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Abstract. Automating the discovery of mappings between structured
data sources is a long standing and important problem in data man-
agement. We discuss the rich history of the problem and the variety of
technical solutions advanced in the database community over the previ-
ous four decades. Based on this discussion, we develop a basic statement
of the data mapping problem and a general framework for reasoning
about the design space of system solutions to the problem. We then con-
cretely illustrate the framework with the Tupelo system for data map-
ping discovery, focusing on the important common case of relational data
sources. Treating mapping discovery as example-driven search in a space
of transformations, Tupelo generates queries encompassing the full range
of structural and semantic heterogeneities encountered in relational data
mapping. Hence, Tupelo is applicable in a wide range of data mapping
scenarios. Finally, we present the results of extensive empirical validation,
both on synthetic and real world datasets, indicating that the system is
both viable and effective.

Keywords: data mapping, data integration, schema matching, schema
mapping, data exchange, metadata, data heterogeneity.

1 Introduction

The emerging networked world promises new possibilities for information sharing
and collaboration. These possibilities will be fostered in large part by technolo-
gies which facilitate the cooperation of autonomous data sources. Created and
evolving in isolation, such data sources are maintained according to local con-
straints and usage. Consequently, facilitating technologies must bridge a wide
variety of heterogeneities, such as differences at the system level, differences in
the structuring of data, and semantic pluralism in the interpretation of data.

The world-wide-web and its myriad supporting technologies have proven very
successful for overcoming the system-level heterogeneities which arise in data
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FlightsA

Flights:

Carrier Fee ATL29 ORD17

AirEast 15 100 110

JetWest 16 200 220

FlightsB

Prices:

Carrier Route Cost AgentFee

AirEast ATL29 100 15

JetWest ATL29 200 16

AirEast ORD17 110 15

JetWest ORD17 220 16

FlightsC

AirEast:

Route BaseCost TotalCost

ATL29 100 115

ORD17 110 125

JetWest:

Route BaseCost TotalCost

ATL29 200 216

ORD17 220 236

Fig. 1. Three airline flight price databases, each with the same information content

sharing. However, these technologies have not addressed the difficult forms of
data-level heterogeneity. At the heart of overcoming data heterogeneity is the
data mapping problem: automating the discovery of effective mappings between
autonomous data sources. The data mapping problem remains one of the longest
standing issues in data management [44,56]. Data mapping is fundamental in
data cleaning [10,65], data integration [48], and semantic integration [36,62].
Furthermore, mappings are the basic glue for constructing large-scale seman-
tic web and peer-to-peer information systems [41,70]. Consequently, the data
mapping problem has a wide variety of manifestations such as schema match-
ing [6,13,26,69], schema mapping [4,31,44,81], ontology alignment [16,38,75], and
model matching [56].

Fully automating the discovery of data mappings has long been recognized as
a “100-year” “AI-complete” problem [24,42,52,56,74]. Consequently, solutions
have typically focused on discovering simple mappings such as attribute-to-
attribute schema matching [64,69]. More robust solutions to the problem must
not only discover such restricted mappings, but also facilitate the discovery of the
structural transformations [21,47,58,78] and complex (many-to-one-attribute) se-
mantic functions [12,34,36,62] which inevitably arise in coordinating heteroge-
neous information systems [39].

Example 1. Consider three relational databases Flights A, B, and C maintaining
cost information for airline routes, as shown in Fig. 1. These databases, which
exhibit three different natural representations of the same information, could
be managed by independent travel agencies wishing to share data. Note that
mapping between these databases requires (1) matching schema elements, (2)
dynamic data-metadata restructuring, and (3) complex semantic mapping. For
example, mapping data from FlightsB to FlightsA involves (1) matching the
Flights and Prices table names and (2) promoting data values in the Route



Towards a General Framework for Effective Solutions 39

column to attribute names. Promoting these values will dynamically create as
many new attribute names as there are Route values in the instance of FlightsB.
Mapping the data in FlightsB to FlightsC requires (3) a complex semantic
function mapping the sum of Cost and AgentFee to the TotalCost column in
the relations of FlightsC. �

To better understand the design space of general solutions for the full data
mapping problem, it is necessary to take a step back from particular instances of
the problem. Such a broad perspective provides insight into the crucial aspects
of the problem and into fundamental design techniques which can in turn be
applied towards more robust and efficient solutions to particular data mapping
scenarios.

Overview. Recognizing that data mapping is an AI-complete challenge, we
study various facets of the problem with an eye towards developing a better
understanding of the generic design space of data mapping solutions. In this
investigation, we strive towards understanding both what data mappings are
and how to go about discovering them. Our primary contributions are:

– A novel abstract definition of the data mapping problem and an application
of this definition to the important special case of relational data sources
(Section 2);

– a novel generic architecture for the design of effective solutions to the data
mapping problem (Section 2.4); and

– an instantiation and evaluation of this architecture in the Tupelo data map-
ping system (Section 3), which applies an example-driven methodology for
mapping discovery between relational data sources.

During the course of the paper, related research efforts are highlighted. We con-
clude with a discussion of research directions which build on these contributions
(Section 4). The second half of this paper revises and extends [20].

2 The Data Mapping Problem

The data mapping problem has deep historical roots. We begin this Section
with a brief account of the data mapping problem as it arose as a theoretical
and technological problem. We then turn our attention to a formalization of this
discussion, as a foundation for making practical contributions on the problem.
Finally, we close the Section with an application of this formalism to the impor-
tant special case of mapping between relational databases. An outcome of this
discussion is a general design framework for mapping-discovery systems.

2.1 Perspectives on the Data Mapping Problem

We briefly highlight the historical roots of the data mapping problem. This
account argues that data mapping is one of the oldest intellectual and practical
concerns of science. We aim to show the ubiquity and generality of the problem,
beyond technical motivations.
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Philosophical, Linguistic, and Cognitive Roots. One could argue that the
philosophical problem of communication, a concern since the earliest of Greek
philosophers, is a manifestation of the data mapping problem. Indeed, the per-
plexing question of how it is that two speakers come to some common agreement
during conversation can be recast as a question of how differences in perspective
are resolved through mapping between world-views.

Early philosophical considerations set the stage for a wide-ranging discussion,
which continues to this day, concerning the semantics, interpretation, and origins
of natural and artificial languages (a nice overview of these investigations can be
found in [33]). Of particular interest for background on the data mapping prob-
lem, semiotician Umberto Eco has documented the long struggle to overcome
the perceived problems which stem from language and worldview heterogeneity
[15]. Eco highlights early efforts on developing “universal” ontologies and ar-
tificial languages, such as those proposed in the 17th century by Dalgarno and
Wilkins and more recent efforts such as the Esperanto movement and research on
knowledge representation. In many ways, ongoing research efforts towards build-
ing universal knowledge bases are a continuation of this long-standing effort
towards resolving, once-and-for-all, syntactic and semantic data heterogeneity
[55]. Of course, outside of information systems research, investigators in linguis-
tics and cognitive science have also focused intense sustained effort on resolving
the inherent problems of mapping between heterogeneous conceptual models in
biological and artificial communicative systems, e.g., [17].

Technological Roots. In the field of information systems, it was recognized
early on that data mapping is a fundamental aspect of managing any large collec-
tion of data. From pioneering work on database reorganization in systems such
as ExPress developed at IBM [68] in the mid-1970s, to work in the 1980s and
1990s in database schema integration [3], interoperability [54,67], and schema
matching [64,69], data mapping has arisen in a wide variety of forms and guises.
Moving to the late 1990’s and 2000’s, data mapping has resurfaced in recent work
in ontology management [16,38,70,71]. In each of these areas, a key problem has
been the discovery of transformations for mapping data between heterogeneous
data representations. Much of this research has assumed that human users will
provide these vital pieces which glue together information systems. Only re-
cently have there been efforts to automate some aspects of the discovery of data
mappings.

2.2 A Formal Presentation of the Data Mapping Problem

In this Section we give a formal generic presentation of the data mapping prob-
lem which generalizes and strives towards making more actionable the historical
discussion of Section 2.1. This formalization allows us to focus on the essential as-
pects of the technological problem, and provides a foundation for further practi-
cal progress in the design and construction of automated data mapping solutions.
There have been intense research efforts on data mapping formalisms. Recent
key examples include the formalisms of Calvanese et al., Grahne & Kiricenko,
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and Lenzerini for data integration [9,29,48], the model management framework
of Melnik et al. [56], and frameworks for ontology mapping [16,38,70,71]. Our for-
malism encompasses and extends its predecessors within a generalized statement
of the technical problem of data mapping.

The Structure of Data Schemata. In data mapping, we are concerned
with discovering mappings between data schemata, which are clearly delineated
classes of structured data objects. For the purposes of our generic discussion in
this Section, the internal structure of data objects and particular mechanisms
for their construction are unimportant; therefore, we simply posit a universe
O of data objects. A data model is a formalism for concretely describing the
structuring of atomic data into data objects [1].

Definition 1. A data model M is a computable subset of O.

Examples of well-known concrete data models include the relational, XML,
nested relational, and OODB data models [1].

A data(base) schema is a description of a class of data objects in terms of
a particular data model [1]. For our purposes here, it is only important that a
schema identifies a well-defined subset of the objects in a data model.

Definition 2. A data schema S in a data model M is a computable boolean
function from M to the set {�,⊥}. A data object D ∈ M is said to be valid
with respect to S if S(D) = �. We will call the set of all valid data objects with
respect to S, denoted DS = {D ∈ M | S(D) = �}, the extension of S.

We will sometimes conflate a schema S and its extension DS , when it is clear
from context.

The Structure of Data Mappings. We next define data mappings between
schemata.

Definition 3. A data mapping from a schema S to a schema T is a binary
relation ϕ ⊆ DS ×DT .

By not requiring data mappings to be functional relations,1 this definition ac-
commodates probabilistic, incomplete, and uncertain data management scenar-
ios [11,29]. We further note that Definition 3 does not restrict us to considering
computable data mappings. This flexibility in the formalism is likewise neces-
sary to accommodate the wide range of possibilities for mapping scenarios. In
many practical cases, however, the data mappings under consideration will not
be quite so problematic.

Example 2. Consider data models

Msource = {Ds
a, D

s
b , D

s
c , D

s
d} Mtarget = {Dt

a, D
t
b, D

t
c, D

t
d, D

t
e},

1 i.e., requiring that ∀D ∈ DS it must be the case that |ϕ(D)| = 1.
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schemata
DS = {Ds

a, D
s
b} DT = {Dt

a, D
t
b, D

t
c}

in Msource and Mtarget, resp., and the following binary relations in Msource ×
Mtarget:

ϕ = {(Ds
a, D

t
a), (Ds

b , D
t
a)}

ψ = {(Ds
a, D

t
a), (Ds

a, D
t
b), (D

s
a, D

t
c), (D

s
b , D

t
a)}

χ = {(Ds
a, D

t
a)}.

Then ϕ is a left-total functional data mapping, ψ is a non-functional data map-
ping, and χ is partial functional data mapping, each from DS to DT . �

This example illustrates the special case of finite (and hence computable) data
mappings. If mappings are to be specified by a human expert, then this will
indeed be the case. Recently, a theoretical analysis has been undertaken for this
important scenario [18].

In mapping discovery, we are ultimately interested in specifying data map-
pings in some concrete syntax; we capture this as follows.

Definition 4. Let Msource and Mtarget be data models. A Msource�Mtarget map-
ping language is a pair 〈E , [[·]]〉, where:

– E is a computable set of finite strings over a finite alphabet, and
– [[·]] is a computable function which maps each element of E to a data mapping
ϕ, where ϕ is from a schema in Msource to a schema in Mtarget.

Elements of E are called mapping expressions. We will use “E ∈ L ” as short-
hand for the statement “E ∈ E for mapping language L = 〈E , [[·]]〉.”

Intuitively, E is the set of expressions (i.e., finite syntactic objects) of some
well-defined mapping language (e.g., the relational algebra or XPath), and [[·]] is
the semantic evaluation function for the language which defines the meaning of
expressions in terms of data objects in Msource and Mtarget.

Before we move on to define the general data mapping problem, it is worth-
while to make the following observations. As we saw in Section 1 and Section
2.1, data mapping is pervasive in information systems and is intimately bound
up not only in technological concerns but also in social concerns, since it is hu-
man activities and interests which are ultimately facilitated by these systems.
In striving to capture this, it may appear that our abstract definitions of data
models and mappings become too permissive and open-ended. We argue, how-
ever, that it is worthwhile to attempt to address as much of this problem space
as possible at the outset, and then move on to special cases where technological
progress can be made. Of course, our interests are strictly technological; when
we consider specific data mapping scenarios, this abstract structure becomes
grounded in actionable data models and mapping languages, as we will see in
Section 2.3.
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Defining the Data Mapping Problem. We are now prepared to state the
general data mapping problem (DMP).

DMP. Let S and T be data schemata in data models Msource and Mtarget,
respectively; ϕ be a data mapping from DS to DT ; and L be a Msource �
Mtarget mapping language. Does there exist a mapping expression E ∈
L such that [[E]] = ϕ?

The intuition behind this characterization of the data mapping problem is as
follows: during data mapping discovery, an ideal “oracle” mapping ϕ is typically
elicited informally from a human expert (perhaps interactively using a graphical
user interface in a piece-meal, step-wise fashion) or is otherwise assumed to exist
(and to be verifiable), and the task at hand is to semi-automatically discover a
mapping expression E in some appropriate concrete executable mapping lan-
guage L (such as SQL, XSLT, or probabilistic relational algebra) such that the
behavior of E on data objects in DS is precisely that of ϕ.2

2.3 Data Mapping in Relational Databases

Note that DMP is really a template for specific data mapping problems. We
concern ourselves in the balance of this paper with instances of DMP where
the source and target schemata, S and T , are both relational, and the mapping
language L is a relational database query language.3 In this section we present
the specific details of the data mapping problem for relational data sources. This
concrete presentation will follow the formalism of Section 2.2. Unlike the formal
presentation, however, we will now be concerned with the internal structure
of data objects. Although we focus on relational databases, we note that the
discussion which follows in the balance of this paper is illustrative of any data
mapping scenario where the source and target schemata are structured, and
the mapping language is an appropriate database query language. For example,
our general approach can be readily transferred to mapping scenarios involving
XML data sources (or a mix of sources from various structured data models)
and mapping languages such as XPath or XSLT.

Relational Data Model. We follow a variation of the general framework for
relational data objects as presented by Wyss et al. [78] and the uniform data
model of Jain et al. [37]. In short, we have that: a tuple is a finite set of or-
dered pairs of uninterpreted symbols (i.e., attribute-value pairs); a relation is a
named finite set of tuples; and a database is a named finite set of uniquely named
relations. The schema of a relation is its name taken together with the set of
attribute names of its constituent tuples; the schema of a database is its name

2 It is also interesting to consider an extension of DMP, where E is only required to
approximate the behavior of ϕ within a given error-bound.

3 i.e., a language which specifies mappings on schemas in the relational data model
which are computable and generic partial-functions [1].
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taken together with the set of schemata of its relations. All symbols (including
relation and database names) are assumed to be from some enumerable domain
U of uninterpreted atomic objects (e.g., Unicode strings, JPEG images, MP3
music files, PDF documents, etc.).

Example 3. Consider the FlightsA database from Figure 1. In the relational
data model, this database has encoding 〈FlightsA, D〉 where

D =
{〈
Flights,

{ 〈Carrier, AirEast〉 , 〈Fee, 15〉 , 〈ATL29, 100〉 , 〈ORD17, 110〉}〉
,

〈
Flights,

{ 〈Carrier, JetWest〉 , 〈Fee, 16〉 , 〈ATL29, 200〉 , 〈ORD17, 220〉}〉}
.

�

Relational Mapping Languages. Research on mapping languages (i.e., the
set L in the DMP definition) for the relational data model has been going strong
for over 30 years. At the core of almost all of these languages is the relational
algebra (RA). In what follows, we assume familiarity with RA.

Example 4. Recall database 〈FlightsA, D〉 from Example 3. Suppose we wish
to extract Carrier values from this database and place the output in a relation
named Companies. The following RA query does the trick:

ρrel
Flights→Companies(πCarrier(〈FlightsA, D〉)) = 〈FlightsA, D′〉

where the superscript rel on the rename operator ρ indicates relation renaming,
and

D′ =
{〈Companies, {〈Carrier, AirEast〉}〉, 〈Companies, {〈Carrier, JetWest〉}〉}.

�

For an overview of the rich variety of relational mapping languages, see [1].

Relational Data Mapping Problem. With the relational data model and
RA as an example relational mapping language in hand, we are now in a position
to turn to a concrete presentation of RelationalDMP, the DMP for relational data
sources.

RelationalDMP. Let S and T be relational data schemata, ϕ be a data
mapping from DS to DT , and L be a relational query language. Does
there exist an expression E ∈ L such that [[E]] = ϕ?

For the balance of this paper, we will be concerned with investigating this im-
portant subclass of DMP problems.
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2.4 A Framework for Data Mapping Systems

We now turn to a general overview of the design and construction of solutions for
instances of RelationalDMP. Our design is driven by the following crucial obser-
vation, which encapsulates a long-running analysis of the various subproblems
of RelationalDMP in the data mapping literature (e.g., [36,39,43,47,56,58]):

Data mapping discovery for structured data sources consists of two dis-
tinct principle tasks: discovery of semantic functions and discovery of
structural mapping queries.

Semantic functions operate at the token level (i.e., operate on tokens in U),
mapping data values between data sources. These functions interpret the internal
structure of atoms in U, and hence rely on information which is external to
the information systems of which a data mapping system is a component. This
information can be codified (for example) in an ontology, but it is important
to note that our work does not presuppose pre-existing ontologies, nor even a
shared vocabulary of tokens.

In RelationalDMP, mapping queries operate at the structural level, corre-
sponding to traditional structural database transformations between database
schemas. Discovering semantic functions and discovering mapping queries both
require unsupervised learning from data instances and/or supervised learning
using domain knowledge. For these tasks it is possible to leverage the large body
of techniques which have been developed over the last century in the Machine
Learning, Artificial Intelligence, and Data Mining communities [61].

We propose a generic architecture for RelationalDMP solutions which reflects
our design observation, illustrated in Figure 2. Input to the mapping discovery
process includes, at the very least, source/target database schemas and instances.
If available, the discovery process can also use domain knowledge elicited from
external sources (e.g., human input, system logs, etc.). This architecture, which
we now outline, cleanly captures the division of labor in data mapping implied
by the design thesis.

& Data Mapping
Executable

 Discovery Discovery
Function Validation &

Refinement

Data Mapping Query Discovery

Query

Query

Schema
Matching

Domain
Knowledge

& Instances
Schemas

Semantic Function Discovery
Semantic
Functions

Mapping
Queries

Attribute

&
Feedback Feedback

&
Queries

Mapping
Correspondences

Fig. 2. Generic architecture for discovery of executable data mapping queries
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Schema

Schemas
& Instances

Domain
Knowledge

Complex Attribute
CorrespondencesMatching

Fig. 3. Complex attribute correspondence discovery

Discovering Semantic Functions. The first step in data mapping is to dis-
cover semantic functions (Figure 2). This process involves (1) schema matching
– identifying the correspondences between those attributes of the source and
target schemas that are semantically related – and then (2) discovering the se-
mantic functions which provide the actual mappings between the data values of
these corresponding attributes. Note that this may be an iterative process, with
information gained during function discovery used in further schema matching
(Figure 2).

Discovery of Complex Attribute Correspondences. Schema matching takes as
input the source and target schemas, S and T , and instances if available. If
available, domain knowledge can also be used to supervise the discovery of at-
tribute correspondences (Figure 3). Together, these inputs serve to guide the
selection of good pairings between the schema elements of the source S and
the target T . This process can be abstractly presented as follows. The rela-
tionship between S and T is encapsulated as a boolean function M on the set
P(schema(S)) × schema(T ), and is typically defined externally to the schema
matching mechanism itself.4 The output of this component is a set of complex
(i.e., many-one) correspondences [22,64] between the attributes of S and those
of T that satisfy M :5

{(asource, atarget) | asource ⊆ schema(S), atarget ∈ schema(T ),
& M(asource, atarget) = �}.

Example 5. We observed in Example 1 that, during mapping discovery with
source schema FlightsB and target schema FlightsC, the schema matching
process would output the correspondence ({Cost, AgentFee}, TotalCost). �

Our abstraction of the schema matching process follows in the spirit of other
such formalisms in the literature, e.g., [23,56,64].

Discovery of Functions. After attribute correspondence discovery has been han-
dled, the next step is to use these correspondences, together with the source/

4 Where P(·) is the powerset operator.
5 The case of many-many (i.e., m-n) matchings in the literature [64] reduces to a

special case of many-one matchings, namely, where one is interested in a set of n
many-one correspondences.



Towards a General Framework for Effective Solutions 47

Functions

Semantic Function Discovery

Semantic
ComplexComplex Attribute

Correspondences

Knowledge
Domain

& Instances
Schemas

Selection
Function

Module 1

Module N

Candidate
Functions

Fig. 4. Semantic function discovery

target schemas and instances, to discover the semantic functions which map be-
tween corresponding source and target data values (Figure 4). As with schema
matching, domain knowledge can also be used to supervise the discovery process,
if it is available. It is generally recognized that a modular approach to function
discovery (Figure 4) is necessary to accommodate the wide variety of possibilities
for token transformation scenarios [12]. Hence, our design architecture indicates
specialized modules responsible for discovering specific classes of functions (e.g.,
string functions [12,73], date/time conversions, real-time currency exchange, im-
age conversion, etc.). The last step then is to select the final functions from
among the candidates suggested by these modules (Figure 4).

We can abstract the process of function discovery as follows. Concrete seman-
tic functions map sets of atoms s in a source token space (i.e., a subset of U) to
atoms t in a target token space (i.e., another subset of U). These token spaces
reside in source and target contexts of interpretation, respectively (Figure 5).
In these contexts of interpretation, bijective “meaning” functions msource and
mtarget associate these tokens with some objects Os and Ot, respectively, in do-
mains of discourse which are of interest to the users of the source and target
information systems, respectively:

msource(s) = Os mtarget(t) = Ot

Analogous to the match function M in schema matching, the relationships be-
tween objects in the source and target domains of discourse are encapsulated
in a discourse-mapping function f∗ (Figure 5), whose derivation is external to
the function discovery process. Now, given a complex attribute correspondence
(asource, atarget), the goal of semantic function discovery is to find a concrete
function f (Figure 5) which maps,6 on a per-tuple basis, any instance s of at-
tributes asource in the source token space to an instance t of attribute atarget in
the target token space such that

f(s) = mtarget(f∗(msource(s))) = t.

In other words, f abides by the semantics of both the source and target schemata
in their contexts of use.
6 For further discussion of the “semantics” of applying semantic functions, please see

Section 3.5 below.
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sm

Source Token Space

Source Domain of Discourse

mt

*

O ... O1 n

f

t

O

Target Token Space

Target Domain of Discourse

t

f

ns ...s1

Fig. 5. Semantic mappings between contexts-of-interpretation

Example 6. As we saw in Example 5, the attributes Cost and AgentFee in
database FlightsB correspond to the attribute TotalCost in the relations of
database FlightsC. Once this correspondence has been determined, for map-
ping instances of FlightsB to instances of FlightsC, we require a semantic
function f for this correspondence which interprets the tokens of all three at-
tributes appropriately as numbers in the reals7 and transforms them as follows:

f : Cost+ AgentFee �−→ TotalCost

applied to each tuple in the Prices relation of FlightsB. �

While solutions abound in the literature for one-to-one schema matching [64],
the database community has only recently begun to make strong progress on the
issues of complex (i.e., many-to-one) schema matching and semantic function dis-
covery. Primarily, supervised approaches (i.e., using domain knowledge elicited
via GUIs, etc.) have been explored in the literature [8,12,14,23,30,34,41,62,81].
The design and analysis of approaches to complex schema matching and semantic
function discovery continues to be an extremely important area of investigation
in data mapping.

Discovering Data Mapping Queries. After determining appropriate seman-
tic functions, the second critical step in data mapping is to discover executable
queries (Figure 2). These queries perform restructuring of data objects and ap-
ply the previously discovered semantic functions. Note that this process may be
iterative. In the context of structural transformations which dynamically mod-
ify the input schemata, further rounds between semantic function discovery and
query discovery may be necessary (Figure 2).

7 Or, if appropriate, as currency values, applying exchange rates as necessary if mul-
tiple currencies are involved, etc.
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Data Mapping 

Knowledge
Domain

& Instances
Schemas

Functions
Semantic
Complex

Data Mapping 
Queries

Executable

Query Discovery

Fig. 6. Data mapping query discovery

Example 7. Continuing Example 6, we recall from the discussion of Example 1
that structural mapping from the FlightsB schema to the FlightsC schema
requires data-metadata transformation in a language such as the federated in-
teroperable relational algebra, a variation of which we develop in Section 3.1
below. As we will see, this language is a natural extension of the RA that in-
cludes data-metadata structural transformations. In this algebra, the following
mapping query restructures data under the FlightsB schema to conform with
the FlightsC schema:

π

Carrier, Cost(℘Carrier(ρCost→BaseCost(λTotalCostf , Cost, AgentFee(FlightsB)))).

Note the λ operator for application of semantic functions. In this case, the func-
tion f from Example 6 is applied to the values in the attributes Cost and
AgentFee, and the results are placed in target attribute TotalCost. �

Source/target schemata, S and T , instances of these schemata (if available),
the complex semantic functions discovered between these schemata in the pre-
vious step, and domain knowledge (if explicitly available) are given as input to
the query discovery component of the mapping framework (Figure 6). Collec-
tively, the constraints of these inputs delineate an ideal data mapping ϕ from
S to T . The output of this process is a solution for the RelationalDMP instance
〈S, T,L , ϕ〉, where L is an appropriate query language for S, T , and ϕ. In other
words, the output of this module is an executable data mapping expression E (or
a set of candidate mappings) in some concrete query language L that transforms
any valid instance of schema S into a corresponding valid instance of schema T
(i.e., respecting ϕ). The final sub-step of mapping discovery is validation and
refinement of the discovered mapping(s) (Figure 2).

Query discovery is the least explored aspect of RelationalDMP(and of the
general DMP). Only a handful of systems attack aspects of query discovery
[4,12,31,32,40,57,59,60,66,81], and hence the problem is not very clearly recog-
nized in the literature. Since it is generally recognized in the literature that ex-
ecutable data mapping queries are the crucial glue in the various manifestations
of data mapping discussed in Section 1, clearly continued efforts on understand-
ing DMP are warranted. We note here that to the best of our knowledge, our
research in this Section and Section 3 below on building a mapping query dis-
covery solution (i.e., an instantiation of the framework presented in this Section)
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is the first attempt at discovering full solutions to RelationalDMP. We postpone
a fuller discussion of related query discovery research until Section 3.7, below.

Remarks. In this Section we gave an historical and novel formal presentation
of the DMP. We applied this presentation to the development of the special case
of RelationalDMP, and to the development of a generic framework for designing
data mapping solutions for instances of RelationalDMP. This framework was
based on the observation that such systems should clearly separate the discovery
of transformations for semantic heterogeneity from the discovery of queries for
structural heterogeneity. We next turn to the development of a system which
instantiates the insights of this discussion.

3 Data Mapping as Search

We next present the Tupelo data mapping system for semi-automating the
discovery of executable8 data mapping expressions between heterogeneous rela-
tional data sources. Tupelo is an example driven system, generating mapping ex-
pressions for interoperation of heterogeneous information systems which involve
schema matching, dynamic data-metadata restructuring, and complex (many-
to-one) semantic functions. For example, Tupelo can generate the expressions
for mapping between instances of the three airline databases in Figure 1. The
design of Tupelo is guided by the generic framework for RelationalDMP solutions
developed in Section 2.4.

Previous solutions have not clearly separated each of the subproblems associ-
ated with data mapping discovery – mixing, merging, and/or conflating various
aspects of semantic function discovery and query discovery. This has lead to a
somewhat opaque research literature with inconsistent terminology and dupli-
cation of effort. The development of Tupelo clarifies, complements, and extends
the existing approaches in the literature. In particular, Tupelo is the first data
mapping system to

– propose and validate the mapping query discovery process as an example-
driven search problem;

– explicitly modularize the various aspects of data mapping query discovery;
– seamlessly incorporate complex semantic functions in a complete, executable

mapping language; and
– generate mapping queries which incorporate the full range of data-metadata

structural transformations necessary to overcome heterogeneity in relational
data sources.

Data mapping in Tupelo is built on the novel perspective of mapping discovery
as an example driven search problem. We develop the Tupelo mapping language
L in Section 3.1 and the Rosetta Stone principle behind this example-driven ap-
proach in Section 3.2. We then discuss how Tupelo leverages Artificial Intelligence
8 By executable, we mean that the discovered mapping queries must be in a concrete

mapping language such as SQL or RA (cf., Sections 2.2-2.3, above).
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(AI) search techniques to generate mapping expressions (Sections 3.3 and 3.4).
After this, we discuss how generic query languages such as L can be extended
naturally in this setting to accommodate complex semantic functions which have
previously discovered (Section 3.5). We then present experimental validation of
the system on a variety of synthetic and real world scenarios (Section 3.6) which
indicates that the Tupelo approach to data mapping is both viable and effective.
We conclude the Section with a discussion of related research (Section 3.7).

3.1 Dynamic Relational Data Mapping with Tupelo

Recall from Figure 2 and the discussion of Section 2.3 that a critical component
of data mapping is the discovery of executable data mapping queries. Tupelo
generates an effective mapping from a source relational schema S to a target
relational schema T , under the assumption that semantic function discovery
has been successfully completed. The system discovers this mapping using (1)
example instances s of S and t of T and (2) illustrations of any complex semantic
mappings between the schemas. Mapping discovery in Tupelo is a completely
syntactic and structurally driven process which does not make use of a global
schema or any explicit domain knowledge beyond that encapsulated in the input
semantic functions [6].

The mapping language L used in Tupelo provides support for both simple
schema matching and richer structural transformations.

FIRA. Recently, Wyss and colleagues have developed a relational language
framework for metadata integration [77,78,79]. This framework consists of a fed-
erated relational data model, a variation of which was introduced in Section 2.3,
and two equivalent relational query languages: the Federated Interoperable Re-
lational Algebra (FIRA) and the Federated Interoperable Structured Query Lan-
guage (FISQL). These languages, FIRA/FISQL, (1) are principled extensions to
relational algebra/SQL (resp.) that include metadata querying and restructuring
capabilities; and (2) generalize the notion of relational transpose, providing a no-
tion of transformational completeness for relational metadata [78]. Applications
of the FIRA/FISQL framework include OLAP, schema browsing, and real-time
interoperability of relational sources in federated information systems [78]. True
data integration presupposes metadata integration, and FIRA/FISQL contributes
to the study of query languages specifically by advancing the understanding of
languages that offer robust metadata integration capabilities.

L : Tupelo’s Take on FIRA. Tupelo generates expressions in a fragment L of
FIRA. The operators in this fragment extend the RA (Section 2.3) with dynamic
structural transformations [47,65,78]. These include operators for dynamically
promoting data to attribute and relation names (i.e., to “metadata”), a simple
merge operator [77], and an operator for demoting metadata to data values. The
L operations are intuitively summarized in Table 1. A more detailed discus-
sion and comparison of full FIRA to the wealth of alternative relational query
languages can be found in [78].
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Table 1. L operators for dynamic relational data mapping

Operation Effect

π,∪,× Regular relational operations.

ρ
att/rel
A→B (R) Rename attribute/relation A to B in relation R.

↑BA (R)
Promote attribute A to metadata. ∀t ∈ R, append a new active
attribute named t[A] with value t[B].

→B
A (R)

Dereference attribute A on B. ∀t ∈ R, append a new active at-
tribute named B with value t[t[A]].

↓A,B (R)
Demote metadata. Cartesian product of relation R with a binary
relation (with schema {A, B}) containing the metadata of R.

℘A(R)
Partition on attribute A. ∀V ∈ πA(R), output a new relation named
V, where t ∈ V iff t ∈ R and t[A] = V.

Σ(D)
Generalized union of database D. Outputs an unnamed outer
union of all relations in D.

π

A(R) Drop attribute A from relation R.

μA(R) Merge tuples in R based on compatible values in attributes A.

Example 8. Consider the transformation of instances from FlightsB to instances
of FlightsA in Figure 1. This mapping can be expressed in L as

ρatt
AgentFee→Fee(ρ

rel
Prices→Flights(μCarrier(

π

Route( π

Cost(↑CostRoute (FlightsB))))))

which breaks down as follows:

R1 :=↑CostRoute (FlightsB)
Promote Route values to attribute names with corresponding Cost values.

R2 := π

Route(

π

Cost(R1))
Drop attributes Route and Cost.

R3 := μCarrier(R2)
Merge tuples on Carrier values.

R4 := ρatt
AgentFee→Fee(ρ

rel
Prices→Flights(R3))

Rename attribute AgentFee to Fee and relation Prices to Flights.

The output relation R4 is exactly FlightsA. �

The original FIRA algebra is complete for the full data-metadata mapping space
for relational data sources [78]. The fragment we use in Tupelo maintains the
full data-metadata restructuring power of this language. The operators in our
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L focus on bulk structural transformations (via the →, ↑, ↓, ℘, ×, π, and μ op-
erators) and schema matching (via the rename operator ρ). We view application
of selections (σ) as a post-processing step to filter mapping results according
to external criteria, since it is known that generalizing selection conditions is a
nontrivial problem [41]. Hence, Tupelo does not consider applications of the rela-
tional σ operator. Note that using a language such as L for data mapping blurs
the distinction between schema matching (i.e., finding appropriate renamings
via ρ) [64] and schema mapping [59] since L encompasses these basic mapping
disciplines. It is for this reason that we refer to RelationalDMP (and in general,
DMP) as a data mapping problem.

3.2 The Rosetta Stone Principle

An integral component of the Tupelo system is the notion of “critical” instances
s and t which succinctly characterize the structure of the source and target
schemas S and T , respectively. These instances illustrate the same information
structured under both schemas. The Rosetta Stone Principle states that such
critical instances can be used to drive the search for data mappings in the space
of transformations delineated by the operators in L on the source instance
s. Guided by this principle, Tupelo takes as input critical source and target
instances which illustrate all of the appropriate restructurings between the source
and target schemas.

Example 9. The instances of the three airline databases presented in Figure 1
illustrate the same information under each of the three schemas, and are exam-
ples of succinct critical instances sufficient for data mapping discovery between
the FlightsA, FlightsB, and FlightsC databases. �

Critical Instance Input and Encoding. Critical instances can be easily
elicited from a user via a visual interface akin to the Lixto data extraction system
[28] or visual interfaces developed for interactive schema mapping [4,8,59,72]. In
Tupelo, critical instances are articulated by a user via a front-end graphical user
interface which has been developed for the system (Figure 7). Since critical in-
stances essentially illustrate one entity under different schemas, we also envision
that much of the process of generating critical instances can be semi-automated
using techniques developed for entity/duplicate identification and record linkage
[6,76].

Critical instances are encoded internally in Tuple Normal Form (TNF). This
normal form, which encodes databases in single tables of fixed schema, was intro-
duced by Litwin et al. as a standardized data format for database interoperability
[53]. More recently, this flexible normal form for data has been successfully used
in a variety of investigations and systems, e.g., [2,80]. Tupelo makes full use of
this normal form as an internal data representation format. Given a relation
R, the TNF of R is computed by first assigning each tuple in R a unique ID
and then building a four column relation with attributes TID, REL, ATT, VALUE,
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Fig. 7. Tupelo graphical user interface

corresponding to tuple ID, relation name, attribute name, and attribute value,
respectively. The table is populated by placing each tuple in R into the new table
in a piecemeal fashion. The TNF of a database is the single table consisting of
the union of the TNF of each relation in the database.

Definition 5. Let D be a database with name d. Given a tuple

t = {〈a1, v1〉 , . . . , 〈an, vn〉}

in relation r of D, let t̊ denote the relation of n tuples:

t̊ =
〈
d, {〈TID, t〉 , 〈REL, r〉 , 〈ATT, a1〉 , 〈VALUE, v1〉 ,

. . . , 〈TID, t〉 , 〈REL, r〉 , 〈ATT, an〉 , 〈VALUE, v1〉}
〉

where t = f(t), for some injection f of D into U.9 Then, the tuple normal form
of D is the database

TNF(D) =
⋃

R∈D

⋃

t∈R

t̊

containing a single relation named d.

Note that TNF(D) is well-defined (i.e., unique up to TID values). We will often
blur the fact that TNF(D) is a database and treat it simply as a solitary unnamed
relation.

Example 10. We illustrate TNF with the encoding of the instance of database
FlightsC from Figure 1:

9 i.e., t is a fresh symbol uniquely identifying tuple t.
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TID REL ATT VALUE

t1 AirEast Route ATL29

t1 AirEast BaseCost 100

t1 AirEast TotalCost 115

t2 AirEast Route ORD17

t2 AirEast BaseCost 110

t2 AirEast TotalCost 125

t3 JetWest Route ATL29

t3 JetWest BaseCost 200

t3 JetWest TotalCost 216

t4 JetWest Route ORD17

t4 JetWest BaseCost 220

t4 JetWest TotalCost 236
�

The TNF of a database can be built in SQL using the “system tables” of a
DBMS [2,80]. The benefits of normalizing input instances in this manner with a
fixed schema include (1) ease and uniformity of handling of the data; (2) both
metadata and data can be handled directly in SQL; and (3) sets of relations are
encoded as single tables, allowing natural multi-relational data mapping from
databases to databases with the use of conventional technologies.

3.3 Data Mapping as a Search Problem

In Tupelo the data mapping problem is seen fundamentally as a search problem.
Given Rosetta Stone critical instances s and t of the source and target schemas,
data mapping is resolved as an exploration of the transformation space of L on
the source instance s. Search successfully terminates when the target instance t
is located in this space. Upon success, the transformation path from the source
to the target is returned.10 This search process is illustrated in Figure 8. In this
Section we describe this process in more detail.

Search Algorithms. We work in the classic problem-space model [45]. In par-
ticular, a problem space is a pair 〈S,F〉, where S is a set of states, and F is
a set of state transition partial functions on S. A search problem consists of a
problem space 〈S,F〉, a designated start state s ∈ S, and a goal test function
goal which maps states in S to {�,⊥}.11 A solution to a search problem is a
sequence of transitions τ1, . . . , τn ∈ F such that goal(τn(· · · τ1(s))) = �. In terms
of this model, Tupelo takes as input to the search process: Rosetta Stone source
instance s and target instance t, the set of L transformations, and a goal test

10 Note that there may be more than one path from s to t; we just return the shortest
solution path (i.e., smallest mapping expression). Although the current implementa-
tion does not do so, it is straightforward to extend Tupelo to (1) present a discovered
solution to the user; (2) allow the user to deny or confirm the solution; and (3) if
denied, continue the search for an acceptable solution. Such an adaptation is outside
of the scope of this investigation.

11 Note that in practice, the search space S is not explicitly represented, but rather is
implicit in the start-state and set of transition functions.
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Fig. 8. Search space for data mapping discovery

which checks if a given state n is a superset of t (i.e., if t is derivable from n by
filtering out tuples).

There are two general methodologies for discovering solutions to search prob-
lems: uninformed search and informed search. Both are systematic approaches
to discovering a path of transformations in a search space, differing primarily in
their use of external knowledge not explicit in the graph structure of the space.
In particular, uninformed methods are brute-force approaches for traversing a
search space, and informed methods use some external hints, in the form of
heuristics, to guide the process. At any point during search, a choice needs to
be made in selecting the next search node to visit. For each neighbor n of the
current state, we can assign a cost value via an evaluation function, estimating
the cost to get from the start state s, through n, to a target state:

eval(n) = past(n) + future(n)

where past(n) is the known cost of reaching n from s, and future(n) is an estimate
of the cost of getting from n to a goal state. A node with lowest cost amongst
unexplored nodes is selected next for exploration. Uninformed methods ignore (or
rather, do not have access to) future(n) during this calculation of cost. Informed
methods make full use of future(n) in determining eval(n) (and may or may not
ignore past(n)). The classic “Best-First” search algorithm can be specialized to
the standard uniformed Breadth-First search and informed A∗ search (described
below) algorithms in this manner [61].

In many domains, it is difficult to construct useful heuristic future(·) functions
[61]. In such cases, one is often limited to variations of brute-force search. The
branching factor of the data mapping search space is proportional to |s| + |t|
and hence quite high, ruling out the use of such search methods. Fortunately,
data mapping is a domain where it is possible to develop useful search heuris-
tics (and would be impractical if this were not the case), and using them for
intelligent exploration of the search space greatly reduces the number of states
visited. Hence, we focus on informed search methodologies in the balance of our
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discussion. We return to the issue of developing heuristics for data mapping in
Section 3.4.

Informed Search in Tupelo. Due to their simplicity and effectiveness, we
chose to implement the heuristic based A∗, Iterative Deepening A* (IDA), and
Recursive Best-First Search (RBFS) search algorithms from the AI literature
[45,46,61]. In the exploration of a state space, these algorithms use a heuristic
function to rank states and selectively search the space based on the rankings.
The evaluation function eval() for ranking a search state n is calculated as above,
with past(n) equal to the number of transitions to reach n from s, and where
future(n) = h(n), for some heuristic function h which makes an “educated guess”
of the distance of n from the target state. Search begins at the source critical
instance s and continues until the current search state is a structurally identical
superset of the target critical instance t (i.e., the current state contains t). The
transformation path from s to t gives a basic mapping expression in L . After
this expression has been discovered, filtering operations (via relational selections
σ) must be applied if necessary according to external criteria, as discussed in
Section 3.1. The final output of Tupelo is an expression for mapping instances
of the source schema to corresponding instances of the target schema.

A∗ is a special case of the general best-first search strategy [61]. A∗ search
is just best-first search called with an eval() function such that the future()
component never overestimates the distance to a goal state. We used A∗ search
to develop search heuristics in early implementations of Tupelo. Unfortunately,
the cost of maintaining the search queues quickly becomes impractical (given
an exponential search space). Hence we were driven to explore memory-limited
alternatives to best-first search.

The two search algorithms finally used in Tupelo, IDA and RBFS, operate
under more practical conditions. In particular, each of these algorithms uses
memory linear in the depth of search; although they both perform redundant
explorations (compared to best-first search), they do not suffer from the expo-
nential memory use of basic A∗ best-first search which led to the ineffectiveness
of early implementations of Tupelo. Furthermore, they both achieve performance
asymptotically equivalent to A∗, as most of the work is done on the final search-
frontier during a successful search.12 In a nut-shell, these algorithms operate as
follows:

– IDA performs a depth-bounded depth-first search of the state space using
the eval()-rankings of states as the depth bound, iteratively increasing this
bound until the target state is reached [45].

– RBFS performs a localized, recursive best-first exploration of the state space,
keeping track of a locally optimal eval()-value and backtracking if this value
is exceeded [46].

These two simple algorithms proved to be effective in the discovery of mapping
expressions. To further improve performance of the search algorithms, we also
12 In fact, they may even run faster than A∗ in some cases due to lower memory

management overhead [45].
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employed the simple rule of thumb that “obviously inapplicable” transformations
should be disregarded during search. For example if the current search state has
all attribute names occurring in the target state, there is no need to explore
applications of the attribute renaming operator. We incorporated several such
simple rules in Tupelo.

3.4 Search Heuristics

Heuristics are used to intelligently explore a search space, as discussed in Section
3.3. A search heuristic h(n) estimates the distance, in terms of number of inter-
mediate search states, of a given database n from the target database t. A variety
of heuristics were implemented and evaluated. This section briefly describes each
heuristic used in Tupelo.

Set Based Similarity Heuristics. Three simple heuristics measure the over-
lap of values in database states. Heuristic h1 measures the number of relation,
column, and data values in the target state which are missing in state n:

h1(n) = |πREL(t) − πREL(n)|
+ |πATT(t) − πATT(n)|
+ |πVALUE(t) − πVALUE(n)|.

Here, π is relational projection on the TNF of n and t, and |R| denotes the
cardinality (i.e., number of tuples) of relation R. Heuristic h2 measures the
minimum number of data promotions (↑) and metadata demotions (↓) needed
to transform n into the target t:

h2(n) = |πREL(t) ∩ πATT(n)|
+ |πREL(t) ∩ πVALUE(n)|
+ |πATT(t) ∩ πREL(n)|
+ |πATT(t) ∩ πVALUE(n)|
+ |πVALUE(t) ∩ πREL(n)|
+ |πVALUE(t) ∩ πATT(n)|.

Heuristic h3 takes the maximum of h1 and h2 on n:

h3(n) = max{h1(n), h2(n)}.

Databases as Strings: The Levenshtein Heuristic. Viewing a database
as a string leads to another heuristic. Suppose x is a database in TNF with m
tuples

〈t1, r1, a1, v1〉 , . . . , 〈tn, rm, am, vm〉 .
For each such tuple, let si = ri � ai � vi, where � is string concatenation. Define
string(x) to be the string s1 � · · · � sm, where s1, . . . , sm is a lexicographic
ordering of the m strings si, potentially with repetitions.
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Example 11. Recall the TNF of database FlightsC from Example 10:

〈t1 AirEast Route ATL29〉, 〈t1 AirEast BaseCost 100〉,
. . . , 〈t4 JetWest BaseCost 220〉, 〈t4 JetWest TotalCost 236〉.

Transforming each tuple into a string and then sorting these strings, we have

string(FlightsC) =

AirEastBaseCost100AirEastRouteATL29 · · · JetWestTotalCost236.

�

The Levenshtein distance between string w and string v, L(w, v), is defined as the
least number of single character insertions, deletions, and substitutions required
to transform w into v [49]. Using this metric, we define the following normalized
Levenshtein heuristic:

hL(n) = round

(
k

L(string(n), string(t))
max{|string(n)|, |string(t)|}

)

where |w| is the length of string w, k � 1 is a scaling constant (scaling the
interval [0, 1] to [0, k]), and round(y) is the integer closest to y.

Databases as Term Vectors: Euclidean Distance. Another perspective
on a database is to view it as a document vector over a set of terms [5]. Let
A = {a1, . . . , an} be the set of tokens occurring in the source and target critical
instances (including attribute and relation names), and let

T = {〈a1, a1, a1〉 , . . . , 〈an, an an〉}
be the set of all n3 triples over the tokens in A. Given a search database x in
TNF with tuples 〈t1, r1, a1, v1〉 , . . . , 〈t�, rm, am, vm〉, define x̄ to be the n3-vector
〈x1, . . . , xn3〉 where xi equals the number of occurrences of the ith triple of T in
the list

〈r1, a1, v1〉 , . . . , 〈rm, am, vm〉 .
This term vector view on databases leads to several natural search heuristics.

The standard Euclidean distance in term vector space from state n to target
state t gives us a Euclidean heuristic measure:

hE(n) = round

(√√√
√

n3∑

i=1

(ni − ti)2
)

where xi is the ith element of the database vector x̄.
Normalizing the vectors for state n and target t gives a normalized Euclidean

heuristic for the distance between n and t:

h|E|(n) = round

(

k

√√
√
√

n3∑

i=1

[
ni

|n̄| −
ti

|̄t|
]2

)

where k � 1 is a scaling constant and |̄x| =
√∑n3

i=1 x2i , as usual.
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Databases as Term Vectors: Cosine Similarity. Viewing databases as vec-
tors, we can also define a cosine similarity heuristic measure, with scaling con-
stant k � 1:

hcos(n) = round

(

k

[
1 −

∑n3

i=1 niti

|n̄||̄t|
])

Cosine similarity measures the cosine of the angle between two vectors in the
database vector space. If n is very similar to the target t in this space, then hcos

returns a low estimate of the distance between them.

3.5 Supporting Complex Semantic Mappings

The mapping operators in the language L (Table 1) accommodate dynamic
data-metadata structural transformations in addition to simple one-to-one
schema matchings. However, as discussed in Section 2.3, many mappings involve
complex semantic transformations [14,34,62,64]. As examples of such mappings,
consider several basic complex mappings for bridging semantic differences be-
tween two tables.

Example 12. A semantic mapping f1 from airline names to airline ID numbers:

Carrier

AirEast

JetWest

f1
−→
CID

123

456

A complex function f2 which returns the concatenation of passenger first and
last names:

Last First

Smith John

Doe Jane

f2
−→
Passenger

John Smith

Jane Doe

The complex function f3 between FlightsB and FlightsCwhich maps AgentFee
and Cost to TotalCost:

CID Route Cost AgentFee

123 ATL29 100 15

456 ATL29 200 16

123 ORD17 110 15

456 ORD17 220 16

f3
−→

CID Route TotalCost

123 ATL29 115

456 ATL29 216

123 ORD17 125

456 ORD17 236

�

Other examples include functions such as date format, weight, and international
financial conversions, and semantic functions such as the mapping from employee
name to social security number (which can not be generalized from examples),
and so on.
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Support for Semantic Mapping Expressions. Any complex semantic func-
tion is unique to a particular information sharing scenario. Incorporating such
functions in a non-ad hoc manner is essential for any general data mapping solu-
tion. Although there has been research on discovering specific complex semantic
functions [12,34], no general approach has been proposed which accommodates
these functions in larger mapping expressions.

Tupelo supports discovery of mapping expressions with such complex seman-
tic mappings in a straight-forward manner without introducing any specialized
domain knowledge. We can cleanly accommodate these mappings in the system
by extending L with a new operator λ which is parameterized by a complex
function f and its input-output signature:

λBf,Ā(R).

Example 13. As an illustration of the operator, the mapping expression to apply
function f3 in Example 12 to the values in the Cost and AgentFee attributes,
placing the output in attribute TotalCost:

λTotalCostf3,Cost, AgentFee(FlightsB).

This is precisely the semantic transformation used in Example 7. �

The semantics of λ is as follows: for each tuple t in relation R, apply the mapping
f to the values of t on attributes Ā = 〈A1, . . . , An〉 and place the output in
attribute B. The operator is well defined for any tuple t of appropriate schema
(i.e., appropriate type), and is the identity mapping on t otherwise. Note that
this semantics is independent of the actual mechanics of the function f . Function
symbols are assumed to come from a countably infinite set F = {fi}i=∞

i=0 .

Discovery of Semantic Mapping Expressions. Tupelo generates data map-
ping expressions in L . Extending L with the λ operator allows for the discovery
of mapping expressions with arbitrary complex semantic mappings. Given criti-
cal input/output instances and indications of complex semantic correspondences
f between attributes Ā in the source and attribute B in the target, the search is
extended to generate appropriate mapping expressions which also include the λ
operator (Figure 8).

For the purpose of searching for mapping expressions, λ expressions are treated
just like any of the other operators. During search all that needs to be checked is
that the applications of functions are well-typed. The system does not need any
special semantic knowledge about the symbols in F ; they are treated simply as
“black boxes” during search. The actual “meaning” of a function f , maintained
perhaps as a stored procedure, is retrieved during the execution of the mapping
expression on a particular database instance. Apart from what can be captured
in search heuristics, this is probably the best that can be hoped for in general
semantic integration. That is, all data semantics from some external sources of
domain knowledge must be either encapsulated in the functions f or somehow
introduced into the search mechanism, for example via search heuristics.
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This highlights a clear separation between semantic functions which interpret
the symbols in the database, such as during the application of functions in F ,
and syntactic, structural transformations, such as those supported by generic
languages like L . This separation also extends to a separation of labor in data
mapping discovery, as indicated in our system design framework of Section 2.3:
discovering particular complex semantic functions and generating executable
data mapping expressions are treated as two separate issues in Tupelo.

Discovering complex semantic functions is a difficult research challenge. Some
recent efforts have been successful in automating the discovery of restricted
classes of complex functions [12,34]. There has also been some initial research on
optimization of mapping expressions which contain executable semantic func-
tions [10].

Focusing on the discovery of data mapping expressions, Tupelo assumes that
the necessary complex functions between the source and target schemas have
been discovered and that these correspondences are articulated on the critical
instance inputs to the system. These correspondences can be easily indicated by
a user via a visual interface, such as those discussed in Section 3.2. Internally,
complex semantic maps are just encoded as strings in the VALUE column of the
TNF relation. This string indicates the input/output type of the function, the
function name, and the example function values articulated in the input critical
instance.

3.6 Empirical Evaluation

The Tupelo system has been fully implemented in Scheme. In this section we
discuss extensive experimental evaluations of the system on a variety of syn-
thetic and real world data sets. Our aim in these experiments was to explore the
interplay of the IDA and RBFS algorithms with the seven heuristics described in
Section 3.4. We found that overall RBFS had better performance than IDA. We
also found that heuristics h1, h3, normalized Euclidean, and Cosine Similarity
were the best performers on the test data sets.

Experimental Setup. All evaluations were performed on a Pentium 4 (2.8 GHz)
with 1.0 GB main memory running Gentoo Linux (kernel 2.6.11-gentoo-r9) and
Chez Scheme (v6.9c). In all experiments, the performance measure is the number
of states examined during search. We also included the performance of heuristic
h0 for comparison with the other heuristics. This heuristic is constant on all
values (∀n, h0(n) = 0) and hence induces brute-force blind search (comparable to
breadth-first search for both IDA and RBFS [45]). Through extensive empirical
evaluation of the heuristics and search algorithms on the data sets described
below, we found that the following values for the heuristic scaling constants k
give overall optimal performance:

Norm. Euclidean Cosine Sim. Levenshtein

IDA k = 7 k = 5 k = 11
RBFS k = 20 k = 24 k = 15

These constant k values were used in all experiments presented below.
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Fig. 9. Experiment 1: Number of states examined using IDA for schema matching on
synthetic schemas

Experiment 1: Mapping on Synthetic Data. In the first experiment, we
measured the performance of IDA and RBFS using all seven heuristics on a
simple schema matching task.

Data Set. Pairs of schemas with n = 2, . . . , 32 attributes were synthetically gen-
erated and populated with one tuple each illustrating correspondences between
each schema:

〈
A1

a1
,
B1

a1

〉 〈
A1 A2

a1 a2
,
B1 B2

a1 a2

〉
· · ·

〈
A1 · · · A32
a1 · · · a32 ,

B1 · · · B32
a1 · · · a32

〉

Each algorithm/heuristic combination was evaluated on generating the correct
matchings between the schemas in each pair (i.e., A1↔B1, A2↔B2, etc.).

Results. The performance of IDA on this data set is presented in Figure 9,
and the performance of RBFS is presented in Figure 10. Heuristic h2 performed
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Fig. 10. Experiment 1: Number of states examined using RBFS for schema matching
on synthetic schemas

identically to h0, and heuristic h3’s performance was identical to h1. Hence they
are omitted in Figures 9(a) & 10(a). RBFS had performance superior to IDA
on these schemas, with the h1, Levenshtein, normalized Euclidean, and Cosine
Similarity heuristics having best performance.

Experiment 2: Mapping on the Deep Web. In the second experiment we
measured the performance of IDA and RBFS using all seven heuristics on a set
of over 200 real-world query schemas extracted from deep web data sources.

Data Set. The Books, Automobiles, Music, and Movies (BAMM) data set from
the UIUC Web Integration Repository13 contains 55, 55, 49, and 52 schemas
from deep web query interfaces in the Books, Automobiles, Music, and Movies
domains, respectively. The schemas each have between 1 and 8 attributes. In this
13 http://metaquerier.cs.uiuc.edu/repository
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Fig. 11. Experiment 2: Average number of states examined for mapping discovery in
the four BAMM domains

experiment, we populated the schemas of each domain with critical instances.
We then measured the average cost of mapping from a fixed schema in each
domain to each of the other schemas in that domain.

Results. The average performance of IDA on each of the BAMM domains is
presented in Figure 11(a). Average RBFS performance on each of the BAMM
domains is given in Figure 11(b). The average performance of both algorithms
across all BAMM domains is given in Figure 12. We found that RBFS typically
examined fewer states on these domains than did IDA. Overall, we also found
that the Cosine Similarity and normalized Euclidean heuristics had the best
performance.

Experiment 3: Complex Semantic Mapping. In the third experiment we
evaluated the performance of Tupelo on discovering complex semantic mapping ex-
pressions for real-worlddata sets in the real estate and business inventorydomains.
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Fig. 12. Experiment 2: Average number of states examined by IDA and RBFS for
mapping discovery across all BAMM domains

Data Set. We measured performance of complex semantic mapping with the
schemas for the Inventory and Real Estate II data sets from the Illinois Semantic
Integration Archive.14 In the Inventory domain there are 10 complex semantic
mappings between the source and target schemas, and in the Real Estate II
domain there are 12. We populated each source-target schema pair with critical
instances built from the provided datasets.

Results. The performance on both domains was essentially the same, so we
present the results for the Inventory schemas. The number of states examined
for mapping discovery in this domain for increasing numbers of complex semantic
functions is given in Figure 13(a) for IDA and in Figure 13(b) for RBFS. On this
data, we found that RBFS and IDA had similar performance. For the heuristics,
the best performance was obtained by the h1, h3 and cosine similarity heuristics.

Discussion of Empirical Results. The goal of the experiments discussed
in this section was to measure the performance of Tupelo on a wide variety of
schemas. We found that Tupelo was effective for discovering mapping expressions
in each of these domains, even with the simple heuristic search algorithms IDA
and RBFS. It is clear from these experiments that RBFS is in general a more
effective search algorithm than IDA. Although we found that heuristic h1 ex-
hibited consistently good performance, it is also clear that there was no perfect
all-purpose search heuristic. Tupelo has also been validated and shown effective
for examples involving the data-metadata restructurings illustrated in Figure 1
[19]. It was found in that domain that no particular heuristic had consistently
superior performance. We can conclude from these observations that work still
needs to be done on developing more sophisticated search heuristics.

14 http://anhai.cs.uiuc.edu/archive/
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Fig. 13. Experiment 3: Number of states for complex semantic mapping discovery in
the Inventory domain

3.7 Related Work

The problem of overcoming structural and semantic heterogeneity has a long
history in the database [14] and AI [62] research communities. In Section 2 we
have already situated Tupelo in the general research landscape of the data map-
ping problem. We now briefly highlight related research not discussed elsewhere
in the paper.

Schema Matching. A wide variety of existing systems have leveraged AI and
machine learning techniques for solving different aspects of schema matching
and mapping. These include neural networks, Bayesian learning, and genetic
programming approaches [13,51,60,66]. The Tupelo view on data mapping as
search complements this body of research. As we have discussed, L includes
(direct) schema matching as a special case and hence Tupelo introduces a novel
approach to this research problem.
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Data-Metadata Transformations. Few data mapping systems have considered
the data-metadata structural transformations used in the Tupelo mapping lan-
guage L . Systems that have considered some aspects of these transformations
include [7,12,59,81]. The systems closest to Tupelo in terms of metadata trans-
formations are the recent work on contextual schema matching by Bohannon
et al. [7] and composite approach to schema mapping by Xu and Embley [81],
wherein the schema matching paradigm is extended to structural transforma-
tions. This work, however, only considers limited subsets of the L structural
transformations. Furthermore, Tupelo complements these systems with the novel
perspective of mapping discovery as search.

Example-Driven Data Mapping. The notion of example-based data mapping is
an ancient idea, by some accounts dating back at least to the 4th century [63]. Re-
cent work most closely related to the example driven approach of Tupelo include
[50,63,66]. The results of this Section can be viewed as contributions towards
extending this line of research, including a richer mapping language and new
perspectives on mapping discovery.

Executable Mapping Expressions. Most schema matching systems do not ad-
dress the issue of generating executable mapping expressions, which is in general
considered to be an open hard problem [56]. Several notable systems that do gen-
erate such expressions include [4,25,31,32,57,59,66]. Our contributions to this
research area include extending mapping expressions to include semantic trans-
formations and introducing the Rosetta Stone Principle for expression discovery.

The Data Exchange Problem. A problem closely related to the data mapping
problem is the data exchange problem [44], proposed to formalize aspects of the
Clio schema mapping system developed at IBM [31,59]. This framework has been
recently extended to consider the case of data-metadata transformations [35].
Briefly, the data exchange problem is as follows: given a source schema S, target
schema T , source instance I, and a set ΣS,T of source-to-target dependencies in
some logical formalism, find a target instance J that satisfies ΣS,T [44]. Fagin et
al. have characterized solutions to the data exchange problem and have explored
query answering in data exchange settings [44]. A limitation of these results
is a restriction of the logical formalism for expressing ΣS,T to fragments of
first order logic which do not always adequately express naturally occurring
data mappings. Furthermore, in data exchange it is assumed (1) that these
dependencies are given as input and (2) the target schema T is fixed. In the
data mapping problem we are concerned precisely with discovering meaningful
source to target constraints, given S, T , and perhaps (I, J) as input where the
target schema T is potentially dynamic, as we saw in the mapping from FlightsB
to FlightsA (Figure 1), which creates as many new route attributes in FlightsA
as there are Route values in FlightsB.

In summary, Tupelo complements and extends the research in each of these
areas by (1) attacking the data mapping problem as a basic search problem
in a state space and by (2) addressing a broader class of mapping expressions
including data-metadata transformations and complex semantics functions. We
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reiterate that, to the best of our knowledge, Tupelo is the first system for data
mapping to take an end-to-end modular perspective on the problem and generate
such a broad class of database transformations.

Remarks. In this Section we presented and illustrated the effectiveness of the
Tupelo system for discovering data mapping expressions between relational data
sources. Novel aspects of the system include (1) example-driven generation of
mapping expressions which include data-metadata structural transformations
and complex semantic mappings and (2) viewing the data mapping problem
as fundamentally a search problem in a well defined search space. Mapping
discovery is performed in Tupelo using only the syntax and structure of the
input examples without recourse to any domain-specific semantic knowledge.
The implementation of Tupelo was described and the viability of the approach
illustrated on a variety of synthetic and real world schemas. We concluded the
Section with an overview of related research results.

4 Concluding Remarks

In this paper, we have studied the long-standing problem of mapping discov-
ery for data sharing and coordination between autonomous data sources. Our
aim was the development of a robust perspective on the generic design space
of data mapping solutions. In our investigations, we strove towards a deeper
understanding of both what data mappings are and how to effectively go about
discovering them. The contributions of this paper advance the state of the art
of both theoretical and engineering aspects of the data mapping problem, and
provide foundations for further progress on both of these fronts. We close by
indicating some of the research directions supported by these foundations.

Abstract Formalisms for Data Mapping. We have taken a “set-theoretic” per-
spective in our development of DMP which lends itself to direct specification
depending on problem context (e.g., our definition of RelationalDMP for rela-
tional sources in Section 2.3). There are several other high-level frameworks,
however, which take a “categorical” perspective on data objects and their map-
pings. Examples of such abstract frameworks include information-flow theory
[38] and institutions [27]. Although these formalisms were not proposed with an
eye towards mapping discovery for structured data sources, it would be quite
interesting to investigate the connections and disconnections between these per-
spectives and that of Section 2.

The Tupelo Data Mapping System. There are several promising avenues for fu-
ture work on Tupelo (Section 3). As is evident from the empirical evaluation
presented in Section 3.6, further research remains on developing more sophis-
ticated search heuristics. The Levenshtein, Euclidean, and Cosine Similarity
based search heuristics mostly focus on the content of database states. Suc-
cessful heuristics must measure both content and structure. Is there a good
multi-purpose search heuristic? Recently, Gillis and Van den Bussche have stud-
ied search heuristics for discovering queries involving negation [25]. Also, we have
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only applied straightforward approaches to search with the IDA and RBFS algo-
rithms. Further investigation of search techniques developed in the AI literature
is warranted. Finally, the perspective of data mapping as search is not limited to
relational data sources. In particular, the architecture of the Tupelo system can
be applied to the generation of mapping expressions in other mapping languages
and for other data models. Based on the viability of the system for relational
data sources, this is a promising avenue for future research.

Acknowledgments. We thank the reviewers, the members of the Indiana Uni-
versity database group, and Jan Van den Bussche for their support and many
helpful comments.
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