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Abstract. Motivated by issues in designing practical total functional
programming languages, we are interested in structured recursive equa-
tions that uniquely describe a function not because of the properties of
the coalgebra marshalling the recursive call arguments but thanks to the
algebra assembling their results. Dualizing the known notions of recursive
and wellfounded coalgebras, we call an algebra of a functor corecursive,
if from any coalgebra of the same functor there is a unique map to this
algebra, and antifounded, if it admits a bisimilarity principle. Differently
from recursiveness and wellfoundedness, which are equivalent conditions
under mild assumptions, corecursiveness and antifoundedness turn out
to be generally inequivalent.

1 Introduction

In languages of total functional programming [17], such as Cockett’s Charity
[5] and type-theoretic proof assistants and dependently typed languages, unre-
stricted general recursion is unavailable. Instead, these languages support struc-
tured recursion and corecursion schemes for defining functions with inductive
domains resp. coinductive codomains. For inductive types such schemes include
iteration, primitive recursion and recursion on structurally smaller arguments
(“guarded-by-destructors” recursion). Programming with coinductive types can
dually be supported, e.g., by “guarded-by-constructors” corecursion [6,10].

Characteristically, schemes like this define a function as the unique solution
of a recursive equation where the right-hand side marshals the arguments of re-
cursive calls, makes the recursive calls and assembles their results. Operational
intuition tells us that structured recursion defines a function uniquely as the
argument is gradually consumed and structured corecursion because the result
is gradually produced. More generally, instead of structurally smaller recursive
call arguments one can allow arguments smaller in the sense of some wellfounded
relation (not necessarily on an inductive type). We may ask: Does the “produc-
tivity” aspect of structured corecursion admit a similar generalization? What
are some principles for reasoning about functions defined in this way? In this
article we address exactly these questions in an abstract categorical setting.

General structured recursion and induction have been analysed in terms of
recursive and wellfounded coalgebras. A recursive coalgebra (RCA) is a coalgebra
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of an endofunctor F with a unique coalgebra-to-algebra morphism to any F -
algebra. In other words, it is a coalgebra that guarantees unique solvability
of any structured recursive diagram involving it. This abstract version of the
wellfounded recursion principle was introduced by Osius [13]. It was also of
interest to Eppendahl [9], and we have previously studied constructions to obtain
recursive coalgebras from other coalgebras already known to be recursive, with
the help of distributive laws of functors over comonads [4].

Taylor introduced the notion of wellfounded coalgebra (WFCA), an abstract
version of the wellfounded induction principle, and proved that, under mild as-
sumptions, it is equivalent to RCA [14,15],[16, Ch. 6]. Defined in terms of Ja-
cobs’s next-time operator [11], a wellfounded coalgebra is a coalgebra such that
any subset of its carrier containing its next-time subset is isomorphic to the
carrier, so that the carrier is the least fixed-point of the next-time operator. As
this least fixed-point is given by those elements of the carrier whose recursive
calls tree is wellfounded, the principle really states that all of the carrier is in-
cluded in the “wellfounded core”(cf. Bove-Capretta’s method [2] in type theory:
a general-recursive definition is made acceptable by casting it as a definition by
structured recursion on the inductively defined wellfounded core and proving
that the whole domain is in the wellfounded core). A closely related condition
has the coalgebra carrier reconstructed by iterating the next-time operator on
the empty set.

Adámek et al. [1] provided additional characterizations for the important case
when the functor has an initial algebra. Backhouse and Doornbos [8] studied
wellfoundedness in a relational setting.

We look at the dual notions with the aim to achieve a comparable analysis
of structured corecursion and coinduction. It is only to be expected that several
differences arise from the fact that Set-like categories are not self-dual. More
surprisingly, however, they turn out to be quite deep. The dual of RCA is the
notion of corecursive algebra (CRA): we call an algebra corecursive if there is a
unique map to it from any coalgebra. Here the first discrepancy arises: while it is
well-known that initial algebras support primitive recursion and, more generally,
a recursive coalgebra is parametrically recursive ([16, Ch. 6]), the dual statement
is not true: corecursiveness with the option of an escape (complete iterativity in
the sense of Milius [12]) is a strictly stronger condition than plain corecursiveness.

The dual of WFCA is the notion of antifounded algebra (AFA)1. The dual
of the next-time operator maps a quotient of the carrier of an algebra to the
quotient identifying the results of applying the algebra structure to elements
that were identified in the original quotient. AFA is a categorical formulation
of the principle of bisimilarity: if a quotient is finer than its next-time quotient,
then it must be isomorphic to the algebra carrier. Here also the equivalence with
CRA is not satisfied: both implications fail for rather simple algebras in Set.

Finally, we call an algebra focusing (FA), if the algebra carrier can be recon-
structed by iterating the dual next-time operator. In the coalgebra case, one

1 Our choice of the name was motivated by the relation to the set-theoretic antifoun-
dation axioms.
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starts with the empty set and constructs a chain of ever larger subsets of the
carrier. Now, we start with the singleton set, which is the quotient of the car-
rier by the total relation, and construct an inverse chain of ever finer quotients.
Intuitively, each iteration of the dual next-time operator refines the quotient.
And while a solution of a recursive diagram in the recursive case is obtained by
extending the approximations to larger subsets of the intended domain, now it is
obtained by sharpening the approximations to range over finer quotients of the
intended codomain. FA happens to be the strongest of the conditions, implying
both AFA and CRA. The inverse implications turn out to be false.

The article is organized around these three notions, treated in Sections 2, 3 and
4, respectively, before we arrive at our conclusions in Section 5. Throughout the
article we are interested in conditions on an algebra (A, α) of an endofunctor F
on a category C. We assume that C has pushouts along epis and that F preserves
epis.2 Our prime examples are C being Set and F a polynomial functor.

2 Corecursive Algebras

Our central object of study in this article is the notion of corecursive algebra,
the dual of Osius’s concept recursive coalgebra [13].

Definition 1. An algebra (A, α) of an endofunctor F on a category C is called
corecursive (CRA) if for every coalgebra (C, γ) there exists a unique coalgebra-
to-algebra map, i.e., a map f : C → A making the following diagram commute:

C
γ ��

f ��

FC
Ff��

A FA.α
��

We write separately CRA-existence and CRA-uniqueness for the statements that
the diagram has at least and at most one solution, respectively.

An algebra is corecursive if every structured recursive diagram (= coalgebra-to-
algebra map diagram) based on it defines a function (in the sense of turning
out to be a definite description). The inverse of the final F -coalgebra, whenever
it exists, is trivially a corecursive F -algebra (in fact the initial corecursive F -
algebra). However, there are numerous examples of corecursive algebras that
arise in different ways.

Example 1. We illustrate the definition with a corecursive algebra in Set, for the
functor FX = E × X × X , where E is some fixed set. The carrier is the set of
streams over E, A = Str(E). The algebra structure α is defined as follows:

α : E × Str(E) × Str(E) → Str(E) merge : Str(E) × Str(E) → Str(E)
α(e, s1, s2) = e :: merge(s1, s2) merge(e :: s1, s2) = e :: merge(s2, s1).

2 In the recursive case it makes sense to additionally require that F preserves pullbacks
along monos. This assumption holds for typical functors of interest. In the presence
of a subobject classifier in C, it guarantees that recursiveness of a coalgebra implies
wellfoundedness. The dual assumption, that F preserves pushouts along epis, is not
as helpful. Moreover, it is too strong: it is false, e.g., for FX = X × X. We drop it.
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It is easy to see that this algebra is corecursive, although it is not the inverse
of the final F -coalgebra, which is the set of non-wellfounded binary trees with
nodes labelled by elements of E.

A simple example of recursive definition that could be justified by the corecur-
siveness of (A, α) is the following. Let E = 2∗ (lists of bits, i.e., binary words).
We define a F -coalgebra (C, γ : C → 2∗×C×C) by C = 2∗ and γ(l) = (l, 0l, 1l).
We can now be certain that there is exactly one function f : 2∗ → Str(2∗) such
that f = α◦Ff ◦γ. This function sends a binary word to the lexicographical enu-
meration of the binary words which have this given one as a prefix. In particular,
the stream f(ε) is the lexicographical enumeration of all binary words.

Example 2. We also obtain a corecursive algebra by endowing A = Str(E) with
the following algebra structure of the functor FX = E × X (note that this is
different from the inverse of the final F -coalgebra structure also carried by A):

α : E × Str(E) → Str(E) double : Str(E) → Str(E)
α(e, s) = e :: double(s) double(e :: s) = e :: e :: double(s).

The next notion is an important variation.

Definition 2. An algebra (A, α) is called parametrically corecursive (pCRA) if
for every object C and map γ : C → FC + A (that is, coalgebra of F (−) + A),
there exists a unique map f : C → A making the following diagram commute:

C
γ ��

f ��

FC + A
Ff+idA��

A FA + A.
[α,idA]

��

This notion is known under the name of completely iterative algebra [12].3 While
this term is well-established and we do not wish to question its appropriateness
in any way, we use a different term here, locally, for better fit with the topic of
this article (the adjective “parametrically” remains idiosyncratic however).

To be parametrically corecursive, an algebra must define a function also from
diagrams where, for some arguments, the value of the function is given by an “es-
cape”. The inverse of the final coalgebra always has this property [18]. Examples
1, 2 also satisfy pCRA. We leave the verification to the reader.

Proposition 1. pCRA ⇒ CRA : A parametrically corecursive coalgebra is
corecursive.

Proof. Given a coalgebra (C, γ), the unique solution of the pCRA diagram for
the map (C, C

γ→ FC
inl→ FC + A) is trivially also the unique solution of the

CRA diagram for (C, γ). ��
3 In this terminology inspired by iterative theories, the word “iterative” refers to it-

eration in the sense of tail-recursion. “Completely iterative” means that a unique
solution exists for every coalgebra while “iterative” refers to the existence of such
solutions only for finitary coalgebras, i.e., coalgebras with finitary carriers.
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The following counterexamples show that the converse is not true (differently
from the dual situation of recursive and parametrically recursive coalgebras).
We exhibit an algebra that is corecursive but not parametrically corecursive.

Example 3. In the category Set, we use the functor FX = X×X . An interesting
observation is that any corecursive algebra (A, α) for this F must have exactly
one fixed point, that is, one element a such that α(a, a) = a. We take the
following algebra structure on the three-element set A = 3 = {0, 1, 2}:

α : 3 × 3 → 3
α(1, 2) = 2
α(n, m) = 0 otherwise.

Proposition 2. CRA � pCRA-uniqueness: Example 3 is corecursive, but does
not satisfy the uniqueness property for parametrically corecursive algebras.

Proof. Example 3 satisfies CRA. Let (C, γ) be a coalgebra. We prove that the
only possible solution f of the CRA diagram is the constant 0. In fact, for c ∈ C,
it cannot be f(c) = 1, because 1 is not in the range of α. On the other hand, if
f(c) = 2, then we must have f(c) = α((f × f)(γ(c))). Let us call c0 and c1 the
two components of γ(c): γ(c) = (c0, c1). Then we have f(c) = α(f(c0), f(c1)).
For f(c) to be equal to 2, it is necessary that f(c0) = 1 and f(c1) = 2. But we
already determined that f(c0) = 1 is impossible. In conclusion, there is a unique
solution: f(c) = 0 for every c ∈ C.

Example 3 does not satisfy pCRA-uniqueness. The pCRA diagram for C = B

and γ : B → B × B + 3 defined by γ(true) = inr(1), γ(false) = inl(true, false), has
two distinct solutions:

B

γ ��

f0 ��
f1��

B × B + 3
f0×f0+id

��
f1×f1+id

��
3 3 × 3 + 3

[α,id]
��

f0(true) = 1
f0(false) = 0

f1(true) = 1
f1(false) = 2.

(Note that Example 3 satisfies pCRA-existence: to construct a solution, put it
equal to 0 on all argument values on which it is not recursively forced.) ��
Example 4. Consider the following algebra (A, α) for the functor FX = X × X
in Set: We take A to be N and define the algebra structure by

α : N × N → N

α(1, m) = m + 2
α(n, m) = 0 if n �= 1.

Proposition 3. CRA � pCRA-existence: Example 4 is corecursive, but does
not satisfy the existence property for parametrically corecursive algebras.

Proof. Example 4 satisfies CRA, essentially by the same argument as for Exam-
ple 3: the unique solution is forced to be the constant 0.
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Example 4 does not satisfy pCRA-existence. Take C = B and define γ : B →
B × B + N by γ(true) = inr(1) and γ(false) = inl(true, false). For this case, there
is no solution to the pCRA diagram. Indeed, a solution should surely satisfy
f(true) = 1. Therefore we should also have f(false) = α(f(true), f(false)) =
α(1, f(false)) = f(false) + 2, which is clearly impossible.

(Note that Example 4 satisfies pCRA-uniqueness: the value of a solution f(c)
can be undetermined only if γ(c) = inl(c1, c2) with f(c1) = 1 and f(c2) undeter-
mined in turn. But this cannot go on forever because it would give an unbounded
value.) ��

3 Antifounded Algebras

Now we turn to the dual of Taylor’s wellfounded coalgebras. We state the defini-
tion with the help of the dual of the next-time operator of Jacobs [11]. Remember
that we assume that the category C has pushouts along epis and that F preserves
epis.

Definition 3. Given an algebra (A, α). Let (Q, q : A � Q) be a quotient of A
(i.e., an epi with A as the domain4). We define a new quotient (ntA(Q), ntA(q) :
A � ntA(Q)) (the next-time quotient) by the following pushout diagram:

A
ntA(q) ����

FA
Fq����

α��

ntA(Q) FQ
α[q]

��

Note that ntA(q) is guaranteed to be an epi, as a pushout along an epi.
Notice that we abuse notation (although in a fairly standard fashion): First,

ntA is really parameterized not by the object A, but the algebra (A, α). And
further, ntA operates on a quotient (Q, q) and returns another quotient given by
the vertex and one of the side morphisms of the pushout. It is a convention of
convenience to denote the vertex by ntA(Q) and the morphism by ntA(q).

In particular, in the category Set we can give an intuitive definition of ntA
in terms of quotients by equivalence relations. In Set, a quotient is, up to iso-
morphism, an epi q : A � A/≡, where ≡ is an equivalence relation on A, with
q(a) = [a]≡. Its next-time quotient can be represented similarly: ntA(A/≡) =
A/≡′, where ≡′ is the reflexive-transitive closure of the relation

{(α(y0), α(y1)) | y0, y1 ∈ FA, y0 (F≡) y1}.
Here F≡ is the lifting of ≡ to FA: it identifies elements of FA that have the
same shape and equivalent elements of A in corresponding positions (if ≡ is given
by a span (R, r0, r1 : R → A), F≡ is just (FR, Fr0, F r1)).

The following definition is the dual of Taylor’s definition of wellfounded algebra
[14,15,16].
4 We do not bother to identify equivalent epis, see below.
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Definition 4. An algebra (A, α) is called antifounded (AFA) if for every quo-
tient (Q, q : A � Q), if ntA(q) factors through q, then q is an isomorphism. In
diagrams:

A
ntA(q)

������
��

� q
�� ���

��
� A

q����
⇒ is an isomorphism.

ntA(Q) Q
u

�� Q

Note that, if ntA(q) factors, i.e., u exists, then it is necessarily unique, as q is an
epi. Note also that q being an isomorphism means that idA factorizes through q,
i.e., that q is a split mono.

Example 1 is an antifounded algebra. Indeed, let q : Str(E) � Str(E)/≡ be a
quotient of Str(E) such that ntA(q) factors through q. Let ≡′ be the equivalence
relation giving the next-time quotient, that is, ntA(Str(E)/≡) = Str(E)/≡′. It
is the reflexive-transitive closure of the relation

{(e :: merge(s00, s01), e :: merge(s10, s11))
| e ∈ E, s00, s01, s10, s11 ∈ Str(E), s00 ≡ s10 ∧ s01 ≡ s11}

This relation is already reflexive and transitive, so the closure is in fact un-
necessary. The hypothesis that ntA(q) factors through q tells us that ≡ is finer
than ≡′, that is, ∀s0, s1 ∈ Str(E). s0 ≡ s1 ⇒ s0 ≡′ s1. We want to prove that
≡ must be equality. In fact, suppose s0 ≡ s1, then also s0 ≡′ s1. This means
that they must have the same head element e0 and that their unmerged parts
must be equivalent: if s00, s01, s10, s11 are such that s0 = e0 ::merge(s00, s01) and
s1 = e0 :: merge(s10, s11), then it must be s00 ≡ s10 and s01 ≡ s11; repeating
the argument for these two equivalences, we can deduce that s0 and s1 have the
same second and third element, and so on. In conclusion, s0 = s1 as desired.

Example 2 can be seen to be an antifounded algebra by a similar argument.
The next-time equivalence relation ≡′ of an equivalence relation ≡ on Str(E) is
the reflexive closure of the transitive relation

{(e :: double(s0), e :: double(s1)) | e ∈ E, s0, s1 ∈ Str(E), s0 ≡ s1}.

Theorem 1. AFA ⇒ pCRA-uniqueness: An antifounded algebra (A, α) satisfies
the uniqueness part of the parametric corecursiveness condition.

Proof. Assume that (A, α) satisfies AFA and let f0 and f1 be two solutions of
the pCRA diagram for some (C, γ : C → FC +A). We must prove that f0 = f1.

Let (Q, q : A → Q) be the coequalizer of f0 and f1. As any coequalizer, it is
epi. We apply the next-time operator to it. We prove that ntA(q)◦f0 = ntA(q)◦f1;
the proof is summarized by this diagram:

C
γ ��

f0 �� f1��

FC + A
Ff0+id �� Ff1+id��

A
q ����

ntA(q)

�� ��������������� FA + A
[α,id]��

Fq+id

��������������

Q
u

�� ntA(Q) FQ + A.
[α[q],ntA(q)]

��
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By the fact that f0 and f1 are solutions of the pCRA diagram, the top rectangle
commutes for both of them. By definition of the ntA operator, the lower-right
parallelogram commutes. Therefore, we have that ntA(q) ◦ f0 = [α[q] ◦ F (q ◦
f0), ntA(q)] ◦ γ and ntA(q) ◦ f1 = [α[q] ◦F (q ◦ f1), ntA(q)] ◦ γ. But q ◦ f0 = q ◦ f1,
because q is the coequalizer of f0 and f1, so the right-hand sides of the two
previous equalities are the same. We conclude that ntA(q) ◦ f0 = ntA(q) ◦ f1.

Now, using once more that q is the coequalizer of f0, f1, there must exist a
unique map u : Q → ntA(Q) such that u ◦ q = ntA(q). By AFA, this implies that
q is an isomorphism. As q ◦ f0 = q ◦ f1, it follows that f0 = f1. ��
However, AFA does not imply CRA-existence (and therefore, does not imply
pCRA-existence), as attested by the following counterexample.

Example 5. In Set, we use the identity functor FX = X and the successor
algebra on natural numbers: A = N and α : N → N is defined by α(n) = n + 1.

Proposition 4. AFA � CRA-existence: Example 5 satisfies AFA but not CRA-
existence.

Proof. Example 5 satisfies AFA. Let q : A → A/≡ be a quotient of A such
that ntA(q) factorizes through q. Note that the definition of ≡′ (the next-time
equivalence relation of ≡) is particularly simple, just the reflexive closure of

{(m0 + 1, m1 + 1) | m0, m1 ∈ N, m0 ≡ m1}.
So two distinct numbers are equivalent according to ≡′ if and only if they are
the successors of elements that are equal according to ≡. There is no need of a
transitive closure in this case, since the relation is already transitive. By assump-
tion ≡ is finer than ≡′, that is ∀m1, m2 ∈ N. m0 ≡ m1 ⇒ m0 ≡′ m1. We want to
prove that ≡ is equality. We prove, by induction on m, that [m]≡ = {m}, that
is, every equivalence class is a singleton:

– For m = 0 the statement is trivial: 0 ≡ m′ implies, by hypothesis, that
0 ≡′ m′, but since 0 is not a successor, this can happen only by reflexivity,
that is, if m′ = 0;

– Assume that [m]≡ = {m} by induction hypothesis; we must prove that
[m + 1]≡ = {m + 1}; if m + 1 ≡ m′, then m + 1 ≡′ m′, which can happen
only if either m + 1 = m′ or m′ is a successor and m ≡ m′ − 1; by induction
hypothesis, this implies that m′ − 1 = m, so m′ = m + 1.

Example 5 does not satisfy CRA-existence. Indeed, if we take the trivial coal-
gebra (1 = {0}, id : 1 → 1), we see that a solution of the CRA diagram would
require f(0) = f(0) + 1, which is impossible. ��
The vice versa also does not hold: CRA does not imply AFA, as evidenced by
the following counterexample.

Example 6. We use the functor FX = 2∗ × X in Set, where 2∗ is the set of
lists of bits (binary words). We construct an F -algebra on the carrier A =
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Str(2∗)/�, where � is the equivalence relation defined below. We are particularly
interested in streams of a special kind: those made of incremental components
that stabilize after at most one step. Formally, if l ∈ 2∗ and i, j ∈ 2, we define
(l)ij̄ = (li, lij, lijj, lijjj, . . .), that is,

(l)00̄ = (l0, l00, l000, l0000, l00000, . . .) (l)01̄ = (l0, l01, l011, l0111, l01111, . . .)
(l)10̄ = (l1, l10, l100, l1000, l10000, . . .) (l)11̄ = (l1, l11, l111, l1111, l11111, . . .).

The relation � is the least congruence such that (l)01̄ � (l)10̄ for every l. This
means that two streams that begin in the same way but then stabilize in one of
the two forms above will be equal: (l0, . . . , lk−1)++(l)01̄ � (l0, . . . , lk−1)++(l)10̄. In
other words, the equivalence classes of � are {(l0, . . . , lk−1)++(l)01̄, (l0, . . . , lk−1)
++ (l)10̄} for elements in one of those two forms, and singletons for elements not
in those forms. Notice that we do not equate elements of the forms (l)00̄ and
(l)11̄. For simplicity, we will write elements of A just as sequences, in place of
equivalence classes. So if s ∈ Str(2∗), we will use s also to indicate [s]�. We leave
it to the reader to check that all our definitions are invariant with respect to �.
We now define an algebra structure α on this carrier by:

α : 2∗ × (Str(2∗)/�) → Str(2∗)/�
α(l, s) = l :: s.

Proposition 5. pCRA � AFA: Example 6 satisfies pCRA but not AFA.

Proof. First we prove that Example 6 satisfies pCRA. Given some (C, γ : C →
2∗ × C + A), we want to prove that there is a unique solution to the pCRA
diagram. Given any element c : C, we have two possibilities: γ c = inr s, in
which case it must necessarily be f c = s; or γ c = inl〈l0, c1〉, in which case it
must be f c = l0 :: (f c1). In this second case, we iterate γ again on c1. The kth
component of f c is decided after at most k such steps, therefore the result is
uniquely determined by commutativity of the diagram.

Now we prove that Example 6 does not satisfy AFA. With this goal we define
an equivalence relation ≡ on A = Str(2∗)/� such that ntA(A/≡) factorizes
through A/≡ but ≡ is strictly coarser than �. The relation ≡ is the reflexive
closure of the following: ∀l ∈ 2∗, i0, i1, j0, j1 ∈ 2. (l)i0j̄0 ≡ (l)i1 j̄1 . In other words,
≡ identifies all elements in the form (l)ij̄ that have the same base sequence l.
Contrary to the case of �, we do not extend ≡ to a congruence: l0 ++ (l1)00̄ �≡
l0++(l1)11̄, but still l0++(l1)01̄ ≡ l0++(l1)10̄, because these elements are equivalent
according to � and ≡ is coarser. So if s0 is not in the form (l)ij̄ , then s0 ≡ s1

is true only if s0 � s1. This equivalence relation is strictly coarser than �, since
(l)00̄ ≡ (l)11̄ but (l)00̄ �� (l)11̄.

Let ≡′ be the next-time equivalence relation of ≡, i.e., such that ntA(A/≡) =
A/≡′. Concretely, ≡′ is the (already reflexive and transitive) relation

{(l :: s0, l :: s1) | l ∈ 2∗, s0, s1 ∈ A, s0 ≡ s1}.
We prove that ≡ is finer than ≡′, i.e., if s0 ≡ s1, then s0 ≡′ s1. There are two
cases.
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If s0 or s1 is not in the form (l)ij̄ , then its equivalence class is a singleton by
definition, so the other element must be equal to it and the conclusion follows
by reflexivity.

If both s0 and s1 are in the form (l)ij̄ , then their base element must be the
same l, by definition of ≡. There are four cases for each of the two elements,
according to what their i and j parameters are. By considerations of symmetry
and reflexivity, we can reduce the cases to just two:

– s0 = (l)00̄ and s1 = (l)01̄: We can write the two elements alternatively as
s0 = l0 :: (l0)00̄ and s1 = l0 :: (l0)11̄; since (l0)00̄ ≡ (l0)11̄, we conclude that
s0 ≡′ s1;

– s0 = (l)00̄ and s1 = (l)11̄: By the previous case and its dual we have s0 ≡′

(l)01̄ and s1 ≡′ (l)10̄; but (l)01̄ � (l)10̄ so s0 ≡′ s1 by transitivity. ��
We now turn to a higher-level view of antifounded algebras. This is in terms of
the classical fixed point theory for preorders and monotone endofunctions.

For a (locally small) category C and an object A, we define the category of
quotients of A, called Quo(A) as follows:

– an object is an epimorphism (Q, q : A � Q),
– a map between (Q, q), (Q′, q′) is a map u : Q → Q′ such that u ◦ q = q′.

Clearly there can be at most one map between any two objects, so this category
is a preordered set. (In the standard definition of the category, equivalent epis are
identified, so it becomes a poset. We have chosen to be content with a preorder;
the cost is that universal properties define objects up to isomorphism.) We tend
to write Q ≤ Q′ instead of u : (Q, q) → (Q′, q′), leaving q, q′ and the unique u
implicit.

Clearly, Quo(A) has (A, idA) as the initial and (1, !A) as the final object.
Now, ntA sends objects of Quo(A) to objects of Quo(A). It turns out that

it can be extended to act also on maps. For a map u : (Q, q) → (Q′, q′), we
define ntA(u) : (ntA(Q), ntA(q)) → (ntA(Q′), ntA(q′)) as the unique map from a
pushout, as shown in the following diagram:

A
ntA(q)����

ntA(q′)

		 		

FA
Fq ����

Fq′







α��

ntA(Q)
ntA(u)��

FQ
α[q]

��

Fu ��
ntA(Q′) FQ′

α[q′]
��

Given that Quo(A) is a preorder, this makes ntA trivially a functor (preservation
of the identities and composition is trivial). In preorder-theoretic terms, we say
that ntA is a monotone function.

We can notice that (A, idA) is trivially a fixed point of ntA. Since it is the
least element of Quo(A), it is the least fixed point.

The condition of (A, α) being antifounded literally says that, for any Q, Q ≤
ntA(Q) implies Q ≤ A, i.e., that A is an upper bound on the post-fixed points
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of ntA. Taking into account that A, by being the least element, is also trivially
a post-fixed point, this amounts to A being the greatest post-fixed point. Fixed
point theory (or, if you wish, Lambek’s lemma) tells us that the greatest post-
fixed point is also the greatest fixed point.

So, in fact, (A, α) being antifounded means that (A, idA) is a unique fixed
point of ntA. (Recall that this is up to isomorphism.)

4 Focusing Algebras

Our third and last notion of focused algebra, introduced below in Def. 6, is
the condition that an algebra is recoverable by iterating its next-time operator,
starting with the final quotient.

At transfinite iterations, given by limits in C (so that we can prove Theorem 3),
we are not guaranteed to still obtain a quotient. In Prop. 7 we will prove that,
for Example 5, the iteration at stage ω is not a quotient anymore. However, to
apply fixed point theory to Quo(A) in Lemma 6, we need to work with limits in
Quo(A). Below, talking about the iteration at a limit ordinal, we require that
it is a quotient (assuming that so are also all preceding stages), or else we take
it to be undefined. Clearly, this is not a beautiful definition. We regard it as one
possible way to partially reconcile the discrepancy between corecursiveness and
antifoundedness that we have already witnessed.

Definition 5. Given an algebra (A, α), for any ordinal λ we partially define
(Aλ, aλ) (the λ-th iteration of ntA on the final object (1, !A) of Quo(A)) and
maps pλ : Aλ+1 → Aλ, pλ,κ : Aλ → Aκ (for λ a limit ordinal and κ < λ) in C
by simultaneous recursion by

A0 = 1 Aλ+1 = ntA(Aλ) Aλ = limκ<λ Aκ

a0 = !A aλ+1 = ntA(aλ) aλ = 〈aκ〉κ<λ

p0 = !A1 pλ+1 = ntA(pλ) pλ = 〈pκ ◦ ntA(pλ,κ)〉κ<λ

pλ,κ = πλ,κ if κ < λ

where the third column applies if λ is a limit ordinal, the limit limκ<λ Aκ exists
and the mediating map 〈aκ〉κ<λ is epi; otherwise Aλ, aλ, pλ, and pλ,κ are left
undefined.

Diagrammatically,

A
a0=!A ����

A
aλ+1=ntA(aλ) ����

FA
Faλ����

α�� A
aλ=〈aκ〉κ<λ ����

aκ

�� ��������������

A0 = 1 Aλ+1 = ntA(Aλ) FAλ
α[aλ]

�� Aλ = limκ<λ Aκ Aκ

The limit in the limit ordinal case is of the following diagram in C:

(Aκ, pκ, pκ,ι (κ lim. ord., ι < κ))κ<λ.
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Lemma 1. The above definition is well-formed: for any λ,

1. aλ is an epi (so, for any λ, ntA is applicable to (Aλ, aλ), ensuring (Aλ+1, aλ+1)
is defined),

2. pλ ◦ aλ+1 = aλ and pλ,κ ◦ aλ = aκ (if λ is a limit ordinal, κ < λ) (so, for
any λ, (A, (aκ)κ<λ) in the definition of aλ for λ a limit ordinal form a cone,
ensuring aλ is defined)

Diagrammatically,

A
aλ

���������������������

aκ+1
����

aκ



 

��
��

��
��

�
a0

�� ���������������������������

. . . Aλ pλ,κ+1 ��
pλ,κ

��

pλ,0

��. . . Aκ+1
pκ �� Aκ

. . . A0

Proof. Both parts are proved by induction on λ.
(1) a0 =!A is an epi. For the successor case, aλ+1 = ntA(aλ) is an epi, since

ntA takes quotients of A to quotients of A. Finally, for λ a limit ordinal, we
have agreed to define aλ as 〈aκ〉κ<λ only if this mediating map is epi, leaving it
undefined otherwise.

(2) It is trivial that p0 ◦ a1 = !A1 ◦ a1 = !A = a0.
For the successor case, pλ+1 ◦ aλ+2 = ntA(pλ) ◦ ntA(aλ+1) = ntA(aλ) = aλ+1

holds by the induction hypothesis pλ◦aλ+1 = aλ, implying ntA(pλ)◦ntA(aλ+1) =
ntA(aλ) by the definition of the functorial extension of ntA.

For λ a limit ordinal, pλ◦aλ+1 = 〈pκ◦ntA(pλ,κ)〉κ<λ◦ntA(aλ) = 〈pκ◦ntA(pλ,κ)◦
ntA(aκ)〉κ<λ = 〈pκ ◦ ntA(aκ)〉κ<λ = 〈pκ ◦ aκ+1〉κ<λ = 〈aκ〉κ<λ = aλ, from the
induction hypotheses pλ,κ ◦ aλ = aκ, implying ntA(pλ,κ) ◦ ntA(aλ) = ntA(aκ)
by the definition of the functorial extension of ntA, and from the induction
hypotheses pκ ◦ aκ+1 = aκ.

For λ a limit ordinal and κ < λ, pλ,κ ◦ aλ = πλ,κ ◦ 〈aκ〉κ<λ = aκ. ��
It is very important to remember that we only accept limκ<λ Aκ (which is a
limit in C) as Aλ for λ a limit ordinal, if it is a quotient of A (otherwise we take
Aλ to be undefined). This is by no means guaranteed. As the next proposition
shows, this implies that Aλ is also a limit in Quo(A), but the vice versa need
not be true. The carrier of a limit in Quo(A) is not necessarily a limit in C, as
evidenced by our analysis of Example 5 below.

Proposition 6. If Aλ is defined for a limit ordinal (meaning that (Aλ, (pλ,κ)κ<λ)
is a limiting cone in C and aλ = 〈aκ〉κ<λ is epi), then ((Aλ, aλ), (pλ,κ)κ<λ) is a
limiting cone in Quo(A).

Proof. To see that

((Aκ, aκ), pκ, pκ,ι (κ lim. ord., ι < κ))κ<λ

is a diagram in Quo(A) we need that pκ ◦ aκ+1 = aι and pκ,ι ◦ aκ = aι (κ a
limit ordinal, ι < κ) for κ < λ. To see that ((Aλ, aλ), (pλ,κ)κ<λ) is a cone we
also need pλ,κ ◦ aλ = aκ. But we have proved these equalities already.
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To see that ((Aλ, aλ), (pλ,κ)κ<λ) is a limiting cone, we observe that the sole
map to it from a cone ((Q, q), (fλ,κ)κ<λ) in Quo(A) is given by the unique map
from (Q, (fλ,κ)κ<λ) to (Aλ, (pλ,κ)κ<λ) in C. ��
Given that Quo(A) is a preorder, we have learned that (Aκ)κ<λ is an inverse
chain (if all Aκ are defined) and the limit is the infimum.

Lemma 2. If Aλ is defined and Aλ ≤ Aλ+1, then Aλ is the greatest fixed point
of ntA.

Proof. This is standard fixed point theory for preorders. Aλ is a post-fixed point
of ntA, as Aλ ≤ Aλ+1 = ntA(Aλ). And by induction one checks that Q ≤ Aκ

holds for any post-fixed point Q of ntA and any κ: Q ≤ 1 = A0 is trivial;
Q ≤ ntA(Q) ≤ ntA(Aκ) = Aκ+1 follows from the induction hypothesis Q ≤ Aκ,
as ntA is monotone; and, finally, Q ≤ infι<κAι is immediate from the induction
hypotheses Q ≤ Aι (ι < κ). ��
Definition 6. (A, α) is λ-focusing (λ-FA) if Aλ is defined and Aλ

∼= A.

We show that Example 1 is ω-focusing. In fact we claim that, in this case,
Ai = Str(E)/≡i, where ≡i is the equivalence relation defined by s0 ≡i s1 if the
first 2i − 1 elements of s0 and s1 are the same. The claim is clearly true for
i = 0, because ≡0 is the total relation. Assume, as an induction hypothesis, that
Ai = Str(E)/≡i. Then Ai+1 = ntA(Str(E)/≡i) = Str(E)/≡i+1. Now s0 ≡i+1 s1

holds if s0 = e0 ::merge(s00, s01) and s1 = e0 ::merge(s10, s11) with s00 ≡i s10 and
s01 ≡i s11. By the induction hypothesis, this means that the first 2i−1 elements
of s00 and s10 are the same and the first 2i − 1 elements of s01 and s11 are also
the same. In conclusion, the first 1 + (2i − 1) + (2i − 1) = 2i+1 − 1 elements of
s0 and s1 are the same, that is s0 ≡i+1 s1, as claimed.

We have proved that Ai is isomorphic to the set E2i−1 of vectors of length
2i−1, with pi the projection giving the first 2i−1 elements of a vector of length
2i+1 − 1. Standard reasoning shows that limi<ω Ai is Str(E).

Example 2 is also ω-focusing, but the equivalence relations ≡i are different.
For s0 ≡i s1 to hold, if s0 �= s1, it is not enough that they share the first
2i − 1 elements, say e0, . . . , e2i−2. It must moreover be the case that e1 = e2,
e3 = e4 = e5 = e6, . . . , e2i−1−1 = . . . = e2i−2 and the remainders of s0 and s1

must both be in the image of doublei, i.e., consist of groups of 2i equal elements.
There are examples of λ-focusing algebras that do not converge at the first

limit ordinal ω but at later stages. Here is an example that converges at 2ω.

Example 7. Let us use the functor FX = X + N × X in Set. We define an
F -algebra with carrier A = 2ω + 1 = {0, 1, . . . , ω, ω + 1, ω + 2, . . . , 2ω}:

α : (2ω + 1) + N × (2ω + 1) → 2ω + 1
α(inl(x)) = x + 1
α(inr(n, x)) = min(ω + x − n, 2ω).

Theorem 2. λ-FA ⇒ AFA: If an algebra (A, α) is λ-focusing, it is antifounded.
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Proof. Assume that (A, α) is λ-focusing, i.e., that Aλ is defined and Aλ
∼= A.

Then Aλ
∼= A ≤ Aλ+1 trivially, as A is the least element in the preorder Quo(A).

It follows by the previous lemma that Aλ, which is isomorphic to A, is the
greatest fixed point of ntA, i.e., that (A, α) is antifounded. ��
The converse does not hold: Some antifounded algebras are not focusing.

Proposition 7. AFA � ∃λ. λ-FA: Ex. 5 satisfies AFA but not λ-FA for any λ.

Proof. We already proved in Proposition 4 that Example 5 satisfies AFA. Now
we prove that it is not focusing at any ordinal. In fact, we have the following
sequence of iterations of ntA:

A0 = {⊥}, A1 = {0,⊥}, A2 = {0, 1,⊥}, . . . ,
Ai = {0, . . . , i − 1,⊥}, . . . , limi<ω Ai = N ∪ {⊥}.

At the limit, the element ⊥ is not an equivalence class of natural numbers any-
more and the limit limi<ω Ai is not a quotient of A = N. So, in this case, the limit
exists in Set, but is not a limit in the quotient category Quo(A). The reason
that this happens is that, the limit in Set of an inverse chain of quotients given
by equivalence relations is not necessarily the quotient given by the intersection
of these equivalence relations. ��
Notice that (Ai)i<ω has the limit N in Quo(A). So we have to be mindful of the
subtle distinction: λ-FA states that the limit exists in C and happens to be a
quotient; this is a strictly stronger requirement than the condition that the limit
exists in Quo(A).

Theorem 3. λ-FA ⇒ pCRA: If an algebra (A, α) is λ-focusing, it is paramet-
rically recursive.

The proof uses the inverse chain (Aκ)κ<λ+1 as the sequence of codomains for
fuzzy approximations of the solution. The fact that A = Aλ is the inverse limit
establishes that a (sharp) function is achieved. This is analogous to the dual sit-
uation where a (total) solution arises from a sequence of partial approximations
defined on a chain of subsets of the given domain to which the chain is required
to have as the direct limit.

Proof. Assume that (A, α) is λ-focusing, i.e., that Aλ is defined and Aλ =
Aλ+1 = A (we ignore that in general we have isomorphisms, not equalities).

Given (C, γ : C → FC + A), we define, for any κ, a map fκ : C → Aκ by

f0 = !C
fκ+1 = [α[aκ] ◦ Ffκ, aκ+1] ◦ γ

fκ = 〈fι〉ι<κ if κ is a lim. ord.

Diagrammatically,

C

f0 		 !C



C
γ ��

fκ+1 ��

FC + A

F fκ+idA��

C

fκ �� 〈fι〉ι<κ��
fι

��												

A0 = 1 Aκ+1 = ntA(Aκ) FAκ + A
[α[aκ],aκ+1]

�� Aκ = limι<κ Aι Aι
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Simultaneously, we show that pκ ◦ fκ+1 = fκ and pκ,ι ◦ fκ = fι.
The base case p0 ◦ f1 = !A1 ◦ f1 = !C = f0 holds trivially.
For the successor case, we conclude pκ+1 ◦ fκ+2 = ntA(pκ) ◦ [α[aκ+1] ◦Ffκ+1,

]aκ+2 ◦ γ = [ntA(pκ) ◦α[aκ+1] ◦Ffκ+1, ntA(pκ) ◦ ntA(aκ+1)] ◦ γ = [α[aκ] ◦F (pκ ◦
fκ+1), ntA(aκ)]◦γ = [α[aκ]◦Ffκ, aκ+1]◦γ = fκ+1 from the induction hypothesis
pκ ◦ fκ+1 = fκ, using the fact pκ ◦ aκ+1 = aκ, which implies ntA(pκ) ◦α[aκ+1] =
α[aκ]◦Fpκ and ntA(pκ)◦ntA(aκ+1) = ntA(aκ) by the definition of the functorial
extension of ntA.

For κ a limit ordinal, pκ ◦ fκ+1 = 〈pι ◦ ntA(pκ,ι)〉ι<κ ◦ [α[aκ] ◦Ffκ, aκ+1] ◦ γ =
〈pι◦ntA(pκ,ι)◦[α[aκ]◦Ffκ, aκ+1]◦γ〉ι<κ = 〈pι◦[ntA(pκ,ι)◦α[aκ]◦Ffκ, ntA(pκ,ι)◦
ntA(aκ)] ◦ γ〉ι<κ = 〈pι ◦ [α[aι] ◦ F (pκ,ι ◦ fι), ntA(aι)] ◦ γ〉ι<κ = 〈pι ◦ [α[aι] ◦
Ffι, aι+1] ◦ γ〉ι<κ = 〈pι ◦ fι+1〉ι<κ = 〈fι〉ι<κ = fκ follows from the induction
hypotheses pκ,ι ◦ fκ = fι and pι ◦ fι+1 = fι, using the facts pκ,ι ◦ aκ = aι, which
imply ntA(pκ,ι) ◦ α[aκ] = α[aι] ◦ Fpκ,ι and ntA(pκ,ι) ◦ ntA(aκ) = ntA(aι) by the
definition of the functorial extension of ntA.

For κ a limit ordinal and ι < κ, it is straightforward that pκ,ι ◦ fκ = πκ,ι ◦
〈fι〉ι<κ = fι.

Given that Aλ = Aλ+1 = A, which implies that pλ = idA, aλ+1 = idA,
α[aλ] = α, it is immediate that fλ is a solution (in f) of the equation

C
γ ��

f ��

FC + A
Ff+idA��

A FA + A
[α,idA]

��

Indeed, fλ = pλ ◦ fλ+1 = fλ+1 = [α[aλ] ◦ Ffλ, aλ+1] ◦ γ = [α ◦ Ffλ, idA] ◦ γ.
To show that it is the only solution, i.e., that, for any other solution f , we

have f = fλ, we show that aκ ◦ f = fκ. We do this by induction.
The base case a0 ◦ f = !A ◦ f = !C = f0 holds trivially.
We also have aκ+1◦f = ntA(aκ)◦f = ntA(aκ)◦ [α◦Ff, idA]◦γ = [ntA(aκ)◦α◦

Ff, ntA(aκ)]◦γ = [α[aκ]◦F (aκ◦f), ntA(aκ)]◦γ = [α[aκ]◦Ffκ, aκ+1]◦γ = fκ+1,
from the induction hypothesis aκ ◦ f = fκ, using that f is a solution.

For κ a limit ordinal, we get aκ ◦ f = 〈aι〉ι<κ ◦ f = 〈aι ◦ f〉ι<κ = 〈fι〉ι<κ = fκ

from the induction hypotheses aι ◦ f = fι (for ι < κ).
From this basis, the desired result f = fλ is already immediate: as aλ = idA,

it is trivial that f = aλ ◦ f = fλ. ��
Finally, notice that since pCRA does not imply AFA, it cannot imply λ-FA.
Example 6 shows this: We proved that it satisfies pCRA but not AFA, hence it
cannot satisfy λ-FA either.

5 Conclusion

We have looked at some notions of support for general structured corecur-
sion/coinduction. They are all properties on an algebra (A, α) of a fixed functor
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F . The conditions CRA/pCRA state that we can uniquely solve all structured
recursive diagrams based on (A, α). The condition AFA asserts that the principle
of bisimilarity holds for the carrier A: Every equivalence on A that is finer than
its own structural refinement must be equality. Finally, λ-FA says that we can
reconstruct A by iterating structural refinement.

The relations between the four conditions CRA, pCRA, AFA, and λ-FA are
summarized by the following diagram. The solid lines indicate implications, the
dotted lines indicate non-implications.

λ-FA Th.2

��
Th.3

��

AFA
Prop.7

•

Th.1��

Prop.4

•

pCRA-ex
Prop.1 ��

pCRA�� ��
Prop.5

•

pCRA-un
Prop.1��

CRA-ex CRA�� ��
Prop.3

•
Prop.2

•

CRA-un

We conclude from this study that general structured corecursion/coinduction
is more subtle and, at the same time, also more revealing than general struc-
tured recursion/induction from which we drew inspiration. In particular, we
have seen that, for Set-like categories, straightforward dualization of the differ-
ent equivalent conditions of recursion/induction leads to inequivalent conditions
of corecursion/coinduction. This could be an indication that some of the con-
ditions are not really the right ones: perhaps they work for recursion/induction
in Set incidentally, but for smooth generalization to other categories and du-
alization one should proceed from different conditions. While we believe firmly
that recursiveness [corecursiveness] are natural conditions, it may turn out that
some yet unconsidered versions of wellfoundedness [antifoundedness] are more
robustly equivalent to recursiveness [corecursiveness] than the versions we have
considered here.

To achieve progress we must fully understand each of the conditions we have
considered and the role that the different viable assumptions play for the impli-
cations and non-implications between them. We can then seek variants that are
more in line with our intuitive grasp. We expect that this enquiry will produce
new and exciting results.

We would like to be able to tell a type-theoretic version of the story, i.e., to
develop a dual Bove-Capretta method (allowing a general corecursive definition
to be justified by a productivity proof). For this, we must overcome the discrep-
ancies already commented, but likewise it is important that all our constructions
can be made constructively (computationally) meaningful.

We would also very much like to relate our work to approaches to recur-
sion/corecursion based on Banach’s fixed point theorem [7,3].
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tributed at Gödel 1996 Brno (August 1996), http://www.monad.me.uk/ordinals/

16. Taylor, P.: Practical foundations of mathematics. Cambridge Studies in Advanced
Mathematics, vol. 59, xi+572. Cambridge Univ. Press, Cambridge (1999)

17. Turner, D.A.: Total functional programming. J. of Univ. Comput. Sci. 10(7), 751–
768 (2004)

18. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1), 5–26 (1999)

http://www.monad.me.uk/ordinals/

	Corecursive Algebras: A Study of General Structured Corecursion
	Introduction
	Corecursive Algebras
	Antifounded Algebras
	Focusing Algebras
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




