

Communications
in Computer and Information Science 59

Dominik Ślęzak Tai-hoon Kim
Akingbehin Kiumi Tao Jiang
June Verner Silvia Abrahão (Eds.)

Advances in
Software Engineering

International Conference on Advanced Software Engineering
and Its Applications, ASEA 2009
Held as Part of the Future Generation
Information Technology Conference, FGIT 2009
Jeju Island, Korea, December 10-12, 2009
Proceedings

13

Volume Editors

Dominik Ślęzak
University of Warsaw & Infobright Inc., Warsaw, Poland
E-mail: slezak@infobright.com

Tai-hoon Kim
Hannam University, Daejeon, South Korea
E-mail: taihoonn@hnu.kr

Akingbehin Kiumi
University of Michigan, Dearborn, MI, USA
E-mail: kiumi@umich.edu

Tao Jiang
University of California, Riverside, CA, USA
E-mail: jiang@cs.ucr.edu

June Verner
Drexel University, Philadelphia, PA, USA
E-mail: june.verner@cis.drexel.edu

Silvia Abrahão
Valencia University of Technology, Valencia, Spain
E-mail: sabrahao@dsic.upv.es

Library of Congress Control Number: 2009939508

CR Subject Classification (1998): D.2, K.6.3, D.2.5, C.4, H.4, I.7, K.6

ISSN 1865-0929
ISBN-10 3-642-10618-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10618-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12805846 06/3180 5 4 3 2 1 0

Foreword

As future generation information technology (FGIT) becomes specialized and frag-
mented, it is easy to lose sight that many topics in FGIT have common threads and,
because of this, advances in one discipline may be transmitted to others. Presentation
of recent results obtained in different disciplines encourages this interchange for the
advancement of FGIT as a whole. Of particular interest are hybrid solutions that com-
bine ideas taken from multiple disciplines in order to achieve something more signifi-
cant than the sum of the individual parts. Through such hybrid philosophy, a new
principle can be discovered, which has the propensity to propagate throughout multi-
faceted disciplines.

FGIT 2009 was the first mega-conference that attempted to follow the above idea
of hybridization in FGIT in a form of multiple events related to particular disciplines
of IT, conducted by separate scientific committees, but coordinated in order to expose
the most important contributions. It included the following international conferences:
Advanced Software Engineering and Its Applications (ASEA), Bio-Science and Bio-
Technology (BSBT), Control and Automation (CA), Database Theory and Applica-
tion (DTA), Disaster Recovery and Business Continuity (DRBC; published independ-
ently), Future Generation Communication and Networking (FGCN) that was com-
bined with Advanced Communication and Networking (ACN), Grid and Distributed
Computing (GDC), Multimedia, Computer Graphics and Broadcasting (MulGraB),
Security Technology (SecTech), Signal Processing, Image Processing and Pattern
Recognition (SIP), and u- and e-Service, Science and Technology (UNESST).

We acknowledge the great effort of all the Chairs and the members of advisory
boards and Program Committees of the above-listed events, who selected 28% of over
1,050 submissions, following a rigorous peer-review process. Special thanks go to the
following organizations supporting FGIT 2009: ECSIS, Korean Institute of Informa-
tion Technology, Australian Computer Society, SERSC, Springer LNCS/CCIS,
COEIA, ICC Jeju, ISEP/IPP, GECAD, PoDIT, Business Community Partnership,
Brno University of Technology, KISA, K-NBTC and National Taipei University of
Education.

We are very grateful to the following speakers who accepted our invitation and
helped to meet the objectives of FGIT 2009: Ruay-Shiung Chang (National Dong
Hwa University, Taiwan), Jack Dongarra (University of Tennessee, USA), Xiaohua
(Tony) Hu (Drexel University, USA), Irwin King (Chinese University of Hong Kong,
Hong Kong), Carlos Ramos (Polytechnic of Porto, Portugal), Timothy K. Shih (Asia
University, Taiwan), Peter M.A. Sloot (University of Amsterdam, The Netherlands),
Kyu-Young Whang (KAIST, South Korea), and Stephen S. Yau (Arizona State Uni-
versity, USA).

 Foreword VI

We would also like to thank Rosslin John Robles, Maricel O. Balitanas, Farkhod
Alisherov Alisherovish, and Feruza Sattarova Yusfovna – graduate students of Han-
nam University who helped in editing the FGIT 2009 material with a great passion.

October 2009 Young-hoon Lee

Tai-hoon Kim
Wai-chi Fang

Dominik Ślęzak

Preface

We would like to welcome you to the proceedings of the 2009 International Confer-
ence on Advanced Software Engineering & Its Applications (ASEA 2009), which was
organized as part of the 2009 International Mega-Conference on Future Generation
Information Technology (FGIT 2009), held during December 10–12, 2009, at the
International Convention Center Jeju, Jeju Island, South Korea.

ASEA 2009 focused on various aspects of advances in software engineering and its
applications with computational sciences, mathematics and information technology. It
provided a chance for academic and industry professionals to discuss recent progress
in the related areas. We expect that the conference and its publications will be a trig-
ger for further related research and technology improvements in this important subject.

We would like to acknowledge the great effort of all the Chairs and members of the
Program Committee. Out of around 150 submissions to ASEA 2009, we accepted 46
papers to be included in the proceedings and presented during the conference. This
gives an acceptance ratio firmly below 30%. Five of the papers accepted for ASEA
2009 were published in the special FGIT 2009 volume, LNCS 5899, by Springer. The
remaining 41 accepted papers can be found in this CCIS volume.

We would like to express our gratitude to all of the authors of submitted papers and
to all of the attendees, for their contributions and participation. We believe in the need
for continuing this undertaking in the future.

Once more, we would like to thank all the organizations and individuals who sup-
ported FGIT 2009 as a whole and, in particular, helped in the success of ASEA 2009.

October 2009 Dominik Ślęzak
Tai-hoon Kim

Akingbehin Kiumi
Tao Jiang

June Verner
Silvia Abrahao

Organization

Organizing Committee

General Chair Haeng-kon Kim (Catholic University of Daegu, Korea)

Advisory Board Tien N. Nguyen (Iowa State University, USA)

Jose Luis Arciniegas Herrera (University of
Cauca, Colombia)

 Byeong-Ho Kang (University of Tasmania, Australia)

Publication Chair Yong-ik Yoon (Sookmyung Women's University, Korea)

Program Chairs Tai-hoon Kim (Hannam University, Korea)
 Akingbehin Kiumi (University of Michigan-Dearborn,
 USA)

Publicity Chairs Tao Jiang (Huazhong University of Sci. and Tech., China)
 June Verner (University of New South Wales, Australia)
 Silvia Abrahao (Camino de Vera, Spain)

Program Committee

Chia-Chu Chiang
A. Hamou-Lhadj
Ami Marowka
Andrea De Lucia
Chima Adiele
Doo-Hwan Bae
Emilia Mendes
Gongzhu Hu
Harvey Siy
Hironori Washizaki
Houari Sahraoui
Hyeon Soo Kim
Jennifer Pérez Benedí

Jiro Tanaka
Jonathan Lee
Jongmoon Baik
Jose L. Arciniegas
Joseph Balikuddembe
Karel Richta
Kendra Cooper
Kin Fun Li
Kurt Wallnau
Laurence Duchien
Luigi Buglione
Maria Bielikova
Maria Tortorella

Morshed Chowdhury
Olga Ormandjieva
Praveen R. Srivastava
Rattikorn Hewett
Ricardo Campos
Robert Glass
Rudolf Ferenc
Shawkat Ali
Silvia Abrahao
Tokuro Matsuo
Wuwei Shen
Yijun Yu

Table of Contents

A Systematic Literature Review of Software Process Improvement in
Small and Medium Web Companies . 1

Muhammad Sulayman and Emilia Mendes

An XCP Based Distributed Calibration System . 9
Yang He and Xiaomin Sun

Structural and Behavioral Detection of Design Patterns 16
Nadia Bouassida and Hanene Ben-Abdallah

Test Case Minimization and Prioritization Using CMIMX Technique . . . 25
Praveen Ranjan Srivastava, Mahesh Ray, Julian Dermoudy,
Byeong-Ho Kang, and Tai-hoon Kim

Embedded Control Software Design with Aspect Patterns 34
Takahiro Soeda, Yuta Yanagidate, and Takanori Yokoyama

Towards a Consistent Semantics for Unsafe Time Petri Nets 42
Abdelkrim Abdelli

A Multiple Viewed Interrelated Ontology Model for Holistic Component
Specification and Retrieval . 50

Chengpu Li, Xiaodong Liu, and Jessie Kennedy

A Conflict-Based Model for Problem-Oriented Software Engineering
and Its Applications Solved by Dimension Change and Use of
Intermediary . 61

Jung Suk Hyun and Chan Jung Park

Requirements Engineering Problems and Practices in Software
Companies: An Industrial Survey . 70

Badariah Solemon, Shamsul Sahibuddin, and Abdul Azim Abd Ghani

A Formal Methodology for Semantics and Time Consistency Checking
of UML Dynamic Diagrams . 78

Youcef Hammal

A Process Model for Forensic Analysis of Symbian Smart Phones 86
Xian Yu, Lie-Hui Jiang, Hui Shu, Qing Yin, and Tie-Ming Liu

Reliability Analysis Method for Supporting Traceability Using UML 94
Joonhoon Lee, Beoungil Cho, Hyunsang Youn, and Eunseok Lee

Applying Agility Framework in Small and Medium Enterprises 102
Suphak Suwanya and Werasak Kurutach

XII Table of Contents

Using Area-Team to Evaluate the Software Architecture for an Online
Banking System: A Case Study . 111

Muhammad Sulayman, Mehwish Riaz, Husnain Naqvi, and
Muhammad Amir Aman

Architectural Decay during Continuous Software Evolution and Impact
of ‘Design for Change’ on Software Architecture . 119

Mehwish Riaz, Muhammad Sulayman, and Husnain Naqvi

Software Fault Localization Using Elastic Net: A New Statistical
Approach . 127

Saeed Parsa, Mojtaba Vahidi-Asl, Somaye Arabi, and
Behrouz Minaei-Bidgoli

Applying Formal Methods to Process Innovation . 135
Antonella Santone and Maria Tortorella

Abstracting Models from Execution Traces for Performing Formal
Verification . 143

Thierry Bodhuin, Federico Pagnozzi, Antonella Santone,
Maria Tortorella, and Maria Luisa Villani

A Hybrid Model in Dynamic Software Updating for C 151
Mehdi Jalili, Saeed Parsa, and Habib Seifzadeh

A Function Point Logic File Identification Technique Using UML
Analysis Class Diagrams . 160

José Antonio Pow-Sang, Loretta Gasco, and Arturo Nakasone

Reliable Mobile Application Modeling Based on Open API 168
Sera Jang and Eunseok Lee

An Improved Steganography Covert Channel . 176
Md Amiruzzaman, Hassan Peyravi, M. Abdullah-Al-Wadud, and
Yoojin Chung

Software Test Data Generation Based on Multi-agent 188
Siwen Yu, Jun Ai, and Yifu Zhang

Knowledge Creation and Creativity in Agile Teams 196
Broderick Crawford and Claudio León de la Barra

TEST: Testing Environment for Embedded Systems Based on TTCN-3
in SILS . 204

Hochang Chae, Xiulin Jin, Seonghun Lee, and Jeonghun Cho

A Framework for Measuring the Alignment between Business Processes
and Software Systems . 213

Lerina Aversano, Carmine Grasso, and Maria Tortorella

Table of Contents XIII

Service Composition System in Consideration of the Characteristics of
Services . 221

Jai-Kyung Lee, Seong-Whan Park, Moohyun Cha,
Seung Hak Kuk, and Hyeon Soo Kim

Business Viability Assessment of Potential Software Projects: An
Empirical Study with the CASSE Framework . 229

Joseph Kibombo Balikuddembe and Antoine Bagula

Aligning the Software Project Selection Process with the Business
Strategy: A Pilot Study . 237

Joseph Kibombo Balikuddembe and Antoine Bagula

RE4Gaia: A Requirements Modeling Approach for the Development of
Multi-Agent Systems . 245

David Blanes, Emilio Insfran, and Silvia Abrahão

Execution Traces: A New Domain That Requires the Creation of a
Standard Metamodel . 253

Luay Alawneh and Abdelwahab Hamou-Lhadj

Software Performability Measurement Based on Availability Model
with User-Perceived Performance Degradation . 264

Koichi Tokuno and Shigeru Yamada

An Experimental Evaluation of Error Rate in a Web Server System 272
Xiao Xiao and Tadashi Dohi

A New Criterion for the Optimal Software Release Problems: Moving
Average Quality Control Chart with Bootstrap Sampling 280

Mitsuhiro Kimura and Takaji Fujiwara

An EM Algorithm for Record Value Statistics Models in Software
Reliability Estimation . 288

Hiroyuki Okamura and Tadashi Dohi

Yet Another Metric for Predicting Fault-Prone Modules 296
Osamu Mizuno and Hideaki Hata

Quantifying the Influences of Imperfect Debugging on Software
Development Using Simulation Approach . 305

Chu-Ti Lin and Chin-Yu Huang

Service Reliability and Availability Analysis of Distributed Software
Systems Considering Malware Attack . 313

Cheng-Jie Xiong, Yan-Fu Li, Min Xie, Szu-Hui Ng, and
Thong-Ngee Goh

XIV Table of Contents

A Test Coverage-Based Model for Predicting Software Fault Content
and Location during Multi-phase Functional Testing 321

Carol Smidts and Ying Shi

A Refined Non-parametric Algorithm for Sequential Software Reliability
Estimation . 330

Shintaro Mizoguchi and Tadashi Dohi

A Tool-Supported Process for Reliable Classification of Web Pages 338
Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana

Author Index . 347

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 1–8, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Systematic Literature Review of Software Process
Improvement in Small and Medium Web Companies

Muhammad Sulayman and Emilia Mendes

Department of Computer Science, Private Bag 92019, The University of Auckland,
New Zealand

msul028@aucklanduni.ac.nz, emilia@cs.auckland.ac.nz

Abstract. The objective of this paper is to identify existing Software Process
Improvement (SPI) models and techniques used by small and medium Web
companies. We performed a systematic review of studies that applied SPI mod-
els and techniques to Web companies. Four papers applied SPI techniques or
models to Web companies, and our results showed that none suggested any cus-
tomized model or technique to measure the SPI of Web companies. The SLR
also revealed the characteristics of some small and medium companies and sug-
gested that they have tight budget constraints, tight deadlines and a short term
strategy. Finally, our SLR showed that the measures of success for small and
medium Web companies included development team and client satisfaction, in-
crease in productivity, compliance with standards and overall operational excel-
lence. The results of this review showed that very few studies have specifically
focused on SPI for Web companies, despite the large number of existing Web
companies worldwide, and the even larger number of Web applications being
currently developed. This clearly indicates a research gap in this area, with nu-
merous avenues for future work.

Keywords: Software Process Improvement, Systematic Literature Review,
Small and medium Web companies.

1 Introduction

Software processes play an important role by helping project teams in software devel-
opment organizations and motivating the use of similar and sound practices [10].
Formal processes emphasize the explicit command-and-control side of the organiza-
tion due to their concrete nature, while informal team practices emphasize the mutual
adjustment and explorations needed to accomplish a software project and associated
process tasks successfully [13].

Almost all modern software organizations operate in a competitive market, under
tight time and cost constraints [4]. As an answer to their needs, organizations have
started to undertake software process improvement (SPI) initiatives (see [24] for an
overview of different approaches) aimed at increasing the maturity and quality of
their software processes [6] [25]. Investment in process improvement has had various
business benefits i.e. improved product quality, reduced time to market, better produc-
tivity [25], increased organizational flexibility and customer satisfaction [54].

2 M. Sulayman and E. Mendes

SPI for small and medium organizations has emerged as a separate research area
given that large SPI models are not suitable for small and medium companies due to
their complex nature and expensive costs [1]. As a consequence, a number of studies
have proposed their own SPI frameworks for small and medium software organiza-
tions [22], and corporate SPI giants like ISO and CMMI have also formulated focus
groups for small and medium software companies [14][15].

Web development differs from the traditional software development due to numer-
ous factors [9], such as its strong focus on hypermedia context and a continuous evo-
lutionary approach [5]. Some examples of Web development methods are OOHDM
[23], SWM [27], UWE [11] and WebML [9]. Web requirements Engineering is mov-
ing from task orientation towards goal orientation [2] based on NDT (Navigational
Development Techniques) [7]. Researchers are also focusing on devising special
project management initiatives like WIPSE (Web Integrated Project Support Envi-
ronment), Action minutes and PAWS (Project administration Web Site) for Web
development companies [12]. Testing of Web applications can also differ from tradi-
tional software testing, revolving around different quality dimensions motivated by
rapid evolution and cross-platform operability [18]. Finally, Rich Internet Applica-
tions (RIA) is using the above specified Web Engineering practices [21].

The fact that the engineering of Web applications differs from the engineering of
software applications motivated this work. As previously illustrated, many develop-
ment methodologies and techniques were proposed specifically to tackle issues asso-
ciated with Web applications’ development and project management. Therefore, SPI
for small and medium Web companies also seemed a relevant research topic worth
investigating. This is the objective of this Systematic Literature Review (SLR), and
also the objective of this research. We focus explicitly on small and medium Web
companies, which are characterized by companies that only provide Web-related
services such as Web application development, Web hosting and Web data manage-
ment. It is also observed that such companies can develop small to very large Web
applications, independently of the company’s process maturity.

2 Systematic Literature Review (SLR)

2.1 Overview

A SLR is defined by Kitchenham [16] as,
“A systematic literature review (often referred to as a systematic review) is a

means of identifying, evaluating and interpreting all available research relevant to a
particular research question, or topic area, or phenomenon of interest”.

Systematic reviews are used to gain effective insight into a problem and under-
stand existing approaches. Conducting systematic review is a rigorous process.

A SLR is a detailed process comprising of the steps listed below [16]:

 Formulation of Research Questions
 Development of a Study Protocol
 Identification of Relevant Literature
 Determining Inclusion & Exclusion Criteria
 Selection of Studies

 A Systematic Literature Review of SPI in Small and Medium Web Companies 3

 Study Quality Assessment
 Data Extraction from Selected Studies
 Data Synthesis and Summarization of Results
 Interpretation of Results
 Report Write Up

2.2 Formulation of Research Questions

Identifying valid research questions is an important component of any SLR [16]. For
the formulation of the research questions in this SLR, we have used the PICOC
(Population, Intervention, Comparison, Outcome, and Context) criteria defined by
Petticrew and Roberts [19].

The research questions investigated were the following:
Research Question 1: Which software process improvement models/techniques are
applied by small and medium Web development organizations?
Research Question 2: Which software process improvement models/techniques were
successful to small and medium Web development organizations and how success is
being measured?
Research Question 3: Are there any software process improvement models that have
been specifically made to measure for small and medium Web companies?
Research Question 4: What are the important characteristics of small and medium
Web organizations that pursue software process improvement activities and practices?
Research Question 5: What constitutes a small or medium Web organization for the
studies investigated?

2.3 Identification of Relevant Literature

The identification of relevant literature required exhaustive, rigorous and thorough
searching of the relevant material. The data sources used by this study included online
databases, research journals; conferences and some grey literature.

Formulation of search string. Constructing search terms is a key step for the identi-
fication of relevant literature. We derived our search terms based on PICOC, syno-
nyms from thesaurus and key terms from the relevant literature. Boolean OR was
used to concatenate the relevant terms followed by the use of Boolean AND to restrict
the search results to the ones most relevant to our SLR.

Inclusion and Exclusion Criteria. The Inclusion criteria was defined to select only
those studies that focused on software process improvement activities in the small and
medium Web companies. The studies that did not explicitly focus on small or medium
Web companies, or did not investigate the use of SPI models or techniques were ex-
cluded.

Search Results. Initially, the comprehensive search string did not yield any results;
therefore the Computer Science subject librarian was consulted. She suggested the use
of a simpler search string, practice also supported by Kitchenham [16]. The search
string used in our primary search phase was therefore replaced by:

("(software process improvement)" AND ("(small)" OR "(medium)")).

4 M. Sulayman and E. Mendes

The term ‘Web Company’ was removed from the search as otherwise no results
would be found. However, to comply with our inclusion criteria, we then manually
searched for that term in the papers that were found.

As part of the search process, both authors applied the inclusion and exclusion cri-
teria to all the titles and abstracts of the papers that had been retrieved by applying the
abovementioned search string, and agreed upon those that should be selected as pri-
mary studies. Whenever there were doubts as to whether a study should be included,
its full text was also taken into account.

Whenever studies did not make clear whether their focus was Web companies,
their authors were contacted for clarification. Authors of 61 studies were contacted, of
which 39 replied, leading to the inclusion of another three studies in our SLR. Studies
for which no clarification was received were removed from the SLR. Very surpris-
ingly, of the 88 studies initially shortlisted only 4 studies met the inclusion criteria.
Author of only one study from ACM confirmed that his study was applied on Web
companies along with software companies but he was unable to provide any separate
data for Web companies which made us not to select his study. Table 1 summarizes
the complete search results and sources on which the searches were run.

Selected Studies. After careful investigation, the study selection process shortlisted
the following 4 studies:

 S1 Scott L., Jeffery R., Carvalho L., D'Ambra J. and Rutherford P. (2001),
Practical software process improvement - the IMPACT project, Proceedings of
Australian Software Engineering Conference, Australia.

 S2 El Sheikh A. and Tarawneh H. (2007) A survey of web engineering prac-
tice in small Jordanian web development firms, Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, Croatia.

 S3 Allen P., Ramachandran M. and Abushama H. (2003) PRISMS: an ap-
proach to software process improvement for small to medium enterprises, Pro-
ceedings of Third International Conference on Quality Software, USA.

 S4 Naidu R., Software Process Improvement of Small & Medium Organiza-
tions (2003) MSc thesis, Department of Computer Science, University of Auck-
land, New Zealand.

2.4 Study Quality Assessment

Two quality assessment checklists were developed in order to assess the quality of the
evidence provided by the selected studies and, if necessary, to further refine the study
selection process. The purpose of establishing two checklists was to enable the de-
tailed assessment of the quality of quantitative and qualitative studies separately,
based on the criteria proposed in [16] [19] [3] [8].

The compliance of a study with each checklist item was measured using a
score based on a three-point scale: 0 for no compliance; 0.5 for partial compliance,
and 1 for full compliance. Therefore, based on the quality assessment checklists, the
maximum score a quantitative and qualitative study could obtain were 18 and 9,
respectively.

 A Systematic Literature Review of SPI in Small and Medium Web Companies 5

From the four studies selected, three were quantitative (S2 to S4) and one was
qualitative (S1). The summarized scores of each study, and shows that studies S1 and
S4 presented the highest quality based on our quality assessment criteria, followed by
studies S2 and S3.

2.5 Data Extraction

The purpose of the data extraction phase is to extract the relevant data from the se-
lected studies, to be used to prepare summary tables and quality scores; these are later
used to answer the SLR’s research questions.

The first author read all the related studies and filled out all the data extraction
forms. The quality of the data extraction was validated by the second author, who also
read and extracted data for two of the selected studies. Results were compared and
points of conflict were also discussed. The purpose of this activity was to remove
possible problems related to the understanding of the studies.

Table 1. Summary of Search Results

Serial No. Database Name
Number of Publications
Found Relevant Irrelevant

1 IEEE Explore 15 2 13
2 INSPEC 23 1 22
3 Scopus 13 0 13
4 ISI Web of Science 0 0 0
5 Pro Quest 3 0 3
6 Computer Database 1 0 1
7 ACM 17/255 (Initially 255 found) 0 17
8 Springer 5/187 (Initially 187 found) 0 5
9 Google Scholar No new results 0 0
10 Grey literature (Limited) 1 1 0
 Total: 88 4 84

3 Data Synthesis and Results of Systematic Literature Review

In the data synthesis phase the results from all the findings were tabulated, summa-
rized and each question was assessed individually against the findings. This section
will elaborate on the synthesis process for each research question.

In the case of research question 1, synthesized data from all four studies show that
some studies proposed an applicable model of software process improvement for
small and medium Web companies while others just relied on a set of tech-
niques/practices believed to be useful for the cause. Within the context of this SLR,
models are understood as established paradigms to perform certain tasks with an im-
plied order of execution [62]. Techniques exist in isolation to perform a certain activ-
ity that can be best practice and can be implemented inside a model [62].

All the four studies included in this SLR proposed either a SPI model or a SPI
technique for small and medium Web development companies. Study S1 has also
been included in another SLR [20], which considers SPI of small and medium com-
panies. Our explicit focus is on the SPI of small and medium Web companies and

6 M. Sulayman and E. Mendes

therefore our population is a subset of the set of all small and medium companies. S1
satisfies the inclusion criteria of both reviews (ours and S1’s). Note that the research
questions addressed in S1 differed from ours; therefore it would not be applicable to
assume that out SLR presents a subset of the findings presented in S1.

Post project analysis and process management & measurement were the techniques
that have been used in all four studies; followed by project tracking and feedback
analysis, change management/configuration management and the mapping of business
goals with SPI.

All the suggested SPI models used an iterative approach influenced by
CMM/CMMI, and showed a strong tendency to use of the IDEAL model [17]. Simi-
larly, all these studies suggested a measurement and management program for proc-
esses that govern the use of Web metrics.

For research question 2 the five studies demonstrate certain measures of success
and also exhibit certain common factors that are present in different studies. Increase
in productivity, reduced time for development, client and development team satisfac-
tion, operational excellence and feedback from discussion are considered as the most
important measures of success by four of the five studies included in SR.

For research question 3, none of the five studies considered are specific to the
software process improvement of small and medium Web development companies.
The previous studies applied conventional software SPI frameworks to Web compa-
nies without adaption to the Web context. All of them treated Web companies as a
subset of small and medium software companies.

In research question 4, we wanted to investigate Web projects’ type, company’s
age, turnover, target market, average number of employees, average project cost and
process model used for the companies considered in the selected studies. However,
none of the selected studies provided data relevant to answer this question, and there-
fore this question remains unanswered in this SLR.

For research question 5, synthesized data from the four studies suggested certain
commonalities like: small and medium Web companies operate under tight budget
constraints and with short deadlines; their strategies do not tend to be risk-based; they
always demand quick results, using a “quick-to-market” approach.

4 Discussion and Conclusions

The number of studies that met our inclusion criteria was small, which indicates the
scarcity of research in this area suggesting the need to future research in this field.
However, our results highlighted some common and important patterns, one of which
being the lack of models and techniques specifically made to measure for Web
companies.

Therefore, the investigation of SPI within the context of Web companies formu-
lates an interesting research case. Studies S1, S3 & S4 indicate the application of
existing software SPI models to Web Companies; however the way in which these
models were applied was not fully documented and there was no indication as to how
existing SPI models should be tailored to existing Web standards and procedures.

The systematic review did not identify any SPI model or technique specifically
customized for Web companies. This is also evident from the small number of studies

 A Systematic Literature Review of SPI in Small and Medium Web Companies 7

that has met the inclusion criteria of our SLR in which we were specifically looking at
the SPI for small and medium Web companies rather than the SPI for conventional
software companies. However, this should not be understood as indicating that there
is no need for specific Web SPI models and techniques. We argue that in terms of SPI
it may also be the case that research on result oriented, cheaper and lesser time con-
suming SPI strategies for small and medium Web companies need to be conducted,
which is the focus of our future work. The different context and nature of Web pro-
jects makes an interesting case to investigate as to how SPI should be tailored to their
needs and what factors may be influential for its success. This review, as mentioned
earlier, helped us understand the current state of research in Web SPI, and also in
identifying research gaps and directions. One of the research gaps lies in proposing a
specific SPI model for Web companies, which keeps in view their characteristics and
aims to help them measure their success and improve continuously. This can be
achieved by either enhancing some existing SPI model or by proposing one from
scratch. This is the line of our future work.

Our detailed documentation for the conducted SLR may be browsed at the follow-
ing Web link:
http://www.cs.auckland.ac.nz/~mria007/Sulayman/

References

1. Alexandre, S., et al.: OWPL: A Gradual Approach for Software Process Improvement In
SMEs. In: Proceedings of 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, Dubrovnik, Croatia, 29 August - 1 September, pp. 328–335
(2006)

2. Bolchini, D., Mylopoulos, J.: From task-oriented to goal-oriented Web requirements
analysis, Engineering. In: Proceedings of the Fourth International Conference on Web In-
formation Systems, WISE 2003, pp. 166–175 (2003)

3. Crombie, I.: The Pocket Guide to Appraisal. BMJ Publishing Group Inc., UK (1996)
4. Cugola, G., Ghezzi, C.: Software Processes: A Retrospective and a Path to the Future.

Software Process Improvement and Practice J 4, 101–123 (1998)
5. Deshpande, Y., Hansen, S.: Web engineering: creating a discipline among disciplines Mul-

timedia J. IEEE 8(2), 82–87 (2001)
6. Dybå, T.: An Empirical Investigation of the Key Factors for Success in Software Process

Improvement. IEEE Trans. of Software Eng. 31(5), 410–424 (2005)
7. Escalona, J., Gustavo, A.: NDT. A Model-Driven Approach for Web Requirements. IEEE

Transactions on Software Engineering 34(3), 377–390 (2008)
8. Fink, A.: Conducting Research Literature Reviews. In: From the Internet to Paper. Sage

Publication s Inc., CA (2005)
9. Fraternali, P., Paolini, P.: Model-driven development of Web applications: the AutoWeb

system. ACM Transactions on Information Systems (TOIS) 18(4), 1–35 (2000)
10. Glass, R.L.: Software Creativity. Prentice-Hall, Englewood Cliffs (1995)
11. Gomez, J., Cachero, C.: OO-H method: extending UML to model web Interfaces. In: In-

formation modeling for internet applications. Idea Group Publishing, Hershey (2003)
12. Griffiths, G.: CASE in the third generation. Software Engineering J. (1994)
13. Harjuma, L., et al.: Improving Software Inspection Process with Patterns. In: Proceedings

of Fourth International Conference on Quality Software, Germany (2004)

8 M. Sulayman and E. Mendes

14. IPSS Project, Improving processes in small settings (IPSS project). SEI, Carnegie Mellon,
USA (2006), http://www.sei.cmu.edu/iprc/ipssbackground.html

15. ISO/IEC, ISO/IEC JTC1/SC7 Working Group 24. Software Life Cycle Profiles and Guide-
lines for use in Very Small Enterprises (VSE) (2007),

 http://www.iso-iec-sc7wg24.gelog.etsmtl.ca/Webpage/
 iso-iec-sc7wg24_english.html

16. Kitchenham, B.: 2007 Guidelines for Performing Systematic Literature Review in Soft-
ware Engineering, Version 2.3. EBSE Technical Report. Software Engineering Group,
School of Computer Science and Mathematics, Keele University, UK and Department of
Computer Science, University of Durham, UK (2007)

17. McFeeley, B.: 1996 IDEALSM: A User’s Guide for Software Process Improvement. In:
Handbook CMU/SEI-96-HB-001. Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PE, USA (1996)

18. Nguyen, H.: Web application testing beyond tactics. In: Proceedings of Sixth IEEE Inter-
national Workshop on Web Site Evolution, Chicago, USA, p. 83 (2004)

19. Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences: A Practical Guide.
Wiley-Blackwell, UK (2005)

20. Pino, F.J., García, F., Piattini, M.: Software process improvement in small and medium
software enterprises: a systematic review. Software Quality Control J 16(2), 237–261
(2008)

21. Preciado, J., Linaje, M., Comai, S.: Designing Rich Internet Applications with Web Engi-
neering Methodologies. In: 9th IEEE International Workshop on Web Site Evolution
China, pp. 23–30 (2007)

22. Santos, G., et al.: Implementing Software Process Improvement Initiatives in Small and
Medium-Size Enterprises in Brazil. In: Proceedings of 6th Int’l Conference on Quality of
Information and Communications Technology, QUATIC, Lisbon, Portugal, September 12-
14 (2007), pp. 187–198 (2007)

23. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design.
Wiley and Sons, New York (1998); ISSN 1074-3224,Theory and Practice of Object Sys-
tems J, 4(4) (1998)

24. Thompson, H., Mayhew, P.: Approaches to Software Process Improvement. Software
Process Improvement and Practice J 3(1), 3–17 (1997)

25. Zahran, S.: Software process improvement: practical guidelines for business success. Ad-
dison-Wesley Publication Company, Reading (1998)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 9–15, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An XCP Based Distributed Calibration System

Yang He and Xiaomin Sun

State Key Laboratory of Intelligent Technology and Systems, Tsinghua National
Laboratory for Information Science and Technology, Department of Computer Science and

Technology, Tsinghua University, Beijing 100084, P.R. China
heyang07@mails.tsinghua.edu.cn, sxm123@tsinghua.edu.cn

Abstract. Electronic Control Unit (ECU) calibration is a procedure to optimize
control parameters to meet some specified requirements such as performance,
fuel consumption and emissions. It is more important to calibrate several ECUs
simultaneously than calibrating only one ECU at a time. We developed a dis-
tributed calibration system based on the Universal Measurement and Calibra-
tion Protocol (XCP) which is the newest communication protocol beyond the
Controller Area Network (CAN) Calibration Protocol (CCP). Some new fea-
tures of XCP are implemented in our system, which successfully achieves these
goals: minimal slave resource consumption, efficient communication and pro-
gram scalability.

Keywords: Electronic Control Unit (ECU), Universal Measurement and Cali-
bration Protocol (XCP), distributed calibration system.

1 Introduction

ECU (Electronic Control Unit) calibration is a procedure to optimize control parame-
ters to meet some specified requirements such as performance, fuel consumption and
emissions. With the development of vehicle industry, the number and complexity of
these parameters are increasing dramatically, thus, how to reduce costs and save time
becomes a great challenge for automotive manufacturers [1,2,3].

In the future, ECU’s functions will be distributed across several ECUs [1,4,5], so it
will be more important to calibrate several ECUs simultaneously than calibrating only
one ECU at a time. Meanwhile the relations among ECU control parameters make
calibrating one ECU at a time impossible in some special scenarios. Therefore, it is
highly needed to design a distributed calibration system.

The universal measurement and calibration protocol (XCP) is defined by the Asso-
ciation for Standardization of Automation and Measuring Systems (ASAM) organiza-
tion [6,7,8,9]. XCP can be used as a communication protocol between ECU and PC. It
is the newest communication protocol beyond the CAN (Controller Area Network)
Calibration Protocol (CCP) which can only use CAN as transport media [10]. In order
to support various transport media such as CAN, TCP/IP, USB, FlexRay, XCP is
designed to be independent of them. The universal interfaces defined in protocol layer
isolate function implementation from specified transport media. What is more impor-
tant, XCP has several new developed features based on the experiences from CCP.

10 Y. He and X. Sun

A multi-node calibration system, proposed by [4,5], was first based on CCP and
then on XCP. In their system, the configuration of CAN message identifier and mes-
sage filter are adopted to support the name identification of multi-node system, so
calibration data can be sent to their destinations correctly. XCP is thought as a normal
communication protocol in their system. However, XCP has defined some advanced
functions obtained from experiences of using CCP, and the distribution nature of XCP
has optimized both the utilization cost and performance of the distributed calibration
system.

We developed a distributed calibration system which implements new features of
XCP mainly including synchronous data transfer, flash programming, power-up data
transfer, block transfer. Design goals of our distributed calibration system are: mini-
mal slave resource consumption, efficient communication and program scalability.

This paper is organized as follows: section 2 describes the system architecture in-
cluding hardware components and software architecture; section 3 describes some
details of implementation; section 4 shows an experiment to compare the performance
of CCP and XCP; and section 5 concludes.

2 System Architecture

The distributed system consists of three components: the master PC node, the slave
ECU nodes and physical connection media. MPC555 is used as the slave ECU [11].
The transport media between ECU and PC is CAN bus. TouCAN module is CAN
controller integrated in MPC555, and it is connected to the CAN bus through CAN
transceiver PCA82C250. The master PC is connected to CAN bus with Kvaser LAP-
can which is a two-channel CAN interface for the PC card (PCMCIA) bus with dual
Philips SJA1000 CAN controllers [12]. In order to expand ECU’s memory, we used 4
IS61LV5128 static RAM (2M bytes memory in total) and 2 Am29LV160D flash (4M
bytes memory in total).

Slave
ECU

TouCAN Driver Library
Command
Handling
moduleSynchronous Data Transfer module

Flash
Programming

module

Event
Channel
module

Power-up
Data Transfer

module

Slave
ECUs

ECU Description File
ASAP2

Master Node Driver

Calibration System

CAN Bus

Master
Node

Fig. 1. System architecture

 An XCP Based Distributed Calibration System 11

Figure 1 shows the basic architecture of the system. Several slaves are connected to
one master through different transport media permitted by XCP. CAN is used in our
system. The master PC controls the behaviors of all distributed slaves. The ECU de-
scription file for describing the ECU’s internal memory is the knowledge basis for the
calibration system. It is part of ASAP2 (Working Party on Standardization of Appli-
cations), defined by ASAM [13]. When new slave ECU is added into the calibration
system, new ECU description file is created according to its internal data. This
method is cost-effective due to avoiding any application modifications. When the
slave node receives messages from CAN bus, the program in ECU will complete
some tasks using resources of ECU in term of contents of messages. A state machine
is maintained in each ECU.

3 Implementation

The design goals of our distributed calibration system are: minimal slave resource
consumption, efficient communication and program scalability. In order to achieve
these goals, we make the best use of new features of XCP.

The XCP driver in slave is the core of the whole calibration system as figure 1
showed. It is divided into four levels. The lowest level is TouCAN driver library
which is used to handle message transfer between PC and ECU. Its functions are
encapsulated into APIs called by upper level. The second level is command handling
module. This module parses the commands transferred from calibration system and
calls functions of synchronous data transfer module. Synchronous data transfer mod-
ule is the third level which implements synchronous data transfer semantics. The top
level implements new features of XCP which includes flash programming module,
power-up data transfer module, event channel module. More modules will be added
into this level with the development of our calibration system.

3.1 TouCAN Driver Library

The ECU is connected to CAN bus by PCA82C250 as the CAN transceiver and Tou-
CAN as the CAN controller [11]. Message communication functions are packaged
into a library, thus the upper level can use the interface easily without considering the
underlying details.

The TouCAN module contains 16 message buffers which are used for transmitting
and receiving messages. The extended identifier message format was used to specify
the identifier. It also contains message filter adopted to qualify the received message
identifier. In order to ensure simultaneous real-time communication, the interruption
mechanism is used. The interrupt configuration register determines which interrupt
signal is driven onto the bus when an interrupt is requested. Each of the 16 message
buffers could be an interrupt source, if its corresponding IMASK bit is set. Each of
the buffers is assigned one bit in the IFLAG register, and an IFLAG bit is set when
the corresponding buffer completes a successful transmission or reception.

With the TouCAN interface, we can set slave node address, communication speed,
priority mechanism and so on. If transport media is changed, we just need to change
this library without affecting the upper level program.

12 Y. He and X. Sun

3.2 Command Handling Module

Command handling module is used to parse commands received from calibration
system. For a specified command, it calls functions of upper module to transfer data
to calibration system.

3.3 Synchronous Data Transfer

Data elements in the slave’s memory are transmitted in data transfer objects DAQ
from slave to master and STIM from master to slave [7]. The object description table
(ODT) describes the mapping between the synchronous data transfer objects and
slave’s memory as figure 2 showed. The synchronous data transmission object is

Fig. 2. ODT List Organization

Fig. 3. Implementation of ODT and DAQ-list

 An XCP Based Distributed Calibration System 13

transmitted with a packet identifier (PID) that associates an ODT. An entry in an ODT
references a data element by its address and length. ODT entries are grouped into
ODTs, and several ODTs can be grouped into a DAQ-list. Compared to CCP, XCP
allows for dynamic configuration of the number of DAQ lists.

Based on the logical organization of ODT and DAQ list, a data structure is pro-
posed to organize lists. Three linked lists are used to manage three kinds of data struc-
tures [14], and the number of linked lists can be configured dynamically as needed.
Some interfaces are implemented to manage these linked lists. The element can be
deleted, added, modified dynamically. Element memory can be released when it is not
used and can be reallocated when it is insufficient. Figure 3 shows the details of im-
plementation.

3.4 Event Channel Module

XCP allows for several DAQ-lists, which may be simultaneously active. The sam-
pling and transfer of each DAQ-list are triggered by individual events in the slave
node. An event channel builds the generic signal source that determines the data
transfer timing effectively.

MPC555 supports a plenty of clock counting device such as PIT, DEC, TB, RTC
and so on [11]. In our design, DEC is used to trigger the transfer of DAQ-list. The
decrementer register (DEC) is 32-bits decrement counter which provides an exception
after a programmable delay. The initial value of DEC is set by specified XCP com-
mand, and then triggers an interrupt to transfer DAQ-lists when the value of DEC is 0.

3.5 Power-Up Data Transfer

Power-up data transfer is a new feature of XCP compared to CCP. The purpose of the
power-up data transfer mode is to enable automatic data transfer on power-up instead
of waiting for setup instructions from the master which reduces redundant communi-
cations and is more efficient.

Power-up data transfer mode satisfies the requirements of distributed calibration.
When a new ECU is added, the DAQ configuration information is loaded into ECU’s
flash memory and the flag of power-up data transfer mode is set. After power-up the
slave will check this flag and read DAQ configuration from fixed address of ECU’s
flash memory if power-up data transfer mode is supported.

3.6 Flash Programming

Flash programming is also a new feature of XCP. It provides a mechanism to directly
access data in flash memory for calibration system.

In standard communication model, each request packet can be responded by a cor-
responding response packet or an error packet. The master device may not send a new
request until the response to the previous request is received. To speed up memory
uploads, downloads and flash programming, the block transfer mode is introduced as
a new feature. It allows that there are several requests before a response or a request
followed by several responses. The slave device may have limitations of the maxi-
mum block size and the minimum separation time. The block transfer model will
increase throughput of data uploading, downloading and flash programming.

14 Y. He and X. Sun

4 Experiments

From the above analysis, the performance of XCP has been significantly improved
compared to CCP. Efficiency and throughput have been increased by low message
overhead, block transfer model and power-up transfer model.

For downloading, most 5 bytes of data can be transferred per command of CCP and
most 6 bytes of data can be transferred per command of XCP in block transfer mode.
For uploading, most 5 bytes of data can be transferred per command of CCP and most
7 bytes of data can be transferred per command of XCP in block transfer mode.

We implemented a complete distributed calibration system based on XCP and did
an experiment to compare the performance between XCP and CCP. In the experi-
ment, there are 1 master node and 2 slave nodes. The master controls calibration task.
To show the effect of the power-up data transfer, we cut off the connections between
PC and ECUs two seconds after start, then, we re-connect them after one second.
Thus we can compare the communication throughput between XCP and CCP.

0

14250

57000

0

74100

111150

148200

185250

42750

28500

2850028500

74100

37050

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1 2 3 4 5 6

time/s

th
ro

ug
pu

t/
by

te

data transfer of CCP

data transfer of XCP

Fig. 4. Data transfer of XCP and CCP

Results show that 5700 messages can be transferred due to the restriction of physi-
cal connection media. As the block transfer mode and power-up data transfer module
are used in XCP, the throughput increases significantly.

5 Conclusions

A distributed calibration system based on XCP is discussed including the system
architecture and the implementation details. Both theoretical analysis and experiment

 An XCP Based Distributed Calibration System 15

results prove that XCP is more efficient than CCP, and our distributed calibration
system successfully achieves the design goals: minimal slave resource consumption,
efficient communication and high scalability.

References

1. Andre, R., Jobst, R., Robert, L.: A new calibration system for ECU development. SAE 03-
03-2003 (2003)

2. Bohn, C., Stober, P., Magnor, O.: An Optimization-Based Approach for the Calibration of
Lookup Tables in Electronic Engine Control. In: Conference on Computer Aided Control
Systems Design, pp. 2315–2320. IEEE, Los Alamitos (2006)

3. Helmuth, H., Wolfgang, K., Manfred, S.: Fully automatic determination and optimization
of engine control characteristics. SAE 02-24-1992 (1992)

4. Yang, S.W., Yang, L., Zhuo, B.: Developing a multi-node calibration system for can bus
based vehicle. In: The International Conference on Vehicular Electronics and Safety, pp.
199–203. IEEE, Los Alamitos (2006)

5. Yang, S.W., Zhu, K.Q., Xu, Q.K., Zhou, B.: Multiple electronic control units calibration
system based on explicit calibration protocol and J1939 protocol. Chinese Journal of Me-
chanical Engineering 21(1), 42–47 (2008)

6. Information about ASAM, http://www.asam.net
7. Roel, S., Hans-Georg, K., et al.: XCP Version1.1 Part 1 - Overview,

 http://www.asam.net (2008)
8. Roel, S., Hans-Georg, K., et al.: XCP Version1.1 Part 2 - Protocol Layer Specification

(2008), http://www.asam.net
9. Roel, S., Hans-Georg, K., et al.: XCP Version1.1 Part 3 - XCP on CAN - Transport Layer

Specification (2008), http://www.asam.net
10. Kleinknecht, H., et al.: Can Calibration Protocol Version 2.1 (1999),

 http://www.asam.net
11. MOTOROLA. MPC555/MPC556 User’s Manual (2000),

 http://www.freescale.com/files/microcontrollers/doc/
 user_guide/MPC555UM.pdf

12. Information about Kvaser LAPcan,
 http://www.kvaser.com/prod/hardware/lapcan_i.htm

13. Brian, P., William, D., et al.: ASAP Interface Specification Interface 2 Version 1.51
(2003), http://www.asam.net

14. Qu, Z.Q.: Component-based Design and Implementation of the Tsinghua Tool Suite for
Vehicles. Master’s thesis, Department of Computer Science and Technology, Tsinghua
University (2007)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 16–24, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Structural and Behavioral Detection of Design Patterns

Nadia Bouassida1,2 and Hanene Ben-Abdallah1,3

1 Mir@cl Laboratory
2 Institut Supérieur d’Informatique et de Multimédia,

Sfax University, Sfax, Tunisia
3 Laboratory, Faculté des Sciences Economiques et de Gestion,

Sfax University, Sfax, Tunisia
Nadia.Bouassida@isimsf.rnu.tn, Hanene.BenAbdallah@fsegs.rnu.tn

Abstract. We propose a technique that recognizes occurrences of a pattern in a
design using both static and dynamic information. To tolerate pattern instantia-
tions with certain degree of variability, we adapt an XML document retrieval
technique. Our technique has the advantage of basing the design pattern identi-
fication not only on static, structural information of a pattern but also on the
methods of the pattern which represent the dynamic aspect.

Keywords: design pattern identification, design pattern instantiation, XML
document retrieval.

1 Introduction

A major problem behind benefiting from design patterns [7] is the difficulties inherent
to first understanding and then applying them to a particular application. On the other
hand, one way to benefit from design patterns is to assist an inexperienced designer to
improve his/her design by finding design patterns that could better structure his/her
design. To offer such assistance, several approaches propose to determine the potential
similarities of the structure, the class names and/or method calls between the design
and a given pattern. These approaches differ mainly in the pattern concepts they con-
sider (i.e., only the structure, the structure and the methods) and the degree of structural
discordance they tolerate: exact match [3] or partial match [4], [11].

Evidently, pattern identification should tolerate a certain degree of structural discor-
dance between the design and a pattern. However, while some elements can be deleted
in a design approximating a pattern, others representing the essence of the pattern
should not; otherwise the pattern would be lost. Hence, all the pattern elements should
not be treated equally. However, all pattern identification approaches that tolerate
structural discordance treat them equally. Furthermore, most of the existing ap-
proaches for pattern identification focused on identifying the pattern structure and
neglected the pattern dynamic aspects and the methods. However, relying only on the
structural information to detect design patterns can produce imprecise results for pat-
terns with a similar structure. On the other hand, the few works that treated the meth-
ods dealt with method calls [11] [4]; nevertheless, this represents only partially the
dynamic aspect of a pattern: the method invocation order is often very important, es-
sentially, in behavioral and creational design patterns.

 Structural and Behavioral Detection of Design Patterns 17

In this paper, we present a new pattern identification technique that: 1) can be used
to identify the structure, class names and methods of the pattern, 2) accounts for dy-
namic method invocation of the pattern, and 3) tolerates variability in a pattern instan-
tiation (statically and dynamically). Our identification technique reuses an XML
document retrieval approach where the pattern is seen as the XML query and the de-
sign as the XML document in which the query is searched.

The remainder of this paper is organized as follows. Section 2, first, overviews cur-
rently proposed approaches for pattern identification, and then it presents the basic
concepts of XML document retrieval in general. Sections 3 and 4 present our approach
for pattern identification in terms of its structure and method invocations, respectively.
In Section 5, the approach is illustrated through the observer design pattern and a
fragment of the JHotDraw framework for graphical drawing editors [12]. Section 6
summarizes the paper and outlines our future work.

2 Related Works

2.1 Current Pattern Identification Approaches

For reverse engineering purposes, several proposals looked in automating the identifi-
cation of design patterns in source code, cf., [2], [9], [5]. For instance, Lee and al. [9]
combine static and dynamic analyses of source code: The static analysis collects the
structural aspect of the software while the dynamic analysis elucidates dynamic aspects
of the program during its execution like message passing between objects. The analy-
sis results are represented as XMI documents parsed to look for matching design pat-
tern descriptions. This technique allows only an exact match of patterns, which assists
in better understanding parts of the program.

For both reengineering and code improvement purposes, Albin-Amiot et al. [1] use
a constraint satisfaction technique to detect patterns within a given source code. Their
technique takes into account refractoring aspects and identifies distorted versions of the
pattern in the source code. In this work, the dynamic aspect is limited to method calls
between pairs of related classes, independently of the overall temporal behavior.

Besides the source code level, other works extract design patterns from a design, cf.,
[2], [4], [5], [6], [11]. For example, Tsantalis [11] proposes a design pattern detection
methodology based on similarity scoring between graphs coded as matrices. Besides
the structural aspect of patterns, this work examines methods through a graph represen-
tation; two methods are considered similar either when they have the same signature,
or when explicitly stating the base class method (e.g., via the super identifier in Java).
This type of method invocation is one particular aspect of behavioral information in
design patterns; another aspect, important for behavioral and creational patterns, is the
temporal information about method invocation. In addition, the main drawback of
similarity scoring-based approaches is their convergence time which depends on the
graph size of the design.

A second purpose of pattern identification within a design is to improve the quality
of the design. Within this context, Bergenti and Poggi [2] propose a tool, called IDEA,
to improve UML designs (class and collaboration diagrams) using automatic pattern
detection. Their method relies on a knowledge-base where each pattern is described by
a structure template and a collaboration template (described internally using Prolog

18 N. Bouassida and H. Ben-Abdallah

rules). This method allows only an exact match with the pattern. When IDEA finds a
pattern instance, a set of design rules are verified to test if the design could be
improved.

On the other hand, recognizing the importance of behavioral information in a pat-
tern, Ka-Yee et al. [8] use dynamic analysis and constraint programming to identify
behavioral and creational patterns in source code. Using dynamic analyses, they re-
verse engineer the UML sequence diagrams from Java source code. Then they trans-
form design pattern identification into a constraint propagation problem in terms of
variables, constraints among them and their domains. This approach focuses only on
the behavioral aspect of the pattern, while neglecting the structural aspect. Moreover,
an important challenge using dynamic analysis to trace the behavior of a system is the
large amount of data involved and thus the execution time to solve the huge CSP.

In summary, none of the proposed approaches combines the structural and dynamic
aspects in their pattern identification. Except for Ka-Yee [8], none of the few works
treating the dynamic aspect describes the behavior in terms of scenarios of ordered
method invocations and tolerates behavioral variability.

2.2 XML Document Retrieval

In their comprehensive description of XML document retrieval techniques, Manning
et al., [10] adapt the vector space formalism for XML retrieval by considering an XML
document as an ordered, labeled tree. The tree is analyzed as a set of paths starting
from the root to a leaf. In addition, each query is examined as an extended query – that
is, there can be an arbitrary number of intermediate nodes in the document for any
parent-child node pair in the query. Documents that match the query structure closely
by inserting fewer additional nodes are given more preference.

A simple measure of the similarity of a path cq in a query Q and a path cd in a docu-
ment D is the following context resemblance function [10]:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+
=

dq

dq
d

q

dqR

cc

cc
c

c

ccC

match not does if 0

 matches if
1

1

),(

where:
• |cq| and |cd| are the number of nodes in the query path and document path, re-

spectively, and
• cq matches cd if and only if we can transform cq into cd by inserting additional

nodes.
Note that the value of CR(cq, cd) is 1 if the paths cq and cd are identical. On the other
hand, the more nodes separate the paths of Q and D, the less similar they are consid-
ered, i.e., the smaller their context resemblance value will be.

3 A New Pattern Detection Approach

To detect patterns within a design, we consider that a given pattern may be
represented in various forms that differ from the basic structure without loosing the
essence of the pattern. Our pattern identification approach operates in three steps:

 Structural and Behavioral Detection of Design Patterns 19

1. Identification of the structural features of the class diagram of the pattern: the
classes, generalizations, aggregations, compositions, etc. For this, we will
transform the pattern and the design into XML documents.

2. Identification of the method declarations: This step validates the class
correspondence determined during the first step. It relies on method name
comparison.

3. Identification of the dynamic aspect of the pattern: This relies on validated
correspondence results. It also adapts an XML document retrieval approach to
examine the conformity of the design behavior to that of the pattern. It
supposes that the behavior is specified in terms of sequence diagrams.

3.1 Resemblance Determination: Structural Information

In XML document retrieval in general, the context resemblance function (CR) is calcu-
lated based on an exact match between the names of the nodes in the query and the
document paths. However, for pattern detection, the nodes representing the classes are
often different in the pattern from those in the design. Thus, we first need to calculate
the resemblance values for the various matches between the class nodes in the query
(pattern) and those in the design. Secondly, we need to take into account: 1) the num-
ber of times a given match between two class nodes is used to calculate CR; and 2) the
importance of each relation in the pattern.

The structural resemblance between a pattern and a design starts by calculating the
resemblance between each path of the pattern and all the paths in the design. In this
calculation, we assume that the structural variability should be limited between the
pattern and its potential instantiation in the design. That is, we assume that a design
path may differ from a pattern path by adding at most N nodes compared to the longest
path of the pattern. The larger the N, the more scattered the pattern instantiation would
be in the design, which might loose the pattern essence. The tolerated maximal inter-
mediate nodes N can be fixed by the designer.

Note that each tree in the XML document representing a class diagram is composed
of class nodes interconnected by relation nodes (generalization, association, etc). In
addition, each path in a tree contains relation nodes from the same type. Thus, in our
resemblance calculation, we examine one type of relation among classes at a time.

Furthermore, the match between the pattern path and the design path may not neces-
sarily start at the root node; hence, we need to consider all possible sub-paths of the
design, that start at different class nodes in the design path. Note that since the struc-
tural difference between the pattern path and the design path is limited, then each sub-
path can cover at most L+N class nodes (L being the length of the longest path); thus
the number of sub-paths to be considered is reduced. This in turn limits the temporal
complexity of our algorithm.

While comparing the paths, we collect the resemblance scores between the classes
of the design and the classes of the pattern in a matrix: This matrix sums up the values
of the context resemblance scores for each class in the design with respect to a class in
the pattern. This sum is weighted to account for the importance of the relations in the
pattern; for instance, in the Composite pattern, the aggregation relation is more
important than the inheritance relation.

20 N. Bouassida and H. Ben-Abdallah

Finally, these scores are normalized with respect to the total number of classes in
the design; the final matching results are collected in a matrix (NormalizedCRMatrix)
whose columns are the classes in the pattern and whose rows are the classes of the
design. Now given this matrix, we can decide upon which correspondence better repre-
sents the pattern instantiation: For each pattern class, its corresponding design class is
the one with the maximum resemblance score in the NormalizedCRMatrix.

On the other hand, given two design fragments D1and D2, to decide upon which de-
sign better instantiates a pattern P, we first compute their normalized resemblance
matrices. Secondly, we compute the sum of the normalized resemblance scores for all
the matched pattern classes in D1and D2; the design with the maximum sum is the one
that better instantiates the pattern. Note that in a worst case instantiation, each pattern
class must be matched to at least one class in the design; thus, on average, the sum of
the normalized resemblance scores of the matched classes should not be less than the
number of classes in the pattern divided by the number of classes in the design.

3.2 Resemblance Determination: Method Definition Information

Once the static classes and relations of the pattern have been identified within the de-
sign, the pattern identification continues with the identification of pattern methods
within the design. This identification should examine both the method name and sig-
nature. However, it is not possible to compare the method signatures since, in the
design, the methods are adapted to the application or domain; thus their parameters are
different from those of the pattern.

For method names, the resemblance is based on a linguistic/semantic similarity de-
termined through either a dictionary or a domain ontology when available. A method
m is said to resemble another method m’, if the name of m is either a synonym or
homonym of the name of m’.

To determine the correspondences among the design and pattern methods, we use a
normalized matrix (called NormMethodDecMatrix) that for each design class (row), it
gives the percentage of resembling methods it has with each pattern class (column).

3.3 Static Design Pattern Identification

To identify statically a pattern within a design, we combine the above two normalized
matrices. The combination can be either a simple addition of the two normalized
matrices, or a weighted sum to reflect the importance of the two types of collected
information: classes and their relations vs. classes and their method declarations. The
combined information reinforces the quality of the identification results.

4 Behavioral Resemblance Determination

To determine the behavioral resemblance between a design D and a pattern P, we rely
on their sequence diagrams. In addition, to compare two sequence diagrams, we will
compare the ordered message exchanges for each pair of objects that were already
identified as similar during the static identification phase.

 Structural and Behavioral Detection of Design Patterns 21

For each object O in a sequence diagram, its ordered message exchanges are
represented through an XML path. Each node of these paths represents the type of
the message (sent/received) along with the message being exchanged; this informa-
tion allows us to derive a path where the edges have the same meaning: temporal
precedence.

To compute the resemblance function scores between message paths, we slightly
modify the CR function defined in Section 2.2 to tolerate (as oppose to penalize) the
additional, intermediate nodes. In fact, for message exchanges (represented as nodes),
the important factor is the presence of pattern messages in a given order; that is, addi-
tional message exchanges to those of the pattern will not affect the behavior of the
pattern instantiation. Thus, the new CRM function to compare message paths is as
follows:

⎪⎩

⎪
⎨
⎧

=
dq

dq

dqRM cc

cc
ccC

match not does if 0

 matches if 1
),(

Let Op be an instance of a class Cp in the pattern P; Od be an instance of a class Cd in
a given design; and suppose that Cd was identified as resembling Cp. Then, Op and
Od have resembling behavior if and only if the sum of the CRM of the sub-paths in the
XML message paths of Op and Od is at least equal to the number of sub-paths in the
XML message paths of Op. When this constraint is not satisfied, then Od either lacks
messages exchanged by Op, or it does not respect the order of message exchanges.

5 Example: The JHotDraw Framewok and the Observer Pattern

To illustrate the steps of our approach, let us consider a fragment of the JHotDraw
framework for graphical drawing editors [12] and let's identify the observer design
pattern. Due to space limitation, we next illustrate only the behavioral resemblance
identification through this example. Figure 1 shows the JHotDraw design fragment
we will analyze. Note that, for an easier comprehension of the patterns involved in
the design, this class diagram indicates in ellipses the roles played by each class.
Figure 2 illustrates one of JHotDraw’s sequence diagrams. Figures 3 shows the
sequence diagram for the Observer pattern which we will identify in the JHotDraw
fragment.

The structural identification matched the class Figure with the Subject class and
the class StandardDrawing with ConcreteObserver. However, it produced two
matches for the class AbstractFigure: the Observer and the ConcreteSubject classes.
To decide upon the best match, we continued with the identification of the method
declarations.

After summing up the normalized method matrix and the normalized context re-
semblance matrix, we obtain a matrix where the match score of AbstractFigure to
Observer is equal to the match score of FigureChangeListener to Observer (0.66);
however, since AbstractFigure has been identified as ConcreteSubject with a greater
matching score (0.83), then FigureChangeListener is identified as Observer.

22 N. Bouassida and H. Ben-Abdallah

AbstractFigure StandardDrawing

FigureChanged() {update}

AttributeFigure

 Draw() {composite operation}

CompositeFigure

Draw()
AddtoContainer()
RemovefromContainer()

 {Composite operation}

 {Add(component)}

{Remove(component}

 {Remove(component}

 {composite operation}

 {Add(component)}

 {attach(observer)}

 {detach(observer)}

 {Notify}

Figure

 Draw()
AddtoContainer()
RemovefromContainer()
AddFigureChangeListener(FigureChangeListener)
RemoveFigureChangeListener(FigureChangListener)
Changed()

FigureChangeListener

FigureChanged(FigureChangeEvent)
FigureInvalidated(FigureChangeEvent)
FigureRemoved(FigureChangeEvent)
FigureRequestRemove(FigureChangeEvent)
FigureRequestUpdate(FigureChangeEvent)

{update}

 GetAttributes {Getstate()}
SetAttributes {SetSate()}

Composite :Leaf

{incomplete} Observer :ConcreteObserver

Composite :Composite

Observer :Subject,
Composite :Component

Observer :observer

Observer :ConcreteSubject

Fig. 1. A design fragment from the Jhotdraw framework

AbstractFigure StandardDrawing

1 : SetAttributes()

2 : Draw()

3 : Changed()

4 : FigureChanged()

5 : GetAttributes()

ConcreteSubject ConcreteObserver

1 : Setstate()

2 : Notify()

3 : update()

4 : GetState()

Fig. 2. A sequence diagram for a scenario of
Jhotdraw

Fig. 3. A sequence diagram for the Observer
pattern

Note that, in Table 1, in order to optimize the resemblance score calculation, we
treated the pattern XML path by considering two messages at a time; this covers the
total order of message exchanges for each object. However, for the design, we need to
consider XML paths with lengths 2 and longer; this allows us to tolerate additional,
intermediate message exchanges.

For a design to cover all the message exchanges of the pattern, we need to find, in
each column, at least one entry in this table that has the value of 1. Otherwise, the
column that is missing a one indicates that the corresponding message exchange is
missing in the design. On the other hand, our method tolerates additional, intermediate

 Structural and Behavioral Detection of Design Patterns 23

Recv :SetState ()

precedes

Send :Notify()

precedes

Recv :Notify()

precedes

Send :Update()

precedes

Recv :GetState()

Recv :SetAttributes
()

precedes

Send : Changed()

precedes

Recv : Changed()

precedes

Send :FigurChange()

precedes

Recv :GetAttributes
()

Recv :Draw()

precedes

The observer design pattern The Jhottdraw

Fig. 4. XML path for the sequence diagrams of the Observer pattern and JHotDraw

Table 1. Context resemblance scores

Recv:SetState()

preceds

Send:Notify

Send:Notify

preceds

Recv:Notify

Recv:Notify

preceds

Send:Update

Send:Update

preceds

Recv:GetState

Recv:SetAttribut
preceds

Recv :Draw
CRM(cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0

Recv:SetAttribut
preceds

Recv :Draw
preceds

send:changed

CRM (cq , cd) =1 CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0

Recv:Draw
preceds

send : changed
CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0

Recv:Draw
preceds

 send :changed
preceds

 Recv:Changed

CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0

Changed
preceds

Changed
CRM (cq , cd) =0 CRM (cq , cd) =1 CRM (cq , cd) =0 CRM (cq , cd) =0

Changed

preceds

FigureChanged
CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =1 CRM (cq , cd) =0

FigureChanged

preceds

GetAttribute
CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =0 CRM (cq , cd) =1

24 N. Bouassida and H. Ben-Abdallah

message exchanges in the design. In our example, we tolerated at most one additional
message; it is represented through the node representing the message Draw.

At the end of this dynamic aspect identification step, the designer has more confi-
dence in the results of the structural and method identification steps.

6 Conclusion

The proposed approach for pattern identification reuses an XML document retrieval
technique. It considers a design pattern as an XML query to be found in an XML
document representing a design. It uses an adapted context similarity function [10] to
determine the most probable correspondences between the classes of the design and
those in the pattern. It has the advantage of tolerating certain structural differences in
the design compared to the pattern; the designer can fix a threshold below which the
differences are un-tolerated. A second advantage of our approach is that it can be ap-
plied for both structural and behavioral correspondences.

We are currently examining how to add more intelligence in our assistance for the
recognition of pattern problems inside a design. This will be conducted by alleviating
the search task by adding priorities in the computation of resemblance scores.

References

1. Albin Amiot, H., Cointe, P., Guéhéneuc, Y.G.: Un meta-modele pour coupler application
et detection des design patterns. L’objet 8, 1–18 (2002)

2. Bergenti, F., Poggi, A.: Improving UML design pattern detection. In: Proceedings of the
12th international conference on software engineering and knowledge engineering, SEKE
(2000)

3. Brown, K.: Design reverse-engineering and automated design pattern detection in Small-
talk. Technical Report TR-96-07, University of Illinois at Urbana-Champaign (1996)

4. Dong, J., Sun, Y., Zhao, Y.: Design pattern detection by template matching. In: SAC 2008,
Ceara, Brazil (2008)

5. El Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions by using constraint
propagation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 189–203. Springer, Heidelberg (2008)

6. Florijin, G., Meijers, M., Van Winsen, P.: Tool support for object oriented patterns. In:
Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 472–495. Springer,
Heidelberg (1997)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of reusable
Object Oriented Software. Addisson-Wesley, Reading (1995)

8. Ka-Yee, J., Ng, G.Y.G.: Identification of behavioural and creational design patterns
through dynamic analysis. In: Proceedings of the 3rd International Workshop on Program
Comprehension through Dynamic Analysis (PCODA), October 2007, pp. 34–42 (2007)

9. Lee, H., Youn, H., Lee, E.: A design pattern detection technique that aids reverse engineer-
ing. The International Journal of security and applications 2(1) (January 2008)

10. Manning, C.D., Raghavan, P., Schütze, H.: An introduction to information retrieval. Cam-
bridge University Press, England (2008)

11. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection
using similarity scoring. IEEE transactions on software engineering 32(11) (2006)

12. Gamma, E., Eggenschwiler, T. (2005), http://www.jhotdraw.org

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 25–33, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Test Case Minimization and Prioritization Using
CMIMX Technique*

Praveen Ranjan Srivastava1, Mahesh Ray1, Julian Dermoudy2, Byeong-Ho Kang2,
and Tai-hoon Kim3

1 Computer Science & Information System Group, BITS PILANI – 333031 (India)
{praveenrsrivastava,maheshray123}@gmail.com

2 School of Computing and Information Systems, University of Tasmania, Australia
{Julian.Dermoudy,bhkang}@utas.edu.au

3 Dept. of Multimedia Engineering, Hannam University, Korea
taihoonn@hnu.kr

Abstract. Test case prioritization techniques schedule test cases for execution
in an order that attempts to increase their effectiveness at meeting some per-
formance goal. Various goals are possible; one involves rate of fault detection
i.e. the measure of how quickly faults are detected within the testing process.
To improve the performance of regression testing two objectives to be
achieved. I.e. test case minimization and test case prioritization. In this paper
both the processes are considered along with special care has given to the data
dependencies within the source code. So, path coverage is taken, which proves
better option than the previous methods adopted.

Keywords: Regression Testing, Path Testing, Test Case Prioritization, Test
Case Minimization.

1 Introduction

Regression testing is an expensive testing process used to validate new features and
detect regression faults, which occurs continuously during the software development
lifecycle. Software engineers often save test suites so that they can reuse them later
during regression testing. However, due to time and resource constraints, it may not
be possible to execute all the test cases on every testing iteration [1,2]. Therefore,
testers may want to order the test cases such that those with the higher priorities, ac-
cording to some criterion, are run earlier than those with lower priorities.

Typically, empirical evaluations of prioritization techniques have focused on as-
sessing a prioritized test suite’s rate of detection of regression faults: faults created in
a system version as a result of code modifications and enhancements. For experimen-
tation, such faults can be obtained in two ways: by locating naturally occurring faults,
or by seeding faults. Naturally occurring faults, however, are costly to locate and
typically cannot be found in numbers sufficient to support controlled experimentation.

* The registration fee was supported by the Security Engineering Research Center, granted by

the Korea Ministry of Knowledge Economy.

26 P.R. Srivastava et al.

In contrast, seeded faults, which are typically produced through hand-seeding or pro-
gram mutation, can be provided in large numbers, allowing more data to be gathered
than otherwise possible. Test case prioritization techniques schedule test cases in an
order that increases their effectiveness at meeting some performance goals, such as
code coverage, rate of fault detection. In other words, a prioritization technique is
used to increase the likelihood that the prioritized test suite can better meet the goal
than would a random order of test cases. Numerous prioritization techniques have
been presented in the research literature [3-22]. The first dimension along which these
techniques can be distinguished is in terms of the type of code elements they consider.
For example, statements, basic blocks, or functions. The second dimension involves
the use of “feedback”. For example, additional function coverage prioritization ad-
justs the coverage information for remaining test cases using the feedback informa-
tion. The third dimension is the use of other sources of information. For example, test
cost, fault severity or fault propagation probability [5]. To measure the performance
of prioritized test suite, some metrics are provided, such as total statement coverage,
additional function coverage, rate of fault detection and so on.

Rothermel et al. [23] distinguish two types of test case prioritization: general and
version-specific. In general test case prioritization, given program P and test suite T,
test cases in T are prioritized with the goal of finding a test case order that will be
useful over a sequence of subsequent modified versions of P. Thus, general test case
prioritization can be performed following the release of some version of the program
during off-peak hours and the cost of performing the prioritization is amortized over
the sub-sequent releases. The expectation is that the resulting prioritized suite will be
more successful than the original suite at meeting the goal of the prioritization, on
average over those subsequent releases.

In contrast, in version-specific test case prioritization, given program P and test suite
T, test cases in T are prioritized with the intent of finding an ordering that will be useful
on a specific version P’ of P. Version-specific prioritization is performed after a set of
changes have been made to P and prior to regression testing P’. Because this prioritiza-
tion is performed after P’ is available, care must be taken to prevent the cost of prioritiz-
ing from excessively delaying the very regression testing activities it is supposed to
facilitate. The prioritized test suite may be more effective at meeting the goal of the
prioritization for P’ in particular than would a test suite resulting from general test case
prioritization, but may be less effective on average over a succession of subsequent
releases. In this paper a version specific test case prioritization method is described.

Many previous papers adopts the methods like statement coverage, function cover-
age etc. But in the existing methodology after prioritizing test cases, it is found that
the dependencies between the elements (variables, constants) in the source code is
neglected, which may cause failure of the product after delivery to client. So, in this
paper path coverage is considered. As a result if any statement within a particular path
is changed in the modified version of the product then the test case executing that
particular path is to be again executed.

2 Test Case Prioritization

Test Case Prioritization is the process of scheduling test cases in an order to meet
some performance goal. Test case Prioritization as defined in [23].

 Test Case Minimization and Prioritization Using CMIMX Technique 27

Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to the
real numbers.

Problem: Find ܶᇱ א ܲܶ such that ሺܶ׊") (T" א ܲܶሻ ሺܶ" ≠ T') [f (T') ≥ f (T")]
Here, PT represents the set of all possible prioritizations (orderings) of T, and f is a

function that, applied to any such ordering, yields an award value for that ordering. The
definition assumes that higher award values are preferred over the lower ones. There
can be number of possible goals of test case prioritization e.g., testers may wish to
increase the rate of fault detection, or testers may wish to find the critical faults at the
earliest or may wish to cover the maximum code during testing at the earliest. But all
these goals lead to one major goal / prime goal that testers want to increase their confi-
dence in the reliability of the system at a faster rate. So, testers are interested in finding
maximum number of faults as well as the most critical faults at the earliest [24].

Test Case prioritization problem is found in Regression Testing Technique. Re-
gression testing is performed on modified software to provide confidence that the
software behaves correctly and that the modifications have not adversely impacted the
software quality. Software engineers often save the test suites they develop for their
software so that they can reuse those test suites later as the software evolves. There
are two varieties of test case prioritization viz. general test case prioritization and
version specific test case prioritization. In general test case prioritization, for a given
program P and test suite T, we prioritize the test cases in T that will be useful over a
succession of subsequent modified version of P without any knowledge of modified
version. In version specific test case prioritization, we prioritize the test cases in T,
when P is modified to P′, with the knowledge of the changes that have been made in
P. Various researchers have given different prioritization techniques. Studies have
shown that some of these techniques can significantly increase the rate of fault detec-
tion of test suite in comparison to unordered or randomly ordered test suite. Most of
these prioritization techniques are general prioritization techniques. In this work, we
concentrate on version-specific test case prioritization. In this paper a modified Test
Case Prioritization Technique is proposed which tests the source code at the fastest
rate possible.

3 Problem Statement

Let P be a procedure or program

P′ be a modified version of P

T be a set of code coverage based tests (a test Suite) created to test P.

When P is modified to P′, we have to find T′, which is subset of T that achieves
maximum code coverage at the earliest and should be given highest priority during
Regression Testing. For this purpose, we want to identify tests that

• Execute code that has been deleted so that test cases that have gone redun-
dant can be deleted from T.

• Execute modified code at least once at the earliest.

28 P.R. Srivastava et al.

4 Algorithm

Steps of Algorithm:
1. Prioritize the Test Cases on the basis of their Importance. So, Go for Path Cov-

erage Testing.
 1.1 Draw the CFG of the given Source Code.
 1.2 Find the possible Paths of execution.

 1.3Find the Statements changed after project enhancement.
 1.4 Check whether the statements changed are affecting the whole path or

 not? (Which was not possible in statement coverage method?).
 1.5 If it affects any line within the path then simply re execute the Test Case.

2. Optimize the number of test cases by using CMIMX procedure [25].
2.1 Set minCov = Φ, YetToCover = m. Unmark each of the n tests and m

 entities. An unmarked test case is still under consideration whereas; a
 marked test is already added to minCov.
2.2 Repeat the steps when YetToCover > 0.

 Among unmarked entities find the ones having less number of 1s. And LC be
 the set of indices having all such columns.

 Among all the unmarked tests that also cover entities in LC, find those that
 have the maximum number of non-zero entities. Let S be one of these rows.

 Mark Test S and add it to minCov. Mark all entities covered by test s. reduce
 YetToCover by the number of entities covered by S.

5 Application

The above proposed algorithm is implemented in the source code of Binary Search
algorithm. As the algorithm is proposed in two steps in the first phase the CFG of the
given source code is drawn. Then possible paths of execution are taken and the state-
ments changed within the path in the enhanced project are considered. Priority level is
given to the test cases executing the definite paths on the basis of the number of
statements have changed. In the next phase of the algorithm, from the existing set of
test cases normalized test cases are chosen by n-way testing technique, so that the
modified test suite must be efficient enough to cover all the possible sets of combina-
tions formed from the previous one.

Source Code:
Void binary_search (elem key, elem*T, int size, boolean &found, int &L)

int bott, top, mid;
top=size-1;
L= (top+bott)/2;
if (T [L] ==key) found=true;
else

Found=false;
while (bott<=top &&! found)

 Test Case Minimization and Prioritization Using CMIMX Technique 29

{
 Mid= (mid+bott)/2;
 If (T[mid] ==key)
 {
 found=true;
 L=mid;

}
else if (T[mid] <key)
 {
 bott=mid+1;
 else top=mid-1;
 }

CFG of the above source code is given in the Figure 1.

Fig. 1.

From the Figure 1, the possible paths of execution of the source code obtained are,

1. 1-2-12-13
2. 1-2-3-4-12-13
3. 1-2-3-5-6-11-2-12-13
4. 1-2-3-5-7-8-10-11-2-12-13
5. 1-2-3-5-7-9-10-11-2-12-13

Suppose Test Cases T1 to T5 are executed for the individual paths of the source code.
Hence the statements covered by the Individual Test Cases are given in the below
table 1.

30 P.R. Srivastava et al.

Table 1. Paths executed

Test Case_id Paths Executed
T1 1-2-12-13
T2 1-2-3-4-12-13
T3 1-2-3-5-6-11-2-12-13
T4 1-2-3-5-7-8-10-11-2-12-13
T5 1-2-3-5-7-9-10-11-2-12-13

Suppose, after enhancement of the project statement numbered 10 and 11 in the
source code have modified. Hence, the paths covering the above statements have
affected after the modification in the source code. As a result test cases executing the
paths have to be executed again in the regression testing. But, due to time constraint
instead of executing all the test case a subset of test cases are to be executed. Hence a
priority level is required, to decide which test cases are to be executed and which are
not to be. To assign the priority level of test cases, the extent of each test case is to be
calculated. At first number of statements changed associated with each rest case is
calculated and given in Table 2.

Table 2. Statements changed

Test
Case_id

Paths Executed No_of_Stat
Changed

T1 1-2-12-13 0
T2 1-2-3-4-12-13 0
T3 1-2-3-5-6-11-2-12-13 1
T4 1-2-3-5-7-8-10-11-2-12-13 2
T5 1-2-3-5-7-9-10-11-2-12-13 2

The weight associated with each test case is calculated by number of statements
changed associated with each test case and given in the table 3. It can be observed that
T4, T5 are having highest priority level should be executed first and accordingly Test
Cases T3 and then, T1 and T2.

Table 3. Priority vector

Test Case_id Priority Level
T4 2
T5 2
T3 1
T1 0
T2 0

After Completion of First Step of the algorithm, the next part is to be executed. In

the Second Step procedure CMIMX [25] is applied. Hence, it helps to calculate Min-
imum Coverage of entities and the Test cases can be optimized.

 Test Case Minimization and Prioritization Using CMIMX Technique 31

Suppose, the above source code has 3 input variables: X = {bott, mid, top}, where
D (bott) = {i, j}, D (mid) = {k, l}, and D (top) = {m, n}. Hence 6 entities are there and
5 test cases to be executed. So, a 5*6 matrix is found as shown in Table 4.

Table 4. Input matrix in CMIMX

Test Case_id i j k l m n
T1 1 1 1 0 0 0
T2 1 0 0 1 0 0
T3 0 1 0 0 1 0
T4 0 0 1 0 0 1
T5 0 0 0 0 1 0

Applying the Step 2 of the algorithm, the result found is step wise given.

Step 1
MinCov = Φ, YetToCover = 6

Among unmarked entities l and n, each contain a single 1 and hence qualifies as the
highest priority entities. Thus LC = {l, n}. Among the unmarked tests, T2 covers
entities i and l, and T4 covers entities k and n. Both test cases have identical benefits
of 2 each in terms of the number of entities they cover. So, arbitrarily considering T2.
Thus s = 2.

minCover = {2}. Test case T2 is marked. Entities i and l covered by Testcase T2
are also marked. YetTo Cover = 6-2 =4.

Step 2
Again continue with the second loop. Here T6 has the least cost. Hence LC = {n}.
Only T4 covers entity n and hence S=4.

minCov = {j, l}. Testcase T4 and entities k and l are marked. YetToCover =4-2 =2.

Step 3
Again continue with the third loop. Here j and m have the least cost. Hence
LC = {j, m}. T1, T3, T5 covers entities j and m. T3 has the maximum benefit of 2.
Hence S =3.
minCov = {j, k, l}. Testcase T3 and entities j and m are marked. YetToCover =
2-2 =0.
Hence, the loop terminates with minCov = {j, k, l}.

6 Conclusion and Future Work

This paper, describes the shortcomings in the previous techniques of prioritizing test
cases for regression testing and empirically examined their relative abilities to im-
prove how quickly faults can be detected during regression testing. The suggested
techniques can improve the rate of fault detection and can also optimize the set of test
cases.

32 P.R. Srivastava et al.

In previous approaches statement coverage or function coverage has been consi-
dered, which cannot produce fully tested product because data dependency arises
there. As a result change in the source code may affect some other portion. To over-
come this problem path coverage criterion has been introduced here, which tests the
whole path again if any statement within the path has been modified.

Secondly, CMIMX procedure is applied, which optimizes the pre-existing test cas-
es to a greater extent. All the possible combinations are tested but with executing less
number of test cases. By increasing the value of n the test cases size must be mini-
mized again. Hence combination of both the techniques i.e. minimization and prioriti-
zation gives an effective method of regression testing.

Similarly, other factors could be optimized parallel, i.e. time or numbers of test
cases to be minimize and the result of performance must be achieved to be max-
imized. This multi factors can be optimize simultaneously by using Multi-objective
optimization technique. Several Multi-disciplinary design optimization algorithms are
there like pareto-optimization etc.

References

1. Leung, H., White, L.: Insights into regression testing. In: Proceedings of the International
Conference on Software Maintenance, Miami, Florida, U.S.A, pp. 60–69 (October 1989)

2. Onoma, K., Tsai, W.-T., Poonawala, M., Suganuma, H.: Regression testing in an industrial
environment. Communications of the ACM 41(5), 81–86 (1998)

3. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing Test Cases for Regression
Testing. In: Proceedings of the International Symposium on Software Testing and Analy-
sis, pp. 102–112 (August 2000)

4. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Incorporating varying test costs and fault
severities into test case prioritization. In: Proceedings of the 23rd International Conference
on Software Engineering, pp. 329–338 (May 2001)

5. Elbaum, S., Malishvesky, A.G., Rothermel, G.: Test case prioritization: A family of empir-
ical studies. IEEE Transactions on Software Engineering 28(2), 159–182 (2002)

6. Elbaum, S., Rothermel, G., Kanduri, S., Malishevsky, A.G.: Selecting a Cost-Effective
Test Case Prioritization Technique. Software Quality Journal 12(3), 185–210 (2004)

7. Harrold, M.J.: Testing: A Roadmap. In: Proceedings of the International Conference on
Software Engineering, Limerick, Ireland, pp. 61–72 (2000)

8. Jeffrey, D., Gupta, N.: Test Case Prioritization Using Relevant Slices. In: Proceedings of
the 30th Annual International Computer Software and Applications Conference, pp. 411–
420 (2006)

9. Kim, J.M., Porter, A.: A History-Based Test Prioritization Technique for Regression Test-
ing in Resource Constrained Environments. In: Proceedings of the 24th International Con-
ference on Software Engineering, pp. 119–129 (May 2002)

10. Leung, H., White, L.: Insights into regression testing. In: Proceedings of the International
Conference on Software Maintenance, Miami, Florida, U.S.A., pp. 60–69 (October 1989)

11. Li, Z., Harman, M., Hierons, R.M.: Search Algorithms for Regression Test Case Prioritiza-
tion. IEEE Transactions on Software Engineering 33(4), 225–237 (2007)

12. Malishevsky, A.G., Ruthruff, J., Rothermel, G., Elbaum, S.: Cost-cognizant Test Case Pri-
oritization, Technical Report TR-UNL-CSE-2006-0004, Department of Computer Science
and Engineering, University of Nebraska - Lincoln (March 2006)

 Test Case Minimization and Prioritization Using CMIMX Technique 33

13. Onoma, K., Tsai, W.-T., Poonawala, M., Suganuma, H.: Regression testing in an industrial
environment. Communications of the ACM 41(5), 81–86 (1998)

14. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test Case Prioritization: An Empirical
Study. In: Proceedings of the International Conference on Software Maintenance (Septem-
ber 1999)

15. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression
testing. IEEE Transactions of Software Engineering 27(10), 929–948 (2001)

16. Srikanth, H.: Requirements-Based Test Case Prioritization. In: Student Research Forum in
12th ACM SIGSOFT International Symposium on the Foundations of Software Engineer-
ing (2004)

17. Srikanth, H., Williams, L.: On the economics of requirements-based test case prioritiza-
tion. In: Proceedings of the 7th international workshop on Economics-driven software en-
gineering research, pp. 1–3 (May 2005)

18. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development environment.
In: Proceedings of the International Symposium on Software Testing and Analysis, pp. 97–
106 (July 2002)

19. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Time-Aware Test Suite Pri-
oritization. In: Proceedings of the International Symposium on Software testing and Anal-
ysis, pp. 1–12 (July 2006)

20. Wong, W.E., Horgan, J.R., London, S., Agrawal, H.: A Study of Effective Regression
Testing in Practice. In: Proceedings of the 8th IEEE International Symposium on Software
Reliability Engineering, pp. 264–274 (November 1997)

21. Zhang, X., Xu, B., Nie, C., Shi, L.: An Approach for Optimizing Test Suite Based on Test-
ing Requirement Reduction. Journal of Software (in Chinese) 18(4), 821–831 (2007)

22. Zhang, X., Xu, B., Nie, C., Shi, L.: Test Suite Optimization Based on Testing Require-
ments Reduction. International Journal of Electronics & Computer Science 7(1), 9–15
(2005)

23. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing Test Cases for Regression
Testing. IEEE Trans. Software Eng. 27(10), 929–948 (2001)

24. Aggarwal, K.K., Singh, Y.: Software Engineering, Programs Documentation Operating
Procedures. New Age International Publishers (2001)

25. Mathur, A.P.: Foundations of Software Testing, Pearson Education, 1st edn. (2008)

Embedded Control Software Design
with Aspect Patterns

Takahiro Soeda, Yuta Yanagidate�, and Takanori Yokoyama

Tokyo City University,
1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan

g0981517@tcu.ac.jp, y-yanagidate@ak.jp.nec.com, yokoyama@cs.tcu.ac.jp

Abstract. The paper presents an aspect-oriented design for embedded
control software such as automotive control. In the control logic design
phase, we build a control model with a CAD/CAE tool such as MAT-
LAB/Simulink, in which “zero-time execution” is assumed. In the soft-
ware design phase, we design timing issues such as task structures and
mechanisms for data integrity to execute the control software in the pre-
emptive multi-task environment. We represent mechanisms for timing
design as reusable aspect patterns. We define aspect patterns of trigger-
ing methods, synchronizations and inter-task communications. We also
provide a model weaver to weave the aspect patterns into the base model
incrementally. In the timing design, we only have to select the aspect pat-
terns and weave them into the functional model with the model weaver.

Keywords: embedded control system, real-time system, aspect-oriented
modeling, design pattern, model weaver.

1 Introduction

The embedded control software development process consists of the control logic
design phase and the software design phase. In the control logic design phase,
model-based design with CAD/CAE tools such as MATLAB/Simulink [1] has
become popular. A control model is designed and verified by simulation in an
ideal environment in which “zero-time execution” is assumed.

In the software design phase, we design control software to implement the
control model, taking account of not only functional properties but also non-
functional properties such as real-time constraints. We design tasks and mecha-
nisms for the preemptive multi-task environment.

Aspect-oriented programming has been applied to separate non-functional
properties from functional properties [2][3]. Model level aspects are required
for language-independent design. Some model level aspects of non-functional
properties have been presented [4] and some model weavers have been developed
to weave aspects into base models [5][6]. However, aspect-oriented modeling for
the timing design of embedded control software has not been presented.

� Presently with NEC Corporation.

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 34–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Embedded Control Software Design with Aspect Patterns 35

Engine Revolution

Engine Status

Accelerator Opening
Target Torque

Throttle Opening
Throttle
Opening

Calculation

Target
Torque

Calculation

Engine Revolution
Calculation

Engine Status
Calculation

Accelerator Opening
Calculation

Fig. 1. Example block diagram

The paper presents an aspect-oriented design method for the timing design of
embedded control software. Our main target application is automotive control,
the logic of which is designed with a block diagram based tool such as Simulink.
We represent mechanisms used in the timing design as aspect patterns in UML.
We also present a model weaver to weave aspect patterns into a functional model.
We can design the software for the preemptive multi-task environment only by
selecting the aspect patterns and weaving them into the functional model.

The rest of the paper is organized as follows. Section 2 presents a design
method with aspect patterns. Section 3 describes the aspect description and the
model weaver. Section 4 describes aspect patterns for timing design. Section 5
compares our work with related work and Section 6 concludes the paper.

2 Embedded Control Software Design

2.1 Functional Design

Control engineers build a control model with a block diagram based tool such
as Simulink. Fig. 1 shows a part of an example block diagram that consists
of the blocks periodically calculating EngineRevolution, EngineStatus, Accelera-
torOpening, Target Torque and ThrottleOpening in the control periods.

We translate the block diagram into a UML model according to the translation
method presented in [7]. We call the UML model the functional model because
the model represents functional properties. Fig. 2 shows the functional model
corresponding to Fig. 1. Each class has attribute value, method update to cal-
culate its own value, and method get to read value. The association named cons
means that the following object consumes the value of the preceding object. For
example, method update of TargetTorque gets the values of EngineStatus and
AcceleratorOpening, and calculates and stores the value. The update methods
are periodically called in the control periods.

2.2 Timing Design

In the timing design, we design the task structure, scheduling policy, task prior-
ities, triggering methods (time-triggered or event-triggered[8]), and then design
synchronizations, mutual exclusions and inter-task communications.

The timing design is done incrementally, because timing design issues depend
on each other. The necessity of a mechanism for data integrity depends on the
task structure, task priorities and the scheduling policy. For example, if all the

36 T. Soeda, Y. Yanagidate, and T. Yokoyama

EngineRevolution

ThrottleOpening

value

TargetTorque

value

update()
get()

update()
get()

value
update()
get()

EngineStatus

value

update()
get()

AcceleratorOpening

value

update()
get()

cons

cons

cons

cons

cons

Fig. 2. Class diagram of functional model

activate

Task1

update()

Alarm
CallBack1

update()

update()

call

:Target
Torque

activate

Task2

update()

Alarm
CallBack2

:Throttle
Opening

update()

:Engine
Revolution

:Engine
Status

:Accelerator
Opening

get()

get()

get()

get()

call

:Engine
Revolution

:Engine
Status

:Accelerator
Opening

Fig. 3. Sequence diagrams of functional model

objects of Fig. 2 are executed by one task, no mechanism is required. However, if
we use multiple tasks, mechanisms for data integrity are required. Fig. 3 shows
sequence diagrams in the case of using two periodic tasks of OSEK OS[9]. A
periodic task is activated by an alarm-callback routine in OSEK OS. Task1 is
activated by AlarmCallBack1 and Task2 is activated by AlarmCallBack2. We
assume the priority of Task1 is higher than the priority of Task2. If Task2 is pre-
empted by Task1 after TargetTorque gets the value of EngineStatus and before
ThrottleOpening gets the value of EngineStatus, the data integrity is violated.

We define design patterns for the timing design and represent them as aspects.
We call them aspect patterns. To add a mechanism for data integrity, we select
an appropriate aspect pattern and weave it into the functional model.

3 Aspect Description and Model Weaver

3.1 Aspect Description

We have defined the syntax of aspect description referring to Theme/UML[10].
Theme/UML represents crosscutting elements by template parameters. Compo-
sition (weaving) is done by binding the template parameters with the elements
of the base model. The binding, however, can not be represented by the stan-
dard UML. To design a control software model with an existing UML editor,
we present a method to represent the binding using the standard UML. We also
present a method to weave structural elements into a class diagram. A buffer
class has to be woven into an association between two classes for buffer-based
inter-task communication as shown in Section 4.3.

Embedded Control Software Design with Aspect Patterns 37

<<aspect>>

Binding Expression

Design Pattern with Variables

(Class Diagram or Sequence Diagram)

BindingExpression ::= VariableSet ElementSet (| ElementSet)*

VariableSet ::= < VariableName (, VariableName)* >

ElementSet ::= (ElementName (, ElementName)*)

Fig. 4. Aspect description

Fig. 4 shows our aspect description method. We use a package with stereotype
<<aspect>> to represent an aspect. The design pattern to be woven is repre-
sented as a class diagram or as a sequence diagram enclosed by the package.
We represent crosscutting elements as variables, and bind them with actual ele-
ments of the base model. The binding expression is written under <<aspect>>.
To deal with crosscutting concerns, we can bind a set of variables to multiple
sets of elements concatenated with “|”. We can also use wild card characters.

3.2 Model Weaver

We have developed a model weaver to weave aspect patterns into a base model.
Both the format of input files and the format of output files are XMI[11]. A
woven model, which is generated by weaving an aspect pattern into a functional
model, can be dealt with as a base model into which another aspect pattern is
woven. So aspect patterns can be incrementally woven into the functional model.

The model weaver inputs XMI files of a functional model and aspect patterns,
analyzes them, and identifies variables and element names to be bound. The
model weaver then searches for the elements to be bound, and weaves the design
patterns of the aspects into the model by binding the variable elements with the
actual elements of the model. Finally, the model weaver outputs XMI files of the
woven model. We have developed the model weaver in Java.

4 Aspect Patterns

4.1 Aspect Patterns for Timing Design

We have identified aspect patterns by analyzing automotive control software.
Table 1 shows the aspect patterns for timing design. We have defined three aspect
patterns for triggering methods: the time-triggered pattern, the event-triggered
pattern and the demand-triggered pattern. We have got those by translating
source code level aspects[2] into sequence diagrams, so we do not describe the
details in this paper. We get the sequence diagrams shown in Fig. 3 by weaving
the time-triggered aspect pattern for update method calls into the tasks.

We have also defined two aspect patterns for synchronization: the event con-
trol pattern and the mutual exclusion pattern. Those are represented by sequence
diagrams to weave OSEK OS system service calls. We mention the mutual ex-
clusion aspect pattern in this paper.

We have defined two aspect patterns for inter-task communications: the sim-
ple buffering pattern and the double buffering pattern. Those are represented

38 T. Soeda, Y. Yanagidate, and T. Yokoyama

Table 1. Aspect patterns

Aspect PatternCategory

Triggering Method

Inter-Task Communication

UML Diagram

Time-triggered

Event-triggered

Demand-triggered

Mutual Exclusion

Sequence Diagram

Sequence Diagram

Sequence Diagram

Sequence Diagram

Class Diagram, Sequence Diagram

Class Diagram, Sequence Diagram

Simple Buffering

Double Buffering

Synchronization
Event Control Sequence Diagram

:Producer

method

:Consumer OS

<<aspect>>
<Consumer, Producer, method> (TargetTorque, EngineStatus, get())

GetResource() method

<<aspect>>
<Consumer, Producer, method> (ThrottleOpening, EngineStatus, get())

ReleaseResource()

:Producer:Consumer OS

Fig. 5. Mutual exclusion aspect pattern

:TagetTorque

activate

Task2

update()

AlarmCallBack2 :ThrottleOpening

update()

:Engine
Revolution

:Engine
Status

:Accelerator
Opening

get()

get()

get()

get()

call

OS

GetResource()

ReleaseResource()

Fig. 6. Sequence diagram with mutual exclusion

by both class diagrams and sequence diagrams. The simple buffering temporally
holds the value to prevent the violation of data integrity described in Section 2.2.
However, it does not perfectly preserve the semantics of the control model de-
signed with Simulink. The double buffering algorithm has been presented to
preserve the semantics[12]. We mention the double buffering aspect pattern.

4.2 Mutual Exclusion

Fig. 5 shows the mutual exclusion aspect pattern. The left-hand side sequence
diagram means that Consumer calls GetResource before calling method of Pro-
ducer. The binding expression declares the variables Consumer, Producer and
method and specifies to bind them with TargetTorque, EngineStatus and get.
This means to weave the GetResource call into the join point before calling
get of EngineStatus. The right-hand side package of Fig. 5 means to weave the
ReleaseResource call into the join point after calling get of EngineStatus.

We put the right-hand side sequence diagram of Fig. 3 and the aspect patterns
shown in Fig. 5 into the input of the model weaver, and we get the sequence
diagram shown in Fig. 6.

Embedded Control Software Design with Aspect Patterns 39

DoubleBufferHigh2Low

buf[2]:valType
current:int
next:int

Producer

updateBuf()
updateCurrent()
updateNext()
get()

buf[next]

= producer.get();
current = next; return buf[current];

If (current == next) {

next = (next + 1) % 2;

}

Consumer

consconsvalue:valType

update()
get()

value

update()
get()

Fig. 7. Double buffering design pattern

<<aspect>>
<Producer, Consumer , Relation > (EngineRevolution,TrottleOpening, cons) ||
(EngineStatus, TrottleOpening&&TargetTorque, cons) || (AcceleratorOpening, TargetTorque, cons)

Producer_DBH2L

Producer Consumer
Relationbuffered

Fig. 8. Class diagram of double buffering aspect pattern

:Producer_DBH2L

method

:Producer

_method

<<aspect>>
<Producer, method> (EngineStatus, update()) ||
(EngineRevolution, update()) || (AcceleratorOpening, update())

updateBuf()

:EngineStatus
_DBL2H

method

:AlarmCallBack

_method

<<aspect>>
<AlarmCallBack, method> (AlarmCallBack2, call)

updateCurrent()
method

_method

<<aspect>>
<AlarmCallBack, method> (AlarmCallBack1, call)

updateNext()

:EngineStatus
_DBL2H

:AlarmCallBack

Fig. 9. Sequence diagrams of double buffering aspect pattern

4.3 Double Buffering

We have defined the double buffering design pattern referring to [12]. Fig. 7 shows
the design pattern in the case that the priority of the task executing Producer is
higher than the priority of the task executing Consumer. DoubleBufferHigh2Low
is a class for double buffering.

Fig. 8 shows the structural aspect pattern of the double buffering to store the
values of EngineRevolution, EngineStatus and AcceleratorOpening. Fig. 9 shows
the behavioral aspect patterns to call updateBuf of the double buffers, to call
updateCurrent of EngineStatusDBH2L, and to call updateNext of EngineStatus-
DBH2L. Behavioral patterns for the updateNext calls and updateCurrent calls of
AcceleratorOpening and EngineRevolution are similar to them. The updateCur-
rent calls and the updateNext calls are woven into alarm-callback routines.

We put the functional model shown in Fig. 2 and Fig. 3, the aspect patterns
shown in Fig. 8 and Fig. 9, and the similar behavioral patterns described above
into the input of the model weaver, and we get the class diagram shown in
Fig. 10 and the sequence diagram shown in Fig. 11. EngineRevolutionDBH2L,
EngineStatusDBH2L and AcceleratorOpeningDBH2L are subclasses of Double-
BufferHigh2Low.

5 Related Work

Wehrmeister et al. have discussed model level aspects for non-functional re-
quirements of distributed embedded real-time systems[4]. However, few concrete

40 T. Soeda, Y. Yanagidate, and T. Yokoyama

ThrottleOpening

value

TargetTorque

value

update()
get()

update()
get()

EngineRevolution_DBH2L

EngineStatus_DBH2L

AcceleratorOpening_DBH2L
cons

cons

cons

buffered cons

buffered

buffered

cons

EngineRevolution

value
update()
get()

EngineStatus

value
update()
get()

AcceleratorOpening

value

update()
get()

Fig. 10. Class diagram with double buffering

activate

Task1

update()

AlarmCall
Back1

update()

update()

:Engine
Revolution

:Engine
Status

:Accelerator
Opening

:Engine
Revolution
_DBH2L

:Engine
Status
_DBH2L

:Accelerator
Opening
_DBH2L

updateBuf()

updateBuf()

updateBuf()

updateNext()

updateNext()

updateNext()

call

activate

Task2
AlarmCall
Back2

:Engine
Revolution
_DBH2L

:Engine
Status
_DBH2L

:Accelerator
Opening
_DBH2L

updateCurrent()

updateCurrent()

updateCurrent()

:Taget
Torque

update()

:Throttle
Opening

update()

get()

get()

get()

get()

call

Fig. 11. Sequence diagrams with double buffering

model level aspect patterns for embedded control software have been presented.
In this paper, we have presented aspect patterns for the timing design of embed-
ded control software.

Ho et al. have presented a UML based tool for model level weaving[6]. Gray et
al have presented a model weaver using domain specific modeling language[13].
De Niz et al. have presented a model weaver for embedded real-time systems[14].
Their goals are automatic code generation and their model weavers output not
UML models but source code, so we cannot verify woven models nor incre-
mentally weave aspects. Our model weaver generates woven UML models and
supports incremental weaving. Groher et al. have presented a model weaver sup-
porting incremental weaving[15]. The model weaver deals with only the class
diagram. Cotteiner et al. have presented a practical model weaver[5]. The model
weaver does not support structural aspects. Our model weaver supports struc-
tural aspects required for buffer-based inter-task communications.

6 Conclusions

We have presented an aspect-oriented design for embedded control software.
We represent the mechanisms used for the preemptive multi-task environment
as reusable aspect patterns. We have also developed a model weaver to weave
aspect patterns into a functional model incrementally. We only have to select
appropriate aspect patterns and weave them with the model weaver. This makes
timing design more efficient. We are going to define aspect patterns for reliability
and distribution and extend the model weaver to deal with other UML diagrams.

Embedded Control Software Design with Aspect Patterns 41

Acknowledgments

This work is partially supported by KAKENHI (20500037).

References

1. The Mathworks Inc., http://www.mathworks.com/
2. Yokoyama, T.: An Aspect-Oriented Development Method for Embedded Control

Systems with Time-Triggered and Event-Triggered Processing. In: Proc. of the
11th IEEE Real-Time and Embedded Technology and Application Symposium,
pp. 302–311 (2005)

3. Cunha, C.A., Sobral, J.L., Monteiro, M.P.: Reusable Aspect-Oriented Implemen-
tations of Concurrency Patterns and Mechanisms. In: Proc. of 5th International
Conference on Aspect-Oriented Software Development, pp. 15–26 (2006)

4. Wehrmeister, M.A., Freitas, E., Pereira, C.E., Wagner, F.R.: An Aspect-Oriented
Approach for Dealing with Non-Functional Requirements in a Model-Driven Devel-
opment of Distributed Embedded Real-Time Systems. In: Proc. of 10th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing, pp. 428–432 (2007)

5. Cotteiner, T., van den Berg, A., Elrad, T.: The Motorola WEAVER: Model Weav-
ing in a Large Industrial Context. In: Proc. of 6th International Conference on
Aspect-Oriented Software Development, Industry Track (2006)

6. Ho, W.-M., Jézéquel, J.-M., Pennaneac’h, F., Plouzeau, N.: A Toolkit for Weaving
Aspect Oriented UML Designs. In: Proc. of 1st International Conference on Aspect-
Oriented Software Development, pp. 99–105 (2002)

7. Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W., Imai, T., Suzuki,
S.: A Development Method of Time-Triggered Object-Oriented Software for Em-
bedded Control Systems. Systems and Computers in Japan 34(2), 338–349 (2003)

8. Kopetz, H.: Should Responsive Systems be Event-Triggered or Time-Triggered?
IEICE Transaction on Information & Systems E76-D(11), 1325–1332 (1993)

9. OSEK/VDX: Operating System, Version 2.2.3 (2005)
10. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-

proach. Addison-Wesley, Upper Saddle River (2005)
11. Object Management Group: XML Metadata Interchange Specification, Version

2.0.1 (2005)
12. Scaife, N., Caspi, P.: Integrating model-based design and preemptive scheduling in

mixed time- and event-triggered systems. In: Proc. of 16th Euromicro Conference
on Real-Time Systems, pp. 119–126 (2004)

13. Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A., Natarajan, B.: An
Approach for Supporting Aspect-Oriented Domain Modeling. In: Proc. of 2nd In-
ternational Conference on Generative Programming and Component Engineering,
pp. 151–168 (2003)

14. de Niz, D., Bhaitia, G., Rajkumar, R.: Model-Based Development of Embedded
Systems: The SysWeaver Approach. In: Proc. of 12th IEEE Real-Time and Em-
bedded Technology and of Applications Symposium, pp. 231–242 (2006)

15. Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: Proc. of 10th
International Workshop on Aspect-Oriented Modeling, pp. 35–40 (2007)

http://www.mathworks.com/

Towards a Consistent Semantics for Unsafe Time
Petri Nets

Abdelkrim Abdelli

LSI Laboratory- Computer science Department- USTHB University
Bp 32 El Alia Babezzouar Algiers Algeria

Abdelli@Lsi-usthb.dz

Abstract. We discuss in this paper the consistency of time Petri net
semantics when assuming a monoserver hypothesis. This hypothesis as-
sumes that for a given marking of the net, only one instance of an enabled
transition should be considered. We show that for unsafe nets, the stan-
dard semantics is not sound and may induce false behaviors in presence
of conflicting transitions. To fix this problem, we propose a new seman-
tics that removes these incoherences by managing accurately after each
firing the status of enabled transitions. We prove that our semantics is
sound when assuming a monoserver hypothesis.

1 Introduction

Real time systems are systems which behavior must satisfy strict temporal con-
straints. They are more and more used in daily live and are often apart of critical
applications. They are generally characterized by complex interactions with their
environment whose time constraint’s violation could cause serious consequences;
so, safety is an important property to hold. The conception of such systems
needs to develop methods and tools making it possible to describe accurately
their behaviors (specification), in order to prove their correctness (analysis).

Among real time specifications, we can quote Time Petri nets [4]. This model is
very popular in the discrete event systems and industrial communities as it allows
to model real-time systems in a simple and elegant way. A TPN (Timed Petri
Net) [4] is a Petri net wherein a time interval [tmin, tmax] is associated with each
transition, expressing thus the interval within which a transition has to fire once
enabled. The simulation and the analysis of general and quantitative properties of
a system modeled by a TPN requires the construction of its reachability graph.
However, if the semantics is well defined for safe time Petri nets1, it remains that
the standard semantics for unsafe time Petri nets is enforced under two different
hypotheses : A monoserver hypothesis where is it is assumed that a transition
can be enabled only once for a given marking even though the latter allows many
instances to be enabled [1]; and a multisever hypothesis where it is assumed that
a transition can be enabled many times by a given marking [2]. Since the last
1 In a safe Petri net is, the marking does not provide enough tokens to enable a

transition more than once.

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 42–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards a Consistent Semantics for Unsafe Time Petri Nets 43

hypothesis is very complex to work out (as it may yield an infinity of clocks, thus
impeding seriously the analysis of the model), already defined methods and tools
have mainly considered a monoserver semantics [5][8][7][6][1][3]. Although the
monoserver semantics is proved to be sound for Safe time Petri net, we show in
this paper that for unsafe time Petri nets this semantics can lead to inconsistent
behaviors when dealing with conflicting transitions. Hence, we propose a new
semantics making it possible to manage consistently these situations and to
remove the false behaviors that stand in the standard semantics. Moreover, we
prove that our semantics is sound when assuming a monoserver hypothesis.

The remainder of this paper is organized as follows: Section 2 lays down the
syntax and the formal semantics of a TPN . In the Section 3, we discuss, through
appropriate examples, where stand the inconsistencies in the standard semantics.
In the last section, we present our new semantics and we prove its soundness.

2 Time Petri Net

Time Petri Nets [4] have been widely used to model critical systems and proto-
cols, and many approaches and tools have been dedicated to their analyzes [5][8][7]
[6][1][3]. A TPN is a standard Petri net where a time interval [tmin, tmax] is as-
sociated with each transition. A transition t is said to be enabled if the number
of tokens in each input place of t satisfies the precondition of the arc linking this
place to the transition t. Hence, if t is enabled at time τ , then it can be fired first
only after tmin + τ and no later than after tmax + τ, provided that t remains
continuously enabled. More formally, a TPN is defined as given next:

Definition 1. A TPN (Time Petri Net) is defined as a tuple R = (P, T, M0,
B, F), where P and T are two nonempty sets of places and transitions respec-
tively; M0 is a function called initial marking which associates with each place
of the net a number of tokens: M0 : P −→ N; B and F are two functions called
respectively, backward and forward functions, such that: B : P × T −→ N and
F : P × T −→ N; FI is a delay interval mapping function which associates with
each transition t ∈ T an interval defined on Q+×(Q+∪{∞}). Thus, FI gives the
time interval within which a transition t can fire: FI(t) = [EFT (t), LFT (t)] with
EFT (t) ≤ LFT (t). The interval is delimited by an earliest firing time EFT (t),
and a latest firing time LFT (t), taking their values on the set of positive rational
numbers.

2.1 Formal Semantics of TPN

Let R be a TPN :

– We call a marking M the mapping that associates with each place of R a
number of tokens: M : P ⇀ N.

– A transition t ∈ T is said to be enabled for the marking M , iff the number
of tokens in each input place of t is greater or equal to the valuation of the
arc linking this place to t, ∀p ∈ P, B(p, t) ≤ M(p); we denote hereafter by
Te(M) the set of transitions enabled for M .

44 A. Abdelli

– Let M be a marking; two transitions ti and tj enabled for M are said to be
in conflict for M , if ∃p ∈ P, B(p, ti) + B(p, tj) > M(p).

– We note hereafter by Conf(M) the relation built on Te(M)2 such that
(t1, t2) ∈ Conf(M), iff t1 and t2 are in conflict for the marking M .

In the standard semantics [1], if a place p contains additional tokens that can
be used to enable one or more transitions in the future, only the number of
tokens reported in the arc connected to p is considered. The remaining tokens
will be used for firing next transitions. This hypothesis is called a monoserver
semantics. Hence only one instance of an enabled transition is considered for each
marking and therefore only one clock is associated with each enabled transition.
The selection of the instance follows next policy:

– The oldest instance of the transition among those enabled is considered.
– If different instances have the same age, then the instance that is not in

conflict with an other transition is promoted.

The semantics can be extended so that all the enabled instances of a same tran-
sition are considered for a same marking [2]. In this case a multiserver hypothesis
is considered and the number of clocks become potentially infinite.

The formal semantics of a TPN that assumes a monoserver hypothesis is given
next:

Definition 2. The semantics of a TPN is defined by the transition system ST =
(Σ, e0,→), such that :

– Σ is the set of accessible states; each state e ∈Σ is a tuple (M, V), where M is a

marking, and V is the function that associates with each enabled transition t its

dynamic firing constraints V (t) =[x(t), y(t)].
– e0 = (M0, V0) is the initial state, where V0(t) = [EFT (t), LFT (t)].
– →∈ Σ × (T × Q+)×Σ is the transition relation between states, such that:(

(M, V), (δ, tf), (M↑, V ↑)
)∈→, iff

(1) tf ∈ Te(M).
(2) ∃δ ∈ Q+, x(tf) ≤δ ≤ MIN

∀t∈Te(M)
y(t)

such that:

– - ∀p ∈ P, M↑(p) := M(p) − B(p, tf) + F (p, tf).

- if t is newly enabled t ∈ New(M↑) V ↑(t) :=[EFT (t), LFT (t)]
- if t is persistent t /∈ New(M↑) V ↑(t) :=[MAX(0, x(t) − δ), y(t) − δ]

Where New(M↑) denotes the set of transitions newly enabled for M↑. A newly

enabled transition is tf if it is enabled for M↑, or that which is enabled for M↑ but

not for M , or that which is different from tf and enabled for M↑ and M and is

in conflict with tf for the marking M , namely (t, tf) ∈ Conf(M). Otherwise, an

enabled transition which does not belong to New(M↑) is said to be persistent.

A transition tf can be fired at the relative date δ from the state e = (M, V) if
tf is enabled for the marking M ; if the time can progress with δ, such that the
lower bound x(tf) is reached without overtaking any upper bound of another
enabled transition. After firing tf the new state e↑ = (M↑, V ↑) is obtained by :

Towards a Consistent Semantics for Unsafe Time Petri Nets 45

– consuming a number of tokens in each tf -input place p (given by B(p, tf)),
and then by producing a number of tokens in each tf -output place p (given
by F (p, tf));

– assigning to each persistent enabled transition its last firing interval shifted
with the firing time of tf . However, a newly enabled transition is assigned
its static firing interval.

3 Discussion

Let us discuss through some examples the semantics presented in Definition 2.
In the safe net of Fig 1.a, we have M0 : {p → 1} and hence Te(M0)= {t1, t2} .
We notice that t1 and t2 are in conflict for M0, which means that firing one of
them will disable the other. However, only t1 can fire since the time can not
progress to reach the lower bound of t2. After firing t1, the token in p will be
consumed (thus disabling both transitions), and a new one will be produced,
thus enabling again t1 and t2. Hence the transitions t1 and t2 are newly enabled
after firing t1.

In the unsafe net of Fig 1.b, the transitions t1 and t2 are enabled but not in
conflict for the initial marking M0 : {p → 2}. Actually, as we have two tokens in
the place p, t1 and t2 are twice enabled each. However the monoserver semantics
considers only one instance for each enabled transition; that which avoids, if
possible, conflicts with other enabled transitions. In this case, firing t1 to reach
the marking M ′ : {p → 2} will disable only t1 because it is the fired transition;
the transition t1 becomes then newly enabled for M ′. Regarding the transition
t2, two instances are enabled: the oldest one enabled by the first token created
in p; and the instance newly enabled by the new token created after firing t1.
Therefore, the oldest instance is considered and hence t2 is persistent. Further-
more, t1 and t2 are not in conflict for M ′ since their elected instances have not
been enabled by the same token.

However, this semantics, as defined in [1], may lead to incorrect behaviors in
some cases. To evidence this statement, let us consider the net of Fig.2.a.

Initially, we notice that t1, t2 and t3 are enabled for the marking
M0 : {p0 → 1, p1 → 1} and t2 and t3 are in conflict for M0. So after firing the
transition t1 the token in the place p0 is consumed and a new one is produced
in the place p1 to reach the marking M ′ : {p0 → 0, p1 → 2} . According to the
standard semantics t2 and t3 are enabled for the marking M ′ and are persistent

Fig. 1. TPN ′s with conflicted transitions

46 A. Abdelli

 t2

 [3, 4]

P0

 t1

 [1, 2]

 t3

 [3, 5]

P1

 t2

 [3, 4]

P

 t1

 [1, 2]

 t3

 [3, 5]

(a) (b)

Fig. 2. TPN ′s with inconsistent standard semantics

since both are not in conflict with t1 for M0. However, they are considered as
not in conflict for M ′ whereas they are for M0. There stands the incoherence of
the standard semantics, if it admits that t2 and t3 are not in conflict for M ′,
then normally one of the two transitions has to be newly enabled since the ad-
ditional token in p1 is created when reaching M ′. Actually, t2 and t3 must be
in conflict in M ′ because this semantics considers the oldest enabled instance of
both transitions, namely those enabled for M0. These instances are persistent in
M ′ and still remain in conflict for the first token created in p1 that has enabled
them.

Hence, if we apply the standard semantics, as given in Definition.2, the firing
of t2 from M ′, for instance, keeps t3 enabled and persistent for the new marking
M” : {p0 → 0, p1 → 1} while t2 is considered as newly enabled. This leads to
a false behavior because the firing of t2 must disable t3; hence both transitions
should stand as newly enabled in M”.

An other example of a false behavior induced by this semantics is depicted by
the net of Fig.2.b. We have the transitions t1, t2 and t3 which are enabled initially
for M0 : {p → 2} . If we consider the transitions two by two, we find out that
they are not in conflict for M0, but if we consider all three transitions together
we admit that at least two of them must be in conflict for a same token. At this
stage, it is not false to consider two transitions as not in conflict because the
additional token in p can be used to enable the other transition; thus removing
the conflict. However the semantics becomes inconsistent after firing t1: there we
reach the marking M ′ : {p → 2} where t1 is considered as newly enabled while
t2 and t3 as persistent. One of the two tokens located in p has been consumed
and a new one is produced; the latter is that which newly enables t1 whereas the
oldest token is that which keeps t2 and t3 persistent. Hence all three transitions
are considered mistakenly as not in conflict for M ′, since it is obvious that the
persistent instances of t2 and t3 are in conflict2 for M ′, whereas they should not
be in conflict with the newly enabled instance of the transition t1. Therefore,
firing t2 should disable t3 to reach the marking M” : {p → 1} where t2 and t3
become newly enabled, whereas t1 stands as persistent.

2 The instances that are not in conflict for M0 have been disabled by firing t1. Only
those which are in conflict for M0 are persistent in M1.

Towards a Consistent Semantics for Unsafe Time Petri Nets 47

As we can imagine the construction of the graph basing on Definition.2 may
lead to incorrect behaviors in presence of conflicted transitions. This is due to
the fact that the definition of a TPN state, as given in [1], can not preserve the
status of conflicted transitions as long as the firing process is going head. To fix
the problem, we have to extend the definition of a state to the relation Conf
and to set up thoroughly when transitions become conflicting. For this effect, the
next section lays down a new semantics for a TPN that we prove to be sound
when dealing with conflicting transitions.

4 A Sound Time Petri Net Semantics

The next definition puts forward a new semantics for TPN when assuming a
monoserver hypothesis.

Definition 3. The new semantics of a TPN is defined by the transition system ST =
(Σ, e0,→), such that:

– Σ is the set of accessible states; each state e ∈Σ is a tuple (M, V, Conf),
– e0 = (M0, V0, Conf0) is the initial state, such that M0 and V0 are defined as in

Definition 2. and Conf0 is a relation built on Te(M0)2 as follows:

∀(t, t′) ∈ Te(M0)2, (t, t′) ∈ Conf0, iff ∃p ∈ P, B(p, t) + B(p, t′) > M0(p)
– →∈ Σ × (T × Q+)×Σ is the transition relation between states, such that:(

(M, V, Conf), (δ, tf), (M↑, V ↑, Conf↑)
)∈→, iff ∃δ ∈ Q+,

(1) tf ∈ Te(M).
(2) x(tf) ≤δ ≤ MIN

∀t∈Te(M)
y(t)

such that:
– M↑ and V ↑ are computed as defined in Definition.2.
– Conf↑ is computed as follows:

∀(t, t′) ∈ Te(M↑)2, (t, t′) ∈ Conf↑, iff

⎧⎪⎪⎨⎪⎪⎩
t ∈ New(M↑) ∧ ∃p ∈ P, B(p, t) + B(p, t′) > M↑(p) or(
(t, t′) /∈ New(M↑)2

)
∧

(
(t, t′) ∈ Conf

)
or(

(t, t′) /∈ New(M↑)2
)
∧

(
(t, t′) /∈ Conf

)
∧ ∃p ∈ P, B(p, tf) + B(p, t) + B(p, t′) > M(p)

The last definition allows to fix TPN semantics to handle conflicted transitions.
Therefore, if at least one transition is newly enabled for the new marking we
should check whether the available number of tokens needed to enable both
transitions is not coming short regarding the current marking. Further, if two
conflicted transitions still remain enabled after firing tf , then they stand in
conflict in the accessible states as long as they will not have been disabled in the
run. However, if two transitions are not in conflict before firing tf , but are in
conflict when removing the tokens needed by tf to fire, then they will become
in conflict after firing tf , providing that they remain persistent. However, we
should prove now that our semantics remain sound for any state of the graph,
namely that the monoserver hypothesis is satisfied for any state.

48 A. Abdelli

Theorem 1. The TPN semantics defined in Definition.3 is sound when assum-
ing a monoserver hypothesis.

Proof. Let ST = (Σ, e0,→) be a transition system obtained as defined in Defini-
tion.3. It is obvious that the initial state e0 is sound. We should prove therefore
that for any state e = (M, V, Conf) of Σ, if e is sound then firing tf from
e = (M, V, Conf) yields a state e↑ = (M↑, V ↑, Conf↑) which is also sound,
namely we have to prove that:

1. For any persistent transition t enabled for M↑, the oldest instance among
those possible is promoted.

2. For any transition t enabled for M↑, if they are different instances of t hav-
ing the same age, the one which avoids conflict with other transitions is
promoted.

Let us prove these clauses:

1. If e is sound, then t satisfies the clause 1. If t is persistent in e↑ then the
oldest instance in e is considered in e↑. Hence, e↑ satisfies (1).

2. We have to prove that the working out the parameter Conf, as given in the
Definition.3, is sound
(a) Let us assume that the instances of the two enabled transitions t1 and

t2 are in conflict for M . Note that as e is sound, there is no possibility
to elect other instances of the same age that are not in conflict for M .
Hence if these instances are persistent in M↑ (namely no token for which
they are in conflict has been consumed by the firing of tf), then they
remain in conflict for M↑. All other instances newly enabled by the new
tokens created in M↑, even those which are not in conflict for M↑, are
ignored since they are not as old.

(b) Let us assume that t1 is newly enabled for M↑, namely all the oldest
instances of t1 have been disabled by the firing of tf . Therefore, the
instance of t1 which should be considered for M↑ is that which is not in
conflict with any other enabled transition for M↑.

(c) Let us assume that the instances of the two enabled transitions t1 and
t2 are not in conflict for M . If two by two, both transitions are not in
conflict with tf , then firing tf keeps their instances persistent in M↑.
These instances switch in conflict for M↑, if the three transitions taken
all together are in conflict for M . Put in other words, firing tf removes
the tokens that have promoted the non conflicting instances of t1 and
t2 in M ; these instances are disabled by the firing of tf . Therefore, only
instances that are in conflict in M are persistent in M↑.

Assuming the semantics given in Definition.3, the behavior of a TPN can be
defined by a timed firing sequence given as a succession of pairs (tif , δi). The
timed sequence S t = ((t1f , δ1), (t2f , δ2), .., (tnf , δn)) denotes that t1f is fired after δ1

time units, then t2f is fired after δ2 time units and so on, such that tnf is fired after
an absolute time

∑n
i=1 δi. Because the time is dense, the graph ST is infinite.

Towards a Consistent Semantics for Unsafe Time Petri Nets 49

Therefore, so that one can analyze the model, we need to compute an abstraction
of it that preserves the most important properties. The symbolig graph that pre-
serves only the untimed sequences of ST may yield a finite abstraction. However,
this contraction may be infinite too when the number of accessible markings is
unbounded. As the last property is undecidable for TPN , there is no guarantee
to compute a finite graph. However, we deem that the construction of an ab-
straction of the graph ST can be achieved by applying the state class method
as it is has been successfully done when assuming the standard semantics [1].

5 Conclusion

We discussed in this paper the consistency of time Petri net semantics when
assuming a monoserver hypothesis. We showed that for unsafe nets, the stan-
dard semantics may yield false behaviors in presence of conflicting transitions.
To tackle this issue, we have proposed a new semantics that removes these in-
coherences by managing accurately the status of enabled transitions. We proved
that our semantics is sound when assuming a monoserver hypothesis. Further
work will lead us to propose an algorithm to compute efficiently the state class
graph of a TPN basing on our semantics.

References

1. Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems
using Time Petri Nets. IEEE Transactions on Software Engineering 17(3), 259–273
(1991)

2. Berthomieu, B.: La méthode des classes d’états pour l’analyse des réseaux temporels.
In: Modélisation des Systèmes Réactifs (MSR 2001), Toulouse, France (October
2001), pp. 275–290 (2001) Hermes

3. Boucheneb, H., Rakkay, H.: A More Efficient Time Petri Net State Space Abstraction
Useful to Model Checking Timed Linear Properties. Fundam. Inform. 88(4), 469–495
(2008)

4. Merlin, P.: A study of the recoverability of computer system. PHD Thesis Dep.
Computer. Science, Univ. California, Irvine (1974)

5. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: When are Timed Au-
tomata weakly timed bisimilar to Time Petri Nets? Theor. Comput. Sci. 403(2-3),
202–220 (2008)

6. Vicario, E.: Static Analysis and Dynamic Steering of Time-Dependent Systems.
IEEE Trans. Software Eng. 27(8), 728–748 (2001)

7. TINA Tool, http://www.laas.fr/tina/
8. ROMEO TOOL, http://romeo.rts-software.org

http://www.laas.fr/tina/
http://romeo.rts-software.org

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 50–60, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Multiple Viewed Interrelated Ontology Model for
Holistic Component Specification and Retrieval

Chengpu Li, Xiaodong Liu, and Jessie Kennedy

School of Computing, Edinburgh Napier University, Edinburgh, UK
{c.li,x.liu,j.kennedy}@napier.ac.uk

Abstract. Despite the success that Component-Based Development has
achieved so far, component mismatch remains as a major hurdle for wider and
smoother component reuse due to the lack of effective and automated ap-
proaches to component specification and retrieval. This paper presents a novel
ontology-based approach to solve the above problem via holistic, semantic-
based and adaptation-aware component specification and retrieval. The Multi-
ple-Viewed and Interrelated Component Specification ontology model
(MVICS) provides an ontology based architecture to specify components in a
spectrum of perspectives. A semantic-based component retrieval method is then
developed and the result of retrieval is presented to CBD engineers in a com-
prehensive component matching profile. Uniquely, the effect of possible com-
ponent adaptation is included in the MVICS model and associated component
specification and retrieval, which enables a more systematic and holistic view
in component specification and selection.

Keywords: component repository, component retrieval, ontology-based com-
ponent specification, component reuse, adaptation assets, result profile.

1 Introduction

Component-Based Development (CBD) is an approach to developing a software sys-
tem by assembling and composing already built software components. Numerous
advantages of CBD have been identified [3][7][12]. However, at present CBD still
fails to reach its full potential due to a few unsolved major hurdles, one of which is
the lack of effective and automated methods for holistically and semantically specify-
ing and retrieving components that precisely match users’ requirements [8].

The above problem is basically caused by the lack of competent semantic-based
component specification/repository and retrieval technologies. Existing approaches
failed to specify components at a systematic and complete spectrum of perspectives
and utilize such specification in retrieval. Although a few approaches started to use
domain model and ontology in component retrieval process, to date it is clear that the
ontology in these approaches has too simple and monolithic structure and few rela-
tionships to deal with the specification and retrieval of modern components
[14][15][16]. Moreover and as part of the consequence, these approaches also failed
to rank the found components with accurate relevance rating and clear unsatisfied
discrepancy to reuse requirements, all of which provide critical guidelines for user’s

 A Multiple Viewed Interrelated Ontology Model 51

decision on component selection and the subsequent component adaptation and
integration.

In this paper, a novel ontology-based approach is proposed to achieve holistic and
semantic-based component specification and then automatic and precise component
retrieval. As a foundation of the approach, a Multiple-Viewed and Interrelated Com-
ponent Specification ontology model (MVICS) for component specification and
repository is first developed. The MVICS model provides an ontology based architec-
ture to specify components in a spectrum of perspectives, it accommodates domain
knowledge of CBSE and application domains, and supports ontology evolution to
reflect the continuous developments in CBD and components. A semantic-based com-
ponent retrieval method is then developed based on MVICS model. The results of
retrieval include not only the matching components but also accurate relevance rating
and unsatisfied discrepancy, which are presented to CBD engineers in a comprehen-
sive component matching profile. Another unique feature of the proposed approach is
that the effect of possible component adaptation is included in the MVICS model and
associated component specification and retrieval, which enables a more systematic
and holistic view in component specification and selection. A prototype tool with an
example component repository is built to verify and automate the approach. Extensive
user feedbacks have been received based on case studies, which show the approach
and tool is effective for the problem.

The reminder of the paper is organized as follows: Section 2 discusses related work
with critical analysis. Section 3 introduces the Multiple-Viewed and Interrelated
Component Specification ontology model. Section 4 describes the MVICS based
holistic component retrieval. Section 5 describes the resultant prototype tool and a
case study. Section 6 discusses the results of an initial evaluation of the system from
practical use. Finally, section 7 presents the conclusion and future work.

2 Related Work

Existing component description and retrieval approaches can be classified into two
types: traditional and ontology-based. The traditional approaches include keyword
searching [8], faceted classification [10][13], signature matching [17] and behavioral
matching [5][18]. Traditional approaches are not efficient, and suffer from lower
recall and precision. Recall is a measure of the completeness of components match-
ing, which can be defined as the proportion of the number of relevant found compo-
nents to the number of all relevant components in the repository. Precision is a meas-
ure of the accuracy of component matching, which can be defined as the ratio of the
number of retrieved relevant components to the number of the all retrieved compo-
nents [13]. The traditional approaches are rather limited in accommodating semantics
of user queries and domain knowledge. To solve this problem, ontology is thus intro-
duced to help understand the semantics of components. The typical work include Pahl
[11], Sugumaran [14], Liu [8], Yao [15], Yen [4][15].

To summarize, although ontology-based technologies have been used in compo-
nent specification and retrieval, existing approaches have the following limitations: i)
ontology in existing approaches has too simple and/or monolithic architecture and few
relationships and consequently incapable for a holistic specification of components, in

52 C. Li, X. Liu, and J. Kennedy

particular large and complex ones; ii) the gauge of relevance in component retrieval is
too simple, inaccurate and only based on incomplete factors; iii) the evolution of the
component specification ontology is not considered; iv) the impact of component
adaptation is not included as an integral part of component specification and retrieval.

3 Multiple-Viewed Interrelated Component Specification
Ontology Model (MVICS)

A holistic ontology model of component specification will provide the foundation for
effective semantic reasoning in the component retrieval and improve substantially the
precision of component retrieval. The MVICS ontology model has a pyramid archi-
tecture, which contains four facets: function model, intrinsic model, context model and
meta-relationship model, as shown in Figure 1. Each of the four models specifies one
perspective of a component and as a whole they construct a complete spectrum of
semantic-based component specification. All the four models are ontology-based, and
are extracted from the analysis of CBSE knowledge and have extension slots for spe-
cific application domains.

Fig. 1. Multiple-Viewed and Interrelated Component Specification Ontology Model

3.1 Intrinsic Model

The intrinsic model specifies the information of a component which is essential but
irrelevant with functionality and quality features of the component, e.g. its name,
type, and applicable software engineering phases. In the proposed approach, such
information is defined as “intrinsic information” of the component. A taxonomy of
the intrinsic information is developed, which includes attributes such as component
name, component vender, component price, component version, component type.
These attributes are then further modeled in levels of sub-attributes. The intrinsic
attributes are finally modeled as classes in the intrinsic ontology model. Among these
classes, two types of relationships are used to show the links between the classes in
different layers. isA relationship is used to describe super- and sub-class links between
component types. isAttributeof defines the value set of an attribute of a class in the

 A Multiple Viewed Interrelated Ontology Model 53

ontology model, e.g., component vender class is linked with a set of venders under the
“isVenderof” relationship.

3.2 Function Model

The function model specifies the functionality and quality of service of components.
Functions are performed by components which represent fundamental characteristics
of software, and a component provides specific functionality or carries out a specific
task in a particular business domain. As an ontological model, the top level classes
include function type, component domain and QoS. Due to the classes overlap be-
tween different domains, the subclasses of the function type are defined in detail and
are classified without any overlap, such as data conversion, data entry, data valida-
tion and so forth. The way to link the classes is the same as intrinsic model. isAttrib-
uteof is used to connect classes which are used to describe a sort of component
attribute such as component function and component domain. Some of these classes
link to instances directly, but some of them have large tree type architecture of sub-
class, sub subclass and so forth. In this sub model, isA is used to link the classes and
its subclass.

3.3 Context Model

The context model is used to represent the reuse context information of the compo-
nents, including but not limited to the application environment, hardware and soft-
ware platform, required resources and possible dependency with other components.
The top level classes consist of operating system, component container, hardware
requirement and software requirement. The context model is built in the same way as
above two models, i.e., using isA to build ontology hierarchies of class operating
system and class component container, and using isAttributeof to specify the value set
of the attributes of the classes of hardware requirement and software requirement.

3.4 Meta-relationship Model

Meta-relationship model provides a semantic description of the relationships among
the classes in different facets (sub-models) of MVICS. Four types of relationships are
identified, namely Matching Propagation Relationship, Conditional Matching Propa-
gation Relationship, Matching Negation Relationship and Supersedure Relationship.
Let’s define a relationship as A →B, where A and B are classes in different facets of
the MVCIS model. The above four relationships are then defined as follows:

Matching Propagation Relationship

A
Pro⎯⎯→B, which reads as the matching propagates from A to B. It means that if A

satisfies the requirement of a component search then B and all its subclasses will
satisfy the requirement as well. In component retrieval, such a relationship will enable
all the components under class B and its subclasses to be part of the result components
for a user query that is matched by class A. The impact on the search path of this rela-
tionship is given in part a) of Figure 2. When the search engine identifies class A as a
match with the user search keyword K1, it will continue to search for result compo-
nents in the subclasses of A, and at the same time also identify class B as a match. It

54 C. Li, X. Liu, and J. Kennedy

Fig. 2. The impact on search path: a) Matching Propagation Relationship; b) Conditional
Matching Propagation Relationship; and c) Supersedure Relationship

would not continue the search in subclasses of B, because all the subclasses of B are
deemed as matching.

Conditional Matching Propagation Relationship
A PrC o−⎯⎯⎯→B (attri=V), which reads as the matching propagates from A to B on the
condition that value of attribute attri is V. In MVICS, A PrC o−⎯⎯⎯→B (attri=V) means that
if A satisfies the requirement of a component search then B and its subclasses may
satisfy the requirement if their attribute attri has value V. In component retrieval, the
relationship enables that the components under class B are part of the result compo-
nents for a user query that is matched by class A, if their attri has value V. This rela-
tionship will impact on the search path as follows: when the search engine identifies
class A as a match with a user search keyword K1, it will continue to search for result
components in the subclasses of A, and at the same time search B and its subclasses
on the condition of attri=V, as shown in b) of Figure 2.

Matching Negation Relationship
A Neg⎯⎯→B, which reads as the matching with A implies not matching with B. In
MVICS, this relationship means that if a result component (C1) is obtained by a key-
word matching with class A, then C1 is not the result component obtained by another
keyword matching with class B. This relationship deals with problems caused by the
incompatible requirements in a user query. When user input several keywords, class A
and class B, which are matched with two different keywords respectively, may have
Matching Negation Relationship, i.e., a result component can not belong to both
classes simultaneously. To tackle this problem, the user query can be treated as two
groups of keywords. One group consists of the keyword matched with class A, the
other group consists of the keyword matched with class B.

 A Multiple Viewed Interrelated Ontology Model 55

Supersedure Relationship
A Sup⎯⎯→B reads as the matching of A is superseded by that of B. In MVICS, Superse-
dure Relationship means that if the content of class B has higher priority to the con-
tent of class A, then the result components obtained by matching A will be replaced by
the result components obtained by matching B. This relationship provides the follow-
ing impact on the search path, as shown in c) of Figure 2: when the search engine
identifies A as a match with a user search keyword K1, it will stop searching in the
subclasses of A, but turn to search from B and its subclasses.

All the above four sub component specification ontology models are defined in
OWL. These OWL documents can be seen as the paths that connect user queries and
result components.

4 Holistic and Precise Component Retrieval

4.1 Class Weight Calculation Method

Weight of Class (Wc) is defined as the foundation for calculating the precision of
result components. In each sub-model of MVICS, every class is given a weight to
calculate the relevance of each search result. The rules of weight assignment are: i) In
one facet, the lower a layer is, the heavier weight its classes have; ii) In different fac-
ets, classes at the same depth in the function model are heavier than those in the in-
trinsic model and the context model. The weight assignment rules are formally de-
fined as follows:

 Wc= (1+x)n (1)

where n is the level of the layer in which the class locates, x = 0.5 if the class belongs
to the function model, x = 0.3 if the class belongs to the intrinsic model, x = 0.2 if the
class belongs to the context model. The weight of a search path (Wp) is the sum of
the weight of the classes included in it.

4.2 Retrieval Algorithm

Based on MVICS, a search algorithm was developed. This algorithm accepts compos-
ite search conditions with multiple keywords linked with logic connectors. It recog-
nizes the keywords with ‘and’ as a group of requirements, which are then searched
together. Those keywords linked with ‘or’ are considered as two different search
requirements, which are then searched one after the other. To correspond with the
MVICS model in which component specifications are classified into three aspects, the
keywords of a user query are also divided into three groups: Function Keywords
(FK), Intrinsic Keywords (IK), and Context Keywords (CK).

The search engine will then search the three groups of keywords in the MVICS
OWL documents one by one, even though the value of keywords in any group may be
‘Null’. Meanwhile, it will record the search path of every keyword from the result
class to top class and then calculate the path weight by summing up every class
weight in this path. The search engine will record the components that link to the
result class.

56 C. Li, X. Liu, and J. Kennedy

4.3 Precision Calculation Method

After retrieval, a set of records is obtained for each keyword, which includes the re-
sult component name, the search path and its weight. The match precision of a result
component (Pc) is calculated with the following unified formula:

 1 1 1

1 11

0.5 0.3 0.2

a b d

r r r
r r r

i j n

t tt
t tt

WpFK WpIK WpCK
Pc

WpFK WpCKWpIK

= = =

= ==

= × + × + ×
∑ ∑ ∑

∑ ∑∑
 (2)

The numerators in the formula represent the path weight of the result components that
partially match with the keywords in each facet, and the denominator represents the
path weight of those perfectly matched.

4.4 Adaptive Component Matching

Component adaptation is a popular means to alter the functionality and quality features
of selected components [1][2]. The proposed approach accommodates the impact of
adaptation in the specification and selection of matching components. This unique fea-
ture will allow a more systematic and holistic view in component specification and
selection. We call those components whose function and QoS may vary via the applica-
tion of adaptation assets “adaptive components”. In MVICS, the adaptive components
are linked to a class via an adaptation method or assets if the component becomes rele-
vant to that class after adaptation with that method or asset. These adaptation methods
and assets are defined as classes or instances in MVICS. The retrieval path is then re-
corded as an adaptive path, in contrast to the direct path, i.e. without adaptation.

The specification of adaptive components in MVICS and the retrieval algorithm
take into account the adaptation effects, the adaptation methods/assets, and the effort
associated with the adaptation.

4.5 Search Result Profile

In contrast to most existing approaches, which present to the user the name and preci-
sion of the result component, our approach provides a holistic profile of the result
component to help the user make the best decision in component selection.

The profile shows the matching result in each sub ontology model and the corre-
sponding adaptation information. The profile consists of: i) the result component
name; ii) the overall precision of the component match, including the precision with
component adaptation, and the precision without adaptation; iii) the match results in
sub models: function model, intrinsic model, and context model; iv) the associated
adaptation method or asset and its incurred effort.

5 The Prototype Tool and Case Study

A prototype tool with an example component repository is built to verify and auto-
mate the approach. In this tool, the MVICS ontology is implemented in OWL. The
function, intrinsic and context sub-models are implemented in three different OWL
files. The relationships in the meta-relationship model are implemented as links be-
tween classes in the above OWL files.

 A Multiple Viewed Interrelated Ontology Model 57

The tool has a simple user interface (Figure 3 a)), where the user can fill the query
into text area, and the keywords of the user query are classified by different facets of
MVCIS in background process of the tool. The search engine will search the OWL
documents first and then connect to the components. The search result is shown in the
component match profile which we mentioned before. Furthermore, this tool also
provides SQL database search by filling component names directly or clicking the
component names in the match profile.

The tool and approach have been applied to a case study. As an example from the
case study, a user wants to search for a component with the following requirements:
Function: File Transfer and Encryption
Component Type: .NET Class, and WPF
Component Platform: Window XP and Window Vista
Component Container: Microsoft Visual Basic 2008, IBM VisualAge, and Oracle

JDeveloper
The search engine searched the keywords one by one in function, intrinsic and context
sub-model of MVICS. In the same time, the relationships between the sub-models add
more semantics, e.g., the class IBM VisualAge in the Context model has a Matching
Propagation Relationship with Java Class and C++ Class, which are subclasses of
Component Type in the intrinsic model. This implies that components which run on
IBM VisualAge should have a component type of Java or C++. This indicates that the
result component obtained while the user query is matched. This indicates that the
result component obtained while the user query is matched class Java class or C++
class are also the result components when the user search keyword is IBM VisualAge.

The names of the result components and their precisions are displayed in the
right pane of the interface, as shown in a) of Figure 3. When a result component is
highlighted, its search result profile will pop up, as shown in b) of Figure 3. The upper
part of the profile illustrates the result component name and the overall precision of
the component search. The first and the second number indicate the precision
after the component adaptation, more than one adaptation path (APi) is possible.

Fig. 3. a) The UI of the MVICS prototype tool b) The Result Component Profile

58 C. Li, X. Liu, and J. Kennedy

The third number (0.45) indicates the original match precision. The three output areas
in the middle indicate the match results in Function, Intrinsic and Context model. The
text area at the bottom of the profile shows the adaptation method(s) or asset(s) used
in the component search and their efforts to apply. By clicking the component name
in the profile, the complete specification of the component will be presented.

6 Validation

To test the validity of the approach, a project website was built. The prototype tool
was transformed to a web application and published on the site. 300 components
(acutely component specifications) were selected from several component sale web-
sites, e.g. Componentsources, Componentplanet and Allfreeware with possible adap-
tation assets developed, and then were populated into a corresponding component
repository. Software engineers, researchers and amateurs are able to use the applica-
tion and comment on it via a questionnaire. The above users followed the following
steps to evaluate the MVICS tool against traditional component retrieval approaches:
1) Proposing requirements based on the exiting component specifications and se-

lecting suitable result component (R1) manually.
2) Using the MVCIS based prototype tool to search the same requirements and

receive a set of search results (R2).
3) Using the SQL database search tool which is supported by traditional approaches

to search the requirements again and record another set of results (R3).
4) Comparing R2 and R3 with R1 respectively, and then fill out a questionnaire re-

garding how well each search performed according the four criteria: Recall (R),
Precision (P), Result Display (RD), and Adaptation Suggestion (AS).

Recall and precision, as motioned in section 2, are crucial dimensions to judge the
effectiveness of component retrieval. The result display is to indicate the degree of
user satisfaction with the completeness, clearness and usefulness of the display of the
result components. The criteria adaptation suggestion is used to estimate the degree
of usefulness and user acceptance of the found adaptation suggestion.

Up to present, 69 users have tested the tool in practice. The results of these compo-
nent retrieval experiments are analyzed and shown in Figure 4. The MVICS based
search tool improves recall, precision, result display, and adaptation suggestion effec-
tively at a rather large extend, in particular on the criteria of result display and adapta-
tion suggestion.

0%

20%

40%

60%

80%

100%

R P RD AS

Tr andi t i onal
Appr oaches

MVI CS based

Appr oach

Fig. 4. The level of satisfaction of MVICS prototype tool and traditional search tools

 A Multiple Viewed Interrelated Ontology Model 59

7 Conclusions

The objectives of the research are to develop an ontology-based approach to solving
the component mismatch problem via holistic, semantic-based and adaptation-aware
component specification and retrieval. Our literature investigation has shown that the
proposed approach has novel contributions to the research area and similar work has
not been done.

The MVICS ontology model has a novel architecture. It gets rid of the over-
complication problem in traditional monolithic ontology, because it has a set of highly
coherent and relatively loosely coupled sub-models. The inter-relationships among
the classes in different sub-models ensure a holistic view in component specification
and selection, and improve the retrieval precision and efficiency. Another contribu-
tion is that search result is presented in a profile which consists of a spectrum of
elements instead of simply the components and their relevance. Unlike existing ap-
proaches, in the MVICS approach component adaptation is considered as an integral
part of component specification and selection. Available adaptation assets and meth-
ods such as wrappers and aspects are defined in MVICS. During component selection,
appropriate adaptation assets/methods will be selected or suggested against the unsat-
isfied discrepancy.

Our case studies and user feedbacks have shown that the approach and the tool are
promising in their ability and capability to solve the identified drawbacks in compo-
nent specification and selection. In the future, we could improve the MVICS approach
by extending MVICS to popular application domains. i.e., add more domain specific
attributes to improve its capability, and by developing a mechanism for MVICS
model evolution.

References

1. Bosch, J.: Superimposition: A Component Adaptation Technique. Information and Soft-
ware Technology 41(5) (1999)

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. Journal of
Systems and Software 74(1), 45–54 (2005)

3. Due, R.: The Economics of Component-Based Development. Information Systems Man-
agement 17(1) (2000)

4. Gao, T., MA, H., Yen, I.-L., Khan, L., Bastani, F.: A Repository for Component-Based
Embedded Software Development. International Journal of Software Engineering and
Knowledge Engineering 16(4), 523–552 (2006)

5. Hall, J.: Generalized Behavior-Based Retrieval. In: Proceedings of the Fifteenth Interna-
tional Conference on Software Engineering, pp. 371–380 (1993)

6. Han, J.: A Comprehensive Interface Definition Framework for Software Components. In:
Proceedings of Asia-Pacific Software Engineering Conference APSEC 1998, p. 110 (1998)

7. Kim, Y., Stohr, E.A.: Software Reuse: Survey and Research Directions. Journal of Man-
agement Information Systems 14(4), 113–147 (1998)

8. Liu, Q., Jin, X., Long, Y.: Research on Ontology-based Representation and Retrieval of
Components. In: 8th ACIS International Conference, vol. 1, pp. 494–499 (2007)

60 C. Li, X. Liu, and J. Kennedy

9. Mili, A., Mili, R., Mittermeir, R.: Storing and Retrieving Software Components: A Re-
finement- Based System. IEEE Transactions on Software Engineering 23(7), 445–460
(1997)

10. Ostertag, E., Hendler, J., Prieto-Diaz, R., Braum, C.: Computing Similarity in a Reuse Li-
brary System: An AI-based Approach. ACM Transactions on Software Engineering and
Methodology 1(3), 205–228 (1992)

11. Pahl, C.: An ontology for software component matching. International J. Software Tools
Technology Transfer 9, 169–178 (2006)

12. Patrizio, A.: The new developer portals. Information Week (799) (August 2000)
13. Prieto-Diaz, R., Freeman, P.: Classifying Software for Reuse. IEEE Software 4(1), 6–16

(1987)
14. Sugumaran, V., Storey, V.: A Semantic-Based Approach to Component Retrieval. The Da-

tabase for Advances in Information Systems, Volna 34(3) (2003)
15. Yao, H., Letha, E.: Towards A Semantic-based Approach for Software Reusable Compo-

nent Classification and Retrieval. ACMSE 2004 (2004)
16. Yen, I., Goluguri, J., et al.: A Component-based Approach for Embedded Software Devel-

opment. In: Proceedings of the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing. ISORC, p. 0402 (2002)

17. Zaremski, A.M., Wing, M.: Signature Matching: A Key to Reuse. Software Engineering
Notes 18(5), 182–190 (1993)

18. Zaremski, A.M., Wing, J.M.: Specification Matching of Software Components. Software
Engineering Notes 20(4), 6–17 (1995)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 61–69, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Conflict-Based Model for Problem-Oriented Software
Engineering and Its Applications Solved by Dimension

Change and Use of Intermediary

Jung Suk Hyun1 and Chan Jung Park2,∗

1 Dept. of Management Information Systems, Jeju National University,
1 Ara-dong Jeju-si Jeju-do, 690-756, South Korea

2 Dept. of Computer Education, Jeju National University,
1 Ara-dong Jeju-si Jeju-do, 690-756, South Korea

{jshyun,cjpark}@jejunu.ac.kr

Abstract. In order to develop desirable software, defining problems is the most
important among all software development activities. In this paper, we propose
a model, namely Butterfly model, which defines various kinds of problems by
means of contradiction relationships. Our Butterfly model is based on TRIZ and
is useful for creative problem solving. By using the proposed model, we review
4 problems and then, solve the problems by eliminating the contradictory rela-
tionships. All the problems in this paper have the same features in some aspects.
All can be defined as a problem having a trade-off between ‘volume’ and ‘effi-
ciency’. In other words, we can find some problem frames. Finally, we apply
the dimension change principle and the use of intermediary principle of TRIZ to
solve the problems.

Keywords: TRIZ, Problem Frame, Problem-Oriented Software Engineering,
Contradiction-based Problem Solving, Creative Problem Solving.

1 Introduction

Traditionally, the software development process is defined as a set of phases such as
requirement analysis, design, implementation, testing, and maintenance. Among them,
the requirement analysis is critical to a software development. During the requirement
analysis phase, software engineers try to define a solution that can be described with
functional characteristics or non-functional characteristics. Thus, the traditional methods
for software development can be regarded as solution-oriented methods [1].

On the other hand, problem-oriented development (POD) approach is domain-
independent [2]. Especially, problem-oriented software engineering (POSE) tries to
provide a generic structure that can combine the results of different development
processes [3]. If there is a model for describing problems with their requirements,
solution domains, and environmental factors formally, we can solve various kinds of
problems easily.

∗ Corresponding Author.

62 J.S. Hyun and C.J. Park

In this paper, we propose a model, namely the Butterfly model, which defines
problems with contradictions by a diagram. And then, by using TRIZ tools, we review
4 problems and find their solution principles (or problem frames [4]). The problems
belong to various kinds of areas such as marketing, computer hardware, and software.
In addition, we already knew about their solutions. However, we redefine the prob-
lems with our model and apply the same rule to the problems. We found some inter-
esting things that if problems have a trade-off between the large volumes of data vs.
the efficiency of process, then they can be solved with the same way. The same way
means dimension change and the use of intermediary.

The rest of this paper is organized as follows. In Section 2, we introduce the theory
of TRIZ. And then, we review a few software engineering problems with TRIZ. In
Section 3, we propose a model, namely Butterfly model, which defines a problem as a
contradictory relationship. And then, we give an example and its solution to explain
our model. In Section 4, we define 3 problems with our model and then, give their
solution by applying the same method. Finally, we conclude our paper in Section 5.

2 TRIZ and Software Engineering

2.1 Contradictions

Before we describe TRIZ, we define what contradictions are. A contradiction consists
of an incompatibility. It occurs when two or more things have different characteristics
which form the inversions of each other [5][6]. A contradiction occurs between A and
B because if A is getting better, then B is getting worse and vice versa. Contradictions
can be classified into two groups as shown in Figure 1. One occurs between two use-
ful functions and the other occurs between a useful function and a harmful function.
For example, if speed increases, then safety decreases and the amount of fuel con-
sumption increase. While the flexibility of a programming language is high, the effi-
ciency of the programming language is low.

(a) (b)

Fig. 1. Two Kinds of Contradictions

In TRIZ, there is another way to divide contradictions. There are two types of con-
tradictions: physical contradictions and technical contradictions. The physical contra-
dictions are the situations where the same component must satisfy mutually exclusive
demands to its physical state. For example, the wings of an airplane should be wide
and narrow. While flying, the wings of the airplane should be narrow for high speed.
While taking off or landing, the wings of the airplane should be wide for safety. Due
to the same reason, the wheels of the airplane should exist and not exist. These are

 A Conflict-Based Model for Problem-Oriented Software Engineering 63

physical contradictions. The technical contradictions are the situations when a useful
action simultaneously causes a harmful effect. For example, if a highly secure soft-
ware causes the less performance of a system. And, if a programming language is
highly flexible, then it causes low efficiency.

Many engineers think that there is no way to have them both at the same time. Es-
pecially, in case of technical contradictions, many people hardly believe that the tech-
nical contradictions can be solved. However, in TRIZ, a technical contradiction is
redefined as a physical contradiction and is solved by various kinds of TRIZ tools.
Contradictions are the same as requirements in software engineering. Thus, if we
eliminate (solve) some contradictions, we can satisfy some requirements in software
engineering. That’s why contradictions are important.

2.2 TRIZ

TRIZ is the acronym for “Theory of Inventive Problem Solving”. It was developed by
Genrich Altschuller and his colleagues [7]. Comparing with traditional method, TRIZ
can reduce the number of trial-and-errors by abstraction and analogical reasoning
when engineers solve problems as shown in Figure 2. In other words, given a specific
problem to be solved, the problem is transformed into more generalized form. There
are many tools in TRIZ to solve problems. Figure 3 shows the basic process of
problem solving with TRIZ [9]. In this paper, we use Ideal Final Result (IFR) and 40
principles when solving problems. IFR is an ideal solution of an engineering design
problem [5]. And, 40 principles are the principles for inventions such as segmenta-
tion, extracting, and so on [9].

Fig. 2. Basic Process of Problem Solving with TRIZ [6][8]

2.3 Software Engineering Problems with TRIZ

From the beginning of 2000, people have adopted TRIZ to IT problems. Especially, in
Japan, several professionals have reviewed software engineering topics with TRIZ
[10] [11]. The purposes of the research were to apply TRIZ to software development
problems and to extend the application of TRIZ into software engineering [10].

The first attempt was the concept of structured programming [10]. In this research
[10], the contradiction between goto and goto-less was redefined, and the structured
programming was given as an alternative. The structured programming can be driven
by TRIZ Inventive principle 1 (segmentation), principle 7 (nesting), and principle 16
(partial or excessive actions) [10].

64 J.S. Hyun and C.J. Park

The second attempt was the stepwise refinement and the Jackson method [12]. In
the Jackson method, a program structure of a problem is driven from its data struc-
tures of inputs and outputs [11][12]. In this research [11], the author found out TRIZ-
related principles. Among them, the Inventive principles, 35 (parameter change), 40
(composite materials), and 5 (merging) are used for the Jackson method. The parame-
ter change means to change the degree of flexibility and the composite materials
means to change a homogeneous component to composite components [11]. The
merging means that multiple operations or functions work together in time [11].

From these researches, we found that the principles and knowledge in TRIZ can be
applied to software engineering and vice versa. If a similar problem was already
solved in software engineering but not in TRIZ, we can apply the same method to
TRIZ. In the same manner, we can apply the same method to software engineering
when a similar problem was already solved in TRIZ.

Fig. 3. Basic Process of Problem Solving with TRIZ [9]

3 Butterfly Model

In this Section, we describe our model for defining a problem. Our model is based on
diagrams and contradictions. The root of almost invention or innovation is in a solved
contradiction of a system. According to TRIZ, the most effective inventive solution of
a problem is the one that overcomes some contradictions. A contradiction occurs
when we improve one parameter of a system which affects the same or other parame-
ters of the system. A problem solver has to extract a contradiction from the problem
and fit into the solution for the problem [5][6]. Usually a problem is not solved if its
contradiction is not overcome. Now, we define our model by using an example,
namely a cart problem.

Figure 4 shows the structure of our model. The given example is not related to
software engineering directly, but gives some hints when we solve the problems in
software engineering. In addition, this example is related to the problems described in
the next section. In this example, in order to earn money, a retail store wants custom-
ers to buy a lot of goods at a time. Thus, the owner tries to prepare bigger shopping
baskets to achieve his/her goal. However, if the baskets become bigger, the customers
feel heavy. For customers, smaller baskets would be better than heavier baskets. A
technical contradiction occurs. The procedure to solve a problem is given as follows:

 A Conflict-Based Model for Problem-Oriented Software Engineering 65

Fig. 4. The Butterfly Model

① We firstly extract a technical contradiction between speed and capacity.

② And then, we transform this contradiction into a physical contradiction as
shown in Figure 4. When we assume that a technical contradiction is an object,
its physical contradiction can be a tool.

③ Next, we find an IFR as an analytic process. An IFR should satisfy any combi-
nation of technical contradictions and physical contradictions at the same time.
For simplicity, in our model we make an IFR as combination of one of a tech-
nical contradiction and the other side of a physical contradiction. For example,

an IFR can be A∧~C in Figure 4. At this time, you can make the other IFR.

The other IFR is B∧C in Figure 4.

Fig. 5. A shopping cart problem is described by our Butterfly Model and its solution is given.
When we find a solution we apply TRIZ tools such as 40 principles, ARIZ, and so on. We can
solve this problem by using Invention principle 17 (Dimension change) and 24 (Intermediary).
Sylvan Goldman’s shopping cart [13] can be a solution (the dimension change). And online
shopping like amazon.com can be another solution (the intermediary).

66 J.S. Hyun and C.J. Park

④ Next, we can find a concept solution by using 40 principles. Figure 5 shows a
technical contradiction and its transformed physical contradiction. We made
two IFRs and by using them with 40 principles, we solved the problem. Even
though the solutions were already known to the public, it is important to find
out the principles ‘dimension change’ and ‘intermediary’ worked together
when we solve the above problem.

4 Examples

In this section, we describe 3 problems interpreted by our Butterfly Model. All the
problems of this paper have a technical contradiction between the large volume of
data and the efficiency of process.

The first problem is a hard disk problem. Many hard disk vendors want to make
small size hard disks with a huge amount of capacity. In order to increase the capacity
of a hard disk, engineers should reduce the size of particle for containing a bit. How-
ever, if the size is reduced too small, the disk header cannot read data exactly. Thus, a
technical contradiction occurs. In our model, we transform the technical contradiction
to the physical contradiction shown in Figure 6. We also made two IFRs and by using
them with 40 principles, we found out the solution principles. Like the shopping cart
problem, we found out that the principles ‘dimension change’ and ‘intermediary’
were also used together in this case.

The second problem is QR Code with smart phones. Recently, since almost every-
one has a mobile device such as a cell phone, a smart phone, or a PDA, various kinds

Fig. 6. A hard disk problem. We can also solve this problem by using Invention principle 17
(Dimension change) and 24 (Intermediary). Perpendicular magnetic recording technique can be
a solution (the dimension change). And the use of hard disk backup software to reduce the size
of original input data can be another solution (the intermediary).

 A Conflict-Based Model for Problem-Oriented Software Engineering 67

of applications running on the mobile devices have been developed rapidly. In addi-
tion, due to the keen competition, in various areas such as education, politics, tourism,
and festival as well as industry, the effort for producing fruitful marketing is spread
by performing effective publicity[14]. In spite of the diversity of publicity media, the
pamphlet, which provides core summarized information, still plays a key role among
various media. Recently, the type of pamphlet is changed from off-line to on-line. If
off-line and on-line media are combined to provide publicity content, it can influence
on successful publicity. QR code is a good intermediary to achieve the above goal.
QR code is a two dimensional barcode and it is a quick and efficient tell me more
mechanism [15][16].

As shown in Figure 7, QR code applications have a technical contradiction: for ap-
plications, a large volume of data should be contained in QR code. Thus, the QR code
size should be bigger. However, it causes longer decoding time due to the bigger size.
In our model, we defined a physical contradiction by using the technical contradic-
tion. And then, we applied the same principles to this problem.

Fig. 7. QR code problem. We can also solve this problem by using Invention principle 17 (Di-
mension change) and 24 (Intermediary). To increase the density and to use the Internet as an
Intermediary are possible solutions.

The last problem is the technical contradiction between readability and efficiency
of software. When we develop software, the readability and the efficiency of the
software are both important. However, there exists a technical contradiction between
them. This problem can be solved with the dimension change principle and the use of
intermediary principle in the same manner. For solving this problem, we firstly divide
the original software into two things. One is the source code of the software only. The
other is the document of the software. Next, we can use functions as the intermediary.
The use of functions makes modular programming, and this feature can keep the
readability of the software. Figure 8 shows the technical contradiction and its corre-
sponding physical contradictions.

68 J.S. Hyun and C.J. Park

Fig. 8. Readability vs. Efficiency. By using Invention principle 17 (Dimension change) and 24
(Intermediary), we can solve the problem. We divide a problem into a source code + its docu-
mentation. Also, the adoption of functions as an intermediary can increase the readability.

5 Conclusions

In this paper, we propose a model for defining problems by means of contradictions.
And then, we found out a problem frame that can be solved with TRIZ’s 40 princi-
ples. Especially, the dimension change and the use of intermediary were adopted
when a problem contains a technical contradiction between ‘volume’ and ‘efficiency’.
The prototype of the Butterfly model was introduced at [17]. However, there was no
consideration about the program frames and the solution principles that the dimension
change and the use of intermediary came together. Due to the page limit of a paper,
we did not present Steve Job’s iPod problem. However, we can solve our solution
principle (by use of intermediary) to the problem. Briefly, we can summarize the iPod
problem as the contradictions between ‘to contain a lot of music in the iPod’ vs. ‘to
reduce the size for comfortable carriage’. Recently, we solve another problem which
is similar to the problems of this paper and has no solution yet. We found one solution
by using the dimension change. In the near future, we can find another solution that
can be solved by the use of intermediary.

References

1. http://poc-workshop.eu/page_1235693775153.html
2. http://www.allconferences.com/conferences/2009/

20090311103607/
3. Hall, J., Rapanotti, L., Jackson, M.: Problem Oriented Software Engineering: Solving the

Package Router Control Problem. IEEE Transactions on Software Engineering 34(2), 226–
241 (2008)

4. Jackson, M.A.: Problem Frames and Software Engineering. Journal of Information and
Software Technology 47(14), 903–912 (2005)

 A Conflict-Based Model for Problem-Oriented Software Engineering 69

5. Fey, V., Rivin, E.: Innovation on Demand: New Product Development Using TRIZ, Cam-
bridge (2005)

6. Savransky, S.D.: Engineering of Creativity: Introduction to TRIZ Methodology of Inven-
tive Problem Solving. CRC Press, Boca Raton (2000)

7. Pala, S., Srikant, A.: TRIZ: A New Framework for Innovation Concepts and Cases, ICFAI
Books. The ICFAI University Press (2005)

8. Lee, K.:
 http://miso.yeskisti.net/C/
 miso_v.jsp?s_cd=CB&record_no=20899

9. TRIZ center, http://www.trizcenter.co.kr
10. Nakagawa, T.: Software Engineering and TRIZ 1: Structured Programming Reviewed with

TRIZ. In: Proceedings of the 7th TRIZCON Conference, Detroit (2005)
11. Nakagawa, T.: Software Engineering and TRIZ 2: Stepwise Refinenemt and the Jackson

Method Reviewed with TRIZ. In: Proceedings of the 5th ETRIA Conference, Austria
(2005)

12. Jackson, M.A.:
 http://www.ferg.org/papers/
 jackson–a_system_development_method.pdf

13. Sylvan Goldman’s Shopping Cart, http://realcartu.com/goldman/
14. Park, C., Hyun, J., Kang, J., Kim, M., Park, J., Hong, Y., Oh, J.: U-Pamphlet for Jeju Fire

Festival. In: Proceedings of the 1st Asia TRIZ Conference (2009)
15. Mediaseek,

 http://www.camreader.jp/english/pdf/SymbolDecoder_E.pdf
16. http://www.qrme.co.uk/qr-code-news/qr-code-applications.html
17. Hyun, J., Park, C.: Butterfly Bridge Model as a Simplified ARIZ. In: Proceedings of the

4th Japan TRIZ Conference (2008)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 70–77, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Requirements Engineering Problems and Practices in
Software Companies: An Industrial Survey

Badariah Solemon1, Shamsul Sahibuddin2, and Abdul Azim Abd Ghani3

1 College of IT, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, 43009 Kajang,
Selangor, Malaysia

badariah@uniten.edu.my
2 Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

shamsul@utm.my
3 Universiti Putra Malaysia, Selangor, Malaysia

azim@fsktm.upm.edu.my

Abstract. This paper presents about a study conducted to investigate the current
state of Requirements Engineering (RE) problems and practices amongst the
software development companies in Malaysia. The main objective of the study
is to determine areas in RE process that should be addressed in future research
in order to improve the process. Information required for the study was obtained
through a survey, questionnaires distributed to project managers and software
developers who are working at various software development companies in the
country. Results show that software companies in this study are still facing
great challenges in getting their requirements right due to organizational and
technical factors. Also, we found out that high-maturity ratings do not generally
correlate better performance and do not indicate effective, high-maturity prac-
tices especially to the RE practices. The findings imply that we must consider
both human and technical problems, with extra care should be given to the
technical issues and all the RE practices in our future research which is to re-
build a specialized RE process improvement model.

Keywords: Requirements Engineering (RE), RE problems, RE state-of-the-
practice.

1 Introduction

System and software development projects have been plagued with problems since
the 1960s [1]. Since then, Requirements Engineering (RE) has become one of the
central research topics in the field of software engineering. Although progress in RE
has been painfully slow with software development projects continue to experienced
problems associated with RE [2], research effort in the area continues to be done.
These research are mainly motivated by the list of advantages expected to be brought
about by the successful implementation of an improved RE process. Review made on
recent related literatures discovered at least two research that study the state of RE
problems experienced by organizations in different parts of the world. The first re-
search by Sarah Beecham et al. [3],[4] studied the RE problems in twelve software

 Requirements Engineering Problems and Practices in Software Companies 71

companies in UK. Their main findings suggest that most of the requirements prob-
lems experienced in the companies in their study were organizational. Also, results of
the study suggested that the higher the maturity level of the company the less frequent
are the requirements problems. The second research performed similar study covering
eleven Australian software companies [5]. In this study, however, it concluded that
while companies with immature RE process experience technical problems; compa-
nies with mature RE process cited more organizational problems. We also uncover
several field surveys of RE practices. RE practices, especially those good ones, can
“either reduces the cost of the development project or increases the quality of the
resulting project when used in specific situation” [6]. Research that study the state of
RE practice include those in [7],[8],[9],[10]. However, relationships between com-
pany’s maturity and RE practices are not shown in the research.

Since most of these existing surveys results, which focus at identifying either the
RE problems or practices to improve RE process, may not be appropriate to general-
ize from such a relatively small samples used, it is obviously useful to conduct similar
studies, in other part of the world. The new study, however, must be designed care-
fully to guaranty its highest representativeness. Furthermore, the situation in Malaysia
is not quite known as there are not any research done thus far to study both the current
state of the RE problems and RE practices in this country. Motivated mainly by the
work done by [3],[5], we performed a similar study in Malaysia. The main objective
of the study is to determine areas in RE process that should be addressed in order to
improve the process.

In the next three sections, the materials and data collection method, the results on
valid responses, and the analyses performed to interpret the results of the study are
explained.

2 Data Gathering

We used mailed, self-administered questionnaires as our main approach to investigate
those RE problems and practices. Questionnaires entitled “A Survey to Investigate the
Current Requirements Engineering (RE) Practices and Problems amongst the Soft-
ware Companies in Malaysia” were distributed to practitioners working at various
software development companies in Malaysia. Practitioners in our study refer to
project managers and software developers as suggested in [3]. Self-administered
questionnaires are chosen mainly because of their suitability to cater our target popu-
lation, i.e. practitioners who are working at various software development companies
located throughout the country, in line with the recommendation made in [11].

2.1 Questionnaire Design

The questionnaire was organized into four main sections: section A, section B, section
C and section D. Section A has two parts: part 1 and part 2. Part 1 contains questions
that ask for the company profiles of our respondents whilst part 2 contains question
that find out the background information of the respondents. Section B contains a list
of project problems, organizational and technical RE related problems. Section C

72 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

aims to find out the respondents’ RE practices in a software development project that
they have taken part recently. This section lists 82 RE practices which are grouped
into 9 key practices: requirements document, requirement elicitation, requirements
analysis and negotiation, describing requirements, requirements modeling, require-
ments verification and validation, requirements management, and other practices. The
practices mainly were gathered from literature such as [1], [2], [3], [5], [12], [13].

2.2 Population Determination

In this study, a software development company is defined, following definition by
Sison et al.[14], as “a for-profit organization whose main business is the development
of software for customers external to the organization. Excluded in this definition is
IT departments that cater primarily to the needs of the organization of which they are
part”. Our main source of information to estimate the number of software develop-
ment companies in Malaysia is the Multimedia Super Corridor (MSC) portal [15]
where a list of Information and Communication (ICT) related companies awarded the
MSC Malaysia status is publicly available. This portal is considered the most reliable
source of information in estimating the number of software development companies
in Malaysia and referred by a number of research such as [16],[17],[18],[19]. Based
on the company information in the portal, the population of our study is 1193 and we
randomly selected 500 of the software development companies.

2.3 Data Collection

Prior to posting the questionnaires, pilot studies were conducted to assess respon-
dents’ level of understanding, level of difficulty in responding and level of relevance
to subject area. We also used the pilot studies to assess the level of time commitment
required to complete the questionnaire which was estimated to be 30 minutes. The
pilot studies involved five software development companies which were chosen from
a convenience sampling. Changes were made to the questionnaires as results of the
feedback received.

This survey data was collected through February and March 2008. A total of 113
responses were received, making up 23% response rate. However, only 64 responses
are complete and considered valid for analysis. Most are excluded mainly due to in-
complete answers. Despite the low valid response rate (13%), we decided to proceed
with analyzing the responses. According to Lethbridge et al. [11], a low response rate
of about 5% would already be sufficient for an exploratory study of this kind. Fur-
thermore, the 13% response rate is consistent with the exploratory study done in [14]
on software practices in five ASEAN countries (Malaysia, Philippines, Singapore,
Thailand and Vietnam) reported in 2006.

3 Results

In the following sections, we present the analyses performed on the information gath-
ered from 64 valid responses.

 Requirements Engineering Problems and Practices in Software Companies 73

3.1 Demographic of Respondents

The survey participants include 73.4% companies which are “100% locally owned”
type of company. Interestingly, about half of these companies (54.7%) employed less
than 19 IT staffs only. About 18.8% (12) companies are appraised with various levels
of the Software Engineering Institute’s Capability Maturity Model Integration
(CMMI) and 6 (6.25%) companies in the survey are currently in the process of getting
the CMMI-DEV appraisals. About one third of the respondents are project managers
(35.9%) and another one third (37.6%) are business analyst, software engineer, and
consultant. The remaining 26.5% respondents who chose “Others” range from senior
software process engineer to high-level managers. The respondents’ experiences in
handling RE are mainly between 1 to 5 years (45.3%) and some have had been han-
dling RE between 5 to 10 years (40.6%).

3.2 Size of RE Problems

Following classification by [3], [4], we classify problems experienced related to RE
into two: organizational-based and RE process-based. Research conducted by [1], [3]
show that 63% of RE problems can be attributed to organizational factors that are
external to the RE process where almost all organizational-based RE problems are
human-based. Our results show that 60% of RE problems experienced by the compa-
nies in our study can be attributed to factors inherent within the RE process rather
than to factors external to the RE process. This suggests an opposite pattern in term of
RE problems experienced by companies in Malaysia and companies in the study by
[3], [4]. Our results also show that organizational issues contributing to the RE prob-
lems are quite diverse, similar in data collected by [1], [3]. However, our data sug-
gested a few problems have different pattern of supportive response. Also, the results
suggests that about half of the problems can be contributed by lack of customer and
user communication problem, lack of developer communication problem, and poor
time and resources allocations issues. We also discovered that almost 60% RE proc-
ess-based problems are related to changing requirements, incomplete requirements,
ambiguous requirements and poor user understanding.

3.3 RE Problems Pattern and Company Maturity

A finer grained analysis was done to view the relationship between these problems
and the maturity level of the companies. Unlike the study in [3] that performed self-
assessment activity to the companies’ maturity prior execution of the focus groups,
we based our study only on the formal CMMI appraisal. For analysis purpose, we did
a two-by-two cross tabulation between the CMMI appraised companies and the RE
problems. Then, we performed the Fisher’s exact test [20] to see the significant dif-
ference between these two types of companies. As shown in Table 1, the resulting p-
values, greater than 0.05 for all the RE problems excluding Item 2.12, indicate there is
no statistical difference (at the ∝ = 0.05 level) in the critical and supportive responses
between these companies. For Item 2.12, the p value 0.048 indicates there is statistical
difference in the critical and supportive responses between the two types of compa-
nies. We suspect that this is related to the companies having been formally appraised
at various CMMI maturity levels. It is likely that the appraisal process has made eve-
ryone very aware of the companies’ state of RE processes.

74 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

Table 1. The p-values of RE problems

Fisher's exact test
Exact Sig (2-sided)

Organizational-based:

2.4 Lack of customer and user communication 1.000

2.5 Lack of developer communication 0.117

2.6 Lack of training 1.000

2.7 Inappropriate skills 0.531

2.8 Lack of defined responsibility 0.537

2.9 Unstable workforce (low staff retention) 0.754

2.10 Poor time and resource allocations 0.750

RE process-based:

2.11 Complexity of application 0.345

2.12 Undefined RE process 0.048
2.13 the actual requirements 0.514

2.14 Poor user understanding 0.484

2.15 Incomplete requirements 1.000

2.16 Inconsistent (changing) requirements 0.381

2.17 Inadequate requirements traceability 0.308

2.18 Ambiguous requirements 0.715

RE problem

4 Top-Ten RE Practices

As described in subsection 2.1, section C of the questionnaire aimed at obtaining
information on the current RE practices of the practitioners via the list of 82 items.
According to Sommerville and Sawyer [12], there are ten basic practices which are so
important that they should be implemented on all organisations at any level of RE
process maturity. In our study, we do not measure any RE process maturity level of
the companies involved. In the following paragraphs we performed analysis limited to
these ten practices.

In section C of the questionnaire, the respondents were required to rate each RE
practices according to a different 4-point measurement scales (0 = never, 1 = used at
discretion of project manager, 2 = normal used, 3 = standardized). The points of the
ten practices by each company in the survey were then calculated based on the score
of the four types of the REAIMS assessments [12]. From Fig. 1(a), we can see the
typical points obtained by the companies in the study is somewhere between 14.73
and 25.7. Furthermore, we can see that half of the companies score 21 points or less,
the most common score is 22 and the range is from 8 to 30 points. We performed a
detail analysis of the points scored by two types of companies in the study: companies
appraised with CMMI and companies without CMMI appraisal as shown in Fig. 1(b).
From Fig. 1(b), we can see that these different groups of companies scored quite
differently except the maximum score points. Interestingly, even though typical com-
panies appraised with CMMI score higher points (between 21.18 and 29.32, with
most common companies of this kind score full points 30) in the ten practices, these

 Requirements Engineering Problems and Practices in Software Companies 75

Valid 63

Missing 1

20.4286

21.0000

22.00

5.70714

8.00

30.00

Std. Deviation

Minimum

Maximum

Statistics

Points
N

Mean

Median

Mode

Valid 12 51

Missing
0 1

25.2500 20.7059

25.5000 21.0000

30.00 22.00

4.07040 5.54001

19.00 9.00

30.00 30.00

Statistics

Points: Companies appraised
with CMMI

Companies
without CMMI

appraisal
N

Maximum

Mode

Std. Deviat ion

Minimum

Mean

Median

(a) (b)

Fig. 1. (a) Points scored (b) Points scored for companies with and without CMMI appraisal

companies still experienced almost all the RE problems as described in the subsection
3.3 and other general project problems as discussed in [23].

5 Discussion

Results in our study show that the pattern of RE problems experienced by software
development companies in Malaysia is similar to the findings reported in [5]. How-
ever, the result is the opposite from the results reported in [3], [4]. Our results suggest
that RE problems experienced by the companies in our study can be attributed more
to factors inherent within the RE process rather than to factors external to the RE
process. This means problems, such as changing requirements, incomplete require-
ments, ambiguous requirements, and poor user understanding, are still the challenges
faced by the software development companies apart from the common human-based
organizational problems. One possible explanation for this pattern probably is because
of the ability to adapt to increasingly rapid and unpredictable change is still one of the
challenges facing 21st-century organizations as mentioned by Boehm in [21]. These
findings imply that we must consider both human and technical problems, with extra
care should be given to the technical issues, in re-building a specialized RE process
improvement model which is discussed in [22].

Our results also suggest that statistically there is no difference in the RE problems
faced by companies appraised with the CMMI and companies without the CMMI
appraisal. It is not surprising for the companies without the CMMI appraisal. Points
scored for the ten practices indicate that the RE practices are not widely followed.
However, it is exciting to know that companies which claimed that they widely
followed and checked, at least, the ten practices as part of the companies’ quality
management process, still experience almost all the RE problems as discussed in the
subsection 3.3 and other general project problems in [23]. This finding shows another
confirm case where high-maturity ratings do not indicate effective, high-maturity
practices as in [24]. However, as further explained by Humphrey in [24], “it is not the

76 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

appraisal process is faulty or that organizations are dishonest, merely that the maturity
framework does not look deeply enough into all organizational practices”. This pro-
vides justification and motivation to the work described in [22].

6 Conclusion

In this paper, the results of a study done on investigating the current state of RE prob-
lems and practices amongst Malaysian practitioners are presented. The study was
accomplished through mailed, self-administered questionnaires distributed to 500
sampled software development companies throughout the country. Despite the low
response rate (13%) for the complete and valid responses, we decided to proceed with
the data analysis. Analyses performed to the valid responses received are then com-
pared with findings from similar studies reported in [3], [4], [5]. Although not all the
RE problems patterns in this study are the same, they still indicate that software com-
panies are currently facing great challenges in getting their requirements right due to
organizational and technical factors. Also, we found out that high-maturity ratings do
not generally correlate better performance and do not indicate effective, high-maturity
practices especially to the RE practices. These findings provide justification and right
direction to work on enhancing and improving a specialized RE process improvement
framework called R-CMM [25] as described in [22] by looking more deeply into all
the RE practices.

References

1. Kotonya, G., Sommerville, I.: Requirements Engineering. Processes and Techniques. John
Wiley & Sons, Chichester (1997)

2. Young, R.R.: Effective Requirements Practices. Addison-Wesley, Boston (2001)
3. Beecham, S., Hall, T., Rainer, A.: Software Process Improvement Problems in Twelve

Software Companies: An Empirical Analysis. Empirical Software Engineering 8(1), 7–42
(2003)

4. Hall, T., Beecham, S., Rainer, A.: Requirements Problems in Twelve Software Companies:
An Empirical Analysis. IEEE Proceedings of Software 149(5), 153–160 (2002)

5. Niazi, M., Shastry, S.: Role of Requirements Engineering in Software Development Proc-
ess: An Empirical Study. In: IEEE INMIC 2003, pp. 402–407 (2003)

6. Davis, A.M., Zowghi, D.: Good Requirements Practices are neither Necessary nor Suffi-
cient. In: Requirements Eng., vol. 11(1-3). Springer-Verlag London Ltd., Heidelberg
(2006)

7. El Emam, K., Madhavji, N.H.: A Field Study of Requirements Engineering Practices in In-
formation Systems Development. In: 2nd IEEE International Symposium of Requirements
Engineering, pp. 68–80. IEEE Press, New York (1995)

8. Nikula, U., Sajaniemi, J., Kalviainen, H.: A State-of-the-Practice Survey on Requirements
Engineering in Small- and Medium-Sized Enterprises. Technical Report. Telecom Busi-
ness Research Center, Lappeenranta University of Technology, Finland (2000)

9. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An industrial case study of imme-
diate benefits of requirements engineering process improvement at the Australian Center
for Unisys Software. Empirical Software Engineering Journal 9(1-2), 45–75

 Requirements Engineering Problems and Practices in Software Companies 77

10. Niell, C.J., Laplante, P.A.: Requirements Engineering: The State of the Practice. IEEE
Software, 40–45 (2003)

11. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying Software Engineers: Data Collection
Techniques for Software Field Studies. In: Empirical Software Engineering, vol. 10, pp.
311–341. Springer Science + Business Media, Inc., The Netherlands (2005)

12. Sommerville, I., Sawyer, P.: Requirements Engineering. A Good Practice Guide. John
Wiley & Sons, Chichester (1997)

13. Hofmann, H.F., Lehner, F.: Requirements Engineering as a Success Factor in Software
Projects. IEEE Software, 58–66 (2001)

14. Sison, R., Jarzabek, S., Hock, O.S., Rivepiboon, W., Hai, N.N.: Software Practices in Five
ASEAN Countries: An Exploratory Study. In: The 28th International Conference in Soft-
ware Engineering ICSE 2006, pp. 628–631. ACM, China (2006)

15. MSC Malaysia Status for Companies,
 http://www.msc.com.my/cs/company/default.asp (last accessed 3 March
 2008)

16. Aris, H.: Exploring the Potential of Components-Oriented Software Development Applica-
tion. In: UNISCON, pp. 355–366. Springer, Heidelberg (2009)

17. Seta, F., Onishi, T., Kidokoro, T.: Study about Locational Tendency of IT Companies in
City Centers and Suburbs – Case Study of Malaysia. In: International Symposium on Ur-
ban Planning, pp. 257–266 (2001)

18. Raja Kassim, R.S., Kassim, E.S.: Knowledge Management Practices amongst MSC Status
Companies in Malaysia: A Survey. International Journal of Knowledge, Culture and
Change Management 5(9), 63–70 (2000)

19. Schreiner, K.: Malaysia’s Silicon Valley Moves Forward. IEEE Software, 126–130 (1999)
20. Keith, M., Bower, M.S.: When to Use Fisher’s Exact Test. American Society for Quality.

Six Sigma Forum Magazine 2(4), 35–37 (2003)
21. Boehm, B.W.: Making a Difference in the Software Century. In: Computer, pp. 32–38.

IEEE Computer Society, Los Alamitos (2008)
22. Solemon, B., Sahibuddin, S., Abd Ghani, A.A.: Re-building the RE Process Improvement

Model. In: Accepted in the 16th Asia-Pacific Software Engineering Conference (APSEC
2009), Penang, Malaysia (2009)

23. Solemon, B., Sahibuddin, S., Abd Ghani, A.A.: An Exploratory Study of Requirements
Engineering Practices in Malaysia. In: 4th Malaysian Software Engineering Conference,
Universiti Malaysia Terengganu (UMT), Terengganu (2008)

24. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI. Guidelines for Process Integration and
Product Improvement, 2nd edn. Addison Wesley, Upper Saddle River (2007)

25. Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model.
Software Quality Journal 13, 247–279 (2005)

A Formal Methodology for Semantics and Time
Consistency Checking of UML Dynamic Diagrams

Youcef Hammal

LSI Laboratory, Department of Computer Science, USTHB University
B.P. 32, El-Alia, 16111, Bab-Ezzouar, Algiers, Algeria

hammal@lsi-usthb.dz

Abstract. The consistency checking of designed UML artifacts for real-time
systems is a difficult task because of the imprecise dynamic semantics of UML
diagrams and the expressiveness gap between them. In this setting, this paper
proposes a formal methodology for semantical and time consistency checking
between the behavioral models of StateCharts and scenario-based specifications.

1 Introduction

UML notations for scenarios are called sequence diagrams [8] which show the intended
interactions between the system components and their relationships, including the mes-
sages that may be dispatched among them. Hence, the sequence diagram of any sys-
tem can be seen as its specification model depicting expected interactions between its
components whereas the related state diagram focuses more on internal behaviors of
components and thus can be considered as the implementation model of the system un-
der design. However, the key issue to support the design of reliable software systems
is to prove that sequence diagrams are faithfully implemented into StateCharts which
correctly realize the intended interactions. In other terms, designers have to check the
consistency of UML dynamic models composed of state and sequence diagrams.

In this paper, we aim to formally check wether a real-time design behaves according
to a collection of timed sequence diagrams and to test the absence of time deadlocks.
That is, time constraints as specified on the interaction diagrams would be fulfilled by
the statecharts enhanced with appropriate time information related to implementation
platforms. Therefore, we propose to project the problem onto an suitable formalism
level which is able to handle real-time constraints. A further restriction is imposed by
the fact that practical verification is only feasible if tool support is available. Thus, we
selected timed automata as our basic behavioral formalism [1].

Since UML diagrams lack formal semantics we make use of the formalization method
defined in [4] to translate sequence diagrams into transition systems which depict all the
allowed paths of the system interactions. This paper extends this approach and discusses
the suited way to properly extract time and duration observations and constraints and
map them into timing constraints on the derived specification graphs.

Similarly, we extend the formalization method defined in [3] which translates state
diagrams into an enhanced time Petri nets. We propose as well to translate the time
annotations on the arcs of StateCharts into time constraints on the transitions of the
reachability graph we have to build from our derived Petri nets.

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 78–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Consistency Checking of UML Dynamic Diagrams 79

Hence, our method can be used for consistency checking of dynamic diagrams of the
system under design and for testing the absence of time deadlocks in derived graphs. For
this purpose, we propose to merge these graphs by means of a synchronization product
and then to proceed to prove that all intended interactions of the sequence diagram are
realizable by the state diagram especially when considering time constraints.

In contrast to our approach supporting both semantics and time consistency check-
ing, authors of [6] use weak bisimulation to compare untimed π-expressions depicting
whole dynamic diagrams. Likewise, in [10] entire class diagrams, sequence diagrams,
and StateCharts are transformed into description logic for checking consistency be-
tween different versions of these diagrams. Also, the approach of [2] verifies the con-
sistency of sequence and state diagrams using dynamic meta-modeling (DMM) rules
and [7] uses an algorithmic approach to achieve this checking. In [5], the authors pro-
pose to translate the UML diagrams to its equivalent XMI documents and then to check
the consistency of these XMI documents. Unfortunately, a comprehensive mapping of
UML diagrams using such formalisms can result in very verbose and cumbersome spec-
ifications. Also, the main drawback of such translations is the use of only subsets of
UML state machines and exclusion of several suitable concepts for reactive systems.

The remainder of the paper is organized as follows: Section 2 discusses the method
to translate timing annotations on sequence diagrams into time constraints on their be-
havioral graphs. Likewise, section 3 addresses the mapping of timing annotations of
StateCharts into suitable time constraints on their state space graphs. Hence, section 4
presents a combination operation over timed graphs and shows how to check their time
and semantical consistency. Finally, a conclusion is given in section 5.

2 Sequence Diagrams as an Interactions Specification Language

To define timing constraints in standard UML, time annotations can be attached at the
beginning and the end of a message arrow. These labels can be used to specify the
minimum and the maximum time gap between two marked points in the diagram or to
define the duration of a periodic sequence. For instance, the sequence diagram in figure
1 shows how time and timing notations may be applied to describe time observation
and timing constraints. The "Train" sends to the "Barrier Control" a signal "approach"
which should be dispatched within d units of time. The "Barrier Control" has either to
send back to the "train" the message "stop" within the time interval {0..3 ∗ d} or let the
train enter the secured area.

Our approach consists in extracting time formulas over logical clocks from the time
annotations in sequence diagrams. We then adorn with these timing constraints the re-
lated nodes and transitions of derived behavioral graphs in a similar way to timed au-
tomata [1]. The clocks are variables provided with valuations expressing time progress
and the time constraints over these valuations state the conditions to let the control stays
in or leaves a node by taking on some transition as explained below.

Definition 1. Let χ be a finite set of clocks ranging over R≥0. The set Ψ(χ) of timing
constraints on χ is defined by the following syntax: φ ::= true | x � c | x − y �
c | not(φ) | φ ∧ φ | φ ∨ φ where x, y ∈ χ, c ∈ R≥0 and �∈ {<,≤}.

80 Y. Hammal

{t1..t1+3}

Time observation

Time constraint

Duration constraint

Train Barrier control

alt

sd Crossing

enter

exit

down

up

stop

go
brake

restart

{0…3*d}

{ 3*d}

t1 = now
{t2..t2+3}

t2 = now

Duration constraintApproach {0..d}

Fig. 1. Sequence Diagram with Timing Annotations

We enhance untimed graphs with timing constrains by adding three mappings I, G and
Z as follows: The timed version of an automaton A =< Q, ↪→, Σ, q0 > is the graph
AT =< A, χ, I, G, Z > where: χ : is a finite set of clocks. I : Q −→ Ψ(χ), G :
T −→ Ψ(χ),and Z : T −→ 2χ. The mapping I assigns to each node of the automaton
an activity condition (i.e., invariant), the mapping G assigns to each transition (e ∈↪→) a
timing guard which should be true to let the transition fire, and the mapping Z associates
with each transition a set of clocks initializations (see fig.3).

The role of invariants is important. Indeed as time progresses, the values of the clocks
increase providing the state satisfies the invariant. For states that do not satisfy the
invariant, the progress of time is "stopped". This mechanism allows the specification of
hard deadlines: when for some action a deadline specified by the invariant is reached,
the continuous flow of time is interrupted. Therefore, the action becomes urgent and it is
"forced" to occur if it is enabled. A deadlock status will be thus any timed configuration
of the automaton which the related active node has a false activity condition and all its
outgoing transitions have false timing guards.

Note that time constraints will help us refine more our specification and discard
some forbidden transitions away from the behavioral graphs we could derive from our
interaction diagrams. For instance, in fig.3, we notice two forbidden transitions depicted
by thick arrows. These ones are implied from the sequence diagram even though we did
not intend to specify them but thanks to time constraints that we add as guards we can
specify when their occurrences become not allowed.

The addressed issue is how to translate faithfully a time annotation into a time con-
straint on our behavioral graphs. A first solution is to put the constraint on the node
source of the arc labeled with the constrained event as illustrated in fig.3(a). However,
that can lead to express more time constraints than what one would specify. Indeed, even
if only the event e1 of fig.3(a) is concerned with the activity condition on Si the time
can not progress once the control reaches this node with some valuation of h1 which

Consistency Checking of UML Dynamic Diagrams 81

makes the condition false. This situation makes urgent not only the performance of
e1 but as well of e2 even if this action is a delayable one. On the other hand, assigning
time constraints on the arcs as in fig.3(b) may also lead to some problems: as the activity
conditions on nodes are now true the time can progress until making false the guard
of the arc labeled with e1, thereby disabling this transition although it is a real-time one.

A possible solution can be to infer the invariant of the node Si from the conjunction
of the guards of its outgoing arcs. However, this is only suitable for depicting hard
timing constrains leading to time deadlock situations when those constraints are not
respected. Furthermore, this solution does not allow us depict soft time constraints with
timeout or best effort policies where time progress is always possible. For such cases,
when guards of timed actions become false either exception actions may happen or the
system has only to continue its execution according to a best effort policy.

Consequently, we adopt a trade-off approach which adorns with invariants only
nodes having outgoing arcs with hard real-time constraints. However, a timed action
guarded with a timeout action does not require putting on its source node any invariant
other than true. That is, if the timed action fails to occur within its deadline then the
timeout action could always happen. For instance, in fig.3(b), the action e2 plays the
role of an exception handling action which could occur if e1 is not performed within its
deadline. Algorithms to derive time constraints can be adapted from those in [4].

In fig.3(c), we present a fragment of the timed graph related to the sequence diagram
of fig.1 combined with that of its StateChart of fig.2 (bringing dashed transitions).

3 StateCharts as Implementation Description Language

As the design of time-critical systems requires the observation of quantitative system
aspects, a consensus had emerged that UML 1.x is lacking in quantifiable notion of
time. Fortunately, UML has all the requisite mechanisms for addressing these issues
through its extensibility faculties, namely timing constructs and stereotypes given in
the OMG profile of time specification [9]. In the domain model of this time profile, an
event is assumed to occur instantaneously. That is, it takes place at a particular time
instant and has no duration. An event occurrence can be associated with a time value
relative to some clock to identify the time when it occurred. Such an event is called
timed event though it may be of any kind (e.g., the sending and receiving of signals, the
invocation of an operation). When an event occurs, it may cause a number of stimuli to
be generated. To allow modeling of stimuli that have an associated timestamp, the time
profile introduces the notion of timed stimulus which has at least one associated time
value. It is also very useful to have a common abstraction for an action that takes time
to complete: a timed action. This provides a generic facility for modeling behavior that
has a definitive start time and a definitive end time.

Our approach consists in extracting time annotations of the StateChart and translating
them into time formulas over logical clocks. Then, it assigns these constraints as guards
onto related transitions of the marking graph similarly to timed automata [1].

In our approach we have to enhance our implementation graph AImpl =< Q, ↪→,
Σ, q0 > by adding three partial mappings I , G and Z as follows:
- I : Q −→ {true}, - G : T −→ Ψ(H), - Z : T −→ 2H .

82 Y. Hammal

The first mapping I assigns always to each node a true invariant because at the
implementation level, we have to ensure that timed actions will occur within their time
intervals. Indeed, time progress can not be stopped as at the specification level to express
the situation where some hard timed action should be performed. The second mapping
G assigns to each arc a guard if it exists otherwise it assigns true. The third mapping
Z associates with each transition a set of clocks initializations which may be empty.

For example, fig.2 shows two StateCharts related to the train control system compo-
nents. We then try to check whether the two components always evolve without leading
to irregular situations. The part of the behavioral graph presented in fig.2(c) contains
dashed arrows which depict potential actions that are not specified within our sequence
diagram of fig.1. Anyway, we give later how to discover such irregular paths when
comparing timed behavioral graphs related to state and sequence diagrams.

4 Consistency Checking of Dynamic Diagrams

Given some system under design, we would check that StateCharts of its components
fulfill their intended interactions of the sequence diagram by comparing their behavioral
graphs (called resp. specification and implementation graphs).

4.1 Consistency Checking of Untimed Graphs

We propose to use a verification approach suited to deal with timed graphs. This ap-
proach considers the system properties as a process (i.e., the specification graph) which
is combined with the system model (i.e., the implementation graph) by means of the
merging operator. Then, the resulting graph has to be bisimilar to the implementation
graph. This method amounts to assert that all the computations we can derive from a
sequence diagram are also available as prefixes of sequences computed from the related
StateChart with preservation of its branching structure too.

First, we give below the definition of the comparison criterion which is the equiva-
lence relation of bisimulation denoted by the symbol ≈.

Definition 2. Let Ai = (Qi, ↪→I , Σ, qi
0) |i=1,2 be two labeled transition systems. A

bisimulation is a symmetric relation R ⊆ Q1 × Q2, such that for every (p, q) ∈ Q1 ×
Q2, pRq if and if: ∀a ∈ Σ, ∀p′ : p

a−→ p′ then ∃q′ : q
a−→ q′ and p′Rq′.

A1 and A2 are bisimilar (A1 ≈ A2) if their initial nodes are bisimilar.

Next, we give the definition of our combination operator between graphs. Let AImpl be
the implementation graph < QImpl, ↪→Impl, ΣImpl, q

Impl
0 > issued from the trans-

lation of the state diagram of the system and let ASpec be the specification graph
< QSpec, ↪→Spec, ΣSpec, q

Spec
0 > issued from the translation of its sequence diagram.

Definition 3. A synchronization product ⊗ of two graphs AImpl and ASpec yields a
new transition system A =< Q, ↪→, Σ, q0 > such that: Q = QImpl × QSpec with
q0 = (qImpl

0 , qSpec
0), Σ = ΣImpl, ↪→= {(p1, p2)

a−→ (q1, q2) | a ∈ (ΣImpl∩ΣSpec)∧
(p1

a−→ q1) ∈↪→Impl ∧(p2
a−→ q2) ∈↪→Spec} ∪ {(p1, p2)

a−→ (q1, p2)|a ∈ ΣImpl ∧
∃q1 ∈ QImpl : (p1

a−→ q1) ∈↪→Impl ∧�q2 ∈ QSpec : (p2
a−→ q2) ∈↪→Spec}.

Consistency Checking of UML Dynamic Diagrams 83

(b) Barrier Controller

S0

S2

S1

approach? /

enter? / down!

S3

S4

S5

\ stop!

exit? / up!

\ go!

(a) Train

S0

S4

S1

/ approach!

stop? / brake!

S5

S2

S3

/ enter!

go? / restart!

/ exit!

(c) A state space fragment

S0 S1

exit!

S2
stop!S4

S5

exit! [true]
approach ?

[G] enter!

[true]
approach ?

[true]
approach!

[G]
enter!

stop!
enter ?

Fig. 2. StateCharts of A Train Control System

Accordingly, if two graphs are able to individually achieve a same action at a point
of their evolution, then they have to synchronize its performance in the merged graph.
However, when the implementation graph can carry an action which the specification
graph does not offer at that point the merged graph is also allowed to perform it because
sequence diagram depicts only fragments of possible interactions.

We say that the StateChart of the system Sys semantically fulfills the global sequence
(or overview interaction) diagram sd (denoted Sys � sd) if the synchronization product
of their derived graphs is strongly bisimilar to the graph of the system Sys. This means
that there is a simulation preorder from the specification graph ASpec to the implemen-
tation graph AImpl. Let the symbol �Sys� denote the implementation graph AImpl of
the system and let the symbol �sd� denote its specification graph ASpec.

Definition 4. Sys � sd iff �Sys� ⊗ �sd� ≈ �Sys�.
Let SD be a subset of sequence diagrams. Sys � SD iff ∀sd ∈ SD, Sys � sd .

Besides this, we can often detect some inconsistencies in the state diagram in com-
parison with its sequence diagram by extracting and combining their time constraints
especially upon the implied transitions presented in fig.3 with thick arrows.

4.2 Consistency Checking of Timed Graphs

When considering time constraints on implementation and specification graphs, the
merging operator has to be enhanced to combine these time constraints related both
to actions and nodes of these graphs. Indeed, the adopted combination style will have
an effect on the ability of each combined constituent to progress in such a way the
needed computations are performed within the required deadlines. Obviously, the com-
position product ⊗T of two timed graphs AT

Impl and AT
Spec yields a new timed graph

AT =< AImpl⊗ASpec, I, G, Z > where ⊗ is the untimed merging operator and I and
G are the timing functions defined respectively over nodes and transitions as follows:
Let the composite node (q1, q2) ∈ QImpl × QSpec and let e be the combined arc
((q1, q2), a, (q′1, q

′
2)) ∈↪→Impl⊗spec . Then,

84 Y. Hammal

I((q1, q2)) = ISpec(q2) ∧ IImpl(q1) = ISpec(q2) ∧ true = ISpec(q2).

G(e)=
{

GImpl((q1, a, q′1)) if ∃(q1, a, q′1) ∈↪→Impl ∧�(q2, a, q′2) ∈↪→Spec

GImpl(e1) ∧ GSpec(e2) if e1=(q1, a, q′1)∈↪→Impl∧e2=(q2, a, q′2)∈↪→Spec

The previous synchronization over time constraints asserts that the specification con-
straints in the merged graph should be fulfilled. In fact, timing annotations on the im-
plementation graph are almost concerned with execution and transmission durations
whereas the timing constraints in the specification graph describe the requirements in
terms of deadlines to meet. Hence, the invariant of a composite node is exactly its
specification constituent invariant, the role of which is to state whether there is a strict
deadline imposed on some outgoing hard timed action. On the other hand, the guard of
a synchronized action is the conjunction of the guards of its constituents.

When merging the two graphs, we would verify that they are consistent with each
other. That is, the implementation fulfills the specification in a more suited way than
what has been stated in the untimed case. In a similar way, we would check that the
composition of timed graphs does not raise more incompatibilities. Indeed, the timing
constraints have an effect of the reachability of states and deadlines of certain actions
may exclude the availability of others.

Definition 5. Let e = e1 ⊗ e2 be a composite transition outgoing from a compos-
ite state q = (q1, q2) in the merged graph. We consider that e is timely consistent if
GImpl(e1) ⇒ GSpec(e2) ⇒ ISpec(q2).

Thus, any time annotation of the StateChart action complies with its timing constraint
as specified in the sequence diagram. In a similar way, we apply the same rule to define
the time consistency of a simple transition in the merged graph.

Definition 6. Let the transition e be derived from a simple implementation transition
e1 without synchronization with anyone from the specification graph. e is said timely
consistent if GImpl(e1) ⇒ ISpec(q2).

In other terms, the invariant brought by the specification to the source node q = (q1, q2)
would not exclude the performance of the implementation transition e1.

Definition 7. We say that the StateChart of the system Sys timely fulfills the global
sequence (or overview interaction) diagram sd if Sys � sd and all the transitions of the
merged graph AT =< AT

Impl ⊗T AT
Spec > are timely consistent.

For instance, fig.3(c) presents a fragment of the graph generated from the combina-
tion of specification and implementation graphs of the train control system. We can see
that the simple transition outgoing from the node S2 and labeled with an occurrence
of the action "enter!" can be timely consistent if the implementation guard G implies
the invariant of its source node S2. However, the composite transition labeled with an
occurrence of the action "enter!" outgoing from the node S1 is always timely inconsis-
tent because whatever the valuation of the implementation guard G, the specification
guard can never imply the invariant of the source node S1, making it impossible to be
enabled.

Consistency Checking of UML Dynamic Diagrams 85

(a) Hard Time Constraints

Si
Sk

h1<5

[2<h1<5] e1,
Sj

e2

h2 0

true

(b) Action guarded by timeout

Si

Sk

[2<h1<5] e1,
Sj

e2

h2 0

S0 S1

exit! S3

stop!S2

S4exit!
approach ?

[G h1 3*d] enter!

[h1<d] approach ?
[h1<d][true] approach!

h1, h2 0

[h1<d]

[h1<d]
[G h1 3*d]

enter!

stop!
enter ?

[h1 3*d]

S5

S6

approach ?[h1<d]

enter ?

[h1<d]

(c) A Fragment of the Merged Graph of the Train

Fig. 3. Timed Graphs

5 Conclusion

We presented herein a methodology for time and semantics consistency checking of
UML dynamic diagrams to uncover design flaws and to find out whether timing con-
straints of sequence diagrams could be fulfilled in respect of time annotations on arcs
of StateCharts. For future work, we plan to extend this approach to deal with various
time policies and to address the compatibility issue among sequence diagrams. Lastly,
modular checking techniques remain a key topic to handle the state explosion problem.

References
1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–

235 (1994)
2. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the consistency of dynamic UML

diagrams. In: Proc. of Integrated Design and Process Technology (2002)
3. Hammal, Y.: A formal Semantics of UML State Charts by means of Timed Petri nets. In:

Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 38–52. Springer, Heidelberg (2005)
4. Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In: Najm, E.,

Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 259–
274. Springer, Heidelberg (2006)

5. Kotb, Y., Katayama, T.: Consistency checking of UML model diagrams using the XML se-
mantics approach. In: Proc. of Intl. World Wide Web Conference, Japan, pp. 982–983 (2005)

6. Lam, V.S.W., Padget, J.: Consistency checking of sequence diagrams and statechart diagrams
using the π-Calculus. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS,
vol. 3771, pp. 347–365. Springer, Heidelberg (2005)

7. Litvak, B., Tyszberowicz, S., Yehudai, A.: Behavioral Consistency Validation of UML Dia-
grams. In: Proc. of the 1st Intl. Conference SEFM 2003, p. 118 (2003)

8. Object Management Group, Inc. (OMG): Unified Modeling Language: Superstructure ver-
sion 2.0, Final Adopted Specification (2004) http://www.omg.org

9. Object Management Group, Inc. (OMG): UML Profile for Schedulability, Performance, and
Time Specifi-cation (September 2003), Version 1.0, http://www.omg.org

10. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to main-
tain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

http://www.omg.org
http://www.omg.org

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 86–93, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Process Model for Forensic Analysis of Symbian
Smart Phones

Xian Yu, Lie-Hui Jiang, Hui Shu, Qing Yin, and Tie-Ming Liu

National Digital Switching System Engineering & Technology Research Center
Zhengzhou, Henan Province 450002, China

cosineyu@msn.com

Abstract. The smartphone segment has been witnessed the fastest growth in the
handset market.Traditional phones will be replaced by smart phones. At the
same time, smart phones may be used for fraud, forgery and defamation and
other criminal activities.Symbian smartphones forensics is relatively a new field
of interest among scientific and law enforcement.There are various mobile
phones forensics process models now. But these models may not be able to
solve the problems of the Symbian smartphone’s adoption.In this paper,we
describe a process model for forensic analysis of Symbian smartphones. As a
result,this model can overcome some problems of the traditional model of
digital investigation on Symbian smartphones.

Keywords: Process Model, Forensic Analysis, Symbian Smart Phones.

1 Introduction

ABI Research recently published a new data;it stated that the smart phones would
account for 31% market share among all the cellphoes’ market in 2013.Thus,smart
phones would become an important tool in our life.Smart phones are embedded with a
complete architecture, including: CPU, data bus, ROM, RAM, memory controller,
digital signal processor (DSP), radio frequency hardware, a variety of hardware
keyboard and interface, LCD etc. Smartphone devices embedded operating system
(OS) are stored in ROM. Equipments used in many various types of ROM include the
Flash memory[1]and[2]. Figure 1 shows the generic hardware diagram of a modern
smart phones device.

Flash memory’s non-volatile uniqueness,in terms of being erasable and rewritable
makes it easier for developers of smartphones OS upgrade or porting.There are two
types of flash memory, NOR and NAND. The names refer to the type of logic gate
used in each memory cell.NOR flash is faster, but it is also more expensive and takes
longer to erase and write new data. NOR is what so-far has been used mostly in
mobile phones. NAND has significantly higher storage capacity than NOR. Some
devices could use both NAND and NOR. A smartphone, for instance, can be
embedded NOR to boot up the operating system and a removable NAND card for all
its other memory or storage requirements.

 A Process Model for Forensic Analysis of Symbian Smart Phones 87

ROM RAM

Power
Manager

Memory
Controller

LCD
Controller

JTAG
Core

USB/UART Power

ProcessorWireless

Bluetooth

SD/MMC

Fig. 1. Smartphones generic hardware diagram

Firmware
6-20MB

UserArea
256KB-4MB

Processor

RAM
64-256MB File Systems

Area

User Area

NOR Flash
Memory

NAND Flash
Memory

Fig. 2. Flash memory assignments of a modern smartphones

Due to those enriched capabilities, the smartphones can store lots of personal
information, even valuable source of analysis in a crime investigation[3].At the time
of writing, Symbian is getting greater acceptance among other leading handset
vendors which also happens to be a Nokia’s major rivals.Symbian’s dominance in
Europe is unquestionable and it is also doing well in many other key markets.

Obtaining information on Symbian smartphones is often a primary goal as a result
of making an forensic analysis.However the security mechanism based on the Trusted
Computing introduced by the Symbian OSv9.x.Many smartphones forensics existing

88 X. Yu et al.

process model can not be applied to Symbian smartphones.In this paper, First based
on the survey and analysis of some existing models for forensic analysis of normal
smartphones. After that,we describe a process model for forensic analysis of Symbian
smartphones.By the model,we can overcome some problems of digital investigation
on Symbian smartphones.

2 The Existing Process Models

Smart phones are digital devices.In principle,it means that smartphones have the same
evidentiary possibilities as in other digital devices,such as hard drives.When
smartphones are involved in a crime or other incident, forensic investigators require a
process model that better be the most appropriate one.This section details some
models so that they can apply to forensic analysis of digital devices including
Windows Mobile .

2.1 Digital Investigation Process Models

In the digital investigation practices, there are over hundreds of digital forensics
investigation procedures developed all over the world. Each organization tends to
develop its own procedures. Some focused on the technology aspects such as data
acquisition or data analysis [4]. There are three process models including an incident
response model, a law enforcement model, and an abstract model that can apply to the
field of digital forensics. Based on the previous process model, Brian Carrier and
Eugene Spafford proposed yet anther model that organizes the process into five
groups consisting all in all 17 phases[5],which is listed and shown in Figure3.

The Integrated Digital Investigation Model ,IDIP

Readiness Phase: Train investigators,develop procedures,and test equipment.

Deployment Phase: Detect a crime or incident,verify it,and obtain authorization to
respond or investigate.

Physical Crime Scene Investigation Phase: The goal of the physical crime scene
investigation phases is to collect and analyze the physical evidence and reconstruct
the actins that took place during the incident.

Fig. 3. The integrated digital investigation model, IDIP

 A Process Model for Forensic Analysis of Symbian Smart Phones 89

Digital Crime Scene Investigation Phase: The goal is to identify the electronic events
that occurred on the system and present that to the physical crime scene investigation.

Review Phase: It involves reviewing the investigation to identify areas of improvement.

2.2 Windows Mobile Forensic Process Model

This process model focused on the specific information flow associated with the
forensic investigation of Windows mobile devices [6].The model attempted to
overcome the major shortcomings of the existing digital forensic models.This
proposed model consists of twelve phases,which is shown in Figure 4.

Fig. 4. Phases of the windows mobile device forensic model

3 Process Model for Symbian Smartphones Forensics

Symbian OS is an open source software operating system designed for smartphones
[11]. As a descendant of Psion's EPOC and runs exclusively on ARM Processors.
Unlike the general purpose devices as PCs,the Symbian Smartphones have some
peculiarities,which heavily influence forensic process[7]. This section, first of all,
describes the impediments of symbian smartphones forensics.

3.1 The Impediments of Symbian Smartphones Forensics

Symbian smartphones forensics is a new field of digital investigation. Data
acquisition on Symbian smartphones is often a primary goal in a forensic analysis.
However,Symbian smartphones forensics evidenced there were still many restrictions.

The diversity of Symbian smartphones

Symbian smartphones gain strong support from Nokia,In fact,the Nokia Series 60 UI
platform occupies an important position in the market.At this time of writing, there
have been several versions: version 1 (eg 7650), 2nd edition (eg 6600), 2nd edition
FeaturePack1 (eg 7610), 2nd edition FP2 (eg 6681), 2nd edition FP3 (eg N70), 3rd
edition (eg 3250),3rd edition FP1 (eg 6120),3rd edition FP2 (eg 5630MX),5th edition
(such as 5800MX),N97.

90 X. Yu et al.

The unit of trust

Since the introduction of Symbian OS version 9.1, which can also be referred to as
Symbian S60 series 3rd edition, Nokia engineers have been introducing
comprehensive support for Trusted Computing Base (TCB) concept. TCB is
responsible for maintaining the integrity of the device as well as applying the
fundamental rules of platform security [8].

The capability model

A capability is an authorization token.It indicates that its owner has been trusted to not
abuse resources protected by the token. Symbian smartphone forensics needs to sign an
internal forensic tool that requires phone manufacturers’ approval of capabilities. The
trusted API includes DRM, DiskAccess, NetworkControl and AllFiles capabilities,
where the last is referred as the complete access to the filesystem.

The data caging

The data caging relates to file access control. There are two capabilities that signed to
control access to the data caged directories includes\sys,\resource,\private[8].

(1) TCB:grants write access to executables and shared read-only resources
(2) AllFiles:grants read access to the entire file system; grants write access to other

processes’ private directories.

The access rules are summarized in the following table1:

Table 1. Capabilities and file access

 Capability required to

 Read Write

\resource none TCB

\sys AllFiles TCB

\private\<ownSID> none none

\private\<other> AllFiles AllFiles

\other none none

3.2 The Symbian Smartphones Forensic Process Model

In order to solve those problems mentioned above as well as to achieve the purpose of
forensics,a forensic process model for Symbian smartphones has been provided.This
is an adaptive process model, which is based on different versions of Symbian
smartphones.It contains the different stages of forensics and detailed explanations
provided in the subsequent sections and shown in Figure 5.

 A Process Model for Forensic Analysis of Symbian Smart Phones 91

Fig. 5. Stages of the Symbian smartphones forensic process model

Preparation and Version Identification: This stage ,as the first phase of the model is
mainly divided into two parts. One is to access its official public information on the
target Symbian smartphone version of the identification,.Two is ready to Symbian
evidence of tools and accessories of evidence. Then the initial version of the
information and tools that are used identify pre-judge the credibility of the
smartphone is working in the TCE(Trusted Computing Environment),An example is
Symbian OS version 9.1, which can also be referred as Symbian S60 series 3rd
edition.

Remote Evidence Acquisition: The introduction of Symbian OS v9.1 platform
security (usually is referred to as "PlatSec") is working in the TCE. The stage has two
methods in forms of protocol approach and hardware approach so that it can acquire
the evidence from the advantage Symbian smartphones based on TCB.Protocol
approach is based on command-responseprotocols by connecting to a remote host
computer, such as AT Command Set, SyncML, OBEX,Nokia FBUS proprietary
protocol[10].Hardware approach permits to acquire a binary image file of the entire
flash memory content.JTAG debug port can access the data within the Flash
memory[12]and[13]. Above two methods can be affected the least by the security
mechanism.Interestingly, the file system restriction policy is fully contained in the file
which is known as SWIPOLICY.INI[10].By modifying the file,investigators would
get the root certificate of the target Symbian,as a result to jump in to the process of
internal evidence acquisition.

Internal Evidence Acquisition: The stage is an adaptive phase.The investigation target
is early Symbian smartpnones without TCB.Investigators can access the entire memory
through the acquisition tools[7],then copy the files to removable media.As mentioned
above, the tool can only be able to perform acquisitions of data from the device. The
retrieved data is placed on the same removable media at which the tool resides.The
retrieved data can then be acquired and analyzed by using other forensic tools.

92 X. Yu et al.

Analysis: The platform security is to protect mobile data and the integrity of the
foundation.Platform security model works in the software level,as for detecting and
preventing application software on hardware, software and system or users data to
unauthorized access. It is evidence of the investigating officers could have some
impact. Therefore, investigators can extract from the Flash memory of the evidence,
disassembled the binary code to deal with further analysis of the code and password
in consequence to crack mobile phone or confuse the process. Static code analysis,
including pattern matching, lexical analysis, abstract syntax tree analysis and data
flow analysis and other methods.

Presentation and Review: The final stage in the model is the presentation and review
phase.Almost all existing digital forensic process models have had the same phases
and methods.After extracting and analyzing the evidence collected, results may need
to be presented.This involves reviewing all the steps in the investigation process and
identifying areas of improvement. As a part of the review phase, the results and their
subsequent interpretations can be used for the examination and analysis of evidence in
future investigations.

4 Conclusion and Future Works

A new forensic process model has been proposed,which it focuses exclusively on
Symbian smartphones forensic investigation and standardizing the approach. The
proposed set of activities in the model is incomplete;thus there is a need for
considerable scope of work in the future.Further works is a must so that the model can
be surely against to the anti-forensics such as data erasure, data hiding and data
encryption. And the adoption of smart phones may also be evidence of the wireless
remote to change the data.

In conclusion,in the view of these circumstances in the future smartphones will be
evidences of the following directions;evidences of the standardization of tools;
evidence of the automation tools as well as with other theories and technologies.
Examples are data mining, dynamic simulation technology, distributed technology.

References

1. Jansen, W.: Guidelines on Cell Phone Forensics. In: National Institute of Standards and
Technology Special Publication, pp. 800-101 (2007)

2. Jansen, W.: Guidelines on PDA Forensics. In: National Institute of Standards and
Technology Special Publication, pp. 800-72 (2004)

3. Distefano, A., Me, G.: An overall assessment of Mobile Internal Acquisition Tool. Digital
Investigation 5(1), 121–127 (2008)

4. Rahayu, S.: Mapping Process of Digital Forensic Investigation Framework. IJCSNS
International Journal of Computer Science and Network Security 8(10) (October 2008)

5. Carrier, B.: Getting Physical with the Digital Investigation Process. International Journal
of Digital Evidence 2(2) (Fall 2003)

6. Ramabhadran, A.: Forensic Investigation Process Model For Windows Mobile Devices,
http://www.forensicfocus.com/downloads/
windows-mobile-forensic-process-model.pdf

 A Process Model for Forensic Analysis of Symbian Smart Phones 93

7. Mokhonoana, P., Olivier, M.: Acquisition of a symbian smart phone’s content with an on-
phone forensic tool. In: Southern African Telecommunication Networks and Applications
Conference (SATNAC 2007) Proceedings (2007)

8. Sales, J.: Symbian OS Internals:Real-time Kernel Programming. John&Wiley Sons, Ltd.,
West Sussex (2005)

9. Jipping, M.: Smart Phone Operating System Concepts with Symbian OS: A Tutorial
Guide. John Wiley & Sons,Ltd., West Sussex (2007)

10. Savoldi, A., Gubian, P.: Issues in Symbian S60 platform forensics. Journal of
Communication and Computer 6(3) (Serial No. 52) (March 2009)

11. Morris, B.: The Symbian OS Architecture Sourcebook: Design and Evolution of a Mobile
Phone OS. John Wiley&Sons,Ltd., West Sussex (2007)

12. Breeuwsma, M.: Forensics data recovery from flash memory. Small Scale Device
Forensics Journal 1(1), 1–17 (2007)

13. Breeuwsma, M.: Forensic imaging of embedded systems using JTAG(boundary-scan).
Digital Investigation 3(1), 32–42 (2006)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 94–101, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reliability Analysis Method for Supporting Traceability
Using UML*

Joonhoon Lee, Beoungil Cho, Hyunsang Youn, and Eunseok Lee

Sungkyunkwan University, Suwon, Korea
{trsprs,mes1an,wizehack,eslee}@ece.skku.ac.kr

Abstract. Non-Functional Requirements (NFRs) are very important in software
system. Reliability is one of NFRs and should be satisfied for providing high
quality service. Many reliability analysis approaches are proposed but they have
some limitations such as modeling limitation or analysis limitation. In this pa-
per, we propose reliability analysis method with supporting traceability using
UML. This approach can provide reliability analysis result and find non-reliable
part of UML.

Keywords: Reliability, UML, Traceability, Petri Nets, Markov Chain.

1 Introduction

Software must satisfy Non-Functional Requirements (NFRs). Reliability is one of
these NFRs. In software engineering, software reliability is a probability of failure-
free operation of a software system for a specified period of time in a computer envi-
ronment [1]. Many researchers proposed the reliability analysis method. These are
based on the Markov Chain or Petri Nets or other methods. But these approaches have
some limitations [2]. One of these limitations is that current reliability analysis meth-
ods do not support traceability. Traceability is a trace ability to find out the part of the
model which makes problem [3].

UML based reliability analysis method is one of these reliability analysis approach.
UML is widely used in software modeling. UML can be modeled with reliability
analysis [4]. Software can be tested after development phase. Many UML based ap-
proach can provide analysis capability in design phase. In this paper, we use UML
model and support the reliability and traceability of software models. This can pro-
vide more powerful analysis in early phase of software development.

The rest of this paper is organized as following. Section 2 describes related work
and the current shortcomings. Section 3 proposes reliability prediction method and
traceability support method using UML. These methods are evaluated in section 4.
Finally, we conclude this paper in section 5.

* This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant

funded by the Korea government(MEST) (No. 2009-0077453).

 Reliability Analysis Method for Supporting Traceability Using UML 95

2 Related Work

Reussner [5] proposes the reliability prediction approach for component-based soft-
ware architecture. This is based on Markov and UML and can predict software reli-
ability but is like a black-box approach. This method can analyze external reliability
between components while being not able to analyze reliability inside the component.

Cheung [6] predicts the software reliability based on the Hidden Markov Chain
(HMC). This approach uses five sources from system experts and so on. This ap-
proach can predict reliability of each component using the reliability analysis method
based on HMC. But component reliability does not satisfy system reliability.

Trung [7] proposes the reliability prediction model based on UML. The assumption
of sequential component execution was valid in the software which is developed with
procedural programming paradigm. In object-oriented paradigm, the assumption does
not hold. This approach also provides software reliability analysis method but does
not provide traceability method.

3 Proposed Approach

In this paper, we propose a reliability prediction model with the traceability based on
UML. This approach is to build software reliability prediction model. This model can
be transformed to Software Reliability Prediction Model (SRPM). SRPM can analyze
software reliability and support traceability of the reliability.

Fig. 1. Reliability prediction & trace process

Figure 1 shows the process for predicting software reliability and tracing the part
of the problem. This approach uses 4 diagrams: Use Case diagram, Class diagram,
Sequence diagram and Activity diagram. Theses diagrams can build usage profiles
and reliability prediction model. Detailed model is described in 3.1. This model can
provide reliability prediction result and find non-reliable part of UML.

96 J. Lee et al.

3.1 Software Reliability Model

Software Reliability Model is based on UML such as Use Case diagram, Sequence
diagram, Activity diagram, and Class diagram. Use Case diagram can represent usages
of the software. It can represent how many each scenario is used. Sequence diagram can
represent scenarios for each use case. This diagram has the number of method call in
each sequence and method name and an order of method call. Class diagram can repre-
sent classes, methods and attributes. In this diagram, reliability related attributes such as
MTTR or MTTF can be described with some annotations. Activity diagram can repre-
sent operations for each method. It contains flows of each method.

Fig. 2. Use Case diagram with usage profile

Figure 2 shows an example of Use Case diagram with usage profile. N1 and N2
mean the usage count in a minute. In this example, the usage value is 680. This value
can be retrieved from system developer’s experience or the log of similar system [6].

Fig. 3. Sequence diagram with reliability annotations

Figure 3 shows an example of Sequence diagram with reliability annotations. In
this diagram, we represent time related value such as operational time requirement.
These values are related to the software reliability [1]. Each method on Sequence
diagram is represented in Class diagram. Class diagram also represent time related
values such as MTTF or MTTR. These values are used for calculating total opera-
tional time in section 3.2.

 Reliability Analysis Method for Supporting Traceability Using UML 97

Fig. 4. Class diagram with reliability annotations

3.2 Reliability Prediction Method

We use the reliability prediction model built in 3.1. This model contains many infor-
mation related the reliability. Reliability Prediction Model consists of some notations.
Figure 5 shows one of the notations. This means call-return relationship. If a method
is called, the relation goes to next operation. If the method is returned, the relation
goes to previous operation.

Fig. 5. Reliability model notation

Figure 6 shows the part of reliability prediction model. This contains many reliability
model notations. This model has some notation such as {doPost: 0.9875, 1200}. This
notation follows equation x. nmN means method name of each sequence diagram. This

sequence diagram has n method calls. ncR means the call rate of the method. This is

similar to the transition rate of the Markov Chain. noT means the operation time of each

method. The sequence can be completed in time based on annotated values by means of
reliability definition [1]. Methods have return values or call other methods. In this
model, the state should be returned to caller method or final callee method. If this policy
does not be satisfied, the model does not be satisfied the software reliability.

},:{ nnn oTcRmN (1)

Figure 7 shows internal analysis model using Petri Nets. We use transform Activity
diagram to Petri Nets approach [8]. Activity diagram has activity notation and transi-
tion event for going next activity. This can be transformed to place and transition on
Petri Nets. This model calculates the probability of the reliability of each method
using absorbing states [9]. The predicted reliability can be calculated from this Petri
Nets. We use these results to internal reliability on external model.

98 J. Lee et al.

Fig. 6. External reliability analysis model

Fig. 7. Internal analysis model using Petri Nets

Table 1. Reliability Prediction Result

Service
Name

Required Time
(Avg.)

Predicted Time
(Avg.)

Over portion
(%)

Information
Providing Service

2400 2362 9.2

Table 1 described the reliability prediction result. Based on UML annotation, the

required time is 2400 time unit, but predicted time is 2362. This service is reliable
with the probability 9.2%. This is simple reliability prediction of the software.

3.3 Traceability

Using the result from 3.2, we find out the software reliability. Using this information,
this can be tracing the problem part of UML. This means the part may not satisfy the
reliability requirements or non-reliable states such as 9.2% on Table 1. If the state
goes to next state in the reliability prediction model, the predicted time is increased
because of time consuming. In Use Case diagram, the usage of the software is 680
times in a minute. This means about 60 times does not be satisfied the required time.
Following the states, we can find overtime state. Finding state has method name

 Reliability Analysis Method for Supporting Traceability Using UML 99

because of equation 1. This method may have abnormal activity or something wrong.
Frequent activity has connection problem. Architect or designer can check this
method part. If the part does not have any problem, the previous state may have some
problems following the call relation. From this way, architect or designer can check
UML model.

Information Providing Service has some non-reliable state. Many non-reliable case
is occurred on getConnectionDB() method. This method does not have any connec-
tion pool so each process waits for getting DB connection.

4 Evaluation

Reliability means the probability of fault-free operations in specific time. We meas-
ured the reliability of the real software and compared this result to predicted result.
The target software was web-based traffic service component. This component has a
role to get requests for the traffic information and gives the responses with the traffic
information related the position including the request. The main objective of the com-
ponent is to provide the traffic information.

4.1 Reliability Evaluation

This is the result compared measured reliability and predicted reliability. We used
JMeter for measuring the reliability [10]. This can generate many requests and check
how many requests receive the correct response. The reliability can be calculated
equation 2.

100×=
X

Y
yreliabilit JMeter

(2)

Table 2. Comparison between predicted and measured values

Service Predicted
Reliability

Measured
Reliability

Difference (%) Error (%)

Information
Providing
Service

0.918 0.7523 81.9499 18.0501

Table 2 describes the result. The predicted reliability is 0.918 but measured reliability
using JMeter is 0.7523. The difference is 81.9499%. Error rate is 18.05015. This does
not have high accuracy of the reliability prediction but find some non-reliable state on
UML.

4.2 Traceability Evaluation

In the real software, the problem part is DB connection. DB can have 10 connection
in a second but the over connection has occurred. DB does not response the request.
Target component has this problem and the prediction result can find out this part.

100 J. Lee et al.

Table 3 is the comparison between our approach and other approaches. Not only
our approach but also other approaches can predict the software reliability. But other
approaches do not support the traceability for reliability. Reusser’s approach can
predict software reliability but the target group is software integrators. This does not
support the internal reliability of the software. Yacoub’s approach can support this
part but it does not support traceability. Our approach can predict the software reli-
ability and partially support for traceability. This can help software architect and also
software designer because of supporting method-level analysis.

Table 3. Comparison summary of reliability analysis methods

 Reusser et al [5] Yacoub et al [11] Our approach
Reliability
Prediction

Predict Predict Predict

Traceability
Support

Not supported Not supported Partially supported

Language RADL UML UML
Variability Not supported Not supported Not supported

Target
group

Software
integrators

Software
Architects

Software
Architects/Designer

5 Conclusion

This paper is our first step of reliability analysis using UML. We propose the architec-
ture-based reliability prediction with the traceability using UML. The main objective
of this approach is to predict the software reliability and trace the non-reliable part
and find out the not-reliable-satisfied part. The accuracy is relatively lower than other
approach but we can find non-reliable part on UML.

UML is widely used in software engineering. Our approach is based on UML and
can be used not only for software architects but also software designer or developers.
The advantage of this approach is not to be familiar with specific model representa-
tion. This also provides traceability and finds non-reliable part on UML.

In future work, we will extend the UML for more precious reliability analysis. We
also find out the non-reliable part with more accuracy. The proposed model cannot be
built automatically. Automatic model generation will be proposed. Tool support is
also needed. Finally, a method for retrieving the configuration is also needed.

References

1. Eusgeld, I., et al.: Software Reliability. In: Eusgeld, I., Freiling, F.C., Reussner, R. (eds.)
Dependability Metrics. LNCS, vol. 4909, pp. 104–125. Springer, Heidelberg (2008)

2. Gokhale, S.S.: Architecture-Based Software Reliability Analysis: Overview and Limita-
tions. IEEE Trans. on Dependable and Secure Computing 4, 32–40 (2007)

3. Immonen, A., Niemela, E.: Survey of reliability and availability prediction methods from
the viewpoint of software architecture. J. Software System Model 7, 49–65 (2008)

 Reliability Analysis Method for Supporting Traceability Using UML 101

4. Cukic, B.: The virtues of assessing software reliability early. IEEE Software 22, 50–52
(2005)

5. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reliability prediction for component-
based software architectures. J. Software System Model 66, 241–252 (2003)

6. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early Prediction of Software
Component Reliability. In: 30th International Conference on Software Engineering,
pp. 111–120. IEEE Press, Germany (2008)

7. Trung, P.T., Thang, H.Q.: Building the Reliability Prediction Model of Component-Based
Software Architecture. J. Information Technology 5, 17–24 (2009)

8. Bordbar, B., Giacomini, L., Holding, D.J.: Uml and Petro Nets for Design and Analysis of
Distributed System. In: The 2000 IEEE International Conference on Control Applications,
pp. 610–615. IEEE Press, USA (2000)

9. Goseva-Popstojanova, K., Trivedi, K.S.: Stochastic modeling formalisms for dependabil-
ity, performance and performability. In: Reiser, M., Haring, G., Lindemann, C. (eds.)
Dagstuhl Seminar 1997. LNCS, vol. 1769, pp. 403–422. Springer, Heidelberg (2000)

10. JMeter, http://jakarta.apache.org/jmeter/
11. Yacoub, S., Cukic, B., Ammar, H.: Scenario-based reliability analysis of component-based

software. In: 10th International Symposium on Software Reliability Engineering, pp. 22–
32. IEEE Computer Society, USA (1999)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 102–110, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Applying Agility Framework
in Small and Medium Enterprises

Suphak Suwanya1 and Werasak Kurutach2

1 Department of Computer Engineering
2 Department of Information Science and Technology

Mahanakorn University of Technology
51 Cheum-Sampan Rd., Nong Chok, Bangkok Thailand
a.suphak@gmail.com, werasak@mut.ac.th

Abstract. In order to achieve the sustainable growth of the development of
software industry, it must begin with the Software Process Improvement at per-
sonal level. In this paper, we present a new method for software process im-
provement that focuses on three areas of concern to the process improvement in
personal level, the process improvement in project level and the process im-
provement in organization level. This method is called Agility Software Process
Improvement for Small and Medium Enterprises: ASPISME. This method is in-
tegrates the strong synergies and techniques of CMMI, PSP, XP and SCRUM
appropriately and suitably so that it can be used as an alternative for software
enterprises in Thailand.

Keywords: Software Process Improvement, SPI in Thailand, CMMI, PSP, Ag-
ile Methodology, ASPISME.

1 Introduction

In past decades, organizations in software engineering industry have taken more
interest in Software Process Improvement or SPI because the software that was pro-
duced through the software process improvement achieved a high reliability and qual-
ity [1]. In present, there are various software development methods which can be
divided into 2 categories, i.e. Heavyweight and Lightweight. The examples of
Heavyweight method are the quality standard manage system ISO 9000 (International
Organization for Standardization 9000: ISO) and the Capability Maturity Model Inte-
gration (CMMI). The example of Lightweight method is Agile Methodology.

Most software development process is Top-Down Approach which the processes
of system improvement come from the policy or the chief executive’s requirements
without considering the system or efficiency of the existing personnel in the organiza-
tion. Moreover, the government supports the large sized software enterprises, though
70% of the software development enterprises in Thailand are small sized enterprises
[2] which there are 1-25 staffs and have no software development process that is suit-
able for such small sized organization. In fact, the productivity aim of most software
enterprises can be mentioned by the similar principle that is the need of increasing the
quality of the produced software while decreasing the development cost and time to

 Applying Agility Framework in Small and Medium Enterprises 103

the minimum. However, the problem from the fault of the software development
called “Bug” tends to increase. The program codes that contain these faults have im-
plicated to the unreliability of the domestic software industry. The value of time lost
is up to 45% when the computer system is impractical and the production cost which
more than 100 thousand million US$ is lost for lack of production capability and
maintenance [3].

Hence, in this paper proposed the new method for the software process improve-
ment of which the working operation is proficient and flexible to be an alternative for
the small and medium sized software enterprises in Thailand in order to improve the
software process to a high level of quality. This method focuses on three areas of
concern to the process improvement in personal level, the process improvement in
project level and the process improvement in organization level .

The organization of this paper is as follows. Section 2, we presents relevance re-
search work. In section 3, we introduce a new method for the software process im-
provement. Finally, we conclude and future work in section 4.

2 Relevance Research Work

Software Process Improvement: SPI has diverse procedures/standards .Therefore
each organization must study in detail of each method for most suitability to the or-
ganization.

2.1 Analysis of the Process Area and Generic Practices in CMMI

CMMI have been favorable and received an acceptance because it is the guideline that
is suitable for the software development work. It helps increase the operation capabil-
ity of the organization and leads to a higher quality software development. CMMI
assesses overall organization as the operating process of the organization whereas the
agile method is the framework which is only a part the software development process
therefore, in conceptual view; they cannot be compared since their aims are different.
However they are related because CMMI is the software management method
whereas Agile is the software development method. Both methods can be practiced
together while supporting each other as well.

To determine of which process area in CMMI that corresponds with PSP and Agile
Methods or which process area opposes the agile method, every process areas and
specific targets of the process area must be analyzed. The specific practices are sim-
ply the expected model components of which the implementation might be varied and
different in each organization. Therefore, the determination is considered from the
main target while the practices are only considered as a guideline for imagination and
other alternative might be used to achieve the target.

The analysis of the process areas in the level of maturity only compares among the
second level of maturity because the fourth and fifth level of maturity oppose the
principle of Agile Methods. For the general target, two topics which were GG2: Insti-
tutionalize a managed process and GG3: Institutionalize a defined process and related
generic practices were analyzed. In this case, the process area-specific analysis was
not conducted because the Agile Methods could not give the information that was

104 S. Suwanya and W. Kurutach

specific to the operation for institutionalization. This topic is considered in the organi-
zation level while the Agile Methods relates solely to the project level. The analysis
of the coverage of generic practices by level evaluation was applied as follows [15].

1. Conflicting (-) – indicate that the CMMI target cannot be achieved if the Agile
Method is still used. There is no extension that can solve the contradiction to the Ag-
ile principle.
2. Not addressed (0) – not completely cover but it does not indicate that the target
could not be achieved. In order to differentiate this level from the first level, the pos-
sible extension of agile method is needed to be examined; therefore the CMMI could
be achieved without opposing the agile principle.
3. Partially supported (+) – the coverage has limitation.
4. Supported (++) – the coverage has less limitation.
5. Largely supported (+++) – If the practices of Agile Method are applied, it will
corresponds with the components in the important part in the model.

Table 1. Process area coverage of CMMI by PSP, XP and SCRUM

CMMI PSP XP SCRUM
Process Area
2.1 Requirements Management 0 +++ +++
2.2 Project Planning ++ +++ +++
2.3 Project Monitoring and Control 0 +++ +++
2.4 Supplier Agreement Management 0 0 0
2.5 Measurement and Analysis +++ + +++
2.6 Process and Product Quality Assurance ++ + 0
2.7 Configuration Management 0 +++ 0

Table 2. Generic practice coverage of CMMI by PSP, XP and SCRUM

CMMI PSP XP SCRUM
Generic Practice
2.1 Establish an Organizational Policy 0 0 0
2.2 Plan the Process +++ 0 0
2.3 Provide Resources 0 + +++
2.4 Assign Responsibility 0 +++ +++
2.5 Train People +++ +++ +++
2.6 Manage Configurations 0 ++ 0
2.7 Identify and Involve Relevant Stakeholders 0 +++ +++
2.8 Monitor and Control the Process ++ ++ ++
2.9 Objectively Evaluate Adherence +++ + 0
2.10 Review Status with Higher Level Management +++ ++ +++

From the comparison of the process area coverage in the second level of maturity,

7 process areas, there were no process areas that contradiction the method. For the
comparison of the generic practice coverage, there is no contradiction with CMMI but
the additional extension of the practices was required in order to comply with the
process areas and generic practices as showed in Table 1: Process area coverage of

 Applying Agility Framework in Small and Medium Enterprises 105

CMMI by PSP, XP and SCRUM and Table 2: Generic practice coverage of CMMI by
PSP, XP and SCRUM.

2.2 Comparison of the Software Development Methodology

The software development processes of each methodology are different, for example,
PSP is waterfall development process whereas XP and SCRUM are iteration devel-
opment process. Each method has different strong synergies and drawbacks. In this
paper, the coverage of software development procedures of each method was ana-
lyzed and as showed in Table 3.

Table 3. Comparison of the Coverage of Software Development Processes of each method

Software Development Processes PSP XP SCRUM
Project Planning 0 ++ +++
System Architecture Design 0 0 +++
Risk management 0 +++ +++
Requirement Management) 0 ++ +++
System development planning +++ +++ +++
System Analysis and Design +++ +++ +++
Design Review +++ +++ +++
Test Driven Design 0 +++ ++
Program Code +++ +++ ++
Program Compile +++ 0 0
Code Review +++ ++ 0
Program Testing +++ +++ +++
Daily Building 0 +++ ++
Code Refactoring 0 +++ 0
Version Control 0 0 +++
Sprint Review 0 0 +++
Daily Meeting 0 +++ +++
Delivery 0 0 +++
System maintenance 0 + +

The strong synergies and drawbacks of each method were concluded as showed in

Table 3. It could be seen that the three methods were similar and had no contradiction.
However, there is more discipline in some procedures of PSP development than in XP
and SCRUM. For example, in the PSP program design, the program design and de-
sign editing are completely performed before coding whereas, in XP, the design is
performed earlier in order to understand the program and then the program structure is
edited while coding. XP estimates the program developing time from the comparison
and prediction from experience but PSP uses Linear Regression method for more
precise estimation.

Moreover, there are some important parts in the program development, i.e., project
planning, requirement specification and analysis of user requirement, risk manage-
ment, test driven design, development procedure review, version control and work
delivery, which are not mentioned in PSP. But during the software development, the
developers must prepare more documents than in XP and SCRUM.

106 S. Suwanya and W. Kurutach

CMMI is suitable for large sized organization that has large size projects and high
expense cost for applying the model to the organization. Besides, Agile Method is just
the project-level software development method. Agile Methods does not clearly men-
tion the development process in the organization level.

3 The Proposed Method

In this section, we introduce a new method for the software process improvement
which can be an alternative for the small and medium sized software enterprises in
Thailand.

3.1 Agility Software Process Improvement for Small and Medium Enterprises:
ASPISME

ASPISME is the software process improvement method that focuses the skill and
discipline improvement of the software developers and production of the high quality
software. This process supports the measurement of the project estimations, the meas-
urement of project size, the measurement of defects, etc., for the data analysis and
improvement of the development process in the next cycle and the information can be
further used as a baseline of the organization. This method integrates the strong syn-
ergies and techniques of CMMI, PSP, XP and SCRUM appropriately and suitably.
ASPISME consists of five components as showed Figure 2. The main components
were:

Fig. 1. ASPISME Method Content

 Applying Agility Framework in Small and Medium Enterprises 107

3.1.1. The personal discipline development process (PSP Training) – Personal staffs
must participate the training course so that they understand the software development
process and the work discipline. The course consisted of training course for the pro-
ject managers and the training course for the software developers.

3.1.2. The software development process – The development is divided into cycles
(Sprint). Each cycle takes approximately 2 weeks and after the work cycle ended, the
review meeting must be held (Sprint Review) then the work in the last cycle could be
adjusted before the next cycle is operated.

3.1.3. The specification of role and responsibility (Role) – for any personal staffs in
the project which are Product Owner, User, Project Manager, Team Member and
Project Stakeholders.

3.1.4. Measurement process (Measurement Analysis) – consists of the indicators in
the personal and project level, e.g., developing time measurement (Effort), program
size measurement (Size), the defect recording (Defects) and the measurement of over-
all project performance (Project Performance).

3.1.5. Artifacts and work product (Artifacts/Work Product) – in each process, there
must be the necessary documents that used as the information for the analysis and
improvement of every working process in the next cycle. These documents called
“Artifacts”. If any artifact is delivered to customers, it is called “Work Product”.

3.2 ASPISME Process

Besides the emphasis on the process improvement in personal level, the ASPISME
software process improvement method also emphasized on the process improvement
in the project and organization level. It was found from several researches that, in
computer field, the Test-Driven Design was widely used. It proved that the design
method which emphasized on the test before operating was proactive working strat-
egy [16]. It means the possible results were considered before an actual action was
taken which can make the software achieved the high quality. Hence, this technique
was used as ASPISME method for the software development. The software develop-
ment process was detailed below:

3.2.1. Project Planning – the planning of working operation for entire project, includ-
ing risk management and customer requirement management.

3.2.2. High Level Architecture Design (Height Level) – is the design of entire infor-
mation system, e.g. hardware, software, network system, and data processing in order
to see the overall view of the system.

3.2.3. Software development cycle (Sprint) – is divided into two weeks per cycle. One
cycle consists of system analysis and design, test design, program coding, minor test
and daily program building

3.2.4. Sprint Review (Sprint Review) – After working cycle ended, the operation must
be reviewed. This review consists of software review, comparison of working Back-
log and estimation, backlog editing, addition of new backlog in sprint, responsibility
assignment and operation planning of the next sprint.

3.2.5. Change management in the project – e.g. time and customer requirement which
must be able to control.

108 S. Suwanya and W. Kurutach

Table 4. Participating Companies

Company Business area Industry Experience
Number of Software
Developers

Company A
Software Development and
System Integrator

Government Agency 15

Company B Software Development General Industry 8

Fig. 2. ASPISME Process

 Applying Agility Framework in Small and Medium Enterprises 109

3.2.6. Work delivery – all works that are going to deliver to customers require validation,
resource planning for delivery, and also the personnel evaluation in the team and project.

Besides, other important procedures and activities support the successful of the
software development process such as version control, tool usage for the work assist-
ing, data collection and software maintenance after the work delivery as depicted in
figure 2.

3.3 The ASPISME Project

ASPISME project is an action research project associated with 2 companies. As can
be seen from table 4 they cover a wide range of sizes and business areas. We will
train to project manager, team member and stakeholders before using method. After
we start ASPISME Project, we will be handled how to use formal data collection
consist of records of project performance, defect recording, evaluation form, struc-
tured interviews and other related techniques for data collection to improve further
method.

4 Conclusion and Future Work

ASPISME was created to be used as an alternative for the small and medium sized
software enterprises in Thailand. It also emphasized the personal development as
same as Agile methods while the project quality evaluation and control were con-
ducted in order that the data could be future used for the process improvement of the
organization in the future.

Recently, there are enterprises that demonstrate this method. The suitable projects
were selected to participate in this research. Then the results were compared to the
project that practice normal procedures of the organization. After the project ended,
we will conclude the result so that it can be used to improve and demonstrate the next
project to ensure that this method can provide the software enterprises improve the
software process effectively.

References

1. McGuire, E.G.: Initial Effects of Software Process Improvement on an Experienced Soft-
ware Development Team. IEEE, Los Alamitos (1996)

2. Suwanya, S., Kurutach, W.: An Analysis of Software Process Improvement For Sustain-
able Development in Thailand. In: Proceedings of IEEE 8th International Conference
on Computer and Information Technology (CIT2008), Sydney, Australia, July 8-11,
pp. 724–729 (2008)

3. Ricadel, A.: The state of software: Quality InformationWeek, 838, 43 (2001)
4. CMMI Team, Capability Maturity Model Integration foe Systems Engineering, Software

Engineering, Integrated Product and Process Development, and Supplier Sourcing
(CMMI-SE/SW/IPPD/SS), Version 1.1, Continuous Representation, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh (December 2001)

5. Hayes, W., Over, J.W.: The Personal Software Processsm (PSPsm): An Empirical Study
of the Impact of PSP on Individual Engineers, Technical Report CMU/SEI-97-TR-001
ESC-TR-97-001 (1997)

110 S. Suwanya and W. Kurutach

6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-
son-Wesley, Reading (2004)

7. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor. IEEE
Computer 34(11), 131–133 (2001)

8. Cohen, D., Lindvall, M., Costa, P.: Agile Software Development: A DACS State0of-the-
art Report. Technical report (2003)

9. Highsmith, J.: Extreme Programming: Agile Project Management Advisory Service White
Paper, http://www.cutter.com/freestuff/ead0003.pdf (accessed in 2005)

10. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, Upper
Saddle River (2001)

11. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningbam, W., Fowler, M.,
Fren-ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mel-
lor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Develop-
ment, http://AgileManifesto.org/ (accessed in 2006)

12. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2002)
13. Dogs, C., Klimmer, T.: Agile Software-Entwicklung kompakt. Mitp-Verlag (2005)
14. Wiki.: The Three Extremos, Portland Pattern Repository, June 8 (2001),

http://c2.com/cgi/wiki?TheThreeExtremos
15. Fritzsche, M., Keil, P.: Agile Methods and CMMI: Compatibility or Conflict. Proceedings

of e-Informatica Software Engineering Journal 1(1) (2007)
16. Kaufmann, R., Janzen, D.: Implications of Test-Driven Development: A Pilot Study, Ana-

heim, California, USA, pp. 289–299 (2003)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 111–118, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Area-Team to Evaluate the Software Architecture
for an Online Banking System: A Case Study

Muhammad Sulayman, Mehwish Riaz, Husnain Naqvi,
and Muhammad Amir Aman

Department of Computer Science, International Islamic University Islamabad,
Pakistan

sulayman@iiu.edu.pk, mehwish.riaz@gmail.com, naqvi39@yahoo.com,
m_amir_aman@hotmail.com

Abstract. Software Architecture plays major role in s successful software. It
is one of the key artifacts of modern software development. This paper de-
monstrates the use of Architecture Requirements Engineering Error and Ac-
curacy ¬ The Analysis Method (AREA¬TEAM) to evaluate an online bank-
ing system. This research paper presents the detailed case study of the system
and the overall evaluation process that has employed AREA-TEAM. Even-
tually this paper discusses the results and elaborates the key benefits of the
employed method.

Keywords: Software Architecture, Evaluation, Requirements Engineering,
AREA-TEAM.

1 Introduction

Software architecture is significant to the quality of any software system. For any
company concerned in development of software, the capability to evaluate software
architectures before the bugs and errors are identified in the systems can largely
shrink the risk that the developed software will not cater their requirements and excel-
lence objectives.

The Software Engineering Group at IIUI has devised the Architecture Require-
ments Engineering Error and Accuracy - The Analysis Method (AREA-TEAM) [1].
This method allows the evaluation of the software architecture and its agreement with
the requirement specifications. The method “Architecture Requirements Engineering
Accuracy and Error - The Analysis Method (AREA-TEAM)”, provides sound foot-
ings to perform architecture evaluation. The method helps in identifying the error
factors present in the software architecture. The major advantage of AREA-TEAM is
identification of the error made by the architect and the stakeholder, normally the
customer or client [1]. This devised method has been applied on multiple industrial
and educational applications and one case-study has already been published [2].

This paper narrates the application of AREA- TEAM method to evaluate the soft-
ware architecture for a data warehouse (DWH) for an online banking system.

112 M. Sulayman et al.

2 AREA-TEAM and Software Architecture Evaluation

The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software elements, the externally visible proper-
ties of those elements, and the relationships among them [3] [4] [5].

The AREA-TEAM [1] focuses on the requirements and error factor calculation
during the architecture analysis process. The requirement engineering provides the
appropriate mechanism for what customer wants, analyzing need, assessing feasibil-
ity, negotiating a reasonable solution, specifying requirement and their validation [6]
[8][9]. There is always some percentage of error involved on the part of both the de-
velopment team and the customers. A plus point in the AREA-TEAM [1] is that it
calculates both Ea (Architect’s error) and Es (Stakeholder’s error) separately, which
helps identifying the competency of the architect and the maturity of the customer.
The details of AREA-TEAM can found in our base paper [1].

Other methods of architecture analysis with respect to requirements are unable to
differentiate between the architect and the customer errors and have no proper meas-
urement mechanism. The initial methods were unable to provide proper mapping
from requirements to architecture because many architectural patterns were very
complex and provided no provisions of mapping, for example, call and return archi-
tecture [10]. For that purpose structured design evolved which stressed modularity
[11], top-down design [12] and structured program [13]. Myers and Stevens proposed
dataflow oriented design translation from the architectural patterns but they were not
able to measure neither the performance of dataflow diagrams nor the architectural
competency and error responsible authority.

Another method design space quantization [7], a spread sheet model based on reali-
zation mechanisms and contribution analysis in the software architecture and the archi-
tectural decisions are prioritized. The drawback is that the requirements weights are
neglected and no error finding mechanism is present for architecture measurement.

The ATAM [4] is another method which focuses on quality attribute requirements. It
evaluates the quality attributes by considering each quality attribute in isolation and
identifies sensitivity of quality attributes by various architectural attributes, which may
result in evaluating the architecture w.r.t the quality scenarios [13] but there are no
proper metrics for architecture correctness percentage and error propagation authority.

3 Case Study of an Online Banking System

This paper is a demonstration of AREA-TEAM on the case study of an online bank-
ing system. The system requires efficient mechanism for online transaction
processing. A major requirement is synchronization of data from various sources and
stores them into the data warehouse. The bank management needs trend analysis
for strategic analysis and formulation of intelligent decisions. In order to have the
cutting edge advantage bank is also interested in having an additional Apple I-phone
application.

This paper is written in cooperation with a software house which was contracted
for the banking system. The name of bank and software house is not shown due to the
confidentiality reasons.

Using Area-Team to Evaluate the Software Architecture for an Online Banking System 113

4 Architecture Evaluations through AREA-TEAM

There are two phases of AREA-TEAM which are similar to [1] and [2] which are
contributed by same authors as of this paper. The phase 1 is called as Rehearsal.

In this phase the AREA-TEAM analysis team prepares itself for the analysis ses-
sion. The stepwise solution for phase 1 is given below:

Step 1: Identify Stakeholders
All the concerned stakeholders of the project were identified which represented the
bank, clients, users, software engineers, IT manager etc.

Step 2: Prepare Core Requirements
Software Project Manager and the Software Architect identified the core requirements
which were used to prepare the architecture and these were the result of the require-
ments engineering phase.

Step 3: Architecture Briefing
The Software Architect prepared a briefing that explained all the components and
connectors as well as the hierarchy and granularity of the architecture.

Step 4: Architecture Approaches
A list of architectural approaches was prepared that focused on understanding the
architecture and will be analyzed further.

Step 5: Prepare Materials
Copies of presentations, core requirements and feedback forms were produced for
distribution to the stakeholders during the next phase. The schedule of the meeting
was decided and the stakeholders were invited.

Now we enter the phase 2 of the AREA-TEAM. The phase 2 is called “Architec-
ture Requirement Engineering Analysis. 12 stakeholders were present in the evalua-
tion, which included VP of the Bank, 2 members of Board of Directors, 2 clients, 2
users, 2 project managers and 1 software architect, 1 IT manager and 1 quality assur-
ance inspector.

In this phase the AREA-TEAM analysis team prepares itself for the analysis ses-
sion. The stepwise solution for phase 1 is given below:

Step 6: Present AREA-TEAM
A brief introduction to AREA-TEAM was given to explain the steps of the process to
the stakeholders so that the maximum participation of the stakeholders was assured.

Step 7: Present Software Architecture and Core Requirements
The core requirements were distributed among the stakeholders and the software
architecture was presented in a session of about one hour. During this session some
new requirements were also identified.

Step 8: Requirements Prioritization Factor
Requirement Prioritization Factor (PF) was calculated. The votes for each require-
ment were counted by show of hand method.

Step 9: Requirement Significance Factor
The requirement significance factor was then gathered with the help of the feedback
forms. The data from the feedback forms is recorded in the requirements significance

114 M. Sulayman et al.

Fig. 1. Software architecture of the system

metric. Then Architecture Significance Factor (ASF) is calculated. The New Re-
quirements are also processed in the same way and nASF is calculated for each new
requirement.

Step 10: Requirement Criticality Analysis
The requirement criticality was calculated by finding the mean of prioritization fac-
tors and average significance factors for each requirement. The results are recorded in
requirements criticality metric. The Total Requirement Criticality (TRC) is then for-
mulated. The same process is applied on the novel requirements and the results are
shown in new requirements criticality metric.

Using Area-Team to Evaluate the Software Architecture for an Online Banking System 115

Table 1. Core Requirements, Votes & Priority Factor, ACF, RC & AAC

Fig. 2. Architecture Approach Analysis Example for REQWBS 5

Requirements Prioritization Metric

Total Stakeholders 12
TRC 16.29

Req ID Requirement (Votes) PF ACF RC AAC%

REQDWBS1
When and which user tried to access which
data. 7 0.7 0 0.74 4.54

REQDWBS2
2D and 3D cross tabbed reports from Data
Warehouse 4 0.4 1 0.49 3.00

REQDWBS3
3D graph trend analyzers from Data
Warehouse 6 0.6 0 0.6 3.68

REQDWBS4 Authorized logging 10 1 1 0.86 5.27

REQDWBS5
Balance management for different account
types i.e. Current, savings, Credit Card 8 0.8 1 0.5 3.06

REQDWBS6 Credit limits should be maintained 10 1 1 0.64 3.92

REQDWBS7

Customers & Banking Staff must be facilitated
to access the accounts status through Iphone
and online. 10 1 1 0.54 3.31

REQDWBS8
Data mapping objects of sources to data
warehouse objects. 9 0.9 0 0.62 3.80

REQDWBS9 Dynamic management of customer data 3 0.3 1 0.56 3.43
REQDWBS10 Efficient transactions processing in OLTP 4 0.4 1 0.58 3.56

REQDWBS11
Efficient trend analysis mechanism for
customers & Banking Staff. 7 0.7 1 0.65 3.99

REQDWBS12 Generation of daily transactions reports 10 1 1 0.76 4.66
REQDWBS13 GUI based administration of Data Warehouse 7 0.7 1 0.42 2.57
REQDWBS14 GUI based dynamic backups and recovery 9 0.9 1 0.64 3.92
REQDWBS15 GUI for extraction should be there. 6 0.6 1 0.53 3.29
REQDWBS16 GUI for transformation should be there 10 1 1 0.66 4.05

REQDWBS17
Multipurpose website for Iphone software
downloading, 3 0.3 1 0.62 3.80

REQDWBS18 New Customers registration 3 0.3 0 0.42 2.57
REQDWBS19 Online Transaction Processing System 8 0.8 1 0.8 4.91

REQDWBS20
Synchronization between Windows and
Iphone OS 9 0.9 0 0.66 4.04

AAF 75% AEF 25%

116 M. Sulayman et al.

Fig. 3. Architecture Approach Analysis Example for REQWBS 3

Step 11: Novel Requirements Prioritization Factor, Average Significance Factor
and Criticality Analysis
The Novel Requirements Prioritization Factor (nPF), Average Significance Factor
(nASF) and the Requirements Criticality (nRC) are

Step 12: Analyze Architectural Approaches
Then each requirement was analyzed and the analysis team queried the architect that
how he handled the requirements in the software architecture. The analysis is per-
formed in Architecture Approach Analysis Metric. We are only showing one example
from each possible category of the requirements. The first requirement is analyzed.
This requirement is not handled in the architecture and the score 0 is given to the
architecture contribution factor (ACF). This requirement is handled in the architecture
by the architect and score 1 is given to the architecture contribution factor (ACF). In
this way the other requirements are also analyzed.

Step 13: Architecture Accuracy Factor and Architecture Error Factor
In the last step for moving towards the final results calculations, the architecture approach
contribution percentage (AAC%) is calculated for each requirement. Then the Architec-
ture Accuracy Factor (AAF) and the Architecture Error Factor (AEF) is also calculated.

Table 2. New Requirements, Votes & Priority Factor, ACF, RC & AAC

New Requirements Prioritization Metric

Total Stakeholders
Votes
(V) TRC+nTRC 19.29

New Req ID New Requirement 10 nPF nACF nRC nAAC%

NREQDWBS1
Instan t update from AT M
machine s shoul d logged 12 1 0 0.76 3.93

NREQDWBS2
Contro l Pane l shoul d be there to
manag e data entry errors 11 0.92 0 0.6 3.11

NREQDWBS3
Loadin g logs shoul d be
maintained . 6 0.5 1 0.43 2.22

NREQDWBS4
Forecastin g of the bank’s profits
and number of customer s 7 0.58 0 0.65 3.36

NREQDWBS5
Differen t branche s data shoul d
be synchronize d instantly 8 0.67 0 0.56 2.90

nAAF 60% nAEF 40%

Using Area-Team to Evaluate the Software Architecture for an Online Banking System 117

Architecture Accuracy Factor (AAF) shows the correctness of the architecture in
percentage and the Architecture Error Factor (AEF) shows the percentage of error
present in the architecture, and this is the error of the architect. To calculate the
error propagated due to the stakeholder (normally the customer) we included the new
requirements captured in step 7 in our analysis. First of all we calculated the New
Total Requirement Contribution (nTRC) for each new requirement captured. Then
the Architecture Approach Contribution percentage (nAAC%) is calculated and the
results are recorded in Architecture Accuracy Metric with new Requirements. The
New Architecture Accuracy Factor (nAAF) and the New Architecture Error Factor
(nAEF) is also calculated over here. The New Architecture Error Factor reflects the
ratio by which the architecture has not addressed the requirements including the new
requirements. The stakeholder error factor (SEF) is calculated. The total error factor
in the architecture was 40% including all the new requirements, and without them it
was 25%.

5 Conclusions

This case study evaluated the software architecture of an online banking system and
identified the error factors of both stakeholder and architect. The early identification
of errors helped in the better design decisions and lesser bugs in the later stages of
system development. Overall results show significant error and exception handling in
the architecture either it was introduced by the stakeholder or it was architect’s error.
The result is saving a lot of time and revenue. Similarly, with this method important
requirements of system were analyzed at the early stages of development which in-
cluded both functional and quality requirements.

References

1. Aman, M.A., Sulayman, M., et al.: Architecture Requirements Engineering Accuracy &
Error – The Analysis Method. In: Accepted and Published in the first International Confe-
rence on Quality of service architectures in Net. Object Days, Erfurt Germany (2005)

2. Aman, M.A., Sulayman, M., et al.: Architecture Requirements Engineering Accuracy &
Error – The Analysis Method, Islamabad Stock Exchange Case Study. In: Accepted and
Published in IASTEAD, SE 2007, Austria (2007)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Boston (2003)

4. IEEE Computer Society, Software Engineering Standards Committee, Institute of Electric-
al and Electronics Engineers, IEEESA Standards Board, and IEEE Xplore. IEEE Recom-
mended Practice for Architectural Description of Software Intensive Systems. Institute of
Electrical and Electronic Engineers, New York (2000)

5. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison Wesley, Boston (2003)

6. Pressman, R.: Software Engineering A Practitioner’s Approach, 5th edn., Mc Grawhill,
International Edition, pp. 256–266 (2004)

7. Asada, T., et al.: The Quantified Design Space. In: Shaw, M., Garlan, D. (eds.) Software
Architecture, pp. 116–127. Prentice Hall, Englewood Cliffs (1996)

118 M. Sulayman et al.

8. Thayer, R.H., Dorfman, M.: Software Requirements Engineering, 2nd edn. IEEE Comput-
er Society Press, Los Alamitos (1997)

9. Sommerville, I., Sawyer, P.: Requirements Engineering, Wiley, 1997 [10]. In: Bass, L.,
Clements, P., Kazman, R. (eds.) What is Software Architecture? in Software Architecture
in Practice, p. 125. Pearson Education, London (2003)

10. Dennis, J.B.: Modularity. In: Bauer, F.L. (ed.) Software Engineering. LNCS, vol. 30, pp.
128–182. Springer, Heidelberg (1975)

11. Wirth, N.: Program Development by Stepwise Refinement. CACM 14(4), 221–227 (1971)
12. Dijkstra, D.O.E., Hoare, C.: Structured Programming. Academic Press, London (1972)
13. Bass, L., Klein, M., Moreno, G.: Applicability of General Scenarios to the Architecture Trade

off Analysis Method, TECHNICAL REPORT, CMU/SEI2001TR014, ESETR2001-014

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 119–126, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Architectural Decay during Continuous Software
Evolution and Impact of ‘Design for Change’ on Software

Architecture

Mehwish Riaz, Muhammad Sulayman, and Husnain Naqvi

Department of Computer Science, International Islamic University,
Islamabad, Pakistan

mehwish.riaz@gmail.com, sulayman@iiu.edu.pk, naqvi39@yahoo.com

Abstract. Software architecture is the blue print of software and guides the
development and evolution of the software. A good design produces quality
software and careful evolution of software leads to a longer life of the soft-
ware whereas a bad design and careless evolution leads to decay of the soft-
ware. This paper discusses the phenomenon of architectural decay and gives
an account of the practices suggested in the literature for identification, reso-
lution and prevention of architectural decay. The observations from a con-
trolled experiment to study the impact of the prevention practice ‘design for
change’ are also discussed. The results from the studied metrics suggest that
software created without following a proper design has a greater tendency to
decay.

Keywords: Software Architecture, Architectural Decay, Software Evolution.

1 Introduction

Software architecture [17] is concerned with both functional and non-functional
software requirements. Software evolution [15] encompasses all such activities car-
ried out to maintain, enhance and further develop the software such as in evolutionary
development [14] and is an intrinsic property of software [11].

Continuous software evolution is implemented by successive modifications in
which change upon change upon change is introduced [11]. Continuous evolution
preserves most of the aspects of a system [1] whereas in discontinuous software evo-
lution an outdated system is entirely replaced by a new system [11].

Evolution in software also involves evolution in the software architecture due to
architecturally significant [10] changes. Changes introduced in an uncontrolled
manner start the process of decay also degenerating software architecture [17]. When
no more changes can be accommodated, the result is reengineering or an early retire-
ment of the software. This suggests that there is a strong need to mitigate the phe-
nomenon of decay in software architecture.

In this research we consider following research questions:

120 M. Riaz, M. Sulayman, and H. Naqvi

RQ1: What is architectural decay and what are the common factors that contribute to
it during continuous software evolution?

RQ2: What is the relationship of architectural decay with software evolution and
code decay?

RQ3: What are the possible proactive measures to mitigate architectural decay?

RQ4: What is the possible impact of different preventive measures on software archi-
tectural decay?

The answers to RQ1, RQ2, and RQ3 have been synthesized from the literature. For
RQ4, the impact of only one preventive i.e., ‘design for change’ is observed.

The remainder of this paper is organized as follows: Section 2 presents a definition
of architectural decay; section 3 presents a discussion on the relationship of architec-
tural decay with software evolution and code decay; section 4 gives a classification of
the factors that contribute to architectural decay; section 5 presents a list of symptoms
of architectural decay, the practices that may be used to identify, resolves and prevent
architectural decay, and the evaluation of the practices suggested in the literature;
section 6 presents the controlled experiment and the observations made from the ex-
periment followed by conclusions and future work in section 7.

2 Architectural Decay

Architectural decay is due to violation of architecture caused by the process of evolu-
tion [13]. Architectural decay has been defined as non-compliance between concep-
tual and concrete architecture [18]; deviation from original design [7]; increased resis-
tance to change [13]; and cumulative, negative effect of changes on the quality of a
software system [20], etc.

We believe that non-compliance of actual with planned architecture may not neces-
sarily have a negative impact on the quality of software architecture. Architecture is
driven by a set of key quality attributes and unless the software fails to satisfy them,
any enhancive or preventive changes cannot decay the software architecture. So we
assume that decay occurs when the key quality attributes are violated. Therefore, we
propose a definition of architectural decay as below.

 “Architectural decay is the phenomenon when concrete (as-built) architecture of a
software system deviates from its conceptual (as-planned) architecture where it no
longer satisfies the key quality attributes that led to its construction OR when archi-
tecture of a software system allows no more changes to it due to changes introduced
in the system over time and renders it un-maintainable”.

3 Architectural Decay, Software Evolution, and Code Decay

Architecture decay is essentially the result of software evolution. The process of evo-
lution increases brittleness in the system increasing its resistance to change [13]. The
design of a system becomes less and less suitable with every new version of software
to incorporate new features [19]. The process of maintenance worsens the situation

 Architectural Decay during Continuous Software Evolution 121

leading to architectural decay [3]. Therefore, we can conclude that the more the sys-
tem is evolved, the more it moves closer to architectural decay.

The changes to well-engineered modularized code are local [6]. This connotes that
if changes remain no more local; they scatter across various modules, suggesting
problems with the software architecture and indicate decay that is at a higher level of
abstraction. Similarly when the interfaces to a software unit are several, structural
changes may be observed as changes propagate in other sections of the code [6]. Code
decay is a result of problems with components and interactions of components which
requires repair in multiple components and is a sign of decay in the software architec-
ture [16]. Therefore, repeated changes found in the code that span multiple software
units is essentially architectural decay.

4 Factors Contributing to Architectural Decay

According to Van Gurp et. al., the solution to the problem of architectural decay lies
in addressing its causes [19]. Therefore, a classification of various factors presented in
the literature that contribute to architectural decay is presented in Fig. 1.

5 Symptoms and Practices for Identification, Resolution and
Prevention of Architectural Decay

This section presents the symptoms of architectural decay and summarizes the prac-
tices suggested in the literature for its identification, resolution, and prevention.

5.1 Symptoms of Architectural Decay

To identify decay in software systems, it is first important to observe the symp-
toms of erosion [20]. Some common symptoms of decay in software architecture
include Poor code quality [6] [20], Un-localized changes and regressions [6],
High defect rates [20] [9], Deviation of actual or concrete architecture from
planned or conceptual architecture [8], Inability to keep up with the market [12],
Reduced performance [12], Uncertainty about the software [20], and Deployment
problems [20], etc.

5.2 Practices for the Identification, Resolution and Prevention of Architectural
Decay

After the decay has been identified, something must be done to repair the system and
prevent further damage. The best practice, however, is to prevent architectural decay
by addressing causes of decay [19]. This section presents practices suggested in the
literature for the identification, resolution and prevention of architectural decay and
evaluation of these practices using evaluation criteria given in tables 1 and 2. Table 3
gives the evaluation of practices based on the presented criteria.

122 M. Riaz, M. Sulayman, and H. Naqvi

Class Factors Effect

Lack of documentation [12][8]------------ Incomprehensibility[12]

Poor quality documentation -------------- Reduced
[12][8][16] maintainability[12][8]

Lack of notational --------------------------- Lost traceability of design
expressiveness[8][19] decisions[19]

 Improper architecture [8][6]---------------- Un-maintainable system

 Little attention to design during ----------- Reduced maintainability
change[7][20]

Suboptimal design decisions [8][19][9]---Reduced maintainability[20]

Accumulation of design ---------------------- Reduced and expensive

 decisions[8][19] maintainability

Lack of guidance in predicting------------- Un-maintainable system
change[12][8]

Lack of good design examples [12][8]---- Un-maintainable system

Lack of training in design ------------------- Un-maintainable system
reviews[12][8]

Lack of training in design------------------- Un-maintainable system
documentation[12][8]

Change in requirements[8][6][20]-------- Reduced maintainability[6]
Architectural
Decay Imprecise requirements [8][6]-------------- Reduced maintainability

 Unhealthy organizational ------------------ Poor work

environment[8][6]

Personnel turnover [8][6][20][13]--------- Poor comprehensibility[8][6]

Geographical distance [20] ----------------- Poor system integration [20]

Process enforcement [20] ------------------- Reduced maintainability [20]

Inadequate adoption of tools [8][6]------- Improper support for system
development and maintenance

Inadequate adoption of development --- Reduced maintainability

 methodologies [8][19]

 Hasty development [12][8][6][9][20]---- Reduced maintainability

 Quick bug fixing [20] ----------------------- Regressions [20]

 Uncertainty about evolution [20] --------- Lost rationale [20]

Personnel inexperience [12][8][9]-------- Decreased maintainability
& increased defect rates [20]

Project
Management

Organization

Requirements

Training and
Guidance

Design

Documentation

Uncertainty about
software’s history

Human factors

Fig. 1. Factors contributing to architectural decay

 Architectural Decay during Continuous Software Evolution 123

Table 1. Evaluation criteria for the maturity of practices suggested in the literature

Value Criterion for Maturity
A Suggested practice is given without justification but with obvious benefit of its use
B Suggested practice is given with a sound logical argument
C Suggested practice is given in the form of method/tool support
D Suggested practice is based on an empirical proof of its effectiveness through

application on an industrial case study

Table 2. Evaluation criteria for the coverage of practices suggested in the literature

Value Criterion for Coverage
α Suggested practice only identifies decay
Φ Suggested practice only resolves architectural decay
∂ Suggested practice only prevents architectural decay
µ Suggested practice resolves and prevents architectural decay but in isolation
Σ Suggested practice prevents, identifies and resolves architectural decay in an

integrated fashion

Table 3. Evaluation of practices suggested in the literature

Sr. No. Suggested Practice Maturity Coverage
 IDENTIFICATION
1 Checking compliance of actual with planned architecture [8] C α
2 Tracking defect densities [20] D α
3 Internal evaluations [20] D α
4 Increased difficulty to incorporate additional requirements [20] D α
5 Change of staff [20] D α
 RESOLUTION
6 Use of design principles [12] [20] D µ
7 Creation and review of new documentation [12] [20] B µ
8 Replacement of decayed parts [12] [20] D Φ
9 Restructuring [12] [20] D Φ
10 Refactoring [8] D Φ
 PREVENTION
11 Design for change [12] [20] B µ
12 Documentation [12] [20] D µ
13 Reviews [12] B ∂
14 Imposition of standards [12] A ∂
15 Software architecture analysis methods [5][8] C ∂
16 Documented design patterns and architecture styles [5] A ∂
17 Design-level modeling languages and architecture

description languages [5]
C ∂

18 Inspection methods [5] C ∂
19 Requirements frameworks [5] C ∂
20 Implanting design decisions in source code [5] C ∂
21 Automated regression testing [20] D ∂
22 Aligning maintenance activities with product release [20] D ∂
23 Process Enforcement [20] D ∂
24 Experienced team [20] D ∂

124 M. Riaz, M. Sulayman, and H. Naqvi

From the overall analysis of the practices (see table 3) we observe the following:

• The impact of using or not using only one preventive practice on the overall
software architecture has not been addressed or evaluated.

• Most, if not all, practices lack empirical evidence of their effectiveness.
• There practices have been reported separately and without providing a concrete

link among them. These have been discussed in isolation, and lack coverage
with respect to addressing all the aspects of architectural decay.

• The results after the practices were applied (especially for preventive tech-
niques) have not been discussed in the literature.

6 Controlled Experiment to Observe the Impact of Design for
Change on Architectural Decay

To observe the effectiveness of different individual prevention practices on architec-
tural decay, we intend to run a series of controlled experiments. The first such ex-
periment was planned to observe the effect of design for change.

6.1 Experimental Design and Software under Study

The experiment was designed to observe the impact preventive practice of design for
change on software architecture. A small domain of an Online Book Store (OBS) was
considered and only a subset of modules capturing the functionalities of managing
customers and items including books, CDs, and Software; shopping; and order proc-
essing, was implemented. Two versions of OBS were developed, referred in this pa-
per as OBS1 and OBS2. The experiment was performed in collaboration with one of
the leading software companies which provided the requirements and the architecture
to be used for OBS1. Therefore, the implementation of OBS1 followed a proper de-
sign whereas OBS2 did not follow a proper design.

The implementation of OBS1 and OBS2 was performed by six fourth year Bache-
lor students, three each for OBS1 and OBS2, all of which had previously studied the
course on software architecture.

In the first phase of the experiment, the students were explained the requirements.
In the second phase, the students were given the task of implementing the system. The
third phase consisted of implementing four change requests (CRs) with varied levels
of complexity.

6.2 Experimental Results

For analysis, the measures considered were Number of Classes, Coupling between
Objects (CBO) [4], Data Abstraction Coupling (DAC) [2], and Message Passing
Coupling (MPC) [2]. Number of classes was considered to observe the growth
trend in the size of the application. CBO, DAC and MPC were used to observe
changes in the coupling values. Table 4 presents a comparative analysis of OBS1
and OBS2.

 Architectural Decay during Continuous Software Evolution 125

Table 4. Comparison of OBS1 and OBS2 for Design for Change

 OBS1 OBS2
After Implementation:

Number of classes 11 16
CBO 6 (0.54 per class) 12 (0.75 per class)
DAC 3 (0.27 per class) 7 (0.44 per class)
MPC 8 (0.72 per class) 14 (0.88 per class)

CR1:
Effort in hours 2 4
Number of classes 11 16
CBO 6 (0.54 per class) 12 (0.75 per class)
DAC 3 (0.27 per class) 7 (0.44 per class)
MPC 8 (0.72 per class) 14 (0.88 per class)

CR2:
Effort in hours 8 18
Number of classes 13 20
CBO 8 (0.62 per class) 16 (0.8 per class)
DAC 4 (0.31 per class) 10 (0.5 per class)
MPC 9 (0.69 per class) 17 (0.85 per class)

CR3:
Effort in hours 3 5.5
Number of classes 13 21
CBO 8 (0.62 per class) 17 (0.81 per class)
DAC 4 (0.31 per class) 11 (0.52 per class)
MPC 9 (0.69 per class) 18 (0.86 per class)

CR4:
Effort in hours 16 30
Number of classes 14 27
CBO 9 (0.64 per class) 24 (0.9 per class)
DAC 5 (0.36 per class) 19 (0.7 per class)
MPC 11 (0.79 per class) 26 (0.96 per class)

A careful analysis of the values of measures used show a greater increase in the val-
ues for OBS2 in comparison to OBS1. Number of classes almost doubled for OBS2
The Effort values for the CRs indicate that almost double the effort spent on OBS1
was spent on OBS2. The values of CBO, DAC, and MPC also show a greater devia-
tion for OBS2 than OBS1 between first implementation and after CR4.

From the experiment results, we can safely deduce that when software does not
follow a proper design, it is harder to maintain and introducing changes involves more
effort. In addition to reduced maintainability, software also starts showing decay
signs. This can be observed by an increase in the values of coupling measures. Al-
though some increase in the values can be attributed to the increase in software size,
the trends in the change pattern for OBS2 indicate deterioration in the software.

7 Conclusions and Future Work

It is well known that software architecture plays a very important role in the creation
of software systems. Therefore, it is imperative to get the architecture right and follow

126 M. Riaz, M. Sulayman, and H. Naqvi

the rules behind its creation throughout software development and maintenance. In
this paper, a definition of architectural decay has been proposed in addition to provid-
ing the state-of-art on architectural decay and a controlled experiment to observe the
impact of ‘design for change’ on software architecture.

The results of the controlled experiment suggest that software when not created by
following proper design has a greater tendency to deteriorate than properly designed
software.

For future work, in addition to addressing the issues presented in section 5.5, we
propose that a subset of best practices for identification, resolution and prevention of
architectural decay be studied and suggested for practitioners to follow.

References

1. Aoyama, M.: Continuous and Discontinuous Software Evolution: Aspects of Software
Evolution across Multiple Product Lines. In: IWPSE 2001 (2001)

2. Henderson-sellers, B.: Object-Oriented Metrics, Measures of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

3. Carriere, S.J., et al.: The Perils of Reconstructing Architectures. In: ISAW 1998 (1998)
4. Chidamber, S.R., Kamerer, C.F.: A metrics Suite for Object-Oriented Design. IEEE Trans.

Soft. Eng. SE-20(6), 476–493 (1994)
5. Dobrica, L., Niemela, E.: A Survey on Software Architecture Analysis Methods. IEEE

Trans. Soft. Eng. 28(7), 638–653 (2002)
6. Eick, S.G., et al.: Does Code Decay? Assessing the Evidence from Change Management

Data. IEEE Trans. on Soft. Eng. 27(1), 1–12 (2001)
7. Williams, B.J., Carver, J.C.: Characterizing Software Architecture Changes: An Initial

Study. In: ESEM 2007, pp. 410–419 (2007)
8. Hochstein, L., Lindvall, M.: Combating Architectural Degeneration: A survey. Information

and Software Technology 47(10), 693–707 (2005)
9. Kraft, J.: Software Aging and Code Decay Phenomenon. TR, Mälardalen University

(2007)
10. Yang, Y., et al.: Scenarios for Mining the Software Architecture Evolution. In: MSR 2006

(2006)
11. Lehman, M.M., Belady, L.A.: Program Evolution – Processes of Software Change. Aca-

demic Press, London (1985)
12. Parnas, D.L.: Software Aging. In: ICSE 1994, pp. 279–287 (1994)
13. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM SIG-

SOFT Software Engineering Notes 17(4), 40–52 (1992)
14. Pressman, R.S.: Software Engineering – A Practitioner’s Approach. Sixth Edition.

McGraw-Hill, New York (2005)
15. Ramil, J.F.: Algorithmic Cost Estimation for Software Evolution. In: ICSE 2000 (2000)
16. Stringfellow, C., et al.: Comparison of Software Architecture Reverse Engineering Meth-

ods. Information and Software Technology 48, 484–497 (2005)
17. Taylor, R.N., van der Hoek, A.: Software Design and Architecture – The Once and Future

Focus of Software Engineering. In: FOSE 2007 (2007)
18. Tran, J.B., et al.: Forward and Reverse Repair of Architecture. In: CASCON 1999 (1999)
19. Van Gurp, J., Bosch, J.: Design Erosion: Problems and Causes. Journal of Systems and

Software 61(2) (2002)
20. Van Gurp, J., et al.: Design Preservation Over Subsequent Releases of a Software Product:

A Case Study of Baan ERP. Journal of Soft. Maint. & Evol: Research and Practice 17,
277–306 (2005)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 127–134, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software Fault Localization Using Elastic Net:
A New Statistical Approach

Saeed Parsa, Mojtaba Vahidi-Asl, Somaye Arabi, and Behrouz Minaei-Bidgoli

Department of Computer Engineering, Iran University of Science and Technology,
Tehran, Iran

parsa@iust.ac.ir, {mojtaba_vahidi,atarabi}@comp.iust.ac.ir,
minaeibi@cse.msu.edu

Abstract. Fault localization is an important task in software testing process.
The aim is to find latent semantic faults which do not violate program syntactic
rules. Statistical debugging techniques are amongst best methods for identifying
faults in the program source code. However, they have some drawbacks. They
require a large number of executions to identify faults. Furthermore, they do not
consider the simultaneous effect of predicates on program termination status.
To resolve the problems, in this paper a new approach based on elastic net has
been proposed. The proposed approach finds the smallest effective subset of
program predicates known as bug predictors. Detecting most effective bug pre-
dictors considering fewer amounts of executions as much as possible is highly
desirable. The elastic net is advantageous when the number of executions is
much smaller than the number of predicates. After selecting bug predictors, the
main causes of faults are detected by using existing program slicing technique.
The experimental results on two well-known test suites reveal the effectiveness
and accuracy of the proposed approach.

Keywords: Software Testing, Statistical debugging, Elastic Net, Program Slic-
ing, Bug Predictors.

1 Introduction

Limitations on available time, money and people to improve software on one hand
and increases in complexity and size of software on the other hand, make manual
correction of programmatic errors impractical [2]. Therefore, it is necessary to devel-
op automated software-debugging techniques with minimum need for human inter-
vention. One well-known debugging technique is dynamic approach which deter-
mines a program behavior by analyzing the value of decision making statements,
appearing in the program code, in several executions of the program [3].

One recently developed dynamic technique is statistical debugging which has at-
tracted many researchers over the past few years and has reached significant and
promising development [2-6]. In fault localization process, the statistical debuggers
measure the value of program predicates such as branches, loops and function return
values in different executions of program and try to explain which predicates relate to
the faults of the program [4]; To achieve this, statistical methods usually extract

128 S. Parsa et al.

program behavioral model [2]. The extracted models are further applied to detect the
program misbehaviors leading to the identification of different types of faults which
may appear in the program.

The existing statistical techniques have three major limitations. First, a huge number
of both failing and passing executions are required in order to perform the statistical
analysis. Providing the passing executions is practical, using regression testing before
the deployment phase of software. But, since the software companies remove most
critical bugs before the software release, there might be a few number of failing test
cases to build a model for the fault localization purpose [7]. Constructing statistical
model with few number of failing executions may result in poor support of the model.
Thus, we require an approach that could be applicable when the number of predicates
of a program is much greater than the number of passing and failing executions. The
second main problem is the simultaneous effect of predicates on each other result in
failing or passing execution of the program. However, because of high correlation
among the predicates, the proposed method has to consider the problem which is
known as multicollinearity [9]. The third important problem is the huge number of
predicates which is common in large scale programs. In each run of a program, many
of the predicates are logically redundant having no predictive power [2].

To cope with the mentioned problems, in this paper we have proposed an algorithm
based on elastic net [1], a well-known shrinkage method to select most effective bug
predictors. We further applied backward slicing technique, to identify the main causes
of failure [7]. The privilege of shrinkage methods is their ability to penalize coeffi-
cients in order to minimize the residual sum of squares [10]. The elastic net method
provides a stable estimation method that may be used to advantage when there is high
multicollinearity among predictor variables [9]. The elastic net estimators are stable in
the sense that they are not affected by slight variations in the estimation data [1].
Elastic net method has grouping effect which means that it could select the high colli-
near features and put them into a group. This characteristic is very useful in fault
localization techniques, since it could select fault relevant predicates and put them
into groups which we call bug predictor group. This is also advantageous when pro-
gram has several faults. Elastic net could also produce interpretable models and tends
to assign high coefficients to most relevant predicates [1]. In other words, it ignores
redundant and irrelevant predicates. The most important advantage of elastic net is in
cases that the number of features is much more than the number of observations.

After using elastic net to find the groups of bug predictors, we apply a backward
slicing technique based on the extracted bug predictors to determine the main causes
of failure.

The remaining parts of the paper are organized as follows. In section two, the pre-
vious works which have been done in this context are presented. In section three, we
describe our proposed approach. The empirical results on two test cases are shown in
section four. Finally, concluding remarks are described in section five.

2 Related Work

One important field in automated fault localization techniques is Statistical debug-
ging. To select a set of predicates that best predict the outcome of every run of a
program, Liblit et al. [6] proposed a method based on regularized logistic regression.

 Software Fault Localization Using Elastic Net: A New Statistical Approach 129

The state of art technique has promising results for small programs containing a single
fault. But for large programs containing multiple faults, it suffers from some serious
scalability problems result in misclassification errors.

In an approach presented in [4], predicates are ranked in the order of their effects
on the program failure. It uses a technique based on probabilistic correlations of pre-
dicates value and program termination status. However, due to ignoring the false
value of predicates, the ranks are not determined appropriately. In other words, it
considers only whether a predicate was ever observed true during an execution.

To resolve the difficulty, both the true and false values of the predicates observed
in correct and incorrect executions of the program are applied to construct the ranking
model. The technique called SOBER is based on hypothesis testing which aims to
solve single fault problems, incapacitate to detect multiple faults in the program [3].

Liblit et. al. in an approach presented in [5] analyze the combinational effect of
predicates on program failures by combining all the statically dependent predicates.
However, there may be statically independent predicates, simultaneously, effecting
the program failure.

3 The Proposed Approach

In the approach proposed in this section, in order to localize faults in a program, three
major steps are followed. In the first step, the program is instrumented in order to
collect data from its runtime behavior. In the second step, a recursive algorithm based
on elastic net is proposed to select most effective bug predictors. Finally, in the third
step, backward slicing technique is employed to detect the likely causes for faults
manifested by each of the bug predictors.

3.1 Instrumentation

In order to build statistical model, describing a program behavior, the program has to
be executed several times. Execution data, for each run of the program, can be col-
lected by adding extra code to store the value of each program predicate. A predicate
is a Boolean expression determining the execution path of the program [5]. This tech-
nique of inserting extra code for collecting the value of predicates, at run time, is
called instrumentation [2]. Since, in some programming constructs such as if, the else
part is optional, two different predicates are considered. One predicate controls the
execution of the then part and the other controls the else part. Thereby, only the true
value of each predicate is considered. After each trial execution of the instrumented
program, a file is accessed to count the number of times each predicate has been eva-
luated as true.

3.2 Bug Predictor Selection

To automate the process of bug predictor selection, a recursive elastic net method has
been applied in this paper. A brief description of the proposed algorithm for bug pre-
dictor selection is shown in Figure 1.

As shown in Figure 1, the algorithm iteratively applies the elastic net method to
build a linear classifier which best fits the program predicates. In each iteration, the

130 S. Parsa et al.

method extracts most relevant predicates with the program failing or passing state.
The relevance of a predicate with program termination status is determined by its
coefficient (i.e. weight) in elastic net linear equation. The parameters m and t are
completely dependent to the test suite programs and should be tuned in order to
achieve the best result. To find the best values for m and t, we have applied cross
validation technique. In each iteration, some redundant features with the least weights
in the equation are removed and the model is reproduced with remaining predicates in
next iteration. Since the number of available program runs could be less than the
number of predicates, the iteration stops when we have got at most t predicates or
there is no execution left. At the last part of the algorithm, the remaining predicates
are grouped based on their coefficient in the elastic net model. Each group could
represent a specific fault in the program.

ELASTIC NET ALGORITHM

1. Let p1, p2, …, pn be the n program predicates, and let y be the binary response variable
 based on the program termination status and consider there are m trial executions.

2. While (࢔ ൒ and (m>0)(࢚

 Begin {while loop}
a. Apply elastic net method to fit a linear classifier, train the classifier and get predicates
 weights ࢏࢝
b. Delete k predicates with the smallest weight in absolute value and set ݊ ՚ ݊ െ ݇.
 (the values of k, t and elastic net tuning parameters depend on the application)
c. ݉ ՚ ݉ െ 1.
 {the value of t could be variable in each iteration based on the application}
End {while loop}

3. Group the remaining predicates, based on their weights (all predicates in each group have
 the same weight)

Fig. 1. The elastic net algorithm in recursive manner for bug predictor selection

Analysis of the proposed algorithm. In order to understand the role of elastic net
method in the proposed fault localization technique, we first describe the problem.

In order to find a relationship between program predicates and the failing or pass-
ing state of the program, a linear regression model could be constructed. Let
Pi=(pi1,pi2,..,pin) be the vector of predicates’ values and yi be the corresponding pro-
gram termination status for the ith execution. The relationship between P1 , P2, P3,…,
Pm (m is the number of program executions) and the program termination status Y is
formulated as

 Y ൌ β଴ ൅ βଵ ଵܲ ൅ ଶܲXଵ ൅ ڮ ൅ β୬ ୬ܲ ൅ ε (1)

The term β଴ in equation (1) is the intercept, also known as the bias in machine learn-
ing. β୧’s are constants known as regression coefficients (weights) and is the error of
model.

 Software Fault Localization Using Elastic Net: A New Statistical Approach 131

The elastic net is a shrinkage method which could be effective when the number of
features is more than the number of observations. It also has grouping effect which
gives groups of high correlated features. These privileges make the elastic net a very
good method for selecting bug predictors in the program. The ߚ parameters in elastic
net method are estimated as

ݐ݁݊.ܿ݅ݐݏ෠݈݁ܽߚ ൌ ݃ݎܽ minβ ∑ ሺyi െ β0miൌ1 െ ∑ pijnjൌ1 βjሻ2

ߣ ݋ݐ ݐ݆ܾܿ݁ݑݏ ෍ βj2
௡

௝ୀଵ ൅ ሺ1 െ ሻߣ ෍ βj
௡

௝ୀଵ ൑ ݎ
(2)

Where ߚ෠ is the estimated vector of coefficients. r is a tuning parameter which de-
pends on the dataset features. As shown in equation (2), elastic net, imposes two
penalties on the coefficients. The parameter ߣ in penalty function is in [0,1) in most
applications. If 0=ߣ, the equation (2) becomes the lasso equation [11] and if 1=ߣ, it
would be the ridge regression [10]. Thus, by choosing an appropriate value of ߣ
between zero and one, the equations may have the characteristics of both lasso and
ridge regression methods [1]. There are different well-known methods to select
such tuning parameters [10]. In the case we have only training data, cross-validation
method is an appropriate one to estimate the prediction error and compare different
models. For the two tuning parameters in the elastic net and two others in the pro-
posed algorithm, described earlier, we applied two different cross-validation on a
two-dimensional surface. For choosing r, we examine different values of λ, such as
0,0.001,0.05,0.1,…,0.95 and for each one we tried 5 and 10 fold cross validation
dependent on the training data. The tuning parameter, r, is the one giving the smal-
lest miss-classification error.

An important characteristic of elastic net is its grouping power which finds group
of highly correlated features. Consider a program has multiple faults and each fault is
manifested in one or more predicates. In other words, each fault is related to its cor-
responding group of bug predictors. In order to localize faults, all the bug predictors
in each group should be reported to the debugger to seek for the main cause of the bug
with the help of program slicing technique which has been described in section 3.3.
To achieve this, the selected features are grouped based on the values of their coeffi-
cients. In other words, the coefficient values of features in each group are identical or
close to identical.

3.3 Backward Slicing Technique

A program dependency graph can be extracted from a program source code, by
analyzing data and control dependencies in between the program statements. Start-
ing with a bug predictor, the dependency graph is traversed in the opposite direc-
tions to find all the instructions on which the values applied in the predicate are
calculated [7]. For each bug predictor detected in section 3.2, the backward slicing
technique is applied to find the potential causes of faults, inspecting less amount of
code.

132 S. Parsa et al.

4 Experimental Results

In this section, the results of applying the proposed approach are presented. The eval-
uation of the proposed method has been done on Siemens and EXIF test suites.

4.1 Experiments on EXIF

EXIF is image processing software. There exist three known semantic faults in this
software which make it to crash. These faults are mentioned in [2]. The approach that
is presented in this paper finds the faults by detecting the most relevant bug predic-
tors. We have found one bug predictor which was previously unknown in addition to
the three known bug predictors.

Table 1 shows four bug predictors in EXIF which are ranked based on their rele-
vancy to the software faults. These four predicates are compared with Liblit method
[2][7] in Figure 2. Here, only the four highest ranked predicates are reported. As
shown in the Figure 2, the elastic net method gives higher scores to the predicates
which are mentioned in Table 1; in the next stage, using backward slicing technique
on these predicates, all statements affecting the bug predictors have been reported to
the user.

4.2 Experiments on Siemens

Another test suite we have used to evaluate our approach is Siemens test suite [3].
Siemens contains seven programs. Each program has several test cases and some
faulty versions where the faults have been inserted manually.

In order to analyze the proposed approach, an appropriate criterion is to study the
amount of localized faults in this test suite. However, it is not adequate when we aim
to compare different debugging approaches. In fact it is required to study not only the
amount of revealed bugs, but also the proportion of code that has been traced manual-
ly after using the corresponding automated debugging approach in order to find the
main causes of faults.

The proposed approach in this paper could manifest 92 out of 132 faults (i.e. 71%)
by manual inspecting nearly 10% of code; whereas the method introduced in [3] has
detected 68 faults (i.e. %52.31).

The experiments show effectiveness of backward slicing technique in detecting the
main causes of failure in 75% of cases which helps the user to inspect less amount of
code.

In Figure 3, the proposed approach has been compared with two well-known de-
bugging techniques: Liblit [5] and Sober [3].

Table 1. The four bug predictors with highest scores in EXIF software

Predicate # Bug relevant predicate Function
P1 o + s > buf_size is TRUE exif-mnote-data-canon()

P2 i<0 Jpeg_data_set_exif_data()

P3 maxlen > 1900 exif_entry_get_value()

P4 strlen (val)==NULL exif_entry_get_value()

 Software Fault Loc

Fig. 2. The scores give

Fig. 3. The proposed approac
suite

5 Concluding Remar

In this paper, we have prese
lization. It has two main st
method and finding the pote
applying backward slicing
various debugging techniqu
approaches working with
approach is able to localiz
amount of code inspection b

alization Using Elastic Net: A New Statistical Approach

en to high bug predictors in Elastic Net and Liblit methods

ch compared with known statistical approaches on Siemens

rks

ented a novel statistical debugging approach for fault lo
tages: Identifying accurate bug predictors using elastic
ential causes of failure based on detected bug predictors
technique. Although backward slicing has been applied
ues, but it has not been examined in statistical debugg
bug predictors. The Experimental results show that

ze more faults compared to previous techniques with l
by the user.

133

test

oca-
net

s by
d in
ging
our
less

134 S. Parsa et al.

References

1. Del Mol, C., De Vito, E., Rosasco, L.: Elastic-Net regularization in Learning Theory, tech-
nical report, MIT press (2008)

2. Liblit, B.: Cooperative Bug Isolation. PhD thesis, University of California, Berkeley
(2004)

3. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: Sober: Statistical model-based bug locali-
zation. In: 10th European Software Eng. Conf./13th ACM SIGSOFT Int’l Symposium
Foundations of Software Engineering, Lisbon, pp. 286–295 (2005)

4. Liblit, B., Naik, M., Zheng, A., Aiken, A., Jordan, M.: Scalable Statistical Bug Isolation.
In: Int’l Conference Programming Language Design and Implementation, Chicago, pp.
15–26 (2005)

5. Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B.: Statistical debugging using compound
Boolean predicates. In: International Symposium on Software Testing and Analysis, pp. 5–
15. ACM Press, London (2007)

6. Liblit, B., Aiken, A., Zheng, X., Jordan, M.I.: Bug isolation via remote program sampling.
In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language De-
sign and Implementation, pp. 141–154. ACM Press, San Diego (2003)

7. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann,
San Francisco (2006)

8. Fei, L., Lee, K., Li, F., Midkiff, S.P.: Argus: Online statistical bug detection. In: Baresi, L.,
Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 308–323. Springer, Heidelberg (2006)

9. Chatterjee, S., Hadi, A., Price, B.: Regression Analysis by Example, 4th edn. Wiley Series
in Probability and Statistics, New York (2006)

10. Hastie, T.J., Tibshirani, R.J., Friedman, J.: The Elements of Statistical Learning: Data Min-
ing Inference and Prediction. Springer, New York (2001)

11. Tibshirani, R.: Optimal Reinsertion: Regression shrinkage and selection via the lasso.
J.R.Statist. Soc. 58, 267–288 (1996)

Applying Formal Methods to Process Innovation

Antonella Santone and Maria Tortorella

Dipartimento di Ingegneria, University of Sannio, Benevento, Italy
{tortorella,santone}@unisannio.it

Abstract. Continuous improvement of the software processes, includ-
ing both production and maintenance, is a necessary condition to ensure
fundamental software quality. An improvement opportunity comes from
the availability of innovative process components to be integrated in a
working software process. Formal methods are more and more used for
modeling and verifying software systems. In this paper formal methods
are instead used for modeling an innovative process component and un-
derstanding its integrability degree in an operative software process.

Keywords: Formal methods, CCS, process innovation, process improve-
ment, process modelling.

1 Introduction

Continuous improvement of the software processes, including both production
and maintenance, is a necessary condition to ensure fundamental software quality
[2,11]. Software quality problems are widely acknowledged to affect the develop-
ment cost and time. To mitigate these problems, much attention has to be paid to
developing approaches, models and standards for Software Process Improvement
(SPI). However, the number of organisations that have systematically adopted
strategies to process improvement is only a part of the entire population of the
software organisations [13]. This is partly due to the complexity and length of
the timeframe needed for reaching a certain recognised level with reference to
the chosen models, for example CMMI or Spice. Therefore, an SPI approach is
often considered an expensive undertaking. In addition, political pressures of-
ten focus more on obtaining a specific level than creating actual improvements.
All this creates demotivations in facing software process improvement tasks [10].
Nevertheless, improving software processes is an important task to be performed
within a software organisation for avoiding that innovative initiatives are individ-
ually undertaken from the software engineer without recognising and codifying
them in the official software process.

The aim of this paper is to propose an approach to improvement through the
integration of innovative process components within the software process to be
improved. This integration has to guarantee the operativeness of the software
process. In this paper, the term process component is used in a very generic
manner and it can indicate: a guideline; a technique; a method; or a simpler
process.

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 135–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 A. Santone and M. Tortorella

This paper faces the problem of exploiting process components already defined
and proposed in literature. In particular, an approach is proposed for modelling
and characterising a process component with the aim of using it in an operative
context. The idea follows the work presented in [15] where a process characteri-
sation framework, divided in specification and evaluation sections, was defined.
The technique proposed in this paper is based on formal methods is proposed.
Once the process component to be innovated is identified, the aim is to provide
a support for: simulating the behaviour of the old process; checking the inte-
grability of innovative process components; and verifying that properties and
behaviour of the innovated process are held.

Using formal description techniques for process innovation permits having an
unambiguous description of the analysed software processes. First, a method-
ology to specify software components is introduced based on the Calculus of
Communicating Systems (CCS) [8]. Afterwards, equivalence notions are used
for establishing whether a process component can be replaced by an innovative
one and a temporal logic [14] is used for describing properties representing the
innovation.

The paper is organised as follows: Section 2 discusses concepts regarding pro-
cess improvement and formal methods; Section 3 shows the core of the approach;
while Section 4 presents an application of the methodology through a simple ex-
ample. Finally, considerations and conclusions are given in Section 5.

2 Preliminaries

The improvement of a software process may concerns: the extension of an ex-
isting process by introducing one or more innovative process components; the
replacement of one or more components of the process by semantically equivalent
innovative ones; or the modification of one or more software process components.

The above modalities also include building a new software process, where the
constituting process components will be integrated by extending each other.

Four tasks can be considered for improving a software process:

1. identification of the improvement goals and innovative characteristics of the
process component to be integrated in the process [2,6];

2. identification of the process components to be substituted or added for at-
taining the preset improvement goals;

3. definition and/or identification of the process components to be integrated;
4. quantitative assessment of the quality and integrability of the process com-

ponents identified, and of the risks their adoption may entail.

This paper is mainly focussed on task 3 and faces the problem of exploiting
process components already proposed in literature. In fact, the richest sources
of innovative process components is the specialist literature in the Software En-
gineering field, reports of research projects, tools and documentation provided
by software houses, information available on the Internet, etc. It is needed to

Applying Formal Methods to Process Innovation 137

choose the most suitable process component for integration in the software pro-
cess and fully understand it. This paper follows an approach proposed in [15],
and introduces formal method techniques for formally defining the approach and
favouring its deterministic application.

Formal methods have a sound mathematical foundation and support reason-
ing about properties of systems. There is a large diversity of formal methods
for system, software and hardware development. This section focuses on model
checking [4], an automated technique for exhaustively verifying finite state con-
current systems. In the model checking framework, systems are modelled as tran-
sition systems and requirements are expressed as formulae in temporal logic. A
model checker accepts two inputs, a transition system and a temporal formula,
and returns“true”if the system satisfies the formula and“false”otherwise; in this
case the model checker reports the error via an execution trace called a coun-
terexample, showing where the violation occurred. For applying model checking,
we need: (i) a precise notation for defining systems; (ii) a precise notation for
defining properties.

To cope with the first need, specification languages were developed such as
CCS [8]. The second need can be solved by using a temporal logic such as the
mu-calculus logic [14]. Many environments for formal verification were developed,
one of the most popular is the Concurrency Workbench of New Century (CWB-
NC) [5], which includes several different specification languages, among which
CCS. The specifications can be checked for different equivalences, and different
logics can be used to express properties. Fore brevity, CCS [8] and mu-calculus
temporal logic [14] are not treated here. The reader can refer to the literature.

3 The Method

The proposed CCS-based technique will be used for both modelling a process
component and undestanding its integrability in a working software process for
innovating it. In this context, modelling activities are important as the literature
is populated of process components described in a redundant and ambiguous
manner making difficult their direct analysis, evaluation and exploitation.

The CCS language is used for expressing some of the most relevant aspects
of a software process and its components. This information is also evaluated for
understanding if an innovative process component can be integrated into the
software process, in place of an already used one, by keeping the elaboration
goals. A process component is modelled in terms of structural and qualitative
aspects. Structural aspects are related to: input to the process component; output
it produces; its goal; applied techniques; used tools; and so on. The qualitative
aspects regard the quality of the analysed process component and its results.

This paper regards mainly structural aspects of the software component to be
analysed: goal, input, output and technique. In the following, it will be explained
how the CCS specification will be used for formalising a process component. From
now on we use well-terminating processes: A CCS process is well-terminating if
it performs an action δ if and only if it terminates right after that. The typical

138 A. Santone and M. Tortorella

Table 1. Operators for well-terminating processes

p‖q = (p[δ1/δ] | q[δ2/δ] | (δ1.δ2.DONE + δ2.δ1.DONE))\{δ1 , δ2}
p; q = (p[δ3/δ] | δ3.q)\{δ3}
DONE

def= δ.nil

use of δ can be found in the definition of the operators ‖ and “;” (see Table 1).
The two operators (defined as in Milner [8]) correspond to the sequentialization
and parallel execution of two well-terminating processes. The processes resulting
from their applications are well-terminating too.

The constant DONE corresponds to a process whose task is to terminate
without further moves. The “;” operator will be suitably used to express the
sequentiality of two processes p and q: p must terminate before q can start its
execution. The process “p‖q” represents the parallel execution of p and q and
terminates only if both processes terminate. Formally the CCS specification of
a process component is so defined:

Mi
def= goalMi .(inputMi‖techniqueMi‖outputMi)\LMi

where:

– goalMi indicates the goal of the specified process component;
– inputMi is the CCS process specifying the inputs that the process component

has to receive;
– techniqueMi is the process CCS representing only the operations used to

reach the specified goal. Further refinements can be easily added;
– outputMi is the CCS process specifying the outputs that the process compo-

nent has to return;
– LMi is a set of the communication actions of the three CCS processes:

inputMi, techniqueMi, outputMi.

Once defined each process component, a working process can be modelled as the
following CCS process: All

def=(M1 ‖ · · · ‖ Mn)\L where each Mi, i ∈ [1..n], rep-
resents a process component, and L is a set of messages sent from one component
and accepted by another one, representing, thus, synchronisation points.

Improving a working process means that a process component, Mi, (or more
than one) can be replaced by an innovative one, X , but some properties must
be guaranteed: (i) the innovative process must simulate the behaviour of the
old process; (ii) the innovative process can be integrated with the other old
components; (iii) new properties, representing the innovation, must hold.

Formally, if we substitute Mi, i ∈ [1..n], with X , for guaranteeing the above
properties, some conditions must be checked using notion of behavioural equiv-
alence and temporal logic. We define the ρ-simulation meaning that q simulates
p, over ρ, when q’s behaviour patterns are at least as rich as those of p over ρ.

Applying Formal Methods to Process Innovation 139

Definition 1. Let p, q be two CCS processes and ρ a set of actions.

- A ρ-simulation, S, is a binary relation on P × P such that pSq implies:
p

α−→ρ r′ implies q
α−→ρ q′ with p′Sq′;

- q ρ-simulates p (p ≺ρ q) iff there exists a ρ-simulation S containing the
pair (p, q).

The conditions to be checked are formally defined as follows:

1. Mi ≺S X for i ∈ [1..n]; where S = goalMi ∪ sort(inputMi)∪ sort(outputMi);
2. Mi ≈L X for i ∈ [1..n];
3. (M1 ‖ · · · ‖Mi−1 ‖X‖ Mi+1‖ · · · ‖ Mn)\L |= ϕ.

The first condition states that the innovative process component X S-simulates
Mi, that is X can match all the moves of Mi, considering only the actions in S.
This means that X simulates Mi on the goal, inputs and outputs. X can have
more moves than Mi. The second condition states that X and Mi behave in the
same way with respects to L. Since Mi communicates using a set of actions L,
we can observe the behaviour of Mi through L. Thus, Mi can be replaced by an
equivalent process X which is indistinguishable from Mi with respect to L.

The third condition states that the new software process obtained by substi-
tuting Mi with X satisfies the property ϕ. The property can be expressed using a
temporal logic as for example mu-calculus [14]. To guarantee that this condition
holds an attempt can be to use directly the CWB-NC.

4 An Example

In this section a simple example of application of our approach is shown. A
simple problem is considered: given two inputs n and m, calculate the greatest
common divisor of the factorial of n and the square of m. The process solving the
problem is composed of three process components representing the computation
of the factorial, square and greatest common divisor.

The following CCS process M1, representing the process component to calcu-
late the factorial of a number is represented as:

M1
def= fatt.(I1 ‖ T1 ‖ O1)\{in, out} I1

def= input.in.DONE

T1
def= in.prod.out.DONE O1

def= out.output.DONE

The goal is defined as fatt, and the CCS process T1 is referred to the applied
technique in terms of the used operations; in particular T1 uses only products
(action prod). The CCS process I1 receives only a value as input (through channel
input) that forwards (channel in) to T1. T1, after completing its computation,
sends (through channel out) the result that the CCS process O1 captures and
returns externally, through the channel output.

140 A. Santone and M. Tortorella

O 1T 1

i n p u t

o u t

M 1
I1

in

O 3T 3
o u t

M 3
I3

in

o u t p u t
o u t p u t

o u p u t

O 2T 2

i n p u t

o u t

M 2

I2

in

Fig. 1. A graphical view

Similarly, the CCS process M2 represents the process component to calculate
the square of a number and it specified as follows:

M2
def= square.(I2 ‖ T2 ‖ O2)\{in, out} I2

def= input.in.DONE

T2
def= in.prod.out.DONE O2

def= out.output.DONE

The goal is defined as square, and the technique represented by the CCS process
T2 uses only the product operations (action prod). The CCS process I2 waits
for the input (through channel input) that forwards (channel in) to T2. Finally,
the CCS process O2 returns, through the channel output, the result. The action
out is the communication channel between T2 and O2. Finally, the CCS process
M3 represents the process component to calculate the greatest common divisor
(gcd) of two numbers. It is defined as:

M3
def= gcd.(I3 ‖ T3 ‖ O3)\{in, out}

I3
def= input.in.DONE ‖input.in.DONE

T3
def= (in.DONE ‖ in.DONE); div.out.DONE O3

def= out.output.DONE

The goal is defined as gcd, and the technique represented by the CCS process
T3 shows only the used operations; more precisely, T3 computes the gcd by
determining the prime factorizations of the two numbers. Therefore the basic
operations are divisions (action div). The CCS process I3 waits for both the two
inputs (through channel input) that forwards (channel in) to T3. Finally, the
CCS process O3 returns, through the channel output, the result. The action out
is the communication channel between T3 and O3. The complete CCS process
All is the following:

All
def=(M1[f1] ‖ M2[f1] ‖ M3[f2])\{c}

where f1 = output/c f2 = input/c, input/c

Note that, through the two relabelling functions f1 and f2, the outputs of the
processes M1 and M2 are the inputs of the process M3.

Applying Formal Methods to Process Innovation 141

Figure 1 shows a graphical view of the CCS specification of the complete
system. Suppose that we want to innovate the process component M3 using
the Euclidean algorithm which uses only subtractions (action sub) and that the
innovative process X is formally defined as:

X
def= gcd.(I ‖ T ‖ O)\{in, out}

I
def= input.in.DONE ‖input.in.DONE

T
def= (in.DONE ‖ in.DONE); sub.out.DONE O

def= out.output.DONE

Using formal verification environments it can be proved that:

– M3 ≺S X where S = {gcd, input, in, output, out};
– M3 ≈{in,out} X .

Moreover, some properties characterising the innovation can be expressed using
a temporal logic. For example, no division operation (action div) is performed by
the new process All, obtained by replacing the process M3 with X . This property
can be expressed using, for example, mu-calculus as νZ. [div] ff ∧ [−div] Z (see
[14]). All the above three checks guarantee that M3 can be safely replaced by
X , obtaining an innovative process.

5 Conclusion and Related Work

An approach is presented for process improvement through the adoption of inno-
vative software components informally proposed in different sources. The paper
shows how to use formal methods for modelling and understanding the integra-
bility degree of an innovative process component in an operative software process.
As far as we know, this is the first attempt to exploit process algebras for pro-
cess innovation. In specific contexts, such as service-oriented computing area,
formal methods have already been used to improvement. First, unambiguous
semantics for the languages WS-BPEL and WS-CDL, used to describe service
compositions and interaction protocols (called choreography), has been defined.
An overview of the various formalisms proposed, including process algebras, is
contained in van Breugel and Koshkina [3]. Once a formal model of the system
is available, it is possible to use it to innovate and compose web services [7],
where Petri nets are used. One of the current research issues in the web service
field deals with providing (semi)automatic support to web service composition
for correctly defining the service interaction model respect some predefined goal
[12], representing an innovative system requirement.

The applicability of the proposed approach has been discussed through an
example that nevertheless its simplicity, describes aims and uses. Further anal-
ysis is needed in a real software process and with innovative software compo-
nents. In addition, concepts will be added to the proposed approach for better
modelling a process component. In addition, the authors will work on the exten-
sion of the formal method techniques and approaches for offering a support for

142 A. Santone and M. Tortorella

choosing in a set of candidate innovative process component the one that better
meets the improvement exigencies of a software process, even with incomplete
information.

References

1. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus and
Formula-Based Abstractions of Transition Systems. Journal of Computer and Sys-
tem Sciences 59(3) (1999)

2. Basili, V.R., Daskalantonakis, M.K., Yacobellis, R.H.: Technology transfer at Mo-
torola. IEEE Software 11(2) (1994)

3. Breugel, F., Koshkina, M.: Models and verification of BPEL (2006),
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer, Heidelberg
(1996)

6. Dyba, T.: An empirical investigation of the key factors for success in software
process improvement. IEEE Transactions on Software Engineering 31(5) (2005)

7. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Service Composi-
tion. In: Proceedings of the 14th Australasian Database Conference (ADC 2003),
Adelaide, South Australia (February 2003)

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

9. Napier, N.P., Kim, J., Mathiassen, L.: Software Process Re-engineering: A Model
and its Application to an Industrial Case Study. Software Process: Improvement
and Practice 13(5) (2008)

10. Niazi, M., Ali Babar, M., Katugampola, N.M.: Demotivators of Software Pro-
cess Improvement: An Empirical Investigation. Software Process: Improvement and
Practice 13(3) (2008)

11. Paulk, M.C., Weber, C., Curtis, B., Chrissis, M.B.: The Capability Maturity Model:
Guidelines for Improving the Software Process, p. 441. Addison-Wesley Publishing
Co., Reading (1995)

12. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated Synthesis of Com-
posite BPEL4WS Web Services. In: Proceedings of the 3rd IEEE International
Conference on Web Services (ICWS 2005), Orlando, Florida, USA, July 11-15
(2005)

13. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An ex-
ploratory study of why organizations do not adopt CMMI. Journal of Systems and
Software 80(6) (2007)

14. Stirling, C.: An Introduction to Modal and Temporal Logics for CCS. In: Boisson-
nat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391. Springer,
Heidelberg (1989)

15. Tortorella, M., Visaggio, G.: Evaluation of a scenario-based reading technique for
analysing process components. Journal of Software Maintenance 13(3) (2001)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

Abstracting Models from Execution Traces for
Performing Formal Verification

Thierry Bodhuin, Federico Pagnozzi, Antonella Santone,
Maria Tortorella, and Maria Luisa Villani

Dipartimento di Ingegneria, University of Sannio, Benevento, Italy
bodhuin@unisannio.it, fed.984@gmail.com,

{santone,tortorella,villani}@unisannio.it

Abstract. Becauseof its complexity, software systemverification is ahard
task and very often neglected for complex distributed component-based ar-
chitectures with high degree of dynamism. Monitoring and verification of
these systems are important even when they have to be runningwith a high
level of availability and low halt time. Model checking is an automatic tech-
nique toverify complianceof the system implementationwith respect to the
requirements. In this paper we address the problem of abstracting a process
model from a set of execution traces of a Java application with the aim of
performing formal verification through model checking.

Keywords: Runtime instrumentation, bytecode, CCS, model checking.

1 Introduction

Modern software systems are becoming more and more complex with distributed
component-based architectures and a high degree of dynamism enabled by object-
oriented languages. This complexity reflects on the verification process, especially
for critical systems where formal methods like model checking are necessary to
assess reliability.

Model checking [7] is an automatic technique to verify compliance of the
system implementation with respect to its defined requirements. It applies to
a formal description of the system behaviour as a finite automata, and to a
temporal-logic formula representing the requirement to be verified. Examples of
such specification languages are, respectively, the Calculus of Communicating
Systems (CCS) [18], which provides a Labelled Transition System (LTS) seman-
tic of processes and it is especially powerful to describe concurrency, and the
mu-calculus logic [22].

In the context of software verification, a non-trivial problem to be faced is
the actual availability of the CCS description of the system to be analysed. This
description has to provide a model of the behaviour of the system into a finite
LTS that is enough faithful to the real system, so that the verification process is
then feasible and useful. In the best cases, such models might have been realised
in the design phase of the system development process, although usually other
notations are used, such as UML dynamic diagrams from which a translation to

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 143–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 T. Bodhuin et al.

CCS could be attempted. But, even then, design models are not always consis-
tently updated in the implementation activities to reflect the realised behaviour
of the system or in the subsequent phases of software maintenance and evolu-
tion. Therefore, reverse engineering methods [6] have to be used for supporting
program comprehension and obtaining realistic models. These methods must in-
clude both static and dynamic analysis. In particular dynamic analysis is needed
for capturing aspects like dynamic binding in object oriented systems, such as
Java, and understanding process concurrency.

In this paper, we address the problem of abstracting a process model from
a set of execution traces of a Java application to the aim of formal verification
through model checking. In particular, given a class of safety properties, we are
interested in checking whether these properties were satisfied in all of the runs
of the system logged. We actually start from the Java byte-code so that the
applicability of the method is widen to the cases where the Java source code
is not available, or because generated from other bytecode-compiled languages.
Using Java Instrumentation API [16], the Java byte-code is instrumented at run-
time with instructions useful for generating logs containing just the necessary
events for the verification of a specific set of properties.

We propose a technique to build appropriate models out of the system traces,
preserving the behaviour with respect to the class of safety properties to be ver-
ified. This technique consists of an iterative procedure that starts from an initial
raw main process, which includes all the system traces as alternative branches.
Given a set of actions ρ, built from the actions appearing in the logical formu-
lae, at each step, a more compact process is obtained, through (sub)processes
merge and reduction, allowed for states not immediately reachable from actions
in ρ. This new process is still capable to generate all the given traces, but may
feature additional behaviour. However, this behaviour will not impact on the
truth of the safety properties to be verified. The process transformation step is
structured as a sequence of rules, including fold/unfold rules already used for
optimisation of logic programs [21], to form a ρ-strategy. With this method, we
intend to both ease the verification process and provide the user with an appro-
priate abstraction from the non-critical states identified through ρ. Indeed, the
proposed method is parametric with respect to ρ (namely, the ρ-strategy); by
changing this set, different process models can be obtained, featuring different
levels of abstraction. The most abstract (or compact) process is obtained if ρ
is the empty set, while a formula-based process model is built if ρ contains the
actions occurring in the formula itself. Thus, this model can be used for the for-
mal verification. Moreover, the transformation rules directly apply to the CCS
processes, without the need for building the corresponding LTSs, contrary to
other works [23] that propose to act on the automata.

Although our method cannot ensure that the system under consideration is
correct (if it is) it can find an error if it is not correct. Thus, it holds that if the
discovered model, obtained by applying the ρ-strategy does not satisfy a safety
ϕ, with property that the actions occurring ϕ belong to ρ, then the application
does not also.

Abstracting Models from Execution Traces 145

The paper is organised as follows. In Section 2 instrumentation concepts are
recalled. In Section 3 the Java byte-code instrumentation method and the logs-
to-CCS traces conversion are briefly explained. Finally, considerations and com-
parisons with some related work are given in Section 4.

2 Instrumentation

Instrumentation refers to an ability of monitoring and measuring the level of a
product’s performance, diagnosing errors and writing trace information. Instru-
mentation is in the form of code instructions that monitor specific components
in a system [19]. Instrumentation approaches can be of two types, source code
instrumentation and binary instrumentation (http://asm.objectweb.org).

Instrumentation may be done in static way [19], without executing the code,
or in a dynamic way [10,14], during code execution. The static approaches re-
quire the availability of the source code. While the dynamic approaches permit
also to perform the instrumentation of code potentially downloaded on the fly
from the network [2,3], such as Java applets or Java Web Start applications.
Many software systems exist for applying dynamic instrumentation for different
hardware/Operating system environments using run-time binary patching. With
the Java era, the instrumentation can be performed directly in the running vir-
tual machine by rewriting the Java bytecode [17] as it is loaded inside the virtual
machine or when requested. The most flexible approach for instrumenting Java
applications regards the use of instrumentation as dynamic transformation of
bytecode during the software system execution.

The bytecode transformation, considered in this paper, is applied at runtime.
It is based on the new Java instrumentation API [16] and use the ASM Library
for parsing and applying modification to the Java byte code. The implemented
instrumentation library is an agent entirely written in Java for the instrumenta-
tion and monitoring of Java applications. The Java Instrumentation API allows
bytecode transformation when the Java bytecode is loaded by the class loader. It
allows getting information regarding when and which class is loaded at a certain
time and extracting information regarding class structure methods, fields and
control flow, through some bytecode library. Both Java Instrumentation API
and ASM were used for providing flexibility and lowest possible overhead during
execution of the instrumented program.

3 The Method

The proposed method is based on two main steps:

1. obtaining execution traces from Java Bytecode-based programs by applying
bytecode instrumentation;

2. discovering models from traces using program transformation for checking
properties.

The following two subsections will discuss in a major detail each of this steps.

146 T. Bodhuin et al.

3.1 Obtaining Execution Traces from Java Bytecode-Based
Programs

The execution traces, recovered during a software system execution, include both
static information and dynamic information. For obtaining execution traces, soft-
ware systems need to be instrumented adding some instructions called instru-
mentation code. The instrumentation of Java bytecode is applied when software
is executed using the Java instrumentation API [16]. However, different execution
of the same software systems will generally produce different traces depending
on the execution order of the different instructions due to Thread scheduling or
other software external context. For simplicity, we used XML files for storing
the execution traces. Choosing the right model for execution traces depends on
the objective of the system that will use them. This is a difficult task to be per-
formed in a general way without affecting performance or generating too much
unneeded information.

All the information at the static level and additional information at dynamic
level needed to be kept. In particular, the information gathered at the dynamic
level are only method calls from application level methods, calls to the wait and
notify methods of Object instances and class/instance variables accesses either
in read or write mode. During the static analysis, full class names are recorded
together with the super class or interface name list, if needed. In addition, the
signatures of all the methods are registered together with the exception class
names that may be thrown.

The Java Instrumentation API allows to register a class called Agent, con-
taining a premain method that is executed before the ”main” class. The premain
method gets as parameter an object implementing an interface called Instru-
mentation that allows the system to catch any class loading, thus permitting the
bytecode redefinition for instrumentation purpose. The adopted instrumentation
uses the ASM library for obtaining the class structure before instrumenting.

Three types of instrumentation that were used for obtaining dynamic infor-
mation: method calls, field accesses and synchronisation events.

In the following, the approach will be illustrated with reference to the simple
example shown in Table 3.1 which concerns the definition of a class including the
factorial method. The method receives two integers y and n and calculates the
factorial of y if 0 ≤ y ≤ n, decrementing the value of the variable n, otherwise
calculates the factorial of y − 1. The program prints the value of the variable
fatt if fatt is equal to n, otherwise prints 0.

In [4] the instructions inserted during the instrumentation phase in the small
sample program and the traces obtained by the execution of the program for the
static information are discussed.

3.2 Discovering Models from Traces Using Program Transformation
for Checking Properties

The Unfold/Fold transformation approach was introduced in [5] to manage func-
tional programs and then used for logic programs [21]. This approach is based

Abstracting Models from Execution Traces 147

Table 1. A simple program

public class Factorial {
private int y, n;
public Factorial(int y, int n) {
this.y=y; this.n=n;
}
public void factorial() {

1 fatt=1; (k)
if (y >=0 && y <= n)

2 n--; (a)
else

3 y--; (c)
while (y>0){

4 fatt *= y; (b)
5 y--;} (c)

if (fatt == n)
6 System.out.println(fatt); (l)

else
7 System.out.println(0); (d)

}}

on the construction, by means of a strategy, of a sequence {Pk} of programs each
obtained from the preceding ones by using a transformation rule. The rules are
based on Unfold and Fold, i.e. expansion and contraction of a sub-expression
of Pk using the definitions of Pk or a preceding program. Other rules are used,
as, for example, Definition Elimination and Introduction. Each program in the
sequence is related with the preceding ones by a particular semantic notion. De-
velopments of the transformational approach for CCS can be found in [9], where
it has been proved that all programs of a transformation sequence are strongly
equivalent. In this paper, for lack of space, the basic concepts of CCS are not
recalled. The reader can refer to [18]. We suitably define other new rules (Substi-
tution & Introduction and Simplification) for the aim of building models starting
from traces. In particular: the Substitution & Introduction rule substitutes con-
stants with a new constant definition. The Substitution & Introduction rule does
not preserve strong equivalence, but trace equivalence. The Simplification rule
simplifies sub-processes, based on known properties of the operators. These rules
allow to implement the synthesis procedure to CCS from traces which is mainly
based on merging all states reached by the same transition. Further, we have de-
fined a strategy, i.e. an order of application of the transformation rules, to obtain
a CCS program from a given set of traces. Informally, the strategy merges states
through the application of the Substitution & Introduction rule, it introduces
new definitions only for states reachable from the same transition and it folds
these states using the new definitions; subsequently, it unfolds the body of the
new definitions, so that the simplification rule can be applied. The Simplification
and the Elimination rules are applied as much as possible, in order to reduce the
CCS model.

The aim is to obtain a CCS model over which to check properties. Following
the classification in [22] of liveness, weak liveness, safety and weak safety prop-
erties, the properties we handle in this paper can be characterised as follows:

148 T. Bodhuin et al.

ρ-safety properties: no run with actions in ρ contains a bad feature. If we use
the selective mu-calculus logic [1], a ρ-safety property is syntactically recognised
as it contains only actions in operators, i.e. ρ. The ρ-strategy is parametric with
a set of actions ρ that range from the empty set to the whole set of actions A.
The emptiness of the set ρ means that we want to obtain the most compact
model. Thus, merge and reduction operations are unconditionally applied. This
case falls in the traditional focus of process mining, that is, to reconstruct a pos-
sible model of the system by extracting knowledge from event logs. In this way,
the discovered model is useful for human validation and for verifying compliance
with the business process [20].

On the contrary, if ρ is not empty, merging and reduction operations are not
applied whenever they involve actions belonging to ρ. Indeed, actions in ρ are
relevant for checking the ρ-safety properties, and, to this aim, we have defined
a ρ-strategy, see [4]. In general, it holds that the discovered model includes all
initial traces, but additional traces may be added. On the other hand, suppose
that we want to satisfy a ρ-safety property such that ρ ⊆ A and ρ �= ∅. In
this case it holds that for all traces containing actions in ρ no additional traces
with actions in ρ are added in the model. Roughly speaking, the initial traces
with actions in ρ are identical to those in the model. The proposed methodology
guarantees that if a ρ-safety property does not hold in the discovered model
then it does not hold also in the CCS program obtained directly applying the T
operator for the given set of traces T (i.e. T (T)).

Consider the program in Table 3.1 and suppose that we want to verify the
following property: ”it is not possible to print the variable fatt (action l) if both
the initialisation of the variable fatt to 1 (action k) and the decrement of the
variable n (action a) have not been performed”. This property can be expressed
in selective mu-calculus as ϕ = 〈l〉{k,a}ff1. The set of actions occurring in the
logic formula ϕ is ρ = {l, k, a}. Therefore, if we apply our methodology with
ρ = {l, k, a} we obtain a CCS program whose labelled transition system is shown
in Figure 1.

a b

k

c

b

l

d

k

Fig. 1. Labelled transition system obtained applying the {l, k, a}-strategy

It holds that the property does not hold on the discovered model, thus we can
deduce that it does not hold also on the program. In fact, when n = 1 an y = 2
the execution of the program produces the trace k.c.b.c.l, where l is performed
without having previously performed the action a.

1 For lack of space syntax and semantics of the selective mu-calculus logic are not
reported. The reader can refer to [1] for details.

Abstracting Models from Execution Traces 149

4 Conclusion and Related Work

Recently many modelling approaches have been proposed. They differ in the kind
of properties they help reason about and in the level of precision or formality of the
results one may obtain through them. In [12] the authors focus on models that may
beused to reason aboutnon-functionalproperties of the software-to-be. In this case
models are heavily dependent on parameters that must be provided a-priori by do-
main experts or extracted by other similar systems. In [11] the formal foundations
of model extraction process based on contexts is discussed. The correctness of the
models is affected by the set of attributes used as the system state, while in our ap-
proach is guaranteed for safety properties. Moreover, our approach is completely
automated. Thus no guidance from a process engineer is required.

Process mining from execution traces is an interesting and challenging research
problem in many areas of computer science. In the information system context,
this is referred to workflow mining. Quite a lot of research has been done in
this setting ([15,23,13] to name just a few), with results focussing on different
problems, such as log analysis through clustering, data cleaning from noise, or
recognition of particular workflow patterns. The work in [8], uses a statistic-based
technique to infer a Finite State Machine model of a system. Using metrics
for the number, frequency, and regularity of event occurrences, they identify
the likely concurrent behaviour being manifested by the system. Concurrency
identification from traces is challenging, but in our case, we get it for grant from
the instrumentation technique. The work closest to our is that presented in [23],
which includes a strategy-based approach using the theory of regions to identify
states to be merged on a Labelled Transition System. Differently to that, our
approach works on the CCS syntax, so we do not have to generate the Labelled
Transition System, which may be problematic for big-size processes, and it is
modular, as new rules may be easily added.

The software engineering works address the problem of specification mining,
aiming at deriving software specifications from the implementation through re-
verse engineering techniques [6]. Our tools and method follow the bytecode based
approach to software model checking, as many other software model checkers.
The Java PathFinder (JPF) (http://javapathfinder.sourceforge.net/) is an open
source application and is a very successful software model checker for Java byte-
code. It pioneered the concept of implementing a software model checker as a vir-
tual machine that simulates the binary code of the application to be checked. Mi-
crosoft Research also developed a Tool (XRT) (http://research.microsoft.com/
apps/pubs/default.aspx?id=77413) with similar goals as JPF for the .Net plat-
form. XRT is an exploration framework, not currently publicly available, for
programs represented in Microsoft’s common intermediate language (CIL).

References

1. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus and
Formula-Based Abstractions of Transition Systems. Journal of Computer and Sys-
tem Sciences 59(3), 537–556 (1999)

150 T. Bodhuin et al.

2. Bodhuin, T., Tortorella, M.: A Tool for static and dynamic Model extraction and
Impact Analysis. In: Proc. of CSMR 2005, 9th European Conference on Software
Maintenance and Reengineering, Manchester, UK, March 21-23 (2005)

3. Bodhuin, T., Di Penta, M., Troiano, L.: A Search-Based Approach for Dynamically
Re-packaging of Downloadable Applications. In: IBM Centers for Advanced Studies
Conference - CASCON 2007, Toronto, Canada, October 22 - 25 (2007)

4. Bodhuin, T., Pagnozzi, F., Santone, A., Tortorella, M., Villani, M.L.: Abstracting
Models from Execution Traces for Performing Formal Verification. Technical Report

5. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1), 44–67 (1977)

6. Canfora, G., Di Penta, M.: New Frontiers of Reverse Engineering. In: Proc. of FOSE
2007, Future of Software Engineering, pp. 326–341. IEEE, Los Alamitos (2007)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(2000)

8. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

9. De Francesco, N., Santone, A.: A Transformation System for Concurrent Processes.
Acta informatica 35(12), 1037–1073 (1998)

10. Dmiuiev, M.: Selective Profiling of Java Applications Using Dynamic Bytecode
Instrumentation. IEEE, Los Alamitos (2004)

11. Duarte, L.M., Kramer, J., Uchitel, S.: Towards Faithful Model Extraction Based
on Contexts. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 101–115. Springer, Heidelberg (2008)

12. Epifani, I., Ghezzi, C., Mirandola, R.: Model Evolution by Runtime Adaptation.
In: Proc. of ICSE 2009, 31st International Conference on Software Engineering, pp.
111–121. IEEE, Los Alamitos (2009)

13. Greco, G., Guzzo, A., Manco, G., Saccà, D.: Mining unconnected patterns in work-
flows. Inf. Syst. 32(5), 685–712 (2007)

14. Hollingsworth, J.K., Miller, B.P., Gonalves, M.J.R., Naim, O., Xu, Z., Zheng, Z.L.:
MDL: A language and compiler for dynamic program instrumentation. In: Proc.
of the 1997 International Conference on Parallel Architectures and Compilation
Techniques (November 1997)

15. Jansen-Vullers, M.H., van der Aalst, W.M.P., Rosemann, M.: Mining configurable
enterprise information systems. Data Knowl. Eng. 56(3), 195–244 (2006)

16. Java Instrumentation API, http://tinyurl.com/3htevy
17. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,

Reading (1999)
18. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
19. Panzer, J.: Automatic Code Instrumentation. C/C++ Users Journal (1999)
20. Papp, R.: Introduction to Strategic Alignment. In: Papp, R. (ed.) Strategic In-

formation Technology: Opportunities for Competitive Advantage, pp. 1–24. Idea
Group, Hershey (2001)

21. Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and
Techniques. J. Logic Programming 19(20), 261–320 (1994)

22. Stirling, C.: An Introduction to Modal and Temporal Logics for CCS. In: Boisson-
nat, J.-D., Laumond, J.-P. (eds.) Concurrency: Theory, Language, and Architec-
ture. LNCS, vol. 391, Springer, Heidelberg (1989)

23. van der Aalst, W.M.P., Rubin, V., Van Dongen, B.F., Kindler, E., Gunther, C.W.:
Process Mining: A Two-Step Approach using Transition Systems and Regions. In:
BPM Center Report BPM-06-30 (2006),
http://is.tm.tue.nl/staff/wvdaalst/publications/p359.pdf

http://tinyurl.com/3htevy
http://is.tm.tue.nl/staff/wvdaalst/publications/p359.pdf

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 151–159, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Hybrid Model in Dynamic Software Updating for C

Mehdi Jalili1, Saeed Parsa2, and Habib Seifzadeh3

1 Department of Computer Engineering, Islamic Azad University – Soofian Branch,
Soofian, Iran

jalili.m@gmail.com
2 Department of Computer Engineering, Iran University of Science and Technology,

Tehran, Iran
parsa@iust.ac.ir

3 Computer Engineering Faculty, Islamic Azad University- Najafabad Branch,
Najafabad, Iran

seifzadeh@iaun.ac.ir

Abstract. The aim has been to develop a model for dynamic updating of soft-
ware. A major difficulty with dynamic updating is the execution time overhead
required for running the extra code embedded within the updatable version of
the program. In order to resolve the difficulty, the dynamic updating model,
suggested in this paper, activates the updatable version whenever updates are
ready. When the updating is finished, the execution carries on with a newly up-
dated program in which there is not any extra code for dynamic updating. Since
the updatable version of the program is created at run-time, the proposed model
not only increases the performance of the system, but also enables us to update
programs that have been compiled and executed without any dynamic updating
considerations, before. Our experimental results demonstrate the applicability
and performance of the proposed model.

Keywords: dynamic software updating, state-transfer, programming language.

1 Introduction

In software maintenance phase, programs are updated to correct faults, improve func-
tionality, and adapt the software to changes its execution environment. The typical
software-update process consists of stopping the system to be updated, updating the
code and restarting the system. Many applications, however, must run continuously
and have maximum downtime requirements approximately a few minutes per year
[15]. For ISPs, online transaction processing and life-support systems being available
24/7 is an important issue. Thus, the dynamic software updating (DSU) becomes
more appealing, nowadays. Dynamic software updating is the task of updating parts
of a program without having to terminate its execution.

There are two main models for dynamic updating, called interrupt [2], [3], [4], [6],
[17], [18], [19] and invoke model [11], [20]. In an interrupt model, the running pro-
gram can be interrupted at any time and any location within the running code [6].
However, it is not possible to update and carry on with the execution of a program at
any location within the program. To resolve this problem, invoke models are offered.

152 M. Jalili, S. Parsa, and H. Seifzadeh

In an invoke model, updates can be applied at fixed locations, defined at compile time
[11], [14], [20]. However, a major difficulty with invoke models is the overhead of
executing code inserted for dynamic updating. In addition, in order to prepare a pro-
gram for dynamic updating the structure of the program may be altered. These struc-
tural modifications also can slow down the program execution.

In the model proposed in this paper, the runtime overhead is removed by executing
the updatable version whenever updates are required. In this way, it is possible to
update any running code by preparing an updatable version of the code. The proposed
model is a hybrid of invoke and interrupt models. It follows the interrupt model for
switching between a running code and the updatable version of the code. An invoke
model is applied for creating the updatable code. Before a program could be updated,
the updatable version of the program is executed to carry on with the execution of the
running code. The running code is terminated while the updateable code is executing.
After all the modifications are applied to the updatable code, the code is automatically
converted into the original program code.

The remaining parts of this paper are organized as follows: In Section 2, we pro-
vide a background on previous researches related to our work. Section 3 describes the
hybrid model, a new model to dynamically update C programs, and briefly discusses
its implementation issues. In Section 4 the hybrid model is evaluated and compared
with the other DSU models. Finally, Section 5 gives a summary and discusses ongo-
ing work.

2 Related Works

Over the past forty years, varieties of approaches have been proposed for dynamically
updating running software. Fabry [2] provides a software dynamic update system.
Motivated by the needs of large database systems, Fabry’s scheme adds a level of
indirection on module invocations, which allows the calls to be redirected and an
update performed. Multics [16], DAS [3], DYMOS [4] were early systems that de-
scribe dynamic updating. Some systems have been developed to support dynamic
updating in high-level language such as Erlang and Dynamic ML [18], [19]. In addi-
tion, some other approaches, Ksplice [8], K42 [9], LUCOS [10], [13], developed
systems to provide dynamic updating of operating systems.

A number of general-purpose dynamic update systems, for applications written in
C or C-like languages, have been developed. Gupta has developed an update system,
which works on C programs [6]. His system could only update functions which are
not on the stack. It also cannot update local variables. OPUS [17] is a dynamic update
system for C programs specifically targeting security patches. It has some improves
over Gupta’s work such as the process of creating dynamic patches. Hjalmtysson and
Gray have developed a system supporting dynamic replacement of C++ class imple-
mentations in a running program [12]. It supports any changes in class but it does not
allow any modifications to the class interfaces. Hicks [14] attempts to address many
of the limitations of previous dynamic updating systems, namely the flexibility of
when and how programs may be changed, the robustness and correctness of the up-
dated code and finally the ease of use of the system. In the Hicks's approach, pro-
grams have to be written in a type-safe variant of C known as Popcorn. This special

 A Hybrid Model in Dynamic Software Updating for C 153

language requirement is the system’s greatest limitation. Ginseng [11] contains an
implementation of the static updateability analysis from Proteus [20], which is used to
determine and insert safe update points into a C program. Pending updates are applied
when the running program reaches a safe update point. Ginseng also automatically
adds indirections for types and functions, at compile time, to enable later updates.
Ginseng provides safe, fine-grained dynamic updates for arbitrary C code, with a
performance overhead measured between 5 and 32% [1].

A major difficulty with some of the above mentioned approaches, is that they [3],
[4], [14], [16], [18], [19] can only apply runtime updates to the programs developed in
a specific programming language. Most of the current approaches restrict dynamic
updates to specific type of programming items under certain circumstances [6], [12],
[17]. For instance, global variables cannot be dynamically updated in some of the
approaches [6]. Another difficulty is to formally prove the correctness of the updates.
Gupta [7] has proved that finding safe points to apply updates is in general undecid-
able. One more difficulty is runtime program execution overhead. Adding a relatively
large number of indirections to convert a given program into an updateable format
may result in runtime overhead to the program execution [11]. Another limitation
with applying [11] is that it cannot be applied to update legacy code, not compiled
with the Ginseng.

The above-mentioned problems with [11] are resolved in the approach presented in
this paper.

3 Hybrid Model

In this section, the architecture and design of our model is described. Then, some
issues about its implementation are discussed.

3.1 Architecture and Design

First, let us see some key definitions which are used throughout the paper. From now
on, we refer to the archaic version of the running program as P0. Note that P0 runs
now, but it will be replaced shortly. P1 is the new version of the program which is
desired to be a replacement for P0. The goal is to replace P0 with P1 at run-time, but it
is not a trivial task, at all. Therefore, P0u and P1u have been required to come. The
letter "u" in P0u and P1u names stands for "Updatable".

P0u does the same operations as P0 and P1u does the same operations as P1. The only
difference is that switching the execution from P0u to P1u at run-time is much simpler
than switching the execution from P0 to P1. The reason is that P0u and P1u have some
additional information such as type and function indirection, loop extraction, etc.
Notions of P0u and P1u and the related concepts such as function indirection have been
introduced by [13] in great detail. In Ginseng's compiler, P0u and P1u are generated
automatically. Therefore, there is just a little more labor imposed on the programmer
to generate any other code rather than P0 and P1 codes.

As it was mentioned, the aim that the paper is looking for is to replace P0 with P1 at
run-time. In [11], which is more similar to our model than the other works, P0u is used
in place of P0 and P1u is used in place of P1, all along. The replacement takes place in

154 M. Jalili, S. Parsa, and H. Seifzadeh

the means of switching the execution from P0u to P1u. If an update request is received
during P0u execution, [11] generates a patch using P1 and P0 codes. The patch then can
be applied to P0u and converts it to P1u.

In contrast, in our model P0 and P1 themselves are executed and the replacement
takes place by replacing P0 with P1. P0u and P1u are created during the replacement
process to simplify replacing process, but they are discarded when the replacement is
completed. Thus, in our model there is no need to do anything at compile-time. After
the program starts it work by P0 execution, when an update request is received, (1) P0u
and P1u are generated, (2) P0 is paused, (3) the corresponding point in P0u is found, (4)
the program’s state is transferred from P0 to P0u, (5) the execution is switched from
P0u to p1u in a safe update point, (6) the corresponding point in P1 is found, (7) the
program’s state is transferred from P1u to P1, and (8) finally P1 continues to run. These
steps are shown in Figure 1.a. In the above steps, steps 3 and 6 are trivial because P0
and P1 have the same functionalities as P0u and P1u, respectively. Moreover, step 5 is
trivial because the conversion can be done using the techniques introduced in [13].

It’s obvious that in compare with [11] our approach does more when an update re-
quest is received. So, the performance may be decreased in the dynamic replacement
times. However, at the times other than dynamic replacement process, it’s shown that
performance of our approach is higher than the other approach. The reason is that in
our method, P0 and or P1 are executed while in the other method, their twins (P0u and
P1u), which have worse performance, are executed. Since update requests are received
infrequently, the dynamic replacement times are negligible in compare with the whole
program execution. Therefore, it sounds that performance of our approach is higher
than the other approach as a whole. Performance comparison of our model with other
works will be discussed in detail, later.

Fig. 1. a. The Hybrid model. b. Components of Hybrid model.

Figure 1.b shows main components of the hybrid model. System has a controller
which controls other components. This controller has an interface that the user can
write some updates commands and set variables to do updating. It uses GDB [5] to
control processes. Controller uses piping technology to send commands to GDB and
receive the results from it. GDB can then manipulate any running process.

 A Hybrid Model in Dynamic Software Updating for C 155

3.2 Implementation and Its Issues

The main architecture of our system that was provided in the previous section was a
little coarse-grained and the implementation details had been dismissed. Here, we
would like to provide the main algorithm of our system in more detail: At first, P0 is
executed as the current version of the program. It’s important to notice that long run-
ning programs usually have a main infinite loop in which the program executes.
Therefore, P0 has such a loop in its main function. When an updated version of the
program (P1) is ready, P0u is generated by Ginseng’s compiler, loaded into the mem-
ory and a stack frame for main function of it is created. In order to state transforma-
tion, the hybrid system should access to all global variables and main’s local variables
of P0. This can be achieved via GDB. P0 is stopped at the end of its main loop, though
it can be stopped at any points. The system reads all of global and local variables of P0
via GDB and sets them in P0u by running an initialize function on P0u. If the state
transformation is successful, the hybrid system kills P0 and executes P0u from the start
of its main loop. P0u continues running to meet a safe update point. Some safe update
points are determined in the code at the compile-time [14]. When such a point met,
P0u is allowed to apply patch and is upgraded to P1u. Since P1u and P1 have the same
functionalities, it can be assumed that the update was finished. However, due to P1 is
more polished than P1u, if the update carries on and P1 is replaced with P1u, the per-
formance becomes higher. So, P1 is loaded into the memory, P1u is stopped at the end
of its main loop, and the state is transferred from P1u to P1 by calling an initialize
function on P1. If the state transformation is successful, the system kills P1u and re-
sumes the program execution toward P1.

In continuation of this section, issues of implementation and some suggestions for
resolving them are described.

Compiling in the Debug Mode. In order that the GDB can control the programs
during their executions, P0, P0u, P1u and P1 should be compiled in a mode called
“debug mode”. Compiling in the debug mode, GCC adds some additional information
to the object code. The most important one is symbol table. Unfortunately, in some
circumstances, P0 might not be compiled in the debug mode. GDB has a feature that
can attach the symbol table to a running process to help us in such cases. Moreover,
compiling programs in the debug mode can result in increasing size of the program
and it causes the performance to decrease. However, the performance decrement is
not significant in many programs.

Reading Variables. In the hybrid system, the state transformation from P1u to P1 is
not trivial. The reason is that the structures of the variables in P1u have been modified
by Ginseng compiler so that they cannot be understood by GDB. The trick that was
used in the system is to add some getter functions which are responsible for returning
the values of P1u variables. In this way, GDB calls these functions and reads values of
the desired variables.

Pointers. When the state is transferred from an old version to an updated version of a
program, it is necessary to preserve to consistency of pointers [6]. GDB provides some
functions with which we can find corresponding address of each old program's variable
in the updated program. The obtained address then must be set to the pointer in the
updated program. This step is done in the Initialize function of updated program.

156 M. Jalili, S. Parsa, and H. Seifzadeh

Initialization Function. In order to transfer values of variables from P0 to P0u, an
initialization function has been added to P0u which is called after reading values of P0
variables. This function has simple assignments, each of which sets a value into a
global, local or a pointer variable in P0u. Initialization functions are invoked by the
controller during state transformation. Similarly, to transfer variable values from P1u
to P1, there should be an initialization function in P1.

Complex Data Types Transfer. Some of data types such as linked lists cannot be
transferred using the regular method performed in the initialize functions. As an
alternative, we can use IPC mechanisms like shared memory to transfer data items. In
this method, the complex data item is copied to a shared memory and then the target
program reads the desired values from that shared memory. Note that there must be a
function in the target program to redirect memory access commands to the shared
memory. The methods described here can be applied to transfer arrays, liked lists,
records, etc.

Time of Update. As in the main algorithm of hybrid model was mentioned, updating
P0 to P0u and P1u to P1 are not actual updates and they are performed due to improve
the performance. Hence, they can be done not only at the update requests reception
but also at any other time that the system workload is low. For instance, an intelligent
system may figure out that an update request should be received in the next day. So, it
can update P0 to P0u this night, just a couple of hours before any update request is
received.

4 Comparison and Evaluation

In this section, the hybrid model is evaluated by 3 measures: (1) the performance of
the system when it runs normally, (2) the memory footprint of the system when mul-
tiple versions of it is arrived during a long period of time, and (3) the service disrup-
tion time when the system is being updated.

The model has been implemented in Fedora core 2.6.23, GCC 3.4.2, GDB 6.2 and
Ginseng 1.2.1 have been used for creating programs and patches.

4.1 Performance

Performance is one of the most important measurements in software, especially long-
life, systems. Since applications with capability of dynamic updating are usually long-
life, the mentioned measurement becomes more important. Therefore, in the hybrid
system, it has been tried to avoid techniques that are common in dynamic updating
systems and have a significant impact on the performance. In our system, they are used
only when we employ Ginseng model to update P0u to P1u, which is very short time.

The first technique which causes the performance to decrease is function indirec-
tion. In systems which use such mechanism, all of function call requests go through a
function or a pointer which is called function wrapper; The function wrapper is then
responsible to call the correct function [6], [10], [11], [14], [15], [21]. As it can be
easily seen, the mechanism increases the number of function calls in the system. If a
program has one function-call in each x command, x+1 (one extra command is for

 A Hybrid Model in Dynamic Software Updating for C 157

function indirection) will be executed (i.e., if x=20 then we have 5% overhead in
running an updatable program).

The second technique is type wrapping. When a data item like a struct is updated,
its dependants may fail in accessing the data item. To prevent this failure to occur,
some systems use a mechanism called type wrapping [10], [11], [13], [14]. In this
method, a function called type wrapper is employed to return the data item’s value.
Each type wrapper function typically has three commands: (1) Accessing the data item,
(2) converting data item for its dependants, and (3) returning the calculated value.
Therefore, updating a data item causes that each data item access becomes four com-
mands. If there is one data access in x command, program will run x+4 commands.
Overhead in running is 400/x percent. For example if x=5, run’s overhead is 80%.

To examine how much overhead the function indirection can impose to the per-
formance, we constructed a simple program which calls an empty function one billion
times. Then, we run the program using a normal compiler and a complier that uses
function indirection and measured the total time that the program takes each time. For
measuring the type-wrapping overhead, the program was modified so that it accesses
to a variable instead of calling a function one billion times. The results are shown in
Figure 2.

5.39 4.29

24.37

53.2

0

10

20

30

40

50

60

Function Indirection Type Wrapping

R
u

n
n

ig
 T

im
e

(s
)

Orginal Version

Updatable Version

Fig. 2. Run time overhead in Orginal and updatable version of a sample program

4.2 Memory Footprint

The important reason for memory leakage in DSU systems is dynamic patches that be
attached to a running application. In many systems, the original program remains in
memory and updated parts are added to it; nothing is unloaded. So, DSU systems that
leverage dynamic patches for updating their systems can suffer from memory foot-
print issues [1], [9], [10], [11], [14]. In contrast, in our model, all of the unnecessary
programs are unloaded from memory.

4.3 Service Disruption Time

Since there are three steps in the update process (updating P0 to P0u, P0u to P1u, and P1u
to P1), a simple formula for calculating the service disruption time can be equal to:

158 M. Jalili, S. Parsa, and H. Seifzadeh

Service Disruption Time = Updating P0 to P0u Time + Updating P0u to P1u Time +
Updating P1u to P1 Time

“Updating P0u to P1u Time” comes from the updating disruption time imposed by the
Ginseng model. [11] has shown that for a sample application that works with data
items of a linked list, this time is less than 5 ms. Results of executing the same appli-
cation in the hybrid model indicate that service disruption time for all the three stages
is less than 16ms. It means that the service disruption time of our model is 10ms more
than the similar model. Since the update process usually occurs infrequently, 10ms
can be negligible.

5 Conclusion and Future Work

A hybrid model as an updating system for C programs is presented. In contrast to
previous systems, this model is capable of updating legacy systems or already running
programs, and has much less overhead at run-time and memory footprint. However,
the limitation of our model is that it has a bit more service disruption than the previ-
ous models.

As some works like [11] can update multi-threaded programs in addition to single-
threaded applications, work is ongoing to extend this model to update multithread
programs, as well.

Since Ginseng, which is a part of our model, is a large system, it is more generic
and has a structure more than it is required in the hybrid system. Therefore, another
extension can be streamlining Ginseng model so that it has only the functions required
in the hybrid model.

References

1. Baumann, A.: Dynamic Update for Operating Systems. PhD thesis, Department of Com-
puter Science and Engineering, University of New South Wales, Australia (2007)

2. Fabry, R.S.: How to design a system in which modules can be changed on the fly. In: Pro-
ceedings of the 2nd ICSE, San Francisco, CA, USA, pp. 470–476 (1976)

3. Goullon, H., Isle, R., Lohr, K.P.: Dynamic restructuring in an experimental operating sys-
tem. In: Proceedings of the 3rd ICSE, Atlanta, GA, USA, pp. 295–304 (1978)

4. Lee, I.: DYMOS: A Dynamic Modification System. PhD thesis, University of Wisconsin-
Madison (1983)

5. GNU Debugger, http://www.gnu.org/software/gdb/documentation/
6. Gupta, D., Jalote, P.: On-line software version change using state transfer between proc-

esses. Software - Practice and Experience 23(9), 949–964 (1993)
7. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version change.

IEEE Transactions on Software Engineering 22(2), 120–131 (1996)
8. Ksplice: Rebootless Linux kernel security updates,

http://web.mit.edu/ksplice/
9. Baumann, A., Heiser, G., Appavoo, J., Silva, D.D., Krieger, O., Wisniewski, R.W., Kerr,

J.: Providing dynamic update in an operating system. In: USENIX Annual Technical
Conference, General Track, pp. 279–291 (2005)

 A Hybrid Model in Dynamic Software Updating for C 159

10. Chen, H., Chen, R., Zhang, F., Zang, B., Yew, P.C.: Live updating operating systems using
virtualization. In: VEE 2006: Proceedings of the 2nd international conference on Virtual
execution environments, New York, NY, USA, pp. 35–44 (2006)

11. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating for C.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, Ottawa, Canada (2006)

12. Hjalmtysson, G., Gray, R.: Dynamic C++ classes—a lightweight mechanism to update
code in a running program. In: Proceedings of the 1998 Annual USENIX Technical Con-
ference, pp. 65–76 (1998)

13. Neamtiu, I.: Practical Dynamic Software Updating for C. PhD thesis, Department of Com-
puting Science, University of Maryland, USA (2008)

14. Hicks, M.: Dynamic Software Updating. PhD thesis, Department of Computer and Infor-
mation Science, University of Pennsylvania, USA (2001)

15. Segal, M.E., Frieder, O.: On-the-fly program modification: Systems for dynamic updating.
IEEE Software 10(2), 53–65 (1993)

16. Organick, E.I.: The Multics System: An Examination of its Structure. MIT Press, Cam-
bridge (1972)

17. Altekar, G., Bagrak, I., Burstein, P., Schultz, A.: OPUS: Online patches and updates for
security. In: Proceedings of the 14th USENIX Security Symposium, Baltimore, MD, USA,
pp. 287–302 (2005)

18. Armstrong, J., Virding, R., Wikstrom, C., Williams, M.: Concurrent Programming in ER-
LANG, 2nd edn., vol. 9, pp. 121–123. Prentice Hall, Englewood Cliffs (1996)

19. Gilmore, S., Kírlí, D., Walton, C.: Dynamic ML without dynamic types. Technical Report
ECS-LFCS-97-378, Department of Computer Science, The University of Edinburgh
(1997)

20. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis Mutandis: Safe and
predictable dynamic software updating. In: Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Long Beach, USA (2005)

21. Orso, A., Liang, D., Harrold, M.J., Lipton, R.: Gamma system: Continuous evolution of
software after deployment. In: Proc. of the International Symposium on Software Testing
and Analysis, pp. 65–69 (2002)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 160–167, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Function Point Logic File Identification Technique
Using UML Analysis Class Diagrams

José Antonio Pow-Sang1, Loretta Gasco1, and Arturo Nakasone2

1 Pontificia Universidad Católica del Perú,
Av. Universitaria 1801, San Miguel, Lima 32, Peru

japowsang@pucp.edu.pe
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda Ku, Tokyo 101-8430, Japan
arturonakasone@nii.ac.jp

Abstract. Since the introduction of object-oriented (OO) development tech-
niques into industrial practices for software development, many Function Point
(FP) technique adaptations have been proposed to improve estimations on the
size of a software application. Most research works only deal with OO modifi-
cations to the previous version of the FP Counting Practices Manual (4.1) or
they do not include some important UML specifications such as the composi-
tion relationship between classes. In this paper, we propose rules to identify In-
ternal Logic Files (ILF) and External Interface Files (EIF) using analysis class
diagrams. These rules were defined in accordance with the recommendations
included in the FP Counting Practices Manual 4.2.1. We also present the results
obtained by applying our rules to software size estimation case studies per-
formed with undergraduate and graduate students. These results have proved
our proposal to be at least equally accurate and consistent with the original FP
technique.

Keywords: Function Points, Object Oriented, UML, Conceptual Model, soft-
ware engineering experimentation.

1 Introduction

Function Point (FP) [7] is a software measurement technique created by Allan
Albrecht at IBM, and has gradually become a sounder alternative to other popular size
metrics methods (e.g. source lines of code (SLOC)), making it one of the most widely
used techniques nowadays. Given the widespread promotion of the Unified Modeling
Language (UML) [16] developed by the Object Management Group, many object-
oriented approaches to calculate function points have been proposed. However, the
majority of these proposals do not take into consideration the changes included in the
last FP Counting Practices Manual and important UML specifications such as the
composition relationship between classes.

For this reason, in this paper we propose an approach to identify Logic Files (i.e.
Internal Logic Files (ILF) and External Interface Files (EIF)) from UML analysis
class diagrams that make use of association, aggregation, composition, generalization,

 A Function Point Logic File Identification Technique 161

and association-class relationships. This work constitutes an improvement of the rules
presented in [14]. In addition, we tested our approach against the standard Function
Points Counting Practices Manual, version 4.2.1 [7] proposed by the International
Function Points User Group (IFPUG), obtaining interesting and promising results.

The rest of the paper is organized as follows: Section 2 describes the related work
in the FP measurement technique area, Section 3 details our proposed rules to identify
logical files, Section 4 presents the background scenario for the empirical study, Sec-
tion 5 shows the obtained results for each case study; Section 6 discusses those re-
sults. Finally, a summary and our plans for future research will conclude our paper.

2 Related Work

In order to deal with object-oriented software measurement, several methods to calcu-
late FPs are being promoted and used. These methods reformulate the IFPUG rules in
terms of OO concepts to facilitate the function point counting process, and their final
results are similar to what is obtained by directly applying IFPUG Function Point
Analysis (FPA). Fetcke [6] defined rules for mapping the OO-Jacobson method [10]
to concepts from the IFPUG Counting Practices Manual (CPM) 4.0 and the results
obtained from three case studies have confirmed that these rules can be applied in a
consistent way. Uemura et Al. [17] proposed FPA measurement rules for design
specifications based on UML (Unified Modeling Language), developing a FP meas-
urement tool. Cantone et Al. [4] and Caldiera et Al. [3] defined rules to map OO con-
cepts to FPA and performed pilot studies to demonstrate the feasibility of their
approaches. Finally, Abrahao et Al. [1] presented a FP-based method called OOmFP
and its evaluation through an empirical study.

All the proposals described above define rules for mapping OO concepts taken
from older versions of the IFPUG CPM. Although Abrahao considers the composition
relationship, some mapping rules to calculate Logic Files (LF) are not in accordance
with the latest version of the IFPUG CPM (currently, version 4.2.1).

Lavazza et al. [12] considers the composition relationship in their proposal but they
do not agree with the recommendations of the IFPUG CPM 4.2.1. For instance, they
count one file with one record element type (RET) for two classes joined by a compo-
sition relationship. When following the IFPUG CPM, we would normally count one
file with two RETs for the same case. The Netherlands Software Metrics User Asso-
ciation (Nesma) [13] presents its own FPA rules and its composition rules agree with
the indications of the IFPUG CPM 4.2.1, but its generalization rules differ from the
IFPUG rules.

3 Rules to Identify Logical Files

The input for our proposed rules is the analysis class diagram included in the Jaaksi’s
method [9] or the domain model mentioned by Larman [11]. In this model transforma-
tion, we consider the following relationships among classes: association, aggregation,
composition, association class, and generalization, and we do not take into account the
difference between ILF and EIF. Our rules only deal with the identification of logic files

162 J.A. Pow-Sang, L. Gasco, and A. Nakasone

and their number of RETs and data element types (DET). In contrast, the IFPUG CPM
4.2.1 defines rules to identify logic files and their number of RETs and DETs based on
Entity-Relationship (E-R) diagrams.

Coad’s patterns [5] describe the majority of the classes and relationships that are
present in most information systems. Hence, we designed our model transformation in
such a way that our rules would cover all these patterns. The rules we considered for
our model are:

Rule 0: Number of DETs
Count one DET for each attribute in a class. If the class is connected by an association
relation to another class, count one additional DET if a many-multiplicity relation
type exists.

Rule 1: Composition
For this rule, we have considered four cases:

a) If there are two classes A and B connected through a composition relation (A is
composed of B), and class B is not connected to any other class, then they must
be mapped to one logic file for the composition relation with 2 RETs. In addition,
one DET for each attribute for both classes must be counted.

b) If there are three classes A, B, and C, with two of them (A and B) connected

through a composition relation as shown in Fig. 1, and the multiplicity attribute
of C is either 0..1 or 1, then they must be mapped to one logic file for the compo-
sition relation with 2 RETs and another logic file for class C. This rule also ap-
plies if B has an aggregation relationship with C.

 A B C

Fig. 1. UML Class Diagrams for Rule 1.b and 1.c

c) If there are three classes A, B, and C, with two of them (A and B) connected
through a composition relation as shown in Fig. 1, and the multiplicity attribute
of C is many, then they must be mapped to one logic file for the composition re-
lation with 2 RETs. After this, use Rule 2 to determine if C should be treated as
another file or as a RET for the file created for A and B.

d) If there are three classes A, B, and C, connected through composition relations (A

is composed of B, and B is composed of C), then they must be mapped to one
logic file with 3 RETs.

Rule 2: Association and Aggregation
If there are two classes, A and B, which are connected through an association or ag-
gregation relation, the indications shown in Table 1 must be followed. The table is an
adaptation from the IFPUG CPM 4.2.1 for OO development.

 A Function Point Logic File Identification Technique 163

Table 1. Rules to identify Logic Files from classes without composition relationships

Multiplicity
A

Multiplicity
B

When this condition
exists

Then Count as LFs with RETs
and DETs as follows:

0..* 0..* A and B are independent 2 LFs
0..1 0..* A and B are independent 2 LFs

If B is independent of A 2 LFs 1 1..*
If B is dependent on A 1 LFs, 2 RETs

If B is independent of A 2 LFs 1 0..*
If B is dependent on A 1 LFs, 2 RETs

If A is independent of B 2 LFs 0..1 1..*
If A is dependent on B 1 LFs, 2 RETs

0..1 0..* A and B are independent 2 LFs
1 1 A and B are dependent 1LF, 1RET

0..1 0..1 A and B are independent 2 LFs
If B is independent of A 2 LFs 1..* 1..*
If B is dependent on A 1 LFs, 2 RETs

If B is independent of A 2 LFs 1..* 0..*
If B is dependent on A 1 LFs, 2 RETs

Rule 3: Generalization
If there are classes that are connected through a generalization relation and there are
unique attributes among their child classes, count one logic file with two RETs (one
for the parent class and one for the child classes). If not, count one logic file with one
RET.

Rule 4: Association Class
If business requirements indicate that the association class belongs to only one of the
logic files, the RET would be counted only with that logic file. If not, the association
class must be mapped to one independent logic file with one RET.

4 Experimental Design

Since our proposal describes similar rules to the ones presented in E-R diagrams (IF-
PUG rules) with the exception of the composition rules, we decided to use an experi-
ment setting similar to the one used in [15]. The study participants (students) had to
apply IFPUG rules first and then our proposed rules in order to prevent the learning
effect due to the composition relationships.

The formulated research question was: Does our approach produce measurements
of Logic Files at least equally accurate to those found in the IFPUG FPA?

Since the objective of the experiment was to determine the accuracy measure ob-
tained by the application of the counting rules and not the performance of the students
in modeling with E-R or class diagrams, we provided them with descriptions and
diagrams for each case study.

4.1 Variables Selection and Participants

Our independent variable was the method used by the students to estimate the size of
the software on a case study, and our dependent variable was its accuracy: the agree-
ment between the estimated measurement and the true value. To obtain “true values”

164 J.A. Pow-Sang, L. Gasco, and A. Nakasone

for comparison, we took the values from similar case studies included in the IFPUG
CPM 4.2.1.

The undergraduate students who participated in the experiment were fourth year
students of the Informatics program at the Pontificia Universidad Católica del Perú
(PUCP) that were enrolled in the Spring ‘09 Software Engineering course. These
undergraduate students were trained in previous courses on E-R and class diagrams.

The practitioners were students of the 2009 Postgraduate Diploma in Software
Engineering course at PUCP. They had at least two years of experience in software
projects and, these students took an OO analysis and design course previous to the
elaboration of the experiment.

4.2 Materials and Case Studies

The materials used in the experiment were the description of the case studies with E-
R diagrams, the description of the case studies with class diagrams, forms to fill in the
number of Logic Files and their RETs and DETs for each case study, and a question-
naire to know the students’ opinion regarding the clarity of each technique.

At first, the students had to apply the IFPUG counting rules in seven case
studies. Each case study included a description and an E-R diagram. Then, the stu-
dents had to apply our proposed rules in other seven case studies. In this case, each
case study included a description and a class diagram. Only one case study was used
for both techniques, whereas the other case studies were different. In other words, the
group of case studies that were analyzed with the IFPUG rules was almost totally
different from the group where our rules were used. The descriptions of the case
studies and further details of the used instruments can be found at
http://macareo.pucp.edu.pe/japowsang/pf/oo-adaptation.html.

5 Results

For each case study, we graded it with “1” (one) if the student correctly identified the
number of Logic Files and RETs, and “0” (zero) if he/she did it incorrectly.

Since the case studies used for each technique were not the same, we had to cate-
gorize each case study according to the type of relationship that would be used in a
class diagram: association, aggregation, composition, association class or generaliza-
tion in order to compare the obtained results. Because E-R diagrams do not make use
of aggregation and composition relationships, we had to classify into the aggregation-
composition category the case studies that would use these relationships in an analysis
class diagram.

For both techniques, we applied two case studies for the association category, three
case studies for the composition/aggregation category, one case study for the associa-
tion-class category and one case study for the generalization category. Therefore,
since we graded a student with “1” (one) every time he/she correctly identified the
number of LFs and RETs in a case study, the student could obtain a grade up to “2” in
the association category, “3” in the aggregation/composition category, “1” in the
association-class category and “1” in the generalization category.

 A Function Point Logic File Identification Technique 165

Table 2. Wilkoxon signed rank test results for undergraduate and graduate students

Categories

Association Aggregation
/Composition

Generalization Association Class Variable

Undergr.
Students

Grad.
Students

Undergr.
Students

Grad.
Students

Undergr.
Students

Grad.
Students

Undergr.
Students

Grad.
Students

Observations 22 15 22 15 22 15 22 15
V 135 45.5 0 7.5 0 12.5 20 0
Expected value 112.5 49.5 112.5 45 11 25 50 30
Variance (V) 843.75 235.125 856.875 238.125 121 156.25 500 180
p-value (one-tailed) 0.785764 0.41 < 0.0001 0.008 0.169903 0.169 0.093537 0.014

A significance level of 0.05 was established to statistically test the obtained results.

Since these results follow a non-normal distribution, the paired samples t-test could
not be used and, thus, we chose the Wilkoxon signed rank test, a non-parametric al-
ternative. The statistical hypotheses formulated to test both techniques are:

H0: The distribution of the two sample sets is not significantly different.
Ha: The distribution of the IFPUG CPM 4.2.1 sample set is shifted to the left of the
distribution of our proposed FPA sample set.

According to the results presented in Table 2, the computed p-value is lower than the
significance level of 0.05 on the aggregation/composition category for undergraduate
and graduate students and, therefore, we can reject the null hypothesis H0 and accept
the alternative hypothesis Ha in this case. This means that we can empirically cor-
roborate that our proposal produces more accurate assessments than the IFPUG CPM
4.2.1 approach for composition relationships.

In contrast, we cannot reject H0 for association and generalization categories,
which empirically corroborates that our proposal and the IFPUG CPM 4.2.1 approach
produce the same assessments. This could be explained by the similarity of rules
between the IFPUG CPM 4.2.1 and our proposal for these cases.

From what can be observed from the result values presented, the students obtained
better results when they had to apply composition rules and almost the same results
when they had to apply rules for association and generalization. Based on these re-
sults, we can conclude that our proposal produces more accurate assessments than the
IFPUG CPM 4.2.1 technique.

6 Discussion

The dependent variable (i.e. accuracy) that we used is proposed in the ISO/IEC
14143-3 [8].

By analyzing the results of the experiment, we can conclude that an empirical evi-
dence for the relationship between the independent and the dependent variables exists.
We have dealt with different aspects that could threaten the internal validity of the study:

Differences among subjects. The subjects had similar background knowledge. Stu-
dents were trained in E-R and class diagrams on previous courses.

Learning effects. The application of two different case studies cancelled the learning
effect due to similarities. We had to apply the IFPUG technique first and then our
proposal in order to cancel the learning effect due to the composition rules.

166 J.A. Pow-Sang, L. Gasco, and A. Nakasone

Knowledge of the universe of discourse. We used the same case studies (with the
same type of information system) with all the participants.

Fatigue effects. Each student took one hour on average per session to apply both case
studies and answer questionnaires. Fatigue was not a relevant factor in this case.

Persistence effects. The students had never done a similar experiment before.

Subject motivation. Undergraduate students were motivated because they had to apply
FP techniques in order to estimate the required effort in their assigned projects for the
semester. Graduate students were also motivated because they wanted to apply FP
techniques in their jobs.

Two threats to external validity were identified which limited the ability to apply
any generalization of our conclusions:

Materials. We used representative case studies in which students had to apply the
rules for association, aggregation, composition, association class, and generalization
relationships between classes. However, more empirical studies that make use of
software requirement specifications are needed.

Subjects. We are aware that more experiments with practitioners must be carried out
in order to generalize these results. Although the graduate students (practitioners) had
experience in software development projects, they had not used FP techniques in their
projects before the experiment.

7 Conclusions and Future Work

This paper presented a conversion model to determine FP logic files using an analysis
class diagram. This model takes into consideration the IFPUG CPM 4.2.1 rules and
the association, aggregation, composition, association class and generalization rela-
tionships between classes. In addition, we took Coad’s patterns as a reference in order
to define the rules of our proposal.

We also described two controlled experiments with undergraduate and graduate
students in order to determine the accuracy of our approach compared to the IFPUG
CPM 4.2.1 technique. The students had to analyze case studies with E-R and class
diagrams to identify logic files and their DETs and RETs. The results of the experi-
ments show that our approach produces more accurate results than the original IFPUG
CPM 4.2.1 technique. Although the results obtained from the experiment are very
encouraging, we are aware that more experiments are needed to confirm them.

As future work for this research, we plan to conduct experiments with software re-
quirements specifications in order to obtain more precise results and opinions about
the applicability of our model in the industry and to include our proposed rules in the
Tupux tool [2] to facilitate the counting of FPs based on analysis class diagrams.

Acknowledgments

This research work has been performed with the support of Dirección Académica de
Investigación of Pontificia Universidad Católica del Perú, under project DAI-4051.

 A Function Point Logic File Identification Technique 167

References

1. Abrahão, S., Poels, G.: Experimental evaluation of an object-oriented function point meas-
urement procedure. Information & Software Technology. Elsevier, Amsterdam (2007)

2. Balbin, D., Ocrospoma, M., Soto, E., Pow-Sang, J.A.: TUPUX: An Estimation Tool for
Incremental Software Development Projects. In: Proceedings AST 2009. IEEE Computer
Society, Los Alamitos (2009)

3. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: Definition and Experimental Evaluation
of Function Points for Object-Oriented Systems. In: Proceedings METRICS 1998. IEEE
Computer Society, Los Alamitos (1998)

4. Cantone, G., Pace, D., Calavaro, G.: Applying Function Point to Unified Modeling Lan-
guage: Conversion Model and Pilot Study. In: Proceedings of METRICS 2004. IEEE
Computer Society, Los Alamitos (2004)

5. Coad, P., North, D., Mayfield, M.: Object Models: Strategies, Patterns and Applications.
Prentice-Hall, Englewood Cliffs (1997)

6. Fetcke, T., Abran, A., Nguyen, T.: Mapping the OO-Jacobson Approach into Function
Point Analysis. In: Proceedings of TOOLS-23 1997. IEEE Computer Society, Los Alami-
tos (1997)

7. IFPUG, Function Points Counting Practices Manual (version 4.2.1), IFPUG: International
Function Point User Group, Westerville Ohio (2004)

8. ISO. ISO/IEC 14143-3 - Information technology – Software measurement – Functional
size measurement – Part 3: Verification of functional size measurement methods (2003)

9. Jaaksi, A.: A Method for Your Object-Oriented Project. Journal of Object-Oriented Pro-
gramming 10(9) (1998)

10. Jacobson, I.: Object-Oriented Software Engineering. A Use Case Driven Approach.
Addison-Wesley, USA (1992)

11. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edn. Addison-Wesley, Reading (2004)

12. Lavazza, L., Del Bianco, V., Garavaglia, C.: Model-based functional size measurement. In:
Proceedings ESEM 2008. ACM, New York (2008)

13. NESMA, FPA Applied to UML/Use Cases Version1.0 (2008),
http://www.nesma.nl

14. Pow-Sang, J.A., Imbert, R.: Including the Composition Relationship among Classes to Im-
prove Function Points Analysis. In: Proceeding VI Jornadas Peruanas de Computación-
JPC 2007, Trujillo, Peru (2007)

15. Pow-Sang, J.A., Nakasone, A., Imbert, R., Moreno, A.M.: An Approach to Determine
Software Requirement Construction Sequences based on Use Cases. In: Proceedings
ASEA 2008, Sanya, China. IEEE Computer Society, Los Alamitos (2008)

16. Object Management Group, Unified Modeling Language USA (2005),
http://www.uml.org

17. Uemura, T., Kusumoto, S., Inoue, K.: Function Point Measurement Tool for UML Design
Specification. In: Proceedings METRICS 1999. IEEE Computer Society, Los Alamitos
(1999)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 168–175, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reliable Mobile Application Modeling
Based on Open API*

Sera Jang and Eunseok Lee

School of Information and Communication Engineering, Sungkyunkwan University,
Suwon 400-746, South Korea

{jangsera,eslee}@ece.skku.ac.kr

Abstract. Today, the expectations placed on the mobile environment is getting
high to the point that users want access to the internet at any time and in any
place, exceeding functionality of simple voice chat and SMS to include search,
service, and blogging. Amidst this kind of change, big companies such as Mi-
crosoft, Symbian, Google, and Apple are jumping into the mobile platform
market, and open platforms and open APIs are being introduced left and right.
In step with this, countless applications are being developed using open APIs.
Open APIs allow developers to develop services closely tied to the device more
easily. However, generally there are many difficulties when constraints from
application requirements are considered in the design stage when developing
applications using open APIs. In this paper, constraints when using open APIs
in the modeling stage are defined, and code generation technique for which
reliability verification through an appropriate model is possible is proposed. By
verifying the reliability by applying the proposed methodology to existing
applications developed using open APIs, the proposed methodology was
validated.

Keywords: Reliability, Open API, Mobile Application Modeling.

1 Introduction

With the rapidly changing mobile environment, various platforms and APIs have been
made public to previously closed development environment, changing into a devel-
opment environment in which open platforms and open APIs are used. Such open
platforms and APIs allow developers to develop systems or applications more easily
and rapidly than ever before.

However, when developing applications using open platforms and open APIs, it’s
difficult to consider in detail the platform or API in the design stage. Therefore, it’s
difficult to predict the impact of the platform or the API on the final system or appli-
cation from the aspects of performance or functionality. Not only that, there are diffi-
culties in finding a clear cause and solution to errors that occur in the execution stage.

* This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant

funded by the Korea government(MEST) (No. 2009-0077453).

 Reliable Mobile Application Modeling Based on Open API 169

In order to solve these problems, it is necessary to clearly analyze the open plat-
form or the open API in the modeling stage, reflecting the results obtained. Further-
more, constraints regarding the final application need to be reflected in the design so
that reliability of the application can be verified.

This problem is also caused by the fact that the open API is not developed by the
developer who develops the application but other developers and provided. Because
of this, there is a need for quickly verifying whether the problem is not with the appli-
cation but the open API.

In this paper, constraints resulting from using open APIs in the modeling stage are
defined, and a mechanism for defining a fault model that can verify the reliability of
the application through an appropriate model is proposed. Furthermore, a methodol-
ogy for generating executable code from the created model so that possible errors that
may occur during execution can be discovered is proposed based on the fault model.

In this paper, to apply modeling to open platform and open API, API profile was
used. Also, to verify constraints and reliability, Test Profile[12] from OMG was ex-
tended and used. These profiles are used not only in modeling but in converting to
executable code through the created model.

Also, test cases of the application are extracted using the created model and based
on the test cases a fault model is defined. Based on the fault model, the application’s
reliability can be verified and improved.

In this paper, a modeling methodology is proposed centered on the case of
developing applications using open APIs when it comes to open platform and open
API use.

2 Related Research

The mobile OSs of today are gradually being made open, in contrast to the closed
terminal OSs of the previous era. Especially, platforms and OSs used for smart
phones have been made open strategically by key manufacturers or suppliers, leading
to OS API (Application Program Interface), SDK (Software Development Kit), and
even the entire source code being released to the public[1].

In contrast to poor expandability and flexibility when developing a RTOS (Real
Time OS), for an open OS, the UI is user-centric and provision of applications is
superior, leading to increase in its necessity[1].

For mobile device OSs, particularly ones being used for smart phones, there are the
following examples[1]: “Synbian”, the mostly widely used OS for smart phones and
which Nokia uses a lot; “Windows Mobile”, developed by Microsoft and which has
excellent compatibility with the PC; “Mac OS X” which is being used for Apple
iPhones; RIM OS from RIM and used for Blackberry phones; “Limo”, Linux-based
and developed for the mobile; “Android”, set up by Google and developed by OHA
(Open Handset Alianc).

Applications developed for these kinds of open platforms need to guarantee their
reliability as well. The most important stage for realizing a reliable mobile application
is the monitoring stage where the types of the fault are detected[2]. The reason is that
because software faults are depended on the application domain, in the monitoring
stage, classifying the fault types is very important[2].

170 S. Jang and E. Lee

The type of fault can be classified as syntactic fault, semantic fault, service fault,
communication/interaction fault, and exception[3][4]. Among the fault types, the
discovery of semantic fault, non-functional fault, and communication/interaction fault
are considered as important factors in securing reliability. These faults are important
factors in securing reliability of systems in which open platforms and open APIs are
used as well.

Many methodologies for securing the reliability of these systems have been pro-
posed and being researched. However, research on verifying reliability for the appli-
cation of open platforms and open APIs is still in the beginning stage.

3 Proposed Approach

In this paper, constraints resulting from open API use in the modeling stage are de-
fined when it comes to application development using open APIs, and a methodology
that can be used to define a fault model through an appropriate model is proposed.
Furthermore, a methodology for improving the reliability of the system is proposed by
proposing an executable code generation technique for which reliability can be veri-
fied using a model[9].

The proposed methodology is a 5 stage process as shown below (Fig. 1).

Fig. 1. This shows the process stage of proposed methodology

3.1 Design Model

A software system can be described in many aspects using UML profiles, and a clear
architecture can be modeled through the profile[7][8]. To develop a reliable applica-
tion in which open API is used, UML profile was expanded and applied to modeling
in this paper. The applied UML profile is divided into the two items.

One is open API profile. The open API profile is a profile regarding technology
and requirements resulting from applying open API. It is composed of stereotypes,

 Reliable Mobile Application Modeling Based on Open API 171

tagged values, and constraints. Mapping is done to the open API and application func-
tionality in the UML modeling stage. It is applied to the open API technology at the
time of XML conversion for executable code generation.

The other is test profile. The test profile is a profile regarding constraints of the
system, and composed of stereotypes, tagged values, and constraints. Mapping is done
to constraints of the open API in UML modeling stage. At the time of XML conver-
sion for executable code generation.

3.2 Analyze Model

The XMI created through model design gets converted into XML for executable code
generation by undergoing a parsing process. It is converted into the two forms of
XML as shown below.

Application XML is factors for executable code generation for the application are
extracted based on the open API profile and XML is generated.

Test XML is factors for test case and test code generation are extracted based on
the test profile and XML is generated[5][6].

3.3 Application Code Generation

The code generator generates executable application code based on the application
XML information generated by a model. The code structure is based on the open API
template.

Typically, open APIs are object-oriented, and have a common structure following
the application platform. The Open API template is organized according to this kind
of structure.

3.4 Fault Detection

In this paper, a methodology for verifying reliability when developing applications
using open APIs is proposed. This methodology is carried out by the following proc-
ess: 1) test cases are extracted; 2) in the appropriate test case, a fault model is defined;
3) test code is generated; 4) fault validation is done using the code.

3.5 Modify Code

As the last step, the application developer resolves the faults found according to the
strategy defined in the fault model.

4 Implementation and Evaluation

In this paper, a modeling method in which open API is applied through UML profile
expansion was proposed. For evaluation of the proposed methodology, a service that
uses the open API of Google’s Android was realized.

The service developed is a MapViewer Application, and is composed of the fol-
lowing services (Table 1).

172 S. Jang and E. Lee

Table 1. Services of Target Application

Service Discription
S1 Display Default Map
S2 Move(Up/Down/Left/Right)
S3 Zoom In
S4 Zoom Out
S5 Home

In this paper, for UML modeling and XMI conversion, Borland Together was used.

Fig. 2(a) shows an example of a sequence diagram on the zoom out function from the
model of the system which used Together. The UML modeled like this was converted
into application XML and test XML by being processed by the parse engine after
being converted into XMI. The application XML was generated as executable code
based on open API template through the code generator. Fig. 2(b) shows the gener-
ated application configuration file, and Fig. 2(c) shows a part of the generated code.

Fig. 2. This shows the example of generated target application: (a) a sequence diagram of the
Zoomout function, (b) a generated configuration file of target application, (c) a generated appli-
cation code of target application, (d) a generated test code of target application

Along with the source code generation of the application, a fault model was cre-
ated by undergoing a fault discovery process based on the test XML, and test code for
verifying the fault model was generated. Table 2 shows the fault model generated
targeting the application. Because zoom in and zoom out functions adjust the size of
the map data according to the requested zoom level of the map, it is an important part
for which the performance of the device needs to be considered. Therefore, it was
defined as fault model. Based on the fault model, test code was generated. The test

 Reliable Mobile Application Modeling Based on Open API 173

code was generated by applying the test code template which applied the JUnit struc-
ture of Java. Fig. 2(d) shows a part of the generated test code.

For the generated application code and test code to run successfully, the software
developer has to complete the tasks described by TODO messages, which are envi-
ronment configuration information such as authentication information, and UI-related
areas such as UI and event mapping.

In this paper, in order to verify the validity of the proposed methodology, Google
Android platform’s map service API (com.google, android.maps) were created as API
template, and Android’s junit.framework was applied as the test template.

The evaluation was carried out from the following two aspects. The first is on the
degree of completion of the application code generated by a model. When application
code was generated using the model created by applying the open API profile, the
code generated had about 80% degree of completion for parts of code outside the
UI(Table 3). Secondly, the degree of inclusion of stated constraints in the design stage
by the extracted test cases through the model was assessed, as well as the degree of
completion for the generated test code. In this case, the constraints defined in the
design stage were all included by the test cases. However, when converting the test
cases defined by the fault model to test code, about 70% completion ratio was
shown(Table 4). Test code was often incorrectly generated when the types of passed
parameters or their number was changed and when the start and end were ambigu-
ously stated in the UML for duration time measurement.

Table 2. The System Fault Model

Service Fault/Failure Monitoring Diagnosis Strategy
No response Response Open API server is

down
Authentication error

Simple module
test

Common

Delay in response
time

Compare the
difference between
request time and
response time

Insufficient end
point resource
Open API server is
overloaded

Adjust map
level
Adjust map size

ZoomIn Levels below 0 is
requested for the
map

Response No constraints check Add a
constraints
check module

ZoomOut A higher level
than the maximum
possible level is
requested

Response No constraints check Add a
constraints
check module

Also, in order to verify the reliability of application, we apply verification process:

1) Fault injection ; 2) Fault detection; 3) Fault repair. We had confirmed what defined
functional faults and non functional faults were detected all by applying verification
process. Also we had confirmed what detected functional faults were repaired strate-
gically by itself. But, almost strategies of non functional faults couldn’t perform by
itself, the self repairing about non functional faults was impossible.

174 S. Jang and E. Lee

In future, the self repairing of non functional faults must be improved by applying
self reconfiguration methodology. These evaluation results are not absolute because
they depend significantly on how well the open API template and test template, need
for code generation, are defined. However, if the templates are well defined, the pro-
posed methodology can reduce the amount of burden placed on the developer in de-
veloping an application which uses open API, which would not only lead to decrease
in development time, but development of reliable software would be made possible.

Generally speaking, because when developing mobile applications short develop-
ment times are required, shortened development time is quite important. Furthermore,
because the mobile environment has more constraints than the PC environment, ap-
plication quality is very important. From this aspect, the proposed methodology is
useful in increasing the reliability of the application.

Table 3. Completion Ratio of Application Code

Application
Number
of Class

Line of
Code (LOC)

Added/Modified
Code

Completion
ratio

MapViewer 1 40 10 75
Animation 2 165 25 85

MediaPlayer 1 90 20 78
DateWidget 1 130 25 81

Average 80

Table 4. Completion Ratio of Test Code

Application
Number
of Class

Line of
Code

(LOC)

Added/Modified
Code

Completion
ratio

MapViewer 3 115 15 87
Animation 4 180 60 67

MediaPlayer 2 60 20 67
DateWidget 5 135 40 70

Average 73

5 Conclusion

With the advent of open platforms and open APIs for the mobile environment, the
application development environment is getting easier and simpler more and more,
and based on such environment, a lot of applications are being developed. However,
the reality is that as more applications are developed, their completion rates and qual-
ity are decreasing. What is more, developers often jump right into development skip-
ping the design stage.

However, for applications developed in such way, many problems that weren’t
considered in the design stage appear and the time it takes to solve the problems often
exceeds the original development time. This can be attributed to the fact that because
APIs released third-party developers are used, so the developer doesn’t make correct
use of them, or if there is a problem with the API itself, it is impossible for the devel-
oper to fix it.

 Reliable Mobile Application Modeling Based on Open API 175

In order to solve these kinds of problems, a modeling methodology which applied
open API in the modeling stage was proposed. And based on the model, test code
generation methodology for verifying the reliability of the application was proposed.
The proposed methodology not only makes possible short development time when
applying open APIs for development, but through extraction of test cases regarding
constraints, a fault model can be defined, and through the model faults that may occur
in the application are discovered and the reliability of the application is therefore
increased.

However, in order to generate application code and test code with high degree of
completion in the proposed system, the template regarding the open API has to be
well composed. The problem regarding API template composition is left for future
research.

References

1. Mobile Platform/OS Open Trend. Korean Electronics Technology Institute (2008)
2. Jiang, M., Zhang, J., Raymer, D., Strassner, J.: A Modeling Framework for Self-Healing

Software Systems. Models@Run.time (2007)
3. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-

pendable and secure computing. IEEE Trans. on Dependable and Secure Computing 1(1),
11–33 (2004)

4. Mariani, L.: A fault taxonomy for component-based software. In: International Workshop
on Test and Analysis of Component-Based Systems (TACoS), ENTCS, vol. 82(6) (2003)

5. James, G.: Applying test driven development to embedded software. Instrumentation &
Measurement Magazine 10(6), 20–25 (2007)

6. Kim, S.-K., Choi, J., Lee, D., Noh, S.H., Min, S.L.: Virtual Framework for Testing the Re-
liability of System Software on Embedded Systems. In: The 2007 ACM symposium on
Applied computing, pp. 1192–1196 (2007)

7. Bernardi, S., Merseguer, J.: A UML Profile for Dependability Analysis of RealTime Em-
bedded Systems. In: The 6th international workshop on software and performance, pp.
115–124 (2007)

8. Jurjens, J., Wagner, S.: Component-Based Development of Dependable Systems with
UML. In: Atkinson, C., Bunse, C., Gross, H.-G., Peper, C. (eds.) Component-Based
Software Development for Embedded Systems. LNCS, vol. 3778, pp. 320–344. Springer,
Heidelberg (2005)

9. Hsiung, P.-A., Lin, S.-W., Tseng, C.-H., Lee, T.-Y., Fu, J.-M.: Win-Bin See: VERTAF:
An Application Framework for the Design and Verification of Embedded Real-Time
Software. IEEE Trans. on Software Engineering 30(10), 656–674 (2004)

10. http://www.embedded-computing.com
11. http://www.omg.org/technology/documents/formal/

test_profile.html
12. http://code.google.com/intl/ko/android

An Improved Steganography Covert Channel

Md Amiruzzaman1, Hassan Peyravi1, M. Abdullah-Al-Wadud2,
and Yoojin Chung3,�

1 Department of Computer Science
Kent State University, Kent, Ohio 44242, USA

{mamiruzz,peyravi}@cs.kent.edu
2 Department of Industrial and Management Engineering,

Hankuk University of Foreign Studies, 89 Wangsan, Mohyun, Cheoin,
Kyonggi, 449-791, South Korea

wadud@hufs.ac.kr
3 Department of Computer Science,

Hankuk University of Foreign Studies, 89 Wangsan, Mohyun, Cheoin,
Kyonggi, 449-791, South Korea

chungyj@hufs.ac.kr

Abstract. An improved steganographic method is proposed in this pa-
per. Two distinct methods are combined to achieve possibly high data
hiding capability with high visual quality. The proposed method shifts
the last n nonzero AC coefficients from S JPEG block, and changes the
magnitude values of the first n nonzero AC coefficients from T JPEG
blocks. S and T blocks are determined by the number of nonzero JPEG
coefficients in the block. Zero run-length modification method improves
the robustness against statistical attack based on magnitude histogram.
Magnitude modification method improves the visual quality. This com-
bination complements each other.

Keywords: Steganography, JPEG image, information hiding.

1 Introduction

Steganography and Steganalysis are advancing at the same time. The history of
steganography and steganalysis is a history of rat races. Whenever a stegano-
graphic method has been proposed, the method is about to be broken soon by
new steganalysis methods. Therefore, steganographers try to develop new meth-
ods secure fully or partially from the existing steganalysis methods. However, it
is not possible all the time to be able to take all security issues into account and
solve in one method. It is known that steganography is one of the oldest arts or
techniques for hiding data to establish a secure covert communication channels.
However, it is not so long since the ground of digital steganography techniques
has been formed. Many innovative steganographic algorithms are available now
[4], [5], [6], [7], [8].

� Corresponding author.

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 176–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Improved Steganography Covert Channel 177

The most important goal of steganography is to conceal the existence of a
secret message. However, researchers are also having interest to break stegano-
graphic schemes. There are many available attacks [3] invented by several re-
searchers. Among them statistical attack [9] is one of the most popular and ef-
fective attacks in steganographic world. Another famous attack is the calibrated
statistics attack [1], [2]. Data hiding methods have to be designed to make them
secure from statistical attack because this attack is relatively easy to combat.
Simple solution against this attack is keeping the same or similar histogram to
the original histogram. However, keeping the same shape of a magnitude his-
togram is not easy to achieve as long as the coefficient magnitudes are modified.
Note that one branch of steganography methods is inventing schemes to pre-
serve the original histogram perfectly. Least significant bit overwriting methods
including OutGuess [4] can preserve the original histogram almost perfect, but
not absolutely perfect. This method modifies half of the nonzero coefficients and
corrects the distorted histogram by adjusting with the rest of unused coefficients.
In general, perfect preservation is not possible because of unideal data pattern.

F5 [9] also tries to narrow the gap between original and modified histograms
by decrementing nonzero JPEG coefficients towards 0 and applying matrix em-
bedding and permutative straddling. Sallee models the marginal distribution of
DCT coefficients in JPEG-compressed images by the generalized Cauchy distri-
bution [5]. Thus, the embedded message is adapted to the generalized Cauchy
distribution using arithmetic coding. Arithmetic coding transforms unevenly dis-
tributed bit streams into shorter, uniform ones. This procedure is known as MB1.
One weak point of this method is that block artifact increases with growing size
of the payload. MB2 has presented a method to overcome this weakness [6]. The
MB2 embeds message in the same way as MB1 does, but its embedding capacity
is only half of that of MB1. The other half of the nonzero DCT coefficients is
reserved for de-blocking purpose.

Preserving the perfect shape of histogram of stego image has been a primary
target in the field of steganography. For the first time, one method can preserve
the shape of histogram exactly between original and stego images. The main
drawback of this method is low embedding capacity with poor image quality.
In this paper, a combined approach is introduced to overcome low embedding
capacity and poor image quality.

The rest of this paper is organized as follows: In Section 2, coefficient magni-
tude and run-length histograms are defined. Data hiding method based on the
run-length histogram is presented. Section 3 summarizes experimental results.
Section 4 concludes the paper.

2 Proposed Approach

As the proposed method works with a combination of two different approaches,
two methods have to be discussed one by one: each method to hide data into
either S or T JPEG blocks. The S and T blocks are separated on the basis of
the number of nonzero AC coefficients. To select the S and T blocks, a threshold

178 M. Amiruzzaman et al.

value is used. Before further discussion, it is necessary to define S and T JPEG
blocks.

2.1 S and T JPEG Blocks

An image can be divided into 8×8 non-overlapping blocks and processed in
the frequency domain by transforming using discrete cosine transform (DCT)
and quantization block by block. Each block consists of integer values where the
leftmost and topmost value is a DC coefficient value, and the other 63 coefficients
are AC coefficient values. The DC coefficient plays an important role: it maintains
an average luminance value of the block. Hence, the DC coefficient is not used for
embedding data due to serious possibility of blocking effects among neighboring
blocks.

The S and T blocks are determined by the number of nonzero AC coefficients.
The leftmost and topmost AC coefficients close to the DC coefficient are consid-
ered to be more important than the rightmost and bottommost AC coefficients
far from the DC coefficient. Importance of the coefficients can be measured
by the magnitudes of the associated quantization coefficients. In addition, in
general, it is believed that low-frequency components are more important than
high-frequency components in data compression. The proposed method uses a
threshold value to determine S and T JPEG blocks. If a JPEG block has less or
equal to Tv number of nonzero AC coefficients, then that block is treated as an
S block. Similarly, if the numbers of nonzero AC coefficients are more than the
threshold value Tv, then that block is a T JPEG block (see Figure 1).

Let the DC coefficient in a block be denoted as DC, the AC coefficients as
ACi, (where, i =1, 2, · · · , n − 1, n), and the threshold value as Tv. In general,
n ≤ 63, where ACn is the last nonzero AC coefficient in the block, where an end-
of-block (EOB) marker follows. Assume that a JPEG block has AC coefficients

Fig. 1. Block diagram of the encoding phase

An Improved Steganography Covert Channel 179

(i.e., both nonzero and zero)as follows: for example, [16 1 0 0 0 -2 1 0 0 -1 2
EOB]. Then, we denote them as DC = 16, AC1 = 1, AC2 = 0, AC3 = 0, AC4
= 0, AC5 = -2, AC6 = 1, AC7 = 0, AC8 = 0, AC9 = -1, AC10 = 2, and the
EOB marker follows. For the efficiency of compression, zero elements after the
EOB marker are not considered as regular coefficients.

The nonzero AC coefficients are easily identified. In this example, there are
5: AC1 = 1, AC5 = -2, AC6 = 1, AC9 = -1, and AC10 = 2. If the threshold
value Tv is 3, then the number of nonzero AC coefficients in this toy example is
more than Tv, which means that this JPEG block is a T block (see Figure 2).
Again, in another toy example with zigzag-scanned JPEG coefficients [32 5 0 0
0 2 EOB], we can denote them as DC = 32, AC1 = 5, AC2 = 0, AC3 = 0, AC4
= 0, AC5 = 2, and EOB. The number of nonzero AC coefficients is 2: AC1 = 5
and AC5 = 2. Note that this block is an S block when Tv is 3 (see Figure 3) by
the definition of S and T blocks. There is no special meaning in the name of S
and T. For the convenience of definition, S and T blocks are used. If the number
of nonzero coefficients (except DC value) in a block is larger than Tv, the block
is just considered as a T block; otherwise, the block is an S block.

2.2 Shifting Nonzero AC Coefficients

The proposed method allows shifting of nonzero AC coefficients to make either
even or odd number of zeros in between two nonzero coefficients in order to hide
data. This method has excellent features. Since this method does not change the
magnitude of coefficients, the resulting histogram is totally unchanged. Thus,
existing statistical attacks cannot find any clue of steganography. This kind of
histogram is called magnitude histogram. Existing statistical attack takes the
magnitude histogram into consideration.

In this paper, run-length histogram is introduced to cope with the shifting
nonzero AC coefficients by adjusting run-lengths to hide data. If there is no zero
coefficient between two consecutive nonzero coefficients, the run-length of zero
coefficient is 0 by definition. Similarly, if there are 10 zero coefficient between
two consecutive nonzero coefficients, the run-length of zero coefficient is 10 by
definition. The run-length histogram shows the number of run-lengths from 0
to 63. In general, this run-length histogram shows an exponentially decaying
distribution. However, when a stego image has excessive number of hidden mes-
sages, its run-length histogram may be far away from an exponentially decaying
distribution.

Serious drawback of the coefficient shifting method is its poor image quality.
The reason is obvious: Assume that one coefficients is shifted to the left or right
by one position, this operation results in change of at least two nonzero AC
coefficients. Consider an example with [... 5 0 0 0 6 0 ...] where one more zero
coefficient has to be inserted between nonzero coefficients 5 and 6 to make even
number of zeros. Then, the changed coefficients have the form [... 5 0 0 0 0 6 0
...]. Note that the position of 6 is changed to 0 while the position of 0 next to
6 is changed to 6. One is changed from 6 to 0 and the other one from 0 to 6.
Subsequent changes may follow due to all nonzero coefficients in the right-hand

180 M. Amiruzzaman et al.

Fig. 2. Run-Length histogram of the original Lena image and stogo Lena image (top).
Run-Length histogram of the original Baboon image and stogo Baboon image (bottom).

side of 6. In case of traditional JPEG steganography, the maximum error due to
magnitude is, in general, ±1 in a single position. However, the position shifting
method causes significant errors at least in two positions.

Thus, inserting or deleting zero coefficients everything in a block is a bad idea.
One solution is inserting or deleting Tc number of zero coefficients in between the
last nonzero coefficients. Of course, this solution may cause serious image degra-
dation. However, this method is much better than shifting nonzero coefficients
everywhere. In general, Tc should be as small as possible such as Tc = 1.

This kind of shifting operation results in the change of number of zero AC
coefficients while nonzero coefficients are unchanged. If the number of AC co-
efficients in between nonzero AC coefficients is odd and the message to hide is
odd (i.e., 1), this method does not need to make any change. But if the number
of zero coefficients is odd but the message to hide is even (i.e., 0), this method
has to make the number of zero coefficients even by either removing or inserting
one zero so that the next nonzero AC coefficient shifts from its original posi-
tion either to the left or right, respectively. There are two more cases to make

An Improved Steganography Covert Channel 181

four possible cases: odd-odd, odd-even, even-odd, and even-even. The other two
cases are similar to the previous two cases in nature. The overall four cases are
summarized in Subsection 2.3. Note that in case of odd-odd (i.e., odd run-length
with odd message to hide) and even-even pairs encoder does not need to insert
or delete zeros. However, in any case, zeros are inserted or deleted intentionally
to minimize distortion.

In this paper, coefficient shifting method is applied to the T block. For the
decoder, odd or even number of zeros indicates the hidden message information.
The following block [16 1 0 0 0 -2 1 0 0 -1 2 EOB] is a T block. Embedding of
the secret message ”01” into this T block changes last two run-lengths like [16
1 0 0 0 -2 1 0 0 -1 0 2 EOB] (see Figure 2). Note that one zero is forcefully
inserted in between AC9 and AC10. Therefore, the position of the last nonzero
AC coefficient (i.e., 2) has to be shifted to the right and has a new position AC11.

2.3 Modifying Magnitude Nonzero AC Coefficients

Magnitude changing method is an ugly duckling. Magnitude changing method
also has its merits. Thus, this method is applied to the S blocks. The magnitude
of the first Tc nonzero coefficients is modified by a very simple rule. When the
hidden bit is even (i.e., 0) and the magnitude value of nonzero AC coefficient is
odd, then the method reduces or increases the magnitude value by 1 in order
to make it even. Similarly, when the method has to hide 1 and the magnitude

Fig. 3. An original T JPEG block (a), the zigzag scanned array of the T block (b),
and the changed array after embedding binary data ”01” (c)

182 M. Amiruzzaman et al.

is even, this method increases or reduces the magnitude by 1 to make it odd.
Always the magnitude value 0 was skipped for modification. If zero coefficient is
changed from 0 to 1 or -1, decoding becomes wrong. In addition, modification
from 1 or -1 to 0 also causes wrong decoding. Thus, magnitude change inwards
to 0 is not so good, which has been used traditionally. This method changes a
nonzero coefficient to a smaller one by 1 in absolute magnitude. For example, 6
can be changed to 5.

In this paper, magnitude change from 0 outwards is introduced as a baseline
method. Outward change increases absolute magnitude by 1. For example, 6 can
be changed to 7. It is easy to show that there is not significant difference between
inward modification and outward modification. Thus, there is no objection to use
outward modification. However, in order to minimize distortion, both inward and
outward modification methods are used interchangeably.

In case of odd-even (i.e., odd magnitude with even message to hide) or even-
odd pairs, magnitude of coefficients have to be modified. However, in case of odd-
odd or even-even pairs, magnitude of coefficients are left unchanged. However,
changing all nonzero coefficients gives the hint of data hiding. Thus, in order
to fight against statistical attack, not all nonzero coefficients are changed. In
this paper, encoder changes Tc number of nonzero coefficients near from the DC
coefficient. It is easy to show that magnitude of distortion or magnitude of error
after data hiding is almost proportional to the magnitude of the quantization
coefficients. It is obvious that most of quantization coefficients are smaller as far
as they are closer from the DC coefficient.

An example block [32 5 0 0 0 2 EOB] is an S block (see Figure 4). There are
two nonzero AC coefficients: AC1 = 5 and AC5 = 2. After embedding a message
string ”01”with two bits, the block becomes either like [32 4 0 0 0 1 EOB] or [32
6 0 0 0 3 EOB]. We can choose one of them that produces smaller magnitude of
distortion.

2.4 Embedding Algorithm

Embedding algorithm of this paper combines two different methods: modifica-
tion of both magnitude of nonzero coefficients in S blocks and run-length of zero
coefficients in T blocks. The algorithm is summarized as follows:

Encoder

(1) Separation of S blocks from T blocks by Tv: If a block has less AC coefficients
than or equal to Tv, this block is an S block, and otherwise, a T block.

(2) Change the magnitude values in the S block from the first Tc nonzero coef-
ficients from the DC coefficient.
(a) If the message to hide is 0 and the nonzero coefficient magnitude is odd,
make it even by either increasing or reducing the magnitude value by 1.
Choice is determined by the smaller magnitude of distortion.
(b) If the message to hide is 1 and the nonzero coefficient magnitude is
even, make it odd by either increasing or reducing the magnitude value by
1. Choice is determined by the smaller magnitude of distortion.

An Improved Steganography Covert Channel 183

Fig. 4. An S JPEG block (a), the zigzag scanned array of the S block (b), and the
changed array after embedding binary data ”01” (c)

(3) Change the number of zeros in between the nonzero AC coefficients from the
last Tc) run-lengths in the T block.
(a) If the hidden message is 0 and the number of zeros between two nonzero
AC coefficients is odd, then make it even by either adding or deleting addi-
tional zeroes. Choice is determined by the smaller magnitude of distortion.
(b) If the hidden message is 1 and the number of zeros between two nonzero
AC coefficients is even, then make it odd by either adding or deleting addi-
tional zeroes. Choice is determined by the smaller magnitude of distortion.

Decoder

The decoding algorithm is also simple. Checking magnitudes of run-lengths if
they are odd or even and checking a block if it is an S block or a T block are
the role of decoder. The decoding algorithm is given bellow.

(1) Determine whether a block is an S block or a T block by Tv.
(2) In an S block, the magnitude values of first Tc nonzero coefficients from the

DC value are checked to see if they are odd or even. The odd magnitude
values represent 1 and even numbers represent 0.

(3) In a T block, the number of zeros in between last Tc nonzero coefficients are
counted. If the number is odd or even, then the hidden message is 1 or 0,
respectively.

184 M. Amiruzzaman et al.

3 Experiment and Discussions

Implementing the proposed method is simple and easy. For the encoder and
decoder, the proposed method was tested on four images. Performance of the
data hiding methods is compared with different threshold values. The sample
images are 512×512 in size and, therefore, have 4,096 8×8 DCT blocks. With
different threshold values, various numbers of S and T blocks are obtained to
hide data. The threshold values are used to control the capacity as well as image
quality (i.e., PSNR). In case of higher capacity with Tv = 4 and Tc = 4, different
images achieve different hiding capacity due to different number of S and T
blocks. Lena image allows 8,658 bits to be hidden with 34.05 dB, and Barbara
image 10,284 bits with 27.87 dB. Again, with the same threshold value, Gold-hill
and Baboon images achieve data embedding capacity with 11,667 bits and 12,131
bits with 35.47 dB and 26.69 dB, respectively (see Table 1). After changing the
threshold values as Tv = 4, and Tc = 3, the proposed method achieves different
hiding capacity. Lena image embeds 6,575 bits with 36.05 dB, and Barbara image
7,466 bits with 29.83 dB. Since Baboon image has many nonzero AC coefficients
due to its rich high-frequency components, the hiding capacity is significantly

Table 1. Performance over Hiding Capacity, Measured by different Tv, and Tc value

PSNR Capacity in S in T
[dB] [bits] [bits] [bits]

Lena Tv = 4, Tc = 4 34.06 8,658 6,099 2,559
Tv = 4, Tc = 3 36.05 6,558 4,066 2,509
Tv = 4, Tc = 2 38.49 4,560 2,527 2,033
Tv = 3, Tc = 3 35.95 6,467 1,791 4,676
Tv = 3, Tc = 2 38.49 4,119 1,781 2,338
Tv = 2, Tc = 2 38.49 4,679 3,734 945

Barbara Tv = 4, Tc = 4 27.88 10,284 1,776 8,508
Tv = 4, Tc = 3 29.8329 7,466 1,774 5,692
Tv = 4, Tc = 2 33.28 4,615 1,767 2,848
Tv = 3, Tc = 3 29.73 7,283 1,109 6,174
Tv = 3, Tc = 2 33.28 4,200 1,103 3,097
Tv = 2, Tc = 2 33.28 3,914 542 3,372

Gold-hill Tv = 4, Tc = 4 35.48 11,667 2,373 9,294
Tv = 4, Tc = 3 36.88 8,552 2,356 6,196
Tv = 4, Tc = 2 39.14 5,471 2,353 3,108
Tv = 3, Tc = 3 36.71 8,010 876 7,134
Tv = 3, Tc = 2 39.14 4,461 874 3,587
Tv = 2, Tc = 2 39.14 4,121 327 3,794

Baboon Tv = 4, Tc = 4 26.69 12,131 275 11,856
Tv = 4, Tc = 3 28.29 8,162 258 7,904
Tv = 4, Tc = 2 31.21 4,222 270 3,952
Tv = 3, Tc = 3 28.35 8,144 100 8,044
Tv = 3, Tc = 2 31.21 4,128 96 4,032
Tv = 2, Tc = 2 31.21 4,088 24 4,064

An Improved Steganography Covert Channel 185

Fig. 5. Histogram of the original Lena image (top) and that of the difference between
original and stego images (bottom) with Tv = 4 and Tc = 4

higher than other images. Note that with Tv = 4, and Tc = 3, the embedding
capacity of Baboon image is 8,162 bits with 28.29 dB of visual quality.

After hiding data by the proposed method, small changes are observed in the
magnitude histogram of the stego image compared with original image. Two
graphs of histogram for original image and the difference between original and
stego images are shown in Figures 5 and 6. It is observed that the difference
is almost negligible, and, hence, the stego image is relatively secure due to its
capability to keep almost the same as original original histogram. Histogram of
the original image compressed by JPEG has a Cauchy-like distribution as shown
in Figures 5 and 6. Difference between two histograms is almost equal to the
number of total nonzero coefficients changed in the T blocks. By adjusting the
threshold values Tv and Tc, histogram of the difference can be controlled. Note
that the differences between magnitude histograms depend on images. However,
most differences are occurred at 1 and -1.

4 Conclusions

The proposed method provides significantly higher embedding capacity with
slightly worse image quality in comparison with a method of shifting nonzero
coefficients only. In terms of security issue, this method is less weaker than
traditional methods that modify magnitude of coefficients, but still can produce

186 M. Amiruzzaman et al.

Fig. 6. Histogram of the original Baboon image (top) and that of the difference between
original and stego images (bottom) with Tv = 4 and Tc = 4

almost the same magnitude histogram and less distortion in visual quality. For
the future work, optimization can be used to improve performance and security
level. Many variations are possible in combination of two methods.

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and
suggestions, which have improved the paper.

References

1. Fridrich, J., Goljan, M., Hogea, H.: Attacking the Out-Guess. In: Proceedings of the
ACM Workshop on Multimedia and Security, pp. 967–982 (2002)

2. Fridrich, J., Goljan, M., Hogea, H.: Steganalysis of JPEG image: Breaking the F5 al-
gorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer,
Heidelberg (2003)

3. Fridrich, J.: Feature-based steganalysis for JPEG images and its implications for
future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS,
vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

4. Provos, N.: Defending against statistical steganalysis. In: Proceedings of the 10th
USENIX Security Symposium, pp. 323–335 (2001)

An Improved Steganography Covert Channel 187

5. Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.)
IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)

6. Sallee, P.: Model-based methods for steganography and steganalysis. International
Journal of Image and Graphics 5(1), 167–190 (2005)

7. Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: Yet another steganographic scheme
that resists blind steganalysis. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH
2007. LNCS, vol. 4567, pp. 16–31. Springer, Heidelberg (2008)

8. Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann, A.
(ed.) IH 1999. LNCS, vol. 1768, pp. 61–75. Springer, Heidelberg (2000)

9. Westfeld, A.: F5: A steganographic algorithm: High capacity despite better steganal-
ysis. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer,
Heidelberg (2001)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 188–195, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software Test Data Generation Based on Multi-agent

Siwen Yu, Jun Ai, and Yifu Zhang

Department of System Engineering of Engineering Technology,
Beihang University, Beijing 100191, China

applifish126@gmail.com, aijun@buaa.edu.cn

Abstract. Software test data generation is an important part of software testing.
This paper presents a multi-agent cooperation framework for software test data
generation. The framework is constituted by Graph Miner, Method Selector and
test data generation method agent group. Graph Miner extracts software infor-
mation sequences from UML graphs, and sends them to Method Selector. Then
Method Selector selects out relevant method agents to generate test data. This
framework can solve the problems of test data generation methods extension
and low level of intelligence exists in traditional methods. Based on the frame-
work proposed in this paper, a software prototype is developed. It is proved that
this framework is feasible.

Keywords: Agent; software test data; UML.

1 Introduction

UML is a semi-formal modeling language, which is well defined and easy to express.
It is an effective resource to generate software test data. The UML based test data
generation method is a type of black box testing method. The black box testing
method includes equivalence class classification, boundary value analysis, causal
mapping, statistical test method, pairs test method and various test methods based on
artificial intelligence. But the traditional UML based software data generation meth-
ods are poor to extend and can not impose a variety of testing methods, which can not
be effective in the discovery of software defects.

Agent refers to the entity present in a particular environment to carry out its own
action to meet the goal, with the characteristics of scalability, flexibility and high
degree of autonomy. By setting the relevant rules, Agent can impose a wide range of
software test data generation methods in accordance with the actual needs. By adding
the rules, new software test data generation method can be added. This overcomes the
shortcomings of poor scalability and method oneness. This paper uses the cooperation
of the multi-Agent to complete the generation of software test data.

2 The Principles of the Framework

2.1 The Principles of the Framework

The framework proposed by this paper can be described by the following formula:
S={U,C,D,V,f}[1].U represents UML models. R=C∪D represents the property set of

 Software Test Data Generation Based on Multi-agent 189

the framework, in which C is the conditional properties and D is the result condition.
V is the value set of property, V=∪vr, Rr ∈ . f is information function, f: U×R→V. f
defines how to select test data generation method in accordance to the specified UML
diagrams.

Based on the UML model Up, the framework can choose the test data generation
methods agent set D according to conditional property C. The agents which is se-
lected are then to execute method to generate test data.

According to the process of test data generation, the principles above can be sum-
marized into the following three steps:
Extract software test information from UML diagrams;
Select agent set Di from rule set Ci;
Execute the selected agents to get software test data.

Fig. 1. The framework of agent based software test data generation

2.2 The Design of the Framework

This paper introduced in two agents and one agent group. They are Graph Miner,
Method Selector and test data generation method agent group. There are many kinds
of method agent in test data generation method agent group.

Graph Miner extracts test information from UML diagrams to provide information
to the generation of test data.

Fig. 2. The agent cooperation framework

190 S. Yu, J. Ai, and Y. Zhang

Through the knowledge base in Method Selector, the agent k is selected from the
test data generation method agent group according to C. Then agent k is executed to
generate test data. Fig 2 shows framework of the design.

3 Test Input Information Extraction

3.1 Test Input Information

It is necessary to clarify the concept of software test input information. For this, the
paper defines software testing input package and software testing information se-
quence.

Definition 1 (Software testing input package): Let InputPackage represents soft-
ware testing input package, which is a triple vector. InputPackage={Var,VarType,
VarRange}, the definition of elements in the vector is as follows:

Var: variable name in the test input;
VarTye: variable type in test input;
VarRange: variable scope in test input.

Definition 2 (Software testing information sequence): Software testing information
sequence is a quaternion group STS={Start, Final, Restriction, InputPackage }.The
meaning of the elements in the vector is as follows:

Start: the start point of the UML diagram;
Final: the final point of the UML diagram;
Restriction: the conditions of the migrations;
InputPackage: oftware testing input package.

The content and format of software testing information sequence has nothing to do with
the specific UML diagrams. This provides the information source to generate test data.

3.2 The Coverage Criteria of UML Diagrams

In order to ensure the adequacy of software testing, we must consider the validity of
test data and coverage criteria. Based on the concept of the software testing informa-
tion sequence, the constraints, nodes and variable information should be extracted
from the diagrams. So, this paper defines criteria to cover these elements. The criteria
are as follows:

Constraint coverage criterion: cover all the constraints in the UML diagrams;
Node coverage criterion: cover all the nodes in the UML diagrams;
Variable information coverage criterion: cover all the information of variable in the
UML diagrams, such as variable name, variable scope and variable type.

3.3 Extraction of Software Test Input Information

Graph Miner traversals UML diagram Up to generate software testing information
sequence in accordance with the test coverage criteria. The specific process is as
follows:

 Software Test Data Generation Based on Multi-agent 191

Read the type mark of the UML diagram Tp;
Select UML diagram traversal methods based on mark Tp;
Implement traversal method rules, obtain the software testing information sequence.

Through the process, the software testing information sequence STSp can be gener-
ated from model Up. The following is the algorithm to generate software testing in-
formation sequence from UML activity diagram.
typedef struct migration{
 int adjvex;//the position of the node
 string Restriction;//restrict condition
 struct migration *next;//point of the next edge
}Elink;
typedef struct node{
string var;//name of variable
string varitype;//type of variable
int varrange[M];//range of variable
Elink *link;}VNode;
Algorithm: Generate test information of activity diagram
Input: UML activity diagram T
Output: Test information of activity diagram
Algorithm design:
travel_Activity_Diagram(VNode G[], int vnode)
{ int w;
 Visit(vnode);//visit the information in vnode, extract test information
 w=FIRSTNODE(G,vonde);//look for the first adjacent point of V, return -1
if no adjacents exist
while (w!=-1)
{if(vistited[w]= =0)
travel_Activity_Diagram(G,w);
w=NEXTNODE(G, vonde);// look for the next adjacent point of V, return -1 if no
adjacents exist}}

4 Software Test Data Generation

After the software testing information sequence is generated, Method Selector
chooses the relevant software test generation method Agent to generate software test
data. Method Selector completes the task by the knowledge base of software test data
generation method internal. In fact, Method Selector is the executor of the mapping
U×R to V.

The value table Y of R is in the Method Selector. The generation of test data is
based on the software testing information sequence. Therefore, the elements of the
sequence should be the conditional elements for the test data generation. In this paper,
table Y is realized by the table of software test information sign-Agent name-Agent
ID (Table TST-AN-AID for short). In table 1, Bi, i∈N represent the set of the name

192 S. Yu, J. Ai, and Y. Zhang

Table 1. TST-AN-AID table

C D

Test information sign Agent name Agent ID
Var:T1 B1 Ag1

VarType:T2 B2 Ag2
VarRange:T3 B3 Ag3

Start:T4 B4 Ag4
Final:T5 B5 Ag5

Restriction:T6 B6 Ag6

of the Agents be selected. Bi={Lij|i,j∈N, Lij is the name of the method}. Agi, i∈N
represent the set of IDs of the Agents. Agi={Gij∈G | G is the set of ID of the
Agents}.

Based on the table of TST-AN-AID, test data generation method agent Bi is se-
lected out to generate test data. The steps are as follows:

Graph Miner extracts software testing information sequence from UML diagrams;
Trough TST-AN-AA table software test data generation Agent k is selected out;
Agent k generates software test data based on the software testing information se-
quence.

In order to complete the cooperation between the agents, this paper uses Indirect /
Active termination model [2]. The principle of the model is showed in Fig 3.

Fig. 3. Indirect / Active termination model

5 Case Study

In this paper, an aircraft plug-weapon management system is used as an example
to illustrate the principle. There are six use case diagrams, three activity diagrams
and one sequence diagrams. Figure 4 is the system's system-level use case
diagram. Due to the restrictions on article length, can not all of the diagrams be
listed.

 Software Test Data Generation Based on Multi-agent 193

Fig. 4. Indirect / Active termination model

Graph Miner traverses through the use case diagram, to generate the software test-
ing requirement tree C, Figure 5. The node types of Tree C are listed in Table 2.

Fig. 5. Test requirement tree

Table 2. The diagram type and mark of test requirement tree

Diagram type Node Diagram type mark

Use case diagram 1, 4, 5, 6, 7, 8 P1
Activity diagram 2, 9 P2

Sequence diagram 3, 10 P3

After the requirement tree is generated, the corresponding rules are found to generate
software test information sequences through Table 3.

Table 3. The generation of test information sequences

Diagram type mark Node Rules Software test information sequence

P1 1, 4, 5, 6, 7, 8 Ap1 STS p1, STS p4, ,…, STS p8
P2 2, 9 Ap2 STS p2
P3 3, 10 Ap3 STS p3, STS p10

194 S. Yu, J. Ai, and Y. Zhang

Based on the software test information sequence, test method agents are selected to
generate test data through table 4.

Table 4. The generation of software test data

STS Element Agent name Agent ID Software test data set

Var B1 Ag1 D11~ D110

VarType B2 Ag2 D21~ D210
VarRange B3 Ag3 D31~ D310

Start B4 Ag4 D41~ D410
Final B5 Ag5 D51~ D510

STS1, STS2, ..,
STS10

Rrestriction B6 Ag6 D61~ D610

The framework proposed by this paper can solve the problem of test data generation
method extension. New method Agent can be added by add new elements in TST-
AN-AA table. At the same time, the extension of test data generation method is real-
ized. The principle is showed in Fig 5.

Fig. 6. The principle of software test data generation method extension

6 Conclusion

Through using multi-Agent cooperation method in software test data generation, this
paper proposes a framework of software test data generation. Based on the test infor-
mation extraction and test data generation, the principle and process of the Agent-
based framework is elaborated. According to the framework proposed in this paper, a
prototype is developed to verify the feasibility of the framework. In addition, the
framework is easy to extend test method, can generate test data based on multiple
UML diagrams and high level of intelligence.

 Software Test Data Generation Based on Multi-agent 195

References

1. Linzhang, W., Jiesong, Y., Xiaofeng, Y., et al.: Generating test cases from UML activity
diagram based on Gray-box method. In: 11th Asia-Pacific on Software Engineering Confer-
ence, November 30-December 3, pp. 284–291 (2004)

2. Li, B.-L., Li, Z.-s., Qing, L., et al.: Test case automate generation from UML sequence dia-
gram and OCL expression. In: 2007 International Conference on Computational Intelligence
and Security, December 15-19, pp. 1048–1052 (2007)

3. Chevalley, T.-F.: Automated generation of statistical test cases from UML state diagrams.
In: Computer Software and Applications Conference COMPSAC 2001, 25th Annual Inter-
national, October 8-12, pp. 205–214 (2001)

4. Bai, X., Dai, G., Xu, D., et al.: A multi-agent based framework for collaborative testing on
Web services. In: Software Technologies for Future Embedded and Ubiquitous Systems,
2006 and the 2006 Second International Workshop on Collaborative Computing, Integra-
tion, and Assurance. SEUS 2006/WCCIA 2006. The Fourth IEEE Workshop on April
27-28, 2006, 6 p. (2006)

5. Huanglin, Z.: Intelligent Computing, vol. 204, pp. 2–4. Chongqing University Press (2004)
6. Xinjun, M.: Agent Oriented Software Development, p. 140. Tsinghua University Press,

Beijing (2005)

Knowledge Creation and Creativity in Agile
Teams

Broderick Crawford1,2 and Claudio León de la Barra1

1 Pontificia Universidad Católica de Valparáıso, PUCV, Chile
2 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

{broderick.crawford,cleond}@ucv.cl

Abstract. Knowledge has been called the only meaningful economic
resource of the Knowledge Society. Then, Knowledge Creation in orga-
nizations is a very important issue. Particularly, the development of new
software products requires the generation of novel and useful ideas. In
this paper, software development approaches are analyzed from the per-
spective of Knowledge Management and Creativity. Here too, we apply
these concepts to enhance the creative performance of eXtreme Program-
ming introducing a new role wich can stimulate the Knowledge Creation
and Creativity of the developers.

Keywords: Creativity, Knowledge Management, Software Development,
Agile Methodologies, eXtreme Programming.

1 Introduction

Software engineering is a knowledge intensive process that includes some aspects
of Knowledge Management (KM) in all phases: eliciting requirements, design,
construction, testing, implementation, maintenance, and project management.
No worker of a development project possess all the knowledge required for ful-
filling all activities. This underlies the need for knowledge sharing support to
share domain expertise between the customer and the development team [7].
The traditional approaches (often referred to as plan-driven, task-based or Tay-
loristic), like the waterfall model and its variances, facilitate knowledge sharing
primarily through documentation. They also promote usage of role based teams
and detailed plans of the entire software development life-cycle. It shifts the fo-
cus from individuals and their creative abilities to the processes themselves. In
contrary, agile methods emphasise and value individuals and interactions over
processes. Tayloristic methods heavily and rigorously use documentation for cap-
turing knowledge gained in the activities of a software project life-cycle [6]. In
contrast, agile methods suggest that most of the written documentation can be
replaced by enhanced informal communications among team members internally
and between the team and the customers with a stronger emphasis on tacit
knowledge rather than explicit knowledge [5].

The study in [3] claim that the adaptation of agile methods is facilitated
by a high degree of knowledge creation, enabled by interaction of developers

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 196–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Knowledge Creation and Creativity in Agile Teams 197

and users. They examined knowledge sharing in an eXtreme Programming (XP)
project and a traditional project, founding that when the XP model was used,
the creation of tacit knowledge improved as a result of frequent contacts.

Increasing knowledge can influence creativity because knowledge drives cre-
ative self-efficacy [28,27]. People with more knowledge and skills are more likely
to feel confident that they can be creative. We believe that creativity is the only
way to manage software development in organizations trying to maintain their
advantages. Consequently, we are interested in the study of techniques to foster
creativity in software engineering. In this work, we address the improvement of
creativite performance in XP.

This paper is organised as follows: Section 2 gives a brief overview of XP and
its roles. Section 3 briefly shows Software Engineering from KM perspective.
In section 4 we explain the relevance of Creativity in Software Development.
Section 5 is about central aspects in Creativity. Section 6 presents a comparison
between roles in creative teams and roles in XP teams. Finally, in Section 7 we
conclude the paper and give some perspectives for future research.

2 eXtreme Programming

A new group of software development methodologies has appeared over the last
few years. For a while these were known as lightweight methodologies, but now
the accepted term is Agile methodologies. The most common of them are: eX-
treme Programming, the Crystal Family, Agile Modeling, Adaptive Software
Development, Scrum, Feature Driven Development, Dynamic System Develop-
ment Method [10]. There exist many variations, but all of them share the com-
mon principles and core values specified in the Agile Manifesto [6]. Extreme
Programming is an iterative approach to software development [4]. The method-
ology is designed to deliver the software that customer needs when it’s needed.
This methodology emphasizes team work. Managers, customers, and developers
are all part of a team dedicated to deliver quality software. XP implements a
simple, yet effective way to enable groupware style development. XP improves
a software project in four essential ways; communication, simplicity, feedback,
and courage. XP defines the following roles [4]: Programmer, Customer, Tester,
Tracker, Coach, Consultant and Big boss.

3 Knowledge Creation and Software Engineering

It has been said that Knowledge Management implementations in Software En-
gineering can extract knowledge from its sources of knowledge: documentation,
artifacts, objects, components, patterns, templates and code repositories, ex-
ploiting this knowledge in future software developments. But, software reuse is
not a technology problem, nor is it a management problem. Reuse is fundamen-
tally a Knowledge Management problem. In [17] Jim Highsmith explains how
over the last ten or so years, by packaging objects into components and compo-
nents into templates, we have made the problem bigger, not smaller. Objects,

198 B. Crawford and C. León de la Barra

patterns, templates, and components are packaged (explicit) knowledge Ů the
larger the package, the greater the encapsulated knowledge. The greater the en-
capsulated knowledge, the harder it is to transfer. Additionally, the essence of
problem solving, innovation, creativity, intuitive design, good analysis, and effec-
tive project management involves more tacit knowledge, the harder it is to trans-
fer. By putting tacit knowledge in a principal role and cultivating tacit knowledge
environments, KM can play an important role in software development. An un-
derstanding of knowledge sharing and transfer issues offers important insights
about Reusability and Software Engineering.

4 Creativity in Software Development

Since human creativity is thought as the source to resolve complex problem or
create innovative products, one possibility to improve the software development
process is to design a process which can stimulate the creativity of the develop-
ers. There are few studies reported on the importance of creativity in software
development. In management and business, researchers have done much work
about creativity and obtained evidence that the employees who had appropriate
creativity characteristics, worked on complex, challenging jobs, and were su-
pervised in a supportive, noncontrolling fashion, produced more creative work.
Then, according to the previous ideas the use of creativity in software develop-
ment is undeniable, but requirements engineering is not recognized as a creative
process in all the cases [23]. In a few publications the importance of creativity
has been investigated in all the phases of software development process [11,12,8]
and mostly focused in the requirements engineering [26,24,25]. Nevertheless, the
use of techniques to foster creativity in requirements engineering is still shortly
investigated.

5 Creativity: Purposes, Performance and Structure

The creativity definitions are numerous [2,21,31], therefore, considering the ob-
ject of analysis in the present paper: a software development teamwork, that
must respond to the requirements of a specific client for a particular problem, a
suitable definition is the one raised by Welsch [30]:

Creativity is the process of generating unique products by transformation of
existing products. These products, tangible and intangible, must be unique only
to the creator, and must meet the criteria of purpose and value established by
the creator.

More specifically, and from an eminently creative perspective, it is possible to
distinguish three aspects at the interior of a group developing new products:

1) The purposes that the team tries to reach, which demand two scopes of
results [9,13,14,15,16]; those related to the creative result that must be original,
elaborated, productive and flexible and those related to the creative team, so that
it reaches its goals, developing cognitive abilities and presenting an improved

Knowledge Creation and Creativity in Agile Teams 199

disposition to the change. All this in order to obtain a better creative team
performance in the future.

2) The performance shown by the team in connection with the main aspects
of the complex dynamics that the persons build inside a team. We describe
three aspects, the personal conditions of the members of the team, in terms of
the styles and cognitives abilities, the personality, their intrinsic motivation and
knowledge [31,1,2,9], the organizational conditions in which the creative team is
inserted, and that determines, at least partly, its functioning. These conditions,
in the extent that present/display certain necessary particular characteristics -
although non sufficient - for the creative performance. They emphasize in spe-
cial the culture (communication, collaboration, trust, conflict handle, pressure
and learning) [31,20,18]; the internal structure (formalization, autonomy and
evaluation of the performance) [31,20,18,1]; the team available resources (time
disposition) [31,20,2] and the physical atmosphere of work [21], and the condi-
tions of performance of the creative team, mainly the creative process realized,
which supposes the set of specific phases that allow to assure the obtaining of a
concrete result (creative product) [21,29].

3) The structure of the creative team, particularly the group characteristics,
such as norms, cohesiveness, size, diversity, roles, task and problem-solving ap-
proaches [31].

Of the mentioned aspects, we deepen in those referred to the structure and
performance of the team for the development of new products, specially consid-
ering the roles surrounding the creative process [29,21].

5.1 Roles in a Creative Team

Lumsdaine and Lumsdaine [22] raise the subject of the required cognitives abili-
ties (mindsets) for creative problem resolution. Their tipology is excellent for the
creative team, and the different roles to consider. These roles are the following
ones:

– Detective. In charge of collecting the greatest quantity of information related
to the problem. It has to collect data without making judgements, even when
it thinks that it has already understood the problem exactly.

– Explorer. Detects what can happen in the area of the problem and its con-
text. It thinks on its long term effects and it anticipates certain developments
that can affect the context (in this case, the team). The explorer perceives
the problem in a broad sense.

– Artist. Creates new things, transforming the information. It must be able
to break his own schemes to generate eccentric ideas, with imagination and
feeling.

– Engineer. Is the one in charge of evaluating new ideas. It must make converge
the ideas, in order to clarify the concepts and to obtain practical ideas that
can be implemented for the resolution of problems.

– Judge. Must do a hierarchy of ideas and decide which of them will be imple-
mented (and as well, which ones must be discarded). Additionally, it must

200 B. Crawford and C. León de la Barra

detect possible faults or inconsistences, as well as raise the corresponding
solutions. Its role must be critical and impartial, having to look for the best
idea, evaluating the associated risks.

– Producer. In charge of implementing the chosen ideas.

Leonard and Swap [21] have mentioned additional roles, possible to be integrated
with the previous ones, because they try to make more fruitful the divergence
and the convergence in the creative process:

– The provoker who takes the members of the team ”to break”habitual mental
and procedural schemes to allow the mentioned divergence (in the case of
the ”artist”) or even a better convergence (in the case of the ”engineer”).

– Think tank that it is invited to the team sessions to give a renewed vision
of the problem-situation based on his/her experticia and experience.

– The facilitator whose function consists in helping and supporting the team
work in its creative task in different stages.

– The manager who cares for the performance and specially for the results
of the creative team trying to adjust them to the criteria and rules of the
organization (use of resources, due dates).

Kelley and Littman [19], on the other hand, have raised a role tipology similar
to Lumsdaine and Lumsdaine [22], being interesting that they group the roles in
three categories: those directed to the learning of the creative team (susceptible of
corresponding with the detective, explorer, artist, provoker and think tank roles),
others directed to the internal organization and success of the team (similar to
the judge, facilitator and manager roles) and, finally, roles whose purpose is to
construct the innovation (possibly related to the role of the engineer and judge).

6 Creativity in eXtreme Programming

Regarding to the structure dimension of a new product development team (in
particular software), it is possible to relate the roles in creativity to the roles
defined in the XP methodology distinguishing: base roles, that is, those directly
related to the creative processes and software development, and support roles,
whose function is to support or lead the other roles for a better performance.

6.1 Team Structure (Base and Supporting Roles)

The base roles are directly related to the creative and software development
process and the supporting roles support or lead the base roles to a better per-
formance. The following is the correlation between creative and XP roles:

– The detective function consisting in collecting information related to a prob-
lem is made by the client himself in XP, because this one generates the first
contact with the software development team.

Knowledge Creation and Creativity in Agile Teams 201

– The function of explorer consisting in defining completely the problem is
made in XP as much by the client as the manager of the team, all together
they appreciate the reach of the identified problem, as well as of the possible
solutions. The function of the artist consisting in transforming the informa-
tion, creating new relations, and therefore generating interesting solutions is
made by the developer, that in XP methodology is in charge of the analysis,
design and programming of software.

– The function of the engineer referred to clarify and to evaluate the new ideas,
in terms of its feasibility is made in XP by the tester and the tracker.

– The function of the judge, understood as the definitive selection of the solu-
tions to implant, is made in XP by the tracker and the client.

– The function of the producer, referred to the implementation of the selected
ideas (strictly speaking it is working software) is made in XP by the client in
his organization, including the processes and procedures that this function
implies.

The supporting roles considered are:

– The provoker; creativity demands that the divergence as well as convergence
in the solutions be maximum and complete. There is not explicit reference
in XP methodology about divergent thinking.

– The think tank who helps the team work “from outsid” is equivalent com-
pletely to the role of the consultant.

– The facilitator whose function is helping the team, corresponds in XP to the
coach role.

– The manager whose function is to lead to the team in terms of its general
efficiency and its effectiveness corresponds with XP’s big boss or manager.

7 Conclusions

Agility is about creating and responding to change. Today, Agile Teams ad-
dresses the need for innovative approaches, particularly, the eXtreme Program-
ming methodology includes implicitly central aspects of a creative teamwork.
These aspects can be organized according to the structure that the team adopts
and the performance that characterizes to the team.

The structure that the team adopts and specially the different roles that the
methodology advises to define, nearly correspond with the roles at the inte-
rior of a creative team. The performance that characterizes the team through
certain advisable practices, from the perspective of creativity, constitutes the
necessary basic conditions, although nonsufficient, in order to favor the group
creative performance. These conditions - called practices in XP methodology -
are accompanied by concrete phases of constituent activities of an agile software
development process, which is possible to correspond with the creative process,
which is fundamental to the creative performance.

In spite of the previous comments, we think that XP methodology should
have a more explicit reference to:

202 B. Crawford and C. León de la Barra

– The provoker role that is thoroughly described in creativity as a fundamental
factor to generate innovation. This can be explained because, in general,
agile methodologies do not aim, as a central element, to generate an original
software, but an effective one.

– The distinction and formalization of the creative phases to generate options
incubation and option choices (that are fundamental in creativity). It is
assumed that they take place in the iterative and production process. Again,
XP is not focused in ”originality”, resulting that the divergence is not so
fundamental in XP.

– A more direct mention to the physical atmosphere of work, that in creativity
are considered as highly relevant to enhance the performance. These aspects
should have a greater consideration since software development is a special
case of product development.

References

1. Amabile, T.: How to kill creativity. Harvard Business Review, 77–87 (September-
October 1998)

2. Amabile, T., Conti, R., Coon, H., Lazenby, J., Herron, M.: Assessing the work
environment for creativity. Academy of Management Journal 39(5), 1154–1184

3. Bahli, B., Zeid, E.: The role of knowledge creation in adopting extreme program-
ming model: an empirical study. In: Proc. ITI 3rd International Conference on In-
formation & Communication Technology (ICICT), Cairo, Egypt, December 2005,
pp. 75–87 (2005)

4. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2000)

5. Beck, K., Beedle, M., Bennekum, A.V., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001), http://agilemanifesto.org

6. Chau, T., Maurer, F.: Knowledge sharing in agile software teams. In: Lenski, W.
(ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 173–183. Springer, Heidel-
berg (2004)

7. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: Agile methods vs tayloristic
methods. In: Twelfth International Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, WETICE, pp. 302–307. IEEE Computer
Society, Los Alamitos

8. Crawford, B., de la Barra, C.L.: Enhancing creativity in agile software teams. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536,
pp. 161–162. Springer, Heidelberg (2007)

9. Csikszentmihalyi, M.: Creativity: Flow and the Psychology of Discovery and
Invention. Harper Perennial, New York (1998)

10. Fowler, M.: The new methodology (2001),
http://www.martinfowler.com/articles/newMethodology.html

11. Glass, R.L.: Software creativity. Prentice-Hall, Inc., Upper Saddle River (1995)
12. Gu, M., Tong, X.: Towards hypotheses on creativity in software development. In:

Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 47–61. Springer,
Heidelberg (2004)

http://agilemanifesto.org
http://www.martinfowler.com/articles/newMethodology.html

Knowledge Creation and Creativity in Agile Teams 203

13. Guilford, J.P.: Intelligence, Creativity and Their Educational Implications. Edits
Pub. (1968)

14. Hallman, R.: The necessary and sufficient conditions of creativity. Journal of Hu-
manistic Psychology 3(1) (1963); Also reprinted in Gowan, J.C., et al.: Creativity:
Its Educational Implications. John Wiley and Co., New York (1967)

15. Hallman, R.: Aesthetic pleasure and the creative process. Journal of Humanistic
Psychology 6(2), 141–148 (1966)

16. Hallman, R.J.: Techniques of creative teaching. Journal of Creative Behavior I
(September 1966)

17. Highsmith, J.: Reuse as a knowledge management problem,
http://www.awprofessional.com/articles/article.asp?p=31478

18. Isaksen, S.G., Lauer, K.J., Ekvall, G.: Situational outlook questionnaire: A measure
of the climate for creativity and change. Psychological Reports (85), 665–674

19. Kelley, T., Littman, J.: The Ten Faces of Innovation: IDEO’s Strategies for Defeat-
ing the Devil’s Advocate and Driving Creativity Throughout Your Organization,
Currency (2005)

20. Kotler, P., Armstrong, G.: Principles of Marketing, 10th edn. Prentice-Hall, En-
glewood Cliffs (2003)

21. Leonard, D.A., Swap, W.C.: When Sparks Fly: Igniting Creativity in Groups. Har-
vard Business School Press, Boston (1999)

22. Lumsdaine, E., Lumsdaine, M.: Creative Problem Solving: Thinking Skills for a
Changing World. McGraw-Hill, Inc., New York (1995)

23. Maiden, N., Gizikis, A., Robertson, S.: Provoking creativity: Imagine what your
requirements could be like. IEEE Software 21(5), 68–75 (2004)

24. Maiden, N., Robertson, S.: Integrating creativity into requirements processes: Ex-
periences with an air traffic management system. In: 13th IEEE International
Conference on Requirements Engineering (RE 2005), Paris, France, August 29 -
September 2, pp. 105–116. IEEE Computer Society, Los Alamitos (2005)

25. Mich, L., Anesi, C., Berry, D.M.: Applying a pragmatics-based creativity-fostering
technique to requirements elicitation. Requir. Eng. 10(4), 262–275 (2005)

26. Robertson, J.: Requirements analysts must also be inventors. IEEE Software 22(1),
48–50 (2005)

27. Sternberg, R., Lubart, T.: Defying the Crowd: Cultivating Creativity in a Culture
of Conformity. Free Press, New York (1995)

28. Tierney, P., Farmer, S.: Creative self-efficacy: Its potential antecedents and relation-
ship to creative performance. Academy of Management Journal 45(6), 1137–1148
(2002)

29. Wallas, G.: The art of thought. Harcourt Brace, New York (1926)
30. Welsh, G.: Personality and Creativity: A Study of Talented High School Students.

Unpub. doctoral dissertation. University of North Carolina, Chapel Hill (1967)
31. Woodman, R.W., Sawyer, J.E., Griffin, R.W.: Toward a theory of organizational

creativity. The Academy of Management Review 18(2), 293–321 (1993)

http://www.awprofessional.com/articles/article.asp?p=31478

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 204–212, 2009.
© Springer-Verlag Berlin Heidelberg 2009

TEST: Testing Environment for Embedded Systems
Based on TTCN-3 in SILS

Hochang Chae1, Xiulin Jin1, Seonghun Lee2, and Jeonghun Cho1

1 School of Electrical Engineering and Computer Science,
Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu, Korea

2 Daegu Gyeonbuk Institute of Science & Technology, Daegu Technopark Venture 1 Plant,
75 Gongdanbuk 2gil, Dalseo-gu, Daegu, Korea

hc23chae@knu.ac.kr, kimsuelim@knu.ac.kr,
shunlee@dgist.ac.kr, jcho@ee.knu.ac.kr

Abstract. The Testing and Test Control Notation Version 3 (TTCN-3) is an in-
ternationally standardized language for defining test specifications for a wide
range of computer and telecommunication systems. Since embedded systems
software is frequently used in case that safety is a primary issue and reliability
is critical in the systems, it is necessary for the embedded systems software to
use a systematic testing method such as TTCN-3. Unfortunately, the difference
of testing environment between embedded and PC-based software makes de-
velopers hard to test the software, and hence products not tested thoroughly
could be released in the market, which can be a potential disaster. In this paper,
we review the TTCN-3 testing system and suggest a modified TTCN-3 testing
environment for embedded systems software in Software In the Loop Simula-
tion (SILS). A simple example shows our demonstration of testing embedded
systems software based on the proposed TTCN-3 testing system.

Keywords: testing environment, TTCN-3 testing system, embedded system
software.

1 Introduction

As embedded systems industry is rapidly developed, software for the embedded sys-
tems is getting more complex and sophisticated. Embedded systems in the past were
used for trivial purposes, but modern embedded systems have various functionalities
and have significantly advanced purposes. For example, automotive computing sys-
tems have radically come to the forefront of the industry. About 100 Electronic Con-
trol Units (ECU) consist of the automotive system recently, and the system has a
plenty of interactions. It means that the software of the embedded systems is inevita-
bly getting complex and sophisticated.

Handling highly complicated systems has unavoidably large possibility of
occurring errors. These errors imported in the system can be a serious hazard for the
user when it comes to safety-critical system. A small error and trivial fault originated
from the embedded software can result in tremendous accident such as car crash and

 TEST: Testing Environment for Embedded Systems Based on TTCN-3 in SILS 205

spaceship explosion. Therefore, improving the reliability of embedded software is the
most important factor facing modern embedded systems software.

In this paper, we focus on the way to test a system to improve the reliability by
using a TTCN-3 which is standardized for testing system, particularly in the SILS
testing environment. To satisfy the property of embedded systems, we suggest a
modified structure of TTCN-3 testing environment with SILS by inserting two addi-
tional software parts, so that the TTCN-3 testing method can be applied to the embed-
ded systems.

The rest of this paper is organized as follows: Section 2 introduces brief surveys re-
lated to this paper, and the TTCN-3 testing system environment and typical embedded
systems testing methods are mentioned. The two approaches that we suggest for the
testing of embedded systems software in TTCN-3 are explained in Section 3. In Sec-
tion 4, we provide an example of implementing the TTCN-3 testing system where two
our approaches are applied. We conclude our work in Section 5 and propose addi-
tional work for the future in Section 6.

2 Related Work

Testing methods for embedded systems have been introduced in previous work. A
work that embedded software is tested by using simulated hardware has done [1].
This work presents an approach to testing software-intense embedded systems using
simulations of the target hardware instead of actual target hardware.

VMLab is a tool for simulating AVR processor-based hardware systems [2]. This
tool allows system developers to connect certain peripherals with AVR processors
and test embedded systems on the simulating environment. This provides SILS envi-
ronment for AVR processor-based system. However, this tool does not provide any
other methods to investigate many test cases.

TTCN-3 lacks continuous signals to test a system as a language construct. Based
on this limitation, continuous TTCN-3 has been introduced [3]. It presents the con-
cepts for specifying continuous and hybrid test behavior and the TTCN-3 extensions
are demonstrated in the research.

TTCN-3 for distributed testing embedded software is suggested because of the
limitation of real-time behavior on host-based testing [4]. Prior to testing embedded
software in a target environment, the software is usually tested on the host. It means
that the host environment can affect timing problems. This research provides a seman-
tic for host-based testing with simulated time and shows which kind of timing con-
straints can be adequately tested with simulated time.

TTCN-3 Runtime Interface (TRI) is essential to implement TTCN-3 test systems.
A research shows how to implement TTCN-3 test systems using TRI [5]. It presents
different kinds of testing systems which can be built from the conceptual model pro-
vided by the TRI.

2.1 TTCN-3 Testing System

The Testing and Test Control Notation Version 3 (TTCN-3) is a language for specify-
ing test suites and test control [6]. It was first published as a standard in 1992 by the

206 H. Chae et al.

Fig. 1. An overview of a TTCN-3 test system

International Organization for Standardization (ISO) and recently has been standard-
ized by European Telecommunications Standards Institute (ETSI) as a new test speci-
fication language beyond protocol testing. The previous version, TTCN-2, has been
used mostly in testing telecommunication systems. But in the third revision of TTCN,
the best parts of its previous version have been integrated with new features for exten-
sion of the testing language using a new textual syntax. This improvement allows the
application area of TTCN-3 not to be restricted to just testing telecommunication
systems.

TTCN-3 code segments make up a collection for testing simple cases which are re-
ferred to as a test suite and, in particular case, as an abstract test suite [1]. The word,
“abstract” means that there is no system-specific information in TTCN-3 code, like
how messages should be encoded and decoded or how messages could actually com-
municate with the System Under Test (SUT).

A TTCN-3 code cannot be executed by itself. There must be an interpretation and
translation to generate an executable code. In addition, some parts, which support the
TTCN-3 code, have to be provided to complete the testing by making up the testing
system.

2.2 Testing an Embedded Systems Software

There are some differences between the testing of embedded systems software and
that of general software.

One primary difference is that embedded systems software is heavily dependent on
hardware of systems. When testing embedded systems software, the testing scheme
has to include a part for considering the structure of hardware. To find out problems
which are inherent in the embedded system, more structured and more hardware-
specific testing methods are indispensable.

Another is that the testing scheme of embedded system is dualized. As shown in
Fig.2, when testing general software, the host that carries out testing and the target
that is tested are in the same environment. On the other hand the host and target are
not on the same side, in other words, dualized. There must be proper consideration for
this feature when developing a testing environment.

 TEST: Testing Environment for Embedded Systems Based on TTCN-3 in SILS 207

Fig. 2. The difference between general and embedded software testing

2.3 Testing on SILS

Simulation as a tool for testing and debugging software has a long history. Simulating
a system has always carried the advantage of increased insight and flexibility, at a
cost in execution speed and timing fidelity with compared to real machine.

There are many simulating tools that can handle the entire system including the
processor. Long time ago, using a simulation technology for developing software of
the large scale embedded systems and testing had been fairly limited [1]. Because the
simulating technology could provide only instruction-set simulation for the target
systems, such solutions were limited to simulating the processor, not the surrounding
hardware components. However, until recently, testing and debugging the system to
develop has been commonly done by simulation. In particular, system developers can
gain a lot of advantages by making up the whole system as a software implementa-
tion, SILS. It can also be useful to test embedded systems software.

Fig. 3. Classification of the simulation methods

3 TTCN-3 for Testing Embedded Systems Software

TTCN-3 testing scheme originate from testing telecommunication systems. Though it
can be extended to broad domains to test any system, there are still some limitations
for applying TTCN-3 testing schemes to general software testing.

There must be a specific approach that allows TTCN-3 testing system to be applied
to testing general features of embedded systems beyond testing telecommunication
systems. TTCN-3 provides many standardized operations that is used to link between
TTCN-3 Executable code and the SUT Adapter. In other words, a developer of testing
environment is supposed to make it proper with modifying TRI operations.

208 H. Chae et al.

Fig. 4. TTCN-3 test system suitable to embedded system on SILS

In the original method of TTCN-3 testing, the SUT Adapter is directly connected
to the SUT. But some other components in the testing environment are needed for
applying TTCN-3 to embedded systems. In this paper, we suggest two components to
handle TTCN-3 testing system for embedded systems.

3.1 Hardware Description of the Embedded Systems

Testing environment for embedded software should consider hardware of the system
being tested because embedded systems software is highly dependent on hardware.
The structure of the system hardware could frequently changes while developing
embedded systems. Every change of the embedded system should be reflected to the
testing system, unlikely with normal software which is run on unchangeable system
environment such as PC.

The SUT Adapter needs to be separated from the part that plays a role of reflecting
the changed hardware. Reflecting changes of hardware can be done by modifying the
SUT Adapter in TTCN-3 testing system. However, modifying the SUT Adapter
whenever the hardware of system is changed could be waste of time for recompilation
of TTCN-3 testing system and be dangerous to correct, directly, the SUT Adapter
because of the possibilities that ruin the TTCN-3 testing system unwillingly.

In this paper, we append a software module, called Embedded Systems Hardware
Descriptor (ESHD) which contains information of how the hardware of the system is
made up. With the ESHD, the SUT Adapter has no reason to be modified whenever
there is any changing of the hardware. All the thing that the SUT Adapter needs to do
is referring to the information of ESHD such as which pins are configured as input or
output, which port is used for communication and what kind of peripherals are used.
By describing the hardware of the system in the ESHD suggested, the SUT Adapter
can be automatically modified.

3.2 Communication Interface with SUT

There is another software abstraction layer for interfacing between the TTCN-3 test-
ing system and SUT. Testing environment could be interfaced with many systems to
be tested. And, sometimes, the target to be tested is not on the same side with the host,
testing environment. By inducing Communication Interface (CI) between TTCN-3

 TEST: Testing Environment for Embedded Systems Based on TTCN-3 in SILS 209

testing system and SUT, more flexible and SUT-friendly testing system could be
possible to implement.

More flexible and compatible testing system could be acquired by putting the CI
abstraction layer between the SUT Adapter and SUT. To create the method of testing
embedded systems software, simulation approach can be used. In this paper, SILS is
taken for the testing environment. But another simulation which includes real hard-
ware components in the simulating cycle, called Hardware In the Loop Simulation
(HILS), can be used as well, even though the system to be tested is exactly the same
as it to be tested by SILS. Without CI layer, the SUT Adapter of the TTCN-3 testing
system should be modified depending on the simulation method. But CI provides
consistency to the SUT Adapter with regardless of simulation method. Whatever the
testing environment is, SILS or HILS, there is no need to change the SUT Adapter for
the testing system developer.

4 Implementation of the Testing System

The most important thing to develop the testing system is implementation of TTCN-3
Runtime Interface (TRI) operations. TTCN-3 provides means to make a testing sys-
tem suitable to any system to be tested. Especially, TRI operations must be set up in a
specific way at the boundary between the testing system and SUT.

4.1 Automatic Update of SUT Adapter Using Hardware Descriptor

How the hardware of the system is compromised must be considered when testing
based on TTCN-3. In other words, it must be taken into consideration which IO pin is
connected to the button and which communication port of the Microcontroller is used
for sending and receiving data.

We use a simulation tool for 8-bit AVR core processor, ATmega128 and extended
this tool to simulate the whole system which uses this processor. Based on this simu-
lation tool, we set up the SILS environment of testing system for this work. The part
for describing the hardware of the system is suggested for simulating because the tool
that we made had extended features beyond just emulating instructions of the AVR
processor. It has provided system simulation including processor. So we can connect
the ATmega128 processor with some peripherals such as LEDs, buttons, communica-
tion ports and so on. An example of the hardware description code is as follows.

;Button
 B1 PA0
 B2 PA1
 B3 PA2
 B4 PA3
;LED
 L1 PB0
 L2 PB1
 L3 PB2
 L4 PB3
;UART Setting,9600bps, 8bit data
 RS232 TTY1(9600 8)

210 H. Chae et al.

;UART Setting,19200bps, 8bit data
 RS232 TTY2(19200 8)

The system consists of 4 buttons, 4 LEDs and 2 ports of UART. Buttons are
connected to pins 0,1,2,3 of the IO port A and LEDs are connected to pins 0,1,2,3 of
the I/O port B. UART has two ports for communication and each has different set-
tings. This description of the system hardware can be used for simulating the system
in our simulation tool and also for making up the testing system to apply for embed-
ded systems.

Because the CI refers to the hardware description above, the SUT Adapter does not
have to care the changing of the embedded systems to be tested. And, especially in the
SILS testing environment, the hardware description itself can be useful to implement
the TTCN-3 testing system as well as simulation tool.

4.2 Interface between Testing System and SUT

The CI we suggest in this paper provides an interfacing layer to the SUT and deals
with the changes of the hardware by referring to ESHD. CI refers to the hardware
description to manage the flexible interface to the SUT and this can make it possible
for the SUT Adapter to sustain itself without being modified for composing the test-
ing system.

The example of CI source code is as follows.
public void SetPort()
{
StreamReader sr = new StreamReader("hwconfig.ini");
string str = sr.ReadLine();
string[] strArr = str.Split(' ');
if (strArr[1] == "PA0")
{
Console.WriteLine("Button1 connected to PA0");

 AT128.DM.dataMemory[0x39] = 0;
 AT128.DM.dataMemory[0x39]= (byte)

(AT128.DM.dataMemory[0x39] | 0xFE);
 if (AT128.DM.dataMemory[0x39] == 0xFE)
 {
 Console.WriteLine("Set PORTA.0");
 }
}

 else if (strArr[1] == "PA1")
… //omit
else if (strArr[1] == "PA7")
{
Console.WriteLine("PA7");

 AT128.DM.dataMemory[0x39] = 0;
 AT128.DM.dataMemory[0x39] = (byte)

(AT128.DM.dataMemory[0x39] | 0x7F);
 if (AT128.DM.dataMemory[0x39] == 0x7F)
 Console.WriteLine("Set PORTA.7");

 }
}
The above example shows a function of the CI. The function is used to set a pin in an
I/O port. TTCN-3 code does not have any information about the hardware of the

 TEST: Testing Environment for Embedded Systems Based on TTCN-3 in SILS 211

system. Some functions of TRI interface called by TTCN-3 Executable (TE) code
should use the functions which are implemented in CI. Even at this moment, the SUT
Adapter has no idea which IO port has to be set or reset. The file, hwconfig.ini, which
describes the hardware of the system to be tested, is referred in the functions of CI so
that the testing system can be made properly to specific hardware without any consid-
eration of the SUT Adapter.

4.3 Example of the Testing Result

Based on the hardware descriptor and CI, we make up the testing environment for
embedded systems software. The testing system is implemented on the SILS envi-
ronment. We have done many scenarios to test a system and confirmed that the
TTCN-3 testing system we suggested is making good progress.

One of the scenarios that we have run through is as follows. At first, the button of
the system is pushed to trigger that SUT sends a message as a response to the testing
environment. The SUT should send a message in a specific time and testing environ-
ment would wait to receive the message sent from SUT at a certain time. With this
scenario, testing has done and notice whether an error happens or not.

The following is the execution result of testing.

Fig. 5. Execution result of testing system

5 Conclusion

We have discussed the way to implement testing environment for embedded systems
based on TTCN-3 in SILS. Additional parts are added to make the testing environ-
ment more flexible and suitable for embedded systems. The embedded systems soft-
ware is so dependent on hardware that the testing environment should consider it and
reflect the change of it. By adding hardware descriptor and CI to the testing environ-
ment for embedded software, we could achieve our goal. Especially in this work, our
SUT is built on the SILS platform. So hardware descriptor is used for simulating the
system as well as making up the testing system.

From this work, we might have a chance to go one step forward in the making of
more flexible and reliable testing system solution for embedded systems. We have
considered only the SILS environment for testing embedded systems software. But
the HILS environment is also valuable when considering testing embedded systems,

212 H. Chae et al.

because HILS might guarantee more accurate and dependable result for testing em-
bedded systems software in some aspects. It might be possible to apply the TTCN-3
test system to embedded systems of HILS environment. Finally, we will try to imple-
ment the testing system that we suggest on the TTworkbench tool [7].

Acknowledgement

"This research was supported by the MKE(The Ministry of Knowledge Economy),
Korea, under the ITRC(Information Technology Research Center) Support program
supervised by the NIPA(National IT industry Promotion Agency)" (NIPA-2009-
C1090-0902-0020).

References

1. Engblom, J., Girard, G., Werner, B.: Testing Embedded Software using Simulated Hard-
ware. In: ERTS, Toulouse (2006)

2. Advanced Micro Tools, VMLab, http://www.amctools.com
3. Schieferdecker, I., Bringmann, E., Großmann, J.: Continuous TTCN-3 Testing of Embedded

Control Systems. In: SEAS 2006, Shanghai, China (2006)
4. Blom, S., Deiß, T., Ioustinova, N., Kontio, A., van de Pol, J., Rennoch, A., Sidorova,

N.: TTCN-3 for Distributed Testing Embedded Software: Perspectives of Systems Informat-
ics. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 98–111.
Springer, Heidelberg (2007)

5. Schulz, S., Vassiliou-Gioles, T.: Implementation of TTCN-3 Test Systems using the TRI.
In: IFIP Conference Proceedings, vol. 210, pp. 425–442. TestCom (2002)

6. ETSI: Testing & Test Control Notation, http://www.ttcn-3.org
7. Testing Technologies IST GmbH: TTworkbench, http://www.testingtech.com

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 213–220, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Framework for Measuring the Alignment between
Business Processes and Software Systems

Lerina Aversano, Carmine Grasso, and Maria Tortorella

Department of Engineering University of Sannio
Via Traiano 1

82100 Benevento Italy
aversano@unisannio.it, carmine.grasso@gmail.com,

tortorella@unisannio.it

Abstract. The alignment degree existing between a business process and the
supporting software systems strongly affect the performance of a business proc-
ess execution. Methods are needed for messuring the alignment and keeping a
business process aligned with a supporting software system even when one of
the two evolves. Actually, any modification performed in the business process
activities and/or supporting software system, may impact the process activities
and/or software system component and, therefore, cause misalignment. This
paper proposes a framework including a set of metrics codifying the alignment
concept with the aim of measuring it and detecting misalignment if it occurs.
The application of the framework is shown through an example.

Keywords: Measurement framework, Modelling, Metrics.

1 Introduction

The alignment of business processes and software system is a critical concern for the
organizations, as it directly affects their performance. In general terms, a view of
business and technological alignment defines at which degree the information tech-
nology mission, objectives, and plans, support and are supported by the business mis-
sion, objectives, and plans [1, 2, 3]. The alignment between software system and
business process involves software system, and all its components, for evaluating at
which extent they were designed and implemented for adequately supporting a busi-
ness process when it is executed [10].

Software engineers very often have to deal with cases in which some misalignment
occur, and, as a consequence the business process is not effectively supported by a
software system. In addition, understanding what business and information systems
alignment is and how maintain it, is a “problem” [11]. This cause the decreasing of
the performance of the business process. Then, software innovation activities have to
consider the alignment between business processes and supporting software systems.

In the best of the authors’ knowledge, research and industry scarcely address these
aspects. In [9], criteria and associated generic metrics are proposed to quantify at
which extent there is a fit between the business and the system which supports it. In
[5], a framework is presented for analyzing the alignment problem and proposing an

214 L. Aversano, C. Grasso, and M. Tortorella

approach to application architecture design with reference to a business context. The
Business and Information Systems MisAlignment Model (BISMAM), is proposed in
[6, 8], to understand, classify and manage misalignments. Unfortunately, this ap-
proaches have not been adequately are experimented in an operative context and are
not always easily applicable.

Even if business processes and supporting software systems appear aligned in a
certain operation context, modifications in this context can cause a misalignment be-
tween them. This can be due to either technological and/or management innovations,
or unchecked change of the way the activities are executed or the supporting software
systems are exploited. Furthermore, a modification may not only regard the consid-
ered object but also impact other objects having a dependence relation with the modi-
fied ones.

Detected a misalignment, the re-alignment consists of interventions that involve
one or more objects of the analyzed business process. The modification impacts must
be analysed and changes must be planned. For example, a change of an activity may
require modifications in the software system components supporting it and/or
dependent activities, or modifications of a software system component may require
the analysis and modifications of the activities it supports and/or other software
components.

Monitoring the existing alignment degree between business process and software
systems involves measurement activities that have to be continuously executed in the
operative business context. This requires the definition of a monitoring approach in-
troducing suitable metrics regarding both business process and software system.

In [4], a coarse grained strategy was proposed for detecting misalignment between
software systems and supported business processes if a change was executed. The
alignment degree was expressed by the evaluation of two attributes expressing the
Technological Coverage of a business process and Technological Adequacy with
which each business activity was technologically supported. This paper uses the pre-
vious work and proposes a framework for alignment detection by defining a set of
fine-grained metrics whose aggregation allows evaluating the two attributes previ-
ously introduced.

The rest of the paper is organized as follow: Section 2 describes the proposed mis-
alignment detection framework; Section 3 presents an example aiming at highlighting
how the approach can be applied; and final remarks are given in the last section.

2 Measuring the Alignment

A quantitative codification of the alignment existing between a business process and
the supporting software systems is required. To this aim suitable metrics are needed
for codifying the alignment level.

The evaluation of the Technological Coverage and Technological Adequacy,
proposed in [4], is considered for alignment degree existing between business proc-
ess and supporting software system, but a fine-grained analysis is proposed for ob-
taining more objective and precise measures. With this in mind, a measurement

 A Framework for Measuring the Alignment 215

framework, defined on the basis of the Goal Question Metrics (GQM) paradigm [5],
is proposes.

The following goal defines the conceptual level of the measurement framework:

Analyse a business process and the supporting software systems with the
aim of evaluating the alignment level existing between them from the
point of view of the software engineer.

The logical level is defined by the following questions to be answered for achieving
this goal above :

Q1. Which is the Technological Coverage (TC) of the business process?
Q2.Which is the Technological Adequacy (TA) of the business process?

Other questions can be formulated on the basis of the business process complexity
and characteristics of the activities.

Answering questions Q1 and Q2 requires the definition of the operative level of the
measurement framework consisting on a set of metrics to be evaluated for answering
the questions. The identified metrics needed for evaluating the TC and TA regard the
essential components of the business processes and software system, that is activities,
artifacts, resources and control flow.

The following subsections introduce the metrics that have to be identified for each
question.

2.1 Q1. Evaluating the Technological Coverage

For answering question Q1, the measurement framework analyses the coverage level
of the software component respect the business components. In particular, the metrics
considered are: Activity Coverage (AC), Actor Coverage (ActorC), Artefact Coverage
(AtfC). They are evaluated from the technological support point of view, basically
expressed in terms of number of supported activities, actors and artifact. In addition,
the Transition Coverage (TrC) is considered for evaluating the offered support form a
dynamic point of view.

This metrics are described in the following:

• Activity Coverage (AC). It is evaluated as the percentage of the automatically
supported process activities, considering the number of the business process ac-
tivities supported by software systems and the number of the business process ac-
tivities.

• Actor Coverage (ActorC). It is measured as the percentage of the actors
whose activities are automatically supported. It can be evaluated by analyzing the
number of actors involved in the business process activities and the number of
those whose activities are supported by the software systems.

• Artefacts Coverage (AtfC). It measures the percentage of the automatically
supported process artifact. Its evaluation involves the detection of the number
the artefacts used/defined in the Business Process Activities and that one of Ar-
tefacts used/defined in the Process Activities that are also managed by the
software systems.

216 L. Aversano, C. Grasso, and M. Tortorella

• Transition Coverage (TrC). It evaluates the Technological Coverage of the busi-
ness transitions, and is determined by considering the set of the transitions that models
the control flow among the Business Process Activities and that one of the transi-
tions that are automatically controlled by the software system.

The final value of the Technological Coverage is achieved by aggregating the listed
metrics. In particular, it is computed as the average of AC, ActorC, AtfC and TrC:

2.2 Q2. Evaluating the Technological Adequacy

Answering question Q2 of the measurement framework involves the analysis of the
adequacy of the support provided by the software systems to the business components
in terms of activities, artifacts and actors of the business process. In particular, the
metrics identified are referred to the full process, but their measurement involves the
evaluation of of similar metrics involving each singular activity, artifact and actor.
The considered metrics are the following:

• Artefact Adequacy (AtfA). It expresses how adequate is the automatic support
offered to the business process artifacts. It is evaluated as the average of the
automatic support adequacy offered to each business artifact. The automatic sup-
port offered to a business artifact is measured on the basis of the percentage of
business operations that have to be performed on an artifact and that can be exe-
cuted with the support of the analysed software system.

• Actvity Adequacy (AA). It expresses how adequate is the automatic support
offered to the business activities. It is evaluated as the average of the automatic
support adequacy offered to each business activity. This aspect involves the rate
of business elementary operations that are efficiently supported by the analysed
software system. This calculation entails the analysis of the automatic support
degree of artifacts and resources involved in the activity.

• Actors Adequacy (ActorA). It measures how adequate is the automatic sup-
port offered to the business actors. It is evaluated as the average of the adequacy
of the automatic support offered to each business actor. The level of support of-
fered by the software system to one actor is evaluated by analyzing which are the
activities that involve the actor and measuring the technological adequacy of each
of these activities.

Once evaluated the adequacy of the automatic support offered to each activity, actor
and artifact, it is possible to calculate the final value of the Technological Adequacy.
In particular, the obtained values, AA, AtfA, ActorA, are aggregated by an average
formula.

3

ActorAAtfAAA
TA

++=

It is worthwhile noticing that the level of technological coverage and adequacy also
depends on the nature of the analysed business process. In fact, business activities that
are intrinsically manual can exist. Obviously, this kind of processes cannot reach the
highest values of technological coverage and adequacy. Then, the achievement of the
goal of the measurement framework has also to consider this aspect.

 A Framework for Measuring the Alignment 217

Start of the donation
procedure

Loading of users
and categories

User
selection

Input of the
user data Setting of

the user
data

Visualization of the
input donation form

printOnLog

Storing of
the user
data

Setting of the
data donation

Input
confirmation

selection of the
items for
donation

show success
msg

printOnLog

Storing of
the data

MngDB

Save and
Close

Save and
Continue

GUIOperator

show success
msg

Setting of the
data donation

printOnLog

Storing of
the data

Fig. 1. Model of the business process where SantaClaus is used

3 An Example

In order to evaluate the applicability of the proposed framework, a fragment of a
business process has been analysed. In particular, the example is referred to the busi-
ness process executed by a voluntary association, named BENESLAN, to manage object
donations for needy children (http://santaclaus.beneslan.it/). Fig. 1 shows the full
business process, even if, for the purpose of the example, only the highlighted activi-
ties have been analysed.

The business process shown in Fig. 1 is supported by a software system, named
SANTACLAUS (http://santaclaus.beneslan.it/santaclaus/), a web application written in
PHP and Java.

All the concepts required for evaluating the different metrics were identified and
the definition specified above were applied.

218 L. Aversano, C. Grasso, and M. Tortorella

Table 1. TA and TC values obtained by the example

METRIC NAME VALUE
Activity Coverage (AC) 0.750

Actor Coverage (ActorC) 1.000
Artefacts Coverage (AtfC) 0.670
Transition Coverage (TC) 0.670

Technological Coverage 0.772

Activity Adequacy (AA) 0.643
Actor Adequacy (ActorA) 0.833

Artefacts Adequacy (AtfA) 0.479
Technological Adequacy 0.652

Table 1 shows the results obtained by analyzing the selected four activities and the

software system components supporting them.
The evaluation leaded to a value of 0.772 calculated for the Technological Cover-

age, TC, and a value of 0.652 computed for the Technological Adequacy, TA. The low
obtained results indicate that the four activities are not adequately supported by SAN-

TACLAUS software system. In particular, considering the values of the metrics, it is
possible to notice that the main lack of the support is related to the way the artifacts
are managed. In fact, the Artefact Coverage (AtfC) and Adequacy (AtfA), are the met-
rics that reach the lowest values.

Table 2 shows the analytical data. The table highlights that: some artifacts (address
and PrintOnlog) are managed by the business activities, but the software system does
not implement classes for their automatic management; some artifact (Town and
User) are considered by the business process, but not all the operations needed for
automatically managing them are implemented in the corresponding software classes.

Table 2. Analytical measures

Metrics Values
Actors Adequacy: ActorAi
Actor1: gesDB 1.000
Actor2: Operator 1.000
Actor3: Gui 0.500
Artefact Adquacy : AtfAi
AtfA1: address 0.000
AtfA2: District 1.000
AtfA3: Town 0.500
AtfA4: account 1.000
AtfA5: user 0.375
AtfA6: PrintOnlog 0.000
Activity Adequacy: AAi
AA1:Input of the user data 0.570
AA2:setting of the user data 1.000
AA3:storing of the user data 1.000
AA4:printOnLog 0.000

 A Framework for Measuring the Alignment 219

This cause the low level of the corresponding metrics at the process level, even if
some other artifacts are adequately supported (District and account). Analogous con-
siderations can be formulated with reference to activities and actors.

4 Conclusions

This work presents a framework for measuring alignment between business processes
and supporting software systems. The framework involves the execution of some ac-
tivities and the evaluation of a set of metrics.

In particular, the framework evaluates the Technological Coverage and Techno-
logical Adequacy of a software system with reference to a business process. Its appli-
cation involves the analysis of all the activities, artifacts and actors of the business
process.

The results of the evaluation of the metrics allow for the identification of a possible
misalignment. In particular, they provide a misalignment degree giving a measure of
the extent at which the software systems used in a business process supports it. If
misalignment emerges, evolution activities need to be planned and executed for rees-
tablishing alignment and guaranteeing the most efficient and effective execution of
the business process.

The application of the measurement framework was described with reference to an
example, referring to a business process and related supporting software system.

Obviously, the evaluation of the adequacy of the way a software system support a
business process could depend also on the way the actors execute it. Therefore, the
adequacy measurement should also consider the actors’ opinion. This can be consid-
ered in the technological adequacy evaluation and affects the measurement process
discussed in this paper.

The future work to be performed in the described context will refer the completion
of the experimental activities aiming at understanding the framework applicability
and refining the set of chosen metrics and mechanisms for their computation.

For making more objective and effective the application of the measurement
framework a formalism will be defined for modeling both business process and soft-
ware system, so to make directly and graphically comparable the two modeled enti-
ties. In this direction, further study will also regard the development of an automatic
detection methods helping to evaluate the impact of an evolution strategy. The aim is
to offer a decision support when a business or software concept need to evolve in an
operative context.

References

1. Henderson, J.C., Venkatraman, N.: Strategic Alignment: Leveraging Information Technol-
ogy for Transforming Organizations. IBM Systems Journal 32(1), 4–16 (1993)

2. Papp, R.: Introduction to Strategic Alignment. In: Papp, R. (ed.) Strategic Information
Technology: Opportunities for Competitive Advantage, pp. 1–24. Idea Group, Hershey
(2001)

3. Reich, B., Benbasat, I.: Factors That Influence the Social Dimension of Alignment Between
Business and Information Technology objectives. MIS Quarterly 24(1) (March 2000)

220 L. Aversano, C. Grasso, and M. Tortorella

4. Aversano, L., Bodhuin, T., Tortorella, M.: Assessment and Impact Analysis for Aligning
Business Processes and Software Systems. In: Proc. of the 2005 ACM Symposium on Ap-
plied Computing, pp. 1338–1343. ACM Press, New York (2005)

5. Wieringa, R.J., Blanken, H.M., Fokkinga, M.M., Grefen, P.W.P.J.: Aligning application
architecture to the business context. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS,
vol. 2681, pp. 209–225. Springer, Heidelberg (2003)

6. Carvalho, R., Sousa, P.: Business and Information Systems MisAlignment Model (BIS-
MAM): an holistic Model Leveraged on Misalignment and Medical Sciences Approaches.
In: Proceedings of BUSITAL 2008 (2008)

7. Korherr, B., List, B.: A UML 2 Profile for Event Driven Process Chains. In: Proceedings
of the international Conference on Research and Practical Issues of Enterprise Information
System (Confenis 2006), Vienna, Austria. IFIP Series. Springer, Heidelberg (2006)

8. Thevenet, L., Salinesi, C., Etien, A., Gam, I., Lasoued, M.: Experimenting a Modeling
Approach for Designing Organization’s Strategies in the Context of Strategic Alignment.
In: AWRE 2006 Adelaide, Australia (2006)

9. Etien, A., Rolland, C.: Measuring the fitness relationship. Requirements Engineering Jour-
nal (REJ) 10(3), 184–197 (2005)

10. Society for Information Management: IT Management Concerns Survey. What keeps CIO
awake at night? (2006)

11. Pereira, C., Sousa, P.: Getting into the misalignment between Business and Information
Systems. In: 10th European Conference on Information Technology Evaluation. Madrid
(2003)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 221–228, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Service Composition System in Consideration of the
Characteristics of Services

Jai-Kyung Lee1, Seong-Whan Park1, Moohyun Cha1, Seung Hak Kuk2,
and Hyeon Soo Kim2

1 Korea Institute of Machinery and Materials
171 Jang-dong, Yuseong-gu, Daejeon 305-343, Rep. of Korea

{jkleece,swpark,mhcha}@kimm.re.kr
2 Dept. of Computer Science and Engineering, Chungnam Nat’l Univ.

220 Gung-dong, Yuseong-gu, Daejeon 305-764, Rep. of Korea
{triple888,hskim401}@cnu.ac.kr

Abstract. The product development in mechanical industry can be modeled as
an engineering process defined on the collaboration of various engineering ser-
vices. An e-Engineering framework aims to integrate engineering services, so
as to promote collaboration within the context of product development. The col-
laboration of engineering services is very similar to a business process, in terms
of web service composition. By using the web service composition, the e-
Engineering framework can be operated in an open environment. However, the
existing web service composition methodology shows some limitations when
dealing with engineering services. This paper presents a service composition
system for the engineering services in consideration of their characteristics.

Keywords: Service Composition, Engineering Process, QoS, BPEL.

1 Introduction

In the areas of automotive, railway vehicle, shipbuilding and other mechanical indus-
try the development process of a complex product can be modeled as an engineering
process defined on the collaboration of various engineering services [1].

To provide such collaboration, an integrated and collaborative engineering envi-
ronment (called e-Engineering framework) is constructed by KIMM (Korea Institute
of Machinery and Materials). The e-Engineering framework provides flexible integra-
tion and automation of an engineering process in a distributed environment [2]. The
collaboration of the engineering services within the framework, the engineering proc-
ess, and the service compositions are very similar to the processing of the business
logic in e-business environments. Thus the service compositions are realized by Web
service compositions. By introducing Web service compositions into the e-
Engineering framework, we expect that the framework can be operated in an open
environment, and provide better engineering services.

To process the collaboration of engineering service using web service composition,
the modeling power of BPEL (Business Process Execution Language) is sufficient for
the representation of the scientific workflow [3]. However, BPEL does not allow for

222 J.-K. Lee et al.

the modeling of the non-functional characteristics of service (Quality of Service,
QoS). A study for extending BPEL to express QoS [4,5] and QoS-based web service
composition [6,7] cannot cover the non-functional characteristics of an engineering
service, which is usually related to numerical analysis.

In this paper, we propose a web service composition system for the e-Engineering
framework. We analyze the characteristics of the engineering service, and propose an
extended BPEL system for the framework.

2 An e-Engineering Framework and the Engineering Process

The e-Engineering framework was designed as a distributed system with a 3-tier
structure. It consists of a presentation layer that enables users (designer, project
builder, etc.) to access the system to define, manage, monitor and perform the engi-
neering projects, a business processing layer that performs the business processes for
solving engineering problems, and an engineering resource layer that includes a num-
ber of engineering software used to obtain concrete solutions to the problems. The
Web services technologies are applied to integrate and utilize the engineering re-
sources effectively [2].

The engineering process is modeled as a sequential or parallel workflow that con-
sists of the engineering services (CAD modeling, structural analysis, dynamics analy-
sis, and others) necessary to solve engineering problems. Each engineering service
generally is modeled using mechanical engineering software (for instance, CATIA,
NASTRAN, ANSYS, and etc). Fig. 1 shows the typical process of durability analysis
from CAD Modeling. It had been applied to an automobile suspension module in our
previous work [2].

Fig. 1. Engineering process of durability analysis for automobile suspension module

3 Characteristics of Engineering Service

Compared with conventional web services, engineering services have long execution
duration and are sensitive to the execution environment. These make the selection of
engineering services with the same functionality more important.

In the e-Engineering framework most of the engineering services perform the
analysis works in the mechanical engineering problem. Thus they deal with diverse
numerical methods. In this paper, numerical methods are roughly classified into three

 Service Composition System in Consideration of the Characteristics of Services 223

Table 1. Classification of numerical methods

 Linear equation Time-integration Non-linear equation

Typical
application

Structural analysis,
fatigue analysis,
noise analysis.

Dynamics analysis,
computational fluid dynamics
analysis, crash analysis.

Kinematic analysis

Features

Dimension of
problem space
(array) is large, but
solution is
computed at once.

Dimension of problem space
(array) is small, but
computation of solution is
proportional to time history
and time interval.

Solution is computed
by iteration and the
linear equation is
computed at each
step of iteration

Performance
factor

Memory-bound CPU-bound
CPU-bound &
memory-bound

types: linear equation, time-integration and non-linear equation. Table 1 shows the
typical application areas, the features, and the factor that govern the performance.

To explain the characteristics of engineering services, two numerical methods de-
scribed in Table 1 are selected. Here, only their memory and CPU usage are presented
for discussion. Fig. 2 shows the results of measurement in the execution of the linear
equation method for the structural analysis. The needed memory size is 1002 MB. If
there is not sufficient physical memory (less than 1002MB), execution times can be
consumed by page fault. This fact means that this is a memory-bounded service. Since
the ratio of maximum CPU usage to average CPU usage is 0.36, this service is not
CPU-bound.

 (a) Memory usage by time (b) CPU utilization (user time) by time

Fig. 2. Measurement results from example of linear equation

 (a) Memory usage by time (b) CPU utilization (user time) by time

Fig. 3. Measurement results from example of time-integration

224 J.-K. Lee et al.

Fig. 3 shows the results of measurement in the execution of the time-integration
method for the dynamics analysis. Since the needed memory size is 10.5 MB, the
memory size is less relevant. However the ratio of the maximum CPU usage to an
average CPU usage is 0.84, this fact means that this service is CPU-bound.

To reflect the characteristics of engineering services, they are expressed in the form
of constraint and selection specification by the designer. The constraint specification
describes the minimum requirement of the execution environment to satisfy the QoS
requirement of the service. For example, in order to process the engineering service in
Fig. 2, the environmental constraint requires at least 1002 MB of memory to avoid
bottlenecks on performance. The selection specification describes the preference of
selection for getting better performance, lower cost, or preferable QoS, when the
service candidates satisfy the constraint specification. For example, the engineering
service in Fig. 3 requires very high CPU usage. So, if there are multiple candidates for
the service, the one with a higher CPU capacity is preferable.

Previous studies related to the QoS-based web service compositions have already
introduced QoS attributes to serve as preference criteria for selecting from the candi-
dates with the same functionality [6,7]. We have chosen some of these for the engi-
neering service.

 Execution time: It is defined as the required time to execute the service.
 Execution cost: It represents the expense to be paid in using the service. It is com-

puted by multiplying the execution time by the use rate of the service.
 Availability: It is computed in this paper as the ratio of service uptime to total

service time.
 Reliability: We compute reliability by using the ratio of successful service execu-

tion to total service requests.
By considering the characteristics of the engineering service, we add the service con-
text QoS attribute to the QoS model of engineering service. The service context QoS
attribute represents the engineering service’s environment at the time of the service
request, and it has terms for CPU, memory, storage, network speed, use rate, and etc.
The service context QoS attribute is divided into two groups as follows:

 Static service context (SSC) QoS group is defined as <U, C, Ms>, where U de-
notes the use rate of service, C denotes CPU capability in MOps/Sec, and Ms de-
notes the system memory size (physical + virtual) in MBytes.

 Dynamic service context (DSC) QoS group is defined as <Md, PMd>, where Md
denotes the available system memory size in MBytes and PMd denotes the size of
available physical memory in MBytes.

4 Proposed Service Composition System

4.1 System Architecture

Fig. 4 shows the architecture of the proposed system. The QoS-based web service
orchestration system extends the existing BPEL system (denoted by the white box)
using QoS Service, QoS Broker, and QoS Registry. BPEL engine invokes the QoS
Broker when QoS-based service selection is needed. QoS Registry manages the QoS
information of the system. The QoS Service attached to the atomic service or the
service composition provides the QoS information of the service.

 Service Composition System in Consideration of the Characteristics of Services 225

Fig. 4. Architecture of Service Composition System

 Classification of QoS attributes
For the computation of the QoS value, QoS attributes are classified into three catego-
ries: static, dynamic, and statistical. Static QoS attributes are fixed at registration
time, and are immutable unless the service changes. Dynamic QoS attributes are those
that are changeable during the lifetime of service. Statistical QoS attributes are com-
puted based on the history of QoS attributes. Table 2 shows the classification of QoS
attributes.

Table 2. Classification of QoS attributes

QoS name Type CS SS

Use rate Static O O
CPU capability Static X O
System memory Static O X
Available system memory Dynamic X O
Available physical memory Dynamic X O
Execution time Dynamic X X
Execution cost Dynamic X X
Availability Statistical O O
Reliability Statistical O O

Note. CS: Constraint Specification, whether used or not.
SS: Selection Specification, whether used or not.

 System usage scenario

The usage scenario of a system is divided into three steps: the registration step of
atomic service is similar to the registration of the conventional web service, except
that the QoS Service also is registered to UDDI, and it sends static QoS information
in Table 2 to QoS Broker. In the modeling step of service composition, the orchestra-
tion designer defines a control flow of engineering service, the functional aspect of
the engineering process, and creates the business process using modeling elements of
BPEL. The designer should describe not only the interface of the service but also the
QoS-based selection of service. Section 4.2.1 explains how to describe the QoS-based
selection of service. The runtime step of service composition can be initiated when

226 J.-K. Lee et al.

the service requester invokes the Orchestration Engine. The Orchestration Engine
performs its function by processing the business process. When the Orchestration
Engine finds the activity represented QoS-based selection, the QoS Broker is called.
The detailed steps for selecting services are shown in Section 4.2.2.

4.2 Proposed Methods

4.2.1 The Modeling of Composition
In order to express the QoS-based web service composition, the <invoke> activity
which stands for the selection of web services in BPEL is extended. Extended <in-
voke> activity has the <QoS-Based> tag to denote QoS-based service selection. Fig. 5
shows the structure of the proposed BPEL modeling.

The <QoS-Based> tag consists of <QoS-Constraints> and <QoS-Selection> tag.
The <QoS-Constraints> is used for constraint specifications of service. It can contain
multiple <QoS-Constraint> tags, to denote each constraint specification. The <QoS-
Constraint> has three sub-tags: <QoS-Name>, <QoS-Op>, and <QoS-Value>. The
<QoS-Name> represents the QoS attribute selected in Table 2, and the <QoS-Op> is
the relational operator: EQ, NE, GT, LT, GE, and LE. The <QoS-Value> represents
the value as a constraint. The upper part in Fig. 6 shows an example of the constraint
specification for engineering service in Fig. 2.

The <QoS-Selection> tag is used for selection specifications of service. Multiple
<QoS-WeightTerm> tags can be used for selection specification. The <QoS-
WeightTerm> has two sub-tags: <QoS-Name> and <QoS-Weight >. The <QoS-
Name> is the same one in constraint specification. The <QoS-Weight> represents the
weight value of each QoS attribute, and the sum of the values in <QoS-Weight>
should be 1. The lower part in Fig. 6 shows the example of the selection specification
for engineering service in Fig. 3.

<process>
 <!-- details … -->
 <invoke>
 <QoS-Based>
 <QoS-Constraints>
 <QoS-Constraint>
 <QoS-Name> QoS name </QoS-Name>
 <QoS-Op> Relational Operator </QoS-Op>
 <QoS-Value> Constraint value of QoS </QoS-Value>
 </QoS-Constraint>
 ...
 </QoS-Constraints>
 <QoS-Selection>
 <QoS-WeightTerm>
 <QoS-Name>QoS name</QoS-Name>
 <QoS-Weight>Weighted value of QoS</QoS-Weight>
 </QoS-WeightTerm>
 ...
 </QoS-Selection>
 </QoS-Based>
 </invoke>
 <!-- details … -->
 </process>

Fig. 5. Structure of proposed BPEL model

 Service Composition System in Consideration of the Characteristics of Services 227

<QoS-Constraints>
 <QoS-Constraint>
 <QoS-Name> Available Physical Memory</QoS-Name>
 <QoS-Op> GT </QoS-Op>
 <QoS-Value> 1002 </QoS-Value>
 </QoS-Constraint>

<QoS-Constraint>
 <QoS-Name> Reliability </QoS-Name>
 <QoS-Op> GT </QoS-Op>
 <QoS-Value> 0.9 </QoS-Value>
 </QoS-Constraint>
</QoS-Constraints>

<QoS-Selection>
 <QoS-WeightTerm>
 <QoS-Name> CPU Capability </QoS-Name>

 <QoS-Weight> 0.9 </QoS-Weight>
 </QoS-WeightTerm>

<QoS-WeightTerm>
 <QoS-Name> Available Physical Memory </QoS-Name>
 <QoS-Weight> 0.1 </QoS-Weight>
 </QoS-WeightTerm>
</QoS-Selection>

Fig. 6. Examples of the constraint specification and the selection specification

4.2.2 The Execution of Composition
If the <QoS-Based> tag in <invoke> activity is found during execution of the engi-
neering process, the orchestration engine calls the QoS Broker with the service’s
interface information. The detailed procedure for QoS-based service selection in QoS
Broker is shown in Fig. 7.

1) Find the candidates from UDDI using the service’s interface information.
2) Retrieve the static/statistical QoS information of UDDI candidates from QoS Registry.
3) Generate 1st candidates by applying the static and statistical QoS part of constraint

specification to UDDI candidates.
4) Request dynamic QoS information from the 1st candidates.
5) Generate 2nd candidates by applying the dynamic QoS part of constraint specification to 1st

candidates.
6) Perform a service selection by applying selection specification to the 2nd candidates, and

pick the best one.
7) Return to Orchestration Engine with the selected service’s interface information

Fig. 7. Procedure for service selection

5 Related Researches

Many studies [4-7] for QoS-based service composition have assumed that the execu-
tion cost and execution time of a service can be estimated, or that the history of these
values can be used as values for quality of service, and have used these as a criterion
of selection and comparison of services. However, the e-Engineering framework uses
engineering services, such as parts of QoS attributes, with characteristics that cannot
be expressed as conventional web services.

Regarding the selection of web service, [8] has proposed that the consideration of re-
sources is required, as it affects the quality of service. The system context information

228 J.-K. Lee et al.

of the service requester, such as processor load, memory usage, and network bandwidth
should be maintained at the time of service request. The service provider’s contextual
information is not dealt with, and it does not address service composition. In the consid-
eration of the service provider’s environment, the use of a limited resource raises the
cost of the service [9], and it does not consider the failure of service due to the re-
sources.

6 Conclusion and Future Work

The proposed QoS-based web service composition enables the composition of engi-
neering services and efficient product development that satisfies the limitations of
time and cost. Thus, the collaboration of engineering processes can be processed in a
more efficient manner, and the reduction of time and cost for product development
can be achieved in a range of industries. Future work will be devoted to the analysis
of numerical methods not covered by this paper, and the survey of engineering ser-
vices that perform non-numerical analysis. In addition, the relationships between QoS
attributes within atomic services will be dealt with.

Acknowledgement. This work was carried out with the financial support of the
Ministry of Knowledge Economy of Korea.

References

1. Wang, L., Shen, W., Xie, H., Neelamkavil, J., Pardasani, A.: Collaborative conceptual de-
sign—state of the art and future trends. Computer-Aided Design 23(13), 981–996 (2002)

2. Kuk, S.H., Kim, H.S., Lee, J.K., Han, S.H., Park, S.W.: An e-Engineering Framework Based
on Service-Oriented Architecture and Agent Technologies. Computers in Industry 59(9),
923–935 (2008)

3. Akram, A., Meredith, D., Allan, R.: Evaluation of BPEL to scientific workflows. In: Proc. of
the 6th IEEE Int’l Symp. on Cluster Computing and the Grid, pp. 269–274 (2006)

4. Baligand, F., Botlan, D.L., Ledoux, T., Combes, P.: A language for quality of service re-
quirements specification in web services orchestrations. In: Georgakopoulos, D., Ritter, N.,
Benatallah, B., Zirpins, C., Feuerlicht, G., Schoenherr, M., Motahari-Nezhad, H.R. (eds.)
ICSOC 2006. LNCS, vol. 4652, pp. 38–49. Springer, Heidelberg (2007)

5. Canfora, G., Penta, M.D., Esposito, R., Perfetto, F., Villani, M.L.: Service composition
(re)binding driven by application-specific QoS. LNCS, vol. 4652, pp. 141–152. Springer,
Heidelberg (2007)

6. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineer-
ing 30(5), 311–327 (2004)

7. Jaeger, M.C., Goldmann, G.R, Muhl, G.: QoS Aggregation for Service Composition using
Workflow Patterns. In: Proc. of the 8th Int’l Enterprise Distributed Object Computing Conf.
(EDOC 2004), pp. 149–159 (2004)

8. Day, J., Deters, R.: Selecting the best web service. In: Proc. of the Conf. of the Centre for
Advanced Studies on Collaborative Research, pp. 293–307 (2004)

9. Tosic, V., Patel, K., Pagurek, B.: WSOL – Web Service Offerings Language. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES
2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 229–236, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Business Viability Assessment of Potential Software
Projects: An Empirical Study with the CASSE

Framework

Joseph Kibombo Balikuddembe and Antoine Bagula

Department of Computer Science
University of Cape Town

Private Bag Rondebosch 7701
South Africa

{jbalikud,bagula}@cs.uct.ac.za

Abstract. The opportunity cost decision of selecting a software project is de-
pendent, among other things, on how a given project best meets a company’s
business goals and overall competitive strategy. Remaining competitive in the
agile software market today requires selecting only those projects that position a
business strategically in the market place and that render it competitive over
time. Using an industrial case study, we demonstrate the role of the Complex
Adaptive Systems Software Engineering (CASSE) framework in supporting
value-based project selection. We apply Actor Object Dependencies (AOD)
analysis and Functional Points (FP) sizing techniques to predict the overall pro-
ject value before incurring any actual costs of implementing such a project. The
overall contribution of this work therefore lies in demonstrating that alternative
engineering approaches that analyze AODs can enhance how we select software
projects and how we plan project schedules optimally so as to increase business
value derived on projects.

Keywords: Project Selection Techniques, CASSE Framework, Software
Economics.

1 Introduction

The software project value differentiator in a market place is primarily dependent on
process engineering approaches that optimize the scope, schedule, cost and budget
constraints of the project, thus ensuring that stakeholder benefit is realized on comple-
tion of the project [1].

Studies such as [2] and [3] have shown that project requirements are complex; they
are volatile, they evolve, and they require deeper scrutiny to assess dependencies
between them, and at the same time to gauge the right level of effort to deliver a
product on time, within scope and within budget. Consequently, there is a clear need
in this changeable software market for integrated approaches, tools and techniques
that make it possible to select viable projects, based on their scope, their require-
ments, and their complexity.

230 J.K. Balikuddembe and A. Bagula

This work draws from available literature in value-based software engineering,
such as [4 and 5] to provide an integrated approach for assessing overall value on a
software project. We perceive value as the benefit realised in terms of profit or long-
term business benefit that the software vendor derives from a project, given the pro-
ject’s overheads.

2 Purpose

We aimed at examining how the emergent AOD analysis technique of the CASSE
framework can be applied to support viable project selection. Such a mechanism
would eventually enhance evaluation of the probability distribution of profits and
losses on a software project before investment costs on such a project are incurred.

3 The CASSE Framework Approach

This technique is based on understanding and modeling the entire project as a
complex adaptive system in which patterns of interrelationships emerge from local
interrelationships between requirements and their artefacts. As modifications for
value matrices on the project occur, new patterns are continuously emerging. These
could have a huge impact on the profit-loss and distribution curve for the project. The
belief is that the emerging patterns must be projected to a management dashboard so
as to aid effective decision making in real time. This technique is built around the
AOD modelling facets which we describe in our previous work [6 and 7].

We infer that as a time saving mechanism, the visibility of the project status must
be projected in a simple format and must be easily interpretable. In this approach, we
suggest a project value evaluator as a sufficient option. This mechanism was devel-
oped and tested as a feedback channel to management. Its overall aim is to highlight
the business status of any potential project in comparison to the established business
strategy in the company.

Over the years, our industrial experience has enabled us realize the growing need
for informed feedback on projects especially when it comes to selling ideas to
management or even convincing management about taking certain decisions that are
strategic to business. Decisions makers often don’t have much time to read long pro-
ject reports prepared by the technical people. Rather, they only require brief informa-
tion which at the same time is informed enough to give them a wider view of what is
being presented.

3.1 The Project Value Evaluator

Our conviction is that the project value evaluator would offer this visibility. It is used
to broadly asses projects and their value within a given project portfolio. It compares
project benefit against investment in the project as illustrated in Fig. 1.

 Business Viability Assessment of Potential Software Projects 231

Fig. 1. Project value evaluator

The X-axis represents the software process development view in which measure-
ment is done on the process investment and competency required to deliver a project
within time, scope and budget. The Y-axis represents the business view in which the
project value differentiator in the market is evaluated.

Projects that have low value and low process investment to deliver are displayed in
L, L (A). This implies that such projects will yield low return on investment and may
not necessarily be valuable to the business, both in the short and long run. They
should therefore be exited and potential resources that would have been invested on
such projects be channelled to other investment options. Projects that have high proc-
ess investment to deliver yet with low business value are displayed in L, H (B). This
implies that the development process will be constrained with high investment re-
quired to implement and complete the project gracefully. This could be in terms of
time or cost. The value axis in this quadrant indicates that there will be low value for
that project in both the short term and in the long term. Therefore, projects in this
quadrant are highly susceptible to project failure with high losses. However, they
have significant promise and can easily be fixed.

On the other hand, projects that have high development process investment as well
as high business value will be displayed in H, H (C). This could be for both the short
and long run time frames. This quadrant characterises new technology development
projects which requires time to mature but have high value in the long run. Thus,
these projects must be managed and exploited for the fact that cash flow from these
projects can be used to fund more attractive investments. Projects that have high value
and low process investment will be displayed in H, L (D). This is the most viable
quadrant that every business would want to operate in. It reflects maturity in the soft-
ware development process. It may imply that you have the right competency to de-
liver and that most of the features proposed already exist in your project database or
software platform. It is very favorable for customizable software products. Whence,
such projects exhibiting significant opportunity for growth must be given first priority
as such projects hold the greatest potential for value creation.

As a profitability objective function, the framework requires that at project selec-
tion, the entire project is scored against the business value threshold. This threshold is

232 J.K. Balikuddembe and A. Bagula

always described in the business operations model. The output of this assessment and
prediction is in turn projected to this dashboard.

4 Case Study Evaluation

4.1 Case Study Description

This specific case study entailed evaluating system needs as presented in the Request
For Proposal (RFP) document for the development of an on-campus crime manage-
ment system for Joliet Junior College, Illinois. The RFP call described it as a police
records management system. This system would fulfil the College’s need for docu-
menting and managing crime records as well as overall crime control on the premises.
By using a formal RFP process, Joliet Junior College management thus sent out an
RFP to interested software companies that would provide a useful software solution to
this problem. A copy of this RFP is available here [8].

This project had the following characteristics. The RFP was issued on March 7,
2008 and the deadline for interested companies to submit their questions in relation to
the project, was set for March 14, 2008. This particular scenario meant that the client
expected companies to investigate the proposal needs and submit the required quota-
tion within 7 days after issuing the RFP. The anticipated announcement of the award
was April 9, 2008. Any successful applicant for this job (based upon the lowest cost
and the criteria set forth under the Evaluation section of the RFP) was expected to
install the system by June 30, 2008. This would allow for a maximum of only 50
production days (about 400 man hours, excluding overtime) to analyse, design, im-
plement, test and install the entire system. The client was strict on the final product
delivery deadline. This meant that the project schedule was inflexible, requiring the
optimisation of resources in order to meet the deadline.

This project thus assumed that any interested company would have the necessary
capacity to deliver such a system within such a short period of time. It was assumed
that vendors whose product-line fell within this ambit would only need to customise
existing features to suit the desired functionality. New players in the market, if suc-
cessful, would have to develop everything from scratch or to adapt existing open-
source libraries to suit the desired functionality.

Having been a systems analyst employed by a company that was interested in re-
sponding to this RFP call, one of us was required by management to submit a quota-
tion for this project proposal. This quotation had to take into account the high-level
requirements given in the RFP document as well as other budgetary concerns. The
company was initially using heuristic ways of quoting for projects without any major
metric or tool used for estimation, but rather basing it on project characterises and
experience.

As a result, the CASSE framework was particularly useful at this stage. The origi-
nal estimate using traditional means was a round figure of R195, 000 (taking $1 =
R10). The CASSE approach, however, came to a different result, although it was not
far off from the estimated result.

The quoting process for this project was based on the last scenario describe above
(new players) since this company had never developed any solution of this kind

 Business Viability Assessment of Potential Software Projects 233

before. However, the company believed that it had the right competency to deliver the
desired solution within the specified schedule. The results obtained by the CASSE
approach were not final; they were only suggested to management as guidelines for
informed decision making. They were thus forwarded to management who would
make the final recommendation on the viability of the project. This eliminated bias in
analysis, and gave management an opportunity to compare the suggested approach
with the traditional means in order to ascertain if such an approach was worth inte-
grating in the development process.

Given this background and using CASSE analytics (a tool born out of the frame-
work), viability of the project based on the preliminary requirements in the RFP
document was analysed. The idea for using this tool was that the results obtained
would be benchmarked with the heuristic figure obtained using the traditional quoting
methods adopted by the company. This would create a favourable situation to obtain-
ing a reconcilable quotation for the envisaged project based on the two approaches.
The biggest threat here was that the requirements were incomplete and lacking in
clarity in the initial stage, thus any modelling and subsequent estimation would only
be indicative of the likely project status. There was a significant chance that the pro-
ject requirements would change as the client began more fully to understand the needs
of the system. This would ultimately have cascading effects on the overall project
budget, timelines and scope.

Consequently, CASSE analytics was specifically applied to illustrate how a com-
pany can fine-tune the project constraints to ensure that a viable project is selected, to
predict a viable implementation time, to rank the project value and to prioritise the
features in order to optimise a given production process.

4.2 Analysis Parameters

In this analysis, parameters of interest included the following: A UML Actor Object
Graphical model (as a conceptual static structure) generated from the high-level re-
quirements provided; the overall anticipated budget that would be obtained as a sum
of expected development costs and other expenses on the project; expected income as
derived from the overall project figure; expected net profit after budgetary expenses;
overall time span as provided for in the RFP document; predicted time according to
the CASSE analytics; and expected slack/overrun time as a difference between avail-
able and predicted time.

The highest investment value of R700 (as the hourly rate for this project) per
functional point was proposed. This value represents the actual costs incurred in ana-
lysing, designing, developing and testing each functional point on an hourly basis.
Conversely, the proposed highest return on investment was R2,500 per functional
point. This meant that anticipated profit per Functional Point (FP) amounting to
R1,800 would be realised as a mark-up difference between high return on investment
and high investment.

Making any adjustments of any of these parameters would result in assessing the
most suitable operating point. This point would be used in making investment deci-
sions on this project.

234 J.K. Balikuddembe and A. Bagula

4.3 Case Study Analysis Results

The following results were obtained, as shown in Table 3 (the figures have been ad-
justed for confidentiality purposes but do reflect the project status).

Table 1. Project viability status

Item Quantity
Total project costs (budget) R125,000
Expected development costs R50,760
Other project expenses R74,240
Expected project income R211,500
Expected gross profit R160,740
Net profit expected R86,500
Time span 400hrs
Predicted time 194hrs
Expected slack/overrun 206hrs

With a budget estimate of R125,000 (as the sum of development costs of R50,760

and other budgetary expenses of R74,240), the model predicted 194 hours of project
time out of the expected 400 hours derived from the RFP document. This left 206
hours of slack time. The expected income in this regard (as the overall quoted figure)
was R211,500. The difference between expected income and expected development
costs resulted in R160,740 as profit, before the deduction of other budgetary ex-
penses. The net income would thus be R86,500 being the difference between the ex-
pected project income and the anticipated total project budget. This was the expected
profit on this project.

4.4 The Quadrant Analysis

Mapping this project to the project value evaluator revealed that this project fell into
Block A, the risky quadrant of low investments and low returns, as illustrated in Fig.2.

Fig. 2. RFP project mapping

 Business Viability Assessment of Potential Software Projects 235

The red dot on the graph above shows the position of the project on the value
graph. This implies that this given project was likely to be risky in that it attracted
fewer profits than the expected profitability threshold for any project taken on by this
company. As illustrated above, given the current budget, this project would yield only
51.81% profitability levels on the overall (R86,500 of R160,740), yet the targeted
profit on any project for this company must be above 70%. Although this can be con-
sidered as a very high level profit margin in the commercial arena, it was highly likely
that these projected profits would be eroded by change management bottlenecks and
evolving project needs, among others. Overcoming such fixed price quotation issues
would entail having good project management skills (which were lacking in this re-
gard), which would limit changes or charge for them separately.

4.5 Case Study Implications

According to the project data published on the college website, the tender for this
project was awarded to the successful vendor for about R400,000 and was completed
on time. However, the basis for awarding this tender to the successful company was
not published. Comparing the analysis results against the amount awarded resulted in
the following observations. When the anticipated profitability was adjusted in accor-
dance with the award amount, the project status shifted into a different quadrant of the
project value evaluator, as illustrated in Fig. 3.

Fig. 3. Quadrant shifting

If this R400, 000 was the original amount quoted on this project, this project would
be located in quadrant D, which is a favourable quadrant for investment. In this re-
gard, if the company had submitted an even higher quotation (up to the award amount
of R400,000), then they might not only have been awarded the contract, but they
would also have been more profitable.

These results demonstrate that various investment questions can be answered by
means of guiding tools such as CASSE Analytics. Business viability assessments of
potential software projects require such tools if informed decisions are to be made.

236 J.K. Balikuddembe and A. Bagula

Information provided by such tools not only aids business case assessment and
evaluation of the project, but it also identifies risky projects before investment com-
mitments are made.

5 Conclusion and Future Work

This study therefore offers a capability for increasing the predictability and evaluation
of a viable risk-balanced favourable operating point on any project before this project
is added to a potfolio. This in return would lead to minimizing the selection of unprof-
itable projects. Therefore, alternative engineering approaches such as these can en-
hance how we select software projects and how we plan project schedules optimally
so as to increase business value derived on projects.

In future we intend to investigate how any given project that has been scored
against the business threshold at the initial selection stage is tracked through the life-
time of the project. Such trends would make it possible to analyse the lessons learnt
on a project and to assess whether the anticipated profitability could be sustained or
not. The patterns detected in this way would provide a mechanism for improving both
the estimation process on projects as well as the quoting process over time.

References

1. Barnett, L.: Agile Projects Must Measure Business Value. Agile Journal (2007),
http://www.agilejournal.com/content/view/211/76

2. Nikula, U., Sajaniem, J.: Tackling the Complexity of Requirements Engineering Process
Improvement by Partitioning the Improvement Task. In: ASWEC, pp. 48–57. IEEE CS,
Washington (2005)

3. Karlsson, L., Dahlstedt, A.G., Regnell, B., Dag, J.N., Persson, A.: Requirements Engineer-
ing Challenges in Market-driven Software Development – An Interview Study with Practi-
tioners. Info. and Soft. Tech. 49(6), 588–604 (2007)

4. Boehm, B., Huang, L.G.: Value-based Software Engineering: a Case Study. Computer 36(3),
33–41 (2003)

5. Saliu, M.O., Ruhe, G.: Bi-Objective Release Planning for Evolving Software Systems. In:
The 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 105–114. ACM,
New York (2007)

6. Balikuddembe, J.K., Potgieter, A.E.: Using Actor Object Operations Structures to Under-
stand Project Requirements Complexities. In: The 3rd International Conference on Software
Engineering Advances, pp. 290–294. IEEE Press, Los Alamitos (2008)

7. Balikuddembe, J.K., Potgieter, A.E.: Predicting Value-creation in Software Project Com-
plexity. In: The 10th IASTED International Conference on Software Engineering and Appli-
cations – Dallas, p. 514. ACTA Press (2006)

8. Joliet Junior College, http://www.jjc.edu/about/operational/
business-auxiliary/purchasing/Documents/R08003.pdf (last accessed on
July 30, 2009)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 237–244, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Aligning the Software Project Selection Process with the
Business Strategy: A Pilot Study

Joseph Kibombo Balikuddembe and Antoine Bagula

Department of Computer Science
University of Cape Town

Private Bag Rondebosch 7701
South Africa

{jbalikud,bagula}@cs.uct.ac.za

Abstract. This report aims to present the significance of requirements engineer-
ing approaches in guiding the project selection process with an overall objective
of ensuring that selected projects align fully with an established business strat-
egy. We analyze software practitioners’ views on managing the software project
selection process in Cape Town, South Africa. We designed this empirical
study following on from our previous literature survey. Using data categoriza-
tion techniques, our findings suggest that software vendors ought to ensure that
organizational business strategy is well explained to all stakeholders, including
the technical personnel who produce the software. Similarly, the engineering
approaches directed towards mitigating selection of risky business must be util-
ized and integrated into the development process. Failure to take these factors
into perspective renders the organizational competitive strategy ineffective. De-
tailed research methods used in the study are given as well as approaches under-
taken for data collection and analysis.

Keywords: Software Process Improvement, Effective Business Strategy For-
mation, Value-based Software Engineering.

1 Introduction

The value-based software engineering premise perceives value derivation on software
projects as an integral notion, embracing a full range of existing and emerging
software engineering principles and practices [1]. Pivotal to this are requirements
engineering, project planning and control, as well as risk management mechanisms
utilized in the development processes. Similarly, achieving project value and success
requires that the engineering approaches utilized on such projects support both the
project selection process and the business strategy [2]. We view this as a three-in-one
cycle summarized in Fig. 1 below.

238 J.K. Balikuddembe and A. Bagula

Fig. 1. Technical inputs to the business strategy

The project management theory provides that the project selection process is
fundamentally driven by four principles, including: focusing on broad organizational
needs, categorizing software projects according to organizational needs, performing
net present value or other financial analyses on these projects and using a weighted
scoring model to obtain a clear project value in terms of expected return on
investment [3].

We infer that the engineering approaches utilized in understanding project needs
and requirements must support these principles as bi-directional business functions
impinging on the business strategy. This process can either be ‘formal-method’ driven
or carried out by use of modeling approaches such as the Universal Modelling Lan-
guage (UML), thereby supporting the planning and control process on projects as well
as identifying risk factors on the project. If well adapted (as project risk precaution
drivers), support for identification of any risky business early on in the process, and
even before resources are committed on such projects is ensured. As observed by
Gregor et al.,[4], if neglected or in the absence of such business strategy- supporting
mechanisms, profit-driven software businesses are likely to be edged out of the mar-
ket easily

2 Purpose

Building on this view, we recently conducted an empirical study, over a four months
period, with 70 software companies in Cape Town, South Africa. Our main objective
was to examine whether project selection and requirements engineering processes (as
technical inputs to the project selection process) employed in industry today align
appropriately with organizational business strategies in general. Secondly, we wanted
to examine how projects are selected in industry with or without the use of analytical

 Aligning the Software Project Selection Process with the Business Strategy 239

tools, and if any requirement engineering techniques are used to assess risk on soft-
ware projects.

Understanding the phenomena of prevailing project selection processes in industry
and their alignment with the business strategy, would give us some insight in what is
going on in business strategy formation and alignment and why it is indeed happening.

3 Methodology

Project Managers, Systems and Business Analysts in particular were targeted due to
their strategic role in guiding management on project scoping and viability implica-
tions, especially during the software development life-cycle. While building on previ-
ous literature surveys, we applied the descriptive and analytical approach so as to
identify presence of relationships among key factors found during the interview
analysis.

A systematic process for survey development, as suggested by Sanchez et al. [5]
was employed to develop the survey instrument. This 18 item instrument was divided
into subscales of selected-responses centered on economic aspects of software devel-
opment. It was designed to gather ordinal data on requirements engineering and pro-
ject selection. The requirements engineering subsection was aimed at understanding
current software development processes used today, by specifically analyzing the
depth and breadth of requirements engineering techniques used in industry. The pro-
ject selection subsection aimed at understanding how projects are selected in the vari-
ous participating developing houses. The selection criteria used were instrumental in
refining the study assertions and guiding conclusions to the research objective.

A 5 point Likert-type scale (i.e., 1 = Strongly Disagree, 2 = Disagree, 3 = Not sure,
4 = Agree, 5 = Strongly Agree) previously used by Guan et al. [6] was employed.

Seventy questionnaires were emailed to various software companies via the Soft-
ware Process Improvement Network (SPIN) chapter in Cape Town. Participation in
this study was voluntary. Of the 70 questionnaires emailed, only 50 questionnaires
were returned, thus representing a 71% response rate from this targeted sample.

4 Presentation of Findings

Due to space limitations, we present a summarized analysis of how these findings
impinge on the overall business formulation strategy. Based upon these findings we
draw study conclusions. The assertions used in the study are given in table 1 below.

Table 1. Study asserstions used

Requirements engineering assertions Project selection
RE 1: We usually first understand client
requirements before project implementation

PS 1: Our projects are selected based on
strategic business objectives

RE 2: We implement the requirements in
parallel with requirement elicitation and
validation

PS 2: We choose our projects based on
profitability level anticipated

RE 3 We undertake systems modelling
using OOSA using UML, etc.

PS 3: Our projects are in-house and my
organisation is the direct recipient

240 J.K. Balikuddembe and A. Bagula

Table 1. (Continued)

Requirements engineering assertions Project selection
RE 4: We use a standardised process in
collecting, documenting and validating our
requirements

PS 4: We depend on feasibility assessment
reports to determine project implementation

RE 5: We usually develop a traceability
matrix for project requirements

PS 5: We use analytical tools that guide us
in project selection

RE 5.1: The traceability matrix is generated
using a matrix generation tool

PS 6: Our project selection is purely heuris-
tic

RE 5.2: The traceability matrix is generated
manually

PS 7: We just take on any project we get
hold of

RE 5.3: We don’t consider the traceability
formulation important because of lack of
time
RE 6: It is part of our development
procedure to undertake a requirement
dependency assessment for risk assessment
RE 6.1: There is generally less or no re-
quirement dependency assessment under-
taken

PS 8: Our projects are for research and
development

Fig. 2 illustrated the response percentages of both categories. These findings are

summarized and interpreted in the following section.

Fig. 2. Response percentages for both assertion categories

4.1 Interpretation Summary

The above findings are summarized as follows. Specific trends of interest were ranked
according to a scale designed for overall results interpretation. This is illustrated in
Table 2.

 Aligning the Software Project Selection Process with the Business Strategy 241

Table 2. Key for trends` scale

Prevailing trend Scale

Not practiced at all 1

Require serious improvement 2

Occurs rarely 3

Satisfactory 4

Well practiced 5

It is upon this scale that conclusions were drown specifically looking at overall per-

formance of a parameter of interest across the sample, majority responses to a parame-
ter in comparison to the overall sample and a few or minority responses to a given
parameter across the sample. The key parameters of interest are given in Table 3.

Table 3. Key parameters of interest

Performance scale
Ranking parameters Overall Majority A few

Aligning strategy with
business 2 2 1

Overall busi-
ness strategy
formation technical personnel

involvement 1 1 1

UML modelling 2 3 5
tool usage in project
selection 1 1 2
tool usage matrix genera-
tion 1 1 1

 requirements traceability 1 1 2

Requirement
engineering

dependency analysis 1 1 2

risk analysis on projects 2 3 4
based on profitability &
business goals 4 4 2

Heuristic tendencies 3 1 3

Project
selection

based on feasibility
reports 5 4 3

As illustrated in the table above, for each parameter of interest, a scale ranking was

attached arising from the statistical results obtained from the data.

4.1.1 Overall Strategy Formation
As illustrated from the figure above, it was observed that generally, aligning the selec-
tion and requirements engineering process with the business strategy requires serious
improvement within the participating companies. The results also show that involve-
ment of technical personnel in the formation of the business strategy is lacking across
the board.

242 J.K. Balikuddembe and A. Bagula

Fig. 3. Business strategy formation

4.1.2 Requirements Engineering Process
As illustrated in the figure above, UML modelling is well practised in only a few of
the participating companies. In some companies however, it is used rarely, thus sug-
gesting overall improvement in this area. On the other hand, tool usage in project
selection and requirements matrix generation is not used at all. More still, require-
ments traceability as well as dependency analysis on software project requirements
still scored poorly within this sample.

Fig. 4. Strategic requirement engineering

4.1.3 Project Selection
These results showed that, across this sample, projects are selected based on
feasibility reports as well as on anticipated profitability and established business
goals. However, risk analysis on these projects is only undertaken by a few of the

 Aligning the Software Project Selection Process with the Business Strategy 243

Fig. 5. Project selection parameters

respondents within this sample; majority of the respondents do not necessarily under-
take this analysis.

4.2 Discussion

These results show that the need to realign engineering and project selection proc-
esses with business objectives is still evident. In instances where business objec-
tives are not well integrated into the processes that produce the software, certain
business elements may be sacrificed, such as productivity measurement, quality and
risk detection in business selection and overall management. Although a given per-
centage of the participating companies undertake risk analysis, the extent to which
it is done cannot be quantified. Tooling is not widely used in project selection,
which implies that heuristic project selection approaches always suffice; although
some companies often depend on feasibility assessment reports to determine viabil-
ity of projects.

Requirement traceability is sacrificed due to time constraints, yet if well integrated
it can aid decision-making to a reasonable extent, especially when enforcing reconcil-
able acceptance criteria establishment on projects. Lack of utilization of such tech-
niques makes it difficult to track and interpret complexities embedded within project
requirements. On the other hand UML as a modeling technique has not been ade-
quately embraced; overall, less or no requirement dependency assessment is under-
taken. More still, although projects are selected based on business objectives and
anticipated profitability, these business objectives are not well explained to all stake-
holders, including the technical personnel who execute the tasks on these projects.
Interestingly, the anticipated profitability on projects is not often mapped to the proc-
esses which in turn impact its overall management during the project lifetime; thereby
affecting sustainable business continuity and economic value realization at project
completion.

244 J.K. Balikuddembe and A. Bagula

5 Conclusion

While these results cannot be generalized across the entire spectrum, they are indica-
tive of what is happening in most of the software-producing companies, irrespective
of size and business direction. They are key business issues that require redress.
Therefore, they offer a two-fold benefit. Firstly, they are instrumental in establishing
baseline data for future comparison and problem analysis. Secondly, they can be used
for identifying trends, issues and concerns unique to software development process,
management and challenges. Similarly, a significant portion of most value-based
engineering strategies available can be made operational by investing in and develop-
ing the process capabilities that can lead to increased competitiveness in the software
business. The success of strategic project selection and engineering techniques util-
ized therefore requires reliable data in order to align improvements with strategy, and
to understand precisely the processes with which the business needs to develop.

References

1. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A Value-based Approach for Understand-
ing Cost-benefit Trade-offs During Automated Software Traceability. In: The 3rd interna-
tional workshop on Traceability in emerging forms of software engineering, pp. 2–7. ACM,
New York (2005)

2. Wu, W.Y., Sukoco, B.M., Li, C.Y., Chen, S.H.: An Integrated Multi-objective Decision-
Making Process for Supplier Selection with Bundling Problem. Expert Sys. with App: An
Inter. J. 36(2), 2327–2337 (2009)

3. Kerzner, H.: Project Management. In: A Systems Approach to Planning, Scheduling and
Controlling. John Wiley, New York (1973)

4. Gregor, S., Hart, D., Martin, N.: Enterprise Architectures: Enablers of Business Strategy
and IS/IT Alignment in Government. Information Technology and People 20(2), 96–120
(2007)

5. Sanchez, R.J., Truxillo, D.M., Bauer, T.N.: Development and Examination of An Expec-
tancy-based Measure of Test-taking Motivation. Journal of Applied Psychology 85(5),
739–750 (2000)

6. Guan, J.C., Yam, R.C.M., Mok, C.K., Ma, N.: A Study of the Relationship Between Com-
petitiveness and Technological Innovation Capability Based on DEA Models. European
J. Oper. Res. 170(3), 971–986 (2006)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 245–252, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RE4Gaia: A Requirements Modeling Approach for the
Development of Multi-Agent Systems*

David Blanes, Emilio Insfran, and Silvia Abrahão

ISSI Research Group, Department of Information Systems and Computation
Universidad Politécnica de Valencia, Camino de Vera, s/n 46022, Valencia, Spain
dablado@posgrado.upv.es, {einsfran,sabrahao}@dsic.upv.es

Abstract. This paper presents RE4Gaia, which is a requirements modeling ap-
proach for the development of multi-agent systems extending the Gaia metho-
dology. The approach focus on dealing with the organizational structure as a
means to adequately capturing and understanding required roles and associated
functions, in the context of a organization, prior to the analysis and design of
the MAS using Gaia. In addition, a traceability framework is introduced in
order to facilitate moving from the requirements models to the analysis and de-
sign models proposed in Gaia.

Keywords: Requirements engineering, multi-agent systems, methodology,
agent-oriented development.

1 Introduction

The Requirements Engineering (RE) process is recognized as being the most critical
process of software development. Errors made during this process can have negative
effects on the quality of the resulting software. A Multi-Agent System (MAS) is a
specific type of system that is composed of multiple interacting intelligent agents used
to solve problems that are difficult for an individual agent or monolithic system to
solve. In the last few years, many agent-oriented methodologies [1][2][3][4][5] have
been proposed to support the development of this type of systems.

Perhaps the most developed agent-oriented software engineering methodology is
Gaia [2]. Gaia is based on the organizational metaphor and founded on the view of
multi-agent systems as a computational organization. In Gaia, requirements are just
statements, independent of the paradigm used for analysis and design, rather than a
model oriented to capture requirements relevant to a MAS. Another drawback for
Gaia, from our point of view, is the lack of explicit traceability from requirements
to the artifacts produced along the MAS development. A better traceability mechan-
ism could help to improve the overall quality of the developed software [3].

* This work is funded by the META project (TIN2006-15175-C05-05) and the Quality-driven

model transformations project (UPV).

246 D. Blanes, E. Insfran, and S. Abrahão

In this work, we introduce RE4Gaia, which is a requirements modeling approach
for the development of MAS extending the Gaia methodology. This approach focus
on dealing with the organizational structure as a means to adequately capturing and
understanding required roles and associated functions.

This paper is organized as follows. Section 2 presents the related work including
characteristics of some methodologies for the development of MAS. Section 3 briefly
introduces the Gaia methodology. Section 4 presents our requirements modeling pro-
posal. Section 5 describes a case of study used to validate our approach. Finally, sec-
tion 6 presents the conclusions and further work.

2 Related Work

As we presented in a previous work [3], we identified that the majority of MAS me-
thodologies focus only on the analysis and design and do not give support to the re-
quirements phase. This is the case of the Gaia methodology and the MASIVE [4].
Others MAS development approaches give a partial support to the requirements phase
through use cases or scenarios, i.e. ROADMAP [6] or MaSE [7]. Perhaps the most
developed and “well-accepted” approach in the community for dealing with the de-
veloping of MAS is Tropos [8]. Tropos is based on the i* framework following a
goal-oriented approach. This fact reveals that there is a dearth of alternative methods
and techniques for appropriately dealing with requirements for MAS development [3].
Moreover, most of the alternative requirements methodologies are focused in under-
standing the problem domain and communicate requirements among stakeholders.
They lack traceability mechanisms to trace this requirements information towards
analysis and design artifacts and backward. We believe that this fact is an important
issue that constraints a wider use of these alternative proposals.

In summary, there are many attempts to provide techniques and methods to deal
with some aspects of the RE process. However, there is a lack of solutions that allow
developers to go systematically from well-defined requirements models to design
models in a guided or automated way.

3 The Gaia Methodology

Gaia is a methodology with the purpose of guide the design of open systems using
organizational concepts. Gaia is tailored the analysis and design of MAS. We describe
only the analysis phase, which is directly related to our proposal.

This phase starts with the definitions of the global organization goal. It includes
the decomposition of the global organization into sub-organizations. The next step is
to build the environmental model. This model list all resources that one agent can
access. The resources are represented as variables or tuples, where one agent can do
three types of actions: sensing, effecting or consuming. The preliminary role model is
build to capture the basic skills. In this model, a role is represented is represented with
an abstract and semiformal description. There are two types of attributes to describe a
role: permissions and responsibilities. The permissions are used to identify the

 RE4Gaia: A Requirements Modeling Approach for the Development of MAS 247

resources accessed by the role and establish the limits for the role. The responsibilities
are used to indicate the expected behavior of a role. They are divided in two types:
liveness properties and safety properties. The preliminary interaction model deter-
mines dependencies and interaction between roles through protocols. The protocol is
defined with a set of attributes: name, initiator role or roles, partner role or roles,
inputs, outputs and a description to explain the purpose of the protocol. Finally, the
organizational rules represent the responsibilities of the organization. They are two
types of organizational rules: liveness rules and safety rules.

4 The Requirements Modeling Approach

The proposed requirements modeling approach (Figure 1) is aimed to deal with the
organizational structure as a means to adequately capturing and understanding re-
quired roles and associated functions. It includes: i) A Requirements Modeling Phase.
ii) A Requirement Analysis Process.

4.1 Requirements Modeling

The goal of the Requirements Model is to gather and represent the software require-
ments. This phase starts defining the Mission Statement (MS), the Functional Re-
finement Tree (FRT), the Requirements Role Model (RRM), and the Domain Model
(DM). The MS set the goals of the global organization. The FRT helps to determine
the sub-organizations forming the global organization and it participant roles. The
RRM is used to detect intheritance relations between role and reason about their struc-
tural relationships, detecting possible inconsistencies. Finally the DM is used detect
the entities that could be possible organizational resources.

The Mission Statement is the most general service (the main goal) that the system
to be developed provides to its environment [13]. It is written in natural language with
typically one or two paragraphs.

The Functional Refinement Tree is used to represent a hierarchical decomposition
of the business functions independently of the software system structure. We put in the
root of this tree the MS and then is successively refined looking for the functions of the
system that are represented as leaf nodes in the FRT. In this process, we can find sev-
eral levels. The nodes between the root and the leaf nodes are intermediate nodes. We
distinguish two levels: i) first, we find sub-organizations. A sub-organization is part of
the system which is oriented to achieve a goal in the system and that weakly interacts
with other parts of the systems; ii) second, we find that sub-organizations are decom-
posed into roles. A role is a representation of an abstract entity that provides (several)
functions for the system. A function is a task performed by a role in the organization
independently if it needs to collaborate with other roles or not.

The Requirements Role Model describes the roles belonging to sub-organizations
from the FRT. The purpose of this model is to represent the different roles discovered
in the organization and create a hierarchy of roles using an inheritance relationship. In
order to graphically represent this information, we use the UML Use Case diagram
showing only the roles as actors, labeled with the stereotype «role», and the relation-
ships among them. An example is shown in Figure 2 (b).

248 D. Blanes, E. Insfran, and S. Abrahão

Fig. 1. Overview of RE4Gaia models and their relations

The Domain Model shows entities identified in the problem domain. The purpose
is to gather key concepts and their relationships depicting a first structural view.
These entities must make sense in the application domain. In addition, we represent
associations among domain entities and inheritance relationships. In order to graphi-
cally represent all these information, we use the UML Class diagram as show the
Figure 2 (a).

4.2 Requirements Analysis

The Requirements Analysis Process takes as input the identified functions in the FRT
and decomposes them into: tasks and protocols with the help of the Activity Diagram
(AD). Moreover, the AD is used to understand the internal flow of one role in order to
determine its responsibilities into the Gaia role model. Next, we identify the resources
(Environmental Model) refining the entities discovered into the DM. Once we have
the internal task and protocols of a role and his accessed resources, we define the
organizational rules to define the behavior and restrictions of the organization.

The Activity Diagram shows a sequence of steps showing a workflow necessary
to realize the identified functions. A representation of the task flow can be useful to
understand the logical flow of one role; helping to identify when a role needs to colla-
borate with others roles. Some guidelines regarding AD are: i) It’s necessary to build
at least one AD for each sub-organization identified in the FRT; ii) We suggest build-
ing one AD for each role that is the initiator of other protocols; iii) We create at least
one Activity Partition. Each partition models the role logical flow. We suggest that
the left partition is used for the role that starts the protocol. The others partitions
represent the other roles that interacts with the initiator role; iv) If we identify that the
role needs to interact with other roles, then we add a new activity partitions in the
diagram.

The Environmental Model is a set of tuples with the following structure: <role,
resource, permission>. For each role from the AM, we set the rightful resources
accessed by the role. The information extracted from the AD will help to the analyst
to identify which resources are accessed. Finally, we set the permission type for
access to the resource between three types: read, write, and consuming.

 RE4Gaia: A Requirements Modeling Approach for the Development of MAS 249

Table 1. Excerpt of a FRT for the Settlement sub-organization

Sub-organization Role Function
Settlement Buyer Purchase good

Take good away
 Buyer Manager Update credit

Send Buyer List
Send result verify credit
Sanction buyer

 Seller Manager Update the credit

The last step in the Requirement Analysis phase is to define the Organizational

Rules. They are written in natural language with the purpose to gather and represent
general constraints for the Organizational behavior. These rules can be viewed as
responsibilities of the organization as a whole and can be related to i) Organization
dynamics properties, defining how should evolve the organization; ii) Organization
constraints, defining restrictions that the organization must respect in every time.

5 Case Study

We introduce a case of study for an Auction System for a Fish Market. This case
study was proposed in [14] and we adapted it in order to illustrate our proposal. The
complete specification of the case study can be found at: http://www.dsic.upv.es/
~einsfran/RE4Gaia/casestudy.html.

The first phase is the Admission. Here the guest can create a buyer account and the
existing users can validate their credits. Meanwhile the buyers performs the admis-
sion, the sellers bring the goods. For each good the seller’s admitter employed fix: the
weight, the fish quality and the price and send the good list the Auctioneer. The
second stage is the Auction, where auctioneer starts a new bidding round. He sends to
each buyer: the list of buyers taking part in the round, the list of goods, and the next
good to be auctioned. After that, the auctioneer starts broadcasting prices to all buyers
in the auction room. The buyers bids for the goods offered by the auctioneer. When
one good is sold, then the owner is informed of the new sale. The seller’s earnings are
updated. Finally In the Settlements buyers can collect a statement describing their
purchases and pay them up, whereas sellers may collect their earnings at the settle-
ments office once their lot of goods has been sold.

Applying our approach, we firstly build the Requirements Model. The first step is
to define the Mission Statement. The mission of the Fish Market system is to auto-
mate the management of admission, register the incoming bids, give support to the
Auction process and manage the sale of goods. The next step is to build the Func-
tional Refinement Tree. Table 1 represents an excerpt of the FRT showing the
branch of the sub-organization Settlement (in a tabular format). The Buyer role does
the functions Purchase good and Take good away. The Buyer Manager role does the
functions: Update credit, Send Buyer List, Send result, Verify credit, and Sanction
Buyer. Finally, the Seller Manager role does the Update credit task. Regarding the
Requirements Role Model, we identified the following roles: Guest, Buyer, Seller,
Boss, Buyer Manager, Auctioneer, Seller Admitter, Buyer Admitter and Seller Man-
ager. There is an inheritance from Buyer and Seller roles to the Guest, representing

250 D. Blanes, E. Insfran, and S. Abrahão

the fact that everything that can be done by a Guest can also be done by a Buyer or by
a Seller. This information is shown in Figure 2 (b). The main domain entities and
relationships found are represented in Figure 2 (a). We identify a Person entity that
shares common properties with the Seller and Buyer. A Buyer List is related to mul-
tiple Buyers, and an Item List is related to multiple Items. An Item belongs to one
Seller, and a Bidding Round is composed by multiple Bids. Each Bid has Buyer List,
multiple Prices and one Item List associated.

Secondly, we apply the Requirement Analysis Process. This phase starts with the
construction of the Activity Diagrams. In order to analyze the Settlement sub-
organization, we should use build one AD for each role with proactive behavior, in
this case: Buyer and Seller. Figure 3 shows the AD for the Buyer role. The Buyer
when joining in the scenario can start the Purchase. When the Buyer finishes the
protocol Purchase, then he exits from the scenario. In the other partition, Auctioneer,
is the Buyer Manager, which is waiting for the Purchase protocol requests. The role
checks if the Buyer role has enough credit. If it is true then the Update Credit task is
performed, otherwise it starts the Bad Credit protocol to communicate a “bad pur-
chase” to the Auctioneer role. For each role identified in the FRT, and also specified
in the RRM, we set the resources with permission granted to the role to consider inhe-
ritance relationships. Table 2 shows a partial view of this model, representing two
roles: Auctioneer and Buyer Manager.

Finally, we have the following organizational rules for our case study: i) One buyer
must be registered before joining the auction; ii) One buyer cannot join in the settle-
ment if he is not a bid winner; ii) The Auctioneer must wait if there not enough goods
to auction; iv) The Auctioneer must wait if there are not enough buyers.

a) b)

Fig. 2. a) Domain Model; b) Requirements Role Model

Fig. 3. Activity Diagram for the Buyer role in the Settlement sub-organization

 RE4Gaia: A Requirements Modeling Approach for the Development of MAS 251

5.1 Traceability Framework

In this section, due to space limitations, we briefly outline the traceability strategy.
This traceability framework can be viewed from two perspectives: i) inner, which
refers to the links established between elements in RE4Gaia; ii) outer, which refers to
the links established between elements in RE4Gaia and the Gaia analysis models.

Related to the inner traceability, the main relationships are: i) The MS is related to
sub-organizations identified in the FRT; ii) Each role identified in the FRT (and speci-
fied in the RRM) is related to its corresponding sub-organization in the FRT, iii) Each
role identified in the FRT (and specified in the RRM) is related to one role into the
EM, iv) Each entity identified in the DM is related to one resource into the EM. The
user decides with which roles is related the resource and with which permissions have
access granted; v) Each function in the FRT is related to a task or protocol in the AD,
depending if the functions needs collaboration with others roles.

Related to the outer traceability, the main relationships are: i) Each resource from
the EM is related to one resource in Gaia. As at this level the EM is preliminary, new
resources can be identified at the Gaia analysis. The permissions are mapped for each
role can access to the resource; ii) Each role identified in the RRM is related to a role
in the Gaia Role Model. The information extracted from the AD helps to the user to
fill the liveness, and safety properties; iii) Each task or protocol identified into the AD
is related to one task or protocol in the Gaia Role Model, giving relevant information
that is needed to specify in detail during the analysis and design; iv) The organiza-
tional rules in natural language are mapped to organization rules in the Gaia metho-
dology. The user can decided if is converted into a liveness o safety rule.

Table 2. Partial Environment Model

Role Resource Permission
Auctioneer Bid Modify

Bidding Round Modify
Price Modify

Buyer Manager Account Read
 Buyer List Modify

6 Conclusions and Further Work

We have presented a Requirements Modeling approach extending the Gaia methodol-
ogy. The approach deals with the organizational structure as a means to adequately
capturing and understanding required roles and associated functions, in the context of
an organization prior to the analysis and design using Gaia. We believe that our ap-
proach fills the gap in the development of MAS providing a systematic approach to
deal with requirements establishing better traceability mechanisms that help analysts
to meet user needs, improve their understanding of the systems, facilitate the maintai-
nability of produced artifacts, and improve the overall quality of the developed soft-
ware.

Currently, we are applying the requirements modeling approach for the specifica-
tion of other MAS with the intention to study the expressiveness and transformation

252 D. Blanes, E. Insfran, and S. Abrahão

capacities of our requirements models. We plan to perform controlled experiments
with PhD students in order to empirically validate the effectiveness of our method.
We are also working in the development of a tool using the Eclipse framework to
implement the proposed approach. This tool will allow us to follow a model-driven
development approach including model2model transformations from RE4Gaia mod-
els to Gaia models.

References

1. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High Variability Design for Software
Agents: Extending Tropos. ACM Trans. Autonom. Adapt. Syst. 2(4), Article 16 (2007)

2. Pavón, J., Gomez, J.: Agent Oriented Software Engineering with INGENIAS. In: CEE-
MAS, Prague, Czech Republic, pp. 394–403 (2003)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(2), 203–236 (2004)

4. DeLoach, S., Wood, M., Sparkman, C.: Multiagent Systems Engineering. International
Journal of Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)

5. Lind, J.: Iterative Software Engineering for Multiagent Systems. In: The MASSIVE Me-
thod (2001)

6. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology (TOSEM),
317–370 (2003)

7. Blanes, D., Insfran, E., Abrahão, S.: Requirements Engineering in the Development of
Multi-Agent Systems: A Systematic Review. In: Accepted for publication in the Interna-
tional Conference on Intelligent Data Engineering and Automated Learning, Burgos, Spain
(2009)

8. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent-
Oriented Methodologies, pp. 79–106. Idea Group Inc., USA (2005)

9. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the gaia methodology for com-
plex open systems. In: AAMAS, Bologna, Italy, pp. 3–10 (2002)

10. Insfran, E.: A Requirements Engineering Approach for Object-Oriented Conceptual Mod-
eling, Valencia, Spain (2003)

11. Napoli, C., Giordano, M., Furnari, M.: A PVM implementation of the Fishmarket. In: IX
International Symposium on Artificial Intelligence, Cancun (1996)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 253–263, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Execution Traces: A New Domain That Requires the
Creation of a Standard Metamodel

Luay Alawneh and Abdelwahab Hamou-Lhadj

Electrical & Computer Engineering Department, Concordia University

Abstract. Despite the fact dynamic analysis techniques of software systems
have been shown to be useful in many software engineering activities such as
software maintenance, software performance, testing, etc., there is no standard
format for representing run-time information, which hinders interoperability
and sharing of data. Runtime information is typically represented in the form of
execution traces. Traces can contain different information, and can contain dif-
ferent types of information depending on what is being traced and the purpose
of the trace. In this paper, we argue that traces represent vital knowledge about
software that needs to be organized and modeled. We support our arguments by
discussing the various types of traces used in the literature. We also discuss the
challenges when dealing with execution traces and why a trace metamodel has
to be carefully designed to overcome these challenges. We also discuss existing
attempts to model execution traces. Finally, we discuss how the Knowledge
Discovery Metamodel can be extended to support efficiently the modeling of
large and complex execution traces.

Keywords: Execution Traces, Trace Metamodel, Knowledge Discovery Meta-
model.

1 Introduction

An important issue in application modernization is the time it takes to understand how
the application is built and why it is built this way. In an ideal situation, any change
made to an existing software system must be based on information kept in up-to-date
documentation. However, for a variety of reasons, it has been shown, in practice, that
maintaining sufficiently good documentation is impractical in many organizations,
which renders program comprehension a difficult and tedious task. Reverse engineer-
ing techniques aim at reducing the impact of this problem by recovering high-level
views of the system from low-level implementation details. These views can be used
by software engineers to understand the main aspects of the system before diving into
the details.

Reverse engineering tools can be grouped into two categories depending on
whether they focus on static analysis of the system or on the understanding of its
dynamic characteristics. Static analysis techniques operate on the source code to
extract a system’s main components and their relations. Dynamic analysis, which is
the focus of this paper, focuses on the analysis of the behavioural aspects of a system
through the analysis of run-time information.

254 L. Alawneh and A. Hamou-Lhadj

Run-time information is typically represented using execution traces. There exist,
however, many types of traces that vary in their structure, the contained information,
and the level of abstraction of the contained information. An execution trace can be
used to describe the interacting modules involved in a particular scenario, or may be
detailed to capture the performed statements in each module’s procedure. Examples
of such traces include routine-call traces, statement-level traces, traces of inter-
process communication, etc.

Although this paper focuses on reverse engineering, dynamic analysis has been
shown to be useful in many software engineering activities such as program compre-
hension, runtime monitoring and performance analysis, testing, fault detection and
intrusion detection, etc. There exist many tools for execution trace visualization and
analysis. However, these tools use different format for representing traces, which
hinders interoperability. This is attributable to a lack of a standardized way for repre-
senting execution traces despite the increasing attention to dynamic analysis tech-
niques of software in recent years.

In this paper, we argue that execution traces form a new domain knowledge that
needs to be organized and modeled. We discuss the most important types of execution
traces, their applications, and their structures. We also discuss how these approaches
deal with the trace size problem. Finally, we discuss existing metamodels such as the
Knowledge Discovery Metamodel [1] from OMG [2], the UML metamodel [3], etc.,
and their limitations.

2 Execution Traces as a New Domain

Execution traces represent the sequence of execution in a running software system at
different levels of abstraction. Traces may exist in different structures according to the
degree of abstraction requested by the program analyzer. For example, statement-
level traces are linear and contain single executed statements. Routine-level traces
depict the sequence of routine calls for a program run and are often represented as a
tree structure. Inter-process execution traces capture the interactions between different
processes in terms of message passing, and they can be modeled using a graph.

In the following, we present an overview of different types of execution traces,
their structure and their application.

2.1 Statement-Level Traces

Statement-level traces contain the executed statements of a program run according to
a coverage that is usually specified by the user. This type of traces can profile a com-
plete behaviour of the software system and can be used to extract information regard-
ing the flow of control during execution and the dependencies among the executed
statements. Also, it helps in maintenance activities such as bug fixing by identifying
the cause of the problem.

One of the main challenges when using statement-level traces is the sheer size of
the generated trace which can reach millions of events. Therefore, a metamodel that
represents this type of traces must be built with scalability in mind. One simple ap-
proach to achieve this is to represent the repetitive information contained in a trace
only once.

 Execution Traces: A New Domain That Requires the Creation 255

Zhang et al. present a more advanced trace compaction technique called Whole
Execution Traces (WET) [4]. WET represents a compressed whole execution trace
which captures complete profile information that covers control flow, variable values,
variable memory addresses, and control and data dependencies. The framework can
respond to a wide range of queries that may require single or multiple types of profile
information in a fast and easy manner.

WET is a labelled graph that assigns a unique timestamp to every single instance
for each executed statement in order to track the ordering of execution. Furthermore,
the paper presents compression techniques that, according to the authors, reduce the
size of WET effectively. Moreover, the paper shows some benchmark values that
prove the efficiency of the used compression techniques.

2.2 Routine Call Traces

Routine-call traces and their object-oriented counterpart “method-call traces” capture
the sequence of routine calls in an execution path. This type of traces is at a higher
level of abstraction compared to statement-level traces and can be used to reveal sig-
nificant information about the system’s different scenarios. Routine-call traces, which
are represented as tree structures, can be used in many maintenance activities such as
bug-fixing [5], and feature-location [5]. Moreover, they can provide useful informa-
tion that can enable software engineers to perform many activities in an efficient
manner including restructuring, refactoring, and code optimization. Like any other
type of execution trace, routine-call traces can grow dramatically in size and complex-
ity. Therefore, compression and reduction techniques should be applied in order to
utilize them effectively. In the following we present several research studies related to
routine and method call traces.

Taniguchi et al. [7] proposed a new method for reverse engineering of UML se-
quence diagrams based on method-call execution traces. The purpose of this tech-
nique is to facilitate the understanding of object-oriented systems. Furthermore, the
paper presents a set of four compaction rules in order to solve the problem of large
execution traces. The proposed rules can be summarized as follows:

1. Rule 1 finds identical method-call subtrees and represents them in one sub-
tree. Identical method-call subtrees share the same objects. By using this
rule, the original call tree can be reconstructed.

2. Rule 2 finds repetitive method calls structures that correspond to different
objects and then compacts them by unifying the objects. Although this
method can detect repetitive structures that cannot be captured by the first
rule, the original subtrees cannot be reconstructed using this rule.

3. Rule 3 detects similar subtrees that may not have the same exact method
calls, i.e. one subtree may include one or more method calls than the other.
In this case, the compaction is done by using the subtree that contains more
method calls.

4. Rule 4 targets the compaction of recursive method calls by combining differ-
ent recursive calls into one node.

In [8], Wang et al. proposed a new approach for threat model-driven security testing
in order to detect threats at runtime. The approach uses UML sequence diagrams in

256 L. Alawneh and A. Hamou-Lhadj

order to model threats to security policies. A security policy defines what actions
should be permitted or refused by the system. In the design phase, threat scenarios are
constructed using sequence diagrams. These scenarios depict any expected threat to
the system. . In order to reduce the size of the trace, the source code is only instru-
mented with essential information relevant to threat scenarios. Finally, these con-
structed scenarios are used to verify if any execution trace matches any of the threat
scenarios.

Salah et al presented a study [9] that targets program comprehension. It presents a
hierarchy of dynamic views composed of different tools for program execution trace
analysis. The hierarchy includes feature-interaction, feature-implementation, class-
interaction, and object-interaction views. In the same field of program comprehen-
sion, Apiwattanapong et al. [10] proposed a new approach for impact analysis of
software changes based on dynamic analysis. The presented technique uses only es-
sential dynamic information collected from method-call execution traces.

Finally, Hamou-Lhadj and Lethbridge [11] presented a technique for large execu-
tion trace summarization that can be applied to enable top-down analysis of traces as
well as the recovery of the behavioural design model of the system. Additionally, the
paper proposes a new metric for detecting utility methods which are considered as
implementation details that can be removed in the process of abstracting out the main
content for large traces.

2.3 Inter-process Level Traces

Inter-process communication execution traces capture the interactions among differ-
ent processes in a software system. Processes may reside on the same computer or
different computers. Also, this type of traces captures the communication among
threads living within the same process. The main challenge when analyzing this type
of execution traces, in addition to size and complexity, is that different executions for
the same scenario could generate different traces, which makes it difficult to study
this type of traces. The variation in the generated execution traces is due to the non-
deterministic behaviour of multi-threaded applications.

Moe et al. [12] apply dynamic analysis through runtime execution traces in order to
understand the behaviour of distributed software systems. They propose a method to
support the understanding of distributed systems based on the analysis of execution
traces at the remote procedure calls level. Also, the work provides a tool for the visu-
alization of the processed execution traces. According to the authors, this work, when
applied during the maintenance phase, can help in detecting design flaws, configura-
tion and performance problems.

Bensalem et al. [13] presented an algorithm that uses a single execution trace of
multithreaded programs in order to detect occurrences of deadlocks. An advantage of
the proposed algorithm is the ability to detect deadlocks in running programs even
when examining a deadlock-free execution trace.

2.4 System Call Level Traces

A system-call is a request to the kernel by a user-level program in order to be permit-
ted to perform a set of predefined operations that the requesting program does not

 Execution Traces: A New Domain That Requires the Creation 257

possess the required permissions to execute on its own. A system call trace is the
sequence of calls made to the system by a running process.

System-call traces can be used to detect and control programs by verifying that
each system call conforms to a policy that confirms a program’s normal behaviour.
Many research works on intrusion detection such as [14-16] use system-call level
traces in order to detect and determine anomaly behaviour.

Another application for system-call traces is performance monitoring. Burns et al.
[17] used system call execution traces to extract the logical block addresses of a file
which are generated over a long period of time in order to evaluate the file system
performance.

2.5 Execution Traces for Performance Analysis

The increasing size and complexity of software systems require planning for better
memory management and CPU processing times. This led to the development of
software analysis tools, usually known as profilers, which help in pinpointing execu-
tion bottlenecks and aid code optimization consequently. Moreover, the analysis pro-
vided by these tools can benefit in decreasing the execution time and reducing the
resource utilization such as physical and virtual memory. The main weakness of this
type of tools is the overhead introduced from the statically instrumented executed
statements. However, Dynamic instrumentation [18] can be used in order to obtain a
very low profiling overhead.

Harkema et al. [19] presented a Java Performance Monitoring Toolkit (JPMT) for
analyzing the performance of Java applications. It uses event traces such as thread
creation, method invocations and locking contention which are annotated by perform-
ance attributes such as timestamps in case of method invocations. Instrumentation
overhead is overcome by only instrumenting for the types of events requested by the
user. Additionally, JPMT supports visualization of event traces and provides the abil-
ity of querying for certain types of events.

In his work [20], Putrycz presents a novel approach for analyzing performance in
COTS-based systems which uses low-level trace analysis in order to understand the
interactions between the communicating components. Pahl et al [21] presents a
service-specific approach for performance evaluation of model-driven developed
services. This work presents a new approach for instrumentation of model-based
languages in order to collect performance-relevant time information at execution time
from specific model elements such as services and flow operators.

3 Existing Metamodels

There exist several metamodels that are used to capture runtime execution traces such
as Compact Trace Format (CTF) [28] and UML [3]. UML sequence diagrams can be
used to capture procedure calls among different objects. The problem with the exist-
ing metamodels is their inability to model all types of execution traces captured from
different software architectures and the lack of support to trace compaction tech-
niques. In this section, we present some of the existing metamodels that are being
used or can be used to model different types of execution traces.

258 L. Alawneh and A. Hamou-Lhadj

3.1 Compact Trace Format

Hamou-Lhadj et al. [28] developed a metamodel called the Compact Trace Format
(CTF) to model traces of routine (method) calls. CTF was designed to deal with the
enormous size of typical traces based on the idea that dynamic call trees can be turned
into ordered directed acyclic graphs, where repeated sub-trees are factored out. CTF
supports traces defined at different levels of abstraction including object, class and
package level. It also supports the specification of threads of execution. Additional
information such as timestamps and routine execution time are added to enable profil-
ers to use CTF.

Trace data conforming to CTF can be expressed using GXL [29] or any other data
‘carrier’ language. However, the authors suggest using a compact representation in
order to support the compactness objective of CTF. CTF is lossless such that the
original trace can be reconstructed from its compact form.

3.2 Unified Modeling Language

UML is a modeling language adopted by OMG in 1997 that enables software design-
ers to specify, visualize, and document software models. These models are abstract
representations of the implementation details of software systems. The UML meta-
model is based on the Meta Object Facility [30] (MOF) language. MOF defines an
abstract language and framework for specifying, constructing and managing technol-
ogy neutral metamodels.

UML diagrams are classified into two categories: structural and behavioural dia-
grams. The latter includes a subset known as interaction diagrams. The structural
diagrams include those that capture the static structure of software systems such as
class and package diagrams. The class and package diagrams help in building meta-
models that capture execution traces. On the other hand, behavioural diagrams depict
the dynamic behaviour of software systems. Behavioural diagrams include use case
diagram, activity diagram, state machine diagram, sequence diagram and others.

The sequence diagram shows object interactions arranged in a time sequence. Se-
quence diagrams identify the communication required to fulfill an interaction. More-
over, they show the objects that participate in an interaction and the messages used to
trigger the interactions among the objects.

There exist some research works that used UML sequence diagram to model run-
time execution traces. Briand et al [31] proposed a framework for reverse engineering
of UML sequence diagrams using execution traces. This work defines a metamodel
for execution traces and maps the execution trace elements to its corresponding se-
quence diagram elements. The work uses code instrumentation to probe the parts of
code that will be used to generate the execution trace. In [32], Delamare et al. used
UML 2.0 sequence diagrams to capture the program state from its execution traces for
the purpose of program understanding.

In [33], the authors used UML State Machine diagrams as the basis for their ap-
proach to runtime verification of Java programs. The approach studies the temporal
order of message receiving based on consistency checking between the behaviour of
state machine diagrams and the program execution traces.

 Execution Traces: A New Domain That Requires the Creation 259

3.3 Knowledge Discovery Metamodel

The Knowledge Discovery Metamodel (KDM) [1] is a metamodel that targets a wide-
spread set of software applications, platforms and programming languages such as
modern enterprise applications which involve multiple technologies and programming
languages. The goal of KDM is to facilitate the integration between different tools
that capture information about complex enterprise applications. The structure of KDM
offers a common interchange format, using XMI schema, which allows interoperabil-
ity between existing tools and their models. Moreover, KDM captures the physical
and logical software assets at various levels of abstraction as entities and relations.
This nominates it as a favorable basis for different software domains.

KDM is designed based on the separation of concerns principle in order to enable
different compliant tools to support the same or compatible metamodel subsets. This
modular structure of the metamodel allows a tool vendor to select only its desired or
needed parts of the metamodel. Furthermore, the structure of KDM consists of differ-
ent packages that represent each domain in enterprise applications. This modular
structure allows for the extensibility of the KDM metamodel by adding new domains
to the metamodel as needed.

This structure of KDM means that users need only to learn about the domain of
their interest. For example, the Structural domain provides users with information
about the architectural elements from the source code of the target system. On the
other hand, the Business Rules domain provides users with behavioural elements of
the system such as features or process rules.

The KDM metamodel is organized in four different layers. The KDM infrastruc-
ture layer defines the basis for the KDM metamodel. Its packages are used by the
packages in the other layers. The Program Elements Layer defines a large set of meta-
model elements whose purpose is to provide a language-independent intermediate
representation for various constructs determined by common programming languages.
The Runtime Resource Layer describes common patterns for representing the operat-
ing environment of existing software systems. Finally, the Abstraction Layer defines
a set of metamodel elements whose purpose is to represent domain-specific and appli-
cation specific abstractions, as well as the engineering view of the existing software
system.

4 Proposed Execution Trace Metamodel

Runtime execution traces represent a separate domain in software modernization.
They provide proper understanding of the different parts of the system under study.
Also, they can facilitate different software maintenance and performance monitoring
activities. Execution traces may exist in different levels of abstraction. The objective
of this work is to support execution traces in all levels of abstraction and to define a
standardized form for execution traces that supports meaningfulness, abstraction and
expressiveness.

Execution traces can be generated using a technique known as program instrumen-
tation. Instrumentation of the source code should be performed properly in order to
generate an execution trace, at a certain level of abstraction, which can be applied
feasibly in order to achieve the goal of the analysis task.

260 L. Alawneh and A. Hamou-Lhadj

The proposed metamodel should be flexible to cover the aforementioned types of
execution traces. Therefore, it should be based on a metamodel that supports extensi-
bility in order to cope with newer types of traces. Our discussion on KDM shows that
it can be a proper candidate for our proposed metamodel because of the following
advantages:

1. KDM is a metamodel that targets a widespread set of software applications, plat-
forms and programming languages such as modern enterprise applications which
involve multiple technologies and programming languages.

2. Separation of concerns concept. This helps in extending KDM to support differ-
ent domains by adding new packages to the metamodel.

3. KDM uses the XMI schema to store the software artifacts. XMI is an OMG stan-
dard for exchanging metadata information via Extensible Markup Language
(XML). It can be used for any metadata whose metamodel can be expressed in
Meta-Object Facility (MOF) such as UML.

4. KDM captures the physical and logical software assets at various levels of ab-
straction as entities and relations.

5. KDM metamodel defines program element entities and their relationships which
can play a main role in building a comprehensive execution trace metamodel.
Executed traces can be mapped easily to their corresponding program elements
since KDM assigns a unique identifier for each program element.

We are interesed in the KDM Runtime Resource Layer because it represents the dy-
namic structures, instances of logical entities and their relationships, which exist at
runtime such as processes and threads. Therefore, a new package to represent the
Runtime Execution traces can be created in this layer. Figure 1 depicts the structure of
KDM packages along with our new Trace package that will represent the execution
traces domain.

The advantages of our approach are manifold and can be summarized as:

1. Our metamodel will utilize the structure of KDM. Therefore, runtime execution
traces can be exchanged easily among different analysis tools.

2. The new Trace package will reuse various KDM packages such as Core, Code
and Action.

3. The execution trace model can follow the Directed Acyclic Graph structures.
Therefore, different graph reduction and summarization techniques can be ap-
plied to our metamodel.

4. Polymorphism and dynamic binding in object oriented systems will be supported
in our metamodel easily since KDM assigns a unique identifier to every element
in the source code. Therefore, each method will be instrumented with its KDM
unique identifier. Thus, a method call in the execution trace can be linked to its
class using its unique identifier.

5. Processes and Threads are already supported in KDM and will be reused in our
Trace package.

6. The Trace package can be extended to support newer types of execution traces
easily due to the extensibility nature of KDM.

7. The new metamodel can be integrated easily with several visualizations schema
such as GXL.

 Execution Traces: A New Domain That Requires the Creation 261

Infrastructure Layer

Abstractions Layer

Program Elements Layer

Runtime Resource Layer

Core

Source
kdm

Code Actions

Data
(Data domain)

Event
(Event

domain)

UI
(UI domain)

Platform
(Platform domain)

Trace
(Execution trace

domain)

Conceptual
(Business rules domain)

Build
(Build domain)

Structure
(Structure domain)

Fig. 1. Updated KDM Structure with Trace Package

5 Conclusion and Future Work

This paper presented runtime information through execution traces as a new domain in
software engineering supported by several research studies that target or utilize execu-
tion traces to achieve their objectives. We discussed a few metamodels that are used to
capture execution traces. Our discussion showed that the available metamodels lack the
possibility of capturing all types of execution traces. Moreover, these metamodels
except for [28] do not apply trace compaction techniques. Finally, we proposed build-
ing a new metamodel based on KDM for its numerous advantages. The resulting
metamodel should be able to model any type of execution traces in a compact form.

Our future work will focus on building the new metamodel for the execution trace
domain. We will continue studying all the available types of execution traces in order
to support them in our metamodel.

References

1. Object Management Group. Knowledge Discovery Metamodel: KDM Version 1.1 Beta 3
(March 2008)

2. OMG: Object Management Group, http://www.omg.org/

262 L. Alawneh and A. Hamou-Lhadj

3. Object Management Group. Unified Modeling Language: Infrastructure and Superstruc-
ture, Version 2.0, formal/2007-11-04 (November 2007)

4. Zhang, X., Gupta, R.: Whole execution traces and their applications. ACM Transactions on
Architecture and Code Optimization (TACO) 2(3), 301–334 (2005)

5. Cleve, H., Zeller, A.: Locating causes of program failures. In: ACM/IEEE International
Conference on Software Engineering, ICSE (2005)

6. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature Location via Information Re-
trieval based Filtering of a Single Scenario Execution Trace. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, pp. 234–243
(2007)

7. Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S., Inoue, K.: Extracting Sequence Dia-
gram from Execution Trace of Java Program. In: Proceedings of the Eighth International
Workshop on Principles of Software Evolution, pp. 148–154 (2005)

8. Wang, L., Wong, E., Xu, D.: A Threat Model Driven Approach for Security Testing. In:
Proceedings of the Third International Workshop on Software Engineering for Secure Sys-
tems, pp. 111–112 (2007)

9. Salah, M., Mancoridis, S.: A Hierarchy of Dynamic Software Views: From Object-
Interactions to Feature-Interactions. In: Proceedings of the 20th IEEE International Con-
ference on Software Maintenance, pp. 72–81 (2004)

10. Apiwattanapong, T., Orso, A., Harrold, M.: Efficient and precise dynamic impact analysis
using execute-after sequences. In: Proceedings of the 27th international conference on
Software engineering (2005)

11. Hamou-Lhadj, A., Lethbridge, T.: Summarizing the Content of Large Traces to Facilitate
the Understanding of the Behaviour of a Software System. In: Proceedings of the 14th
IEEE International Conference on Program Comprehension, pp. 181–190 (2006)

12. Moe, J., Carr, D.: Understanding Distributed Systems via Execution Trace Data. In: Pro-
ceedings of the 9th International Workshop on Program Comprehension, pp. 60–67 (2001)

13. Bensalem, S., Havelund, K.: Scalable deadlock analysis of multi-threaded programs. In:
Proceedings of the Parallel and Distributed Systems: Testing and Debugging (PADTAD)
Track of the 2005 IBM Verification Conference. Springer, Heidelberg (2005)

14. Varghese, S.M., Jacob, K.P.: Anomaly Detection Using System Call Sequence Sets. Jour-
nal of Software 2(6) (2007)

15. Fetzer, C., Suesskraut, M.: SwitchBlade: Enforcing Dynamic Personalized System Call
Models. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems (2008)

16. Goel, A., Feng, W., Maier, D.: Automatic high-performance reconstruction and recovery.
The International Journal of Computer and Telecommunications Networking 51(5), 1361–
1377 (2007)

17. Burns, R., Rees, R., Peterson, Z., Darrell, D.E.: Allocation and Data Placement Using Vir-
tual Contiguity, iNIST/SSRC/01-001, pp. 1–6 (2001)

18. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production
systems. In: Proceedings of the USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference (2004)

19. Harkema, M., Quartel, D., van der Mei, R., Gijsen, B.: JPMT: a Java performance moni-
toring tool. In: Proceedings of the 13th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation (2003)

20. Putrycz, E.: Using trace analysis for improving performance in COTS systems. In: Pro-
ceedings of the 2004 conference of the Centre for Advanced Studies on Collaborative re-
search, pp. 68–80 (2004)

21. Pahl, C., Boskovic, M., Hasselbring, W.: Model-Driven Performance Evaluation for Ser-
vice Engineering. In: Proceedings of the 2nd European Conference on Web Services
Workshop on Web Services Technology (2007)

 Execution Traces: A New Domain That Requires the Creation 263

22. McGavin, M., Wright, T., Marshall, S.: Visualisations of Execution Traces (VET): An In-
teractive Plugin-Based Visualisation Tool. In: Proceeding of the 7th Australasian User In-
terface Conference, pp. 153–160 (2006)

23. Fischer, M., Oberleitner, J., Gall, H., Gschwind, T.: System Evolution Tracking through
Execution Trace Analysis. In: Proceedings of the 13th International Workshop on Program
Comprehension, pp. 237–246 (2005)

24. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van Wijk, J.: Exe-
cution trace analysis through massive sequence and circular bundle views. Journal of Sys-
tems and Software 8(12) (2008)

25. de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: An Extensible Environment for Visual-
izing Multi-threaded Programs Executions. In: Proceedings of the 6th International Euro-
Par Conference on Parallel Processing, pp. 133–140 (2000)

26. Roberts, J., Zilles, C.: TraceVis: An Execution Trace Visualization Tool. In: Proceedings
of the Workshop on Modeling, Benchmarking, and Simulation (2005)

27. Malnati, G., Cuva, C.M., Barberis, C.: JThreadSpy: teaching multithreading programming
by analyzing execution traces. In: Proceedings of the Parallel And Distributed Systems:
Testing and Debugging Conference (2007)

28. Hamou-Lhadj, A., Lethbridge, T.C.: A Metamodel for Dynamic Information Generated
from Object-Oriented Systems. Electronic Notes Theoretical Computer Science, vol. 94,
pp. 59–69. Elsevier Press, Amsterdam (2004)

29. Winter, A., Kullbach, B., Riediger, V.: An Overview of the GXL Graph Exchange Lan-
guage, Revised Lectures on Software Visualization. In: International Seminar, pp. 324–336
(2001)

30. Object Management Group. Meta Object Facility (MOF) Specification (2000)
31. Briand, L.C., Labiche, Y., Miao, Y.: Towards the Reverse Engineering of UML Sequence

Diagrams. In: Proceedings of the 10th Working Conference on Reverse Engineering
(2003)

32. Delamare, R., Baudry, B., Traon, Y.L.: Reverse-engineering of UML 2.0 Sequence Dia-
grams from Execution Traces. In: Workshop on Object-Oriented Reengineering at ECOOP
(2006)

33. Li, X., Qiu, X., Wang, L., Lei, B., Wong, W.E.: UML State Machine Diagram Driven
Runtime Verification of Java Programs for Message Interaction Consistency. In: Proceed-
ings of the 23rd Annual ACM Symposium on Applied Computing (ACM SAC 2008),
pp. 384–389 (2008)

Software Performability Measurement
Based on Availability Model with

User-Perceived Performance Degradation

Koichi Tokuno and Shigeru Yamada

Department of Social Management Engineering,
Graduate School of Engineering, Tottori University

4-101, Koyama, Tottori-shi, 680-8552 Japan
{toku,yamada}@sse.tottori-u.ac.jp

Abstract. This paper discusses software performability evaluation con-
sidering the real-time property. We assume that the software system has
two operational states from the viewpoint of the end users: one is op-
erating with the desirable performance level according to specification
and the other is with degraded performance level. The time-dependent
behavior of the system is described by the Markovian software avail-
ability model with performance degradation. Assuming that the system
can process the multiple tasks simultaneously, we analyze the distribu-
tion of the number of tasks whose processes can be completed within
the processing time limit with the infinite server queueing model. We
derive several software performability measures; these are given as the
functions of time and the number of debugging activities. Finally, we
illustrate several numerical examples of the measures to investigate the
impact of consideration of the performance degradation on the system
performability evaluation.

Keywords: performability, real-time property, performance degrada-
tion, software availability model, infinite-server queueing model.

1 Introduction

The studies on performability evaluation methods for hardware-oriented com-
puting systems have much been discussed. However, on the other hand, most of
studies on software-oriented reliability evaluation have treated only the inherent
reliability characteristics such as the residual fault content, the mean time be-
tween software failures (MTBSF), and the software reliability function. However,
recently, software-conscious approaches extended to performability evaluation
have also increased [1,2,3].

Most of the existing software-conscious approaches are discussed on the basis
of performability measures in steady states and assume that the probabilistic or
stochastic characteristics in system failure and restoration do not change even
though the system is debugged or refreshed, i.e., the system returns to the initial
condition in terms of the failure and restoration characteristics, neither better
nor worse states. As to this point, the analytical framework in the above studies

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 264–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Software Performability Measurement Based on Availability Model 265

is basically similar to the hardware-conscious approach even though the authors
of previous works often say that their works are software-oriented. Traditional
stochastic software reliability modeling often considers the dynamic reliability/
performance growth process. Musa [4] says that the above mention is one of main
differences from the modeling for the hardware system.

In this paper, we discuss the user-oriented performability evaluation method
for the software system considering the performance degradation in operation;
this is the different approach from [1,2,3]. In particular, we consider the real-time
property; this is defined as the attribute that the system can complete the task
within the stipulated response time limit [5]. We assume that the software sys-
tem can process the multiple tasks simultaneously and that the task arrival pro-
cess follows a nonhomogeneous Poisson process (NHPP). Then the phenomenon
of performance degradation, the dynamic software reliability growth, and the
upward tendency of difficulty in debugging are described by the user-oriented
Markovian software availability model [6]. The stochastic behavior of the num-
ber of tasks whose processes can be complete within the processing time limit is
modeled with the infinite-server queueing model [7].

The organization of the rest of the paper is shown as follows: Section 2 states
the Markovian software availability model with performance degradation. Sec-
tion 3 defines the operating regulation of the system and analyzes the distribution
of the number of tasks whose processes are complete within the processing time
limit up to a given time point. Section 4 derives several software performability
measures from the model. The measures are given as the functions of time and
the number of debuggings. Section 5 illustrates the numerical example of the
measures and examines the software performability analysis. Finally, Section 6
summarizes the conclusion of the paper.

2 Software Availability Model with Performance
Degradation

We make the following assumptions for software availability modeling with per-
formance degradation based on the model of [6]:

AI-1. When the software system is operating, the time-interval of operation with
performance according to specification, Ts, and the holding time of perfor-
mance degradation, Td, follow the exponential distributions with means 1/θ
and 1/η, respectively.

AI-2. The software system breaks down and starts to be restored as soon as a
software failure occurs, and the system cannot operate until the restoration
action completes.

AI-3. The restoration action includes the debugging activity and software relia-
bility growth occurs if a debugging activity is perfect.

AI-4. Consider the imperfect debugging environment where the debugging activ-
ity may fail, i.e., it is probabilistic whether the debugging activity succeeds
or fails. The debugging activity is perfect with perfect debugging probability

266 K. Tokuno and S. Yamada

λ1λ0

W
0

W
1

W
n

λn+1

θ

η

θ

η

θ

η

θ

η

R
0

R
1 R

n+1
R

nL
0

λn

aμ1aμ0 aμn+1aμn

bμ1bμ0 bμn+1bμn

λ0
L

1 λ1
L

n λn
L

n+1 λn+1

W
n+1

Fig. 1. Sample state transition diagram of X(t)

a (0 < a < 1), while imperfect with probability b(= 1 − a). A perfect debug-
ging activity corrects and removes one fault from the system.

AI-5. When n faults have been corrected, the next software failure-occurrence
time-interval, Un, and the restoration time, Vn, follow the exponential dis-
tributions with means 1/λn and 1/μn, respectively.

AI-6. Ts, Td, Un, and Vn are mutually independent.

We introduce a stochastic process {X(t), t ≥ 0} representing the user-perceived
state of the software system at the time point t. The state space of the process
{X(t), t ≥ 0} is defined as follows:

W = {Wn : n = 0, 1, 2, . . .}: the system is operating with performance according
to specification (desirable operational state),

L = {Ln : n = 0, 1, 2, . . .}: the system is operating with degraded performance,
R = {Rn : n = 0, 1, 2, . . .}: the system is utterly inoperable and restored,

where n = 0, 1, 2, . . . denotes the cumulative number of corrected faults.
Figure 1 illustrates the sample state transition diagram of X(t).

Let PWi,A(t) ≡ Pr{X(t) = A|X(0) = Wi} (A ∈ {Wn, Ln, Rn}; i, n =
0, 1, 2, . . . ; i ≤ n) be the state occupancy probability representing the con-
ditional probability that the system is in state A at the time point t on the
condition that the system was in state Wi at time point t = 0. Then we can
obtain PWi,A(t)’s as

PWi,Wn(t)≡Pr{X(t) = Wn|X(0) = Wi}

= B0
i,ne−(λn+θ+η)t +

n∑
m=i

[
B1

i,n(m)e−d1
mt + B2

i,n(m)e−d2
mt

]
(i, n = 0, 1, 2, . . . ; i ≤ n)

d1
i

d2
i

}
=

1
2

[
(λi + μi) ±

√
(λi + μi)2 − 4aλiμi

]
(double signs in same order)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (1)

PWi,Rn(t) ≡ Pr{X(t) = Rn|X(0) = Wi}

=
gi,n+1(t)

aμn
(i, n = 0, 1, 2, . . . ; i ≤ n) , (2)

Software Performability Measurement Based on Availability Model 267

Processing Time Limit
(Random Variable)
Tr

Un

Arrival Rate
 ω(τ)

Software Failure Time
(Random Variable)

: process complete
: process canceled

Processing
Time
(Random
Variable)

Time

Gateway

Y L

Y W

Y W

Y W

Y L

Y W

Y L

Fig. 2. Configuration of task processing

PWi,Ln(t) ≡ Pr{X(t) = Ln|X(0) = Wi}
= Gi,n(t) − Gi,n+1(t) − PWi,Wn(t) − PWi,Rn(t)

(i, n = 0, 1, 2, . . . ; i ≤ n) , (3)

respectively, where B0
i,n, B1

i,n(m), and B2
i,n(m) (m = i, i + 1, . . . , n) in Eq. (1)

are constant coefficients, Gi,n(t) in Eq. (3) is the distribution function of the first
passage time of X(t) from state Wi to state Wn (i ≤ n), and gi,n(t) ≡ dGi,n(t)/dt
in Eq. (2) is the density function of Gi,n(t) (see [6] for the details of the derivation
processes of PWi,A(t)’s).

3 Model Description and Analysis for Task Processing

We make the following assumptions for system’s task processing:

AII-1. The number of tasks the system can process simultaneously is sufficiently
large.

AII-2. The process {N(t), t ≥ 0} representing the number of tasks arriving at
the system up to the time t follows the NHPP with the arrival rate ω(t) and
the mean value function Ω(t) ≡ E[N(t)] =

∫ t

0 ω(x)dx.
AII-3. Each task has a processing time limit, Tr, which follows a general distri-

bution whose distribution function is denoted as FTr (t) ≡ Pr{Tr ≤ t}.
AII-4. The processing times of a task in state W , YW , and in state L, YL, are

distributed generally; their distribution functions are denoted as FYW (t) ≡
Pr{YW ≤ t} and FYL(t) ≡ Pr{YL ≤ t} (E[YW] < E[YL]), respectively. Each

268 K. Tokuno and S. Yamada

of the processing times is independent. The distribution of the processing
time is determined by the state of the system at the time point when the
corresponding task has just arrived at the system. In other words, once a
task process starts, its distribution does not vary even though the state of
the system in operation may change afterward. YW , YL, and Tr are mutually
independent.

AII-5. When the system causes a software failure in task processing or the pro-
cessing times of tasks exceed the processing time limit, the corresponding
tasks are canceled.

Here we derive the distribution of the number of tasks whose processes are
complete within the processing time limit. Figure 2 illustrates the configuration
of the system’s task processing we consider. Hereafter, we set the time origin
t = 0 at the time point when the debugging activity is complete and i faults are
corrected.

Let {Z1
i (t), t ≥ 0} be the stochastic process representing the cumulative

number of tasks whose processes can be complete within the processing time
limit out of the tasks arriving up to the time t. By conditioning with {N(t) = k},
we obtain the probability mass function of Z1

i (t) as

Pr{Z1
i (t) = j} =

∞∑
k=0

Pr{Z1
i (t) = j | N(t) = k}e−Ω(t) [Ω(t)]k

k!
. (4)

From Fig. 2, the probabilities that the process of an arbitrary task is complete
within the processing time limit when the system is in state Wn and state Ln

are given by

βWn ≡ Pr{YW < Un, YW < Tr | X(t) = Wn} =
∫ ∞

0
e−λnyFTr (y)dFYW (y), (5)

βLn ≡ Pr{YL < Un, YL < Tr | X(t) = Ln} =
∫ ∞

0
e−λnyFTr (y)dFYL(y), (6)

respectively, where we denote F (·) ≡ 1 − F (·). Furthermore, from the property
of the NHPP, given {N(t) = k}, k arrival times of tasks are independent and
identically distributed random variables having the following probability density
function [7]:

f(x) =
ω(x)
Ω(t)

(0 ≤ x ≤ t) . (7)

Therefore, the probability that the process of an arbitrary task having arrived
up to the time t is complete within the processing time limit is obtained as

p1
i (t) =

1
Ω(t)

∞∑
n=i

∫ t

0

[
βWnPWi,Wn(x) + βLnPWi,Ln(x)

]
ω(x)dx , (8)

from the infinite-server queueing theory [7]. Then from assumption AII-4,

Software Performability Measurement Based on Availability Model 269

Pr{Z1
i (t) = j | N(t) = k} =

(
k

j

)
[p1

i (t)]
j [1 − p1

i (t)]
k−j

(j = 0, 1, 2, . . . , k) , (9)

where
(
k
j

)
≡ k!/[(k − j)!j!] denotes the binomial coefficient. Equation (9) means

that, given that {N(t) = k}, the number of tasks whose processes can be com-
plete within the processing time limit follows the binomial process with mean
kp1

i (t). Accordingly, from Eq. (4) the distribution of Z1
i (t) is given by

Pr{Z1
i (t) = j} = e−Ω(t)p1

i (t) [Ω(t)p1
i (t)]

j

j!
. (10)

Equation (10) means that {Z1
i (t), t ≥ 0} follows the NHPP with the mean value

function Ω(t)p1
i (t).

4 Derivation of Software Performability Measures

The expected number of tasks completable out of the tasks arriving up to the
time t is given by

Λ1
i (t) ≡ E[Z1

i (t)] =
∞∑

n=i

∫ t

0

[
βWnPWi,Wn(x) + βLnPWi,Ln(x)

]
ω(x)dx . (11)

Furthermore, the instantaneous task completion ratio is obtained as

υ1
i (t) ≡ dΛ1

i (t)
dt

/
ω(t) =

∞∑
n=i

[
βWnPWi,Wn(t) + βLnPWi,Ln(t)

]
, (12)

which represents the ratio of the number of tasks completed within the processing
time limit to one arriving at the system per unit time at the time point t. As to
p1

i (t) in Eq. (8), we can give the following interpretations:

p1
i (t) =

E[Z1
i (t)]

E[N(t)]
. (13)

That is, p1
i (t) is the cumulative task completion ratio up to the time t.

We should note that it is too difficult to use Eqs. (11)–(13) practically since
this model assumes the imperfect debugging environment. However, we can con-
vert Eqs. (11)–(13) into the functions of the number of debuggings, l, i.e., we
obtain

Λ1(t, l) =
l∑

i=0

(
l

i

)
aibl−iΛ1

i (t) (t ≥ 0; l = 0, 1, 2, . . .) , (14)

υ1(t, l) =
l∑

i=0

(
l

i

)
aibl−iυ1

i (t) (t ≥ 0; l = 0, 1, 2, . . .) , (15)

p1(t, l) =
1

Ω(t)

l∑
i=0

(
l

i

)
aibl−iΛ1

i (t) (t ≥ 0; l = 0, 1, 2, . . .) , (16)

270 K. Tokuno and S. Yamada

0 100 200 300 400
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

υ1(t,l)

Time

αYW
=1000.0, αYL

=500.0

αYW
=846.2, αYL

=550.0

αYW
=1285.7, αYL

=450.0

Fig. 3. Dependence of υ1(t, l) on the values of αYW and αYL , given 1/αYW + 1/αYL =
0.003 (l = 0, θ = 5.0, η = 48.0, αTr = 400.0; a = 0.8, D = 0.246, c = 0.94, E =
1.114, r = 0.96)

respectively. Equations (14)–(16) represent the expected cumulative number of
tasks completable, the instantaneous and the cumulative task completion ratios
at the time point t, given that the l-th debugging is complete at time point t = 0,
respectively. It should be noted that Eq. (15) has no bearing on the task arrival
process, Ω(t).

5 Numerical Example

Here we apply the model of Moranda [8] to the hazard rate λn and the restoration
rate μn in the numerical example, i.e., λn ≡ Dcn (D > 0, 0 < c < 1) and μn ≡
Ern (E > 0, 0 < r ≤ 1), respectively. For the distributions of the processing
times in state W , FYW (t), and in state L, FYL(t), and the processing time limit,
FTr (t), we apply the gamma distribution of order two denoted by

FI(t) ≡ H(t|αI) = 1 − (1 + αIt)e−αI t

(t ≥ 0; αI > 0; I ∈ {YW , YL, Tr}) , (17)

where αI denotes the scale parameter, and the mean and the variance are given
by 2/αI and 2/(αI

2), respectively.
Figure 3 shows the dependence of the instantaneous task completion ratio,

υ1(t, l), in Eq. (15) on the values of αYW and αYL , given the arithmetic average
of the means of the processing times, i.e., the value of (2/αYW + 2/αYL)/2 is
constant. This figure displays that the case where the difference of performance
levels between state W and state L becomes smaller decreases the performability
evaluation of the whole system.

Software Performability Measurement Based on Availability Model 271

6 Concluding Remarks

In this paper, we have constructed the stochastic performability evaluation model
for the software system with processing time limit, considering the performance
degradation in system operation. Assuming that the cumulative number of the
tasks arriving at the system up to a given time point follows the NHPP, we
have analyzed the distribution of the number of tasks whose processes can be
complete with the concept of the infinite-server queueing model. From the model,
we have derived several software performability measures considering the real-
time property. They have been given as the functions of time and the number of
debuggings. We have also illustrated the numerical example of these measures.

Acknowledgments. This work was supported in part by Grants-in-Aid for Sci-
entific Research (C) of Japan Society for the Promotion of Science under Grant
No. 20510136 and Takahashi Industrial and Economic Research Foundation.

References

1. Okamura, H., Miyahara, S., Dohi, T.: Dependability Analysis of a Transaction-
Based Multi-Server System with Rejuvenation. IEICE Trans. Fundamentals E86-A,
2081–2090 (2003)

2. Eto, H., Dohi, T.: Analysis of a Service Degradation Model with Preventive Rejuve-
nation. In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006. LNCS, vol. 4328,
pp. 17–29. Springer, Heidelberg (2006)

3. Schwefel, H.-P., Antonios, I.: Performability Models for Multi-Server Systems with
High-Variance Repair Durations. In: 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pp. 770–779 (2007)

4. Musa, J.D.: Software Reliability Engineering. McGraw-Hill, New York (1999)
5. Muppala, J.K., Woolet, S.P., Trivedi, K.S.: Real-Time-Systems Performance in the

Presence of Failures. Comput. 24, 37–47 (1991)
6. Tokuno, K., Yamada, S.: User-Perceived Software Service Availability Modeling with

Reliability Growth. In: Nanya, T., Maruyama, F., Pataricza, A., Malek, M. (eds.)
ISAS 2008. LNCS, vol. 5017, pp. 75–89. Springer, Heidelberg (2008)

7. Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, San Diego
(2007)

8. Moranda, P.B.: Event-Altered Rate Models for General Reliability Analysis. IEEE
Trans. Reliability R-28, 376–381 (1979)

An Experimental Evaluation of Error Rate in a
Web Server System

Xiao Xiao and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, 739–8527 Japan

{xiaoxiao,dohi}@rel.hiroshima-u.ac.jp

Abstract. In this paper we focus on the relationship between the error
rate which is one of the representative reliability measures in Apache web
servers and the system parameters which reflect on the web server’s sys-
tem performance, and develop a probability model to describe it. More
specifically, we implement a simple client server system and carry out an
experiment to measure both the error rate and the system parameters.
As the result on quantitative evaluation of the proposed logit model, it
is shown that our model could fit the empirical error rate with varying
the number of threads.

Keywords: web server reliability, Apache web server, system param-
eters, error rate, measurement-based approach, logit model.

1 Introduction

In the informational society where internet is widely spreaded, a very impor-
tant issue is to keep the performance of web service systems. In this point of
view, quantitative evaluation of the workload becomes necessary in operational
web server performance assessment. Barford and Crovella [1] developed a tool
that automatically measures six metrics that characterize the web server’s work-
load such as the size of server file, the request size and so on. Hu, Nanda and
Yang [2] focused on the Apache server that can operate on a single processor or
4-CPU-SMP (symmetric multi-processor) system, and executed the experimen-
tal performance evaluation of the Apache web server. van der Mei, Hariharan
and Reeser [3] proposed an end-to-end performance evaluation model of the
web server system which is based on a tandem type of queueing model, and
investigated effectiveness of the model through simulation experiments. Nahum,
Barzilai and Kandlur [4] also evaluated the performance of www server on UNIX
platform, and developed a method that can efficiently reduce the server through-
put. Cao et al. [5] considered analytically a queueing model that evaluates the
performance of the web server, and derived the performance evaluation measures
such as the average response time and the blocking probability, etc.

In this paper, similar to Hu, Nanda and Yang [2], we consider a quantitative
evaluation of the Apache web server which is the most commonly used web server
software. Due in good part to the broad utilization of Apache web server, it is

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 272–279, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Experimental Evaluation of Error Rate in a Web Server System 273

considered that our challange in this paper may be capable of wide application.
Moreover, we choose Apache web server, but not IIS or AN HTTPD, also for the
following advantages; (i) it is a freeware, (ii) adequate responses for questions
by the users are easily available from the Apache community when any technical
problem occurred, (iii) the reliability as a server software is quite high, (iv) it
possesses a variety of technical functions, (v) it corresponds to many kinds of
operational circumstances. In this way, the Apache web server can demonstrate
an enough performance even as it is, but a higher performance can be attained
by ascertaining the bottleneck and by evaluating the performance through load
test. Sugiki, Kono and Iwasaki [6] showed that the server throughput can be
improved by the self-adjustment of the keep-alive time, and implemented it on
a library of the Apache web server. Though a lot of tools have been developed
up to now as load test tools, the Apache JMeter [7] is often used in the actual
performance assessment of server systems.

In general, there are three performance evaluation measures in the Apache
JMeter; mean response time, error rate and system throughput. In this paper,
we focus on the error rate to assess the reliability of the Apache web server sys-
tem. Unlike the general performance evaluation problem, there are very a few
works related to the web server reliability. Shereshevsky et al. [8] constructed a
simple client server system composed of two machines, and found the multifrac-
tal nature between software aging phenomenon [9] and the memory resource pa-
rameters. Also they examined the problem of forecasting the time to the system
failure. Gokhale, Vandal and Lu [10] applied a stochastic model which is called
stochastic reward net to carry out the throughput/reliability analysis based on
the architecture of the Apache web server. However in the previous works, the
system parameters which influence both the system performance and the error
rate were not clarified. Hence the quantitative evaluation model to describe the
error-occurrence mechanism of the web server system should be explored.

In this paper ↪ACwe take a measurement-based approach under the load test cir-
cumstance and propose a simple logit model which can describe the relationship
between the error rate and the system parameters. The logit model is the well-
known nonlinear regression model that is frequently used in the field of economet-
rics and the medical statistics. We construct an experiment system to measure the
system parameters under the assumption that multiple clients send HTTP (Hy-
pertext Transfer Protocol) requests to a web server randomly. We define the error
rate as a ratio of the number of failed requests recognized as time-out errors when
there is no response from the server for a constant response time period. Based on
the logit model and its related standard techniques for statistical inference, we es-
timate the model parameters and perform the goodness-of-fit test on it. The rest
part of this paper is organized as follows. In Section 2 we briefly explain the exper-
imental setup in our study and describe the data sets collected in the experiments.
Section 3 is spent for introduction of the logit model and its related parameter esti-
mation with the least squares principle. The goodness-of-fit test result is presented
in Section 4. Finally Section 5 contains some concluding remarks and the possible
directions to the future research.

274 X. Xiao and T. Dohi

Fig. 1. Experimental setup

2 Experiments

2.1 Experimental Setup

In our experimental setup, the client-server system consists of an Apache server
(version 2.2.4) on a Windows platform and a client connected via a local LAN.
The system components and system structure are illustrated in Figure 1. In this
experimental setup with only one client, we put the homepage, index.jsp, in the
home directory of the web server and use the Apache JMeter [7] to generate
HTTP requests that access the homepage randomly. In this way, we represent
an environment where multiple clients randomly access the web server. Basically,
there are three parameters we can use to control the workload of web server; (i)
number of threads (users), (ii) ramp-up period (in seconds) and (iii) loop count.
For instance, if these three parameters are set to be 20, 10 and 5, respectively,
then it means that 20 clients send HTTP requests 5 times severally while all the
100 requests are started within 10 seconds. In our experiments, we fix the ramp-
up period (in seconds) as 10 seconds and the loop count an infinity (”Forever”
checkbox is selected) meanwhile the number of threads is set to be 30, 40 and 50.
So, three kinds of workload environments are generated under this experiment.

2.2 Data Collection

We are interested in the error rate which is defined by

Ri =
the number of HTTP requests failed by time i

the number of HTTP requests generated by time i
, (1)

where the failed HTTP requests are those caused by the time-out error and i =
1, 2, . . . denote the discrete time index. The error rate is automatically recorded
on the Aggregate Report of the Apache JMeter, so we only need to collect the
data of system parameters that reflect on the web server’s performance. Since
we focus on the system parameters concerned with memory resource usage, we
employ the Performance, which is one of the Windows 2000 system tools, to
take log files of these system parameters. Table 1 presents 9 system parameters

An Experimental Evaluation of Error Rate in a Web Server System 275

Table 1. System parameters

AB (k = 1) size of the virtual memory available currently
CaB (k = 2) number of bytes currently in use by the system cache
CoB (k = 3) size of virtual memory that has been committed
PNA (k = 4) number of calls to allocate space in the system nonpaged pool
PNB (k = 5) number of bytes in the nonpaged pool
PPA (k = 6) number of calls to allocate space in the system paged pool
PPB (k = 7) number of bytes in the paged pool
PPRB(k = 8) size of paged pool resident in core memory
SCRB(k = 9) number of bytes of system code total bytes currentlyresident

in core memeory

which describe the momentary statement of the web server system, where for the
notational convenience, we denote AB ∼ SCRB as system parameters k = 1 ∼ 9
hereafter.

In our experiments, we set the operation time (time limit for web server system
working per experiment) as 30 minutes and take the record every 10 seconds.
Then since we obtain a sample with 180 data from one experiment, this procedure
is repeated for n = 30 times when the number of threads is set to 30, 40 or 50.
The main reason why the operation time is set to be 30 minutes is that the
error rate tends to converge to a constant value after a while, so we stop the
experiment every 30 minute which can be considered as a proper time limit.

3 Logit Model

3.1 Regression-Based Model

From the above discussion we know that system parameters concerned with
memory resource usage may reflect the total performance of the web server. On
the other hand, the error rate can be considered as one of the important reliabil-
ity measures of the web server. Then the question is what the dependence of the
system parameters on the error rate is. To this end, we propose a simple prob-
ability model to describe the relationship between multiple system parameters
and the error rate. It is worth mentioning that in our situation the usual linear
regression model is inappropriate because the error rate takes positive values less
than one. The logit model under consideration can represent the error rate as
a function of multiple system parameters used as explanatory variables and can
bridge between them.

Let Ri (0 ≤ Ri ≤ 1) and xi = (x0,i, x1,i, · · · , x9,i) denote the error rate and
the system parameter vector observed at time i (= 1, 2, · · ·) with x0,i = 1.
Then the error rate can be expressed as a function of system parameters by

Ri = R(xi) =
exp(βxT

i)
1 + exp(βxT

i)
, (2)

276 X. Xiao and T. Dohi

where β = (β0, β1, · · · , β9) is the regression coefficient and T means transposi-
tion. Next, applying the logit transformation to function Ri yields

Yi = Y (xi) = log
(

R(xi)
1 − R(xi)

)
. (3)

Based on the above transform, we consider the following linear regression model:

Yi = βxT
i + ε, (4)

where ε is the Gaussian error term. More formally, we make the following as-
sumptions:

(Assumption 1). The mean of error term is zero, i.e., E[ε] = 0.
(Assumption 2). The variance of error term is constant, i.e., Var[ε] = σ2.
(Assumption 3). The covariance of error term is zero, i.e., E[εiεi′] = 0 (i �=

i′, i = 1, · · · , n, i′ = 1, · · · , n).
(Assumption 4). The probability density function of ε is given by p(y) =

(2πσ2)−1/2 exp[−y2/2σ2].

At each observation time point, i = 1, 2, · · · , 180, we repeat to observe Yi and
xi n = 30 times and estimate the regression coefficients β by means of the
well-known mean squares error method. It is noted that this statistical estima-
tion method can be validated by the well-known Gauss-Markov Theorem, so an
estimate of regression coefficient β is given by the solution of

min
β

n∑
j=1

180∑
i=1

(
yi,j −

9∑
k=0

βkxk,i,j

)2

, (5)

where yi,j denotes the logit transformed value of the error rate observed at time
i in the jth experiment, while xk,i,j denotes the value of system parameter k
observed at time i in the jth experiment.

In order to predict the long-term behavior of the error rate, it is needed
to know the future values of system parameters. If the system parameters are
known in advance it is easy to estimate regression coefficients with the least
squares method. In the case where system parameters can not be observed, on
the other hand, we need to predict both of regression coefficients and the system
parameters. In our experiences through the experiments, it is found that the
system parameters, CoB, PPB and PPRB, almost take constant values, while
the other parameters tend to show non-constant trends with stationary trend. To
estimate the future system parameter values we apply a simple linear regression
model and use the estimated values to predict the long-term behavior of the
error rate.

Let xk,i denote the value of system parameter k observed at time i = 1, 2, · · · ,
180. Define the time vector I = (1, i) and assume that the system parameter is
a function of time i. Then xk,i takes the following form:

xk,i = αk · iT = αk,0 + I · αk,1, (6)

An Experimental Evaluation of Error Rate in a Web Server System 277

Table 2. RSS with monitoring system parameters

(1) no. threads = 30

RSS n= 5 n=10 n=15 n=20 n=25 n=30
SampleEva01 817.51 131.03 87.12 68.34 56.94 47.83
SampleEva02 1125.75 976.43 205.12 202.35 187.05 165.95
SampleEva03 2588.02 134.67 116.89 122.15 113.90 121.15

(2) no. threads = 40

RSS n= 5 n=10 n=15 n=20 n=25 n=30
SampleEva01 2340.30 144.59 87.86 85.10 79.26 78.93
SampleEva02 764.98 150.68 101.08 86.74 117.78 95.78
SampleEva03 1850.64 160.73 101.68 83.56 69.95 69.77

(3) no. threads = 50

RSS n= 5 n=10 n=15 n=20 n=25 n=30
SampleEva01 1069.71 182.56 161.20 160.84 141.05 149.22
SampleEva02 1552.62 322.55 227.00 189.76 254.09 205.14
SampleEva03 1990.38 182.71 177.87 172.81 156.76 154.76

where αk = (αk,0, αk,1) is the regression coefficient of system parameter k. Then
an estimate of system parameter is given by αk which is the solution of the
following minimization problem:

min
αk

180∑
i=1

[xk,i − (αk,0 + I αk,1)]2. (7)

Finally, from estimates of αk it is possible to obtain estimates of xk,i and the
error rate in an arbitrary time.

4 Real Data Analysis

In this section, we apply the logit model to the measurement data. To evaluate
the prediction performance of the logit model, we use the standardized residual
sum of squares (RSS) as a criterion to quantify the estimation/prediction ability.
For the fixed number of threads, we execute 33 experiments in parallel, where 30
data sets are used for estimation (training) and 3 data sets are used to investigate
the prediction performance. The regression coefficients, β and αk, are estimated
6 times while the number of experiment, n, is set to be n = 5, 10, 15, 20, 25
or 30. All the statistical analysis executed in this paper is employed with the
well-known statistical analysis package, R [11].

Table 2 presents the goodness-of-fit result when the number of threads is fixed
as 30, 40 or 50. The values in this table show the RSS between the observed error
rate and its estimates via the least squares method, where n denotes experiment
times in the estimation of regression coefficient β. It is evident that as the number
of samples increases, the estimation accuracy becomes much better. This is not
a surprising result, because it is no wonder that the more available measurement

278 X. Xiao and T. Dohi

60 120 180

13

26

39

52

65
Error Rate (%)

time (s)

Real
no. threads = 30

no. threads = 40

no. threads = 50

Fig. 2. Comparison among different no. threads

Table 3. RSS with predictions of system parameters

(1) no. threads = 30
RSS n= 5 n=10 n=15 n=20 n=25 n=30

SampleEva01 464.18 236.39 133.81 117.20 92.96 98.53
SampleEva02 634.64 346.72 202.75 176.29 134.97 145.21
SampleEva03 382.46 196.86 122.98 113.23 100.74 103.08

(2) no. threads = 40

RSS n= 5 n=10 n=15 n=20 n=25 n=30
SampleEva01 407.96 330.16 333.28 284.82 270.96 259.55
SampleEva02 539.67 434.92 439.24 367.98 344.96 366.02
SampleEva03 332.09 270.58 273.00 237.88 229.39 252.64

(3) no. threads = 50

RSS n= 5 n=10 n=15 n=20 n=25 n=30
SampleEva01 286.90 322.69 283.32 247.02 239.25 252.74
SampleEva02 488.27 540.77 462.08 373.89 348.89 328.13
SampleEva03 287.03 318.50 294.24 277.60 276.34 314.75

data, the better the accuracy will be. However, it seems to be interesting to take
notice on the results among different threads. SampleEva01 gives the smallest RSS
when the number of threads is set to be 30, while SampleEva02 and SampleEva03
show smaller RSS in (2) than that in (3) of Table 3. This suggests that our logit
model is more suitable for lower number of threads, or to say, it is more capable in
a lighter workload situation. This result behaves much more clear in the following
prediction part (refer to Table 3). As the result of parameter estimation, it can
be checked that the error rate behaves as a multi-modal function of time and is
right-skewed. This feature of error rate is captured by the proposed model rather
excellently, and Figure 2 gives an obvious idea about this result.

Our next concern is the long-term prediction of the error rate as well as the
system parameters. The RSS between the predicted and observed error rate
is presented in Table 3, where the regression coefficient β is estimated by the

An Experimental Evaluation of Error Rate in a Web Server System 279

least squares method. It should be noted that the value of system parameter
xi is a predictive one based on the linear regression model, but not the actual
observations. It is a natural conclusion that αk can be estimated better as the
number of experiments monotonically increases.

5 Conclusion

In this paper, we have proposed a simple logit model to describe the relation
between the error rate, which is the representative reliability measure in the
Apache web server, and the system parameters which reflect on the web server’s
system performance. By combining a simple linear regression model with the
logit model, we have estimated the long-term behavior of the error rate and the
system parameters simultaneously. It will be necessary, of course, to improve
the estimation and prediction accuracy of the logit model in future. Especially,
it is worth considering a novel approach to represent the situation where the
workload varies dynamically.

References

1. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: Proceedings of 1998 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 1998), pp. 151–160. ACM, New York (1998)

2. Hu, Y., Nanda, A., Yang, Q.: Measurement, analysis and performance improvement
of the Apache web server. In: Proceedings of 18th IEEE International Performance,
Computing and Communications Conference (IPCCC 1999), pp. 261–267. IEEE CS
Press, Los Alamitos (1999)

3. van der Mei, R.D., Hariharan, R., Reeser, P.K.: Web server performance modeling.
Telecommunication Systems 16(3/4), 361–378 (2001)

4. Nahum, E., Barzilai, T., Kandlur, D.: Performance issues in www servers.
IEEE/ACM Transactions on Networking 10(1), 2–11 (2002)

5. Cao, J., Andersson, M., Nyberg, C., Kihl, M.: Web server performance modeling
using an M/G/1/K∗PS queue. In: Proceedings of 10th International Conference
on Telecommunications (ICT 2003), pp. 1501–1506. IEEE, Los Alamitos (2003)

6. Sugiki, A., Kono, K., Iwasaki, H.: Tuning mechanisms for two major parameters of
Apache web servers. Software – Practice and Experience 38(12), 1215–1240 (2008)

7. JMeter - Apache JMeter, http://jakarta.apache.org/jmeter/
8. Shereshevsky, M., Cukic, B., Crowel, J., Gandikota, V., Liu, Y.: Software aging and

multifractality of memory resources. In: Proceedings of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2003), pp. 721–730. IEEE
CS Press, Los Alamitos (2003)

9. Grottke, M., Trivedi, K.S.: Fighting bugs: remove, retry, replicate, and rejuvenate.
IEEE Computer 40(2), 107–109 (2007)

10. Gokhale, S.S., Vandal, P.J., Lu, J.: Performance and reliability analysis of web
server software architectures. In: Proceedings of 12th Pacific Rim International
Symposium on Dependable Computing (PRDC 2006), pp. 351–358. IEEE CS Press,
Los Alamitos (2006)

11. http://www.r-project.org/

http://jakarta.apache.org/jmeter/
http://www.r-project.org/

A New Criterion for the Optimal Software
Release Problems: Moving Average Quality

Control Chart with Bootstrap Sampling

Mitsuhiro Kimura1,� and Takaji Fujiwara2

1 Faculty of Science and Engineering, Hosei University,
3-7-2 Kajino-cho, Koganei-shi, Tokyo, 184-8584 Japan

kim@hosei.ac.jp
2 Business Cube & Partners, Inc.,

1-20-18 Ebisu, Shibuya-ku, Tokyo, 150-0013 Japan
fujiwara.takaji@nifty.com

Abstract. This paper proposes a new practical method for determining
when to stop software testing. This issue has been widely known as the
optimal release problem of software product, and many researchers have
been developing mathematical models for finding the solution.

We try to develop a new quality control charting to help making the
right decision for it, by employing the moving average model and boot-
strap scheme. After discussing the modeling, we show an example of the
statistical decision making of the optimal software release time.

Keywords: software reliability, optimal release problem, moving aver-
age, control chart, bootstrap method.

1 Introduction

Recently, software systems have been becoming the integral part of computer
systems. Since any software system could cause severe consequences due to soft-
ware failures, the reliability of the software system is a primary concern for both
software developers and users. Then, in the final stage of software development,
testing is an important activity for detecting and removing software faults and
improving reliability/quality of the software system. However, since it is impos-
sible to detect and remove all the faults latent in the software system within a
reasonable testing period, it needs a method for assessing and analyzing quan-
titatively the software reliability/quality during the testing. As one method for
solving this problem, many software reliability growth models (abbreviated as
SRGMs) reflecting testing- and operational-environment factors have been pro-
posed. Especially, the SRGMs based on nonhomogeneous Poisson processes (ab-
breviated as NHPPs) have been widely and successfully applied to the practical

� This work was partially supported by KAKENHI, the Grant-in-Aid of Scientific
Research (C)(20500036).

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 280–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

New Solution of Optimal Release Problem 281

software development activities. For example, developers have used the assess-
ment results derived by SRGMs in order to determine when to stop the testing
and release the software product as an important management issue during the
testing. We call this issue a software optimal release problem as developer’s
decision-making problem.

Until now, there have been optimal release problems considering the cost spent
in the reliability growth processes in the testing-phase [1],[2], the difference of
environment which surrounds the software between the testing- and operation-
phase [3], and the reliability/safety requirements to the cost spent in the testing-
and operation-phase [4] as assessment criteria. Furthermore, Fujiwara et al. [5]
have proposed testing-termination criteria as a new paradigm. This has set up
the allowable ratio of remaining faults as a targeted value by applying the com-
mon knowledge that all latent faults in the software system cannot be removed,
and has proposed that it is the optimal release time. Here, the allowable ratio
of remaining faults is determined in consideration of the characteristics of the
software system. However, since this proposed method significantly depends on
the analysts’ experience, we have often observed that there exists a large devia-
tion between a predicted value of the evaluation and its actual value. Based on
this fact, we have found that the system analysts are anxious to obtain unbiased
analysis results in terms of their experiences.

In this paper, we discuss a methodology to determine the optimal release
time based on the allowable ratio of remaining faults without depending on the
present analysts’ experience. Especially, we propose the method of computing
the achievement degree to the targeted value for the allowable ratio of remaining
faults based on probability theory and statistics.

2 Concept of the Optimal Release Policy

In this section, we describe methodology of determining the optimal release time
based on the allowable ratio of remaining faults.

In practical projects which we have experienced, we have usually grasped the
validity and the severity of testing-activities by plotting past analysis records as
shown in Fig. 1. Based on such a plot, we have judged whether it is releasable
based on the time-dependent behavior by plotting past analysis-records, i.e., the
achievement date of the allowable ratio of remaining faults could be obtained
for every analysis and evaluation. Figure 1 sets the analysis-execution date for
a horizontal axis and the releasable date based on analysis result for a vertical
one. Here, the optimal release time based on the allowable ratio of remaining
faults means the date that the estimated latent faults in the software system
will reach below the targeted value. From Fig. 1, we can judge when to stop the
testing and release the software product to a customer. That is, at the ‘State
1’ in Fig. 1, we need to make a judgment that the additional testing is still
required, because the releasable date is scattered according to the insufficient
information from the testing process to be performed. On the other hand, at the
‘State 2’ in Fig. 1, we can see that it is the right time when we should judge

282 M. Kimura and T. Fujiwara

Analysis Execution-Date

So
ft

w
ar

e
R

el
ea

sa
bl

e
D

at
e

State 1

State 2

Fig. 1. Conceptual illustration of stabilizing behavior of an assessment measure

whether we can stop the testing, because the releasable date is in the converged
state on a certain date, when the software faults are almost squeezed out.

Based on these concepts and ideas, we develop a new quality control charting
methodology based on the moving average scheme in this paper, in order to help
making the right decision of the optimal software release time.

3 Model Description

Consider that we have a time series of estimated values of software reliability
assessment results in a software testing phase. These values might be obtained
by, for example, software reliability growth models or some kinds of statistical
ones. In this paper, we assume that such an estimated value is deeply related
to the allowable ratio discussed in the previous section. First we explain the
modeling.

Let Xi (i = j, j +1, . . . , n; usually 1 � j) be the random variable representing
the i-th estimator of a software reliability assessment measure, which is obtained
at the testing time ti. Therefore Xj denotes the estimator which is firstly ob-
tained by a certain statistical estimation scheme for the data set. We assume Xi

has a finite mean μi and variance σ2
i .

Although it should be discussed which assessment measure is suitable for the
aim of the software release problem, we choose the number of remaining software
faults as the estimator in this paper. Thus, a realization of Xi, which is denoted
by xi, represents the i-th estimate of the number of remaining software faults.

One of the most simple quality control charting is to plot xi itself along with
the index i. The index i shows the time point of performing the estimation of
Xi, and the time of estimation is ti.

In principle, xi contains some statistical errors even if ti is close to the end
of the planned testing schedule. In order to reduce the fluctuation of xi on the
control chart, we use a k-term moving average of Xi (at least k < n) for the
evaluation. We think this is the second easiest way to plot the control chart, how-
ever, the variance of the moving average is affected according to the correlation
of Xis.

New Solution of Optimal Release Problem 283

Let Mi,k be a random variable representing k-term moving average at ti by

Mi,k =
1
k

i∑
q=i−(k−1)

Xq. (1)

Then the expectation and variance of Mi,k are respectively given by

E[Mi,k] =
1
k

i∑
q=i−(k−1)

μq, (2)

Var[Mi,k] =
1
k2

i∑
q=i−(k−1)

σ2
q +

2
k2

∑
l,m=i−(k−1),...,i

l �=m

Cov[Xl, Xm], (3)

where Cov[X, Y] represents a covariance of the random variable X and Y .

3.1 Evaluation of Cov[X, Y]

In this paper, our software quality control chart employs the k-term moving
average with its standard deviation (abbreviated by SD in the following). The
realization of Xi, namely xi, is the estimate of the number of remaining software
faults. It is natural to consider that there exist the correlations between Xl

and Xm in Eq. (3). However, since no one iteratively performs random (black-
box) software test in the real situation, we obtain only one series of xi (i =
j, j + 1, . . . , n) from the software faults detection process. This means that we
cannot evaluate Cov[Xl, Xm] in such a usual software testing environment.

Conversely, if we perform iteratively random software testing of K times, we
will have K sets of the sequence xi, like

xj,1, xj+1,1, xj+2,1, · · · , xn,1
xj,2, xj+1,2, xj+2,2, · · · , xn,2
� � � · · · �

xj,K , xj+1,K , xj+2,K , · · · , xn,K

⎫⎪⎪⎬⎪⎪⎭ . (4)

Thus we can evaluate the sample covariances for Eq.(3) by using these K × (n−
(j − 1)) estimates. For example, we have

Ĉov[Xl, Xm] = Ê[(Xl −μl)(Xm −μm)] =
1

K − 1

K∑
i=1

(xl,i − μ̂l)(xm,i − μ̂m), (5)

where

μ̂l =
1
K

K∑
i=1

xl,i, μ̂m =
1
K

K∑
i=1

xm,i. (6)

In order to evaluate K sample sequences of the estimates shown by Eq. (4),
we use a bootstrap sampling method based on the incomplete gamma function
model [6].

284 M. Kimura and T. Fujiwara

3.2 Bootstrap Sampling with Incomplete Gamma Function Model

In this study, we assume that the original data set to be analyzed forms (ti, yi)
(i = 1, 2, . . . , n), where ti means the i-th testing time recorded and yi the cu-
mulative number of detected (and removed) software faults up to ti. We also
assume that 0 < y1 < y2 < . . . < yn is satisfied.

In the incomplete gamma function model, a simple linear regression analysis
is applied to the transformed data sequence as follows. That is, we prepare it by

z(c, d, ti) =

⎧⎪⎪⎨⎪⎪⎩
log

[
1
2

{
yi+1−yi

ti+1−ti
+ yi−yi−1

ti−ti−1

}
/yc

i /tdi

]
(1 ≤ i ≤ n − 1)

log
[

yn−yn−1
tn−tn−1

/yc
n/tdn

]
(i = n)

, (7)

where t0 ≡ 0 and y0 ≡ 0, and two parameters c and d influence a performance of
the model. By using (ti, z(c, d, ti)) (i = 1, 2, . . . , n), we apply the following linear
regression model.

z(c, d, ti) = A − Bti + εi (i = 1, 2, . . . , n), (8)

where A and B are the unknown constant parameters and εi represents an error
term. Eq. (7) comes from the following modeling. Let H(t) be a non-negative,
increasing, and differentiable function to track the behavior of (ti, yi). Consider-
ing

log
{dH(t)

dt
/H(t)c/td

}
= A − Bt, (9)

we obtain H(t) as a solution of the differential equation above as

H(t) =

⎧⎪⎪⎨⎪⎪⎩
[
(1 − c){C1 − eA

Bd+1 Γ [d + 1, Bt]}
] 1

1−c

(if c �= 1)

[
C1 exp[− eA

Bd+1 Γ [d + 1, Bt]
]

(if c = 1)

, (10)

where C1 is an arbitrary constant and Γ [m, x] is the incomplete gamma function
defined as

Γ [m, x] =
∫ ∞

x

sm−1e−sds. (11)

H(t) can describe several growth curve models, e.g. exponential, delayed-S-
shaped, Gompertz, logistic, and logarithmic-Poisson type models[6]. Note that
we substituted the value of dH(t)

dt |t=ti with the central difference which appears
in Eq. (7). The unknown parameters c, d, A, and B can be estimated by the
least squares analysis based on Eq. (8). However in the following discussion, we
set c = 0 to simplify the model. Consequently, we can estimate the number of
remaining software faults at ti, xi (i = j, j + 1, . . . , n), by

xi = lim
t→∞

Ĥ(t) − yi (i = j, j + 1, . . . , n). (12)

We show the procedure to obtain K bootstrap samples of xj that is discussed
previously as follows[7,8].

New Solution of Optimal Release Problem 285

Step 1. Estimate Â0 = Â and B̂0 = B̂ by a linear regression scheme with the
data set (ti, z(0, d̂, ti)) (i = 1, 2, . . . , j). This means the parameter d is
also estimated.

Step 2. Calculate the residual, w(ti), by

w(ti) = z(0, d̂, ti) − (Â0 − B̂0ti) (i = 1, 2, . . . , j).

Step 3. Set the total number of iteration K. Let p = 1 (p = 1, 2, . . . , K).
Step 4. Generate a new zp(0, d̂, ti) by randomly choosing one value w(t∗) from

the set of w(ti) (i = 1, 2, . . . , j). Therefore we have

zp(0, d̂, ti) = w(t∗) + (Â0 − B̂0ti) (i = 1, 2, . . . , j).

Step 5. Estimate the parameters Ap and Bp by based on a new linear regression
as

zp(0, d̂, ti) = Ap − Bpti (i = 1, 2, . . . , j).

Step 6. Let p = p + 1 and go back to Step 4 if p < K.
Step 7. We obtain K pairs of bootstrap estimates (Âp, B̂p) (p = 1, 2, . . . , K).
Step 8. Finally we have K samples of xi (i = j, j + 1, . . . , n) shown in Eq. (4)

by iterating the above steps with increasing j to n by 1. The value of
j is the index of starting point of the quality evaluation.

4 Example of Data Analysis

In this section we show an example of moving average chart with SD. Figure 2
represents the behavior of the software fault count data (n = 35). Also we set
j = 25 and k = 3, that is, we are going to plot 3-term moving average chart with
SD. Figure 3 illustrates the first regression result along with (ti, z(0, 1.39837, ti))
(i = 1, 2, . . . , 25), where Â0 = 2.14289 and B̂0 = −0.126052 .

Under the configuration of the bootstrap by K = 1000, we have generated
1000 bootstrap samples for Xi (i = 25, 26, . . . , 35), where Xi means the number
of residual software faults at ti.

5 10 15 20 25 30 35
t�i

200

400

600

800

1000

1200

y�i

Fig. 2. Behavior of fault count data

5 10 15 20 25
i

�1

1

2

z

Fig. 3. Linear regression (j = 25)

286 M. Kimura and T. Fujiwara

Fig. 4. A 3-term moving average chart E[Mi,3] with ±1×SD (σ̂ = 63.4321)

0 200 400

20

40

60

80

Freq.

-200

M[35,3]

E[M] +SD-SD

69.6%

Fig. 5. Histogram of 1000 bootstrap samples of M35,3

Finally, Fig. 4 is presented as a control chart for judging whether this software
testing becomes enough and the software is releasable from the viewpoint of the
number of residual software faults estimated. The estimated SD is σ̂ = 63.4321.

Now we recall the concept of the allowable ratio which was discussed in Section
2. If we denote the allowable ratio by ar, therefore the maximum (allowable)
number of remaining faults at the evaluation time ti is given by

(Max. # of remaining faults at ti) = ar × (# of inherent faults, Ĥ(∞)). (13)

Thus the optimal software release time t∗ can be given by

t∗ = inf
ti(i=j,...,n)

{
Pr

[
Mi,3 <= ar × Ĥ(∞)

]
>= α

}
. (14)

New Solution of Optimal Release Problem 287

That is, the target value upon the release is ar × Ĥ(∞) and its achievement
probability can be set by α. If we assume ar = 0, i.e., no remaining fault is
allowed under α = 0.7, the optimal release criterion in this example is

t∗ = inf
ti(i=25,...,35)

{
Pr

[
Mi,3 <= 0

]
>= 0.7

}
. (15)

Hence we plotted a histogram of 1000 bootstrap samples of M35,3 in Fig. 5. We
calculated that Pr[M35,3 <= 0] is about 69.6% from the histogram. Under these
assumptions for this data set and target values, this software test could be almost
finished at t35.

5 Concluding Remarks

In the practical judgment of software release time, it is almost impossible for the
testing managers to grasp the total cost of software development, although it
has been frequently discussed in the literature of software release problems. Our
proposal in this paper can give one of the feasible solutions to make the right
judgment on the software release time in the actual management environment,
and will provide a method of online monitoring for the quality software.

References

1. Okumoto, K., Goel, A.L.: Optimum release time for software systems based on
reliability and cost criteria. J. Systems and Software 1, 315–318 (1980)

2. Sando, H.: An optimal release problem in software tests of discrete-type software by
quasi-error seeding. Trans. IEICE J72-A(6), 992–994 (1989) (in Japanese)

3. Yamada, S., Kimura, M., Tanio, Y., Osaki, S.: A note on optimum release problem
based on software reliability assessment methods during operation phase. Trans.
IEICE J75-D-I(1), 53–58 (1992) (in Japanese)

4. Yamada, S., Tokuno, K., Inoue, K.: Optimal release problems with software reliabil-
ity/safety based on cost criteria. Trans. IEICE J82-A(1), 64–72 (1999) (in Japanese)

5. Fujiwara, T., Yamada, S., Gouda, H.: A method of product’s reliability/quality
analysis based on software reliability growth models. In: The 4th International Con-
ference on Project Management, Alaska, USA (2008)

6. Kimura, M.: A study on bootstrap confidence intervals of software reliability mea-
sures based on an incomplete gamma function model. In: Dohi, T., Yun, W.Y. (eds.)
Advanced Reliability Modeling II, pp. 419–426. World Scientific, Singapore (2006)

7. Gentle, J.E., Härdle, W., Mori, Y.: Handbook of Computational Statistics: Concepts
and Methods. Springer, Heidelberg (2004)

8. Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression anal-
ysis. Ann. of Statist. 14(4), 1261–1295 (1986)

An EM Algorithm for Record Value Statistics
Models in Software Reliability Estimation

Hiroyuki Okamura and Tadashi Dohi�

Department of Information Engineering, Graduate School of Engineering,
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

http://www.rel.hiroshima-u.ac.jp/

Abstract. This paper proposes an EM (expectation-maximization) al-
gorithm for record value statistics (RVS) models in software reliability
estimation. The RVS model provides one of the generalized modeling
frameworks to unify several of existing software reliability models de-
scribed as non-homogeneous Poisson processes (NHPPs). The proposed
EM algorithm gives a numerically stable procedure to compute the max-
imum likelihood estimates of RVS models. In particular, we focus on
an RVS model based on a mixture of exponential distributions. As an
illustrative example, we also derive a concrete EM algorithm for the
well-known Musa-Okumoto logarithmic Poisson execution time model
by applying our result.

Keywords: software reliability, non-homogeneous Poisson process,
record value statistics, parameter estimation, EM algorithm.

1 Introduction

Software reliability is one of the most significant attributes for measuring soft-
ware quality. The software reliability is quantitatively defined as the probability
that there is no failure for a certain time period in operation. Thus, probabilistic
models are applied to estimating software reliability with the field data. The
software reliability community has developed a number of software reliability
models (SRMs) from various points of view during the last four decades. Specif-
ically, non-homogeneous Poisson process (NHPP) based SRMs have played a
central role to estimate the number of remaining faults as well as the software
reliability [1,2] due to their mathematically tractable properties.

Generally speaking, NHPP-based SRMs can be classified into finite and in-
finite failure models. The finite failure SRMs assume that there are a finite
number of failure-causing faults in software, and that the expected total number
of failures is always bounded even if a software lifetime goes to infinity. Since this
property might be plausible to represent debugging activities for real software de-
velopment, a large number of NHPP-based SRMs belonging to this category have
� This research was supported by the Ministry of Education, Science, Sports and

Culture, Grant-in-Aid for Young Scientists (B), Grant No. 21700060 (2009-2011)
and Scientific Research (C), Grant No. 21510167 (2009-2012).

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 288–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.rel.hiroshima-u.ac.jp/

An EM Algorithm for RVS Models in Software Reliability Estimation 289

been proposed and extensively discussed in the literature. On the other hand,
the infinite failure SRMs are stochastic models whose expected total numbers of
failures go to infinity as time elapses. The infinite failure SRMs can be regarded
as limiting models derived from the finite failure models. The well-known SRM
belonging to this category is Musa-Okumoto logarithmic Poisson execution time
model [3], which is also known as one of the most useful NHPP-based SRMs.

To understand the modeling assumption in a unified way, there are a few gen-
eralized modeling frameworks (meta-modeling frameworks) which provide either
of existing finite or infinite NHPP-based SRMs [4, 5, 6]. Such a meta-modeling
framework is quite important to discuss the parameter estimation and the model
selection in the practical point of view. To the best of our knowledge, generalized
order statistics (GOS) and record value statistics (RVS) models are two major
modeling frameworks. In particular, GOS models have attractively been studied
in terms of parameter estimation and model selection [7,8, 9], since GOS mod-
els contain all of finite failure SRMs used in software reliability estimation. In
contrast, RVS models have not fully discussed from the theoretical point of view.

This paper concerns a parameter estimation problem, and particularly pro-
poses an EM (expectation-maximization) algorithm for RVS models in soft-
ware reliability estimation. The EM algorithms for GOS models were proposed
in [10, 13, 14, 15, 16], where the authors achieved practically more stable estima-
tion procedures than general-purpose numerical algorithms. The proposed EM
algorithm here also gives a numerically stable procedure to compute the max-
imum likelihood estimates of RVS models. In particular, we focus on an RVS
model based on a mixture of exponential distributions. As an illustrative exam-
ple, we also derive a concrete EM algorithm for Musa-Okumoto NHPP SRM [3]
by applying our generalized EM framework.

2 Software Reliability Modeling

NHPP-based SRMs are widely accepted as stochastic models to estimate soft-
ware reliability. Let {N(t); t ≥ 0} be a stochastic process which represents the
number of software failures experienced before time t. The following assumptions
are made on the cumulative number of software failures:

– N(0) = 0,
– {N(t); t ≥ 0} has independent increments,
– P (N(t + Δt) − N(t) = 1) = λ(t)Δt + o(Δt),
– P (N(t + Δt) − N(t) ≥ 2) = o(Δt),

where λ(t) is a failure intensity function and o(Δt) is the second or higher order
term of Δt. According to the above assumptions, N(t) follows an NHPP having
the probability mass function (p.m.f.):

P (N(t) = n) =
Λ(t)n

n!
exp(−Λ(t)), t ≥ 0, n = 0, 1, · · · , (1)

290 H. Okamura and T. Dohi

where Λ(t) =
∫ t

0 λ(s)ds is called a mean value function representing the expected
cumulative number of software failures experienced before time t.

A numerous number of NHPP-based SRMs have been proposed to estimate
software reliability, and characterized by mean value functions. For example,
when the mean value function is given by

Λ(t) = ω(1 − e−βt), (2)

the corresponding NHPP-based SRM is the exponential SRM by Goel and Oku-
moto [11].

On the other hand, there are two generalized modeling frameworks that con-
tain almost all existing NHPP-based SRMs. The first framework is based on
generalized order statistics (GOS), which is called the GOS-NHPP model in this
paper. The GOS-NHPP model is made on the following assumptions [4]:

– The number of failure-causing faults is finite with a Poisson distributed ran-
dom variable.

– All software failure times are mutually independent random variables with
an identical probabilistic law.

Let ω and F (t) be an average number of failure-causing faults and the cumulative
distribution function (c.d.f.) of a software failure time, respectively. Since the
number of failure-causing faults follows the Poisson distribution with mean ω,
the p.m.f. of the number of failures is given by

P (N(t) = n) =
{ωF (t)}n

n!
e−ωF (t), n = 0, 1, (3)

Equation (3) is equivalent to the p.m.f of NHPP-based SRMs. Substituting well-
known statistical distributions into F (t) yields many of existing NHPP-based
SRMs in the GOS-NHPP model.

The second framework is based on record value statistics (RVS). The RVS
model is a point process consisting of record-breaking times. Let S1, S2, . . . be
IID (independently and identically distributed) random variables drawn from a
p.d.f. f(t) = dF (t)/dt. Then the sequence of record-breaking times are defined
as follows.

R1 = 1, (4)
Rk = min{i; Si > SRk−1}, for k = 2, 3, . . ., (5)
Tk = SRk

, for k = 1, 2, . . ., (6)

where Tk is the k-th record-breaking time. In the RVS model, Tk corresponds
to the k-th software failure time, and then the p.m.f. of the number of failures
experienced before t becomes an NHPP with the mean value function [12]:

Λ(t) = − log
∫ ∞

t

f(s)ds = − logF (t), (7)

where F (t) is a survival function of f(t). Similar to the GOS-NHPP model,
we can represent a variety of NHPPs by substituting a statistical distribution

An EM Algorithm for RVS Models in Software Reliability Estimation 291

defined on the positive domain into f(t). For example, when f(t) is given by
an exponential density function, the resulting RVS model is coincide with a
homogeneous Poisson process. If f(t) is a Pareto distribution of the second kind;

f(t) =
aba

(b + t)a+1 , t > 0, a, b > 0, (8)

the corresponding RVS model is equivalent to the well-known Musa-Okumoto
NHPP SRM [3]. The main difference between GOS-NHPP and RVS models is
the expected number of total failures as t → ∞. Since the GOS-NHPP model
assumes a finite number of failure-causing faults, the expected number of total
failures is also bounded, i.e., Λ(∞) < ∞. On the other hand, RVS model gives
the NHPP with unbounded failures, i.e., Λ(∞) → ∞.

This paper focuses on a class of the RVS model whose distribution is given
by a mixture of exponential (ME) distributions [13]. Concretely, the p.d.f. of an
ME distribution is generally given by

f(t) =
∫ ∞

0
ue−utg(u)du, (9)

where g(u) is a mixture ratio distribution. In the statistical sense, the ME dis-
tribution consists of exponential p.d.f.’s with different rates u. If the ratio is a
deterministic value, i.e., g(u) is the delta function δ(u − u0), the corresponding
RVS model is reduced into a homogeneous Poisson process with rate u0. Also,
when g(u) is a gamma density;

g(u) =
bara−1e−bu

Γ (a)
, u > 0, a, b > 0, (10)

the corresponding model is Musa-Okumoto NHPP SRM, where Γ (·) is the stan-
dard gamma function. This paper abbreviates the RVS model with an ME dis-
tribution as the ME-RVS model.

3 Parameter Estimation

In this section, we discuss parameter estimation for the ME-RVS model. The
commonly used method for parameter estimation is the maximum likelihood
(ML) estimation.

Define the software failure time data as D = (t1, . . . , tme ; te), where ti denotes
the i-th ordered failure time and te is the last of observation period, i.e., N(te) =
me. Then the ML estimates of model parameters θ̂ML are determined as the
values maximizing the log-likelihood function (LLF):

θ̂ML = argmax
θ

L(θ; D), (11)

L(θ; D) =
me∑
i=1

log λ(ti; θ) − Λ(te; θ), (12)

292 H. Okamura and T. Dohi

where θ is a parameter vector of NHPP-based SRM. To solve the above max-
imization problem, numerical techniques are needed since we cannot obtain
closed-form solutions. However, general-purpose numerical methods like Newton-
type methods are unstable to find the maximum due to their local convergence
property. Therefore, in order to compute ML estimates stably, EM (expectation-
maximization) algorithms are useful. In fact, [10, 14, 15, 16] developed the EM
algorithms for GOS-NHPP models. This paper discusses the EM algorithm for
the ME-RVS model.

The EM algorithm is an iterative method for computing ML estimates with
incomplete data [17,18]. Let D and Z be observable and unobservable data vec-
tors, respectively, and we wish to estimate a model parameter vector θ from only
the observable data vector D. The problem corresponds to finding a parameter
vector that maximizes a marginal LLF:

θ̂ML = argmax
θ

L(θ; D), (13)

L(θ; D) = log p(D; θ) = log
∫

p(D, Z; θ)dZ, (14)

where p(·) is any appropriate p.d.f. or p.m.f. The EM algorithm consists of E-step
and M-step. E-step computes a conditional expected LLF with respect to the
complete data vector (D, Z) using the posterior distribution for unobservable
data vector with provisional parameter vector θ′, i.e., the conditional expected
LLF is given by

Q(θ|θ′) = E[log p(D, Z; θ)|D; θ′]

=
∫

p(Z|D; θ′) log p(D, Z; θ)dZ. (15)

The posterior distribution for unobservable data can be obtained from Bayes
theorem:

p(Z|D; θ) =
p(D, Z; θ)∫
p(D, Z; θ)dZ

. (16)

In M-step, we find a new parameter vector θ′′ that maximizes the expected LLF:

θ′′ := argmax
θ

Q(θ|θ′), (17)

and θ′′ becomes a provisional parameter vector at the next E- and M-steps. The
E- and M-steps are repeatedly executed until the parameters converge to ML
estimates. Here it should be noted that concrete EM algorithms depend on both
model and unobserved data structures.

To develop the EM algorithm for ME-RVS model, we consider a pair of IID
random variates (Si, Ui) which are jointly drawn from the exponential distribu-
tion with rate Ui and the mixture ratio distribution g(u). In addition, Ri denotes
an index of the i-th record-breaking value. Then the LLF for (Si, Ui) and Ri gives
a complete LLF:

An EM Algorithm for RVS Models in Software Reliability Estimation 293

log p(D, Z; θ) =
Rme+1∑

i=1

(log Ui − UiSi) +
Rme+1∑

i=1

log g(Ui; θ). (18)

Then the E-step is represented as

Q(θ|θ′) = E

⎡⎣Rme+1∑
i=1

log g(Ui; θ)

∣∣∣∣∣∣D; θ′

⎤⎦ . (19)

Here we can derive a useful formula to compute the above Q-function: For any
function h(·), the expected value can be computed as follows.

E

⎡⎣Rme+1∑
i=1

h(Ui)

∣∣∣∣∣∣D; θ

⎤⎦ =

∫ ∞
0 h(u)ue−ut1g(u; θ)du∫ ∞

0 ue−ut1g(u; θ)du

+
me∑
k=2

(∫ ∞
0 h(u)ue−utkg(u; θ)du∫ ∞

0 ue−utkg(u; θ)du
+

∫ ∞
0 h(u)(1 − e−utk−1)g(u; θ)du∫ ∞

0 e−utk−1g(u; θ)du

)

+

∫ ∞
0 h(u)e−uteg(u; θ)du∫ ∞

0 e−uteg(u; θ)du
+

∫ ∞
0 h(u)(1 − e−utme)g(u; θ)du∫ ∞

0 e−utme g(u; θ)du
. (20)

On the other hand, since we find the parameter maximizing Q(θ|θ′), the M-step
procedure can be derived from a usual ML procedure for g(u). For example, g(u)
belongs to the exponential family, so that the ML estimates in the M-step are
given in closed forms.

4 Illustration of EM Procedure for Musa-Okumoto SRM

We present concrete EM-step formulas for Musa-Okumoto NHPP SRM in this
section. Suppose that the mixture ratio distribution is given by a gamma dis-
tribution with parameters a and b. Then the corresponding ME-RVS model
becomes Musa-Okumoto NHPP SRM. The complete LLF for IID rate samples
Λ1, . . . , ΛRme+1 can be written in the form:

log p(D, Z; (a, b)) = Rme+1a log b + (a − 1)
Rme+1∑

i=1

log Λi − b

Rme+1∑
i=1

Λi

− Rme+1 log Γ (a). (21)

Based on the EM formulas in the previous section, we have

μ1(a, b) := E[Rme+1|D; (a, b)] = 1 +
me∑
k=1

(
b

b + tk

)−a

, (22)

μλ(a, b) := E

⎡⎣Rme+1∑
i=1

Λi

∣∣∣∣∣∣ D; (a, b)

⎤⎦ =
me∑
k=1

(
1

b + tk
+

a

b

(
b

b + tk

)−a
)

+
a

b + te
,

(23)

294 H. Okamura and T. Dohi

μlog λ(a, b) := E

⎡⎣Rme+1∑
i=1

log Λi

∣∣∣∣∣∣D; (a, b)

⎤⎦
=

me∑
k=1

(
1
a

+ (ψ(a) − log b)
(

b

b + tk

)−a
)

+ ψ(a) − log(b + te), (24)

where ψ(·) is the digamma function ψ(a) = d
da log Γ (a). Using μ1(a, b), μλ(a, b)

and μlog λ(a, b), the M-step for Musa-Okumoto NHPP SRM is given by

a = inf
{

a > 0; log a − ψ(a) = log
μλ(a′, b′)
μ1(a′, b′)

− μlog λ(a′, b′)
μ1(a′, b′)

}
, (25)

b =
aμ1(a′, b′)
μλ(a′, b′)

. (26)

5 Discussions and Future Research

The proposed EM algorithm provides more stable procedures to compute ML
estimates than general-purpose numerical methods, since the EM algorithm has
a global convergence property. However, it should be noted that the convergence
is slower than other methods like Newton-type methods. In general, the con-
vergence rate of EM algorithm is known as a liner function of the number of
iterations, whereas the convergence rate of Newton-type methods is a quadratic
function of the number of iteration. In addition, the convergence speed of EM
algorithm depends on the amount of unobservable information. In our EM frame-
work for RVS models, we define unobservable data as the samples that do not
break the current record value. Indeed, there are a huge number of such unob-
servable samples in our framework, except for the case where the total number
of failures is small. Thus the proposed EM procedure is expected to be slow
for the convergence when the number of failures becomes large, so that the EM
algorithm for RVS models may not be applied to estimate software reliability
from observed data. On the other hand, we also developed EM algorithms for
GOS-NHPP models in [10,14,15,16] which gave a practically rapid convergence
speed unlike the RVS case. Since several acceleration methods for EM algorithms
have been proposed, e.g., [19], we will try to apply such acceleration techniques
to improve the convergence speed of EM algorithm for RVS models in the future.

References

1. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability, Measurement, Predic-
tion, Application. McGraw-Hill, New York (1987)

2. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. McGraw-Hill, New
York (1996)

3. Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time model for software
reliability measurement. In: 7th International Conference Software Engineering,
pp. 230–238. IEEE CS Press/ACM (1984)

An EM Algorithm for RVS Models in Software Reliability Estimation 295

4. Langberg, N., Singpurwalla, N.D.: Unification of some software reliability models.
SIAM Journal on Scientific Computing 6, 781–790 (1985)

5. Dohi, T., Osaki, S., Trivedi, K.S.: An infinite server queueing approach for de-
scribing software reliability growth – unified modeling and estimation framework.
In: 11th Asia-Pacific Software Engineering Conference, pp. 110–119. IEEE CS
Press, Los Alamitos (2004)

6. Grottke, M., Trivedi, K.S.: On a method for mending time to failure distributions.
In: International Conference on Dependable Systems and Networks, pp. 560–569.
IEEE CS Press, Los Alamitos (2005)

7. Miller, D.R.: Exponential order statistic models of software reliability growth. IEEE
Transactions on Software Engineering SE-12, 12–24 (1986)

8. Raftery, A.E.: Inference and prediction for a general order statistic model with
unknown population size. Journal of the American Statistical Association 82,
1163–1168 (1987)

9. Wilson, S.P., Samaniego, F.J.: Nonparametric analysis of the order-statistic model
in software reliability. IEEE Transactions on Software Engineering 33, 198–208
(2007)

10. Okamura, H., Watanabe, Y., Dohi, T.: An iterative scheme for maximum likelihood
estimation in software reliability modeling. In: 14th International Symposium on
Software Reliability Engineering, pp. 246–256. IEEE CS Press, Los Alamitos (2003)

11. Goel, A.L., Okumoto, K.: Time-dependent error-detection rate model for software
reliability and other performance measures. IEEE Transactions on Reliability R-28,
206–211 (1979)

12. Kuo, L., Yang, T.Y.: Bayesian computation for nonhomogeneous Poisson processes
in software reliability. Journal of the American Statistical Association 91, 763–773
(1996)

13. Okamura, H., Watanabe, Y., Dohi, T.: Estimating mixed software reliability mod-
els based on the EM algorithms. In: 2002 International Symposium on Empirical
Software Engineering, pp. 69–78. IEEE CS Press, Los Alamitos (2002)

14. Okamura, H., Murayama, A., Dohi, T.: EM algorithm for discrete software relia-
bility models: a unified parameter estimation method. In: 8th IEEE International
Symposium on High Assurance Systems Engineering, pp. 219–228. IEEE CS Press,
Los Alamitos (2004)

15. Okamura, H., Dohi, T.: Building phase-type software reliability models. In: 17th
International Symposium on Software Reliability Engineering, pp. 289–298. IEEE
CS Press, Los Alamitos (2006)

16. Okamura, H., Dohi, T.: Hyper-Erlang software reliability model. In: 14th Pacific
Rim International Symposium on Dependable Computing, pp. 232–239. IEEE CS
Press, Los Alamitos (2008)

17. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B. B-39,
1–38 (1977)

18. Wu, C.F.J.: On the convergence properties of the EM algorithm. Annals of Statis-
tics 11, 95–103 (1983)

19. McLachlan, G.J., Krishnan, T.: EM Algorithm and Extensions. John Wiley & Sons,
Chichester (1997)

Yet Another Metric for Predicting Fault-Prone
Modules

Osamu Mizuno1 and Hideaki Hata2

1 Graduate School of Science and Technology, Kyoto Institute of Technology
o-mizuno@kit.ac.jp

2 Graduate School of Information Science and Technology, Osaka University
h-hata@ist.osaka-u.ac.jp

Abstract. Recently, machine learning approaches have been widely used
for fault-proneness detection. Introduction ofmachine learning approaches
induces development of new software metrics for fault-prone module de-
tection. We have proposed an approach to detect fault-prone modules us-
ing the spam-filtering technique. To treat our approach as the conventional
fault-prone approaches, we summarize the output of spam-filtering based
approach as a metric. In this paper, we show the effectiveness of our new
metric comparing the conventional software metrics.

Keywords: Fault-prone module, Machine learning, Software metrics.

1 Introduction

Fault-prone modules prediction is one of the most traditional and important
areas in software engineering. Detection of fault-prone modules has been widely
studied[1,2,3,4]. Most of these studies used some kind of software metrics, such as
program complexity, size of modules, or object-oriented metrics, and constructed
mathematical models to calculate fault-proneness.

Recently, machine learning approaches have been widely used for fault-
proneness detection[5]. Introduction of machine learning approaches induces
development of new software metrics for fault-prone module detection. Thus, sev-
eral new metrics have been proposed so far. For example, Layman et al. showed
that change history data are effective for fault-prone module detection[6]. Kim
et al. proposed a notion of“memories of bug fix”and showed that such memories
of bug fix deeply related to the existence of faults in a module[7].

In order to mitigate such difficulties, we have introduced a spam filtering based
approach to detect fault-prone modules, [8,9]. Inspired by the spam filtering tech-
nique, we tried to apply text-mining techniques to fault-proneness detection. A
model is well-studied Bayesian model. Since the usefulness of Bayesian theory for
spam filtering has been recognized recently, most spam filtering tools implement
Bayesian theories. In fault-prone module detection, we treat a software module
as an e-mail message, and classify all software modules into either fault-prone
(FP) or non-fault-prone (NFP). However, using only one method may miss other
important aspects of fault-proneness.

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 296–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Yet Another Metric for Predicting Fault-Prone Modules 297

In this paper, to treat our approach as the conventional fault-prone ap-
proaches, we summarize the output of spam-filtering based approach as a metric.
We thus perform an experiment to confirm whether or not the combination with
conventional metrics and other classification methods improves the accuracy of
fault-prone module prediction.

2 Objective

The aim of this paper is to propose a new metric from a new viewpoint which
can be used for fault-prone module prediction in source code modules. By an
empirical experiment, we try to show the effectiveness of our proposed metric
for the fault-prone module prediction.

The idea of the new metric comes from our previous work[8,9]. In the previ-
ous works, we proposed a new approach for fault-prone module prediction using
spam-filtering technique. During the previous work, we considered that the out-
put of our fault-prone module prediction approach can be regarded as a metric
of fault-proneness. The approach itself has already been evaluated its accuracy
in the previous work, and the result of evaluation showed that the approach has
enough accuracy for the fault-prone module prediction. However, using only one
method may miss other important aspects of fault-proneness.

Therefore, we guessed that combination with conventional metrics and the
other classification methods improves the accuracy of fault-prone module pre-
diction. In order to investigate our intuition, we conducted an experiment of
fault-prone module prediction using the proposed metric as well as the conven-
tional metrics. For the conventional metrics, we prepared 3 history metrics and
7 complexity metrics.

As for the classification methods, we prepared popular classifiers: naive Bayes,
J48, Logistic, and NNge in Weka. For comparison purpose, we also prepared the
fault-prone filtering method, which we previously proposed in [8].

3 Metrics Suit and Prediction Method

For a comparative study, we prepared three kinds of metrics suit: history, com-
plexity, and text-filtering. We also prepared well-known classifiers for prediction
methods.

3.1 History Metrics

– FIX (Memories of bug fix)[7]. This metric shows past existence of a fault in
a module in the nominal scale. If a module had been reported bugs in the
past revisions, FIX for the module becomes “yes”; otherwise FIX is “no”.

– LOCadd (Added lines of code from previous revision). This metric shows the
amount of added code from the previous revision. This metric is the absolute
scale.

298 O. Mizuno and H. Hata

– LOCchg (Changed lines of code from previous revision). This metric shows
the amount of changed code from the previous revision. This metric is the
absolute scale.

3.2 Complexity Metrics

For the object-oriented design, Chidamber and Kemerer proposed an object-
oriented metrics suit[10]. The metrics suit is called “CK metrics”. CK metrics
suit includes the following 6 metrics:

– LCOM (Lack of Cohesion on Methods). The number of pairs of member func-
tions without shared instance variables, minus the number of pairs functions
with shared instance variables. If this subtraction is negative, the metric is
set to zero.

– WMC (Weighted Methods per Class). The number of methods defined in
each class.

– DIT (Depth of Inheritance Tree). The number of ancestors of a class.
– NOC (Number Of Children). The number of direct descendants for each

class.
– CBO (Coupling Between Object classes). The number of classes to which a

given class is coupled.
– RFC (Response For a Class). The number of methods that can be executed

in response to a message being received by an object of that class.

Many researchers used CK metrics suit for fault-prone module prediction[11,1,12].
For example, Gyimóthy et al. employed these metrics to fault prediction[12] and
showed their effectiveness. Since the CK metrics suit is one of the most popular
set of software metrics, we adopted it in this study.

Additionally, we used the most traditional complexity metrics for software:

– LOC (Lines of code of a class file). The lines of code is one of the oldest and
most important software metrics. Here, LOC for a class file is measured.

All of above complexity metrics are the absolute scale metrics. For collection
of these metrics, we utilized a tool, MASU, which is implemented by
Miyake et al. [13].

3.3 Text-Filtering Metrics

– Pfpf (A probability to be faulty for a module, which is calculated by a generic
text filter[8,9].
This metric is implicitly related to information of frequency of words in a
module. The computation of Pfpf is rather complex, but the basic idea is
simple. Assume that you have corpuses of faulty and non-faulty modules.
Here, a corpus contains tokens of source code modules decomposed by the
lexical analysis. When you get a new module to see whether it has a fault
or not, we can determine which corpus is appropriate to contain the tokens
of the new module by the Bayes theorem. This mechanism is implemented

Yet Another Metric for Predicting Fault-Prone Modules 299

in a generic text filter. Using such a text filter, we have developed a tool to
calculate Pfpf for a module with given corpuses of faulty and non-faulty. For
our implementation, Pfpf is calculated by a spam filter “CRM1141”.

3.4 Fault-Prone Prediction Methods

In this study, we prepared 4 distinct classifiers for the fault-prone module pre-
diction as follows:

naive Bayes: Naive Bayes is one of the simplest Bayesian classifier. Although
many classifiers based on Bayes theorem, the naive Bayes is still a powerful
classifier.

J48: J48 generates a pruned C4.5 decision tree. It is an implementation of fa-
mous tree classifier algorithm.

Logistic: Logistic is an implementation of logistic regression. Logistic builds a
multinomial logistic regression model with a ridge estimator.

NNge: NNge is a nearest-neighbor-like algorithm using non-nested generalized
exemplars (which are hyper-rectangles that can be viewed as if-then rules).
NNge is one of the rule-based data mining method.

In the experiment, we compare the best accuracy measures between above
classifiers.

4 Experiment

4.1 Target Project

For the experiment, we selected an open source software project, Eclipse BIRT2.
This project is written in Java, and revisions are maintained by CVS. The source
repository of CVS used in this study was uploaded on the Eclipse project Web
site3, and we obtained on the 1st of December, 2008. We treated a Java class
file in each revision as a software module.

We also obtained bug reports from a bug-tracking system, Bugzilla on the
1st of January, 2009. We extracted reports from Bugzilla under the following
conditions. The type of these faults is “bugs”; therefore, these faults do not
include any enhancements or functional patches. The status of faults is “closed”,
and the resolution of faults is “fixed”. This means that the collected faults have
already been fixed and have been closed, and thus fixed revisions should be
included in the entire repository.

4.2 Collection of Faulty Modules

We identify faulty modules with the SZZ algorithm[14,15]. Once modules are
collected by the above procedure, we collect software metrics shown in Section 3
for each module. A part of collected metrics is shown in Table 1. Although Pfpf

is a probability, most of values of Pfpf are 0 and 1.
1 http://crm114.sourceforge.net/
2 http://www.eclipse.org/birt/phoenix/
3 http://archive.eclipse.org/arch/

300 O. Mizuno and H. Hata

Table 1. A part of collected metrics from BIRT

Module FIX LOCadd LOCchg LOC WMC DIT CBO LCOM RFC NOC Pfpf Faulty?
BuildUtil.java yes 0 1 108 7 6 11 0 18 0 0.1370 no
CheckDiskSpace.java yes 33 42 623 62 5 68 161 182 3 0.0000 yes
DynamicProperty.java no 32 0 61 7 6 3 8 8 0 0.0000 no
FeatureUpdater.java no 0 1 188 17 4 21 41 37 1 0.0000 yes
· ·

Table 2. Train data and Test data from BIRT

Train Test
Version 2.1 2.2.0
Date 30th June, 2006 29th June, 2007
of modules 2,445 2,927

For the experiment, we prepared 2 sets of metrics data: train data and test
data. We used a snapshot of version 2.1 in 30th June, 2006 for train data and a
snapshot of version 2.2.0 in 29th June, 2007 for test data. For this criteria, train
data has 2445 modules and test data has 2927 modules.

4.3 Evaluation Measures

Table 3 shows a classification result matrix. True negative (TN) shows the num-
ber of modules that are classified as non-fault-prone, and are actually non-faulty.
False positive (FP) shows the number of modules that are classified as fault-
prone, but are actually non-faulty. On the contrary, false negative shows the
number of modules that are classified as non-fault-prone, but are actually faulty.
Finally, true positive shows the number of modules that are classified as fault-
prone which are actually faulty.

In order to evaluate the results, we prepare two measures: recall, precision.
Recall is the ratio of modules correctly classified as fault-prone to the number of
entire faulty modules Recall is defined as Recall = TP

TP+FN . Precision is the ratio
of modules correctly classified as fault-prone to the number of entire modules
classified fault-prone. Precision is defined as Precision = TP

TP+FP . Since recall
and precision are in the trade-off, F1-measure is used to combine recall and
precision. F1-measure is defined as F1 = 2×recall×precision

recall+precision . In this definition,
recall and precision are evenly weighted.

Table 3. Classification result matrix

Classified
non-fault-prone fault-prone

Actual non-faulty True negative (TN) False positive (FP)
faulty False negative (FN) True positive (TP)

Yet Another Metric for Predicting Fault-Prone Modules 301

4.4 Procedure

For the experiment, we used Weka4 to conduct predictions of fault-prone mod-
ules. Using collected data shown in Table 2, we conducted the following two
experiments.

(1) Ten-fold cross validation: For 10-fold cross validation, we used train data
only. The 10-fold cross validation can show relatively fair results for a given data
set. However, it cannot take into account important features such as the order
of construction of the modules.
(2) Fault-prone module detection on post-release: Here, we used both train data
and test data. Fault-prone modules are detected on test data using detection
models trained with train data. On the test data, we evaluate the detection
performance.

Generally speaking, the performance of fault-prone module detection varies
according to the combination of these metrics used in a detection model. In order
to find the best metrics subset for the train data, we prepared all (= 211 = 2, 048)
combinations of metrics shown in Table 1. Then, we performed 10-fold cross
validation for each combination, and obtained the best combination with the
highest evaluation measurement, such as F1.

Once we get the best combination of metrics, we construct a detection model
using the best combination of metrics and the train data. We then apply the
constructed model to the test data. This procedure is done for each classification
method.

4.5 Results of Experiment

The result of experiment is shown in Table 4. For each classifier, recall, pre-
cision, F1, and the best combination of metrics are shown. Note that the row
“FPFiltering” is for comparison with the fault-prone filtering method. Remind
that Pfpf is a value of probability to be fault-prone. Since Pfpf is a probability,
the natural binary classification is Pfpf ≥ 0.5 and Pfpf < 0.5. By this way, the
evaluation measures in the row “FPF” are calculated.

As shown in Table 4, FPFiltering has high F1 by itself. Therefore, all other
classifiers uses the metric Pfpf in their model. Among them, we can see that J48
has the highest F1 (=0.718) among 5 methods. We can also see that naive Bayes
achieved higher F1 than FPFiltering.

If we conduct the same experiment without Pfpf , the resultant F1’s become
lower than that of Table 4. Since the space is limited in this article, we cannot
show the result itself.

4.6 Discussion

In the experiment, J48 using Pfpf and LOCadd achieves the highest F1. Let us
show the detail of the constructed model. J48 constructs a decision tree from
4 http://www.cs.waikato.ac.nz/ml/weka/

302 O. Mizuno and H. Hata

Table 4. Evaluation measures between classifiers

Classifier Precision Recall F1 Metrics
FPFiltering .563 .952 .708 Pfpf

naive Bayes .570 .947 .712 Pfpf

Logistic .679 .542 .603 Pfpf , FIX, LOCadd, WMC, DIT
J48 .608 .877 .718 Pfpf , LOCadd

NNge .590 .664 .676 Pfpf , LOCadd, LOCchg, LOC, WMC, DIT, CBO, RFC

Pfpf > 0.9999

LOCadd <= 44

non-falut-prone

Yes

No

No

falut-proneYes

Fig. 1. A classification tree by J48

the given data. In this case, since two metrics Pfpf and LOCadd are adopted in
the model, the tree is constructed as shown in Figure 1.

The tree says, “if Pfpf is greater than 0.9999 and LOCadd is smaller than or
equal to 44, the module is fault-prone; otherwise the module is non-fault-prone.”
In other words, modules which have extremely high Pfpf value only considered
to be fault-prone. This case shows an advantage of usage of other classifier with
our proposed metric.

Next, in the case of naive Bayes, the metric Pfpf is only adopted, and achieve
higher F1 than FPFiltering. This means that some kind of calibration is applied
to the result of FPFiltering by the naive Bayes classifier. We can say that this
case shows an advantage of combining metrics.

FPFiltering still has the best result for the recall, but at the same time, it
has the worst precision. High recall means that actual faults are not missed
with the prediction, and low precision means that many non-faulty modules
are predicted as fault-prone. Extremely imbalanced recall and precision are not
good for a prediction system. From this point of view, the combination of several
prediction methods can be one of the useful ways to achieving a good fault-prone
module prediction method.

5 Threats to Validity

Generality of target projects is an external validity threat. In general, the Eclipse
BIRT project does much better than other open source projects when using
machine learning classifiers to predict fault-prone modules. We must study other
projects and analyze performance across them. In addition, industrial projects
may lead to different results.

Yet Another Metric for Predicting Fault-Prone Modules 303

There are two construct validity threats as follows:

– The SZZ algorithm adopted in this study has a limitation in that faults that
are not recorded in revision logs cannot be collected. To make a complete
collection of faulty modules from a source code repository, further research
is required.

– It might turn out our implementation of the system contains faults.

6 Conclusions

We introduced a new metric for fault-prone module detection using the result
of spam-filtering technique. Since the usefulness of the spam-filtering technique
has already shown in the previous work, we tried to confirm whether or not the
combination of the new metric and the conventional software metric can improve
the quality of fault-prone module detection. The result of experiment shows that
use of a certain convention of metrics can achieve higher accuracy measures.

Acknowledgments

This research is partially supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Young Scientists (B), 20700025, 2009.

References

1. Briand, L.C., Melo, W.L., Wust, J.: Assessing the applicability of fault-proneness
models across object-oriented software projects. IEEE Trans. on Software Engi-
neering 28(7), 706–720 (2002)

2. Khoshgoftaar, T.M., Seliya, N.: Comparative assessment of software quality classi-
fication techniques: An empirical study. Empirical Software Engineering 9, 229–257
(2004)

3. Bellini, P., Bruno, I., Nesi, P., Rogai, D.: Comparing fault-proneness estimation
models. In: Proc. of 10th IEEE International Conference on Engineering of Com-
plex Computer Systems, pp. 205–214 (2005)

4. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Trans. on Software Engineering 33(1), 2–13 (2007)

5. Catal, C., Diri, B.: Review: A systematic review of software fault prediction studies.
Expert Syst. Appl. 36(4), 7346–7354 (2009)

6. Layman, L., Kudrjavets, G., Nagappan, N.: Iterative identification of fault-prone
binaries using in-process metrics. In: Proc. of 2nd International Conference on
Empirical Software Engineering and Measurement, pp. 206–212 (2008)

7. Kim, S., Pan, K., Whitehead Jr., E.J.: Memories of bug fixes. In: Proc. of 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
35–45 (2006)

8. Mizuno, O., Kikuno, T.: Training on errors experiment to detect fault-prone soft-
ware modules by spam filter. In: Proc. of 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the foundations of
software engineering, pp. 405–414 (2007)

304 O. Mizuno and H. Hata

9. Mizuno, O., Kikuno, T.: Prediction of fault-prone software modules using a generic
text discriminator. IEICE Trans. on Information and Systems E91-D(4) , 888–896
(2008)

10. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. on Software Engineering 20(6), 476–493 (1994)

11. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object oriented metrics as
quality indicators. IEEE Trans. on Software Engineering 22(10), 751–761 (1996)

12. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. on Software Engineer-
ing 31(10), 897–910 (2005)

13. Miyake, T., Higo, Y., Inoue, K.: Masu: Metrics assessment plugin-plutform for
software unit of multiple programming languages. In: Proc. of Software Engineering
Symposium 2008, pp. 63–70 (2008)

14. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes (on Fri-
days). In: Proc. of 2nd International Workshop on Mining Software Repositories,
pp. 24–28 (2005)

15. Kim, S., Zimmermann, T., Pan, K., Whitehead Jr., E.J.: Automatic identification
of bug-introducing changes. In: Proc. of 21st International Conference on Auto-
mated Software Engineering, pp. 81–90 (2006)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 305–312, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Quantifying the Influences of Imperfect Debugging on
Software Development Using Simulation Approach∗

Chu-Ti Lin1 and Chin-Yu Huang2

1 Department of Computer Science and Information Engineering,
National Chiayi University, Chiayi, Taiwan

chutilin@mail.ncyu.edu.tw
2 Department of Computer Sicence, National Tsing Hua University,

Hsinchu, Taiwan
cyhuang@cs.nthu.edu.tw

Abstract. Practical experiences indicate that imperfect debugging actually ex-
ists in software development. In addition to inherent faults, additional faults
may be introduced into software system during debugging process. Therefore,
the debugging team should be staffed with more personnel to fix the introduced
faults and ensure the quality of software system. To address this problem, we
apply G/G/m queueing model to describe debugging behavior under imperfect
debugging environment. Based on the proposed simulation framework, we in-
vestigate the influences of imperfect debugging on staffing needs. The applica-
tion of the proposed framework will be illustrated through a real data set. From
the simulation results, project managers can be aware of the relationship be-
tween the staffing needs and the degree of imperfect debugging.

Keywords: Software Testing, Software Debugging, Software Reliability, Simu-
lation-based Approach, Imperfect Debugging.

1 Introduction

The analyses of software failure processes are very important for ensuring the quality
of the underlying software systems. Since 1970s, many software reliability growth
models (SRGMs) have been proposed to predict software failure process [1], [2], [3],
[4]. So far, more than 100 models exist in one form or another through numerous
publications [5]. On the other hand, non-parametric techniques, such as artificial neu-
ral network (ANN), are also novel approaches for the prediction of software failure
processes. Many researchers [6], [7], [8] have shown that neural networks offer prom-
ising approaches to software reliability modeling and estimation. Nevertheless, Taus-
worthe and Lyu [1] reported that most SRGMs only focus on the failure observation
during the test phase or the operational phase, and the assumptions of most SRGMs
may lead to over-simplification of failure process. Besides, most training algorithms
for neural network approaches suffer from the overfitting problem [8]. That is, the

∗ The research work described in this paper was supported by the National Science Council,

Taiwan, under Grant NSC 97-2221-E-007-052-MY3.

306 C.-T. Lin and C.-Y. Huang

fitting bias of the training set is very slight regarding known data, but the bias is un-
predictably large when new data is presented to the network. Determination of the
proper number of neurons is another common problem in the field of neural network
research [9].

In recent years, Tausworthe and Lyu [1] proposed a novel rate-based simulation
approach and showed that it can relax certain unreasonable assumptions which are
common in most model-based approaches [1]. Nevertheless, most of existing simula-
tion approaches assumes that, each time a failure occurs, the corresponding fault will
be removed with absolute certainty [1], [10], [11]. This assumption can significantly
simplify the simulation approaches. In fact, a debugging process may be complicated
in a large-scale software system. It may be difficult to ensure that no new faults will
be created when correcting a fault in practical software development. This phenome-
non is often named imperfect debugging [12], [13] [14], [15]. If we ignore the influ-
ence of imperfect debugging when analyzing the failure processes, the number of
fault counting and the staffing needs for software debugging may be underestimated.
In this paper, we will incorporate the concept of imperfect debugging into the simula-
tion-based approach, and analyze its influences on fault detection processes, fault
correction processes and staffing needs.

The remainder of this paper is organized as follows: Section 2 gives the concept of
rate-based simulation approaches, and reviews some existing methods which attempt
to address the problem of imperfect debugging. In Section 3, we will propose a simu-
lation procedure to analyze the fault detection and correction processes based on the
concept of queueing theory. In the proposed simulation approach, the debugging be-
havior will take into account the influence of imperfect debugging. A numerical ex-
ample based on real failure data is shown in Section 4. Finally, Section 5 concludes
this paper.

2 Related Works

According to the concept of pure birth non-homogeneous continuous time Markov
chain (NHCTMC), Tausworthe and Lyu [1], [16] proposed a set of simulation algo-
rithms, which can be applied to different activities in software development, such as
document construction, document inspection, code integration, code inspection, fault
identification, fault repair, and so on. Later, based on Tausworthe and Lyu’s work [1],
Gokhale and Lyu [10] proposed a simulation technique to analyze the structure-based
software reliability, and further extended the simulation to the reliability assessment
on the application level. Besides, they also considered the explicit repair in the simu-
lation approach, i.e. the removals of detected faults take non-negligible time. Re-
cently, Lin and Huang [11] analyzed the staffing needs for software debugging teams
through the use of simulation-based approaches based on the framework of G/G/m
queueing model. To our understanding, most of existing simulation techniques are
constructed under the assumption of perfect debugging. However, the problem of
imperfect debugging should be considered in reality.

So far, there exist many researches that are dedicated to the problem of imperfect
debugging. Ohba and Chou [13] ever investigated a large-scale system software de-
velopment project, and reported that about 14 percent of faults detected and removed
during the observation period were introduced. Thus, they integrated a parameter,

 Quantifying the Influences of Imperfect Debugging on Software Development 307

fault introduction rate, into conventional SRGMs to parameterize the degree of imper-
fect debugging. Goel and Okumoto [17] also argued that an imperfect debugging
model can perform well on the land-based radar system. In recent years, Pham et al.
[14], [18] developed a series of imperfect debugging models in conjunction with some
problems, such as multiple failure types [14], the change of fault introduction rate
[18], etc. Based on the unified theory, Huang and Lin [4] generalized the NHPP-based
SRGMs with multiple change-points under imperfect debugging environment. Apart
from the framework of SRGM, Gokhale et al. [19] also ever considered the possibility
of imperfect debugging in the simulation approach. But their work focused on some
specific pending faults and ignored the testing process.

Existing works associated with imperfect debugging focus on not only the software
reliability prediction, but also the estimation of software development cost. Xie and
Yang [20] though imperfect debugging may affect the determination of the optimal
software release time or operational budget. Therefore, they extended a commonly
used cost model to address the case of imperfect debugging. However, we found most
of related works do not discuss the influence of imperfect debugging on the staff
needs for debugging systems.

3 Simulation Procedures

Dohi et al. [3] proposed a method to describe the software debugging behavior by
using infinite server queueing models. Similarly, we can also use the queueing models
to depict the debugging activities. Our assumptions are given as follows [1], [10]:

(1) The correction of each fault takes a debugger non-negligible time.
(2) Each time a failure occurs, there is no lag to allot a debugger to the detected fault

if available debuggers exist. Otherwise, the detected fault is pending in the queue,
and waits for a released debugger.

(3) The number of available debuggers is finite. The debugging system can be mod-
eled by a G/G/m queue [21].

(4) A new fault may be introduced into the software system when removing a fault.

Based on these assumptions, a procedure SIMULATION_PROCEDURE is given in Fig. 1.
It has four input parameters: the size of debugging team personnel, the total execution
time duration denoted end, and the time length of each run denoted dt, and the degree
of imperfect debugging introduction_rate, i.e. the probability of introducing a new
fault when a detected fault is fixed. Note that each run should be short enough that the
occurrence of multiple failures is rare [1], [2], [10]. In addition, there are other vari-
ables in the procedure. The variable time denotes the cumulative execution time till
now, which increases when each run is finished. The queue Q keeps each detected
fault which is currently pending and waiting for debuggers. Two sets C and R are
used to keep track of the usage of debuggers. C contains the faults which were allot-
ted to debuggers in current run while R holds the faults which have occupied debug-
gers prior to current run. When Q is not empty, it indicates that all debuggers are
occupied and |C∪R|=personnel. Set S includes the faults which were introduced into
the software system but not detected yet. Finally, we use F to store all corrected
faults. During the simulation, each run is composed of five steps: Allocating step,
Detecting step, Correcting step, Introducing step and Exposing step.

308 C.-T. Lin and C.-Y. Huang

Allocating step. In the beginning of each run, there may be some unoccupied debug-
gers. This step allocates the available debuggers to the faults pending in the queue.
First, we check whether the following two conditions stand: (1) there exist the debug-
gers which were not assigned to fix some specific faults yet, i.e. |C∪R|≠ personnel;
(2) some faults are pending in waiting queue Q, i.e. Q ≠ φ . If both conditions are true,

the fault pending at the tail of Q, fpending, will be deleted from the waiting queue and
assigned to a free debugger (i.e. Lines 06-07). The activities of debugger allocation
(i.e. de-queue and assignment) will be repeated until Q becomes empty or all debug-
gers are occupied (i.e. none or only one condition stands).

Detecting step. In this step, we implement Function DETECTION() to determine
whether a new inherent fault is experienced in this run. It will be executed one time in
each run, and will compare failure_rate×dt with a (0.0, 1.0)-uniform random number
x, where failure_rate is the expected failure rate [10]. The condition that fail-
ure_rate×dt > x means that a new inherent fault is detected. Then DETECTION() will
return true, and will create a new element finherent in the system (i.e. Lines 09-10).
Besides, we should determine whether available debuggers exist once a new fault is
detected (i.e. Line 11). If |C∪R|=personnel, i.e., all debuggers are occupied, the fault
finherent will be inserted into Q (i.e. Line 12). Otherwise, the detected fault finherent will
be put into the set C (i.e. Line 13).

Correcting step. The number of service channels in a queue system can be consid-
ered as the number of allocated debuggers in a debugging team, and the service rate
can be used to depict a debugger’s efficiency. Similar to DETECTION (), CORREC-

TION() is implemented to check whether each fault fcorrecting (i.e. the fault which is
being fixed by a debugger) can be removed in the current run. In CORRECTION(), the
success of fault removal relies upon the comparison between a (0.0, 1.0)-uniform
random number x and service_rate×dt, where service_rate is the mean service rate of
each debugger. If CORRECTION() return true, the fault will be removed from Set R to
Set F (i.e. Lines 24-25). Please notice that, because the assumption of instantaneous
repair is impractical, thus fault removal is assumed to be explicit in SIMULA-

TION_PROCEDURE. That is, CORRECTION() is only invoked for the fault which was not
detected in current run. Consequently, although faults in both C and R are currently
being repaired by debuggers, CORRECTION() only checks the faults in R. If the re-
moval is successful (i.e. Function CORRECTION() returns true), the fault fcorrecting will
be moved from R to F.

Introducing step. This step is implemented to determine whether a new fault will be
introduced by the current correction. Each time an fault is removed (i.e. Function
CORRECTION() returns true), Function INTRODUCTION () will be invoked to compare
a random number x (ranging from 0 to 1) with introduction_rate. The condition that x
<introduction_rate indicates that the debugging process with respect to this fault is
less than perfect. A new fault fintroduced will be created and added into Set S (i.e. Lines
28-29); otherwise, the debugging process is perfectly finished without introducing
new faults.

Exposing step. Similar to inherent faults, introduced faults may not be exposed by
testers immediately. Hence, Set S only contains the faults which have been introduced

 Quantifying the Influences of Imperfect Debugging on Software Development 309

into the system but not exposed yet. In this step, Function EXPOSING () will determine
whether each introduced fault in Set S, fintroduced, can be exposed by testers in current
run. Similarly, a random number x (ranging from 0 to 1) will be compared with the
value of exposing_rate×dt. If the condition that exposing_rate×dt < x stands, it indi-
cates that the fault will not be exposed in this run and will be reexamined in the next
run. Conversely, if the condition is false, the fault fintroduced will be removed from Set S
(i.e. Line 17). Besides, similar to Detecting step, we should further check whether
there exist unoccupied debuggers. fintroduced will be pending in Q if all debuggers are
busy (i.e. Line 19). Otherwise, fintroduced should be added into Set C (i.e. Line 20).

At the end of each run, all faults in C will be removed to R (i.e. Lines 30-31). Note
that above five steps will reiterate again and again until the end of simulation. In addi-
tion to the throughput of debugging system (i.e., the number of detected faults and
removed faults), we can also have more statistics about the service level based on this
skeleton, such as the average of waiting time, the average of response time, the de-
bugger utilization, the average of queue length, etc.

SIMULATION_PROCEDURE (personnel, end, dt, introduction_rate)
01: time ← 0
02: Q ← C ← R ← F ← S ← φ
03: repeat
04: Allocating step:
05: while || RC ∪ ≠ personnel and Q ≠ φ
06: do fpending ← DEQUEUE(Q)
07: C ← C ∪ {fpending}
08: Detecting step:
09: if DETECTION() returns true
10: then new an element finherent
11: if || RC ∪ = personnel

12: then ENQUEUE(Q, finherent)
13: else C ← C ∪ {finherent}
14: Exposing step:
15: for each element fintroduced ∈ S
16: do if EXPOSING() returns true
17: then S ← S − {fintroduced}
18: if || RC ∪ = personnel

19: then ENQUEUE(Q, fintroduced)
20: else C ← C ∪ {fintroduced}
21: Correcting step:
22: for each element fcorrecting ∈ R
23: do if CORRECTION() returns true
24: then F ← F ∪ {fcorrecting}
25: R ← R − {fcorrecting}
26: Introducing step:
27: if INTRODUCTION(introduction_rate) returns true
28: then new an element fintroduced
29: S ← S ∪ {fintroduced}
30: R ← R ∪ C
31: C ←φ
32: time ←time + dt
33: until time < end.

Fig. 1. Simulation Procedure

4 Numerical Example

In the experiment, the selected failure data were collected from a middle-sized soft-
ware project in interval-domain format [22]. In the data set, 144 faults were totally
observed during 17 weeks, and 143 out of the 144 observed faults were removed. In

310 C.-T. Lin and C.-Y. Huang

the simulation, we assume that all collected faults are inherent faults and simulate the
introduced faults caused by different degrees of imperfection, i.e. introduction_rate
ranges from 0 to 0.3. The experiment is set up as end = 17, dt = 0.001 and ser-
vice_rate = exposing_rate = 4. The value of failure_rate was described using the rate
function of the Goel-Okumoto model, and the statistics for the rate function are all
one-week-ahead prediction [1]. In other words, all failure data prior to the specific
time point are used to predict the number of failures in next time unit. In our simula-
tion, we executed the procedures 5,000 times, and took the average.

Fig. 2 shows the number of open-remaining faults (detected but uncorrected faults)
versus time. As seen from Fig. 2, if the debugging team contains at least 6 debuggers
in Case 1, all detected faults will be removed at the end of 17 weeks. In Case 2, the
teams with not less than 6 people can provide the same throughput by the end of 17
weeks. It is worth noting that, compared with 6 debuggers, more debuggers cannot
improve the throughput in both Cases 1 and 2. Thus, 6 debuggers are suitable for the
debugging systems of Case 1 and Case 2 under the given assumptions. From Figures
2(c) and 2(d), we can find that more faults are introduced during fault removals when
the degree of imperfect debugging increases. As a result, the staffing needs increase
as well. The staffing levels with 7 and 8 debuggers are recommended for Case 3 and
Case 4, respectively.

Table 1 compares the service levels of debugging teams under different degrees of
imperfect debugging when the staffing levels range from 4 to 10 or approach to infi-
nite. The criteria related to throughput include the number of detected, introduced,
removed, and remaining faults. As seen from Table 1, because more faults are intro-
duced with the growth of the degree of imperfection, the number of detected faults
(i.e. the total amount of inherent and introduced faults) will increase as well. How-
ever, the fault removals may be bound to the staffing level. That is, when the allo-
cated debuggers are insufficient, the number of fault removals may not grow with the
growth of introduction rate. Thus, given the same staffing level, the number of re-
maining faults may increase as the degrees of imperfect debugging increases.

Furthermore, it can be found that the waiting time and the response time increase
with the growth of introduction rate, and decrease with the growth of staffing level.
However, the changes are relatively minor when the allocated debuggers are adequate.
Let’s consider Case 1 and Case 2 as illustrations. When the staffing level is raised from
6 to 7, the changes on both waiting time and response time are less than 1. For Cases 3
and 4, the differences are also insignificant when the staffing levels are not less than 7
and 8, respectively. Finally, we can also find that the debugger utilization monoto-
nously decreased with the growth of the debugging team size in all cases. Nevertheless,
when the staffing level is low, all debuggers are busy at most time points, and the utili-
zations do not change clearly under different degrees of imperfection. On the whole,
the best staffing levels are positively related to the degrees of imperfect debugging.
The most cost-effective staffing levels for Cases 1-4 are 6, 6, 7 and 8, respectively.

In fact, debuggers’ abilities and experience are both important factors for the de-
gree of imperfect debugging. Therefore, the proposed framework can help to assess
the staffing needs for the debugging system after evaluating the debuggers’ abilities
and experience. If most of the available debuggers are not experienced, assigning
more debuggers may be necessary. On the other hand, if the debuggers are experi-
enced, the possible introduction rate may be relatively low, and a lower staffing level
may be a better recommendation.

 Quantifying the Influences of Imperfect Debugging on Software Development 311

2 4 6 8 10 12 14 16

10

20

30

40

50

60

70

80

(weeks)

Num. of open-remaining faults

Staffing level: 4
Remaining faults: 37

Staffing level: 5
Remaining faults: 17

Staffing level: 6-9
Remaining faults: 0

2 4 6 8 10 12 14 16

10

20

30

40

50

60

70

80
Num. of open-remaining faults

(weeks)

Staffing level: 4
Remaining faults: 44

Staffing level: 5
Remaining faults: 26

Staffing level: 6-9
Remaining faults: 2

(a) Case 1: perfect debugging (b) Case 2: introduction rate=0.1

2 4 6 8 10 12 14 16

10

20

30

40

50

60

70

80
Num. of open-remaining faults

(weeks)

Staffing level: 4
Remaining faults: 53

Staffing level: 5
Remaining faults: 35

Staffing level: 6
Remaining faults: 12

Staffing level: 7-9
Remaining faults: 3

2 4 6 8 10 12 14 16

10

20

30

40

50

60

70

80
Num. of open-remaining faults

(weeks)

Staffing level: 4
Remaining faults: 64

Staffing level: 5
Remaining faults: 48

Staffing level: 6
Remaining faults: 25

Staffing level: 7
Remaining faults: 5

Staffing level: 8-9
Remaining faults: 1

(c) Case 3: introduction rate=0.2 (d) Case 4: introduction rate=0.3

Fig. 2. Number of open-remaining faults versus time

Table 1. Service levels comparisons under different degrees of imperfect debugging

 Staffing Level 4 5 6 7 8 9 10 infinite
Detected/introduced faults* 144/0 144/0 144/0 144/0 144/0 144/0 144/0 144/0
Removed/remaining faults* 107/37 127/17 144/0 144/0 144/0 144/0 144/0 144/0

Waiting/response time** 5.47/6.11 3.15/3.79 1.63/2.27 0.75/1.39 0.40/1.04 0.25/0.89 0.15/0.78 0.00/0.64

Case 1:
Perfect

debugging
Debugger utilization (%) 97.42 93.53 91.70 78.60 68.77 61.13 55.01 —

Detected/introduced faults* 151/7 153/9 154/10 154/10 154/10 154/10 154/10 154/10
Removed/remaining faults* 107/44 127/26 152/2 152/2 152/2 152/2 152/2 152/2

Waiting/response time** 6.20/6.84 3.72/4.36 1.97/2.61 1.03/1.66 0.50/1.13 0.29/0.93 0.17/0.81 0.00/0.64

Case 2:
Introduction

rate=0.1
Debugger utilization (%) 99.50 99.40 97.36 83.48 73.05 64.93 58.44 —

Detected/introduced faults* 160/16 162/18 166/22 170/26 170/26 170/26 170/26 170/26
Removed/remaining faults* 107/53 127/35 154/12 167/3 167/3 167/3 167/3 167/3

Waiting/response time** 7.15/7.79 4.47/5.11 2.68/3.32 1.48/2.11 0.69/1.32 0.35/0.99 0.21/0.85 0.00/0.63

Case 3:
Introduction

rate=0.2
Debugger utilization (%) 99.50 99.40 99.31 90.57 79.25 70.44 63.40 —

Detected/introduced faults* 171/27 175/31 179/35 187/43 189/45 189/45 189/45 189/45
Removed/remaining faults* 107/64 127/48 154/25 182/5 188/1 188/1 188/1 188/1

Waiting/response time** 8.94/9.57 5.89/6.52 3.85/4.48 2.40/3.03 1.39/2.02 0.75/1.38 0.43/1.06 0.00/0.63

Case 4:
Introduction

rate=0.3
Debugger utilization (%) 99.50 99.40 99.31 99.10 88.18 78.39 70.55 —

*: It indicates the values evaluated by the end of 17 weeks. **: The time unit is weeks. Here the waiting time means the time of the fault
pending in waiting queue, and the response time indicates the total time spent in the queueing system.

5 Conclusions

In this paper, we proposed a simulation approach based on G/G/m queueing model.
The proposed simulation relaxes the perfect debugging assumption. In the numerical
example, one real data set was selected to illustrate the use of our approach. Given
different degrees of imperfect debugging, we analyzed the performance of debugging
systems with various staffing levels. The performance is evaluated in terms
of throughput, waiting time, response time, and debugger utilization. According to
those criteria, we can have insight into the staffing needs for debugging teams under
different conditions. Currently, we are enhancing the comparisons of service levels by
evaluating more criteria. We plan to present the research results in the near future.

312 C.-T. Lin and C.-Y. Huang

References

1. Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw Hill, New York (1996)
2. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability, Measurement, Prediction and

Application. McGraw Hill, New York (1987)
3. Dohi, T., Osaki, S., Trivedi, K.S.: An Infinite Server Queueing Approach for Describing

Software Reliability Growth: Unified Modeling and Estimation Framework. In: 11th Asia-
Pacific Software Engineering Conference, Busan, Korea, pp. 110–119 (2004)

4. Huang, C.Y., Lin, C.T.: Reliability Prediction and Assessment of Fielded Software Based
on Multiple Change-Point Models. In: 11th IEEE International Symposium on Pacific Rim
Dependable Computing, Changsha, China, pp. 379–3860 (2005)

5. Lyu, M.R.: Software Reliability Engineering: A Roadmap. In: 29th International Conference
on Software Engineering, Future of Software Engineering, Minneapolis, pp. 153–170 (2007)

6. Su, Y.S., Huang, C.Y.: Neural-network-based Approaches for Software Reliability Estima-
tion Using Dynamic Weighted Combinational Models. Journal of Systems and Soft-
ware 80(4), 606–615 (2007)

7. Karunanithi, N., Malaiya, Y.K.: Prediction of Software Reliability Using Connectionist
Models. IEEE Trans. on Software Engineering 18(7), 563–574 (1992)

8. Tian, L., Noore, A.: On-line Prediction of Software Reliability Using an Evolutionary
Connectionist Model. Journal of Systems and Software 77(2), 173–180 (2005)

9. Cai, K.Y.: Software Defect and Operational Profile Modeling. Kluwer Academic Publish-
ers, Dordrecht (1998)

10. Gokhale, S., Lyu, M.R.: A Simulation Approach to Structure-Based Software Reliability
Analysis. IEEE Trans. on Software Engineering 31(8), 643–656 (2005)

11. Lin, C.T., Huang, C.Y.: Staffing Level Analysis of Software Debugging through Rate-
Based Simulation Approaches. IEEE Transactions on Reliability (to appear in 2009)

12. Kapur, P.K., Younes, S.: Modelling an Imperfect Debugging Phenomenon in Software Re-
liability. Microelectronics and Reliability 36, 645–650 (1996)

13. Ohba, M., Chou, X.M.: Does Imperfect Debugging Affect Software Reliability Growth?
In: 11th International Conference on Software Engineering, pp. 237–244 (1989)

14. Pham, H.: A Software Cost Model with Imperfect Debugging, Random Life Cycle and
Penalty Cost. International Journal of Systems Science 27, 455–463 (1996)

15. Slud, E.: Testing for Imperfect Debugging in Software Reliability. Scandinavian J. Statis-
tics 24, 555–572 (1997)

16. Tausworthe, R.C., Lyu, M.R.: A Generalized Technique for Simulating Software Reliabil-
ity. IEEE Software 13(2), 77–88 (1996)

17. Goel, A.L., Okumoto, K.: An Analysis of Recurrent Software Errors in a Real-time Control
System. In: 1978 ACM Annual Conference, Washington, D.C., USA, pp. 496–501 (1978)

18. Pham, H., Zhang, X.: An NHPP Software Reliability Model and Its Comparison. Interna-
tional Journal of Reliability, Quality and Safety Engineering 4(3), 269–282 (1997)

19. Gokhale, S., Lyu, M.R., Trivedi, K.S.: Incorporating Fault Debugging Activities into
Software Reliability Models: a Simulation Approach. IEEE Trans. on Reliability 55(2),
281–292 (2006)

20. Xie, M., Yang, B.: A Study of the Effect of Imperfect Debugging on Software Develop-
ment Cost. IEEE Trans. on Software Engineering 29(5), 471–473 (2003)

21. Gross, D., Harris, C.: Fundamentals of Queueing Theory. John Wiley & Sons, Chichester
(1998)

22. Wu, Y.P., Hu, Q.P., Xie, M., Ng, S.H.: Modeling and Analysis of Software Fault Detec-
tion and Correction Process by Considering Time Dependency. IEEE Trans. on Reliabil-
ity 56(4), 629–642 (2007)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 313–320, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Service Reliability and Availability Analysis of
Distributed Software Systems Considering Malware

Attack

Cheng-Jie Xiong, Yan-Fu Li, Min Xie, Szu-Hui Ng, and Thong-Ngee Goh

Department of Industrial and Systems Engineering, National University of Singapore,
119260, Singapore

{xiongchengjie,liyanfu,mxie,isensh,isegohtn}@nus.edu.sg

Abstract. Distributed systems are widely deployed in industries where high
computational capability and low cost are required. Distributed software archi-
tecture is very important in the distributed system. However, since most distrib-
uted systems are designed based on a network structure, distributed software is
very vulnerable to malware attacks. Due to the popularity of distributed system,
it is vital to study the effects of malware attack on distributed systems. In this
paper, we studied the malware attack behaviors by a Markov process model.
The states of the object homogeneous distributed system can be derived by ana-
lyzing the Markov model, with which the service reliability and service avail-
ability can be further obtained. An illustrative demonstration is also presented.

Keywords: distributed system, service reliability, service availability, malware,
Markov process.

1 Introduction

Distributed system, or sometimes referred to as “distributed computing”, is a collec-
tion of multiple autonomous computers that communicate through a computer net-
work [1] to solve a large computational task. The purpose of the distributed system is
to coordinate the use of shared resources or provide communication services to the
users [2]. Distributed system often consists of distributed hardware system and dis-
tributed software architecture. The distributed software architecture also has several
layers: the local operating system on every autonomous computer, the distributed
applications, and the middleware providing the buffer between computer network and
distributed applications [4]. The distributed software architecture is of great impor-
tance, because without distributed software, the distributed system is of very limited
function [5].

On the other hand, most failures occurred in distributed system can be classified as
software problems. Reliability is a very important metric for distributed system per-
formance. Many research efforts have been devoted into the reliability analysis of
distributed systems, including both system/software reliability [6,13,14] and service
reliability [7] of distributed systems. System availability is another important per-
formance measure for complex systems and there are also plenty of literatures on the

314 C.-J. Xiong et al.

availability topics of distributed systems [7]. In summary, most of the related research
concludes that distributed system’s structure boosts both its reliability and availabil-
ity, if compared to traditional computer systems. However, most of previous studies
focused on failures caused by accidents or natural cataclysms. On the other hand,
infective virus and malware become widely spread in the current computer networks
including many distributed systems. Protecting the distributed system against the
malicious attacks becomes an increasingly critical issue.

Malware is a general term used by computer professionals to refer a variety of
forms of hostile, intrusive, or annoying software or program code [3]. Although dif-
ferent in forms, all malware aims to disturb the normal work of the target system and
tries to spread and reproduce itself in other targets. According to Microsoft [3], over
90% of malware infections are direct consequences of network activities. If one com-
puter in the distributed system is infected by malware, the infected node will attempt
to attack other un-infected nodes via the network connection and will cause great lose
of computational capability if the situation is not attended to. However, there are very
limited resources in the existing literature to which we could refer.

As distributed system become more and more popular in human society, for exam-
ple the internet reaches every corner of the world, while more and more malware are
spreading over distributed systems; we are motivated to conduct a study of the effect
of malware attack in distributed system. We regard malware attack as the major rea-
son of computer crashing and the spreading of malware is modeled as a Markov proc-
ess. The service reliability and availability is then derived as indicators of system
status, which implies the consequences of malware attack.

This paper is organized as follows: in Section 2, the structure of common distrib-
uted systems is analyzed and malware attacks are considered. A Markov chain is built
to model the malware spreading behavior with proper assumptions and we further
derive the service reliability and availability from our proposed model. A simple but
illustrative demonstration is then presented in Section 3. Section 4 summarizes this
study with some possible further research directions.

2 Modeling of Malware Attack in Distributed Systems

2.1 Modelling of Distributed System under Malware Attack

In general, distributed systems are designed to coordinate node computers that are
connected via certain types of network and provide computing services. In a typical
distributed system, service request is usually received by a resource management
server (RMS) and then the request is divided and dispatched to the computer nodes
within the distributed system.

Various hardware and software architectures are used for distributed systems. If
identical copies of application software run on the same type of computer nodes
within a distributed system, then this kind of system is called a homogeneous distrib-
uted system. Homogeneous distributed system is the simplest while most widely used
distributed system architecture [1,2,9] with many research and application studies
[10]. In our study, we also focus on this type of distributed system.

The conceptual structure of a homogeneous N-nodes distributed system is shown
in the figure 1.

 Service Reliability and Availability Analysis 315

Fig. 1. Structure of a N-nodes homogeneous distributed system

Since all computer nodes within a distributed system communicate with each
other, it is very easy for a malware-infected computer node to attack other computers.
Malware disturbs normal operation of a computer node, which makes it unable to
perform the assigned task anymore. In the mean while, malware utilizes all available
resources of the infected computer node to attack other un-infected ones.

The attack of malware takes time and consumes resources such as CPU time and
network bandwidth. Such malicious behaviors will deteriorate the overall performance
of the distributed system. However, not all malware attacks are successful. The prob-
ability of a single successful malware attack is not high, but if the large amount of all
target computer nodes is taken into consideration, some “unlucky” computer nodes still
will get infected. In other words, if improper actions are taken, all nodes will ultimately
become infected even if only one computer node was infected at the very beginning.

Luckily, complex systems such as distributed systems are usually taken good care
of by professionals. Routine checking mechanisms are often deployed so that mal-
functioning components can be restored to normal state. In order to model the behav-
iors of malware attacks and these restoring performances, a continuous Markov chain
is built with proper assumptions. A list of notations is used in this paper.

Notation:

iλ failure rate of computer nodes

rμ restoration rate

mλ malware infection rate

aλ attacking rate of a malware-infected node

)(tX the state of the distributed system at time t

)(),,(tp DIH
 probability that the system is in state (H,I,D) at time t

α service rate of each computer node of an exponential distribution
H the number of normal computer nodes
I the number of computers that are infected by malware
D the number of computers that fail
N the total number of computers: N = H + I + D.

ET required finishing time of a single service request

T actual finishing time of a single service request

sR service reliability of the distributed system

sA service availability of the distributed system

316 C.-J. Xiong et al.

We also made the following assumptions to facilitate our analysis in this research:

Assumptions:
1. A homogeneous N-nodes distributed system consists of N identical computer

nodes, on which identical software applications are installed. Malware keeps
attacking the system from outside the system.

2. Each computer nodes have the same service rateα . The work of each indi-
vidual node is independent.

3. Each system node has an initial failure rate of
iλ and an initial infection prob-

ability
mλ that one computer node will fail or get infected, respectively. If a

computer node is infected by malware, it can no longer perform the assigned
task anymore. In the mean while, it keeps attacking other un-infected nodes
with infection rate

aλ

4. Routine system checking is performed. After checking, a node can be re-
stored with probability

rμ . If both infected nodes and failed nodes exist,

failed nodes are dealt with first.
5. Only one un-infected node can be infected by malware attacking at a time.

All the above assumptions are easy to validate except for 2. There are cases where
certain nodes have to wait for others’ output as their input. Dai et al [8,11] discussed
the problems of correlated nodes in distributed/grid systems. Since it’s hard to esti-
mate the level of correlation, which is normally low and the topic is not our main
focus, this assumption is relaxed in our study.

Consider a stochastic process)}({ tX , where },,{)(DIHtX = is the state of the N-

node distributed system. H denotes the number of healthy nodes, I denotes the number
of infected nodes and D denotes the number of failed nodes. It can easily be proven
that the Markov property holds in this process and)}({ tX can be modeled as a con-

tinuous time Markov process. Due to the size limit of this paper, we only present the
transition graph of a single state. Suppose that at least one computer node is infected
by malware, and then the state transition diagraph is obtained in Fig.2.

Based on the transition graph in Fig.2, when there are infected nodes, for the state
{H, I, D} we could obtain a Kolmogorov differential equation listed below:

()
)()(

)()1()1()()(

),1,1()1,,1(

),1,1(),,(

tptp

tpIHtp
dt

d
HIHI

DIHrDIHr

DIHamDIHiamri

+−+−

−+

++

−++=++++

μμ

λλλλλμλ (1)

The differential equations can be obtained similarly on other states. By consideration
all the states, we can have a set of differential equations describing the transitions
between different states.

If no malware infection has ever been reported, another type of equation can be
obtained for the state {H, 0, D}:

)()()()(),1,1()1,0,1(),0,(tptptp
dt

d
HH DHrDHrDHmi −+− +=+ μμλλ (2)

Similar to (1), we can obtain a set of differential equations to describe the transitions
between states without considering the malware infections.

 Service Reliability and Availability Analysis 317

Fig. 2. Transition graph of state {H,I,D}

To solve the equation systems based on (1) and (2), we have to obtain the boundary

conditions. We assume that the system starts from an all-healthy state, hence the
boundary conditions are:

0)0(,0)0(,,0)0(,1)0(,1)(),0,0()0,,0()1,0,1()0,0,(),,(===== −∑ NNNNDIH pppptp L (3)

The continuous Markov process can be explicitly solved with (1)~(3) and then we are
able to get the transient state probability)(),,(tp DIH

of each state, which will greatly

improve our capability of analyzing the system.

2.2 Derivation of Service Reliability and Availability

Software reliability of distributed systems has been studied by many authors, but only
a few have ever considered the service reliability of distributed systems. There is still
no precise definition of service reliability, but most authors [7,11] considered it as the
probability of successfully finishing a target task within a required time interval. In
this research, we also adopt this definition. According to our definition of service
reliability, the service reliability of our target system at time t is the probability that it
can finish the requested service within ET time:

}Pr{)(Es TTtR ≤= (4)

We further assume that the finishing time of a certain requested service follows an
exponential distribution. Then (4) can be further derived as

)()(},,Pr{}),,{|()(),,(EDIHss THFtpDIHDIHtRtR α∑∑ == (5)

where F is the CDF of an exponential distribution. The service availability can be
defined as the probability that at least one computer nodes in the distributed system is
still functioning:

∑
>∀

=>=
0

),,()(}|0Pr{)(
H

DIHs tptHtA (6)

The above two equations give explicit forms of the transient service reliability and
availability at a certain time. However, in some cases people are more interested in
the situation when the system transition becomes stable. The steady state service reli-
ability and availability can also be obtained with our proposed model.

318 C.-J. Xiong et al.

Lemma1: The steady state probability of the Markov chain proposed in Section 2.1
exists.

Proof: Since all states communicates with each other, the Markov chain is irreducible
and positive recurrent. Thus Lemma 1 is proven.

With Lemma1, the steady state probability can be obtained by the following equations:
)(lim),,(),,(tpp DIH

t
DIH ∞→

= (7)

where),,(DIHp is the steady state probability of state {H,I,D}. Then the steady state

service availability can be derived as:

∑
∀

−=
DI

DIs pA
,

),,0(1 (8)

And the steady state service reliability can be derived as:

∑
∀

=
DIH

EDIHs THFpR
,,

),,()(α (9)

3 Numerical Examples

In this section, two numerical examples will be presented and compared. We will first
conduct a numerical analysis of service reliability and availability of a 3-node homo-
geneous distributed system without considering malware attack. Then we take the
malware attack scenario into consideration. The results are compared and meaningful
conclusions are made. Although we do not use real case data, our model and analysis
approach can easily be adopted when real datasets are available.

Kondakci [12] conducted a similar study on malware analysis and provided some
real data. However, his approach is different from ours and his data is based on single
personal computers in an internet environment and may not be suitable for our study.
In this research, some artificial data are generated for illustration purpose and are
summarized in Table 1.

Table 1. Infection, restoration and failure probability

Notation Value

 iλ 0.05

rμ 0.8

mλ 0.1

aλ 0.3

 α 0.5

ET 2

If the distributed system is well protected and free of malware attack. As in this case,

a duplet {H,D} is enough for describing the system state. We define state 0~3 as {3,0},
{2,1}, {1,2} and {0,3}, respectively. If the distributed system is under malware attack,
we have totally 9 states as {3,0,0} , {2,1,0}, {2,0,1}, {1,2,0}, {1,1,1}, {0,2,1}, {0,1,2},

 Service Reliability and Availability Analysis 319

{0,0,3} and {0,3,0}, respectively. Solving (1)~(3) we could obtain their transient state
probability, based on which the system service reliability and availability can be ob-
tained. Then the service reliability and availability can be plotted as follows:

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

t

A
va

ila
bi

lit
y/

R
el

ia
bi

lit
y

Reliability without malware

Availability without malware

Reliability with malware

Availability with malware

Fig. 3. Service reliability and availability plot over t

By comparing the different two sets of results that we obtained in analyzing two dif-
ferent scenarios, some meaningful conclusions can be made. An apparent decline of
both service reliability and availability is observed if malware attack exists. This result
indicates that the capability of a distributed system is obviously hampered by malware
attack. Further comparison shows that the service reliability has been degraded more
than availability has. In fact, even a distributed system is attacked by malware; it is
hard for all its computer nodes to get infected at the same time. However, since the
computational capability of a distributed system depends highly on the available com-
puter nodes, it is expected that the service time for a certain task increases rapidly if
malware attack exists. Our experimental analysis tallies with the real world cases.

4 Conclusions

In this research, the problem of malware attack in distributed software systems is
considered. A Markovian approach is proposed to model the problem and we derived
meaningful system metrics such as service reliability and availability from our pro-
posed model. However, some strong assumptions are made in this research and fur-
ther validation analysis is needed. For future research, we plan to take the different
network structure of a distributed system into consideration. The sequential problem
of computer nodes also interests us.

320 C.-J. Xiong et al.

References

1. Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, Reading (2000)

2. Ghosh, S.: Distributed Systems–An Algorithmic Approach. Chapman & Hall/CRC3, Boca
Raton (2007)

3. Defining Malware: FAQ, http://technet.microsoft.com/en-us/library/
dd632948.aspx

4. Puder, A., Romer, K., Pilhofer, F.: Distributed Systems Architecture: A Middleware Ap-
proach. Morgan Kaufmann, San Francisco (2006)

5. Reza, H.: A methodology for architectural design of concurrent and distributed software
systems. Journal of Supercomputing 37(3), 227–248 (2006)

6. Dai, Y.S., Levitin, G.: Optimal resource allocation for maximizing performance and reli-
ability in tree-structured grid services. IEEE Transactions on Reliability 56(3), 444–453
(2007)

7. Dai, Y.S., Xie, M., Poh, K.L., Liu, G.Q.: A study of service reliability and availability for
distributed systems. Reliability Engineering and System Safety 79, 103–112 (2003)

8. Dai, Y.S., Xie, M., Poh, K.L.: Availability modeling and cost optimization for the grid re-
source management system. IEEE Transactions on Systems Man and Cybernetics Part A-
Systems and Humans 38(1), 170–179 (2008)

9. Agneeswaran, V.S., Janakiram, D.: Node-Capability-Aware Replica Management for Peer-
to-Peer Grids. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and
Humans 39(4), 807–818 (2009)

10. Xie, M., Dai, Y.S., Poh, K.L., Lai, C.D.: Optimal number of hosts in a distributed system
based on cost criteria. International Journal of Systems Science 35(6), 343–353 (2004)

11. Dai, Y.S., Wang, X.L.: Optimal resource allocation on grid systems for maximizing ser-
vice reliability using a genetic algorithm. Reliability Engineering & System Safety 91(9),
1071–1082 (2006)

12. Kondakci, S.: Epidemic state analysis of computers under malware attacks. Simulation
Modelling Practice and Theory 16(5), 571–584 (2008)

13. Huang, C.Y., Kuo, S.Y., Lyu, M.R.: An Assessment of Testing-Effort Dependent Software
Reliability Growth Models. IEEE Transactions on Reliability 56(2), 198–211 (2007)

14. Tamura, Y., Yamada, S.: Optimisation analysis for reliability assessment based on stochas-
tic differential equation modelling for open source software. International Journal of Sys-
tem Science 40(4), 429–438 (2009)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 321–329, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Test Coverage-Based Model for Predicting Software
Fault Content and Location during Multi-phase

Functional Testing

Carol Smidts1 and Ying Shi2

1 Ohio State University, Columbus, OH 43210
smidts.1@osu.edu

2 University of Maryland, College Park, Maryland 20742
yshi@umd.edu

Abstract. In this paper, we present a new test coverage-based model which al-
lows 1) Description of software systems developed through multiple phases of
functional testing, a practice common in industry, 2) Description of software
systems where either the initial fault distribution is non-uniform with respect to
location, or the repair and test and detection process favor certain locations, 3)
Description of software systems which exhibit both characteristics.

Keyword: Software Reliability Prediction, Test Coverage, Multi-phase Test,
Imperfect Repair, Defect Location Prediction.

1 Introduction

The relationship between test coverage (TC) and defect coverage (i.e. percentage of
defects identified through test) has been highlighted by many and number of research
efforts have been devoted to linking test coverage to the number of faults remaining
and number of failures experienced. To cite only a few, Vouk [1] directly relates the
number of detected faults and test coverage through a Weibull function. Piwowarsky
et al. 2] predicts reliability based on the fact that the fault removal rate is a linear
function of the code coverage. Malaiya et al. introduces a logarithmic model [3] that
relates testing effort to TC and then estimates reliability using Musa’s exponential
model. Malaiya et al. [4] also develop a logarithmic-exponential model which differs
from his earlier model by considering the linear relations between defect coverage
and TC once a certain TC level is achieved. Gokhale et al. [5] [6] propose a unified
definition of TC and incorporate explicitly the time-varying TC functions into the
Enhanced Non-homogeneous Poisson Process (ENHPP) framework. In their model,
variation in the number of failures experienced is proportional to variation in cover-
age via a detection rate function which varies with time. Pham and Zhang [7] revise
the ENHPP reliability model by proposing S-shaped TC functions and by considering
imperfect repair while assuming repairs take place as soon as the failure is expe-
rienced. Cai and Lyu [8] further integrate time and TC measurements together and
present a hybrid reliability prediction model.

322 C. Smidts and Y. Shi

Existing models assume that functional testing is a continuous single phase process
where the software is run through a single predefined series of tests. For such cases
the coverage function is a monotonically non-decreasing function of time as described
in Figure 1a. While this assumption is appropriate for a large class of software devel-
opment efforts, it fails to represent development efforts where functional testing is
organized as a multi-phase process. In such case the software will undergo several
series of functional tests and the coverage function will increase monotonically by
phase while experiencing discontinuities between phases (see Figure 1b and 1c).
Furthermore, repairs are not attempted as soon as failures are experienced but are
deferred to the end of each phase. This process will in particular be found in the case
of safety critical systems where one needs to ensure that the software will pass
through an entire series of tests without experiencing faults (See Section B.3.1.12.4 of
[9]; Section 5.4.2 of [10]; [11]). This leads to the existence of at least two phases: one
with faults, and one without faults.

(a) (b) (c)

Fig. 1. Coverage is a continuous monotonic non-decreasing function of testing time (a); Cover-
age function for Multiple Phases of Functional Testing (b) (c)

In addition, these models make the assumption that faults are distributed uniformly
in the code. There is no evidence that this might be true in practice (see for instance a
recent study by [12]). While the uniformity assumption may not be critical for most
software systems and as such is a very useful assumption, it needs to be carefully
examined for safety critical systems which are more sensitive to the location of faults.
Location is indeed an important contributing factor in the severity of faults.

This paper proposes analytical expressions for the number of failures remaining
and the remaining fault location distribution which can be used for reliability predic-
tion or to adjust testing efforts. In Section II we derive expressions for failures expe-
rienced and faults remaining for a software system undergoing multiple phases of
functional test before being declared ready for fielding and operation. In Section III
we account for the non-uniformity of the distribution of faults on fault sites. We con-
clude with possible applications of the extensions presented (see Section IV).

2 Number of Failures Experienced and Faults Remaining in the
Case of Multiple Functional Test Phases

For software systems such as safety critical systems, a software component before
being considered ready for release will need to undergo multiple phases of functional
test. In phase 1, a first test plan will be used which contains a first set of functional
tests. Failures are uncovered as testing progresses. Corresponding fixes are made at
the end of the test phase. The modified code then undergoes another set of functional

 A Test Coverage-Based Model for Predicting Software Fault Content 323

tests extract from a second test plan and so forth and so on. There may of course be
some overlap between consecutive test plans. In such case the evolution of coverage
with time will cease to be a continuous monotonic non-decreasing function of time as
assumed in the models of section I and instead will take the form given in Figure 1b
or 1c. Let us then try to express m(t), the number of failures experienced by time t.
We will denote by ti-1 and ti respectively the beginning and end of phase “i”; by Δmi(t)
the number of failures experienced between ti-1 and t where ti-1 ≤ t < ti ; by ã, the initial
number of faults which exist in the code at the onset of functional testing, i.e. at the
beginning of the first test phase.

Our assumptions are as follows: 1) Faults are uniformly distributed over all poten-
tial fault sites; 2) When a potential fault-site is covered, any fault present at that site
is detected with probability K(t); 3) Repairs take place at the end of the phase and
new faults may be introduced through repair errors. The repair rate is r and the
probability of fault introduction given that a repair error has occurred is γ; 4) Cover-
age is a continuous monotonic non-decreasing function of testing time per phase as
displayed in Figure 1b or 1c.

Under those assumptions we obtain the following set of equations: ݀݉߂ଵሺݐሻ݀ݐ ൌ ã Kଵሺtሻ ݀ܿଵሺݐሻ݀ݐ

for 0 ≤ t < t1 where t1 is the end of the first phase, Δm1(0) = 0, and c1(t) is defined over
0 ≤ t < t1 and is the coverage function over that interval of time. ݀݉߂ଶሺݐሻ݀ݐ ൌ ሺã െ Δmଵሺtଵሻ ൈ r ൅ Δmଵሺtଵሻ ൈ ሺ1 െ rሻ ൈ γሻKଶሺtሻ ݀ܿଶሺݐሻ݀ݐ

for t1 ≤ t < t2 where t2 is the end of the second phase, Δm2(t1) = 0, and c2(t) is defined
over t1 ≤ t < t2 and is the coverage function over that interval of time. ݀݉߂ଷሺݐሻ݀ݐ ൌ ሺ ã െ Δmଵሺtଵሻ ൈ r ൅ Δmଵሺtଵሻ ൈ ሺ1 െ rሻ ൈ γሻ െ Δmଶሺtଶሻ ൈ r ൅ Δmଶሺtଶሻൈ ሺ1 െ rሻ ൈ γሻ Kଷሺtሻ ݀ܿଷሺݐሻ݀ݐ

for t2 ≤ t < t3 where t3 is the end of the third phase, Δm3(t2) = 0, and c3(t) is defined
over t2 ≤ t < t3 and is the coverage function over that interval of time.

We rewrite
ௗ௱௠యሺ௧ሻௗ௧ as: ݀݉߂ଷሺݐሻ݀ݐ ൌ ൫ã െ ൫Δmଵሺtଵሻ ൅ Δmଶሺtଶሻ൯ ൈ r ൅ ൫Δmଵሺtଵሻ ൅ Δmଶሺtଶሻ൯ ൈ ሺ1 െ rሻൈ γ൯ Kଷሺtሻ ݀ܿଷሺݐሻ݀ݐ

So more generally we have:

ݐሻ݀ݐ௜ሺ݉߂݀ ൌ ൮ã െ r ൈ ෍Δm୩୧ିଵ
୩ୀଵ ሺt୩ሻ ൅ ሺ1 െ rሻ ൈ γ ൈ ൫Δm୩ሺt୩ሻ൯൲ K୧ሺtሻ ݀ܿ௜ሺݐሻ݀ݐ (1)

324 C. Smidts and Y. Shi

or ti-1 ≤ t < ti where ti is the end of the ith phase, Δmi(ti-1) = 0, and ci(t) is defined over ti-
1 ≤ t < ti and is the coverage function over that interval of time.

If the different K’s are constant per phase, we can integrate (1) over each phase and
we will obtain after integration:

Δm୧ሺtሻ ൌ ൮ã െ r ൈ ෍Δm୩ሺt୩ሻ ൅ ሺ1 െ rሻ ൈ γ
୧ିଵ
୩ୀଵ ൈ ቌ෍Δm୩ሺt୩ሻ୧ିଵ

୩ୀଵ ቍ൲ K୧ න ݀ܿ௜ሺݐሻ݀ݐ௖ೆሺ௜ሻ
௖ಽሺ௜ሻ ݐ݀

which is thus

Δm୧ሺtሻ ൌ ൮ã െ r ൈ ෍Δm୩ሺt୩ሻ ൅ ሺ1 െ rሻ ൈ γ
୧ିଵ
୩ୀଵ ൈ ቌ෍Δm୩ሺt୩ሻ୧ିଵ

୩ୀଵ ቍ൲ K୧ൈ ൫c୙ሺiሻ െ c୐ሺiሻ൯

(2)

where cU(i) and cL(i) are respectively the upper and lower bounds of coverage for
phase i.

Example- Let us consider an example software S. S is undergoing three functional
test phases. Let us also assume that the upper and lower coverage values for each
functional test phase, as well as the number of defects found in each phase is given in
Table 1.

Table 1. Multiple Phase Test Profile for Software S

Phases 1 2 3
CL(i) 0 0 0
CU(i) .5 .7 .95
Number of faults found during Phase “i” Functional Test 5 2 0

This profile is representative of safety critical systems which typically will achieve
high levels of test coverage at the end of functional testing and are also characterized
by no-defects found during the last functional test phase. Let us also assume that r=.9
and γ=.25. Under those conditions the set of equations (2) becomes:

ãKଵ ൌ .1 ሺã െ 4.375ሻ ൈ Kଶ ൌ 0.028571 ሺã െ 6.475ሻ ൈ Kଷ ൌ 0

The set of equations contains four unknowns and as such can not be solved without
the help of an additional equation. In particular one could use early prediction models
to compute a value for ã as suggested in Gokhale [5]. The issue with using early pre-
diction models is of course the large uncertainty in the estimate which can lead us to
either overestimate or underestimate the number of faults. Note also that the last equa-
tion leads to a situation where one can possibly make two different conclusions. One
is that ã=6.475 (which we can interpret conservatively as being ã=7) or K3=0 (i.e. the
tests are not able to trigger failures and correspondingly reveal faults).

In the phase-based functional test expression defined by equation (2), one should
also note that:

 A Test Coverage-Based Model for Predicting Software Fault Content 325

ቌã െ r ൈ ෍Δm୩ሺt୩ሻ ൅ ሺ1 െ rሻ ൈ γ
୬

୩ୀଵ ൈ ൭෍Δm୩ሺt୩ሻ୬
୩ୀଵ ൱ቍ (3)

is the total number of faults remaining after all phases of functional testing. For sys-
tem S this number is given by ã-6.475.

3 Extensions in the Case of a Non-uniform Distribution of Faults

We will now focus on another extension of interest which considers the fact that
faults may not be distributed uniformly over the different fault locations. This is of
particular importance in safety critical systems because the location of a fault is a
determinant factor in the severity of the associated failure. As such it is necessary if
possible to locate the position of the remaining faults. We will establish the equations
providing the number of failures experienced and the number of faults remaining for
multiple test phases.

Our assumptions have now become: 1) Faults are not uniformly distributed over
all potential fault sites. The probability that a fault resides in location L at time t
during phase “i" is given by fi(L,t); 2) When a potential fault-site is covered, any fault
present at that site is detected with probability Ki(L,t) where “L” is the fault location
and “i" is the functional test phase; 3) Repairs take place at the end of each phase.
Repair activities are subject to errors. The probability of a perfect repair which eli-
minates the original fault and does not introduce any new faults is ri for functional
test phase“i”. Different repair errors are considered: a) the fault is not corrected and
remains in its initial location L, no new fault is introduced; b) a fault moves from its
original location L to a new location L’; c) a fault remains in its original location L
and a new fault is introduced in a new location L’. To express these different cases we
introduce: γi the conditional probability that a new fault is introduced during func-
tional test phase “i"; mi the conditional probability that a fault changes location;
ki(L,L’) the conditional probability that given that a fault is introduced or is moved
due to a repair at location L, it moves to L’; 4) Coverage is a continuous monotonic
non-decreasing function of testing time per phase.

Let us introduce additional notations for the coverage function. We define by
ci(L,t) the probability that a location is covered by time t in phase “i". Ci(t) is the
program coverage at time t during phase “i" and is given by: C୧ሺtሻ ൌ ෍ c୧ሺL, tሻୗ for ti-1 ≤ t < ti .

where S is the set of software locations for software system S. From there, one ob-
tains the number of failures experienced since the beginning of phase “i” as: Δm୧ሺt ൅ ሻݐ݀ ൌ Δm୧ሺtሻ ൅ ෍൫c୧ሺL, t ൅ ሻݐ݀ െ c୧ሺL, tሻ൯ ൈ ã ൈ f୧ሺL, tሻ ൈ K୧ሺL, tሻୗ (4)

for ti-1 ≤ t < ti and where ã as before is the number of faults in the code at time t0= 0.
Dividing by dt and taking the limit for dt going to zero, we obtain:

326 C. Smidts and Y. Shi

ݐሻ݀ݐ௜ሺ݉߂݀ ൌ ෍ ∂c୧ሺL, tሻ∂t ൈ ã ൈ f୧ሺL, tሻ ൈ K୧ሺL, tሻୗ (5)

for ti-1 ≤ t < ti . The number of failures experienced during a phase “i” is then given by: න ݐሻ݀ݐ௜ሺ݉߂݀ ௧೔௧೔షభݐ݀ ൌ න ෍ ∂c୧ሺL, tሻ∂t ൈ ã ൈ f୧ሺL, tሻ ൈ K୧ሺL, tሻୗ
௧೔௧೔షభ (6) ݐ݀

The number of failures experienced due to a particular location over all n phases is:

෍ න ,ܮ௜ሺ݉߂݀ ݐሻ݀ݐ ௧೔௧೔షభݐ݀
௡

௜ୀଵ ൌ ෍ න ∂c୧ሺL, tሻ∂t ൈ ã ൈ f୧ሺL, tሻ ൈ K୧ሺL, tሻ௧೔௧೔షభ ௡ݐ݀
௜ୀଵ

(7)

The number of faults in location L changes as a function of detection and repair.
During the phase, the fault count does not change but faults are uncovered. At the end
of the phase, faults uncovered due to failures experienced are fixed. Let us denote by
ti+ the time at the end of phase “i” where repair is attempted, the probability that a
fault still exists at time ti+ in location L is given by the following equation:

 f௜ሺL, t୧ ൅ሻ ൌ f୧ିଵሺL, t୧ିଵ ൅ሻ െ r୧ ൈ ቎ න ,ܮ௜ሺܿߜ ݐߜሻݐ ൈ ã ൈ f௜ିଵሺL, t୧ିଵ ൅ሻ ൈ K୧ሺL, tሻ݀ݐ୲౟
୲౟షభ ቏ ሺ8ሻ

െሺ1 െ r୧ሻ ൈ ൫1 െ γ୧൯ ൈ m୧ න ,ܮ௜ሺܿߜ ݐߜሻݐ ൈ ã ൈ f௜ିଵሺL, t୧ିଵ ൅ሻ ൈ K୧ሺL, tሻ݀ݐ୲౟
୲౟షభ

൅ሺ1 െ r୧ሻ ൈ γ୧ ൈ ෍ ቎ න ,ᇱܮ௜ሺܿߜ ݐߜሻݐ ൈ ã ൈ f୧ିଵሺLᇱ, t୧ିଵ ൅ሻ ൈ K୧ሺLᇱ, tሻ ൈ k୧൫L′, L൯݀ݐ୲౟
୲౟షభ ቏୐ᇲஷ୐

൅ሺ1 െ r୧ሻ ൈ ൫1 െ γ୧൯ ൈ m୧ ൈ ෍ ቎ න ,ᇱܮ௜ሺܿߜ ݐߜሻݐ ൈ ã ൈ f୧ିଵሺLᇱ, t୧ିଵ൅ሻ ൈ K୧ሺLᇱ, tሻ ൈ k୧ሺL′, Lሻ݀ݐ୲౟
୲౟షభ ቏୐′ஷ୐

The first term corresponds to faults that were in L at the beginning of the phase, the
second term corresponds to successful repair of faults detected through failures expe-
rienced, the third term corresponds to the attempted repair of a fault in L where the
fault will be moved to some unknown location L’, the fourth term corresponds to the
attempted repair of a fault at location L’ resulting in a new fault introduced in location
L, and the fifth term to unsuccessful repairs in location L’ that resulted in the moving
of the fault in L. The number of faults remaining is given by: Aሺt୧ ൅ሻ ൌ ෍ ã f୧ሺL, t୧ ൅ሻୗ with A(t଴ ൅) = ã.

Example- Let us consider an example software SX. SX is undergoing two functional
test phases. Let us also assume that the upper and lower coverage values for each
functional test phase are given in Table 2. The case study considers 100,000 different
locations. These could be different modules, lines of code, etc dependent upon the
level of abstraction selected. Values of the additional parameters are given in Tables 3

 A Test Coverage-Based Model for Predicting Software Fault Content 327

Table 2. Multi-Phase Test Profile for Software SX

Phases 1 2
CL(i) 0 0

CU(i) .67 1

Table 3. Detection probabilities per location for the two phases for Software SX

Case # (a) (b)
K1(L) 0 for L= [12000, 21999] U [32000,

41999] U [82000, 94999]
.5 for all other values of L

0 for L= [33000, 54999] U
[82000, 92999]
.5 for all other values of L

K2(L) .5 for all L in [0, 100000] .5 for all L in [0,100000]

Table 4. ki(L’,L) for the two phases (i = 1,2)

Case # For L’=1 For L’=2 to 99,999 For L’=100,000
(a) ki(L’,L)=1 if L=2

ki(L’,L)=0 otherwise
ki(L’,L)=.5 if L’=L-1 or L’=L+1

ki(L’,L)=0 otherwise
ki(L’,L)=1 if

L=99999
ki(L’,L)=0 otherwise

(b) ki(L’,L)=1 if L=2
ki(L’,L)=0 otherwise

ki(L’,L)=1 if L’=L-1
ki(L’,L)=0 otherwise

ki(L’,L)=1 if
L=99999

ki(L’,L)=0 otherwise

Table 5. Remaining Parameters for SX

Case
(a) (b)

r1=r2 γ1=γ2 m1=m2 ã r1=r2 γ1 γ2 m1=m2 ã

.9 .25 .2 3 .9 .4 .3 .2 3

(a) (b)

 Fig. 2. Fault Location Distributions for SX

to 5. In this example we assume that Ki(L,t) is dependent upon the phase and the loca-
tion but not upon time. Results are given in Figure 2. The example shows the likely
location of remaining defects and their distribution as well as the potential number of
faults remaining.

328 C. Smidts and Y. Shi

4 Conclusions

This paper has presented a new model which allows: 1) Description of software sys-
tems developed through multiple phases of functional testing, 2) Description of soft-
ware systems where either the initial fault distribution is non-uniform with respect to
location, or the repair, test or detection process favor certain locations, 3) Description
of software systems which exhibit both characteristics. These extensions are of partic-
ular interest for safety critical systems which will typically be developed according to a
phase-based process where the last phase of the process is devoid of detectable faults.
For safety critical systems fault location information is of importance because the loca-
tion of a fault determines how frequently it will be executed in operation and whether it
will propagate. As such location is primary in determining fault propagation characte-
ristics and whether the fault will have a large impact or not. The fault location distri-
bution could be used in combination with mutation or modeling approaches to deter-
mine the fault propagation characteristics (K) of the software in operation before it
runs in the field. Such information is important for safety critical systems which cannot
be allowed to fail in the field and for which we will not be able to collect field data
(failures in operation). Location information can also be used to refine testing and
target it towards high impact high likelihood faults if those exist. In this paper the
framework was applied to synthetic examples whose characteristics were chosen to be
representative of real case studies. Application of the framework to a system with
100,000 locations shows that its computational complexity is limited, that results ob-
tained for diverse sets of parameters display foreseeable trends, and that the tool devel-
oped can easily be expanded to handle more complex systems. Through simulations
such as those presented in section 3, one can observe the effect of different test strate-
gies, of initial fault distributions, of repair and new fault introduction rates, of the
number of functional test phases and determine how these influence the final fault
distributions. The knowledge gained can be used to optimize testing and improve relia-
bility. Application of the models developed to an actual case study is not discussed in
this paper and will be the object of future extensions. This will in particular entail se-
lection of adequate approaches for parameter estimation. The parameters should be
identifiable using a combination of methods and tools such as: code coverage tools for
c(L); early prediction methods [11] for f0(L); limited mutation for transfers of faults
k(L’,L) [13]; field data for repair rates, fault introduction rates and K(L’) updated using
information related to faults observed during the different phases.

References

[1] Vouk, M.A.: Using reliability models during testing with non-operational profile. In:
Second Bellcore/Purdue Symposium on Issues in software reliability estimation, pp. 103–
110 (1993)

[2] Piwowarski, P., Ohba, M., Caruso, J.: Coverage measurement experience during function
test. In: Proceeding of The 15th International Conference on Software Engineering, Bal-
timore, MD, pp. 287–301 (1993)

[3] Malaiya, Y.K., Li, N., Bieman, J.M., Karcich, R., Skibbe, B.: The relationship between
test coverage and reliability. In: Proceeding of The 5th International Symposium on
Software Reliability Engineering, Los Alamitos, pp. 186–195 (1994)

 A Test Coverage-Based Model for Predicting Software Fault Content 329

[4] Malaiya, Y.K., Li, M.N., Bieman, J.M., Karcich, R.: Software reliability growth with test
coverage. IEEE Transactions on Reliability 51(4), 420–426 (2002)

[5] Gokhale, S.S., Trivedi, K.S.: A Time/Structure Based Software Reliability Model. Annals
of Software Engineering 8, 85–121 (1999)

[6] Gokhale, S.S., Philip, T., Marinos, P.N., Trivedi, K.S.: Unification of finite failure non-
homogeneous Poisson process models through test coverage. In: Proceedings of the Inter-
national Symposium on Software Reliability Engineering, White Plains, NY, pp. 299–307
(1996)

[7] Pham, H., Zhang, X.: NHPP software reliability and cost models with testing coverage.
European Journal of Operational Research 145(2), 443–454 (2003)

[8] Cai, X., Lyu, M.R.: Software reliability modeling with test coverage: Experimentation
and measurement with A fault-tolerant software project. In: Proceedings of the 18th IEEE
International Symposium on Software Reliability Engineering, Trollhättan, Sweden, pp.
17–26 (2007)

[9] USNRC, Guidance on Software Reviews for Digital I &C Systems, NUREG 0800 BTP 7-
14 (2007)

[10] IEEE, Systems engineering — Application and management of the systems engineering
process, IEEE STD 1220 (2005)

[11] Smidts, C.S., Li, M., Shi, Y., Kong, W., Dai, J.: A Large Scale Validation of A Metho-
dology for Assessing Software Quality (under revision). University of Maryland-College
Park (2009)

[12] Koru, A.G., Zhang, D., Eman, K.E., Liu, H.: An Investigation into the Functional Form of
the Size-Defect Relationship for Software Modules. IEEE Transactions on Software En-
gineering 35(2), 293–304 (2009)

[13] Shi, Y., Kong, W., Dai, J., Smidts, C.: A Reliability Prediction Method for Safety Critical
Systems Based on Test Coverage. In: The 3rd International Conference on Reliability and
Safety Engineering, Kharagpur, India (2007)

A Refined Non-parametric Algorithm for
Sequential Software Reliability Estimation

Shintaro Mizoguchi and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, 739–8527 Japan

dohi@rel.hiroshima-u.ac.jp

Abstract. In this article, we improve a non-parametric order statistics-
based software reliability model byBarghout, Littlewood andAbdel-Ghaly
(1998), from the standpoints of estimation algorithm and reliability mea-
sure. More specifically, we introduce the kernel density estimation method
with a truncated Gaussian kernel function and estimate the software fault-
detection time distribution with higher accuracy. Also, we use the mean
value of the inter-fault detection time instead of its median, and predict the
future behavior of it sequentially. In the validation test with real software
fault data, it is investigated how the improvement influences the quanti-
tative software reliability assessment.

Keywords: software reliability, non-parametric estimation, kernel den-
sity estimation, cross validation, prequential likelihood method, recali-
bration, u-plot.

1 Introduction

During the last four decades, the software reliability engineering has played a
central role to provide several quantitative methods used in real software devel-
opment processes. Since the assessment of software reliability is one of the main
issues in this area, one needs several kinds of mathematical models to assess
quantitatively the software reliability, which is the probability that the software
system does not fail during a specified time period. In the software reliability re-
search, a huge number of software reliability models (SRMs) have been proposed
in the literature [10,12] from the various points of view. In general SRMs can
be classified into two categories; parametric SRMs and non-parametric SRMs.
Since the parametric SRMs are based on scenarios on the software fault-detection
process in software testing phase, it is difficult to validate the physical mean-
ing of scenarios themselves assumed on parametric modeling. Hence, we need
to identify the best SRM under several criteria by taking account of parameter
estimation, statistical test and model selection.

In past literatures, some authors considered statistically non-parametric esti-
mation methods for software reliability. Sofer and Miller [13] assumed a polygonal
line estimator of the software intensity function for the usual non-homogeneous
Poisson process (NHPP)-based SRM and proposed a smoothing algorithm based

D. Śl ↪ezak et al. (Eds.): ASEA 2009, CCIS 59, pp. 330–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Refined Non-parametric Algorithm 331

on the common quadratic programming. The basic idea behind their approach
is to interpolate realizations of the software intensity function with polygonal
lines. Gandy and Jensen [7] used the well-known Nelson-Aalen multiplicative
estimator for the NHPP-based SRM and proved its statistical consistency and
asymptotic normality. However, the problem for their approach is to need the
multiple time series data on the software fault-detection process, so that it is not
feasible in almost software testing processes. Recently, Wang et al. [14] applied
the kernel intensity estimation method to develop a non-parametric NHPP-based
SRM and proposed a quite different approach from the existing ones [7,13]. It
is worth noting, however, that the method by Wang et al. [14] is based on the
local likelihood method with a local weighted log-likelihood function and is re-
garded as an approximation method. In other words, it cannot guarantee the
statistically valid property such as asymptotic optimality, etc.

Apart from the NHPP-based modeling, Barghou et al. [1] focused on a gener-
alized order-statistics SRM [9] with the software fault-detection time data and
proposed a non-parametric method based on the well-known kernel density esti-
mation (KDE). Though an equivalence between the KDE and the kernel intensity
estimation is well known [6], Barghou et al. [1] developed a series of estimation
procedure of design parameters and a prediction method of the inter-fault de-
tection time. First, they used two methods; the likelihood-based cross validation
(CV) method and the prequential likelihood (PL) method [5] to tune up the
bandwidth in the kernel density function and an unknown parameter which in-
dicates the initial number of software-fault contents. Second, they carried out
the so-called one-stage look-ahead prediction of the inter-fault detection time,
where the recalibration method with the u-plot [2,3,10] was applied to recalibrate
the prediction distribution of the inter-fault detection time. In fact, the series
of methodology in [1] is well established, and can be considered as a representa-
tive non-parametric estimation method for the generalized order statistics-based
SRM.

However, the most serious problems to use the above non-parametric approach
are (i) the computation cost is very expensive comparing with the common para-
metric estimation, and (ii) the goodness-of-fit and the predictive performances
do not always outperform the parametric methods, although it does not require
to specify the parametric form of the SRM, say, probability distribution func-
tion in the generalized order statistics-based SRM. Especially, the accuracy of
goodness-of-fit to the past data and the prediction of the future fault-detection
time are both important and should be improved for the use in practical situ-
ations. Here, we point out two technically weak points for the Barghou et al.’s
method [1]. Since the KDE method employed in [1] is based on the usual Gaus-
sian kernel density, the resulting kernel estimate of the inter-fault detection time
distribution is defined on the real-valued support, instead of its non-negative na-
ture. This may cause to underestimate the fault-detection time in prediction. To
improve the prediction accuracy of the inter-fault detection time in the future, in
this article we propose to use the truncated Gaussian kernel density at the origin
and the MTBSF (mean time between software failures) instead of the median.

332 S. Mizoguchi and T. Dohi

In the validation test with real software fault data, it is investigated how the
improvement influences the quantitative software reliability assessment.

2 Software Reliability Model

2.1 Parametric Models

We describe a generalized order statistics SRM with the parametric fault-
detection time distribution. Suppose that N (> 0) software faults remain before
system testing. Let Xi (i = 1, 2, . . .) be the software fault-detection times which
are independent and identically distributed non-negative continuous random
variables, having the cumulative distribution function (c.d.f.) G(x) = Pr{Xi ≤
x} and the probability density function (p.d.f.) g(x) = dG(x)/dx. Once a soft-
ware fault is detected, it is fixed and/or removed immediately. Further, we
let Ti = Xi − Xi−1 (X0 = 0) denote the i-th inter-fault detection time (=
1, 2, . . . , N). Since both Ti and Xi are random variables, we denote their re-
alizations by ti and xi =

∑i
k=1 tk, respectively. Conditioned that the initial

number of software faults before testing, N , is known, it is seen that Xi can be
regarded as order statistics from a finite population with size N and that the
total number of software faults detected by an arbitrary time x is given by the
binomial distribution with the success probability G(x) and the failure probabil-
ity G(x) = 1−G(x). As a special case, if G(x) is the exponential distribution, Xi

are reduced to exponential order statistics [11] and the resulting SRM becomes
the classical Jelinski and Moranda SRM [8]. From a simple manipulation, the
conditional p.d.f. of Ti given Xi−1 = xi−1 can be derived as

f(ti|xi−1) =
(N − i + 1)g(ti + xi−1)G(ti + xi−1)N−i

G(xi−1)N−i+1
. (1)

From Eq.(1), the conditional c.d.f is given by

F (ti|xi−1) = 1 −
(

G(ti + xi−1)
G(xi−1)

)N−i+1

. (2)

By substituting an arbitrary parametric form into G(x), the conditional p.d.f.
of the future inter-fault detection time, Ti | X1, . . . , Xi−1, can be represented.

2.2 Non-parametric Models

Instead of the use of parametric form in the c.d.f. G(x), we assume that given
i−1 fault-detection time data, (x1, x2, . . . , xi−1), an estimate of g(x) is given by

ĝ(i−1)(x) =
1

i − 1

i−1∑
k=1

Kh(x − xk), (3)

A Refined Non-parametric Algorithm 333

where

Kh(x) =
1
h

K
(x

h

)
(4)

is called the kernel density function with the kernel function K(·), and h (> 0) is
the design parameter called bandwidth. In the standard statistical theory, some
representative kernel functions have been proposed. Following Barghou et al. [1],
we also assume the following Gaussian kernel function:

K(x) =
1

(2π)1/2 exp
{
−x2

2
}
. (5)

The basic idea in KDE method is to represent bumps at observation points and
to approximate the p.d.f. by summing them. Hence, the bandwidth h is more
important rather than the selection of the kernel function itself, because larger h
is insensitive to the shape of p.d.f. but smaller h is strongly influenced by noises
and may result the less prediction performance.

In addition to choice of a suitable bandwidth, it is significant to check the
support of the resulting kernel density function. Note that the estimated p.d.f.
in Eq. (3) is defined on all real value x ∈ (−∞,∞). More precisely, it is defi-
nitely needed to check both the convergence property due to the Gaussian kernel
density and the tail behavior in the negative range. However, since the KDE
method is rather expensive in computation, such a careful treatment may not be
always possible in practice. An alternative idea is to replace the Gaussian ker-
nel function by the truncated Gaussian kernel one at the origin. So, instead of
ĝ(x) (−∞ < x < ∞) in Eq.(3), we apply the following truncated kernel density
function g̃(x) (0 < x < ∞):

g̃(i)(x) =
ĝ(i)(x)

Ĝ(i)(∞)
, G̃(i)(x) =

Ĝ(i)(x)

Ĝ(i)(∞)
, (6)

where

Ĝ(i)(x) =
∫ x

−∞
ĝ(i)(y)dy. (7)

3 Parameter Estimation

Our next concern is the parameter estimation of h and N simultaneously in
Eqs.(1) and (2). It is common to apply the least squares-based cross validation
(CV) method to do so, because its asymptotic optimality has been proved in
[4]. However, our problem is not an optimization problem of a single decision
variable h but a bivariate optimization problem of h and N . In dealing with such
a somewhat different problem, Barghou et al. [1] used the log likelihood-based
CV method and the PL method [5].

334 S. Mizoguchi and T. Dohi

(1) CV method: By removing an arbitrary j-th data (j = 1, . . . , i − 2) from
i−1 data (x1, . . . , xi−1), one constructs i−2 training data sets. Then an estimate
of the p.d.f. g(x) with these sample data is given by

ĝ(−j)(x) =
1

(i − 2)

∑
k �=j

Kh (x − xk) . (8)

In the refinement with the truncated Gaussian kernel density function g̃(−j)(x),
the estimate of the p.d.f. of Ti given xi−1 is obtained by

f̃(−j)(ti|xi−1) =
(N − i + 1)g̃(−j)(ti + xi−1)G̃(−j)(ti + xi−1)N−i

G̃(−j)(xi−1)N−i+1
, (9)

where Ĝ(−j)(x) is an integral of ĝ(−j)(x) and can be calculated by any numerical
integration technique, and G̃(−j)(x) is the c.d.f. of g̃(−j)(x) in Eq.(6). Then the
cross validation log-likelihood function (CVLLF) is formulated as

CV LLF =
1

(i − 2)

i−2∑
j=1

log f̃(−j)(ti | xi−1), (10)

so the problem is to derive the optimal (h∗, N∗) satisfying argmaxh,NCV LLF .

(2) PL method: Prepare j − 1 training data sets with only partial data until
the j-th one (j = 1, . . . , i− 2), i.e., x1, (x1, x2), . . . , (x1, x2, . . . , xi−2), and define
the estimate of the p.d.f. g(x):

ĝ(−j)(x) =
1

(i − 2)

∑
k �=j

Kh (x − xk) . (11)

Similar to the CV method, an estimate of the p.d.f. of Ti given xi−1 is obtained by
f̃(−j)(ti|xi−1) in Eq.(9). Instead of CVLLF in Eq.(10), we define the prequential
log likelihood function (PLLF):

PLLF =
i−1∑
j=2

log f̃(−j)(ti | xi−1). (12)

Then the problem is to derive the optimal (h∗, N∗) satisfying argmaxh,NPLLF .
Once both parameters (h∗, N∗) are determined, we estimate the one-stage

look-ahead prediction of the inter- fault detection time, say, Ti at the observation
point xi−1. Barghout et al. [1] seek the median of the p.d.f. f̃(−j)(ti|xi−1) as a
prediction. However, when the probability distribution is considered to be biased
in many cases, the median and mode may be inappropriate as a prediction of
the random variable. The most reasonable prediction devise is the mean value of
Ti, so that we calculate the mean value of Ti by E[Ti] =

∫ ∞
0 tf̃(−j)(ti|xi−1)dti,

where the prediction of the p.d.f., f̃(−j)(ti|xi−1) is normalized so as to satisfy

A Refined Non-parametric Algorithm 335∫ ∞
0 f̃(−j)(ti|xi−1)dti = 1 by means of numerical integration. We further apply an

improvement technique to the prediction called the recalibration (RB) method
[1,2,3]. Suppose that for an arbitrary k=1,. . . ,i-1, an estimated probability model
F̂ (tk) is available against the real probability model F (tk). If there exists a map
(function) Rk from F̂ (tk) to F (tk), an ideal task is to seek the map Rk satisfying
F (tk) = Rk[F̂ (tk)]. In the case where the estimate is unbiased, it can be seen
that Rk ≈ R [1,2,3,10] and that R can be replaced by the u-plot which indicates
a bias of F̃ (tk) to the real F (tk). As well known, the u-plot is defined by a step
function uk = F̂ (tk) (k = 1, . . . , i−1) with jump size 1/i. The RB method means
the re-prediction of the c.d.f. of Ti with the u-plot.

4 Numerical Illustrations

In this section we investigate the predictive performance of the non-parametric
SRM with four fault data sets, which are observed in real software development
projects. The respective data sets, DS1, DS2, DS3, DS4, consist of 136, 86,
129 and 54 fault-detection time data. We consider the situation where the one-
stage look-ahead prediction is sequentially performed from the 20% point of
whole data and the next inter-fault detection time at the observation point is
estimated one by one, where the median and mean of the inter-fault detection
time p.d.f. in Eq.(9) are used for prediction. As the kernel density, we assume
the usual Gaussian kernel with and without truncation and use two parameter

CV-mean
CV-median
CVT-mean

CVT-median

Inter-failure time

500

1000

1500

2000

2500

26 36 46 56 66 76 86 96 106 116 126 136

Number of failures

3000

3500

Fig. 1. Sequential estimation of inter-fault detection time with CV/RB method (DS1)

336 S. Mizoguchi and T. Dohi

Table 1. PSE with DS1 (×106)

DS1 CV CVT PL PLT
Before recalibration

mean 1.292 1.3609 2.4729 4.5187
median 1.3351 1.4299 1.5444 2.804

After recalibration
mean 1.1073 1.1990 1.3985 0.9250

median 1.1835 1.0225 1.1695 1.0235

Table 2. PSE with DS2 (×106)

DS2 CV CVT PL PLT
Before recalibration

mean 1.8368 1.7548 1.9591 6.9443
median 1.8184 1.9550 1.4733 8.2834

After recalibration
mean 1.8252 1.4379 1.4648 1.1666

median 1.7225 1.6282 1.4920 1.2148

Table 3. PSE with DS2 (×106)

DS3 CV CVT PL PLT
Before recalibration

mean 2.7210 2.6674 7.8846 4.1702
median 2.7927 2.8163 8.8748 3.0921

After recalibration
mean 2.4058 2.3471 2.5388 2.3964

median 2.8397 2.8657 2.7561 2.8592

Table 4. PSE with DS4 (×107)

DS4 CV CVT PL PLT
Before recalibration

mean 1.0544 1.1418 1.2971 1.2906
median 1.0972 1.0930 0.9033 0.7711

After recalibration
mean 1.0250 1.3033 1.3019 1.2998

median 1.0930 1.0206 0.9103 0.7761

estimation methods based on the CV and PL methods. In the KDE method, we
compare four methods; CV, CVT, PL and PLT, where both the CVT and PLT
are based on the truncated kernel density. As a criterion of comparision, we use
the predictive mean squares error (PSE).

Figure 1 depicts the sequential estimation of software inter-fault detection
time with CV/RB method when DS1 is assumed. By plotting the one-stage
look-ahead predictions, it is found that the prediction results with CV method
is rather different from another one with PL method, and that RB method
strongly influences to PL method but not the CV method. Table 1 ∼ Table 4
present the comparison results with four data sets DS1∼DS4. From these results,
we can summarize the following observations:

(i) The prediction performance based on the median does not always outperform
the mean. In other words, the median-based prediction cannot be always
validated as a prediction device.

(ii) In both estimation methods, the Gaussian kernel density with truncation
exhibits better results in almost all cases, in terms of minimization of PSE.

(iii) The RB method can function better except in a few cases and is useful to
improve the prediction performance.

5 Conclusion

In this article we have improved Barghout et al.’s non-parametric algorithm [1]
from the view point of predictive performance, by introducing the truncated

A Refined Non-parametric Algorithm 337

kernel density function and MTBSF estimator. In the future research we will ex-
amine the potential applicability of the refined non-parametric algorithm com-
prehensively by taking account of the estimation accuracy of the initial fault
contents.

References

1. Barghout, M., Littlewood, B., Abdel-Ghaly, A.: A non-parametric order statistics
software reliability model. Software Testing, Verification and Reliability 8, 113–132
(1998)

2. Brocklehurst, S., Chan, P.Y., Littlewood, B., Snell, J.: Recalibrating software reli-
ability models. IEEE Transactions on Software Engineering 16(4), 458–470 (1990)

3. Brocklehurst, S., Littlewood, B.: Techniques for prediction analysis and recalibra-
tion. In: Lyu, M. (ed.) Handbook of Software Reliability Engineering, pp. 119–166.
McGraw-Hill, New York (1996)

4. Brooks, M.M., Marron, S.J.: Asymptotic optimality of the least squares cross-
validation bandwidth for kernel estimates of intensity functions. Stochastic Process
and Their Applications 38, 157–165 (1991)

5. Dawid, A.P.: Statistical theory: the prequential approach. Journal of the Royal
Statistical Society A 147, 278–292 (1984)

6. Diggle, P., Marron, J.S.: Equivalence of smoothing parameter selectors in density
and intensity estimation. Journal of the American Statistical Association 91, 793–
800 (1988)

7. Gandy, A., Jensen, U.: A non-parametric approach to software reliability. Applied
Stochastic Models in Business and Industry 20, 3–15 (2004)

8. Jelinski, Z., Moranda, P.B.: Software reliability research. In: Freiberger, W.
(ed.) Statistical Computer Performance Evaluation, pp. 485–502. Academic Press,
New York (1972)

9. Joe, H.: Statistical inference for generalized-order-statistics and nonhomogeneous-
Poisson-process software reliability models. IEEE Transactions on Software Engi-
neering 15(11), 1485–1490 (1989)

10. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. McGraw-Hill,
New York (1996)

11. Miller, D.R.: Exponential order statistic models of software reliability growth. IEEE
Transactions on Software Engineering 12(1), 12–24 (1986)

12. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability, Measurement, Predic-
tion, Application. McGraw-Hill, New York (1987)

13. Sofer, A., Miller, D.R.: A non-parametric software reliability growth model. IEEE
Transactions on Reliability R-40(3), 329–337 (1991)

14. Wang, Z., Wang, J., Liang, X.: Non-parametric estimation for NHPP software
reliability models. Journal of Applied Statistics 34(1), 107–119 (2007)

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 338–345, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Tool-Supported Process for Reliable
Classification of Web Pages

Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana

Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy

{domenico.amalfitano, anna.fasolino,
porfirio.tramontana}@unina.it

Abstract. Reliable classification of Web Application User Interfaces for the
aim of extracting specific data for each class of interfaces is a fundamental task
in migration, testing and reverse engineering processes involving existing Web
Applications. A feasible and reliable classification approach is the one that ex-
ploits combinations of Web pages structural features for discriminating the page
equivalence class. This paper presents a technique based on an iterative process
that allows classification rules composed of Web pages structural features to be
deduced in dynamically generated web pages. The process is supported by a
tool that partially automates the process steps. In order to assess the process
feasibility and cost effectiveness, a case study addressing the problem of gener-
ating classification rules for a real Web application has been carried out.

1 Introduction

The continuous evolution of Web development paradigms and technologies triggers a
scenario where traditional Web applications, implemented with the past generation of
Web technologies, become rapidly obsolete and new effort, techniques, and tools are
needed for extending their lifetime.

An opportunity for preserving the value of traditional Web applications imple-
mented with Web 1.0 technologies is now being offered by the emergent Web 2.0,
whose applications are characterized by a richer user interface, facilitate collaborative
content creation and modification, and can be easily created by reusing and combin-
ing data and information from different sources [8].

In such a context, Web 1.0 applications may become providers of data and contents
to be used in Web 2.0 applications, provided that specific data wrapping techniques
are available to make this content accessible. A real issue about this kind of reuse is
that the content provided by Web 1.0 applications is usually embedded in different
classes of dynamically generated pages, and thus a reliable and automatic classifica-
tion of these pages is needed for a successful extraction of data from them.

A reliable classification of Web pages is needed to solve several further problems,
such as (1) to implement wrappers that encapsulate the original UI of the Web appli-
cation with the aim of exporting a renewed interface [3]; (2) to support the automatic
analysis and interpretation of testing results in several validation activities; (3) to

 A Tool-Supported Process for Reliable Classification of Web Pages 339

obtain a model of the UI for the aim of reengineering it according to a different archi-
tecture (such as a Model-Driven one) or technology (such as AJAX).

Among the Web page classification techniques proposed in the literature, two main
families of approaches can be distinguished: (1) the deductive ones, which are com-
monly used in the image processing, pattern recognition and text processing fields,
and aim at deducing classification rules from a set of training data, and (2) the classi-
fication techniques based on pre-defined equivalence criteria, such as similarity-based
ones. The former family requires that a set of predefined features related to the con-
tent of the HTML page [10], to the hypertext topology of pages [6] or a combination
of both [5] are extracted from web pages and used to determine the classification of
the page according to given classification criteria. The latter family is based on
equivalence criteria defined a-priori: As an example, pages can be considered equiva-
lent if their HTML structure is similar, where the similarity degree is assessed by
means of a distance metric (such as the Levenshtein edit distance between vectors
describing items contained in the page) [1,2,9]. Experiments showed that clone analy-
sis results are deeply influenced by the choice of the similarity thresholds which must
be tuned to work on subject applications [1, 7].

In this paper, we present a Web page classification technique which is based on the
deduction of classification rules (composed of key features of Web page classes) that
allow the reliable classification of the pages of a Web application. Our technique
requires that candidate discriminating features are proposed ad hoc for each subject
application, by visually interacting with it. The classification power of these features
is assessed and improved by a process based on Formal Concept Analysis which itera-
tively combines these features until a satisfying combination of them is obtained.

In the paper, the process for generating the classification rules and a tool support-
ing its execution will be presented, and the results of a case study aiming at showing
the process feasibility and effectiveness will be discussed. The remainder of the paper
is structured as follows. Section 2 describes the proposed process and the functional-
ity of a tool supporting it. Section 3 presents the case study and Section 4 provides
conclusive remarks and future work.

2 The Classification Technique

The technique proposed in this paper can be used for classifying the HTML pages
which are returned by the server side of Web 1.0 applications on the basis of user
requests and application status. These pages can be either static or dynamically gener-
ated and can be partitioned into a finite set of equivalence classes, each one including
a well-defined type of output pages.

In particular, given a Web application WA whose output pages are partitioned into
a set of n equivalence classes {C1, …, Cn}, and given a client page p, the classifica-
tion task we address in this paper consists of determining the equivalence class Cx
which p belongs to. We propose to solve this problem thanks to n boolean classifica-
tion rules {CR1, …, CRn} where a classification rule is a boolean expression made up
by a combination of Web page features. In particular, each CRi is associated to the
corresponding Ci class and it must satisfy the following property:

340 D. Amalfitano, A.R. Fasolino, and P. Tramontana

For each page p belonging to class Ci:

CRi(p) = true AND CRj(p) = false for each j≠i

In the following we present a process for discovering a classification rule for each
page equivalence class. The process is Iterative, i.e. several process iterations are
needed in order to obtain reliable classification rules; Learning based, i.e. it needs
training samples in order to abstract classification rules; General, i.e. the process is
not biased on a given classification problem; Produces reliable rules, i.e. the gener-
ated classification rules are able to correctly solve the page classification task.

The process includes six main activities, which are arranged according to the
UML activity diagram shown in Figure 1 and are executable with the support
of a WPC-CA, a Java-based tool that we have developed and that is available at
http://wpage.unina.it/ptramont/download.

Training Set
Collection

Feature Generation

Classification Rules
Generation

Training Set
Validation

Test Set Collection
and Validation

Training Set Expansion
[Classification Rules are

NOT able to correctly
identify all the Training

Set pages]

[Training Set pages are
correctly identified by
Classification Rules]

[Classification Rules are able to correctly identify all the Test Set pages]

[Classification Rules are NOT
able to correctly identify all

the Test Set pages]

Fig. 1. The Process activity diagram

The Training Set Collection is the activity carried out for collecting several sam-
ples of pages of the Web application for each equivalence class. This set of page will
provide a Training Set. This activity is accomplished by the software engineer in-
volved in the generation process through navigating the Web application, and recog-
nizing the class of each collected page. The tool supports this task by offering a
browser for navigating the application, saving the Web page source code, and storing
the declared classification in a tool repository.

 A Tool-Supported Process for Reliable Classification of Web Pages 341

The Feature Generation activity of the process aims at collecting a set of candidate
features for each class of pages. Candidate features represent properties that are
owned by instances of the page classes and are expressed as predicates combining
graphical or textual items from the pages and coded using specific technologies, such
as XPath. To find features, a semiautomatic technique can be used which is based on
a visual exploration of the pages: the user selects the page item that he considers rele-
vant for the classification problem and a set of features owned by this item (such as its
position in the page, or further properties of the selected item) is automatically pro-
posed by the tool by applying some feature generation rules.

The goal of the Classification Rules Generation step is of obtaining boolean ex-
pressions (composed by the features proposed in the previous step) that solve the
classification problem for any page of the Training Set. For generating the Classifica-
tion Rules we exploit the technique based on Formal Concept Analysis (FCA) that
was presented in [3]. This technique uses Concept Analysis for classifying the set of
candidate features F of a page class Ci into the following five subsets (cfr. [4]): Spe-
cific features: i.e. features that are true for all and only the pages of class Ci; Relevant
features: i.e. features that are true for all the pages of class Ci, but also for other pages
belonging to other classes; Conditionally Specific features: features that are true for a
subset of pages of class Ci and for no other page belonging to other classes; Shared
features: i.e. features that are true for a subset of pages of the class Ci and for other
pages belonging to other classes too; Irrelevant features: i.e. features that are not true
for any page of the class Ci.

On the basis of this classification, the Classification Rules can be developed using
the generation techniques described in [3]. Our tool automatically supports the Classi-
fication Rules Generation step. In particular, it is able to build and analyze the in-
volved Concept Lattice by using the Java Tockit package [11] that classifies features
in their five categories, and automatically applies the Classification Rules Generation
technique.

The goal of the Training Set Validation step is the evaluation of the effectiveness
of the classification rules proposed in the previous step with respect to the collected
Training Set. The effectiveness of the rules is measured by evaluating Recall and
Precision metrics, that are expressed, for any equivalence class C, by the following
definitions:

)(#

)(#
)(Pr

ssCbutedToClapagesAttri

sCutedToClasctlyAttribpagesCorre
Cecision =

)(#

)(#
)(Re

ngToClassCgesBelongiAnalysedPa

sCutedToClasctlyAttribpagesCorre
Ccall = (1)

A classification rule is valid if and only if both Recall and Precision values are 1. In
this case, the process can continue with the Test Set Collection and Validation step.
Elsewhere, if failures are detected (i.e. some pages are not assigned to any class or
they are assigned to more than one class or they are assigned to an incorrect class),
then the process will return to the Feature Generation step, in order to propose new
features that are able to solve the problems related to pages whose identification
caused failures.

The goal of the Test Set Collection and Validation step is the evaluation of the ef-
fectiveness of the set of proposed classification rules (whose effectiveness has been
already proved on the Training Set), with respect to a larger set of pages, called Test
Set. The Test Set Validation is performed analogously to the Training Set Validation:

342 D. Amalfitano, A.R. Fasolino, and P. Tramontana

the tool proposes a classification for each collected page according to the proposed
classification rules and the expert confirms it or declares the correct classification of
the page. If a set of Classification Rules identifies with success all the pages of the
Test Set, then the process for generating classification rules ends.

In the Training Set Expansion activity, the Test Set pages that are not correctly
identified are added to the Training Set and the process returns to the Classification
Rules Generation step for producing a new set of rules for this enlarged Training Set.
These classification rules will be re-validated with respect to the Training Set and to
the Test Set. The Test Set Validation step can be performed by the tool on the same
pages collected in the previous iteration and in a completely automated way.

3 A Case Study

In this section, a case study dealing with the problem of classifying the pages of a real
Web application will be presented. The involved Web application is Wikipedia
(http://en.wikipedia.org), a free multilingual encyclopaedia project whose English
version contains about 2.9 million articles, and we addressed the problem of classify-
ing automatically the pages returned by Wikipedia as a response to a lemma search
query. Depending on the queried lemma, these pages can be of five different classes,
which an expert of the application named LemmaPage, DisambiguationPage, Lem-
maPageWithSuggestions, NoResultsPage, and NoResultsWithSuggestions classes,
respectively.

The process presented in Section 2 was carried out in order to find classification
rules for each class of pages. In a first iteration of the process, one of the paper au-
thors collected a small Training Set composed of 15 Web pages of which he declared
the belonging class (3 pages for each class were collected), and the Feature Generator
component of the tool automatically proposed 30 features for these pages. The set of
collected Training pages was submitted to the classification rules generation step that
produced a candidate classification rule for each class. The reliability of these rules
was immediately tested on the same training set pages: as the third and fourth col-
umns in Table 1 show, the recall and precision values of the classification rules was
100% for all pages of the Training Set.

Table 1. Classification Rules and validation results after the first iteration of the process

 Training Set Test Set
Class Classification rule Recall Precision Recall Precision

Disambiguation /html/body/div/div/div/div/div/div/span/a/t
ext()='Disambiguation pages'

3/3 3/3 14/14 14/14

Lemma NOT
(/html/body/div/div/div/div/div[contains(.,'
see')]) AND NOT
(//a[contains(.,'disambiguation')])

3/3 3/3 4/6 4/4

LemmaWithSuggesti
ons

//div[contains(.,'For other uses')] 3/3 3/3 20/26 20/20

NoResults NOT(//div[contains(.,'Did you mean')])
AND (//span/text()='No article title
matches')

3/3 3/3 4/4 4/4

NoResultsWithSugge
stion

//div[contains(.,'Did you mean')] 3/3 3/3 4/4 4/4

 A Tool-Supported Process for Reliable Classification of Web Pages 343

The same classification rules were used for classifying a new Test Set of further 55
pages, and the last two columns of Table 1 report the recall and precision values of
the classification rules with respect to this Test Set. As these data show, six pages of
the LemmaWithSuggestions class and two pages of the Lemma class were misclassi-
fied. These pages were, hence, added to the Training Set and a new iteration of the
generation process was performed.

During this new iteration, a new set of classification rules was obtained, and their
effectiveness was assessed with respect to the Training Set pages (in particular, new
classification rules were proposed for Lemma and LemmaWithSuggestion classes).
Since a correct identification of all the pages of the Training Set was obtained, the
classification rules were submitted to the Test Set Validation. In this step, the analysis
was automatically performed by the tool in about 60 seconds. In this step of the proc-
ess, just two pages belonging to the Disambiguation class but satisfying the Classifi-
cation rule of the LemmaWithSuggestions class, too, gave classification problems.
Analogously to the previous iteration, these two pages were added to the Training Set
and new classification rules were proposed again.

The steps of Classification Rules Generation and Training Set Validation were
automatically performed in less than 5 seconds. After the successful validation of the
classification rules against the Training Set, they were validated against the Test Set,
too (the validation were performed in about 55 seconds). Table 2 reports the obtained
expressions and the Recall and Precision values, which were all 100%.

The final classification rules were further tested on a larger set of pages collected
and manually classified by some students. In a set of 514 pages, no further exceptions
(e.g., misclassified pages) were found.

The case study results showed that the proposed process and the tool supporting it
are able to generate reliable classification rules, at least in the considered experimen-
tal context. However, we tried to evaluate the overall cost of the process too, in order
to deduce some conclusions about the process feasibility. To this aim, the effort spent
in the process activities was analysed.

Table 2. Classification Rules and validation results after the third iteration of the process

 Training Set Test Set
Class Classification rule Recall Precision Recall Precision

Disambiguation //a/text()='Disambiguation pages' 5/5 5/5 12/12 12/12
Lemma NOT(//span/text()='No article title

matches') AND
NOT(//div[@class='dablink']) AND NOT
(//a[contains(.,'disambiguation')])

5/5 5/5 4/4 4/4

LemmaWithSuggesti
ons

NOT(//a/text()='Disambiguation pages')
AND (//div[@class='dablink']) AND
(//div[contains(.,'For other uses')])

9/9 9/9 20/20 20/20

NoResults NOT(//div[contains(.,'Did you mean')])
AND (//span/text()='No article title
matches')

3/3 3/3 4/4 4/4

NoResultsWithSugge
stion

//div[contains(.,'Did you mean')] 3/3 3/3 4/4 4/4

344 D. Amalfitano, A.R. Fasolino, and P. Tramontana

The effort devoted to the Training Set Collection activity essentially depends on
the number of Training Set pages that must be collected for each class. In the experi-
ment, we initially collected just a few pages for each class and this number was suffi-
cient for discovering an initial set of class candidate features. In general, the expert
can decide how many pages to collect, but he should try to minimize this number in
order to reduce the collection effort.

Analogously, the effort related to the feature generation step depends on the num-
ber of page classes and on the size of considered pages. However, this activity was
carried out with the support of the tool, and it lasted about 20 minutes.

The Classification Rules Generation and the Training Set Validation are com-
pletely automated steps. The time needed for their executions depends on the size of
the Training Set, on the complexity of collected pages to be classified, and on the size
of the Feature Set. However, in the case study we experienced that those steps were
completed in about one minute in the worst case, so that their effort can be considered
unimportant with respect to the one devoted to other steps.

The effort related to the Test Set Collection and Validation step grows with the size
of the Test Set. In general, new Test Set pages need to be collected by the software
engineer until the validation results confirm the reliability of the classification rules.
The Validation activity moreover requires that an expert software engineer judges the
correctness of the proposed classification. Both these activities are, hence, human-
made and time consuming, however they can be speeded up by using parallel teams of
testers. Moreover, the effort needed for the Classification of Incorrectly Identified
Pages depends on the number of pages to be re-classified. We experienced that the
misclassified pages are usually less than the Training Set pages, so that the effort
devoted to this step is negligible with respect to the one devoted to the training set
collection one.

The process overall cost depends on the number of performed process iterations
too. In the case study, three process iterations were needed. Anyway, the effort de-
voted to the second and third iterations was less than the one devoted to the first one,
because the number of new pages to be taken into account decreased with the itera-
tions. Other case studies that we carried out showed us that the number of needed
iterations depends on the ability of the expert to find rapidly an adequate feature set.

Two main conclusions were deduced from this case study. The first conclusion was
that, due to the automatic support provided by the tool, the proposed approach can be
considered cost-effective. The second conclusion was that the process cost-
effectiveness can be improved if a set of right features for each class of pages is rap-
idly defined in the early process iterations.

4 Conclusions and Future Works

In this paper a process and a tool supporting the semi-automatic generation of Web
page reliable classification rules have been presented. This process improves the one
that was only sketched in [3] and it is now completely supported by a tool. In the
paper a case study was illustrated where the process was successfully used for solving
a classification problem regarding the Wikipedia Web application. Experimental
results preliminarily showed the feasibility and cost-effectiveness of this approach.

 A Tool-Supported Process for Reliable Classification of Web Pages 345

In the future, we plan to carry out a wider experimentation on a larger set of classi-
fication problems in order to extend the validity of these experimental results.

References

1. De Lucia, A., Scanniello, G., Tortora, G.: Identifying Clones in Dynamic Web Sites Using
Similarity thresholds. In: Proc. of International Conference on Enterprise Information Sys-
tems, Porto, Portugal (2004)

2. Di Lucca, G.A., Di Penta, M., Fasolino, A.R.: An Approach to Identify Duplicated Web
Pages. In: Proc. of 26th IEEE Annual International Computer Software and Application
Conference, Oxford, UK, pp. 481–486. IEEE CS Press, Los Alamitos (2002)

3. Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Web Pages Classification using Concept
Analysis. In: Proc. of the IEEE International Conference on Software Maintenance, ICSM
2007, pp. 385–394. IEEE CS Press, Los Alamitos (2007)

4. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE Trans. on
Software Engineering 29(3), 210–224 (2003)

5. Fernández, V.F., Herranz, S.M., Unanue, R.M., Rubio, A.C.: Naïve Bayes Web Page Clas-
sification with HTML Mark-Up Enrichment. In: Proc. of Int. Multi-Conference on Com-
puting in the Global Information Technology (ICCGI 2006). IEEE Comp. Society Press,
Los Alamitos (2006)

6. Lindemann, C., Littig, L.: Coarse-grained Classification of Web Sites by their Structural
Properties. In: Proc. of WIDM 2006, pp. 35–42. ACM Press, New York (2006)

7. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling Ajax by Inferring User Interface State
Changes. In: Proc. of the 8th International Conference on Web Engineering (ICWE 2008),
pp. 122–134. IEEE C.S. Press, Los Alamitos (2008)

8. Murugesan, S.: Understanding Web 2.0. IT Professional 9(4), 34–41 (2007)
9. Ricca, F., Tonella, P.: Using Clustering to Support the Migration from Static to Dynamic

Web Pages. In: Proc. of 11th IEEE International Workshop on Program Comprehension,
Portland, Oregon, pp. 207–216 (2003)

10. Song, M., Kang, D., Lee, S.: Feature Reduction for Web Document Classification,
pp. 785–788. IEEE Comp. Society Press, Los Alamitos (2006)

11. Tockit library, http://tockit.sourceforge.net/tockit/index.html

Author Index

Abdelli, Abdelkrim 42
Abdullah-Al-Wadud, M. 176
Abrahão, Silvia 245
Ai, Jun 188
Alawneh, Luay 253
Amalfitano, Domenico 338
Aman, Muhammad Amir 111
Amiruzzaman, Md 176
Arabi, Somaye 127
Aversano, Lerina 213

Bagula, Antoine 229, 237
Balikuddembe, Joseph Kibombo 229,

237
Ben-Abdallah, Hanene 16
Blanes, David 245
Bodhuin, Thierry 143
Bouassida, Nadia 16

Cha, Moohyun 221
Chae, Hochang 204
Cho, Beoungil 94
Cho, Jeonghun 204
Chung, Yoojin 176
Crawford, Broderick 196

Dermoudy, Julian 25
Dohi, Tadashi 272, 288, 330

Fasolino, Anna Rita 338
Fujiwara, Takaji 280

Gasco, Loretta 160
Ghani, Abdul Azim Abd 70
Goh, Thong-Ngee 313
Grasso, Carmine 213

Hammal, Youcef 78
Hamou-Lhadj, Abdelwahab 253
Hata, Hideaki 296
He, Yang 9
Huang, Chin-Yu 305
Hyun, Jung Suk 61

Insfran, Emilio 245

Jalili, Mehdi 151
Jang, Sera 168

Jiang, Lie-Hui 86
Jin, Xiulin 204

Kang, Byeong-Ho 25
Kennedy, Jessie 50
Kim, Hyeon Soo 221
Kim, Tai-hoon 25
Kimura, Mitsuhiro 280
Kuk, Seung Hak 221
Kurutach, Werasak 102

Lee, Eunseok 94, 168
Lee, Jai-Kyung 221
Lee, Joonhoon 94
Lee, Seonghun 204
León de la Barra, Claudio 196
Li, Chengpu 50
Li, Yan-Fu 313
Lin, Chu-Ti 305
Liu, Tie-Ming 86
Liu, Xiaodong 50

Mendes, Emilia 1
Minaei-Bidgoli, Behrouz 127
Mizoguchi, Shintaro 330
Mizuno, Osamu 296

Nakasone, Arturo 160
Naqvi, Husnain 111, 119
Ng, Szu-Hui 313

Okamura, Hiroyuki 288

Pagnozzi, Federico 143
Park, Chan Jung 61
Park, Seong-Whan 221
Parsa, Saeed 127, 151
Peyravi, Hassan 176
Pow-Sang, José Antonio 160

Ray, Mahesh 25
Riaz, Mehwish 111, 119

Sahibuddin, Shamsul 70
Santone, Antonella 135, 143
Seifzadeh, Habib 151
Shi, Ying 321

348 Author Index

Shu, Hui 86
Smidts, Carol 321
Soeda, Takahiro 34
Solemon, Badariah 70
Srivastava, Praveen Ranjan 25
Sulayman, Muhammad 1, 111, 119
Sun, Xiaomin 9
Suwanya, Suphak 102

Tokuno, Koichi 264
Tortorella, Maria 135, 143, 213
Tramontana, Porfirio 338

Vahidi-Asl, Mojtaba 127
Villani, Maria Luisa 143

Xiao, Xiao 272
Xie, Min 313
Xiong, Cheng-Jie 313

Yamada, Shigeru 264
Yanagidate, Yuta 34
Yin, Qing 86
Yokoyama, Takanori 34
Youn, Hyunsang 94
Yu, Siwen 188
Yu, Xian 86

Zhang, Yifu 188

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	A Systematic Literature Review of Software Process Improvement in Small and Medium Web Companies
	Introduction
	Systematic Literature Review (SLR)
	Overview
	Formulation of Research Questions
	Identification of Relevant Literature
	Study Quality Assessment
	Data Extraction

	Data Synthesis and Results of Systematic Literature Review
	Discussion and Conclusions
	References

	An XCP Based Distributed Calibration System
	Introduction
	System Architecture
	Implementation
	TouCAN Driver Library
	Command Handling Module
	Synchronous Data Transfer
	Event Channel Module
	Power-Up Data Transfer
	Flash Programming

	Experiments
	Conclusions
	References

	Structural and Behavioral Detection of Design Patterns
	Introduction
	Related Works
	Current Pattern Identification Approaches
	XML Document Retrieval

	A New Pattern Detection Approach
	Resemblance Determination: Structural Information
	Resemblance Determination: Method Definition Information
	Static Design Pattern Identification

	Behavioral Resemblance Determination
	Example: The JHotDraw Framewok and the Observer Pattern
	Conclusion
	References

	Test Case Minimization and Prioritization Using CMIMX Technique
	Introduction
	Test Case Prioritization
	Problem Statement
	Algorithm
	Application
	Conclusion and Future Work
	References

	Embedded Control Software Design with Aspect Patterns
	Introduction
	Embedded Control Software Design
	Functional Design
	Timing Design

	Aspect Description and Model Weaver
	Aspect Description
	Model Weaver

	Aspect Patterns
	Aspect Patterns for Timing Design
	Mutual Exclusion
	Double Buffering

	Related Work
	Conclusions
	References

	Towards a Consistent Semantics for Unsafe Time Petri Nets
	Introduction
	Time Petri Net
	Formal Semantics of TPN

	Discussion
	A Sound Time Petri Net Semantics
	Conclusion
	References

	A Multiple Viewed Interrelated Ontology Model for Holistic Component Specification and Retrieval
	Introduction
	Related Work
	Multiple-Viewed Interrelated Component Specification Ontology Model (MVICS)
	Intrinsic Model
	Function Model
	Context Model
	Meta-relationship Model

	Holistic and Precise Component Retrieval
	Class Weight Calculation Method
	Retrieval Algorithm
	Precision Calculation Method
	Adaptive Component Matching
	Search Result Profile

	The Prototype Tool and Case Study
	Validation
	Conclusions
	References

	A Conflict-Based Model for Problem-Oriented Software Engineering and Its Applications Solved by Dimension Change and Use of Intermediary
	Introduction
	TRIZ and Software Engineering
	Contradictions
	TRIZ
	Software Engineering Problems with TRIZ

	Butterfly Model
	Examples
	Conclusions
	References

	Requirements Engineering Problems and Practices in Software Companies: An Industrial Survey
	Introduction
	Data Gathering
	Questionnaire Design
	Population Determination
	Data Collection

	Results
	Demographic of Respondents
	Size of RE Problems
	RE Problems Pattern and Company Maturity

	Top-Ten RE Practices
	Discussion
	Conclusion
	References

	A Formal Methodology for Semantics and Time Consistency Checking of UML Dynamic Diagrams
	Introduction
	Sequence Diagrams as an Interactions Specification Language
	StateCharts as Implementation Description Language
	Consistency Checking of Dynamic Diagrams
	Consistency Checking of Untimed Graphs
	Consistency Checking of Timed Graphs

	Conclusion
	References

	A Process Model for Forensic Analysis of Symbian Smart Phones
	Introduction
	The Existing Process Models
	Digital Investigation Process Models
	Windows Mobile Forensic Process Model

	Process Model for Symbian Smartphones Forensics
	The Impediments of Symbian Smartphones Forensics
	The Symbian Smartphones Forensic Process Model

	Conclusion and Future Works
	References

	Reliability Analysis Method for Supporting Traceability Using UML
	Introduction
	Related Work
	Proposed Approach
	Software Reliability Model
	Reliability Prediction Method
	Traceability

	Evaluation
	Reliability Evaluation
	Traceability Evaluation

	Conclusion
	References

	Applying Agility Framework in Small and Medium Enterprises
	Introduction
	Relevance Research Work
	Analysis of the Process Area and Generic Practices in CMMI
	Comparison of the Software Development Methodology

	The Proposed Method
	Agility Software Process Improvement for Small and Medium Enterprises: ASPISME
	ASPISME Process
	The ASPISME Project

	Conclusion and Future Work
	References

	Using Area-Team to Evaluate the Software Architecture for an Online Banking System: A Case Study
	Introduction
	AREA-TEAM and Software Architecture Evaluation
	Case Study of an Online Banking System
	Architecture Evaluations through AREA-TEAM
	Conclusions
	References

	Architectural Decay during Continuous Software Evolution and Impact of ‘Design for Change’ on Software Architecture
	Introduction
	Architectural Decay
	Architectural Decay, Software Evolution, and Code Decay
	Factors Contributing to Architectural Decay
	Symptoms and Practices for Identification, Resolution and Prevention of Architectural Decay
	Symptoms of Architectural Decay
	Practices for the Identification, Resolution and Prevention of Architectural Decay

	Controlled Experiment to Observe the Impact of $Design for Change$ on Architectural Decay
	Experimental Design and Software under Study
	Experimental Results

	Conclusions and Future Work
	References

	Software Fault Localization Using Elastic Net: A New Statistical Approach
	Introduction
	Related Work
	The Proposed Approach
	Instrumentation
	Bug Predictor Selection
	Backward Slicing Technique

	Experimental Results
	Experiments on EXIF
	Experiments on Siemens

	Concluding Remarks
	References

	Applying Formal Methods to Process Innovation
	Introduction
	Preliminaries
	The Method
	An Example
	Conclusion and Related Work
	References

	Abstracting Models from Execution Traces for Performing Formal Verification
	Introduction
	Instrumentation
	The Method
	Obtaining Execution Traces from Java Bytecode-Based Programs
	Discovering Models from Traces Using Program Transformation for Checking Properties

	Conclusion and Related Work
	References

	A Hybrid Model in Dynamic Software Updating for C
	Introduction
	Related Works
	Hybrid Model
	Architecture and Design
	Implementation and Its Issues

	Comparison and Evaluation
	Performance
	Memory Footprint
	Service Disruption Time

	Conclusion and Future Work
	References

	A Function Point Logic File Identification Technique Using UML Analysis Class Diagrams
	Introduction
	Related Work
	Rules to Identify Logical Files
	Experimental Design
	Variables Selection and Participants
	Materials and Case Studies

	Results
	Discussion
	Conclusions and Future Work
	References

	Reliable Mobile Application Modeling Based on Open API
	Introduction
	Related Research
	Proposed Approach
	Design Model
	Analyze Model
	Application Code Generation
	Fault Detection
	Modify Code

	Implementation and Evaluation
	Conclusion
	References

	An Improved Steganography Covert Channel
	Introduction
	Proposed Approach
	S and T JPEG Blocks
	Shifting Nonzero AC Coefficients
	Modifying Magnitude Nonzero AC Coefficients
	Embedding Algorithm

	Experiment and Discussions
	Conclusions
	References

	Software Test Data Generation Based on Multi-agent
	Introduction
	The Principles of the Framework
	The Principles of the Framework
	The Design of the Framework

	Test Input Information Extraction
	Test Input Information
	The Coverage Criteria of UML Diagrams
	Extraction of Software Test Input Information

	Software Test Data Generation
	Case Study
	Conclusion
	References

	Knowledge Creation and Creativity in Agile Teams
	Introduction
	eXtreme Programming
	Knowledge Creation and Software Engineering
	Creativity in Software Development
	Creativity: Purposes, Performance and Structure
	Roles in a Creative Team

	Creativity in eXtreme Programming
	Team Structure (Base and Supporting Roles)

	Conclusions
	References

	TEST: Testing Environment for Embedded Systems Based on TTCN-3 in SILS
	Introduction
	Related Work
	TTCN-3 Testing System
	Testing an Embedded Systems Software
	Testing on SILS

	TTCN-3 for Testing Embedded Systems Software
	Hardware Description of the Embedded Systems
	Communication Interface with SUT

	Implementation of the Testing System
	Automatic Update of SUT Adapter Using Hardware Descriptor
	Interface between Testing System and SUT
	Example of the Testing Result

	Conclusion
	References

	A Framework for Measuring the Alignment between Business Processes and Software Systems
	Introduction
	Measuring the Alignment
	Q1. Evaluating the Technological Coverage
	Q2. Evaluating the Technological Adequacy

	An Example
	Conclusions
	References

	Service Composition System in Consideration of the Characteristics of Services
	Introduction
	An e-Engineering Framework and the Engineering Process
	Characteristics of Engineering Service
	Proposed Service Composition System
	System Architecture
	Proposed Methods

	Related Researches
	Conclusion and Future Work
	References

	Business Viability Assessment of Potential Software Projects: An Empirical Study with the CASSE Framework
	Introduction
	Purpose
	The CASSE Framework Approach
	The Project Value Evaluator

	Case Study Evaluation
	Case Study Description
	Analysis Parameters
	Case Study Analysis Results
	The Quadrant Analysis
	Case Study Implications

	Conclusion and Future Work
	References

	Aligning the Software Project Selection Process with the Business Strategy: A Pilot Study
	Introduction
	Purpose
	Methodology
	Presentation of Findings
	Interpretation Summary
	Discussion

	Conclusion
	References

	RE4Gaia: A Requirements Modeling Approach for the Development of Multi-Agent Systems
	Introduction
	Related Work
	The Gaia Methodology
	The Requirements Modeling Approach
	Requirements Modeling
	Requirements Analysis

	Case Study
	Traceability Framework

	Conclusions and Further Work
	References

	Execution Traces: A New Domain That Requires the Creation of a Standard Metamodel
	Introduction
	Execution Traces as a New Domain
	Statement-Level Traces
	Routine Call Traces
	Inter-process Level Traces
	System Call Level Traces
	Execution Traces for Performance Analysis

	Existing Metamodels
	Compact Trace Format
	Unified Modeling Language
	Knowledge Discovery Metamodel

	Proposed Execution Trace Metamodel
	Conclusion and Future Work
	References

	Software Performability Measurement Based on Availability Model with User-Perceived Performance Degradation
	Introduction
	Software Availability Model with Performance Degradation
	Model Description and Analysis for Task Processing
	Derivation of Software Performability Measures
	Numerical Example
	Concluding Remarks
	References

	An Experimental Evaluation of Error Rate in a Web Server System
	Introduction
	Experiments
	Experimental Setup
	Data Collection

	Logit Model
	Regression-Based Model

	Real Data Analysis
	Conclusion
	References

	A New Criterion for the Optimal Software Release Problems: Moving Average Quality Control Chart with Bootstrap Sampling
	Introduction
	Concept of the Optimal Release Policy
	Model Description
	Evaluation of Cov [X,Y]
	Bootstrap Sampling with Incomplete Gamma Function Model

	Example of Data Analysis
	Concluding Remarks
	References

	An EM Algorithm for Record Value Statistics Models in Software Reliability Estimation
	Introduction
	Software Reliability Modeling
	Parameter Estimation
	Illustration of EM Procedure for Musa-Okumoto SRM
	Discussions and Future Research
	References

	Yet Another Metric for Predicting Fault-Prone Modules
	Introduction
	Objective
	Metrics Suit and Prediction Method
	History Metrics
	Complexity Metrics
	Text-Filtering Metrics
	Fault-Prone Prediction Methods

	Experiment
	Target Project
	Collection of Faulty Modules
	Evaluation Measures
	Procedure
	Results of Experiment
	Discussion

	Threats to Validity
	Conclusions
	References

	Quantifying the Influences of Imperfect Debugging on Software Development Using Simulation Approach
	Introduction
	Related Works
	Simulation Procedures
	Numerical Example
	Conclusions
	References

	Service Reliability and Availability Analysis of Distributed Software Systems Considering Malware Attack
	Introduction
	Modeling of Malware Attack in Distributed Systems
	Modelling of Distributed System under Malware Attack
	Derivation of Service Reliability and Availability

	Numerical Examples
	Conclusions
	References

	A Test Coverage-Based Model for Predicting Software Fault Content and Location during Multi-phase Functional Testing
	Introduction
	Number of Failures Experienced and Faults Remaining in the Case of Multiple Functional Test Phases
	Extensions in the Case of a Non-uniform Distribution of Faults
	Conclusions
	References

	A Refined Non-parametric Algorithm for Sequential Software Reliability Estimation
	Introduction
	Software Reliability Model
	Parametric Models
	Non-parametric Models

	Parameter Estimation
	Numerical Illustrations
	Conclusion
	References

	A Tool-Supported Process for Reliable Classification of Web Pages
	Introduction
	The Classification Technique
	A Case Study
	Conclusions and Future Works
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

