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The LNCS Journal on Data Semantics 

The journal aims to provide a highly visible dissemination channel for remarkable 
work that in one way or another addresses research and development on issues related 
to data semantics. The target domain ranges from theories supporting the formal defi-
nition of semantic content to innovative domain-specific applications of semantic 
knowledge. We expect such a publication channel to be of the highest interest to re-
searchers and advanced practitioners working on the Semantic Web, interoperability, 
mobile information services, data warehousing, knowledge representation and reason-
ing, conceptual database modeling, ontologies, and artificial intelligence. 

Topics of relevance to this journal include: 

• Semantic interoperability, semantic mediators 
• Ontologies 
• Ontology, schema and data integration, reconciliation and alignment 
• Multiple representations, alternative representations 
• Knowledge representation and reasoning 
• Conceptualization and representation 
• Multimodel and multiparadigm approaches 
• Mappings, transformations, reverse engineering 
• Metadata 
• Conceptual data modeling 
• Integrity description and handling 
• Evolution and change 
• Web semantics and semistructured data 
• Semantic caching 
• Data warehousing and semantic data mining 
• Spatial, temporal, multimedia and multimodal semantics 
• Semantics in data visualization 
• Semantic services for mobile users 
• Supporting tools 
• Applications of semantic-driven approaches 

These topics are to be understood as specifically related to semantic issues. Contri-
butions dealing with the semantics of data may be considered even if they are not 
covered by the topics in the list. 
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Abstract. Virtual Reality (VR) allows creating interactive three-dimen
sional computer worlds in which objects have a sense of spatial and phys-
ical presence and can be manipulated by the user as such. Different soft-
ware tools have been developed to build virtual worlds. However, most
tools require considerable background knowledge about VR and the vir-
tual world needs to be expressed in low-level VR primitives. This is one of
the reasons why developing a virtual world is complex, time-consuming
and expensive. Introducing a conceptual design phase in the development
process will reduce the complexity and provides an abstraction layer to
hide the VR implementation details. However, virtual worlds contain fea-
tures not present in classical software. Therefore, new modeling concepts,
currently not available in classical conceptual modeling languages, such
as ORM or UML, are required. Next to introducing these new modeling
concepts, it is also necessary to define their semantics to ensure unam-
biguousness and to allow code generation. In this paper, we introduce
conceptual modeling concepts to specify complex connected 3D objects.
Their semantics are defined using F-logic, a full-fledged logic following
the object-oriented paradigm. F-logic will allow applying reasoners to
check the consistency of the specifications and to investigate properties
before the application is actually built.

Keywords: Virtual Reality, F-logic, semantics, complex objects, con-
ceptual modeling, formal specifications, VR-WISE.

1 Introduction

Virtual Reality (VR) is a technology that allows creating interactive three-
dimensional (3D) computer worlds (virtual worlds, also called Virtual Environ-
ments or VE’s) in which objects have a sense of spatial and physical presence

S. Spaccapietra, L. Delcambre (Eds.): Journal on Data Semantics XIV, LNCS 5880, pp. 1–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and can be manipulated by the user as such. VR has gained a lot of popular-
ity during the last decennia due to games and applications such as Second Life
[1]. A lot of different software tools have been developed which allow building
VE’s. However, most tools require considerable background knowledge about VR
technology. The development of a VE directly starts at the level of the imple-
mentation. A developer needs to specify the VE using the specialized vocabulary
of the VR implementation language or framework used. Therefore, when creat-
ing a VE the objects from the problem domain have to be translated into VR
building blocks (such as textures, shapes, sensors, interpolators, etc.), which re-
quires quite some expertise. This makes the gap between the application domain
and the level at which the VE needs to be specified very large, and makes the
translation from the concepts in the application domain into implementation
concepts a very difficult issue. This is one of the reasons why developing a VE
is complex, time-consuming and expensive.

In different domains such as Databases, Information Systems and Software
Engineering, conceptual modeling has been used with success to support and
improve the development process. The term conceptual modeling denotes the
activity of building a model of the application domain in terms of concepts that
are familiar to the application domain experts and free from any implementa-
tion details. Conceptual modeling has less been used in 3D modeling and VR.
However, like for these other domains, introducing a conceptual design phase
in the development process of a VR application could be useful to improve and
support the development of VE’s. It will reduce the complexity and can provide
an abstraction layer that hides the specific VR jargon used. In this way, no spe-
cial VR knowledge will be needed for making the conceptual design of a VE and
also non-technical people (like the customer or the end-user) can be involved in
the development process. A conceptual model will improve the communication
between the developers and the other stakeholders. In addition, by involving
the customer more closely in the design process of the VE, earlier detection of
design flaws is possible. All this could help in realizing more VR applications in
a shorter time.

However, conceptual modeling for VR poses a lot of challenges as VE’s involve
a number of aspects, not present in classical software or information systems.
VE’s are 3D worlds composed of 2D and 3D objects and often deal with 3D com-
plex objects for which the way the parts are connected will influence the way
the complex objects can behave (i.e. connected complex objects). Furthermore,
to realize dynamic and realistic worlds, objects may need complex (physical)
behaviors. This requires new modeling concepts, currently not available in clas-
sical conceptual modeling languages, such as ORM [3] [4] or UML [2]. Next to
introducing new modeling concepts, it is also necessary to define their seman-
tics. Defining the semantics of the modeling concepts will allow for unambiguous
specifications. Unambiguousness is important from two perspectives. Firstly, if
the semantics of the modeling concepts are clear, the models created with these
modeling concepts will be unambiguous and there will be no discussion between
different stakeholders about their meaning. Secondly, unambiguousness is also
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needed from the perspective of the code generation; otherwise it will not be
possible to automatically generate code.

In this paper, we introduce conceptual modeling concepts to specify connected
complex 3D objects, as well as their semantics. These modeling concepts are
part of the VR-WISE approach. VR-WISE (Virtual Reality - With Intuitive
Specifications Enabled) [5] [6] [7] [8] [9] is a conceptual model-based approach for
VR-application development. The semantics of the modeling concepts presented
here are defined formally using F-logic, a full-fledged logic following the object-
oriented paradigm.

The rest of this paper is structured as follows. Section 2 will provide the
background. It includes an introduction to VR (section 2.1), VR-WISE (section
2.2), and F-logic (section 2.3). In section 2.1, we will briefly discuss the different
components of a VR application as well as how VR applications are developed
these days. In section 2.2, we will discuss the limitations of current conceptual
modeling techniques with respect to the modeling of VR, and briefly introduce
VR-WISE, the conceptual modeling approach developed for VR. In section 3, we
discus the conceptual modeling of complex connected 3D objects and introduce
the related conceptual modeling concepts in an informal way. Next, in section
4, the semantics of these modeling concepts will be defined. In section 5 we will
discus related work. Section 6 concludes the paper and points out further work.

2 Background

In this section, we introduce some background material. In section 2.1, we briefly
discuss the different components of a VR application as well as how VR appli-
cations are developed these days. In section 2.2, we discuss the limitations of
current conceptual modeling techniques with respect to the modeling of VR,
and briefly introduce VR-WISE, the conceptual modeling approach developed
for VR. In section 2.3, F-logic is introduced.

2.1 VR

There are many definitions of Virtual Reality (VR) [10] [11]. For the context of
this research, VR is defined as a three-dimensional computer representation of a
space in which users can move their viewpoints freely in real time. We therefore
consider the following cases being VR: 3D multi-user chats (Active Worlds [12],
first person 3D videogames (Quake [13]) and Unreal tournament ([14]), and 3D
virtual spaces on the Web (such as those created with VRML [15], and X3D
[16]). In this section, we will define the main components of a VR application
(VE) and then briefly review how a VE is developed today.

Main components of a VR application. A VE is made of different compo-
nents [10], which can be summarized as:
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1) The scene and the objects. The scene corresponds to the environment
(world) in which the objects are located. It contains lights, viewpoints and cam-
eras. Furthermore, it has also some properties that apply to all the objects lo-
cated inside the VE, e.g., gravity. The objects have a visual representation with
color and material properties. They have a size, a position, and an orientation.
2) Behaviors .The objects may have behaviors. For instance, they can move,
rotate, change size and so on.
3) Interaction. The user must be able to interact with the VE and its objects.
For instance, a user can pick up some objects or he can drag an object. This
may be achieved by means of a regular mouse and keyboard or through special
hardware such as a 3D mouse or data gloves [10].
4) Communication. Nowadays, more and more VE are also collaborative en-
vironments in which remote users can interact with each other. To achieve this,
network communication is important.
5) Sound. VR applications also involve sound. Some research has been done
over the last ten years in order to simulate sound in a VE.

Developing a VE. The developing of the different components of a VE is
not an easy task and during the last fifteen years, a number of software tools
have been created to ease the developer’s task. These tools can be classified into
authoring tools and software programming libraries.

Authoring tools. Authoring tools allow the developer to model the static scene
(objects and the scene) without having to program. Nevertheless, they assume
that the developer has some knowledge of VR and some programming skills to
program behaviors using scripting languages. Different authoring tools may use
different scripting languages. The most popular authoring tools are 3D Studio
Max [20], Maya [21], MilkShape 3D [22], various modelers such as AC3D [23]
and Blender [24]. If the developer is developing for a certain file format, he needs
to pay attention to the file formats supported by the authoring tool.

Programming Libraries. With programming libraries a complete VE can be
programmed from scratch. Among the existing libraries, there is Performer [25],
Java3D [17], X3D toolkit written in C++ [26] or Xj3D [27] written on top of
Java3D. To use such a library, good knowledge of programming and a good
knowledge of VR and computer graphics are required. It is also possible to use
a player that, at run-time, interprets a 3D format and build the VE. VRML [15]
and X3D [16] are 3D formats that can be interpreted by special players through
a Web browser. Examples of such players are the Octaga player [18] and the
Flux player [19].

We will not discus here how the other components of a VE (behavior, interac-
tion, etc.) are development these days; it is not directly relevant for the rest of
the paper. In any case, we can conclude that although there are quite a number of
tools to help a developer to build the scene of a VE, until now, the general prob-
lem with these tools and formats is that they are made for VR specialists or at
least for people having programming skills and background in computer graphics
or VR. In addition, there is also no well-accepted development method for VR.
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Most of the time, a VR-expert meets the customer (often the application domain
expert) and tries to understand the customer’s requirements and the domain for
which the VE is going to be built. After a number of discussions, some sketches
are made and some scenarios are specified. Then, the VR-expert(s) start to im-
plement. In other words, the requirements are almost directly translated into an
implementation. This way of working usually result into several iterations before
the result reaches an acceptable level of satisfaction for the customer. Therefore,
the development process is time consuming, complex and expensive.

2.2 VR-WISE

Introducing a conceptual design phase in the development process of a VR appli-
cation can help the VR community in several ways. As conceptual modeling will
introduce a mechanism to abstract from implementation details, it will reduce
the complexity of developing a VE and it avoids that people need a lot of specific
VR knowledge for such a conceptual design phase. Therefore, also non-technical
people (like the customer or the end-user) can be involved and this will improve
the communication between the developers and the other stakeholders. In ad-
dition, by involving the customer more closely in the design process of the VE,
earlier detection of design flaws is possible. And finally, if the conceptual models
describing the VR system are powerful enough, it may be possible to generate
the system (or at least large parts of it) automatically.

Several general-purpose conceptual modeling languages exist. Well-know lan-
guages are UML [2], ER [28] and ORM [3] [4]. ER and ORM were designed to
facilitate database design. Their main purpose is to support the data modeling
of the application domain and to conceal the more technical aspects associated
with databases. UML is broader and provides a set of notations that facilitates
the development of a complete software project. To a certain extend, UML,
ORM and ER could be used to model the static structure of a VR application
(i.e., the scene and the objects), however, all are lacking modeling concepts in
terms of expressiveness towards VR modeling. For example, they do not have
built-in modeling concepts for specifying the position and orientation of objects
in the scene or for modeling connected objects using different types of connec-
tions. Although, it is possible to model these issues using the existing modeling
primitives, this would be tedious. E.g., each time the modeler would need a
particular connection he would have to model it explicitly, resulting in a lot of
”redundancy” and waste of time. In addition, the models constructed in this
way would not be powerful enough to use them for code generation because the
necessary semantics for concepts like connections would be lacking. Furthermore,
neither ORM nor ER provides support for modeling behavior.

It could be possible to extend these general-purpose modeling languages with
new modeling concepts to enable VR modeling. However, another approach re-
garding this problem is the creation of a Domain Specific Modeling Language.
We have opted for this last approach because we want to have a modeling lan-
guage, as well as a modeling approach, that is easy and intuitive to use also for
non VR-experts. The modeling approach taken by a general-purpose language
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such as UML is very close to the way software is implemented by means of OO
programming languages. The use of (an extended) UML would also force the
use of its modeling paradigm. It is our opinion, that for certain aspects of VR,
this would not be the best solution. Therefore, we have developed VR-WISE, a
domain specific modeling approach for the development of VE’s.

VR-WISE includes a conceptual specification phase. During this conceptual
phase, conceptual specifications (so-called conceptual models) are created. Such
a conceptual specification is a high-level description of the VE, the objects in-
side the environment, the relations that hold between these objects and how
these objects behave and interact with each other and with the user. These
conceptual specifications must be free from any implementation details. There-
fore, the approach offers a set of high-level modeling concepts (i.e. a modeling
language) for building these conceptual specifications. As indicated, we require
that these modeling concepts are very intuitive, so that they can be used, or at
least be understood, by different stakeholders. This means that the vocabulary
used, should be familiar to most of its users. Because we also opted for a model-
driven approach, the expressive power of the different modeling concepts must
be sufficient to allow code generation from the models.

The conceptual specification consists of two levels since the approach follows
to some degree the object-oriented (OO) paradigm. The first level is the do-
main specification and describes the concepts of the application domain needed
for the VE (comparable to object types or classes in OO design methods), as
well as possible relations between these concepts. In the overall example that we
will use, we will consider a VE containing virtual mechanical robots. This VE
could be used to illustrate the working of those robots. For such an application,
the domain specification could contain concepts such as Robot, WeldingRobot,
LiftRobot, Controller, WorkPiece, Box, and relations such as ”a Robot is driven-
by a Controller”. Concepts may have properties (attributes). Next to properties
that may influence the visualization of the concepts (such as height, color, and
material) also non-visual properties, like the cost and the constructor of a robot,
can be specified. At this conceptual level, we only consider properties that are
conceptual relevant. Properties like shape and texture are not necessarily con-
ceptual relevant and may depend on how the object will be visualized in the
actual VE. The visualization of the objects is considered in a later phase in the
VR-WISE approach. For a VE, behavior is also an important feature. However,
the focus of this paper is on modeling concept for complex objects, therefore we
will not elaborate on behavior. Details on modeling concepts for behavior can
be found in [29] [30] [31] [32] [33] [34].

The second level of the conceptual specification is the world specification.
The world specification contains the conceptual description of the actual VE to
be built. This specification is created by instantiating the concepts given in the
domain specification. These instances actually represent the objects that will
populate the VE. In the robot example, there can be multiple Robot-instances
and multiple WorkPiece-instances. Behaviors specified at the domain level can
be assigned to objects.
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Objects in a VE have a position and an orientation in the scene (defined
in a three-dimensional coordinate system). Although it is possible to specify
the position of the instances in a scene by means of exact coordinates and the
orientation by means of angles, we also provide a more intuitive way to do this
(more suitable for non-technical persons). If you want to explain to somebody
how the robot room should look like, you will not do this in term of coordinates.
Instead you will say that: ”Two welding robots are in front of each other at a
distance of one meter. A lift robot is left of each welding robot, and a box is placed
on the platform of each lift robot”. In such an explanation, spatial relations are
used to describe the space. As spatial relations are also used in daily life, they
provide a good intuitive way to specify a scene. Therefore, they are available
as modeling concepts. Note that although the use of spatial relations may be
less exact than coordinates, they are exact enough for a lot of applications. A
spatial relation specifies the position of an object relative to some other object
in terms of a direction and a distance. The following directions may be used: left,
right, front, back, top, and bottom. These directions may be combined. However,
not all combinations make sense. For example, the combined direction left top
makes sense, but left right doesn’t. Spatial relations can be used in the domain
specification as well as in the world specification. In the domain specification, the
spatial relations are used between concepts and specify default positions for the
instances of a concept. The spatial relations currently supported are the most
common ones. It is also possible to consider others, like for instance an ”inside”
relation. Currently, ”inside” can be modeled by considering the object in which
another object has to be placed as a new scene.

In a similar way, orientation relations can be used to specify the orientation
of objects. For example, the orientation by side relation is used to specify the
orientation of an object relative to another object. It specifies which side of an
object is oriented towards which side of another object. E.g., one can specify
that the front of the instance WeldingRobot1 is oriented towards the backside
of the instance WeldingRobot2.

As common for conceptual languages, the conceptual modeling concepts of
VR-WISE also have a graphical notation.

2.3 F-Logic

Frame-Logic (F-logic) is a full-fledged logic. It provides a logical foundation
for object-oriented languages for data and knowledge representation. F-logic is a
frame-based language; the central modeling primitives are classes with properties
(attributes). These attributes can be used to store primitive values or to relate
classes to other classes. Subclasses are supported. In this section, we provide
a brief introduction to F-logic in order to make the paper self-contained. This
introduction is based on [35] and [36] to which we refer the interested reader for
more details.

Class Signatures. A class signature specifies names of properties and the
methods of the class. To specify an attribute definition ⇒ is used, ⇒⇒ is used to
express a multi-valued attribute.
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The following statement gives the class signature for the class professor :

professor[publications ⇒⇒ article;
dep ⇒ department;
highestDegree ⇒ string;
highestDegree •→ ”phd”]

publications ⇒⇒ article states that publications is a multi-valued property.
highestDegree ⇒ string states that highestDegree is a property of type string,
and highestDegree •→ ”phd” states that it is an inheritable property, which has
the effect that each member-object of the class professor inherits this property
and its value. E.g., a member bill will have the property highestDegree with
value phd by inheritance. An inheritable property is inherited by a subclass. The
inheritable property remains inheritable in this subclass while an inheritable
property inherited by a member of the class becomes non inheritable.

Class Membership. In F-Logic we use ”:” to represent class membership.

mary : professor
cs : department

Note that in F-logic classes are reified, which means that they belong to the
same domain as individual objects. This makes it possible to manipulate classes
and member-objects in the same language. This way a class can be a member of
another class. This gives a great deal of uniformity.

Method Signatures and Deductive Rules. Next to properties, classes can
have methods. Consider the following class:

professor[ publications ⇒⇒ article;
dep ⇒ department;
highestDegree ⇒ string;
highestDegree •→ phd;
boss ⇒ professor]

The property boss is actually a method without arguments. In F-Logic, there is
no essential difference between methods and properties. The method boss takes
no arguments as input and gives an object of type professor as output. The
following statement is the deductive rule defining the method boss for objects of
the class professor.

P[boss → B] ← P : professor ∧
D : departement ∧
P[dep → D[head → B : professor]]

The previous statement states that when a member B of type professor is
the head of a departement D for which a member P of type professor is working
then B is the boss of P .
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It is also possible to create methods that take one or more arguments as input.
Syntactically the arguments are included in parentheses and are separated from
the method name by the @-sign. However, when the method takes only one
argument the parentheses may be omitted. The following statement gives the
signature of a method papers for the class professor. It takes one argument of
type institution and returns a set-value of type article.

professor[papers@institution ⇒⇒ article]

subclassess. ”::” is used to represent the subclass relationship. The following
statements denote that employee is a subclass of person and that professor is
a subclass of employee.

employee :: person
professor :: employee

Predicate. In F-logic, predicate symbols can be used in the same way as in
predicate logic, for example:

promotorOf(mary, bill)

Queries. Queries can be considered as a special kind of rules, i.e. rules with an
empty head. The following query requests all members of the class professor
working at the department cs:

?- X : professor ∧ X[dep → cs]

3 Conceptual Modeling Concepts for Connected Complex
3D Objects

In section 2, we have presented an overview of VE’s and the VR-WISE approach.
As already indicated, complex 3D objects, and more in particular connected
complex objects, are important in the context of VE’s. In our robot example, a
welding robot is a complex connected object, composed of a rail, a base, a lower
arm, an upper arm, and a welding head (see figure 1). To enable the specification
of such concepts, we need dedicated conceptual modeling concepts.

Let’s first start with giving an informal definition of a ”complex object” in
the context of a VE.

Complex objects are built from other simple and/or complex objects. They are
composed by connecting two or more simple and/or complex objects. The con-
nected objects are called components. All components keep their own identity and
can be manipulated individually. However, manipulating a component may have
an impact on the other components of the complex object. The impact depends
on the type of connections used.

Looking to this description, the following issues seem to be important. (1)
Complex objects are composed of other objects (components), (2) components



10 O. De Troyer, W. Bille, and F. Kleinermann

Fig. 1. An illustration of a welding robot

are connected by means of connections and there exist different types of connec-
tions, and (3) the motion of a component may be restricted by the connection
type used. Let’s explain this last issue. Normally an object has six degrees of
freedom, three translational and three rotational degrees of freedom. The trans-
lational degrees of freedom are translations along the three axes of the coordi-
nate system used while the three rotational degrees of freedom are the rotations
around these three axes. The way components of a complex object are connected
to each other may restrict the number of degrees of freedom in their displace-
ments with respect to each other. Here, we will discuss three possible connection
types, namely over a center of motion, over an axis of motion and over a sur-
face of motion. Other types of connections are possible and can be defined in a
similar way. In section 6 on future work, some examples of other types of con-
nections are given. The connection types that we consider here are abstractions
from specific connection types usually available in 3D modeling tools (such as
ODE [37], PhysX [38], MotionWork [39]). In our conceptual modeling approach,
we specify the type of connection between components by means of the so-called
connection relations. Note that these connection relations can also be used to
specify the connection between objects without the purpose of defining a com-
plex object. For example, we can define a connection between a boat and the
water surface, but we don’t want to consider the boat and the water surface as
one complex object.

To support the connection over a center of motion, respectively over an axis
of motion and over a surface of motion, we have defined the connection point
relation, respectively the connection axis relation and the connection surface
relation. We describe them in more detail in the following sections using the
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welding robot as an example. However, connection types on their own are not
sufficient to come to realistic behaviors. To further restrict the behaviors of the
connected components, constraints will be used. For instance when you want to
state that the components cannot be moved relative to each other. More details
on constraints are given in section 3.4. Note that we use the term ”components”
to refer to the objects involved in a connection relation. However, this does not
imply that the use of a connection relation implies defining a complex object.
The connection relations are only used to specify connections between objects.
Also note that we don’t consider here connecting and disconnecting objects at
runtime. This is part of the behavior specification, which is outside the scope of
this paper.

3.1 Connection Point Relation

A first way of connecting two objects to each other is over a center of motion. In
the real world we can find examples of objects connected over a center of motion,
e.g., the shoulder of the human body connecting the arm to the torso. In the
welding robot example, the welding head is connected to the upper arm over
a center of motion to allow the welding head to rotate in different directions.
A center of motion means that there is somewhere a point in both components
that needs to coincide during the complete lifetime of the connection. We call
this point the connection point. Connecting two objects over a center of mo-
tion removes all three translational degrees of freedom of the components with
respect to each other. Specifying a connection point relation implies specifying
the connection point for both components. This can be done by means of exact
coordinates, however we are looking for a method that is more intuitive for the
layman. Therefore, the position of the connection point is specified relative to
the position point of the object. This is a (default) point in the object that
is used to specify the position of the object in the VE, i.e. when an object is
positioned at the coordinates (x,y,z) this means that the position point of the
object is at position (x,y,z).

Figure 2 shows our graphical notation of the connection point relation. Boxes
represent the components; connection relations are represented by a rounded
rectangle connecting the two components by means of an arrow. The icon inside
the rounded rectangle denotes the type of connection, here a connection point
relation. The arrow indicates which component is the source and which is the
target. The source should be connected to the target, i.e. in figure 2 component
A is connected to component B. Hence, figure 2 can be read as ”A is connected
by means of a connection point to B”. Note that this is not necessarily the same
as connecting B to A using the same connection relation. When the composition
should be performed if the two composing objects already have a position (e.g.,
at runtime), it may be necessary to reposition one of the objects. The convention
is that the source will be repositioned.

Note that the graphical notation given in figure 2 does not specify the actual
connection points. This is done by means of a simple markup language and
using the expanded graphical notation (see figure 3). Allowing to hide or to omit
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Fig. 2. Graphical notation of connection point relation

Fig. 3. Extended Graphical notation for a connection point relation

the details of the connections relations is useful as abstraction mechanism in
different phases of the design and for different stakeholders. The expanded area
has three sub areas. The top area is used to specifying general properties of
the connection. Currently, the only possible attribute for the connection point
relation is the stiffness. Current values for the stiffness are ’soft’, ’medium’ or
’hard’. The second and third areas hold the definition of the connection point
for the source component respectively for the target component.

The position of a connection point is specified relative to the position point
of the component. This is done in terms of zero or more translations of this
position point. If no translations are given the connection points coincides with
the position point of the object. A translation is specified by a distance and a
direction. The distance is expressed by an arithmetic expression and a unit (if
no unit is given the default unit will be used). Note that inside the arithmetic
expression, object properties can be used. They allow referring to properties of
the components, e.g., its width. The direction is given by means of keywords: left,
right, front, back, top or bottom. These directions may be combined. However,
not all combinations make sense. A combined direction exists of minimal two
and maximal three simple directions. For example, we may use the combined
direction left top, but left right is meaningless. In this way ’translated 2 cm to
left’ specifies that the connection point is defined as a translation of the position
point 2 cm towards the left side. Please note that the position point itself is not
changed. The syntax is as follows:

<CPAttributes> ::= [<stiffness>]
<stiffness> ::= ’connection stiffness is’ <stiffnessType>
<stiffnessType> ::= ’soft’ | ’medium’ | ’hard’
<CPDefinition> ::= ’connection point is position point’< translation >∗

<translation> ::= ’translated’ <distance> ’to’ <direction>
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<direction> ::= <A> [<B>][<C>] | <B> [<C>] | <C>
<A> ::= ’front’ | ’back’
<B> ::= ’left’ | ’right’
<C> ::= ’top’ | ’bottom’
<distance> ::= <arithmetic expression>

<arithmetic expression> ::=
<constant> | <object property> |
( < arithmetic expression > ) |
<arithmetic expression> <operator> <arithmetic expression>

<operator> ::= + | - | * |
Figure 4 gives an example of a connection point relation. It is used to connect

the welding head to the upper arm of the welding robot. The welding head is the
source and the upper arm is the target. Since, the position point of the upper
arm is defined in the middle of the upper arm (by default the position point is
the centre of the bounding box of the object), the connection point for the upper
arm is specified as a translation of the position point over half of the length of
the upper arm towards the top. In this way the connection point is exactly on
the top of the upper arm. Similar, for the welding head, the connection point
(which should be at the bottom of the welding head) is specified as a translation
of the position point over half of the length of the welding head towards the
bottom.

Fig. 4. Example connection point relation

3.2 The Connection Axis Relation

A second way to connect two components is over an axis of motion. A lot of
examples of this connection type can be found in the real world. For example:
a wheel that turns around an axis, a door connected to a wall, the slider of an
old-fashioned typing machine. Actually, an axis of motion means that there is
an axis that restricts the displacements of the components with respect to each
other in such a way that the connected objects may only move along this axis or
around this axis. The axis of motion is called the connection axis. A connection
by means of a connection axis removes four degrees of freedom leaving only one
translational and one rotational degree of freedom.
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To specify a connection axis relation between two components, we actually
have to specify the connection axis for each of the two components. These two
axes need to coincide during the complete lifetime of the connection. Looking
for an easy way to specify these axes, we decided to allow a designer to specify
an axis as the intersection between two planes. Therefore, three planes through
each object are predefined. These are the horizontal plane, the vertical plane and
the perpendicular plane. These planes are illustrated in figure 5.

Fig. 5. (a) the horizontal plane; (b) the vertical plane; (c) the perpendicular plane

A connection axis is defined as the intersection between two of these planes.
To allow more flexibility, the predefined planes can also be translated or rotated.
Each plane may rotate over two possible axes. The horizontal plane may rotate
over the left-to-right axis or the front-to-back axis; the vertical plane may rotate
over the front-to-back or the top-to-bottom axis; and the perpendicular plane
over the top-to-bottom or the left-to-right axis.

Next to define the connection axes it is also necessary to give the initial posi-
tions of both components. This is done by specifying for each component a point
on its connection axis. These points should coincide. By default this connection
point is the orthogonal projection of the position point of the component onto
the connection axis. However, our approach also allows the designer to change
this default by translating this default point along the connection axis.

The graphical representation of the connection axis relation is similar to that
of the connection point relation (see figure 6).

Also in this case, the graphical notation is expandable (see figure 7). The
second and third areas are now used for the definition of the connection axis for
the source, respectively the target. The syntax is as follows:

<CAAttributes> ::= [<stiffness>]
<stiffness> ::= ’connection stiffness is’ <stiffnessType>
<stiffnessType> ::= ’soft’ | ’medium’ | ’hard’
<CADefinition> ::= ’connection axis is intersection of: ’

<planeDefinition>
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Fig. 6. Graphical represenation of the connection axis relation

Fig. 7. Expanded graphical representation of the connection axis relation

<planeDefinition>
[ <translationPoint> ]

<planeDefinition> ::= <horizontal> | <vertical> | <perpendicular>

<horizontal> ::=
’horizontal plane’ [ <horizontalTrans> ] [<horizontalRot>]

<vertical> ::=
’vertical plane ’ [ <verticalTrans> ] [ <verticalRot> ]

<perpendicular> ::=
’perpendicular plane ’ [ <perpendTrans> ] [ <perpendRot> ]

<horizontalTrans> ::= ’translated ’ <distance> ’to ’
(’top’ | ’bottom’)
<verticalTrans> ::= ’translated ’ <distance> ’to ’
(’left’ | ’right’)
<perpendTrans> ::= ’translated ’ <distance> ’to ’
(’front’ | ’back’)

<horizontalRot> ::=
’rotated over ’ (’frontToBack’ | ’leftToRight’)

’axis with ’ <angle>
<verticalRot> ::=

’rotated over’ (’frontToBack’ | ’topToBottom’)
’axis with ’ <angle>
<perpendRot> ::=

’rotated over’ (’leftToRight’ | ’topToBottom’)
’axis with ’ <angle>
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<angle> ::= <arithmetic expression>

<translationPoint> ::=
’translation point translated ’ <distance> ’to ’ <direction>

As an example we show how the base of the welding robot is connected to
the rail by means of a connection axis relation to allow the base and the rail
to move along this axis. The specification is given in figure 8. For the rail,
the connection axis is specified as the intersection of the perpendicular plane
with the horizontal plane translated over half of the height of the rail towards
the top of the rail. This is illustrated in figure 9. The connection axis on the
base is defined as the intersection of the perpendicular plane with the horizon-
tal plane translated to the bottom of the base over half of the height of the
base.

Fig. 8. Example connection axis relation

Fig. 9. Illustration of the definition of a connection axis
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Fig. 10. Degrees of freedom for the connection surface relation

3.3 The Connection Surface Relation

The last way to connect two components to each other that we want to discuss
here is over a surface of motion. A real world example of this type of connection
is a boat able of floating over a water surface. A surface of motion means that
there is a surface that allows the components to move along the directions of this
surface. This connection type removes three degrees of freedom. The only degrees
of freedom left with respect to each other are the two translational degrees of
freedom in the directions of the surface and one rotational degree of freedom
around the axis perpendicular to the surface. This is illustrated in figure 10. The
surface of motion is called the connection surface.

To specify a connection surface relation we actually need to specify the con-
nection surface for each of the components. The connection surfaces of both
components need to coincide during the complete lifetime of the connection. To
specify these connection surfaces, again we apply the three predefined planes
(the horizontal plane, the vertical plane, and the perpendicular plane). For each
of the components, the designer selects an initial plane to work with. This plane
can be translated and rotated. Similar as for the connection axis relation we also
need a connection point to specify the initial position of both components on
the connection surface. By default, this point will be the orthogonal projection
of the position point of the component on the corresponding connection surface.
Also for the connection surface relation, this point can be translated to specify
other positions. The graphical representation of the connection surface relation
is similar as that of the other connection relations (see figure 11).

Fig. 11. Graphical representation of the connection surface relation
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Fig. 12. Extended graphical representation of the connection surface relation

The expanded graphical notation has again three areas: one for specifying the
properties of the relation, one area for the specification of the connection surface
for the source and one for target. The extended graphical notation is illustrated
in figure 12.

The syntax is as follows:

<CSDefinition> ::= ’connection surface is: ’
<planeDefinition> [ <CSConnectionPoint>]

<CSConnectionPoint> ::= ’connection point is positioning point ’
<distance> ’to ’ <direction>
[ ’and ’ <distance> ’to ’ <direction>]

In figure 13 a connection surface relation is used to specify that a box placed
on the platform of a lift robot should only be able to move over this platform.
The connection surface for the box is defined as the default horizontal plane of
the box translated towards the bottom of the box; the connection surface for
the platform is also the horizontal plane (but this time it is the horizontal plane
of the platform itself because the platform is a plane itself and therefore it will
coincide with its horizontal plane).

Fig. 13. Connection Surface for lift robot with a platform



Defining the Semantics of Conceptual Modeling Concepts 19

3.4 Constraints on Connections

So far we are able to specify connection relations between components. As dis-
cussed, these relations impose a limitation on the degrees of freedom of the
components with respect to each other. However, this is not always sufficient to
come to realistic behaviors. For example, by means of the connection axis rela-
tion used to connect a base to its rail, it is still possible to rotate the base and
the rail around the connection axis. This is not what we want. We would like to
be able to specify that the base should only be able to move along its connection
axis. Instead of defining this as yet another special kind of connection relation,
we have opted to specify these kinds of restrictions by means of constraints that
can be specified on top of the connection relations. For our base-example, a
constraint can be attached to the connection axis relation stating that the base
may only move over a given distance along its connection axis. A number of
constraints are predefined, e.g., the hinge constraint, the slider constraint and
the joystick constraint. The names of the constraints are metaphor-based which
should make it easier for non-technical persons to understand and remember
their meaning. For example, the restriction of the base motion can be expressed
by a slider constraint.

A slider constraint can be defined on top of a connection axis relation to
restrict the motion to a move along the connection axis. Furthermore, the move
can be limited by indicating how much the components may move along the
connection axis. Figure 14 illustrates the specification of a slider constraint for
the welding robot. The constraint is defined on top of the connection axis relation
that connects the base to the rail. The base can move 2,5 units to the left and
to the right.

A hinge constraint is also specified on top of a connection axis constraint
and restricts the motion to a rotation around the connection axis. It is also
possible to indicate limits for this movement. The joystick constraint restricts

Fig. 14. An example of a slider constraint
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the motion of two components connected by means of a connection point relation
to a rotation around two perpendicular axes through the connection point. A
joystick constraint can also have limits indicating how much the components may
rotate around the axes in the clockwise and in the counterclockwise direction.
More information on these constraints can be found in [5].

4 Formal Specification of the Modeling Concepts

In this section we will illustrate how the semantics of the modeling concepts
introduced in the previous section can be defined rigorously. Due to space lim-
itations, it is not possible to give the complete formalization of the modeling
concepts introduced in this paper. For the complete formalization we refer to
[5]. We will focus on the principles used and give a representative number of
formalizations.

4.1 Principles

To define the semantics of a modeling concept, we will express what its use means
for the actual VE. E.g., if we state that two objects are connected by means of
a connection axis relation then the semantics of this relation should define the
implication for the position and orientation of the components in the VE. To be
able to do this, we need a formalism that is able to deal with the instance level.
However, because the instance level is defined through the concept level, we also
have to deal with the concept level. This means that defining the semantics of
the modeling concepts (i.e. the meta-level) requires access to the concept level
and to the instance level (see figure 15).

Fig. 15. The three levels involved in the formalization

In F-logic, classes can be treated as objects, which allows the meta modeling
that we need here.

4.2 Formalization of the Basic Modeling Concepts

In this section, we formally define some of the basic modeling concepts used in
the VR-WISE approach.
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Point. A point in a three dimensional space can be given by means of an x, y
and z coordinate. Using the F-logic formalism, a point is defined as a class with
x, y and z properties of type float.

point[x ⇒ float;
y ⇒ float;
z ⇒ float]

Orientation. Each object in a VE has an orientation. In the VR-WISE
approach, each object specified in the world specifications will have a default
orientation. This default orientation is illustrated in figure 16. The default ori-
entation of an object can be changed by rotating the object around on or more
of the axes of the reference frame used. In order to be able of expressing the
orientation of objects, we define the class orientation with properties frontAngle,
rightAngle and topAngle, each representing a rotation angle around respectively
the front, left and top axis of the global reference frame. In the default situation
all rotation angles are 0.

orientation[frontAngle •→ 0;
rightAngle •→ 0;
topAngle •→ 0]

Fig. 16. Default orientation on an object

Line. We have formally defined a line with the following parametric equations:⎧⎨
⎩

x = x0 + ta
y = y0 + tb
z = z0 + tc

as follows in F-logic:

line [ x0 ⇒ float;
y0 ⇒ float;
z0 ⇒ float;
a ⇒ float;
b ⇒ float;
c ⇒ float ]
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4.3 Formalization of Concept and Complex Concept

Concept. A concept is the main modeling concept in the domain specification.
We have defined a concept in F-logic as a class. So domain concepts are rep-
resented as classes in F-logic. Each class representing a domain concept needs
to be defined as a subclass of the predefined class concept. The class concept is
defined as follows:

concept[position ⇒ point;
internalOrientation ⇒ orientation;
externalOrientation ⇒ orientation]

The properties position, internalOrientation, and externalOrientation are
methods. The instances of the concepts are the actual objects in the VE. Ob-
jects in a VE have a position and an orientation. In VR-WISE we make use of
an internal orientation and an external orientation (explained further on). The
corresponding methods in the class concept are inheritable properties and there-
fore each instance of any subclass will inherit them. These methods can therefore
be used to return the position, respectively internal and external orientation of
an object. The definitions of these methods are rather elaborated (and therefore
omitted), as they need to take into account whether the object is a component
of some other object and how its position and orientation has been specified.
I.e., as explained earlier, objects can be positioned using exact coordinates but
also relative to other objects using spatial relations. Therefore, the position can
either be exact or relative. When the designer specifies the position by means
of coordinates (a point), the exact position is known and there is no need to
calculate the position. However, when the position is given by means of some
spatial relations or connection relations, only relative positions are given and
the actual coordinates need to be calculated. Also the orientation can be exact
(given by means of angles) or relative (given by means of orientation relations).

Because of the use of orientation relations in VR-WISE, each object has been
given an internal and an external orientation. The internal orientation of an
object is used to specify which side of the object is defined as the front, back,
left, right, top and bottom side. The external orientation of an object is used
to specify the orientation of the object in the VE. This works as follows.

By default each object has an own reference frame. This is the coordinate
system local to the object where the origin of the coordinate system is the origin
of the object (which is also the position point). Figure 17(a) illustrates the default
internal orientation for an object. By default, the top/bottom, front/back, and
right/left side of an object are defined as in Figure 17(a). It is possible to change
this default by means of a rotation of the local reference frame of the object
around some of the axes of the global reference frame. (The global reference
frame refers to the coordinate system of the VE itself. The origin of the global
reference frame is the origin of the VE.) Figure 17(b) illustrates a non-default
definition of top/bottom, front/back, and right/left. This is done by specifying
an internal orientation which is a 45 degrees counterclockwise rotation of the
default internal orientation around the front direction. Note that the object
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Fig. 17. (a)default internal orientation; (b) internal orientation 45 degrees counter-
clockwise around front axis

itself is not rotated. Actually, changing the internal orientation only redefined
the left-right and top-bottom sides of the object.

An object also has a default external orientation. Figure 18(a) illustrates the
default external orientation for an object. The external orientation of an object
can be used to change the orientation of the object in the VE. This is done by
a rotation of the object around some of the axes of the object’s local reference
frame, which will result in a rotation of the object itself. This is illustrated in
figure 18(b) where the default external orientation is changed by means of a
rotation of 45 degrees counterclockwise around the front axis. As you can see,
the complete object has been rotated and as such its orientation in the VE is
changed.

Fig. 18. (a) default external orientation; (b) external orientation 45 degrees counter-
clockwise around front axis

Example. The following F-logic statement defines the concept WeldingRobot:

WeldingRobot :: concept

The concept WeldingRobot may have one or more properties. Suppose it has a
weight property with default value 1500 and a color property with default value
’red’. All properties of a concept should be defined as inheritable properties. This
way, all subclasses and instances of a concept will inherit the default values. They
can be overwritten if necessary for a specific subclass or instance. Let’s go back
to our example. The properties for WeldingRobot should be defined as follows:

WeldingRobot[weight •→ 1500;
color •→ red]
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An instance of a domain concept will be represented in the F-logic as an in-
stance of the corresponding F-logic class.

Example. The following F-logic statement defines an instance WeldingRobot1
of the domain concept WeldingRobot :

WeldingRobot1 : WeldingRobot

To overwrite the default value for color, we use the following statement: Weld-
ingRobot1[color → green]

Complex Concept. Remember that a complex concept consists of a number
of components. Components can be simple concepts or complex concepts. To
specify that a concept is a component of some other concept, a partOf property
is used.

Let a and b be two concepts, thus a::concept and b::concept. The fact that a is
part of b is expressed by adding a property partOf to the concept definition of a:
a[partOf ⇒ b]

Each complex concept also has a reference component. The reference com-
ponent is used for the positioning and orientation of the complex concept. The
position and orientation of the reference component will also be the position
and orientation of the complex concept. In addition, all other components of the
complex concept will be positioned and oriented relative to this reference com-
ponent (according to the specifications given by the connection relations). This
does not imply that the components cannot be moved anymore. If it is not for-
bidden by constraints and/or connections, the components can still be moved. In
this case, the relative position and the orientation of the components will change.

Let a and b be two concepts, thus a::concept and b::concept. The fact that a is
the reference part of b is expressed by adding a property referencePartOf to the
concept definition of a:
a[referencePartOf ⇒ b]

Note that when a concept is the reference component of a complex concept,
then this concept should also be a component of this complex concept.
Let a and b be two concepts, thus a::concept and b::concept, where a is the ref-
erence part of b. Then the following deductive rule holds:
a[partOf ⇒ b] ← a[referencePartOf ⇒ b]

The partOf property and the referencePartOf property are used to define
the modeling concept complexConcept. It is defined as a subclass of the concept
class (since a complex concept is also a concept) with properties (methods)
allParts and referencePart

complexConcept :: concept
complexConcept[allParts ⇒⇒ concept;

referencePart ⇒ concept]
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allParts and referencePart are methods defined using the following deduc-
tive rules:

C[allParts →→ A] ← C : complexConcept ∧
A : concept ∧
A[partOf → C]

C[referencePart → A] ← C : complexConcept ∧
A : concept ∧
A[referencePartOf → C]

The position (method) for a complex object is defined as follows:

A[position → P] ← A:complexConcept ∧ C:concept ∧ P:point ∧
C[referencePartOf → A] ∧
C[position → P]

Example. The following F-logic statements define a WeldingRobot as a com-
plex concept composed of a Rail, a Base, a LowerArm, an UpperArm, and a
WeldingHead. The Rail is used as reference component.

WeldingRobot :: complexConcept
Rail :: concept
Base :: concept
LowerArm :: concept
UpperArm :: concept
WeldingHead :: concept
Rail[partOf ⇒ WeldingRobot]
Base[partOf ⇒ WeldingRobot]
LowerArm[partOf ⇒ WeldingRobot]
UpperArm[partOf ⇒ WeldingRobot]
WeldingHead[partOf ⇒ WeldingRobot]
Rail[referencePartOf ⇒ WeldingRobot]

To create an instance of the complex concept, the following F-logic statements
could be used:

WeldingRobot1 : WeldingRobot
Rail1 : Rail
Base1 : Base
LowerArm1 : LowerArm
UpperArm1 : UpperArm
WeldingHead1 : WeldingHead
Rail1[partOf → WeldingRobot1]
Base1[partOf → WeldingRobot1]
LowerArm1[partOf → WeldingRobot1]
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UpperArm1[partOf → WeldingRobot1]
WeldingHead1[partOf → WeldingRobot1]
Rail1[referencePartOf → WeldingRobot1]

If we would now like to know the position of the instance WeldingRobot1 in
the VE, we could use the position method from the concept class (using tools
like OntoBroker [35] or Flora-2 [36]).

In a similar way, we can define the external and internal orientation of a
complex concept. Details are omitted.

So far we have shown how complex concepts are formalized. Note that all
methods are working on instances of complex concepts. However, it may also
be useful to be able to query the concept level and ask the system about the
concepts that are part of some complex concept. Therefore we have overloaded
the methods allParts and referencePart so that they also work on classes:

C[allParts →→ A] ← C :: complexConcept ∧
A :: concept ∧
A[partOf ⇒ C]

C[referencePart → A] ← C :: complexConcept ∧
A :: concept ∧
A[referencePartOf ⇒ C]

Concepts themselves don’t appear in the VE (only the instances), therefore they
don’t have a position and neither an orientation. Therefore, there is no need to
overload the methods position, externalOrientation and InternalOrientation.

4.4 Formalization of the Connection Relations

In this section we will explain how the connection relations are formalized. Note
that the semantics of the connection relations can be considered from two dif-
ferent viewpoints. We can consider the axiomatic semantics, which only defines
the specific properties (expressed as assertions) of the effect of using the connec-
tion relation. However, it is also possible to consider the operational semantics,
which defines the meaning of the connection relation by the computation it in-
duces when it is used. Expressing the axiomatic semantics is easier as the aspects
of the execution are ignored. For example, for a connection axis relation it would
be sufficient to state that the two connection axes need to coincide. For the op-
erational semantics, it is also necessary to specify how this should be realized.
This makes it much more complex, however, such a semantics has the advantage
that the formal specifications can also be used to calculate actual positions and
orientations and to reason about this when objects are actual moved or manip-
ulate inside the VE. As we have plans to use our formalization for this purpose,
we decided to use the operational semantics.

Using the operational semantics, we also had to distinguish between what we
call the initial semantics and the simulation semantics. On the one hand, a
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connection relation expresses how two components should be actually connected
and in this way defines what this means in terms of the position and orientation
of the two components. This is what we will call the initial semantics of the
connection relation, as it defines the semantics of the connection relation at the
time it is used to connect two components. On the other hand, a connection
relation also expresses constraints on the possible motions of the components
during the rest of the lifetime of the connection. This is what we will call the
simulation semantics.

Because of the complexity introduced by the operational semantics, we will
only give the formalization for the connection axis relation and also not com-
pletely elaborate all details. Details can be found in [5].

Formalization of the connection relations. Remember that the connection
axes are defined using 3 predefined planes: the horizontal plane, the vertical
plane and the perpendicular plane. These planes are defined as subclasses of
plane, a class without properties. The definition of the horizontal plane is given
below. As we have seen earlier, the default horizontal plane can be rotated over
the left-to-right axis and over the front-to-back axis. This is expressed by the
properties leftT oRightAngle and frontT oBackAngle (with default value 0).
The position is given by the properties x0, y0 and z0 (default value 0). Translat-
ing the horizontal plane along the top-to-bottom axis is expressed by overwriting
the z0 property. The vertical plane and the perpendicular plane are defined in a
similar way.

horizontal :: plane
horizontal [ leftToRightAngle •→ 0;

frontToBackAngle •→ 0;
x0 •→ 0;
y0 •→ 0;
z0 •→ 0]

Now we are ready to formalize the connection axis relation. First we will for-
malize the initial semantics of the connection axis relation. The connectionAxis
Relation class contains a number of properties to identify for each component
the two planes used to define the connection axis (sourceP lane1, sourceP lane2,
targetP lane1, and targetP lane2). There are also a number of properties that
specify the connection point for the source and the target component (sourceTP
Dist, sourceTPDir, targetTPDist, tragetTPDir). Remember that a connec-
tion point is specified by a distance and a direction. The connectionAxisRelation
class also has two properties sourceAxis and targetAxis which are methods that
return the actual axis (a line) which is the connection axis for the source, re-
spectively the target component.

connectionAxisRelation [ sourcePlane1 ⇒ plane;
sourcePlane2 ⇒ plane;
targetPlane1 ⇒ plane;
targetPlane2 ⇒ plane;
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sourceAxis ⇒ line;
targetAxis ⇒ line;
sourceTPDist ⇒ float;
sourceTPDir ⇒ string;
targetTPDist ⇒ float;
targetTPDir ⇒ string ]

The fact that two components are connected by means of a connection axis
relation is given by means of the connectTo property:

Let a and b be two concepts (a:: concept and b:: concept). The fact that a
is connected to b by means of a connection axis relation r (r : connectionAxis
Relation) is expressed as follows:

a [ connectedTo@b •→ r ]

The method sourceAxis is defined as follows:

C[sourceAxis → L] ← C : connectionAxisRelation ∧ L : line ∧
A[connectedTo@B •→ C] ∧
A[position → p] ∧
intersectionLine(C.sourcePlane1,
C.sourcePlane2, M) ∧
L : line[x0 → M.x0 + p.x;

y0 → M.y0 + p.y;
z0 → M.z0 + p.z;
a → M.a; b → M.b; c → M.c ]

The predicate intersectionLine is used to state that a line M is the intersection
of two planes. The definition of this predicate is omitted. p is the position of the
source component. L (the connection axis) express a line through the point p
and parallel with M (given by parametric equations).

The method targetAxis is defined in a similar way as sourceAxis (source
should be replaced by target).

Now, we can define the initial semantics of a connection axis relation in terms
of the position and orientation of the source component. This is done by means
of the predicates connectedPosition(A, C, P ) and connectionAxisPos(A, C, P ).

The predicate connectedPosition(A, C, P ) states that P is the position of a
concept A connected via a connection relation to a concept C. The predicate
works for A being the source of a connection relation as well as for A being the
target. Note that the predicate can be defined in such a way that it applies for
whatever type of connection relation used to make the connection between A and
C. However, to keep it simple, the definition given here only takes a connection
axis relation into account.

connectedPosition(A, C, P) ← A : concept ∧ C : concept ∧
P : point ∧ (A [ connectedTo@C •→ R] ∧
R : connectionAxisRelation ∧
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connectionAxisPos(A, C, P)) ∨
(C [connectedTo@A •→ R] ∧ R : connectionAxisRelation ∧
TPPos(A, R, P))

The predicate connectionAxisPos(A, C, P ) states that P is the position of
A when it is connected via a connection axis relation to C, while the predi-
cate TPPos states that P is the position of A when it is playing the role of
target object in the connection axis relation R. Details of this predicate are
omitted.

The predicate connectedOrientation(A, C, E) is defined to state that E is the
external orientation for A connected via a connection relation to a concept C.

connectedOrientation(A, C, E) ←
A : concept ∧ C : concept ∧ E : orientation ∧
A [ connectedTo@C → R] ∧
R : connectionAxisRelation ∧ connectionAxisOrient(A, C, E)

The predicate connectionAxisOrient(A, C, E) states that E is the external
orientation of A when it is connected via a connection axis relation to C. Details
of this predicate are omitted.

So far we have formalized the initial semantics of the connection axis relation.
However, we also need to define the meaning of the connection axis relation for
the rest of the simulation, the so-called in simulation semantics. In the initial
semantics, the source needs to be positioned and oriented according to the tar-
get’s position and orientation, taking into account the connection axis relation.
During the simulation, the difference between source and target is not relevant
anymore. When one of the objects moves or changes orientation, the other one
has to move with it in such a way that their connection axis relations still
coincide.

If two concepts a and b (thus a :: concept and b :: concept) are connected over
a connection axis relation R, then for their simulation semantics the position
and orientation of a and b must be so that:

caPosConstraint(a, b, Pa) ∧ a[position → Pa]
caPosConstraint(b, a, Pb) ∧ b[position → Pb]

connectionAxisOrient(a, b, Ea) ∧ a[externalOrientation → Ea]
connectionAxisOrient(b, a, Eb) ∧ a[externalOrientation → Eb]

The predicate caPosConstraint(A, C, P ) states that P is the position of A
when it is connected via a connection axis relation to C. Note that this predicate
is very similar to the predicate connectionAxisPos. However, for the predicate
connectionAxisPos the source is positioned along the connection axis according
to the specified translation point. Now for the simulation semantics, the transla-
tion points are not relevant anymore. Therefore a different predicate was needed.
We omit the details of caPosConstraint.
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5 Related Work

This section will discuss related work. The first subsection reviews a number
of academic modeling approaches. The second subsection reviews a number of
languages that supports the modeling of rigid-body and the third subsection
reviews a number of commercial modeling approaches.

5.1 Academic Modeling Approaches

Kim et al. propose a structural approach for developing VR applications [40].
The approach is called ASADAL/PROTO and it uses Visual Object Specifica-
tion (VOS). The primary purpose of VOS is to describe physical properties and
configuration of physical entities. Spatial constraints can be used to define a
structure that is similar to a scene graph. However, there is no support in VOS
to describe physical connections and constraints between different objects.

The CODY Virtual Constructor [41] [42] [43] is a system which enables an in-
teractive simulation of assembly processes with construction kits in a virtual en-
vironment. The assembly process happens either by means of direct manipulation
or by means of natural language. Connections happen by means of predefined
points on the graphical objects. These predefined points are called connection
ports. When a moved object is in a position so that one of its connection ports
is close enough to the connection port of another object, a snapping mechanism
will fit the objects together. The core of the CODY architecture is based on a
knowledge processing component that maintains two levels of knowledge, namely
a geometric level and a conceptual level. For the representation of the knowledge
inside the knowledge bases a framebased representation language COAR (Con-
cepts for Objects, Assemblies and Roles) has been developed. The use of natural
language offers a very intuitive way of describing an assembly. However, natural
language is often ambiguous and incomplete. This means that the outcome of
some natural language assembly modeling might not be what the designer wants.
Another disadvantage is that the connection ports must be defined in advance.
A third disadvantage might occur with very large assemblies where it can be
difficult for the designer to find his way through all the connection ports.

The aim of the Open Assembly Model (OAM) [44] is to provide a standard rep-
resentation and exchange protocol for assembly information. In fact it is defined
as an extension to the NIST Core Product Model (CPM) which was presented in
[45]. The class Artifact (which comes from the CPM) refers to a product or one
of its components. It has two subclasses, namely Assembly and Part. An Assem-
bly is a composition of its subassemblies or parts. OAM has been designed to
represent information used or generated inside CAD3-like tools. This enhances
the product development across different companies or even within one company.
However, OAM is not targeting the modeling of assemblies on a conceptual level.
It is targeting an underlying representation of assemblies inside the domain of
engineering.

The Virtual Assembly Design Environment (VADE) [46] [47] is a VR-based
engineering application that allows engineers to evaluate, analyze, and plan the
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assembly of mechanical systems. The system utilizes an immersive virtual envi-
ronment coupled with commercial CAD systems. VADE translates data from the
CAD system to the virtual environment. Once the designer has designed the sys-
tem inside a CAD system, VADE automatically exports the data into the virtual
environment. Then, the VR user can perform the assembly. During the assembly
process the virtual environment keeps a link with the CAD system. At the end
of a VADE session, the design information from the virtual environment is made
available in the CAD system. The VADE system is intended for engineers and it
is far from high-level.

The Multi-user Intuitive Virtual Environment (MIVE) [48] [49] [50] provides
a simple way for objects to constrain to each other without having to use a
complete constraint solver. MIVE uses the concept of virtual constraints. Each
object in the scene is given predefined constraint areas. These areas can then be
used to define so-called offer areas and binding areas. One major disadvantage of
the MIVE approach is that for example for the virtual constraints each object in
the scene needs predefined areas. Therefore it is difficult to reuse existing virtual
objects without adapting them to the MIVE approach.

5.2 Languages Supporting Rigid-Body

Recently, a revision of the X3D architecture [51] and base components specifi-
cation includes a rigid body physics component (clause 37 of part 1 of the X3D
specification). This part describes how to model rigid bodies and their interac-
tions by means of applying basic physics principles to effect motion. It offers
various forms of joints that can be used to connect bodies and allow one body’s
motion to effect another. Examples of joints offered are BallJoint, SingleAx-
isHingeJoint, SliderJoint or UniversalJoint. Although X3D is sometimes entitled
as being high-level, it is still focussed only on what to render in a scene instead
of how to render the scene. X3D is still not intuitive for a non-VR expert as
for example, he still needs to specify a hinge constraint by means of points and
vectors. Furthermore, reasing over X3D specifications is far from easy.

Collada [52] also has a rigid body specification in the same way as X3D. But
Collada has been created as an independent format to describe the 3D content
that can be read by any software. Therefore, Collada is a format for machine and
not really for human and certainly not for describing the modeling of complex
objects from a high-level point of view.

5.3 Commercial Modeling Approaches

SimMechanics [53] is a set of block libraries and special simulation features to
be used in the Simulink environment. Simulink is a platform for simulation in
different domains and model-based design for dynamic systems. It provides an in-
teractive graphical environment that can be used for building models. It contains
the elements for modeling mechanical systems consisting of a number of rigid
bodies connected by means of joints representing the translational and rotational
degrees of freedom of the bodies relative to one another. Although SimMechanics
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is already on a higher-level of abstraction (than for example physics engine pro-
gramming), it is still too low-level to be generally usable for application domain
experts. Another disadvantage of the approach is that there is no possibility to
do some reasoning.

SolidWorks [54] is a 3D computer-aided design (CAD) program in which 3D
parts can be created. These 3D parts are made by using several features. Fea-
tures can be for example shapes and operations like chamfers or fillets. Most of
the features are created from a 2D sketch. This is a cut-through of the object
which can for example be extruded for creating the shape feature. MotionWorks
makes it possible to define mechanical joints between the parts of an assembly
inside SolidWorks. MotionWorks contains different families of joints. It is fully
integrated into Solid-Works. These tools are not suited for non-experts. The
vocabulary used in SolidWorks is really meant for the expert.

3D Studio Max (3ds max) [20] is a 3D modeling software in the category of
authoring tools. There are also other tools ([24], Maya[21]) similar to 3ds max
and therefore this paper will review 3ds max as a representative of this category.
3ds max provides grouping features which enable the user to organize all the
objects with which he is dealing. 3ds max has also another way of organizing
objects, namely by building a linked hierarchy. 3ds max provides a number of
constraints that can be used to force objects to stay attached to another object.
Although 3ds max is intended to create virtual environments without the need
for detailed programming, one needs to be an expert in the domain of VR to be
able to use an authoring tool like 3ds max. The vocabulary used in the menus
and dialogs of such an authoring system is very domain specific. Terms like
NURBS, splines or morph are more or less meaningless for a layman.

6 Conclusions and Further Work

In this paper, we have described why conceptual modeling can be important
for the field of VR. We also explained the shortcomings of current conceptual
modeling languages with respect to VR. Next, we have presented a conceptual
modeling approach for VR and we have introduced conceptual modeling con-
cepts to specify complex connected 3D objects. The semantics of the modeling
concepts presented are defined formally using F-logic, a full-fledged logic fol-
lowing the object-oriented paradigm. Operational semantics have been defined
for the modeling concepts. The use of operational semantics has the advantage
of being able to actually calculate positions and orientations of objects and to
reason about the specifications. The use of F-logic also allows using a single lan-
guage for specifying the three different levels involved in our approach, i.e. the
meta-level, the concept-level and the instance-level, as well as for querying.

We do not claim that the conceptual modeling concepts presented here are
a complete set of modeling primitives for 3D complex objects. One limitation
concerning the modeling of connections is that it is not yet possible to define a
connection between two components that is a combination of connections, or to
combine constraints on connections. This is needed to allow for more powerful
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connections such as e.g., a car wheel. For this we need actually a combination of
two hinge constraints. The problem however is that the motion allowed by one
hinge constraint may be in contradiction with the motion allowed by the second
hinge constraint, and therefore a simple combination is not sufficient. Next, we
also need modeling concepts for specifying so-called contact joints. This type of
joints does not really describe a connection but rather a contact between two
objects like the gearwheels of a watch that need to roll against each other.

Another limitation is that the approach presented here is only usable for mod-
eling VE’s up to a certain level of complexity. E.g., the approach is difficult to use
for modeling detailed mechanical assemblies. This is due to the fact that these
types of virtual objects require a very high level of detail and also because of the
fact that domain specific concepts are needed. However, a layer can be built on
top of our approach that pre-defines these necessary domain specific modeling
concepts. Such an extension can be made for different domains. However, our
approach can always be used for fast prototyping. Prototype tools [55] are devel-
oped that allow generating code from the (graphical) conceptual specifications.
Afterwards, VR experts using other tools such as VR toolkits may refine the
prototype generated from the conceptual specifications.

The formalization given, unambiguously defines the modeling concepts. How-
ever, in order to use it for reasoning and consistency checking, an implemen-
tation needs to be built. I.e. the conceptual specifications, which are given by
a designer using the graphical notation, need to be translated into their corre-
sponding F-logic representation and added to some knowledge bases. Having all
the information in F-Logic knowledge bases, we can then use existing F-logic
systems (possibly extended with extra features), such as Flora-2, to query the
conceptual specifications and to do some reasoning and consistency checking.
Currently, we are working on such a reasoning system. It allows specifying a
number of domain-independent as well as domain-dependent rules. Examples of
domain-independent rules are: a rule to ensure that the partOf relation is anti-
symmetric, a rule to detect complex objects that don’t has a reference object,
or a rule that detects objects that are placed at the same location. Examples
of domain-specific rules are: a rule that specifies that all robot-instances should
be positioned on the ground, or a rule that each robot should have a controller.
More on this can be found in [56].

For future work we plan to extend the implementation to be able to dynam-
ically update the conceptual specifications at run-time. Therefore we need to
implement a mechanism so that changes in the actual VE are directly reflected
in the logical representation. Such an extension would also allow querying VE’s
in real time.
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Abstract. Automating the discovery of mappings between structured
data sources is a long standing and important problem in data man-
agement. We discuss the rich history of the problem and the variety of
technical solutions advanced in the database community over the previ-
ous four decades. Based on this discussion, we develop a basic statement
of the data mapping problem and a general framework for reasoning
about the design space of system solutions to the problem. We then con-
cretely illustrate the framework with the Tupelo system for data map-
ping discovery, focusing on the important common case of relational data
sources. Treating mapping discovery as example-driven search in a space
of transformations, Tupelo generates queries encompassing the full range
of structural and semantic heterogeneities encountered in relational data
mapping. Hence, Tupelo is applicable in a wide range of data mapping
scenarios. Finally, we present the results of extensive empirical validation,
both on synthetic and real world datasets, indicating that the system is
both viable and effective.

Keywords: data mapping, data integration, schema matching, schema
mapping, data exchange, metadata, data heterogeneity.

1 Introduction

The emerging networked world promises new possibilities for information sharing
and collaboration. These possibilities will be fostered in large part by technolo-
gies which facilitate the cooperation of autonomous data sources. Created and
evolving in isolation, such data sources are maintained according to local con-
straints and usage. Consequently, facilitating technologies must bridge a wide
variety of heterogeneities, such as differences at the system level, differences in
the structuring of data, and semantic pluralism in the interpretation of data.

The world-wide-web and its myriad supporting technologies have proven very
successful for overcoming the system-level heterogeneities which arise in data
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FlightsA

Flights:

Carrier Fee ATL29 ORD17

AirEast 15 100 110

JetWest 16 200 220

FlightsB

Prices:

Carrier Route Cost AgentFee

AirEast ATL29 100 15

JetWest ATL29 200 16

AirEast ORD17 110 15

JetWest ORD17 220 16

FlightsC

AirEast:

Route BaseCost TotalCost

ATL29 100 115

ORD17 110 125

JetWest:

Route BaseCost TotalCost

ATL29 200 216

ORD17 220 236

Fig. 1. Three airline flight price databases, each with the same information content

sharing. However, these technologies have not addressed the difficult forms of
data-level heterogeneity. At the heart of overcoming data heterogeneity is the
data mapping problem: automating the discovery of effective mappings between
autonomous data sources. The data mapping problem remains one of the longest
standing issues in data management [44,56]. Data mapping is fundamental in
data cleaning [10,65], data integration [48], and semantic integration [36,62].
Furthermore, mappings are the basic glue for constructing large-scale seman-
tic web and peer-to-peer information systems [41,70]. Consequently, the data
mapping problem has a wide variety of manifestations such as schema match-
ing [6,13,26,69], schema mapping [4,31,44,81], ontology alignment [16,38,75], and
model matching [56].

Fully automating the discovery of data mappings has long been recognized as
a “100-year” “AI-complete” problem [24,42,52,56,74]. Consequently, solutions
have typically focused on discovering simple mappings such as attribute-to-
attribute schema matching [64,69]. More robust solutions to the problem must
not only discover such restricted mappings, but also facilitate the discovery of the
structural transformations [21,47,58,78] and complex (many-to-one-attribute) se-
mantic functions [12,34,36,62] which inevitably arise in coordinating heteroge-
neous information systems [39].

Example 1. Consider three relational databases Flights A, B, and C maintaining
cost information for airline routes, as shown in Fig. 1. These databases, which
exhibit three different natural representations of the same information, could
be managed by independent travel agencies wishing to share data. Note that
mapping between these databases requires (1) matching schema elements, (2)
dynamic data-metadata restructuring, and (3) complex semantic mapping. For
example, mapping data from FlightsB to FlightsA involves (1) matching the
Flights and Prices table names and (2) promoting data values in the Route
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column to attribute names. Promoting these values will dynamically create as
many new attribute names as there are Route values in the instance of FlightsB.
Mapping the data in FlightsB to FlightsC requires (3) a complex semantic
function mapping the sum of Cost and AgentFee to the TotalCost column in
the relations of FlightsC. �

To better understand the design space of general solutions for the full data
mapping problem, it is necessary to take a step back from particular instances of
the problem. Such a broad perspective provides insight into the crucial aspects
of the problem and into fundamental design techniques which can in turn be
applied towards more robust and efficient solutions to particular data mapping
scenarios.

Overview. Recognizing that data mapping is an AI-complete challenge, we
study various facets of the problem with an eye towards developing a better
understanding of the generic design space of data mapping solutions. In this
investigation, we strive towards understanding both what data mappings are
and how to go about discovering them. Our primary contributions are:

– A novel abstract definition of the data mapping problem and an application
of this definition to the important special case of relational data sources
(Section 2);

– a novel generic architecture for the design of effective solutions to the data
mapping problem (Section 2.4); and

– an instantiation and evaluation of this architecture in the Tupelo data map-
ping system (Section 3), which applies an example-driven methodology for
mapping discovery between relational data sources.

During the course of the paper, related research efforts are highlighted. We con-
clude with a discussion of research directions which build on these contributions
(Section 4). The second half of this paper revises and extends [20].

2 The Data Mapping Problem

The data mapping problem has deep historical roots. We begin this Section
with a brief account of the data mapping problem as it arose as a theoretical
and technological problem. We then turn our attention to a formalization of this
discussion, as a foundation for making practical contributions on the problem.
Finally, we close the Section with an application of this formalism to the impor-
tant special case of mapping between relational databases. An outcome of this
discussion is a general design framework for mapping-discovery systems.

2.1 Perspectives on the Data Mapping Problem

We briefly highlight the historical roots of the data mapping problem. This
account argues that data mapping is one of the oldest intellectual and practical
concerns of science. We aim to show the ubiquity and generality of the problem,
beyond technical motivations.
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Philosophical, Linguistic, and Cognitive Roots. One could argue that the
philosophical problem of communication, a concern since the earliest of Greek
philosophers, is a manifestation of the data mapping problem. Indeed, the per-
plexing question of how it is that two speakers come to some common agreement
during conversation can be recast as a question of how differences in perspective
are resolved through mapping between world-views.

Early philosophical considerations set the stage for a wide-ranging discussion,
which continues to this day, concerning the semantics, interpretation, and origins
of natural and artificial languages (a nice overview of these investigations can be
found in [33]). Of particular interest for background on the data mapping prob-
lem, semiotician Umberto Eco has documented the long struggle to overcome
the perceived problems which stem from language and worldview heterogeneity
[15]. Eco highlights early efforts on developing “universal” ontologies and ar-
tificial languages, such as those proposed in the 17th century by Dalgarno and
Wilkins and more recent efforts such as the Esperanto movement and research on
knowledge representation. In many ways, ongoing research efforts towards build-
ing universal knowledge bases are a continuation of this long-standing effort
towards resolving, once-and-for-all, syntactic and semantic data heterogeneity
[55]. Of course, outside of information systems research, investigators in linguis-
tics and cognitive science have also focused intense sustained effort on resolving
the inherent problems of mapping between heterogeneous conceptual models in
biological and artificial communicative systems, e.g., [17].

Technological Roots. In the field of information systems, it was recognized
early on that data mapping is a fundamental aspect of managing any large collec-
tion of data. From pioneering work on database reorganization in systems such
as ExPress developed at IBM [68] in the mid-1970s, to work in the 1980s and
1990s in database schema integration [3], interoperability [54,67], and schema
matching [64,69], data mapping has arisen in a wide variety of forms and guises.
Moving to the late 1990’s and 2000’s, data mapping has resurfaced in recent work
in ontology management [16,38,70,71]. In each of these areas, a key problem has
been the discovery of transformations for mapping data between heterogeneous
data representations. Much of this research has assumed that human users will
provide these vital pieces which glue together information systems. Only re-
cently have there been efforts to automate some aspects of the discovery of data
mappings.

2.2 A Formal Presentation of the Data Mapping Problem

In this Section we give a formal generic presentation of the data mapping prob-
lem which generalizes and strives towards making more actionable the historical
discussion of Section 2.1. This formalization allows us to focus on the essential as-
pects of the technological problem, and provides a foundation for further practi-
cal progress in the design and construction of automated data mapping solutions.
There have been intense research efforts on data mapping formalisms. Recent
key examples include the formalisms of Calvanese et al., Grahne & Kiricenko,
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and Lenzerini for data integration [9,29,48], the model management framework
of Melnik et al. [56], and frameworks for ontology mapping [16,38,70,71]. Our for-
malism encompasses and extends its predecessors within a generalized statement
of the technical problem of data mapping.

The Structure of Data Schemata. In data mapping, we are concerned
with discovering mappings between data schemata, which are clearly delineated
classes of structured data objects. For the purposes of our generic discussion in
this Section, the internal structure of data objects and particular mechanisms
for their construction are unimportant; therefore, we simply posit a universe
O of data objects. A data model is a formalism for concretely describing the
structuring of atomic data into data objects [1].

Definition 1. A data model M is a computable subset of O.

Examples of well-known concrete data models include the relational, XML,
nested relational, and OODB data models [1].

A data(base) schema is a description of a class of data objects in terms of
a particular data model [1]. For our purposes here, it is only important that a
schema identifies a well-defined subset of the objects in a data model.

Definition 2. A data schema S in a data model M is a computable boolean
function from M to the set {�,⊥}. A data object D ∈ M is said to be valid
with respect to S if S(D) = �. We will call the set of all valid data objects with
respect to S, denoted DS = {D ∈M | S(D) = �}, the extension of S.

We will sometimes conflate a schema S and its extension DS , when it is clear
from context.

The Structure of Data Mappings. We next define data mappings between
schemata.

Definition 3. A data mapping from a schema S to a schema T is a binary
relation ϕ ⊆ DS ×DT .

By not requiring data mappings to be functional relations,1 this definition ac-
commodates probabilistic, incomplete, and uncertain data management scenar-
ios [11,29]. We further note that Definition 3 does not restrict us to considering
computable data mappings. This flexibility in the formalism is likewise neces-
sary to accommodate the wide range of possibilities for mapping scenarios. In
many practical cases, however, the data mappings under consideration will not
be quite so problematic.

Example 2. Consider data models

Msource = {Ds
a, Ds

b , D
s
c , D

s
d} Mtarget = {Dt

a, Dt
b, D

t
c, D

t
d, D

t
e},

1 i.e., requiring that ∀D ∈ DS it must be the case that |ϕ(D)| = 1.
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schemata
DS = {Ds

a, D
s
b} DT = {Dt

a, D
t
b, D

t
c}

in Msource and Mtarget, resp., and the following binary relations in Msource ×
Mtarget:

ϕ = {(Ds
a, Dt

a), (Ds
b , D

t
a)}

ψ = {(Ds
a, Dt

a), (Ds
a, Dt

b), (D
s
a, Dt

c), (D
s
b , D

t
a)}

χ = {(Ds
a, Dt

a)}.

Then ϕ is a left-total functional data mapping, ψ is a non-functional data map-
ping, and χ is partial functional data mapping, each from DS to DT . �

This example illustrates the special case of finite (and hence computable) data
mappings. If mappings are to be specified by a human expert, then this will
indeed be the case. Recently, a theoretical analysis has been undertaken for this
important scenario [18].

In mapping discovery, we are ultimately interested in specifying data map-
pings in some concrete syntax; we capture this as follows.

Definition 4. Let Msource and Mtarget be data models. A Msource�Mtarget map-
ping language is a pair 〈E , [[·]]〉, where:

– E is a computable set of finite strings over a finite alphabet, and
– [[·]] is a computable function which maps each element of E to a data mapping

ϕ, where ϕ is from a schema in Msource to a schema in Mtarget.

Elements of E are called mapping expressions. We will use “E ∈ L ” as short-
hand for the statement “E ∈ E for mapping language L = 〈E , [[·]]〉.”

Intuitively, E is the set of expressions (i.e., finite syntactic objects) of some
well-defined mapping language (e.g., the relational algebra or XPath), and [[·]] is
the semantic evaluation function for the language which defines the meaning of
expressions in terms of data objects in Msource and Mtarget.

Before we move on to define the general data mapping problem, it is worth-
while to make the following observations. As we saw in Section 1 and Section
2.1, data mapping is pervasive in information systems and is intimately bound
up not only in technological concerns but also in social concerns, since it is hu-
man activities and interests which are ultimately facilitated by these systems.
In striving to capture this, it may appear that our abstract definitions of data
models and mappings become too permissive and open-ended. We argue, how-
ever, that it is worthwhile to attempt to address as much of this problem space
as possible at the outset, and then move on to special cases where technological
progress can be made. Of course, our interests are strictly technological; when
we consider specific data mapping scenarios, this abstract structure becomes
grounded in actionable data models and mapping languages, as we will see in
Section 2.3.
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Defining the Data Mapping Problem. We are now prepared to state the
general data mapping problem (DMP).

DMP. Let S and T be data schemata in data models Msource and Mtarget,
respectively; ϕ be a data mapping from DS to DT ; and L be a Msource �
Mtarget mapping language. Does there exist a mapping expression E ∈
L such that [[E]] = ϕ?

The intuition behind this characterization of the data mapping problem is as
follows: during data mapping discovery, an ideal “oracle” mapping ϕ is typically
elicited informally from a human expert (perhaps interactively using a graphical
user interface in a piece-meal, step-wise fashion) or is otherwise assumed to exist
(and to be verifiable), and the task at hand is to semi-automatically discover a
mapping expression E in some appropriate concrete executable mapping lan-
guage L (such as SQL, XSLT, or probabilistic relational algebra) such that the
behavior of E on data objects in DS is precisely that of ϕ.2

2.3 Data Mapping in Relational Databases

Note that DMP is really a template for specific data mapping problems. We
concern ourselves in the balance of this paper with instances of DMP where
the source and target schemata, S and T , are both relational, and the mapping
language L is a relational database query language.3 In this section we present
the specific details of the data mapping problem for relational data sources. This
concrete presentation will follow the formalism of Section 2.2. Unlike the formal
presentation, however, we will now be concerned with the internal structure
of data objects. Although we focus on relational databases, we note that the
discussion which follows in the balance of this paper is illustrative of any data
mapping scenario where the source and target schemata are structured, and
the mapping language is an appropriate database query language. For example,
our general approach can be readily transferred to mapping scenarios involving
XML data sources (or a mix of sources from various structured data models)
and mapping languages such as XPath or XSLT.

Relational Data Model. We follow a variation of the general framework for
relational data objects as presented by Wyss et al. [78] and the uniform data
model of Jain et al. [37]. In short, we have that: a tuple is a finite set of or-
dered pairs of uninterpreted symbols (i.e., attribute-value pairs); a relation is a
named finite set of tuples; and a database is a named finite set of uniquely named
relations. The schema of a relation is its name taken together with the set of
attribute names of its constituent tuples; the schema of a database is its name

2 It is also interesting to consider an extension of DMP, where E is only required to
approximate the behavior of ϕ within a given error-bound.

3 i.e., a language which specifies mappings on schemas in the relational data model
which are computable and generic partial-functions [1].
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taken together with the set of schemata of its relations. All symbols (including
relation and database names) are assumed to be from some enumerable domain
U of uninterpreted atomic objects (e.g., Unicode strings, JPEG images, MP3
music files, PDF documents, etc.).

Example 3. Consider the FlightsA database from Figure 1. In the relational
data model, this database has encoding 〈FlightsA, D〉 where

D ={〈
Flights,

{ 〈Carrier, AirEast〉 , 〈Fee, 15〉 , 〈ATL29, 100〉 , 〈ORD17, 110〉}〉
,〈

Flights,
{ 〈Carrier, JetWest〉 , 〈Fee, 16〉 , 〈ATL29, 200〉 , 〈ORD17, 220〉}〉}

.

�

Relational Mapping Languages. Research on mapping languages (i.e., the
set L in the DMP definition) for the relational data model has been going strong
for over 30 years. At the core of almost all of these languages is the relational
algebra (RA). In what follows, we assume familiarity with RA.

Example 4. Recall database 〈FlightsA, D〉 from Example 3. Suppose we wish
to extract Carrier values from this database and place the output in a relation
named Companies. The following RA query does the trick:

ρrel
Flights→Companies(πCarrier(〈FlightsA, D〉)) = 〈FlightsA, D′〉

where the superscript rel on the rename operator ρ indicates relation renaming,
and

D′ ={〈Companies, {〈Carrier, AirEast〉}〉, 〈Companies, {〈Carrier, JetWest〉}〉}.

�

For an overview of the rich variety of relational mapping languages, see [1].

Relational Data Mapping Problem. With the relational data model and
RA as an example relational mapping language in hand, we are now in a position
to turn to a concrete presentation of RelationalDMP, the DMP for relational data
sources.

RelationalDMP. Let S and T be relational data schemata, ϕ be a data
mapping from DS to DT , and L be a relational query language. Does
there exist an expression E ∈ L such that [[E]] = ϕ?

For the balance of this paper, we will be concerned with investigating this im-
portant subclass of DMP problems.
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2.4 A Framework for Data Mapping Systems

We now turn to a general overview of the design and construction of solutions for
instances of RelationalDMP. Our design is driven by the following crucial obser-
vation, which encapsulates a long-running analysis of the various subproblems
of RelationalDMP in the data mapping literature (e.g., [36,39,43,47,56,58]):

Data mapping discovery for structured data sources consists of two dis-
tinct principle tasks: discovery of semantic functions and discovery of
structural mapping queries.

Semantic functions operate at the token level (i.e., operate on tokens in U),
mapping data values between data sources. These functions interpret the internal
structure of atoms in U, and hence rely on information which is external to
the information systems of which a data mapping system is a component. This
information can be codified (for example) in an ontology, but it is important
to note that our work does not presuppose pre-existing ontologies, nor even a
shared vocabulary of tokens.

In RelationalDMP, mapping queries operate at the structural level, corre-
sponding to traditional structural database transformations between database
schemas. Discovering semantic functions and discovering mapping queries both
require unsupervised learning from data instances and/or supervised learning
using domain knowledge. For these tasks it is possible to leverage the large body
of techniques which have been developed over the last century in the Machine
Learning, Artificial Intelligence, and Data Mining communities [61].

We propose a generic architecture for RelationalDMP solutions which reflects
our design observation, illustrated in Figure 2. Input to the mapping discovery
process includes, at the very least, source/target database schemas and instances.
If available, the discovery process can also use domain knowledge elicited from
external sources (e.g., human input, system logs, etc.). This architecture, which
we now outline, cleanly captures the division of labor in data mapping implied
by the design thesis.

& Data Mapping
Executable

 Discovery Discovery
Function Validation &

Refinement

Data Mapping Query Discovery

Query

Query

Schema
Matching

Domain
Knowledge

& Instances
Schemas

Semantic Function Discovery
Semantic
Functions

Mapping
Queries

Attribute

&
Feedback Feedback

&
Queries

Mapping
Correspondences

Fig. 2. Generic architecture for discovery of executable data mapping queries
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Schema

Schemas
& Instances

Domain
Knowledge

Complex Attribute
CorrespondencesMatching

Fig. 3. Complex attribute correspondence discovery

Discovering Semantic Functions. The first step in data mapping is to dis-
cover semantic functions (Figure 2). This process involves (1) schema matching
– identifying the correspondences between those attributes of the source and
target schemas that are semantically related – and then (2) discovering the se-
mantic functions which provide the actual mappings between the data values of
these corresponding attributes. Note that this may be an iterative process, with
information gained during function discovery used in further schema matching
(Figure 2).

Discovery of Complex Attribute Correspondences. Schema matching takes as
input the source and target schemas, S and T , and instances if available. If
available, domain knowledge can also be used to supervise the discovery of at-
tribute correspondences (Figure 3). Together, these inputs serve to guide the
selection of good pairings between the schema elements of the source S and
the target T . This process can be abstractly presented as follows. The rela-
tionship between S and T is encapsulated as a boolean function M on the set
P(schema(S)) × schema(T ), and is typically defined externally to the schema
matching mechanism itself.4 The output of this component is a set of complex
(i.e., many-one) correspondences [22,64] between the attributes of S and those
of T that satisfy M :5

{(asource, atarget) | asource ⊆ schema(S), atarget ∈ schema(T ),
& M(asource, atarget) = �}.

Example 5. We observed in Example 1 that, during mapping discovery with
source schema FlightsB and target schema FlightsC, the schema matching
process would output the correspondence ({Cost, AgentFee}, TotalCost). �

Our abstraction of the schema matching process follows in the spirit of other
such formalisms in the literature, e.g., [23,56,64].

Discovery of Functions. After attribute correspondence discovery has been han-
dled, the next step is to use these correspondences, together with the source/

4 Where P(·) is the powerset operator.
5 The case of many-many (i.e., m-n) matchings in the literature [64] reduces to a

special case of many-one matchings, namely, where one is interested in a set of n
many-one correspondences.
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target schemas and instances, to discover the semantic functions which map be-
tween corresponding source and target data values (Figure 4). As with schema
matching, domain knowledge can also be used to supervise the discovery process,
if it is available. It is generally recognized that a modular approach to function
discovery (Figure 4) is necessary to accommodate the wide variety of possibilities
for token transformation scenarios [12]. Hence, our design architecture indicates
specialized modules responsible for discovering specific classes of functions (e.g.,
string functions [12,73], date/time conversions, real-time currency exchange, im-
age conversion, etc.). The last step then is to select the final functions from
among the candidates suggested by these modules (Figure 4).

We can abstract the process of function discovery as follows. Concrete seman-
tic functions map sets of atoms s in a source token space (i.e., a subset of U) to
atoms t in a target token space (i.e., another subset of U). These token spaces
reside in source and target contexts of interpretation, respectively (Figure 5).
In these contexts of interpretation, bijective “meaning” functions msource and
mtarget associate these tokens with some objects Os and Ot, respectively, in do-
mains of discourse which are of interest to the users of the source and target
information systems, respectively:

msource(s) = Os mtarget(t) = Ot

Analogous to the match function M in schema matching, the relationships be-
tween objects in the source and target domains of discourse are encapsulated
in a discourse-mapping function f∗ (Figure 5), whose derivation is external to
the function discovery process. Now, given a complex attribute correspondence
(asource, atarget), the goal of semantic function discovery is to find a concrete
function f (Figure 5) which maps,6 on a per-tuple basis, any instance s of at-
tributes asource in the source token space to an instance t of attribute atarget in
the target token space such that

f(s) = mtarget(f∗(msource(s))) = t.

In other words, f abides by the semantics of both the source and target schemata
in their contexts of use.
6 For further discussion of the “semantics” of applying semantic functions, please see

Section 3.5 below.



48 G.H.L. Fletcher and C.M. Wyss

sm

Source Token Space

Source Domain of Discourse

mt

*

O ... O1 n

f

t

O

Target Token Space

Target Domain of Discourse

t

f

ns ...s1

Fig. 5. Semantic mappings between contexts-of-interpretation

Example 6. As we saw in Example 5, the attributes Cost and AgentFee in
database FlightsB correspond to the attribute TotalCost in the relations of
database FlightsC. Once this correspondence has been determined, for map-
ping instances of FlightsB to instances of FlightsC, we require a semantic
function f for this correspondence which interprets the tokens of all three at-
tributes appropriately as numbers in the reals7 and transforms them as follows:

f : Cost+ AgentFee �−→ TotalCost

applied to each tuple in the Prices relation of FlightsB. �

While solutions abound in the literature for one-to-one schema matching [64],
the database community has only recently begun to make strong progress on the
issues of complex (i.e., many-to-one) schema matching and semantic function dis-
covery. Primarily, supervised approaches (i.e., using domain knowledge elicited
via GUIs, etc.) have been explored in the literature [8,12,14,23,30,34,41,62,81].
The design and analysis of approaches to complex schema matching and semantic
function discovery continues to be an extremely important area of investigation
in data mapping.

Discovering Data Mapping Queries. After determining appropriate seman-
tic functions, the second critical step in data mapping is to discover executable
queries (Figure 2). These queries perform restructuring of data objects and ap-
ply the previously discovered semantic functions. Note that this process may be
iterative. In the context of structural transformations which dynamically mod-
ify the input schemata, further rounds between semantic function discovery and
query discovery may be necessary (Figure 2).

7 Or, if appropriate, as currency values, applying exchange rates as necessary if mul-
tiple currencies are involved, etc.
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Example 7. Continuing Example 6, we recall from the discussion of Example 1
that structural mapping from the FlightsB schema to the FlightsC schema
requires data-metadata transformation in a language such as the federated in-
teroperable relational algebra, a variation of which we develop in Section 3.1
below. As we will see, this language is a natural extension of the RA that in-
cludes data-metadata structural transformations. In this algebra, the following
mapping query restructures data under the FlightsB schema to conform with
the FlightsC schema:

π

Carrier, Cost(℘Carrier(ρCost→BaseCost(λTotalCost
f , Cost, AgentFee(FlightsB)))).

Note the λ operator for application of semantic functions. In this case, the func-
tion f from Example 6 is applied to the values in the attributes Cost and
AgentFee, and the results are placed in target attribute TotalCost. �

Source/target schemata, S and T , instances of these schemata (if available),
the complex semantic functions discovered between these schemata in the pre-
vious step, and domain knowledge (if explicitly available) are given as input to
the query discovery component of the mapping framework (Figure 6). Collec-
tively, the constraints of these inputs delineate an ideal data mapping ϕ from
S to T . The output of this process is a solution for the RelationalDMP instance
〈S, T, L , ϕ〉, where L is an appropriate query language for S, T , and ϕ. In other
words, the output of this module is an executable data mapping expression E (or
a set of candidate mappings) in some concrete query language L that transforms
any valid instance of schema S into a corresponding valid instance of schema T
(i.e., respecting ϕ). The final sub-step of mapping discovery is validation and
refinement of the discovered mapping(s) (Figure 2).

Query discovery is the least explored aspect of RelationalDMP(and of the
general DMP). Only a handful of systems attack aspects of query discovery
[4,12,31,32,40,57,59,60,66,81], and hence the problem is not very clearly recog-
nized in the literature. Since it is generally recognized in the literature that ex-
ecutable data mapping queries are the crucial glue in the various manifestations
of data mapping discussed in Section 1, clearly continued efforts on understand-
ing DMP are warranted. We note here that to the best of our knowledge, our
research in this Section and Section 3 below on building a mapping query dis-
covery solution (i.e., an instantiation of the framework presented in this Section)
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is the first attempt at discovering full solutions to RelationalDMP. We postpone
a fuller discussion of related query discovery research until Section 3.7, below.

Remarks. In this Section we gave an historical and novel formal presentation
of the DMP. We applied this presentation to the development of the special case
of RelationalDMP, and to the development of a generic framework for designing
data mapping solutions for instances of RelationalDMP. This framework was
based on the observation that such systems should clearly separate the discovery
of transformations for semantic heterogeneity from the discovery of queries for
structural heterogeneity. We next turn to the development of a system which
instantiates the insights of this discussion.

3 Data Mapping as Search

We next present the Tupelo data mapping system for semi-automating the
discovery of executable8 data mapping expressions between heterogeneous rela-
tional data sources. Tupelo is an example driven system, generating mapping ex-
pressions for interoperation of heterogeneous information systems which involve
schema matching, dynamic data-metadata restructuring, and complex (many-
to-one) semantic functions. For example, Tupelo can generate the expressions
for mapping between instances of the three airline databases in Figure 1. The
design of Tupelo is guided by the generic framework for RelationalDMP solutions
developed in Section 2.4.

Previous solutions have not clearly separated each of the subproblems associ-
ated with data mapping discovery – mixing, merging, and/or conflating various
aspects of semantic function discovery and query discovery. This has lead to a
somewhat opaque research literature with inconsistent terminology and dupli-
cation of effort. The development of Tupelo clarifies, complements, and extends
the existing approaches in the literature. In particular, Tupelo is the first data
mapping system to

– propose and validate the mapping query discovery process as an example-
driven search problem;

– explicitly modularize the various aspects of data mapping query discovery;
– seamlessly incorporate complex semantic functions in a complete, executable

mapping language; and
– generate mapping queries which incorporate the full range of data-metadata

structural transformations necessary to overcome heterogeneity in relational
data sources.

Data mapping in Tupelo is built on the novel perspective of mapping discovery
as an example driven search problem. We develop the Tupelo mapping language
L in Section 3.1 and the Rosetta Stone principle behind this example-driven ap-
proach in Section 3.2. We then discuss how Tupelo leverages Artificial Intelligence
8 By executable, we mean that the discovered mapping queries must be in a concrete

mapping language such as SQL or RA (cf., Sections 2.2-2.3, above).
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(AI) search techniques to generate mapping expressions (Sections 3.3 and 3.4).
After this, we discuss how generic query languages such as L can be extended
naturally in this setting to accommodate complex semantic functions which have
previously discovered (Section 3.5). We then present experimental validation of
the system on a variety of synthetic and real world scenarios (Section 3.6) which
indicates that the Tupelo approach to data mapping is both viable and effective.
We conclude the Section with a discussion of related research (Section 3.7).

3.1 Dynamic Relational Data Mapping with Tupelo

Recall from Figure 2 and the discussion of Section 2.3 that a critical component
of data mapping is the discovery of executable data mapping queries. Tupelo
generates an effective mapping from a source relational schema S to a target
relational schema T , under the assumption that semantic function discovery
has been successfully completed. The system discovers this mapping using (1)
example instances s of S and t of T and (2) illustrations of any complex semantic
mappings between the schemas. Mapping discovery in Tupelo is a completely
syntactic and structurally driven process which does not make use of a global
schema or any explicit domain knowledge beyond that encapsulated in the input
semantic functions [6].

The mapping language L used in Tupelo provides support for both simple
schema matching and richer structural transformations.

FIRA. Recently, Wyss and colleagues have developed a relational language
framework for metadata integration [77,78,79]. This framework consists of a fed-
erated relational data model, a variation of which was introduced in Section 2.3,
and two equivalent relational query languages: the Federated Interoperable Re-
lational Algebra (FIRA) and the Federated Interoperable Structured Query Lan-
guage (FISQL). These languages, FIRA/FISQL, (1) are principled extensions to
relational algebra/SQL (resp.) that include metadata querying and restructuring
capabilities; and (2) generalize the notion of relational transpose, providing a no-
tion of transformational completeness for relational metadata [78]. Applications
of the FIRA/FISQL framework include OLAP, schema browsing, and real-time
interoperability of relational sources in federated information systems [78]. True
data integration presupposes metadata integration, and FIRA/FISQL contributes
to the study of query languages specifically by advancing the understanding of
languages that offer robust metadata integration capabilities.

L : Tupelo’s Take on FIRA. Tupelo generates expressions in a fragment L of
FIRA. The operators in this fragment extend the RA (Section 2.3) with dynamic
structural transformations [47,65,78]. These include operators for dynamically
promoting data to attribute and relation names (i.e., to “metadata”), a simple
merge operator [77], and an operator for demoting metadata to data values. The
L operations are intuitively summarized in Table 1. A more detailed discus-
sion and comparison of full FIRA to the wealth of alternative relational query
languages can be found in [78].
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Table 1. L operators for dynamic relational data mapping

Operation Effect

π,∪,× Regular relational operations.

ρ
att/rel
A→B (R) Rename attribute/relation A to B in relation R.

↑BA (R)
Promote attribute A to metadata. ∀t ∈ R, append a new active
attribute named t[A] with value t[B].

→B
A (R)

Dereference attribute A on B. ∀t ∈ R, append a new active at-
tribute named B with value t[t[A]].

↓A,B (R)
Demote metadata. Cartesian product of relation R with a binary
relation (with schema {A, B}) containing the metadata of R.

℘A(R) Partition on attribute A. ∀V ∈ πA(R), output a new relation named
V, where t ∈ V iff t ∈ R and t[A] = V.

Σ(D) Generalized union of database D. Outputs an unnamed outer
union of all relations in D.

π

A(R) Drop attribute A from relation R.

µA(R) Merge tuples in R based on compatible values in attributes A.

Example 8. Consider the transformation of instances from FlightsB to instances
of FlightsA in Figure 1. This mapping can be expressed in L as

ρatt
AgentFee→Fee(ρ

rel
Prices→Flights(µCarrier( π

Route( π

Cost(↑CostRoute (FlightsB))))))

which breaks down as follows:

R1 :=↑CostRoute (FlightsB)
Promote Route values to attribute names with corresponding Cost values.

R2 := π

Route( π

Cost(R1))
Drop attributes Route and Cost.

R3 := µCarrier(R2)
Merge tuples on Carrier values.

R4 := ρatt
AgentFee→Fee(ρrel

Prices→Flights(R3))
Rename attribute AgentFee to Fee and relation Prices to Flights.

The output relation R4 is exactly FlightsA. �

The original FIRA algebra is complete for the full data-metadata mapping space
for relational data sources [78]. The fragment we use in Tupelo maintains the
full data-metadata restructuring power of this language. The operators in our
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L focus on bulk structural transformations (via the→, ↑, ↓, ℘, ×, π, and µ op-
erators) and schema matching (via the rename operator ρ). We view application
of selections (σ) as a post-processing step to filter mapping results according
to external criteria, since it is known that generalizing selection conditions is a
nontrivial problem [41]. Hence, Tupelo does not consider applications of the rela-
tional σ operator. Note that using a language such as L for data mapping blurs
the distinction between schema matching (i.e., finding appropriate renamings
via ρ) [64] and schema mapping [59] since L encompasses these basic mapping
disciplines. It is for this reason that we refer to RelationalDMP (and in general,
DMP) as a data mapping problem.

3.2 The Rosetta Stone Principle

An integral component of the Tupelo system is the notion of “critical” instances
s and t which succinctly characterize the structure of the source and target
schemas S and T , respectively. These instances illustrate the same information
structured under both schemas. The Rosetta Stone Principle states that such
critical instances can be used to drive the search for data mappings in the space
of transformations delineated by the operators in L on the source instance
s. Guided by this principle, Tupelo takes as input critical source and target
instances which illustrate all of the appropriate restructurings between the source
and target schemas.

Example 9. The instances of the three airline databases presented in Figure 1
illustrate the same information under each of the three schemas, and are exam-
ples of succinct critical instances sufficient for data mapping discovery between
the FlightsA, FlightsB, and FlightsC databases. �

Critical Instance Input and Encoding. Critical instances can be easily
elicited from a user via a visual interface akin to the Lixto data extraction system
[28] or visual interfaces developed for interactive schema mapping [4,8,59,72]. In
Tupelo, critical instances are articulated by a user via a front-end graphical user
interface which has been developed for the system (Figure 7). Since critical in-
stances essentially illustrate one entity under different schemas, we also envision
that much of the process of generating critical instances can be semi-automated
using techniques developed for entity/duplicate identification and record linkage
[6,76].

Critical instances are encoded internally in Tuple Normal Form (TNF). This
normal form, which encodes databases in single tables of fixed schema, was intro-
duced by Litwin et al. as a standardized data format for database interoperability
[53]. More recently, this flexible normal form for data has been successfully used
in a variety of investigations and systems, e.g., [2,80]. Tupelo makes full use of
this normal form as an internal data representation format. Given a relation
R, the TNF of R is computed by first assigning each tuple in R a unique ID
and then building a four column relation with attributes TID, REL, ATT, VALUE,
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Fig. 7. Tupelo graphical user interface

corresponding to tuple ID, relation name, attribute name, and attribute value,
respectively. The table is populated by placing each tuple in R into the new table
in a piecemeal fashion. The TNF of a database is the single table consisting of
the union of the TNF of each relation in the database.

Definition 5. Let D be a database with name d. Given a tuple

t = {〈a1, v1〉 , . . . , 〈an, vn〉}

in relation r of D, let t̊ denote the relation of n tuples:

t̊ =
〈
d, {〈TID, t〉 , 〈REL, r〉 , 〈ATT, a1〉 , 〈VALUE, v1〉 ,

. . . , 〈TID, t〉 , 〈REL, r〉 , 〈ATT, an〉 , 〈VALUE, v1〉}
〉

where t = f(t), for some injection f of D into U.9 Then, the tuple normal form
of D is the database

TNF(D) =
⋃

R∈D

⋃
t∈R

t̊

containing a single relation named d.

Note that TNF(D) is well-defined (i.e., unique up to TID values). We will often
blur the fact that TNF(D) is a database and treat it simply as a solitary unnamed
relation.

Example 10. We illustrate TNF with the encoding of the instance of database
FlightsC from Figure 1:

9 i.e., t is a fresh symbol uniquely identifying tuple t.
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TID REL ATT VALUE

t1 AirEast Route ATL29

t1 AirEast BaseCost 100

t1 AirEast TotalCost 115

t2 AirEast Route ORD17

t2 AirEast BaseCost 110

t2 AirEast TotalCost 125

t3 JetWest Route ATL29

t3 JetWest BaseCost 200

t3 JetWest TotalCost 216

t4 JetWest Route ORD17

t4 JetWest BaseCost 220

t4 JetWest TotalCost 236
�

The TNF of a database can be built in SQL using the “system tables” of a
DBMS [2,80]. The benefits of normalizing input instances in this manner with a
fixed schema include (1) ease and uniformity of handling of the data; (2) both
metadata and data can be handled directly in SQL; and (3) sets of relations are
encoded as single tables, allowing natural multi-relational data mapping from
databases to databases with the use of conventional technologies.

3.3 Data Mapping as a Search Problem

In Tupelo the data mapping problem is seen fundamentally as a search problem.
Given Rosetta Stone critical instances s and t of the source and target schemas,
data mapping is resolved as an exploration of the transformation space of L on
the source instance s. Search successfully terminates when the target instance t
is located in this space. Upon success, the transformation path from the source
to the target is returned.10 This search process is illustrated in Figure 8. In this
Section we describe this process in more detail.

Search Algorithms. We work in the classic problem-space model [45]. In par-
ticular, a problem space is a pair 〈S, F〉, where S is a set of states, and F is
a set of state transition partial functions on S. A search problem consists of a
problem space 〈S, F〉, a designated start state s ∈ S, and a goal test function
goal which maps states in S to {�,⊥}.11 A solution to a search problem is a
sequence of transitions τ1, . . . , τn ∈ F such that goal(τn(· · · τ1(s))) = �. In terms
of this model, Tupelo takes as input to the search process: Rosetta Stone source
instance s and target instance t, the set of L transformations, and a goal test

10 Note that there may be more than one path from s to t; we just return the shortest
solution path (i.e., smallest mapping expression). Although the current implementa-
tion does not do so, it is straightforward to extend Tupelo to (1) present a discovered
solution to the user; (2) allow the user to deny or confirm the solution; and (3) if
denied, continue the search for an acceptable solution. Such an adaptation is outside
of the scope of this investigation.

11 Note that in practice, the search space S is not explicitly represented, but rather is
implicit in the start-state and set of transition functions.
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which checks if a given state n is a superset of t (i.e., if t is derivable from n by
filtering out tuples).

There are two general methodologies for discovering solutions to search prob-
lems: uninformed search and informed search. Both are systematic approaches
to discovering a path of transformations in a search space, differing primarily in
their use of external knowledge not explicit in the graph structure of the space.
In particular, uninformed methods are brute-force approaches for traversing a
search space, and informed methods use some external hints, in the form of
heuristics, to guide the process. At any point during search, a choice needs to
be made in selecting the next search node to visit. For each neighbor n of the
current state, we can assign a cost value via an evaluation function, estimating
the cost to get from the start state s, through n, to a target state:

eval(n) = past(n) + future(n)

where past(n) is the known cost of reaching n from s, and future(n) is an estimate
of the cost of getting from n to a goal state. A node with lowest cost amongst
unexplored nodes is selected next for exploration. Uninformed methods ignore (or
rather, do not have access to) future(n) during this calculation of cost. Informed
methods make full use of future(n) in determining eval(n) (and may or may not
ignore past(n)). The classic “Best-First” search algorithm can be specialized to
the standard uniformed Breadth-First search and informed A∗ search (described
below) algorithms in this manner [61].

In many domains, it is difficult to construct useful heuristic future(·) functions
[61]. In such cases, one is often limited to variations of brute-force search. The
branching factor of the data mapping search space is proportional to |s| + |t|
and hence quite high, ruling out the use of such search methods. Fortunately,
data mapping is a domain where it is possible to develop useful search heuris-
tics (and would be impractical if this were not the case), and using them for
intelligent exploration of the search space greatly reduces the number of states
visited. Hence, we focus on informed search methodologies in the balance of our
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discussion. We return to the issue of developing heuristics for data mapping in
Section 3.4.

Informed Search in Tupelo. Due to their simplicity and effectiveness, we
chose to implement the heuristic based A∗, Iterative Deepening A* (IDA), and
Recursive Best-First Search (RBFS) search algorithms from the AI literature
[45,46,61]. In the exploration of a state space, these algorithms use a heuristic
function to rank states and selectively search the space based on the rankings.
The evaluation function eval() for ranking a search state n is calculated as above,
with past(n) equal to the number of transitions to reach n from s, and where
future(n) = h(n), for some heuristic function h which makes an “educated guess”
of the distance of n from the target state. Search begins at the source critical
instance s and continues until the current search state is a structurally identical
superset of the target critical instance t (i.e., the current state contains t). The
transformation path from s to t gives a basic mapping expression in L . After
this expression has been discovered, filtering operations (via relational selections
σ) must be applied if necessary according to external criteria, as discussed in
Section 3.1. The final output of Tupelo is an expression for mapping instances
of the source schema to corresponding instances of the target schema.

A∗ is a special case of the general best-first search strategy [61]. A∗ search
is just best-first search called with an eval() function such that the future()
component never overestimates the distance to a goal state. We used A∗ search
to develop search heuristics in early implementations of Tupelo. Unfortunately,
the cost of maintaining the search queues quickly becomes impractical (given
an exponential search space). Hence we were driven to explore memory-limited
alternatives to best-first search.

The two search algorithms finally used in Tupelo, IDA and RBFS, operate
under more practical conditions. In particular, each of these algorithms uses
memory linear in the depth of search; although they both perform redundant
explorations (compared to best-first search), they do not suffer from the expo-
nential memory use of basic A∗ best-first search which led to the ineffectiveness
of early implementations of Tupelo. Furthermore, they both achieve performance
asymptotically equivalent to A∗, as most of the work is done on the final search-
frontier during a successful search.12 In a nut-shell, these algorithms operate as
follows:

– IDA performs a depth-bounded depth-first search of the state space using
the eval()-rankings of states as the depth bound, iteratively increasing this
bound until the target state is reached [45].

– RBFS performs a localized, recursive best-first exploration of the state space,
keeping track of a locally optimal eval()-value and backtracking if this value
is exceeded [46].

These two simple algorithms proved to be effective in the discovery of mapping
expressions. To further improve performance of the search algorithms, we also
12 In fact, they may even run faster than A∗ in some cases due to lower memory

management overhead [45].
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employed the simple rule of thumb that “obviously inapplicable” transformations
should be disregarded during search. For example if the current search state has
all attribute names occurring in the target state, there is no need to explore
applications of the attribute renaming operator. We incorporated several such
simple rules in Tupelo.

3.4 Search Heuristics

Heuristics are used to intelligently explore a search space, as discussed in Section
3.3. A search heuristic h(n) estimates the distance, in terms of number of inter-
mediate search states, of a given database n from the target database t. A variety
of heuristics were implemented and evaluated. This section briefly describes each
heuristic used in Tupelo.

Set Based Similarity Heuristics. Three simple heuristics measure the over-
lap of values in database states. Heuristic h1 measures the number of relation,
column, and data values in the target state which are missing in state n:

h1(n) = |πREL(t)− πREL(n)|
+ |πATT(t)− πATT(n)|
+ |πVALUE(t)− πVALUE(n)|.

Here, π is relational projection on the TNF of n and t, and |R| denotes the
cardinality (i.e., number of tuples) of relation R. Heuristic h2 measures the
minimum number of data promotions (↑) and metadata demotions (↓) needed
to transform n into the target t:

h2(n) = |πREL(t) ∩ πATT(n)|
+ |πREL(t) ∩ πVALUE(n)|
+ |πATT(t) ∩ πREL(n)|
+ |πATT(t) ∩ πVALUE(n)|
+ |πVALUE(t) ∩ πREL(n)|
+ |πVALUE(t) ∩ πATT(n)|.

Heuristic h3 takes the maximum of h1 and h2 on n:

h3(n) = max{h1(n), h2(n)}.

Databases as Strings: The Levenshtein Heuristic. Viewing a database
as a string leads to another heuristic. Suppose x is a database in TNF with m
tuples

〈t1, r1, a1, v1〉 , . . . , 〈tn, rm, am, vm〉 .
For each such tuple, let si = ri 
 ai 
 vi, where 
 is string concatenation. Define
string(x) to be the string s1 
 · · · 
 sm, where s1, . . . , sm is a lexicographic
ordering of the m strings si, potentially with repetitions.
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Example 11. Recall the TNF of database FlightsC from Example 10:

〈t1 AirEast Route ATL29〉, 〈t1 AirEast BaseCost 100〉,
. . . , 〈t4 JetWest BaseCost 220〉, 〈t4 JetWest TotalCost 236〉.

Transforming each tuple into a string and then sorting these strings, we have

string(FlightsC) =

AirEastBaseCost100AirEastRouteATL29 · · · JetWestTotalCost236.

�

The Levenshtein distance between string w and string v, L(w, v), is defined as the
least number of single character insertions, deletions, and substitutions required
to transform w into v [49]. Using this metric, we define the following normalized
Levenshtein heuristic:

hL(n) = round

(
k

L(string(n), string(t))
max{|string(n)|, |string(t)|}

)

where |w| is the length of string w, k � 1 is a scaling constant (scaling the
interval [0, 1] to [0, k]), and round(y) is the integer closest to y.

Databases as Term Vectors: Euclidean Distance. Another perspective
on a database is to view it as a document vector over a set of terms [5]. Let
A = {a1, . . . , an} be the set of tokens occurring in the source and target critical
instances (including attribute and relation names), and let

T = {〈a1, a1, a1〉 , . . . , 〈an, an an〉}
be the set of all n3 triples over the tokens in A. Given a search database x in
TNF with tuples 〈t1, r1, a1, v1〉 , . . . , 〈t�, rm, am, vm〉, define x̄ to be the n3-vector
〈x1, . . . , xn3〉 where xi equals the number of occurrences of the ith triple of T in
the list

〈r1, a1, v1〉 , . . . , 〈rm, am, vm〉 .
This term vector view on databases leads to several natural search heuristics.

The standard Euclidean distance in term vector space from state n to target
state t gives us a Euclidean heuristic measure:

hE(n) = round

(√√√√ n3∑
i=1

(ni − ti)2
)

where xi is the ith element of the database vector x̄.
Normalizing the vectors for state n and target t gives a normalized Euclidean

heuristic for the distance between n and t:

h|E|(n) = round

(
k

√√√√ n3∑
i=1

[
ni

|n̄| −
ti

|̄t|
]2

)

where k � 1 is a scaling constant and |̄x| =
√∑n3

i=1 x2i , as usual.
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Databases as Term Vectors: Cosine Similarity. Viewing databases as vec-
tors, we can also define a cosine similarity heuristic measure, with scaling con-
stant k � 1:

hcos(n) = round

(
k

[
1−

∑n3

i=1 niti

|n̄||̄t|
])

Cosine similarity measures the cosine of the angle between two vectors in the
database vector space. If n is very similar to the target t in this space, then hcos
returns a low estimate of the distance between them.

3.5 Supporting Complex Semantic Mappings

The mapping operators in the language L (Table 1) accommodate dynamic
data-metadata structural transformations in addition to simple one-to-one
schema matchings. However, as discussed in Section 2.3, many mappings involve
complex semantic transformations [14,34,62,64]. As examples of such mappings,
consider several basic complex mappings for bridging semantic differences be-
tween two tables.

Example 12. A semantic mapping f1 from airline names to airline ID numbers:

Carrier

AirEast

JetWest

f1	−→
CID

123

456

A complex function f2 which returns the concatenation of passenger first and
last names:

Last First

Smith John

Doe Jane

f2	−→
Passenger

John Smith

Jane Doe

The complex function f3 between FlightsB and FlightsCwhich maps AgentFee
and Cost to TotalCost:

CID Route Cost AgentFee

123 ATL29 100 15

456 ATL29 200 16

123 ORD17 110 15

456 ORD17 220 16

f3	−→

CID Route TotalCost

123 ATL29 115

456 ATL29 216

123 ORD17 125

456 ORD17 236

�

Other examples include functions such as date format, weight, and international
financial conversions, and semantic functions such as the mapping from employee
name to social security number (which can not be generalized from examples),
and so on.
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Support for Semantic Mapping Expressions. Any complex semantic func-
tion is unique to a particular information sharing scenario. Incorporating such
functions in a non-ad hoc manner is essential for any general data mapping solu-
tion. Although there has been research on discovering specific complex semantic
functions [12,34], no general approach has been proposed which accommodates
these functions in larger mapping expressions.

Tupelo supports discovery of mapping expressions with such complex seman-
tic mappings in a straight-forward manner without introducing any specialized
domain knowledge. We can cleanly accommodate these mappings in the system
by extending L with a new operator λ which is parameterized by a complex
function f and its input-output signature:

λB
f,Ā(R).

Example 13. As an illustration of the operator, the mapping expression to apply
function f3 in Example 12 to the values in the Cost and AgentFee attributes,
placing the output in attribute TotalCost:

λTotalCost
f3,Cost, AgentFee(FlightsB).

This is precisely the semantic transformation used in Example 7. �

The semantics of λ is as follows: for each tuple t in relation R, apply the mapping
f to the values of t on attributes Ā = 〈A1, . . . , An〉 and place the output in
attribute B. The operator is well defined for any tuple t of appropriate schema
(i.e., appropriate type), and is the identity mapping on t otherwise. Note that
this semantics is independent of the actual mechanics of the function f . Function
symbols are assumed to come from a countably infinite set F = {fi}i=∞

i=0 .

Discovery of Semantic Mapping Expressions. Tupelo generates data map-
ping expressions in L . Extending L with the λ operator allows for the discovery
of mapping expressions with arbitrary complex semantic mappings. Given criti-
cal input/output instances and indications of complex semantic correspondences
f between attributes Ā in the source and attribute B in the target, the search is
extended to generate appropriate mapping expressions which also include the λ
operator (Figure 8).

For the purpose of searching for mapping expressions, λ expressions are treated
just like any of the other operators. During search all that needs to be checked is
that the applications of functions are well-typed. The system does not need any
special semantic knowledge about the symbols in F ; they are treated simply as
“black boxes” during search. The actual “meaning” of a function f , maintained
perhaps as a stored procedure, is retrieved during the execution of the mapping
expression on a particular database instance. Apart from what can be captured
in search heuristics, this is probably the best that can be hoped for in general
semantic integration. That is, all data semantics from some external sources of
domain knowledge must be either encapsulated in the functions f or somehow
introduced into the search mechanism, for example via search heuristics.



62 G.H.L. Fletcher and C.M. Wyss

This highlights a clear separation between semantic functions which interpret
the symbols in the database, such as during the application of functions in F ,
and syntactic, structural transformations, such as those supported by generic
languages like L . This separation also extends to a separation of labor in data
mapping discovery, as indicated in our system design framework of Section 2.3:
discovering particular complex semantic functions and generating executable
data mapping expressions are treated as two separate issues in Tupelo.

Discovering complex semantic functions is a difficult research challenge. Some
recent efforts have been successful in automating the discovery of restricted
classes of complex functions [12,34]. There has also been some initial research on
optimization of mapping expressions which contain executable semantic func-
tions [10].

Focusing on the discovery of data mapping expressions, Tupelo assumes that
the necessary complex functions between the source and target schemas have
been discovered and that these correspondences are articulated on the critical
instance inputs to the system. These correspondences can be easily indicated by
a user via a visual interface, such as those discussed in Section 3.2. Internally,
complex semantic maps are just encoded as strings in the VALUE column of the
TNF relation. This string indicates the input/output type of the function, the
function name, and the example function values articulated in the input critical
instance.

3.6 Empirical Evaluation

The Tupelo system has been fully implemented in Scheme. In this section we
discuss extensive experimental evaluations of the system on a variety of syn-
thetic and real world data sets. Our aim in these experiments was to explore the
interplay of the IDA and RBFS algorithms with the seven heuristics described in
Section 3.4. We found that overall RBFS had better performance than IDA. We
also found that heuristics h1, h3, normalized Euclidean, and Cosine Similarity
were the best performers on the test data sets.

Experimental Setup. All evaluations were performed on a Pentium 4 (2.8 GHz)
with 1.0 GB main memory running Gentoo Linux (kernel 2.6.11-gentoo-r9) and
Chez Scheme (v6.9c). In all experiments, the performance measure is the number
of states examined during search. We also included the performance of heuristic
h0 for comparison with the other heuristics. This heuristic is constant on all
values (∀n, h0(n) = 0) and hence induces brute-force blind search (comparable to
breadth-first search for both IDA and RBFS [45]). Through extensive empirical
evaluation of the heuristics and search algorithms on the data sets described
below, we found that the following values for the heuristic scaling constants k
give overall optimal performance:

Norm. Euclidean Cosine Sim. Levenshtein
IDA k = 7 k = 5 k = 11
RBFS k = 20 k = 24 k = 15

These constant k values were used in all experiments presented below.
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Fig. 9. Experiment 1: Number of states examined using IDA for schema matching on
synthetic schemas

Experiment 1: Mapping on Synthetic Data. In the first experiment, we
measured the performance of IDA and RBFS using all seven heuristics on a
simple schema matching task.

Data Set. Pairs of schemas with n = 2, . . . , 32 attributes were synthetically gen-
erated and populated with one tuple each illustrating correspondences between
each schema:〈

A1

a1
,
B1

a1

〉 〈
A1 A2

a1 a2
,
B1 B2

a1 a2

〉
· · ·

〈
A1 · · · A32
a1 · · · a32 ,

B1 · · · B32
a1 · · · a32

〉

Each algorithm/heuristic combination was evaluated on generating the correct
matchings between the schemas in each pair (i.e., A1↔B1, A2↔B2, etc.).

Results. The performance of IDA on this data set is presented in Figure 9,
and the performance of RBFS is presented in Figure 10. Heuristic h2 performed
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Fig. 10. Experiment 1: Number of states examined using RBFS for schema matching
on synthetic schemas

identically to h0, and heuristic h3’s performance was identical to h1. Hence they
are omitted in Figures 9(a) & 10(a). RBFS had performance superior to IDA
on these schemas, with the h1, Levenshtein, normalized Euclidean, and Cosine
Similarity heuristics having best performance.

Experiment 2: Mapping on the Deep Web. In the second experiment we
measured the performance of IDA and RBFS using all seven heuristics on a set
of over 200 real-world query schemas extracted from deep web data sources.

Data Set. The Books, Automobiles, Music, and Movies (BAMM) data set from
the UIUC Web Integration Repository13 contains 55, 55, 49, and 52 schemas
from deep web query interfaces in the Books, Automobiles, Music, and Movies
domains, respectively. The schemas each have between 1 and 8 attributes. In this
13 http://metaquerier.cs.uiuc.edu/repository
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Fig. 11. Experiment 2: Average number of states examined for mapping discovery in
the four BAMM domains

experiment, we populated the schemas of each domain with critical instances.
We then measured the average cost of mapping from a fixed schema in each
domain to each of the other schemas in that domain.

Results. The average performance of IDA on each of the BAMM domains is
presented in Figure 11(a). Average RBFS performance on each of the BAMM
domains is given in Figure 11(b). The average performance of both algorithms
across all BAMM domains is given in Figure 12. We found that RBFS typically
examined fewer states on these domains than did IDA. Overall, we also found
that the Cosine Similarity and normalized Euclidean heuristics had the best
performance.

Experiment 3: Complex Semantic Mapping. In the third experiment we
evaluated the performance of Tupelo on discovering complex semantic mapping ex-
pressions for real-worlddata sets in the real estate and business inventorydomains.
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Fig. 12. Experiment 2: Average number of states examined by IDA and RBFS for
mapping discovery across all BAMM domains

Data Set. We measured performance of complex semantic mapping with the
schemas for the Inventory and Real Estate II data sets from the Illinois Semantic
Integration Archive.14 In the Inventory domain there are 10 complex semantic
mappings between the source and target schemas, and in the Real Estate II
domain there are 12. We populated each source-target schema pair with critical
instances built from the provided datasets.

Results. The performance on both domains was essentially the same, so we
present the results for the Inventory schemas. The number of states examined
for mapping discovery in this domain for increasing numbers of complex semantic
functions is given in Figure 13(a) for IDA and in Figure 13(b) for RBFS. On this
data, we found that RBFS and IDA had similar performance. For the heuristics,
the best performance was obtained by the h1, h3 and cosine similarity heuristics.

Discussion of Empirical Results. The goal of the experiments discussed
in this section was to measure the performance of Tupelo on a wide variety of
schemas. We found that Tupelo was effective for discovering mapping expressions
in each of these domains, even with the simple heuristic search algorithms IDA
and RBFS. It is clear from these experiments that RBFS is in general a more
effective search algorithm than IDA. Although we found that heuristic h1 ex-
hibited consistently good performance, it is also clear that there was no perfect
all-purpose search heuristic. Tupelo has also been validated and shown effective
for examples involving the data-metadata restructurings illustrated in Figure 1
[19]. It was found in that domain that no particular heuristic had consistently
superior performance. We can conclude from these observations that work still
needs to be done on developing more sophisticated search heuristics.

14 http://anhai.cs.uiuc.edu/archive/
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Fig. 13. Experiment 3: Number of states for complex semantic mapping discovery in
the Inventory domain

3.7 Related Work

The problem of overcoming structural and semantic heterogeneity has a long
history in the database [14] and AI [62] research communities. In Section 2 we
have already situated Tupelo in the general research landscape of the data map-
ping problem. We now briefly highlight related research not discussed elsewhere
in the paper.

Schema Matching. A wide variety of existing systems have leveraged AI and
machine learning techniques for solving different aspects of schema matching
and mapping. These include neural networks, Bayesian learning, and genetic
programming approaches [13,51,60,66]. The Tupelo view on data mapping as
search complements this body of research. As we have discussed, L includes
(direct) schema matching as a special case and hence Tupelo introduces a novel
approach to this research problem.
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Data-Metadata Transformations. Few data mapping systems have considered
the data-metadata structural transformations used in the Tupelo mapping lan-
guage L . Systems that have considered some aspects of these transformations
include [7,12,59,81]. The systems closest to Tupelo in terms of metadata trans-
formations are the recent work on contextual schema matching by Bohannon
et al. [7] and composite approach to schema mapping by Xu and Embley [81],
wherein the schema matching paradigm is extended to structural transforma-
tions. This work, however, only considers limited subsets of the L structural
transformations. Furthermore, Tupelo complements these systems with the novel
perspective of mapping discovery as search.

Example-Driven Data Mapping. The notion of example-based data mapping is
an ancient idea, by some accounts dating back at least to the 4th century [63]. Re-
cent work most closely related to the example driven approach of Tupelo include
[50,63,66]. The results of this Section can be viewed as contributions towards
extending this line of research, including a richer mapping language and new
perspectives on mapping discovery.

Executable Mapping Expressions. Most schema matching systems do not ad-
dress the issue of generating executable mapping expressions, which is in general
considered to be an open hard problem [56]. Several notable systems that do gen-
erate such expressions include [4,25,31,32,57,59,66]. Our contributions to this
research area include extending mapping expressions to include semantic trans-
formations and introducing the Rosetta Stone Principle for expression discovery.

The Data Exchange Problem. A problem closely related to the data mapping
problem is the data exchange problem [44], proposed to formalize aspects of the
Clio schema mapping system developed at IBM [31,59]. This framework has been
recently extended to consider the case of data-metadata transformations [35].
Briefly, the data exchange problem is as follows: given a source schema S, target
schema T , source instance I, and a set ΣS,T of source-to-target dependencies in
some logical formalism, find a target instance J that satisfies ΣS,T [44]. Fagin et
al. have characterized solutions to the data exchange problem and have explored
query answering in data exchange settings [44]. A limitation of these results
is a restriction of the logical formalism for expressing ΣS,T to fragments of
first order logic which do not always adequately express naturally occurring
data mappings. Furthermore, in data exchange it is assumed (1) that these
dependencies are given as input and (2) the target schema T is fixed. In the
data mapping problem we are concerned precisely with discovering meaningful
source to target constraints, given S, T , and perhaps (I, J) as input where the
target schema T is potentially dynamic, as we saw in the mapping from FlightsB
to FlightsA (Figure 1), which creates as many new route attributes in FlightsA
as there are Route values in FlightsB.

In summary, Tupelo complements and extends the research in each of these
areas by (1) attacking the data mapping problem as a basic search problem
in a state space and by (2) addressing a broader class of mapping expressions
including data-metadata transformations and complex semantics functions. We
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reiterate that, to the best of our knowledge, Tupelo is the first system for data
mapping to take an end-to-end modular perspective on the problem and generate
such a broad class of database transformations.

Remarks. In this Section we presented and illustrated the effectiveness of the
Tupelo system for discovering data mapping expressions between relational data
sources. Novel aspects of the system include (1) example-driven generation of
mapping expressions which include data-metadata structural transformations
and complex semantic mappings and (2) viewing the data mapping problem
as fundamentally a search problem in a well defined search space. Mapping
discovery is performed in Tupelo using only the syntax and structure of the
input examples without recourse to any domain-specific semantic knowledge.
The implementation of Tupelo was described and the viability of the approach
illustrated on a variety of synthetic and real world schemas. We concluded the
Section with an overview of related research results.

4 Concluding Remarks

In this paper, we have studied the long-standing problem of mapping discov-
ery for data sharing and coordination between autonomous data sources. Our
aim was the development of a robust perspective on the generic design space
of data mapping solutions. In our investigations, we strove towards a deeper
understanding of both what data mappings are and how to effectively go about
discovering them. The contributions of this paper advance the state of the art
of both theoretical and engineering aspects of the data mapping problem, and
provide foundations for further progress on both of these fronts. We close by
indicating some of the research directions supported by these foundations.

Abstract Formalisms for Data Mapping. We have taken a “set-theoretic” per-
spective in our development of DMP which lends itself to direct specification
depending on problem context (e.g., our definition of RelationalDMP for rela-
tional sources in Section 2.3). There are several other high-level frameworks,
however, which take a “categorical” perspective on data objects and their map-
pings. Examples of such abstract frameworks include information-flow theory
[38] and institutions [27]. Although these formalisms were not proposed with an
eye towards mapping discovery for structured data sources, it would be quite
interesting to investigate the connections and disconnections between these per-
spectives and that of Section 2.

The Tupelo Data Mapping System. There are several promising avenues for fu-
ture work on Tupelo (Section 3). As is evident from the empirical evaluation
presented in Section 3.6, further research remains on developing more sophis-
ticated search heuristics. The Levenshtein, Euclidean, and Cosine Similarity
based search heuristics mostly focus on the content of database states. Suc-
cessful heuristics must measure both content and structure. Is there a good
multi-purpose search heuristic? Recently, Gillis and Van den Bussche have stud-
ied search heuristics for discovering queries involving negation [25]. Also, we have
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only applied straightforward approaches to search with the IDA and RBFS algo-
rithms. Further investigation of search techniques developed in the AI literature
is warranted. Finally, the perspective of data mapping as search is not limited to
relational data sources. In particular, the architecture of the Tupelo system can
be applied to the generation of mapping expressions in other mapping languages
and for other data models. Based on the viability of the system for relational
data sources, this is a promising avenue for future research.

Acknowledgments. We thank the reviewers, the members of the Indiana Uni-
versity database group, and Jan Van den Bussche for their support and many
helpful comments.
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H., Hübner, S.: Ontology-based integration of information – a survey of existing
approaches. In: IJCAI (2001)

72. Wang, G., Goguen, J.A., Nam, Y.-K., Lin, K.: Critical Points for Interactive
Schema Matching. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004.
LNCS, vol. 3007, pp. 654–664. Springer, Heidelberg (2004)

73. Warren, R.H., Tompa, F.W.: Multi-Column Substring Matching for Database
Schema Translation. In: VLDB, Seoul, Korea, pp. 331–342 (2006)

74. Wiederhold, G.: The Impossibility of Global Consistency. OMICS 7(1), 17–20
(2003)

75. Wiesman, F., Roos, N.: Domain Independent Learning of Ontology Mappings. In:
AAMAS, New York, NY, pp. 846–853 (2004)

76. Winkler, W.E.: The State of Record Linkage and Current Research Problems. Tech-
nical Report RR99/04, U.S. Bureau of the Census, Statistical Research Division
(1999)

77. Wyss, C.M., Robertson, E.L.: A Formal Characterization of PIVOT/UNPIVOT.
In: ACM CIKM, Bremen, Germany, pp. 602–608 (2005)

78. Wyss, C.M., Robertson, E.L.: Relational Languages for Metadata Integration.
ACM Trans. Database Syst. 30(2), 624–660 (2005)

79. Wyss, C.M., Van Gucht, D.: A Relational Algebra for Data/Metadata Integration
in a Federated Database System. In: ACM CIKM, Atlanta, GA, USA, pp. 65–72
(2001)

80. Wyss, C.M., Wyss, F.I.: Extending Relational Query Optimization to Dynamic
Schemas for Information Integration in Multidatabases. In: ACM SIGMOD, Beijing
(2007)

81. Xu, L., Embley, D.W.: A Composite Approach to Automating Direct and Indirect
Schema Mappings. Information Systems 31(8), 697–732 (2006)



 

S. Spaccapietra, L. Delcambre (Eds.): Journal on Data Semantics XIV,  LNCS 5880, pp. 74–104, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Using Semantic Networks and Context in  
Search for Relevant Software Engineering Artifacts 

George Karabatis1, Zhiyuan Chen1, Vandana P. Janeja1, Tania Lobo1,  
Monish Advani1, Mikael Lindvall2, and Raimund L. Feldmann2 

1 Department of Information Systems, University of Maryland, Baltimore County (UMBC) 
1000 Hilltop Circle, Baltimore, MD 21250, USA 

2 Fraunhofer USA Center for Experimental Software Engineering 
4321 Hartwick Rd., College Park, MD 20742, USA 

Abstract. The discovery of relevant software artifacts can increase software re-
use and reduce the cost of software development and maintenance. Furthermore, 
change requests, which are a leading cause of project failures, can be better classi-
fied and handled when all relevant artifacts are available to the decision makers. 
However, traditional full-text and similarity search techniques often fail to pro-
vide the full set of relevant documents because they do not take into considera-
tion existing relationships between software artifacts. We propose a metadata 
approach with semantic networks1 which convey such relationships. Our ap-
proach reveals additional relevant artifacts that the user might have not been 
aware of. We also apply contextual information to filter out results unrelated to 
the user contexts, thus, improving the precision of the search results. Experi-
mental results show that the combination of semantic networks and context sig-
nificantly improve the precision and recall of the search results.  

Keywords: software engineering, search for artifacts, semantic networks, context. 

1   Introduction 

In the domain of software engineering software changes are inevitable, for example, 
due to requirements change, but cause several well-known problems if not handled 
properly. They can lead to severe time pressure and project delays due to underesti-
mation of the scope of the change. Major studies of today's software intensive systems 
consistently find surprisingly large numbers of failed, late, or excessively expensive 
systems [36] and according to [29] requirement change is one of the most common 
causes of software project failure. 

Thus, searching for relevant software development artifacts (requirements docu-
ments, design documents, source code, etc.), has become increasingly important. For 
                                                           
1  Semantic networks are graphs which represent knowledge by interconnecting nodes through 

edges. They have been used to describe and classify concepts for many centuries. According 
to Sowa the earliest known semantic network was drawn in the third century AD by the 
Greek philosopher Porphyry (Porfyrios) to graphically illustrate the categories of Aristotle 
(Sowa 1992). For a detailed background on semantic networks see (Sowa). 
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example, software developers often need to find out whether there are some similar 
software components or software designs to better respond to a software change re-
quest. Finding such related information may greatly reduce the cost of software 
change or allow more accurate estimation of the cost of the change, which may lead 
to better decisions (e.g., whether to accept or reject the change request). One study 
found that the amount of necessary software changes was three times higher than 
originally predicted [45], indicating that a better search technology may be one possi-
ble solution to this problem. We also believe that our technique can also help in the 
development of new software. 

Importance of Capturing Ad hoc Relationships: There are several obstacles to finding 
relevant artifacts, especially in the domain of software engineering.  First, the relation-
ships between artifacts are often ignored by existing full-text or similarity search tech-
nologies [9, 24, 1], but are extremely important for finding relevant software artifacts. 
For example, many software projects have various versions (thus, these versions are 
related), a large number of requirements documents (related to the code that implements 
them), and often implement overlapped functionality (thus, different projects are related 
to each other). However, it is extremely difficult for someone to find relevant artifacts if 
that person is unfamiliar with the software project structure and its history including its 
relationships to other software products and their evolution.  

Motivating Example: The following example describes some of these difficulties 
focusing on the ones that arise during a search for relevant information that would be 
triggered for example, by a change request. Fig. 1 shows the relationships between 
two closely related software projects: The Tactical Separation Assisted Flight Envi-
ronment (TSAFE) and the Flight Management System (FMS). The arrows are direc-
tional and indicate that the source node is related to the target  node and the number 
identifies the degree of relevance between the two connected nodes.  Details of these 
two projects can be found in Section 5.  

Suppose a developer of FMS version 5 receives a change request to add the capabil-
ity to change geographical area in run time. The developer tries to find artifacts related 
to the keyword “FMS 5”. Certainly, an existing text search tool such as Google Desktop 
or a search tool that matches artifacts with similar attributes could be used. Unfortu-
nately, related artifacts such as TSAFE II Loss Of Separation (LOS) (which is function-
ally equivalent to FMS 5), TSAFE II (without the LOS option), TSAFE II Dynamic 
Map (which implements the sought functionality in a different project TSAFE), and the 
requirement document for Dynamic Map (which is the design document for the sought 
functionality) are unlikely to be retrieved. The reason is that these artifacts do not con-
tain the keyword FMS. In order to overcome this problem, one could make TSAFE a 
synonym of FMS or define a similarity score between these two terms. However, in this 
context, FMS has two meanings: Flight Management System and Finance Management 
System (an accounting system). Thus, a search for TSAFE would retrieve artifacts for 
both the Flight Management System and Finance Management System. In conclusion, 
the design information related to TSAFE II DM, which implements the sought function-
ality, cannot be retrieved without extensive searching due to its distant and indirect 
relationship to FMS 5 (see Fig. 1). 
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Our Approach and Contributions: We use two techniques to solve this problem: 

Semantic networks and context. Next, we give a brief description of these two tech-
niques. We use semantic networks to capture ad hoc relationships between artifacts. 
Fig. 1 shows a partial view of a semantic network in our example. The nodes repre-
sent artifacts and the links represent relationships between artifacts. The number on 
each edge quantifies the degree of relevance (i.e., the strength of the relationship) of 
two artifacts. We also infer indirect relevance scores between two indirectly linked 
artifacts. For example, the relevance score between FMS 5 and TSAFE II DM equals 
the product of relevance scores between FMS 5 and TSAFE II LOS, TSAFE II LOS 
and TSAFE II, and TSAFE II and TSAFE II DM.  

Now, given a search for information pertinent to FMS 5, we can use the semantic 
network to add relevant artifacts. A full-text search engine (or a similarity search 
engine) returns FMS 5 as result. We can then expand the results by adding any arti-
facts whose relevance score to FMS 5 exceeds a certain user defined threshold (let’s 
say 0.7).  This threshold identifies the degree of semantic closeness (relevance score) 
between related artifacts in the semantic network. For example, only artifacts which 
are relevant with a relevance score above threshold t are included in the semantic 
network recommendations. Thus the results will include FMS 5, TSAFE II LOS, 
TSAFE II, TSAFE II DM, and Requirement: Dynamic Map.  

Although semantic networks recommend semantically relevant answers, these an-
swers can fit the user’s query more precisely if additional information about the user, 
the project, the environment, etc. were to be provided. We use context, which con-
tains information relevant to the user (such as user’s roles and the current and/or  
previous projects) to enable the semantic network to target the user queries more 
accurately. For example, some users may be only interested in requirements or design 
documents (since they may not be programmers and can not read source code). In our 
approach, we store different types of context information and use it to filter the results 
generated by semantic network. In the above example, the context associated with 
that user, is that the answer must be requirement documents, thus only the require-
ment for Dynamic Map is returned, which is exactly what the user wants.  

Fig. 1. A (partial) semantic network for Air Traffic Control Software
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We consider each artifact to be a node associated with certain characterizing attrib-
utes. We begin by constructing a first mode semantic network, referred to as Similar-
ity based Network, which is a graph that identifies the similarity between the nodes in 
terms of the features associated with each node. We next utilize semantic rules to 
augment the first mode network and discover a second mode network, which we call 
Rule Enforced Network. Although both semantic networks and context have been 
used individually in search [26] and other applications, there are three important dif-
ferences in this paper.  

First, we use semantic networks to model the ad hoc relationships between artifacts 
while most existing work such as WordNet [26] and concept maps [74] model rela-
tionships between keywords. We find that in many domains such as software engi-
neering, the relationships between artifacts are often difficult to model at the keyword 
level. For example, it is very difficult to model the relationship between a software 
release and its subsequent releases at the keyword level. On the other hand, it is 
straightforward to add such links between artifacts: a simple rule can be created to 
add such links automatically. 

Second, this paper combines semantic network with context. Using a semantic 
network alone may improve the recall of search results because more artifacts are 
returned. However, it may not improve precision of the search results because not all 
these additional artifacts may be considered pertinent by the user. This paper uses 
context to filter out irrelevant artifacts based on existing contexts. We have conducted 
experiments which show that the combination of semantic network and context leads 
to better precision and recall.  

Third, there has been little work on searching for software engineering artifacts, 
which has become increasingly important for the software industry –  especially in 
regard to the increasing number of change requests and extended life cycles of today’s 
software products. To the best of our knowledge, we are not aware of any study that 
uses both semantic networks and context in the software engineering domain.  Spe-
cifically our contributions are as follows: 

1. We automatically construct a semantic network from artifacts and their associ-
ated characterizing attributes.  

2. We keep a provision for adding external semantic rules supplied by a domain 
expert, that when applied to the semantic network, they augment and enhance it.   

3. We automatically find, using our semantic network, not only the requested arti-
facts based on a user query, but additional relevant ones that the user might have 
not been aware of.  

4. We apply context on the result set of the user query to enhance the quality of 
search over artifacts and include only contextually related artifacts.  

5. We demonstrate through experiments, using software artifacts from a software 
test bed, that the combination of semantic networks and context significantly im-
prove both the precision and recall of search results. 

Although this paper focuses on the software engineering domain, we believe the pro-
posed approach is suitable to other domains too. The rest of the paper is organized as 
follows: Section 2 describes related work and Section 3 gives preliminaries on seman-
tic networks and context. In Section 4 we describe our approach, and in Section 5 we 
present and discuss validating experiments. Section 6 concludes the paper. 



78 G. Karabatis et al. 

 

2   Related Work 

Related work on software change and reuse. The problem of determining software 
change impact has a long history. Haney’s early model for module connection analy-
sis predicts the propagation of change among modules of a system [33]. It assumes 
that a change in one module is likely to cause change in other modules. A probability 
connection matrix subjectively models the dependencies between modules. Our ap-
proach is different from Haney’s in that we do not only model dependencies between 
modules, but between all artifacts carrying design information as well as relationships 
between projects, and we use context. 

Many useful theoretical models for impact analysis and change-related processes 
are collected in the excellent overview by [11]. Different approaches to identify 
change are described; for instance, traceability analysis for change propagation be-
tween work-products, ripple-effect analysis for propagation within work-products, 
and change history analysis to understand relationships to previous changes. Many 
approaches address reuse of various artifacts [62, 57, 61]. These approaches make use 
of metadata (i.e., tags) to describe the artifacts, which are used to classify [57, 63] and 
retrieve them [56, 7]. 

Latent Semantic Indexing (LSI), an information retrieval technique, has been used 
to recover links between various artifacts [47, 50] that share a significant number of 
words (not necessary the words being searched). However, in the software engineer-
ing domain the usefulness of this approach is sometimes limited. As described in our 
Motivating Example, the critical keywords TSAFE and FMS do not appear in the 
same artifacts and the description of the change request uses different terminology. 
Furthermore, the similarities between two artifacts are symmetric in LSI, which is 
often not true in practice. For example, given a software release, the next and newer 
release is likely more interesting than the previous one. Since semantic networks do 
not require the existence of such shared keywords and they do not require that simi-
larities are symmetric, our approach does not have these limitations.  

Canfora et al. describe the state of the art of information retrieval and mention 
three areas in which information retrieval is applied to software maintenance prob-
lems: Classifying maintenance request (i.e., change request), finding an expert for a 
certain maintenance request, and identifying the source that will be impacted by a 
maintenance request [15]. For example, in [48] the authors use various technologies 
such as Bayesian classifiers to classify maintenance requests. In [5, 18] [54] the au-
thors determine who is the expert for a certain change request based on who resolved 
a similar change request in the past based on data from version control systems and 
try to identify similar change requests from the past. The main difference with our 
approach is that we model distant relationships connecting projects and artifacts that 
are similar, but would most likely never show up using similarity-based searchers. 
The impact on source code from a certain change request has been studied in [14] by 
correlating change request descriptions with information provided in version man-
agement systems such as Bugzilla. 
 

Related work on semantic networks. Semantic Networks have been used in phi-
losophy, psychology and more recently in information and computer science. Sowa 
gives a descriptive outline on the types and use of semantic networks in different 
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disciplines in [70, 69]. Semantic networks have long been used to represent relation-
ships [51]. Pearl used probabilities in semantic networks and performed extensive 
work in applying statistics and probability in causal semantic networks [59, 58] to 
derive such networks from observed data. 

There has also been work on discovering semantic similarity in [22] based on gen-
eralization/specialization, and positive/negative association between classes;  the topic 
of discovering and ranking semantic relationships for the semantic web is also rele-
vant [3, 67]. Our work is also linked to the specification of relationships among data-
base objects stored in heterogeneous database systems [38, 28, 68, 65]. We have used 
semantic networks to enhance the results of a user query in different application do-
mains such as the environmental [17] and e-government of water quality management 
[16]. However these early approaches do not support automated creation of the se-
mantic network and do not incorporate context as part of the solution.  We are now 
applying our approach in the domain of software engineering: see [43] for an early 
and initial approach describing  a limited scope of this problem in software engineer-
ing.  Quite related is the work on ConceptNET a large scale concept base which cap-
tures common sense concepts [46].  

 

Related work on context. A significant part of scientific literature is related to the 
use of context information related disciplines and in the social sciences such as psy-
chology and sociology. Pomerol and Brezillon examined notions of context and iden-
tified its forms as external, contextual, and proceduralized [60]. Bazire and Brezillon 
made an analysis on 150 definitions of context found on the web, and concluded that 
the definition of context depends on the field of knowledge it belongs to [8]. For a 
comprehensive examination of an operational context definition see [78] and for con-
text definitions in artificial intelligence, databases, communication, and machine 
learning see [13]. Lieberman and Selker presented context in computer systems and 
described it as “everything that affects the computation except the explicit input and 
output” [42].  There is related research performed within the scope of data integration 
and interoperability using context [37, 76, 30, 23]. Context has also been used as an 
aid in defining semantic similarities between database objects [39]. 

Sowa provides an overview on facts and context in [71]. Context has been used in 
multiple settings: Semantic knowledge bases utilize a partial understanding of con-
text; WordNet is such an example, where context is expressed in natural language 
[26]. It has also been used to provide better algorithms for ranked answers by incorpo-
rating context into the query answering mechanism [2] and to improve query retrieval 
accuracy [66]. Significant work on context-sensitive information retrieval was per-
formed in [66, 72, 35, 27]. However, we focus on how to take context into considera-
tion when using semantic networks.  Graphs that represent context have been used to 
provide focused crawling to identify relevant topical pages on the web [20]. Methods 
to model and represent context for information fusion from sensors using relational 
database model are described in [77]. Context has also been used to prune semantic 
networks to improve performance, by marking and thus using only nodes which are 
pertinent in specific contexts [31].  In addition, graphs were used by [55] to infer the 
context and fit it into an existing semantic network. However, in our work we keep 
the semantic networks  separate from context, and we avoid automated inference of 
context. Finkelstein et al. identify the difficulties in automatic extraction of context, 
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especially with text, as documents may be large, could contain multiple concepts, and 
could inject a lot of noise [27].  We have decided to collect context either by observ-
ing user actions, or explicitly by the user, an approach which is also used  in [41] 
where the context is used by the system; however it differs from our approach as it 
they use it to perform a rewrite of the original user query, whereas we apply a filtering 
technique on the expanded result. 

 
Related work on the semantic web and ontologies. A significant amount of work 
on semantics and the meaning of concepts has been done for the semantic web  [10, 
75]. The Web Ontology Language OWL [53] has been used to model concepts of a 
domain that are to be shared by others providing a relevance to the concept of seman-
tic networks. McCarthy introduced the ist(C,p) predicate to disambiguate when a 
proposition p is true in context C [52] and in [32] the authors adapt the ist construct of 
context and address the contextual problems which arise in aggregation on the seman-
tic web. The restrictions of the standard OWL specification, such that it allows neither 
directionality of information flow, nor local domain (which is of utmost importance 
for contexts), nor context mappings, are overcome by extending the syntax and the 
semantics of OWL via explicit context mappings [12]. The notion of relationships 
between concepts is also related to the topic maps or concept maps [74].  The major 
thrust of our work is to create a methodology that utilizes semantic networks and 
contextual information to support software engineers in their search of relevant arti-
facts. It can be implemented in a variety of ways:  

• As a stand-alone system, as we present in this paper 
• On the web, using semantic web technologies, such as OWL and RDF [4] 
• In a combination of the above two techniques 

The concepts presented in this paper can also be adapted and implemented on the 
semantic web, for example, expressing relationships using OWL. However, such 
effort is not within the scope of this paper, but we plan to investigate semantic web 
technologies in the future. 

3   Preliminaries 

In this Section we provide an introduction to some topics and notation that are being 
used in the remainder of the paper, around the concepts of semantic networks and 
context. 
 
Artifacts. In our software engineering setting, we assume that each artifact is associ-
ated with metadata represented as a set of attribute-value pairs. For example, the FMS 
version 5 has the following attributes: Name = Flight Management System Version 5, 
Type = Code, Programming Language = Java. In addition to these attributes the arti-
facts can be parsed to derive additional attributes. For instance in a Java program, 
import statements, function names etc. also provide valuable information about the 
artifact and can indeed be used as attributes describing the artifacts. 
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Semantic networks. A semantic network represents ad hoc relationships among 
artifacts. 

Definition 1 [Semantic Network]. A Semantic Network N(V, E) is a directed graph 
where V is a set of nodes and E is a set of edges. Each node corresponds to an arti-
fact, and each edge links two relevant artifacts vi and vj and has a score w(vi,vj) in the 
range of 0 to 1, representing the degree of relevance between the source artifact and 
the destination artifact.  

Fig. 1 illustrates a partial semantic network for the FMS and the TSAFE projects. The 
network contains knowledge of multiple people, e.g., an individual programmer of 
TSAFE may not know the relationships of artifacts in FMS, and vice versa, but a 
software architect may know that TSAFE is related to FMS, although the software 
architect may not know in detail the relationships between the artifacts within each 
system. That is, each of them only has knowledge of a part of the semantic network. 
However, based on the relevance scores between neighboring nodes in the network, it 
is possible to infer the relevance between any two nodes (as far apart as FMS 5 is to 
TSAFE II DM – see Fig. 1). Thus, one can discover more semantically related infor-
mation compared to individual knowledge. Next we define the relevance score be-
tween any two artifacts in the network.  
 
Definition 2 [Relevance Score]. If vi and vj are  two nodes in a semantic network 
N(E,V), there are k paths p1,…, pk between vi and vj, where path pl (1 <= l <=k) con-
sists of nodes vl1,…, vl|pl|+1 (|pl| is the length of path pl). The relevance score rs as 
defined by [17] between vi and vj is 
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The above formula computes the relevance score between vi and vj as the maximum 
relevance score of all paths connecting vi and vj.  The relevance score of such a  
path is computed using conditional probabilities under the assumption that they are 
independent. 

For instance, the relevance score between ‘FMS 5’ and ‘TSAFE II DM’ can be 
considered as the conditional probability of a software developer interested in the 
TSAFE II DM given that the developer is interested in the related product line FMS 5. 
Using the standard notation for conditional probability, we have:  

P(TSAFE II DM | FMS 5) = P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5) 

because the developer considers  that TSAFE II DM and FMS 5 are related if all arti-
facts on the path from FMS 5 to TSAFE II DM (TSAFE II LOS and TSAFE II) are 
considered to be related. Using chain rules and assuming all conditional probabilities 
are independent [64], we have:  

P(TSAFE II DM, TSAFE II, TSAFE II LOS | FMS 5) = 

P(TSAFE II LOS | FMS 5) × P(TSAFE II | TSAFE II LOS) × P(TSAFE II DM | 
TSAFE II)  = 0.9 × 0.9 × 0.9 = 0.73. 
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Thus, a developer receiving a change request for FMS 5 and using the semantic net-
work, would be able to find relevant artifacts such as FMS 4, TSAFE II LOS, TSAFE 
II, LOS Detector requirement, TSAFE II DM, and Requirement: Dynamic Map. Note 
that we can easily specify “not related” information in the semantic network by sim-
ply not adding a link between them. For example, there shall be no link between the 
Finance Management System and TSAFE. We also assume that relationships between 
nodes do not have to reflect the same attribute. By design, we just need to have any 
relationships established between the nodes of the graph, and we do not necessarily 
need to have probabilities of the same attribute to calculate paths.  
 
Context. We consider context to be significantly important in the search for semanti-
cally related information as every single search is performed within a specific context. 
Although this context may not explicitly appear in the query terms, nevertheless it 
does exist, and the user expects the system to provide information relevant to this 
context. In general, users may not be aware of context when they first search for in-
formation. However they become cognizant of context when they receive results that 
are irrelevant or not applicable to the current context, i.e., when a search for FMS 
returns Finance Management System.  A highly beneficial characteristic of our sys-
tem is that it takes advantage of context in a transparent way to filter and return the 
most appropriate answers tailored to each user.  We consider the following four types 
of context:  

• User Context contains information specific to users such as the role of the user 
(e.g., developers or design analyst), the programming language skills, etc.  

• Application Context contains information about the application or project the 
user is working on, such as the name and type of project, etc.  

• Environment Context includes information about the environment around the 
user, such as the organization the user belongs to, the operating system of the 
user’s computer, etc.  

• Other Context is used as a place holder for additional contextual information 
which does not fit in any of the previous context categories, but still is relevant 
to the domain of discourse.  

Note that there are additional categories of context which do exist, such as security 
considerations, policies, etc., which are not captured in our system. We acknowledge 
that it is unlikely to capture all possible types of context and their values in a  
computer system, since there will always be additional information contributing to 
context. We limit ourselves to collecting information about the above categories of 
context, and we do not claim that we can capture all possible context types. For an 
extensive work on an operational definition of context see [78]. In the domain of 
software engineering, we claim that such context information is relatively easy to 
collect as it was the case in our experiments and described below, and assume will be 
similar in most software engineering settings. Unlike domains such as generic search 
on the Internet where users submit ad hoc queries and want to find answers immedi-
ately, the users in software engineering domain are typically software developers, 
analysts, project managers, etc., who are regular users of the system and are more 
willing to provide contextual information in return for more precise search results. 
User contexts can be gathered by asking the users about past project experience, or by 



 Using Semantic Networks and Context in Search 83 

 

contacting their manager, etc. Application contexts can be obtained by asking the 
project managers. Environment contexts that are relatively static (i.e., the name of an 
organization) can be obtained easily, while those that are volatile (i.e., the current 
software version information) may need additional effort to collect and maintain. 
However, maintaining contexts falls outside the scope of this paper as we assume that 
the various types of contexts are already collected, stored, and maintained in a data-
base. Formally a context can be represented in the following format. 
 

Definition 3 [Context]. The context C(Uj, T) of type T for user Uj,  where ∈T  {User, 
Application, Environment, Other} is represented as a conjunctive normal form 

)(
21 iniiii

LLL ∨⋅⋅⋅∨∨∧ where each Lij is an attribute value pair or its negation . 

For example, the user context of a user who is a design analyst (i.e., interested  
in design and requirements documents) and does not know C++ is: 

)CLanguage gProgrammin ()tsRequiremenTypeDesignType( ++=¬∧=∨= . 

From a systems viewpoint, context is metadata information stored in database ta-
bles and it is used in conjunction with semantic networks as follows: Artifacts repre-
sented as nodes in semantic networks contain characterizing attributes, which may 
participate in the attribute value pairs of a context definition. These attributes link 
semantic networks and context. Relevance related information comes from semantic 
networks, and in turn is pruned by context-related information through the attribute 
value pairs. It is important to note that semantic networks and context are somehow 
orthogonal dimensions, but both use the attributes of the artifacts. Further details are 
described in Section 4.3. 

4   Approach 

Our approach consists of the following distinct steps: we first provide a high level 
overview of the major components of our system and the lifecycle of a user query 
through the system. Then we present details on the creation of a semantic network: we 
first derive the universal feature vector which has all the potential attributes across the 
set of artifacts. Based on the vector a feature vector for each artifact is generated. We 
utilize the similarities between these feature vectors to generate a similarity based 
network. This is further enhanced by semantic rules to generate a Rule enhanced 
network. We also define relevance scores between artifacts. Subsequently we define 
the context for the semantic network for a more refined result set. Lastly we apply 
transformation functions on this semantic network. The approach is discussed in the 
following subsections: Section 4.1 the system overview and the lifecycle of a user 
query. Section 4.2 describes how we construct semantic networks. Section 4.3 dis-
cusses how to use context in our system. Finally, Section 4.4 describes a framework 
of transformation functions which formalize our overall approach. 

4.1   System Overview 

In this section we outline the system architecture and the flow of a query from the 
time it is submitted until the results are returned back to the user. 
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A high-level conceptual architecture of our system with its major components is il-
lustrated in Fig. 2. Our prototype system has been implemented using an Oracle data-
base in which we store all types of metadata about software artifacts (attribute-value 
pairs), semantic networks, and context. Our system stores only metadata, e.g., an 
identifier (such as a uri) pointing to the location of each actual artifact. A set of se-
mantic networks is depicted to the right part of Fig. 2, each representing a separate 
software project. All these semantic networks are merged into a larger Semantic Net-
work, which integrates the individual semantic networks into a consolidated one. The 
edges connecting these networks identify the existence of a potential relationship 
between them. The strength of this relationship is represented as a relevance score. 
Another component of our system contains information about the different types of 
contexts that are collected (User, Application, Environment, etc.) and it is used to 
identify semantically related information and filters out irrelevant information. Con-
text has been implemented as a set of tables in an Oracle database.  Metadata about 
software artifacts is also stored in the database to be used in the extraction of the ini-
tial artifacts based on the user query. The Semantic Search Engine interacts with the 
users and all major components of our system. It oversees all operations at  each 
component, from the submission of a user query, to its execution, the use of semantic 
networks and contexts, all the way to displaying the final results to the user. 

Semantic networks and context information significantly improve the quality of the 
query result, since: (1) they enhance the result set with semantically relevant informa-
tion that the users might not be aware of, and (2) they incorporate contextual knowl-
edge to streamline the result according to user, application and other contexts. We 
demonstrate the improvement in quality by measuring recall and precision of the 
results (see Section 5). In this Section we present the lifecycle of a query submitted by 
a user to our system as illustrated in Fig. 3. Initially, a text search is performed to  
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collect all related information which matches the user query. This search is performed 
on a set of metadata about the artifacts2. Then, the returned artifacts are given as input 
to the semantic network. Using the algorithms described in detail in section 4.2 and 
depending on the value of the user-defined threshold on the relevance score, the  
semantic network produces an augmented list of recommended artifacts, whose rele-
vance scores to any of the initial artifacts exceed the threshold and thus are semanti-
cally relevant to the initial user query.  However, this augmented list may not reflect 
the contextual information pertaining to the user, project, etc. Consequently, the con-
texts are used next, to filter information accordingly. As a result, only the recom-
mended artifacts which are pertinent to the contexts will be collected and given to the 
user in the final result set of the original query.  For example, assume that a require-
ment analyst asks a query on “automated collision avoidance,” the system first per-
forms a full-text search and returns all artifacts from the database containing these 
keywords. At this point, the current result set may not contain all relevant artifacts as 
there could be additional artifacts that are semantically relevant but which are not 
included in the search results. Then, the system utilizes the semantic network to find 
all additional artifacts which are semantically related to the current search results; i.e. 
additional artifacts that do not contain the search keywords explicitly, but are closely 
related to them (e.g., the Loss of Separation Detection Module, which detects situa-
tions where two aircrafts are too close). However, the augmented results containing 
all semantically relevant artifacts may not be pertinent to the user’s context. There-
fore, contextual information is extracted from the database and is applied to the set of 
augmented results to filter out artifacts that are out of context keeping only those that 
are within context. In our example, only requirement documents (but not source code) 
are kept in the final result. 

                                                           
2  In this paper, whenever we refer to artifacts we mean the metadata about the artifacts and not 

the artifacts themselves. 
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Of course we allow users to evaluate the recommended artifacts and they have the 
ability to accept/reject each one of them. They can also fine-tune the search query, 
resubmit to the semantic network and possibly provide a different threshold for the 
relevant artifacts until they are presented with recommended and contextualized arti-
facts to their satisfaction. 

4.2   Construction of Semantic Networks 

To avoid the daunting task of manually constructing and maintaining the semantic 
network, we adopt an approach for the construction of semantic networks in an auto-
matic manner, consisting of two layers (first mode and second mode network). The 
first mode network identifies relevant artifacts based on similarity, whereas the sec-
ond mode network is build on top of the first mode and enhances it by adding seman-
tic information. As shown in Fig. 4, each node in the semantic network represents an 
artifact and part of the metadata for this artifact is a set of attributes which describe 
the artifact. We utilize the similarity between the attributes of the artifacts to construct 
the semantic network. We construct it as follows.  
 

 
 

Automatic Generation of Feature Vectors 

Let X = {x1,...xn} be the set of artifacts, where each xi  ∈ X is associated with a set of 
characterizing attributes ai = {ai1,….aim}. The values of these attributes can be trans-
formed into categorical values (binary) and form a feature vector fi ={fi1, . . . , fim}.  In 
order to automatically create a similarity based network we first need to generate the 
feature vector associated with each artifact. Our approach is generalizable to continu-
ous attributes such that they can be discretized into categorical variables. Additionally 
we can also handle textual variables since we can parse the features from code files. 
These feature vectors are used to determine how similar the artifacts are in terms of 
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the attributes characterizing them and they are utilized to generate the semantic net-
work; therefore, we outline our process and algorithm here for the generation of fea-
ture vectors. We discover features by class of artifacts. For instance, software artifacts 
can be viewed as programs, requirement specifications, test cases and so on. For each 
such class of artifacts we produce a universal feature vector by creating a parser for 
the artifacts.  This can be seen as a preprocessing step necessary to acquire the data 
about the artifacts. In the case of Java programs, using a text file parser, we extract 
features such as import statements and function names, and we add them to the fea-
ture vector. The union of all feature vectors creates a universal vector (V) containing 
all artifacts. Thus V={ a11 U a21,….U aim  } and it will be used for the similarity based 
network. 

 

 

Algorithm for Automatic Feature Vector Generation. We outline our algorithm for 
the generation of the Feature Vector. The algorithm takes as an input the set of arti-
facts X={x1,…., xn}. On lines 1-5 we generate a universal vector U, by parsing 
through the artifacts. This essentially finds all the attributes from the various artifacts, 
from x1 to xn,  and stores them in U. So for instance if we are parsing a java program 
then the import statements will be the attributes of the Universal vector. We then 
create a feature vector from U on lines 7-15. We parse the artifacts to note the pres-
ence or absence of an attribute in the artifact. For example if we have a Java program 
artifact with an import java.util statement then the feature in the vector for this artifact 

Algorithm 1 The Feature Vector generation algorithm 
 

Require: Set of artifacts X where each xi ∈ X 
Ensure: Set of artifacts X where each xi ∈ X is 
associated with a set of attributes ai = {ai1,..,aim} 
and a set of features fi = {fi1,..,fim} 
 1: for i = 1 to |X| do 
 2:  {Read artifact xi} 
 3:  {ai  ←  Parse Attributes(xi)} 
 4:  {add(U, ai)} 
 5: end for 
 6: {Initialize Feature Vector f} 
 7: for i = 1 to |X| do 
 8:  for z = 1 to |U| do 
 9:   if uz ∈ xi then 
10:    {fiz = 1} 
11:   else 
12:    {fiz = 0} 
13:   end if 
14:   end for 
15: end for 

 



88 G. Karabatis et al. 

 

will have a value 1 vs. another java program without the import statement will have a 
value 0 for the feature. The parser can be modified to handle other types of languages 
such as c++, python etc. Programming languages provide a structured environment to 
handle such a parsing. However documents may not be parsed easily using this 
method since their structure is not very well defined. The complexity of the algorithm 
is O(N |U|) where N is the number of artifacts and |U| is the size of the Universal 
Vector.  

Similarity Based Network  

Let us assume that we have a set of n artifacts X = {x1,...xn}, where each xi  ∈ X is 
associated with a set of m features captured in a feature vector fi ={fi1, …, fim}. We 
use a Jaccard similarity coefficient3 to quantify the similarity among the feature vec-
tors of the artifacts. Based on the Jaccard coefficients we connect similar nodes using 
edges and start creating the semantic network. We add probabilities on the edges as 
follows: given a pair of nodes xp and xq such that there exists a similarity between the 
two nodes the probability  w(xp , xq) of traversing from node xp to xq  is: 

 where 

 

Jpq is the Jaccard similarity coefficient between the feature vectors of artifacts (nodes) 
xp and xq. Jpj is the weighted degree of the node p, and k is the number of incident 
edges on p. Thus, based on the similarity and probability computations we get a first 
mode semantic network as shown in Fig. 4(a), which we refer to as Similarity based 
Network. There could be several disconnected first mode semantic networks as shown 
in Fig. 4(a). The probabilities are shown close to the tip of each edge. We formally 
define the first mode Semantic Network as follows: 

Definition 4 [Similarity based Network]. Let X = {x1,...xn} be the set of artifacts, 
where each xi  ∈ X has a feature vector fi ={fi1, . . . , fim} then a first mode Similarity 
based Network Nsn(Vsn, Esn) is a directed graph where Vsn is a set of nodes and Esn is a 
set of edges, such that Vsn  ⊆ X and |Vsn| ≤ |X|, and each edge links two relevant arti-
facts <vi, vj> and has a probability score w(vi,vj) where 0 < w(vi,vj)  ≤ 1.  

Rule Enforced Network 

The automatically created first mode networks reflect similarity based on the feature 
vectors of each artifact but they do not include any additional semantic information. 
For example, there could be strong relevance between two nodes representing files 
from different projects, but because some attributes in the feature vectors (e.g. the 
name) are completely different, the Jaccard similarity coefficients may not rank them 
similar enough to create an edge between them. Such semantic knowledge is usually 
captured in the minds of experienced users, and it  can be described in terms of se-
mantic rules that explicitly identify connectivity between two nodes in the semantic 
                                                           
3  A Jaccard similarity coefficient (Jaccard index) measures the similarity of sets and is defined 

as the size of the intersection divided by the size of the union of the sample sets. 
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network. This is required in two scenarios first the two nodes that were not deemed to 
be similar according to similarity measures (although they are similar indeed),  sec-
ond, there may be a situation where two nodes have a high similarity as per the simi-
larity measures but have a low similarity. We define a semantic rule as follows: 

Definition 5 [Semantic Rule]. Given two artifacts xp and xq a semantic rule r is de-
fined as r: xp, xq, w(xp , xq)  where w(xp , xq)  is the probability score associating the 
two artifacts.  

When these semantic rules are enforced, they add edges connecting nodes on the first 
mode semantic network(s), thus, they augment the network. The probabilities on the 
new edges are also calculated and the result is the second mode semantic network as 
shown in Fig. 2(b), which we refer to as Rule enforced Network. The new edges are 
depicted as dashed arrows. When multiple experts with similar roles create the same 
rule connecting two edges, we add a link to the network having as relevance score the 
average probability of all occurrences of the rule. When experts with different roles 
create new rules it is possible that these rules would expand the network in com-
pletely different directions. In such cases, we do not try to consolidate these rules into 
a single network, but we create separate networks each one specific to a role. We 
formally define this second mode Semantic Network. 

Definition 6 [Rule enforced Network]. Given a first mode Semantic Network Nsn(Vsn, 
Esn) , where Vsn is a set of nodes and Esn is a set of edges in Nsn, and a set of semantic 
rules R, a second mode rule enforced Semantic Network Nre(Vre, Ere) is a directed 
graph where Vre is a set of nodes and Ere is a set of edges such that Vre  ⊆ X ,  |Vre| ≤ 
|X| and |Vre|≥ |Vsn|, and each edge links two relevant artifacts <vi, vj> and has a 
probability score w(vi,vj) where 0 < w(vi,vj)  ≤ 1.  

The probability scores encompass the similarity between the features of each artifact 
and the semantic rules enforced on the network. Such a network contains knowledge 
of multiple people, e.g., an individual programmer of TSAFE may not know the rela-
tionships of artifacts in FMS, and vice versa, but a software architect may know that 
TSAFE is related to FMS, although the software architect may not know in detail the 
relationships between the artifacts within each system. However, based on the rele-
vance scores between neighboring nodes in the network, we can infer the relevance 
between any two nodes (as far apart as FMS 5 is to TSAFE II DM – see Fig. 1). Thus, 
one can discover more semantically related collective information compared to indi-
vidual knowledge. If a semantic rule links two nodes that are already connected in the 
previously created similarity network, the semantic rule link replaces the similarity 
link (the expert’s opinion supersedes the feature based similarity).  

Algorithm for Automatic Semantic Network Generation 

Once we have the feature vectors we then use the Jaccard coefficient to quantify the 
similarity among the feature vectors of the artifacts. We use the Jaccard coefficient 
since it does not give importance to a positive dissimilarity of features (marked as 0-0 
in bits identifying that there is no similarity between two features that do not match) 
but gives importance to a positive match (1-1) and positive mis-match(1-0). We outline 



90 G. Karabatis et al. 

 

the approach to identifying the similarity of the feature vectors in Algorithm 2. The 
complexity of the algorithm is O(N2|U|) where N is the number of artifacts and |U| is 
the size of the Universal Vector.  

 

4.3   Using Context 

We store context in relational tables. One table stores user context, with columns user 
ID, project ID, role of user, programming language, etc. A second table stores appli-
cation context, including project ID, functionalities, etc. A third table stores environ-
mental context, including user ID, operating system, organization name, etc. After 
these tables have been initialized, we create a mapping table to map information in 
these tables to conditions on attribute-value pairs over the artifacts. For example, if 
the user’s role is developer, we map it to the condition: Type = Code  ∨  Type = 
Requirement as a developer needs to read both code and requirements. 

We can then combine all context information of a user into a single filtering condi-
tion. This condition is the conjunction of all conditions mapped from the context 
information of a user. For example, a user’s filtering condition may be: 

(Type = Code ∨  Type = Requirement) ∧  (Programming Language = JAVA) ∧  
(Project = Flight Control) ∧  (Operating System = LINUX) 

Algorithm 2 The Similarity based Network generation 
algorithm 
Require: Set of artifacts X where each xi ∈ X is 
associated with a set of attributes fi = {fi1,.. ,fim} 
Ensure: Similarity based Network Nsn(V sn,Esn) where V sn 
is a set of nodes and Esn is a set of edges, each edge 
links two relevant artifacts < vi, vj > and has a 
probability score w(vi, vj) 
1: jc=0 
2: deg=0 
3: for i = 1 to |X| − 1 do 
4:   for j = i + 1 to |X| do 
5:   jcij = jcji = JC(fi, fj) 
6:   degi = degi + jcij 
7:   degj = degj + jcji 
8:  end for 
9: end for 

10: for p = 1 to n do 
11:   for q = 1 to n do 
12:   w(xp , xq)  ←  jcpq/degp 
13:   if w(xp , xq)  < Wthreshold then 
14:    { w(xp , xq)  = 0} 
15:   end if 
16:   end for 
17: end for 
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At run time, this condition is used to filter the artifacts returned by the full-text 
search and semantic network. This step checks the attribute-value pairs of a returned 
artifact, and if any of those attributes in the artifact appears in the filtering condition, 
the value of that attribute will be checked against the filtering condition. If the value 
violates the condition, the artifact will be pruned. For example, if an artifact with 
Programming Language = C++ is returned, this artifact violates the above filtering 
condition and will be pruned. 

Note that if an attribute of an artifact does not appear in the filtering condition, no 
check will be done and the artifact will remain in the result. For example, if pro-
gramming language is not specified in an artifact (e.g., when the artifact is a design 
document), then this artifact will not be pruned based on the condition on program-
ming languages. 

4.4   Transformation and Composition Functions 

It is quite intriguing to evaluate the effect of applying context during the different 
phases of the query lifecycle. For example, is it better to apply context before using 
semantic networks or after? Can we apply context both before and after using the 
semantic network? Questions like this might affect greatly the artifacts that will be 
retrieved and we investigate answers to these questions in this Section.  

Each user query submitted to our system undergoes a series of transformations as it 
passes through its various phases and completes its cycle though our system (Section 4.1). 
During each of these different phases a transformation function is applied to a specific 
input available in the current phase, and produces a specific output applicable to the 
next phase. For example, extracted keywords of the initial user query are used as 
input to a function fMAS, which conducts a Metadata Artifacts Search (MAS) and pro-
duces as its output a result containing artifacts RA. Formally,   

Definition 7 [Metadata Artifacts Search Function]. Assume that QA  is a set of key-
words of a user query, and A is the domain of all artifacts. The function fMAS is the 
Metadata Artifacts Search function which takes as input QA and produces as output a 
set of artifacts RA .             

fMAS(QA) = RA    (alternatively A
f

A RQ MAS⎯⎯ →⎯ ),  where RA  ⊂  A. 

In a similar fashion we define two more transformation functions: fSN  and  fC  which 
apply the semantic network techniques and the context techniques respectively. 
Therefore we have: 

Definition 8 [Semantic Network Transformation Function]. The function fSN applies 
the input RA  through a semantic network and produces as output a set of related arti-

facts RSN .  fSN (RA) = RSN   (alternatively SNA RR SNf⎯⎯→⎯ ),  where RA, RSN ⊂  A. 

Definition 9 [Context Transformation Function]. The function fC filters the input RSN   
utilizing the appropriate context C(Uj, T), and produces as output a set of filtered 

artifacts RC .     fC (RSN) = RC   (alternatively CSN RR Cf⎯→⎯ ),  where RSN,,  RC ⊂  A. 
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Definition 10 [Lifecycle Composition Function]. A lifecycle composition function L 
of a user query in our system is a composition of the transformation functions fMAS ,  

fSN, and  fC defined as L : fC (fSN,(fMAS(QA)))= RC.  Alternatively,  L 

: )( MASSNC fff oo : AA RQ MASf ⎯⎯ →⎯ SNRSNf⎯⎯→⎯ CRCf⎯→⎯  where RA, RSN,,  

RC ⊂  A. 

We have used the above transformation functions in a specific order to compute the 

final result RC, as a composition of functions: )( MASSNC fff oo . Nevertheless, 

there are different ways that we can order the transformation functions and create a 

different composition. For example, )(:1 MASCSN fffL oo is another composition 

where the context function fC is applied before the semantic network function fSN. It is 
interesting to examine whether we obtain the same results depending on the order of 
the transformation functions in the function composition. In general, the composition 

of functions is not a commutative operation, i.e., )( MASSNC fff oo
 

≠ )( MASCSN fff oo .  In practice, we can apply the transformation functions in dif-

ferent orders depending on how we want the process to take place, we can even apply 
the same transformation function multiple times. For example, it makes sense to apply 
the context function fC  before and after the semantic net function fSN, having a new 

lifecycle composition function ))((:2 MASCSNC ffffL ooo . We discuss the dif-

ferent options (L, L1, and L2) in our next Section where we describe our experiments. 

5   Experiments 

We first describe the setup of our experiments in section 5.1. In Section 5.2 we pre-
sent our results for the automatic creation of the semantic network. Next we discuss 
the experiments with context and without context and in Section 5.3 we present the 
results. We use recall and precision as our basic measures according to the definitions 
of [73] and  [6]. We also describe our prototype system in the Appendix. 

5.1   Setup of Experiments 

We used  two test-beds of two software projects each:  
(1) The Tactical Separation Assisted Flight Environment (TSAFE) and the Flight 

Management System (FMS). These two software projects are based on a specification 
for Automated Air Traffic Control by NASA [21], implemented by MIT  [19] and 
turned into a test-bed at Fraunhofer Center, Maryland [44]. This test-bed makes a 
good fit for the proposed research for two reasons. First, it contains two parallel 
threads of implementations of similar functionality. Second, historical design infor-
mation exists for all variants and versions of TSAFE and FMS. There are as many as 
38 different versions of each project, making the total number of artifacts more than 
250, not counting the source code class files. The different versions of TSAFE and 
FMS are related, making reuse possible but not straightforward. Valuable design 
information can be retrieved; however, the different versions and amount of existing 
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data makes finding such design information difficult using the current full text search 
system.  

(2) The second test bed consists of information from two different software pro-
jects; we selected 82 artifacts from DMGroup1 and 76 artifacts from LosGroup3. 
These two projects implemented similar functionality. We asked three domain experts 
to create an initial semantic network to use it as a baseline on these test beds. The 
relationship between two files in different projects (DMGroup1 and LosGroup3) 
receives a weight of 1 if these two files are deemed similar or a weight of 0 if they are 
dissimilar to each other. The metadata of each artifact includes the name of the arti-
fact, the type of the artifact (requirement document, code, etc.), programming lan-
guage, impact analysis (the impact of a specific software change to the various phases 
of software maintenance) , design pattern (a blueprint that can be applied to provide a 
solution to a commonly occurring problem), etc.  

5.2   Automatic Semantic Network Generation 

Creation of Feature Vectors 

To create the feature vectors we used the second test bed with a set of 158 Java files 
from two different projects (82  files from DMGroup1 and 76 files from LosGroup3) 
as an input to a Java program. We used this test bed since we wanted to specifically 
evaluate the similarity among files across different projects. These files are compared 
with each other based on 4 main characteristics: java import statements (150), pack-
age names (120), class names (120) and method names (almost 300).  A universal 
feature vector is automatically generated with a set of 680 attributes identifying char-
acteristics which are unique across these 158 files. Next we compare each of these 
characteristics in every other file from two different projects to find whether they are 
similar or not. This similarity is captured in a similarity matrix which maps the  
similarity of each file with all other files across different projects. If two files from 
different projects are similar based on a Jaccard similarity coefficient and our weight 
computation then we mark the matrix location with a 1 otherwise with a 0. The simi-
larity threshold for this task was set to 0.8. Different threshold values produce differ-
ent results as described in Section 5.3.1. Source and edges along with weights are 
stored in an Oracle database which is subsequently used to build the tree structure. 

Evaluation and Validation of the Automatically Created Network 

The domain experts review the files from two different projects and label the similar-
ity weights as 0 or 1. If they find similar files they give the weight 1, if the files are 
not similar they label them with a weight 0. Their concept of similarity is purely 
based on the manual evaluation of the artifacts and no specific features are consid-
ered. For the evaluation of the automatic network creation we consider this similarity 
provided by the domain experts as our labeled data where the domain expert provides 
a weight to the pairs of artifacts. Since the domain experts view is absolute numeric 
value of 0 or 1 we devised a method to check whether we did find similar files using 
our approach. We compared one artifact from one project with all the other artifacts in 
a different project and the one which has maximum similarity weight based on our 
approach was checked against the one provided by the domain experts as having the 
maximum similarity weight of 1. 
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Fig. 5. Performance evaluation using Class labels 

Based on this we validate against the labeled data and find the Accuracy of our 
method. Using the values from table in Fig. 5 we can compute the accuracy as shown 
in Equation 1. Thus, Accuracy = (145 + 3)/ (145+10+0+3) = 148/158 = 0.93*100 = 
93%. From a set of 158 files taken from two projects (DMGroup1 and LOS Group3).  
Domain Experts found 148 files highly similar out of these 158 and our approach 
found 145 similar out of 158. Max Similarity is 145 i.e. artifacts which were found to 
be highly similar by our approach and the domain experts. Out of 158, there are 10 
false positives where the domain experts found no similarity but our approach found 
some similarity, In addition we found 3 files which were highly similar which the 
domain experts did not identify.   

5.3   Experiments with Context  

For this set of experiments we used the data from the TSAFE/FMS test-bed. We col-
lected eight queries from the domain experts. For each query, we also created eight 
different contexts by assuming a certain type of user (user context), a certain type of 
project (application context), a certain type of programming language (user context 
and/or application context), and a certain type of platform (environment context). 
Thus there are altogether 64 combinations of queries and contexts. The domain ex-
perts provided us with the correct answers to those queries.  We compare the preci-
sion and recall of three search algorithms: 

1. Using the normal full-text search algorithm without semantic network or context. 
We used Oracle's full-text search feature for this algorithm (referred to as No-
Network in Fig. 6-9) 

2. Using semantic network but not context (referred to as Network in Fig.  6-9) 
3. Using both semantic network and context (referred to as Network+Context in 

Fig. 6-9) 

5.3.1   Results 
An important parameter in our approach is the threshold t for relevance score in the 
semantic network. We experimented using the default and also a varying threshold.  
Fig. 6 and 7 report the average recall and precision of all three algorithms using the 
default setting t = 0.8.  

Probability from Rule Enforced Network

Probability 
from Domain 
Experts

Max similarity No similarity

Max Similarity 144 (TP) 3 (FN)

No similarity 10 (FP) 0 (TN)
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The x-axis identifies the queries, while the y-axis presents the value of recall (Fig. 6), 
and precision (Fig. 7), both averaged over the eight different contexts for each query. 
The results show that using a semantic network produces a much higher recall than not 
using a semantic network (see Fig. 6). This is expected because the semantic network 
returns artifacts that may not contain searched keywords, but are related to the artifacts 
containing those keywords. 

 

 

 

The results also show that the use of context increases precision because the con-
text information is used to filter out results not relevant to the user (Fig. 7). In general, 
using both the semantic network and context leads to higher precision and recall for 
all eight queries (the  recall and precision values at 1 occur due to the relatively small 
size of the data set). 

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

A
ve

ra
ge

 r
ec

al
l

No-Network
Network
Network+Context

Fig. 6. Recall when threshold = 0.8 
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Next we varied the relevance score threshold t in the semantic network. Fig. 8 and 
9 report the average recall and precision over the eight queries when t varies from 1 
down to 0.2. Note that No-Network does not use semantic network and it is inter-
preted as t being fixed at 1. Thus, the recall and precision of No-Network do not 
change with t.  

 
 
 

The results show that as the threshold decreases, the recall of Network and Net-
work+Context increases (see Fig. 8). This occurs because it signifies that the user is 
willing to accept less relevant artifacts in the result set, leading to a higher number of 
results, when the semantic network is used. The recall of not using a semantic  
network is very low (about 0.4) compared to the other two methods because it only 
considers artifacts contained in the searched keywords. The recall values of using 
Network or Network+Context are always the same because Network+Context would 
filter out answers from the results created by using semantic networks. In practice, 
missing a relevant artifact means that the project team may miss the opportunity of 
reusing existing code; or come up with a wrong estimate of the cost of implementing 
a change request, which may be very costly. Thus these results clearly show the value 
of using semantic networks, as they bring additional relevant artifacts in the result set. 

As the threshold decreases, the precision of both Network and Network+Context 
starts to decline (see Fig. 9) when threshold values are below 0.8. As threshold de-
creases below 1.0 but is still quite high (say, 0.8), artifacts which are very closely 
related to the answers in the full-text search are returned, and are considered as cor-
rect answers; thus, the precision remains high. However, as the threshold further de-
creases, artifacts that are not very closely related are returned. Thus, the precision 
starts to decline. This suggests that using a relatively high threshold (we use 0.8) 
would ensure both high precision and recall. Of course, if recall is very important 
(e.g., the cost of missing a relevant artifact is very high) a lower threshold can be used 
to ensure high recall, but with possibly lower precision.  

Fig. 8. Average recall with varying threshold 
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The results also show that the use of context and semantic network always leads to 
higher precision than using semantic network alone, because context helps filter out 
irrelevant answers. Using Network+Context also has higher precision than No-
Network over a wide range of threshold values (actually for all the threshold values 
we tested), and with a much higher recall as shown in the previous figures. It clearly 
displays the benefits of using a combined approach of semantic networks and context. 

 
 

Experimenting with Different Lifecycle Composition Functions 

The experiments we just described correspond to the lifecycle composition function L 
(see Section 4.5).  We also performed another set of experiments using the alternate 
lifecycle composition functions L1 (with context applied only before the semantic 

network )( MASCSN fff oo ) and L2 (with context applied before and after the se-

mantic network ))(( MASCSNC ffff ooo ) and compared the results with those of L 

(with context applied only after the semantic network )( MASSNC fff oo ). Fig. 10 and 

11 report the precision and recall of these three composition functions. 
The results show that L (using context after the semantic network) and L2 (using 

context-based filtering both before and after using semantic network) produced the 
same results (both recall and precision) for six out of the eight queries. Query Q3 and 
Q7 were exceptions. For those two queries, when we applied context before the se-
mantic network, it did not return any answer, resulting in the lowest recall and preci-
sion. The reason was that the direct hits (the results after full text search but without 
the semantic network) were actually “out-of-context”. However, these direct hits were 
related to the correct answers that were in “in-context”. Thus using L2 the system 
filtered out the direct hits and did not return any correct answer. On the other hand, 
using L the system still used all the direct hits to find relevant artifacts through the 
semantic network, thus correct answers were still returned.    
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Fig. 9. Average precision with varying threshold 
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Both L1 and L2 apply context based filtering before the semantic network. How-

ever, L2 applies context again after using the semantic network. Since using context 
after the semantic network does not eliminate any artifacts in the correct answer (i.e., 
matching the context), L1 and L2 have the same recall. The results also show that L1 
(using context-based filtering before semantic network) leads to lower precision than 
both L2 and L. This is expected as the use of the semantic network augments the re-
sults with semantically related artifacts. But checking the context filtering condition 
before the use of the semantic network does not guarantee that the augmented results 
are “in context”. For example, one of the contexts precludes source code for manag-
ers; still L1 returns source code related to requirement documents which are in the 
correct answer. This also exemplifies the property of non-commutativity of the lifecy-

cle composition function, )( MASSNC fff oo ≠ )( MASCSN fff oo .  
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In general, if the contexts transformation function fC is used just as a filtering con-
dition, then it is advisable to apply fC after the semantic network transformation func-
tion fSN has produced results. The reason is that this process will return artifacts that 
are connected to those initial artifacts that match the query, but do not match the con-
text. Thus, in such cases the default composition function L should be used. Of 
course, if the contexts are used in other ways, e.g., to expand the query results or to 
modify a possible ranking function for displaying results, then it may make sense to 
use context transformation function fC  before the semantic network transformation 
function fSN. 

User Studies 

We conducted two studies regarding the searching behavior of users. First, we carried 
out an experiment about search tools’ performance [49], which confirmed our main 
hypothesis that retrieving information is difficult, especially for subjects unfamiliar in 
the domain of the search. Concepts, acronyms, and company lingo were information 
that most such subjects lacked in order to find the relevant information. In contrast, 
subjects with some company experience did not experience these problems. Based on 
these results, we developed and evaluated a prototype search tool that automatically 
manipulates the search query adding synonyms, acronyms, and abbreviations, 
increasing the relevance of the search results substantially. 

Secondly, we performed another study  [25], and we surveyed members of two 
small IT organizations, one in the US and another one in Germany regarding their 
search behavior.  The results showed that more than 80% of the subjects used only 
one to four search keywords for their queries. 

6   Conclusions  

We created a set of tools and technologies which use metadata to assist software en-
gineers in their search for software artifacts. Semantic networks capture the semantic 
relationships between software artifacts; these networks help return additional arti-
facts that are semantically relevant to the search, which would not have been included 
in the original search results using traditional database techniques.  We provided an 
automated way to create the similarity based semantic network and described two 
algorithms towards its creation. Once the semantic network is built, it can be en-
hanced with semantic rules; subsequent user queries take advantage of the relation-
ships that are represented in it. This technique produces an augmented result set of the 
user query, relevant to the original search, thus improving the recall of the search 
results. However, this augmented and relevant artifact set, may not be tailored to the 
appropriate contexts of the particular user. Therefore, we employ techniques to filter 
out “out-of-context” results, and return only “in-context” artifacts pertaining to the 
user. As a result, the precision is also improved.  

We applied our techniques in a software engineering environment with software en-
gineering projects. We performed experiments on real life software projects with the 
help of domain experts, measuring precision and recall, by comparing full-text, seman-
tic network only, and a combined use of semantic networks and context methods. The 
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results demonstrated that our metadata techniques are promising and they produce a 
better recall and precision results compared to the other methods.  

In the future, we plan to investigate under which circumstances it would be better 
to use different orderings of transformation functions, by creating various lifecycle 
composition functions. In addition, during the automatic creation of the semantic 
network, the size of the universal vector may   explode quickly as each artifact may 
potentially contribute new features to the universal vector U. Thus, to control the high 
dimensionality of U we will need to assign weights to the features which we defer to 
future work. Additionally in the current work we use a Jaccard similarity coefficient; 
however, in the future we plan to investigate other similarity coefficients such as 
Matching, Tanimoto, Cosine and Dice coefficients [34, 40] and compare them to 
Jaccard similarity coefficient. 
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Abstract. Statistical learning approaches, bounded mainly to knowl-
edge related to perceptual manifestations of semantics, fall short to ad-
equately utilise the meaning and logical connotations pertaining to the
extracted image semantics. Instigated by the Semantic Web, ontologies
have appealed to a significant share of synergistic approaches towards the
combined use of statistical learning and explicit semantics. While the rel-
evant literature tends to disregard the uncertainty involved, and treats
the extracted image descriptions as coherent, two valued propositions,
this paper explores reasoning under uncertainty towards a more accu-
rate and pragmatic handling of the underlying semantics. Using fuzzy
DLs, the proposed reasoning framework captures the vagueness of the
extracted image descriptions and accomplishes their semantic interpre-
tation, while resolving inconsistencies rising from contradictory descrip-
tions. To evaluate the proposed reasoning framework, an experimental
implementation using the fuzzyDL Description Logic reasoner has been
carried out. Experiments in the domain of outdoor images illustrate the
added value, while outlining challenges to be further addressed.

1 Introduction

Semantic image analysis has challenged researchers for decades in the quest for
generalisable approaches to alleviate the so called semantic gap [1,2,3,4], i.e. the
lack of correspondence between the descriptions that can be automatically ex-
tracted from visual content and the respective meaning a human would attach.
Towards this goal, statistical learning approaches have attracted increased inter-
est in the last couples of years, as they provide powerful and effective means to
discover, capture, and manage, complex associations between perceptual features
(i.e. attributes of visual manifestations such as colour and texture) and semantic
concepts. Support Vector Machines (SVMs) [5] and Bayesian Networks (BNs) [6]
constitute popular examples, and have been espoused in numerous approaches
targeting the extraction of image semantics [7,8,9,10,11,12].

Although promising results have been reported, the attained performance
varies significantly with respect to the number of concepts addressed and the
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considered image data sets as well. The observed variability relates to core chal-
lenges in computer vision, including perceptual similarities of semantically dis-
tinct concepts and perceptual variations in the possible manifestations of a single
concept [13,14], much as to limitations inherent in the assumption that semantics
can be rendered in a visual fashion. As a result of the aforementioned, the learnt
associations do not necessarily reflect the intended semantics, viz. the associa-
tions implicitly targeted when providing the corresponding training examples,
leading often to incomplete and conflicting classifications. Indicatively, among
the observations presented in [15], the weapon classifier proves to be more ef-
ficient when querying for palm trees, while when querying for instances of fire
and flames, the soccer classifier provides the highest performance.

Acknowledging the value of statistical learning techniques, yet aware of their
weaknesses, approaches towards the synergistic utilisation of explicit semantics
have become the subject of systematic research1. The Semantic Web (SW) in-
centive influenced to a large extent the choice of the investigated representation
formalisms, favouring the use of SW languages [16,17] and of the closely related
Description Logics (DLs) [18,19]. As a result, a number of multimedia ontologies
[20,21,22,23] have been proposed to represent perceptual features and to enable
linking with domain specific ontologies, in order to formalise the transition from
low-level features to semantic entities [24,25,26,27]. In addition, domain ontolo-
gies, tailored to the analysis viewpoint as well, have been proposed in order to
acquire interpretations of higher abstraction through reasoning over automati-
cally extracted descriptions [28,29,30,31,32].

However, the effects entailing from the poor utilisation of semantics in sta-
tistical learning, namely the uncertainty inherent in the extracted descriptions
and the semantic inconsistencies issuing from conflicting descriptions, tend to
be overlooked. Specifically, the extracted classifications are commonly treated as
crisp assertions, neglecting significant information regarding the plausibility of
the acquired descriptions. Furthermore, in the majority of cases, the extracted
descriptions are assumed to be semantically coherent. As a result, the use of ex-
plicit conceptual models and reasoning are rendered mainly as means to acquire
abstract and complex descriptions by exploiting logical associations between the
extracted descriptions, such as the inference of a person instance by reasoning
over instances of face and body in a certain configuration. Evidently though,
both aforementioned assumptions are rather weak and hardly correspond to the
pragmatics of the problem at hand.

Aiming to enhance the utilisation of semantics and alleviate part of the afore-
mentioned effects in the accuracy and completeness of descriptions that are ex-
tracted by means of machine learning approaches, we present in this paper a
reasoning framework that utilises fuzzy DLs semantics in order to interpret the

1 Indicatively, besides individual research activities, this pursuit has been the prin-
cipal objective in a substantial number of European projects including ace-
Media (http://www.acemedia.org/aceMedia), K-Space (http://kspace.qmul.net),
BOEMIE (http://www.boemie.org/), X-Media (http://www.x-media-project.org/),
MESH (http://www.mesh-ip.eu/), SALERO (http://www.salero.eu/), etc.
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output of the classifiers into a semantically consistent interpretation. The use
of DLs allows us to formally capture the semantics underlying the concepts of
interest, while the fuzzy extensions provide the means to model the vagueness
encompassed in the extracted classifications. Furthermore, extending on earlier
investigations [33], the presented framework supports the explicit representa-
tion of the constituent image regions, allowing, as explained in the sequel, the
more effective utilisation of the underlying semantics. The contribution of the
proposed reasoning framework can be summarised in the following.

– The uncertainty of the descriptions made available through the application of
learning based approaches is formally handled and taken into consideration
in the interpretation of the descriptions’ semantics.

– The inconsistencies resulting from conflicting descriptions, due to the afore-
mentioned limitations in the learning of associations between perceptual fea-
tures and corresponding semantics, are identified and resolved.

– Besides formally grounding the acquisition of the most plausible interpreta-
tions in the presence of multiple possible interpretations, the proposed fuzzy
DLs based reasoning framework supports the identification of image regions
where concepts, missed in the initial descriptions, may be present.

The rest of the paper is organised as follows. Sections 2 and 3 outline the reasons
that motivated our investigation and the particular issues involved in the appli-
cation of formal reasoning in semantic image analysis. Section 4 presents the
proposed reasoning framework architecture and its constituent reasoning tasks,
while Section 5 elaborates the implementation details. Section 6 presents the
evaluation of the proposed framework and the experiences drawn. Relevant ini-
tiatives are presented in Section 7, while Section 8 summarises the paper and
outlines future research directions.

2 Motivation

Statistical concept classifiers exhibit highly variable performance, yet support
generic learning for a substantial number of concepts [15,34,35,36]. As demon-
strated in a recent study [37], satisfactory retrieval can be achieved, even when
the detection accuracy is low, provided that sufficiently many concepts are used,
as long as these concepts can be related to one another in some reasonable way.
In addition, the conducted experiments reveal that when there exist semantic
associations between the addressed concepts, then these concepts can serve as
an intermediate layer to enhance the reliability of the extracted semantic image
descriptions. The conducted experiments consider semantic video descriptions,
yet the results can be easily generalised for the case of image descriptions, since
the examined concept classifiers address notions detected per video frames, i.e.
without the use of temporal information.

The observations drawn by the aforementioned study regarding the potential
of incorporating semantics, do not outline a new direction; approaches following
the knowledge-directed paradigm have been reported since the early 70s, while
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they boomed in the 80s and the early 90s in accordance with the respective ad-
vances in the field of Artificial Intelligence (AI) [38,39,40]. Yet, [37] stresses the
greater potential that the recent advances in statistical concept classifiers con-
duce regarding the utilisation of explicit knowledge and reasoning as the means
to alleviate the limitations related to the discriminative capacity of perceptual
features with respect to the intended semantics.

As already described though, the limitations related to the rather poor util-
isation of semantics are intertwined with the uncertainty involved in extracting
semantic descriptions from images. As such, the fundamental question of what
constitutes the semantics of this uncertainty, emerges. The answer lies in the
viewpoint adopted in learning regarding the stipulation of semantics in accor-
dance to perceptual features. Approaches where concepts are detected on the
grounds of perceptual similarity, imply a prototypical set of feature values that
constitute a visual/perceptual definition of the concept. As the presence of a
concept is determined based on the similarity of those values, concepts can be
considered as fuzzy sets, where the similarity (distance) function serves the role
of the membership function. Contrariwise, learning approaches that utilise con-
cepts’ co-occurrence and correlation, implement a probabilistic interpretation of
the features to concepts transition. Support Vector Machines (SVMs) consti-
tute a popular example of the former category, while Bayesian Nets and Hidden
Markov models [41] fall in the latter.

Apparently, both types of uncertainty pertain to the extraction of image se-
mantics, much more since they address complementary aspects. A classification
indicating that a specific image region constitutes an instance of sea with a
probability of 0.7, refers to the presence or not of sea; no information is provided
about how blueish this sea region might be. A classifier though that assess an
image region to belong to the sea concept with a degree of 0.7, quantifies the
similarity of this region with what has been learned as the perceptual defini-
tion of sea. For further details on the different semantics of the two uncertainty
types, the reader is referred to [42]. The investigation of a reasoning framework
that considers both types of uncertainty is undoubtedly of particular interest. In
this work though, we focus on the fuzzy perspective of the extracted semantic
descriptions, since we consider it an significant starting point for the appro-
priate handling of semantic classification results, and a useful insight into the
complementary role of probabilistic reasoning.

The aforementioned incentives, in combination with the limited support for
handling uncertainty and inconsistency provided by the state of the art ap-
proaches in the utilisation of explicit semantics, designated the selection of fuzzy
DLs as the investigated knowledge representation. The logic grounded semantics
ensure conceptual transparency and well-defined reasoning mechanisms, while
maintaining a strong connection to the Semantic Web community. In addition,
the fuzzy extensions allow to formally capture the imprecision in the from of
vagueness that pertains to learning approaches based on perceptual similarity,
such as SVMs. In combination with the particular expressivity requirements de-
scribed in the following Sections, the aforementioned have been the main reasons
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for preferring fuzzy DLs over some other logic based formalism, such as fuzzy
first order logic, or fuzzy rules.

3 Fuzzy DLs in Semantic Image Analysis: Specifications
and Requirements

Fuzzy DLs extend the model theoretic semantics of classical DLs [18] to fuzzy sets
[43,44] and account for a significant share of the literature studying the represen-
tation of imprecise information [45,46,47,48,49,50]. Standardisation initiatives,
such as the W3C Uncertainty Reasoning for the World Wide Web Incubator
Group, which recently released the final report on reasoning under uncertainty
in the Semantic Web2, outline further the significance of handling imprecise
knowledge in real world applications.

The semantics of a fuzzy DL language are given by a fuzzy interpretation
I = (∆I , .I), where ∆I is an non-empty set of objects comprising the domain of
interpretation, and .I a fuzzy interpretation function, which assigns each in-
dividual a to an element aI ∈ ∆I , each concept name A to a membership
function AI : ∆I → [0, 1], and each role name R to a membership function
RI : ∆I ×∆I → [0, 1] [47,48]. Table 1, illustrates the standard interpretation of
typical DL constructors.

Table 1. Fuzzy interpretation of DL constructors following Zadeh semantics [49]


 I = 1
⊥ I = 0
(¬ C)I = 1-CI(d)
(C � D)I = min{CI(d),DI(d)}
(C 
 D)I = max{CI(d),DI(d)}
(∀ R.C)I = infd′∈∆max{1 − RI(d, d

′
), CI(d

′
)}

(∃ R.C)I = supd
′∈∆min{RI(d, d

′
), CI(d

′
)}

A fuzzy knowledge base consists of a TBox defined by a finite set of fuzzy
concept inclusion and equality axioms, and an ABox defined respectively as a
finite set of fuzzy assertions. A fuzzy assertion [47] is of the form a : C �
 n and
(a, b) : R �
 n, where �
 stands for ≥, >, ≤, and <. Intuitively a fuzzy assertion
of the form a : C ≥ n means that the membership degree of the individual a
to the concept C is at least equal to n. The standard reasoning services (e.g.
instance checking, satisfiability, subsumption etc.) are adapted analogously. For
example, concept satisfiability with respect to C requires the existence of an
interpretation under which there will be an individual belonging to C with a
degree n ∈ (0, 1].

Using fuzzy DLs as the knowledge representation language for the semantic in-
terpretation of descriptions provided by statistical concept classifiers, renders the
2 http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
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Fig. 1. Example outdoor image and segmentation mask

(im : Rockyside) ≥ 0.50 (im : Countryside buildings) ≥ 0.47
(im : Roadside) ≥ 0.48 (im : Forest) ≥ 0.65
(im : Seaside) ≥ 0.46

(r0 : Building) ≥ 0.68 (r0 : Trunk) ≥ 0.54
(r1 : Sky) ≥ 0.70 (r1 : Person) ≥ 0.59
(r2 : Building) ≥ 0.66 (r2 : Trunk) ≥ 0.58
(r3 : V egetation) ≥ 0.56 (r3 : Rock) ≥ 0.51
(r4 : Building) ≥ 0.66 (r4 : Spectators) ≥ 0.54
(r5 : Trunk) ≥ 0.55 (r5 : Building) ≥ 0.53
(r6 : Building) ≥ 0.61 (r6 : Board) ≥ 0.51
(r7 : Building) ≥ 0.60 (r7 : Board) ≥ 0.52
(r8 : Tree) ≥ 0.56 (r8 : Grass) ≥ 0.55

Fig. 2. Scene and object level classifications results for the example image of Fig. 1
using SVM-based concept classifiers

available classifications into fuzzy assertions and the available domain knowledge
into corresponding terminological axioms. Figures 1 and 2, illustrate an example
outdoors image, its segmentation mask and the extracted classifications in the
form of fuzzy DLs assertions.

As illustrated, an image may be asserted to belong to multiple scene level
concepts, not necessarily semantically related; similarly, a region may belong to
multiple object level concepts. This is not unusual and accounts for two equally
common situations met in the extraction of semantic image descriptions. First,
the use of multiple classifiers for a single concept in order to benefit from mul-
tiple sources of information, and second, classification errors that result in false
positive responses for semantically contradictory concepts. For readability, we
consider at most two instances per region.

Assuming the TBox of Table 2 and going through the respective assertions,
one notices that there exist semantic discrepancies with respect to the extracted
scene level descriptions, since according to axioms 1−6 only one of them can be
true, as well as between the scene level descriptions and the object level ones.
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Table 2. Example TBox extract for the domain of outdoor images

axiom 1: Forest � Landscape � ¬ (Countryside buildings 
 Roadside)
axiom 2: Roadside � Landscape � ¬ (Forest 
 Countryside buildings)
axiom 3: Countryside buildings � Landscape � ¬ (Forest 
 Roadside)
axiom 4: Landscape � Outdoors � ¬ (Rockyside 
 Seaside)
axiom 5: Seaside � Outdoors � ¬ (Landscape 
 Rockyside)
axiom 6: Countryside buildings � ∃ contains.Building 
 ∃ contains.Grass
axiom 7: Countryside buildings � ∃contains.(Spectators 
 Board � Rock) � ⊥

Contradictions may be straightforward, such as in the case of (im:Roadside) ≥
0.52 and (im:Forest) ≥ 0.65, or implicit such as in the case of (im:Forest) ≥ 0.65
and (r0:Building)≥ 0.68, where through inference the latter assertion entails that
(im:Countryside buildings) ≥ 0.68. Furthermore, the identification of inconsis-
tencies depends on the scene level concept used as a reference. Assuming for
example that the Forest scene description is valid, all region assertions referring
to the Building, Spectators and Board concepts entail inconsistency. Assuming
though that the Countryside buildings scene description is valid, inconsistencies
are raised by regions assertions referring to the concepts Spectators, Board and
Rock instead.

Consequently, in order to reach a coherent interpretation, the possible al-
ternative scene interpretations need to be identified and subsequently assessed
with respect to their plausibility. This means that for all possibly satisfiable
scene concepts, that is for all scene concepts for which a model exists when
conflicts, the corresponding degrees of membership need to be computed in
order to provide a measure for their plausibility. Due to the logical relations
between the object and scene level concepts, the degree to which an image be-
longs to a scene concept does not necessarily equal the degree provided by the
respective scene concept classifier. Hence, in our current example, the satisfi-
able, and thereby plausible, scene descriptions are (im:Countryside buildings),
(im:Forest), and (im:Rockyside); the corresponding minimum degrees are 0.68,
0.65 and 0.51.

Once the most plausible scene description is determined, the next step is to en-
sure that the object level descriptions are not introducing semantic conflicts. As
in the case of scene level descriptions, the identification, tracking and resolving
of such inconsistencies is intertwined with the semantics as defined in the TBox
axioms. In the considered example, the identification and resolving of inconsis-
tencies is rather straightforward, since all inconsistent assertions refer to atomic
concepts (i.e. Spectators, Rock, and Board). In the presence of an axiom such
as Person�Bench � Spectators though, the inconsistency could be resolved in
multiple ways, namely by removing all Person instances, all Bench instances, or
all instances of both classes. Selecting among the different alternatives needs to
take into account cost criteria encompassing the assertions’ degrees of confidence
in order to retain the available plausibility information.
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The final step towards a more complete image description is to compensate for
missing assertions and enrich the existing descriptions by means of entailment.
Missing assertions refer to scene or object level descriptions that are entailed
by the computed scene interpretation, yet failed to be detected by the applied
concept classifiers. As elaborated in subsection 4.3, for the case of object level
descriptions, the proposed framework allows not only to recover the missing
assertions, but also to acquire suggestions regarding which of the input region
instances could be a possible match for the missing object level descriptions.
Enrichment on the other hand covers those cases where scene and object level
descriptions of higher abstraction can be inferred from the available ones. In
the running example, where Countryside buildings is designated as the most
plausible scene description, the presence of at least one region belonging to the
Building concept and one region belonging to the Grass concept is entailed, each
with a degree ≥ 0.68. As a result, the degrees of the region assertions referring to
the concept Building are updated, and so is the assertion concerning region r8,
which now becomes most plausible from the initially extracted one referring to
the concept Tree. Furthermore, due to axioms 3 and 4, the image is also asserted
as an instance of Landscape and Outdoors.

We note the significance of the existential (∃) and the disjunction (�) con-
structors for the aforementioned tasks. The existential quantification allows to
handle cases where the initial descriptions are incomplete, due to segmentation
fault or to erroneous classification, while the union constructor allows to repre-
sent and reason over the alternative scene interpretations in order to assess their
satisfiability. Considering rule formalisms instead, we would lack the possibility
to express existential quantification or use disjunction in the head of rules to
so as to state the entailment of multiple possible alternatives. Using fuzzy first
order logic, the latter would not pose a problem, yet we would be unable to infer
the existence of regions corresponding to concepts failed to be detected by the
classifiers, as described in detail in the following Section.

Finally, it is important to stress that the TBox aims to capture generic knowl-
edge reflecting the logical associations issuing from the semantics of the concepts
at hand, rather than data set specific conceptualisations, as the latter would risk
false implications when invoked on classifications over data sets with differing
attributes. For example, an axiom such as ∃contains.Tree � ∃contains.Trunk �
Forest may be representative for forest scenes for a given data set, yet in the
general case it could lead to biased inferences, as Tree and Trunk instances can
be as well found in many other scene descriptions. Restricting the included ax-
ioms to strict domain semantics modelling, the domain TBox can ensure that
the extracted descriptions are in compliance with the semantics of the concepts
they refer to.

4 Fuzzy DLs-Based Reasoning Framework for Semantic
Image Analysis

Figure 3 depicts the proposed reasoning framework for managing the tasks out-
lined in the previous Section. As shown, the semantic interpretation of the
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Fig. 3. Proposed fuzzy DLs based reasoning framework

descriptions that are acquired through statistical learning is performed in three
steps. First, the most plausible description at scene level is determined. Next,
the inconsistencies in the initial descriptions are resolved with respect to the pre-
viously computed scene level interpretation. As, more than one plausible inter-
pretations may exist, during this step the different alternatives are ranked with
respect to plausibility criteria. The set of assertions with the highest ranking is
finally passed to the last step, where by means of logical entailment, assertions
pertaining to complex or missing descriptions are made explicit.

Extending the conceptual framework of [33], in the current approach, we ex-
ploit localisation information for descriptions at object level. This is accom-
plished by explicitly representing the region which is associated with the ex-
tracted object concept descriptions, using the model of Table 3. According to it,
an image and its constituent regions are associated through the role contains,
while disjoint axioms make explicit the discrimination between scene and object
level concepts, as well as between an image and its regions. As illustrated, there
is no restriction on the number of descriptions at scene (respectively object) level
that may be assigned to an image (region).

Towards a more conceptually accurate model, the first axiom would need to
be revised as Image � ∃depicts.SceneConcept, so as to capture the fact that the
Image concept includes those objects in the domain of interpretation that are
associated with a SceneConcept instance through a depicts property. Similarly
for the third axiom which would become Region � ∃depicts.ObjectConcept. As
in the examined context though, both models would ensue the same inferences,
we preferred the model of Table 3 to avoid unnecessary complexity.
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Table 3. Annotation model for image and its constituent parts

Image � SceneConcept
Region � ObjectConcept
Image ≡ ∃contains.Region
Image� Region � ⊥
SceneConcept � ObjectConcept � ⊥

The explicit representation of the image regions has a twofold effect. On one
hand, it allows to generate final descriptions of higher informative value, as
object concept assertions are no longer associated only to the image (supporting
loose annotation) but also to specific regions. On the other hand, in the case of
inconsistent classifications, instead of simply removing the conflicting assertions
and ending up with regions with no description, we are now able to compute
suggestions of consistent object descriptions. In the following, the details of the
three reasoning tasks are given.

4.1 Scene Level Interpretation

The alternative scene interpretations constitute the possible models regarding
the interpretation of an image, and as a consequence for each SceneConcepti it
suffices to find one model such that SceneConcepti �= Ø, instead of requiring
SceneConcepti �= Ø for all models. Towards this end, and due to the logical
associations between concepts referring at the object level and concepts refer-
ring at the scene level, all assertions need to be taken into account in order to
check the satisfiability of the alternative scene descriptions. As a consequence,
all disjointness axioms in which scene level concepts are participating need to be
removed before checking for satisfiability, as otherwise possible inconsistencies
would reasoning and would prevent the effective utilisation of all information
carried in the available extracted descriptions.

The scene interpretation procedure, summarised in Table 4, consists in the
following steps. First, all disjoint axioms are removed and the TBox is revised
with respect to the currently examined concept SceneConcepti so as to avoid
conflicts when an image is inferred to belong both to SceneConcepti and its
complement ¬SceneConcepti. To accomplish this, the disjointness axioms are
revised so as to entail an instance of notSceneConcepti instead of triggering
an inconsistency. Considering the example TBox of 2, and for SceneConcepti
equal to Rockyside, the presence of a region (ri:Building ≥ di), with di ≥ 0.5
due to axiom 5 would entail (im:¬ Rockyside ≥ 0.5), rendering the available
classifications inconsistent. Revising axiom 5 as Land− scape � notRockyside
though, the ABox remains consistent, and the assertion (im:notRockyside ≥ di)
is obtained instead.

Next, the satisfiability of each scene level description is checked considering all
initial assertions besides the told scene level assertions that refer to a scene concept
other than the currently examined one. Each scene concept SceneConcepti, for
which notSceneConcepti is not satisfiable constitutes a possible interpretation.
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Table 4. Scene level interpretation

Scene Level Interpretation Algorithm

Input: scene level concepts hierarchy HSC , input assertions A
Output: glb for all satisfiable scene level concepts

1: for all hierarchy levels Li starting from the root
2: for all scene level concepts SCj ∈ Li

3: if ∃ satisfiable subsumee of SCj or i==0{
4: revise disjoint axioms adding nonSC j

5: check ¬ SCj satisfiabity
6: if ¬ SCj not satisfiable{
7: remove assertions inconsistent to SCj

8: update A and compute glb(SCj)
9: }
10: }
11: rank scene level concepts wrt glb

Thereby, compared with [33] the checks required to determine the most plausible
scene descriptions, are reduced. To further improve the efficiency, the checking
of the scene concepts satisfiability utilises the subsumption relations between the
scene concepts. Thus, if a concept SceneConcepti is computed to be unsatisfiable,
we skip the checks of all concepts subsuming it. For all satisfiable scene level con-
cepts, the respective greater lower bound (glb) values are computed, by following
the inconsistency handling methodology described in the sequel. Subsequently,
the glb values are ranked and the scene concept with the highest one is selected
as the most plausible scene description.

4.2 Inconsistency Handling

Having computed the scene level concepts that constitute possible interpreta-
tions, the next step is to obtain for each of them the most optimistic interpre-
tation, in order to assess the most plausible one. Towards this end, for each
satisfiable scene concept, the inconsistencies with respect to the input object
concept assertions need to be identified and resolved. Following a similar pro-
cedure to the one described above, the TBox is revised so that the disjoint-
ness axioms involving the examined scene concept and object level ones, instead
of causing an inconsistency, entail an instance of a correspondingly introduced
nonObjectConcepti. As more than one object level concepts ObjectConcepti
may give rise to inconsistencies, a conjunctive expression is formed including
the respective nonObjectConcepti concepts and the generic nonObjectConcept
concept is defined as it subsumer. To resolve the inconsistencies, we employ the
procedure described in the following, until no instance of nonObjectConcept
with glb greater or equal than 0 exists.
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Table 5. Expansion rules for computing the alternative sets of consistent assertions

�-rule if (a : C1 � C2) ∈ L(x)
then L(y)=L(x)\ {(a : C1)} and

L(z)=L(x)\{(a : C2)} and
L(w)=L(x)\{(a : C1 � C2)}


-rule if (a : C1 
 C2) ∈ L(x)
then L(x)=L(x)\{(a : C1 
 C2)}

where Ci −→ A | C � D | ∃R.D

First, we address inconsistencies incurred directly by told descriptions. This
translates into checking whether there exist asserted individuals belonging to
ObjectConcepti concepts such that ObjectConcepti � nonObjectConcepti. The
handling of such assertions is rather straightforward and consists in their re-
moval. Addressing asserted individuals first, prunes the search space during the
subsequent tracking of the inferences that lead to an inconsistency. Next, we
consider assertions referring to complex concepts, i.e. concepts for which the left
hand side of the axioms in which they participate is an expression rather than
an atomic concept. Contrary to the previous case, we now need to analyse the
involved axioms in order to track the asserted descriptions that cause the incon-
sistency. Furthermore, these axioms determine which of the descriptions should
be removed so as to reach a consistent interpretation. To accomplish this, we
build on relevant works for resolving unsatisfiable DL ontologies [51,52], and
employ a reversed tableaux expansion procedure, summarised in Table 5.

The main difference with respect to the relevant literature is that in our ap-
plication framework, we consider solely the removal of assertions, rather than
the removal or weakening of terminological axioms. The expansion procedure
starts having as root node the (im : nonObjectConcept ≥ di) assertion, where
di the computed degree, and continues until no expansion rule can be applied.
As illustrated, in the case of inconsistencies caused by axioms involving the con-
junction of concepts, there are multiple ways to resolve the inconsistency and
reach a consistent interpretation. Specifically, there as many alternative interpre-
tations as the sum of combinations C(N, k), where N the number of conjuncts
and k = 1, .., N . In order to choose among them, we rank the set of solutions
according to the number of assertions that need to be removed and the average
value of the corresponding degrees. Again, corresponding nonObjectConcepti
definitions are added as in the case of scene concepts to avoid ending up with
inconsistent ABoxes.

4.3 Enrichment

The final step considers the enrichment of the descriptions by means of typical
fuzzy DLs entailment. Specifically, once the scene level interpretation is deter-
mined and all inconsistencies have been resolved, we end up with a semantically
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consistent subset of the input assertions. To render the inferred descriptions ex-
plicit, corresponding queries are formulated and the responses are added to the
final image interpretation. Inferred descriptions may refer either to concepts not
addressed by the available classifiers (the Landscape concept constitutes such a
concept for the example considered in Figures 1,2), or to concepts for whom the
corresponding classifiers failed to produced a positive response.

Extending the framework of [33], the explicit representation of the constituent
image regions, allows to model object level descriptions as instances referring to
specific regions of the image, rather than to the entire image though the indirect
representation of regions in the form of (im : ∃contains.ObjectConcepti) asser-
tions. Such modelling allows for additional benefits besides the enhancement of
loose image descriptions3. Specifically, once the inconsistency handling task is
completed, there might be regions for which all initial assertions have been re-
moved. Exploiting the visual coherency between the initial assertions associated
to these regions and the assertions identified as missing, we can infer possible
suggestions regarding object level concepts that such regions may depict. Fur-
thermore, based again on the visual coherency of the concepts addressed by
the classifiers, additional suggestions for missing assertions can be inferred with
respect to regions that already have an object level concept assigned to them.

In order to capture and model the visual coherency of the considered con-
cepts, we utilise the confusion matrixes acquired during the training phase of the
classifiers and extract axioms of the form ObjectConcepti � ObjectConceptj �
ObjectConceptj+1 � . . ., where the concepts ObjectConceptj+n represent object
concepts that tend to be misclassified as instances of ObjectConcepti under a
given scene description. The main reason for adopting such an approach, is that
regions depicting visually similar object concepts often happen to be falsely seg-
mented as one. As illustrated in the evaluation Section 6, the purpose of such
suggestions is to facilitate the interaction with a subsequent step of analysis,
including possibly re-segmentation and the re-application of specific classifiers
on selected regions.

5 Implementation

In the previous Section, we described the individual tasks comprising the pro-
posed fuzzy DLs-based reasoning framework for the enhancement of semantic
image interpretation. In the following, we examine the proposed reasoning frame-
work from an implementation perspective. Since, each task utilises corresponding
standard fuzzy DLs reasoning services in order to accomplish its goals, central
role in the proposed reasoning framework holds the reasoning engine that realises
these core fuzzy DLs inference services.

The choice regarding which specific implementation should be employed under
the proposed framework was based on the existing available fuzzy DL reasoning

3 Loose (weak) annotation refers to object level descriptions that are associated to the
entire image rather than the specific image regions.
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engines and the requirements posed with respect to expressivity power and inter-
action capabilities. The sequence of works by Straccia [47,48,53] and Stoilos et al.
[49,50,54] distill the advancements accomplished with respect to the formal defi-
nition of fuzzy extensions semantics and of corresponding reasoning algorithms.
Complementary to the theoretic foundations, respective reasoning engine imple-
mentations have been developed, namely the Fuzzy Reasoning Engine4 (FiRE)
and the fuzzyDL5.

FiRE [55] supports querying an f-SHIN knowledge base for satisfiability, con-
sistency, subsumption, and entailment, under Zadeh semantics; general concept
inclusions, roles and datatype support are among the planned future extensions.
fuzzyDL [56] supports satisfiability, consistency, subsumption, and entailment
for the language fuzzy SHIF, further extended by concrete fuzzy concepts, i.e.
concept defined through an explicit fuzzy membership function, concept mod-
ifiers that allow to change the membership function of a fuzzy concept, and
functional datatypes attributes. The reasoner accepts three types of semantics
for the interpretation of conjunction, disjunction, complement and implication,
namely Zadeh semantics, Lukasiewicz, and crisp. Although both available rea-
soners support very high expressivity and provide support for the standard rea-
soning services of satisfiability, instance checking, disjointness and subsumption,
the factor that differentiates them is the handing of general concept inclusions.
As illustrated in Sections 2 and 3, handling general concept inclusions is cru-
cial as it allows to model the existence of specific regions, thus specific object
level concept instances, which in turn imply corresponding scene concept in-
stances. Otherwise, the object level instances would be reduced to scene concept
instances, and subsequently the region individuals would become tautological to
the respective image individual. Given the above considerations, we selected the
fuzzyDL reasoner.

Fig. 4 shows an abstract view of the proposed reasoning framework archi-
tecture regarding the interaction between the proposed reasoning framework
and the fuzzyDL reasoning engine. As illustrated, and already described in the
detailed presentation of the procedure comprising each of the three reasoning
tasks, the fuzzyDL engine provides the standard inference services required to
support the semantic interpretation of an image. The proposed reasoning frame-
work coordinates the required inference services by designating the each time
considered TBox and ABox, performing appropriate translations to avoid in-
consistencies and formulate respective queries so as to determine the conditions
for the subsequent processing steps. Hence, it serves as an external mechanism
that modularises and harmonises the interpretation into distinct subproblems
on which the fuzzyDL can be invoked.

In addition, the proposed framework provides support for subtasks addressing
the handling of semantics that cannot be invoked as distinct services of fuzzyDL.
One such example is the tracking and resolving of inconsistencies, where besides
the transformation of the TBox so that an inconsistency entails an instance of

4 http://www.image.ece.ntua.gr/∼nsimou
5 http://faure.isti.cnr.it/∼straccia/software/fuzzyDL/fuzzyDL.html
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Fig. 4. Implementation architecture diagram

respectively introduced nonConcepts, the semantics of the axioms involved in
the creation of an inconsistency are taken into account in order to compute the
possible alternative solutions. We note that regarding the TBox revision, parts of
the TBox translations, specifically the transformations during the satisfiability
checks in the scene level interpretation task, have been manually performed, as
the emphasis in the current experimental implementation is placed on assessing
the feasibility of the proposed approach.

Another example is the computation of possible models with respect to a
specific scene concept, given a TBox and the initial region assertions. In this case,
first the TBox needs to be revised so that inconsistencies can be tracked and
removed, and afterwards the possible models (i.e. the different configurations
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regarding the association of each region to one of the disjuncts representing
the available classification results) need to be explicitly provided to fuzzyDL as
distinct ABoxes. The latter is essential in order to compute the corresponding
glb values for the examined scene concept, as otherwise it would be impossible
to entail a value different than ≥ 0 unless all disjuncts per region addressed the
same concept. Going back to the example of Figure 2 for instance, it would be
impossible to infer the scene concept Countryside buildings unless there existed
a region ri for which all alternative possible classification where the same one,
i.e. that of Building.

6 Evaluation

In order to assess the potential of the proposed reasoning framework for the
purpose of enhancing the semantic coherency and completeness of image de-
scriptions, we experimented in the domain of outdoor images. The sets of scene
(Cscene) and object (Cobject) level concepts addressed by the employed SVM
based classifiers are Cscene={Roadside, Rockyside, Countryside buildings, Sea-
side, Forest} and Cobject={Building, Roof, Grass, Foliage, Dried-Plant, Sky,
Rock, Tree, Sea, Sand, Boat, Road, Ground, Person, Trunk, Wave}.

Figure 5 illustrates example images of the addressed scene level concepts. As
illustrated, Seaside images refer to coastal and beach scenes, Rockyside ones
include mountainous images with little vegetation, Roadside images refer to
landscape scenes depicting parts of road, Countryside buildings represent scenes
where buildings are present yet not in an urban environment, and finally Forest
images correspond to natural landscapes with abundant vegetation, including
trees, foliage, trunks, etc.

From an initial set of 700 outdoor images, two sets of 350 images have been
assembled: one served as the training set on which the learning of concept clas-
sifiers was performed, and the second served as the test set. Ground truth for
all images has been manually generated at object and scene level. The manual
annotation and training of the classifiers, both comprising quite cumbersome
and resource intensive activities (corresponding to an average of two to three

Seaside Rockyside Roadside Countryside Forest
buildings

Fig. 5. Example images of the supported scene level classifiers
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Table 6. Example extract of the outdoor image domain TBox developed for evaluation
purposes

Countryside buildings � ∃contains.Building � ∃contains.Grass
Countryside buildings � Landscape
Grass 
 Tree � Foliage
Rockyside � ∃contains.Rock
Roadside � ∃contains.Road
Roadside � Landscape
∃contains.Building � Countryside buildings
∃contains.Sea ≡ Seaside
Beach ≡ Seaside � ∃contains.Sand
∃contains.Sky � Outdoor
Trunk � Tree
Wave � Sea
Boat � Sea
Forest � (Roadside 
 Countryside buildings) � ⊥
Roadside � Countryside buildings � ⊥
Rockyside � (Seaside 
 Landscape)� ⊥
Landscape � � Outdoor ⊥
Forest � ∃ contains.(Rock 
 Sea 
 Sand 
 Building 
 Road) � ⊥
Rockyside � ∃ contains.(Sea 
 Sand 
 Building 
 Road) � ⊥

person months - for the number of concepts and images considered in the spe-
cific experiment), constitute efforts already spent for the purpose of training
and assessing the performance of the employed SVM based classifiers [57]. Thus,
the only extra resources required with respect to the proposed reasoning frame-
work relate to the transformation of the already existing ground truth files and
extracted descriptions to a format compliant to the one used by the proposed
reasoning framework, which amounts to a negligible amount of effort. The reason
for stressing this out, is to outline that the application of the proposed reasoning
framework does not entail any additional resources with respect to annotation
tasks.

In order to apply the proposed reasoning framework, a TBox that captures
the semantics of the domain addressed by the available classifiers needs to be
constructed. Table 6 illustrates an extract of the outdoor images TBox that has
been developed for the carried out experimentation. It includes 25 concepts and
one role. The included concepts comprise the scene and object level concepts
supported by the classifiers, Landscape, Outdoor, and the generic SceneConcept
and ObjectConcept concepts that are used to enforce that the discrimination
between the two levels of concepts; the respective role is contains, which links
an image to its constituent regions, and scene level concepts to object level ones.

Approximately fifty axioms, including the transformations required to avoid
inconsistencies with respect to the alternative scene level interpretations, are
used to capture the interrelations of the involved scene and object level con-
cepts; this number increases further, when taking into account the additional
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axioms appended during the handling of inconsistencies. We note though, that
not all axioms are loaded at once to fuzzyDL, since the proposed reasoning
framework coordinates, as previously explained, the axioms and assertions over
which the reasoning services of fuzzyDL are invoked. As a consequence, the com-
plexity remains too low to incur performance concerns, and similar observations
have resulted when experimenting with larger TBoxes, as long as the considered
ABoxes remained similar in size.

Specifically, using a virtual Linux machine, running on XP Windows, with
an Intel Core quad processor, requires about three hours and twenty minutes to
process the complete test set. Individual image processing times, vary from two
seconds to one minute and half, depending on the given assertions and the com-
plexity of resolving the encountered inconsistencies. Actually, the inconsistency
handling process, which computes the possible consistent alternatives by track-
ing the definitions involved, and the satisfiability and glb queries communicated
to fuzzyDL are the most time consuming tasks. The average memory required
per image is 26 MBs, of which only a small fragment, namely 1/100, is consumed
by the proposed framework, the rest committed by the evoked fuzzyDL services.
Both observations relate to the fact that the proposed reasoning framework ad-
dresses mostly the coordination of the input and queries to be communicated to
the fuzzyDL than realising itself core inference services, with the exception of
tracking inconsistencies.

In order to quantify the performance of the proposed approach, we compared
the accuracy and completeness of the obtained image descriptions, with the
descriptions provided by means of classification, as well as with the descriptions
acquired when using the reasoning framework of our previous study [33]. The
last allows for a first estimate on the added value of explicitly representing the
individual image regions and the alternative object descriptions associated with
them. As evaluation metrics, we adopted recall, precision and and F-measure,
according to the following definitions.

– Precision (p): number of correct assertions extracted/inferred per concept
divided by the number of assertions that were extracted/inferred for the
given concept.

– Recall (r): number of correct assertions extracted/inferred per concept di-
vided by the number of assertions referring to that concept that are present
in the ground truth image descriptions.

– F-measure: 2 ∗ p ∗ r/(p + r).

Table 7 gives the performance of the classifiers, of the reasoning framework pre-
sented in [33], and of the currently proposed reasoning framework, for the case
of scene level concepts. Compared to the performance of the classifiers, we note
that the application of the proposed reasoning framework incurs a significant
improvement. Going through the respective domain axioms, it is easy to cor-
relate the extend of enhancement to the extent of semantic relations between
object level concepts with scene level, particularly axioms that entail a scene
level descriptions based on object level descriptions. Compared with the respec-
tive reasoning performance of [33], the explicit representation of the individual
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Table 7. Evaluation of analysis and reasoning performance for scene level concepts

Analysis Reasoning [33] Reasoning

Concept Recall Precision F-M Recall Precision F-M Recall Precision F-M

Rockyside 0.68 0.70 0.69 0.68 0.79 0.74 0.65 0.77 0.72
Seaside 0.85 0.67 0.75 0.86 0.72 0.78 0.79 0.75 0.78
Beach - - - 0.45 0.76 0.57 0.45 0.76 0.57

Roadside 0.68 0.69 0.69 0.72 0.70 0.70 0.72 0.63 0.67
Forest 0.75 0.63 0.69 0.74 0.68 0.71 0.76 0.68 0.72

Countryside 0.30 1.0 0.46 0.60 0.86 0.71 0.60 0.86 0.71
buildings

Landscape 0.75 0.71 0. 0.87 0.85 0.85 0.87 0.85 0.85
Outdoor - - - 1.0 1.0 1.0 1.0 1.0 1.0

image regions and the corresponding object level assertions appears to have a
rather negligible effect, as the slight improvement observed for concepts such as
Roadside and Forest is counterbalanced by the slight deterioration with respect
to the Rockyside and Seaside concepts.

Table 8 compares the respective performance for descriptions at object level.
As shown, besides the Boat and Grass concepts, the application of the reasoning
framework of [33] improves significantly the performance compared to the sole
application of the classifiers. This is a direct consequence of the fact that the
considered object level concepts are characterised by rich semantics with respect
to the scene level concepts that constitute their context of appearance. The
behaviour observed with respect to the Boat and Grass concepts relates to the
risks entailed by a false scene level interpretation, which may incur in the case
of very poor classification performance, in which case the input descriptions
suggest interpretations other than the actual one. Going for example through
the images for which Boat assertions where falsely removed, thus incurring the
observed lowering in the recall rate, we noticed that the corresponding prevailing
scene level assertions were not incompliance with the actual scene semantics.

Similar considerations emerge when analysing the not so remarkable effect of
reasoning in the recall of scene level concepts such as Rockyside. Going through
the images depicting rocky side scenes, yet failed to be recognised as such,
we noticed that in all cases the classifiers had falsely detected another scene
level concept instead, despite the fact that the instantiations of the Rock con-
cept were successfully detected in the their majority. Adding an axiom such as
∃contains.Rock � Rockyside would seem a reasonable idea for improving per-
formance on the grounds that the available axioms did seem to overlook this
knowledge. However, as in the case of Boat, such an amendment would imbal-
ance the trade off between what constitutes domain semantics and what is mere
tuning to the peculiarities of a given data set. In the discussed case, this is easy to
illustrate simply considering how often it is for rocks to appear in beach scenes.

The application of reasoning however, under the model proposed in this pa-
per that considers the individual regions, entails an even higher effect on the
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Table 8. Evaluation of analysis and reasoning performance for object level concepts

Analysis Reasoning[33] Reasoning

Concept Recall Precision F-M Recall Precision F-M Recall Precision F-M

Building 0.54 0.69 0.60 0.62 0.86 0.72 0.62 0.64 0.63
Roof 0.33 0.54 0.41 0.33 0.75 0.46 0.43 0.63 0.52
Grass 0.49 0.42 0.45 0.30 0.52 0.38 0.83 0.56 0.67

Vegetation 0.48 0.84 0.61 0.86 0.86 0.86 0.80 0.49 0.61
Dried-Plant 0.07 0.11 0.08 0.07 0.13 0.10 0.12 0.33 0.18

Sky 0.95 0.93 0.94 0.95 0.93 0.94 0.96 0.92 0.94
Rock 0.65 0.45 0.53 0.69 0.70 0.69 0.57 0.57 0.57
Tree 0.49 0.52 0.51 0.56 0.47 0.51 0.83 0.46 0.59
Sand 0.02 0.10 0.03 0.57 0.45 0.50 0.57 0.45 0.50
Sea 0.69 0.60 0.64 0.85 0.69 0.76 0.75 0.69 0.72
Boat 0.41 0.71 0.52 0.33 0.66 0.44 0.44 0.57 0.5
Road 0.50 0.69 0.58 0.69 0.71 0.70 0.77 0.52 0.62

Ground 0.26 0.33 0.29 0.26 0.33 0.29 0.49 0.45 0.47
Person 0.75 0.51 0.61 0.75 0.51 0.61 0.86 0.45 0.61
Trunk 0.26 0.28 0.27 0.26 0.28 0.27 0.33 0.22 0.27
Wave 0.25 0.5 0.33 0.25 0.5 0.33 0.25 0.5 0.33

completeness and accuracy of the object level descriptions. This a direct con-
sequence of the fact that instead of leaving a region without a corresponding
assertion in the case the classification results prove to be inconsistent, probable
suggestions are inferred that as illustrated incur further improvement. In order
to obtain the values illustrated in the Table, we considered for each region the
inference-based suggestion with the highest degree. As described in Section 4
though, more than one suggestions may be inferred for a given region, indepen-
dently of whether this region has been subjected to inconsistent classification,
aspiring to further assist in the identification of additional descriptions. As a
result, in the case of a more interactive analysis and classification module, the
proposed framework has the potential for an effectively higher enhancement.

Table 9 provides a rough assessment of the potential benefit such suggestions
entail, by measuring the respective recall and precision values when all sug-
gested additional descriptions are taken into account. As expected, the concepts
that exhibit the higher potential for improvement are those for which once the
scene description has been identified, their perceptual similarity with already
detected concepts allows them to be associated to existing region assertions. As
described, these suggestions have disjunctive semantics, i.e. they do not necessi-
tate the presence of the suggested concept but rather identify the most plausible
regions at which this concepts should be sought. Figure 6 provides an estima-
tion of the number of regions that should be searched if no such information was
available, i.e. when the only knowledge relates to the region assertions that have
been missed during classification, and the respective number of regions when the
suggestions provided by the proposed reasoning framework are used, provided
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Table 9. Evaluation of reasoning for object level concepts including the inferred sug-
gestions

Reasoning

Concept Recall Precision F-M

Building 0.66 0.83 0.74
Roof 0.35 0.69 0.46
Grass 0.60 0.75 0.67

Vegetation 0.6 0.68 0.64
Dried-Plant 0.05 0.22 0.08

Sky 0.95 0.93 0.94
Rock 0.65 0.45 0.53
Tree 0.49 0.52 0.51
Sand 0.02 0.10 0.03
Sea 0.69 0.60 0.64
Boat 0.47 0.71 0.52
Road 0.64 0.78 0.70

Ground 0.27 0.31 0.28
Person 0.75 0.51 0.61
Trunk 0.41 0.33 0.37
Wave 0.25 0.5 0.33

that they are correct; otherwise, the searching for a missing object reduces to the
same situation as in the former case. As illustrated when the inferred suggestion
are taken into account, the number of regions that need be examined is reduced
almost by half for concepts for which semantic and perceptual information is
available.

Summing up the experiences and observations drawn from the conducted eval-
uation, we note that the utilisation of explicit semantics has a positive impact
towards the semantic interpretation of image descriptions. The use of fuzzy DLs
allows to handle formally the degrees of confidence that accompany the auto-
matically extracted and utilise them both towards the identification of the most
plausible interpretation as well as for resolving inconsistencies. The preservation
of the degrees information in combination with the ensured semantic coherency
of the resulting image descriptions, renders the proposed framework a useful
contribution for semantic retrieval tasks that address multimedia content. Fur-
thermore, since the presented framework makes no assumption with respect to
the classifiers used to provide the initial classifications, it has the potential to
be employed in any image retrieval scenario involving vague. descriptions.

Indicatively, practical cases where the proposed framework could be employed
include applications such as the TRECVID6 challenge, where among the ad-
dressed tasks is the extraction of high-level visual content descriptions using sta-
tistical learning. Within such context, the proposed reasoning framework could
be used to alleviate inconsistent classifications and to enhance the completeness

6 http://www-nlpir.nist.gov/projects/trecvid/
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Fig. 6. Comparison of the number of regions that need to be examined for missing
object level assertions, when no additional knowledge is available (approach 1) and
when the inferred suggestions are taken into consideration (approach2)

of the final content descriptions. Thereby, the reliability of the descriptions is
improved, while concepts that are not supported by the classifiers, but are se-
mantically related, can be afforded, sparing the time and effort for building such
classifiers. Another example application where the proposed framework could
be used is the DL-Media [58] retrieval system in order to allow the ontologi-
cal query service to perform over inconsistent image descriptions. In general,
as exemplified in the motivating examples and the carried out evaluation, the
proposed framework has the potential to enhance content descriptions, and by
consequence the corresponding content management tasks, acquired by means
of typical statistical learning techniques, when the underlying imprecision refers
to vagueness.

7 Related Work

The majority of relevant literature considers the investigation of crisp DLs-based
approaches. In the series of works presented in [28,59,29], crisp DLs are proposed
for inferring descriptions modelled as logical aggregates. A probabilistic approach
is described in the more recent one as a possible solution to the handling of the
ambiguity introduced in visual analysis [29]. Although the proposed approach
outlines an interesting direction, it lacks the technical details and evaluation that
would establish the potential contribution; furthermore, considering probabilistic
information, it addresses a different kind of uncertainty than what is presented
in this paper.
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In [31], DLs have been extended with a rule-based approach to realise ab-
ductive inference over crisp analysis assertions. Alternative consistent interpre-
tations are computed by means of abduction and ranked using as criteria the
number of new individuals that need to be introduced7 and the number of as-
sertions that need to be left out in order to reach a consistent interpretation.
Examining the combined use of such an abductive reasoning framework with
the proposed one fuzzy, could be interesting for investigating the effect in the
ranking of alternative interpretations.

In [60] DLs are used to realise the interpretation of feature values pertaining
to colour, texture and background knowledge to semantic objects. To this end a
pseudo fuzzy algorithm is presented to reason over the calculated feature values
with respect to the prototypical values constituting the definition of semantic
objects. Additionally, topological knowledge is utilised to exclude inconsistent
associations of semantic objects to given image segments. More specifically, in
addition to the axioms representing the domain topology, axioms are introduced
to capture topologically inconsistent relations. During a post processing step,
individuals participating in the latter type of axioms are iteratively removed.
Compared to the approach to inconsistency handling presented in this paper,
[60] does not address the semantics of expressive constructors, while neither
the implementation details of this postprocessing step nor evaluation results are
given.

In [30], DLs and rules have been utilised for video annotation using crisp se-
mantics. Additionally, there is no mentioning to what happens in the case of
inconsistency. In [61], a DLs based approach to medical image annotation is pre-
sented under the assumption of crisp, consistent analysis extracted descriptions.
In [62] a reasoning approach adhering to fuzzy logic principles was investigated
for the purpose of integrating image descriptions extracted by means of visual
analysis and textual analysis, regarding user entered descriptions, while in a
more recent study presented in [33], a fuzzy DLs based reasoning framework
has been proposed for the enhancement of initial descriptions acquired through
statistical classifiers. As aforementioned, the presented approach extends on the
last two investigations, building upon the acquired experiences.

Fuzzy DLs have been proposed in [58] for the purpose of semantic multimedia
retrieval; the fuzzy annotations however are assumed to be available. Similar
considerations have been investigated in older works such that of [63], where
again the usefulness and significance of multimedia content descriptions that
reflect the uncertainty present is pointed out. In the context of analysis, fuzzy
DLs have been only recently explored in [55], where fuzzy DLs reasoning is used
to infer semantic concepts based on part-of relations and to subsequently merge
at image level. Possible inconsistencies in the analysis extracted description on
which part-whole reasoning is employed is not addressed. Fuzzy logic semantics
have also been investigated in [64] under a different application context, namely

7 This is a direct result of treating the concepts to be inferred as aggregates of simpler
ones and an interpretation as the quest of those aggregated and simple assertions
that once introduced make use of the analysis extracted assertions.
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for the purpose of supporting personalised information retrieval. In contrast
to the approach presented in this paper, the emphasis is placed on weighted
fuzzy concepts that are used to represent user preferences and contextualised
preferences in order to allow the ranking of retrieved documents with respect to
their relevance.

8 Conclusions and Future Work

The richness of visual information and the growth in the volume made available,
render the potential for the exploitation of image content tremendous. Although
the role of machine learning in the extraction of image semantics continues to
grow, the reported endeavours show that the weakness to effectively incorporate
semantics bears significant limitations in terms of the number of concepts that
can be supported and the robustness of the attained performance. At the same
time, the utilisation of explicit semantics as means to partially alleviate and
enhance descriptions extracted through statistical learning presents an appealing
potential, as suggested by recent studies addressing both research and industrial
aspects [37,65].

Utilising fuzzy DLs semantics, the proposed reasoning framework captures the
uncertainty of the extracted descriptions and accomplishes their integrated inter-
pretation, while resolving inconsistencies rising from contradictory descriptions.
In addition, by means of logical entailment, the final interpretation is further
enriched; thereby, the need for training classifiers for semantically related con-
cepts is partially alleviated, while missing descriptions due to segmentation and
classification errors can be partially compensated. Experimentation has shown
promising results, that although not conclusive yet, suggest that the proposed
framework has the potential to serve as a useful contribution.

As indicated earlier in the paper, the investigation of a reasoning framework
that combines fuzzy and probabilistic reasoning constitutes a challenging direc-
tion for future work. The motivation issues from the fact that the two types of
uncertainty serve complementary purposes, hence suggesting a strong potential
for achieving mutual benefit. However, more immediate directions for future in-
vestigations constitute on one hand on the extension of the presented reasoning
framework so as to handle spatial knowledge, as well as the formalisation of the
proposed reasoning tasks based on the drawn experiences with respect to the as-
pects that render the typical DL services inappropriate for direct exploitation in
the problem of semantic image interpretation. Finally, towards more conclusive
observations, we plan to extend our experimentation to larger, public data sets.
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31. Espinosa, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia interpreta-
tion as abduction. In: Proc. International Workshop on Description Logics (DL),
Brixen-Bressanone, Italy, June 8-10, pp. 323–331 (2007)

32. Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V., Strintzis, M.:
Knowledge-assisted semantic video object detection. IEEE Trans. Circuits Syst.
Video Techn. 15(10), 1210–1224 (2005)

33. Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.: Using fuzzy dLs to enhance seman-
tic image analysis. In: Duke, D., Hardman, L., Hauptmann, A., Paulus, D., Staab,
S. (eds.) SAMT 2008. LNCS, vol. 5392, pp. 31–46. Springer, Heidelberg (2008)

34. Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification.
In: Proc. 15th International Conference on Machine Learning (ICML), Madison,
Wisconson, USA, July 24-27, pp. 341–349 (1998)

35. Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.: Image classification for content-
based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)

36. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D., Jordan, M.: Match-
ing words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)



Applying Fuzzy DLs in the Extraction of Image Semantics 131

37. Hauptmann, A., Yan, R., Lin, W.H., Christel, M., Wactlar, H.: Can high-level
concepts fill the semantic gap in video retrieval? a case study with broadcast news.
IEEE Transactions on Multimedia 9(5), 958–966 (2007)
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Abstract. Model management is a metadata-based approach to data-
base problems aimed at supporting the productivity of developers by
providing schema manipulation operators.

Here we propose MISM (Model Independent Schema Management),
a platform for model management offering a set of operators to manipu-
late schemas, in a manner that is both model-independent (in the sense
that operators are generic and apply to schemas of different data mod-
els) and model-aware (in the sense that it is possible to say whether a
schema is allowed for a data model). This is the first proposal for model
management in this direction.

We consider the main operators in model management: merge, diff,
and modelgen. These operators play a major role in solving various prob-
lems related to schema evolution (such as data integration, data exchange
or forward engineering), and we show in detail a solution to a major rep-
resentative of the class, the round-trip engineering problem.

Keywords: model management, model management operators, round-
trip engineering, model-independent schema and data translation.

1 Introduction

The need for complex transformations of data arises in many different contexts,
because of the presence of multiple representations for the same data or of mul-
tiple sources that need to coexist or to be integrated [11,18,20]. A major goal of
technology in the database field is to enhance the productivity of software devel-
opers, by offering them high-level features that support repetitive tasks. This has
been stressed since the introduction of the relational model, with the emphasis on
set-oriented operations [12,13], but it was pursued, at least implicitly, in earlier de-
velopments of generalized techniques [22]. The model management proposal [7,8]
is a recent, significant effort in this direction: its goal is the development of tech-
niques that consider metadata and operations over them. More precisely, a model
management system [11] should handle schemas and mappings between them by
means of operators supporting operations to discover correspondences between
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schemas (match), performing the most common set-oriented operations (such as
union of schemas, merge, and difference of schemas, diff) and translating them
from a data model to another (modelgen). These operations should be specified
at a high level, on schemas and mappings, and should allow for the (support to
the) generation of data-level transformations. Many application areas can ben-
efit from the use of model management techniques, including data integration
over heterogeneous databases, data exchange between independent databases,
ETL (Extract, Transform, Load) in data warehousing, wrapper generation for
the access to relational databases from object-oriented applications, dynamic
Web site generation from databases.

Most of the work in model management has considered the need for model in-
dependence, that is, the fact that the techniques do not refer to individual data
models,1 but are more general. In detail, this requires that a single implementa-
tion of the operators should fit (i.e. be applicable) to any schema regardless of the
specific data model it belongs to. This has usually been done by adopting some
“universal data model,” a model that is more general than the various models
of interest in a heterogeneous framework. In the literature, such a data model is
called universal metamodel [11] or supermodel [3,6]. If the operations of interest
also include translations from a data model to another (the modelgen opera-
tor), it is important that the individual data models are represented, in such a
way that it becomes possible to describe the fact that a schema belongs to a data
model. We will call this propertymodel-awareness. The various proposals for mod-

elgen [3,6,25,26] do include the model independence feature, to a larger or lesser
extent. For the other operators, the major efforts in the model management area
(as summarized by Bernstein and Melnik [11]) do not handle the explicit repre-
sentation of data models nor generic definitions of the operators.

The goal of this paper is to show a model independent and model aware
approach to model management, thus providing concrete details to Bernstein’s
original proposal [8] and contributing to support its feasibility.

In the rest of this introductory section we first discuss two motivating ex-
amples, then we provide an overview of the approach and finally we state the
contribution of the paper and the organization of the rest of it.

1.1 Motivating Examples

In order to have a context for specific examples and a complete solution, we
will refer to the “round-trip engineering” problem [8], which can be defined as
follows: given two schemas, where the second is somehow obtained from the first
(for example, generated in a semiautomatic way, with standard rules partially
overridden by human intervention), the problem has the goal of “repairing”
the first if the second is modified. This problem is often considered in model
management papers [8] as a representative of the “schema evolution” family.
These problems arise in all application settings and therefore can be used to

1 There is some disagreement on terminology in the literature: we use the term data
model here for what is often called just model [3,6] and in other papers metamodel [11].
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demonstrate the effectiveness of model management, in terms of both individual
operators and compositions of them.

Let us consider an example derived from an academic scenario (see Figure 1):
a university has various schools and one of them has a relational database with a
portion containing all the information of interest about its departments, courses,
and professors. Its schema is shown in the box labeled S1 in Figure 1. It is com-
posed of three tables, Professor, Course, and Department. Apart from the specific
attributes, each relation has a key, denoted by the “ID” suffix and underlined
in the figure. As each course is offered by a specific department and given by a
professor, there are foreign keys from Course to the other two tables, denoted
by arrows in the figure.

Fig. 1. The round-trip engineering problem
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Assume now that this portion of the database is used (together with other
goals) as the source to send data on courses to a central office in the university,
which gathers data from all schools. This office requires data in an XML format,
which is the one sketched in the box labeled I1 in Figure 1. There is indeed a
close correspondence between S1 and I1 (possibly because they were designed
together). In fact, I1 can be obtained by means of a nesting operation based
on departments, each with the associated set of courses and with the instructor
for each course. Clearly, this is one natural way to transform the relational
data in S1 into XML, but not the only one, as there would be other solutions
that involve course or professor as the root. In this sense, we can say that this
is not the result of an automated translation, but of a customization, that is, a
choice among a few standard alternatives. Let us also observe that in S1 we have
attributes FirstName and LastName for Professor, whereas in I1 we have the
element FullName. There could be various reasons for this, but the only aspect
relevant here is that, again, the transformation has been customized, with the
concatenation of the two attributes in S1 into a single element in I1.

Then, assume that the exchange format is modified, with a new version, I2,
also shown in Figure 1. There are a few differences between I2 and I1. First, we
have that Address is a simple element in I1, while it is a complex element in I2,
composed of Street, Zip, and City. The second, and most important, difference
is the presence of a complex element Section nested in Course and containing
Professor. A course can be composed of various sections. Each section has a
single professor, and therefore Professor, which in I1 was directly contained in
Course, is part of Section. Each section of a course takes place in a different
room so the element Room is now in Section.

Now, the goal is to obtain a schema in the relational model (for example the
one shown in the box labeled S2 in Figure 1) that properly corresponds to S1
as modified by the changes in I2. It should be clear that S2 cannot be obtained
by applying to I2 a standard, automatic translation from XML to the relational
model (an application of the modelgen operator), because we could not keep
track of the customizations we mentioned above. The idea for a solution to this
problem was proposed by Bernstein [8], in terms of a script of model manage-
ment operators, using diff to compute differences, modelgen to translate and
merge to integrate. Intuitively, we have to detect the actual differences be-
tween the original and the modified target schemas I1 and I2 respectively. Then
we have to translate these differences back to the specification model (in our
case the relational one) and finally integrate the translated differences with the
original specification S1 obtaining a revised specification S2. The requirement
is that we should obtain I2, if we apply to S2 the sequence of translations and
customizations used to obtain I1 from S1. With reference to our example, apply-
ing the sequence of operators as described in the algorithm, we produce indeed
the relational schema illustrated in the box labeled S2 in Figure 1. Schema S2
includes new tables Section and Address corresponding to the new complex el-
ements in I2. Department has a foreign key to Address and Section to Course.
Also, attribute Room is in Section and not anymore in Course.
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In the existing literature, the proposals for the various operators are not gen-
eral and accurate enough, as they refer to a rather limited set of models and
do not have features that support the description of models, and so the plan
proposed by Bernstein has not yet been implemented in a general way.

The goal of this paper is to show that this plan can indeed be made concrete,
in a model-independent and model-aware way, which works for many different
models but performs the translations knowing the specific features of the models
of interest.

With the twofold goal of using a different model and of presenting a simpler
example, let us consider another scenario. Let us assume we have a high level
specification tool that translates ER schemas into relational tables by generating
appropriate SQL DDL, allowing some customization. Again, if changes are made
to the SQL implementation, then we want them to be propagated back to the ER
specification. This is illustrated in Figure 2, where S1 represents a specification in
the ER model and I1 represents its relational implementation. The customization
in the translation produces two columns FName and LName in I1 for the single
attribute Name in S1. Then, if I1 is modified to a new version I2, the latter is
not coherent with S1. The main difference between I2 and I1 is in the key for the

Fig. 2. A simple scenario for the round-trip engineering problem
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Manager table and, as a consequence, in the foreign key structure that refers to
it. Also, Manager has a new attribute, Title. The goal is to find a specification
S2 from which I2 could be generated, in the same semiautomatic way as I1 was
obtained from S1. Indeed, what we want to obtain is an ER schema S2, which
differs from the original one in the attributes of the entity Manager : the identifier
is EID instead of SSN and there is the new attribute Title.

In the remainder of the paper we will follow this second example, which will
allows us to explain completely our approach, without taking too much space.

1.2 Overview of the Approach

The solution we propose in this paper includes a definition and implementation
of the major model management operators (diff, merge, and modelgen).
It is based on our experience in the MIDST platform [3,4,5], where a model-
independent approach for schema and data translation was introduced (with
a generic implementation of the modelgen operator). MIDST adopts a met-
alevel approach in which the artifacts of interest are handled in a repository
that represents data models, schemas, and databases in an integrated way, both
model-independent and model-aware. This is a fundamental starting point, as
stated before, in order to be able to define a model management system. This
repository is implemented as a multilevel dictionary. Data models are defined in
terms of the constructs they involve. A schema of a specific data model is allowed
to use only the constructs that are available for that model. In this framework,
the supermodel is the model that includes the whole range of constructs, so that
every schema in every model is also a schema in the supermodel. Then, all trans-
lations are performed within the supermodel, in order to scale with respect to
the size of the space of models [5]. In this paper, we show how the dictionary
and the supermodel provide grounds for the model-independent definition of the
other operators of interest, namely merge and diff.

In MIDST, translations are obtained as the composition of basic steps each
of which is written as a Datalog program. The language was chosen for two
reasons: first, it matches in an effective way the structure of our data model
and dictionary (which is implemented in relational form); second, its high level
of abstraction and the declarative form allow for a clear separation between
the translations and the engine that executes them. Moreover, Datalog can be
straightly translated into SQL and the original choice was aimed at covering the
widest spectrum of application scenarios. However, other syntax or specification
formalisms could be adopted as well.

Here we propose a general model management platform, MISM (Model Inde-
pendent Schema Management), which is based on MIDST but extends it in a
significant way. We start from MIDST’s representation for data models, schemas,
and databases and define model management operators by means of Datalog
programs with respect to such representation. Specifically, we leverage on the
features of MIDST’s dictionary for the uniform representation of models as well
as the infrastructure for the definition and the application of schema manipula-
tion operators. MISM offers all the major operators, including merge, diff, and
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a basic version of match, all implemented in a model-generic way. The structure
of the dictionary also allows for the automatic generation of Datalog programs
implementing the new operators, with respect to the given supermodel, in such a
way that, if the supermodel were extended, the operators would be automatically
extended as well.

1.3 Contribution

To the best of our knowledge, this is the first proposal for a model-independent
platform for model management. Specifically, this paper offers three main
contributions:

– The model-independent definition and implementation of important model
management operators. In fact, we define them by means of programs with
predicates acting on the constructs of the supermodel.

– The automatic generation of the programs implementing the operators only
using the supermodel as input. These programs are valid for any schema
defined in terms of model-generic constructs.

– A complete solution to the round-trip engineering problem as a representa-
tive of the problems that can be solved with this approach. It is based on
a script defined in terms of a convenient combination of our operators and
allows a walk through of our implementation.

1.4 Organization of the Paper

In Section 2 we describe how models, schemas and translations are dealt with
in MIDST. In particular we describe schema representation within MIDST met-
alevel. We illustrate how model-independent transformations can be performed
in the framework.

Then in Section 3 we illustrate in detail model management operators in
MISM, the extension of MIDST we propose here, and present their definitions.
Discussion on their model-independence and model-awareness is provided. As a
consequence, in Section 4 we show possible Datalog implementations for these
operators satisfying the specifications of the previous section.

Section 5 presents a solution of the round-trip engineering problem in terms
of our operators and shows how MISM can be used to solve this problem. A
concrete scenario of solution, addressing the problem introduced in Figure 2 is
then provided.

Finally, Section 6 discusses related work and Section 7 concludes the paper.

2 Models, Schemas, and Translations in MIDST

This section presents the needed background, with a discussion of the relevant
features of our previous project, MIDST [3,5], whose goal was to provide a
generic version of the modelgen operator, which can be defined as follows:
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given a source schema S expressed in a source model, and a target model TM,
modelgen generates a schema S′ expressed in TM that is “equivalent” (ac-
cording to a suitable definition) to S. MIDST obtains model-independence and
model-awareness by means of the adoption of a rich dictionary, which stores
models, schemas and data in a uniform and coordinated way. In this paper,
we leverage on MIDST from two points of view: first, we show definitions and
implementations of additional operators, merge and diff, and it is again the
organization of the dictionary that supports model-independence and model-
awareness; second, modelgen is used in the scripts we propose, together with
the new operators. Hence both MIDST dictionary and its implementation of
the modelgen operator are part of the new model management platform we
propose in this paper.

MIDST adopts a model-generic representation of schemas based on a combi-
nation of constructs. Its founding observation is the similarity of features which
arises across different data models. This means that all the existing models can
be represented with a rather small set of general purpose constructs [21] called
metaconstructs (or simply constructs when no ambiguity arises). Let us briefly
illustrate this idea. Consider the concept of entity in the ER model family and
that of class in the OO world: they both have a name, a collection of properties
and can be in some kind of relationship between one another. To a greater ex-
tent, it is easy to generalize this observation to any other construct of the known
models and determine a rather small set of general constructs. Therefore models
are defined as sets of constructs from a given universe, in which every construct
has a specific name (such as “entity” or “object”): for instance a simple version
of the ER model may be composed of Abstracts (the entities), Aggregations
of Abstracts (the relationships) and Lexicals referring to Abstracts (attributes
of entities); instead the relational model could have Aggregations (the tables),
Lexicals referring to Aggregations (the columns), and foreign keys specified over
finite sets of Lexicals. Thus schemas are collections of actual constructs (schema
elements) related to one another. Figure 3 lists the metaconstructs used in the
current version of MIDST [5] and the corresponding specific constructs we have
in various popular (families of) data models.

As we said in the introduction, the set of all the possible constructs in MIDST
forms the supermodel, a major concept in our framework. It represents the most
general model, such that any other model is a specialization of it (since a subset
of its constructs). Hence a schema S of a model M is necessarily a schema of
the supermodel as well.

MIDST manages the information of interest in a rich dictionary. Its details
have been described elsewhere [2] and are beyond the scope of this paper. Let
us summarize its main features. It has two layers, both implemented in the
relational model: a basic level and a metalevel.

The basic layer of the dictionary has a model-specific part (some tables of which
are shown in Figure 4 with reference to our running example), where schemas are
represented with explicit reference to the various models, and, more important,
a model-generic one, where there is a table for each construct in the supermodel:
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Metaconstruct Relational Object- ER XSD
Relational

Abstract - typed entity root
table element

Lexical column column attribute simple
element

BinaryAggregationOf- - - binary -
Abstracts relationship

AbstractAttribute - reference - -
Generalization - generalization generalization -
Aggregation table table - -
ForeignKey foreign foreign - foreign

key key key
StructOfAttributes - structured - complex

column element

Fig. 3. Simplified representation of MIDST metamodel

er Entity

OID Entity-Name Schema
e1 Project s1
e2 Manager s1
... ... ...

er AttributeOfEntity

OID Entity Att-Name Type isKey Schema
a1 e1 PCode int true s1
a2 e1 Title string false s1
a3 e2 SSN int true s1
a4 e2 EID int false s1
a5 e2 Name string false s1
... ... ... ... ... ...

er BinaryRelationship

OID Rel-Name Entity1 IsOptional1 IsFunctional1 Entity2 ... Schema
b1 R e1 false true e2 ... s1
... ... ... ... ... ... ... ...

rel Table

OID Table-Name Schema
t1 Project i1
t2 Manager i1
... ... ...

rel Column

OID Table Col-Name Type isKey Schema
c1 t1 PCode int true i1
c2 t1 Title string false i1
... ... ... ... ... i1
c7 t2 LName string false i1
... ... ... ... ... ...

Fig. 4. A portion of a model-specific representation of schemas S1 and I1 of Figure 2

so there is a table for sm Abstract (the sm prefix emphasizes the fact that we
are in the supermodel portion of the dictionary), a table for sm Aggregation

and so on (with an example in Figure 5). These tables have a column for each
property of interest for the construct (for example, a Lexical can be part of the
identifier of the corresponding Abstract, or not, and this is described by means of
a boolean property). References are used to link constructs to one another, and
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sm Abstract

OID Abs-Name Schema
e1 Project s1
e2 Manager s1
... ... ...

sm Aggregation

OID Aggr-Name Schema
t1 Project i1
t2 Manager i1
... ... ...

sm Lexical

OID Abstract Aggr Lex-Name Type isId Schema
a1 e1 - PCode int true s1
a2 e1 - Title string false s1
a3 e2 - SSN int true s1
... ... ... ... ... ... ...
c1 - t1 PCode int true i1
... ... ... ... ... ... ...
c7 - t2 LName string false i1
... ... - ... ... ... ...

sm BinaryAggregationOfAbstracts

OID Agg-Name Abstract1 IsOptional1 IsFunctional1 Abstract2 ... Schema
b1 R e1 false true e2 ... s1
... ... ... ... ... ... ... ...

Fig. 5. A portion of a model-generic representation of the schemas S1 and I1 of Figure 2

so the tables in the dictionary have fields with foreign keys connecting them to
each other. For example, the sm Lexical table has an attribute that contains
references to sm Abstract, to represent the fact that a Lexical (for example
an attribute of entity in the ER model) has to belong to a parent construct,
which could be an Abstract (an entity). In both parts, constructs are organized
in such a way they guarantee the acyclicity constraint, meaning that no cycles
of references are allowed between them. This is convenient in situations where
a complete navigation through the schemas is necessary and a topological order
is helpful.

The two parts of the dictionary play complementary roles in the translation
process, which is MIDST’s main goal: the model specific part is used to interact
with source and target schemas and databases, whereas the supermodel part is
used to perform translations, by referring only to constructs, regardless of how
they are used in the individual models. This allows for model-independence.

In fact, every translation in MIDST is composed of three phases: first, the source
schema, expressed in a specific source model, is copied into the supermodel; sec-
ond, the actual translation is carried out in the supermodel environment; finally,
the result schema, which refers to the supermodel, but is compatible with the
target model, is copied into the target model itself. The translation engine ex-
ploits a library of elementary translations, each of which is written as a Datalog
program, and combines them, on the basis of the specific source and target model
of interest.

MIDST dictionary includes a higher layer, a metalevel, which gives a char-
acterization of the construct properties and relationships among them [2,5]. It
involves few tables, each with few rows, which form the core of the dictionary. A
significant portion is shown in Figure 6. Its main table, named msm Construct

(here, the msm prefix denotes that we are in the “metasupermodel” world, as we
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msm-Construct

OID Construct-Name IsLex
mc1 Abstract false
mc2 Lexical true
mc3 BinaryAggregationOfAbstracts false
mc4 AbstractAttribute false
... ... ...

msm-Property

OID Prop-Name Constr Type
mp1 Abstract-Name mc1 string
mp2 Att-Name mc2 string
mp3 IsId mc2 bool
mp4 IsFunctional1 mc3 bool
mp5 IsFunctional2 mc3 bool
... ... ... ...

msm-Reference

OID Ref-Name Constr ConstrTo
mr1 Abstract mc2 mc1
mr2 Abstract1 mc3 mc1
mr3 Abstract2 mc3 mc1
... ... ... ...

Fig. 6. The supermodel part of the metalevel portion of the dictionary of MIDST

are describing the supermodel) stores the name and a unique identifier (OID) for
each construct, so this table actually memorizes every allowed construct; indeed,
the rows of this table correspond essentially to those in Figure 3. Each construct
is also characterized by a set of properties describing the details of interest. There
is a table, msm Property, reporting name, type and owner construct for each
property. The properties, for example, allow to define whether an entity attribute
is identifier or not and to specify the cardinality of relationships. Constructs refer
to one another with references, recorded in the table msm Reference.

As we have illustrated, the metalevel lays the basis for the definition of con-
structs which can be then used in defining models and so on the structure of the
lower layer of the dictionary: in fact, the model-generic layer (Figure 5) has one
table for each row in msm Construct (and so we have, as we said, tables named
sm Abstract, sm Aggregation, sm Lexical, and so on), with columns cor-
responding to the properties and references of the construct, as described in
msm Property and msm Reference, respectively.

The aim of the following sections is to define operators on the basis of con-
structs in such a way that model-independent solutions to model management
problems can then be described. In fact, solutions will be formulated as scripts
involving the application of such operators. We will see that the structure of
the dictionary, especially with its metalevel, plays a major role in the automatic
generation of Datalog programs for the implementation of the operators.

3 Operators

Model management, as we said in the introduction, refers to a wide range of prob-
lems, which share the need for high level solutions. Therefore many operators
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have been proposed, depending on the family of problems of interest. Here we
concentrate on schema evolution, where proposals [8,10] require match, diff

and merge and, if an explicit representation of models is needed, also mod-

elgen. In such proposals, the match operator is used to discover mappings
between the elements of the involved schemas. In fact, mappings play a major
role, as they provide the operators with essential information about the relation-
ships between the involved schemas. For example, an operator that computes the
difference between two schemas needs to know the correspondences between con-
structs in order to subtract them correctly. Likewise, an operator that combines
schemas must know those correspondences in order to avoid the generation of
duplicates. Here, exploiting our construct-based representation of data models,
we can propose definitions of the main operators (diff, merge, and modelgen)
that compare constructs on the basis of their names and structures. In fact, we
assume that if two constructs have different names or different structures, they
should be considered as different. In this way, as we clarify in the next subsection,
our approach considers match as complementary.

We already have an implementation for modelgen in our MIDST proposal
(and hence in MISM as well), and so we have to concentrate on diff and merge.
In the rest of this section we will present specifications for these operators that
refer to MIDST dictionary, preceded by the discussion of a preliminary notion,
equivalence of schema elements. Then, in Section 4 we will show how to generate
Datalog implementations for them.

3.1 Equivalence of Schema Elements

The basic idea behind the diff and merge operators is the set-theoretical one.
In fact, we can consider each schema as composed of a set of schema elements
(the actual constructs it involves), and then consider diff as a set-theoretic dif-
ference (the elements that are in the first schema and not in the second) and
merge as a union (the elements that are at least in one of the two schemas). In
general, we might be interested in comparing schemas that represent the con-
cepts of interest by means of different elements. In such a case, a preliminary step
would require the identification or specification of the correspondences between
them. This is usually done by means of an application of the match operator,
which, in general, can produce correspondences of various types (i.e. one-to-one,
one-to-many, or even many-to-many) and may require a human intervention in
order to disambiguate or to better specify. Besides, in MIDST context, let us
recall that each schema element is represented with respect to a specific model-
generic construct (i.e. an element refers to an Abstract, another one refers to
an Aggregation and so on): in this sense we say that an element is an instance
of a construct. Consequently, we distinguish between construct-preserving cor-
respondences and non construct-preserving ones. The first type maps elements,
instances of a certain construct, only to elements that are instances of the same
model-generic construct; viceversa, correspondences not satisfying this property
belong to the second type. For example in the XML schemas of Figure 1 the cor-
respondence between the simple element Address and the complex one (again
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called Address), composed of Street, Zip, and City, is not construct-preserving.
In fact the address is represented by a simple element in the first schema (i.e.
a Lexical in MIDST), while in the second one it requires a complex element
(i.e. a StructOfAttributes in MIDST) with its components (i.e. some Lexicals
in MIDST). Clearly, non construct-preserving correspondences denote different
ways to organize the data of interest and therefore the involved constructs of the
two schemas have to be considered as different. On the other hand, constructs
that have different names but the same structure while handling the same data,
have to be considered as equivalent. These are one-to-one correspondences, which
can be discovered manually or by means of a matching system (among the many
existing ones [27]).

The arguments above lead to a notion of renaming of a schema: given a
correspondence c, the renaming of a schema S with respect to c is a schema
where the names of the elements in S are modified according to c. Then, we
have a basic idea of equivalence conveyed by the following recursive statement:

two schema elements are equivalent with respect to a renaming if: (i) they are
instances of the same model-generic construct; (ii) their names are equal, after
the renaming; (iii) their features (names and properties) are equal; and (iv) they
refer to equivalent elements.

For the sake of simplicity, we can assume that the renaming is always applied
to one of the schemas, in order to guarantee that corresponding constructs with
the same type also have the same name. In some sense this would correspond to a
unique name assumption. Then, equivalence would be simpler, as name equality
would be required:

two schema elements are equivalent if their types, names and features are equal
and they refer to equivalent elements.

It is important to observe that the definition is recursive, as equivalence of
pairs of elements requires the equivalence of the elements they refer to. This is
well defined, because the structure of references in our supermodel is acyclic,
and therefore recursion is bounded. Let us consider few cases from our running
example, namely schemas I1 and I2 in Figure 2. We have a column Title for
a table Project in both schemas, and the two are equivalent, as they have the
same name, the same properties (they are both non-key), and refer to equivalent
elements (the tables named Project). Instead, the column Title of Project in I1
is not equivalent to Title of Manager in I2, because Project and Manager are
not equivalent. Also, the two columns named SSN are not equivalent, because
the one in I1 is key and that in I2 is not.

3.2 Definitions of the Operators

We are now ready to give our definitions and show some examples. According to
what we said in the previous section, we assume that suitable renamings have
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been applied in such a way that a unique name assumption holds. We start with
a preliminary notion, to be revised shortly.

Given two schemas S and S′, the difference diff(S, S′) is a schema S′′ that
contains all the schema elements of S that do not appear in S′.

This first intuitive idea must be refined, otherwise some inconsistencies could
arise. In fact, it may be the case that a schema element appears in the result of a
difference while an element it refers to does not. This causes incoherent schemas
with “orphan” elements. With respect to the schemas in our running example,
this happens for the column MgrID in the difference diff(I2, I1), which belongs
to the result, while the table Project does not. Instead we want to have coherent
schemas, where references are not dangling.

In order to solve this difficulty, we modify our notion of a schema, by introduc-
ing stub elements (similar to the support objects of [8]). Specifically, we extend
the notion of schema element, by allowing two kinds: proper elements (or simply
elements), those we have seen so far, and stub elements, which are essentially
fictitious elements, introduced to guarantee that required references exist. We
say that a schema is proper if all its elements are proper.

According to this technique, the result of diff(I2, I1) contains the stub version
of Project in order to avoid the missing reference of MgrID.

The definition of the difference should therefore be modified in order to take
into account stub elements both in the source schemas and in the result one.

Given S and S′, diff(S, S′) is a schema S′′ that contains: (i) all the schema
elements of S that do not appear in S′; (ii) stub versions for elements of S that
appear also in S′ (and so should not be in the difference) but are referred to by
other elements in diff(S, S′).

The notion is recursive, but well defined because of the acyclicity of our
references.

In the literature [8], the diff operator is often used in model management
scripts to detect which schema elements have been added to or removed from
a schema. Our definition addresses this target. Given an “old” schema S and
a “new” one S′, the “added” elements (also called the positive difference) can
be obtained as diff(S′, S) whereas the “removed” ones (the negative difference)
are given by diff(S, S′).

With respect to the running example in Figure 2, the negative difference,
diff(I1, I2), contains the columns MgrSSN of Project and SSN (key) and EID
(non-key) of Manager. Column MgrSSN belongs to the difference since it belongs
to I1 and there is no attribute with the same name in I2. Instead, EID and SSN
belong to diff(I1, I2) because the attributes with the same respective names in
I2 have properties that differ from those in I1: EID is key in I1 and not key in
I2, whereas the converse holds for SSN. The negative difference does not contain
the two tables as proper elements, because they appear in both schemas, but
it needs them as stub elements because the various columns have to refer to
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them. The negative difference also includes the foreign key in I1 since it does
not appear in I2 (the foreign key in I2 involves different columns).

Similarly, the positive difference includes the columns MgrID of Project and
SSN (non-key), EID (key) and Title of Manager, both tables as stub elements,
and the foreign key in I2.

An important observation is that the definition we have given here is model-
independent, because it refers to constructs as they are defined in our super-
model. At the same time, it is model-aware, because it is always possible to tell
whether a schema belongs to a model, on the basis of the types of the involved
schema elements. As a consequence, it is possible to introduce a notion of clo-
sure: we say that a model management operator O is closed with respect to a
model M if, whenever O is applied to schemas in M , then the result is a schema
in M as well. Given the various definitions, it follows that the difference is a
closed operator, because it produces only constructs that appear in its input
arguments.

Let us now turn our attention to the second operator of interest, merge. We
start again with a preliminary definition.

Given S and S′, their merge merge(S, S′) is a schema S′′ that contains the
schema elements that appear in at least one of S or S′, modulo equivalence.2

It is clear that merge is essentially a set-theoretic union between two schemas,
with the avoidance of duplicates managed by means of the notion of equivalence
of schema elements.

Since our schemas might involve stub elements, as we saw above, let us con-
sider their impact on this operator. Clearly, the operator cannot introduce new
stub elements, as it only copies elements. However, stubs can appear in the input
schemas, and the delicate case is when equivalent elements appear in schemas,
proper in one and stub in the other.3

Given S and S′, their merge merge(S, S′) is a schema S′′ that contains the
schema elements that appear in at least one of S or S′, modulo equivalence. An
element in S′′ is proper if it appears as proper in at least one of S and S′ and
stub otherwise.

As an example, consider the following schemas, each composed of a single
table. S: Project(PCode, Title) and S′: Project(PCode, MgrSSN). Their merge
will be another schema S′′ containing the table Project(PCode, Title, MgrSSN).
Notice that the table Project and the column PCode appear both in S and in S′

2 Technically, both here and in the difference, we should note that schema elements
have their identity. Therefore, in all cases we have new elements in the results; so,
here, we copy in the result schema the elements of the two input schemas, and “mod-
ulo equivalence” means that we collapse the pairs of elements of the two schemas
that are equivalent (only pairs, with one element from each schema, as there are no
equivalent elements within a single schema).

3 Equivalence of elements neglects the difference between stub and proper elements,
as it is not relevant in this context.
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and, since they are recognized as equivalent, there are no duplicates in S′′. The
column Title appears only in S while MgrSSN only in S′; therefore one copy
of each is present in the result schema S′′. We will see a complete example of
merge in Section 5, while discussing the details of our running example.

For this operator, arguments for model independence and model closure can
be made in the same way as we did for diff: specifically, only schema elements
deriving from schemas S and S′ will appear in the result and, consequently, if
they belong to a given model, then S′′ will belong to that model as well.

For the sake of homogeneity in notation, let us define also the operator that
performs translations between models:

Given a schema S of a source model M and a target model M ′, the translation
modelgen(S, M ′) is a schema S′ of M ′ that corresponds to S.

We have discussed at length modelgen elsewhere [3,5]. Here we just mention
that this notation refers to a generic version of it that works for all source and
target models (the source model is not needed in the notation as it can be
inferred from the source schema), thus avoiding different operators for different
pairs of models. Indeed, our MIDST implementation [4,5] of modelgen includes
a feature that can select the appropriate translation for any given pair of source
and target models.

4 Model-Independent Operators in MISM

In this section we show how the definitions of the operators can be made con-
crete, in a model-independent way, in our tool, leveraging on the structure of its
dictionary. The implementation has been carried out in Datalog, and here we
concentrate on its main principles, namely the high-level declarative specifica-
tion, and the possibility of automatic generation of the rules, on the basis of the
metalevel description of models.

The Datalog specification of each operator is composed of two parts:4

1. equivalence test;
2. procedure application.

The first part tests the equivalence to provide the second part with necessary
preliminary information on the elements of the input schemas.

We first illustrate how the equivalence test can be expressed in Datalog, and
then proceed with the discussion for the specific aspects of diff and merge.
At the end of the section, we discuss how all these Datalog programs can be
automatically generated out of the dictionary.

4.1 Equivalence Test

The first phase involves the implementation of a test for equivalence of con-
structs, according to the definition we gave in Section 3. Given the definition,
4 For the sake of readability we describe them in a procedural way, even if the speci-

fication is clearly declarative.



MISM: A Platform for Model-Independent Solutions 149

all we need is a rule for each model-generic construct that compares the schema
elements that are instances of such a construct. It refers to two schemas, de-
noted by the “schema variables” SOURCE 1 and SOURCE 2, respectively. It
generates an intensional predicate (a view, in database terms) that indicates the
pairs of OIDs of equivalent constructs. As an example, let us see the Datalog
rule that compares Aggregations.

EQUIV_Aggregation [DEST] (OID1: oid1, OID2: oid2)

<- SM_Aggregation [SOURCE_1] (OID: oid1, Name: name),

SM_Aggregation [SOURCE_2] (OID: oid2, Name: name);

Aggregation has no references (and also no properties) and so the comparison
is based only on name equality (verified with the variable name). If the names
of the two Aggregations are equal, then they are equivalent, and so their OIDs
are included in the view for equivalent Aggregations. In the running example,
tables Project and Manager of the two schemas are detected as equivalent since
they have the same names, respectively.

The situation becomes slightly more complex when constructs involve refer-
ences. This is the case for Lexicals of Aggregation (in the running example, the
various columns of Project and Manager).

EQUIV_Lexical [DEST] (OID1: oid1, OID2: oid2)

<- SM_Lexical [SOURCE_1] (OID: oid1, Name: name, isIdentifier: isId,

isNullable: isNull, type: t, aggregationOID: oid3),

SM_Lexical [SOURCE_2] (OID: oid2, Name: name, isIdentifier: isId,

isNullable: isNull, type: t, aggregationOID: oid4),

EQUIV_Aggregation (OID1: oid3, OID2: oid4);

The first and the second body predicates compare names and homologous
properties of a pair of Lexicals, one belonging to I1 (SOURCE 1) and the other
to I2 (SOURCE 2). Comparisons are made by means of repeated variables (such
as name, isId, isNull, t). Moreover, as Lexicals involve references to Aggregations
(as no column exists without a table, in the example), we need to compare the
elements they refer to. The last predicate in the body performs this task by
verifying that the Aggregations (tables) referred to by the Lexicals (columns) of
I1 and I2 are equivalent (i.e. the corresponding pair of OIDs is in the equivalence
view for Aggregation).

If the constructs under examination belonged to a deeper level, there would be
a predicate to test the equivalence of ancestors for each step of the hierarchical
chain. Each predicate would query the appropriate equivalence view to complete
the test. Termination is guaranteed by the acyclicity of the supermodel.

Let us observe that the Datalog program generated in this way is model-aware
since it takes into account the type of constructs when performing comparisons.
In fact, as it is clear in the examples, Datalog rules are defined with specific
respect to the type of the constructs to be compared: a Lexical is compared only
with another Lexical and so for an Abstract or other constructs.

The program is model generic as well, since the set of rules contains a rule for
each construct in the supermodel. Then a given pair of schemas will really make
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use of a subset of the rules, the ones referring to the constructs they actually
involve according to their model.

4.2 The DIFF Operator

The diff operator is implemented by a Datalog program with the following
steps:

1. equivalence test (comparison between the input schemas);
2. selective copy.

The first step is the equivalence test we have described in Section 4.1.
As for the second step, there is a Datalog rule for each construct of the super-

model, hence taking into account each kind of schema element: the rule verifies
whether the OID of an element of the first schema belongs to a tuple in the
equivalence view. If this happens, this means that there is an equivalent con-
struct in the second schema, implying that the difference must not contain it,
otherwise the copy takes place. For example, the rule for Aggregations results
as follows:

SM_Aggregation [DEST] (OID: #AggregationOID_0(oid), Name: name)

<- SM_Aggregation [SOURCE_1] (OID: oid, Name: name),

!EQUIV_Aggregation (OID1: oid);

In the rule, the # symbol denotes a Skolem functor, which is used to generate
new identifiers (in the same way as we did in MIDST [5]). Indeed, the functor
is interpreted as an injective function, in such a way that the rule produces a
new construct for each different source construct on which it is applicable. The
various functions also have disjoint ranges. The rule copies into the result schema
all the Aggregations of SOURCE 1 that are not equivalent to any Aggregation of
SOURCE 2. The condition of non-equivalence is tested by the negated predicate
(negation is denoted by “!”) over the equivalence view; in fact, if the OID of
an Aggregation of the first source schema is present in the view, then it has
a corresponding Aggregation in the second source schema, and so it must not
belong to the difference.

With reference to the running example, let us compute diff(I1, I2). The rule
above represents the computation of the difference with respect to tables. Since
in Figure 2 both Project and Manager in I1 have an equivalent table in I2, then
the difference does not contain any Aggregation.

Consider now the rule for Lexicals (columns):

SM_Lexical [DEST] (OID: #LexicalOID_0(oid), Name: name,

isIdentifier: isId, isNullable: isNull, type: t,

aggregationOID: #AggregationOID_0(oid1))

<- SM_Lexical [SOURCE_1] (OID: oid, Name: name,

isIdentifier: isId, isNullable: isNull, type: t,

aggregationOID: oid1),

!EQUIV_Lexical (OID1: oid);
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It copies into the result schema all the Lexicals of SOURCE 1 that are not
equivalent to any Lexical of SOURCE 2. In the example of Figure 2, the Lexical
MgrSSN has been removed from Project. Also, SSN of Manager is key in I1 but
not in I2 and the converse for EID. Consequently all of the mentioned Lexicals
will belong to the difference diff (I1, I2).

For the sake of simplicity, we have omitted from the above rules the features
that handle stub elements. However the actual implementation of the difference
requires them in order to address the consistency issues we have discussed in the
previous section. The strategy we adopt is the following: when a non-first level
element (that is, one with references) is copied, the procedure copies its referred
elements too if they are not copied for another reason. Then, unless they are
proper parts of the result, the procedure marks the referred elements as stub.
The following rule exemplifies this with respect to Aggregations.

SM_Aggregation [DEST] (OID: #AggregationOID_0(oid), Name: name,

isStub: true)

<- SM_Aggregation [SOURCE_1] (OID: oid, Name: name),

EQUIV_Aggregation (OID1: oid, isStub: false);

If a Lexical (referring to an Aggregation) belongs to the difference, then the
referred Aggregation must be copied into the difference as stub (if it has not
been copied directly). The rule above copies from the first schema every Aggre-
gation that would not belong to the difference since it has an equivalent (non
stub) element in the second schema (which is verified by the predicate over the
view, which also contains information on whether the equivalence involves stub
elements) and marks it as stub. As for the input, we must subtract schemas with
stub elements properly. Thus the selective copy in step 2 must be adapted: it
should copy (into the result schema) a non-stub element in the first schema only
if the second schema does not contain a non-stub equivalent element. This last
condition is tested by a predicate over an equivalence view like the one in the
above Datalog rule.

The techniques described refer to the rules for the specification of the differ-
ence of schemas. Indeed, as our dictionary includes also a data level (as illustrated
in a previous paper of ours [2]), which lists all data items that instantiate a given
construct, it is interesting to see how the operator could be specified in such a
way that the result is a schema, as we saw above, together with the associated
data. While working at modelgen, we tackled the same issue, and we devel-
oped a technique that generated data level Datalog programs out of schema level
ones [3]. In such a context, correctness was a delicate issue, as each translation
has its own specific features, and the tool administrator has the responsibility
of verifying the correctness. Here we are interested in a general program, that
implements difference, and therefore we cannot rely upon the approval of a hu-
man. However, things are indeed easier, as the difference needs to include all
instances of the constructs that appear in the result schema: for example, if the
result of diff includes table Manager, then we need all its instances in the result
database, but this is just a copy, as Manager is a table in the source schema
as well. So, data level rules for diff could be produced as rules that copy all
instances of constructs, with the condition that the construct appears in the
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result schema, which is easy to express, as it is indeed the condition in the body
of the schema rule. Therefore, while we omit the details for the sake of space, we
can safely claim that we can generate correct rules that operate on data from
those that operate on schemas.

4.3 The MERGE Operator

The approach we follow for merge is based on the same ideas as the one for
diff. We code it in terms of Datalog rules defined over the constructs of MIDST
supermodel. Rules copy elements of one type to elements of the same type and
we guarantee the needed model closure.

The merge operator, as defined in Section 3.2, is represented by a Datalog
program with the following tasks:

1. equivalence test (comparison between the input schemas);
2. selective copy from the first argument;
3. selective copy from the second argument.

The first step involves the computation of an equivalence view containing the
correspondences between the elements of the input schemas.

Assume we are computing S′′ = merge(S, S′). In step 2 the procedure copies
into the destination schema S′′ all the elements in S, except those that are stub
in S and non-stub in S′. In step 3 the procedure copies all the elements of S′

that are not present in S and those that are non-stub in S′ and stub in S.
The combination of these two steps implies that in S′′ there will not be du-

plicates of any element. If an element is present both in S and S′, in S as a stub
and in S′ as a non-stub, it will be present in S′′ as a non-stub. A stub element
will appear in the result as stub as well, if an element is present only in S or S′

as a stub or both in S and S′ as stub.
In such an implementation of the merge, a thorough handling of references is

important and we achieve this by means of Skolem functions, which are injective
as we said in the previous section. In fact, it may happen for an element of
the result schema to have a stub parent in the first source schema and a non-
stub parent coming from the second source schema: let E be an element of S
which is copied into the result schema. E has a stub parent P in S and there
is another element P ′ which is the equivalent non-stub element of P in S′. P
will not be copied from S, but there will be its equivalent P ′ coming from S′.
As a consequence, the reference of E to P must use an OID that is derived from
the OID of P ′ in S′ and not from the OID of P in S. As we have seen for the
difference, this logic can be implemented in Datalog on the basis of a predicate
over the equivalence views.

By following arguments similar to those for diff, we can claim that, from the
schema level Datalog programs for merge, we can generate programs that im-
plement the operator on data, thus performing the merge of the actual databases
(in the internal representation in our dictionary). The reason is that the operator
is again a sort of selective copy.
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4.4 Automatic Generation of Datalog Programs for the Operators

The implementations of both the phases of the operators are based on compar-
isons and copies of schema elements considered in terms of constructs of the
supermodel. We have seen in Section 2 that MIDST handles the descriptions of
these constructs in a dictionary, defining their names, features and references
to one another. An automatic generation of the Datalog programs we have pre-
sented is possible and indeed represents a key point of the approach we propose
here. Concretely, we propose a new module of MISM, OpGen, that automati-
cally generates the rules according to the supermodel constructs. OpGen reads
the information in the dictionary about constructs, their references, and their
properties, and uses it to produce appropriate Datalog rules in the right order,
according to the structure of constructs. As we said in the respective sections,
for each operator we can generate data level rules that perform the selective copy
of the instances of the involved constructs.

Automatically generated operators are not only model-independent but also
supermodel-independent. In fact, in case of extensions to and modifications of
the supermodel, all we need is to use OpGen to generate an updated version of
the operators.

It is worth noting that our model-generic operators are scalable, since their
internal complexity does not depend on the size of the input schemas nor on the
number of modifications. In fact, they are generated by OpGen once and work
for every possible set of input schemas defined in terms of constructs of MIDST
supermodel. Moreover, although more efficient implementations of them could
be designed, their application is entirely devoted to the database system which
addresses, as a consequence, all the optimization issues.

5 A Model-Independent Solution to the Round-Trip
Engineering Problem

In the previous sections we described the most common model management
operators. We have shown that since they are defined over the constructs of
MIDST supermodel, they are model-independent; moreover we have shown that
it is possible to exploit their model awareness in order to satisfy the model closure
property. This implies that solutions to model management problems, given in
terms of these operators, are model-independent.

Here we show how our approach can be used to provide a model-independent
solution to the round-trip engineering problem, illustrated in the introduction
as one of the most representative ones in the model management area.

5.1 The General Procedure

Consider Figure 7: S1 is the specification schema and I1 the implementation
schema obtained from S1 with the application of the transformation (a transla-
tion and, possibly, some customizations) map1. Let I2 be a modified version of
I1. The goal is to determine a specification S2 from which I2 could be derived.
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Fig. 7. A procedure for the round-trip engineering problem

Operationally, we assume that I1 has been generated from the specification
schema by the modelgen operator, possibly followed by a customization step;
viceversa, we make no specific assumption on how I2 has been obtained: it could
be some transformation (specified by means of a Datalog program or in some
other way), or a manual modification or evolution of I1, or it could even come
from an external input.

Then the procedure is as follows.

1. G′−
2 = diff(I1, I2)

Here we use the diff operator to detect which elements of the implementa-
tion schema I1 do not appear in the revised version I2: these are the elements
belonging to I1 but not to I2 (i.e. the removed elements).

2. G′+
2 = diff(I2, I1)

This difference (with parameters swapped with respect to the previous one)
allows to compute which elements have been added in the revision which led
from I1 to I2. In fact, these elements are all the ones present in I2 but not
in I1.

3. S′−
3 is obtained by applying to G′−

2 the reverse of the mapping map1. The de-
tails then depend on the way map1 is defined. In the common case where it is
an automatic translation from the specification model to the implementation
one (an application of modelgen), possibly followed by a customization, we
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have that reverse can be done with modelgen as well, with a translation
from the implementation model to the specification one. This ignores the
possible customizations, under the assumption that changes in I1 (yielding
I2) do not involve customized elements. In fact, if this is the case, G′−

2 will
not include the customized elements, since they are removed by the differ-
ence step. It should be noted that in general the existence of the inverse of
a given translation is not guaranteed. We will discuss this issue later in this
section.

4. Similarly for the other difference: S′+
3 is obtained by applying to G′+

2 the
reverse of the mapping map1.

5. H = merge(S1, S
′+
3 )

H is the union of the original specification S1 with the reversed difference
S′+

3 containing the added elements. Therefore, H contains all the original
elements plus the added ones.

6. S2 = diff(H, S′−
3 )

The last operation of the procedure subtracts S′−
3 from the temporary result

H , because the elements in S′−
3 are those that correspond to the elements

removed in the implementation.

It is clear that this procedure does not require information about the models
of the source schemas, since the operators act at MISM metalevel, dealing with
constructs directly, however the model awareness of MISM guarantees the model
closure. In fact, in the same way as we do for translations in our previous tool
MIDST (see Section 2), we apply our operators in the supermodel framework,
and the procedure is preceded and followed by copy steps, the first from the
specific source model to the supermodel and the second from the supermodel to
the specific model, which essentially rename constructs. An example should get
the meaning across: suppose the specification data model is ER, while the im-
plementation belongs to the relational model. Before applying the diff between
I1 and I2, we rename all the elements in terms of constructs of the supermodel.
After this step, there is no need to take into account the model-specific con-
structs anymore and the procedure can continue with respect to model-generic
constructs only. Then, since the operators are defined in such a way that the
difference between two schemas of a model belongs to that model, then we are
guaranteed that the two differences in the procedure belong to the relational
model as well. Finally, we apply merge and diff on ER schemas. These opera-
tors work independently of the model. However, we are sure that the results will
also belong to the ER model because, as we have illustrated, the operators do
not add any new element.

Moreover, it is important to observe that, if S1, I1 and I2 are proper (and
coherent,5 as we always assume) schemas, then the result S2 of the script is a
proper schema as well. Consider the last two steps of the procedure ((i) H =
merge(S1, S

′+
3 ), (ii) S2 = diff(H, S′−

3 )): S1 is assumed to be proper (the script
starts from a specification without stubs). S′+

3 contains added elements which
5 As we said in Section 3.2, a schema is coherent if all its constructs have no dangling

references to other constructs.
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may refer to stub parents. However, as I1 and I2 are coherent, we have that
non-stub equivalents for these stub parents are already present in S1. Therefore
H is proper. S′−

3 contains the removed constructs. Then, as I2 is coherent, in S′−
3

we cannot come across the removal of parent elements when their descendants
are preserved. Therefore S2 is proper.

In the above procedure, we have referred to applications of modelgen from
the specification model to the implementation one and viceversa, as if they were
one the inverse of the other. This need not be always the case, because mod-
els have different expressive power. However, from the practical point of view,
we have reasonable solutions, as follows. A preliminary observation is that our
translations can be seen as schema mappings where the correspondences are
represented by Skolem functions. In general, schema mappings are not always
invertible according to the strict definition, but in the literature there are pro-
posals for relaxed constraints guaranteeing the existence of a kind of inverse
mapping. According to Fagin et al. [15] a Local As View (LAV) schema mapping,
having a set of Tuple Generating Dependencies (TGDs) where their left-hand
sides are singleton, always admits a quasi-inverse corresponding mapping. Let
us consider a mapping m and a source schema S; applying m to S we obtain
another schema T . A quasi-inverse mapping does not permit to reobtain S (with
its original data) from T , however, it allows to obtain a schema S∗ such that
applying m to it we have T again (with all its data). In our approach the only
translation rules dealing with the actual data are the ones involving Lexicals. All
these rules are LAV TGDs and therefore the whole translation is a LAV schema
mapping and so each translation admits at least a quasi-inverse one that is part
of the MISM repository. In general, a translation can lead to loss of information
(i.e. when we translate a model into a less expressive one); in such cases it is not
possible to define an inverse translation, but only a quasi-inverse one. It is worth
noting that this loss of information has already been accepted by the user of
the system when performing the first translation (from the specification to the
implementation). Moreover, this is the only loss of information of the whole pro-
cess. In fact after the first translation, it is possible to apply the quasi-inverse
translation and the direct one repeatedly always obtaining the same schemas
(with the same data). The inverse (quasi-inverse) translation does not cause loss
of information even if it turns a model into a more expressive one. In fact, the
input schema of the inverse translation has been obtained from a schema of a less
expressive model; therefore it contains only structures that can be represented
in such a model.

5.2 Application of the Round-Trip Solving Procedure

Now we present the details of the application of the round-trip solving procedure
described in Subsection 5.1 to the case already shown in Figure 2. The specifica-
tion domain is the ER model, while the implementations are relational schemas.
It is a common scenario in which high level specifications are conceptually de-
signed with an ER schema. The implementation, which in this situation belongs
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to the relational model, is then derived from the ER through the application of
a translation rule.

The various steps are shown in Figure 8. Schema S1 is composed of two
entities, Project and Manager, and has a relationship R between them. PCode
and Title are Project attributes (PCode is key), while SSN, Name and EID are
Manager attributes (SSN is key).

Map1 is implemented in two parts: a first part of the transformation is rep-
resented by ER-to-relational translation rule. A second part of it consists of the
customization step which splits Name into FName and LName.

The transformation from the old to the new implementation modifies the
table Project by changing the name of its column MgrSSN (to MgrID); it also
modifies the Manager by adding the column Title and changing its key (from
SSN to EID). The foreign key that in I1 connects the column SSN with the
table Manager, does not exist anymore, it is replaced by a new foreign key from
the column MgrID of Project to the table Manager.

The first step of the solving procedure is the double application of the diff

rules to I1 and I2 which yields G′−
2 (negative difference) and G′+

2 (positive dif-
ference), as we have already seen with examples for the operator in Section 3.2.

Then each semi-difference is reversed with the application of the modelgen

operator, with the ER model as a target. In the case under examination, the
reverse translation is simple, while in general it might be much more complex.
Notice that in the application of the reverse rule, the stubness property of el-
ements is preserved, then for example the entity Project in S′+

3 is stub as well
as in G′+

2 . Notice that the foreign key of G′−
2 is reversed into the relationship

R (that is the same as in S1,6 while the foreign key of G′+
2 is reversed into the

relationship R1 (that is different from the one in S1).
Now we have three different versions of the specification: the original one, S1,

together with S′−
3 , including all the elements that have to be removed, and S′+

3 ,
containing all the added elements.

The set-oriented merge of schemas S1 and S′+
3 leads to an updated specifi-

cation, H , containing all the initial elements plus the added ones. Then in H
we have Project with PCode (coming from S1) and Title (from S1) (the table
Project is not stub anymore since it comes from S1); moreover, there is the
table Manager (non-stub for the same reason as Project) with the attributes
Name (coming from S1), SSN (from S+

3 ), SSN (key) (from S1), EID (from S1),
EID (key) (from S+

3 ) and Title (from S+
3 ). H also contains two relationships, R

(coming from S1) and R1 (from S′+
3 ).

Finally, we need to subtract from H all the non-stub elements in S′−
3 . There-

fore, SSN (key) and EID are not present in the obtained result S2. The rela-
tionship R of H is also present in S′−

3 , so the only relationship between Project
and Manager in S2 will be R1.

6 We can get back the “original” name because each construct has a name property;
hence also the foreign key has a name property (not shown in figure) in our construct-
based representation; in detail, we instantiated the name of the foreign key during
the translation from S1 to I1 and we did the same during this step.



158 P. Atzeni et al.

F
ig

.
8
.
A

n
ex

am
pl

e
of

ap
pl

ic
at

io
n

of
th

e
ro

un
d-

tr
ip

so
lv

in
g

pr
oc

ed
ur

e



MISM: A Platform for Model-Independent Solutions 159

6 Related Work

This paper illustrates a general approach to model management and relies on our
previous work on model-generic schema and data translation [1,3,4,5] describing
our conception and implementation of the modelgen operator. There are many
proposals addressing model management problems which have been put forward
since the original formulation of the problem.

In [7] Bernstein et al. recognize the possibility of a generic metadata approach
to model management: their theoretical formalizations [8] and later studies
converged into Rondo, a programming platform for model management [23].
However their approach is not supported by a description of models and so
they pursue model independence without a concrete characterization of models
and they cannot associate schemas with models. Conversely, MIDST (and now
MISM) uses a dictionary of models and schemas to actually represent models
and allows transparent transformations on them.

A parallel but orthogonal approach to model management problems, is that
of Clio [16,17,19,24,28] whose aim is the development of a user aiding envi-
ronment that allows the specification of a mapping between two instances and,
consequently, generates the rules to implement the high level specified correspon-
dences. Clio mainly offers a solution to data exchange problems by generating
directly executable, though approximate, mappings between schemas. Similarly
to Rondo, it lacks a model-independent representation of schemas and a repre-
sentation of models.

A recent approach to schema evolution is PRISM [14]. Citing the authors,
PRISM provides an intuitive, operational interface, used by the database ad-
ministrator to evaluate the effect of possible evolution steps with respect to
redundancy, information preservation, and impact on queries. In detail, the ad-
ministrator can use a Schema Modification Operators (SMO) [9] language in
order to specify schema changes and check whether such a modification could
cause information loss, introduce redundancy, or grant invertibility. Moreover,
the system allows for an automatic migration of the data, grants compatibility
with old queries (i.e. against an old schema), and maintains the schema history.
We propose something wider in which this approach can fit well: with reference
to our running example, for instance, we could use similar techniques in order to
constrain the evolutionary step between implementation schemas, thus granting
the aforementioned desirable properties.

Our approach, together with Bernstein’s, is more general and proposes a global
platform for model management where the generation of executable mappings,
like Clio’s or PRISM’s, is a complementary feature.

7 Conclusions

In this paper, we have discussed a paradigm and a concrete platform allowing
model-independent solutions to a wide range of model management problems.
We have provided effective definitions and implementations of model manage-
ment operators which can be directly executed by the MISM platform. The
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operators defined in this way have been used to assemble a solution to major
model management problems.

A major target of the model management research is the development of an
advanced software system managing all the involved problems (model manage-
ment system). Such a system aims at providing applications with an abstraction
layer towards data programmability issues, that is, the whole spectrum of ap-
plication problems concerning data manipulation. The approach presented in
this paper lies in this direction. MIDST represents a framework for model man-
agement problems; MISM is an enhanced version, where operators and solving
procedures are specifically designed to maximize the abstraction level together
with an effective and sound representation of schemas and models. In parallel, we
are working on the development of runtime strategies and algorithms in order to
make our solutions in step with large operational databases as well as compliant
with the most expressive data models.
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