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Abstract. The discovery of relevant software artifacts can increase software re-
use and reduce the cost of software development and maintenance. Furthermore, 
change requests, which are a leading cause of project failures, can be better classi-
fied and handled when all relevant artifacts are available to the decision makers. 
However, traditional full-text and similarity search techniques often fail to pro-
vide the full set of relevant documents because they do not take into considera-
tion existing relationships between software artifacts. We propose a metadata 
approach with semantic networks1 which convey such relationships. Our ap-
proach reveals additional relevant artifacts that the user might have not been 
aware of. We also apply contextual information to filter out results unrelated to 
the user contexts, thus, improving the precision of the search results. Experi-
mental results show that the combination of semantic networks and context sig-
nificantly improve the precision and recall of the search results.  
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1   Introduction 

In the domain of software engineering software changes are inevitable, for example, 
due to requirements change, but cause several well-known problems if not handled 
properly. They can lead to severe time pressure and project delays due to underesti-
mation of the scope of the change. Major studies of today's software intensive systems 
consistently find surprisingly large numbers of failed, late, or excessively expensive 
systems [36] and according to [29] requirement change is one of the most common 
causes of software project failure. 

Thus, searching for relevant software development artifacts (requirements docu-
ments, design documents, source code, etc.), has become increasingly important. For 
                                                           
1  Semantic networks are graphs which represent knowledge by interconnecting nodes through 

edges. They have been used to describe and classify concepts for many centuries. According 
to Sowa the earliest known semantic network was drawn in the third century AD by the 
Greek philosopher Porphyry (Porfyrios) to graphically illustrate the categories of Aristotle 
(Sowa 1992). For a detailed background on semantic networks see (Sowa). 
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example, software developers often need to find out whether there are some similar 
software components or software designs to better respond to a software change re-
quest. Finding such related information may greatly reduce the cost of software 
change or allow more accurate estimation of the cost of the change, which may lead 
to better decisions (e.g., whether to accept or reject the change request). One study 
found that the amount of necessary software changes was three times higher than 
originally predicted [45], indicating that a better search technology may be one possi-
ble solution to this problem. We also believe that our technique can also help in the 
development of new software. 

Importance of Capturing Ad hoc Relationships: There are several obstacles to finding 
relevant artifacts, especially in the domain of software engineering.  First, the relation-
ships between artifacts are often ignored by existing full-text or similarity search tech-
nologies [9, 24, 1], but are extremely important for finding relevant software artifacts. 
For example, many software projects have various versions (thus, these versions are 
related), a large number of requirements documents (related to the code that implements 
them), and often implement overlapped functionality (thus, different projects are related 
to each other). However, it is extremely difficult for someone to find relevant artifacts if 
that person is unfamiliar with the software project structure and its history including its 
relationships to other software products and their evolution.  

Motivating Example: The following example describes some of these difficulties 
focusing on the ones that arise during a search for relevant information that would be 
triggered for example, by a change request. Fig. 1 shows the relationships between 
two closely related software projects: The Tactical Separation Assisted Flight Envi-
ronment (TSAFE) and the Flight Management System (FMS). The arrows are direc-
tional and indicate that the source node is related to the target  node and the number 
identifies the degree of relevance between the two connected nodes.  Details of these 
two projects can be found in Section 5.  

Suppose a developer of FMS version 5 receives a change request to add the capabil-
ity to change geographical area in run time. The developer tries to find artifacts related 
to the keyword “FMS 5”. Certainly, an existing text search tool such as Google Desktop 
or a search tool that matches artifacts with similar attributes could be used. Unfortu-
nately, related artifacts such as TSAFE II Loss Of Separation (LOS) (which is function-
ally equivalent to FMS 5), TSAFE II (without the LOS option), TSAFE II Dynamic 
Map (which implements the sought functionality in a different project TSAFE), and the 
requirement document for Dynamic Map (which is the design document for the sought 
functionality) are unlikely to be retrieved. The reason is that these artifacts do not con-
tain the keyword FMS. In order to overcome this problem, one could make TSAFE a 
synonym of FMS or define a similarity score between these two terms. However, in this 
context, FMS has two meanings: Flight Management System and Finance Management 
System (an accounting system). Thus, a search for TSAFE would retrieve artifacts for 
both the Flight Management System and Finance Management System. In conclusion, 
the design information related to TSAFE II DM, which implements the sought function-
ality, cannot be retrieved without extensive searching due to its distant and indirect 
relationship to FMS 5 (see Fig. 1). 
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Our Approach and Contributions: We use two techniques to solve this problem: 

Semantic networks and context. Next, we give a brief description of these two tech-
niques. We use semantic networks to capture ad hoc relationships between artifacts. 
Fig. 1 shows a partial view of a semantic network in our example. The nodes repre-
sent artifacts and the links represent relationships between artifacts. The number on 
each edge quantifies the degree of relevance (i.e., the strength of the relationship) of 
two artifacts. We also infer indirect relevance scores between two indirectly linked 
artifacts. For example, the relevance score between FMS 5 and TSAFE II DM equals 
the product of relevance scores between FMS 5 and TSAFE II LOS, TSAFE II LOS 
and TSAFE II, and TSAFE II and TSAFE II DM.  

Now, given a search for information pertinent to FMS 5, we can use the semantic 
network to add relevant artifacts. A full-text search engine (or a similarity search 
engine) returns FMS 5 as result. We can then expand the results by adding any arti-
facts whose relevance score to FMS 5 exceeds a certain user defined threshold (let’s 
say 0.7).  This threshold identifies the degree of semantic closeness (relevance score) 
between related artifacts in the semantic network. For example, only artifacts which 
are relevant with a relevance score above threshold t are included in the semantic 
network recommendations. Thus the results will include FMS 5, TSAFE II LOS, 
TSAFE II, TSAFE II DM, and Requirement: Dynamic Map.  

Although semantic networks recommend semantically relevant answers, these an-
swers can fit the user’s query more precisely if additional information about the user, 
the project, the environment, etc. were to be provided. We use context, which con-
tains information relevant to the user (such as user’s roles and the current and/or  
previous projects) to enable the semantic network to target the user queries more 
accurately. For example, some users may be only interested in requirements or design 
documents (since they may not be programmers and can not read source code). In our 
approach, we store different types of context information and use it to filter the results 
generated by semantic network. In the above example, the context associated with 
that user, is that the answer must be requirement documents, thus only the require-
ment for Dynamic Map is returned, which is exactly what the user wants.  

Fig. 1. A (partial) semantic network for Air Traffic Control Software
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We consider each artifact to be a node associated with certain characterizing attrib-
utes. We begin by constructing a first mode semantic network, referred to as Similar-
ity based Network, which is a graph that identifies the similarity between the nodes in 
terms of the features associated with each node. We next utilize semantic rules to 
augment the first mode network and discover a second mode network, which we call 
Rule Enforced Network. Although both semantic networks and context have been 
used individually in search [26] and other applications, there are three important dif-
ferences in this paper.  

First, we use semantic networks to model the ad hoc relationships between artifacts 
while most existing work such as WordNet [26] and concept maps [74] model rela-
tionships between keywords. We find that in many domains such as software engi-
neering, the relationships between artifacts are often difficult to model at the keyword 
level. For example, it is very difficult to model the relationship between a software 
release and its subsequent releases at the keyword level. On the other hand, it is 
straightforward to add such links between artifacts: a simple rule can be created to 
add such links automatically. 

Second, this paper combines semantic network with context. Using a semantic 
network alone may improve the recall of search results because more artifacts are 
returned. However, it may not improve precision of the search results because not all 
these additional artifacts may be considered pertinent by the user. This paper uses 
context to filter out irrelevant artifacts based on existing contexts. We have conducted 
experiments which show that the combination of semantic network and context leads 
to better precision and recall.  

Third, there has been little work on searching for software engineering artifacts, 
which has become increasingly important for the software industry –  especially in 
regard to the increasing number of change requests and extended life cycles of today’s 
software products. To the best of our knowledge, we are not aware of any study that 
uses both semantic networks and context in the software engineering domain.  Spe-
cifically our contributions are as follows: 

1. We automatically construct a semantic network from artifacts and their associ-
ated characterizing attributes.  

2. We keep a provision for adding external semantic rules supplied by a domain 
expert, that when applied to the semantic network, they augment and enhance it.   

3. We automatically find, using our semantic network, not only the requested arti-
facts based on a user query, but additional relevant ones that the user might have 
not been aware of.  

4. We apply context on the result set of the user query to enhance the quality of 
search over artifacts and include only contextually related artifacts.  

5. We demonstrate through experiments, using software artifacts from a software 
test bed, that the combination of semantic networks and context significantly im-
prove both the precision and recall of search results. 

Although this paper focuses on the software engineering domain, we believe the pro-
posed approach is suitable to other domains too. The rest of the paper is organized as 
follows: Section 2 describes related work and Section 3 gives preliminaries on seman-
tic networks and context. In Section 4 we describe our approach, and in Section 5 we 
present and discuss validating experiments. Section 6 concludes the paper. 
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2   Related Work 

Related work on software change and reuse. The problem of determining software 
change impact has a long history. Haney’s early model for module connection analy-
sis predicts the propagation of change among modules of a system [33]. It assumes 
that a change in one module is likely to cause change in other modules. A probability 
connection matrix subjectively models the dependencies between modules. Our ap-
proach is different from Haney’s in that we do not only model dependencies between 
modules, but between all artifacts carrying design information as well as relationships 
between projects, and we use context. 

Many useful theoretical models for impact analysis and change-related processes 
are collected in the excellent overview by [11]. Different approaches to identify 
change are described; for instance, traceability analysis for change propagation be-
tween work-products, ripple-effect analysis for propagation within work-products, 
and change history analysis to understand relationships to previous changes. Many 
approaches address reuse of various artifacts [62, 57, 61]. These approaches make use 
of metadata (i.e., tags) to describe the artifacts, which are used to classify [57, 63] and 
retrieve them [56, 7]. 

Latent Semantic Indexing (LSI), an information retrieval technique, has been used 
to recover links between various artifacts [47, 50] that share a significant number of 
words (not necessary the words being searched). However, in the software engineer-
ing domain the usefulness of this approach is sometimes limited. As described in our 
Motivating Example, the critical keywords TSAFE and FMS do not appear in the 
same artifacts and the description of the change request uses different terminology. 
Furthermore, the similarities between two artifacts are symmetric in LSI, which is 
often not true in practice. For example, given a software release, the next and newer 
release is likely more interesting than the previous one. Since semantic networks do 
not require the existence of such shared keywords and they do not require that simi-
larities are symmetric, our approach does not have these limitations.  

Canfora et al. describe the state of the art of information retrieval and mention 
three areas in which information retrieval is applied to software maintenance prob-
lems: Classifying maintenance request (i.e., change request), finding an expert for a 
certain maintenance request, and identifying the source that will be impacted by a 
maintenance request [15]. For example, in [48] the authors use various technologies 
such as Bayesian classifiers to classify maintenance requests. In [5, 18] [54] the au-
thors determine who is the expert for a certain change request based on who resolved 
a similar change request in the past based on data from version control systems and 
try to identify similar change requests from the past. The main difference with our 
approach is that we model distant relationships connecting projects and artifacts that 
are similar, but would most likely never show up using similarity-based searchers. 
The impact on source code from a certain change request has been studied in [14] by 
correlating change request descriptions with information provided in version man-
agement systems such as Bugzilla. 
 

Related work on semantic networks. Semantic Networks have been used in phi-
losophy, psychology and more recently in information and computer science. Sowa 
gives a descriptive outline on the types and use of semantic networks in different 



 Using Semantic Networks and Context in Search 79 

 

disciplines in [70, 69]. Semantic networks have long been used to represent relation-
ships [51]. Pearl used probabilities in semantic networks and performed extensive 
work in applying statistics and probability in causal semantic networks [59, 58] to 
derive such networks from observed data. 

There has also been work on discovering semantic similarity in [22] based on gen-
eralization/specialization, and positive/negative association between classes;  the topic 
of discovering and ranking semantic relationships for the semantic web is also rele-
vant [3, 67]. Our work is also linked to the specification of relationships among data-
base objects stored in heterogeneous database systems [38, 28, 68, 65]. We have used 
semantic networks to enhance the results of a user query in different application do-
mains such as the environmental [17] and e-government of water quality management 
[16]. However these early approaches do not support automated creation of the se-
mantic network and do not incorporate context as part of the solution.  We are now 
applying our approach in the domain of software engineering: see [43] for an early 
and initial approach describing  a limited scope of this problem in software engineer-
ing.  Quite related is the work on ConceptNET a large scale concept base which cap-
tures common sense concepts [46].  

 

Related work on context. A significant part of scientific literature is related to the 
use of context information related disciplines and in the social sciences such as psy-
chology and sociology. Pomerol and Brezillon examined notions of context and iden-
tified its forms as external, contextual, and proceduralized [60]. Bazire and Brezillon 
made an analysis on 150 definitions of context found on the web, and concluded that 
the definition of context depends on the field of knowledge it belongs to [8]. For a 
comprehensive examination of an operational context definition see [78] and for con-
text definitions in artificial intelligence, databases, communication, and machine 
learning see [13]. Lieberman and Selker presented context in computer systems and 
described it as “everything that affects the computation except the explicit input and 
output” [42].  There is related research performed within the scope of data integration 
and interoperability using context [37, 76, 30, 23]. Context has also been used as an 
aid in defining semantic similarities between database objects [39]. 

Sowa provides an overview on facts and context in [71]. Context has been used in 
multiple settings: Semantic knowledge bases utilize a partial understanding of con-
text; WordNet is such an example, where context is expressed in natural language 
[26]. It has also been used to provide better algorithms for ranked answers by incorpo-
rating context into the query answering mechanism [2] and to improve query retrieval 
accuracy [66]. Significant work on context-sensitive information retrieval was per-
formed in [66, 72, 35, 27]. However, we focus on how to take context into considera-
tion when using semantic networks.  Graphs that represent context have been used to 
provide focused crawling to identify relevant topical pages on the web [20]. Methods 
to model and represent context for information fusion from sensors using relational 
database model are described in [77]. Context has also been used to prune semantic 
networks to improve performance, by marking and thus using only nodes which are 
pertinent in specific contexts [31].  In addition, graphs were used by [55] to infer the 
context and fit it into an existing semantic network. However, in our work we keep 
the semantic networks  separate from context, and we avoid automated inference of 
context. Finkelstein et al. identify the difficulties in automatic extraction of context, 



80 G. Karabatis et al. 

 

especially with text, as documents may be large, could contain multiple concepts, and 
could inject a lot of noise [27].  We have decided to collect context either by observ-
ing user actions, or explicitly by the user, an approach which is also used  in [41] 
where the context is used by the system; however it differs from our approach as it 
they use it to perform a rewrite of the original user query, whereas we apply a filtering 
technique on the expanded result. 

 
Related work on the semantic web and ontologies. A significant amount of work 
on semantics and the meaning of concepts has been done for the semantic web  [10, 
75]. The Web Ontology Language OWL [53] has been used to model concepts of a 
domain that are to be shared by others providing a relevance to the concept of seman-
tic networks. McCarthy introduced the ist(C,p) predicate to disambiguate when a 
proposition p is true in context C [52] and in [32] the authors adapt the ist construct of 
context and address the contextual problems which arise in aggregation on the seman-
tic web. The restrictions of the standard OWL specification, such that it allows neither 
directionality of information flow, nor local domain (which is of utmost importance 
for contexts), nor context mappings, are overcome by extending the syntax and the 
semantics of OWL via explicit context mappings [12]. The notion of relationships 
between concepts is also related to the topic maps or concept maps [74].  The major 
thrust of our work is to create a methodology that utilizes semantic networks and 
contextual information to support software engineers in their search of relevant arti-
facts. It can be implemented in a variety of ways:  

• As a stand-alone system, as we present in this paper 
• On the web, using semantic web technologies, such as OWL and RDF [4] 
• In a combination of the above two techniques 

The concepts presented in this paper can also be adapted and implemented on the 
semantic web, for example, expressing relationships using OWL. However, such 
effort is not within the scope of this paper, but we plan to investigate semantic web 
technologies in the future. 

3   Preliminaries 

In this Section we provide an introduction to some topics and notation that are being 
used in the remainder of the paper, around the concepts of semantic networks and 
context. 
 
Artifacts. In our software engineering setting, we assume that each artifact is associ-
ated with metadata represented as a set of attribute-value pairs. For example, the FMS 
version 5 has the following attributes: Name = Flight Management System Version 5, 
Type = Code, Programming Language = Java. In addition to these attributes the arti-
facts can be parsed to derive additional attributes. For instance in a Java program, 
import statements, function names etc. also provide valuable information about the 
artifact and can indeed be used as attributes describing the artifacts. 
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Semantic networks. A semantic network represents ad hoc relationships among 
artifacts. 

Definition 1 [Semantic Network]. A Semantic Network N(V, E) is a directed graph 
where V is a set of nodes and E is a set of edges. Each node corresponds to an arti-
fact, and each edge links two relevant artifacts vi and vj and has a score w(vi,vj) in the 
range of 0 to 1, representing the degree of relevance between the source artifact and 
the destination artifact.  

Fig. 1 illustrates a partial semantic network for the FMS and the TSAFE projects. The 
network contains knowledge of multiple people, e.g., an individual programmer of 
TSAFE may not know the relationships of artifacts in FMS, and vice versa, but a 
software architect may know that TSAFE is related to FMS, although the software 
architect may not know in detail the relationships between the artifacts within each 
system. That is, each of them only has knowledge of a part of the semantic network. 
However, based on the relevance scores between neighboring nodes in the network, it 
is possible to infer the relevance between any two nodes (as far apart as FMS 5 is to 
TSAFE II DM – see Fig. 1). Thus, one can discover more semantically related infor-
mation compared to individual knowledge. Next we define the relevance score be-
tween any two artifacts in the network.  
 
Definition 2 [Relevance Score]. If vi and vj are  two nodes in a semantic network 
N(E,V), there are k paths p1,…, pk between vi and vj, where path pl (1 <= l <=k) con-
sists of nodes vl1,…, vl|pl|+1 (|pl| is the length of path pl). The relevance score rs as 
defined by [17] between vi and vj is 

)),(max(
||1

1∏
≤≤

+
=

pli
ll ii

vvwrs  

The above formula computes the relevance score between vi and vj as the maximum 
relevance score of all paths connecting vi and vj.  The relevance score of such a  
path is computed using conditional probabilities under the assumption that they are 
independent. 

For instance, the relevance score between ‘FMS 5’ and ‘TSAFE II DM’ can be 
considered as the conditional probability of a software developer interested in the 
TSAFE II DM given that the developer is interested in the related product line FMS 5. 
Using the standard notation for conditional probability, we have:  

P(TSAFE II DM | FMS 5) = P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5) 

because the developer considers  that TSAFE II DM and FMS 5 are related if all arti-
facts on the path from FMS 5 to TSAFE II DM (TSAFE II LOS and TSAFE II) are 
considered to be related. Using chain rules and assuming all conditional probabilities 
are independent [64], we have:  

P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5) = 

P(TSAFE II LOS | FMS 5) × P(TSAFE II | TSAFE II LOS) × P(TSAFE II DM | 
TSAFE II)  = 0.9 × 0.9 × 0.9 = 0.73. 
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Thus, a developer receiving a change request for FMS 5 and using the semantic net-
work, would be able to find relevant artifacts such as FMS 4, TSAFE II LOS, TSAFE 
II, LOS Detector requirement, TSAFE II DM, and Requirement: Dynamic Map. Note 
that we can easily specify “not related” information in the semantic network by sim-
ply not adding a link between them. For example, there shall be no link between the 
Finance Management System and TSAFE. We also assume that relationships between 
nodes do not have to reflect the same attribute. By design, we just need to have any 
relationships established between the nodes of the graph, and we do not necessarily 
need to have probabilities of the same attribute to calculate paths.  
 
Context. We consider context to be significantly important in the search for semanti-
cally related information as every single search is performed within a specific context. 
Although this context may not explicitly appear in the query terms, nevertheless it 
does exist, and the user expects the system to provide information relevant to this 
context. In general, users may not be aware of context when they first search for in-
formation. However they become cognizant of context when they receive results that 
are irrelevant or not applicable to the current context, i.e., when a search for FMS 
returns Finance Management System.  A highly beneficial characteristic of our sys-
tem is that it takes advantage of context in a transparent way to filter and return the 
most appropriate answers tailored to each user.  We consider the following four types 
of context:  

• User Context contains information specific to users such as the role of the user 
(e.g., developers or design analyst), the programming language skills, etc.  

• Application Context contains information about the application or project the 
user is working on, such as the name and type of project, etc.  

• Environment Context includes information about the environment around the 
user, such as the organization the user belongs to, the operating system of the 
user’s computer, etc.  

• Other Context is used as a place holder for additional contextual information 
which does not fit in any of the previous context categories, but still is relevant 
to the domain of discourse.  

Note that there are additional categories of context which do exist, such as security 
considerations, policies, etc., which are not captured in our system. We acknowledge 
that it is unlikely to capture all possible types of context and their values in a  
computer system, since there will always be additional information contributing to 
context. We limit ourselves to collecting information about the above categories of 
context, and we do not claim that we can capture all possible context types. For an 
extensive work on an operational definition of context see [78]. In the domain of 
software engineering, we claim that such context information is relatively easy to 
collect as it was the case in our experiments and described below, and assume will be 
similar in most software engineering settings. Unlike domains such as generic search 
on the Internet where users submit ad hoc queries and want to find answers immedi-
ately, the users in software engineering domain are typically software developers, 
analysts, project managers, etc., who are regular users of the system and are more 
willing to provide contextual information in return for more precise search results. 
User contexts can be gathered by asking the users about past project experience, or by 
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contacting their manager, etc. Application contexts can be obtained by asking the 
project managers. Environment contexts that are relatively static (i.e., the name of an 
organization) can be obtained easily, while those that are volatile (i.e., the current 
software version information) may need additional effort to collect and maintain. 
However, maintaining contexts falls outside the scope of this paper as we assume that 
the various types of contexts are already collected, stored, and maintained in a data-
base. Formally a context can be represented in the following format. 
 

Definition 3 [Context]. The context C(Uj, T) of type T for user Uj,  where ∈T  {User, 
Application, Environment, Other} is represented as a conjunctive normal form 

)(
21 iniiii

LLL ∨⋅⋅⋅∨∨∧ where each Lij is an attribute value pair or its negation . 

For example, the user context of a user who is a design analyst (i.e., interested  
in design and requirements documents) and does not know C++ is: 

)CLanguage gProgrammin ()tsRequiremenTypeDesignType( ++=¬∧=∨= . 

From a systems viewpoint, context is metadata information stored in database ta-
bles and it is used in conjunction with semantic networks as follows: Artifacts repre-
sented as nodes in semantic networks contain characterizing attributes, which may 
participate in the attribute value pairs of a context definition. These attributes link 
semantic networks and context. Relevance related information comes from semantic 
networks, and in turn is pruned by context-related information through the attribute 
value pairs. It is important to note that semantic networks and context are somehow 
orthogonal dimensions, but both use the attributes of the artifacts. Further details are 
described in Section 4.3. 

4   Approach 

Our approach consists of the following distinct steps: we first provide a high level 
overview of the major components of our system and the lifecycle of a user query 
through the system. Then we present details on the creation of a semantic network: we 
first derive the universal feature vector which has all the potential attributes across the 
set of artifacts. Based on the vector a feature vector for each artifact is generated. We 
utilize the similarities between these feature vectors to generate a similarity based 
network. This is further enhanced by semantic rules to generate a Rule enhanced 
network. We also define relevance scores between artifacts. Subsequently we define 
the context for the semantic network for a more refined result set. Lastly we apply 
transformation functions on this semantic network. The approach is discussed in the 
following subsections: Section 4.1 the system overview and the lifecycle of a user 
query. Section 4.2 describes how we construct semantic networks. Section 4.3 dis-
cusses how to use context in our system. Finally, Section 4.4 describes a framework 
of transformation functions which formalize our overall approach. 

4.1   System Overview 

In this section we outline the system architecture and the flow of a query from the 
time it is submitted until the results are returned back to the user. 
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A high-level conceptual architecture of our system with its major components is il-
lustrated in Fig. 2. Our prototype system has been implemented using an Oracle data-
base in which we store all types of metadata about software artifacts (attribute-value 
pairs), semantic networks, and context. Our system stores only metadata, e.g., an 
identifier (such as a uri) pointing to the location of each actual artifact. A set of se-
mantic networks is depicted to the right part of Fig. 2, each representing a separate 
software project. All these semantic networks are merged into a larger Semantic Net-
work, which integrates the individual semantic networks into a consolidated one. The 
edges connecting these networks identify the existence of a potential relationship 
between them. The strength of this relationship is represented as a relevance score. 
Another component of our system contains information about the different types of 
contexts that are collected (User, Application, Environment, etc.) and it is used to 
identify semantically related information and filters out irrelevant information. Con-
text has been implemented as a set of tables in an Oracle database.  Metadata about 
software artifacts is also stored in the database to be used in the extraction of the ini-
tial artifacts based on the user query. The Semantic Search Engine interacts with the 
users and all major components of our system. It oversees all operations at  each 
component, from the submission of a user query, to its execution, the use of semantic 
networks and contexts, all the way to displaying the final results to the user. 

Semantic networks and context information significantly improve the quality of the 
query result, since: (1) they enhance the result set with semantically relevant informa-
tion that the users might not be aware of, and (2) they incorporate contextual knowl-
edge to streamline the result according to user, application and other contexts. We 
demonstrate the improvement in quality by measuring recall and precision of the 
results (see Section 5). In this Section we present the lifecycle of a query submitted by 
a user to our system as illustrated in Fig. 3. Initially, a text search is performed to  
 

 

Fig. 2. Conceptual system architecture 
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collect all related information which matches the user query. This search is performed 
on a set of metadata about the artifacts2. Then, the returned artifacts are given as input 
to the semantic network. Using the algorithms described in detail in section 4.2 and 
depending on the value of the user-defined threshold on the relevance score, the  
semantic network produces an augmented list of recommended artifacts, whose rele-
vance scores to any of the initial artifacts exceed the threshold and thus are semanti-
cally relevant to the initial user query.  However, this augmented list may not reflect 
the contextual information pertaining to the user, project, etc. Consequently, the con-
texts are used next, to filter information accordingly. As a result, only the recom-
mended artifacts which are pertinent to the contexts will be collected and given to the 
user in the final result set of the original query.  For example, assume that a require-
ment analyst asks a query on “automated collision avoidance,” the system first per-
forms a full-text search and returns all artifacts from the database containing these 
keywords. At this point, the current result set may not contain all relevant artifacts as 
there could be additional artifacts that are semantically relevant but which are not 
included in the search results. Then, the system utilizes the semantic network to find 
all additional artifacts which are semantically related to the current search results; i.e. 
additional artifacts that do not contain the search keywords explicitly, but are closely 
related to them (e.g., the Loss of Separation Detection Module, which detects situa-
tions where two aircrafts are too close). However, the augmented results containing 
all semantically relevant artifacts may not be pertinent to the user’s context. There-
fore, contextual information is extracted from the database and is applied to the set of 
augmented results to filter out artifacts that are out of context keeping only those that 
are within context. In our example, only requirement documents (but not source code) 
are kept in the final result. 

                                                           
2  In this paper, whenever we refer to artifacts we mean the metadata about the artifacts and not 

the artifacts themselves. 

User 
Query 

Artifacts 
Metadata 

Text 
Search 

Semantic 
Network 

Semantic Net  
Recommendation 

Context 
Processing 

Final 
Result 

Fig. 3. Life cycle of a user query 



86 G. Karabatis et al. 

 

Of course we allow users to evaluate the recommended artifacts and they have the 
ability to accept/reject each one of them. They can also fine-tune the search query, 
resubmit to the semantic network and possibly provide a different threshold for the 
relevant artifacts until they are presented with recommended and contextualized arti-
facts to their satisfaction. 

4.2   Construction of Semantic Networks 

To avoid the daunting task of manually constructing and maintaining the semantic 
network, we adopt an approach for the construction of semantic networks in an auto-
matic manner, consisting of two layers (first mode and second mode network). The 
first mode network identifies relevant artifacts based on similarity, whereas the sec-
ond mode network is build on top of the first mode and enhances it by adding seman-
tic information. As shown in Fig. 4, each node in the semantic network represents an 
artifact and part of the metadata for this artifact is a set of attributes which describe 
the artifact. We utilize the similarity between the attributes of the artifacts to construct 
the semantic network. We construct it as follows.  
 

 
 

Automatic Generation of Feature Vectors 

Let X = {x1,...xn} be the set of artifacts, where each xi  ∈ X is associated with a set of 
characterizing attributes ai = {ai1,….aim}. The values of these attributes can be trans-
formed into categorical values (binary) and form a feature vector fi ={fi1, . . . , fim}.  In 
order to automatically create a similarity based network we first need to generate the 
feature vector associated with each artifact. Our approach is generalizable to continu-
ous attributes such that they can be discretized into categorical variables. Additionally 
we can also handle textual variables since we can parse the features from code files. 
These feature vectors are used to determine how similar the artifacts are in terms of 
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the attributes characterizing them and they are utilized to generate the semantic net-
work; therefore, we outline our process and algorithm here for the generation of fea-
ture vectors. We discover features by class of artifacts. For instance, software artifacts 
can be viewed as programs, requirement specifications, test cases and so on. For each 
such class of artifacts we produce a universal feature vector by creating a parser for 
the artifacts.  This can be seen as a preprocessing step necessary to acquire the data 
about the artifacts. In the case of Java programs, using a text file parser, we extract 
features such as import statements and function names, and we add them to the fea-
ture vector. The union of all feature vectors creates a universal vector (V) containing 
all artifacts. Thus V={ a11 U a21,….U aim  } and it will be used for the similarity based 
network. 

 

 

Algorithm for Automatic Feature Vector Generation. We outline our algorithm for 
the generation of the Feature Vector. The algorithm takes as an input the set of arti-
facts X={x1,…., xn}. On lines 1-5 we generate a universal vector U, by parsing 
through the artifacts. This essentially finds all the attributes from the various artifacts, 
from x1 to xn,  and stores them in U. So for instance if we are parsing a java program 
then the import statements will be the attributes of the Universal vector. We then 
create a feature vector from U on lines 7-15. We parse the artifacts to note the pres-
ence or absence of an attribute in the artifact. For example if we have a Java program 
artifact with an import java.util statement then the feature in the vector for this artifact 

Algorithm 1 The Feature Vector generation algorithm 
 

Require: Set of artifacts X where each xi ∈ X 
Ensure: Set of artifacts X where each xi ∈ X is 
associated with a set of attributes ai = {ai1,..,aim} 
and a set of features fi = {fi1,..,fim} 
 1: for i = 1 to |X| do 
 2:  {Read artifact xi} 
 3:  {ai  ←  Parse Attributes(xi)} 
 4:  {add(U, ai)} 
 5: end for 
 6: {Initialize Feature Vector f} 
 7: for i = 1 to |X| do 
 8:  for z = 1 to |U| do 
 9:   if uz ∈ xi then 
10:    {fiz = 1} 
11:   else 
12:    {fiz = 0} 
13:   end if 
14:   end for 
15: end for 
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will have a value 1 vs. another java program without the import statement will have a 
value 0 for the feature. The parser can be modified to handle other types of languages 
such as c++, python etc. Programming languages provide a structured environment to 
handle such a parsing. However documents may not be parsed easily using this 
method since their structure is not very well defined. The complexity of the algorithm 
is O(N |U|) where N is the number of artifacts and |U| is the size of the Universal 
Vector.  

Similarity Based Network  

Let us assume that we have a set of n artifacts X = {x1,...xn}, where each xi  ∈ X is 
associated with a set of m features captured in a feature vector fi ={fi1, …, fim}. We 
use a Jaccard similarity coefficient3 to quantify the similarity among the feature vec-
tors of the artifacts. Based on the Jaccard coefficients we connect similar nodes using 
edges and start creating the semantic network. We add probabilities on the edges as 
follows: given a pair of nodes xp and xq such that there exists a similarity between the 
two nodes the probability  w(xp , xq) of traversing from node xp to xq  is: 

 where 

 

Jpq is the Jaccard similarity coefficient between the feature vectors of artifacts (nodes) 
xp and xq. Jpj is the weighted degree of the node p, and k is the number of incident 
edges on p. Thus, based on the similarity and probability computations we get a first 
mode semantic network as shown in Fig. 4(a), which we refer to as Similarity based 
Network. There could be several disconnected first mode semantic networks as shown 
in Fig. 4(a). The probabilities are shown close to the tip of each edge. We formally 
define the first mode Semantic Network as follows: 

Definition 4 [Similarity based Network]. Let X = {x1,...xn} be the set of artifacts, 
where each xi  ∈ X has a feature vector fi ={fi1, . . . , fim} then a first mode Similarity 
based Network Nsn(Vsn, Esn) is a directed graph where Vsn is a set of nodes and Esn is a 
set of edges, such that Vsn  ⊆ X and |Vsn| ≤ |X|, and each edge links two relevant arti-
facts <vi, vj> and has a probability score w(vi,vj) where 0 < w(vi,vj)  ≤ 1.  

Rule Enforced Network 

The automatically created first mode networks reflect similarity based on the feature 
vectors of each artifact but they do not include any additional semantic information. 
For example, there could be strong relevance between two nodes representing files 
from different projects, but because some attributes in the feature vectors (e.g. the 
name) are completely different, the Jaccard similarity coefficients may not rank them 
similar enough to create an edge between them. Such semantic knowledge is usually 
captured in the minds of experienced users, and it  can be described in terms of se-
mantic rules that explicitly identify connectivity between two nodes in the semantic 
                                                           
3  A Jaccard similarity coefficient (Jaccard index) measures the similarity of sets and is defined 

as the size of the intersection divided by the size of the union of the sample sets. 
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network. This is required in two scenarios first the two nodes that were not deemed to 
be similar according to similarity measures (although they are similar indeed),  sec-
ond, there may be a situation where two nodes have a high similarity as per the simi-
larity measures but have a low similarity. We define a semantic rule as follows: 

Definition 5 [Semantic Rule]. Given two artifacts xp and xq a semantic rule r is de-
fined as r: xp, xq, w(xp , xq)  where w(xp , xq)  is the probability score associating the 
two artifacts.  

When these semantic rules are enforced, they add edges connecting nodes on the first 
mode semantic network(s), thus, they augment the network. The probabilities on the 
new edges are also calculated and the result is the second mode semantic network as 
shown in Fig. 2(b), which we refer to as Rule enforced Network. The new edges are 
depicted as dashed arrows. When multiple experts with similar roles create the same 
rule connecting two edges, we add a link to the network having as relevance score the 
average probability of all occurrences of the rule. When experts with different roles 
create new rules it is possible that these rules would expand the network in com-
pletely different directions. In such cases, we do not try to consolidate these rules into 
a single network, but we create separate networks each one specific to a role. We 
formally define this second mode Semantic Network. 

Definition 6 [Rule enforced Network]. Given a first mode Semantic Network Nsn(Vsn, 
Esn) , where Vsn is a set of nodes and Esn is a set of edges in Nsn, and a set of semantic 
rules R, a second mode rule enforced Semantic Network Nre(Vre, Ere) is a directed 
graph where Vre is a set of nodes and Ere is a set of edges such that Vre  ⊆ X ,  |Vre| ≤ 
|X| and |Vre|≥ |Vsn|, and each edge links two relevant artifacts <vi, vj> and has a 
probability score w(vi,vj) where 0 < w(vi,vj)  ≤ 1.  

The probability scores encompass the similarity between the features of each artifact 
and the semantic rules enforced on the network. Such a network contains knowledge 
of multiple people, e.g., an individual programmer of TSAFE may not know the rela-
tionships of artifacts in FMS, and vice versa, but a software architect may know that 
TSAFE is related to FMS, although the software architect may not know in detail the 
relationships between the artifacts within each system. However, based on the rele-
vance scores between neighboring nodes in the network, we can infer the relevance 
between any two nodes (as far apart as FMS 5 is to TSAFE II DM – see Fig. 1). Thus, 
one can discover more semantically related collective information compared to indi-
vidual knowledge. If a semantic rule links two nodes that are already connected in the 
previously created similarity network, the semantic rule link replaces the similarity 
link (the expert’s opinion supersedes the feature based similarity).  

Algorithm for Automatic Semantic Network Generation 

Once we have the feature vectors we then use the Jaccard coefficient to quantify the 
similarity among the feature vectors of the artifacts. We use the Jaccard coefficient 
since it does not give importance to a positive dissimilarity of features (marked as 0-0 
in bits identifying that there is no similarity between two features that do not match) 
but gives importance to a positive match (1-1) and positive mis-match(1-0). We outline 
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the approach to identifying the similarity of the feature vectors in Algorithm 2. The 
complexity of the algorithm is O(N2|U|) where N is the number of artifacts and |U| is 
the size of the Universal Vector.  

 

4.3   Using Context 

We store context in relational tables. One table stores user context, with columns user 
ID, project ID, role of user, programming language, etc. A second table stores appli-
cation context, including project ID, functionalities, etc. A third table stores environ-
mental context, including user ID, operating system, organization name, etc. After 
these tables have been initialized, we create a mapping table to map information in 
these tables to conditions on attribute-value pairs over the artifacts. For example, if 
the user’s role is developer, we map it to the condition: Type = Code  ∨  Type = 
Requirement as a developer needs to read both code and requirements. 

We can then combine all context information of a user into a single filtering condi-
tion. This condition is the conjunction of all conditions mapped from the context 
information of a user. For example, a user’s filtering condition may be: 

(Type = Code ∨  Type = Requirement) ∧  (Programming Language = JAVA) ∧  
(Project = Flight Control) ∧  (Operating System = LINUX) 

Algorithm 2 The Similarity based Network generation 
algorithm 
Require: Set of artifacts X where each xi ∈ X is 
associated with a set of attributes fi = {fi1,.. ,fim} 
Ensure: Similarity based Network Nsn(V sn,Esn) where V sn 
is a set of nodes and Esn is a set of edges, each edge 
links two relevant artifacts < vi, vj > and has a 
probability score w(vi, vj) 
1: jc=0 
2: deg=0 
3: for i = 1 to |X| − 1 do 
4:   for j = i + 1 to |X| do 
5:   jcij = jcji = JC(fi, fj) 
6:   degi = degi + jcij 
7:   degj = degj + jcji 
8:  end for 
9: end for 

10: for p = 1 to n do 
11:   for q = 1 to n do 
12:   w(xp , xq)  ←  jcpq/degp 
13:   if w(xp , xq)  < Wthreshold then 
14:    { w(xp , xq)  = 0} 
15:   end if 
16:   end for 
17: end for 
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At run time, this condition is used to filter the artifacts returned by the full-text 
search and semantic network. This step checks the attribute-value pairs of a returned 
artifact, and if any of those attributes in the artifact appears in the filtering condition, 
the value of that attribute will be checked against the filtering condition. If the value 
violates the condition, the artifact will be pruned. For example, if an artifact with 
Programming Language = C++ is returned, this artifact violates the above filtering 
condition and will be pruned. 

Note that if an attribute of an artifact does not appear in the filtering condition, no 
check will be done and the artifact will remain in the result. For example, if pro-
gramming language is not specified in an artifact (e.g., when the artifact is a design 
document), then this artifact will not be pruned based on the condition on program-
ming languages. 

4.4   Transformation and Composition Functions 

It is quite intriguing to evaluate the effect of applying context during the different 
phases of the query lifecycle. For example, is it better to apply context before using 
semantic networks or after? Can we apply context both before and after using the 
semantic network? Questions like this might affect greatly the artifacts that will be 
retrieved and we investigate answers to these questions in this Section.  

Each user query submitted to our system undergoes a series of transformations as it 
passes through its various phases and completes its cycle though our system (Section 4.1). 
During each of these different phases a transformation function is applied to a specific 
input available in the current phase, and produces a specific output applicable to the 
next phase. For example, extracted keywords of the initial user query are used as 
input to a function fMAS, which conducts a Metadata Artifacts Search (MAS) and pro-
duces as its output a result containing artifacts RA. Formally,   

Definition 7 [Metadata Artifacts Search Function]. Assume that QA  is a set of key-
words of a user query, and A is the domain of all artifacts. The function fMAS is the 
Metadata Artifacts Search function which takes as input QA and produces as output a 
set of artifacts RA .             

fMAS(QA) = RA    (alternatively A
f

A RQ MAS⎯⎯ →⎯ ),  where RA  ⊂  A. 

In a similar fashion we define two more transformation functions: fSN  and  fC  which 
apply the semantic network techniques and the context techniques respectively. 
Therefore we have: 

Definition 8 [Semantic Network Transformation Function]. The function fSN applies 
the input RA  through a semantic network and produces as output a set of related arti-

facts RSN .  fSN (RA) = RSN   (alternatively SNA RR SNf⎯⎯→⎯ ),  where RA, RSN ⊂  A. 

Definition 9 [Context Transformation Function]. The function fC filters the input RSN   
utilizing the appropriate context C(Uj, T), and produces as output a set of filtered 

artifacts RC .     fC (RSN) = RC   (alternatively CSN RR Cf⎯→⎯ ),  where RSN,,  RC ⊂  A. 
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Definition 10 [Lifecycle Composition Function]. A lifecycle composition function L 
of a user query in our system is a composition of the transformation functions fMAS ,  

fSN, and  fC defined as L : fC (fSN,(fMAS(QA)))= RC.  Alternatively,  L 

: )( MASSNC fff oo : AA RQ MASf ⎯⎯ →⎯ SNRSNf⎯⎯→⎯ CRCf⎯→⎯  where RA, RSN,,  

RC ⊂  A. 

We have used the above transformation functions in a specific order to compute the 

final result RC, as a composition of functions: )( MASSNC fff oo . Nevertheless, 

there are different ways that we can order the transformation functions and create a 

different composition. For example, )(:1 MASCSN fffL oo is another composition 

where the context function fC is applied before the semantic network function fSN. It is 
interesting to examine whether we obtain the same results depending on the order of 
the transformation functions in the function composition. In general, the composition 

of functions is not a commutative operation, i.e., )( MASSNC fff oo
 

≠ )( MASCSN fff oo .  In practice, we can apply the transformation functions in dif-

ferent orders depending on how we want the process to take place, we can even apply 
the same transformation function multiple times. For example, it makes sense to apply 
the context function fC  before and after the semantic net function fSN, having a new 

lifecycle composition function ))((:2 MASCSNC ffffL ooo . We discuss the dif-

ferent options (L, L1, and L2) in our next Section where we describe our experiments. 

5   Experiments 

We first describe the setup of our experiments in section 5.1. In Section 5.2 we pre-
sent our results for the automatic creation of the semantic network. Next we discuss 
the experiments with context and without context and in Section 5.3 we present the 
results. We use recall and precision as our basic measures according to the definitions 
of [73] and  [6]. We also describe our prototype system in the Appendix. 

5.1   Setup of Experiments 

We used  two test-beds of two software projects each:  
(1) The Tactical Separation Assisted Flight Environment (TSAFE) and the Flight 

Management System (FMS). These two software projects are based on a specification 
for Automated Air Traffic Control by NASA [21], implemented by MIT  [19] and 
turned into a test-bed at Fraunhofer Center, Maryland [44]. This test-bed makes a 
good fit for the proposed research for two reasons. First, it contains two parallel 
threads of implementations of similar functionality. Second, historical design infor-
mation exists for all variants and versions of TSAFE and FMS. There are as many as 
38 different versions of each project, making the total number of artifacts more than 
250, not counting the source code class files. The different versions of TSAFE and 
FMS are related, making reuse possible but not straightforward. Valuable design 
information can be retrieved; however, the different versions and amount of existing 
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data makes finding such design information difficult using the current full text search 
system.  

(2) The second test bed consists of information from two different software pro-
jects; we selected 82 artifacts from DMGroup1 and 76 artifacts from LosGroup3. 
These two projects implemented similar functionality. We asked three domain experts 
to create an initial semantic network to use it as a baseline on these test beds. The 
relationship between two files in different projects (DMGroup1 and LosGroup3) 
receives a weight of 1 if these two files are deemed similar or a weight of 0 if they are 
dissimilar to each other. The metadata of each artifact includes the name of the arti-
fact, the type of the artifact (requirement document, code, etc.), programming lan-
guage, impact analysis (the impact of a specific software change to the various phases 
of software maintenance) , design pattern (a blueprint that can be applied to provide a 
solution to a commonly occurring problem), etc.  

5.2   Automatic Semantic Network Generation 

Creation of Feature Vectors 

To create the feature vectors we used the second test bed with a set of 158 Java files 
from two different projects (82  files from DMGroup1 and 76 files from LosGroup3) 
as an input to a Java program. We used this test bed since we wanted to specifically 
evaluate the similarity among files across different projects. These files are compared 
with each other based on 4 main characteristics: java import statements (150), pack-
age names (120), class names (120) and method names (almost 300).  A universal 
feature vector is automatically generated with a set of 680 attributes identifying char-
acteristics which are unique across these 158 files. Next we compare each of these 
characteristics in every other file from two different projects to find whether they are 
similar or not. This similarity is captured in a similarity matrix which maps the  
similarity of each file with all other files across different projects. If two files from 
different projects are similar based on a Jaccard similarity coefficient and our weight 
computation then we mark the matrix location with a 1 otherwise with a 0. The simi-
larity threshold for this task was set to 0.8. Different threshold values produce differ-
ent results as described in Section 5.3.1. Source and edges along with weights are 
stored in an Oracle database which is subsequently used to build the tree structure. 

Evaluation and Validation of the Automatically Created Network 

The domain experts review the files from two different projects and label the similar-
ity weights as 0 or 1. If they find similar files they give the weight 1, if the files are 
not similar they label them with a weight 0. Their concept of similarity is purely 
based on the manual evaluation of the artifacts and no specific features are consid-
ered. For the evaluation of the automatic network creation we consider this similarity 
provided by the domain experts as our labeled data where the domain expert provides 
a weight to the pairs of artifacts. Since the domain experts view is absolute numeric 
value of 0 or 1 we devised a method to check whether we did find similar files using 
our approach. We compared one artifact from one project with all the other artifacts in 
a different project and the one which has maximum similarity weight based on our 
approach was checked against the one provided by the domain experts as having the 
maximum similarity weight of 1. 



94 G. Karabatis et al. 

 

 

Fig. 5. Performance evaluation using Class labels 

Based on this we validate against the labeled data and find the Accuracy of our 
method. Using the values from table in Fig. 5 we can compute the accuracy as shown 
in Equation 1. Thus, Accuracy = (145 + 3)/ (145+10+0+3) = 148/158 = 0.93*100 = 
93%. From a set of 158 files taken from two projects (DMGroup1 and LOS Group3).  
Domain Experts found 148 files highly similar out of these 158 and our approach 
found 145 similar out of 158. Max Similarity is 145 i.e. artifacts which were found to 
be highly similar by our approach and the domain experts. Out of 158, there are 10 
false positives where the domain experts found no similarity but our approach found 
some similarity, In addition we found 3 files which were highly similar which the 
domain experts did not identify.   

5.3   Experiments with Context  

For this set of experiments we used the data from the TSAFE/FMS test-bed. We col-
lected eight queries from the domain experts. For each query, we also created eight 
different contexts by assuming a certain type of user (user context), a certain type of 
project (application context), a certain type of programming language (user context 
and/or application context), and a certain type of platform (environment context). 
Thus there are altogether 64 combinations of queries and contexts. The domain ex-
perts provided us with the correct answers to those queries.  We compare the preci-
sion and recall of three search algorithms: 

1. Using the normal full-text search algorithm without semantic network or context. 
We used Oracle's full-text search feature for this algorithm (referred to as No-
Network in Fig. 6-9) 

2. Using semantic network but not context (referred to as Network in Fig.  6-9) 
3. Using both semantic network and context (referred to as Network+Context in 

Fig. 6-9) 

5.3.1   Results 
An important parameter in our approach is the threshold t for relevance score in the 
semantic network. We experimented using the default and also a varying threshold.  
Fig. 6 and 7 report the average recall and precision of all three algorithms using the 
default setting t = 0.8.  

Probability from Rule Enforced Network

Probability 
from Domain 
Experts

Max similarity No similarity

Max Similarity 144 (TP) 3 (FN)

No similarity 10 (FP) 0 (TN)

 
 

)1(..........Accuracy 
FNFPTNTP

TNTP

+++
+=  



 Using Semantic Networks and Context in Search 95 

 

The x-axis identifies the queries, while the y-axis presents the value of recall (Fig. 6), 
and precision (Fig. 7), both averaged over the eight different contexts for each query. 
The results show that using a semantic network produces a much higher recall than not 
using a semantic network (see Fig. 6). This is expected because the semantic network 
returns artifacts that may not contain searched keywords, but are related to the artifacts 
containing those keywords. 

 

 

 

The results also show that the use of context increases precision because the con-
text information is used to filter out results not relevant to the user (Fig. 7). In general, 
using both the semantic network and context leads to higher precision and recall for 
all eight queries (the  recall and precision values at 1 occur due to the relatively small 
size of the data set). 
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Next we varied the relevance score threshold t in the semantic network. Fig. 8 and 
9 report the average recall and precision over the eight queries when t varies from 1 
down to 0.2. Note that No-Network does not use semantic network and it is inter-
preted as t being fixed at 1. Thus, the recall and precision of No-Network do not 
change with t.  

 
 
 

The results show that as the threshold decreases, the recall of Network and Net-
work+Context increases (see Fig. 8). This occurs because it signifies that the user is 
willing to accept less relevant artifacts in the result set, leading to a higher number of 
results, when the semantic network is used. The recall of not using a semantic  
network is very low (about 0.4) compared to the other two methods because it only 
considers artifacts contained in the searched keywords. The recall values of using 
Network or Network+Context are always the same because Network+Context would 
filter out answers from the results created by using semantic networks. In practice, 
missing a relevant artifact means that the project team may miss the opportunity of 
reusing existing code; or come up with a wrong estimate of the cost of implementing 
a change request, which may be very costly. Thus these results clearly show the value 
of using semantic networks, as they bring additional relevant artifacts in the result set. 

As the threshold decreases, the precision of both Network and Network+Context 
starts to decline (see Fig. 9) when threshold values are below 0.8. As threshold de-
creases below 1.0 but is still quite high (say, 0.8), artifacts which are very closely 
related to the answers in the full-text search are returned, and are considered as cor-
rect answers; thus, the precision remains high. However, as the threshold further de-
creases, artifacts that are not very closely related are returned. Thus, the precision 
starts to decline. This suggests that using a relatively high threshold (we use 0.8) 
would ensure both high precision and recall. Of course, if recall is very important 
(e.g., the cost of missing a relevant artifact is very high) a lower threshold can be used 
to ensure high recall, but with possibly lower precision.  

Fig. 8. Average recall with varying threshold 
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The results also show that the use of context and semantic network always leads to 
higher precision than using semantic network alone, because context helps filter out 
irrelevant answers. Using Network+Context also has higher precision than No-
Network over a wide range of threshold values (actually for all the threshold values 
we tested), and with a much higher recall as shown in the previous figures. It clearly 
displays the benefits of using a combined approach of semantic networks and context. 

 
 

Experimenting with Different Lifecycle Composition Functions 

The experiments we just described correspond to the lifecycle composition function L 
(see Section 4.5).  We also performed another set of experiments using the alternate 
lifecycle composition functions L1 (with context applied only before the semantic 

network )( MASCSN fff oo ) and L2 (with context applied before and after the se-

mantic network ))(( MASCSNC ffff ooo ) and compared the results with those of L 

(with context applied only after the semantic network )( MASSNC fff oo ). Fig. 10 and 

11 report the precision and recall of these three composition functions. 
The results show that L (using context after the semantic network) and L2 (using 

context-based filtering both before and after using semantic network) produced the 
same results (both recall and precision) for six out of the eight queries. Query Q3 and 
Q7 were exceptions. For those two queries, when we applied context before the se-
mantic network, it did not return any answer, resulting in the lowest recall and preci-
sion. The reason was that the direct hits (the results after full text search but without 
the semantic network) were actually “out-of-context”. However, these direct hits were 
related to the correct answers that were in “in-context”. Thus using L2 the system 
filtered out the direct hits and did not return any correct answer. On the other hand, 
using L the system still used all the direct hits to find relevant artifacts through the 
semantic network, thus correct answers were still returned.    
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Fig. 9. Average precision with varying threshold 
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Both L1 and L2 apply context based filtering before the semantic network. How-

ever, L2 applies context again after using the semantic network. Since using context 
after the semantic network does not eliminate any artifacts in the correct answer (i.e., 
matching the context), L1 and L2 have the same recall. The results also show that L1 
(using context-based filtering before semantic network) leads to lower precision than 
both L2 and L. This is expected as the use of the semantic network augments the re-
sults with semantically related artifacts. But checking the context filtering condition 
before the use of the semantic network does not guarantee that the augmented results 
are “in context”. For example, one of the contexts precludes source code for manag-
ers; still L1 returns source code related to requirement documents which are in the 
correct answer. This also exemplifies the property of non-commutativity of the lifecy-

cle composition function, )( MASSNC fff oo ≠ )( MASCSN fff oo .  
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In general, if the contexts transformation function fC is used just as a filtering con-
dition, then it is advisable to apply fC after the semantic network transformation func-
tion fSN has produced results. The reason is that this process will return artifacts that 
are connected to those initial artifacts that match the query, but do not match the con-
text. Thus, in such cases the default composition function L should be used. Of 
course, if the contexts are used in other ways, e.g., to expand the query results or to 
modify a possible ranking function for displaying results, then it may make sense to 
use context transformation function fC  before the semantic network transformation 
function fSN. 

User Studies 

We conducted two studies regarding the searching behavior of users. First, we carried 
out an experiment about search tools’ performance [49], which confirmed our main 
hypothesis that retrieving information is difficult, especially for subjects unfamiliar in 
the domain of the search. Concepts, acronyms, and company lingo were information 
that most such subjects lacked in order to find the relevant information. In contrast, 
subjects with some company experience did not experience these problems. Based on 
these results, we developed and evaluated a prototype search tool that automatically 
manipulates the search query adding synonyms, acronyms, and abbreviations, 
increasing the relevance of the search results substantially. 

Secondly, we performed another study  [25], and we surveyed members of two 
small IT organizations, one in the US and another one in Germany regarding their 
search behavior.  The results showed that more than 80% of the subjects used only 
one to four search keywords for their queries. 

6   Conclusions  

We created a set of tools and technologies which use metadata to assist software en-
gineers in their search for software artifacts. Semantic networks capture the semantic 
relationships between software artifacts; these networks help return additional arti-
facts that are semantically relevant to the search, which would not have been included 
in the original search results using traditional database techniques.  We provided an 
automated way to create the similarity based semantic network and described two 
algorithms towards its creation. Once the semantic network is built, it can be en-
hanced with semantic rules; subsequent user queries take advantage of the relation-
ships that are represented in it. This technique produces an augmented result set of the 
user query, relevant to the original search, thus improving the recall of the search 
results. However, this augmented and relevant artifact set, may not be tailored to the 
appropriate contexts of the particular user. Therefore, we employ techniques to filter 
out “out-of-context” results, and return only “in-context” artifacts pertaining to the 
user. As a result, the precision is also improved.  

We applied our techniques in a software engineering environment with software en-
gineering projects. We performed experiments on real life software projects with the 
help of domain experts, measuring precision and recall, by comparing full-text, seman-
tic network only, and a combined use of semantic networks and context methods. The 
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results demonstrated that our metadata techniques are promising and they produce a 
better recall and precision results compared to the other methods.  

In the future, we plan to investigate under which circumstances it would be better 
to use different orderings of transformation functions, by creating various lifecycle 
composition functions. In addition, during the automatic creation of the semantic 
network, the size of the universal vector may   explode quickly as each artifact may 
potentially contribute new features to the universal vector U. Thus, to control the high 
dimensionality of U we will need to assign weights to the features which we defer to 
future work. Additionally in the current work we use a Jaccard similarity coefficient; 
however, in the future we plan to investigate other similarity coefficients such as 
Matching, Tanimoto, Cosine and Dice coefficients [34, 40] and compare them to 
Jaccard similarity coefficient. 
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