed. In this
paper, we take a first step towards building an automated prover for modes of
operation, and show how to automatically generate proofs for many traditional
block cipher modes of operation.

Contributions: We propose a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We notice
that many modes use a small set of operations such as xor, concatenation, and
selection of random values. We introduce a simple programming language to
specify encryption modes and an assertion language that allows to state invari-
ants and axioms and rules to establish such invariants. The assertion language
requires only four predicates: one that allows us to express that the value of a
variable is indistinguishable from a random value when given the values of a set
of variables, one that states that an expression has not been yet submitted to
the block cipher, and two bookkeeping predicates that allow us to keep track of
‘fresh’ random values and counters. Transforming the Hoare logic into an (in-
complete) automated verification procedure is quite standard. Indeed, we can
interpret the logic as a set of rules that tell us how to propagate the invariants
backwards. Using our method, an automated prover could verify semantic secu-
rity of several encryption modes including CBC, CFB, CTR and OFB. Of course
our system does not prove ECB mode, because ECB is not semantically secure.

Related Work: Security of symmetric encryption modes have been studied
for a long time by the cryptographers. In [1] the authors presented different con-
crete security notions for symmetric encryption in a concrete security framework.
For instance, they give a security analysis of CBC mode. In [2] a security analysis
of the encryption mode CBC-MAC [21]. In [26] they propose a new encryption
mode called OCB for efficient authenticated encryption and provide a security
analysis of this new mode. Many other works present proofs of encryption modes.

Other works try to encode security of symmetric encryption modes as a
non-interference property for programs with deterministic encryption. For ex-
ample, [9] presents a computationally sound type system with exact security
bounds for such programs. This type system has been applied to verify some
symmetric encryption modes. The logic presented in this paper can be used to
give a more structured soundness proof for the proposed type system. Moreover,
we believe that our logic is more expressive and can be more easily adapted to
more encryption modes.

Automated Security Proof for Symmetric Encryption Modes 41

A first important feature of our method is that it is not based on a global
reasoning and global program transformation as it is the case for the game-based
approach [3,27].

In [8], the authors proposed an automatic method for proving semantic se-
curity for asymmetric generic encryption schemes. Our work continues that line
of work. We extend the input language and axioms of the Hoare logic of [8] in
order to capture symmetric encryption modes.

Outline: In Section 2 we introduce the material for describing the encryption
modes. In Section 3, we present our Hoare Logic for analyzing the semantic
security of encryption modes described with the grammar given in the previous
section. Finally before concluding in the last section, we apply our method to
some examples in Section 4.

2 Definitions

2.1 Notation and Conventions

For simplicity, over this paper, we assume that all variables range over large
domains, whose cardinality is exponential in the security parameter η. We also
assume that all programs have length polynomial in η.

A block cipher is a function E : {0, 1}k × {0, 1}η → {0, 1}η such that for
each K ∈ {0, 1}k, E(K, ·) is a permutation. It takes as input a k-bit key and an
η-bit message block, and returns an η-bit string. We often denote by E(x) the
application of the block cipher to the message block x. We omit the key used
every time to simplify the notation, but it is understood that a key was selected
at random at the beginning of the experiment and remains the same throughout.

For a mode of operation M , we denote by EM the encryption function de-
scribed by M using block cipher E .

For a probability distribution D, we denote by x
$←− D the operation of sam-

pling a value x according to distribution D. If S is a finite set, we denote by
x

$←− S the operation of sampling x uniformly at random among the values in S.
Given two distribution ensembles X = {Xη}η∈� and X ′ = {X ′

η}η∈�, an
algorithm A and η ∈ �, we define the advantage of A in distinguishing Xη and
X ′

η as the following quantity:

Adv(A, η, X, X ′) = Pr[x $←− Xη : A(x) = 1]− Pr[x $←− X ′
η : A(x) = 1].

Two distribution ensembles X and X ′ are called indistinguishable, denoted by
X ∼ X ′, if Adv(A, η, X, X ′) is negligible as a function of η for every probabilistic
polynomial-time algorithm A.

2.2 Grammar

We introduce our language for defining a generic encryption mode. The com-
mands are given by the grammar of Figure 1, where:

42 M. Gagné et al.

c ::= x
$←− U | x := E(y) | x := E−1(y) | x := y ⊕ z | x := y‖z | x := y[n, m] |

| x := y + 1 | c1; c2

Fig. 1. Language grammar

– x
$←− U denotes uniform sampling of a value and assigning it to x.

– x := E(y) denotes application of the block cipher E to the value of y and
assigning the result to x.

– Similarly for x := E−1(y), where E−1 denotes the inverse function of E .
– x := y ⊕ z denotes application of the exclusive-or operator to the values of

y and z and assigning the result to x.
– x := y||z represents the concatenation of the values of y and z.
– x := y[n, m] assigns to x the bits at positions between n and m in the

bit-string value of y. I.e., for a bit-string bs = b1 . . . bk, where the bi’s are
bits, bs[n, m] denotes the bits-string bn . . . bm

1. Then, x := y[n, m] assigns
bs[n, m] to x, where bs is the value of y. Here, n and m are polynomials in
the security parameter η.

– x := y + 1 increments by one the value of y and assigns the result to x. The
operation is carried modulo 2η.

– c1; c2 is the sequential composition of c1 and c2.

2.3 Generic Encryption Mode

We can now formally define a mode of encryption.

Definition 1 (Generic Encryption Mode). A generic encryption mode M
is represented by EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci, where xi is the set of
variables used in ci, all commands of ci are built using the grammar described
in Figure 1, each mj is a message blocks, and each cj is a cipher block, both of
size n according to the input length of the block cipher E.

We add the additional block c0 to the ciphertext because encryption modes
are usually generate ciphertexts longer than the message. In all examples in
this paper, c0 will be the initialization vector (IV). The definition can easily be
extended for encryption modes that also add one or more blocks at the end.

In Figure 2, we present the famous encryption mode ECBC for a message of
three blocks.

2.4 Semantics

In addition to the variables in Var,2 we consider a variable TE that records
the values on which E was computed and cannot be accessed by the adversary.
1 Notice that bs[n, m] = ε, when m < n and bs[n, m] = bs[n, k], when m > k.
2 We denote by Var the complete set of variables in the program, whereas var denotes

the set of variables in the program that are not input or output variables.

Automated Security Proof for Symmetric Encryption Modes 43

ECBC(m1|m2|m3, IV |c1|c2|c3) :
var z1, z2, z3;

IV
$←− U ;

z1 := IV ⊕ m1;
c1 := E(z1);
z2 := c1 ⊕ m2;
c2 := E(z2);
z3 := c2 ⊕ m3;
c3 := E(z3);

Fig. 2. Description of ECBC

Thus, we consider states that assign bit-strings to the variables in Var and lists
of pairs of bit-strings to TE . Given a state S, S(TE).dom and S(TE).res denote
the lists obtained by projecting each pair in S(TE) to its first and second element
respectively.

The state also contains two sets of variables, F and C, which are used for
bookkeeping purposes. The set F contains the variables with values that were
sampled at random or obtained as a result of the computation of the block cipher,
and have not yet been operated on. Those values are called fresh random values.
The set C contains the variables whose value are the most recent increment of a
counter that started at a fresh random value.

A program takes as input a configuration (S, E) and yields a distribution on
configurations. A configuration is composed of a state S, a block cipher E . Let
ΓE denote the set of configurations and Dist(ΓE) the set of distributions on
configurations. The semantics is given in Table 1. In the table, δ(x) denotes
the Dirac measure, i.e. Pr[x] = 1 and TE �→ S(TE) · (x, y) denotes the addition
of element (x, y) to TE . Notice that the semantic function of commands can
be lifted in the usual way to a function from Dist(ΓE) to Dist(ΓE). That is,
let φ : ΓE → Dist(ΓE) be a function. Then, φ defines a unique function φ∗ :
Dist(ΓE) → Dist(ΓE) obtained by point-wise application of φ. By abuse of
notation we also denote the lifted semantics by [[c]].

A notational convention. It is easy to see that commands never alter E . There-
fore, we can, without ambiguity, write S′ $←− [[c]](S, E) instead of (S′, E) $←−
[[c]](S, E).

Here, we are only interested in distributions that can be constructed in poly-
nomial time. We denote their set by Dist(Γ,F), where F is a family of block
ciphers, and is defined as the set of distributions of the form:

[E $←− F(1η); S $←− [[p]](I, E) : (S, E)]

where p is a program with a polynomial number of commands, and I is the
“initial” state, in which all variables are undefined and all lists and sets are
empty.

44 M. Gagné et al.

Table 1. The semantics of the programming language

[[x $←− U]](S, E) = [u $←− U : (S{x �→ u, F �→ F ∪ {x}, C �→ C \ {x}}, E)]
[[x := E(y)]](S, E) =⎧⎨⎩

δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}}, E) if (S(y), v) ∈ S(TE)
δ(S{x �→ v, F �→ F ∪ {x} \ {y}, C �→ C \ {x}, TE �→ S(TE) · (S(y), v)}, E)

if (S(y), v) ∈ S(TE) and v = E(S(y))
[[x := E−1(y)]](S, E) = δ(S{x �→ E−1(S(y)), F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y ⊕ z]](S, E) = δ(S{x �→ S(y) ⊕ S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y||z]](S, E) = δ(S{x �→ S(y)||S(z), F �→ F \ {x, y, z}, C �→ C \ {x}}, E)
[[x := y[n, m]]](S, E) = δ(S{x �→ S(y)[n, m], F �→ F \ {x, y}, C �→ C \ {x}}, E)
[[x := y + 1]](S, E) ={

δ(S{x �→ S(y) + 1, C �→ C ∪ {x} \ {y}, F �→ F \ {x, y}}, E) if y ∈ S(F) or y ∈ S(C)
δ(S{x �→ S(y) + 1, F �→ F \ {x, y}, C �→ C \ {x}}, E) otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

2.5 Security Model

Ideal Cipher Model
We prove the modes of encryption secure in the ideal cipher model. That is, we
assume that the block cipher is a pseudo-random function.3 This is a standard
assumption for proving the security of any block-cipher-based scheme.

The advantage of an algorithm A against a family of pseudo-random function
is defined as follows.

Definition 2. Let P : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and
let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

Advprf
A,P = Pr[K $←− {0, 1}k;AP (K,·) = 1]− Pr[R $←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

The security of a symmetric mode of operation is usually proven by first showing
that the mode of operation would be secure if E was a random function in Φn.
As a result, an adversary A against the encryption scheme can be transformed
into an adversary B against the block cipher (as a pseudo-random function) with
a similar running time, such that B’s prf-advantage is similar to A’s advantage
in breaking the encryption scheme.

Encryption Security
Semantic security for a mode of encryption is defined as follows.

Definition 3. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryption
mode. A = (A1, A2) be an adversary and X ∈ Dist(Γ, E). For η ∈ �, let
3 While block ciphers are really families of permutations, it is well known that pseudo-

random permutations are indistinguishable from pseudo-random functions if the
block size is large enough.

Automated Security Proof for Symmetric Encryption Modes 45

Advind−CPA
A,M (η, X)

= 2 ∗ Pr[(S, E) $←− X ;

(x0, x1, p, s) $←− AO1
1 (η); b $←− {0, 1};

S′ $←− [[cp]](S{m1| . . . |mp �→ xb}, E) :
AO2

2 (x0, x1, s, S
′(c0| . . . |cp)) = b]− 1

where O1 = O2 are oracles that take a pair (m, j) as input, where m is a string
and j is the block length of m, and answers using the jth algorithm in EM . A1
outputs x0, x1 such that |x0| = |x1| and are composed of p blocks. The mode of
operation M is semantically (IND-CPA) secure if Advind−CPA

A,M (η, X) is negligible
for any constructible distribution ensemble X and polynomial-time adversary A.

It is important to note that in this definition, an adversary against the scheme is
only given oracle access to the encryption mode EM , and not to the block cipher
E itself.

Our method verifies the security of an encryption scheme by proving that the
ciphertext is indistinguishable from random bits. It is a classical result that this
implies semantic security.

3 Proving Semantic Security

In this section, we present our Hoare logic for proving semantic (IND-CPA)
security for generic encryption mode defined with our language. We prove that
our logic is sound although not complete. Our logic can be used to annotate
each command of our programming language with a set of invariants that hold
at each point of the program for any execution.

3.1 Assertion Language

We consider new predicates in order to consider properties of symmetric encryp-
tion modes. We use a Hoare Logic based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= Indis(νx; V) | F (x) | E(E , e) | Rcounter(e),

where V ⊆ Var and e is an expression constructible out of the variables used in
the program and the grammar presented in Section 2. Intuitively:

Indis(νx; V): means that any adversary has negligible probability to distinguish
whether he is given results of computations performed using the value of x
or a random value, when he is given the values of the variables in V .

E(E , e): means that the probability that the value E(e) has already been com-
puted is negligible.

F (e): means e is a fresh random value.
RCounter(e): means that e is the most recent value of a counter that started

at a fresh random value.

46 M. Gagné et al.

More formally, for each invariant ψ, we define that a distribution X satisfies ψ,
denoted X |= ψ as follows:

– X |= true.
– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.
– X |= Indis(νx; V) iff [(S, E) $←− X : (S(x, V), E)] ∼ [(S, E) $←− X ; u $←− U ; S′ =

S{x �→ u} : (S′(x, V), E)]

– X |= E(E , e) iff Pr[(S, E) $←− X : S(e) ∈ S(TE).dom] is negligible.
– X |= F (e) iff Pr[(S, E) $←− X : e ∈ S(F)] = 1.
– X |= RCounter(e) iff Pr[(S, E) $←− X : e ∈ S(C)] = 1.

3.2 Hoare Logic Rules

We present a set of rules of the form {ϕ}c{ϕ′}, meaning that execution of com-
mand c in any distribution that satisfies ϕ leads to a distribution that satisfies
ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ′} is valid.
We group rules together according to their corresponding commands. We do
not provide rules for the commands x := E−1(y) or x := y[n, m] since those
commands are only used during decryption.

Notation: For a set V , we write V, x as a shorthand for V ∪ {x}, V − x as a
shorthand for V \ {x}, and Indis(νx) as a shorthand for Indis(νx; Var).
Random Assignment:

– (R1) {true} x
$←− U {F (x) ∧ Indis(νx) ∧ E(E , x)}

– (R2) {Indis(νy; V)} x
$←− U {Indis(νy; V, x)}

Increment:
– (I1) {F (y)} x := y + 1 {RCounter(x) ∧ E(E , x)}
– (I2) {RCounter(y)} x := y + 1 {RCounter(x) ∧ E(E, x)}
– (I3) {Indis(νz; V)} x := y + 1 {Indis(νz; V − x)} if z �= x, y and y �∈ V

Xor operator:
– (X1) {Indis(νy; V, y, z)}x := y ⊕ z{Indis(νx; V, x, z)} where x, y, z �∈ V ,
– (X2) {Indis(νy; V, x)}x := y ⊕ z{Indis(νy; V)} where x �∈ V ,
– (X3) {Indis(νt; V, y, z)} x := y ⊕ z {Indis(νt; V, x, y, z)} if t �= x, y, z and

x, y, z �∈ V
– (X4) {F (y)} x := y ⊕ z {E(E , x)} if y �= z

Concatenation:
– (C1) {Indis(νy; V, y, z)} ∧ {Indis(νz; V, y, z)} x := y‖z {Indis(νx; V, x)} if

y, z �∈ V
– (C2) {Indis(νt; V, y, z)} x := y‖z {Indis(νt; V, x, y, z)} if t �= x, y, z

Block cipher:
– (B1) {E(E , y)} x := E(y) {F (x) ∧ Indis(νx) ∧ E(E , x)}
– (B2) {E(E , y) ∧ Indis(νz; V)} x := E(y) {Indis(νz; V)} provided z �= x

Automated Security Proof for Symmetric Encryption Modes 47

– (B3) {E(E , y) ∧Rcounter(z)} x := E(z) {Rcounter(z)} provided z �= x
– (B4) {E(E , y) ∧ E(E , z)} x := E(y) {E(E , z)} provided z �= x, y
– (B5) {E(E , y) ∧ F (z)} x := E(y) {F (z)} provided z �= x, y

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic preservation rules:
Assume that z �= x, w, v and c is either x

$←− U , x := w‖v, x := w ⊕ v, or
x := w + 1:

– (G1) {Indis(νz; V)} c {Indis(νz; V)} provided w, v ∈ V
– (G2) {E(E , z)} c {E(E , z)}
– (G3) {RCounter(z)} c {RCounter(z)}
– (G4) {F (z)} c {F (z)}

3.3 Proof Sketches

Due to space restrictions, we cannot present formal proofs of all our rules here.
We present quick sketches instead to give the reader some intuition as to why
each rule holds. The complete proofs are available in our full manuscript [11].

Rules for random assignment
In rule (R1), F (x) simply follows from the definition of F (·), and Indis(νx) should
be obvious since x has just been sampled at random, independently of all other
values. Also, since the block cipher has been computed only on a polynomial
number of values, out of an exponential domain, the probability that x has been
queried to the block cipher is clearly negligible. Rule (R2) is easily proven using
the fact that, at this point, x is independent from all other values in the program.

Rules for increment
For rules (I1) and (I2) the behavior of RCounter(·) easily follows from its def-
inition. Note that since we have either F (y) or RCounter(y), y (and x) were
obtained by repeatedly applying +1 to a random value r, i.e. x = r + k for
some number k. Since E was computed only on a polynomial number of values,
the probability of being less than k away from one of those values is negligible,
therefore the probability that x has been queried to the block cipher is negligible.
In (I3), if Indis(νz; V) holds, then clearly Indis(νz; V − x) holds as well, and the
values in V − x are unchanged by the command.

Rules for Xor
Rules (X1) and (X2) are proven by considering y as a one-time pad applied to z.
As a result, one of x or y will be indistinguishable from random provided that
the other is not known. For (X3), one simply notes that x is easy to construct
from y and z, so if t is indistinguishable from random given y and z, then it is
also indistinguishable from random given x, y and z. For rule (X4), since y is
fresh, it is still independent from all other values, from z in particular. It then
follows that x has the same distribution as y and is independent from all values

48 M. Gagné et al.

except y and therefore, the probability that it has been queried to E is negligible
for the same reason that y is.

Rules for concatenation
Rules (C1) and (C2) follow simply from the observation that the concatenation
of two independent random strings is a random string.

Rules for block cipher
To prove (B1), in the Ideal Cipher Model, E is sampled at random among all
possible functions {0, 1}η → {0, 1}η. Since y has never been queried to the block
cipher, x := E(y) is indistinguishable from an independent random value, and so
possess the same invariants as if x

$←− U had been executed. Rules (B2) to (B5)
simply preserve invariants that are unaffected by the computation of the block
cipher on a value that has never been queried before.

Generic preservation rules
The conditions for applying those rules, particularly z �= x, w, v were designed
specifically so that the command would have no effect on the invariant. The
invariant is therefore preserved.

As a result of all this, we have the following:

Proposition 1. In the Ideal Cipher Model, the Hoare triples given in the pre-
vious rules are valid.

As a result, our method can be used to prove the semantic security of an encryp-
tion mode by proving that, from the adversary’s point of view, the ciphertexts
are indistinguishable from random bits.

Proposition 2. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryp-
tion mode describe with our language, and let IO = {m1, . . . , mi, c0, . . . , ci}. If
{true}ci

∧i
k=0{Indis(νck; IO)} is valid for every i, then EM is IND-CPA secure

in the Ideal Cipher Model.

We conclude with the following, which states that our method of proving security
of encryption modes is sound in the standard model.

Proposition 3. Let EM be an encryption mode proven secure in the Ideal Ci-
pher Model using the method of Proposition 2. If there exists a standard model
algorithm A such that Advind−CPA

A,M (η, X) is non-negligible, then there exists an
algorithm B such that Advprf

B,E is non-negligible.

4 Examples

In this section we apply our method to the traditional encryption modes (CBC),
(CFB), (OFB) and (CTR) in respectively Figure 3, 4, 5 and 6. For simplic-
ity, we consider messages consisting of only 3 blocks. The reader can easily be
convinced that the same invariant propagation holds for any finite number of

Automated Security Proof for Symmetric Encryption Modes 49

ECBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ;Var) ∧ F (IV) ∧ E(E , IV)} (R1)

z1 := IV ⊕ m1; {Indis(νIV ;Var − z1) ∧ E(E , z1)} (X2)(X4)
c1 := E(z1); {Indis(νIV ;Var − z1) (B2)

∧ Indis(νc1;Var) ∧ F (c1)} (B1)
z2 := c1 ⊕ m2; {Indis(νIV ;Var − z1) (G1)

∧ Indis(νc1;Var − z2) ∧ E(E , z2)} (X2)(X4)
c2 := E(z2); {Indis(νIV ;Var − z1) ∧ Indis(νc1;Var − z2) (B2)

∧ Indis(νc2;Var) ∧ F (c2)} (B1)
z3 := c2 ⊕ m3; {Indis(νIV ;Var − z1) ∧ Indis(νc1;Var − z2) (G1)

∧ Indis(νc2;Var − z3) ∧ E(E , z3)} (X2)(X4)
c3 := E(z3); {Indis(νIV ;Var − z1) ∧ Indis(νc1;Var − z2) (B2)

∧ Indis(νc2;Var − z3) ∧ Indis(νc3;Var)} (B1)

Fig. 3. Analysis of CBC encryption mode

ECF B(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV) ∧ F (IV) ∧ E(E , IV)} (R1)

z1 := E(IV); {Indis(νIV) ∧ Indis(νz1) ∧ F (z1)} (B1)(B2)
c1 := z1 ⊕ m1; {Indis(νIV) ∧ Indis(νc1;Var − z1) ∧ E(E , c1)} (G1)(X1)(X4)
z2 := E(c1); {Indis(νIV) ∧ Indis(νc1;Var − z1) ∧ F (z2)} (B1)(B2)
c2 := z2 ⊕ m2; {Indis(νIV) ∧ Indis(νc1;Var − z1) (G1)

∧ Indis(νc2;Var − z2) ∧ E(E , c2)} (X1) (X4)
z3 := E(c2); {Indis(νIV) ∧ Indis(νc1;Var − z1) (B2)

∧ Indis(νc2;Var − z2) ∧ F (z3)} (B1)
c3 := z3 ⊕ m3; {Indis(νIV) ∧ Indis(νc1;Var − z1) (G1)

∧ Indis(νc2;Var − z2) (X1)
∧ Indis(νc3;Var − z3)}

Fig. 4. Analysis of CFB encryption mode

blocks. In order to prove IND-CPA security of these encryption schemes we have
to prove that c0 = IV, c1, c2, c3 are indistinguishable from random bitstrings
when given m1, m2, m3, c0, c1, c2 and c3. Of course our method fails in analyzing
ECB encryption mode and the “counter” version of CBC, which are two insecure
operation modes.

CBC & CFB : In Figure 3 and 4, we describe the application of our set of rules
on CBC and CFB examples. The analysis of these two encryption modes are
similar.

OFB : The order of the commands in our description of OFB may seem strange,
but it is not without reason. The variable zi+1 must be computed before ci because
no rule can preserve the invariant E(E , zi) through the computation of ci.

50 M. Gagné et al.

EOF B(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ;Var) ∧ F (IV) ∧ E(E , IV)} (R1)

z1 := E(IV); {Indis(νIV ;Var) ∧ {F (z1) ∧ E(E , z1) ∧ Indis(νz1;Var)} (B1)(B2)
z2 := E(z1); {Indis(νIV ;Var) ∧ Indis(νz1;Var) ∧ E(E , z2) (B1)(B2)

∧ F (z2) ∧ Indis(νz2;Var)}
c1 := m1 ⊕ z1; {Indis(νIV ;Var) ∧ Indis(νc1; Var − z1) ∧ E(E , z2) (G1)(G2)(X1)

∧ F (z2) ∧ Indis(νz2;Var)}} (G4)
z3 := E(z2); {Indis(νIV ;Var) ∧ Indis(νc1; Var − z1) ∧ E(E , z3) (B1)(B2)

∧ Indis(νz2;Var) ∧ F (z3) ∧ Indis(νz3; Var)} (B2)
c2 := m2 ⊕ z2; {Indis(νIV ;Var) ∧ Indis(νc1; Var − z1)} (G1)

∧ Indis(νc2;Var − z2) ∧ Indis(νz3;Var) (X1)
c3 := m3 ⊕ z3; {Indis(νIV ;Var) ∧ Indis(νc1; Var − z1)} (G1)

∧ Indis(νc2;Var − z2) ∧ Indis(νc3;Var − z3) (X1)

Fig. 5. Analysis of OFB encryption mode

ECTR(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ;Var) ∧ F (IV) ∧ E(E , IV)} (R1)

ctr1 := IV + 1; {Indis(νIV ;Var − ctr1) (I3)
∧ Rcounter(ctr1) ∧ E(E , ctr1)} (I1)

z1 := E(ctr1); {Indis(νIV ;Var − ctr1) ∧ Rcounter(ctr1) (B2)(B3)
∧ F (z1) ∧ E(E , z1) ∧ Indis(νz1;Var)} (B1)

c1 := m1 ⊕ z1; {Indis(νIV ;Var − ctr1) ∧ Rcounter(ctr1) (G1)(G3)
∧ Indis(νc1;Var − z1)} (X1)

ctr2 := ctr1 + 1; {Indis(νIV ;Var − ctr1 − ctr2) (I3)
∧ Indis(νc1;Var − z1) (G1)
∧ Rcounter(ctr2) ∧ E(E , ctr2)} (I2)

z2 := E(ctr2); {Indis(νIV ;Var − ctr1 − ctr2) (B2)
∧ Indis(νc1;Var − z1) ∧ Rcounter(ctr2) (B1)
∧ F (z2) ∧ E(E , z2) ∧ Indis(νz2;Var)} (B3)

c2 := m2 ⊕ z2; {Indis(νIV ;Var − ctr1 − ctr2) (G1)
∧ Indis(νc1;Var − z1) ∧ Rcounter(ctr2) (G3)
∧ Indis(νc2;Var − z2)} (X1)

ctr3 := ctr2 + 1; {Indis(νIV ;Var − ctr1 − ctr2 − ctr3) (I3)
∧ Indis(νc1;Var − z1) ∧ E(E , ctr3) (I2)
∧ Indis(νc2;Var − z2) ∧ Rcounter(ctr3)} (G1)

z3 := E(ctr3); {Indis(νIV ;Var − ctr1 − ctr2 − ctr3) (B2)
∧ Indis(νc1;Var − z1) (B1)
∧ Indis(νc2;Var − z2) ∧ Rcounter(ctr3) (B3)
∧ F (z3) ∧ E(E , z3) ∧ Indis(νz3;Var)}

c3 := m3 ⊕ z3; {Indis(νIV ;Var − ctr1 − ctr2 − ctr3) (G1)
∧ Indis(νc1;Var − z1) (X1)
∧ Indis(νc2;Var − z2)
∧ Indis(νc3;Var − z3)}

Fig. 6. Analysis of CTR encryption mode

Automated Security Proof for Symmetric Encryption Modes 51

CTR : This scheme is the only one of the four encryption modes we have studied
that uses the increment command. The analysis is presented in Figure 6. We can
see how the RCounter invariant is used for proving the IND-CPA security of
this mode.

5 Conclusion

We proposed an automatic method for proving the semantic security of symmet-
ric encryption modes. We introduced a small programming language in order to
describe these modes. We construct a Hoare logic to make assertions about vari-
ables and propagate the assertions with the execution of the commands in the
language. If the program which represents an encryption mode satisfies some
invariants at the end of our automatic analysis then we conclude that the en-
cryption mode is IND-CPA secure.

Future work: An obvious extension to our work would be to add a loop con-
struct to our grammar. This would remove the necessity of having a different
program for each message length within a mode of operation. We are also consid-
ering an extension of our work to prove CCA security of encryption modes using
approaches such as the one proposed in [10] or the method proposed in [8]. An-
other more complex and challenging direction is to propose an extended version
of our Hoare Logic in order to be able to analyze “modern” encryption modes
which use more complex mathematical operation or primitives, or to try to use
our method to prove security properties of other block-cipher based construc-
tion, such as unforgeability for block-cipher based MACs, or collision-resistance
for block-cipher based hash functions.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Annual IEEE Symposium on Foundations of Computer
Science, p. 394 (1997)

2. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

3. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the secu-
rity of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

5. Chakraborty, D., Nandi, M.: An improved security bound for HCTR, pp. 289–302
(2008)

6. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

7. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using
the hash-counter-hash approach. IEEE Transactions on Information Theory 54(4),
1683–1699 (2008)

http://eprint.iacr.org/

52 M. Gagné et al.

8. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lahknech, Y.: Towards au-
tomated proofs for asymmetric encryption schemes in the random oracle model.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS 2008), Alexandria, USA (October 2008)

9. Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: The case of deterministic encryption. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 364–375. Springer, Heidelberg (2007)

10. Desai, A.: New paradigms for constructing symmetric encryption schemes secure
against chosen-ciphertext attack. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 394–412. Springer, Heidelberg (2000)

11. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated
security proof for symmetric encryption modes (manuscript 2009),
http://pages.cpsc.ucalgary.ca/~mgagne/TR_Asian.pdf

12. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

13. Halevi, S.: Invertible universal hashing and the tet encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

14. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

15. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

16. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

17. Iwata, T., Kurosawa, K.: On the security of a new variant of OMAC. In: Lim, J.-I.,
Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 67–78. Springer, Heidelberg
(2004)

18. Iwata, T., Kurosawa, K.: Stronger security bounds for OMAC, TMAC, and XCBC.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402–
415. Springer, Heidelberg (2003)

19. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

20. Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

21. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, p. 237. Springer, Heidelberg (2002)

22. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

23. McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation (2007)

24. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

http://pages.cpsc.ucalgary.ca/~mgagne/TR_Asian.pdf

Automated Security Proof for Symmetric Encryption Modes 53

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCBa block-cipher mode of oper-
ation for efficient authenticated encryption. In: CCS 2001: Proceedings of the 8th
ACM conference on Computer and Communications Security, pp. 196–205. ACM,
New York (2001)

27. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs
(2004), http://eprint.iacr.org/2004/332

28. Wang, P., Feng, D., Wu, W.: On the security of tweakable modes of operation:
TBC and TAE. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 274–287. Springer, Heidelberg (2005)

http://eprint.iacr.org/2004/332

Noninterference with
Dynamic Security Domains and Policies

Robert Grabowski and Lennart Beringer

Ludwig-Maximilians-Universität
D-80538 München, Germany

{robert.grabowski,lennart.beringer}@ifi.lmu.de

Abstract. Language-based information flow analysis is used to stati-
cally examine a program for information flows between objects of differ-
ent security domains, and to verify these flows follow a given policy.

When the program is distributed as mobile code, it may access resources
whose domains depend on the client environment, or may face different se-
curity policies. In proof-carrying code scenarios, it is desirable to give a sin-
gle proof that the program executes securely in any of these situations.

This paper presents an object-oriented, Java-like language with run-
time security types that can be inspected to ensure that flows between
accessed objects are actually allowed before operations inducing these
flows are performed. A type system is used to statically prove that the
flow tests included in the program are sufficient, such that a noninter-
ference property for the program is ensured regardless of the domains
of objects and the effective security policy. Also, the paper outlines how
the concepts of the type system are transferred to a bytecode language.

1 Introduction

The goal of information flow security is to control the flow of information be-
tween data objects of a computing system, like variables, files, or sockets. More
precisely, each object is assigned a security domain. An information flow policy
defines the allowed flows between objects of these domains. Programs that trans-
fer data between objects in a manner that respects a transitive end-to-end flow
policy are called noninterferent [1]. A way to verify this property is to perform
a static analysis prior to the execution [2].

While the language-based approach has evolved into a larger research field [3],
most works assume the objects a program uses and their domains can be stat-
ically inferred. In mobile code scenarios, however, the program is executed in
different client environments, where the set of available data objects and their
domains as well as the security policy typically vary.

For example, consider a program that opens a specific file and appends some
data to it. The security of the program clearly depends on the domain of the
contents of the accessed file and of the appended data as well as on the infor-
mation flow policy. This makes it impossible to certify programs with current
proof-carrying code (PCC) techniques [4], as the code producer has no or little

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 54–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Noninterference with Dynamic Security Domains and Policies 55

information about the environments the program is executed in, and therefore
cannot prove security statically.

Another application scenario is an address book with entries whose fields have
varying, user-defined confidentiality levels. A backup application should preserve
these levels and the security guarantee in the backup copy, while a program that
synchronizes the data with some less trusted cloud storage service should only
transmit those contact profile fields that have been declared public. In general,
a program should be able to adapt to the security environment.

A solution is to introduce language support for querying or reflecting the do-
mains of objects and the security policy, such that potentially insecure operations
can be guarded with an appropriate flow test.

Previous work. The JIF language [5] contains constructs for dynamic label tests
which have been formalized in the functional language λDSec [6]. Security do-
mains can be used as values, enabling a constrained form of dependent pair and
function types. In the imperative language RTI [7], data is associated with roles
(sets of principals) which may be updated and queried programmatically to en-
sure that data flows securely. In the functional language λdeps+

[8], all values
are explicitly paired with their security domains, such that an external monitor
program may throw invalid flow exceptions as required.

While all three approaches tackle aspects of dynamic information flow secu-
rity in expressive and sophisticated ways, they are in our opinion not directly
applicable to the mobile code scenario, as their analyses depend on a known
security policy. Also, the analyses are defined only on the source code, and there
is no translation given for an analysis on a lower level, e.g. bytecode.

The DSD language. In this paper, we present a Java-like object-oriented lan-
guage called DSD (for “Dynamic Security Domains”). It features a light-weight
extension in form of abstract domains and flow operators that can be used to
query dynamic domains and the security policy at runtime. The analysis does
not make any assumptions about the available set of security domains or the flow
policy by reasoning over the domains abstractly. With a single proof, programs
can be shown secure for any object domains and security policies.

Moreover, the choice of a mild extension of Java makes it possible to transfer
the analysis to the bytecode level by building on existing work on certified compi-
lation that preserves security types [9,10,11]. The mechanism gives an end-to-end
noninterference guarantee for compiled code suitable for PCC contexts.

In the language, we allow a very restricted form of dependent types for objects:
each object has a special field fδ that can be used as the symbolic domain of
other fields. Likewise, we assume each method has a special variable xδ that can
be used as a type for the other variables.

For the file append example above, a file with a dynamic domain could be
modelled as an object of a class File whose pseudo-specification is shown in
figure 1. The value of the field fδ is used as the runtime security domain of
the field contents. Existing files and their security domains as given by the
environment can then be modelled as objects initially present on the heap.

56 R. Grabowski and L. Beringer

class File {

fδ: Domain⊥;
contents: Stringfδ

;

append(xδ: Domain⊥, s: Stringxδ) {

if xδ � this .fδ then this.contents := this.contents + s;
else skip; // or some error-handling code

}

}

Fig. 1. File class

The method append takes a string s whose security type is explicitly passed
in an additional domain argument xδ. Since appending s to the file contents
induces a flow of information, the contents update is guarded by a test whether
the domain of the string (xδ) is lower or equal to the domain of the file contents
(this .fδ) with respect to the effective security policy. The method is secure, since
the critical assignment to this .contents is only executed if the induced flow is
permitted in the client environment. The well-typedness of the methods proves
that the file operations act securely in any particular client environment.

Outline of the analysis. We present a type system in the style of Volpano, Smith,
and Irvine [12] and Banerjee and Naumann [13]. Since the domains are not
statically available, the analysis is performed by collecting symbolic information
about the domain fields and variables. For instance, the expression xδ % this .fδ

evaluates to true in the then branch of the append method. The system aims
to derive as much as possible from such information by employing a technique
similar to Hoare logic, and verifies the flow tests in the program are sufficient.

This work extends a previous paper [14], featuring a more standard object-
oriented language with dynamic methods including domain variables and
constraint annotations, and improves the analysis with flexible constraint sets, up-
datable domain variables and fields, and a more clarified abstract reasoning.

Main contributions. This paper makes the following contributions:

– an object-oriented language with dynamic domains modelled explicitly as
field and variables (section 2),

– security types that refer symbolically to these fields and variables, and a
generalized termination-insensitive noninterference property (section 3), and

– a sound type system with abstract reasoning on the domain variable or-
der (sections 4-5).

Furthermore, we briefly explain how the described dynamic security domains and
concepts of the type system can be translated to the bytecode level
(section 6). The presented type system for DSD has also been implemented as a
prototypic type inference algorithm for a subset of Java with dynamic domain
annotations [15]. For space reasons, this implementation is not discussed here.

Noninterference with Dynamic Security Domains and Policies 57

2 The DSD Language

2.1 Syntax

The syntax of DSD is shown below. We use several disjoint sets of identifiers for
variables (x ∈ X), fields (f ∈ F), classes (C ∈ C), and methods (m ∈ M). The
notation e denotes a sequence of argument expressions.

e ∈ E ::= n | x | e.f | e op e | & | ⊥ | e ! e | e% e
P ∈ P ::= P ; P | if e then P else P | while e do P |

skip | x := e | e.f := e | x :=new C | x := e.m(e)

The syntax is split into expressions and programs (statements). It forms an im-
perative object-oriented language, with some additional expressions (&, ⊥, and
operators ! and %) to refer abstractly to security domains, as well as arbitrary
side-effect free operators (denoted by e op e). The syntax does not depend on
the concrete security domains and the policy, which are understood to be given
by the environment in which the program is executed.

2.2 Domain Lattice and Semantics

The flow policy on the client is specified by a domain lattice (D,≤,∨, H, L).
Given two security domains k1, k2 ∈ D, the order k1 ≤ k2 expresses that infor-
mation may flow from k1 to k2. To simplify presentation, we call the top-most
domain in the lattice H (highest security) and the bottom-most domain L (low-
est security), and assume a fixed domain lattice D for now.

We use a standard object-oriented state model. It consists of a store, i.e. a
variable valuation, and a heap where objects are allocated:

states: σ ∈ Σ = S ×H
stores: s ∈ S = X ⇀ V
heaps: h ∈ H = A ⇀ O

objects: (C, F) ∈ O = C × (F ⇀ V)

values: v ∈ V ::= n | k | a | null
addresses: a ∈ A
domains: k ∈ D
numbers: n ∈ N

There is a notable extension to the standard model: It is assumed there is a
special variable identifier xδ ∈ X , and a special field identifier fδ ∈ F . We
additionally require that a well-formed store s must contain xδ, and all objects
on a well-formed heap h must include the field fδ. These assumptions are merely
to simplify the presentation of type environments, which may refer to these
special variables or fields. The analysis could later be extended to objects with
none or many of these fields with arbitrary names.

Given a domain lattice D, the interpretation of expressions in a program
state σ is defined by a denotational semantics �e�σ. In particular, abstract do-
main expressions are interpreted in the concrete domain lattice:

�&�σ = H �e1 ! e2�σ = �e1�σ ∨ �e2�σ

�⊥�σ = L �e1 % e2�σ = �e1�σ ≤ �e2�σ

58 R. Grabowski and L. Beringer

For programs, we use a big-step operational semantics σ1
P−−→ σ2 which states

that if P is executed in state σ1, it terminates in state σ2. The definition is
completely standard, with the exception that x :=new C initializes the value
of the fδ field of the newly created object with the domain L. For reasons of
limited space, the full semantics is not given here.

For the dynamic method dispatch, we use the functions margs and mtable
that describe for each method the names of the formal arguments as well as the
(dynamic-class dependent) implementations:

margs : M→ X mtable : C ×M ⇀ P

Again to simplify the presentation, we require that each method includes xδ at
the first argument position. Methods are called dynamically depending on the
dynamic type of the called object. A method is executed with a new store con-
sisting of the formal parameters margs(m) initially bound to the actual argument
values, a special variable this containing the caller object, as well as a special
return variable ret whose contents is assigned to the variable x after the method
has terminated. With ret , no special return syntax is needed.

3 Noninterference

Our type system employs variable and field type environments. The types focus
on information flow security, hence we consider only programs that are well-
typed with respect to data types.

3.1 Type Environments

Type environments assign symbolic security domains to variables and fields:

Γ : X ⇀ {&,⊥, xδ}
ft : F → {&,⊥, fδ}

A variable typing Γ associates a symbolic security domain with the variables
of the active method body. The types & or ⊥ refer abstractly to the top-most
and bottom-most domain of D, respectively. A variable typed with the special
symbol xδ has the domain that is stored in the variable xδ at runtime. A variable
typing Γ is well-formed if xδ ∈ dom(Γ) and Γ (xδ) = ⊥.

A field typing ft associates a type with each field of an object. A field typed
with fδ has the domain that is stored in the field fδ of the same object. A field
typing ft is well-formed if ft(fδ) = ⊥. Issues of subtyping, inheritance, and well-
formedness are handled uniformly by giving a type for each field identifier. In
the following, we assume a fixed well-formed field typing ft and leave it implicit.
(Other types for Γ (xδ) and ft(fδ) will be discussed later.)

3.2 Type Interpretation

Types of variables and fields are interpreted as security domains in D, given
stores s and field valuations F , respectively:

Noninterference with Dynamic Security Domains and Policies 59

�&�s = H �&�F = H
�⊥�s = L �⊥�F = L
�xδ�s = s(xδ) �fδ�F = F (fδ)

The interpretation is well-defined, as every store includes xδ and every object
has a field fδ. If �Γ (x)�s ≤ k, we say x is visible at k in s; similar for fields.

3.3 Equivalence of States

In preparation for the definition of noninterference, we define when two states are
equivalent with respect to a security domain k ∈ D. To capture related alloca-
tions of different fresh addresses in two parallel runs, we parametrize equivalence
by a partial bijection β, as presented in [13]. Two addresses a, a′ are indistinguish-
able if β(a) = a′. Two domains, numbers, or null values are indistinguishable if
they are equal. We write v ∼β v′ for indistinguishable values.

For k ∈ D, two stores are k-equivalent with respect to a variable typing Γ if
all variables visible at k have indistinguishable values:

s ∼Γ,k
β s′ ⇐⇒ ∀x ∈ dom(Γ). �Γ (x)�s ≤ k ⇒ s(x) ∼β s′(x)

Note that the relation is symmetric because �Γ (x)�s = �Γ (x)�s′ : the well-
formedness condition Γ (xδ) = ⊥ ensures that xδ itself contains the same domain
in both states, therefore Γ (x) is always interpreted as the same domain.

Two heaps are k-equivalent if all β-related objects are k-equivalent. Two ob-
jects are k-equivalent if they have the same fields and if all fields visible at k
have indistinguishable values. In particular, this means that F (fδ) = F ′(fδ).

h ∼k
β h′ ⇐⇒ dom(β) ⊆ dom(h) ∧ rng(β) ⊆ dom(h′) ∧

∀a ∈ dom(β). h(a) ∼k
β h(β(a))

(C, F) ∼k
β (D, F ′) ⇐⇒ C = D ∧ ∀f ∈ dom(F). �ft(f)�F ≤ k ⇒ F (f) ∼β F ′(f)

Finally, we extend k-equivalence point-wise to program states:

(s, h) ∼Γ,k
β (s′, h′) ⇐⇒ s ∼Γ,k

β s′ ∧ h ∼k
β h′

3.4 Noninterference

Using the definition of state equivalence, we now define information flow security
for a program P as a standard termination-insensitive noninterference property.

Definition 1. P is secure with respect to variable typing Γ if for all domains
k ∈ D, for all states σ1, σ2, σ

′
1, σ

′
2 and for all partial bijections β,

σ1 ∼Γ,k
β σ′

1 ∧ σ1
P−−→ σ2 ∧ σ′

1
P−−→ σ′

2 ⇒ σ2 ∼Γ,k
γ σ′

2

for some partial bijection γ ⊇ β.

60 R. Grabowski and L. Beringer

The property implies that all objects that are β-related before the execution
stay related after the execution. The extended bijection γ captures the fact that
new addresses may have been allocated and related in both executions.

As noninterference with dynamic security domains may rely on the values of
domain fields and variables, we parametrize the above definition by certain state
predicates Q and Q′ that hold before and after the execution. We write σ |= Q
if σ satisfies Q, and will instantiate these predicates in the next section.

Definition 2. Let Q and Q′ be state predicates, and P a program. P is (Q, Q′)-
valid if for all states σ1 and σ2 such that σ1

P−−→ σ2, σ1 |= Q implies σ2 |= Q′.
P is (Q, Q′)-secure with respect to Γ if it is secure w.r.t. Γ and (Q, Q′)-valid.

4 Reasoning with Abstract Security Domains

4.1 Labels

As xδ and fδ may occur symbolically in variable and field types, the type system
infers abstract domains as types for expressions. These abstract domains are
called labels, and are a subset of expressions:

access paths: π ::= x | π.f
labels: L) � ::= & | ⊥ | xδ | π.fδ | � ! �

An fδ field can appear in a label if the object to which it belongs is referenced
in a normalized form, i.e. by an access path π of the form x.f1.f2.fn. This
restriction is needed since objects are used syntactically in labels.

The type system assigns a label to each expression. For example, if Γ (y) = xδ

and Γ (z) = &, the expression y + z is assigned the label xδ ! &. Every label is
an expression that evaluates to a security domain. If an expression e is typed
with a label �, then e depends in state σ on data of domains at most ���σ.
Since labels are special expressions, DSD features a very constrained form of
dependent types.

4.2 Ordering Labels

Information flow type systems with static domains contain a number of side
conditions k1 ≤ k2 which require that information may flow from security do-
mains k1 to k2 according to the security policy. Our type system has no static
information about the values of labels at runtime. It is nevertheless possible
to define an abstract order on labels by exploiting the fact that elements in D
(to which labels evaluate) are ordered as a lattice. For example, it can be inferred
that data may always flow from an expression labeled with ⊥ to an expression
labeled with xδ ! y.fδ, as the evaluation of ⊥ is always the lowest element in D.

The following rules define the order over labels. (Assume Q = ∅ for now.) We
additionally define a label equality ≡ mirroring idempotence, commutativity,
and associativity of the join operator, as well as antisymmetry of the order.

Noninterference with Dynamic Security Domains and Policies 61

⊥%Q � �%Q & �%Q � ! �′

�1 %Q �2
�2 %Q �3

�1 %Q �3

�1 %Q �3
�2 %Q �3

�1 ! �2 %Q �3

(�1, �2) ∈ Q

�1 %Q �2

The label order rules that are justified by properties of the domain lattice are
usually not sufficient to typecheck a program, as the validity of flows may depend
on the actual values of domain fields and variables. This is the reason why
the language features label flow tests, i.e. conditional statements of the form
if �1 % �2 then P1 else P2. For the subprogram P1, we can assume that an
information flow from ��1�σ to ��2�σ is permitted; otherwise, the branch will not
be taken during the execution. The typing judgements for programs are therefore
parametrized over a set Q ⊆ L × L containing label pairs. A pair (�1, �2) ∈ Q
expresses the assumption that a flow from �1 to �2 is allowed.

The set Q thus stores abstract information about fδ fields and xδ variables
at a point of execution. Since Q gives requirements for suitable program states,
we also call it the constraint set. (Constraint sets are the state predicates that
were used in the definition of noninterference.)

Definition 3. A program state σ satisfies a constraint set Q, written σ |= Q, if
for all pairs (�1, �2) ∈ Q it holds that ��1�σ ≤ ��2�σ.

The following theorem states that the rules for label order and equality are sound
with respect to their interpretation in satisfying program states.

Theorem 1 (Soundness of label order and equality rules). Given a set
of constraints Q, two labels � and �′ and a state σ satisfying Q, then

1. �1 %Q �2 implies ��1�σ ≤ ��2�σ, and
2. �1 ≡ �2 implies ��1�σ = ��2�σ.

Proof. By induction over the derivation of the label order and equality.

In fact, (L,%Q,!,&,⊥) forms a semi-lattice over the (infinite) set of labels,
where labels related by ≡ refer to the same lattice point. It can be shown that if
σ satisfies Q, the evaluation function �·�σ is a homomorphism that embeds the
label lattice into the domain lattice.

The evaluation function not only depends on the program state σ, but also on
D and its lattice operators. If we fix the state σ, then Q can as well be interpreted
as the set of those domain lattices (D,≤) whose structure includes the pairwise
domain positionings which are abstractly described by label pairs in Q. A label
test thus collects information about the program state and the structure of the
domain policy at once.

5 Type System

The type system is mostly syntax-directed, and follows the separation of expres-
sions and programs. We mainly discuss the extensions and differences to the type
systems by Volpano, Smith, and Irvine [12] and Banerjee and Naumann [13].

62 R. Grabowski and L. Beringer

5.1 Typing Expressions

The typing rules for expressions are shown in figure 2. A typing judgement
Γ � e : � means that the expression e has a label �, i.e. it depends in a specific
program state σ on information of security domain ���σ at most. In particular,
the type of a variable x, which is looked up in the environment Γ , is from the
set {&,⊥, xδ} and thus a label. For field access, we define the qualified field type

ftπ(f) :=

{
π.fδ if ft(f) = fδ

ft(f) else

to transform the field type fδ into a label by prepending an access path π that
is supposed to reference the object whose field f is accessed.

Γ � n : ⊥
c ∈ {�,⊥}
Γ � c : ⊥ Γ � x : Γ (x)

Γ � π : 	

Γ � π.f : ftπ(f) � 	

◦ ∈ {op,�,�} Γ � e1 : 	1 Γ � e2 : 	2

Γ � e1 ◦ e2 : 	1 � 	2

Fig. 2. Expression type system

5.2 Typing Programs

For programs, we derive a typing judgement Γ, pc � Q {P} Q′, which means
a program P is secure if executed in states satisfying Q, and finishes in states
satisfying Q′. The rules for the derivation system are shown in figure 3. Basically,
the rules combine a Hoare logic-style reasoning on program predicates (constraint
sets) with an information flow type system that uses labels instead of domains.

As in [13], the program counter label pc is actually a pair of labels (pcs, pch),
which is used to capture the lower bound of side effects on the store and the
heap, respectively, in order to prevent indirect information flows. Using a pair
of labels improves precision when method calls are involved.

The interesting rules are the ones for label tests and assignments. The rule for
label tests works like the ordinary rule for conditionals, but also adds the label
comparison to the pre-set of the then branch, since the condition holds when
the execution takes that branch. No negative label order information is added
for the else branch, since it does not improve the precision of the type system,
and also might introduce self-contradicting constraint sets.

A variable assignment is typable if the induced flows can be abstractly shown
secure, i.e. if the flows between labels are justified by the pre-condition set Q.
It is also possible to update the xδ variable, but only if it can be inferred that
the new domain, given by the expression e, is at least as high as the old one.
Therefore, one can change the runtime type of data e.g. from L to H .

Noninterference with Dynamic Security Domains and Policies 63

Γ, pc � Q0 {P} Q′
0 Q ⇒ Q0 Q′

0 ⇒ Q′

Γ, pc � Q {P} Q′

Γ, pc � Q {skip} Q

Γ, pc � Q {P1} Q′

Γ, pc � Q′ {P2} Q′′

Γ, pc � Q {P1 ; P2} Q′′

Γ � e : 	
Γ, pc � 	 � Q {P} Q

Γ, pc � Q {while e do P} Q

Γ � e : 	
Γ, pc � 	 � Q {P1} Q′

Γ, pc � 	 � Q {P2} Q′

Γ, pc � Q {if e then P1 else P2} Q′

Γ � 	1 � 	2 : 	
Γ, pc � 	 � Q, 	1 � 	2 {P1} Q′

Γ, pc � 	 � Q {P2} Q′

Γ, pc � Q {if 	1 � 	2 then P1 else P2} Q′

Γ � e : 	
	 � pcs �Q Γ (x)

x = xδ ⇒ x �Q e
x ∈ pc

Γ, pc � Q′[e/x] ∪ Q {x := e} Q′

Γ � π : 	1 Γ � e : 	2
	1 � 	2 � pch �Q ftπ(f)
f = fδ ⇒ π.f �Q e

f ∈ pc f ∈ Q′[e/π.f]

Γ, pc � Q′[e/π.f] ∪ Q {π.f := e} Q′

pcs �Q Γ (x) x ∈ pc x = xδ x ∈ Q′

Γ, pc � Q′ ∪ Q {x :=new C} Q′, x.fδ ≤ ⊥

Γ � π : 	this Γ � e : 	 mtype(m)[e#1/xδ] = 	′this , 	
′ pc′h−−−→ 	ret

	this �Q 	′this 	 �Q 	
′

pch � 	this �Q pc′h 	ret � 	this � pcs �∅ Γ (x)
mreq(m)[e/margs(m)][π/this] = Q mens(m)[x/ret] = Q′

x ∈ pc x = xδ

Γ, pc � Q {x :=π.m(e)} Q′

where

– id ∈ 	 if and only if the identifier id does not syntactically occur in 	
– Q ⇒ Q′ if and only if ∀(1, 	2) ∈ Q′. 	1 �Q 	2
– pc � 	 = (pcs � 	, pch �)

Fig. 3. Program type system

The set Q′ is used for backward reasoning, in order to be able to make asser-
tions about the post-value of x. The reason why Q is added is that one might
need the pre-state of x in the premises of the rule. Note that Q′[e/x] and Q do
not need to be disjoint; in fact, they may even be identical. The constraint set
assertions can be derived in Hoare logic by combining the rules for assignment
and consequence of the logic. The rule for assigning to fields works similarly.
Side conditions of the form x �∈ pc ensure that the evaluation of pc remains
invariant.

The rule for method calls relies on given method annotations. More precisely,
the (security) type of a method is a tuple (tthis , t, th, tret) that assigns variable

64 R. Grabowski and L. Beringer

types to formal arguments of a method, where t is a meta-variable ranging over
the possible variable types {&,⊥, xδ}. We denote this by writing

mtype(m) = tthis , t
th−−→ tret ,

to be read as: in method m, this has type tthis , the arguments margs(m) have
types t, ret has type tret , and no fields below th are updated.

In the rule for method calls, these variable types are turned into labels by
substituting xδ with the first argument expression in the sequence, which is sup-
posed to contain the domain value for xδ. It is then checked whether the passed
arguments and this have labels lower than their formal labels, and whether the
return value has a label lower than the assigned variable. Also, the lower bound
of the caller’s heap side effect must be lower than the method’s lower bound.

We also use functions

mreq, mens : M(m) → L×L

to annotate method declarations with required (pre-)constraint sets and ensured
(post-)constraint sets. Required sets may refer to the local variables, and ensured
sets may refer to ret . The appropriate variable substitutions are performed before
they can be compared with the caller’s constraint sets. We can now formulate
that a method is well-typed if its declared type can actually be derived.

Definition 4. Let m be a method with mtype(m) = tthis , t
th−−→ tret and con-

straint sets mreq(m) = Q and mens(m) = Q′. Then, m is well-typed if for all
implementations P of m, the judgment Γ, (⊥, th) � Q {P} Q′ can be derived,
where

Γ = [margs(m) �→ t][this �→ tthis][ret �→ tret].

5.3 Soundness

The following is the main soundness theorem.

Theorem 2. If Γ, (⊥,⊥) � Q {P} Q′ and all methods are well-typed, then P
is (Q, Q′)-secure with respect to Γ .

The proof of the theorem is by induction over the operational semantics. The
full proof can be found on the first author’s homepage [16].

We observe that the theorem actually states security for any given domain
lattice: The semantics, state equivalence and security notion are parametric in
the lattice D. However, the syntax, the type environments and the typing rules
only refer to labels and do not depend on the concrete security policy. Therefore,
if a program is typable, it is secure with respect to any given security policy
(D,≤). As motivated in the introduction, this enables a single verification of a
program that is executed in different environments with varying security policies.

Noninterference with Dynamic Security Domains and Policies 65

5.4 Meta-label Monotonicity

The soundness proof relies on an intrinsic property of the type system: a secu-
rity label � derived as a type always interprets to a domain that is at least as
confidential as the interpretation of the (meta-)label of �.

Lemma 1. If Γ � e : � and Γ � � : �′, then ��′�σ ≤ ���σ for any state σ.

To put it in informal terms: the fact that something is public can never be itself
a secret. The property seems to be common in languages where security types
are accessible programmatically; RTI [7] for example has a similar requirement
on security roles.

For precisely that reason, we chose ⊥ as the type for domain variables and
fields. If we admitted for instance Γ (xδ) = &, a consistent type system would
need to ensure that every xδ-typed variable actually gets a label that is at least
&, which is not very useful.

6 Dynamic Security Domains at the Bytecode Level

This section outlines how the described dynamic security domains can be ex-
pressed on the bytecode level, i.e. for an unstructured language that operates
on a stack. Since the described concepts are directly re-used, the type system is
mainly suitable for results of the compilation from DSD.

A bytecode program P is a mapping of program points i to instructions I
with the following syntax:

lit ::= & | ⊥ | n
op ::= ! | % | . . .
I ::= push lit | pop | prim op | load x | store x | ifeq i | goto i |

new C | putfield f | getfield f | call m | return

Instructions are interpreted with respect to program states (i, s, h, ρ) where i is
the program point, s and h are stores and heaps as before, and ρ is an operand
stack, i.e. a list of values. The small-step operational semantics for each instruc-
tion is omitted here, but can be found e.g. in [10].

The type system is based on the system by Barthe et al. [11], but requires
the derivation of some additional information. Figure 4 is meant to illustrate
the following explanations; it shows the bytecode program that corresponds to
the introductory example if xδ % this .fδ then P1 else P2, and gives a possible
derivation of the required auxiliary mappings, assuming Γ (this) = &.

In contrast to the original type system, we use labels instead of domains again.
Since labels remain a subset of expressions of the high-level DSD language, it is
necessary to “disassemble” instructions that are used to construct labels. This
is accomplished by deriving judgements of the form

i � E ⇒ E′

66 R. Grabowski and L. Beringer

i E(i) Q(i) S(i) pc(i) P (i)
1 ε ∅ ε ⊥ load xδ

2 ”xδ” ∅ ⊥ ⊥ load this
3 ”this” :: ”xδ” ∅ � :: ⊥ ⊥ getfield fδ

4 ”this .fδ” :: ”xδ” ∅ � :: ⊥ ⊥ prim �
5 ”xδ � this .fδ” ∅ � ⊥ ifeq 17
6 ε ∅ ε � (instructions of P2...)
...

17 ε {xδ � this .fδ} ε � (instructions of P1...)

Fig. 4. Type derivation of the compilation of if xδ � this .fδ then P1 else P2

where E and E′ are sequences of (high-level language) expressions and thus
abstractions of the stack values. The judgement means that the execution of the
instruction at i in a state with a stack described by E leads to a new state where
the stack is described by E′. The system induces a mapping E that associates
each program point with a list of expressions that describe the stack whenever
that point is reached. (Instead of an expression, one may also describe a stack
entry with a special symbol that indicates “don’t know”, hence E always exists.)

Using the stack expressions, we can compute local pre- and post-constraint
sets for each instruction by deriving judgements

E � i : Q ⇒ i′ : Q′

which say that if a state satisfies Q and program point i′ is reachable via the
instruction P (i), then the new state satisfies Q′. Together with a consequence
rule, this gives a mapping Q from each program point to a constraint set.

Finally, the main typing judgment has the form

Γ,Q,E,pc, i � S ⇒ S′

which models the small-step semantics abstractly by giving stack typings S and
S′, which are sequences of labels describing the security of the stack values
at position i and the following position. The component pc is a mapping of
instruction points to triples of labels (pcs, pch, pcρ) that give the lower bound on
side effects on the store, the heap, and the stack at each position. As is standard,
whenever a “high” branching is performed, the program counter label is lifted
for every instruction within the control dependence region [17] of the branching
instruction.

If the rules induce a mapping S of program points to stack typings, then the
program is well-typed, and (according to the soundness property) also secure.
The soundness proof shows that the rules define a weak bisimulation of two
executions where instructions with a “high” program counter label are shown to
have no visible effect.

Noninterference with Dynamic Security Domains and Policies 67

7 Discussion

We presented an object-oriented language with runtime tests of security domains,
which makes programs possible that safely access dynamically typed data. This
section highlights further benefits of DSD and outlines open work.
Modular security design. The encapsulation of data and security domains sup-
ports a modular software design. In the introductory example, the caller of
append does not need to deal with security-related aspects of the file’s contents
if an error recovery mechanism for the else case is implemented. Alternatively, it
is possible with the presented framework to pass the proof obligation xδ% this .fδ

to the method caller by annotating the method accordingly.
Erasure and declassification in DSD. As the domain fields and variables can
be inspected and compared during execution, it is possible to perform various
security-related operations. For example, a file can be classified as confidential
simply by setting its fδ field to H , or information can be erased by overwriting
the contents field with a harmless value and then setting fδ to L. The last
scenario is secure but currently not typable.

When the contents is not overwritten, the above operation amounts to declas-
sification. Though it is hard to find an appropriate weakening of the noninter-
ference property, the explicit change of security types (fδ) in DSD represents a
novel syntactic way of declassification.
Type preserving compilation. For PCC scenarios, it is desirable to compile DSD
programs to bytecode such that the bytecode translation is typable with the
bytecode type system if the original program was typable with the high-level
system. The compilation may take the structure of the high-level program into
account to compute the control dependence regions. Both the compilation and
the type preservation proof are currently work in progress.
Implementation. As mentioned in the introduction, we have encoded the DSD
language into a subset of the Java language by using Java annotations for field
types and method signatures. Furthermore, we have developed a prototypic im-
plementation of a type inference as a plugin for the integrated development
environment Eclipse [15].
Expressivity and complexity. We plan to give a larger example program to better
demonstrate the expressivity of the type system. Also, although the focus of PCC
lies on efficient verifiability, it would be interesting to investigate the complexity
of the analysis, or to give empirical benchmark results of the implementation.

Acknowledgements

This work was supported by the Information Society Technologies programme
of the European Commision, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project, and by the DFG-funded project InfoZert, grant
number Be 3712/2-1. We would like to thank Gilles Barthe and Daniel Hedin
(IMDEA Software Madrid) as well as Alexander Knapp, Florian Lasinger, and
Martin Hofmann (LMU Munich) for their helpful input and comments.

68 R. Grabowski and L. Beringer

References

1. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of the 1982 Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society
Press, Los Alamitos (1982)

2. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

3. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications – special issue on Formal Methods for
Security 21(1), 5–19 (2003)

4. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, pp. 106–119. ACM Press, New York
(1997)

5. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Languages
(POPL), pp. 228–241. ACM Press, New York (1999)

6. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow control.
Int. J. Inf. Secur. 6(2), 67–84 (2007)

7. Bandhakavi, S., Winsborough, W., Winslett, M.: A trust management approach
for flexible policy management in security-typed languages. In: Proceedings of 21st
IEEE Computer Security Foundations Symposium, pp. 33–47. IEEE Computer
Society, Los Alamitos (2008)

8. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure in-
formation flow. In: Proceedings of the 20th IEEE Computer Security Foundations
Symposium, Washington, DC, USA, pp. 203–217. IEEE Computer Society, Los
Alamitos (2007)

9. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007)

10. Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: TLDI 2005:
Proceedings of the 2005 ACM SIGPLAN international workshop on Types in lan-
guages design and implementation, pp. 103–112 (2005)

11. Barthe, G., Rezk, T., Naumann, D.A.: Deriving an Information Flow Checker and
Certifying Compiler for Java. In: S&P, pp. 230–242. IEEE Computer Society, Los
Alamitos (2006)

12. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Computer Security 4(3), 167–187 (1996)

13. Banerjee, A., Naumann, D.A.: Stack-based access control and secure information
flow. J. Funct. Program. 15(2), 131–177 (2005)

14. Grabowski, R.: Noninterference for Mobile Code with Dynamic Security Domains.
In: International Workshop on Proof-Carrying Code, Pittsburgh, USA (Post-
proceedings to appear, 2008)

15. Lasinger, F., Grabowski, R.: DSecCheck: Implementation of the DSD type system
as an Eclipse plug-in (2009), http://www.tcs.ifi.lmu.de/~grabow/dsd

16. Grabowski, R.: Proofs for the soundness of the DSD type system (2009),
http://www.tcs.ifi.lmu.de/~grabow/dsd

17. Ball, T.: What’s in a region? or computing control dependence regions in near-
linear time for reducible control flow. LOPLAS 2(1-4), 1–16 (1993)

http://www.tcs.ifi.lmu.de/~grabow/dsd
http://www.tcs.ifi.lmu.de/~grabow/dsd

A Critique of Some Chaotic-Map and Cellular
Automata-Based Stream Ciphers

Matt Henricksen

Institute for Infocomm Research,
A*STAR, Singapore

mhenricksen@i2r.a-star.edu.sg

Abstract. Designing symmetric ciphers based on chaotic maps or cel-
lular automata has a long but rarely successful history. In this paper,
we examine some symmetric ciphers based on chaotic maps and cellu-
lar automata, and indicate how to reconcile design techniques for these
primitives with current methodologies.

Keywords: Chaotic maps, cellular automata, symmetric cryptology.

1 Introduction

Cryptology, which pertains to information secrecy, lies at the core of information
security. For reasons of efficiency, encryption is predominantly conducted using
symmetric cryptology, realized through primitives (block ciphers, stream ciphers)
for which the sender and receiver of the hidden information share a key.

Because of the recent ECRYPT eSTREAM competition [1], there has been a
great deal of research into stream ciphers in the past few years. eSTREAM sought
to identify stream ciphers that are secure and fast in hardware and/or software.
Many of the submissions to the eSTREAM competition relied on upgrades to
traditional shift-register based designs, on table swapping permutations, on to
very novel designs. Only two of the thirty-four candidates were based on the
principle of iterating a chaotic map, or Cellular Automaton (CA).

This belies the observation that there is a steady but almost orthogonal in-
terest in designing symmetric ciphers based upon these principles, despite their
being quickly and regularly broken. It is rare to see a design of a chaotic-map
or CA based cipher a skilled cryptanalyst, and it is also clear that the lessons
of mainstream cipher design are not always heard by the designers of chaotic-
map-based schemes. Mainsteam cryptographers tend to view ciphers based on
chaotic maps and cellular automata suspiciously [4]. Stream cipher technology
is not yet mature [1], and this is sufficient reason not to abandon further study
in chaotic-map based designs. Another reason is diversity. Many stream ciphers
rely on the non-linearity given by s-boxes or on the guarantees of periodicity of
word-based Linear Feedback Shift Registers (LFSRs), but a recent style of side-
channel attack [24] utilizes the non-constant access time of both s-boxes and
LFSRs on machines that utilize cache. The response by the cryptographic com-
munity has been a trend to design stream ciphers using a trinity of instructions

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 69–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 M. Henricksen

- addition, rotation and exclusive-or, all of which are constant-time fast opera-
tions on modern computer architectures. But addition is only slightly non-linear
with respect to rotation and exclusive-or, and such limited diversity in stream
cipher design may not be robust given development of attack technologies such
as algebraic attacks. As chaotic-map based designs tend to eschew s-boxes and
LFSRs, it is an interesting source of ‘genetic diversity’.

This paper attempts to bridge some of the gaps between conventional stream
cipher design, and design of stream ciphers based upon chaotic maps and CAs.
Many of these ciphers (or their specifications) share the same deficiencies. In
Section 2, we give a handful of case studies of three types of cipher, including real-
valued chaotic maps, fixed-value integer chaotic-maps and integer-based cellular
automata. In Section 3, we give guidelines on how to design chaotic-map based
and CA-based stream ciphers that can compete successfully with mainstream
stream ciphers. In Section 4, we provide concluding notes.

2 Case Studies

Chaotic-map ciphers have a long history, dating back to Shannon’s observation
[19] that chaotic maps, such as the Baker’s map, can be used to perform good
mixing transformations.

2.1 Ciphers Based on Real-Valued Chaotic Maps

Real-valued chaotic maps appear at first sight to be a good match to encryp-
tion systems. Chaotic systems are very sensitive to initial conditions and system
parameters. Depending upon the initial states, they may exhibit exponential sen-
sitivity to minor changes. Iterating these maps gives the appearance of random
behaviour, in which two similar values quickly diverge 1. Information about the
initial state is therefore lost. The parameters of the system can be determined
using keys, and the trajectory of the system used for encryption.

Baptista’s scheme. One of the most famous chaotic-map ciphers is the Bap-
tista scheme [5], in which the logistic map Xn+1 = bXn(1 − Xn) is used with
values b ∈ [0, 4] and X0 ∈ [0, 1]. The range of the logistic map is partitioned into
256 sites, each assigned to an ASCII character. Ergodicity dictates that the tra-
jectory of the map eventually visits all sites. A single character is encrypted by
iterating the logistic map from its initial conditions until the target site for that
character is reached. The encryption of the character is the number of iterations
required to reach the target. Initial states are chained; the initial state of the
second character is the final state of the first.

Irrespective of the security merits (the scheme was successfully attacked by
Alvarez et al. [3]), it is obvious that such a scheme cannot compete efficiently
with modern symmetric cryptosystems. The latter do not divide the plaintext or
1 This property is not unique to chaotic maps. It is an integral part of symmetric

ciphers, as measured by the Strict Avalanche Criterion.

A Critique of Some Chaotic-Map and Cellular Automata-Based 71

ciphertext alphabet into ASCII characters, but rather into the native word size
of the processor (ie. alphabets with 232, 264 or 2128 characters) so can process
the equivalent of multiple ASCII characters in the time it takes the Baptista
scheme to process one, assuming that the update functions are equivalent. It is
possible to further subdivide the target sites, but real-number valued schemes
such as Baptista’s already suffer from precision problems. Ciphers that output
bytes at a time are likely to be very slow and outmoded 2, and do not take full
advantage of the efficiency of word-based instructions.

It is also obviously the case that the round function of Baptista’s scheme is
not efficient relative to those of mainstream stream ciphers. Modern symmetric
cryptosystems use simple operations such as exclusive-or, or addition, or table
lookups which can be implemented to execute in less than a single cycle on a
super-scalar architecture. The logistic map of Baptista’s scheme uses real num-
bers, for which multiplication may be implemented with a latency of four cycles
on recent architectures [11], but much slower on older machines. Given that the
encryption of a single character takes several tens of thousands of iterations,
the scheme is not competitive with stream ciphers that generate throughput in
the order of gigabytes/second. It is very difficult for the cryptographer to take
this kind of inefficient scheme seriously3. When proposing new schemes based
on real-valued chaotic maps, the designers should optimize their cipher imple-
mentations and report speeds in terms of number of computer cycles required
to generate one byte. If the speed can not be reported in terms of single-digit
cycles, then the cipher is unlikely to be viewed positively.

Other schemes iterate chaotic maps a certain number of times and release
part of the final state as the output. There are exotic variations involving mul-
tidimensional chaotic maps. For example, in a typical scheme, the state of the
stream cipher is contained in two variables X and Y . The least significant bits
of Y selects one of the following two-dimensional maps:

1. Baker’s map

S(x, y) =
{

(2x, y
2) for (0 ≤ x < 1

2)
(2− 2x, 1− y

2) for (1
2 < x < 1)

2. Kaplan-Yorke map

xn+1 = 2xn mod 1
yn+1 = ayn + cos(4πxn)

2 RC4 is a notable and rare exception.
3 While security was considered the paramount property of ciphers around a decade

ago, efficiency has emerged as a primary consideration. There are now many ciphers
that are both fast and secure. Cryptographers are not interested in slow ciphers
- eSTREAM chose the fastest of the secure for their portfolio. Hence it does not
matter what novel security features a new cipher possesses if it is not fast.

72 M. Henricksen

The value of X modulo some map-dependant constant selects how many times
the map is iterated during one clock for the stream cipher. The modulus exists
because for the Kaplan-Yorke map, the period is extremely low and it should
not be permitted to iterate more than six times, while the Baker’s map may
be allowed to iterate more than twenty-times. This instantly raises a number of
problems.

Firstly, if different maps contain significantly different operations or different
constraints on how many times they can be iterated, then the attacker may
mount a timing attack very simply by measuring the amount of time (with
microsecond precision) between each output of keystream. For example, in this
case if each iteration of a map takes 1 millisecond, then a delay of 20 millisecond
indicates the Baker’s map was iterated, and the least significant bit of Y has been
leaked. The Kaplan-Yorke map is guaranteed to be slow because it implements
a cosine operation, which takes around 100 cycles on most Intel processors [11].
In the time it takes to implement a single cosine, a conventional stream cipher
can generate 128 bits of keystream.

The second problem is of periodicity. Many of the chaotic maps require their
parameters to be within very specific ranges in order to guarantee chaotic behav-
ior. Even then, the period of the maps is extremely small, compared to those of
LFSRs (a 128-bit LFSR with a primitive polynomial has a guaranteed period of
2128−1). Software and hardware efficiency dictates that it is not feasible to check
whether the starting parameters for a chaotic map or LFSR will be successful in
inducing pseudo-random behaviour, so many chaotic maps can not provide the
necessary guarantees for periodicity in the way that conventional stream cipher
design demands.

2.2 Ciphers Based on Fixed-Value Integer Chaotic-Maps

Basing a chaotic-map on fixed-point integer values allows the algorithm can
be implemented in the general purpose registers, offering better throughput on
simple instructions. The precision issue disappears because (for a given word
size) there is no disagreement between processors on how to implement integer
arithmetic.

Rabbit. [7] harnesses the pseudo-random properties of real-valued chaotic maps,
but discretizes them to 32-bit words. Rabbit is probably the most successful
stream cipher based upon chaotic maps, as one of the four finalists in the eS-
TREAM software portfolio, with an excellent performance of 3.7 cycles/byte on
the Pentium III. The designers of Rabbit submitted an extensive cryptanaly-
sis alongside the specification. Third-party cryptanalysis includes a moderately
serious distinguisher with complexity 2158 [14].

The Rabbit state consists of eight 32-bit state variables and eight 32-bit state
counters. The update function is defined as

xj,i+1 = gj,i + gj−1,i ≪ ri,1 + gj−2,i ≪ ri,2, ri ∈ {8, 16}

where
gj,i = ((xj,i + cj,1)2 ⊕ ((xj,1 + cj,1)2 * 32)) mod 232

A Critique of Some Chaotic-Map and Cellular Automata-Based 73

The g function can be implemented using four 32-bit multiplications. On recent
Intel processors with SSE2 (eg. the Core Duo), two 32-bit multiplications can
be conducted simultaneously with a latency of a single cycle. But on older ma-
chines, multiplication is a problematic operation: on the Intel Pentium 4, the
SSE2 latency is six cycles, and the general register latency is as much as 17
cycles. On that machine, the throughput of Rabbit falls to 9.5 cycles [10]. This
emphasizes the need to choose operations carefully, although in Rabbit’s case a
good compromise between blazing efficiency on common machines, and sturdy
performance on legacy machines seems to have made.

Rabbit’s update function exhibits very good diffusion due to the fact that each
state variable is updated using a non-linear combination of three state variables
and three counters. This chaining makes it very difficult to perform divide-and-
conquer and guess-and-determine attacks. Multiplication as a provider of confu-
sion is less convincing. The use of constant-time operations and non-reliance on
s-boxes means that timing and cache-timing attacks do not apply.

2.3 Ciphers Based on Integer-Based Cellular Automata

A popular theme in cipher design, if not a very successful one, is to construct a
secretly-keyed CA. The automaton consists of a set of discrete cells in one or more
dimensions. Each cell has a set of neighbours defined for a particular distance d.
In an automaton with d = 1, the neighbours consist of the immediately adjacent
cells. The CA state is iterated by determining a new generation of cells, where
a set of rules determines the new state for each cell based on its own value and
those of its neighbours.

Rule30. The theory of cellular automata was popularized by Steven Wolfram
in 1985 [22]. He continued to advance their usage in cryptography in the well-
known book A new kind of science [23], in which he classified cellular automata
into four groups. Only the third, in which nearly all patterns evolve in a pseudo-
random or chaotic manner, is suitable for cryptographic usage. In his earlier
paper, Wolfram defines an automaton based on rule 30, ie. expressed in GF(2)
as ai = ai−1 ⊕ (ai OR ai+1), alternatively represented below.

Rule 30
Now 111 110 101 100 011 010 001 000
Next 0 0 0 1 1 1 1 0

Rule 30 was defined in the infancy of cryptography, and Wolfram acknowledges
that the construction is highly linear. He justifies its existence by empirically
demonstrating that there are no statistical regularities for sequence lengths up
to 219. The usage of statistics to demonstrate the security of a cipher was a
common approach in the eighties and the nineties. Nowadays, there is call for
ciphers that when keyed with 256-bit keys produce keystream indistinguishable
from random, so that distinguishers with extremely low biases (for example,
in the order of 2−128) successfully diminish confidence in the ciphers. It is not
possible to demonstrate theses biases empirically. In any case, statistical tests go

74 M. Henricksen

a long way towards proving nothing - for example, Dawson et al. [9] use statistical
tests to verify that there is a bias in the second byte of any RC4 keystream, but
refute the claim by Mironov [15] that there is also a bias in the first byte, by
using statistical analysis of 100,000 randomly initialized keystreams. If they had
used more keystreams, they would have discovered a different result: later on,
it was indeed demonstrated that there is a bias in the first, and other bytes of
RC4 keystream [17] using a significantly large number of keystreams (possible
through improved computing power) in conjunction with theoretical analysis.
Conversely, even trivially breakable ciphers, such as those comprising several
LFSRs with long periods, can pass statistical tests. Statistics used in isolation
can indeed prove anything. They are inadequate as a line of defence.

Wolfram suggests that the weakness of linearity in the CA can be avoided
by non-bijectivity. In this case, the attacker cannot work backwards from the
keystream to identify the internal state of the cipher. This idea of non-bijectivity
is valid within the output filter, the function that samples the state of the cipher
and produces a one-way map of it to provide keystream, but it is a dangerous
concept when applied to the update function, which maps the internal state of
the cipher at time t to the state at time t+1. The state of a stream cipher should
always maintain its entropy, otherwise at a later stage an attacker may be able
to perform a search with complexity less than that of brute forcing the master
key.

MAG. With the passing of 25 years, and in the context of the sophisticated
theories of cipher design that mandate highly non-linear components, Wolfram’s
work on ‘Cryptography with CA’ is now unconvincing, but it still attracts follow-
ers. MAG [21] is a accumulator-based stream cipher based on the Wolfram Rule
30 generalized to 32-bit words. It was entered into the eSTREAM competition
as a software candidate, but was quickly archived due to security and efficiency
issues.

In the algorithm, cell ai is compared to neighbour ai−1, and on the basis of
their relationship cell ai+1 or its complement is exclusive-ored to the accumula-
tor, which is then exclusive-ored to cell ai+2. This cell is used to generate out-
put. As a case study, MAG is an excellent archetype. Firstly, its defence against
cryptanalysis attacks is empirical, being based upon statistical testing of fifty
samples of output, each sample being ten megabytes long. MAG also uses ‘visual
cryptanalysis’, whereby the keystream is mapped as a picture. The absence of
visual artifacts for this one keystream is taken as proof that the keystream is
pseudo-random, thereby ignoring the facts that not all keystreams are created
equal, and that the human eye is not an effective computer for determining the
presence of low-probability biases. While this test is meaningless as a device to
detect 2−128 probability biases, it is surprisingly common in chaotic-map and
CA cipher design papers.

The most interesting thing about MAG is its claim that due to its heritage,
it is not subject to the usual cryptanalytic techniques.

The advantage of [this] approach is: a set of criteria such as linear com-
plexity, nonlinearity, statistics, confusion and diffusion does not have

A Critique of Some Chaotic-Map and Cellular Automata-Based 75

to be addressed directly as is the case with more complicated system-
theoretic approaches. The whole security issue is shifted to the compu-
tational irreducibility principle alone. [21, p. 15]

MAG can be represented as a conventional cipher design. MAG was crypt-
analysed by Simpson et al. [20] in which they demonstrate that MAG can be rep-
resented as a traditional cipher structure involving a 127-word register coupled
with the accumulator. Their attack on MAG succeeds with a modest thirty-two
bytes of keystream. Thus the security by difference defence does not hold.

In MAG, the state update function is close to linear, using only exclusive-
or and complementation operations. The output filter, by truncating the 32-bit
input to its least significant byte, simultaneously cripples the efficiency of the
cipher and leaks large portions of the internal state into keystream. After 127
iterations of the cipher, the entropy of the state is reduced by one-quarter. For
an 80-bit key, this reduction allows the remaining key bits to be almost prac-
tically brute-forced, and the loss of entropy is fatal. The comparison operation
in each cycle adds only one bit of uncertainty to be taken into account by the
attacker.

The diffusion in the cipher is extremely poor. During one cycle clock, only
one word of the register is altered, and it is only directly influenced by one
other word of the register. This is intrisincally a property of using a cellular
automaton with a small neighbourhood. Comparison with LFSR based ciphers is
instructive. Generally large LFSRs will have a large number of taps, meaning
that in each cycle, many words will be combined to influence a single word,
and the number of words influenced can be increased by having many smaller
LFSRs coupled together by some non-linear mechanism. In fact, this non-linear
mechanism is likely to be much stronger than the non-linearity in MAG, which
is generated through complementation. The linearity of the exclusive-ors means
that successive complementations in MAG cancel, and that for any two points
in time, the attacker need only to effectively deal with a single complementation
operation. No explicit intra-word diffusion elements are present.

Perhaps the most serious mistake of the cipher is that, in its quest for effi-
ciency, MAG inadequately mixes the state before releasing keystream. This is
a common problem in many CA-based and chaotic-based ciphers, such as the
unnamed CA-based system cryptanalysed by Bao [4]. Bao describes that the “in-
herent weakness is that it is actually like a one round block cipher” The recent
all-in-one symmetric cryptographic primitive Enrupt [16] has strong similiari-
ties to the MAG cipher, although its update function is more complex. As with
MAG, the cipher can be represented as a long register coupled to an accumu-
lator, and characterized by a slow-diffusion moderately-linear update function
that operates on a small set of neighbouring cells. The advantage Enrupt has
over MAG is that it releases keystream from the accumulator rather than from
the register, and ensures that the accumulator is updated several times before
each keystream is generated. This makes it more difficult for the attacker to
retrieve internal state. Nevertheless, Enrupt was convincingly cryptanalysed in
its hash function form by Indesteege [13].

76 M. Henricksen

3 A Good Design Methodology for Stream Ciphers

The task of designing a good stream cipher involves several iterative stages. In
the first, the designer selects a series of simple and efficient operations and com-
bines them in a novel way. In the second, he analyses the design from efficiency
and security perspectives. He iterates through these two stages, applying modifi-
cations until he has a cipher that provides both good benchmarks, and a series of
results that defend the cipher against known attacks, such as time-memory-data
tradeoff, guess-and-determine, related key-related IV, algebraic attacks, and so
on. Generally the absence of such a defence in the specification paper for a new
cipher indicates the second phase has been improperly performed, and therefore
the onus of defending the cipher falls inappropriately to third-party cryptogra-
phers. The same applies when only basic statistical arguments are present.

Therefore the designer also must be the cryptanalyst. He must ensure that
the state size of the cipher is at least double the combined length of the key
and IV in order to avoid time-memory-data tradeoff attacks [12]. For software
implementations, all operations should be word-based or bitsliced. The algorithm
should have no conditional branches, in order to avoid pipeline stalls and timing
attacks. The update function should be bijective, and the output filter should be
a one-way map. Either or both of these should have some non-linear components.
Linear components should have some guarantee of minimum period to ensure
that keystream does not quickly become repetitive. Diffusion between different
parts of the cipher should be strong and efficient (CA with neighbourhoods of 1
need not apply).

The algorithm should have a key initialization algorithm that mixes in a key
and an equal length IV into the state in a non-linear and non-reverisble way.
Preferably this should involve reuse of the update function, and occur in two
phases - the first, the mixing of the key, and the second the mixing of the IV -
to enable agile IV-rekeying.

All of this should occur sufficiently quickly to enable the cipher to be com-
petitive with its contemporaries, but not too efficiently to degrade the security
of the cipher. Most importantly, the designer needs to show that he is aware of
the latest cryptanalytic techniques, and he has applied them unsuccessfully to
his cipher. This is frequently something that is missing from chaotic-map and
cellular automata-based specifications.

4 Conclusion

In this paper, we surveyed a number of chaotic-map and cellular automata-based
stream ciphers.

Many mainstream ciphers are built upon LFSRs, which have well-understood
properties, including guaranteed properties when used with an irreducible prim-
itive polynomial. Contrast this to chaotic maps, which particularly due to their
representation as floating-point numbers, with all the associated disadvantages
of round-off errors, may have very short or indeterminate periods, or depending

A Critique of Some Chaotic-Map and Cellular Automata-Based 77

upon inappropriate choice of starting parameters, may not be chaotic at all. The
limitations of real-valued chaotic-map based ciphers will continue to make them
non-competitive in relation to mainstream ciphers. Integer-based chaotic maps
schemes are viable, as demonstrated by Rabbit.

Most of the cellular automata-based stream ciphers have very slow diffusion.
The exception is Hiji-Bij-Bij [18]4, which is a hybrid cipher that combines two
cellular automata with standard stream cipher building blocks. It will be interest-
ing to investigate the suitability of cellular automata with larger neighbourhoods
and better diffusion properties.

In this paper, we have attempted to provide guidelines for designers interested
in using chaotic maps or cellular automata to build stream ciphers. The most
important guidelines are to understand and deploy a wide range of standard
cryptanalysis techniques, and to understand the importance of efficiency in this
very competitive field.

References

1. eSTREAM PHASE 3 (September 2008),
http://www.ecrypt.eu.org/stream/index.html

2. State of the Art Stream Ciphers (SASC) 2008 Workshop, Lausanne, Switzerland
(February 2008), Special Workshop hosted by the ECRYPT Network of Excellence,
http://www.ecrypt.eu.org/stvl/sasc2008/

3. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of an ergodic
chaotic cipher. Physics Letters A 311, 172–179 (2003)

4. Bao, F.: Cryptanalysis of a Partially Known Cellular Automata Cryptosystem.
IEEE Transactions on Computers 53(11), 1493–1497 (2004)

5. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240(50) (1998),
http://cmup.fc.up.pt/cmup/murilo.baptista/baptista_PLA1998.pdf

6. Bernstein, D.: The Salsa20 Family of Ciphers. In: Robshaw, M., Billet, O. (eds.)
New Stream Cipher Designs: The eSTREAM Finalists. LNCS, vol. 4986, pp. 84–97.
Springer, Heidelberg (2008)

7. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: a new high-performance stream cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 325–344. Springer, Heidelberg (2003)

8. Cho, J.Y.: An improved estimate of the correlation of distinguisher for Dragon. In:
SASC 2008 [2]. Special Workshop hosted by the ECRYPT Network of Excellence,
pp. 11–20 (2008), http://www.ecrypt.eu.org/stvl/sasc2008/

9. Dawson, E., Gustafson, H., Henricksen, M.: Analysis of statistical flaws in the RC4
encryption algorithm. In: 19th British Combinatorics Conference, Bangor, Wales
(2003)

10. ECRYPT eSTREAM. The eSTREAM Project - eSTREAM Phase 3 Performance
Figures - Intel Pentium 4 (2008),
http://www.ecrypt.eu.org/stream/phase3perf/2007a/pentium-4-a/

11. Fog, A.: Instruction tables. Lists of instruction latencies, through-
puts and microoperation breakdowns for Intel and AMD CPU’s (2009),
http://www.agner.org/optimize/instruction_tables.pdf

4 Hiji-Bij-Bij is sureveyed in the long version of this paper.

http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stvl/sasc2008/
http://cmup.fc.up.pt/cmup/murilo.baptista/baptista_PLA1998.pdf
http://www.ecrypt.eu.org/stvl/sasc2008/
http://www.ecrypt.eu.org/stream/phase3perf/2007a/pentium-4-a/
http://www.agner.org/optimize/instruction_tables.pdf

78 M. Henricksen

12. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In:
Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer,
Heidelberg (2005)

13. Indesteege, S.: Practical Collisions for EnRUPT. In: 16th International Workshop
on Fast Software Encryption, FSE 2009, Leuven, Belgium (February 2009)

14. Lu, Y., Wang, H., Ling, S.: Cryptanalysis of Rabbit. In: Wu, T.-C., Lei, C.-L.,
Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 204–214. Springer,
Heidelberg (2008)

15. Mironov, I. (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

16. O’Neil, S.: EnRUPT First all-in-one symmetric cryptographic primitive. In: SASC
2008 - The State of the Art of Stream Ciphers. Special Workshop hosted by
the ECRYPT Network of Excellence, Lausanne, Switzerland, February 13-14 [2],
pp. 259–272., http://www.ecrypt.eu.org/stvl/sasc2008/

17. Paul, G., Rathi, S., Maitra, S.: On non-negligible bias of the first output byte of
RC4 towards the first three bytes of the secret key. Des. Codes Cryptography 49(1-
3), 123–134 (2008)

18. Sarkar, P.: Hiji-bij-bij: A new stream cipher with a self-synchronizing mode of op-
eration. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904,
pp. 36–51. Springer, Heidelberg (2003)

19. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1985)

20. Simpson, L.R., Henricksen, M.: Improved Cryptanalysis of MAG. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 64–75. Springer, Heidel-
berg (2006)

21. Vuckovac, R.: MAG My Array Generator (a new strategy for random number
generation) (2005), http://www.ecrypt.eu.org/stream/ciphers/mag/mag.pdf

22. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1985)

23. Wolfram, S.: A New Kind of Science. Wolfram Media (January 2002)
24. Zenner, E.: A Cache Timing Analysis of HC-256. In: Proceedings of 15th Annual

Workshop on Selected Areas in Cryptography. LNCS, Springer, Heidelberg (2008)

http://www.ecrypt.eu.org/stvl/sasc2008/
http://www.ecrypt.eu.org/stream/ciphers/mag/mag.pdf

A Logic for Formal Verification
of Quantum Programs

Yoshihiko Kakutani

Department of Information Science, University of Tokyo
kakutani@is.s.u-tokyo.ac.jp

Abstract. This paper provides a Hoare-style logic for quantum compu-
tation. While the usual Hoare logic helps us to verify classical determin-
istic programs, our logic supports quantum probabilistic programs. Our
target programming language is QPL defined by Selinger, and our logic
is an extension of the probabilistic Hoare-style logic defined by den Har-
tog. In this paper, we demonstrate how the quantum Hoare-style logic
proves properties of well-known algorithms.

1 Introduction

The Hoare logic is a formal system for verification of programs. The logic was
introduced by Hoare in [1], and has been studied technically and practically by
many researchers (e.g., [2], [3]). The aim of this work is to provide a kind of
Hoare logic which is useful for verification of quantum programs.

Quantum computation is a developing topic in the field of computer science.
Traditionally, studies of quantum computation are based on quantum gates and
circuits, which are important for realize a quantum computer. Quantum Tur-
ing machines are purely abstract setting of quantum computation, and suitable
for studies on computational complexity. Since our aim is to verify algorithms
and protocols, we focus on neither circuits nor Turing machines but quantum
programming languages. Our target language is QPL defined by Selinger in [4].
QPL has clear denotational semantics and its syntax is similar to that of the
original Hoare logic. Our formulation of a Hoare-style logic is based on Selinger’s
denotational semantics.

Probabilistic behavior is one of the features of quantum computation. The
usual Hoare logic derives an assertion that a post-condition holds after the ter-
mination of a program if a pre-condition holds before the execution. In proba-
bilistic computation, however, it is not deterministic whether a condition is true
or false. A probabilistic extension of the Hoare logic defined by den Hartog in
[5] can derive a probabilistic assertion of a probabilistic program. We extend
this probabilistic Hoare logic to quantum computation: probabilistic states are
replaced with quantum mixed states, and formulae are extended with unitary
transformations. Our quantum Hoare logic (may be called QHL in this paper)
naturally covers den Hartog’s logic because QPL has also classical bits. We do
not describe a state of a quantum bit directly in our logic, but can describe
probability after measurement. Such representation makes the syntax simple.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 79–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 Y. Kakutani

In this paper, we show some practical examples how our quantum Hoare logic
verifies properties of algorithms, quantum teleportation [6], Shor’s prime factor-
ization [7], a solution of the Deutsch problem [8], and quantum coin tossing [9].

Related Works

There are other extensions of the Hoare logic for quantum computation.
A dynamic logic with quantum computation, LQP, is provided by Baltag and

Smets in [10]. LQP is an extension of the propositional dynamic logic, which is
an extension of the propositional Hoare logic. LQP is more sophisticated from
the viewpoint of program verification than extensions of the quantum logic like
[11]. Because LQP is a propositional logic, it cannot describe a probabilistic
predicate. It is an advantage that the base of our Hoare logic is a first-order
predicate logic.

Another quantum Hoare logic is given by Chadha et al. in [12]. Also their
logic is based on a probabilistic Hoare logic. While the expressive power of their
formulae is strong, the derivation system as a Hoare logic is weak. Our logic
supports wider probabilistic Hoare-style derivations, including the while loop.
Formulation of rules for while loop programs is also a contribution of our work.
Distinction of pure quantum states from mixed states makes the syntax and
semantics of Chadha et al.’s logic complicated. Since our semantics based on
Selinger’s, we can deal with mixed states and classical states uniformly.

D’Hondt and Panangaden studies weakest preconditions on quantum pro-
grams in [13]. Their formulation gives another representation of probabilistic
conditions. A Hoare-style logic [14] based on [13] is being developed by Ying.

2 Mathematical Preliminaries and Notations

We use some mathematical conventional notations in this paper.
The set of complex numbers is denoted by C, the set of real numbers is denoted

by R, the set of integers is denoted by Z, and the set of natural numbers including
0 is denoted by N.

A finite dimensional vector on C is denoted by a column. The unit vectors(
1
0

)
and

(
0
1

)
in C2 are denoted by e0 and e1, respectively. The unit matrix

in C2n×2n

is denoted by In, and the zero matrix is by On. The suffix n of In or
On may be omitted. For a matrix A, A† denotes the adjoint of A. Some special
matrices in C2×2 are denoted as follows:

E0 =
(

1 0
0 0

)
E1 =

(
0 0
0 1

)
N =

(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
V =

(
1 0
0 i

)
.

Hn ∈ C2n×2n

is defined as H0 = 1 and Hn+1 = H⊗Hn. A matrix in C2n×2n may

be denoted by
(

A C
B D

)
with matrices A, B, C, D ∈ Cn×n.

A Logic for Formal Verification of Quantum Programs 81

We show some equations useful in this paper.

(Ei ⊗X)
(

A0 C
B A1

)
(Ei ⊗ Y) = Ei ⊗XAiY H2 = I

(e†i ⊗X)
(

A0 C
B A1

)
(ei ⊗ Y) = XAiY NE0N = E1.

We represent a pure state of a quantum bit as a unit vector in C2. In that case,
the first basis vector is identified with the integer 0, and the second basis vector
with 1.

In order to distinguish program codes from usual mathematical expressions,
we use typewriter font for program codes.

3 Quantum Programming Language

In this section, we introduce a quantum programming language, which is a re-
striction of Selinger’s QPL [4]. Though our language does not support recursion,
it has still a loop structure.

Definition 1. The syntax of the quantum programming language is defined as
follows.

P ::= skip | P ; P

| bit x | qbit x | discard x

| x := 0 | x := 1 | x, . . . , x *= U

| if x then P else P | while x do P

| measure x then P else P

where x ranges over program variables, and U over unitary transformations. A
typing context is a sequence which assigns a variable to either bit or qbit. For
typing contexts Γ and Γ ′, we write Γ ∼= Γ ′ when Γ ′ is a permutation of Γ . The
typing rules are given in Table 1.

The syntax bit b and qbit q mean variable declarations intuitively. The syntax
discard x closes the scope of the variable x. Each program variable has the type
of either classical bits or quantum bits which is declared by bit x or qbit x
respectively.

If a program is well-typed with fixed contexts, the typing derivation is unique
up to permutations of contexts. In this paper, we may implicitly identify per-
mutable contexts.

The semantic interpretation of a program is a superoperator on density ma-
trices. It is a usual manner in theoretical physics to represent mixed states as
density matrices. For a pure quantum state u, that is, a unit vector, uu† is a pos-
itive hermitian matrix whose trace is 1. A mixed state of u1 with the probability
p1 and u2 with the probability p2 is represented as p1u1u

†
1 + p2u2u

†
2. We remark

82 Y. Kakutani

Table 1. Typing rules of QPL

〈Γ 〉 skip 〈Γ 〉
〈Γ 〉 P 〈Θ〉 〈Θ〉 Q 〈Δ〉

〈Γ 〉 P ; Q 〈Δ〉

〈Γ 〉 bit b 〈b : bit , Γ 〉 〈Γ 〉 qbit q 〈q : qbit , Γ 〉

〈x : t, Γ 〉 discard x 〈Γ 〉 〈b : bit , Γ 〉 b := i 〈b : bit , Γ 〉

U ∈ C2n×2n

〈q1 : qbit , . . . , qn : qbit , Γ 〉 q1, . . . , qn *= U 〈q1 : qbit , . . . , qn : qbit , Γ 〉

〈b : bit , Γ 〉 P1 〈Δ〉 〈b : bit , Γ 〉 P0 〈Δ〉
〈b : bit , Γ 〉 if b then P1 else P0 〈Δ〉

〈b : bit , Γ 〉 P 〈b : bit , Γ 〉
〈b : bit , Γ 〉 while b do P 〈b : bit , Γ 〉

〈q : qbit , Γ 〉 P1 〈Δ〉 〈q : qbit , Γ 〉 P0 〈Δ〉
〈q : qbit , Γ 〉 measure q then P1 else P0 〈Δ〉

Γ ∼= Γ ′ 〈Γ ′〉 P 〈Δ′〉 Δ′ ∼= Δ

〈Γ 〉 P 〈Δ〉

that any positive hermitian matrix A is equal to some
∑

k pkuku†
k. A diagonal

element of a density matrix indicates the probability that the corresponding ba-
sis vector is observed. Usually the trace of a density matrix is required to be 1,
but we use a generalized form of density matrices according to Selinger in order
to deal with partial computation.

Definition 2. A matrix A is a density matrix if A is positive hermitian and
tr(A) ≤ 1 holds. The set of density matrices in C2×2 is denoted by Q. The set
of diagonal density matrices in C2×2 is denoted by B.

Since B can be naturally considered a subset of R2, B is a domain for bit. For
a typing context b1 : bit, . . . , bm : bit, q1 : qbit, . . . , qn : qbit, we consider the
domain Bm ⊗ Qn where ⊗ means the tensor product on R-modules and Xn+1

and X0 respectively mean Xn ⊗X and the unit of ⊗. A program is interpreted
as a superoperator on the domains which correspond to its typing contexts. The
formal semantics follows Selinger.

Definition 3. Define [[bit]] = B, [[qbit]] = Q, and [[x1 : T1, . . . , xn : Tn]] =
[[T1]]⊗ · · ·⊗ [[Tn]]. [[〈Γ 〉 P 〈Δ〉]] is a function from [[Γ]] to [[Δ]] defined in Table 2,
where [[Γ]] ∼= [[Γ ′]] is the isomorphism induced from Γ ∼= Γ ′.

In the above definition, in fact, [[−]] is defined on not typing judgments but
derivations of typing judgments. One can see easily that ∼= commutes with typing
rules and [[〈Γ 〉 P 〈Δ〉]] is well-defined. We may write [[P]] for [[〈Γ 〉 P 〈Δ〉]] if
contexts are trivial.

A Logic for Formal Verification of Quantum Programs 83

Table 2. Semantics of QPL

[[〈Γ 〉 skip 〈Γ 〉]](A) = A

[[〈Γ 〉 P ; Q 〈Δ〉]](A) = [[〈Θ〉 Q 〈Δ〉]]([[〈Γ 〉 P 〈Θ〉]](A))

[[〈Γ 〉 bit b 〈b : bit , Γ 〉]](A) = E0 ⊗ A

[[〈Γ 〉 qbit q 〈q : qbit , Γ 〉]](A) = E0 ⊗ A

[[〈x : t, Γ 〉 discard x 〈Γ 〉]](A) = (e†0 ⊗ I)A(e0 ⊗ I) + (e†1 ⊗ I)A(e1 ⊗ I)

[[〈b : bit , Γ 〉 b := 0 〈b : bit , Γ 〉]](A) = π0(A) + ν(π1(A))

[[〈b : bit , Γ 〉 b := 1 〈b : bit , Γ 〉]](A) = ν(π0(A)) + π1(A)

[[〈−→q : qbit , Γ 〉 −→q *= U 〈−→q : qbit , Γ 〉]](A) = (U ⊗ I)A(U† ⊗ I)

[[〈b : bit , Γ 〉 if b then P1 else P0 〈Δ〉]](A)

= [[〈b : bit , Γ 〉 P0 〈Δ〉]](π0(A)) + [[〈b : bit , Γ 〉 P1 〈Δ〉]](π1(A))

[[〈b : bit , Γ 〉 while b do P 〈b : bit , Γ 〉]](A)

=
∞∑

n=0

π0(([[〈b : bit , Γ 〉 P 〈b : bit , Γ 〉]] ◦ π1)n(A))

[[〈q : qbit , Γ 〉 measure q then P1 else P0 〈Δ〉]](A)

= [[〈Γ, q : qbit〉 P0 〈Δ〉]](π0(A)) + [[〈Γ, q : qbit〉 P1 〈Δ〉]](π1(A))

[[〈Γ 〉 P 〈Δ〉]] = ∼= ◦ [[〈Γ ′〉 P 〈Δ′〉]] ◦ ∼= if Γ ∼= Γ ′ and Δ ∼= Δ′

πi(A) = (Ei ⊗ I)A(Ei ⊗ I)

ν(A) = (N ⊗ I)A(N ⊗ I)

4 Formulae for Quantum Computation

Before defining a Hoare-style logic, we have to define formulae and their seman-
tics. Formulae in QHL includes first-order formulae with special terms whose
values are decided probabilistically.

Definition 4. Formulae of the quantum Hoare logic is defined in the following.

c ::= r | α | f(c, . . . , c)
t ::= c | pr (ρ) | f(t, . . . , t)
Φ ::= t≤ t | int (t) | tΦ | Φ⊕ Φ | x,...,xMΦ | ¬Φ | Φ ∧ Φ | ∀α. Φ

where r, f , M , α, and ρ range over R, functions on R, matrices over C, predicate
variables, and conditions on x’s and α’s, respectively. We also assume that the
dimension of M is 2n×2n when x1,...,xnMΦ is a formula. For a formula Φ, fv (Φ)
denotes the set of all free variables occurring in Φ, and pv (Φ) denotes the set
of all program variables occurring in Φ. We write Φ1 ∨ Φ2 for ¬(¬Φ1 ∧ ¬Φ2),
Φ⊃Ψ for ¬Φ∨Ψ , and ∃α. Φ for ¬(∀α. ¬Φ). The predicates ≥, =, <, and > are
defined as syntax sugar.

84 Y. Kakutani

In the definition of formulae, ρ is not defined formally because it is out of our
logic. When an assignment of program variables to 0 or 1 and an assignment of
predicate variables to real numbers are fixed, it must be deterministic whether ρ
is true or false. Usually, the first-order predicate is enough for describing ρ, and
we also use it in this paper. If ρ is valid, we write just pr () for pr (ρ).

The semantics of formulae is given as in the first-order predicate logic on real
numbers except the forms tΦ, Φ1 ⊕ Φ2, and

−→xMΦ. The syntactic forms tΦ and
Φ1⊕Φ2 are borrowed from den Hartog’s probabilistic logic [5]. The form

−→xMΦ is
a natural extension of his logic with unitary operations. A formal model consists
of R and a typing context introduced in the previous section. The interpretation
of a formula depends on a quantum state on a context.

Definition 5. For a formula Φ, a typing context Γ which covers pv (Φ), a func-
tion v from predicate variables to R, and a density matrix A ∈ [[Γ]], a statement

〈Γ 〉, A, v |= Φ

is defined in Table 3, where t◦ is defined by

α◦ = v(α)
r◦ = r

(f(t1, . . . , tn))◦ = f(t◦1, . . . , t
◦
n)

(pr (ρ))◦ =
∑

{ u†Au | ∃i1, . . . , in ∈ {0, 1} u = ei1 ⊗ · · · ⊗ ein

and ρ[i1/x1, . . . , in/xn] is true under v }

when Γ = x1 : T1, . . . , xn : Tn.

A term pr (ρ) means the probability that ρ holds after measurement of all bits.
For example, (pr (q = 0))◦ is 1/2 under Γ = q : qbit and A = HE0H. Unlike the

Table 3. Semantics of formulae in QHL

〈Γ 〉, A, v |= t1 ≤ t2 iff t◦1 ≤ t◦2
〈Γ 〉, A, v |= int (t) iff t◦ ∈ Z

〈Γ 〉, A, v |= tΦ iff ∃A′ A = t◦A′ and 〈Γ 〉, A′, v |= Φ

〈Γ 〉, A, v |= Φ1 ⊕ Φ2

iff ∃A1 ∃A2 A = A1 + A2 and 〈Γ 〉, A1, v |= Φ1 and 〈Γ 〉, A2, v |= Φ2

〈Γ 〉, A, v |= x1,...,xnMΦ

iff ∃Γ ′ ∃A′ Γ ∼= x1 : T1, . . . , xn : Tn, Γ ′ and A ∼= (M ⊗ I)A′(M† ⊗ I)

and 〈x1 : T1, . . . , xn : Tn, Γ ′〉, A′, v |= Φ

〈Γ 〉, A, v |= ¬Φ iff not 〈Γ 〉, A, v |= Φ

〈Γ 〉, A, v |= Φ1 ∧ Φ2 iff 〈Γ 〉, A, v |= Φ1 and 〈Γ 〉,A, v |= Φ2

〈Γ 〉, A, v |= ∀α. Φ iff ∀r ∈ R 〈Γ 〉, A, v{α �→ r} |= Φ

A Logic for Formal Verification of Quantum Programs 85

logic in [12], we cannot describe a state of a quantum bit directly. We describe
only a property on probability through measurement. Note that (pr ())◦ is just
the trace of A, that is, the whole probability of the world represented by A.

For a unitary matrix U ,
−→qU †Φ is true at a quantum state if and only if Φ is

true after the unitary transformation represented by U . The formula qEiΦ is true
at a quantum state if and only if the state is obtained by the measurement of q
from a state at which Φ holds. Such interpretation is helpful for QHL defined in
the next section.

Our theory can be considered naturally an extension of den Hartog’s proba-
bilistic logic: if we restrict contexts to bit only, our semantics essentially coin-
cides with the probabilistic one.

We use also the following notation in the Hoare-style logic. In the case that
X is finite, X |= Ψ is equivalent to

⊕
X |= Ψ .

Definition 6. For a set of formulae X = {Φj | j ∈ J }, we write X |= Ψ if the
following condition is satisfied: if

tr(
∑
j∈J

Aj) ≤ 1 and 〈Γ 〉, Aj , v |= Φj for j ∈ J

hold, then

〈Γ 〉,
∑
j∈J

Aj , v |= Ψ

holds.

The following examples of the |= relation are used in later sections:

−→xM2
−→xM1Φ |= −→xM2M1Φ Φ |= bE0Φ⊕ bE1Φ

r(pr (ρ) = 1) |= pr (ρ) = r (pr () = r) ⊕ (pr () = 1−r) |= pr () = 1.

5 Quantum Hoare Logic

We give a Hoare-style logic in this section. An assertion, which is sometimes
called a Hoare triple, forms

{Φ } P {Ψ }

as usual. Intuitively, this assertion means that if Φ holds, Ψ holds after the
execution of P .

Definition 7. The quantum Hoare logic is defined in Table 4 and Table 5.

Our quantum Hoare logic is sound in the following sense. While the original
Hoare logic proves only correctness in the case that a program terminates, our
logic can derive correctness on termination of a program in the same sense as
den Hartog’s probabilistic logic.

86 Y. Kakutani

Table 4. Derivation rules of QHL

{Φ } skip {Φ } (skip)
{Φ } P {Υ } {Υ } Q {Ψ }

{Φ } P ; Q {Ψ } (seq)

{ (pr () = 1) ∧ Φ } bit b { (pr (b = 0) = 1) ∧ Φ } (new-bit)

{ (pr () = 1) ∧ Φ } qbit q { (pr (q = 0) = 1) ∧ Φ } (new-qbit)

x ∈ pv (Φ)
{Φ } discard x {Φ } (discard)

{Φ } b := 0 { bE0Φ ⊕ bNE1Φ } (assign0) {Φ } b := 1 { bNE0Φ ⊕ bE1Φ } (assign1)

{−→q U†Φ } −→q *= U {Φ } (unitary)

{ bE0Φ } P0 {Ψ0 } { bE1Φ } P1 {Ψ1 }
{Φ } if b then P1 else P0 {Ψ0 ⊕ Ψ1 }

(if)

{ bE1Φn } P {Φn+1 } for n ∈ N { bE0Φn | n ∈ N } |= Ψ

{Φo } while b do P {Ψ } (while)

{ qE0Φ } P0 {Ψ0 } { qE1Φ } P1 {Ψ1 }
{Φ } measure q then P1 else P0 {Ψ0 ⊕ Ψ1 }

(measure)

{Φ } P {Ψ }
{ cΦ } P { cΨ } (times)

{Φ0 } P {Ψ0 } {Φ1 } P {Ψ1 }
{Φ0 ⊕ Φ1 } P {Ψ0 ⊕ Ψ1 }

(plus)

Table 5. Logical derivation rules of QHL

Φ |= Φ′ {Φ′ } P {Ψ ′ } Ψ ′ |= Ψ

{Φ } P {Ψ } (logic)
{Ψ } P {Φ }

{Ψ [c/α] } P {Φ[c/α] } (subst)

{Φ } P {Ψ1 } {Φ } P {Ψ2 }
{Φ } P {Ψ1 ∧ Ψ2 }

(and)
{Φ1 } P {Ψ } {Φ2 } P {Ψ }

{Φ1 ∨ Φ2 } P {Ψ } (or)

{Φ } P {Ψ } α ∈ fv (Φ)
{Φ } P { ∀α. Ψ } (all)

{Φ } P {Ψ } α ∈ fv (Ψ)
{ ∃α. Φ } P {Ψ } (exist)

Theorem 1. If

〈Γ 〉 P 〈Δ〉 and {Φ } P {Ψ }

hold,

〈Γ 〉, A, v |= Φ implies 〈Δ〉, [[P]](A), v |= Ψ.

We discuss each rule in the rest of this section instead of showing the proof.

A Logic for Formal Verification of Quantum Programs 87

The logical rules can be justified as in classical Hoare logics. The rule (subst)
is redundant in this formulation, but useful for verification under a condition
that some assertions are valid.

The rules (times) and (plus) hold because any program is linear in the seman-
tic interpretation.

Though pr () = 1 is required in (bit) and (qbit), we can derive from (times)

{ (pr () = r) ∧ Φ } qbit q { (pr (q = 0) = r) ∧ Φ }

for any r ∈ R.
The rule (unitary) is equivalent to the rule

{Φ } −→q *= U {−→qUΦ }

which is more useful in some cases.
Our (if) rule is essentially the same as den Hartog’s. The rule (measure) is

similar to (if) because quantum measurement and classical branching have the
same semantics.

Because our logic can verify a probabilistic assertion, the rule (while) is not an
invariance condition unlike the original Hoare logic. Instead, we give a sufficient
condition for formalizing the while rule as invariance.

Lemma 1. If the conditions

1. pΦ⊕ (1−p)Φ |= Φ holds for any p ∈ R such that 0 ≤ p ≤ 1.

2. bEiΦ |= pr (b=i)
pr () Φ holds.

3. [[while b do P]] preserves traces of density matrices.

are satisfied,

{ (pr (b = 1) = 1) ∧ Φ } P {Φ }
{ (pr () = 1) ∧ Φ } while b do P { (pr (b = 0) = 1) ∧ Φ }

is derivable.

When Φ does not contain ¬ (nor ∨, ∃), the first condition is always satisfied.
The second condition holds if Φ implies that b is independent of other program
variables. The third condition just says that the program always terminates.
Hence, the lemma is useful in many practical cases.

6 Examples

We show some examples of derivations in the quantum Hoare logic.

88 Y. Kakutani

First, we introduce syntax sugar for convenience:

bit b1, . . . , bn ≡ bit b1 ; · · · ; bit bn

qbit q1, . . . , qn ≡ qbit q1 ; · · · ; qbit qn

discard x1, . . . , xn ≡ discard x1 ; · · · ; discard xn

b1, . . . , bn := i ≡ b1 := i[1] ; · · · ; bn := i[n]
b := measure q ≡ measure q then (b := 1) else (b := 0)
b1, . . . , bn := measure q1, . . . , qn

≡ b1 := measure q1 ; · · · ; bn := measure qn

b := rnd

≡ qbit q ; q *= H ;

measure q then (b := 1) else (b := 0) ; discard q

b1, . . . , bn := rnd ≡ b1 := rnd ; · · · ; bn := rnd

bit b[m-n] ≡ bit b[m], . . . , b[n]

qbit q[m-n] ≡ qbit q[m], . . . , q[n]

x[] ≡ x[1], . . . , x[n]

where i[n] means the n-th bit of i. Note that q[1] is a long single program
variable and ‘[’ and ‘]’ are not meta symbols. We can use the syntax x[] for
multi-bits. The syntax rnd makes a random bit.

In this section, we use a short representation

{Φ1 } P1 {Φ2 } P2 {Φ3 } · · · {Φn } Pn {Φn+1 }

for

{Φ1 } P1 {Φ2 } · · · {Φn } Pn {Φn+1 }
{Φ1 } P1 ; · · · ; Pn {Φn+1 }

and may omit the program code skip.

6.1 Quantum Teleportation

We formalize the quantum teleportation protocol [6]. In the algorithm, a state
of a quantum bit is teleported to another quantum bit by sending classical less
information. First, we entangles two bits q and qb as an EPR pair. Then, Alice
brings q with her and Bob brings qb. If Alice want to send the state of qa to Bob,
she measures q and qa on the Bell basis and sends the obtained information to
Bob. It is important that the sent message is only two classical bits which have
less information than a quantum bit has.

Since QPL does not have syntax for general measurement, we have to ro-
tate the basis before the measurement in order to simulate the measurement on
the Bell basis. The verification of the teleportation algorithm in our logic is the
following:

A Logic for Formal Verification of Quantum Programs 89

{ pr () = 1 }
qbit q, qa, qb

{ (pr (qa = 0) = 1) ∧ (pr (qb = 0) = 1) ∧ (pr (q = 0) = 1) }
qa *= U

{ qaU(pr (qa = 0) = 1) ∧ (pr (qb = 0) = 1) ∧ (pr (q = 0) = 1) }
q, qb *= X

{ q,qbX(qaU(pr (qa = 0) = 1) ∧ (pr (qb = 0) = 1) ∧ (pr (q = 0) = 1)) }
qa, q *= X†

{ qa,qX†q,qbX(qaU(pr (qa = 0) = 1) ∧ (pr (qb = 0) = 1) ∧ (pr (q = 0) = 1)) }
measure q then (measure qa then (qb *= NV2N) else (qb *= V2))

else (measure qa then (qb *= N) else skip)

{ qbU(pr (qb = 0) = 1) }

where X is
(

N N
−I I

)
. In order to derive the last step, we need the four assertions:

{ qaE0
qE0Φ } skip { r00

qbU(pr (qb = 0) = 1) }
{ qaE0

qE1Φ } qb *= V2 { r01
qbU(pr (qb = 0) = 1) }

{ qaE1
qE0Φ } qb *= N { r10

qbU(pr (qb = 0) = 1) }
{ qaE1

qE1Φ } qb *= NV2N { r11
qbU(pr (qb = 0) = 1) }

can be derived, where Φ is the pre-condition and rij is the probability of qa = i
and q = j by the measurement. Since r00+r01+r10+r11 is 1, qbU(pr (qb = 0)=1)
holds at the last state.

The above formulation claims that qb after the teleportation has the same
state as qa before the teleportation has. Consequently, if a formula Φ[qa] without
q or qb is true before the teleportation, Φ[qb] is true after the teleportation.

6.2 Shor’s Prime Factorization

We verify Shor’s prime factorization algorithm in this subsection. Shor provides
a polynomial time algorithm for prime factorization in [7]. Since a classical algo-
rithm to factorize numbers in polynomial time is not known, Shor’s algorithm is
considered to be important for comparison of quantum computation with clas-
sical computation.

The essential part of the algorithm is to find the order of a given number in a
residue class group. We verify in the quantum Hoare logic that this part is indeed
to find the order. Let n, m, and x be natural numbers such that n2 ≤ 2m < 2n2,
1 < x < n. Let =n be the modulo equivalence w.r.t. n and r be the order of x
in N/=n, that is, xr =n 1 and xk �=n 1 for k < r. The claim is that the program
finds r with large probability.

90 Y. Kakutani

{ pr () = 1 }
bit c[1-m] ; bit r[1-.m/2/] ; qbit q1[1-m] ; qbit q2[1-m]

{ (pr (q1 = 0) = 1) ∧ (pr (q2 = 0) = 1) }
q1[] *= Hm

{ q1Hm(pr (q1 = 0) = 1) ∧ (pr (q2 = 0) = 1) }
Exp (q1[], q2[])

{ q1Hm(pr (q1 = 0) = 1) ∧ (pr (q2 =n xq1) = 1) }
q1[] *= Fm

{ q1Fm(q1Hm(pr (q1 = 0) = 1) ∧ (pr (q2 =n xq1) = 1)) }
c[] := measure q1[]

{ ∀α. int (α)⊃ (pr (c = α) = f(α)) }
{ pr (∃k ∈ N. (rc =2m k) ∧ (−r/2≤ k ≤ r/2)) > 1/3 }
{ pr (∃d ∈ N. |(c/2m)−(d/r)| ≤ 1/2m+1) > 1/3 }
Frac (c[], r[])
{ ∃δ. pr (r = r) > δ/(log log r) }

where f satisfies f(u) =
∑r−1

k=0

∣∣∑
d:xd=nxk e2πidu/2m

/2m
∣∣2, and Fm ∈ C2m×2m

is
the Fourier transformation. In Exp , q2 is set to the power of x to q1 modulo
n. Exp can be defined as unitary operations. Frac , which finds r by a fraction
expansion, is purely classical and deterministic. Details of Exp and Frac are
found in [7].

In the above formulation, n and x are given out of the program. However,
it is easy to introduce program variables for n and x in the program. Since we
have the rule (while) and Lemma 1, it is also possible to formulate iteration of
finding the order and the whole of Shor’s algorithm.

6.3 Deutsch Problem

The Deutsch problem [15] is a problem to check whether a function on booleans
is a constant function or not. In classical computation, a function has to be
called at least twice. However, we can check a function with once evaluation in
quantum computation.

The algorithm proposed in [8] by Cleve et al. is quite simple, but we have to
verify four different cases. Let Uf be a given unitary transformation such that
Uf |x, y〉 = |x, y xor f(x)〉. The case of f(0) = f(1) = 1, i.e., Uf = I⊗N, is

{ pr () = 1 }
bit b ; qbit q1, q2

{ (pr (q1 = 0) = 1) ∧ (pr (q2 = 0) = 1) }
q2 *= HN ; q1 *= H ; q1, q2 *= Uf ; q1 *= H

{ q1,q2(H⊗ I)Uf (H⊗HN)((pr (q1 = 0) = 1) ∧ (pr (q2 = 0) = 1)) }

A Logic for Formal Verification of Quantum Programs 91

{ pr (q1 = 0) = 1 }
b := measure q1

{ pr (b = 0) = 1 }.

Other cases can be proved in a similar way. Note that the last formula is
pr (b = 1) = 1 when f is a non-constant function.

It is also possible to verify the algorithm for the more general Deutsch-Jozsa
problem [16] in our Hoare logic. In the Deutsch-Jozsa problem, the input domain
of functions is generalized to n boolean bits. Let Vf be a unitary transformation
satisfying Vf |i〉 = (−1)f(i) |i〉, which can be simulated by a program with Uf .
This Vf gives an answer of the problem. If f is a balanced function,

{ pr () = 1 }
bit b[n] ; qbit q[n]

{ pr (q = 0) = 1 }
q[] *= Hn ; q[] *= Vf ; q[] *= Hn

{ qHnVfHn(pr (q = 0) = 1) }
{ (pr (q = 0) = 0) ∧ (pr () = 1) }
b[] := measure q[]

{ (pr (b = 0) = 0) ∧ (pr () = 1) }
{ pr (b �= 0) = 1 }.

In the constant cases, { pr (b = 0) = 1 } is derived with easier calculation.

6.4 Quantum Coin Tossing

The quantum coin tossing protocol was proposed by Bennet and Brassard in
[9]. This is the oldest quantum bit commitment protocol, and is important in
the field of quantum cryptography. The aim of the protocol is that two remote
persons, Alice and Bob, share a random bit. Alice and Bob cannot decide the
bit alone but can communicate with each other.

In this paper, we show that Bob cannot decide head or tail. For simplicity, we
consider the case that the length of the random sequence is just 1:

{ pr () = 1 }
bit a, b, ra, rb, rc ; qbit q

{ (pr (q = 0)) = 1 }
a, ra, rc := rnd

{ ((pr (q = 0)) = 1) ∧ rnd (a, ra, rc) }
if ra then (q *= N) else skip ;

if a then (q *= H) else skip ;

if rc then (q *= H) else skip

92 Y. Kakutani

{ (pr ((a = 0) ∧ (q = 0)) = 1/4) ∧ (pr ((a = 0) ∧ (q = 1)) = 1/4) ∧ · · · }
rb := measure q

{ rnd (a, rb) }
Bob (rb, b)
{ pr (a = b) = 1/2 }

where rnd (b1, . . . , bn) is the formula that means b1, . . . , bn are independently
random, and Bob is the procedure that Bob decides the value of b. Whatever
Bob’s operation is, the conclusion holds because Bob does not touch a.

Unfortunately, it is known that Alice can cheat Bob with EPR pairs. Alice,
however, cannot cheat Bob if she sends right quantum bits following the protocol.
This property also can be verified in our logic.

In [9], Bennet and Brassard proposed also a key distribution protocol, which
is called BB84. The security of BB84 has been proved by Mayers in [17], but the
proof is too long for a non-expert reader. We expect our Hoare logic to help us
to verify such a complicated proof.

7 Concluding Remarks

We have proposed a Hoare-style logic for quantum computation in this paper.
Our quantum Hoare logic (QHL) is an extension of den Hartog’s probabilistic
Hoare logic [5], which is used in cryptographic verification. The target program-
ming language of QHL is Selinger’s QPL [4], which has clear syntax and seman-
tics. It is shown that the quantum Hoare logic is sound for the semantics. It still
remains to find a complete axiomatization of the logic. The formulation of the
rule for while programs is one of contributions of this work. We have provided
a sufficient condition for formalizing the rule as invariance.

In this paper, we have shown also how the quantum Hoare logic proves proper-
ties of well-known algorithms: quantum teleportation, Shor’s prime factorization,
a solution of the Deutsch problem, and quantum coin tossing. It is expected to
verify more complicated algorithms or protocols used in quantum cryptography.

Implementing the quantum Hoare logic is an interesting future work. We need
more studies on the proof system in order to automate derivations. There is a
possibility to apply studies [13] and [18] on weakest preconditions to our Hoare
logic. It may be helpful to cover other programming languages like [19].

Selinger provides a flowchart system equivalent to QPL in [4]. It is another
possible work to analyze that flowchart system as Floyd does for classical com-
putation in [20]. It is also challenging to characterize the logic along the line of
Bloom and Ésik [21].

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of ACM 12, 576–580 (1969)

2. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Journal on Computing 7(1), 70–78 (1978)

A Logic for Formal Verification of Quantum Programs 93

3. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Handbook of Philosophical
Logic, pp. 497–604. MIT Press, Cambridge (1984)

4. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527–586 (2004)

5. den Hartog, J.I.: Verifying probabilistic programs using a Hoare-like logic. In:
Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 113–
125. Springer, Heidelberg (1999)

6. Bennet, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolski-
Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

7. Shor, P.W.: Algorithms for quantum computation. In: Foundations of Computer
Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

8. Cleve, R., Ekert, A.K., Macchiavello, C., Mosca, M.: Quantum algorithms revised.
Proceedings of Royal Society London A 454, 339–354 (1998)

9. Bennet, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Computers, Systems and Signal Processing, pp. 175–179. IEEE
Computer Society, Los Alamitos (1984)

10. Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Mathe-
matical Structures in Computer Science 16(3), 491–525 (2006)

11. Brunet, O., Jorrand, P.: Dynamic quantum logic for quantum programs. Interna-
tional Journal of Quantum Information 2(1) (2004)

12. Chadha, R., Mateus, P., Sernadas, A.: Reasoning about imperative quantum
programs. In: Mathematical Foundations of Programming Semantics. ENTCS,
vol. 158, pp. 19–39. Elsevier, Amsterdam (2006)

13. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Mathematical
Structures in Computer Science 16(3), 429–451 (2006)

14. Ying, M.S.: Hoare logic for quantum programs (2009) arXiv:0906.4586v1
15. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-

tum computer. Proceedings of Royal Society London A 400, 97–117 (1985)
16. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Pro-

ceedings of Royal Society London A 439, 553–558 (1992)
17. Mayers, D.: Unconditional security in quantum cryptography. Journal of

ACM 48(3), 351–406 (2001)
18. Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Proof rules for the correctness of quan-

tum programs. Theoretical Computer Science 386(1,2), 151–166 (2007)
19. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:

Logic in Computer Science, pp. 249–258. IEEE Computer Society, Los Alamitos
(2005)

20. Floyd, R.W.: Assigning meanings to programs. In: Applied Mathematics, AMS,
pp. 19–32 (1967)

21. Bloom, S., Ésik, Z.: Floyd-Hoare logic in iteration theories. Journal of ACM 38(4),
887–934 (1991)

Reducing Equational Theories
for the Decision of Static Equivalence�

Steve Kremer1, Antoine Mercier1, and Ralf Treinen2

1 LSV, ENS Cachan, CNRS, INRIA, France
2 PPS, Université Paris Diderot, CNRS, France

Abstract. Static equivalence is a well established notion of indistin-
guishability of sequences of terms which is useful in the symbolic analysis
of cryptographic protocols. Static equivalence modulo equational theo-
ries allows a more accurate representation of cryptographic primitives by
modelling properties of operators by equational axioms. We develop a
method that allows in some cases to simplify the task of deciding static
equivalence in a multi-sorted setting, by removing a symbol from the
term signature and reducing the problem to several simpler equational
theories. We illustrate our technique at hand of bilinear pairings.

1 Introduction

Many formal models for analyzing cryptographic protocols have been developed
over the last thirty years. Among them we find logical or symbolic models, based
on the seminal ideas of Dolev and Yao [11], which represent cryptographic prim-
itives in an abstract way. This is justified by the so-called perfect cryptography
assumption which states that the intruder has no means to break the crypto-
graphic primitives themselves, and that he can hence break security only by
exploiting logical flaws in the protocol.

In symbolic models, messages of the protocol are represented by terms in
an abstract algebra. The motivation this abstraction was the simplification and
even automation of the analysis and the proof of security protocols. Since the
assumption of perfect cryptography is not always realistic, some properties of
cryptographic primitives (a survey can be found in [10]) have been taken into
account in logical models by the means of equational theories on the terms.

In this paper we concentrate on static equivalence, a standard notion of indis-
tinguishability of sequences of terms originating from the applied pi calculus [3].
Intuitively static equivalence asks whether or not an attacker can distinguish
between two sequences of messages, later called frames, by exhibiting a relation
which holds on one sequence but not on the other. Static equivalence provides
an elegant means to express security properties on pieces of data, for instance
those observed by a passive attacker during the run of a protocol. In the context
of active attackers, static equivalence has also been used to characterize process
equivalences [3] and off-line guessing attacks [9,5]. There now exist exact [2],

� This work has been partially supported by the ANR-07-SESU-002 project AVOTÉ.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 94–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reducing Equational Theories for the Decision of Static Equivalence 95

and approximate [1] algorithms to decide static equivalence for a large family of
equational theories.

Our ultimate goal is to develop combination methods for deciding static equiv-
alence, that is to develop means to algorithmically reduce a static equivalence
problem modulo some equational theory to some other static equivalence prob-
lems modulo simpler equational theories.

Contribution of this paper. We exhibit criteria on equational theories allowing
simplifications for the decision of static equivalence. The kind of simplification
we describe is the removal of a particular symbol which we call a valve. More
precisely, given a sorted signature, and two sorts r and s, a valve from r to
s is a symbol expecting arguments of sort r and producing a term of another
sort s. Moreover, it is the only function symbol which allows to build terms of
sort s out of terms of sort r. Signatures of this kind occur when representing
cryptographic primitives using elements of two distinct algebraic structures and
a mapping function from one structure to the other. A concrete example occurs
in the bilinear pairing operation [7,12,14]. We will use this operation as a running
example throughout the paper.

We show that under some conditions a valve can be removed from the terms
in the frames on which we want to decide the static equivalence, and from the
equational theory. Hence our purpose is dual. First we show that deciding static
equivalence of a pair of frames involving a given valve can be reduced to the
decision of the static equivalence of pairs of frames without this symbol. Second,
we show that deciding static equivalence on a pair of frames, not involving a
given valve f , in the presence of an equational theory involving f , can be done
in the presence of two other, generally simpler equational theories without f .
Obviously this cannot be done in general and the first step of this work consists
in identifying sufficient conditions on equational theories for which this kind of
reduction is possible. The result is illustrated by reducing the decision of static
equivalence for an equational theory modelling bilinear pairings between two
groups to the decision of static equivalence on groups, yielding a new decidability
result.

A completely different combination problem for deciding static equivalence
was studied in [4], namely the combination of disjoint equational theories. On
the one hand we do not require the two simpler signatures obtained by the
reduction to be disjoint, on the other hand we are working in a well-sorted
setting.

Structure of the paper. In Section 2 we introduce our formal model. Section 3
presents the running example used throughout the paper. In Section 4 we in-
troduce the concepts of valve and reducibility. Section 5 is dedicated to the
presentation of our reduction results. We give a first syntactic criterion for the
applicability of our reduction results in Section 6, and conclude in Section 7.
Exhaustive versions of some of the proofs are given in [15].

96 S. Kremer, A. Mercier, and R. Treinen

2 Model

2.1 Sorted Term Algebras

A sorted signature (S,F) is defined by a set of sorts S = {s, s1, s2, . . . } and a
set of function symbols F = {f, f1, f2, . . . } with arities of the form arity(f) =
s1×· · ·×sk → s where k ≥ 0. If k = 0 the symbol is called a constant and its arity
is simply written s. We fix an S-indexed family of sorted names N = (Ns)s∈S
where Ns = {ns1, ns2, . . . } and an infinite ordered set of sorted variables X .

The set of terms of sort s is defined inductively by :
t ::= term of sort s
| x variable x of sort s
| n name n of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where each ti is a term of sort si and arity(f) = s1 × · · · × sk → s. The set
of terms T (F ,N ,X) is the union of the sets of terms of sort s for every s ∈ S.
We denote by sort(t) the sort of term t. We write var(t) and names(t) for the
set of variables and names occurring in t, respectively. A term t is ground iff
var(t) = ∅. The set of ground terms is denoted by T (F ,N).

We extend the notion of arity to terms as follows. If t is a ground term of sort
s then arity(t) = s, otherwise arity(t) = s1× · · ·× sn → s if the ordered sequence
x1, . . . , xn of variables of t are of sort s1, . . . , sn respectively.

We write |t| for the size of t, i.e. the number of symbols of t.
A context C is a term with distinguished variables sometimes called holes. It

can be formalized as a lambda-term of the form λx1.λxn.tC where the xi

may appear or not in tC . For the sake of simplicity, in most cases we simply
write C[x1, . . . , xn] instead of λx1.λxn.tC as well as C[t1, . . . , tn] instead of
(. . . (λx1.λxn.tC)t1 . . .)tn. Hence C[t1, . . . , tn] is simply the result of replac-
ing each xi by ti. A context is public if it does not involve any name.

The positions Pos(t) of a term t are defined as usual by Pos(u) = {Λ} when
u ∈ N ∪ X and Pos(f(t1, . . . , tn)) = {Λ} ∪ {i · π | 1 ≤ i ≤ n, π ∈ Pos(ti)}
otherwise. The subterm of t at position p is written t|p, and the replacement in
t at position p by u is written t[u]p.

A substitution σ written σ = {x1 �→ t1, . . . , xn �→ tn} with domain dom(σ) =
{x1, . . . , xn} is a mapping from {x1, . . . , xn} ⊆ X to T (F ,N ,X). We only con-
sider well sorted substitutions in which xi and ti have the same sort. A substi-
tution σ is ground if all ti are ground. The application of a substitution σ to a
term t is written tσ.

2.2 Equational Theories and Rewriting Systems

An equation is an equality t = u where t and u are two terms of the same sort.
An equational theory E is a finite set of equations. We denote by =E the smallest
congruence relation on T (F ,N ,X) such that tσ =E uσ for any t = u ∈ E and
for any substitution σ. We say that a symbol f is free in E if f does not occur
in E.

Reducing Equational Theories for the Decision of Static Equivalence 97

A term rewriting system R is a finite set of rewrite rules l → r where l ∈
T (F ,N ,X) and r ∈ T (F ,N , var(l)). A term u ∈ T (F ,N ,X) rewrites to v by
R, denoted u →R v if there is a rewrite rule l → r ∈ R, a position p and a
substitution σ such that u|p = lσ and v = u[rσ]p. We write →∗ for the transitive
and reflexive closure of →. Given a set of equations E, u rewrites modulo E by
R to v, denoted u →R/E v, if u =E t[lσ]p and t[rσ]p =E v for some context
t, position p in t, rule l → r in R, and substitution σ. R is E-terminating if
there are no infinite chains t1 →R/E t2 →R/E R is E-confluent iff whenever
t →R/E u and t →R/E v, there exist u′,v′ such that u →∗

R/E u′, v →∗
R/E v′, and

u′ =E v′. R is E-convergent if it is E-terminating and E-confluent. A term t is
in normal form with respect to (R/E) if there is no term s such that t →R/E s.
If t →∗

R/E s and s is in normal form, we say that s is a normal form of t. When
this normal form is unique (up to E) we write s = t ↓R/E .

2.3 Substitutions and Frames

A frame is an expression φ = νñφ.σφ where ñφ is a set of bound names, and σφ

is a substitution. |φ| is the size of φ, i.e. the number of elements in dom(σφ).
σφ is called the underlying substitution of φ. We extend the notation dom to
frames by dom(νñ.σ) = dom(σ). We write φ =α ψ when the frames φ and ψ are
equal up to alpha-conversion of bound names. For two frames φ = νñφ.σφ and
ψ = νñψ .σψ with dom(φ) ∩ dom(ψ) = ∅ and ñφ ∩ ñψ = ∅ we write φψ for the
disjoint composition of φ and ψ defined as φψ = ν(ñφ ∪ ñψ).σφσψ. Note that
ñφ ∩ ñψ = ∅ is always possible by alpha-conversion of the bound names of φ and
ψ. The sort of a frame φ is the set S = {sort(x)|x ∈ dom(φ)}, and we say that
φ is S-sorted.

For simplicity, we only consider frames φ = νñ{x1 �→ t1, . . . , xn �→ tn} that
restrict every name in use, that is, for which ñ = names(t1, . . . , tn). A name a
may still be disclosed explicitly by adding a mapping xa �→ a to the frame.

2.4 Static Equivalence

Definition 1 (equality in a frame [2]). We say that two terms M and N
are equal in a frame φ for the equational theory E, and write (M =E N)φ, if
and only if φ =α νñ.σ, Mσ =E Nσ, and {ñ} ∩ (names(M) ∪ names(N)) = ∅.

Definition 2 (static equivalence [2]). Two frames φ and ψ are statically
equivalent for the equational theory E, written φ ≈E ψ, iff dom(φ) = dom(ψ),
and for all terms M and N , we have (M =E N)φ if and only if (M =E N)ψ.

For two frames φ and ψ, two terms M, N such that (M =E N)φ and (M �=E N)ψ
are called distinguishers of φ and ψ.

3 Running Example

We will illustrate our specific definitions and lemmas by a running example
involving two distinct algebraic groups G1 and G2 and a pairing operation e

98 S. Kremer, A. Mercier, and R. Treinen

mapping two elements of G1 to an element of G2. A concrete cryptographic
definition can be found in [7]. In general, a pairing operation maps elements of
an additive group to elements of a multiplicative group in the following way.

e : G1 ×G1 → G2
e(ag1, bg2) = e(g1, g2)ab

In some protocols, e.g. [12], one has in fact g1 = g2. We use this assumption in
order to simplify our notations. Moreover, we use a multiplicative notation to
represent elements of G1, e.g. we write exp1(x) for both xg1 and xg2.

Let SBP be the set of sorts {R, G1, G2}, R is the sort of the exponents of a
chosen generator of the Gi, and G1 (resp. G2) are the sorts of the elements of
the groups G1 (resp. G2). Let FBP be the following set of symbols:

+, · : R×R → R add, mult
− : R → R inverse

0R, 1R : R constants
expi : R → Gi i ∈ {1, 2} exponentiation
∗i : Gi ×Gi → Gi i ∈ {1, 2} mult in Gi

e : G1 ×G1 → G2 pairing

We will write ∗ instead of ∗i, the sort of ∗ being always clear from the context.
As a convenient shortcut we sometimes write ti for t ∗ . . . ∗ t︸ ︷︷ ︸

i×
. The properties of

these function symbols are defined by the following equational theory EBP.

x + y = y + x 0R + x = x
(x + y) + z = x + (y + z) x + (−x) = 0R

x · y = y · x x · (y + z) = (x · y) + (x · z)
(x · y) · z = x · (y · z) 1R · x = x

expi(x) ∗i expi(y) = expi(x + y) i ∈ {1, 2}
e(exp1(x), exp1(y)) = exp2(x · y)

This signature and this equational theory represent operations realized in proto-
cols where the exchanged messages are elements of the groups Gi. The symbol e
represents a pairing operation.

Example 1. Bilinear pairing is a central primitive of the Joux protocol [12], a
three participant variation of the Diffie-Hellman protocol. It implicitly relies on
the decisional Bilinear Diffie-Hellman Assumption (BDH) which can be formally
modelled using static equivalence as follows:

νa, b, c, r.{x1 �→ exp1(a), x2 �→ exp1(b), x3 �→ exp1(c), y1 �→ exp2(a · b · c)}
≈EBP

νa, b, c, r.{x1 �→ exp1(a), x2 �→ exp1(b), x3 �→ exp1(c), y1 �→ exp2(r)}

Reducing Equational Theories for the Decision of Static Equivalence 99

4 Valves and Reducibility

The main result of our paper concerns signatures involving a special function
symbol which we call a valve. Intuitively, as it is suggested by the name “valve”,
a valve f is a symbol such that applying f on terms of sort r, we obtain a term
t of sort s and such that t cannot be a subterm of a term of sort r.

We borrow here some useful notions from graph theory.

Definition 3 (Signature graph). Let (S,F) be a sorted signature. The graph
G(S,F) is the directed labelled graph (V, E) where V = S, E ⊆ V × V ×F and
(r, s, f) ∈ E iff sort(f) = s1 × · · · × sn → s and si = r for some i.

We recall that a path in a graph is a sequence of edges such that for two consec-
utive edges (r, s, f) and (r′, s′, f ′) we have s = r′.

Definition 4 (valve). A symbol f of arity · · · × r × · · · → s is a valve from r
to s iff every path from r to s in G(S,F) contains (r, s, f) and there is no path
from s to r.

Example 2 (continued). Let us consider the sorted signature (SBP,FBP) intro-
duced in our running example in Section 3. G(SBP,FBP) is given in Figure 1.

R

G1

G2

exp1

e

exp2

∗1

∗2

· + −

Fig. 1. G(SBP,FBP)

In the signature of Figure 1, e is a valve from G1 to G2 as (G1, G2, e) lies on
every path from G1 and G2, and since no path leads from G2 to G1. We also
have that exp1 is a valve from R to G1. However, exp2 is not a valve from R to
G2 as the sequence (R, G1, exp1), (G1, G2, e) is a path from R to G2.

We are now able to present the central notion of reducibility.

Definition 5 (reducible). Let r and s be two sorts and f a valve from r to s.
An equational theory E is reducible for f iff for every n ≥ 0 there exist m public
contexts T1[x1, . . . , xn], . . . , Tm[x1, . . . , xn] of arity r× · · · × r → s such that for
all public contexts C1[x1, . . . , xn], . . . , Ck[x1, . . . , xn] of arity r×· · ·×r → r there
exists a public context D[y1, . . . , ym] of arity s × · · · × s → s such that for any
ground terms t1, . . . , tn of sort r

f(C1, . . . , Ck)[t1, . . . , tn] =E D[T1, . . . , Tm][t1, . . . , tn]

100 S. Kremer, A. Mercier, and R. Treinen

Intuitively, reducibility for a valve f means that given a cardinality n of sets of
ground terms of sort r, we can construct in a uniform way a set of terms such
that any sequence of operations performed before applying f , there will be a
way to reproduce these operations on the terms obtained with the context Ti.
The uniformity lies in the fact that the contexts Ti depend only on the number n
but not on the contexts Ci. We illustrate this notion by showing the reducibility
for e of the theory of our running example EBP in case NG1 = ∅.

Proposition 1. EBP is reducible for e if NG1 = ∅.

Proof. Let n be an integer. We define m = n + n∗(n+1)
2 contexts

Ti = λx1.λxn.e(xi, exp1(1R)) for 1 ≤ i ≤ n
Tij = λx1.λxn.e(xi, xj) for 1 ≤ i ≤ j ≤ n

Every public context Ci[x1, . . . , xn] of arity G1 × · · · ×G1 → G1 is of the form
λx1.λxn.xei1

1 ∗ · · · ∗ xein
n ∗ exp1(pi) where pi =EBP

1R + · · · + 1R (li times).
Hence exp1(pi) =EBP

exp1(1R)li .
Let us show by induction on the size of the contexts Ci that there exists a

context D such that for any sequence of ground terms t1, . . . , tn

e(C1, C2)[t1, . . . tn] =EBP
D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn]

Base case. We distinguish four cases:

1. C1 = λx1.λxn.xi and C2 = λx1.λxn.xj

For any sequence of terms t1, . . . , tn we have that e(C1, C2)[t1, . . . , tn] =
e(ti, tj). As NG1 = ∅ there exist terms t′i and t′j of sort R such that ti =EBP

exp1(t′i) and tj =EBP
exp1(t′j). Hence

e(C1, C2)[t1, . . . , tn] =EBP
e(exp1(t′i), exp1(t′j))

=EBP
exp2(t′i · t′j) =EBP

Tij [t1, . . . , tn]

Let D =λy1.λyn.λy11.λynn.yij . We have that e(Ci, Cj)[t1, . . . , tn]=
EBP

D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn].
2. C1 = λx1.λxn.xi and C2 = exp1(1R)l

For any sequence of terms t1, . . . , tn we have that e(C1, C2)[t1, . . . , tn] =
e(ti, exp(1R)l). As NG1 = ∅ there exists a term t′i of sort R such that ti =EBP

exp1(t′i). Hence

e(C1, C2)[t1, . . . , tn] =EBP
e(exp1(t′i), exp1(1R + · · ·+ 1R︸ ︷︷ ︸

l×

))

=EBP
exp2(t′i · (1R + · · ·+ 1R︸ ︷︷ ︸

l×

))

=EBP
exp2(t′i)

l =EBP
(Ti[t1, . . . , tn])l

Let D = λy1.λyn.λy11.λynn.yl
i. We have that e(Ci, Cj)[t1, . . . , tn] =

EBP
D[T1, . . . , Tn, T11, . . . , Tnn][t1, . . . , tn].

Reducing Equational Theories for the Decision of Static Equivalence 101

3. C1 = exp1(1R)l and C2 = λx1.λxn.xi

As C1 ∗ C2 =EBP
C2 ∗ C1 this case is similar to case 2.

4. C1 = exp1(1R)l1 and C2 = exp1(1R)l2

We immediately conclude by defining D = exp2(1R)l1·l2 .

Inductive case : Ci = Ci1 ∗ Ci2. Let i = 1. The case where i = 2 is similar.
We note that every term of sort R can be written as a sum of products of
names of sort R. More formally for any contexts C11[x1, . . . , xn], C12[x1, . . . , xn],
C2[x1, . . . , xn], for any term t1, . . . tn we have that C11[t1, . . . tn] = exp1(p11),
C12[t1, . . . tn] = exp1(p12) and C2[t1, . . . tn] = exp1(p2), for some elements of
sort R described as above. We note that the equational theory implies that
e(C11 ∗ C12, C2) = e(C11, C2) ∗ e(C12, C2).

By induction there are D1 and D2 such that e(C11 ∗ C2)[t1, . . . , tn] =E

D1[T1, . . . , Tm][t1, . . . , tn] and e(C12 ∗ C2)[t1,. . . ,tn] = ED2[T1, . . . ,
Tm][t1, . . . , tn]. Hence defining D as D1 ∗D2 we conclude. !

Example 3. For n = 2 we have that

T1 = e(x1, exp1(1)) T2 = e(x2, exp1(1))
T1,1 = e(x1, x1) T1,2 = e(x1, x2) T2,2 = e(x2, x2)

Let C1 = λx1λx2.x1 and C2 = λx1λx2.x2 ∗ x2 ∗ exp1(1 + 1). We define

D = λy1λy2λy1,1λy1,2λy2,2.y1,2 ∗ y1,2 ∗ y1 ∗ y1

since e(t1, t2 ∗ t2 ∗ exp1(1+1)) = e(t1, t2)∗ e(t1, t2)∗ e(t1, exp1(1))∗ e(t1, exp1(1))
for any ground terms t1, t2.

Remark 1. Proposition 1 requires that we do not have names of sort G1. We
argue that this is not restrictive in the context of protocols. As we expect that
terms of sort G1 represent the elements of a group with a given generator each
element of the group G1 can indeed be written as exp1(r) for some element of R.

One might have expected reducibility for a symbol f to be related to being
sufficiently complete w.r.t. f as defined in [8].

Definition 6 (sufficiently complete). E is a sufficiently complete equational
theory with respect to f ∈ F if for every ground term t ∈ T (F ,N) there exists a
ground term u ∈ T (F \ {f},N) such that t =E u.

The next two lemmas show, however, that these two notions are in fact inde-
pendent of each other.

Lemma 1. Reducibility of an equational theory E for a symbol f does not imply
sufficient completeness of E w.r.t. f .

Proof. Let S = {r, s} and F = {f}, with sort(f) = r → s, and E = ∅. We
show that E is reducible for f but not sufficiently complete w.r.t. f . Consider an
integer n and the contexts T1 = λx1. . . .λxn.f(x1), . . . , Tn = λx1. . . . λxn.f(xn).

102 S. Kremer, A. Mercier, and R. Treinen

As the only ground terms ti of sort r are names ni, we consider w.l.o.g. that
any sequence of terms t1, . . . , tn is equal to n1, . . . , nn, and as the only possible
contexts C of sort r are of the form λx1. . . . λxn.xi, we have f(C[t1, . . . , tn]) =
f(ni). Hence we only have to verify that for any i there exists a context D such
that f(ni) =E D[T1, . . . , Tn][n1, . . . , nn]. We choose D = λy1. . . . λyn.yi.

To show that E is not sufficiently complete w.r.t. f , we note that as f is free,
for any i the term f(ni) is not equivalent to a term without f . !

Lemma 2. Sufficient completeness of E w.r.t. a symbol f does not imply re-
ducibility of E for f .

Proof. We define a signature with two sorts r and s, no names, and the function
symbols 0r : r, sr : r → r, f : r → s, 0s : s, ss : s → s. The function symbol f is
the valve. We have the following equational theory:

f(sr(x), y)) = ss(f(x, y)) f(0r, sr(y)) = f(sr(y), y) f(0r, 0r) = 0s

Identifying any ground term of sort r or s with a natural number, the function
f satisfies f(n, m) = n + m∗(m+1)

2 . Since there are no names E is sufficiently
complete for f . The fact that f has a quadratic growth contradicts reducibility.
A detailed proof can be found in [15]. !

5 Getting Rid of Reducible Symbols

We now present the central result of our work and show that if an equational
theory E is reducible for f then it is possible to get rid of f when deciding static
equivalence.

First, we show that deciding static equivalence on {r, s}-sorted frames in the
presence of a valve from r to s can be reduced to deciding two equivalences, one
on r-sorted frames and one on s-sorted frames (Lemma 4).

Second, we show that under some conditions on the equational theory, decid-
ing static equivalence for a given equational theory can be reduced to deciding
static equivalence for an equational theory that does not involve a reducible sym-
bol (Theorem 1). As a corollary we get the possibility of splitting the equational
theory into simpler equational theories.

Definition 7 (reduction). Let the equational theory E be reducible for f ,
where f is a valve from r to s, and let φ = νñ{x1 �→ t1, . . . , xn �→ tn} be a frame
of sort {r}. The reduction of φ is defined as φ = νñ{y1 �→ T1[t1, . . . tn], . . . , ym �→
Tm[t1, . . . tn]} where Ti are contexts as defined in Definition 5.

We note that φ is {s}-sorted. Before giving an example illustrating the construc-
tion of φ we define the following useful notation.

Definition 8 (s-restriction). Let φ = νñ.σφ be an {s1, . . . , sn}-sorted frame.
The si-restriction of φ, denoted φ|si

is the frame νñ.σφ|si
where σφ|si

is the
substitution σφ restricted to the variables of sort si.

Reducing Equational Theories for the Decision of Static Equivalence 103

Example 4. Let φBDH be the G1-restriction of the frames presented in Exam-
ple 1 : φBDH = νa, b, c, r.{x1 �→ exp1(a), x2 �→ exp1(b), x3 �→ exp1(c)}. Using
the set of terms Ti and Tij defined in the proof of Proposition 1, we get

φBDH = νa, b, c, r.{ y1 �→ e(exp1(a), exp1(1)), y12 �→ e(exp1(a), exp1(b)),
y2 �→ e(exp1(b), exp1(1)), y13 �→ e(exp1(a), exp1(c)),
y3 �→ e(exp1(c), exp1(1)), y23 �→ e(exp1(b), exp1(c)) }

We now prove a technical lemma which will be used to transfer tests on a frame
to tests on its reduction.

Lemma 3. Let (S,F) be a signature such that f ∈ F is a valve from r to s,
and E an equational theory that is reducible for f . For any integer n, and for
any public context M of sort s there exists a public context M ′ such that for any
{r, s}-sorted frame φ of size n, Mφ =E M ′φ|rφ|s.

Proof. Let us show this by induction on the height of M . If M is a variable or a
constant then we define M ′ = M . If M = y ∈ X then y(φ|rφ|s) = yφ since the
sort of y is s. If M = c is a constant then Mφ =E M ′φ|rφ|s holds trivially.

If the height of M is non-null then the top symbol of M can be the valve f ,
or some function symbol f ′ �= f .

If M = f(C1[x1, . . . , xn], . . . , Ck[x1, . . . , xn]) then all variables of M are of
sort r, and hence Mφ = Mφ|r where φ|r = {x1 �→ t1, . . . , xn′ �→ tn′}. As E is re-
ducible for f , we can define φ|r as {y1 �→ T1[t1, . . . tn′], . . . , ym �→ Tm[t1, . . . tn′]}.
By Definition 5 there exists a public context D[y1, . . . , ym] such that

f(C1, . . . , Ck)[t1, . . . , tn′] = D[T1, . . . , Tm][t1, . . . , tn′]

With M ′ = D we have that Mφ|r =E M ′φ|r, and hence Mφ =E M ′φ|rφ|s.
If M = f ′(C1[x1, . . . , xn, y1, . . . , ym], . . . , Ck′ [x1, . . . , xn, y1, . . . , ym]) with f ′ �=

f then sort(Ci) = s. By induction there exist public contexts M1 . . .Mk′ such
that for any {r, s}-sorted frame φ of size n, Ci′φ =E Mi′φ|rφ|s. We define M ′ =
f ′(M1 . . .Mk′), and obtain Mφ =E M ′φ|rφ|s. !
The following lemma allows us to split the decision of static equivalence of {r, s}-
sorted frames into two equivalences on r-sorted frames and s-sorted frames.

Lemma 4. For any {r, s}-sorted frames φ1 and φ2 built on (S,F), and for a
valve f from r to s, if E is a reducible equational theory for f then φ1 ≈E φ2 iff
φ1|r ≈E φ2|r and φ1|rφ1|s ≈E φ2|rφ2|s.

Proof (Sketch). We prove the two directions of the equivalence separately.

(⇒) If φ1 ≈E φ2, then φ1|r ≈E φ2|r and φ1|rφ1|s ≈E φ2|rφ2|s. The proof is
done by contraposition. We obviously have that φ1|r �≈E φ2|r implies φ1 �≈E φ2
as Mφi|r = Mφi for any term M having only variables of sort r. Furthermore,
we have that φ1|rφ1|s �≈E φ2|rφ2|s implies φ1 �≈E φ2. The proof uses the fact
that the elements φi|r are obtained by some fixed contexts Ti in order to build
distinguishers for φ1 and φ2.

104 S. Kremer, A. Mercier, and R. Treinen

(⇐) If φ1|r ≈E φ2|r and φ1|rφ1|s ≈E φ2|rφ2|s then φ1 ≈E φ2. The proof is done
by contraposition. Suppose that φ1 �≈E φ2 and consider the two possibilities for
the sorts of the distinguishers M and N . If sort(M) = r, by the fact that f
is a valve, we have that M and N distinguish φ1|r and φ2|r. If sort(M) = s,
by invoking Lemma 3, we infer the existence of distinguishers for φ1|rφ1|s and
φ2|rφ2|s. !
A detailed proof can be found in [15].

By the following definition we identify a sufficient condition to get rid of the
symbol f for deciding static equivalence between frames that do not involve this
symbol. In the following section we exhibit a syntactic condition that is sufficient
to obtain such a theory.

Definition 9 (sufficient equational theory). Let (S,F � {f}) be a sorted
signature and E an equational theory. An equational theory E′ is sufficient for
E without f iff for any terms u, v ∈ T (F ,N), u =E v iff u =E′ v and E′ does
not involve f .

Theorem 1. Let E be an equational theory on the sorted signature (S,F �{f})
such that
– f is a valve,
– E is a reducible equational theory for f ,
– E is sufficiently complete w.r.t. {f}.

If there exists an equational theory E′ sufficient for E without f then for any
{r, s}-sorted frames φ1 and φ2, we have that φ1 ≈E φ2 iff φ1|r ≈E′ φ2|r and
φ1|rφ1|s ≈E′ φ2|rφ2|s.

The proof of Theorem 1 relies on Lemma 5.

Lemma 5. Let φ1 and φ2 be two {r}-sorted frames, E an equational theory,
and f a valve from r to a distinct sort s, which is free in E. If for any two terms
M , N of sort r (M =E N)φ1 iff (M =E N)φ2, then for any two terms M and
N of sort s, (M =E N)φ1 iff (M =E N)φ2.

Proof (sketch). We will exhibit two replacements functions σ1 (resp. σ2) defined
on pairs (α, p) where α identifies M or N and p is a position in Mφ1 or Nφ1
(resp. Mφ2, Nφ2) such that Mφ1|p or Nφ1|p is headed by f . The co-domain
of σ1 (resp. σ2) is a set of fresh names w.r.t. φ1 (resp. φ2). We show the two
following assertions

1. Mφ1σ1 =E Mφ2σ2 and Nφ1σ1 =E Nφ2σ2,
2. Mφi =E Nφi iff Mφiσi =E Nφiσi for i ∈ {1, 2}.

Their conjunction implies that for any two terms M , N of sort s, (M =E N)φ1
iff (M =E N)φ2.

To show that Mφ1σ1 =E Mφ2σ2 and Nφ1σ1 =E Nφ2σ2 we rely on the
hypothesis that for any two terms M, N of sort r we have that (M =E N)φ1 iff
(M =E N)φ2 as well as the construction of σ1 and σ2.

Reducing Equational Theories for the Decision of Static Equivalence 105

To show that Mφi =E Nφi implies Mφiσi =E Nφiσi, we use the notion
of cut function introduced in [6]. Showing that σ1 (resp. σ2) corresponds to a
sequence of applications of a cut function allows us to conclude using Lemma 15
of [6]. To show that Mφiσi =E Nφiσi implies Mφi =E Nφi we use the fact that
σ1 and σ2 are bijective. !

A complete proof is given in in [15].

Proof (of Theorem 1). We suppose that φ1 ≈E φ2. By Lemma 4 we have that
φ1|r ≈E φ2|r and φ1|rφ1|s ≈E φ2|rφ2|s.

We will show that

φ1|r ≈E φ2|r(p) ∧ φ1|rφ1|s ≈E φ2|rφ2|s(q)
⇔

φ1|r ≈E′ φ2|r(p1) ∧ φ1|rφ1|s ≈E′ φ2|rφ2|s(q1)

We will prove the three following assertions separately :

(1)¬q ⇔ ¬q1 (2)¬p ⇒ ¬p1 ∨ ¬q1 (3)¬p1 ⇒ ¬p

The conjunction of these three assertions implies the fact that (p∧q) ⇔ (p1∧q1).

(1) φ1|rφ1|s �≈E φ2|rφ2|s iff φ1|rφ1|s �≈E′ φ2|rφ2|s
As φ1|rφ1|s �≈E φ2|rφ2|s there exist two terms M and N distinguishing
φ1|rφ1|s and φ2|rφ2|s. As f is a valve, there exist M and N that do not
involve any symbol f . As E is sufficiently complete w.r.t. {f} we can sup-
pose that frames φ1|rφ1|s and φ2|rφ2|s do not involve f . Hence Mφi|rφi|s
and Nφi|rφi|s also do not involve f . As E′ is sufficient for E without f

we have that Mφi|rφi|s =E Nφi|rφi|s iff Mφi|rφi|s =E′ Nφi|rφi|s. Hence
φ1|rφ1|s �≈E′ φ2|rφ2|s.

(2) if φ1|r �≈E φ2|r then φ1|r �≈E′ φ2|r or φ1|rφ1|s �≈E′ φ2|rφ2|s
Let M and N be two terms distinguishing φ1|r and φ2|r.

If M is of sort r, as f is a valve, we can suppose w.l.o.g. that M , N ,
φ1|r and φ2|r do not involve any f . Hence Mφi|r and Nφi|r do not involve
f . As E′ is sufficient for E without f we have that Mφi|r =E Nφi|r iff
Mφi|r =E′ Nφi|r. Hence φ1|r �≈E′ φ2|r.

If M is of sort s, by Lemma 3 there exist terms M ′ and N ′ such that
Mφi|r =E M ′φi|r and Nφi|r =E N ′φi|r. As f is a valve, M ′ and N ′ do
not involve any symbol f . By sufficient completeness of E w.r.t. {f}, we can
consider frames φ1|r and φ2|r that do not involve f , M ′φi|r and N ′φi|r do not
involve f either. As E′ is sufficient without f we have that M ′φi|r =E N ′φi|r
iff M ′φi|r =E′ N ′φi|r. Hence φ1|r �≈E′ φ2|r and φ1|rφ1|s �≈E′ φ2|rφ2|s.

(3) if φ1|r �≈E′ φ2|r then φ1|r �≈E φ2|r
As φ1|r �≈E′ φ2|r there exist terms M and N distinguishing φ1|r and φ2|r.
If there are no terms M and N of sort r distinguishing φ1|r and φ2|r, by
Lemma 5 there are no terms of sort s distinguishing φ1|r and φ2|r. Hence if
φ1|r �≈E′ φ2|r then there are terms M and N distinguishing φ1|r and φ2|r of
sort r.

106 S. Kremer, A. Mercier, and R. Treinen

If M is of sort r, as f is a valve, M , N , φ1|r and φ2|r do not involve any f .
Hence Mφi|r and Nφi|r do not involve f . As E′ is sufficient without f we
have that Mφi|r =E′ Nφi|r iff Mφi|r =E Nφi|r . Hence φ1|r �≈E φ2|r. !

We denote by E−r the equational theory E without equations of sort r.

Corollary 1. Let E be an equational theory on the sorted signature (S,F∪{f})
such that (i) f is a valve, (ii) E is a reducible equational theory for f , and (iii)
E is sufficiently complete w.r.t. {f}. If there exists an equational theory E′

sufficient for E without f then for any {r, s}-sorted frames φ1 and φ2, we have
that φ1 ≈E φ2 iff φ1|r ≈E′−s φ2|r and φ1|rφ1|s ≈E′−r φ2|rφ2|s.

Proof. By Theorem 1, we have φ1 ≈E φ2 iff φ1|r ≈E′ φ2|r and φ1|rφ1|s ≈E′

φ2|rφ2|s.
By Lemma 5, we have that if for any two terms M and N of sort r (M =E

N)φ1 iff (M =E N)φ2, then for any two terms M and N of sort s, (M =E N)φ1
iff (M =E N)φ2. Hence it is sufficient to consider terms of sort r to decide static
equivalence between φ1|r and φ2|r. As f is a valve for any term M , no subterms of
M are of sort s. We can consider only E′−r to decide static equivalence between
φ1|r and φ2|r.

Let us show that φ1|rφ1|s ≈E′ φ2|rφ2|s iff φ1|rφ1|s ≈E′−r φ2|rφ2|s.
φ1|rφ1|s �≈E′ φ2|rφ2|s iff there are two terms M and N distinguishing φ1|rφ1|s

and φ2|rφ2|s. As f is a valve, there exist M and N that do not involve any
symbol f . As E is sufficiently complete w.r.t. {f} we can suppose that frames
φ1|rφ1|s and φ2|rφ2|s do not involve f . Hence Mφi|rφi|s and Nφi|rφi|s do not
involve f either. As f is a valve Mφi|rφi|s and Nφi|rφi|s do not involve subterms
of sort r we have that Mφi|r =E′ N ′φi|r iff Mφi|rφi|s =E′−r Nφi|rφi|s. Hence
φ1|rφ1|s �≈E′−r φ2|rφ2|s. !

6 A Criterion for Sufficient Equational Theories

In this section we make a first attempt to find sufficient criteria for applying
Theorem 1. Future work includes finding broader criteria. We also briefly explain
how our running example fits this criterion.

Definition 10 (decomposition). A pair (R, E′) is a decomposition of an
equational theory E iff

– E′ is an equational theory,
– R is a rewriting system convergent modulo E′,
– for any terms u and v u =E v iff u ↓R/E′= v ↓R/E′ .

Definition 11 (exclusively define). Let (S,F � {f}) be a sorted signature.
A rewriting system R exclusively defines f if any term in normal form modulo
R/E′ is in T (F ,N) and if for any rewrite rule l → r ∈ R, f appears in l.

Reducing Equational Theories for the Decision of Static Equivalence 107

Lemma 6. Let (S,F � {f}) be a signature. If a theory E on this signature has
a decomposition (R, E′) and if R exclusively defines f then E′ is sufficient for
E without f .

Proof. Let u and v be two terms not involving f . As R exclusively defines f
and as u and v do not involve any f symbol, no rule of R can be applied. Hence
u =E v iff u =E′ v. !

Example 5 (continued). We define RBP to be the rewriting system obtained by
orienting the rule e(exp1(x), exp1(y)) = exp2(x · y) from left to right, and E′

BP

the equational theory EBP without this rule. We remark that (R, E′
BP) is a

decomposition of EBP and it is easy to see that R exclusively defines e.

Corollary 2. If the set of names of sorts G1 and G2 are empty, static equiva-
lence for EBP is decidable for {G1, G2}-sorted frames.

Proof. As RBP exclusively defines e, by Lemma 6, we have that E
′
BP is sufficient

for EBP without e. By Proposition 1 we have that EBP is reducible for f . Finally,
as the set of names of sorts G1 and G2 is empty, EBP is sufficiently complete for e.
Hence by Corollary 1, for two frames φ1 and φ2, φ1 ≈E φ2 iff φ1|G1 ≈E

′−G2
BP

φ2|G1

and φ1|G1φ1|G2 ≈E
′−G1
BP

φ2|G1φ2|G2 .

As E
′−G2
BP and E

′−G1
BP correspond both to the classical equational theory mod-

elling Diffie-Hellman, which is known to be decidable [13] for frames whose only
names are of sort R we have that static equivalence is decidable for EBP on
{G1, G2}-sorted frames. !

7 Conclusion and Future Work

In this paper we have defined the notions of valve and reducibility which allow
to simplify equational theories for the decision of static equivalence. This consti-
tutes a first step towards finding generic criteria. Our results apply to the case of
bilinear pairing. We believe that this result may apply to other situations where
several algebraic structures are used in the model of the same cryptographic
operator. In the short term we are investigating the following directions:

(1) We are trying to identify criteria for reducibility which are easier to decide.
Even on our quite simple example, proving reducibility is a bit technical. Hence
we are trying to determine either syntactic criteria on the equational theory, or
more classical properties as a constrained form of sufficient completeness, that
would imply reducibility.

(2) In this paper we have analyzed the case where there is only one reducible
valve in an equational theory. Extending reducibility to the case where several
valves belong to the theory seems possible. However it requires defining a priority
order on the reductions of the different valves.

(3) We are also trying to widen the notion of valve. In the definition we
propose here, a valve is defined from a given sort to another. Yet cases where

108 S. Kremer, A. Mercier, and R. Treinen

a valve takes as argument terms of different sorts can be considered. We think
that such a notion could give rise to a wider notion of reducibility than the one
we have analyzed. It seems that we need conditions on the links between the
arguments of such valves.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Verification of selected equivalences for se-
curity protocols. Journal of Logic and Algebraic Programming 75(1), 3–51 (2008)

2. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367(1), 2–32 (2006)

3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages(POPL 2001), pp. 104–115. ACM Press, New York (2001)

4. Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge
in security protocols. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI),
vol. 4720, pp. 103–117. Springer, Heidelberg (2007)

5. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security
(CCS 2005), pp. 16–25. ACM Press, New York (2005)

6. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations
of equational theories against passive adversaries. Information and Computa-
tion 207(4), 496–520 (2009)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Common, H.: Inductionless induction. In: Handbook of Automated Reasoning,
Elsevier, Amsterdam (2001)

9. Ricardo, C., Jeroen, D., Sandro, E.: Analysing password protocol security against
off-line dictionary attacks. In: Proceedings of the 2nd International Workshop on
Security Issues with Petri Nets and other Computational Models (WISP 2004).
ENTCS, vol. 121, pp. 47–63. Elsevier, Amsterdam (2004)

10. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

11. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

12. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

13. Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 610–625. Springer, Heidel-
berg (2007)

14. Kremer, S., Mazaré, L.: Computationally sound analysis of protocols using bilinear
pairings. Journal of Computer Security (to appear, 2009)

15. Kremer, S., Mercier, A., Treinen, R.: Reducing equational theories for the decision
of static equivalence. Research Report LSV-09-19, LSV, ENS Cachan, France (May
2009)

A Simulation-Based Treatment
of Authenticated Message Exchange�

Klaas Ole Kürtz, Henning Schnoor, and Thomas Wilke

Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
{kuertz,schnoor,wilke}@ti.informatik.uni-kiel.de

Abstract. Simulation-based security notions for cryptographic proto-
cols are regarded as highly desirable, primarily because they admit strong
composability and, consequently, a modular design. In this paper, we give
a simulation-based security definition for two-round authenticated mes-
sage exchange and show that a concrete protocol, 2AMEX-1, satisfies
our security property, that is, we provide an ideal functionality for two-
round authenticated message exchange and show that 2AMEX-1 realizes
it securely. To model the involved public-key infrastructure adequately,
we use a joint-state approach.

1 Introduction

Simulation-based securitydefinitions for cryptographic protocols, see, for instance,
[1,2,3,4], are attracting much attention, the reasons being that such security defini-
tions “guarantee security even when a secure protocol [. . .] is used as a component
of an arbitrary system” [1] and that they enable “modular proofs of security” [2].
As a consequence, a variety of cryptographic primitives such as asymmetric en-
cryption and digital signatures have been treated following the simulation-based
approach. There are,however, only few complex cryptographic protocols that have
been tackled within the simulation-based framework. We are aware of [5,6,7,8,9],
where, for instance, Kerberos and the Yahalom protocol are treated.

In this paper, we deal with two-roundauthenticatedmessage exchange protocols
following the simulation-based approach. We (i) provide an ideal functionality for
two-round authenticated message exchange protocols, F2AM, (ii) provide an im-
plementation,P2AMEX−1, corresponding to a particular such protocol, 2AMEX-1,
and (iii) prove the implementation of 2AMEX-1 to be secure, that is, prove that
P2AMEX−1 securely realizes the ideal functionality, in symbols P2AMEX−1 ≤BB

F2AM. (The superscript stands for black-box simulatability.)
The protocol2AMEX-1, see [10], which is a generic protocol formessage authen-

tication in a web service setting, is complex in several respects: it distinguishes
between short-lived clients and long-lived servers; it uses digital signatures and
therefore makes use of a public-key infrastructure; it requires only bounded mem-
ory; it uses nonces and timestamps to counter replay attacks; each client and each

� This work was partially supported by the DFG under grant KU 1434/4-2.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 109–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

110 K.O. Kürtz, H. Schnoor, and Th. Wilke

server has its own local clock. In [10], 2AMEX-1 was proved to be secure in the
Bellare-Rogaway framework as presented in [11].

Several simulation-based approaches have been developed over the last decade
(see above). We could have used any of these approaches, but we have adopted
the one by Küsters, see [4], because it provides a very flexible addressing mecha-
nism and easy-to-use joint-state theorems, see [12]. The latter is especially useful
in the analysis of 2AMEX-1, because it allows us to show with only little effort
that 2AMEX-1 works securely with a simple, but realistic public-key infrastruc-
ture. Although Küsters’ setting comes in handy in many respects, it also has
some shortcomings, which become evident from our analysis and are discussed
in this paper.

Due to the space limit, we can only provide a high-level account of Küsters’
model, provide a brief description of the functionalities we have developed, and
give a short sketch of the proof of our main result. A full version of this paper
can be found in [13]. We start with the sketch of Küsters’ model in Section 2, go
on with a description of the setting and the ideal functionalities in Section 3 and
a description of the implementation for 2AMEX-1 in Section 4, and conclude
with our main result and a discussion in Sections 5 and 6.

We are grateful to Max Tuengerthal for helpful comments.

2 Simulation-Based Security

In this section, we give a high-level description of the simulation-based framework
from [4], which is referred to as the IITM framework, where IITM stands for
inexhaustible interactive Turing machine.

In the IITM framework cryptographic protocols and the environment they are
run in (including the adversary) are modeled as concurrent, polynomial-time,
probabilistic, interactive, replicable Turing machines. Here, “concurrent” refers
to an interleaving semantics, that is, only one IITM is active at a time and there
is a mechanism that determines which IITM is activated next; “replicable” refers
to a mechanism which allows certain machines, the so-called banged machines,
to be instantiated several times (and run concurrently); “interactive” means that
the machines can communicate by sharing tapes, more precisely: an output tape
of one machine can be the input tape of another machine. From a security point of
view, it is important that systems of IITM’s can be simulated in polynomial time.
To achieve this, it is, however, not enough to require that the individual IITM’s
are polynomial-time, because two IITM’s “playing ping pong” could double their
outputs on each activation, leading to an overall exponential running time. For
that reason the IITM framework imposes certain restrictions on how machines
are interconnected, based on a partition of tapes into consuming and enriching.
Roughly speaking, the overall length of the output of one IITM up to a certain
point may be polynomial in the overall length of the input on enriching tapes
up to the same point, but there must not be any cycle of enriching tapes. This
is less restrictive than requiring that each IITM runs in time polynomial in the
security parameter; it allows to process inputs of arbitrary size.

A Simulation-Based Treatment of Authenticated Message Exchange 111

To illustrate the IITM framework consider Figure 1 and first focus on the box
labeled F2AM. This box represents a model of two-round authenticated message
exchange protocols (details follow in the next section); it contains four machines
which represent an actual protocol: C, S, EI, and NG, of which the first three are
banged (can be replicated), and the last one is not. Every instance of machine
C is connected with machine NG, in both directions. The corresponding input
tape of NG is enriching, while the input tape of C is not.

There are two types of connections crossing the borders of F2AM: solid con-
nections representing tapes classified as I/O tapes and dashed connections rep-
resenting tapes classified as network tapes. I/O tapes should roughly be thought
of as tapes communicating with “users” of the system, whereas network tapes
are tapes where the adversary can interfere.

In Figure 1, the adversary, represented by an IITM denoted A, is not con-
nected directly with F2AM. Rather, there is a mediator between A and F2AM,
namely an IITM S called simulator. The situation is typical for simulation-based
security: a simulator “translates” network traffic to make a system (in this case
F2AM) seem equivalent to another one (usually a “real” system P , see below)
to an outside observer consisting of an environment machine E (taking over the
role of all users) and an adversary A.

Another feature of Figure 1 not discussed yet has to do with how different
instances of the same machine are addressed. Underlining the name of a machine
indicates the usage of a generic addressing mechanism provided by the IITM
framework, which works by using prefixes of messages as identifiers for instances.

Fig. 1. Ideal functionality for two-round message authentication

112 K.O. Kürtz, H. Schnoor, and Th. Wilke

In Figure 1 the machine EI is underlined twice, which adds two prefixes for
addressing, that is, a hierarchical addressing mechanism is used. We use it to
model multi-user multi-session instances.

The formal way to specify the system represented by the box F2AM in Figure 1
is by the expression

F2AM =!FC | !FS | FNG | !FEI , (1)

where FC, FS, FNG, and FEI denote (descriptions of) the underlying IITM’s,
and | denotes an operator for composing machines.

In the IITM framework, security of a protocol is defined as follows. First,
one describes a system of IITM’s, F , which works in an ideal fashion in every
setting where an environment and an adversary are connected to it, that is, how
one would expect a perfect protocol to work. Such a system is called an ideal
functionality. Then, given a real protocol, one describes a system of IITM’s, P ,
which works just the way the real protocol would work in every setting where an
environment and an adversary are connected to it. Now, P is considered secure if
there is a simulator IITM S with the following property. For every environment
machine E and every adversary machine A, the system composed of P , E , and
A is computationally indistinguishable from the system composed of F , E , A,
and S. As explained above communication between these machines is restricted
as follows: all external network connections of F are handled by the simulator
S; the adversary may only communicate with F using the network interface
provided by the simulator; and the environment may only communicate with
F using I/O connections. Hence, the system composed of F and the simulator
(translating network messages) is “equivalent” to P . In other words, every attack
on the real protocol can be transferred into the ideal system.

If the above condition is satisfied, then P securely realizes (or implements)
F , denoted by P ≤BB F (for black-box simulation).

3 Two-Round Authenticated Message Exchange

We start with a description of the general scenario. In a session of a two-round
authenticated message exchange protocol (2AM protocol) a client sends a request
to a server and expects to receive an appropriate response. This is, for instance,
the case for web service calls, see, e. g., [14,15] and remote procedure calls, see,
e. g. [16,17]. Observe that for these protocols to make sense the request and
response messages include payloads.

In a 2AM protocol the request and the response messages are required to be
secured in such a way that (i) both client and server can verify that the messages
they receive are authentic, (ii) the server accepts no message twice (payloads, on
the contrary, may be received twice, but only in different messages), and (iii) if
the client receives a response, it can be sure which of his requests the response
refers to. Note that the same client may have multiple sessions with the same or
different servers in parallel, but each session has only two rounds.

A Simulation-Based Treatment of Authenticated Message Exchange 113

Tapes: C ←←→ EC, C ������ ÂC, C ←→ S, C ←→→ NG
Initialization: c = s = r = ε, n = 0, state = Init, cor = false
Steps: loop

Send a request to the server:
if (c′, (Client, s′), Init) received from EC

Let state = OK, c = c′ and s = s′.
Send (c, (Client, s), GetNonce) to NG.
Recv (c, (Client, s), Nonce, r′) from NG, let r = r′.
Send (c, (Client, s, r), Nonce, r) to EC.
Recv (c, (Client, s, r), Request, pc, 1n′

) from EC, let n = n′.
Send (c, (Client, s, r), Request, pc, n) to ÂC.
Recv (c, (Client, s, r), Request, Send) from ÂC.
Send (c, (Client, s, r), Request, pc) to S.

Receive and process a response from the server:
if (s, (Server, c, r), Response, ps) received from S

If state
= OK or |ps| > n, abort.
Let state = Stopped.
Send (c, (Client, s, r), Response, ps) to EC.

Corruption: Corr(cor , true, state
= Init, ε, ÂC, {EC}, EC)
CheckAddress: Accept the initialization message only once. Check for c, s, and r as soon as each

one has been set.

Fig. 2. The client functionality FC

3.1 Overview of the Ideal Functionality

Our model of the ideal functionality for 2AM protocols consists of four function-
alities, see Figure 1: a client FC (defined in Figure 2), a server FS (defined in
Figure 3), a nonce generator FNG, and an enriching input functionality FEI. The
ideal functionality F2AM is the composition of these functionalities, as defined
in (1).

One instance of the client functionality handles exactly one session between
a client identity and a server, i. e., after initialization it basically (i) receives a
request from the environment and encapsulates it in a message to a server, and
(ii) receives a response from the server and forwards its contents to the environ-
ment. One instance of the server functionality also handles exactly one session;
as with the client, it consists of receiving a request and sending a response. The
nonce generator generates globally unique session identifiers (numbers used once,
nonces) to distinguish multiple sessions between two parties. The enriching input
functionality passes bits from an enriching input tape to the adversary. These
bits are necessary to give the adversary additional capabilities as explained in
Section 4.3.

3.2 Ideal Client Functionality

When the environment wants to start a new session, it provides the client with
the identity of a server the client is supposed to communicate with. The client
then responds with a nonce, which can be viewed as a handle, i. e., it allows the
environment to distinguish different sessions this client is involved in.

The environment can now pass the payload of the request message to the
client as well as enough resources to process a possible response from the server.
The client then notifies the adversary that a message is ready to be sent. If the

114 K.O. Kürtz, H. Schnoor, and Th. Wilke

Tapes: S ←←→ ES, S ������ ÂS, S ←→ C
Initialization: s = c = r = ps = ε, n = 0, state = Init0, cor = false
Steps: loop

Initialization by the environment:

if (s′, (Server), Init, 1n′
) received from ES

If state
= Init0, abort. Let s = s′ and n = n′.
Send (s, (Server), Init, n) to ÂS.
Recv (s, (Server), Init, OK) from ÂS.
Let state = Init1.

Receive and process a request from the client:
if (c′, (Client, s, r′), Request, pc) received from C

If state
= Init1 or |pc| > n, abort. Let state = OK, c = c′, and r = r′.
Send (s, (Server, c, r), Request, pc) to ES.

Receive a response payload from the environment:
if (s, (Server, c, r), Response, p) received from ES

Let ps = p. Send (s, (Server, c, r), Response, ps) to ÂS.
Deliver a response to the client:
if (s, (Server, c, r), Response, Send) received from ÂS and not cor

If state
= OK, abort. Let state = Stopped.
Send (s, (Server, c, r), Response, ps) to C.

Send an error message to the environment:
if (s, (Server, c, r), Response, Error) received from ÂS

Send (s, (Server, c, r), Response, Error) to ES.
Corruption: Corr(cor , true, state
= Init0, ε, ÂS, {ES}, ES, s)
CheckAddress: Accept the initialization message only once. Check for s, c, and r as soon as each

one has been set.

Fig. 3. The server functionality FS

adversary (ever) allows the transfer, the message is written to the incoming tape
of the server. This models the adversary’s ability to delay or drop messages on
the network.

When the server transfers a response (which is not too large), the client simply
unwraps it and forwards the contents to the environment. The details are spelled
out in Figure 2.

A special mode of computation of IITM’s, CheckAddress, is used in the last
line of IITM definitions like Figure 2 to determine whether an incoming message
is addressed to the current instance of the client IITM. If a message is rejected
by all running instances, a new instance of the client IITM is started since the
client IITM is banged in F2AM. In addition, we use the corruption macro Corr
from [12] (with a slightly extended addressing mechanism) to allow a uniform
treatment of corruption of clients and servers in both the ideal and the real
world, see Appendix A.

3.3 Ideal Server Functionality

To start a session on the server side, the environment sends a message to the
server with the identity it is supposed to receive messages for and the maximal
length of an incoming request message.

Upon receiving a request from a client, the server unwraps it and forwards
the request payload to the environment. Now the environment can respond by
passing a response payload to the server functionality. The server asks the ad-
versary, who has three options: It can either approve the sending of the payload,

A Simulation-Based Treatment of Authenticated Message Exchange 115

in which case the server delivers the message directly to the client. Secondly, the
adversary can ignore the response, in which case the server sends no message at
all. Thirdly, the adversary can also explicitly deny processing the payload, which
results in an error message being sent to the environment.

The first two options again model that the adversary may intercept and delay
network traffic. The third type of reaction models that in our implementation the
server may reject messages due to bounded memory and notify the environment
of the rejection.

4 Implementation of the 2AMEX-1 Protocol

In this section, we describe a system of IITM’s implementing the 2AMEX-1
protocol, which is a 2AM protocol in the above sense and described in detail in
[10]. First, we give an informal introduction into the protocol.

4.1 The Protocol 2AMEX-1

In 2AMEX-1, an authenticated message exchange between a client with identity
c and a server with identity s works roughly as follows.

1. a) c is asked by the environment to send the request pc

b) c sends {(From : c, To : s, MsgID : r, Time : t, Body : pc)}skc to s
c) s checks whether the message is admissible and if not, stops
d) s forwards the request (r, pc) to the environment

2. a) s receives a response (r, ps) from the environment
b) s checks whether the response is admissible and if not, stops
c) s sends {(From : s, To : c, Ref : r, Body : ps)}sks to c
d) c checks whether the message is admissible and if not, stops
e) c forwards the response ps to the environment

Here, r is the nonce as described in the previous section, which is also used as a
handle by the server (see steps 1.d) and 2. a)), t is the value of a local clock of
the client, pc is the payload the client sends, ps is the payload the server returns,
and {·}skc and {·}sks stand for signing the message by the client and server,
respectively. Repeating the message id of the request allows the client to verify
that ps is indeed a response to the request pc.

The interesting parts are steps 1. c) and 2.b). We assume that there is a
constant caps > 0, the so-called capacity of the server, and a constant tol+s that
indicates its tolerance with respect to inaccurate clocks. At all times the server
keeps a time tmin

s and a finite list L of triples (t, r, c) of pending and handled
requests. At the beginning or after a reset, tmin is set to ts + tol+s , where ts is a
timestamp retrieved from the local clock functionality, and L is set to the empty
list.

Step 1. c). Upon receiving a message as above, the server s rejects if t /∈[
tmin
s + 1, ts + tol+s

]
or if (t′, r, c′) ∈ L for some t′ and c′, and otherwise proceeds

116 K.O. Kürtz, H. Schnoor, and Th. Wilke

as follows: If L contains less than caps elements, it inserts (t, r, c) into L. Other-
wise, the server deletes all tuples containing the oldest timestamp from L, until
L contains less than caps tuples. Then it sets tmin

s to the timestamp contained
in the last tuple deleted from L, and finally inserts (t, r, c) into L.

Step 2. b). When asked to send a payload ps with message handle r, the server
rejects if there is no triple (t, r, c) ∈ L with c �= ε. If it does not reject, it updates
L by overwriting c with ε in the tuple (t, r, c) to ensure that the service cannot
respond to the same message twice.

4.2 Implementation in the IITM Model

We will now describe the system of IITM’s defined by

P2AMEX−1 = !PC | !PS | !FSig | !PSI | !FKS | !FLC (2)

and illustrated in Figure 4, which implements the 2AMEX-1 protocol.
In (2), PC is the client-side part of the protocol (defined in Figure 5), PS is the

server-side part of the protocol (defined in Appendix B), FSig is the signature
functionality as defined in [18], PSI is an interface which allows the adversary
to access the signature functionality with few restrictions, FKS is an ideal func-
tionality of a trusted key store, and FLC models a local clock which is controlled
by the adversary, i. e. not synchronized with the clocks of other parties and not
even monotone.

Fig. 4. Overview of 2AMEX-1 protocol implementation

A Simulation-Based Treatment of Authenticated Message Exchange 117

4.3 Signatures and the Public Key Infrastructure

We model the digital signatures that 2AMEX-1 uses by the ideal functional-
ity FSig from [18], which was proved to be securely implementable using any
existentially unforgeable signature scheme.

We give the adversary access to the signature scheme and allow him to sign
any bit string that does not have the format of a 2AMEX-1 message. This models
that our protocol does not have exclusive access to the keys used to sign the mes-
sages. For example, the same key can be used to sign a 2AMEX-1 message and
parts of the payload contained in that message. This is realized by the signature
interface functionality PSI, which accepts requests from the adversary to (i) sign
messages that do not have the format of 2AMEX-1 messages and (ii) verify ar-
bitrary signatures. In P2AMEX−1, the signature interface functionality is banged
in the multi-user multi-session version, effectively meaning that the adversary
has access to all keys used in the protocol.

As the signature interface needs resources from the environment to sign mes-
sages for the adversary, it has an enriching input tape EEI. Its counterpart in
the ideal system is a tape in the enriching input functionality EI.

To coordinate how different IITM’s access a single instance of the signature
functionality, we define the ideal functionality of a key store, FKS, which allows
clients, servers, and the signature interface functionality to retrieve trusted keys
as well as the corruption status of that key. To be able to distribute the public key,
FKS also initializes the instances of the signature functionality. The particular
form of this functionality is due to the fact that we want to use FSig from [18] as
is. Nevertheless, one can implement FKS using standard techniques for building
a public key infrastructure.

4.4 Client Implementation

The client protocol PC (see Figure 5) is a direct implementation of the ideal
functionality FC with the following changes:

– The messages are transferred over the network (rather than exchanged di-
rectly between client and server). This is modeled by writing the messages
on an external network tape.

– To secure the request message, the client signs it using a digital signature
obtained from an instance of FSig for this session. The server will be able to
obtain the public key from the according key store and verify the signature.

– When receiving a response from the server, the signature of that message is
verified by the client in the same way.

– The nonces are not generated by a centralized entity, but randomly chosen
locally by each client. While this does not guarantee that the numbers are
unique, the probability of a collision is negligible if the length of the nonces
grows linearly with the security parameter.

– The request message is additionally secured by a timestamp. The client uses
the local clock functionality FLC to obtain a timestamp.

118 K.O. Kürtz, H. Schnoor, and Th. Wilke

Tapes: C ←←→ EC, C ������ AC, C ←→→ KS, C ←→→ LC, Csig ←→→ Sig, Cver ←→→ Sig
Initialization: c = s = r = ε, n = 0, state = Init, cor = false
Steps: loop

Send a request to the server:
if (c′, (Client, s′), Init) received from EC

If state
= Init, abort. Let c = c′ and s = s′.
Generate an η-bit nonce r randomly, where η is the security parameter.
Send (c, (Client, s, r), Nonce, r) to EC.
Recv (c, (Client, s, r), Request, pc, 1n′

) from EC, let n = n′.
Send (c, (Client, s, r), GetKey) to KS.
Recv (c, (Client, s, r), PublicKey, kc) from KS.
Send (c, (Client, s, r), GetTime) to LC.
Recv (c, (Client, s, r), Time, t) from LC.
Send (c, (Client, s, r), Corrupted?) to KS.
Recv (c, (Client, s, r), Corrupted, cor′) from KS. If cor ′, abort.
Let mc = (From : c, To : s, MsgID : r, Time : t, Body : pc).
Send (c, (Client, s, r), Sign, mc) on Csig.
Recv (c, (Client, s, r), Signature, σc) on Csig. Let state = OK.
Send (mc, σc) to AC.

Receive and process a response from the server:
if (ms, σs) received from AC with ms = (From : c, To : s, Ref : r, Body : ps)

If state
= OK or cor or |ps| > n, abort.
Let n = n − |ps|.
Send (s, (Server, c, r), GetKey) to KS.
Recv (s, (Server, c, r), PublicKey, ks) from KS.
Send (s, (Server, c, r), Client, Init) on Cver.
Recv (s, (Server, c, r), Client, Init) on Cver.
Send (s, (Server, c, r), Client, Corrupted?) to KS.
Recv (s, (Server, c, r), Client, Corrupted, cor ′) from KS. If cor′, abort.
Send (s, (Server, c, r), Client, Verify, ms, σs, ks) on Cver.
Recv (s, (Server, c, r), Client, Verified, b) from on Cver, if b
= 1, stop.
Let state = Stopped and send (c, (Client, s, r), Response, ps) to EC.

Corruption: Corr(cor , true, state
= Init, ε, AC, {EC}, EC, c, (Client, s, r))
CheckAddress: Check for c, s, and r as soon as each one has been set.

Fig. 5. The client protocol PC

– Before using a signature functionality to sign or verify a message, the client
checks if the signature or the verification functionality is corrupted. If either
one is, the client aborts.

4.5 Server Implementation

The implementation PS of the server functionality (see Appendix B) is more
complicated than the client. To be able to counteract replay attacks, one single
IITM handles all sessions. That is, for each identity s all communication of that
identity in the server role is handled by one single instance of PS.

Therefore, the server maintains two lists: R stores resources passed by the
environment (corresponding to the fact that in the ideal system, each session of
the server is started by the environment), while L (corresponding to L described
in Section 4.1) is used to store information from request messages received so far
by this server. During initialization, i. e., when receiving the first message, the
server asks the adversary to provide values for two parameters of the 2AMEX-1
protocol, namely the capacity caps and the tolerance tol+s .

A Simulation-Based Treatment of Authenticated Message Exchange 119

When receiving a message from the client, the server (i) tries to retrieve the
client’s key, (ii) obtains the current time from FLC (and checks for monotonicity
of the clock), (iii) verifies the signature, (iv) checks if a message with the same
nonce has already been accepted (i. e. the nonce is in L), (v) checks if the times-
tamp is in order (i. e. not too old and not too new), and (vi) forwards the message
to the environment if everything is in order. If some step fails, the server simply
drops the message.

When the environment wants to reply to a message, the server first checks
if the nonce is valid (i. e. occurs in L), else it sends an error message to the
environment. This is important as the nonce may have been removed from L
due to capacity reasons without notification to the environment. Then, the server
initializes its instance of the signature scheme for this session, signs the message,
and writes it on an external network tape.

Note that during the steps to process a request or a response, the control may
be passed to the adversary by some of the ideal functionalities the server uses.
Hence, the execution of the steps when processing a request or response may be
interrupted by the adversary (e. g., by sending another incoming message to this
server). As soon as a message is received that is not related to processing the
current message, the processing of the current message is aborted by the server
and cannot be resumed later.

5 Results

Our result states that our protocol securely realizes the ideal functionality F2AM.
The formal statement of the theorem is as follows:

Theorem 1

!FC | !FS | FNG | !FEI ≥BB !PC | !PS | !PSI | !FKS | !FSig | !FLC (3)

≥BB !PC | !PS | !PSI | !FKS | !PJS
Sig | !FSig | !FLC (4)

The first of these inequalities states that the IITM realization of our protocol,
when using an ideal signature functionality, realizes the system consisting of the
ideal functionalities for F2AM. The main part of the proof is the construction of
the simulator, which essentially simulates our concrete protocol. It keeps track
of the internal state of all involved parties and “translates” problems that can
occur in the real protocol (e. g., the server running out of memory and therefore
being unable to respond to old messages) into attacks on the ideal functionalities
(the simulator may, e. g., prevent the ideal server functionality from responding
to an old message).

Due to the way in which the ideal signature functionality is used, the real-
ization of the protocol as stated in the first inequality is unrealistic, because
for each message sent a new key for the signature scheme is generated. This can

120 K.O. Kürtz, H. Schnoor, and Th. Wilke

be avoided by applying a joint-state theorem [12,18] allowing different sessions
to use the same key. Essentially, a “wrapper” PJS

Sig managing different sessions is
used to access the signature functionalities. The second inequality in Theorem 1
(which follows directly from [18]) makes use of this wrapper, so that instead of
one key per party and per session (!FSig), there is only a single key for each

party (!FSig), as in a realistic public-key infrastructure.
Theorem 1 gives a security treatment of a complex protocol in a simulation-

based security setting: Our protocol features a long-lived server role, uses time-
stamps to prevent replay attacks, and accesses a public-key infrastructure for
digital signatures. It is easy to see that long-livedness and timestamps are re-
quired to realize our ideal functionality with bounded memory (see [10]). It
is interesting to note that while our ideal server functionality is short-lived, a
realization necessarily needs to be long-lived; this is a particular property of
authenticated message exchange with only two rounds.

6 Discussion

Simulation-based security clearly has the advantage that it leads to an easier
statement of security than an individual, trace-based definition, and moreover,
allows to treat protocols for very different tasks in a single model. The security
properties obtained by such an analysis are quite strong and hold (via composi-
tion) in an arbitrary context. The IITM framework (and related frameworks) is
designed to support modular protocol analysis.

However, these advantages come with a price when considering a concrete
complex protocol. In [10], we presented a customized model (based on the sem-
inal work by Bellare and Rogaway [11]) for proving security of 2AMEX-1. A
comparison between that work and the current paper gives insights into the
advantages and disadvantages of both approaches.

The formulation of both ideal functionalities and concrete implementations
for authenticated message exchange in the current paper is rather long and
unintuitive (the latter are significantly more complex than their counterparts
in [10]). Both feature unnatural communication (bit strings to provide computing
resources, status and activation messages exchanged sent to and received from
the adversary and the environment), which are necessary due to how resources
and activation are handled. Intuitively, one would like the environment to only
access the “service” provided by the functionalities, but in the IITM framework,
the environment additionally needs to provide resources for the involved parties
that allow them to process the input.

Furthermore, the handling of corruption in the IITM framework is more com-
plex and seems less natural than in the Bellare-Rogaway based model. Also, for
the analysis of our protocol, the modular approach provided by the IITM frame-
work does not simplify the security analysis, compared to the proof in [10]. Fi-
nally, the use of the joint-state theorem to enable realistic treatment of

A Simulation-Based Treatment of Authenticated Message Exchange 121

signatures results in a slightly different protocol from the one originally stated
in [10] and from a realistic implementation.

It would be very interesting to know whether the IITM framework can be
adapted to remove the above-mentioned difficulties.

References

1. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

2. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, pp. 184–201 (2001)

3. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354.
Springer, Heidelberg (2004)

4. Küsters, R.: Simulation-based security with inexhaustible interactive Turing ma-
chines. In: CSFW, pp. 309–320. IEEE Computer Society, Los Alamitos (2006)

5. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

6. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

7. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.K.: Cryptographi-
cally sound security proofs for basic and public-key Kerberos. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 362–383.
Springer, Heidelberg (2006)

8. Backes, M., Pfitzmann, B.: On the cryptographic key secrecy of the strength-
ened Yahalom protocol. In: Fischer-Hübner, S., Rannenberg, K., Yngström, L.,
Lindskog, S. (eds.) SEC. IFIP, vol. 201, pp. 233–245. Springer, Heidelberg (2006)

9. Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.R., Schwenk, J.: Universally com-
posable security analysis of TLS. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.)
ProvSec 2008. LNCS, vol. 5324, pp. 313–327. Springer, Heidelberg (2008)

10. Kürtz, K.O., Schnoor, H., Wilke, T.: Computationally secure two-round authen-
ticated message exchange. Cryptology ePrint Archive, Report 2009/262 (2009),
http://eprint.iacr.org/

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

12. Küsters, R., Tuengerthal, M.: Joint state theorems for public-key encryption and
digital signature functionalities with local computation. In: CSF, pp. 270–284.
IEEE Computer Society, Los Alamitos (2008)

13. Kürtz, K.O., Schnoor, H., Wilke, T.: A simulation-based treatment of authen-
ticated message exchange. Cryptology ePrint Archive, Report 2009/368 (2009),
http://eprint.iacr.org/

14. Mitra, N., Lafon, Y.: SOAP version 1.2 part 0: Primer (second edition). Technical
report, W3C (2007), http://www.w3.org/TR/soap12-part0/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.w3.org/TR/soap12-part0/

122 K.O. Kürtz, H. Schnoor, and Th. Wilke

15. Liu, C.K., Booth, D.: Web services description language (WSDL) version 2.0 part 0:
Primer. W3C recommendation, W3C (2007),
http://www.w3.org/TR/wsdl20-primer

16. Sun Microsystems: RPC: Remote procedure call protocol specification version 2.
IETF RFC 1057, Informational (1998)

17. Winer, D.: XML-RPC specification (1999),
http://www.xmlrpc.com/spec

18. Küsters, R., Tuengerthal, M.: Joint state theorems for public-key encryption and
digital signature functionalities with local computation. Cryptology ePrint Archive,
Report 2008/006 (2008),
http://eprint.iacr.org/

A Corruption

Both in the ideal functionality F2AM and in the implementation P2AMEX−1 we
model corruption by using the corruption macro from [12] in a slightly modified
variant, in which we add parameters for an addressing mechanism. Details can
be found in [13].

Using the corruption macro we allow the adversary to corrupt our clients
and servers, while the environment can check the corruption status of each in-
stance and provide resources for corrupted machines. Once corrupted, clients
and servers abort their normal execution and only forward messages from and
to the adversary as defined in the macro.

While the adversary can corrupt single client instances, the situation on the
server side is different: If the adversary sends a corruption request to one instance
of FS running under identity s, this instance will accept all messages which
are directed to any instance running under identity s. This reflects that in the
implementation P2AMEX−1 only one (long-lived) instance of PS is running per
identity.

Note that the signature and verification functionality FSig used in P2AMEX−1
also allows corruption. But if the adversary would corrupt, e. g., a verification
instance, it would have no advantage against our protocol as long as it does not
also corrupt the server or client using that particular instance of the verifier. In
addition, in P2AMEX−1 the environment would have to pass resources to that
verification instance, while in F2AM no signature scheme is available to receive
the resources—but adding a mechanism to F2AM which receives the resources
and passes them on to the simulator would result in a rather unnatural ideal
functionality.

Therefore, even though we technically allow the adversary to corrupt instances
of the signature scheme (or its verifiers) in P2AMEX−1, we make it rather useless:
Before PC and PS use any signature or verification functionality, they check
the functionalities’ corruption status and abort if it is corrupted. Note that the
adversary may still get complete control over the input and output of a client or
server by simply corrupting that client or server instance.

http://www.w3.org/TR/wsdl20-primer
http://www.xmlrpc.com/spec
http://eprint.iacr.org/

A Simulation-Based Treatment of Authenticated Message Exchange 123

B The Server Protocol PS

Tapes: S ←←→ ES, S ������ AS, S ←→→ KS, S ←→→ LC, Ssig ←→→ Sig, Sver ←→→ Sig
Initialization: s = caps = tol+s = mc = σc = kc = ε, R = L = [], ts = tmin = 0, state = Init,

cor = false
Steps: loop

Initialize a new buffer:
if (s′, (Server), Init, 1n) received from ES

If state = Init,
Send (s′, (Server), GetParameters) to AS.
Recv (s′, (Server), Parameters, cap, tol+) from AS.
Let s = s′. If cap ≤ 0 or tol+ ≤ 0, abort.
Send (s, (Server, c, r), GetTime) to LC.
Recv (s, (Server, c, r), Time, t) from LC.
Let state = OK, caps = cap, tol+s = tol+, ts = t, tmin = ts + tol+s .

Append n to R.
Receive and process a request: Request the client’s key:
if (m, σ) received from AS with m = (From : c, To : s, MsgID : r, Time : t, Body : pc)

If state = Init or R is empty or cor , abort.
Let n be the first item of R. If |pc| > n, abort. Remove n from R.
Let state = WaitingForKeyc, mc = m, and σc = σ.
Send (c, (Client, s, r), GetKey) to KS.

Receive and process a request: Receive the key, request time:
if (c, (Client, s, r), PublicKey, k) received from KS

If state
= WaitingForKeyc or cor, abort. Let state = WaitingForTime and kc = k.
Send (s, (Server, c, r), GetTime) to LC.

Receive and process a request: Receive time, initialize the verifier:
if (s, (Server, c, r), Time, t) received from LC

If state
= WaitingForTime or cor, abort.
If t ≥ ts, let ts = t. Let state = WaitingForVerifier.
Send (c, (Client, s, r), Server, Init) on Sver.

Receive and process a request: Execute 2AMEX-1 protocol steps, relay request:
if (c, (Client, s, r), Server, Init) received on Sver

If state
= WaitingForVerifier or cor , abort. Let state = OK.
Send (c, (Client, s, r), Server, Corrupted?) to KS.
Recv (c, (Client, s, r), Server, Corrupted, cor ′) from KS. If cor′, abort.
Send (c, (Client, s, r), Server, Verify, mc, σc, kc) on Sver.
Recv (c, (Client, s, r), Server, Verified, b) on Sver.
If b
= 1, t ≤ tmin or t > ts + tol+s , or (t′, r, c′) ∈ L for some t′, c′, abort.
While |L| ≥ caps:

Let tmin = min{t′ | (t′, r′, c′) ∈ L} and L = {(t′, r′, c′) ∈ L | t′ > tmin}.
Insert (t, r, c) into L and send (s, (Server, c, r), Request, pc) to ES.

Receive and process a response: Receive response payload, request key:
if (s, (Server, c, r), Response, ps) received from ES

If state = Init or cor, abort.
If (t′, r, c) /∈ L for any t′:

Let state = OK, send (s, (Server, c, r), Response, Error) to ES, and abort.
Let state = WaitingForKeys and send (s, (Server, c, r), GetKey) to KS.

Receive and process a response: Construct, sign, and send response message:
if (s, (Server, c, r), PublicKey, k) received from KS

If state
= WaitingForKeys or cor, abort. Let state = OK.
Send (s, (Server, c, r), Corrupted?) to KS.
Recv (s, (Server, c, r), Corrupted, cor) from KS. If cor′, abort.
Let ms = (From : c, To : s, Ref : r, Body : ps).
Send (s, (Server, c, r), Sign, ms) on Ssig.
Recv (s, (Server, c, r), Signature, σs) on Ssig.
Update (t, r, c) to (t, r, ∗) in L and send (ms, σs) to AS.

Reset the server:
if (s, Reset) received from AS

If state = Init or cor, abort.
Send (s, Server, GetTime) to LC.
Recv (s, Server, Time, t) from LC.
If t ≥ ts, let ts = t.
Let tmin = ts + tol+s , R = L = [], and state = OK.

Corruption: Corr(cor , true, state
= Init, ε, AS, {ES}, ES, s)
CheckAddress: Check for s as soon as it has been set.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 124–136, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Trusted Deployment of Virtual Execution Environment
in Grid Systems*

Deqing Zou, Jinjiu Long, and Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Grids are constructed to integrate different kinds of resources and
services in distributed computing environments. Grid users may transfer their
applications and data to remote grid nodes which are easy to be compromised.
In this paper, we utilize trusted computing and virtualization technologies to
construct trusted execution environments in grid systems. Grid nodes are
equipped with Trusted Platform Module (TPM) and secure Virtual Machine
Monitor (VMM) in order to provide a Trusted Computing Base (TCB) for job
execution environment. A secure Virtual Machine (VM) for protecting job exe-
cution can be deployed into a grid node remotely. During the VM deployment,
current configuration information in a grid node is reported to a remote party
for remote attestation. Furthermore, encryption technologies are used to protect
grid jobs during their whole lifecycle. Experiments and analysis show our
method is efficient and secure.

Keywords: Grid Computing, Virtual Machine, Trusted Computing, Trusted
Execution Environment.

1 Introduction

Currently grid security technologies mainly concern secure communication, authenti-
cation and authorization, and neglect the security of job execution environments in
grid nodes. It is a great challenge to guarantee the execution environment trustworthy,
and grid jobs are not intruded during their whole lifecycle. A compromised execution
environment makes the embedded security mechanisms invalid, and endangers the
confidentiality, integrity or availability of user applications and data. In addition, grid
systems need to attest to grid users that the execution environment is trustworthy in
order to reduce their worries about the security risks.

VM technology is introduced [1] to support running multiple operating systems
simultaneously on a single physical hardware platform. Isolation is one of the most
important characteristics for VM technology. The VMM is a privileged software layer

* The work is supported by National 973 Basic Research Program of China under grant

No.2007CB310900.

 Trusted Deployment of Virtual Execution Environment in Grid Systems 125

running between hardware resources and operating systems, which manages all VMs
running on it and keeps them isolated from each other. As the VMM is a thin software
layer and its size is relatively small, it can be easily security-enhanced and is com-
monly regarded as a trust computing base to provide effective security protection for
applications. Daoli [2] system uses a secure VMM to interpose privileged operations,
isolate sensitive information and seal persistent data, thus protects a trusted process
from being compromised by a compromised OS kernel and other processes. The work
in this paper is conducted based on the Daoli system.

Trusted Computing (TC) technology [3] aims to improve the security of computer
platforms by hardware-based security mechanism, and TPM is a hardware security
chip embedded on the motherboard providing encryption functions. TPM measures
the state of the platform, and records it in PCRs (Platform Configuration Register)
located in TPM during the boot process. The measurement information can be signed
by the private key of an AIK (Attestation Identity Key) and passed to the challenger to
prove the trustworthiness of the platform, which is called remote attestation. By utiliz-
ing remote attestation mechanism, a remote challenger who might be a grid broker or
a grid user can verify whether a remote execution environment is trustworthy or not.

Our solution proposed in this paper aims to implement a trusted grid platform to
provide functions of deploying a secure execution environment to a grid node based
on trusted computing and virtualization technologies. Grid broker needs to find suit-
able grid nodes for users, and such nodes are equipped with the secure VMM and
TPM, and can meet the resource and security requirement of virtual machine instance
deployment and job execution. Isolation mechanism provided by the VMM guaran-
tees that virtual machine instances running on it would not affect each other. In this
paper, we assume grid broker is secure and it can be protected by traditional security
technologies. We focus on the security of job execution environment in grid nodes.

As the secure VMM plays a very important role for protecting user jobs from being
compromised, it is necessary to leverage TC technology to provide integrity protec-
tion for the VMM. In addition, remote attestation is used to verify whether the remote
VMM and the VM boot process are trustworthy as expected. A VM image, used for
job execution environment, is measured and verified for integrity protection before its
deployment. Our solution also allows clients to check and verify the trustworthiness
of remote execution environment through grid portal to make sure that their applica-
tions and data are not intruded by malicious node.

The rest of this paper is organized as follows: we discuss the related work in section
2. In section 3, we introduce the architecture of VM based trusted execution environ-
ment in grid systems. In section 4, we discuss trusted deployment of virtual execution
environment, remote attestation protocol and job security management in detail, and
then analyze the performance and security of our proposed solution in section 5 and
section 6. Finally, the conclusions and future work are drawn in section 7.

2 Related Work

The Virtual Workspace project [4] is developed to provide metadata defined abstrac-
tion of an execution environment that can be made available dynamically to author-
ized clients by using well-defined protocols. The workspace metadata file contains

126 D. Zou, J. Long, and H. Jin

information needed for the deployment of a workspace. The workspace service allows
remote authorized clients to deploy, pause, restart, shutdown, and inspect workspaces
through a WSRF (Web Service Resource Framework) based protocol. Virtual work-
space is implemented based on Globus Toolkit 4 [5], and one of its main features,
remote deployment and lifecycle management of virtual machines, seems to be simi-
lar to the approach we propose in this paper. The major difference is that virtual
workspaces focuses on dynamically constructing execution environments with
distributed resources, while our approach mainly concerns how to construct trusted
execution environments, and provide strong security functions to protect user applica-
tions and data. Besides, our implementation is based on another grid middleware
named CGSP [6] (ChinaGrid [7] Support Platform).

Other researches about trusted execution environment also adopt trusted computing
or virtualization technologies. IBM’s vTPM [8] project proposes the design and im-
plementation of virtual trusted platform module for each virtual machine, and such
software TPM has been integrated into a Xen [9] hypervisor environment to make
TPM functions available to virtual machines. Terra [10] is a flexible architecture for
trusted computing, which uses a trusted virtual machine monitor (TVMM) to partition
a tamper-resistant hardware platform into multiple isolated virtual machines, provid-
ing multiple boxes on a single, general purpose platform. Trusted Grub [11] extends
the widely used grub with security offered by TPM to implement the trusted boot. The
Integrity Measurement Architecture [12] is a security enhancement of Linux by a
TPM-based Linux Security Module which aims to provide trust attestation of the
software stack running on the Linux system.

There are some proposals on trusted grids that use TC technologies for grid com-
puting. Daonity [13] is a project that aims to strengthen the grid security infrastructure
by integrating TC technologies into the Globus toolkit. Cooper et al. [14] proposed
trusted grid platform architecture to allow users and systems to dynamically negotiate
platform trust within the grid.

The above methods are not good enough in constructing a trusted grid platform be-
cause there is no remote attestation to job execution environment and the security of
grid jobs during their whole lifecycle can not be guaranteed.

3 Trusted Grid Architecture

The proposed trusted grid architecture is presented in Fig.1. The middle layer is
mainly responsible for resource management based on CGSP to support the construc-
tion of grid computing environment across large numbers of Chinese universities. The
WSRF-based, VM scheduling services including the VM factory service and the VM
control service are hosted by the CGSP container. An authorized grid user configures
remote execution environment via such services, which allows a grid client to deploy
a VM-based execution environment, named VM instance, on a trusted grid node ac-
cording to the deployment request specifying resource allocation, environment defini-
tion and security policy for the client. VM control operations such as VM pause,
shutdown and restart can be carried out by the VM control service, and applications
submitted by the client will be scheduled to VM instances by the job manager. If a
grid node has no capacity to run a job continually, the corresponding VM instance
will be migrated securely to another trusted node, which is transparent to the end user.

 Trusted Deployment of Virtual Execution Environment in Grid Systems 127

Fig. 1. Trusted grid architecture

On the resource layer, grid nodes, willing to lease computing and storage re-
sources, register their resource information into the resource repository in grid broker,
located in the middle layer. Such nodes are equipped with the secure VMM and
Trusted Grub. The process isolation technology provided by the Daoli VMM is used
to protect the privacy of user applications and data. Trusted Grub integrates TC tech-
nology to provide integrity protection for the secure VMM. A VM control agent
installed in domain0 of a grid node has the privileged access of performing job man-
agement including the deployment and control of virtual machine instances. A remote
attestation daemon runs as a process in domain 0, enabling remote attestation by sign-
ing the hash values of the Daoli VMM and VMs, and reporting them to the security
management service in grid broker for trusted resource scheduling. The job executor
utilizes GRS (General Running Service) [15] which is a program execution engine for
CGSP and provides execution management and task scheduling for grid jobs on
virtual machines.

The application layer of our architecture is used to conduct the preparation of grid
requests, including request files construction and encrypted applications construction.
The request file specifies resource allocation and job execution environment, such as
deployment time, vCPU numbers, memory, CPU architecture, operating system. An
application is developed by a grid user and performs specific functions. Before sub-
mitted, the application should be encrypted by encryption tools.

Following are the main features of our trusted virtual execution environment in
CGSP:

(1) Resource registration and monitoring: Anyone who wants to be a resource
provider should register its computing and storage resources to a resource repository
through grid portal, and grid broker monitors current resource status of all grid nodes
registered to the repository.

(2) Remote deployment and control of virtual machines: The VM scheduling
services, including VM Factory service and VM control service, are WSRF-based
services in the CGSP Container. These services provide client interfaces to manage
virtual machines, such as VM deploy, pause, restart and shutdown.

128 D. Zou, J. Long, and H. Jin

(3) Job security management: After a VM is deployed, the encrypted application
will be submitted and run on the VM. Process isolation and trusted computing tech-
nologies will be used to protect the privacy of the application and its data.

(4) Authentication and attestation: Authentication and attestation happen in the
following three situations: a) Grid broker needs to verify a grid user’s identity before
a user request is accepted; b) Grid broker finds an appropriate resource node to run a
user’s job. Trust attestation must be done to ensure the target node trustworthy; c) If
one node is overloaded and job migration is needed, the broker will exploit the at-
testation mechanism to find another trusted resource node for job migration.

4 Implementation

As we discussed in section 3, we leverage Daoli VMM to protect user applications
from being compromised by malwares in VMs. We use Trusted Grub to protect the
integrity of the VMM.

In this section, we introduce how to deploy a trusted execution environment on the
grid resource nodes equipped with Daoli VMM, how to use TC technology to provide
remote attestation of the execution environment, and how to implement job security
management.

4.1 Trusted Deployment of Virtual Execution Environment

In order to implement trusted deployment of job execution environment in grid sys-
tems, we adopt several technologies including grid computing, trusted computing and
virtualization. WSRF-based services, including VM factory service and VM control
service, are implemented based on CGSP. Such services are designed and imple-
mented with a feasible design pattern, called factory and instance pattern. Whenever a
client wants to create a new virtual machine instance, it will contact the factory ser-
vice, which first selects a suitable grid node which can meet the resource requirement
of the client, conducts remote attestation to ensure that the target node is trustworthy,
and then creates and initializes a new virtual machine. The VM control service pro-
vides remote control operations on the virtual machine such as VM start, pause, shut-
down, restart, destroy and migration.

There are five stages dealing with trusted deployment of virtual execution envi-
ronment: (1) Resource scheduling. The factory service accepts deployment requests
from authorized grid users, and finds suitable resource nodes, registered in the re-
source repository, which can meet the requirement of users. (2) VMM remote attesta-
tion. Remote attestation on the VMM is conducted to confirm that the corresponding
node meets the security requirement of users. (3) VM image integrity measurement
and verification. Virtual machine image is measured and verified for integrity protec-
tion. (4) VM initialization and remote launch. A new virtual machine instance is ini-
tialized and remotely started. (5) VM remote attestation. Remote attestation on the
new VM is conducted to verify whether the VM boot process is trustworthy as
expected.

 Trusted Deployment of Virtual Execution Environment in Grid Systems 129

Client VM Factory
Service

VM Resource
Home

Remote Attestion
Daemon

4.Resource scheduling

5.VMM attestion

10.VM launch

2.create()

7.create()

8.add()

9.start()

1.createResource()

VM
Resource

VM Control
Agent

11.VM attestion

3.Parse & verify request

6.VM image verification

Fig. 2. Trusted deployment of virtual execution environment

These five stages consist of one or several steps. The detail is depicted in Fig.2.

(1) Resource scheduling
Step 1: With the URI of the factory service, such as http://www.daoliproject.org/

wsrf/services/VirtualMachineFactoryService, the client invokes operation createRe-
source to send a deployment request. The function is defined as createRe-
source(CreateResource request).

The request parameter in the function specifies the conditions of resource alloca-
tion conditions and job execution environment including domain name, deployment
time, vCPU numbers, memory, CPU architecture, and operating system. The security
information such as the expected VMM hash value and VM image hash value are also
included. This function will finally return an endpoint reference structure that consists
of the URI of the instance service and the key of the newly created virtual machine
resource.

Step 2: Class ResourceContext is used to invoke operation getResourceContext to
locate the VM resource home which is responsible for managing all the virtual
machine resources, and require the resource home to create a new resource.

Step 3: The deployment request is parsed and verified during this step, for exam-
ple, the request for configuring an execution environment with the requirement of too
long lifecycle or too large memory will be denied.

Step 4: After request verification, the VM resource home tries to find suitable
nodes whose resources meet the user’s deployment request. Resource reservation
focuses on CPU, available memory, network configuration and VM image.

(2) VMM remote attestation
Step 5: The VMM in a grid node is attested remotely on the user's behalf to make

sure it is un-tampered and trustworthy. The expected VMM hash value is either from

130 D. Zou, J. Long, and H. Jin

security policy made by the security manager or directly from the user’s deployment
request. The detailed process of remote attestation will be discussed in subsection 4.2.

(3) VM image integrity measurement and verification
Step 6: During this procedure, the virtual machine image in the target node is

measured and verified for integrity protection. A digest is updated with the image’s
hash, signed by the private key of the platform in the node, and sent to grid broker.
The encrypted digest will be decrypted by the platform’s public key and compared to
the expected measurement value to determine whether the VM image has been tam-
pered or not.

(4) VM initialization and remote launch
Step 7: The resource home creates a new virtual machine resource instance and

specifies resource properties, described by WSRF resource properties including
domain name, current status, time-to-live, vCPU numbers, memory, network configu-
ration. Such property information is stored in the VM resource, which is also respon-
sible for interacting with the VM control agent in grid nodes.

Step 8: The resource home adds the new virtual machine resource instance to its in-
ternal list of resources which allow the client to access virtual machine resources
according to its endpoint reference.

Step 9: Operation start is invoked to send a virtual machine launch request from the
VM resource home to the VM resource.

Step 10: The VM resource communicates with the VM control agent in the target
node via SSH to launch a new virtual machine which satisfies user requirements. The
virtual machine will be bound with a vTPM instance which makes TPM functions
available to the virtual machine. As Linux Integrity Measurement Architecture is
used, the Linux kernel image and initial RAM disk are measured when loaded and the
measurement will be record in PCR16 of the vTPM instance.

(5) VM remote attestation
Step 11: The VM is verified remotely to determine the integrity of the VM execu-

tion environment, which is similar to VMM remote attestation.

4.2 Remote Attestation of Execution Environment

Remote attestation of execution environment focuses on how to verify the trustworthi-
ness of the VMM based on which the privacy of user applications and data are pro-
tected. TPM stores the hash values of configuration information in PCRs during the
process of system boot. As Trusted Grub is installed, during the process of measure-
ment, the VMM is measured and the Stored Measurement Log (SML) which records the
measurement series is updated. The measurement result can be signed with the private
key of an AIK, alias of the unique Endorsement Key (EK), and reported to a remote
challenger in order to provide the evidence that the VMM has not been compromised.
The remote attestation protocol is described in detail as follows, as depicted in Fig.3.

Step 1: The VMM is measured by Trusted Grub during the trusted boot process,
the measurement information is recorded in PCR15 of TPM, and the Stored Meas-
urement Log is updated.

Step 2: The security management service in grid broker as a challenger creates a
160 bit random nonce, initializes an attestation request for inspecting the PCR value

 Trusted Deployment of Virtual Execution Environment in Grid Systems 131

Remote
attestation
daemon

Security
management

service

2. Send attestation request:
{nonce}

4. Send {signed PCR, SML,
AIK cert}

5. Verify AIK cert

6. Validate signature

7. Compare the received
PCR with the expected one

TPMTrusted Grub

1. Measure VMM
 Update SML

3.Sign{PCR[15],
 nonce} by AIK

Fig. 3. Remote attestation protocol

of the VMM, and sends a piece of challenge message to the remote attestation dae-
mon located in resource nodes.

Step 3: The remote attestation daemon loads an AIK protected by the storage root
key (SRK), then invokes TPM_Quote operation to sign the PCR value of the VMM
and nonce by the private key of an AIK, and gets the signed PCR value as follows:

QTPM = SignAIKSHA1(PCR15 || nonce) (1)

The || operation represents a concatenation of PCR15 and nonce. SHA1 represents
a kind of Secure Hash Algorithm that produces a 160 bit message digest for a given
data stream. We get by signing the message digest with the private key of an AIK.

Step 4: The signed PCR value, along with the relevant SML entries and the AIK
credential, are forwarded to the challenger.

Step 5: The credential of the AIK is verified with the relevant CA credential, as the
AIK credential is signed by a privacy CA, just like grid CA.

Step 6: The challenger receives the corresponding PCR value from the SML, cal-
culates the digest of the concatenation of the PCR value and nonce, and verifies the
signed PCR by the public key of the AIK, compares it to the digest to determine
whether the signature signed by the AIK is valid or not.

Step 7: The received PCR value is compared to the expected one to determine the
trustworthiness of the VMM.

4.3 Job Security Management

After a grid user, assume Alice, has her trusted virtual machine deployed, she can
submit her encrypted job to the virtual machine. The job management service is

132 D. Zou, J. Long, and H. Jin

invoked to transfer her application into the virtual machine and a secure process
using memory curtain technology of Daoli VMM runs on the VM. Alice will finally
receive the encrypted job result that only she could decrypt it into plain context.
Any malicious process can not access Alice's data when the job is transferred,
stored or executed. There are three stages during the process of job security man-
agement. We define the related symbols in Table 1, and use them to describe the
process of job security management.

Table 1. Symbol definitions

Symbol Definition
key Alice’s symmetric AES key, as job’s session key
job Alice’s grid job
result Alice’s job result
broker_pk Grid broker’s public key
broker_sk Grid broker’s private key
xen_pk Resource node’s public key
xen_sk Resource node’s private key
AES_Enc_X(Y) Use AES algorithm to encrypt Y with X
AES_Dec_X(Y) Use AES algorithm to decrypt Y with X
RSA_Enc_X(Y) Use RSA algorithm to encrypt Y with X
RSA_Dec_X(Y) Use RSA algorithm to decrypt Y with X
X || Y Concatenation of X and Y

(1) Job encryption and submission
Step 1: Alice sends an encrypted job to grid broker, where subJob=encJob||encKey,

encJob=AES_Enc_key(job), encKey=RSA_Enc_broker_pk(key).
It denotes that Alice submits an encrypted job to grid broker. Before submitted, Al-

ice’s application must be encrypted with an AES session key from Alice. This key is
encrypted with grid broker’s public key and the encrypted AES key is appended to the
end of the encrypted executable binary job.

Step 2: Grid broker sends a re-encrypted job to the resource node, where reEncJob =
encJob || reEncKey, where reEncKey =
RSA_Enc_xen_pk(RSA_Dec_broker_sk(encKey)).

It denotes that grid broker re-encrypts Alice’s AES key and deploys the re-
encrypted job to the resource node. Grid broker uses the RSA algorithm to decrypt the
encrypted AES key with its private key, and then the AES key is re-encrypted with
Xen platform’s public key fetched from the resource node after remote attestation.
The re-encrypted AES key is appended to the end of the encrypted executable binary
job again.

(2) Job trusted execution and result encryption
The job runs as a trusted process protected by Daoli VMM. The secure VMM gets

the job’s session key by decrypting the re-encrypted AES key with its private key
located in the VMM. With the session key, the encrypted job can be decrypted and
executed in the memory space where other processes cannot access. After the job is

 Trusted Deployment of Virtual Execution Environment in Grid Systems 133

finished, with I/O sealing mechanism, the secure VMM encrypts the job result with
the session key before writing it to the disk.

(3) Job result returns and decryption
Alice gets the encrypted job result after the job is finished, decrypts it with her

AES key and gets the plain job result.

5 Experiments and Analysis

Our grid experiment environment consists of 5 machines connected through 100
Mbps campus LAN. The CGSP node is a Pentium 4 machine with 2.53GHz, 512MB
RAM and Ubuntu7.10 installed. Grid users login grid portal through an AMD 1.6GHz
PC with 1GB RAM and Ubuntu7.10 installed. There are also 3 worker nodes running
Xen platform: two of them are equipped with TPM 1.2, Daoli VMM (Xen 3.02) and
Trusted Grub, 1.6GHz, 1GB RAM and Fedora 8 installed; the other has almost the
same configuration as the above two, which is equipped with normal Xen 3.02, not
Daoli VMM. There is one Xen-based VM image involved in our experiment, with
Fedora 8 OS and 750MB in size.

Although our primary concern is the security of trusted deployment of virtual
machine in grid systems, which we will discuss in section 6. Due to the attestation and
cryptographic technologies being used, the deployment performance should be con-
sidered. In order to show that the overhead is acceptable, we study two virtual ma-
chine deployment methods.

The first one is the traditional method that grid broker finds a suitable resource
node through resource scheduling to launch a remote virtual machine. The deploy-
ment time is mainly spent on resource scheduling and launching a remote VM.

The second one is the trusted method we proposed. Except resource scheduling and
VM launch, the time spent by VMM and VM remote attestation, measurement and
verification of VM image should be calculated.

We conduct the experiments for the above two methods 30 times respectively. The
overhead under traditional deployment is depicted in Fig.4, while the overhead under
trusted deployment is depicted in Fig.5.

For each experiment in Fig.4, the overhead can be divided into two parts. The
lower part shows the time that grid broker needs to find a suitable resource node
through resource scheduling, and the mean time is about 2.46 seconds. The upper part
shows the time to launch a remote virtual machine, about 11.88 seconds. The mean
time cost under traditional deployment is about 14.34 seconds.

For each experiment in Fig.5, the overhead can be divided into five parts. From the
bottom to the top, the first part shows the time for resource scheduling, and the mean
time is about 2.48 seconds; the second part shows the time for VMM remote attesta-
tion, about 2.84 seconds. The third part shows the time for integrity measurement and
verification of a virtual machine image, about 14.03 seconds. The fourth part shows
the time for remote launch of virtual machine, about 12.29 seconds. The fifth part
shows the time for VM remote attestation, about 2.06 seconds. The mean time for
trusted deployment is about 33.70 seconds.

134 D. Zou, J. Long, and H. Jin

By comparison between these two deployment methods, the extra time for trusted
deployment is about 19.36 seconds, of which most of the time (about 14 seconds) is
spent on the measurement and verification of virtual machine image, which depends
on the size of the image file and the computing capability of resource nodes. It is
acceptable because it takes only about extra 19.36 seconds to gain a secure execution
environment, especially for some security sensitive computing tasks. For some com-
puting tasks running as long as several hours after the execution environment is de-
ployed, the time cost is negligible.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

D
ep

lo
ym

en
t t

im
e(

s)

trials

 Resource scheduling VM launch

Fig. 4. Performance overhead under traditional deployment

5 10 15 20 25 30
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36

D
ep

lo
ym

en
t t

im
e(

s)

trials

 Resource scheduling VMM attestation
 VM image measurement and verification
 VM launch VM attesattion

Fig. 5. Performance overhead under trusted deployment

 Trusted Deployment of Virtual Execution Environment in Grid Systems 135

6 Security Analysis

In this section, we will analyze the security of our proposal. Our solution aims to
construct a trusted grid architecture based on trusted computing and virtualization
technologies. To prove that our integration perfectly solves the security problem we
described in section 1, we will review and discuss several security mechanisms we
achieved, including isolation, integrity, authentication, and confidentiality protection.

(1) Isolation: Strong isolation between grid jobs is achieved by deploying them in
different protected VM instances which are trusted execution environments for users
in grid systems. Even in the same virtual machine, grid applications are curtained by
Daoli VMM by which it is isolated from other processes.

(2) Integrity protection: Integrity protection for VMM and VM is provided.
Trusted Grub provides integrity measurement and protection for the VMM during the
trusted boot process, and the virtual machine image is measured and verified for in-
tegrity protection before its deployment.

(3) Authentication: Our approach enhances current Grid Security Infrastructure
(GSI) by using TC technology, not only authenticating grid certificates submitted by
users, but also verifying remote platforms to determine the trustworthiness of the
execution environment.

(4) Confidentiality protection: Job session keys protected by asymmetrical keys
can protect the confidentiality of user applications and data when they are transferred
and stored. Job execution is protected by the secure VMM and malicious processes
cannot access user data.

7 Conclusions and Future Work

A compromised execution environment in grid systems may endanger the confidenti-
ality and integrity of user applications and data. Grid users always concern whether
their execution environments are secure enough to run their jobs. To solve this prob-
lem, we propose a trusted grid platform based on trusted computing and virtualization
technologies, which can deploy a VM based trusted execution environment on TPM
and secure VMM enabled resource nodes, and provide grid users with remote attesta-
tion to nodes for trust establishment. The experimental results and security analysis
show that our solution is efficient and secure. Our future work will focus on integrat-
ing our architecture into some grid application scenarios to meet the requirement of
security sensitive applications.

References

1. Popek, G.J., Goldberg, R.P.: Formal Requirements for Virtualizable Third Generation Ar-
chitectures. Communications of the ACM 17(7), 412–421 (1974)

2. Daoli project, http://www.daoliproject.org
3. Trusted Computing Group, TCG Specification Architecture Overview Version 1.2,

http://www.trustedcomputinggroup.org

136 D. Zou, J. Long, and H. Jin

4. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of
Service and Quality of Life in the Grid. Scientific Programming Journal, Special Issue:
Dynamic Grids and Worldwide Computing 13(4), 265–276 (2005)

5. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: Jin, H.,
Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer, Heidelberg
(2005)

6. Wu, Y., Wu, S., Yu, H., Hu, C.: CGSP: An Extensible and Reconfigurable Grid Frame-
work. In: Cao, J., Nejdl, W., Xu, M. (eds.) APPT 2005. LNCS, vol. 3756, pp. 292–300.
Springer, Heidelberg (2005)

7. Jin, H.: ChinaGrid: Making Grid Computing a Reality. In: Chen, Z., Chen, H., Miao, Q.,
Fu, Y., Fox, E., Lim, E.-p. (eds.) ICADL 2004. LNCS, vol. 3334, pp. 13–24. Springer,
Heidelberg (2004)

8. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: Virtu-
alizing the Trusted Platform Module. In: Proceedings of 15th Conference on USENIX Se-
curity Symposium, Vancouver, B. C, Canada, pp. 305–320 (2006)

9. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,
Neugebauer, R.: Xen and the Art of Virtualization. In: Proceedings of ACM Symposium
on Operating Systems Principles, pp. 164–177 (2003)

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual machine-
based platform for trusted computing. In: Proceedings of 19th ACM Symposium on Oper-
ating Systems Principles 2003 (SOSP 2003), Bolton Landing, NY, USA, pp. 193–206
(2003)

11. Trusted Grub, Applied Data Security at University of Bochum,
 http://www.prosec.rub.de/trustedgrub.html

12. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a TCG-
based integrity measurement architecture. In: Proceedings of USENIX Security Sympo-
sium, pp. 223–238 (2004)

13. Mao, W., Yan, F., Chen, C.: Daonity: grid security with behaviour conformity from trusted
computing. In: Proceedings of 1st ACM Workshop on Scalable Trusted Computing, pp.
43–46 (2006)

14. Cooper, A., Martin, A.: Towards a secure, tamper-proof grid platform. In: Proceedings of
6th IEEE International Symposium on Cluster Computing and the Grid, Singapore, pp.
373–380 (2006)

15. Liu, L., Wu, Y., Yang, G., Ma, R., He, F.: General Running Service: An Execution
Framework for Executing Legacy Program on Grid. In: Proceedings of 5th International
Conference on Grid and Cooperative Computing, pp. 522–529 (2006)

A Dolev-Yao Model for Zero Knowledge�

Anguraj Baskar1,��, R. Ramanujam2, and S.P. Suresh1

1 Chennai Mathematical Institute, Chennai
{abaskar,spsuresh}@cmi.ac.in

2 Institute of Mathematical Sciences, Chennai
jam@imsc.res.in

Abstract. We propose an extension of the standard Dolev-Yao model
of cryptographic protocols to facilitate symbolic reasoning about zero-
knowledge proofs. This is accomplished by communicating typed terms,
and providing a proof amounts to certifying that a term is of a particular
type. We present a proof system for term derivability, which is employed
to yield a decision procedure for checking whether a given protocol meets
its zero knowledge specification.

1 Introduction

Zero-knowledge proofs were introduced by [GMR89] and have since been ex-
tensively applied in a variety of security contexts including electronic voting
protocols, contract signing protocols and designated verifier proofs.

On the other hand, security protocols are known to be difficult to design
and hard to analyze, principally due to the concurrent execution of such pro-
tocols, leading to information transfer across many interleaved runs. Discovery
of design flaws in early key distribution and authentication protocols ([Low96])
led to the advent of formal methods in verification of cryptographic protocols
([MS01], [RT03]). A key abstraction in such employment of formal methods is
that of the Dolev-Yao model, in which cryptographic operations are idealized and
proofs can be carried out without the complications relating to implementation
of cryptographic primitives, random numbers and error probabilities. Symbolic
abstraction has not only proved to be useful, recent research has also proved sym-
bolic models sound with respect to underlying computational models (see, for
instance, [CKKW06]) thus achieving a satisfactory two-level layering of security
proofs.

The standard Dolev-Yao model offers a term algebra with operators for en-
cryption and pairing. Many extensions exist ([CDL06], [Bau05]), and it is natural
to consider Dolev-Yao models for analysis of cryptographic protocols that employ
zero-knowledge proofs as well.

� We thank the anonymous referees for many helpful comments that helped improve
the presentation immensely.

�� Supported by the Council of Scientific and Industrial Research (CSIR), India, till
August 2008.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 137–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

138 A. Baskar, R. Ramanujam, and S.P. Suresh

Two approaches suggest themselves. One is to symbolically represent a zero-
knowledge proof as an explicit constructor in the term algebra, say zk with ap-
propriate parameters, and study protocols using such terms in communications.
Separately, one ensures that guarantees given by proofs with such symbolic ab-
straction are applicable to protocol implementations where the abstractions are
realised by cryptographic zero-knowledge proofs. This is the line of work suc-
cessfully carried out by [BMU08] and [BU08]. [BHM08] extends this line of work
by considering a type system for static type-checking of protocols based using
zero-knowledge proofs. They also develop a type-checker for automatic analysis
of such protocols.

An alternative is to so extend the Dolev-Yao model such as to formalise as-
pects of cryptographic zero-knowledge proof construction as well, within the
symbolic abstraction. The underlying idea is that an idealisation of the sequence
of operations that constitute a cryptographic zero-knowledge proof is itself pos-
sible within such an extended Dolev-Yao model. This is in the spirit of logical
studies of security protocols, where we wish to identify patterns of reasoning
relating to information transfer and hiding. The advantage of such an approach
is that computational soundness of underlying abstractions can be ‘lifted’ to the
construction. This is the approach we follow in this paper.

In general, a zero-knowledge proof is a proof of a statement α. A principal A
tries to convince another principal B that α is true, but in such a way that for
any β such that β ⊃ α and ¬(α ⊃ β), B does not receive any new information
as to whether β holds or not. In the context of Dolev-Yao models, α refers to
some property of a set of terms X without revealing X itself.

How do we bring such a capability in a formal model? We employ another
standard notion, that of a typed term. This is of the form t : p, where t is a
term formed using the operations of pairing and encryption starting from atomic
terms, while p is a pattern built using pairing, encryption, and disjunction
starting from atomic terms, and � (denoting an unknown term). The use of
disjunction is central for information hiding in this model. For example, the
inference that t is either {0}k or {1}k is represented by t : {0}k + {1}k. Such a
typed term would be sent by a principal who wishes to convince the recipient
that the disjunction holds while keeping the recipient uncertain which of the
disjuncts actually holds.

We now sketch further examples:

– If someone has provided a proof that a term t is of the form {t′}k (for a fixed
k, and arbitrary t′), this might be represented by the typed term t :{�}k.

– A proof of the fact that two terms t and t′ are encrypted using the same key
k might be represented by (t, t′) :({�}k, {�}k).

– That either t or t′ is of the form r can be represented by (for instance)
(t, t′) :(r,�) + (�, r).

– That t is encrypted by either k or k′ can be represented by {t}k : {t}k+k′ .
If t is a term known to A (a nonce generated by A, say) and the inverse
of k is also known to her, then she can in fact verify more of the structure
of {t}k (in particular, that the given term is indeed encrypted using k and

A Dolev-Yao Model for Zero Knowledge 139

not k′). Such considerations are important in modelling examples like the
whistle blower’s problem [Cla].

In general, protocols in our model communicate a typed term t : p where p is a
disjunctive pattern p1 + p2. The typed term should be derivable by the sender,
but the receiver can in general not resolve the disjunction. Then interesting
questions about “leak of knowledge” can be asked. If the protocol intends only
t : p to be known by an agent A, but she gets to know t : p′ for a “stronger
pattern” p′, that would constitute a leak.

Thus the central contribution of the paper is the setting up of a proof sys-
tem for when a given typed term is derivable from a set of typed terms, and its
use in proving the decidability of the verification problem for “information leak-
age”. What is notable about this system is that we do nontrivial reasoning with
disjunction and contradiction. In contrast, the typical proof systems that one
encounters in relation to security protocols essentially reason with conjunction
and some form of implication, with some algebraic rules.

Our type system shares some features with the one used in [BHM08] (the use
of disjunction in the types, for example). But in their paper, they use the type
system to ensure that every well-typed protocol is safe, whereas here our focus
is on the decidability of our proof system.

2 The Term Model and Derivations

Fix a finite set of agents Ag, which includes the intruder I, which is an abstrac-
tion that quantifies over the malicious forces at work to compromise security. The
intruder is assumed to have unbounded memory, has access to all that travels
on the public channel, can forge and block messages.

Fix a countable set of fresh secrets N . (This includes random, unguessable
nonces as well as temporary session keys.) B = N ∪Ag is the set of basic terms.
The set of keys is K = N ∪ {public(A), private(A), shared(A, B)|A, B ∈ Ag}.
Here public(A), private(A), and shared(A, B) denote the public key of A, pri-
vate key of A, and (long-term) shared key between A and B, respectively.
We define inv(k) for every k ∈ K as follows: inv(public(A)) = private(A),
inv(private(A)) = public(A), and inv(k) = k for every other k ∈ K . The set
T of terms is given by the following syntax:

T ::= m | (t, t′) | {t}t′

where m ranges over K ∪ Ag, and t, t′ over T . Here (t, t′) denotes the pair
consisting of t and t′, and {t}t′ denotes the term t encrypted using t′.

Given a term, its set of subterms st(t) is defined as usual: st(m) = m;
st((t, t′)) = {(t, t′)} ∪ st(t) ∪ st(t′); st({t}t′) = {{t}t′} ∪ st(t) ∪ st(t′). The no-
tion of inverse is extended to all terms t by letting inv(t) = t for all t �∈ K .

Terms conform to certain patterns. A pattern has the same structure as
a term, except for two important differences: we use a special pattern � to
signify that nothing is known about the structure of a given term; and we use

140 A. Baskar, R. Ramanujam, and S.P. Suresh

disjunction, in the form p+p′, to signify that a given term has either the structure
specified in p or the structure specified in p′. Patterns are given by the following
syntax:

P ::= � | m | (p, p′) | {p}p′ | p + p′

where m ∈ K ∪Ag and p, p′ ∈ P.
We extend the notion of inverse to an arbitrary basic pattern p ∈ P by letting

inv(p) = p if p �∈ K and p is not of the form p0 + p1. We define inv(p + p′) to be
inv(p) + inv(p′).

Given two patterns p and q, we define when p is incompatible with q (in
symbols: p#q) by the following rules:

if m �= n then m#n for m, n ∈ B; m#(q, q′) and m#{q}q′ for m ∈ B;
(p, p′)#{q}q′ ; p#(q + q′) if p#q and p#q′; and p#q if q#p.

We say that a term t is compatible with a pattern p if ¬(t#p). A typed
term is of the form t : p where t is a term and p is a pattern, and it is well-
formed if t is compatible with p.

We next describe rules that let one derive new terms from old. The rules,
given in Figure 1, involve sequents of the form X � t : p where X ∪ {t : p}
is a set of typed terms. We use X, t : p as a shorthand for X ∪ {t : p}. We use
X � t :p to also denote the fact that the sequent X � t :p has a derivation. We
let X = {t :p | X � t :p}.

Proposition 1. If X is a set of well-formed typed terms, then any t :p ∈ X is
well-formed.

The proof system can be established to be sound in the following sense. Suppose
we equip each agent with the usual construction and deconstruction abilities
of a standard Dolev-Yao agent, and in addition the ability to probe terms by
trying to split them, or decrypt them using available keys, and thereby deduce
the structure of a term from the structure of its subterms. Then it can be seen
that whenever the typing judgements in the premises can be “computed” by an
agent, so can the judgement in the conclusion. The contr and contr′ rules reflect
the fact that there are some contradictory judgements in the assumptions, and
hence anything can be derived. The disjunction elimination is primarily used to
eliminate the possibility of one of the disjuncts in the typing judgement.

For an untyped term t, define the “default typing” to be the typed term
t̂ = t :�, and for a set of untyped terms X , let X̂ = {t̂ | t ∈ X}. Let X �DY t
denote that t is derivable from X in the basic Dolev-Yao model. Then, the
following proposition asserts that the system above is a conservative extension.

Proposition 2. X �DY t iff X̂ � t̂.

The derivability problem asks, given a set of typed terms X and a typed term
t : p, whether t : p ∈ X . The following theorem is central to the application of
this proof system to protocols.

Theorem 1. The derivability problem is decidable.

A Dolev-Yao Model for Zero Knowledge 141

Axiom
X, t :p t :p

X t :p X ⊆ X′ p′ ∈ {p, �}
weaken

X
′ t :p′

X t :p X t′ :p′

pair
X (t, t′) : (p, p′)

X (t0, t1) :p
spliti (i = 0, 1)

X ti :πi(p)

X t :p X t′ :p′

encrypt
X {t}t′ :{p}p′

X {t}t′ :p X inv(t′) : inv(p′)
decrypt

X t :δ(p, inv(p′))

X t :p X inv(t′) : inv(p′) X {t}t′ :�
verifyEncrypt

X {t}t′ :{p}p′

X t :p X t :p′ p#p′

contr
X r :q

X t :p t, p ∈ B t
= p
contr′

X r :q

X t :p + p
′

X, t :p r :q X, t :p′ r :q
+-elim

X r :q

Fig. 1. The derivation rules. In the spliti rule, πi(p) is pi if p = (p0, p1) and � if p = �.
In the decrypt rule, δ(p, p′) is p′′ if p = {p′′}inv(p′) and is � otherwise.

3 The Protocol Model

Protocols1 are typically given as a sequence of communications of the form
A→B :�t�, which denotes the sending of t by A and its receipt by B. The
new element in the model in this paper is that we allow typed terms in the
communications.

An action is either a send action of the form A!B :�(M)t :p� or a receive
action of the form A?B :�t :p�, where t :p is a well-formed typed term, and A and
B are agent names. By an A-action, we mean A!B :�(M)t :p� or A?B :�t :p�, for
some B and t :p. In all the send actions, M is a set of typed terms of the form
m :m where m ∈ st(t). These are the nonces supposed to be freshly generated as
part of the send action. For an action a of the form A!B :�(M)t :p� or A?B :�t :p�,
term(a) is defined to be t :p.

A communication is of the form A→B :�(M)t :p�. If c = A→B :�(M)t :p�,
then send(c) = A!B :�(M)t :p�, and rec(c) = B?A :�t :p�.

A protocol specification (or protocol) Pr is a tuple (const, c1 · · · c�, P, N)
which satisfies the following conditions:

1 The model we present here is based on [RS05].

142 A. Baskar, R. Ramanujam, and S.P. Suresh

– for each i ≤ �, ci is a communication Ai→Bi :�(Mi)ti :pi�
– {t1 :p1, . . . , t� :p�} is a set of well-formed typed terms,
– const ⊆ B is a set of constants of the protocol, and
– P and N are finite sets whose elements are of the form (A, t : p) for some

A ∈ Ag and some typed term t :p. P specifies the positive requirements
and N the negative requirements.

For ease of notation, we refer to protocols using the sequence of communications.
The idea is that const(Pr) should be interpreted the same way throughout any
run of the protocol, while the other basic terms can get different interpretations
in different sessions of a single run of a protocol.

Given a protocol Pr = c1 · · · c�, one can extract its set of roles {η1, . . . , ηn} as
follows: consider the sequence of actions η = send(c1)rec(c1) · · · send(c�)rec(c�),
and for every A that is either a sender or a recipient in the protocol, consider
the subsequence of all A-actions in η. This is referred to as the A-role of Pr.

A substitution σ is a map from B to T such that σ(Ag) ⊆ Ag and σ(I) = I
and σ(N) ⊆ N . We say that a substitution σ is suitable for a protocol Pr if
for every basic term m specified to be a constant of the protocol, σ(m) = m.
For an arbitrary term t and pattern p, σ(t) and σ(p) are defined in the obvious
manner. For a typed term t :p, σ(t :p) = σ(t) :σ(p).

An event of a protocol Pr is a triple e = (η, σ, lp) where η is a role of Pr, σ
is a substitution suitable for Pr, and 1 ≤ lp ≤ |η|. For events e = (η, σ, lp) and
e′ = (η′, σ′, lp′) of Pr, we say that e ≺ e′ (meaning that e is in the local past of
e′) if η = η′, σ = σ′, and lp < lp′. For an event e = (η, σ, lp) of Pr, the action of
e, act(e) is defined to be σ(alp), where η = a1 · · · ak, and term(e) = term(act(e)).

A state is a tuple (sA)A∈Ag, where sA ⊆ T for each A ∈ Ag. The initial
state of Pr, denoted by initstate(Pr), is the tuple (sA)A∈Ag such that for all
A ∈ Ag,

sA = {m :m | m ∈ Ag} ∪ {private(A) :private(A)}
∪ {public(B) :public(B) | B ∈ Ag} ∪ {shared(A, B) :shared(A, B) | B �= A}.

We need to define when send and receive actions are enabled, and the state
updates that happen as a result of the communications. This is on standard
lines, but some points need to be highlighted. A term being sent should be
constructible by the sender: that is, t : p should be derivable by the agent, but
she may choose to communicate a weaker pattern p.

The notions of an action enabled at a state, and update(s, a), the update of
a state s on an action a, are defined as follows:

– A send action a of the form A!B :�(M)t :p� is enabled at any state s iff
1. t :t ∈ sA ∪M or (p = � and t :� ∈ sA ∪M),
2. and for all m :m ∈ M , m :m �∈ sC for every C (including A).

– A receive action a = A?B :�t :p� is enabled at s iff t :t ∈ sI or t :p ∈ sI .
– update(s, A!B :�(M)t :p�) = s′ where s′A = sA ∪ M , s′I = sI ∪ {t : p}, and

s′C = sC for C �∈ {A, I}.
– update(s, A?B :�t :p�) = s′ where s′B = sB ∪ {t :p}, and s′C = sC for C �= B.

A Dolev-Yao Model for Zero Knowledge 143

update(s, η) for a state s and a sequence of actions η is defined in the obvious
manner. Given a protocol Pr and a sequence of its events ξ, infstate(ξ) is defined
to be update(initstate(Pr), act(ξ)).

Given a protocol Pr, a sequence e1 · · · ek of events of Pr is said to be an run
of Pr iff the following conditions hold:

for all i, j ≤ k such that i �= j, ei �= ej,
for all i ≤ k and for all e ≺ ei, there exists j < i such that ej = e, and
for all i ≤ k, act(ei) is enabled at infstate(e1 · · · ei−1).

A run ξ = e1 · · · ek of Pr (with ei = (ηi, σi, lpi) for each i ≤ k) is a b-bounded
run (for b a natural number) if |{(ηi, σi) | i ≤ k}| ≤ b, i.e. there are at most b
sessions in ξ.

4 The Decidability of the Proof System

We follow2 the standard approach of reducing every derivation in our system to
a normal derivation, and then proving a subterm property for normal proofs.
This bounds the size of normal proofs for a given sequent X � t :p. Thus we only
need to search over a bounded set of proofs to check whether t :p ∈ X .

The normalisation rules are quite standard. We basically avoid an application
of an introduction rule (the pair rule, for example) whose conclusion is the major
premise of an application of the corresponding elimination rule (the split rule, in
this case). We also permute the application of rules so that no major premise of
any rule is the conclusion of a disjunction elimination or a contradiction rule. We
say that π is a normal proof if no further normalisation rules can be applied
to it.

Theorem 2. Every proof can be converted to a normal proof.

Theorem 3. Let π be a normal proof of X � t : p and let u : q be a typed
term occurring in π. Then u ∈ st(X ∪ {t}) (where by st(X) we mean the set
{t′ ∈ st(t) | t :p ∈ X for some p}).

The theorem places a bound on the set of terms that can occur in a proof of
X � t :p, but what about the set of typed terms? We show below that this is also
bounded. More specifically, given a set of typed terms X , and a term t, we show
that the number of patterns p such that X � t :p is bounded.

Given a set of typed terms X , we define closure1(X) to be the least set Y
such that:

– X ⊆ Y ;
– if (t, t′) :(p, p′) ∈ Y , then t :p, t′ :p′ ∈ Y ;
– if (t, t′) :� ∈ Y , then t :�, t′ :� ∈ Y ;
– if {t}t′ :{p}p′ ∈ Y , then t :p, t′ :p′ ∈ Y ;

2 Full proofs are found in the technical report [BRS09].

144 A. Baskar, R. Ramanujam, and S.P. Suresh

– if {t}t′ :� ∈ Y , then t :�, t′ :� ∈ Y ; and
– if t :p + p′ ∈ Y , then t :p, t :p′ ∈ Y .

Given a set of typed terms X and a term t, we define closure2(X, t) to be the
least set Y such that:

– closure1(X) ⊆ Y ,
– if (r, r′) ∈ st(X ∪ {t}) and if r :p, r′ :p′ ∈ Y , then (r, r′) :(p, p′) ∈ Y , and
– if {r}r′ ∈ st(X ∪ {t}) and if r :p, r′ :p′ ∈ Y , then {r}r′ :{p}p′ ∈ Y .

Lemma 1.

1. closure1(closure2(X, t)) ⊆ closure2(X, t),
2. closure2(closure2(X, t), t) ⊆ closure2(X, t).

Lemma 2.

1. |closure1(X)| ≤ m · |X | for some constant m.
2. |closure2(X, t)| ≤ (|X ∪{t}|)d where d is the maximum depth of any term in

st(X ∪ {t}).

Theorem 4. Let X be a set of typed terms and t be a term. Let π be a normal
proof of X � t :p for some p and i. Then for any typed term u :q occurring in π,
u :q ∈ closure2(X, t).

Theorem 1 is an immediate consequence of the above theorem. There is a stan-
dard deterministic algorithm that checks, given X and t :p, whether the term is
derivable from X in time polynomial in the size of closure2(X, t).

Application to the Information Leakage Problem

We describe the information leakage problem below. But for that we need
a definition of when one pattern p is stronger than another pattern q. We shall
formally define it below, but the idea is that for all terms t, if t is compatible
with p, it is also compatible with q, but there is at least one term t′ that is
compatible with q but incompatible with p.

We first define when p and q are equally strong (in symbols: p ∼ q). ∼ is
the smallest congruence on patterns such that

� ∼ �+ p; p ∼ p + p; (p + p′, q) ∼ (p, q) + (p′, q);
(q, p + p′) ∼ (q, p) + (q, p′); {p + p′}q ∼ {p}q + {p′}q; {q}p+p′ ∼ {q}p + {q}p′ .

We now define when p is as strong as q (in symbols: p 	 q). 	 is the least
binary relation over the set of patterns that is reflexive, transitive, and such that:

p ∼ q ⇒ p 	 q; p 	 �; p 	 p + q; and
p 	 q, p′ 	 q′ ⇒ (p, p′) 	 (q, q′), {p}p′ 	 {q}q′ .

We say that p is stronger than q (in symbols: p 2 q) if p 	 q and ¬(p ∼ q).
The information leakage problem asks, given Pr = (const, c1 · · · c�, P, N), and

a bound b > 0, whether the following holds:

A Dolev-Yao Model for Zero Knowledge 145

1. for every (A, t :p) ∈ P , there exists a b-bounded run ξ = e1 · · · ek of Pr (with
ek = (η, σ, lp)) and i ∈ {0, 1} such that σ(t) :σ(p) ∈ infstateσ(A)(ξ), and

2. for every (A, t :p) ∈ N , there does not exist any b-bounded run ξ = e1 · · · ek

of Pr such that (letting ek = (η, σ, lp)), and a stronger pattern p′ 2 σ(p)
such that σ(t) :p′ ∈ infstateσ(A)(ξ).

Theorem 5. The information leakage problem is decidable.

We first notice that for any given protocol Pr, the set of b-bounded runs of
Pr. The only non-trivial part here is to check the enabledness of certain events,
which reduce to tests of the form t : p ∈ X for an appropriate X . Theorem 1
guarantees that we can effectively perform this test.

Once we compute the set of b-bounded runs, we need to check the knowledge
requirements. For a positive specification (A, t : p), search for a b-bounded run
ξ = e1 · · · ek of Pr (with ek = (η, σ, lp)) such that σ(t) : σ(p) ∈ infstateσ(A)(ξ).
Theorem 1 once again ensures that we can do this test effectively.

For a negative specification (A, t : p), we need to check all b-bounded runs
ξ = e1 · · · ek of Pr (letting ek = (η, σ, lp)), to ensure that there is no stronger
pattern p′ 2 σ(p) such that σ(t) :p′ ∈ infstateσ(A)(ξ). Once we fix a run ξ and
X = infstateA(ξ), we need to verify that there is no pattern p′ stronger than σ(p)
is derivable for t from X . In general, there is no bound on the set of stronger
patterns than a given pattern p. But we only need to check for patterns derived
from X . Theorem 4 assures us that there are only boundedly many patterns
for t derivable from X . Now we just need to check if any one them is stronger
than σ(p). Thus one can effectively verify the negative knowledge requirements
as well, and hence the information leakage problem is decidable.

References

[AR02] Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptol-
ogy 15(2), 103–127 (2002)

[Bau05] Baudet, M.: Deciding security of protocols against off-line guessing at-
tacks. In: CCS 2005: Proceedings of the 12th ACM conference on Com-
puter and communications security, pp. 16–25. ACM Press, New York
(2005)

[BHM08] Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In:
ACM Conference on Computer and Communications Security, pp. 357–
370 (2008)

[BMU08] Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-
calculus and Automated Verification of the Direct Anonymous Attesta-
tion Protocol. In: IEEE Symposium on Security and Privacy, pp. 202–
215 (2008)

[BRS09] Baskar, A., Ramanujam, R., Suresh, S.P.: A Dolev-Yao model for Zero
Knowledge. CMI Technical Report (2009),
http://www.cmi.ac.in/∼spsuresh/content/pdffiles/

zero-know-jun09.pdf

http://www.cmi.ac.in/$\sim $spsuresh/content/pdffiles/zero-know-jun09.pdf
http://www.cmi.ac.in/$\sim $spsuresh/content/pdffiles/zero-know-jun09.pdf

146 A. Baskar, R. Ramanujam, and S.P. Suresh

[BU08] Backes, M., Unruh, D.: Computational Soundness of Symbolic Zero-
Knowledge Proofs Against Active Attackers. In: Proceedings of the 21st
IEEE Computer Security Foundations Symposium, pp. 255–269 (2008)

[CDL06] Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties
used in cryptographic protocols. Journal of Computer Security 14(1),
1–43 (2006)

[CKKW06] Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computation-
ally sound symbolic secrecy in the presence of hash functions. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
176–187. Springer, Heidelberg (2006)

[Cla] Clausen, A.: Logical composition of zero-knowledge proofs,
http://www.cis.upenn.edu/∼mkearns/teaching/Crypto/

zkp-disj.pdf

[CLS03] Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint
Solving and Insecurity Decisions in Presence of Exclusive or. In: Pro-
ceedings of the 18th IEEE Synposium on Logic in Computer Science
(LICS), June 2003, pp. 271–280 (2003)

[Cre08] Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and anal-
ysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)

[DKR09] Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security 17(4), 435–
487 (2009)

[GLT89] Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, vol. 7. Cambridge University
Press, Cambridge (1989)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM Journal of Computing 18(1), 186–208
(1989)

[Her05] Herzog, J.: A computational interpretation of dolev-yao adversaries.
Theoretical Computer Science 340(1), 57–81 (2005)

[Low96] Lowe, G.: Breaking and fixing the Needham-Schroeder public key proto-
col using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

[MS01] Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process
cryptographic protocol analysis. In: ACM Conference on Computer and
Communications Security, pp. 166–175 (2001)

[RS05] Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security
protocols. Journal of Computer Security 13(1), 135–165 (2005)

[RS06] Ramanujam, R., Suresh, S.P.: A (restricted) quantifier elimination for
security protocols. Theoretical Computer Science 367, 228–256 (2006)

[RT03] Rusinowitch, M., Turuani, M.: Protocol Insecurity with Finite Number
of Sessions and Composed Keys is NP-complete. Theoretical Computer
Science 299, 451–475 (2003)

http://www.cis.upenn.edu/$\sim $mkearns/teaching/Crypto/zkp-disj.pdf
http://www.cis.upenn.edu/$\sim $mkearns/teaching/Crypto/zkp-disj.pdf

A Special Proxy Signature Scheme with
Multi-warrant

Jianhong Zhang1,2, Hua Chen1, Shengnan Gao1, and Yixian Yang2

1 College of sciences, North China University of Technology,
Beijing 100144, China
jhzhang@ncut.edu.cn

2 School of Information Engineering, Beijing University of Posts and
Telecommunications, Beijing 100876, China

yxyang@bupt.edu.cn

Abstract. Proxy signature is an important delegation technology. In
this paper, we proposed a novel proxy signature scheme with multi-
warrant by extending proxy signature. This extension is not a trivial ex-
tension, it makes that the size of extended proxy signature is approximate
one of original proxy signature. And the size of the extended proxy sig-
nature is constant and is independent of warrant’s number. The scheme
is proven secure in the standard model and the security of the scheme
is related to the Computational Diffie-Hellman Assumption. Compari-
son with Huang et.al scheme, our scheme has an advantage over Huang
et.al ’s scheme in terms of the size of proxy signature.

Keywords: proxy signature, multiwarrant, security proof, proxy signa-
ture with multi-warrant, the CDH problem.

1 Introduction

The notion of proxy signature scheme introduced by Mambo et. al in 1996 [1].
It allows an original signer to delegate his signing capability to proxy signer in
a proxy signature. Since it is proposed, proxy signature schemes have been sug-
gested for use in many applications [2,3,4,5], particularly in distributed systems,
Grid computing, mobile agent applications, distributed shared object systems,
global distribution networks, and mobile communications. And to adapt differ-
ent situations, many proxy signature variants are produced, such as one-time
proxy signature, proxy blind signature, multi-proxy signature, and so on. Based
on the delegation type, proxy signature schemes are divided into full delegation,
partial delegation and delegation by warrant. According whether the original
signer know the proxy secret key, proxy signatures can also be classified as
proxy-unprotected and proxy-protected schemes. In a proxy-protected scheme
the original signer cannot forge the proxy signer to produce proxy signature. It
means that the proxy signature can be produced only by the proxy signer. Thus
we can clearly distinguish the rights and responsibilities between the original
signer and the proxy signer.

A. Datta (Ed.): ASIAN 2009, LNCS 5913, pp. 147–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

148 J. Zhang et al.

Obviously, we can easily extend a general based-warrant proxy signature into
a proxy signature with multi-warrant. Namely, the original signer can regard
several warrants as a new warrant to realize the delegation of right by concate-
nating them. It means that all the concatenated warrants are a part of proxy
signature. Such way makes size of proxy signature longer, thus it is inefficient
. Usually, a signed message only belongs to the admission range of some war-
rant, other warrants are unnecessary to this message in the phase of signature’s
verification. Sometimes, proxy signer hopes to make the verifier only know the
warrant which the signed message belongs to. While he keeps other warrants
secret for a verifier. Such as a big company manufactures many salable produc-
tions. And the company needs to delegate sale rights of several productions to
n agents. The number of dealership is a private information of agent and has
relation to his wealth. In general, the agent is not willing to reveal his number
of dealership. When a user buys a production, it is sufficient for the user that
the agent possesses the dealership of the sold production.

Being inspired with the delegation problem above, in this paper, we propose
a proxy signature scheme with multi-warrant, and formalize a notion of security
for proxy signature scheme with warrant. At the same time, we also show that
the security of our scheme is tightly related to the computational Deffie-Hellman
assumption in the standard model. Compared with Huang et.al proxy signature
schemes, our scheme has an advantage over Huang et.al ’s scheme in terms of the
size of proxy signature. In our scheme, the size of proxy signature is constant
and is independent of the number of warrant.

2 Preliminaries

Let G1 and G2 be two cyclic groups of order q, P is a generator of G1. We
assume that the discrete logarithm problem (DLP) in both G1 and G2 are hard.
An admissible pairing e : G1 × G1 −→ G2, which satisfies the following three
properties:

– Bilinear: If P, Q ∈ G1 and a, b ∈ Z∗
q , then e(aP, bQ) = e(P, Q)ab;

– Non-degenerate: There exists a P ∈ G1 such that e(P, P) �= 1;
– Computable: If P, Q ∈ G1, one can compute e(P, Q) ∈ G2 in polynomial

time.

We note the modified Weil and Tate pairings associated with supersingular el-
liptic curves are examples of such admissible pairings.

Definition 1. Given two group G1 and G2 of the same prime order q, the De-
cisional Bilinear Diffie-Hellman problem (DBDHP) in (G1, G2, e) is to decide
whether h = e(P, P)abc given (P, aP, bP, cP) and an element h ∈ G2 . We define
the advantage of a distinguisher against the DBDHP as follows:

AdvD = | Pa,b,c∈RZq,h∈R∈RG2 [1 ← D(aP, bP, cP, h)]

−Pa,b,c∈RZq [1 ← D(aP, bP, cP, e(P, P)abc)] |

A Special Proxy Signature Scheme with Multi-warrant 149

Definition 2 (Computational Diffie-Hellman (CDH) Assumption). .
Let G be a CDH parameter generator. We say an algorithm A has advantage
ε(k) in solving the CDH problem in group G1 if for a sufficiently large k,

AdvG,A(t) = Pr[A(q, G1, xP, yP) = xyP | (q, G1) ← Gk, P ← G1, xP, yP ← G1]

We say that G satisfies the CDH assumption if for any randomized polynomial
time in t algorithm A we have the AdvG,A(t) is negligible function.

Proxy signature scheme with Multi-warrant: A proxy signature scheme
with multi-warrant consists of three entities: original signer, proxy signer and
verifier.

Definition 3. An proxy signature scheme with multi-warrant consists of the
following polynomial-time algorithms

– Setup: It is a deterministic algorithm that takes as input a security pa-
rameter l, and outputs system parameters: param. The original signer and
proxy signer produces their secret-public key pair (sko, pko) and (skp, pkp),
respectively.

– Delegation algorithm DL: the algorithm takes as the input the secret key
sko of an original signer and a warrant list W = (A1, · · · , An), outputs a
signature δ̄ on this warrant list W , where the warrant list W contains the
identity (ID) of proxy signer and, possibly, restrictions on the message the
proxy signer is allowed to sign.

– Delegation Generation AlgorithmDG: takes as an input a original signature’s
public key pko, the signature δ̄ of warrant list W and a proxy signer secret
key skp, and output the proxy signing key sp .

– Proxy Signing Algorithm PS: the algorithm takes input the proxy signer’s
proxy signing key sp,the proxy signer’s public key pkp and the message M ,
and outputs the proxy signature δp of the message M .

– Proxy signature Verification PV: a deterministic algorithm PV takes input
(pks, pkp, M , Ai,δp), and output a bit, where Ai is a warrant of warrant-list
W , other warrants Aj (j �= i) are secret to a verifier in the warrant list W . We
say that δp is a valid signature for M if PV(pks, pkp, M , δp, Ai)=1,otherwise
outputs the ⊥ symbol.

Security requirements of proxy signature with multi-warrant: Un-
forgeability is the most important property in a proxy signature. It denote
that only proxy signer can generate a valid proxy signature. In fact, unforgeabil-
ity includes the undeniability and prevention of misuse.

According to the model defined in [7,8], we divide the potential adversary into
three attack types:

1. Type I: In this attack type, an adversary AI only has the public keys of
original signer and proxy signer.

2. Type II: In this attack type, an adversary AII has the public keys of original
signer and proxy signer, and it also has the secret key of the proxy signer.

150 J. Zhang et al.

3. Type III: In this attack type, an adversary AIII has the public keys of
original signer and proxy signer, it also has the secret key of original signer.

Obviously, we know that if a proxy signature scheme with multi-warrant is secure
against Type II (or Type III) adversary, the scheme is also secure against Type I
adversary. In the security model defined later, we only consider Type II adversary
and Type III adversary.

Existential unforgeability against adaptive AII adversary: Roughly
speaking, the existential unforgeability of a proxy signature scheme with multi-
warrant under adaptive AII attacker requires that it is difficult for a user to forge
a valid proxy signature under a warrant Ai of warrant-list W by the following
game between a challenger C and the adversary AII ;

1. C runs Setup algorithms, and produces proxy signer’s secret-public (skp, pkp)
and original signer’s public pko. then its resulting system parameters and the
secret key skp of proxy signer are given to AII .

2. AII can issue the following queries:

(a) Delegation queries: Proceeding adaptively, when AII requests the dele-
gation, C randomly produces a warrant list W = (A1, · · · , An) and runs
the Delegation algorithm DG to obtain proxy signing key sp

(b) ProxySign queries: Proceeding adaptively, AII can request the proxy
signature on the message M . In response, C runs Delegation algorithm
DG to generate the delegation on the produced warrant-list W , where M
must belong to the admission range of some warrant Ai in warrant-list
W . Then C runs the ProxySign algorithm to obtain the proxy signature
δ on message M and returns (Ai, δ) to the adversary AII .

3. Outputs: Finally, AII outputs a signature δ∗ with a warrant A∗
i and the

message M∗ such that

(a) a warrant-list W which includes A∗
i has never been returned as one of

the delegation queries.
(b) δ∗ is a valid signature on message M∗ and M∗ belongs to the admission

of A∗
i .

Compared with the model defined in [6,2], an important refinement is AII can
adaptively request the ProxySign queries with message M∗ under the warrant-
list W which does not include Ai. The success probability of an algorithm AII

wins the above game is defined as SuccAII .

Definition 4. We say a type II adversary AII can (t, qd, qs, ε) break a proxy
signature scheme with multi-warrant if AII runs in time at most t, AII makes
at most qd delegation queries and at most qs ProxySign queries and Succ AII is
at least ε

Existential unforgeability against adaptive AIII adversary: Roughly
speaking, the attack shows that a proxy signature is only produced by proxy

A Special Proxy Signature Scheme with Multi-warrant 151

signer, even if original signer can not also produce it. The existential unforge-
ability of a proxy signature scheme with multi-warrant under a type III attacker
requires that it is difficult for original signer to output a valid proxy signature
by the following game between the challenger C and the adversary AIII .

1. C runs Setup algorithms, and produces original signer’s secret-public
(sko, pko) and proxy signer’s public pkp. then its resulting system param-
eters and the secret key sks of original signer are given to AIII .

2. AIII can issue ProxySign queries: It is the same as the above ProxySign
queries.

3. Outputs: Finally, AIII outputs a signature δ∗ with a warrant A∗
i and the

message M∗ such that

(a) M∗ has never been requested as one of Proxysign queries.
(b) δ∗ is a valid signature on message M∗

The success probability of an algorithm AIII wins the above game is defined as
SuccAIII

Definition 5. We say a type III adversary AIII can (t, qs, ε) break a proxy
signature scheme with multi-warrant if AIII runs in time at most t, AIII makes
at most qs ProxySign queries and Succ AIII is at least ε

3 The Scheme

In this section, we will describe the proposed proxy signature scheme with multi-
warrant. The idea of our scheme is based on Waters’s signature scheme and
mutative identity-based signature. The scheme consists of the following steps:

ParaGen: Let G1, G2 be two cyclic groups of order p which is a prime number
and g is the generator of G1. e denotes the bilinear pairing G1×G1 → G2. Choose
a vector u = (ui) of length nu and a vector m = (mi) of length nm, where
ui, mi ∈ G. Randomly choose β ∈ Zp to compute Ki = gβi

for i = 1, 2, · · · , n.
H : {0, 1}∗ → {0, 1}nu is a collision-resistant hash function and H1 is a one-way
function which satisfies H1 : {0, 1}n × G4

1 → Zp. g2, u0, m0 are randomly from
G1. The master public params are

(g, g2, G1, G2, K1, · · · , Kn,u,m, u0, m0, H, H1)

KeyGen: The original signer Alice randomly chooses sa ∈ Zp to compute the
corresponding public key ya = gsa . Similarly, for the proxy signer Bob, he also
randomly selects sb ∈ Zp to produce the corresponding public key yb = gsb .

Delegation: Let A1, A2, · · · , An denote the different delegated warrants. To
produce a delegation of these warrants, the original signer Alice computes as
follows:

152 J. Zhang et al.

– compute AU = g(A1+β)(A2+β)···(An+β) ∈ G1; Note that we can compute AU

by the public params K1, · · · , Kn.
– compute the hash function hU = H(yb, AU) ∈ {0, 1}nu;
– Let hU [i] denote the i-th bit of hash value hU and U ∈ {1, 2, · · · , nu} be

the set of all i for hU [i] = 1. The delegation is generated as follows: pick a
random r ∈ Zp and compute dU , where

dU = (d1, d2) = (gsa
2 (u0

∏
i∈U

ui)r, gr)

ProxySign: Let M be an n − bit message in the admission range of warrant
Ai. To generate a signature δ on the message M , the proxy signer computes as
follows:

1. According to the above parameters K1, · · · , Kn, the proxy signer computes
δ1 and δ2 where
δ1 = g(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β) and
δ2 = gβ(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β)

2. Let M [j] be the j−th bit of M , M ⊂ {1, 2, · · · , n} be the set of all j for
M [j] = 1.

3. randomly choose α ∈ Zp to compute

δ3 = gsb
2 · d1(m0

∏
j∈M

mj)α·h1 , δ4 = d2, δ5 = gα

where h1 = H1(M, δ1, δ2, δ4, δ5)
4. the resultant proxy signature on message M is δ = (Ai, δ1, δ2, δ3, δ4, δ5)

Verify: given a proxy signature δ on message M , a verifier first checks whether
M belongs to the admission ranger of Ai. If it is valid, then it verifies as follows:

1. check e(δ1, K1) = e(δ2, g)
2. compute AU = δAi

1 δ2 and hU = H(ys, AU)
3. compute h1 = H1(M, δ1, δ2, δ4, δ5)
4. check e(δ3, g) = e(g2, yayb) · e(u0

∏
i∈U ui, δ4) · e(m0

∏
j∈M mj , δ5)h1

If all equalities hold the result returns True; otherwise, the result returns False.

4 Security Analysis

In the following, we will provide security analysis of the proxy signature scheme
with multi-warrant and show that the scheme is secure.

Theorem 1. If there exists an adversary AII can (t, qd, qs, τ, ε) break the pro-
posed proxy signature scheme with multi-warrant, then there exists another al-
gorithm B who can make use of the adversary AII to solve the CDH problem of
group G1 with the probability ε′ ≥ ε

lu·(nu+1)(1−
qs+qd

lu·nu
) where qs denotes at most

times of asking proxy signing queries, qd be at most times of asking delegation
queries.

A Special Proxy Signature Scheme with Multi-warrant 153

Proof. Assume there is a (ε, t, qe, qs)−adversary AII exists. We are going to
construct another PPT B that makes use of A to solve the CDH problem with
probability at least ε′ and in time at most t′.

Let us recall the CDH problem, given a CDH problem instance (g, ga, gb) ∈ G3
1,

its goal is to compute gab ∈ G1. In order to use AII to solve this problem, B need
to simulates a challenger and the oracles (Delegation oracle and proxy signing
oracle) for the adversary A. The detail steps are as follows:

Setup: To simulate the game, B chooses two integers lu, lm which satisfy 0 ≤
lu, lm ≤ p , meanwhile it also chooses 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm, such that
lu(nu + 1) < p and lm(nm + 1) < p. For an n−bit V , we let V be the set of all i
for which Vi = 1.

Then it randomly selects the following parameters:

– x′ ∈R Zlu , y′, z′ ∈R Zp.
– for i = 1, · · · , nu, xi ∈R Zlu and set X̂ = (x1, · · · , xnu).
– for i = 1, · · · , nu, yi ∈R Zp and set Ŷ = (y1, · · · , ynu).
– for i = 1, · · · , nm, zi ∈R Zp and set Ẑ = (z1, · · · , znm).
– choose β ∈R Zp for i = 1, · · · , n, and set Ki = gβi

.

For easier description, we define the following functions as follows:

F (H) = x′ +
∑
i∈U

xi − lu · ku and J(H) = y′ +
∑
i∈U

yi

B constructs a set of public parameters as follows:

g2 = gb, u′ = g−luku+x′
2 gy′

, m0 = gz′

For 1 ≤ i ≤ nu, ui = gxi
2 gyi, For 1 ≤ j ≤ nm, mj = gzj

Then B chooses skp ∈ Zp to compute yp = gskp ∈ G1 as the public key of the
proxy signer, and sets the public key of original signer as yo = ga · y−1

p . Finally,
all public parameters, the public key (yp, yo = ga · y−1

p) and the proxy signer’s
secret key skp are passed to the adversary AII .

Delegation Oracle: When AII issues a delegation query, B chooses a warrant
list Wi = (Ai1 , · · · , Ain) to response as follows:

1. compute AUi = g(Ai1+β)(Ai2+β)···(Ain+β).
2. compute the hash value hUi = H(yb, AUi)
3. compute F (hUi) function with hUi .

(a) if F (hUi) �= 0 mod p, B randomly chooses ru ∈R Zp to compute the pri-

vate key as dUi = (d1Ui
, d2Ui

), where d1Ui
= y

− J(hUi
)

F (hUi
)

o (gF (hUi
)

2 gJ(hUi
))ru

and d2hUi
= y

− 1
F (hUi

)

o gru

(b) If F (hUi) = 0 mod p, since the above computation cannot be performed
(division by 0), the simulator aborts.

154 J. Zhang et al.

ProxySign Oracle: When AII issues a ProxySign query with message M , B
responses as follows:

1. First, it produces a warrant list Wi = (Ai1 , Ai2 , · · · , Ain) and makes M to
belong to some warrant’s admission range of the warrant list Wi.

2. compute AUi = g(Ai1+β)(Ai2+β)···(An+β) and hUi = H(yb, AUi).
3. Then, B uses β to compute δi1 = g(Ai1+β)···(Ai−1+β)·(Ai+1+β)···(An+β) and

δi2 = gβ(Ai1+β)···(Ai−1+β)·(Ai+1+β)···(An+β)

4. if F (hUi) = 0 mod p, then the simulator aborts; if F (hUi) �= 0, the B
randomly chooses ri, li ∈R Zp to compute

δ̂3 = (ga)
− J(hUi

)

F (hUi
) (gF (hUi

)
2 gJ(hUi

))ri , δ4 = (ga)
− 1

F (hUi
) gri , δ5 = gli

5. Then, B sets δ3 = δ̂3 · (δ5)h1(z′+
∑

i∈M zi), where M denotes the set of all i
for which Mi = 1, and h1 = H1(M, δ4, δ5).

Output: Finally, the adversary AII outputs a valid forgery signature δ∗ =
(δ∗1 , δ∗2 , δ∗3 , δ∗4 , δ∗5) on (A∗

i , M
∗) such that

1. M∗ belongs to the admission range of A∗
i ;

2. a warrant-list W which includes A∗
i has not been returned as one of the

delegation queries.
3. δ∗ is a valid signature which satisfies the verifying equation.

if F (h∗
U) �= 0, B will abort it. Otherwise, when F (h∗

U) = 0, we obtain the
following case

δ3 = (g2)
sko+skp(u′ ∑

i∈U∗
ui)r̄ · (m′ ∑

i∈M
mi)lih1

= (gsko+skp)b(δ∗3)J(h∗
U) · (δ∗5)h∗

1(z′+
∑

i∈M zi)

Thus, we have

gab =
δ∗3

(δ∗3)J(h∗
U) · (δ∗5)h∗

1(z′+
∑

i∈M zi)

where h∗
1 = H1(M1, δ

∗
1 , δ∗2 ,́ δ∗4 , δ∗5). Note that gsko · gskp = y−1

p · gayp = ga.
It denotes that given a CDH problem instance (g, ga, gb), B can compute

gab = δ∗
3

(δ∗
3)J(h∗

U
)·(δ∗

5)h∗
1(z′+∑

i∈M zi)
in a non-negligible probability.

Now, we have to assess B’s probability of success. For the simulation to complete
without aborting, we require the following cases fulfilled.

– Delegation queries on hUi must satisfy F (hUi) �= 0 mod p , for all i ∈ [1, qd].
– ProxySigning queries on M must satisfy F (hUj) �= 0 mod p, for all j ∈ [1, qs].
– F (hU∗) = 0 mod p

A Special Proxy Signature Scheme with Multi-warrant 155

To clearly explain, we define the events Ai, B
∗ as follows:

Ai : F (hUi) �= 0 mod p, ,B∗ : F (hU∗) = 0 mod p

Then, the probability of B not aborting is

Pr[not abort]≥ Pr[(
∧qs+qd

i=1 Ai)
∧

B∗]

Note that the evens (
∧qs+qd

i=1 Ai) and B∗ are independent. The assumption lu ·
(nu + 1) < p implies if F (hUi) = 0 mod p then F (hUi) = 0 mod lu. Since ku, x′

and x1, · · · , xnu are randomly chosen.

Pr[Ai] = 1− Pr[¬Ai] = 1− (Pr[F (hUi) = 0 mod p ∧ F (hUi) = 0 mod lu])
= 1− Pr[F (hUi) = 0 mod lu]Pr[F (hUi) = 0 mod p|F (hUi) mod lu]

= 1− 1
lu · (nu + 1)

In the same way, we can obtain Pr[B∗] = 1
lu

1
nu+1

Since the evens Ai and B∗ are independent for any i, we have

Pr[
qs+qd∧
i=1

Ai

∧
B∗] = Pr[B∗]Pr[

qs+qd∧
i=1

Ai|B∗] = Pr[B∗]Pr[1 −
qs+qd∨
i=1

Ai|B∗]

≥ Pr[B∗]Pr[1 −
qs+qd∑
i=1

Pr[Ai|B∗] =
1

lu · (nu + 1)
(1− qs + qd

lu · nu
)

Thus, we can obtain

Pr[not aborting] ≥ (
1

lu · (nu + 1)
)(1 − qs + qd

lu · nu
)

If the simulation does not abort, AII will produce a forged signature with proba-
bility at least ε. Thus, B can solve for the CDH problem instance with probability
ε′ ≥ ε

lu·(nu+1) (1−
qs+qd

lu·nu
).

Theorem 2. If there exists a type III adversary AIIIcan (t, qs, ε) breaks the
proposed proxy signature scheme with multi-warrant, then there exists an algo-
rithm B which is able to use AIII to solve an instance of the CDH problem in
G1 with a non-negligible probability.

Proof. It is similar to the proof of Theorem 1. Due to the limited space, we omit
it here.

Efficiency Analysis: Here, we compare our scheme with Huang et.al ’s scheme
[7] in terms of signature size and operation cost of verification. Because Huang
et.al ’s scheme is not a proxy signature with multi-warrant. To fairly compare,
we replace warrant with a warrant-list W = (A1, · · · , An) in the Huang et.al ’s
scheme. In the following table, the notion |G1| denotes the bit length of an
element in G1, Let Pm be scalar multiplication on the curve, e be pairings com-
putation. According to the above table, proxy signature in our scheme has the
advantages over ones of Huang et.al ’s scheme in terms of the sizes of public key
of original signer and proxy signer, and the size of proxy signature.

156 J. Zhang et al.

Table 1. Comparison of our proposed scheme with Huang et.al scheme

Scheme R.O Size Verification Generations Size of PK
Huang et.al ’s scheme NO 3|G1| + n|p| 5e + nPm (n + 5)Pm 2|G1|

Our scheme NO 5|G1| + |p| 6e + nPm (n/2+5)Pm |G1|

5 Conclusion

In this paper, we extend the general proxy signature notion into proxy signature
scheme with multi-warrant. This extension is not a trivial extension, it makes
that the size of extended proxy signature is approximate one of original proxy
signature. And the size of the extended proxy signature is constant and is inde-
pendent of warrant’s number. The scheme is proven secure in the standard model
and the security of the scheme is related to the computational Diffie-Hellman
Assumption.

Acknowledgement

This work is supported by Natural Science Foundation of China (NO:60703044),
the New Star Plan Project of Beijing Science and Technology (NO:2007B001),
the PHR, Program for New Century Excellent Talents in University(NCET-
06-188), The Beijing Natural Science Foundation Programm and Scientific Re-
search Key Program of Beijing Municipal Commission of Education (NO:KZ2008
10009005) and 973 Program (No:2007CB310700).

References

1. Mambo, M., Usuda, K., Okamot, E.: Proxy signature: delegation of the power to
sign messages. IEICE Trans. Fundamentals E79-A(9), 1338–1353 (1996)

2. Xu, J., Zhang, Z., Feng, D.: ID-Based Proxy Signature Using Bilinear Pairings. In:
COLT 2005. LNCS, vol. 3559, pp. 359–367. Springer, Heidelberg (2005)

3. Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from
pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
312–323. Springer, Heidelberg (2003)

4. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its application. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

5. Shim, K.-A.: An Identity-based Proxy Signature Scheme from Pairings. In: Ning,
P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 60–71. Springer, Hei-
delberg (2006)

6. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature scheme for dele-
gation of signing rights. IACR ePrint Archive, http://eprint.iacr.org/2003/096

7. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy Signature without Random Oracles.
In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325,
pp. 473–484. Springer, Heidelberg (2006)

http://eprint.iacr.org/2003/096

A Special Proxy Signature Scheme with Multi-warrant 157

8. Wu, W., Mu, Y., Susilo, W., Seberry, J., Huang, X.: Identity-based Proxy Signature
from Pairings. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.)
ATC 2007. LNCS, vol. 4610, pp. 22–31. Springer, Heidelberg (2007)

9. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing 17(2), 281–308

10. Park, H.-U., Lee, I.-Y.: A Digital nominative proxy signature scheme for mobile
communications. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS,
vol. 2229, pp. 451–455. Springer, Heidelberg (2001)

Author Index

Baskar, Anguraj 137
Beringer, Lennart 54
Bursuc, Sergiu 24

Chen, Hua 147
Comon-Lundh, Hubert 24

Delaune, Stéphanie 24

Gagné, Martin 39
Gao, Shengnan 147
Goubault-Larrecq, Jean 1
Grabowski, Robert 54

Henricksen, Matt 69

Jin, Hai 124

Kakutani, Yoshihiko 79
Kobayashi, Naoki 17
Kremer, Steve 94
Kürtz, Klaas Ole 109

Lafourcade, Pascal 39
Lakhnech, Yassine 39
Long, Jinjiu 124

Mercier, Antoine 94

Ramanujam, R. 137

Safavi-Naini, Reihaneh 39
Schnoor, Henning 109
Suresh, S.P. 137

Treinen, Ralf 94

Wilke, Thomas 109

Yang, Yixian 147

Zhang, Jianhong 147
Zou, Deqing 124

	Title Page
	Preface
	Conference Organization
	Table of Contents
	“LogicWins!”
	Introduction
	Reachability and Correspondence Assertions in the Spi-Calculus
	Logic Programs as Types for Logic Programs
	Analyzing Hardware Circuits in VHDL
	Conclusion
	References

	Higher-Order Program Verification and Language-Based Security
	Recursion Schemes and Program Verification
	Applications to Language-Based Security
	Non-interference
	Stack-Based Access Control
	Further Directions

	References

	Deducibility Constraints
	Introduction
	Preliminaries
	Inference Systems
	Good Inference Systems
	Some Properties of Good Inference Systems

	Deducibility Constraints
	Transformation of Deducibility Constraints
	Transformation Rules
	Completeness

	Termination
	Our Strategy
	Termination of Our Strategy
	Completeness of Our Strategy

	Conclusion
	References

	Automated Security Proof for Symmetric Encryption Modes
	Introduction
	Definitions
	Notation and Conventions
	Grammar
	Generic Encryption Mode
	Semantics
	Security Model

	Proving Semantic Security
	Assertion Language
	Hoare Logic Rules
	Proof Sketches

	Examples
	Conclusion
	References

	Noninterference with Dynamic Security Domains and Policies
	Introduction
	The DSD Language
	Syntax
	Domain Lattice and Semantics

	Noninterference
	Type Environments
	Type Interpretation
	Equivalence of States
	Noninterference

	Reasoning with Abstract Security Domains
	Labels
	Ordering Labels

	Type System
	Typing Expressions
	Typing Programs
	Soundness
	Meta-label Monotonicity

	Dynamic Security Domains at the Bytecode Level
	Discussion
	References

	A Critique of Some Chaotic-Map and Cellular Automata-Based Stream Ciphers
	Introduction
	Case Studies
	Ciphers Based on Real-Valued Chaotic Maps
	Ciphers Based on Fixed-Value Integer Chaotic-Maps
	Ciphers Based on Integer-Based Cellular Automata

	A Good Design Methodology for Stream Ciphers
	Conclusion
	References

	A Logic for Formal Verification of Quantum Programs
	Introduction
	Mathematical Preliminaries and Notations
	Quantum Programming Language
	Formulae for Quantum Computation
	Quantum Hoare Logic
	Examples
	Quantum Teleportation
	Shor’s Prime Factorization
	Deutsch Problem
	Quantum Coin Tossing

	Concluding Remarks
	References

	Reducing Equational Theories for the Decision of Static Equivalence
	Introduction
	Model
	Sorted Term Algebras
	Equational Theories and Rewriting Systems
	Substitutions and Frames
	Static Equivalence

	Running Example
	Valves and Reducibility
	Getting Rid of Reducible Symbols
	A Criterion for Sufficient Equational Theories
	Conclusion and Future Work
	References

	A Simulation-Based Treatment of Authenticated Message Exchange
	Introduction
	Simulation-Based Security
	Two-Round Authenticated Message Exchange
	Overview of the Ideal Functionality
	Ideal Client Functionality
	Ideal Server Functionality

	Implementation of the 2AMEX-1 Protocol
	The Protocol 2AMEX-1
	Implementation in the IITM Model
	Signatures and the Public Key Infrastructure
	Client Implementation
	Server Implementation

	Results
	Discussion
	References
	Corruption
	The Server Protocol P_S

	Trusted Deployment of Virtual Execution Environment in Grid Systems*
	Introduction
	Related Work
	Trusted Grid Architecture
	Implementation
	Trusted Deployment of Virtual Execution Environment
	Remote Attestation of Execution Environment
	Job Security Management

	Experiments and Analysis
	Security Analysis
	Conclusions and Future Work
	References

	A Dolev-Yao Model for Zero Knowledge
	Introduction
	The Term Model and Derivations
	The Protocol Model
	The Decidability of the Proof System
	References

	A Special Proxy Signature Scheme with Multi-warrant
	Introduction
	Preliminaries
	The Scheme
	Security Analysis
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

