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Abstract. We present a process algebra for DNA computing, discussing compi-
lation of other formal systems into the algebra, and compilation of the algebra 
into DNA structures. 

1   Introduction 

DNA technology is reaching the point where one can envision automatically compiling 
high-level formalisms to DNA computational structures [18]. Examples so far  
include the ‘manual compilation’ of automata and Boolean networks, where some im-
pressive demonstrations have been carried out [18],[15],[16]. Typically one considers 
sequential or functional computations, realized by massive numbers of molecules; we 
should strive, however, to take more direct advantage of massive concurrency at the 
molecular level. To that end it should be useful to consider concurrent high-level for-
malism, in addition to sequential ones. In this paper we describe three compilation 
processes for concurrent languages. First, we compile a low-level combinatorial alge-
bra to a certain class of composable DNA structures [17]: this is intended to be a direct 
(but not quite trivial) mapping, which provides an algebraic notation for writing con-
current molecular programs. Second, we compile a higher-level expression-based alge-
bra to the low-level combinatorial algebra, as a paradigm for compiling expressions of 
arbitrary complexity to ‘assembly language’ DNA combinators. 

Third is our original motivation: translating heterogeneous collections of interact-
ing automata [4] to molecular structures. How to do that was initially unclear, because 
one must choose some suitable ‘programmable matter’ (such as DNA) as a substrate, 
but must also come up with compositional protocols for interaction of the components 
that obey the high-level semantics of the language. We show a solution to this prob-
lem in Section 5, based on the combinatorial DNA algebra. The general issue there is 
how to realize the external choice primitive of interacting automata (also present in 
most process algebras and operating systems), for which there is currently no direct 
DNA implementation. In DNA we can instead implement a join primitive, based on 
[17]: this is a powerful operator, widely studied in concurrency theory [7],[13], which 
can indirectly provide an implementation of external choice. The DNA algebra sup-
porting the translation is built around the join operator.  

2   Strand Algebras 

By a strand algebra we mean a process algebra [11] where the main components repre-
sent DNA strands, DNA gates, and their interactions. We begin with a nondeterministic 
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algebra, and we discuss a stochastic variant in Section 4. Our strand algebras may 
look very similar to either chemical reactions, or Petri nets, or multiset-rewriting 
systems. The difference is that the equivalent of, respectively, reactions, transitions, 
and rewrites, do not live outside the system, but rather are part of the system itself 
and are consumed by their own activity, reflecting their DNA implementation. A 
process algebra formulation is particularly appropriate for such an internal represen-
tation of active elements. 

2.1   The Combinatorial Strand Algebra, 

Our basic strand algebra has some atomic elements (signals and gates), and only 
two combinators: parallel (concurrent) composition P | Q, and populations P*. An 
inexhaustible population P* has the property that P* = P | P*; that is, there is always 
one more P that can be taken from the population. The set  is formally the set of 
finite trees P generated by the syntax below; we freely use parentheses when  
representing these trees linearly as strings. Up to the algebraic equations described 
below, each P is a multiset, i.e., a solution. The signals x are taken from a countable 
set.  

2.1.1   Syntax 
 

 

 P   ::=   x  ⋮  [x1,..,xn].[x’1,..,x’m]  ⋮  0  ⋮  P1 | P2  ⋮  P*                        n≥1, m≥0  
 

 

 

A gate is an operator from signals to signals: [x1,..,xn].[x’1,..,x’m] is a gate that 
binds signals x1..xn, produces signals x’1,..,x’m, and is consumed in the process. We 
say that this gate joins n signals and then forks m signals; see some special cases 
below. An inert component is indicated by 0. Signals and gates can be combined 
into a ‘soup’ by parallel composition P1 | P2 (a commutative and associative opera-
tor, similar to chemical ‘+’), and can also be assembled into inexhaustible  
populations, P*. 

2.1.2   Explanation of the Syntax and Abbreviations 
 

 

 x         is a signal    0 is inert  
 x1.x2   ≝ [x1].[x2]   is a transducer gate P1 | P2 is parallel composition 

 x.[x1,..,xm] ≝ [x].[x1,..,xm] is a fork gate   P* is unbounded population  

 [x1,..,xn].x  ≝ [x1,..,xn].[x]  is a join gate  
 

 

 

The relation ≡ ⊆ x , called mixing, is the smallest relation satisfying the follow-
ing properties; it is a substitutive equivalence relation axiomatizing a well-mixed 
solution [2]: 
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2.1.3   Mixing 
 

 

 P ≡ P       equivalence  P ≡ Q  ⇒  P | R ≡ Q | R        in context 
 P ≡ Q  ⇒  Q ≡ P         P ≡ Q  ⇒  P* ≡ Q* 
 P ≡ Q, Q ≡ R  ⇒  P ≡ R 
              P*  ≡  P* | P                          population 
 P | 0  ≡  P      diffusion   0*  ≡  0 
 P | Q  ≡  Q | P                   (P | Q)*  ≡  P* | Q* 
 P | (Q | R)  ≡  (P | Q) | R       P**  ≡  P* 

 

 

 

The relation → ⊆ x , called reaction, is the smallest relations satisfying the follow-
ing properties. In addition, →*, reaction sequence, is the symmetric and transitive 
closure of →. 

2.1.4   Reaction 
 

 

 x1 | .. | xn | [x1,..,xn].[x’1,..,x’m]   →   x’1 | .. | x’m    gate     (n≥1, m≥0) 
 P  →  Q    ⇒    P | R  →  Q | R        dilution 
 P ≡ P’,  P’ → Q’,  Q’ ≡ Q    ⇒     P → Q     well mixing 

 

 

 

The first reaction (gate) forms the core of the semantics: the other rules allow reac-
tions to happen in context. Note that the special case of the gate rule for m=0 is  x1 | .. 
| xn | [x1,..,xn].[]  →  0. And, in particular, x.[] annihilates an x signal. We can choose 
any association of operators in the formal gate rule: because of the associativity of 
parallel composition under ≡ the exact choice is not important. Since → is a relation, 
reactions are in general nondeterministic. Some examples are: 

 

x1 | x1.x2   →   x2 
x1 | x1.x2 | x2.x3   →*   x3 
x1 | x2 | [x1,x2].x3   →   x3 
x1 | x1.x2 | x1.x3   →   x2 | x1.x3     and     →   x3 | x1.x2 
X | ([X,x1].[x2,X])*   a catalytic system ready to transform  
            multiple x1 to x2, with catalyst X 

 

There is a duality between signals and gates: signals can 
interact with gates but signals cannot interact with signals, 
nor gates with gates. As we shall see, in the DNA implemen-
tation the input part of a gate is the Watson-Crick dual of the 
corresponding signal strand. This duality need not be ex-
posed in the syntax: it is implicit in the 
separation between signals and gates, so 
we use the same x1 both for the ‘positive’ 
signal strand and for the complementary 
‘negative’ gate input in a reaction like x1 | 
x1.x2 → x2. 

 

Fig. 3. Strand Displacement 

 

Fig. 1. Signal Strand 

 

Fig. 2. Hybridization 
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3   DNA Semantics 

In this section we provide a DNA implementation of the com-
binatorial strand algebra. Given a representation of signals and 
gates, it is then a simple matter to represent any strand algebra 
expression as a DNA system, since 0, P1 | P2, and P* are as-
semblies of signals and gates. 

There are many possible ways of representing signals and 
gates as DNA structures. First one must choose an overall ar-
chitecture, which is largely  
dictated by a representation of 
signals, and then one must im-
plement the gates, which can take 
many forms with various quali-
tative and quantitative trade-offs. 
We follow the general principles 
of [17], where DNA computa-
tion is based on strand displace-
ment on loop-free structures. Other architectures are possible, like computation with 
hairpins [18], but have not been fully worked out. The four-segment signal structure 
in [17] yields a full implementation of the combinatorial strand algebra (not shown, 
but largely implied by that paper). Here we use a novel, simpler, signal structure.  

We represent a signal x as a DNA signal strand with three segments xh,xt,xb  
(Figure 1): xh = history, xt = toehold, xb = binding. A toehold is a segment that can 
reversibly interact with a gate: the interaction can then propagate to the adjacent bind-
ing segment. The history is accumulated during previous interactions (it might even 
be hybridized) and is not part of signal identity. That is, x denotes the equivalence 
class of signal strands with any history, and a gate is a structure that operates uni-
formly on such equivalence classes. We generally use arbitrary letters to indicate 
DNA segments (which are single-stranded sequences of bases).  

A strand like b,c,d has a Watson-Crick complement (b,c,d)⊥ = d⊥,c⊥,b⊥ that, as in 
Figure 2, can partially hybridize with a,b,c along the complementary segments. For 
two signals x,y, if x≠y then neither x and y nor x and y⊥ are supposed to hybridize, 
and this is ensured by appropriate DNA coding of the segments [9],[10]. We assume 
that all signals are made of ‘positive’ strands, with ‘negative’ strands occurring only 
in gates, and in particular in their input segments; this separation enables the use of  
3-letter codes, that helps design independent sequences [10],[20].  

The basic computa-
tional step of strand dis-
placement [17] is shown 
in Figure 3 for matching 
single and double strands. 
This reaction starts with 
the reversible hybridiza-
tion of the toehold t with 
the complementary t⊥ of a 

 

Fig. 5. Transducer 

 

Fig. 4. Annihilator 

 

Fig. 6. 2-way Fork 



16 L. Cardelli 

 
Fig. 7A. 2-way Join - core function 

structure that is otherwise dou-
ble-stranded. The hybridization 
can then extend to the binding 
segment b by a neutral series 
of reactions between base pairs 
(branch migration [19]) each 
going randomly left or right 
through small exergy hills, and 
eventually ejecting the b strand 
when the branch migration 
randomly reaches the right 
end. The free b strand can in 
principle reattach to the dou-
ble-stranded structure, but it has no toehold to do so easily, so the last step is consid-
ered irreversible. The simple-minded interpretation of strand displacement is then that 
the strand a,b is removed, and the strand b is released irreversibly. The double-
stranded structure is consumed during this process, leaving an inert residual (defined 
as one containing no single-stranded toeholds). 

 

 
Figure 4 shows 

the same structure, 
but seen as a gate G 
absorbing a signal x 
and producing noth-
ing (0). The annota-
tion ‘xh generic’ 
means that the gate 
works for all input 
histories xh, as it should. In Figure 5 we implement a gate x.y that transduces a signal x 
into a signal y. The gate is made of two separate structures Gb (gate backbone) and Gt 
(gate trigger). The forward Gb reaction can cause y to detach because the binding of a 
toehold (yt) is reversible. That whole Gb reaction is reversible via strand displacement 
from right to left, but the Gt reaction eventually ‘locks’ the gate in the state where x is 
consumed and y is produced. The annotation ‘a fresh’ means that the segment ‘a’ is not 
shared by any other gate in the system to prevent interference (while of course the gate 
is implemented as a population of identical copies that share that segment). In general, 

 

Fig. 8. Curried Gates 

 

Fig. 7B. 2-way Join - cleanup 
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we take all gate segments to be fresh unless they are non-history segments of input or 
output signals. Abstractly, an x to y transduction is seen as a single step but the imple-
mentation of x.y takes at least two steps, and hence has a different kinetics. This is a 
common issue in DNA encodings, but its impact can be minimized [17], e.g. in this 
case by using a large Gt population. In Figure 6 (cf. Figure 2 in [17]), we generalize the 
transducer to a 2-way fork gate, x.[y,z], producing two output signals; this can be ex-
tended to n-way fork, via longer trigger strands.  

Many designs have been investigated for join gates [5]. The solution shown in  
Figure 7 admits the coexistence of joins with the same inputs, [x,y].z | [x,y].z’, without 
disruptive crosstalk or preprocessing of the system (not all join gates have this prop-
erty). It is crucial for join to fire when both its inputs are available, but not to absorb a 
first input while waiting for the second input, because the second input may never come, 
and the first input may be needed by another gate (e.g., another join with a third input). 
The solution is to reversibly bind the first input, taking advantage of chemical reversibil-
ity. Given two inputs x,y, a ‘reversible-AND’ Gb backbone releases two strands r1,r2, 
with r1 providing reversibility while waiting for y (cf. Figure 3 in [17]); the trigger Gt 
finally irreversibly releases the output z (or outputs). In a cleanup phase (Figure 7B), off 
the critical path, we use a similar reversible-AND C1 structure (working from right to 
left) to remove r1 and r2 from the system, so that they do not accumulate to slow down 
further join operations. This phase is initiated by the release of r2, so we know by con-
struction that both r1 and r2 are available. Therefore, the r3 and r4 reversibility strands 
released by C1 can be cleaned up immediately by C3,C4, ending a possible infinite re-
gression of reversible-ANDs. (Note that without the extra c,d segments, a strand yt,yb = 
y would be released.) This gate structure can be easily generalized to n-way join gates 
by cascading more inputs on the Gb backbone. Alternatively, we can implement a 3-way 
join from 2-way joins and an extra signal x0, but this encoding ‘costs’ a population: 
[x1,x2,x3].x4

 ≝ 
([x1,x2].x0 | x0.[x1,x2])* | [x0,x3].x4. 

This completes the implementation of strand algebra in DNA. For the purposes of 
the next section, however, it is useful to consider also curried gates (gates that pro-
duce gates). Figure 8 shows a gate x.H(y) that accepts a signal x and activates the 
backbone Hb of a gate H(y), where H(y) can be any gate with initial toehold yt

⊥, in-
cluding another curried gate. For example, if H(y) is a transducer y.z as in Figure 5, 
we obtain a curried gate x.y.z such that x | x.y.z → y.z. (The extra a,b segments pre-
vent the release of a strand xb,yt that would interfere with r1 of [x,y].z; see Figure 7A.) 
This implies that there is an extension of strand algebra with gates of the form G ::= 
[x1,..,xn].[x’1,..,x’m] ⋮ [x1,..,xn].G; this extension can be translated back to the basic 
strand algebra, e.g. by setting x.y.z = x.w | [w,y].z for a fresh w, but a direct imple-
mentation of curried gates is also available. 

4   Stochastic Strand Algebra 

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by 
dropping the unbounded populations, P*. Since the binding strengths of toeholds of the 
same length are comparable [18], we assume that all gates with the same number n of 
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inputs have the same stochastic rate gn, collapsing all the gate parameters into a single 
effective parameter. Although gate rates are fixed, we can vary population sizes in or-
der to achieve desired macroscopic rates. Moreover, as we describe below, it is possi-
ble to maintain stable population sizes, and hence to achieve desired stable rate ratios. 

In this section [x1,..,xn].[y1,..,ym] is a stochastic gate of rate gn, and we write Pk 
for k parallel copies of P. In a global system state P, the propensity of a gate reac-
tion is (P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn; that is, the gate rate gn multi-
plied by the number of ways of choosing out of P a multiset consisting of a gate and 
its n inputs. For example, if P = xn | ym | ([x,y].z)p with x≠y, then the propensity of 
the first reaction in P is n×m×p×g2. A global transition from a global state P to a 
next global state, labeled with its propensity, has then the following form, where \ is 
multiset difference: 

P    →(P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn
    

P\(x1 | .. | xn |  [x1,..,xn].[y1,..,ym]) | y1 | ... | ym 

The collection of all global transitions from P and from its successive global states 
forms a labeled transition graph, from which one can extract the Continuous Time 
Markov Chain of the system [4]. We shall soon use also a curried gate of the form 
x.G, whose DNA structure is discussed in Section 3, and whose global transitions are: 

P    →(P choose (x | x.G))×g1    P\(x | x.G) | G 

In a stochastic system, an unbounded population like P* has little meaning because its 
rates are unbounded as well. In stochastic strand algebra we simply drop the P* con-
struct. In doing so, however, we eliminate the main mechanism for iteration and re-
cursion, and we need to find an alternative mechanism. Rather than P*, we should 
instead consider finite populations Pk exerting a stochastic pressure given by the size 
k. It is also interesting to consider finite populations that remain at constant size k: 
let’s indicate them by P=k. In particular, P=1 represents a single catalyst molecule. 

We now show that we can model populations of constant size k by using a bigger 
buffer population to keep a smaller population at a constant level. Take, e.g., P = 
[x,y].z, and define: 

P=k   ≝ ([x,y].[z,X])k | (X.[x,y].[z,X])f(k)       for a fresh (otherwise unused) signal X 

Here f(k) is the size of a large-enough buffer population. A global transition of P=k in 
context Q (with Q not containing other copies of those gates) is (Q | P=k) →((Q | P=k) 

choose (x|y|[x,y].[z,X]))×g2
 
(Q\(x | y) | ([x,y].[z,X])k-1 | z | X | (X.[x,y].[z,X])f(k)). For a large 

enough f(k), the propensity of a next reaction on gate X.[x,y].[z,X] can be made arbi-
trarily large, so that the two global transitions combined approximate (Q | P=k) →((Q | 

P=k) choose (x|y|[x,y].[z,X]))×g2
 
(Q\(x | y) | ([x,y].[z,X])k | z | (X.[x,y].[z,X])f(k)-1), where the 

gate population is restored at level k, and the buffer population decreases by 1. We 
have shown that the reaction propensity in (Q | P=k) can be made arbitrarily close to 
the reaction propensity in (Q | Pk), but with the gate population being restored to size 
k. Moreover, it is possible to periodically replenish the buffer by external intervention 
without disturbing the system (except for the arbitrarily fast reaction speed on X). 
This provides a practical way of implementing recursion and unbounded computation, 
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by ‘topping-up’ the buffer populations, without a notion of unbounded population. 
The construction of a stable population ([x,y].z)=k can be carried out also without cur-
ried gates, but it then requires balancing the rate of a ternary gate against the desired 
rate of a binary gate. 

We should note that the stochastic strand algebra is a convenient abstraction, but 
the correspondence with the DNA semantics of Section 3 is not direct. More pre-
cisely, it is possible to formulate a formal translation from the stochastic strand alge-
bra to a chemical algebra, by following the figures of Section 3 (considering strand 
displacement as a single reaction). Such a chemical semantics does not exactly match 
the global transition semantics given above, because for example a single reaction x | 
x.y → y is modeled by two chemical reactions. It is possible to define a chemical se-
mantics that approximates the global transition semantics, by using the techniques 
discussed in [17], but this topic requires more attention that we can provide here. 

5   Compiling to Strand Algebra 

We give examples of translating other formal languages to strand algebra, in particu-
lar translating interacting automata. The interesting point is that by these translations 
we can map all those formal languages to DNA, by the methods in Section 3. 

Finite Stochastic Reaction Networks 
We summarize the idea of [17], which shows how to encode with approximate dynam-
ics a stochastic chemical system as a set of DNA signals and gates. A unary reaction 
A→C1+..+Cn is represented as (A.[C1,..,Cn])*. A binary reaction A+B→C1+..+Cn is 
represented as ([A,B].[C1,..,Cn])*. The initial solution, e.g. A+A+B, is represented as A 
| A | B and composed with the populations representing the reactions. For stochastic 
chemistry, one must replace the unbounded populations with large but finite popula-
tions whose sizes and rates are calibrated to provide the desired chemical rates.  
Because of technical constraints on realizing the rates, one may have to preprocess the 
system of reactions [17].  

Petri Nets 
Consider a place-transition Petri Net [13] with places xi; then, a transition with incom-
ing arcs from places x1..xn and outgoing arcs to places x’1..x’m is represented as 
([x1,..,xn].[x’1..x’m])*. The initial marking {x1, .., xk} is represented as x1 | .. | xk. The 
idea is similar to the translation of chemical networks: those can be represented as 
(stochastic) Petri nets. Conversely (thanks to Cosimo Laneve for pointing this out), a 
signal can be represented as a marked place in a Petri net, and a gate 
[x1,..,xn].[x’1..x’m] as a transition with an additional marked ‘trigger’ place on the in-
put that makes it fire only once; then, P* can be represented by connecting the transi-
tions of P to refresh the trigger places. Therefore, strand algebra is equivalent to Petri 
nets. Still, the algebra provides a compositional language for describing such nets, 
where the gates/transitions are consumed resources. 



20 L. Cardelli 

Finite State Automata 
We assume a single copy of the FSA and of the input string. An FSA state is repre-
sented as a signal X. The transition matrix is represented as a set of terms 
([X,x].[X’,τ])* in parallel, where X is the current state, x is from the input alphabet, 
X’ is the next state, and τ is a signal used to synchronize with the input. For nonde-
terministic transitions there will be multiple occurrences of the same X and x. The 
initial state X0 | τ is placed in parallel with those terms. An input string x1,x2,x3... is 
encoded as τ.[x1,y1] | [y1,τ].[x2,y2] | [y2,τ].[x3,y3] | ... for fresh y1,y2,y3... . 

Interacting Automata 
Interacting automata [4] (a stochastic subset of CCS [11]) are finite state automata 
that interact with each other over synchronous stochastic channels. An interaction can 
happen when two automata choose the same channel cr, with rate r, one as input (?cr) 
and the other as output (!cr). Intuitively, these automata ‘collide’ pairwise on com-
plementary exposed surfaces (channels) and change states as a result of the collision. 
Figure 9 shows two such automata, where each diagram represents a population of 
identical automata interacting with each other and with other populations (see [3] for 
many examples). Interacting automata can be faithfully emulated in stochastic strand 
algebra by generating a binary join gate for each possible collision, and by choosing 
stable population sizes that produce the prescribed rates. The translation can cause an 
n2 expansion of the representation [4]. 

A system of interacting automata is given by a system E of equations of the form X 
= M, where X is a species (an automaton state) and M is a molecule of the form π1;P1 
⊕ … ⊕ πn;Pn, where ⊕ is stochastic choice among 
possible interactions, Pi are multisets of resulting spe-
cies, and πi are either delays τr, inputs ?cr, or outputs 
!cr on a channel c at rate r. For example, in an E1 
population, an automaton in state A1 can collide by !ar 
with an automaton in state B1 by ?ar, resulting in two 
automata in state A1: 

 

  E1: A1 = !ar.A1 ⊕ ?bs.B1   E2: A2 = !ar.A2 ⊕ ?ar.B2 

   B1 = !bs.B1 ⊕ ?ar.A1    B2 = !bs.B2 ⊕ ?bs.A2 

With initial conditions Ai
n | Bi

m (that is, n automata in state Ai and m in state Bi), the 
Continuous Time Markov Chain semantics of [4] prescribes the propensities of the in-
teractions. On channel ar, in E1 the propensity is n×m×r, while in E2, with two symmet-
ric ?/! ways for A2 to collide with A2, the propensity is 2×(n choose 2)×r = n×(n-1)×r: 

 

A1
n|B1

m: (ar) A1
n|B1

m →n×m×r A1
n+1|B1

m-1   A2
n|B2

m: (ar) A2
n|B2

m →n×(n-1)×r A2
n-1|B2

m+1 

           (bs) A1
n|B1

m →n×m×s A1
n-1|B1

m+1               (bs) A2
n|B2

m →m×(m-1)×s A2
n+1|B2

m-1  

 

Subsequent transitions are computed in the same way. One can also mix E1,E2  
populations.  

 

Fig. 9. Interacting Automata 
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The translation of interacting automata to strand algebra is as follows. E.X.i  
denotes the i-th summand of the molecule associated to X in E; �...�  and ∪ denote 

multisets and multiset union to correctly account for multiplicity of interactions; and 
Parallel(S) is the parallel composition of the elements of multiset S. Strand(E) is then 
the translation of a system of equations E, using the stable buffered populations P=k 
described in Section 4, where gi are the gate rates of i-ary gates (we assume for sim-
plicity that the round-off errors in r/gi are not significant and that r/gi≥1; otherwise 
one should appropriately scale the rates r of the original system): 

 

Strand(E) = Parallel(� (X.[P])=r/g1 s.t. ∃i. E.X.i = τr;P  ∪  
                     � ([X,Y].[P,Q])=r/g2  s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !cr;Q  ∪   
        � ([X,X].[P,Q])=2r/g2  s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !cr;Q   ) 
 

The E1,E2 examples above, in particular, translate as follows: 
 

P1 = Strand(E1) = ([B1,A1].[A1,A1])
=r/g2 |     P2 = Strand(E2) = ([A2,A2].[B2,A2])

=2r/g2 | 
                            ([A1,B1].[B1,B1])

=s/g2                               ([B2,B2].[A2,B2])
=2s/g2 

 

Initial automata states are translated identically into initial signals and placed in parallel. As 

described in Section 4, a strand algebra transition from global state An | Bm | ([A,B].[C,D])=p 

has propensity n×m×p×g2, and from An | ([A,A].[C,D])=p has propensity (n choose 

2)×p×g2. From the same initial conditions An | Bm as in the automata, we then obtain the 
global strand algebra transitions: 

 

A1
n|B1

m|P1 →n×m×r/g2×g2 A1
n+1|B1

m-1|P’1
  A2

n|B2
m|P2 →(n×(n-1))/2×2r/g2×g2 A2

n-1|B2
m+1|P’2

 

A1
n|B1

m|P1 →n×m×s/g2×g2 A1
n-1|B1

m+1|P”1
  A2

n|B2
m|P2 →(m×(m-1))/2×2s/g2×g2 A2

n+1|B2
m-1|P”2 

 

which have the same propensities as the interacting automata transitions. Here P’i,P”i 
are systems where a buffer has lost one element, but where the active gate populations 
that drive the transitions remain at the same level as in Pi. We have shown that the 
stochastic behavior of interacting automata is preserved by their translation to strand 
algebra, assuming that the buffers are not depleted. 

Figure 10 shows another example: a 3-state automaton and a Gillespie simulation 
of 1500 such automata with r=1.0. The 
equation system and its translation to 
strand algebra are (take, e.g., r=g2=1.0): 

 

A = !ar.A ⊕ ?br.B ([A,B].[B,B])=r/g2 | 
B = !br.B ⊕ ?cr.C ([B,C].[C,C])=r/g2 | 
C = !cr.C ⊕ ?ar.A ([C,A].[A,A])=r/g2 | 
A900 | B500 | C100 A900 | B500 | C100 
 

6   Nested Strand Algebra 

The purpose of this section is to allow nesting of join/fork operators in strand algebra, so 
that natural compound expressions can be written. We provide a uniform translation of 

 

Fig. 10. Oscillator 
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this extended language back to , as a paradigm for the compilation of high(er) level 
languages to DNA strands. Consider a simple cascade of operations, ?x1.!x2.?x3, with 
the meaning of first taking an input (‘?’) x1, then producing an output (‘!’) x2, and then 
taking an input x3. This can be encoded as follows: 

?x1.!x2.?x3
  
   ≝     x1.[x2,x0] | [x0,x3].[] 

where the right hand side is a set of combinators, and where x0 can be chosen fresh 
so that it does not interfere with other structures (although it will be used by all copies 
of ?x1.!x2.?x3). 

The nested algebra n  admits such nesting of operators in general. The main 
change from the combinatorial  algebra consists in allowing syntactic nesting after 
an input or output prefix. This has the consequence that populations can now be 
nested as well, as in ?x.(P*). The new syntax is:  

 

P   ::=   x  ⋮  ?[x1,..,xn].P  ⋮  ![x1,..,xn].P  ⋮  0  ⋮  P1 | P2  ⋮  P*     n≥1  
 

Here ![x1,..,xn].P spontaneously releases x1,..,xn into the solution and continues as P, 
while ?[x1,..,xn].P extracts x1,..,xn from the solution (if they are all available) and con-
tinues as P. The mixing relation is the same as in . The reaction relation is modified 
only in the gate rule: 

 
?[x1,..,xn].P | x1 | .. | xn   →   P    input gate  (e.g.:  ?x.0 | x  →  0) 
![x1,..,xn].P   →   x1 | .. | xn | P    output gate  (e.g.:  !x.0  →  x | 0) 
 

We now show how to compile n  to . Let � be an infinite lists of distinct signals, 

and  be the set of such ’s. Let i be the i-th signal in the list, ≥i 
be the list starting 

at the i-th position of , evn( ) be the even elements of , and odd( ) be the odd 
elements. Let P be the set of those ∈  that do not contain any signal that occurs in 
P. The unnest algorithm U(P) , for P∈n  and ∈ P, is shown in Table 6.1–5. The 
inner loop U(X,P)  uses X as the trigger for the translation of P. 

6.1.1  Unnest Algorithm 
 

 U(P)      ≝ �0 | U( 0,P)
≥1 

 U(X, x)     ≝  X.x 

 U(X, ?[x1,..,xn].P)   ≝  [X,x1,..,xn]. 0 | U( 0,P)
≥1

 

 U(X, ![x1,..,xn].P)  ≝  X.[x1,..,xn, 0] | U( 0,P)
≥1

 

 U(X, 0)      ≝  X.[] 

 U(X, P’ | P”)   ≝  X.[ 0, 1] | U( 0,P’)evn( ≥2) | U( 1,P”)odd( ≥2) 

 U(X, P*)    ≝  (X.[ 0,X] | U( 0,P)
≥1

)* 
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For example, the translations for ?x1.![x2,x3].?x4.0 and ?x1.(x2*) are: 
 
U(?x1.![x2,x3].?x4.0)  =   �0 | [ 0,x1]. 1 | 1.[x2,x3, 2] | [ 2,x4]. 3 | 3.[] 
U(?x1.(x2*))    =   0 | [ 0,x1]. 1 | ( 1.[ 2, 1] | 2.x2)* 
 

In ?x1.(x2*), activating x1 once causes a linear production of copies of x2. For an expo-
nential growth of the population one should change U(X,P*)  to produce 
(X.[ 0,X,X] | U( 0,P’)

≥1
)*. In the nested algebra we can also easily solve systems 

of recursive definitions; for example: ‘X = (?x1.X | !x2.Y) and Y = ?x3.(X | Y)’ can be 
written as: ‘(?X.(?x1.X | !x2.Y))* | (?Y.?x3.(X | Y))*’.  

As an example, consider a coffee vending machine controller, Vend, that accepts 
two coins for coffee. An ok is given after the first coin and then either a second coin 
(for coffee) or an abort (for refund) is accepted: 

 
Vend = ?coin. ![ok,mutex]. (Coffee | Refund) 
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend) 
Refund = ?[mutex,abort]. !refund. (Refund | Vend) 
 

Each Vend iteration spawns two branches, Coffee and Refund, waiting for either coin 
or abort. The branch not taken in the mutual exclusion is left behind; this could skew 
the system towards one population of branches. Therefore, when the Coffee branch is 
chosen and the system is reset to Vend, we also spawn another Coffee branch to dy-
namically balance the Refund branch that was not chosen; conversely for Refund. 

7   Contributions and Conclusions 

We have introduced strand algebra, a formal language based on a simple relational 
semantics that is equivalent to place-transition Petri nets (in the current formulation), 
but allows for compositional descriptions where each component maps directly to 
DNA structures. Strand algebra connects a simple but powerful class of DNA system 
to a rich set of techniques from process algebra for studying concurrent systems. 
Within this framework, it is easy to add operators for new DNA structures, or to map 
existing operators to alternative DNA implementations. We show how to use strand 
algebra as an intermediate compilation language, by giving a translation from a more 
convenient syntax. We also describe a stochastic variant, and a technique for main-
taining stable buffered populations to support indefinite and unperturbed computation.  

Using strand algebra as a stepping stone, we describe a DNA implementation of in-
teracting automata that preserves stochastic behavior. Interacting automata are one of 
the simplest process algebras in the literature. Hopefully, more advanced process al-
gebra operators will eventually be implemented as DNA structures, and conversely 
more complex DNA structures will be captured at the algebraic level, leading to more 
expressive concurrent languages for programming molecular systems.  

I would like to acknowledge the Molecular Programming groups at Caltech for  
invaluable discussions and corrections. In particular, join and curried gate designs 
were extensively discussed with Lulu Qian, David Soloveichik and Erik Winfree. 
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