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Abstract This chapter summarizes major aspects of N-nutrition in plants. N

distribution within a plant varies widely according to the organ, the development

stage, and mostly to the environmental conditions. Within the cell, the different N

forms are stored in different compartments and the pool sizes are controlled in

contrasting manner. Plants can take up nitrate, ammonium, urea, and other organic

N forms. Various transporters for these compounds have been characterized, and

the localization and properties of these proteins give rise to a complex pattern of N

fluxes within the plant. The further assimilation of nitrate is well described, but the

in planta role of all proteins, as for example GS1 and GDH, is far from being

evident. Some are involved in N remobilization which is an important N source for

example during seed filling.

Regulation of N assimilation occurs at the transcriptional and post-transcriptional

levels, and regulation of the different steps is highly coordinated. However, only

very few molecular players are known. As a special case in N-signaling, NO, a side

product of N assimilation, is considered in some detail.

1 Introduction

Nitrogen is the mineral nutrient required in highest amounts by plants and is most

frequently limiting growth and yield. Inorganic or organic N forms participate to

plant nutrition in a variable extent depending on plant parameters as well as soil
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characteristics. In temperate climatic conditions, inorganic N forms are predomi-

nant, and fertilizers are often supplied as nitrate, ammonium, or urea (http://www.

fertilizer.org/ifa/). However, the soil solution may contain different organic N

forms such as soluble proteins or amino acids derived from proteolytic processes.

A variety of plant species are able to use organic N forms in artic, boreal, temperate,

Mediterranean shrub-land, or alpine natural ecosystems (reviewed in Näsholm et al.

2009). In legume plants, atmospheric N2 is fixed in the nodule, a specialized organ

resulting from the interaction between bacteria and roots (Gordon et al. 2001). In

the same manner, nutrient use efficiency is increased by symbioses between fungi

and plants, the mycorrhizal system being involved in nutrient uptake and the plant

partner providing reduced carbon to the fungus (Martin et al. 2001).

Although such symbioses are important in natural ecosystems, this chapter

describes only direct N uptake by root cells. We give an overview of (1) N

distribution within the plant and more precisely within a plant cell, (2) the molecu-

lar elements involved in different fluxes or in assimilatory steps, and (3) the

regulatory mechanisms that control these processes. N metabolites, such as nitrate,

ammonium, and glutamate act as signal molecules as well. However, this is out of

the scope of this chapter and has been reviewed recently (Walch-Liu et al. 2005);

instead, we extend this chapter by (4) a detailed description of the synthesis and

mode of action of NO.

2 Distribution of N Forms in Plant Cells

2.1 N in Different Tissues

The N forms and N quantities within a plant vary widely according to the organ, the

development stage, and the environmental conditions. The root is obviously the

predominant organ where large exchanges of a variety of N forms occur between

root cells and the soil solution. The differential expression and localization of

channel- or transporter proteins (see below) led to a complex picture of the root

cellular organization, with specialized uptake functions for lateral root caps or

epidermis/cortex, and horizontal transport toward the vasculature for endodermis/

pericycle and stele lines (see below 1.2.2 ammonium transport). Inorganic N forms

can then enter the xylem to be transported to the shoots. N assimilation and

remobilization take place in roots and shoots, and organic N forms are then

distributed to sinks organs (Brouquisse et al. 2001).

2.2 N Cellular Distribution

Within the cell, N forms are stored in different compartments (Fig. 1).

Cytoplasmic ammonium pools originate not only from ammonium uptake across

the plasma membranes but also from amino acid catabolism occurring during
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photorespiration in illuminated leaves (Leegood et al. 1996) or in senescent tissues

(Matsson and Schjoerring 2003). Ammonium concentrations have been measured

using analysis of 1H-coupled 14N-NMR signals (review in Mesnard and Ratcliffe

2005) or with ammonium-selective microelectrodes (Wells and Miller 2000). In

both cases, the cytoplasmic ammonium concentrations were no more than a few

millimolar (8–15 mM), but this concentration could be increased in maize roots

when ammonium assimilation was blocked (Lee and Ratcliffe 1991). In vacuoles,

ammonium concentrations vary between 1 and 45 mM in nonstressed plants (Miller

et al. 2001), indicating a possible role of this compartment for the storage of

ammonium.

The global nitrate concentrations in leaves or roots are highly dependent on

external N supply, and nitrate, among all N-compounds, disappears most quickly

in response to N starvation (Richard-Molard et al. 2008). The pool of nitrate

associated with purified chloroplasts remains remarkably constant under various
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Fig. 1 N Storage in different compartments. Nitrate and ammonium enter the cell and can be either

stored in the vacuole, transported to other tissues, or assimilated in the cytosol and the chloroplast.

Small italic letters: nitrogen assimilation steps. Capital letters: enzymes. Capital italic letters:

genes. NR: Nitrate reductase. NiR: nitrite reductase/ GS: Glutamine synthethase. GOGAT:

glutamate synthase, AMT: ammonium transporter. NRT: nitrate transporter; CLC: chloride

channel
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conditions (Schröppel-Maier and Kaiser 1988). In contrast, the vacuolar nitrate

pools show a positive correlation with the external nitrate supply (Miller and Smith

2007; van der Leij et al. 1998). The pool size varies also with the cell type and is

higher in epidermal than in mesophyll cells in barley leaves (Karley et al. 2000) and

higher in cortical compared to epidermal cells in barley roots. In roots, remobiliza-

tion of vacuolar nitrate occurs more slowly from cortical cells than from epidermal

cells (van der Leij et al. 1998). This tissue heterogeneity revealed by single-cell

techniques implies that knowledge obtained for vacuoles from one type of tissue

cannot be necessarily transferred to vacuoles from other tissues, as also shown for

gene expression (Gifford et al 2008). A striking characteristic of the cytosolic NO3
�

pool is its low size (in the order of 3–4 mM). In contrast to vacuoles, cytosolic

nitrate is maintained at a remarkably stable value that is independent of changes in

the external nitrate concentration (Miller and Smith 2007; van der Leij et al. 1998).
The global amino acid contents in leaves depend on external N supplies and can

vary from 150 to 45 nmol/mgDM when Arabidopsis plants are fed with 10 or 3 mM

nitrate, respectively (Loudet et al. 2003). Subcellular volumes and amino acid

concentrations have been analyzed using non-aqueous fractionation in spinach

(Winter et al. 1994), barley (Winter et al. 1993), or potato (Leidreiter et al. 1995).

In all cases, the concentration of amino acids is much lower in the vacuoles than in

the cytosol (1.7/40 mM for glutamate in barley, for example). These concentrations

are quite similar between cytosol and stroma.

3 N Fluxes Within a Plant Cell

3.1 Nitrate and Nitrite Fluxes

Two nitrate transport systems have been shown to co-exist in plants and act co-

ordinately to take up nitrate from the soil solution and distribute nitrate within the

whole plant (Fig. 2) (review in Daniel-Vedele et al. 1998; Tsay et al. 2007).

NRT2.1/NRT2.2
NAR2NRT1.1

NRT1.2

NRT1.5

NRT2.7

NRT1.6
Fig. 2 Schematic
presentation of the known
localization of NRT1 and
NRT2 genes in Arabidopsis.
Two nitrate transport systems

have been shown to co-exist

in plants and act co-ordinately

to take up nitrate from the soil

solution and distribute nitrate

within the whole plant
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It is generally assumed that the NRT1 gene family mediates the root low-affinity

transport system (LATS), with the exception of the AtNRT1.1, which is a dual

affinity transporter (Wang et al. 1998; Liu et al. 1999). In Arabidopsis, 53 genes

belong to the NRT1 family. Among them 51 genes are expressed and exhibit

different tissue expression patterns in the whole plant (Tsay et al. 2007), suggesting

a specialized and unique function for at least some of them. The most extensively

studied gene is the first one isolated, AtNRT1.1 (formerly Chl1; Tsay et al. 1993).

The gene is expressed in epidermis of the root tips and in the cortex and endodermis

in the more mature part of the root (Huang et al. 1996) but also accumulates in

nascent organs (Guo et al. 2001). AtNRT1.1 is also considered as a nitrate sensor

that could regulate other processes like regulation of other components of nitrate

uptake (Krouk et al. 2006), stomatal opening (Guo et al. 2001), relieving of seed

dormancy (Alboresi et al. 2005), or stimulation of root proliferation by nitrate

(Remans et al. 2006a). Beside this gene, the AtNRT1.2 gene is constitutively

expressed only in the root epidermis and belongs to the constitutive low-affinity

system (Huang et al. 1999). AtNRT1.5 is located on the plasma membrane of root

pericycle cells close to the xylem. The protein is a low-affinity, pH-dependent

bidirectional nitrate transporter and is involved in long distance transport of nitrate

from the root to the shoot (Lin et al. 2008). The AtNRT1.4 gene is only expressed in
leaf petioles, and the nitrate content is twice lower in the petiole of the mutant

compared to that of the wild type (Chiu et al. 2004). Recently, AtNRT1.6was shown
to be involved in embryo development. The gene is expressed in the vascular tissue

of the silique. Expression in oocytes and mutant phenotypes suggest that the protein

could deliver nitrate from maternal tissue to the developing embryo (Almagro et al.

2008). A striking particularity of the NRT1 family is that certain members belong-

ing to the group II (reviewed in Tsay et al. 2007) are able to transport not only

nitrate but also di or tripeptides in heterologous systems, while OPT proteins

transport tetra/pentapeptides.

The high-affinity transport system (HATS), acting when the external nitrate

concentration is low, relies on the activity of the so called NRT2 family (reviewed

in Williams and Miller 2001). AtNRT2.1 is a major component of the iHATS in

Arabidopsis, as shown by the fact that a mutant disrupted for the AtNRT2.1 gene has
lost up to 75% of the inducible high-affinity NO3

� uptake activity and showed a

lower leaf nitrate content (Cerezo et al. 2001; Filleur et al. 2001). As a consequence,

growth of these mutants is severely impaired at low NO3
� concentration (Orsel

et al. 2004; Orsel et al. 2006). Li and coworkers showed that the AtNRT2.2 makes

only a small contribution to iHATS under normal growth conditions (Li et al.

2007).

Nitrate can also be exported from the cytosolic pool by an efflux mechanism.

Segonsac and co-workers have identified an Arabidopsis excretion transporter,

localized at the plasma membrane of cortical root cells and encoded by the

NAXT1 gene belonging to the NRT1 family (Segonzac et al. 2007).

Regarding vacuolar nitrate pools, classical experiments using indirect assay

of H+ transport provided evidence for the presence of a NO3
�/H+ antiporter in

the tonoplast (Schumaker and Sze 1987). Recently, De Angeli et al. (2006)
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demonstrated that the AtCLCa protein, localized in the vacuolar membrane,

behaves as a NO3
�/H+ exchanger, allowing the accumulation of nitrate within the

vacuole. Residues important for nitrate/proton coupling have been identified in

plant and mammalian CLC transporters (Eun-Yeong et al. 2009; Zifarelli and Pusch

2009). Insertion mutants within the AtCLCa gene exhibit normal development but

show a reduced capacity to store nitrate but not other anions (Geelen et al. 2000).

This phenotype was also recently found when the expression of the vacuole-located

nitrate transporter AtNRT2.7 was affected. This AtNRT2 gene is expressed in aerial
organs and also highly induced in dry seeds. In two allelic atnrt2.7 mutants, less

nitrate is accumulated in the seed. In contrast, seeds from plants overexpressing the

AtNRT2.7 coding region accumulate more nitrate, and as a consequence they are

less dormant than the corresponding wild type seeds (Chopin et al. 2007).

Finally, little is known on potential channels or transporters that could be

involved in fluxes towards the chloroplast (reviewed in Weber et al. 2005). Fusion

proteins with the GFP marker revealed the chloroplastic subcellular localization of

the AtCLCe protein. The atclce mutants display a phenotype linked both to

photosynthesis (Marmagne et al. 2007) and nitrate content (Monachello et al.

2009). The flux of nitrite, the product of nitrate reduction in the cytosol, into the

chloroplast could also play a role in the flux of nitrate towards the chloroplast and

thus in the homeostasis of cytosolic nitrate. A nitrite transporter belonging to the

NRT1 family has been recently identified in cucumber and Arabidopsis (Sugiura
et al. 2007).

3.2 Ammonium Fluxes

Since the cloning of the first gene involved in ammonium transport (Ninnemann

et al. 1994), five other genes belonging to the same family were found in Arabi-
dopsis (Gazzarrini et al. 1999; Sohlenkamp et al. 2000), ten in rice (Sonoda et al.

2003), a species adapted to ammonium nutrition, and 14 in poplar (Couturier et al.

2007). Focusing on the results obtained in Arabidopsis, kinetics properties of the
AMT proteins expressed in oocytes showed Km values ranging from 34 mM for

AMT1;1 (Wood et al. 2006) to 140 mM for AMT1;2 (Neuhäuser et al. 2007).

Among the six genes, AMT1;1, AMT1;2, AMT1;3, and AMT2;1 are highly

expressed in roots (Loqué and vonWirén 2004) and encode proteins that are located

in the plasma membranes (Loqué et al. 2006; Yuan et al. 2007). In order to analyze

the function of each of this genes separately in planta, physiological and ammo-

nium influx studies were carried out on single, double, triple, and quadruple

mutants (Yuan et al. 2007). Additive contribution of AMT1;1 and AMT1;3 was

shown, while a second saturable transport is thought to be coded by the AMT1;5
gene. A complex picture is now emerging from these studies (Fig. 3). There is a

spatial organization of AMT1 proteins, the transporters possessing the highest

ammonium affinities being located in outer root cells or root hairs where they can

uptake ammonium from the soil solution (AMT1;1, AMT1;3, AMT1;5). The lower
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affinity of AMT1;2 and its location in the endodermis along the root hair zone

suggest a function in the retrieval of ammonium that is released from the cortex, or

that enters the root via the apoplastic route.

The electrochemical gradient between vacuole and cytosol would drive NH3

import to and NH4
+ export out of the vacuole. Indeed, tonoplast intrinsic proteins of

the TIP family were shown to play a role in NH3 transport into the vacuole (Loqué

et al. 2005). Vacuolar loading with NH4
+ should require an electrogenic ammonium

transporter, which has not yet been identified.

3.3 Urea Transport

Although urea is the major nitrogen form supplied as fertilizer in agricultural plant

production, its uptake by plant roots or leaves before its hydrolysis has been a

matter of debate for a long time. However, studies in crop plants (Merigout et al.

2008a) and Arabidopsis (review in Kojima et al. 2006) showed the uptake of urea.

The identification of the high-affinity urea transporter AtDUR3 by Liu et al. (2003a)
and of the AtTIP urea permeases (Liu et al. 2003b) led to new insights regarding the

molecular basis of urea uptake in plants. Growth of mutant lines carrying T-DNA

insertions in AtDUR3 is impaired when urea is the sole nitrogen source. (Kojima
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NH4
+

NH4
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NH4
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Fig. 3 Model summarizing the functions of AMT1-type transporters in high-affinity ammonium
uptake in Arabidopsis roots (from Yuan et al. 2007). This schematic representation shows the

contribution to ammonium uptake and spatial expression in root tissues of AMT1;1, AMT1;3,

AMT1;5 (all in red), and AMT1;2 (blue) under nitrogen deficiency. AMT-dependent ammonium

influx is proportionally represented by the size of their arrows. rhizo, rhizodermis; co, cortex;

endo, endodermis; peric, pericycle; xyl, xylem

Cellular Biology of Nitrogen Metabolism and Signaling 151



et al. 2007). Physiological and transcriptomic analyses were performed in Arabi-
dopsis plant to assess the interactions between urea and ammonium or nitrate

uptake and assimilation (Merigout et al. 2008b).

3.4 Organic N Transport

So far, plant putative amino acid transporters have been identified as members of at

least five gene families, comprising for example in Arabidopsis at least 67 genes

(reviewed in Ortiz-Lopez et al. 2000; Rentsch et al. 2007). We will focus here on

amino acid transporters shown to be clearly involved in uptake or distribution of

amino acids within the plant.

Forward and reverse approaches were used to identify transporters involved in

root amino acid uptake (Hirner et al. 2006; Svennerstam et al. 2007). Both studies led

to the conclusion that LHT1 (Lysine/histidine transporter) is crucial for root uptake of

acidic and neutral amino acids. The AAP1 protein was also shown to transport

uncharged amino acids, but only when they are supplied at high concentrations in

the external medium (Lee et al. 2007b). Uptake of cationic amino acids like L-Lys or

L-Arg is mediated by AAP5 within the concentration range relevant for field condi-

tions (Svennerstam et al. 2008). Näsholm et al. (2009) suggests a hypothetic mode of

root amino acid uptake in nonmycorrhizal plants. Although expression of many seed

amino acid transporters precedes storage protein synthesis during seed maturation,

only a few organic N transporters, among them AtOPT3, have been shown to be

essential for seed loading or development (Stacey et al. 2002).

Intracellular transport is expected to be important particularly in the case of

amino acid transport. Indeed, plastids are key compartments for amino acid biosyn-

thesis, some of them being exclusively synthesized there (phenylalanine, tyrosine,

tryptophan, and lysine) whereas others (glutamine, aspartate, and serine) are pro-

duced in multiple compartments. Strikingly, only one protein, Dit2.1, is so far

clearly localized at the inner envelope membrane and functions as a glutamate/

malate exchanger, essential for the photorespiratory pathway (Renné et al. 2003).

Similarly, only transporters for basic amino acids have been localized in the

mitochondrial membrane (Catoni et al. 2003; Hoyos et al. 2003). Some transporters

have been localized at the tonoplast and their function remains to be demonstrated.

The concentration of amino acids in the vacuole is lower than in the cytosol, but so

far a vacuolar export system has been shown only in Chara vacuoles (Martinoia

et al. 2000).

4 N Assimilation Pathways

As described before, the main nitrogen sources taken up by higher plants are nitrate

or ammonium as inorganic N sources, and eventually amino acids under particular

conditions. Here, we will briefly describe the main steps of nitrate or ammonium
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assimilation in growing cells and summarize recent results obtained for source

organs when N is remobilized.

4.1 N Assimilation

A global overview of N assimilation in plants is given in Fig. 1. Nitrogen assimila-

tion requires the reduction of nitrate to ammonium, followed by ammonium

assimilation into amino acids.

Nitrate reduction into nitrite is catalysed in the cytosol by the enzyme nitrate

reductase (NR). This enzyme is a homodimer, each monomer being associated with

three prosthetic groups: flavin adenine dinucleotide, a haem, and a molybdenum

cofactor (MoCo). Characterization of mutants resistant to chlorate, which can be

reduced into toxic chlorite by NR, identified two classes of genes, the NIA genes

encoding the NR apoenzyme and the CNX genes encoding the MoCo cofactor

(Pelsy and Caboche 1992; Crawford and Arst 1993). Since 1993, a lot of work has

been done to characterize the NR in different species (reviewed in Meyer and Stitt

2001). Although the NR enzyme is thought to be localized in the cytosol (Solo-

monson and Barber 1990), an association with the plasma membrane (PM-NR) has

been found in some species like in corn roots (Chen and Wang 1995) or barley

roots (Ward et al. 1989). The structural characteristics and the potential role of this

PM-NR have been intensively studied in Chlorella by Tischner and collaborators

(reviewed in Tischner 2000). Nitrite is then translocated to the cytosol where it is

reduced to ammonium by the second enzyme of the pathway, nitrite reductase

(NiR). The NII genes encoding the NiR enzyme have been cloned from various

species, the number of genes varying from one to two copies (Meyer and Stöhr

2002).

Ammonium, originating from nitrate reduction, photorespiration, or amino acid

catabolism, is assimilated in the chloroplast by the so-called GS/GOGAT cycle (Lea

and Miflin 2004). The glutamine synthetase fixes ammonium on a glutamate mole-

cule to form glutamine. This glutamine reacts subsequently with 2-oxoglutarate to

form two molecules of glutamate, this step being catalysed by the glutamine 2-

oxoglutarate amino transferase (or glutamate synthase GOGAT). Two classes of

genes code for GS: the GS2 gene, present as a single nuclear gene in all species

studied so far, codes for a chloroplastic GS, involved in the assimilation of ammo-

nium stemming from nitrate reduction or photorespiration. Conversely, the GS1
nuclear gene family codes for cytosolic GS isoforms, present in different organs

such as roots or stems and thought to be involved in ammonium recycling during

particular developmental steps such as grain filling or leaf senescence (reviewed in

Hirel and Lea 2001; Corruzzi 2003). Two different forms of glutamate synthase are

present in plants: the Fd-GOGAT andNADH-GOGAT use ferredoxin andNADH as

electron donors, respectively. Fd-GOGAT is predominantly localized in leaf chlor-

oplasts, while NADH-GOGAT is primarily located in plastids of non-photosynthetic

tissues, such as roots or etiolated leaf tissues. The structural, mechanistic, and
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regulatory properties of GOGAT enzymes and their role in amino-acid metabolism

have been recently reviewed by Suzuki and Knaff (2005).

4.2 N Remobilization

Although nitrogen uptake still operates at the reproductive stage (Gallais et al.

2007), it is generally assumed that seeds receive a large part of nitrogen from

remobilization of different N forms present in source organs (Feller and Keist

1986). During senescence, a re-distribution of amino acids, free or produced by

proteolysis of proteins (Patrick and Offler 2001) leads to an increase of asparagine

in pea (Rochat and Boutin 1991) and an increase in glutamine in other species, in

the phloem sap (Herrera-Rodriguez et al. 2006; Masclaux-Daubresse et al. 2006).

Some amino acid transporters of the AAP family are putatively involved in phloem

loading (see above). During these particular developmental stages, specific

enzymes related to N metabolism are activated (reviewed in Masclaux-Daubresse

et al. 2008). Induction of cytosolic GS1 as well as induction of glutamate dehy-

drogenase appears in a large variety of plants. The latter, catalysing glutamate de-

amination as well as glutamate synthesis, carried out the de-amination reaction in

source leaves (Masclaux-Daubresse et al. 2006). This N remobilization during

senescence is also triggered in response to environmental factors such as drought,

nutrient limitation, or pathogen attack (Pageau et al. 2006).

5 Regulation of N Uptake and Metabolism

N uptake by the roots and N assimilation are integrated to match the nutrient

demand of the whole organism. Regulatory mechanisms that modulate the expres-

sion and/or the activity of transport systems and enzymes, according to the nutri-

tional status of the plant and to external stimuli or stresses, ensure both rapid

adjustments of metabolism and long term adaptations (Fig. 4).

5.1 Regulation at the mRNA Level

Patterns for changes in mRNA abundance of many components of N uptake and N

assimilation have been observed, which allow coordinated regulation of N metabo-

lism. Two main metabolic cues operate in the control of N uptake and assimilation.

The first mechanism includes the induction by substrates and repression by

endogenous N assimilates, mediating a negative feedback regulation by the N

status of the whole plant (Gazzarrini et al. 1999; Cerezo et al. 2001). This results

in up regulation when N is low and down regulation when N is high. Accordingly,
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several NRT2 and AMT1 transporters as well as NIA and NII were found to be

repressed at the mRNA level by N metabolites such as amino acids (Tsay et al.

2007). Further studies using the glutamate synthase inhibitor, AZA, or exposure to

NH4
+ or various amino acids suggested that glutamine plays an important role in the

down regulation of NRT2.1 (Nazoa et al. 2003, Zhuo et al. 1999).

In response to N deprivation, AMT1.1, AMT1.3, and AMT1.5 (Gazzarrini et al.

1999; Gansel et al. 2001; Loqué et al. 2006), as well as AtNRT2.1, AtNRT2.2, and
AtDUR3, are induced (Lejay et al 1999; Scheible et al. 2004). Interestingly, two

genes of the NRT2 family are slowly but steadily induced by starvation (Orsel and

Krapp, unpublished data). Resupply of nitrate re-induces NRT2.1, and NRT2.2 as

well as NIA and NII expression after long term starvation (Scheible et al. 2004),

whereas expression of NRT2.4 and NRT2.5 is repressed by the resupply of any N

source (Okamoto et al. 2003).

Transcriptional regulation of genes involved in LATS for NH4
+ and NO3

� is less

documented. NRT1.1 shares many regulatory features with NRT2.1. NRT1.1 is

rapidly induced by nitrate and by starvation but less subjected to regulation by N

metabolites (Tsay et al. 1993), while AtNRT1.2 is constitutively expressed (Huang

et al. 1999); AtNRT1.5 is much more slowly induced by nitrate, and is in addition

regulated by potassium. AtNRT1.1 and AtNRT1.5 are both regulated by pH (Tsay

et al. 1993; Lin et al. 2008).
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Global transcriptome studies (Wang et al. 2003; Scheible et al. 2004) confirmed

transcriptional regulation of N uptake and assimilation by nitrate and showed a

broad action spectrum of nitrate as a regulator of gene expression, coordinating for

example C and N metabolism. Using NR mutants (Wang et al. 2004) it was shown

that nitrate itself acts as signal. Another study (Wang et al. 2007) investigating gene

regulation by nitrite showed an overlap between nitrate and nitrite regulated genes.

Nevertheless, specific regulation by nitrite was shown for several genes of N uptake

(e.g. NRT2.5, AMT1.3). Nitrite was already discussed by Loqué et al (2006) as

signaling molecule for the regulation of NRT1.1 and NIA1.
The second major regulation of N uptake and N assimilation corresponds to the

stimulation by photosynthesis (Lejay et al. 2003), which ensures that N uptake is

harmonized with the C status. A major common feature is the diurnal fluctuation of

N uptake and N reduction. This control has often been attributed to the regulatory

action of sugars produced by photosynthesis and transported downward to the roots,

as shown by the positive effect of CO2 concentration on NO3
– uptake (Gastal and

Saugier 1989; Delhon et al. 1996) Diurnal fluctuations in uptake and assimilation,

or stimulation by sugars, are generally correlated with the expression of genes

encoding transporters and enzymes. This has been shown for NH4
+ transporters

(Gazzarrini et al. 1999; von Wirén et al. 2000; Lejay et al. 2003), NO3
– transporters

(Lejay et al. 1999; Ono et al. 2000; Matt et al. 2001), and NR and NiR (Vincentz

et al. 1993). In Arabidopsis, genes tested by Lejay et al. (2003, AtNRT2.1 and

AtNRT1.1), showed 5–10 times higher expression during the light period compared

with the dark period. Nitrate uptake, measured using 15NO3
� also increased after

the onset of light. The increase was approx. two-fold during the photoperiod. The

decrease in AtNRT2.1 and AtNRT1.1 mRNA levels and nitrate uptake during the

dark period was prevented by supply of 1% sucrose to the roots, which is a further

indication for the role of sugars during diurnal regulation. This regulation seems to

be independent of the known sugar regulation pathways, such as hexokinase

signaling (Lejay et al. 2003). Recently Lejay et al. (2008) showed that up-regulation

of nitrate transporters (AtNRT2.1 and AtNRT1.1) was related to the concentration of
glucose 6-phosphate. Contrary to that of the transporters, the diurnal regulation of

NIA transcripts is not only governed by sugars but also by light regulation via

phytochrome (Rajasekhar et al. 1988). In addition, NIA expression is controlled by

signals from photosynthetic electron flow, which adds to the picture of intracellular

cross-talk between chloroplasts and the nucleus (Sherameti et al. 2002).

Despite the very important regulation of transcript abundance by external and

internal factors, information about the molecular players such as transcription

factors, miRNA, etc. is still rather rare. Lately two bZIP (basic leucine zipper)

transcription factors have been discovered as being involved in the light regulation

of N metabolism (Jonassen et al. 2008): HY5 and its homolog HYH are essential for

phytochrome dependent light-activated expression of NR. ChIPchip analyses

showed a binding site for HY5 in the NIA2 promoter (Lee et al. 2007a). Interest-

ingly also the NRT1.1 promoter has three binding sites for HY5, but HY5 has a

negative effect on transcription in this case (Lillo 2009). However, not all light

regulation of N metabolism is governed by the HY5/HYH system (Lillo 2009).
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Camargo et al. (2007) identified CrNIT2 as a main regulator of NIA expression

in Chlamydomonas, and Castaings et al. (2009) showed that Arabidopsismutants in

a homologous gene (NLP7) are defective in the nitrate induction of NIA genes,

NRT2.1 and NRT2.2. Both proteins belong to a class of putative transcription factors
homologous to a protein first identified in Medicago and essential for nodulation

(NIN ¼ nodulation inception). The CrNIT2 protein has been shown to bind to

multiple sites of the NIA promoter, but no target genes are yet known for the

AtNLP7 protein. Interestingly, mutants in the CIPK8 gene which encode a protein

kinase (Hu et al. 2009), are also unable to fully induce expression of several genes

by nitrate, such as the NIA genes, NRT2.1, NRT1.1, and several others. It is tempting

to speculate that CIPK8 might be involved in the same regulation pathway than

NLP7. NLP7 belongs to a gene family with nine different members, but the

functions of the other NLP proteins are still unknown.

5.2 Regulation at the Protein Level

N metabolism has to respond fast to external stimuli. This can be achieved by rapid

post-translational protein modification.

The best studied case of post-translational regulation in N metabolism is the

regulation of higher plant NR. NR is inactivated via a two step process that involves

phosphorylation of ser543 in spinach and the subsequent magnesium-dependent

binding of an inhibitory 14-3-3 protein to NR (Bachmann et al. 1996; Moorhead

et al. 1996). This activation/inactivation process is linked to the production of C

assimilates that thus control NR activity (De Cires et al. 1993; Kaiser and Huber

2001). Both CDPK (calcium-dependent protein kinases) and AMPK/SNRK (SNF1-

related kinase)-related protein kinases are able to phosphorylate NR at least in vitro

(McMichael et al. 1995; Douglas et al. 1997; Sugden et al. 1999; Ikeda et al. 2000).

The inactive phosphorylated form is re-activated by dephosphorylation probably by

PP2A (MacKintosh 1992).

Protein phosphorylation may act as a trigger for protein degradation, as well as

for binding of the inhibitory 14-3-3 proteins. When a modified form of NR with a

truncated N-terminus that was not susceptible to post-translational dark inactivation

was overexpressed, the resulting protein did not decline in the second part of the

photoperiod (Nussaume et al. 1995). There is also a correlation between the

phosphorylation state or the activation state of NR and the rate at which NR protein

decreases (Geiger et al. 1998; Kaiser and Huber 1997; Scheible et al. 1997; Weiner

and Kaiser 1999).

Post-translational regulation of nitrate transporters has recently been described.

The nitrate transporter NRT1.1 is regulated by phosphorylation. When phosphory-

lated, AtNRT1.1 functions as a high affinity transporter, whereas it is active in the

low affinity range when dephosphorylated (Liu and Tsay 2003). Recent data show

that NRT1.1 acts not only as a transporter, but is also involved in N signaling

(Remans et al. 2006; Walch-Liu and Forde 2008). Interestingly in one case, only

the phosphorylated form is an active signaling component (Walch-Liu and Forde
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2008). Nitrate transporters from the NRT2 family are also subjected to post-

transcriptional regulation. First indications of putative phosphorylation of

NRT2 proteins came from their amino acid sequences (Forde 2000). In addition,

several of the NRT2 proteins have been identified in global phosphoprotein

studies (Benschop et al. 2007). Such a post-transcriptional regulation may explain

why high affinity NO3
� influx is down-regulated by NH4

+ in transgenic plants

expressing NpNRT2.1 cDNA under the control of a constitutive, root specific

promoter (Fraisier et al. 2000). Recently, Wirth et al (2007) showed that despite

strict transcriptional regulation of AtNRT2.1 , NRT2.1 protein levels are rather

constant in response to light, sucrose, or nitrogen treatments that strongly affect

both NRT2.1 mRNA level and HATS activity. Again post-translational regulation

processes are required to explain these observations. One such mechanism could

correspond to the cleavage of NRT2.1 C terminus, which results in the presence of

both intact and truncated proteins in the plasma membrane (Wirth et al. 2007).

Several forms of the protein seem to co-exist in cell membranes (the monomer

and at least one higher molecular weight complex). However, the monomer is the

most abundant form of NRT2.1, and seems to be the one involved in NO3�

transport (Wirth et al. 2007). Interestingly, AtNRT2.1 is only present and active

at the plasma membrane in the presence of AtNAR2.1 (Orsel et al. 2006; Wirth

et al. 2007). The mechanism by which NAR2.1 affects NRT2.1 is so far unknown,

but might open a new level of regulation by protein stability or protein transport.

A different form of post-translational regulation has been revealed for ammo-

nium transporters allowing rapid shut-off in order to avoid toxic accumulation

of ammonium. Loqué et al (2007) showed that the soluble carboxy terminus

of the oligomeric AtAMT1 serves as an allosteric regulator essential for function.

It is suggested that this C terminus interacts physically with cytosolic loops in the

neighboring subunit with phosphorylation as a regulating mechanism.

Less is known about nitrite transport and its regulation. In E. coli, the PII protein
regulates nitrite transport. This regulation seems to be conserved in plants. The

chloroplastic PII protein might be involved in the regulation of nitrite uptake by

chloroplast as mutants affected in the gene exhibit a nitrite sensitive phenotype

(Ferrario-Méry et al. 2005). This hypothesis was re-enforced by the increased nitrite

uptake by chloroplasts isolated from PII mutants (Ferrario-Méry et al. 2008).

Several chloroplastic enzymes of nitrogen assimilation such as NIR, GS2, and

Fd-GOGAT are redox regulated through the thioredoxin system (Lemaire et al.

2007; Lichter and Häberlein 1998). In addition NR is also regulated by NO, a

by-product of its own activity. NO production and the broad mode of action are

described in the following paragraph.

6 N- Signaling: Nitric Oxide – A Special Case

Nitrate and other low molecular weight intermediates of nitrogen metabolism are

not only substrates, but also act as signals regulating the interaction between

metabolic pathways of growth and differentiation, or plant interactions with the
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environment. Among these nitrogen signals, nitric oxide has gained specific atten-

tion during the last decade. Therefore, the role of this N-compound will be

considered in more detail in context with N-metabolism.

6.1 Sources for NO in Plants

NO (+2) may be formed either by reduction of higher N-oxidation states, preferen-

tially nitrite, or by oxidation of more reduced N-forms (for review see del Rio et al.

2004). Figure 5 summarizes pathways for NO production.

Reductive NO formation: Nitrate reduction appears always linked to the produc-
tion of trace amounts of NO, originating from a one-electron reduction of nitrite.

The reduction can be mediated by NR, or, at least in non-green plant tissues, by

mitochondrial electron transport (Planchet et al. 2005; Gupta et al. 2005). In both

cases, nitrite competes with the “normal” substrates (e.g. nitrate in the case of NR or

oxygen in the case of mitochondrial ET), and therefore rather high nitrite concen-

trations are required for appreciable rates of NO production. Cytosolic nitrite

concentrations are usually low (10–20 mM). Nevertheless, nitrate-fertilized plants

emit NO into NO- free air at rates that can be detected and quantified by sensitive

analytical methods such as gas-phase chemiluminescence. For example, with

illuminated tobacco leaves, NO emission was 0.3 nmoles/g FW h (Rockel et al.

2002). Rates were lower in the dark, because NR activity is down regulated. As NO

is rather reactive, real NO production rates inside leaf cells could be much higher,

but this is not known with certainty. NR is activated by light or by anoxia in the

dark, whereas nitrite reduction becomes very low under anoxia in the dark, pre-

sumably because NADPH production via oxidative pentose phosphate cycle ceases.

In consequence, nitrite accumulates in anoxic cells and tissues to millimolar con-

centrations, and therefore anoxic NO emission can become 1,000-fold higher than

in air (Rockel et al. 2002; Planchet et al. 2005). In NiR-deficient tobacco mutant

leaves, which always accumulate nitrite even in air (light), NO emission was as

high in air (light) as in nitrogen (dark). In NR-free nia1nia2 double mutants, NO

emission in air and in nitrogen was absent (Planchet et al. 2005). The oxygen-

dependent NOS reaction appeared not to contribute to this normal “bulk”-NO

emission from leaves.

Plants possess yet another PM-bound NR plus a nitrite::NO reductase, which

together can also produce NO (Stöhr and Stremlau 2006). No genes for these two

enzymes have been identified so far, and their physiological role is still under

investigation.

NO generation from nitrite may also occur non-enzymatically in acidic com-

partments at pH-values below 5. Such compartments might be either the meso-

phyll apoplast or vacuoles. While apoplastic NO formation has been localized by

DAF-2 fluorescence (Bethke et al. 2004), no vacuolar NO production has been

reported so far, which is actually astonishing.
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Oxidative NO formation: In animals the major NO source is L-arginine, which

is oxidized to NO and L-citrulline in a complex process catalyzed by the family of

NOS-enzymes (nitric oxide synthases), using NADPH and O2 as further sub-

strates. No gene homolog to the animal NOS family has been detected so far in

Arabidopsis. Nevertheless, there are numerous indirect hints on NOS-like activ-

ities in plants, on the basis of effects of NOS-inhibitors, and also of enzyme

activity measurements using NO measurement by EPR, of nitrite þ nitrate
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ROS
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+NADPH
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Fig. 5 Pathways of nitric oxide (NO) synthesis, and basic reactions of NO with different targets.
NO can be synthesized by nitrite reduction, mediated either by NR itself of by mitochondrial

electron transport (the latter only in roots). Nitrite to NO reduction requires high nitrite concentra-

tions, which can become especially high under anoxia, when NR is highly active (dephosphory-

lated), and nitrite reduction is impaired. Also shown are the two oxidative pathways for NO

synthesis; one is the (probably non-enzymatic) oxidation of hydroxylamines by reactive oxygen,

the other one is the oxidation of L-arginine by a NOS-like activity. NO may either react directly

with heme groups of enzymes forming Fe:NO adducts, or it may react with thiol groups to form

nitrosothiols. At least in theory, NO may also react with superoxide radicals to form the highly

reactive peroxynitrite, which may nitrosate aromatic amino acids
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production, or of conversion of labeled L-arginine into L-citrulline (for review see

del Rio et al. 2004). Recently, an enzyme converting L-arginine to citrulline and

NO has been purified from Arabidopsis shoots. The activity depends on the

typical NOS-cofactors BH4 and Calmodulin (R. Tischner, pers. communication).

Sequence information on that preparation may give a first insight into the nature

of plant NOS.

Another substrate for oxidative NO formation are hydroxylamines, which can be

oxidized by plant cells to NO, probably using superoxide and/or H2O2 as oxidants

(Rümer et al. 2009). Although it is not yet clear whether the reaction is physiologi-

cally relevant, there is little doubt that plants are able to produce NO not only via

nitrite reduction, but also via oxidation of amine-N.

Concentrations of NO and its “bioavailability” in cells will also depend on NO

consumption (Vanin et al. 2004). NO oxidation involving reactive oxygen species

(ROS), or O2-dependent oxidation catalyzed by hemoglobins (Dordas et al. 2003)

should be among the most important reactions consuming NO. In addition, revers-

ible binding of NO to thiols may be an important aspect regulating cellular NO

levels (see below).

6.2 Mechanisms Through Which NO Affects Targets

In the complex cellular environment, NO may undergo various oxidation and/or

dismutation reactions, yielding compounds like NO2, N2O3, the nitrosonium cation

(NO+), or the nitroxyl anion (NO�). Some of these products may rapidly and

reversibly nitrosylate protein- or non-protein thiols, or form nitrosyl-iron com-

plexes with metal ions, e.g. in heme-proteins. Peroxynitrite (ONOO�) may be

formed from the reaction of NO with superoxide anions. However, it is not clear

to what extend the reaction occurs under natural conditions in vivo. Peroxynitrite

may serve as a substrate for oxidation or nitration of aromatic amino acids.

Nitration appears less easily reversible than nitrosylation. Because 3-tyrosine

nitration occurs on the same position (3) that is also the site for phosphorylation,

it can be assumed that tyrosine nitration has important consequence for regulation

mediated via tyrosine protein kinases/phosphatases.

Cysteine-S-nitrosylation (also called nitrosation) appears as the most wide-

spread way in which proteins are post-translationally modulated by NO (Fig. 5).

More than 100 redox-sensitive proteins were identified in Arabidopsis as puta-

tive candidates for cysteine S-nitrosylation (Lindermayr et al. 2005). In animals,

NO was shown to regulate by S-nitrosylation signaling-related proteins includ-

ing soluble guanylate cyclase, the GTP-binding protein p21ras, Ca2+ permeable

channels, and protein kinases (for review see Courtois et al. 2008, and literature

cited). Already a decade before, Stamler et al. (1997) had suggested a general

“nitrosylation motiv” consisting of three or four basic or acidic amino

acids surrounding the regulatory cysteine, which would permit an acid-base-

autocatalyzed S-nitrosylation and denitrosylation. In general, the actual
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nitrosylating agent appears to be the nitrosonium cation NO+, and hence S-nitro-
sylation would require an electron acceptor.

Glutathion in its reduced form is major cellular antioxidant. It reacts readily with

NO to form the acid-stable S-nitrosoglutathione (GSNO), which may act as a NO

donor to other cellular thiols. Such transnitrosation would include transfer of NO+

to another reduced thiol (Dutton et al. 2005), or RSNO may be homolytically

cleaved to release free NO and disulfide (Singh et al. 1996). GSNO can be

metabolized by S-nitrosoglutathione reductase (GSNOR), yielding, e.g. GSSG,

hydroxylamine, and NH3 (Jensen et al. 1998). Hydroxylamine can be oxidized

back to NO, probably involving ROS (Rümer et al. 2009). The relevance of

GSNOR and GSNO levels for stress tolerance was recently demonstrated. Trans-

genic plants Arabidopsis with decreased GSNOR levels showed enhanced resis-

tance against Peronospora parasitica correlated with higher intracellular GSNO

levels (Rustérucci et al. 2007). The ArabidopsisHOT5 encoding a mutated GSNOR

was unable to acquire thermotolerance and also had other important developmental

defects (Lee et al. 2008).

NO also induces complex changes in the expression of many genes involved, e.g.

in defense and cell death, transport, basic metabolism, and ROS production or

degradation. Here again, S-nitrosylation of proteins acting as transcription factors

might be the way for transcriptional control by NO. Seven families of transcription

factor binding sites, among themWRKY-, GBOX-, and OCSE-elements, have been

identified, which are preferentially located in the promoter regions of NO regulated

genes, and co-expression of many genes can be explained by the cooperation of a set

of such transcription factors (Palmieri et al. 2008).

As NO may be too short lived to diffuse via longer distances within tissues or

even within single cells, it has been suggested that NO production (preferentially by

NOS) and NO reception may be organized within supra molecular structures in

which NO signaling occurs within highly localized environments and with minimal

diffusion of free NO (Kone et al. 2003). Although this is an attractive idea, today

there is no experimental evidence in context with NO that such supra molecular

structures would exist and function in plants.

NO-regulated reactions in plants. The list of physiological processes in plants

that are (probably) regulated by NO includes the induction of the hypersensitive

response in resistance to incompatible pathogens, ABA-induced stomatal closure,

seed germination and breakage of seed dormancy, iron homeostasis, flowering

induction, and response to abiotic stresses such as drought, UV-B, salinity, chilling,

or high temperatures (for recent reviews see Hong et al. 2008; Courtois et al. 2008;

Neill et al. 2008). In spite of these many putative NO-regulated processes, today

only few plant enzymes have been proven experimentally to be regulated by

S-nitrosylation, hemoglobin 1, GAP-dehydrogenase, S-adenosyl synthethase, meta-

caspase, and potassium channels in guard cells being among them (summarized by

Palmieri et al. 2008).

As mentioned, “regulatory” NO is either stemming from a NOS-like reaction or

from nitrite to NO reduction. Involvement of nitrate metabolism in production of

regulatory NO has been evidenced in a few cases only. For example, ABA-induced
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stomatal closure in Arabidopsis is impaired in the nia double mutant. Tungstate,

which prevents synthesis of functional NR, also inhibited stomatal closure, whereas

nitrite addition induced stomatal closure (Bright et al. 2006; Neill et al. 2008, and

literature cited). Similarily, Chitosan-induced stomatal closure in Pisum sativum,
which may prohibit easy entry of pathogens into the leaf, was impaired by tungstate

treatment, which would again suggest some role for nitrite-dependent NO (together

with NOS-derived NO) (Srivastava et al. 2009). ABA-induced stomatal closure was

also reduced in a nia1::DS deletion mutant, indicating that only NIA1, but not NIA2
was required for effective ABA signal transduction (Bright et al. 2006). This is

surprising, as NIA1 is thought to contribute only about 10% to total nitrite produc-

tion (Wilkinson and Crawford 1991), and because a specific response to NIA1
would require a mechanism by which cells can distinguish between nitrite and

NO derived from one or the other protein.

Another connection between nitrate reduction, NO production, and a physiolog-

ical response seems to exist for the induction of the HR in Arabidopsis by incom-

patible strains of Pseudomonas syringae. Here, the HR was impaired in the

nia1nia2 mutant compared to WT, and was restored by addition of nitrite (Modolo

et al. 2006). However, the nia mutants had significantly lower arginine contents

compared to WT, which might limit their NOS activity. Thus, it appeared possible

that this was an indirect response to the low arginine and not directly related to the

lack of nitrite.

Recently it was suggested that NO produced from nitrite would enhance NR

activity in roots of Brassica chinensis L, thereby forming a positive feedback loop.

The conclusion was based on the observation that treatment of roots with NO gas,

NO donors, or NO scavengers modified extractable NR activity in the roots. In

addition, treatment of purified NR or of NR in root extracts of tomato with NO

in vitro also increased NR activity (Du et al. 2008; Jin et al. 2009), suggesting a

direct interaction of NO with NR. It is not known yet in detail how NO modifies

NR, i.e. whether NO interacts with heme-iron of the cytochrome domain or whether

it forms a nitrosothiol. One consequence appears to be an increase in Vmax, of all

partial reactions of NR.

7 Conclusion

Plants use a multitude of N forms, and their uptake, transport in the plant, and

assimilation are taken care of by numerous transporters and enzymes. Their quan-

tity, localization, and the regulation of their activity enable plants to adapt quickly

and finely their N acquisition and utilization strategies to developmental and

environmental changes. The availability of full genome sequences, in addition to

new tools and resources for functional genomics, allows the use of systems biology

in the last decade to give an entire view of this important metabolic pathway in

plants. Still some effort is needed to reach a virtual plant. The in planta function of
many of the proteins is still to discover and the actors implicated in the regulation
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on mRNA and protein levels are just about to emerge. The N metabolite NO is

implicated in many regulatory processes, but its synthesis pathways and their

control, as well as the exact mode of interaction of NO with multiple targets, still

need to be elucidated.
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Meyer C, Stöhr C (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and

nitrite metabolism. In: Foyer C, Noctor G (eds) Photosynthetic nitrogen assimilation and

associated carbon and respiratory metabolism. Kluwer Academic, Dordrecht, pp 49–62

Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate

compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot

52:541–549

Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis: could it have a role in sensing

nitrogen status? Annals Bot 101:485–489

Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado I

(2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana
plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae.
Plant Sci 171:34–40

Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikine G

(2009) The txo anions transporters AtCLCa and AtCLCe fulfil interconnecting but not redun-

dant roles in nitrate assimilation pathways. New Phytol, in press

Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C (1996) Phosphorylated

nitrate reductase from spinach leaves is inhibited by 14–3–3 proteins and activated by

fusicoccin. Curr Biol 6:1104–1113

Nazoa P, Videmar J, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Glass ADM, Touraine B

(2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses
to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703
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