

S. Spaccapietra, L. Delcambre (Eds.): Journal on Data Semantics XIV, LNCS 5880, pp. 74–104, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Semantic Networks and Context in
Search for Relevant Software Engineering Artifacts

George Karabatis1, Zhiyuan Chen1, Vandana P. Janeja1, Tania Lobo1,
Monish Advani1, Mikael Lindvall2, and Raimund L. Feldmann2

1 Department of Information Systems, University of Maryland, Baltimore County (UMBC)
1000 Hilltop Circle, Baltimore, MD 21250, USA

2 Fraunhofer USA Center for Experimental Software Engineering
4321 Hartwick Rd., College Park, MD 20742, USA

Abstract. The discovery of relevant software artifacts can increase software re-
use and reduce the cost of software development and maintenance. Furthermore,
change requests, which are a leading cause of project failures, can be better classi-
fied and handled when all relevant artifacts are available to the decision makers.
However, traditional full-text and similarity search techniques often fail to pro-
vide the full set of relevant documents because they do not take into considera-
tion existing relationships between software artifacts. We propose a metadata
approach with semantic networks1 which convey such relationships. Our ap-
proach reveals additional relevant artifacts that the user might have not been
aware of. We also apply contextual information to filter out results unrelated to
the user contexts, thus, improving the precision of the search results. Experi-
mental results show that the combination of semantic networks and context sig-
nificantly improve the precision and recall of the search results.

Keywords: software engineering, search for artifacts, semantic networks, context.

1 Introduction

In the domain of software engineering software changes are inevitable, for example,
due to requirements change, but cause several well-known problems if not handled
properly. They can lead to severe time pressure and project delays due to underesti-
mation of the scope of the change. Major studies of today's software intensive systems
consistently find surprisingly large numbers of failed, late, or excessively expensive
systems [36] and according to [29] requirement change is one of the most common
causes of software project failure.

Thus, searching for relevant software development artifacts (requirements docu-
ments, design documents, source code, etc.), has become increasingly important. For

1 Semantic networks are graphs which represent knowledge by interconnecting nodes through

edges. They have been used to describe and classify concepts for many centuries. According
to Sowa the earliest known semantic network was drawn in the third century AD by the
Greek philosopher Porphyry (Porfyrios) to graphically illustrate the categories of Aristotle
(Sowa 1992). For a detailed background on semantic networks see (Sowa).

 Using Semantic Networks and Context in Search 75

example, software developers often need to find out whether there are some similar
software components or software designs to better respond to a software change re-
quest. Finding such related information may greatly reduce the cost of software
change or allow more accurate estimation of the cost of the change, which may lead
to better decisions (e.g., whether to accept or reject the change request). One study
found that the amount of necessary software changes was three times higher than
originally predicted [45], indicating that a better search technology may be one possi-
ble solution to this problem. We also believe that our technique can also help in the
development of new software.

Importance of Capturing Ad hoc Relationships: There are several obstacles to finding
relevant artifacts, especially in the domain of software engineering. First, the relation-
ships between artifacts are often ignored by existing full-text or similarity search tech-
nologies [9, 24, 1], but are extremely important for finding relevant software artifacts.
For example, many software projects have various versions (thus, these versions are
related), a large number of requirements documents (related to the code that implements
them), and often implement overlapped functionality (thus, different projects are related
to each other). However, it is extremely difficult for someone to find relevant artifacts if
that person is unfamiliar with the software project structure and its history including its
relationships to other software products and their evolution.

Motivating Example: The following example describes some of these difficulties
focusing on the ones that arise during a search for relevant information that would be
triggered for example, by a change request. Fig. 1 shows the relationships between
two closely related software projects: The Tactical Separation Assisted Flight Envi-
ronment (TSAFE) and the Flight Management System (FMS). The arrows are direc-
tional and indicate that the source node is related to the target node and the number
identifies the degree of relevance between the two connected nodes. Details of these
two projects can be found in Section 5.

Suppose a developer of FMS version 5 receives a change request to add the capabil-
ity to change geographical area in run time. The developer tries to find artifacts related
to the keyword “FMS 5”. Certainly, an existing text search tool such as Google Desktop
or a search tool that matches artifacts with similar attributes could be used. Unfortu-
nately, related artifacts such as TSAFE II Loss Of Separation (LOS) (which is function-
ally equivalent to FMS 5), TSAFE II (without the LOS option), TSAFE II Dynamic
Map (which implements the sought functionality in a different project TSAFE), and the
requirement document for Dynamic Map (which is the design document for the sought
functionality) are unlikely to be retrieved. The reason is that these artifacts do not con-
tain the keyword FMS. In order to overcome this problem, one could make TSAFE a
synonym of FMS or define a similarity score between these two terms. However, in this
context, FMS has two meanings: Flight Management System and Finance Management
System (an accounting system). Thus, a search for TSAFE would retrieve artifacts for
both the Flight Management System and Finance Management System. In conclusion,
the design information related to TSAFE II DM, which implements the sought function-
ality, cannot be retrieved without extensive searching due to its distant and indirect
relationship to FMS 5 (see Fig. 1).

76 G. Karabatis et al.

Our Approach and Contributions: We use two techniques to solve this problem:

Semantic networks and context. Next, we give a brief description of these two tech-
niques. We use semantic networks to capture ad hoc relationships between artifacts.
Fig. 1 shows a partial view of a semantic network in our example. The nodes repre-
sent artifacts and the links represent relationships between artifacts. The number on
each edge quantifies the degree of relevance (i.e., the strength of the relationship) of
two artifacts. We also infer indirect relevance scores between two indirectly linked
artifacts. For example, the relevance score between FMS 5 and TSAFE II DM equals
the product of relevance scores between FMS 5 and TSAFE II LOS, TSAFE II LOS
and TSAFE II, and TSAFE II and TSAFE II DM.

Now, given a search for information pertinent to FMS 5, we can use the semantic
network to add relevant artifacts. A full-text search engine (or a similarity search
engine) returns FMS 5 as result. We can then expand the results by adding any arti-
facts whose relevance score to FMS 5 exceeds a certain user defined threshold (let’s
say 0.7). This threshold identifies the degree of semantic closeness (relevance score)
between related artifacts in the semantic network. For example, only artifacts which
are relevant with a relevance score above threshold t are included in the semantic
network recommendations. Thus the results will include FMS 5, TSAFE II LOS,
TSAFE II, TSAFE II DM, and Requirement: Dynamic Map.

Although semantic networks recommend semantically relevant answers, these an-
swers can fit the user’s query more precisely if additional information about the user,
the project, the environment, etc. were to be provided. We use context, which con-
tains information relevant to the user (such as user’s roles and the current and/or
previous projects) to enable the semantic network to target the user queries more
accurately. For example, some users may be only interested in requirements or design
documents (since they may not be programmers and can not read source code). In our
approach, we store different types of context information and use it to filter the results
generated by semantic network. In the above example, the context associated with
that user, is that the answer must be requirement documents, thus only the require-
ment for Dynamic Map is returned, which is exactly what the user wants.

Fig. 1. A (partial) semantic network for Air Traffic Control Software

0.

0.9

FMS 5

FMS 4 Requirement:
Dynamic Map

TSAFE II
LOS

TSAFE
II

0.5
0.9

TSAFE II
DM 0.9

0.9

 Using Semantic Networks and Context in Search 77

We consider each artifact to be a node associated with certain characterizing attrib-
utes. We begin by constructing a first mode semantic network, referred to as Similar-
ity based Network, which is a graph that identifies the similarity between the nodes in
terms of the features associated with each node. We next utilize semantic rules to
augment the first mode network and discover a second mode network, which we call
Rule Enforced Network. Although both semantic networks and context have been
used individually in search [26] and other applications, there are three important dif-
ferences in this paper.

First, we use semantic networks to model the ad hoc relationships between artifacts
while most existing work such as WordNet [26] and concept maps [74] model rela-
tionships between keywords. We find that in many domains such as software engi-
neering, the relationships between artifacts are often difficult to model at the keyword
level. For example, it is very difficult to model the relationship between a software
release and its subsequent releases at the keyword level. On the other hand, it is
straightforward to add such links between artifacts: a simple rule can be created to
add such links automatically.

Second, this paper combines semantic network with context. Using a semantic
network alone may improve the recall of search results because more artifacts are
returned. However, it may not improve precision of the search results because not all
these additional artifacts may be considered pertinent by the user. This paper uses
context to filter out irrelevant artifacts based on existing contexts. We have conducted
experiments which show that the combination of semantic network and context leads
to better precision and recall.

Third, there has been little work on searching for software engineering artifacts,
which has become increasingly important for the software industry – especially in
regard to the increasing number of change requests and extended life cycles of today’s
software products. To the best of our knowledge, we are not aware of any study that
uses both semantic networks and context in the software engineering domain. Spe-
cifically our contributions are as follows:

1. We automatically construct a semantic network from artifacts and their associ-
ated characterizing attributes.

2. We keep a provision for adding external semantic rules supplied by a domain
expert, that when applied to the semantic network, they augment and enhance it.

3. We automatically find, using our semantic network, not only the requested arti-
facts based on a user query, but additional relevant ones that the user might have
not been aware of.

4. We apply context on the result set of the user query to enhance the quality of
search over artifacts and include only contextually related artifacts.

5. We demonstrate through experiments, using software artifacts from a software
test bed, that the combination of semantic networks and context significantly im-
prove both the precision and recall of search results.

Although this paper focuses on the software engineering domain, we believe the pro-
posed approach is suitable to other domains too. The rest of the paper is organized as
follows: Section 2 describes related work and Section 3 gives preliminaries on seman-
tic networks and context. In Section 4 we describe our approach, and in Section 5 we
present and discuss validating experiments. Section 6 concludes the paper.

78 G. Karabatis et al.

2 Related Work

Related work on software change and reuse. The problem of determining software
change impact has a long history. Haney’s early model for module connection analy-
sis predicts the propagation of change among modules of a system [33]. It assumes
that a change in one module is likely to cause change in other modules. A probability
connection matrix subjectively models the dependencies between modules. Our ap-
proach is different from Haney’s in that we do not only model dependencies between
modules, but between all artifacts carrying design information as well as relationships
between projects, and we use context.

Many useful theoretical models for impact analysis and change-related processes
are collected in the excellent overview by [11]. Different approaches to identify
change are described; for instance, traceability analysis for change propagation be-
tween work-products, ripple-effect analysis for propagation within work-products,
and change history analysis to understand relationships to previous changes. Many
approaches address reuse of various artifacts [62, 57, 61]. These approaches make use
of metadata (i.e., tags) to describe the artifacts, which are used to classify [57, 63] and
retrieve them [56, 7].

Latent Semantic Indexing (LSI), an information retrieval technique, has been used
to recover links between various artifacts [47, 50] that share a significant number of
words (not necessary the words being searched). However, in the software engineer-
ing domain the usefulness of this approach is sometimes limited. As described in our
Motivating Example, the critical keywords TSAFE and FMS do not appear in the
same artifacts and the description of the change request uses different terminology.
Furthermore, the similarities between two artifacts are symmetric in LSI, which is
often not true in practice. For example, given a software release, the next and newer
release is likely more interesting than the previous one. Since semantic networks do
not require the existence of such shared keywords and they do not require that simi-
larities are symmetric, our approach does not have these limitations.

Canfora et al. describe the state of the art of information retrieval and mention
three areas in which information retrieval is applied to software maintenance prob-
lems: Classifying maintenance request (i.e., change request), finding an expert for a
certain maintenance request, and identifying the source that will be impacted by a
maintenance request [15]. For example, in [48] the authors use various technologies
such as Bayesian classifiers to classify maintenance requests. In [5, 18] [54] the au-
thors determine who is the expert for a certain change request based on who resolved
a similar change request in the past based on data from version control systems and
try to identify similar change requests from the past. The main difference with our
approach is that we model distant relationships connecting projects and artifacts that
are similar, but would most likely never show up using similarity-based searchers.
The impact on source code from a certain change request has been studied in [14] by
correlating change request descriptions with information provided in version man-
agement systems such as Bugzilla.

Related work on semantic networks. Semantic Networks have been used in phi-
losophy, psychology and more recently in information and computer science. Sowa
gives a descriptive outline on the types and use of semantic networks in different

 Using Semantic Networks and Context in Search 79

disciplines in [70, 69]. Semantic networks have long been used to represent relation-
ships [51]. Pearl used probabilities in semantic networks and performed extensive
work in applying statistics and probability in causal semantic networks [59, 58] to
derive such networks from observed data.

There has also been work on discovering semantic similarity in [22] based on gen-
eralization/specialization, and positive/negative association between classes; the topic
of discovering and ranking semantic relationships for the semantic web is also rele-
vant [3, 67]. Our work is also linked to the specification of relationships among data-
base objects stored in heterogeneous database systems [38, 28, 68, 65]. We have used
semantic networks to enhance the results of a user query in different application do-
mains such as the environmental [17] and e-government of water quality management
[16]. However these early approaches do not support automated creation of the se-
mantic network and do not incorporate context as part of the solution. We are now
applying our approach in the domain of software engineering: see [43] for an early
and initial approach describing a limited scope of this problem in software engineer-
ing. Quite related is the work on ConceptNET a large scale concept base which cap-
tures common sense concepts [46].

Related work on context. A significant part of scientific literature is related to the
use of context information related disciplines and in the social sciences such as psy-
chology and sociology. Pomerol and Brezillon examined notions of context and iden-
tified its forms as external, contextual, and proceduralized [60]. Bazire and Brezillon
made an analysis on 150 definitions of context found on the web, and concluded that
the definition of context depends on the field of knowledge it belongs to [8]. For a
comprehensive examination of an operational context definition see [78] and for con-
text definitions in artificial intelligence, databases, communication, and machine
learning see [13]. Lieberman and Selker presented context in computer systems and
described it as “everything that affects the computation except the explicit input and
output” [42]. There is related research performed within the scope of data integration
and interoperability using context [37, 76, 30, 23]. Context has also been used as an
aid in defining semantic similarities between database objects [39].

Sowa provides an overview on facts and context in [71]. Context has been used in
multiple settings: Semantic knowledge bases utilize a partial understanding of con-
text; WordNet is such an example, where context is expressed in natural language
[26]. It has also been used to provide better algorithms for ranked answers by incorpo-
rating context into the query answering mechanism [2] and to improve query retrieval
accuracy [66]. Significant work on context-sensitive information retrieval was per-
formed in [66, 72, 35, 27]. However, we focus on how to take context into considera-
tion when using semantic networks. Graphs that represent context have been used to
provide focused crawling to identify relevant topical pages on the web [20]. Methods
to model and represent context for information fusion from sensors using relational
database model are described in [77]. Context has also been used to prune semantic
networks to improve performance, by marking and thus using only nodes which are
pertinent in specific contexts [31]. In addition, graphs were used by [55] to infer the
context and fit it into an existing semantic network. However, in our work we keep
the semantic networks separate from context, and we avoid automated inference of
context. Finkelstein et al. identify the difficulties in automatic extraction of context,

80 G. Karabatis et al.

especially with text, as documents may be large, could contain multiple concepts, and
could inject a lot of noise [27]. We have decided to collect context either by observ-
ing user actions, or explicitly by the user, an approach which is also used in [41]
where the context is used by the system; however it differs from our approach as it
they use it to perform a rewrite of the original user query, whereas we apply a filtering
technique on the expanded result.

Related work on the semantic web and ontologies. A significant amount of work
on semantics and the meaning of concepts has been done for the semantic web [10,
75]. The Web Ontology Language OWL [53] has been used to model concepts of a
domain that are to be shared by others providing a relevance to the concept of seman-
tic networks. McCarthy introduced the ist(C,p) predicate to disambiguate when a
proposition p is true in context C [52] and in [32] the authors adapt the ist construct of
context and address the contextual problems which arise in aggregation on the seman-
tic web. The restrictions of the standard OWL specification, such that it allows neither
directionality of information flow, nor local domain (which is of utmost importance
for contexts), nor context mappings, are overcome by extending the syntax and the
semantics of OWL via explicit context mappings [12]. The notion of relationships
between concepts is also related to the topic maps or concept maps [74]. The major
thrust of our work is to create a methodology that utilizes semantic networks and
contextual information to support software engineers in their search of relevant arti-
facts. It can be implemented in a variety of ways:

• As a stand-alone system, as we present in this paper
• On the web, using semantic web technologies, such as OWL and RDF [4]
• In a combination of the above two techniques

The concepts presented in this paper can also be adapted and implemented on the
semantic web, for example, expressing relationships using OWL. However, such
effort is not within the scope of this paper, but we plan to investigate semantic web
technologies in the future.

3 Preliminaries

In this Section we provide an introduction to some topics and notation that are being
used in the remainder of the paper, around the concepts of semantic networks and
context.

Artifacts. In our software engineering setting, we assume that each artifact is associ-
ated with metadata represented as a set of attribute-value pairs. For example, the FMS
version 5 has the following attributes: Name = Flight Management System Version 5,
Type = Code, Programming Language = Java. In addition to these attributes the arti-
facts can be parsed to derive additional attributes. For instance in a Java program,
import statements, function names etc. also provide valuable information about the
artifact and can indeed be used as attributes describing the artifacts.

 Using Semantic Networks and Context in Search 81

Semantic networks. A semantic network represents ad hoc relationships among
artifacts.

Definition 1 [Semantic Network]. A Semantic Network N(V, E) is a directed graph
where V is a set of nodes and E is a set of edges. Each node corresponds to an arti-
fact, and each edge links two relevant artifacts vi and vj and has a score w(vi,vj) in the
range of 0 to 1, representing the degree of relevance between the source artifact and
the destination artifact.

Fig. 1 illustrates a partial semantic network for the FMS and the TSAFE projects. The
network contains knowledge of multiple people, e.g., an individual programmer of
TSAFE may not know the relationships of artifacts in FMS, and vice versa, but a
software architect may know that TSAFE is related to FMS, although the software
architect may not know in detail the relationships between the artifacts within each
system. That is, each of them only has knowledge of a part of the semantic network.
However, based on the relevance scores between neighboring nodes in the network, it
is possible to infer the relevance between any two nodes (as far apart as FMS 5 is to
TSAFE II DM – see Fig. 1). Thus, one can discover more semantically related infor-
mation compared to individual knowledge. Next we define the relevance score be-
tween any two artifacts in the network.

Definition 2 [Relevance Score]. If vi and vj are two nodes in a semantic network
N(E,V), there are k paths p1,…, pk between vi and vj, where path pl (1 <= l <=k) con-
sists of nodes vl1,…, vl|pl|+1 (|pl| is the length of path pl). The relevance score rs as
defined by [17] between vi and vj is

)),(max(
||1

1∏
≤≤

+
=

pli
ll ii

vvwrs

The above formula computes the relevance score between vi and vj as the maximum
relevance score of all paths connecting vi and vj. The relevance score of such a
path is computed using conditional probabilities under the assumption that they are
independent.

For instance, the relevance score between ‘FMS 5’ and ‘TSAFE II DM’ can be
considered as the conditional probability of a software developer interested in the
TSAFE II DM given that the developer is interested in the related product line FMS 5.
Using the standard notation for conditional probability, we have:

P(TSAFE II DM | FMS 5) = P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5)

because the developer considers that TSAFE II DM and FMS 5 are related if all arti-
facts on the path from FMS 5 to TSAFE II DM (TSAFE II LOS and TSAFE II) are
considered to be related. Using chain rules and assuming all conditional probabilities
are independent [64], we have:

P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5) =

P(TSAFE II LOS | FMS 5) × P(TSAFE II | TSAFE II LOS) × P(TSAFE II DM |
TSAFE II) = 0.9 × 0.9 × 0.9 = 0.73.

82 G. Karabatis et al.

Thus, a developer receiving a change request for FMS 5 and using the semantic net-
work, would be able to find relevant artifacts such as FMS 4, TSAFE II LOS, TSAFE
II, LOS Detector requirement, TSAFE II DM, and Requirement: Dynamic Map. Note
that we can easily specify “not related” information in the semantic network by sim-
ply not adding a link between them. For example, there shall be no link between the
Finance Management System and TSAFE. We also assume that relationships between
nodes do not have to reflect the same attribute. By design, we just need to have any
relationships established between the nodes of the graph, and we do not necessarily
need to have probabilities of the same attribute to calculate paths.

Context. We consider context to be significantly important in the search for semanti-
cally related information as every single search is performed within a specific context.
Although this context may not explicitly appear in the query terms, nevertheless it
does exist, and the user expects the system to provide information relevant to this
context. In general, users may not be aware of context when they first search for in-
formation. However they become cognizant of context when they receive results that
are irrelevant or not applicable to the current context, i.e., when a search for FMS
returns Finance Management System. A highly beneficial characteristic of our sys-
tem is that it takes advantage of context in a transparent way to filter and return the
most appropriate answers tailored to each user. We consider the following four types
of context:

• User Context contains information specific to users such as the role of the user
(e.g., developers or design analyst), the programming language skills, etc.

• Application Context contains information about the application or project the
user is working on, such as the name and type of project, etc.

• Environment Context includes information about the environment around the
user, such as the organization the user belongs to, the operating system of the
user’s computer, etc.

• Other Context is used as a place holder for additional contextual information
which does not fit in any of the previous context categories, but still is relevant
to the domain of discourse.

Note that there are additional categories of context which do exist, such as security
considerations, policies, etc., which are not captured in our system. We acknowledge
that it is unlikely to capture all possible types of context and their values in a
computer system, since there will always be additional information contributing to
context. We limit ourselves to collecting information about the above categories of
context, and we do not claim that we can capture all possible context types. For an
extensive work on an operational definition of context see [78]. In the domain of
software engineering, we claim that such context information is relatively easy to
collect as it was the case in our experiments and described below, and assume will be
similar in most software engineering settings. Unlike domains such as generic search
on the Internet where users submit ad hoc queries and want to find answers immedi-
ately, the users in software engineering domain are typically software developers,
analysts, project managers, etc., who are regular users of the system and are more
willing to provide contextual information in return for more precise search results.
User contexts can be gathered by asking the users about past project experience, or by

 Using Semantic Networks and Context in Search 83

contacting their manager, etc. Application contexts can be obtained by asking the
project managers. Environment contexts that are relatively static (i.e., the name of an
organization) can be obtained easily, while those that are volatile (i.e., the current
software version information) may need additional effort to collect and maintain.
However, maintaining contexts falls outside the scope of this paper as we assume that
the various types of contexts are already collected, stored, and maintained in a data-
base. Formally a context can be represented in the following format.

Definition 3 [Context]. The context C(Uj, T) of type T for user Uj, where ∈T {User,
Application, Environment, Other} is represented as a conjunctive normal form

)(
21 iniiii

LLL ∨⋅⋅⋅∨∨∧ where each Lij is an attribute value pair or its negation .

For example, the user context of a user who is a design analyst (i.e., interested
in design and requirements documents) and does not know C++ is:

)CLanguage gProgrammin ()tsRequiremenTypeDesignType(++=¬∧=∨= .

From a systems viewpoint, context is metadata information stored in database ta-
bles and it is used in conjunction with semantic networks as follows: Artifacts repre-
sented as nodes in semantic networks contain characterizing attributes, which may
participate in the attribute value pairs of a context definition. These attributes link
semantic networks and context. Relevance related information comes from semantic
networks, and in turn is pruned by context-related information through the attribute
value pairs. It is important to note that semantic networks and context are somehow
orthogonal dimensions, but both use the attributes of the artifacts. Further details are
described in Section 4.3.

4 Approach

Our approach consists of the following distinct steps: we first provide a high level
overview of the major components of our system and the lifecycle of a user query
through the system. Then we present details on the creation of a semantic network: we
first derive the universal feature vector which has all the potential attributes across the
set of artifacts. Based on the vector a feature vector for each artifact is generated. We
utilize the similarities between these feature vectors to generate a similarity based
network. This is further enhanced by semantic rules to generate a Rule enhanced
network. We also define relevance scores between artifacts. Subsequently we define
the context for the semantic network for a more refined result set. Lastly we apply
transformation functions on this semantic network. The approach is discussed in the
following subsections: Section 4.1 the system overview and the lifecycle of a user
query. Section 4.2 describes how we construct semantic networks. Section 4.3 dis-
cusses how to use context in our system. Finally, Section 4.4 describes a framework
of transformation functions which formalize our overall approach.

4.1 System Overview

In this section we outline the system architecture and the flow of a query from the
time it is submitted until the results are returned back to the user.

84 G. Karabatis et al.

A high-level conceptual architecture of our system with its major components is il-
lustrated in Fig. 2. Our prototype system has been implemented using an Oracle data-
base in which we store all types of metadata about software artifacts (attribute-value
pairs), semantic networks, and context. Our system stores only metadata, e.g., an
identifier (such as a uri) pointing to the location of each actual artifact. A set of se-
mantic networks is depicted to the right part of Fig. 2, each representing a separate
software project. All these semantic networks are merged into a larger Semantic Net-
work, which integrates the individual semantic networks into a consolidated one. The
edges connecting these networks identify the existence of a potential relationship
between them. The strength of this relationship is represented as a relevance score.
Another component of our system contains information about the different types of
contexts that are collected (User, Application, Environment, etc.) and it is used to
identify semantically related information and filters out irrelevant information. Con-
text has been implemented as a set of tables in an Oracle database. Metadata about
software artifacts is also stored in the database to be used in the extraction of the ini-
tial artifacts based on the user query. The Semantic Search Engine interacts with the
users and all major components of our system. It oversees all operations at each
component, from the submission of a user query, to its execution, the use of semantic
networks and contexts, all the way to displaying the final results to the user.

Semantic networks and context information significantly improve the quality of the
query result, since: (1) they enhance the result set with semantically relevant informa-
tion that the users might not be aware of, and (2) they incorporate contextual knowl-
edge to streamline the result according to user, application and other contexts. We
demonstrate the improvement in quality by measuring recall and precision of the
results (see Section 5). In this Section we present the lifecycle of a query submitted by
a user to our system as illustrated in Fig. 3. Initially, a text search is performed to

Fig. 2. Conceptual system architecture

SN1

Semantic Networks

SN2

SNi

Semantic
Network

Context

User, Application,
Environment, Other

Semantic
Search Engine

User Inter-
face

Metadata on
Artifacts

Artifacts and
Engine

…

 Using Semantic Networks and Context in Search 85

collect all related information which matches the user query. This search is performed
on a set of metadata about the artifacts2. Then, the returned artifacts are given as input
to the semantic network. Using the algorithms described in detail in section 4.2 and
depending on the value of the user-defined threshold on the relevance score, the
semantic network produces an augmented list of recommended artifacts, whose rele-
vance scores to any of the initial artifacts exceed the threshold and thus are semanti-
cally relevant to the initial user query. However, this augmented list may not reflect
the contextual information pertaining to the user, project, etc. Consequently, the con-
texts are used next, to filter information accordingly. As a result, only the recom-
mended artifacts which are pertinent to the contexts will be collected and given to the
user in the final result set of the original query. For example, assume that a require-
ment analyst asks a query on “automated collision avoidance,” the system first per-
forms a full-text search and returns all artifacts from the database containing these
keywords. At this point, the current result set may not contain all relevant artifacts as
there could be additional artifacts that are semantically relevant but which are not
included in the search results. Then, the system utilizes the semantic network to find
all additional artifacts which are semantically related to the current search results; i.e.
additional artifacts that do not contain the search keywords explicitly, but are closely
related to them (e.g., the Loss of Separation Detection Module, which detects situa-
tions where two aircrafts are too close). However, the augmented results containing
all semantically relevant artifacts may not be pertinent to the user’s context. There-
fore, contextual information is extracted from the database and is applied to the set of
augmented results to filter out artifacts that are out of context keeping only those that
are within context. In our example, only requirement documents (but not source code)
are kept in the final result.

2 In this paper, whenever we refer to artifacts we mean the metadata about the artifacts and not

the artifacts themselves.

User
Query

Artifacts
Metadata

Text
Search

Semantic
Network

Semantic Net
Recommendation

Context
Processing

Final
Result

Fig. 3. Life cycle of a user query

86 G. Karabatis et al.

Of course we allow users to evaluate the recommended artifacts and they have the
ability to accept/reject each one of them. They can also fine-tune the search query,
resubmit to the semantic network and possibly provide a different threshold for the
relevant artifacts until they are presented with recommended and contextualized arti-
facts to their satisfaction.

4.2 Construction of Semantic Networks

To avoid the daunting task of manually constructing and maintaining the semantic
network, we adopt an approach for the construction of semantic networks in an auto-
matic manner, consisting of two layers (first mode and second mode network). The
first mode network identifies relevant artifacts based on similarity, whereas the sec-
ond mode network is build on top of the first mode and enhances it by adding seman-
tic information. As shown in Fig. 4, each node in the semantic network represents an
artifact and part of the metadata for this artifact is a set of attributes which describe
the artifact. We utilize the similarity between the attributes of the artifacts to construct
the semantic network. We construct it as follows.

Automatic Generation of Feature Vectors

Let X = {x1,...xn} be the set of artifacts, where each xi ∈ X is associated with a set of
characterizing attributes ai = {ai1,….aim}. The values of these attributes can be trans-
formed into categorical values (binary) and form a feature vector fi ={fi1, . . . , fim}. In
order to automatically create a similarity based network we first need to generate the
feature vector associated with each artifact. Our approach is generalizable to continu-
ous attributes such that they can be discretized into categorical variables. Additionally
we can also handle textual variables since we can parse the features from code files.
These feature vectors are used to determine how similar the artifacts are in terms of

Feature Vectors
Similarity and

Probability

Semantic Rules
Enforcement

(a) Similarity Based Networks

(b) Rule Enforced Network

FMS 5 0.8

0.8

0.9

0.9

0.5

0.9

FMS 4

TSAFE II

TSAFE II
DM

TSAFE II
LOS

0.7 0.7
0.9

0.9

FMS 5 0.8

0.8
0.9

0.9

0.5

0.9

FMS 4

TSAFE II

TSAFE II
DM

TSAFE II

LOS Requirement:

Dynamic Map

0.7 0.7
0.9

0.9

FMS 5 0.8

0.8
0.9

0.9

0.5

0.9

FMS 4

TSAFE II

TSAFE II
DM

TSAFE II

LOS Requirement:

Dynamic Map

Fig. 4. Creating a semantic network

 Using Semantic Networks and Context in Search 87

the attributes characterizing them and they are utilized to generate the semantic net-
work; therefore, we outline our process and algorithm here for the generation of fea-
ture vectors. We discover features by class of artifacts. For instance, software artifacts
can be viewed as programs, requirement specifications, test cases and so on. For each
such class of artifacts we produce a universal feature vector by creating a parser for
the artifacts. This can be seen as a preprocessing step necessary to acquire the data
about the artifacts. In the case of Java programs, using a text file parser, we extract
features such as import statements and function names, and we add them to the fea-
ture vector. The union of all feature vectors creates a universal vector (V) containing
all artifacts. Thus V={ a11 U a21,….U aim } and it will be used for the similarity based
network.

Algorithm for Automatic Feature Vector Generation. We outline our algorithm for
the generation of the Feature Vector. The algorithm takes as an input the set of arti-
facts X={x1,…., xn}. On lines 1-5 we generate a universal vector U, by parsing
through the artifacts. This essentially finds all the attributes from the various artifacts,
from x1 to xn, and stores them in U. So for instance if we are parsing a java program
then the import statements will be the attributes of the Universal vector. We then
create a feature vector from U on lines 7-15. We parse the artifacts to note the pres-
ence or absence of an attribute in the artifact. For example if we have a Java program
artifact with an import java.util statement then the feature in the vector for this artifact

Algorithm 1 The Feature Vector generation algorithm

Require: Set of artifacts X where each xi ∈ X
Ensure: Set of artifacts X where each xi ∈ X is
associated with a set of attributes ai = {ai1,..,aim}
and a set of features fi = {fi1,..,fim}
 1: for i = 1 to |X| do
 2: {Read artifact xi}
 3: {ai ← Parse Attributes(xi)}
 4: {add(U, ai)}
 5: end for
 6: {Initialize Feature Vector f}
 7: for i = 1 to |X| do
 8: for z = 1 to |U| do
 9: if uz ∈ xi then
10: {fiz = 1}
11: else
12: {fiz = 0}
13: end if
14: end for
15: end for

88 G. Karabatis et al.

will have a value 1 vs. another java program without the import statement will have a
value 0 for the feature. The parser can be modified to handle other types of languages
such as c++, python etc. Programming languages provide a structured environment to
handle such a parsing. However documents may not be parsed easily using this
method since their structure is not very well defined. The complexity of the algorithm
is O(N |U|) where N is the number of artifacts and |U| is the size of the Universal
Vector.

Similarity Based Network

Let us assume that we have a set of n artifacts X = {x1,...xn}, where each xi ∈ X is
associated with a set of m features captured in a feature vector fi ={fi1, …, fim}. We
use a Jaccard similarity coefficient3 to quantify the similarity among the feature vec-
tors of the artifacts. Based on the Jaccard coefficients we connect similar nodes using
edges and start creating the semantic network. We add probabilities on the edges as
follows: given a pair of nodes xp and xq such that there exists a similarity between the
two nodes the probability w(xp , xq) of traversing from node xp to xq is:

 where

Jpq is the Jaccard similarity coefficient between the feature vectors of artifacts (nodes)
xp and xq. Jpj is the weighted degree of the node p, and k is the number of incident
edges on p. Thus, based on the similarity and probability computations we get a first
mode semantic network as shown in Fig. 4(a), which we refer to as Similarity based
Network. There could be several disconnected first mode semantic networks as shown
in Fig. 4(a). The probabilities are shown close to the tip of each edge. We formally
define the first mode Semantic Network as follows:

Definition 4 [Similarity based Network]. Let X = {x1,...xn} be the set of artifacts,
where each xi ∈ X has a feature vector fi ={fi1, . . . , fim} then a first mode Similarity
based Network Nsn(Vsn, Esn) is a directed graph where Vsn is a set of nodes and Esn is a
set of edges, such that Vsn ⊆ X and |Vsn| ≤ |X|, and each edge links two relevant arti-
facts <vi, vj> and has a probability score w(vi,vj) where 0 < w(vi,vj) ≤ 1.

Rule Enforced Network

The automatically created first mode networks reflect similarity based on the feature
vectors of each artifact but they do not include any additional semantic information.
For example, there could be strong relevance between two nodes representing files
from different projects, but because some attributes in the feature vectors (e.g. the
name) are completely different, the Jaccard similarity coefficients may not rank them
similar enough to create an edge between them. Such semantic knowledge is usually
captured in the minds of experienced users, and it can be described in terms of se-
mantic rules that explicitly identify connectivity between two nodes in the semantic

3 A Jaccard similarity coefficient (Jaccard index) measures the similarity of sets and is defined

as the size of the intersection divided by the size of the union of the sample sets.

 Using Semantic Networks and Context in Search 89

network. This is required in two scenarios first the two nodes that were not deemed to
be similar according to similarity measures (although they are similar indeed), sec-
ond, there may be a situation where two nodes have a high similarity as per the simi-
larity measures but have a low similarity. We define a semantic rule as follows:

Definition 5 [Semantic Rule]. Given two artifacts xp and xq a semantic rule r is de-
fined as r: xp, xq, w(xp , xq) where w(xp , xq) is the probability score associating the
two artifacts.

When these semantic rules are enforced, they add edges connecting nodes on the first
mode semantic network(s), thus, they augment the network. The probabilities on the
new edges are also calculated and the result is the second mode semantic network as
shown in Fig. 2(b), which we refer to as Rule enforced Network. The new edges are
depicted as dashed arrows. When multiple experts with similar roles create the same
rule connecting two edges, we add a link to the network having as relevance score the
average probability of all occurrences of the rule. When experts with different roles
create new rules it is possible that these rules would expand the network in com-
pletely different directions. In such cases, we do not try to consolidate these rules into
a single network, but we create separate networks each one specific to a role. We
formally define this second mode Semantic Network.

Definition 6 [Rule enforced Network]. Given a first mode Semantic Network Nsn(Vsn,
Esn) , where Vsn is a set of nodes and Esn is a set of edges in Nsn, and a set of semantic
rules R, a second mode rule enforced Semantic Network Nre(Vre, Ere) is a directed
graph where Vre is a set of nodes and Ere is a set of edges such that Vre ⊆ X , |Vre| ≤
|X| and |Vre|≥ |Vsn|, and each edge links two relevant artifacts <vi, vj> and has a
probability score w(vi,vj) where 0 < w(vi,vj) ≤ 1.

The probability scores encompass the similarity between the features of each artifact
and the semantic rules enforced on the network. Such a network contains knowledge
of multiple people, e.g., an individual programmer of TSAFE may not know the rela-
tionships of artifacts in FMS, and vice versa, but a software architect may know that
TSAFE is related to FMS, although the software architect may not know in detail the
relationships between the artifacts within each system. However, based on the rele-
vance scores between neighboring nodes in the network, we can infer the relevance
between any two nodes (as far apart as FMS 5 is to TSAFE II DM – see Fig. 1). Thus,
one can discover more semantically related collective information compared to indi-
vidual knowledge. If a semantic rule links two nodes that are already connected in the
previously created similarity network, the semantic rule link replaces the similarity
link (the expert’s opinion supersedes the feature based similarity).

Algorithm for Automatic Semantic Network Generation

Once we have the feature vectors we then use the Jaccard coefficient to quantify the
similarity among the feature vectors of the artifacts. We use the Jaccard coefficient
since it does not give importance to a positive dissimilarity of features (marked as 0-0
in bits identifying that there is no similarity between two features that do not match)
but gives importance to a positive match (1-1) and positive mis-match(1-0). We outline

90 G. Karabatis et al.

the approach to identifying the similarity of the feature vectors in Algorithm 2. The
complexity of the algorithm is O(N2|U|) where N is the number of artifacts and |U| is
the size of the Universal Vector.

4.3 Using Context

We store context in relational tables. One table stores user context, with columns user
ID, project ID, role of user, programming language, etc. A second table stores appli-
cation context, including project ID, functionalities, etc. A third table stores environ-
mental context, including user ID, operating system, organization name, etc. After
these tables have been initialized, we create a mapping table to map information in
these tables to conditions on attribute-value pairs over the artifacts. For example, if
the user’s role is developer, we map it to the condition: Type = Code ∨ Type =
Requirement as a developer needs to read both code and requirements.

We can then combine all context information of a user into a single filtering condi-
tion. This condition is the conjunction of all conditions mapped from the context
information of a user. For example, a user’s filtering condition may be:

(Type = Code ∨ Type = Requirement) ∧ (Programming Language = JAVA) ∧
(Project = Flight Control) ∧ (Operating System = LINUX)

Algorithm 2 The Similarity based Network generation
algorithm
Require: Set of artifacts X where each xi ∈ X is
associated with a set of attributes fi = {fi1,.. ,fim}
Ensure: Similarity based Network Nsn(V sn,Esn) where V sn
is a set of nodes and Esn is a set of edges, each edge
links two relevant artifacts < vi, vj > and has a
probability score w(vi, vj)
1: jc=0
2: deg=0
3: for i = 1 to |X| − 1 do
4: for j = i + 1 to |X| do
5: jcij = jcji = JC(fi, fj)
6: degi = degi + jcij
7: degj = degj + jcji
8: end for
9: end for

10: for p = 1 to n do
11: for q = 1 to n do
12: w(xp , xq) ← jcpq/degp
13: if w(xp , xq) < Wthreshold then
14: { w(xp , xq) = 0}
15: end if
16: end for
17: end for

 Using Semantic Networks and Context in Search 91

At run time, this condition is used to filter the artifacts returned by the full-text
search and semantic network. This step checks the attribute-value pairs of a returned
artifact, and if any of those attributes in the artifact appears in the filtering condition,
the value of that attribute will be checked against the filtering condition. If the value
violates the condition, the artifact will be pruned. For example, if an artifact with
Programming Language = C++ is returned, this artifact violates the above filtering
condition and will be pruned.

Note that if an attribute of an artifact does not appear in the filtering condition, no
check will be done and the artifact will remain in the result. For example, if pro-
gramming language is not specified in an artifact (e.g., when the artifact is a design
document), then this artifact will not be pruned based on the condition on program-
ming languages.

4.4 Transformation and Composition Functions

It is quite intriguing to evaluate the effect of applying context during the different
phases of the query lifecycle. For example, is it better to apply context before using
semantic networks or after? Can we apply context both before and after using the
semantic network? Questions like this might affect greatly the artifacts that will be
retrieved and we investigate answers to these questions in this Section.

Each user query submitted to our system undergoes a series of transformations as it
passes through its various phases and completes its cycle though our system (Section 4.1).
During each of these different phases a transformation function is applied to a specific
input available in the current phase, and produces a specific output applicable to the
next phase. For example, extracted keywords of the initial user query are used as
input to a function fMAS, which conducts a Metadata Artifacts Search (MAS) and pro-
duces as its output a result containing artifacts RA. Formally,

Definition 7 [Metadata Artifacts Search Function]. Assume that QA is a set of key-
words of a user query, and A is the domain of all artifacts. The function fMAS is the
Metadata Artifacts Search function which takes as input QA and produces as output a
set of artifacts RA .

fMAS(QA) = RA (alternatively A
f

A RQ MAS⎯⎯ →⎯), where RA ⊂ A.

In a similar fashion we define two more transformation functions: fSN and fC which
apply the semantic network techniques and the context techniques respectively.
Therefore we have:

Definition 8 [Semantic Network Transformation Function]. The function fSN applies
the input RA through a semantic network and produces as output a set of related arti-

facts RSN . fSN (RA) = RSN (alternatively SNA RR SNf⎯⎯→⎯), where RA, RSN ⊂ A.

Definition 9 [Context Transformation Function]. The function fC filters the input RSN
utilizing the appropriate context C(Uj, T), and produces as output a set of filtered

artifacts RC . fC (RSN) = RC (alternatively CSN RR Cf⎯→⎯), where RSN,, RC ⊂ A.

92 G. Karabatis et al.

Definition 10 [Lifecycle Composition Function]. A lifecycle composition function L
of a user query in our system is a composition of the transformation functions fMAS ,

fSN, and fC defined as L : fC (fSN,(fMAS(QA)))= RC. Alternatively, L

:)(MASSNC fff oo : AA RQ MASf ⎯⎯ →⎯ SNRSNf⎯⎯→⎯ CRCf⎯→⎯ where RA, RSN,,

RC ⊂ A.

We have used the above transformation functions in a specific order to compute the

final result RC, as a composition of functions:)(MASSNC fff oo . Nevertheless,

there are different ways that we can order the transformation functions and create a

different composition. For example,)(:1 MASCSN fffL oo is another composition

where the context function fC is applied before the semantic network function fSN. It is
interesting to examine whether we obtain the same results depending on the order of
the transformation functions in the function composition. In general, the composition

of functions is not a commutative operation, i.e.,)(MASSNC fff oo

≠)(MASCSN fff oo . In practice, we can apply the transformation functions in dif-

ferent orders depending on how we want the process to take place, we can even apply
the same transformation function multiple times. For example, it makes sense to apply
the context function fC before and after the semantic net function fSN, having a new

lifecycle composition function))((:2 MASCSNC ffffL ooo . We discuss the dif-

ferent options (L, L1, and L2) in our next Section where we describe our experiments.

5 Experiments

We first describe the setup of our experiments in section 5.1. In Section 5.2 we pre-
sent our results for the automatic creation of the semantic network. Next we discuss
the experiments with context and without context and in Section 5.3 we present the
results. We use recall and precision as our basic measures according to the definitions
of [73] and [6]. We also describe our prototype system in the Appendix.

5.1 Setup of Experiments

We used two test-beds of two software projects each:
(1) The Tactical Separation Assisted Flight Environment (TSAFE) and the Flight

Management System (FMS). These two software projects are based on a specification
for Automated Air Traffic Control by NASA [21], implemented by MIT [19] and
turned into a test-bed at Fraunhofer Center, Maryland [44]. This test-bed makes a
good fit for the proposed research for two reasons. First, it contains two parallel
threads of implementations of similar functionality. Second, historical design infor-
mation exists for all variants and versions of TSAFE and FMS. There are as many as
38 different versions of each project, making the total number of artifacts more than
250, not counting the source code class files. The different versions of TSAFE and
FMS are related, making reuse possible but not straightforward. Valuable design
information can be retrieved; however, the different versions and amount of existing

 Using Semantic Networks and Context in Search 93

data makes finding such design information difficult using the current full text search
system.

(2) The second test bed consists of information from two different software pro-
jects; we selected 82 artifacts from DMGroup1 and 76 artifacts from LosGroup3.
These two projects implemented similar functionality. We asked three domain experts
to create an initial semantic network to use it as a baseline on these test beds. The
relationship between two files in different projects (DMGroup1 and LosGroup3)
receives a weight of 1 if these two files are deemed similar or a weight of 0 if they are
dissimilar to each other. The metadata of each artifact includes the name of the arti-
fact, the type of the artifact (requirement document, code, etc.), programming lan-
guage, impact analysis (the impact of a specific software change to the various phases
of software maintenance) , design pattern (a blueprint that can be applied to provide a
solution to a commonly occurring problem), etc.

5.2 Automatic Semantic Network Generation

Creation of Feature Vectors

To create the feature vectors we used the second test bed with a set of 158 Java files
from two different projects (82 files from DMGroup1 and 76 files from LosGroup3)
as an input to a Java program. We used this test bed since we wanted to specifically
evaluate the similarity among files across different projects. These files are compared
with each other based on 4 main characteristics: java import statements (150), pack-
age names (120), class names (120) and method names (almost 300). A universal
feature vector is automatically generated with a set of 680 attributes identifying char-
acteristics which are unique across these 158 files. Next we compare each of these
characteristics in every other file from two different projects to find whether they are
similar or not. This similarity is captured in a similarity matrix which maps the
similarity of each file with all other files across different projects. If two files from
different projects are similar based on a Jaccard similarity coefficient and our weight
computation then we mark the matrix location with a 1 otherwise with a 0. The simi-
larity threshold for this task was set to 0.8. Different threshold values produce differ-
ent results as described in Section 5.3.1. Source and edges along with weights are
stored in an Oracle database which is subsequently used to build the tree structure.

Evaluation and Validation of the Automatically Created Network

The domain experts review the files from two different projects and label the similar-
ity weights as 0 or 1. If they find similar files they give the weight 1, if the files are
not similar they label them with a weight 0. Their concept of similarity is purely
based on the manual evaluation of the artifacts and no specific features are consid-
ered. For the evaluation of the automatic network creation we consider this similarity
provided by the domain experts as our labeled data where the domain expert provides
a weight to the pairs of artifacts. Since the domain experts view is absolute numeric
value of 0 or 1 we devised a method to check whether we did find similar files using
our approach. We compared one artifact from one project with all the other artifacts in
a different project and the one which has maximum similarity weight based on our
approach was checked against the one provided by the domain experts as having the
maximum similarity weight of 1.

94 G. Karabatis et al.

Fig. 5. Performance evaluation using Class labels

Based on this we validate against the labeled data and find the Accuracy of our
method. Using the values from table in Fig. 5 we can compute the accuracy as shown
in Equation 1. Thus, Accuracy = (145 + 3)/ (145+10+0+3) = 148/158 = 0.93*100 =
93%. From a set of 158 files taken from two projects (DMGroup1 and LOS Group3).
Domain Experts found 148 files highly similar out of these 158 and our approach
found 145 similar out of 158. Max Similarity is 145 i.e. artifacts which were found to
be highly similar by our approach and the domain experts. Out of 158, there are 10
false positives where the domain experts found no similarity but our approach found
some similarity, In addition we found 3 files which were highly similar which the
domain experts did not identify.

5.3 Experiments with Context

For this set of experiments we used the data from the TSAFE/FMS test-bed. We col-
lected eight queries from the domain experts. For each query, we also created eight
different contexts by assuming a certain type of user (user context), a certain type of
project (application context), a certain type of programming language (user context
and/or application context), and a certain type of platform (environment context).
Thus there are altogether 64 combinations of queries and contexts. The domain ex-
perts provided us with the correct answers to those queries. We compare the preci-
sion and recall of three search algorithms:

1. Using the normal full-text search algorithm without semantic network or context.
We used Oracle's full-text search feature for this algorithm (referred to as No-
Network in Fig. 6-9)

2. Using semantic network but not context (referred to as Network in Fig. 6-9)
3. Using both semantic network and context (referred to as Network+Context in

Fig. 6-9)

5.3.1 Results
An important parameter in our approach is the threshold t for relevance score in the
semantic network. We experimented using the default and also a varying threshold.
Fig. 6 and 7 report the average recall and precision of all three algorithms using the
default setting t = 0.8.

Probability from Rule Enforced Network

Probability
from Domain
Experts

Max similarity No similarity

Max Similarity 144 (TP) 3 (FN)

No similarity 10 (FP) 0 (TN)

)1(..........Accuracy
FNFPTNTP

TNTP

+++
+=

 Using Semantic Networks and Context in Search 95

The x-axis identifies the queries, while the y-axis presents the value of recall (Fig. 6),
and precision (Fig. 7), both averaged over the eight different contexts for each query.
The results show that using a semantic network produces a much higher recall than not
using a semantic network (see Fig. 6). This is expected because the semantic network
returns artifacts that may not contain searched keywords, but are related to the artifacts
containing those keywords.

The results also show that the use of context increases precision because the con-
text information is used to filter out results not relevant to the user (Fig. 7). In general,
using both the semantic network and context leads to higher precision and recall for
all eight queries (the recall and precision values at 1 occur due to the relatively small
size of the data set).

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

A
ve

ra
ge

 r
ec

al
l

No-Network
Network
Network+Context

Fig. 6. Recall when threshold = 0.8

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

A
ve

ra
ge

 p
re

ci
si

on

No-Network
Network
Network+Context

Fig. 7. Precision when threshold = 0.8

96 G. Karabatis et al.

Next we varied the relevance score threshold t in the semantic network. Fig. 8 and
9 report the average recall and precision over the eight queries when t varies from 1
down to 0.2. Note that No-Network does not use semantic network and it is inter-
preted as t being fixed at 1. Thus, the recall and precision of No-Network do not
change with t.

The results show that as the threshold decreases, the recall of Network and Net-
work+Context increases (see Fig. 8). This occurs because it signifies that the user is
willing to accept less relevant artifacts in the result set, leading to a higher number of
results, when the semantic network is used. The recall of not using a semantic
network is very low (about 0.4) compared to the other two methods because it only
considers artifacts contained in the searched keywords. The recall values of using
Network or Network+Context are always the same because Network+Context would
filter out answers from the results created by using semantic networks. In practice,
missing a relevant artifact means that the project team may miss the opportunity of
reusing existing code; or come up with a wrong estimate of the cost of implementing
a change request, which may be very costly. Thus these results clearly show the value
of using semantic networks, as they bring additional relevant artifacts in the result set.

As the threshold decreases, the precision of both Network and Network+Context
starts to decline (see Fig. 9) when threshold values are below 0.8. As threshold de-
creases below 1.0 but is still quite high (say, 0.8), artifacts which are very closely
related to the answers in the full-text search are returned, and are considered as cor-
rect answers; thus, the precision remains high. However, as the threshold further de-
creases, artifacts that are not very closely related are returned. Thus, the precision
starts to decline. This suggests that using a relatively high threshold (we use 0.8)
would ensure both high precision and recall. Of course, if recall is very important
(e.g., the cost of missing a relevant artifact is very high) a lower threshold can be used
to ensure high recall, but with possibly lower precision.

Fig. 8. Average recall with varying threshold

0

0.2

0.4

0.6

0.8

1

1.2

1 0.8 0.6 0.4 0.2

Threshold t

A
ve

ra
ge

 R
ec

al
l

No-Network
Network
Network+Context

 Using Semantic Networks and Context in Search 97

The results also show that the use of context and semantic network always leads to
higher precision than using semantic network alone, because context helps filter out
irrelevant answers. Using Network+Context also has higher precision than No-
Network over a wide range of threshold values (actually for all the threshold values
we tested), and with a much higher recall as shown in the previous figures. It clearly
displays the benefits of using a combined approach of semantic networks and context.

Experimenting with Different Lifecycle Composition Functions

The experiments we just described correspond to the lifecycle composition function L
(see Section 4.5). We also performed another set of experiments using the alternate
lifecycle composition functions L1 (with context applied only before the semantic

network)(MASCSN fff oo) and L2 (with context applied before and after the se-

mantic network))((MASCSNC ffff ooo) and compared the results with those of L

(with context applied only after the semantic network)(MASSNC fff oo). Fig. 10 and

11 report the precision and recall of these three composition functions.
The results show that L (using context after the semantic network) and L2 (using

context-based filtering both before and after using semantic network) produced the
same results (both recall and precision) for six out of the eight queries. Query Q3 and
Q7 were exceptions. For those two queries, when we applied context before the se-
mantic network, it did not return any answer, resulting in the lowest recall and preci-
sion. The reason was that the direct hits (the results after full text search but without
the semantic network) were actually “out-of-context”. However, these direct hits were
related to the correct answers that were in “in-context”. Thus using L2 the system
filtered out the direct hits and did not return any correct answer. On the other hand,
using L the system still used all the direct hits to find relevant artifacts through the
semantic network, thus correct answers were still returned.

0

0.2

0.4

0.6

0.8

1

1.2

1 0.8 0.6 0.4 0.2
Threshold t

A
ve

ra
ge

 p
re

ci
si

on

No-Network
Network
Network+Context

Fig. 9. Average precision with varying threshold

98 G. Karabatis et al.

Both L1 and L2 apply context based filtering before the semantic network. How-

ever, L2 applies context again after using the semantic network. Since using context
after the semantic network does not eliminate any artifacts in the correct answer (i.e.,
matching the context), L1 and L2 have the same recall. The results also show that L1
(using context-based filtering before semantic network) leads to lower precision than
both L2 and L. This is expected as the use of the semantic network augments the re-
sults with semantically related artifacts. But checking the context filtering condition
before the use of the semantic network does not guarantee that the augmented results
are “in context”. For example, one of the contexts precludes source code for manag-
ers; still L1 returns source code related to requirement documents which are in the
correct answer. This also exemplifies the property of non-commutativity of the lifecy-

cle composition function,)(MASSNC fff oo ≠)(MASCSN fff oo .

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Queries

A
ve

ra
ge

 P
re

ci
si

on

L L1 L2

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

A
ve

ra
ge

 R
ec

al
l

L L1 L2

Fig. 10. Precision with varying composition functions

Fig. 11. Recall with varying composition functions

 Using Semantic Networks and Context in Search 99

In general, if the contexts transformation function fC is used just as a filtering con-
dition, then it is advisable to apply fC after the semantic network transformation func-
tion fSN has produced results. The reason is that this process will return artifacts that
are connected to those initial artifacts that match the query, but do not match the con-
text. Thus, in such cases the default composition function L should be used. Of
course, if the contexts are used in other ways, e.g., to expand the query results or to
modify a possible ranking function for displaying results, then it may make sense to
use context transformation function fC before the semantic network transformation
function fSN.

User Studies

We conducted two studies regarding the searching behavior of users. First, we carried
out an experiment about search tools’ performance [49], which confirmed our main
hypothesis that retrieving information is difficult, especially for subjects unfamiliar in
the domain of the search. Concepts, acronyms, and company lingo were information
that most such subjects lacked in order to find the relevant information. In contrast,
subjects with some company experience did not experience these problems. Based on
these results, we developed and evaluated a prototype search tool that automatically
manipulates the search query adding synonyms, acronyms, and abbreviations,
increasing the relevance of the search results substantially.

Secondly, we performed another study [25], and we surveyed members of two
small IT organizations, one in the US and another one in Germany regarding their
search behavior. The results showed that more than 80% of the subjects used only
one to four search keywords for their queries.

6 Conclusions

We created a set of tools and technologies which use metadata to assist software en-
gineers in their search for software artifacts. Semantic networks capture the semantic
relationships between software artifacts; these networks help return additional arti-
facts that are semantically relevant to the search, which would not have been included
in the original search results using traditional database techniques. We provided an
automated way to create the similarity based semantic network and described two
algorithms towards its creation. Once the semantic network is built, it can be en-
hanced with semantic rules; subsequent user queries take advantage of the relation-
ships that are represented in it. This technique produces an augmented result set of the
user query, relevant to the original search, thus improving the recall of the search
results. However, this augmented and relevant artifact set, may not be tailored to the
appropriate contexts of the particular user. Therefore, we employ techniques to filter
out “out-of-context” results, and return only “in-context” artifacts pertaining to the
user. As a result, the precision is also improved.

We applied our techniques in a software engineering environment with software en-
gineering projects. We performed experiments on real life software projects with the
help of domain experts, measuring precision and recall, by comparing full-text, seman-
tic network only, and a combined use of semantic networks and context methods. The

100 G. Karabatis et al.

results demonstrated that our metadata techniques are promising and they produce a
better recall and precision results compared to the other methods.

In the future, we plan to investigate under which circumstances it would be better
to use different orderings of transformation functions, by creating various lifecycle
composition functions. In addition, during the automatic creation of the semantic
network, the size of the universal vector may explode quickly as each artifact may
potentially contribute new features to the universal vector U. Thus, to control the high
dimensionality of U we will need to assign weights to the features which we defer to
future work. Additionally in the current work we use a Jaccard similarity coefficient;
however, in the future we plan to investigate other similarity coefficients such as
Matching, Tanimoto, Cosine and Dice coefficients [34, 40] and compare them to
Jaccard similarity coefficient.

Acknowledgements. This work was partially supported by an award from the US
National Science Foundation (SGER 0738898) and by a grant from Northrop-
Grumman Corporation.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. Artificial Intelligence Communications 7(1), 39–59 (1994)

2. Agrawal, R., Rantzau, R., Terzi, E.: Context-sensitive ranking. In: ACM SIGMOD Inter-
national Conference on Management of data, Chicago, IL, USA, pp. 383–394 (2006)

3. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.:
Ranking Complex Relationships on the Semantic Web. IEEE Internet Computing, 37–44
(2005)

4. Antoniou, G., Hermelen, F.v.: A Semantic Web Primer, p. 238. The MIT Press, Cambridge
(2004)

5. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: International Conference
on Software Engineering (2006)

6. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addi-
son-Wesley (1999)

7. Basili, V.R., Rombach, H.D.: Support for Comprehensive Reuse. IEEE Software Engineer-
ing Journal 6(5), 303–316 (1991)

8. Bazire, M., Brezillon, P.: Understanding Context Before Using It. In: Dey, A.K., Kokinov,
B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 29–40.
Springer, Heidelberg (2005)

9. Bergmann, R., Göker, M.: Developing Industrial Case-Based Reasoning Applications Us-
ing the INRECA Methodology. In: Workshop at the International Joint Conference on Ar-
tificial Intelligence, IJCAI - Automating the Construction of Case Based Reasoners,
Stockholm (1999)

10. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

11. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society
Press, Los Alamitos (1996)

12. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

 Using Semantic Networks and Context in Search 101

13. Brezillon, P.: Context in Human Machine Problem Solving: A Survey. LAFORIA (1996)
14. Canfora, G., Cerulo, L.: Impact analysis by mining software and change request reposito-

ries. In: International Software Metrics Symposium, METRICS 2005 (2005)
15. Canfora, G., Cerulo, L., Penta, M.D.: Relating software interventions through IR tech-

niques. In: International Conference on Software Management (2006)
16. Chen, Z., Gangopadhyay, A., Holden, S., Karabatis, G., McGuire, M.: Semantic Integra-

tion of Government Data for Water Quality Management. Journal of Government Informa-
tion Quarterly – Special Issue on Information Integration 24(4), 716–735 (2007)

17. Chen, Z., Gangopadhyay, A., Karabatis, G., McGuire, M., Welty, C.: Semantic Integration
and Knowledge Discovery for Environmental Research. Journal of Database Manage-
ment 18(1), 43–67 (2007)

18. Cubranic, D., Murphy, G.C.: Automatic bug triage using text categorization. In: Interna-
tional Conference on Software Engineering & Knowledge Engineering, Banff, Alberta,
Canada, pp. 92–97 (2004)

19. Dennis, G.: TSAFE: Building a Trusted Computing Base for Air Traffic Control Software.
MIT, Cambridge (2003)

20. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused Crawling Using
Context Graphs. In: 26th International Conference on Very Large Data Bases, Cairo,
Egypt, pp. 527–534 (2000)

21. Erzberger, H.: Transforming the NAS: The Next Generation Air Traffic Control System.
In: 24th International Congress of the Aeronautical Sciences (2004)

22. Fankhauser, P., Kracker, M., Neuhold, E.J.: Semantic vs. Structural Resemblance of
Classes. SIGMOD Record 20(4), 59–63 (1991)

23. Farquhar, A., Dappert, A., Fikes, R., Pratt, W.: Integrating Information Sources using Con-
text Logic. In: AAAI Spring Symposium on Information Gathering from Distributed Het-
erogeneous Environments (1995)

24. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery:
An overview. In: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press
(1996)

25. Feldmann, R.L., Rech, J., Wenzler, A.J.: Experience Retrieval in LSOs: Do you find what
you are looking for? In: 8th International Workshop on Learning Software Organizations
(LSO 2006), Rio de Janeiro, Brazil (2006)

26. Fellbaum, C.: WordNet: An Electronic Lexical Database, p. 423. MIT Press, Cambridge
(1998)

27. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.:
Placing Search in Context: the Concept Revisited. In: WWW, pp. 406–414 (2001)

28. Georgakopoulos, D., Karabatis, G., Gantimahapatruni, S.: Specification and Management
of Interdependent Data in Operational Systems and Data Warehouses. Distributed and Par-
allel Databases 5(2), 121–166 (1997)

29. Glass, R.: Agile Versus Traditional: Make Love, Not War. Cutter IT Journal, 12–18 (2001)
30. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context Interchange: New Features and

Formalisms for the Intelligent Integration of Information. ACM Transactions on Informa-
tion Systems 17(3), 270–293 (1999)

31. Gong, L., Riecken, D.: Constraining Model-Based Reasoning Using Contexts. In: IEEE In-
ternational Conference on Web Intelligence, WI 2003 (2003)

32. Guha, R., McCool, R., Fikes, R.: Contexts for the Semantic Web. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 32–46.
Springer, Heidelberg (2004)

102 G. Karabatis et al.

33. Haney, F.M.: Module Connection Analysis - A Tool for Scheduling Software Debugging
Activites. In: AFIPS Joint Computer Conference, pp. 173–179 (1972)

34. Haranczyk, M., Holliday, J.: Comparison of Similarity Coefficients for Clustering and
Compound Selection. Journal of Chemical Information and Modeling 48(3), 498–508
(2008)

35. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, Edmonton, Alberta,
Canada, pp. 133–142 (2002)

36. Johnson, J.H.: Micro Projects Cause Constant Change. In: 2nd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering, pp. 132–135
(2001)

37. Karabatis, G.: Using Context in Semantic Data Integration. Journal of Interoperability in
Business Information Systems 1(3), 9–21 (2006)

38. Karabatis, G., Rusinkiewicz, M., Sheth, A.: Interdependent Database Systems. In: Man-
agement of Heterogeneous and Autonomous Database Systems, pp. 217–252. Morgan-
Kaufmann, San Francisco (1999)

39. Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a
context-based approach. The VLDB Journal 5(4), 276–304 (1996)

40. Kaufman, L., Rousseeuw, P.J.: Finding Groups In Data: An Introduction To Cluster
Analysis. Wiley-Interscience, Hoboken (2005)

41. Kraft, R., Maghoul, F., Chang, C.C.: Y!Q: Contextual Search at the Point of Inspiration.
In: ACM International Conference on Information and Knowledge Management, Bremen,
Germany, pp. 816–823 (2005)

42. Lieberman, H., Selker, T.: Out of context: Computer Systems that adapt to, and learn from,
context. IBM Systems Journal 39(3&4), 617–632 (2000)

43. Lindvall, M., Feldmann, R.L., Karabatis, G., Chen, Z., Janeja, V.P.: Searching for Rele-
vant Software Change Artifacts using Semantic Networks. In: 24th Annual ACM Sympo-
sium on Applied Computing SAC 2009, Honolulu, Hawaii, U.S.A., pp. 496–500 (2009)

44. Lindvall, M., Rus, I., Shull, F., Zelkowitz, M.V., Donzelli, P., Memon, A., Basili, V.R.,
Costa, P., Tvedt, R.T., Hochstein, L., Asgari, S., Ackermann, C., Pech, D.: An Evolution-
ary Testbed for Software Technology Evaluation. Innovations in Systems and Software
Engineering - a NASA Journal 1(1), 3–11 (2005)

45. Lindvall, M., Sandahl, K.: How Well do Experienced Software Developers Predict Soft-
ware Change? Journal of Systems and Software 43(1), 19–27 (1998)

46. Liu, H., Singh, P.: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT Tech-
nology Journal 22(4), 211–226 (2004)

47. Lormans, M., Deursen, A.v.: Can LSI help Reconstructing Requirements Traceability in
Design and Test? In: Conference on Software Maintenance and Reengineering, CSMR
2006 (2006)

48. Lucca, G.D., Penta, M.D., Gradara, S.: An approach to classify software maintenance re-
quests. In: International Conference on Software Maintenance, Los Alamitos, CA (2002)

49. Lydie, Y.T.M.: Context-Based Information Retrieval -User Problems and Benefits of Po-
tential Solutions, Technical Report. FC-MD (2006)

50. Marcus, A., Maletic, J.I.: Recovering Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing. In: 25th International Conference on Software Engineer-
ing, ICSE 2003 (2003)

51. Masterman, M.: Semantic message detection for machine translation, using an interlingua.
NPL, 438–475 (1961)

 Using Semantic Networks and Context in Search 103

52. McCarthy, J.: Notes on formalizing context. In: International Joint Conference on Artifi-
cial Intelligence (IJCAI), Chambéry, France, pp. 555–560 (1993)

53. McGuinness, D.L., Harmelen, F.v.: OWL Web Ontology Language Overview W3C
(2004), http://www.w3.org/TR/owl-features/

54. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identifying ex-
pertise. In: International Conference on Software Engineering, New York, NY, pp. 503–
512 (2002)

55. Mylopoulos, J., Cohen, P., Borgida, A., Sugar, L.: Semantic Networks and the Generation
of Context. In: International Joint Conference on Artificial Intelligence, Tiblisi, Georgia,
pp. 134–142 (1975)

56. Ostertag, E., Hendler, J., Prieto-Diaz, R., Braun, C.: Computing similarity in a reuse li-
brary system: An AI-based approach. ACM Transactions on Software Engineering and
Methodology 1(3), 205–228 (1992)

57. Ostertag, E.J.: A Classification System for Software Reuse, Ph.D. Dissertation. University
of Maryland (1992)

58. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco (1988)

59. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cam-
bridge (2000)

60. Pomerol, J.-C., Brezillon, P.: Dynamics between Contextual Knowledge and Procedural-
ized Context. In: Bouquet, P., Serafini, L., Brézillon, P., Benercetti, M., Castellani, F.
(eds.) CONTEXT 1999. LNCS (LNAI), vol. 1688, pp. 284–295. Springer, Heidelberg
(1999)

61. Prieto-Diaz, R.: Implementing faceted classification for software reuse. Communications
of the ACM 34(5), 89–97 (1991)

62. Prieto-Diaz, R.: Status report: Software reusability. IEEE Software 10(3), 61–66 (1993)
63. Prieto-Diaz, R., Freeman, P.: Classifying software for reusability. IEEE Software 4(1), 6–

16 (1987)
64. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press (1994)
65. Rusinkiewicz, M., Sheth, A., Karabatis, G.: Specifying Interdatabase Dependencies in a

Multidatabase Environment. IEEE Computer 24(12), 46–53 (1991)
66. Shen, X., Tan, B., Zhai, C.: Context-Sensitive Information Retrieval using Implicit Feed-

back. In: 28th international ACM SIGIR conference on Research and development in in-
formation retrieval, Salvador, Brazil, pp. 43–50 (2005)

67. Sheth, A., Aleman-Meza, B., Arpinar, I.B., Bertram, C., Warke, Y., Ramakrishanan, C.,
Halaschek, C., Anyanwu, K., Avant, D., Arpinar, F.S., Kochut, K.: Semantic Association
Identification and Knowledge Discovery for National Security Applications. Journal of
Database Management 16(1) (2004)

68. Sheth, A., Karabatis, G.: Multidatabase Interdependencies in Industry. In: ACM SIGMOD
International Conference on Management of Data, Washington, DC (1993)

69. Sowa, J.F.: Semantic Networks, http://www.jfsowa.com/pubs/semnet.htm
70. Sowa, J.F.: Semantic Networks. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelli-

gence, pp. 1493–1511. Wiley, New York (1992)
71. Sowa, J.F.: Laws, Facts, and Contexts: Foundations for Multimodal Reasoning. In:

Hendricks, V.F., Jorgensen, K.F., Pedersen, S.A. (eds.) Knowledge Contributors, pp. 145–
184. Kluwer Academic Publishers, Dordrecht (2003)

72. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile con-
structed without any effort from users. In: WWW (2004)

104 G. Karabatis et al.

73. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley,
Reading (2006)

74. TopicMap: XML Topic Maps (XTM) 1.0, http://www.topicmaps.org/xtm/
75. W3C: Semantic Web (2001), http://www.w3.org/2001/sw/
76. Wache, H., Stuckenschmidt, H.: Practical Context Transformation for Information System

Interoperability. In: Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.) CON-
TEXT 2001. LNCS (LNAI), vol. 2116, pp. 367–380. Springer, Heidelberg (2001)

77. Wu, H., Siegel, M., Ablay, S.: Sensor Fusion for Context Understanding. In: 19th IEEE In-
strument and Measurement Technology Conference, Anchorage, AK, USA (2002)

78. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In:
Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007.
LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007)

	Using Semantic Networks and Context in Search for Relevant Software Engineering Artifacts
	Introduction
	Related Work
	Preliminaries
	Approach
	System Overview
	Construction of Semantic Networks
	Using Context
	Transformation and Composition Functions

	Experiments
	Setup of Experiments
	Automatic Semantic Network Generation
	Experiments with Context

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

