
Formalizing FreeRTOS: First Steps

David Déharbe, Stephenson Galvão, and Anamaria Martins Moreira

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Natal, RN, Brazil

Abstract. This paper presents the current state of the formal develop-
ment of FreeRTOS, a real-time operating system. The goal of this effort
is to address a scientific challenge and is realized within the scope of the
Grand Challenge on Verified Software. The development is realized with
the B method. A model of the main functionalities of the FreeRTOS is
now available and can be a starting point to establish an agreed formal
specification of FreeRTOS that can be used by the research community.

1 Introduction

Computer Science is a fairly young discipline, but has a dramatic impact on
our society and lifestyle. The pervasive nature of computing has given rise to a
very large number of sub-areas and has fragmented the efforts of the research
community. It seems now a good time for the community to pause and reflect
to define scientific challenges that provide the opportunity for these different
sub-areas to share and combine knowledge, efforts and results to achieve ground-
breaking results that attend to existing needs of our societies.

One such initiative has been undertaken by the Brazilian Computer Society [1]
and has identified five grand challenges. One such challenge is concerned with the
technological development of quality: dependable, scalable and ubiquitous systems.
Formal methods have shown to be a successful approach to build dependable
systems. They are currently employed in applications requiring a high level of
safety and integrity.

The work presented in this paper represents a small step in the direction of
this challenge, but it more specifically addresses another one: the International
Grand Challenge on Verified Software [2]. One of the activities associated to this
challenge consists in setting up case studies of increasing complexity to measure
and compare existing approaches to build verified software, to identify their
weaknesses and how they can be improved. It is in that context that real-time
operating system FreeRTOS has been proposed as a case study [3].

FreeRTOS is mainly written in C, with some parts in assembly language. It
is available as a library of types and functions to build real-time, multi-tasking,
embedded software. FreeRTOS is an interesting case study for many reasons.
First, it has a large community of users and its verification would have a strong
impact. Second, although FreeRTOS has a relatively large number of functions,
its source code has medium size. Third, it is easily available, as it is open source

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 101–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



102 D. Déharbe, S. Galvão, and A.M. Moreira

and it is well documented. Finally, and most importantly, modeling and verifying
the kernel of an operating system is scientifically challenging [4]: for instance,
the code includes many complex pointer-based operations.

The verification of a software aims at showing that it is free from errors (or to
find some errors). In the context of this paper, we are interested in design errors,
resulting in a discrepancy between the system behavior and its requirements. In
the case of FreeRTOS, the requirements are distributed throughout the docu-
mentation, are expressed in natural language and are therefore not adequate as
a source for a formal verification effort. The first step towards verifying FreeR-
TOS is thus to build a functional specification of its intended behavior. The goal
of this paper is to present the current state of the model of FreeRTOS, which
covers a significant, and essential, subset of the available functionalities. This
model is available for researchers interested in contributing to the challenge of
the verification of FreeRTOS.

Several formalisms are candidates to specify the functional requirements of
software. In this work, we have chosen the B method [5,6]: it provides not only
a notation, but also a framework for the verification of a specification and its
refinement towards an implementation. It is similar to other well-known formal
specification notations, such as VDM [7] and Z [8]. One important criterion to
choose the B method is that it has a solid tool support for all the development
stages.

Overview of the paper. Sections 2 and 3 lay the ground for this paper by
presenting respectively the main features of FreeRTOS and the B method.
Section 4 then enumerates and describes the functionalities of FreeRTOS that
have been selected for modeling. The resulting functional specification is pre-
sented in Section 5. Section 6 draws conclusions and presents future work.

2 FreeRTOS

FreeRTOS is a simple, easy-to-use real-time operating system. Its source code is
written in C and assembly. It is open source and has little more than 2,200 lines
of code. FreeRTOS has been officially ported to most architectures for embedded
systems, such as 8051, PIC, ARM and Zilog’s Z80.

One key assumption of FreeRTOS is that the target system has a single
processing unit. FreeRTOS provides the following services: task management,
inter-task communication and synchronization, memory management, real-time
events, and control of input and output devices. These services are provided as
a library of types and functions that needs to be linked to the compiled code
of the application being developed. Typically, this code is divided in two parts:
the first one contains the code of the tasks that are going to be executed during
the operation of the system, while the second contains the code responsible for
the system initialization; namely, registering the tasks and starting the sched-
uler. Consequently, the run of an application built with FreeRTOS starts with a
boot phase, to set up the different tasks and communication channels, followed
by an application execution phase, starting when the scheduler is activated: from
that moment on, tasks are scheduled and executed.



Formalizing FreeRTOS: First Steps 103

2.1 Task Management

Tasks form the basic computation unit in multi-tasking applications. A task has
a state, that may be one of running, ready, suspended and blocked, a priority,
an integer value ranging from zero up to a maximum value defined at compile
time, and the execution context storing the call stack and the register values
when the task is not executing.

Task scheduling is based on priorities. The scheduler always chooses one task
with the highest priority among those ready tasks. A direct consequence of that
policy is that the priority of the running task is always greater than or equal to
that of all ready tasks.

Scheduling also equally shares the processing time between tasks with the
same priority. Thus, if there are two or more tasks having the highest priority
among the ready tasks, they shall equally share the processing time.

Finally, FreeRTOS automatically creates a system task, called the idle task,
that has the lowest possible priority. This task guarantees that the processor is
always executing some task and also executes some administration duties of the
operating system, such as memory management.

2.2 Communication and Synchronization

FreeRTOS provides message-passing communication facilities. Tasks may post
messages to queues and read messages from queues. Queues have a fixed, limited
capacity, defined when the task is created. Message-passing is blocking: whenever
a task wants to read from an empty queue or to write to a full queue, it is
blocked. There are however facilities to associate delays to queue access, or to
make non-blocking accesses.

FreeRTOS also provides semaphores as a task synchronization primitive.
Semaphores are actually implemented as queues with capacity one, with the
convention that the semaphore is taken when the queue is empty and it is free
when the queue is full. FreeRTOS also provides counting semaphores, to control
the access to a resource by a maximum number of tasks. To avoid the priority
inversion problem, FreeRTOS also provides mutexes with priority inheritance.

3 The B Method

The B method is a model-driven design methodology to build software com-
ponents reliably, in the sense that the programs produced are guaranteed to
implement the corresponding functional specification. The B method consists in
the following steps: first, a functional specification of the requirements, or part
thereof, is developed. In B, this initial specification is called a machine. This
initial specification is then subject to different kinds of analysis, including type
checking and theorem proving, to establish that it is implementable and that all
executions are safe, in the sense that they may not reach an invalid state.

Once the specification has been built, it is used as the starting point of a series
of refinements, each refinement resulting in an artifact providing a new model of



104 D. Déharbe, S. Galvão, and A.M. Moreira

the system. In B, refinements are usually constructed by the modeler, although
automatic refinement support is now also possible [9]. Each such refinement may
capture new functional requirements or introduce a more concrete description
of the system, by introducing an algorithmic development or an implementable
data representation. The former is called an horizontal refinement and the latter
a vertical refinement [10]. Eventually, a sequence of horizontal and then vertical
refinements shall lead to a fully algorithmic artifact, called an implementation in
the B method. Such modules may then be translated to source code for programs
in imperative languages such as C, Ada or Java.

The theoretical underpinnings of the B method are first-order logic, integer
arithmetic, set theory, substitution calculus, and refinement theory. The different
modules are written in a language called abstract machine notation (or AMN).
An AMN module is divided into sections, each section being responsible for
defining an aspect of the specification, e.g. parameters, basic types, constant
values, state variables, initial states and transitions.

As an illustration, Figure 1 contains a module, called Kernel , specifying a
system which allows to include new tasks up to a maximum number of ten. The
MACHINE section identifies the nature (a functional specification) and the
name of the module. The section SETS introduces a new type of entities, namely
TASK . At this level, no further detail is provided on how this entity is going to be
implemented. The VARIABLES section enumerates the name of the different
state variables. Here, the state is composed of a single variable, named tasks . The
INVARIANT section defines the possible values of the state variables: it defines
their types and other restrictions that shall reflect the functional requirements
of the system. Next, the INITIALISATION section provides a definition of
the set of possible initial states of the system. Last is the OPERATIONS
section, which is where the different types of events that the system may execute
and the corresponding state transitions are defined. The example has a single
operation that takes a task as parameter and adds it to tasks . In B, operations
may have parameters (passed by value), results, and may change the value of
the state variables. Operations are defined in a language called the generalized
substitution language. The constructs of this language are syntactically similar to
that of imperative programming languages, and semantically, they are predicate
transformers.

In the B method, a machine must be verified to satisfy the correctness criteria
stating that it is implementable, that all the states that are reachable are valid

MACHINE
Kernel

SETS
TASK

VARIABLES
tasks

INVARIANT
tasks ∈ P(TASK )∧
card(tasks) ≤ 10

INITIALISATION
tasks := ∅

OPERATIONS

task add(task) =
PRE

task ∈ TASK ∧ task �∈ tasks ∧
card(tasks) < 10

THEN
tasks := tasks ∪{task}

END

Fig. 1. Functional specification of a simple task management system



Formalizing FreeRTOS: First Steps 105

states (i.e. they satisfy the condition expressed in the invariant clause), and that
all expressions appearing in the specification are well-defined. This verification
consists in checking proof obligations that are automatically generated from the
text of the machine. The proof obligations are formulas of first-order logic and
the user is responsible for proving that they are valid.

Consider the example of Figure 1. To guarantee that the machine is imple-
mentable, one needs to prove the satisfiability of the different constraints of
the model. In the case of this example, one needs to show the validity of the
existential quantification of the invariant:

∃tasks • tasks ∈ P(TASK ) ∧ card(tasks) ≤ 10.

To guarantee the correctness criterion stating that all reachable states are valid,
one must check that each operation preserves the invariant: if the operation
is applied to a state satisfying the invariant, and if the pre-condition of the
operation is satisfied, then the resulting state must also be valid. The following
formula, generated automatically by the proof obligation generator, states this
property:

tasks ∈ P(TASK ) ∧ card(tasks) ≤ 10 ∧
task ∈ TASK ∧ task ∈ tasks ∧ card(task) < 10⇒
(tasks ∪{task}) ∈ P(TASK ) ∧ card(tasks ∪{task}) ≤ 10.

Finally, it is necessary to show that all the expressions occurring in the specifi-
cation are well-defined. In the case of the example, one must show that tasks is
a finite set in every context where the expression card(tasks) is evaluated.

The proof of these verification conditions is performed either by automatic
theorem provers, or manually, by issuing commands to an interactive theorem
prover. Typically, the automatic theorem prover manages to discharge a signifi-
cant part of the verification conditions. The remaining conditions are either valid
and the user must be able to build a proof of their validity, or are not valid. In
the former case, it might happen that the user cannot build the proof, as the
prover is inherently incomplete; he has then the choice of including additional
rules or to check the condition manually and take responsibility for the verdict.
In the latter case, the specification has some error and must be corrected or the
formula cannot be proved. In the case of an erroneous specification, the infor-
mation provided by the interactive theorem prover is often helpful to locate the
error. Eventually, the user shall reach a point where all verification conditions
have been proved and the refinement process may be initiated.

Note that the functional model may also be used to derive manually an im-
plementation in a programming language. Moreover the functional specification
may also be used as a reference to generate tests [11] of the implementation.

An example of refinement is presented in Figure 2. The state variable tasks
is no longer a set of tasks but a sequence of tasks. Sequences are pre-defined
in AMN and the operators ran and → return respectively the contents of the
sequence (as a set) and addition of an element to the end of the sequence.
The B method also defines a set of verification conditions which, when proved,
guarantee that the refinement is correct with respect to the initial specification.



106 D. Déharbe, S. Galvão, and A.M. Moreira

REFINEMENT
Kernel r

REFINES
Kernel

VARIABLES
tasks r

INVARIANT
tasks r ∈ seq(TASK )∧
ran(tasks r) = tasks

INITIALISATION
tasks r := []

OPERATIONS
task add(task) =

BEGIN
tasks r := task → tasks r

END

Fig. 2. Refinement of the machine Kernel (Figure 1)

4 Overview of the Modeling

Modeling a complex system with the B method may be facilitated by taking into
account the following remarks:

1. Parts of the functional requirements may be abstracted in the initial speci-
fication. Such requirements may be introduced later, by means of horizontal
refinements, or by extending the specification. In order to adopt this ap-
proach, one must first plan a sequence of incremental modeling steps, each
introducing additional entities and functionalities of FreeRTOS. Such steps
are described in Section 4.3.

2. When requirements do not present interdependency, they may specified in
different modules. These modules will then be combined using the compo-
sition mechanism of the B method (e.g inclusion, vision, etc.) The modular
structure of the model is presented in Section 5.

In system development projects, (formal) specifications are usually performed in
the initial stages. In the experience reported in this paper, the system already
exists, its functionalities have been identified and implemented. The presented
model is the result of the analysis of the documentation of the system as well as
of the source code of its implementation.

Based on an informal analysis of FreeRTOS documentation and source code,
we planned an incremental construction of the model. Such increments are pre-
sented in section 4.3.

The main classes of entities provided by FreeRTOS are tasks, message queues,
co-routines, semaphores and mutexes, and each such class has an associated set
of functions. However in the case of FreeRTOS, semaphores are nothing more
than specialized message queues. Therefore, to build a first functional model of
FreeRTOS, two basic kinds of entities were initially chosen for formalization:
tasks and message queues, which form the basic mechanism for task communi-
cation and synchronization.

4.1 Tasks

Functions manipulating tasks can be divided into the functions that manage the
tasks themselves and those that control the scheduler.

The task management functions that we have modeled are task creation
(xTaskCreate), task destruction (xTaskDelete), an accessor to get the priority



Formalizing FreeRTOS: First Steps 107

of a task (uxTaskPriorityGet), task suspension (vTaskSuspend), resumption
of a suspended task, taking it to a ready state (vTaskResume), changing the
priority of a task (vTaskPrioritySet), interruption of a task for a given time
period, starting from the moment the function was called (vTaskDelay), or from
the moment the task was resumed (vTaskDelayUntil).

With respect to the scheduling aspects, we have modeled functions to:
access the currently executing task (xTaskGetCurrentTaskHandle), access
to the state of the schedule, which may be executing, suspended or
uninitialized (xTaskGetSchedulerState), get the number of existing tasks
(uxTaskGetNumberOfTasks), get the time elapsed since the scheduler was ini-
tialized (xTaskGetTickCount), initiate the scheduler and start the so-called
idle task (vTaskStartScheduler), finalize the activities of the scheduler
and put it back in the uninitialized state, deleting all the entities created
(vTaskEndScheduler), suspend the scheduler (vTaskSuspendAll), and resume
the scheduler (xTaskResumeAll).

4.2 Message Queues

We have modeled the following functions related to message queues: construc-
tion of a new, empty, queue (xQueueCreate), sending a message to a queue
(xQueueSend), sending a message to the back of a queue (xQueueSendToBack)
or to the front of a queue (xQueueSendToFront), to retrieve a message from
the front of a queue (xQueueReceive), to read a message from the front of a
queue, without removing it (xQueuePeek), and to delete a message queue. The
presented model does not take into account the (fixed) capacity of the queues,
resulting in non-deterministic models of these functions.

4.3 Increments in the Model

Once the basic funcionalities of the system have been identified (namely, tasks
and message queues), we identified modeling steps such that they could be de-
fined in an incremental fashion:

1. Basic model: In this first step, we considered mainly the behavior of the
functions related to the state of the tasks and the transitions between such
states. The notion of priority was, at this level, left abstract. Also, the state
of the scheduler was defined as well as the concept of elementary timing
events called ticks in FreeRTOS. Message queues were also modeled, and
their size was left abstract. In order to be able to abstract notions such as
queue size and message priority, operations depending on these were defined
non-deterministically.

2. Priority: In this second step, task priority was effectively taken into ac-
count in the model. The main consequence is that functions resulting in the
scheduling of a new task were refined into more deterministic versions.

3. Mutexes: The third stage will consist in specifying this mechanism, that
allows synchronizing tasks without provoking priority inversions.



108 D. Déharbe, S. Galvão, and A.M. Moreira

4. Queue size: The fourth step shall consist in removing non-determinism
related to queue sizes and actually specify the behavior related to the re-
quirements with respect to full or empty queues.

5. Addition of non-elementary entities: We have already mentioned that a
semaphore can be viewed as a message queue. Modeling semaphores and the
related requirements will be performed last, by using the definitions already
available for message queues.

5 The Functional Model

This section presents the first two steps to build the model of FreeRTOS as
described in Section 4. The resulting model thus includes tasks, message queues,
scheduling, and priorities. All the models presented in this section have been
developed and verified using Atelier B 4.0 [12].

Even though only parts of the requirements are considered, the estimated size
of the resulting model seemed large enough to consider a modular structure of
the specification. The components of this structure are:

– The Config machine contains auxiliary definitions of constants that need to
be be instantiated when building an application on top of FreeRTOS; for
instance, the number of priority levels is configurable. Our model simply
defines the domain of these constants.

– The Types machine declares the types of the different entities of the model
of the system such as tasks, queues, messages, return codes.

– The Task machine defines the state variables modeling the tasks in the sys-
tem, as well as the corresponding elementary functions.

– The Queue machine has a role similar to the Task machine, but related to
message queues.

– The Scheduler machine is a very simple machine that justs maintains the
current state of the scheduler.

– The machine FreeRTOSBasic includes an instance of the three machines
Task , Queue and Scheduler and defines models of elementary message pass-
ing functions.

– Finally, the machine FreeRTOS includes an instance of FreeRTOSBasic and
defines models of high-level message-passing functions. The intermediate
machine FreeRTOSBasic is necessary as B does not allow operations in a
machine to refer to operations in the same machine.

5.1 Tasks

The machine Task defines the entities and operations related to tasks (see ex-
cerpts in Figure 1). Several modeling approaches are possible: using disjoint sets,
or using a state function mapping tasks to an enumerated set. We chose the for-
mer, as it allows expressing the invariant using simple sets and is thus easier to
analyze using one of the available theorem provers.



Formalizing FreeRTOS: First Steps 109

The state variable active indicates whether the operating system is active or
not (i.e. it is in the initialization phase of an instance of the system). Variable
tasks represents all the created tasks. In addition, running, ready , blocked and
suspended represent respectively the currently scheduled task, the set of tasks
ready to be scheduled, the set of blocked tasks and the set of suspended tasks.
Finally, variable idle represents the idle system task.

VARIABLES
active , tasks , blocked , running , ready , suspended , idle

INVARIANT
active ∈ BOOL∧ tasks ∈ F(TASK ) ∧ running ∈ TASK ∧idle ∈ TASK
∧ blocked ∈ F(TASK ) ∧ ready ∈ F(TASK ) ∧ suspended ∈ F(TASK )

The invariant includes also constraints to model several requirements: (1) a task
may be in a single state at any time; (2) while the scheduler has not been
activated, tasks are ready to execute; when the scheduler has been activated,
(3) the idle task is always either ready to execute or executing, and (4) there is
always a running task.

blocked ⊆ tasks ∧ ready ⊆ tasks ∧ suspended ⊆ tasks ∧
ready ∩ blocked = ∅ ∧ blocked ∩ suspended = ∅ ∧ suspended ∩ ready = ∅∧
(active = FALSE ⇒ tasks = ready)∧
(active = TRUE ⇒ (idle = running ∨ idle ∈ ready)∧

running �∈ (blocked ∪ ready ∪ suspended )∧
tasks = {running} ∪ suspended ∪ blocked ∪ ready)

In addition, the Task machine contains basic operations that model the elemen-
tary changes to the system state with respect to tasks and the scheduler. Such
operations are used to specify the functions of FreeRTOS related to tasks. There
is a total of twelve such elementary functions, from which two will be presented
here1.

The creation of a new task is specified by the operation t create. This oper-
ation can only be applied when the scheduler has not been initialized. It takes
as parameter the priority of the task, which will be taken into account in a re-
finement, and creates and returns a new task entity which is initially ready to
execute:

result ←− t create(priority) =
PRE

priority ∈ PRIORITY∧
active = FALSE

THEN
ANY task WHERE

task ∈ TASK ∧ task �∈ tasks

THEN
tasks := {task} ∪ tasks ‖
ready := {task} ∪ ready ‖
result := task

END
END;

1 The full models and the corresponding interactive proofs are freely available at
http://code.google.com/p/freertosb/source/browse

http://code.google.com/p/freertosb/source/browse


110 D. Déharbe, S. Galvão, and A.M. Moreira

The second operation shown here is t startScheduler that specifies the state
transition when the scheduler is activated. This corresponds to the change from
the initialisation phase to the execution phase of a FreeRTOS application. In
that phase, the system task idle is created and the scheduler chooses a task for
execution. Again, recall that the priority has not been taken into account at
this level of abstraction and is the subject of a further refinement. It is here left
non-deterministic:

t startScheduler =
PRE

active = FALSE
THEN

active := TRUE ‖
blocked , suspended := ∅, ∅ ‖
ANY idle task WHERE

idle task ∈ TASK ∧
idle task �∈ tasks

THEN

tasks := {idle task} ∪ tasks ‖
idle := idle task ‖
ANY task WHERE

task ∈ ready ∪{idle task}
THEN

running := task ‖
ready := (ready ∪{idle task})− {task}

END
END

END;

The behavior of the task-related functions of FreeRTOS has then been mod-
eled using these elementary operations. Here, we only show the function
specification of the function xTaskCreate, that provides the task creation func-
tionality in FreeRTOS. This specification uses the previously presented oper-
ation t create. The return value of the function xTaskCreate indicates if the
operation succeeded or failed (for instance due to a lack of available memory)
and a handler to the new task is asssigned to to parameter handler , passed by
reference.

result , handle ←−
xTaskCreate( code ,name,

stackSize , params ,
priority) =

PRE
code ∈ TASK CODE∧
name ∈ NAME∧
stackSize ∈ NATURAL∧
params ⊂ PARAMETER∧
priority ∈ PRIORITY∧
scheduler = NOT STARTED∧

THEN

CHOICE
handle ←

t create(priority) ‖
result := pdPASS

OR
result := errMEMORY ‖
handle :∈ TASK

END
END

Note that in the notation of the B method, parameters are always passed by
value, and operations may return multiple values. In the C implementation of
FreeRTOS, operations such as xTaskCreate return more than one value and use
pointer typed parameters to store these additional results. Wherever this is the
case, the functional model includes an additional return parameter.



Formalizing FreeRTOS: First Steps 111

5.2 Message Queues

The machine Queue defines the basic functionality to handle message queues.
There are two types of entities: QUEUE , the queues, ITEM , the messages.
Its state is formed by a variable queues representing queues, and the variables
items , sending and receiving associating each queue with its contents, the tasks
waiting to write in the queue, and the tasks waiting to read from the queue,
respectively.

VARIABLES
queues ,
items ,
receiving ,
sending

INVARIANT
queues ∈ P(QUEUE )∧
items ∈ QUEUE →+ P(ITEM ) ∧ dom(items) = queues∧
receiving ∈ QUEUE →+ P(TASK ) ∧ dom(receiving) = queues∧
sending ∈ QUEUE →+ P(TASK ) ∧ dom(sending) = queues

The Queue machine also contains operations that define the basic functionality
to manipulate the message queues. There is a total of six such operations. For
instance, the operation sendItem defines the inclusion of a new message item at
position pos of queue, and destination task :

sendItem(queue , item, task , pos) =
PRE

queue ∈ queues∧
item ∈ ITEM∧
task ∈ TASK ∧
pos ∈ COPY POSITION∧
task ∈ receiving(queue)

THEN
items(queue) :=

items(queue) ∪ {item} ‖
receiving(queue) :=

receiving(queue)− {task}
END

Such low-level operations are used to specify the behavior of section of the FreeR-
TOS API dealing with communication. There are basically two classes of func-
tions: one for read access, and one for write access. They can all be specified by
means of two basic operations: xQueueGenericSend and xQueueGenericReceive,
which, in our model, are defined in the machine FreeRTOSBasic. For instance,
the operation xQueueGenericSend specifies a generic write access of a message
i in a queue q. This operation is also parameterized by the access position pos
and the maximum number of ticks wait that the sending task may be blocked
waiting for the queue. The sending task is always the running task. Three dif-
ferent behaviors are possible. First, if the queue is already full, then the running
task is inserted in the set of tasks waiting to write on the queue, and a deadline
is associated to this task with operation t delayTask . In this scenario, the result
is the constant pdTRUE . Second, if the queue is full, but the task is not willing
to wait, the operation returns the constant errQUEUE FULL. Finally, in case
the destination task is already blocked waiting to read from this queue, then this
task is unblocked, and the operation returns pdPASS . Note that the capacity of
the queues is not part of the abstract model, which is why the specification of this
function is non-deterministic. This aspect will be included in the specification
through a refinement.



112 D. Déharbe, S. Galvão, and A.M. Moreira

res← xQueueGenericSend(q, i, wait, pos) =
PRE

q ∈ queues ∧ i ∈ ITEM ∧ wait ∈ TICK∧
pos ∈ COPY POSITION∧
active = TRUE ∧ running �= idle

THEN
CHOICE

IFwait > 0THEN
q insertTaskWaitingToSend (q , running) ‖
t delayTask(wait) ‖
res := pdTRUE

ELSE
res := errQUEUE FULL

END

OR
ANY tWHERE

t ∈ TASK ∧
t ∈ blocked ∧
t ∈ receiving(q)

THEN
q sendItem(q, i, t, pos) ‖
t unblock(t) ‖
res := pdPASS

END
END

END

Finally, the machine FreeRTOS instantiates these generic operations to spec-
ify the behavior of FreeRTOS’ functions providing task communication facil-
ities. For instance, the operation xQueueSend specifies the behavior of the
homonym FreeRTOS function, one of the three message sending variants in
the API:

res ←− xQueueSend (q , i ,w) =
PRE

q ∈ queues ∧ i ∈ ITEM ∧ w ∈ TICK∧
active = TRUE ∧ running �= idle

THEN
res ← xQueueGenericSend (q , i ,w , queueSEND TO BACK )
END

END

5.3 Taking Priorities into Account

The functional requirements state that the running task should have a priority
greater or equal than all the ready tasks. In order to take into account such
requirement, the invariant needs to be strengthened to define task priorities and
to specify the desired property. From the methodological viewpoint, starting
from the first version of the Task machine (described in Section 5.1), we can
either define a new version, or create a refinement. We chose the latter solution
and we describe it now.

We defined a refinement module called Task r . In it, we defined a type
PRIORITY that represents tasks priorities. The state variable prio maps each
task to its priority and the invariant states that when the scheduler has been
initialised, no ready task has a priority greater than the running task. We also
include restrictions on the priority of the idle task, which is the lowest possible
priority.



Formalizing FreeRTOS: First Steps 113

CONSTANTS
MAX P , IDLE P

PROPERTIES
PRIORITY = 0..(MAX P − 1 )∧
MAX P > 0 ∧ IDLE P = 0

VARIABLES
prio

INVARIANT
prio ∈ TASK →+PRIORITY∧
dom(prio) = tasks ∧
(active = TRUE ⇒

prio(idle) = IDLE P∧
∀t .(t ∈ ready ⇒ prio(t) ≤ prio(running))∧
∀t .(t ∈ ready ⇒ IDLE P ≤ prio(t)))

Most of the operations of the Task machine involve defining a new running task,
and these operations need to be refined to maintain the new invariant. In order
to simplify the definition of these refined operations, a scheduling function was
introduced. It takes as input a set of tasks and a function mapping tasks to their
priorities, and it returns those given tasks that have the highest priority:

CONSTANTS
schedule p

PROPERTIES
schedule p : (F(TASK )× (TASK →+PRIORITY ))→+ F(TASK )∧
schedule p = λ(tasks , prio)•

(tasks : F(TASK ) ∧ prio : TASK →+ PRIORITY ∧ tasks �= ∅ ∧ tasks ⊆ dom(prio)
| tasks ∩ prio−1(max(prio[tasks ]))))

To illustrate the refinement of the operations, we present the case of the opera-
tions t create and t startScheduler :

result ←− t create(priority) =
PRE

priority ∈ PRIORITY∧
active = FALSE

THEN
ANY task WHERE

task ∈ TASK ∧ task �∈ tasks

THEN
tasks := tasks ∪{task} ‖
prio := prio ∪ {task �→ priority} ‖
ready := ready ∪{task} ‖
result := task

END
END

t startScheduler =
BEGIN

active := TRUE ‖
blocked , suspended := ∅, ∅ ‖
ANY i WHERE

i ∈ TASK ∧
i �∈ tasks

THEN
tasks := tasks ∪{i} ‖
prio := prio ∪ {i �→ IDLE P} ‖
idle := i ‖

ANY t WHERE
t ∈ TASK ∧
(ready = ∅ ⇒ t = i)∧
(ready �= ∅ ⇒ t ∈ ready ∧

t ∈ schedule p(ready , prio)
THEN

running := t ‖
ready := (ready ∪{i})− {t}

END
END

END



114 D. Déharbe, S. Galvão, and A.M. Moreira

In t create, a substitution was added to update the information on the new task
priority, and in t startScheduler , idle is registered to have priority 0 and the new
running task is selected among those ready tasks with highest priority (or idle ,
in case there are no ready tasks waiting to be executed).

5.4 Comments on the Verification of the Models

One of the main features of the B method is the tool support for project man-
agement, syntactic verification, and semantic analysis of the produced artifacts.
In particular, the semantic analysis produces proof obligations the verification
of which guarantees: (1) all expressions appearing in the text of the different
artifacts are well-defined, (2) the logic consistency of the specification and its
refinements. The development environment thus includes support for the con-
struction of the proofs, by providing a number of theorem provers. However, due
to the incomplete nature of the specification logic, as well as the computational
complexity of finding proofs, human intervention is needed to establish part of
the proofs. This is a time-consuming activity that pays off in two ways. First,
when confronted with a proof obligation that is not valid, the developer has
access to the context where such proof obligation was generated and has clues
as where the artifact needs to be corrected. Second, when all proof obligations
have been successfully validated, then the user has a very strong confidence in
its models.

To give an idea of the effort needed to establish the correctness of the de-
velopment, Table 1 provides the number of proof obligations generated for each
artifact2. This table does not include however the effort needed to reach consis-
tent models, as several iterations were needed to produce a correct definition of
the invariant and of the operations.

6 Conclusion and Future Work

This paper presented the first steps of a formal modeling, using the B method,
of a significant part of the real-time operating system FreeRTOS. This model
provides a functional specification of the operations related to task management
and message queues. This effort was initiated in response to the challenge set by
Jim Woodcock to the Brazilian community on Formal Methods [3] to contribute
with this case study to the Verified Software Repository [13], as part of the Inter-
national Grand Challenge on Verified Software. Thus, a first contribution of this
work is the execution of a case study for the development of a verified model of
a moderately complex software library. We have already extended the presented
model to specify semaphores and related functions; next, we will include the def-
inition of functional specifications for mutexes and refine the scheduling policy
to take into account fairness requirements.

2 Professionals using the B method estimate that a seasoned practitioner averages
sixteen interactive proofs per day.



Formalizing FreeRTOS: First Steps 115

Table 1. The table presents, for each module, the number of operations defined in
the module, the total number of lines (including comments), the number of proof
obligations (well-definedness lemas, correctness theorems, and total), and the number of
interactive proofs required to establish the correctness theorems. Most of our interactive
proofs have fewer than 10 steps. In the one case (lowering the priority of the running
task below that of at least one ready task), we needed more than a hundred steps. We
do not claim that we were able to find the shortest proofs.

Module Size Proof obligations Interactive
Operations Lines W.D. Corr. Total proofs

Config 0 89 0 0 0 0

Types 0 103 1 1 2 1

Scheduler 5 90 0 0 0 0

Task 12 467 1 219 220 28

Queue 7 231 12 33 45 0

FreeRTOSBasic 19 562 37 46 83 2

FreeRTOS 19 562 43 3 49 0

Task r 12 432 42 100 142 18

Total 55 1974 136 402 538 49

A relevant question in our context is the cost-effectiveness of the approach
we have taken. For circumstantial reasons, this is a difficult question to answer.
Indeed, the model was mainly developed by a student with little previous ex-
perience with formal methods, and even less with guiding an interactive prover.
In retrospect, assuming that the development would be carried out by a profes-
sional with proficiency with the B method and its tool support (including the
interactive prover), we estimate that the model could have been developed in a
few weeks time. Also we are not sure that the modular approach we have taken is
indeed the most suitable, compared to introduce system features such as queues
incrementally, through horizontal refinements. It would certainly be useful for
formal methods practicioners to have a published body of architectural patterns
for large specifications.

Also, we feel that there is some space for improvement in the tool support. In
the case of interactive proofs, hypothesis selection is often required, however the
selection interface is a bit clumsy. Proof management is rudimentary and still
has bugs: at times proofs are lost, at times the prover gets into an infinite loop
and the whole interface needs to be restarted. Also the development environment
was not designed for multi-user efforts and we have not found a satisfactory way
to integrate Atelier B with a version control system. Since the graphical interface
of Atelier B has recently gone open source, we hope that such improvements will
soon be implemented by the community.

A second important question is: what is this model worth for? Several possi-
ble applications could be foreseen. The first would be to use it to verify existing
implementations of FreeRTOS3, or to derive formally a new implementation of
3 It is important to have in mind that part of the implementation is written in assem-

bly, thus needing to be rewritten and re-verified for each target platform.



116 D. Déharbe, S. Galvão, and A.M. Moreira

FreeRTOS. To verify an existing application, we could proceed either by review-
ing code, taking as a reference the functional specification and try to manually
find errors in the source code, or by deriving tests from the specification, using
techniques such as [11]. Another approach to verification would be to use the B
specification to instrument the source code of FreeRTOS with assertions, using
a formalism such as ACSL [14], and formally prove that they are satisfied using
low-level code verifiers such as VCC [15] or Frama-C [16]. A third possibility
would be to use the model of FreeRTOS in formal development of real-time ap-
plications based on this system. It remains to be seen if this is possible to do this
strictly within the scope of the B method, or if it would be necessary to couple
it with other formalisms to handle e.g. concurrency and real-time properties.

The B method could also be applied to build an implementation of FreeRTOS
from the model. However the B method currently has some restrictions that
would make this task more difficult than a straightforward application of existing
techniques. Indeed, the B method is targeted to safety-critical applications where
dynamic memory allocation is prohibited. So current C code generators do not
have support for pointers. However, such functionality is required in the case of
FreeRTOS. It would be necessary to develop solutions to represent and manage
memory representation in B.

Finally, since FreeRTOS is a library to build real-time embedded applications,
the functional model presented in this paper could be used, in combination with
a model checker for B such as ProB [17], as as an oracle when testing real-time
applications based on FreeRTOS as proposed in [18].

Acknowledgements. We thank the anonymous reviewers for many insightful and
challenging comments.

References

1. SBC: Grandes Desafios da Pesquisa em Computação no Brasil: 2006–2016 (2006),
http://www.sbc.org.br

2. Jones, C., O’Hearn, P., Woodcock, J.: Verified software: a grand challenge. Com-
puter 39(4), 93–95 (2006)

3. Woodcock, J.: Grand challenge in software verification. In: Brazilian Symposium
on Formal Methods, SBMF 2008 (2008)

4. Craig, I.D.: Formal Models of Operating System Kernels. Springer, Heidelberg
(2007)

5. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

6. Schneider, S.: The B-Method: An Introduction. Palgrave, Oxford (2001)
7. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Engle-

wood Cliffs (1990)
8. Spivey, J.: The Z Notation: a Reference Manual, 2nd edn. Prentice-Hall Interna-

tional Series in Computer Science. Prentice Hall, Englewood Cliffs (1992)
9. Requet, A.: Bart: A tool for automatic refinement. In: Börger, E., Butler, M.,

Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008)

http://www.sbc.org.br


Formalizing FreeRTOS: First Steps 117

10. Abrial, J.R.: Faultless system: Yes we can! Technical Report 629, Department of
Computer Science, ETH Zurich (2009)

11. Jaffuel, E., Legeard, B.: LEIRIOS test generator: Automated test generation from
B models. In: The 7th International B Conference, pp. 277–280 (2007)

12. Clearsy: Atelier B 4.0 (2009), http://www.atelierb.eu
13. Bicarregui, J., Hoare, C., Woodcock, J.: The verified software repository: a step to-

wards the verifying compiler. Formal Aspects of Computing 18(2), 143–151 (2006)
14. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C Specification Language (2008)
15. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based

modular verification of concurrent c. In: ICSE Companion, pp. 429–430. IEEE, Los
Alamitos (2009)

16. CEA: Frama-c: Software analyzers (2009), http://frama-c.cea.fr
17. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

18. Andrade, W.L., Alves, E.L.G., Almeida, D.R., Machado, P.D.L.: Test case genera-
tion of embedded real-time systems with interruptions for FreeRTOS. In: Brazilian
Symposium on Formal Methods, SBMF 2009 (2009)

http://www.atelierb.eu
http://frama-c.cea.fr

	Formalizing FreeRTOS: First Steps
	Introduction
	FreeRTOS
	Task Management
	Communication and Synchronization

	The B Method
	Overview of the Modeling
	Tasks
	Message Queues
	Increments in the Model

	The Functional Model
	Tasks
	Message Queues
	Taking Priorities into Account
	Comments on the Verification of the Models

	Conclusion and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




