Speeding Up Simulation of SystemC
Using Model Checking*

Nicolas Blanc! and Daniel Kroening?

1 ETH Zurich, Switzerland
2 Oxford University, Computing Laboratory, UK

Abstract. SystemC is a system-level modeling language that offers a
wide range of features to describe concurrent systems. The SystemC stan-
dard permits simulators to implement a deterministic thread scheduling
policy, which often hides concurrency-related design flaws. We present a
novel compiler for SystemC that integrates a formal race analysis based
on Model Checking techniques. The key insight to make the formal anal-
ysis scalable is to apply the Model Checker only to small partitions of
the model. Our compiler produces a simulator that uses the race anal-
ysis information at runtime to perform partial-order reduction, thereby
eliminating context switches that do not affect the result of the simu-
lation. Experimental results show simulation speedups of one order of
magnitude and better.

1 Introduction

Time-to-market requirements have rushed the Electronic Design Automation
(EDA) industry towards design paradigms that require a very high level of ab-
straction. This high level of abstraction can shorten the design time by enabling
the creation of fast executable verification models. This way, bugs in the de-
sign can be discovered early in the design process. As part of this paradigm,
an abundance of C-like system design languages has emerged. A key feature is
joint modeling of both the hardware and software component of a system using a
language that is well-known to engineers. A promising candidate for an industry
standard is SystemC.

SystemC offers a wide range of language features such as hierarchical design
by means of a hierarchy of modules, arbitrary-width bit-vector types, and con-
currency with related synchronization mechanisms. SystemC permits different
levels of abstraction, from a very high-level specification with big-step transac-
tions down to the gate level. The execution model of SystemC is driven by events,
which start or resume processes. In addition to communication via shared vari-
ables, processes can exchange information through predefined communication
channels such as signals and FIFOs.

* This paper is an extended version of a conference paper that appeared at ICCAD
2008 [1]. This research is supported by ETH research grant TH-21/05-1 and by the
Semiconductor Research Corporation (SRC) under contract no. 2006-TJ-1539.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 1-16,[2009.
© Springer-Verlag Berlin Heidelberg 2009

2 N. Blanc and D. Kroening

Technically, SystemC programs rely on a C++ template library. SystemC
modules are therefore plain C++ classes, which are compiled and then linked
to a runtime scheduler. This provides a simple yet efficient way to simulate the
behavior of the system. Methods of a module may be designated as threads or
processes. Interleaving between those threads is performed at pre-determined
program locations, e.g., at the end of a thread or when the wait() method
is called. When multiple threads are ready for execution, the ordering of the
threads is nondeterministic. Nevertheless, the SystemC standard allows simu-
lators to adopt a deterministic scheduling policy. Consequently, simulators can
avoid problematic schedules, which often prevents the discovery of concurrency-
related design flaws.

When describing synchronous circuits at the register transfer level, system
designers can prevent races by restricting inter-process communication to deter-
ministic communication channels such as sc signals. However, the elimination
of races from the high-level model is often not desirable: In practice, system
designers often use constructs that yield races in order to model nondetermin-
istic choices implicit in the design. In particular, models containing standard
transaction-level modeling (TLM) interfaces are frequently subject to race phe-
nomena. TLM designs usually consist of agents sharing communication resources
and competing for access to them. An example is a FIFO with two clock domains:
the races model the different orderings of the clock events that can arise.

Contribution. Due to the combinatorial explosion of process interleavings, test-
ing methods for concurrent software alone are unlikely to detect bugs that depend
on subtle interleavings. Therefore, we propose to employ formal methods to stat-
ically pre-compute thread-dependency relations and predicates that predict race
conditions, and to use this information subsequently during the simulation run
to prune the exploration of concurrent behaviors. There are two possible ways
of exploiting the information:

1. In general, proving or refuting process independence requires precise static
analysis. From a designer perspective, the statically computed dependency
relations between the threads provide key insights into potential races.

2. The statically computed race conditions improve the performance of partial
order reduction, which results in a greatly reduced number of interleavings.
The remaining interleavings can then be explored exhaustively, which is a
valuable validation aid.

We have implemented this technique in ScooT [2], a novel research compiler
for SystemC. The static computation of the race conditions relies on a Model
Checker. The technique we propose is independent of the specific formal en-
gine. We have performed our experiments using SATABS [3], a SAT-based Model
Checker implementing predicate abstraction, and CBMC, a SAT-based bounded
Model Checker. Our experimental results indicate that strong race conditions can
be computed statically at reasonable cost, and result in a simulation speedup of
a factor of ten or better.

Speeding Up Simulation of SystemC Using Model Checking 3

Related Work

Concurrent threads with nondeterministic interleaving semantics may give rise
to races. A data race is a special kind of race that occurs in a multi-threaded
application when several processes enter a critical section simultaneously [4].
Flanagan and Freud use a formal type system to detect race-condition patterns
in Java [5]. Eraser is a dynamic data-race detector for concurrent applications [6].
It uses binary rewriting techniques to monitor shared variables and to find fail-
ures of the locking discipline at runtime. Other tools, such as RacerX [7] and
Chord [§], rely on classic pointer-analysis techniques to statically detect data
races. Data races can also occur in SystemC if processes call synchronization
routines while holding shared resources.

Model Checkers are frequently applied to the verification of concurrent appli-
cations, and SystemC programs are an instance; see [9] for a survey on software
Model Checking. Vardi identifies formal verification of SystemC models as a re-
search challenge [10]. Prior applications of formal analysis to SystemC or similar
languages are indeed limited. We therefore briefly survey recent advances in the
application of such tools to system-level software. DDVerify is a tool for the
verification of Linux device drivers [T1]. It places the modules into a concurrent
environment and relies on SATABS for the verification. KISS is a tool for the
static analysis of multi-threaded programs written in C [12]. It reduces the ver-
ification of a concurrent application to the verification of a sequential program
with only one stack by bounding the number of context switches. The reduc-
tion never produces false alarms, but is only complete up to a specific number
of context switches. KISS uses SLAM [I3], a Model Checker based on Predicate
Abstraction [TAU15], to verify the sequential model.

Verisoft is a popular tool for the systematic exploration of the state space of
concurrent applications [I6] and could, in principle, be adapted to SystemC. The
execution of processes is synchronized at visible operations, which are system calls
monitored by the environment. Verisoft systematically explores the schedules
of the processes without storing information about the visited states. Such a
method is, therefore, referred to as a state-less search. Verisoft’s support for
partial-order reduction relies exclusively on dynamic information to achieve the
reduction. In a recent paper, Sen et al. propose a modified SystemC-Scheduler
that aims to detect design flaws that depend on specific schedules [I7]. The
scheduler relies on dynamic information only, i.e., the information has to be
computed during simulation, which incurs an additional run-time overhead. In
contrast, SCOOT statically computes the conditions that guarantee independence
of the transitions. The analysis is very precise, as it is based on a Model Checker,
and SCOOT is therefore able to detect opportunities for partial-order reduction
with little overhead during simulation.

Flanagan and Godefroid describe a state-less search technique with support
for partial-order reduction [I8]. Their method runs a program up to comple-
tion, recording information about inter-process communication. Subsequently,
the trace is analyzed to detect alternative transitions that might lead to differ-
ent behaviors. Alternative schedules are built using happens-before information,

4 N. Blanc and D. Kroening

which defines a partial-order relation on all events of all processes in the sys-
tem [I9]. The procedure explores alternative schedules until all relevant traces
are discovered. Helmstetter et al. present a partial-order reduction technique for
SystemC [20]. Their approach relies on dynamic information and is similar to
Flanagan and Godefroid’s technique [I8]. Their simulator starts with a random
execution, and observes visible operations to detect dependency between the
processes and to fork the execution. Our technique performs a powerful analy-
sis statically that is able to discover partial-order reduction opportunities not
detectable using only dynamic information.

Kundu et al. propose to compute read/write dependencies between SystemC
processes using a path-sensitive static analysis [21]. At runtime, their simulator
starts with a random execution and detects dependent transitions using static in-
formation. The novelty of our approach is to combine conventional static analysis
with Model Checking to compute sufficient conditions over the global variables
of the SystemC model that guarantee commutativity of the processes.

Wang et al. introduce the notion of guarded independence for pairs of tran-
sitions [22]. Their idea is to compute a condition (or guard) that holds in the
states where two specific transitions are independent. Our contribution in this
context is to compute these conditions for SystemC using a Model Checker.

2 Partial-Order Reduction for SystemC

In this section, we provide a brief introduction to the concurrency model of
SystemC and describe the challenges of applying partial-order reduction in the
context of SystemC.

2.1 An Overview of the Concurrency Model of SystemC

The dominating concurrency model for software permits asynchronous inter-
leavings between threads, that is, running processes are preempted. SystemC is
different as it is mainly designed for modeling synchronous systems. Its sched-
uler has a co-operative multitasking semantics, meaning that the execution of
processes is serialized by explicit calls to a wait () method, and that threads are
not preempted.

The SystemC scheduler tracks simulation time and delta cycles. The simula-
tion time is a positive integer value (the clock). Delta cycles are used to stabilize
the state of the system. A delta cycle consists of three phases: evaluate, update,
and notify.

1. The evaluation phase selects a process from the set of runnable processes and
triggers or resumes its execution. The process runs immediately up to the
point where it returns or invokes the wait function. The evaluation phase is
iterated until the set of runnable processes is empty. The SystemC standard
allows simulators to choose any runnable process, as long as the policy is
consistent between runs.

Speeding Up Simulation of SystemC Using Model Checking 5

Program 1. A SystemC module with a race condition

SC MODULE (m) {
sc clock clk; int pressure;

void guard () {
if (pressure = PMAX) pressure = PMAX—1;
}

void increment (){ pressure++; }

SC CTOR (m) {
SC METHOD (guard); sensitive << clk;
SCMETHOD (increment); sensitive << clk;
}
};

2. In order to simulate synchronous executions, processes can delay change-
of-state effects by scheduling update requests. After the evaluation phase
terminates, the kernel executes any pending update request. This is called the
update phase. Signal assignments are typically implemented using the update
mechanism. Therefore, signals keep their value for an entire evaluation phase.

3. Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such pro-
cesses to the set of runnable processes.

The scheduler executes delta cycles until the set of runnable processes is empty
at the beginning of the evaluation phase. Subsequently, it updates the simulation
time and notifies processes waiting for the time event.

2.2 A Motivating Example

Program [[serves as running example and illustrates the need for a combination
of Model Checking and partial-order reduction. The module m declares two
processes guard and increment. The process guard watches the value of shared
variable pressure, which shall not exceed the value PMAX and is incremented
by process increment. Both processes are sensitive to the clock signal clk. The
semantics of the SystemC scheduler guarantees that a method process is executed
without interruption up to the point where it returns. Thus, the scheduler has to
choose either the scheduling sequence (guard; increment) or (increment; guard)
each time the clock is updated. Consequently, the pressure can exceed the limit if
its value reaches PMAX and the process increment is triggered before guard. It
is clear that the number of traces grows exponentially with the number of clock
cycles. As a result, systematic exploration of all interleavings rapidly becomes
unmanageable, and the bad behavior might go unnoticed.

A conventional static analysis can discover that guard reads the pressure and
that increment modifies the pressure, concluding that the processes are indeed

6 N. Blanc and D. Kroening

dependent and that all interleavings must be explored. Similarly, a conventional
dynamic analysis would always detect a read/write dependency between guard
and increment, forcing the simulator to execute all schedules. However, such
analyses fail to detect that guard and increment are commutative in most cases.
Our tool uses a Model Checker to compute the weakest predicate over the pre-
state variables that guarantees the absence of races between the processes. In
this example, it is easy to see that the execution of increment and guard is
commutative if and only if

pressure = PMAX —1 A pressure # PMAX

holds. SCOOT generates a simulator for the systematic exploration of the state
space that checks this condition at runtime to avoid exploring redundant
schedules.

2.3 Background on Partial-Order Reduction

Partial-order reduction is a technique to explore the state space of concurrent
systems in a way that preserves the soundness of the verification result [2312425].
The key idea is to exploit commutativity of transitions to obtain a subset of
all possible interleavings from a state such that the reduced state graph re-
tains a representative behavior for each behavior that is removed. SCOOT uses
partial-order reduction to generate a simulator that explores only necessary in-
terleavings. We briefly survey the standard definitions from the literature in this
section [25].

The literature distinguishes between partial-order reduction based on persis-
tent sets and reduction based on sleep sets. The two approaches are orthogonal
and achieve better results when combined. Both techniques compute a subset of
the runnable transitions for each visited state and restrict future exploration to
transitions in this set.

We denote the set of states and the set of processes of a SystemC model
by S and 6, respectively. We denote the set of enabled (runnable) processes
(transitions) in a state s by Enabled(s), i.e., Enabled is a mapping from S to
2P (0). Processes are relations between states. We write s > ¢ to denote that the
state changes from s to ¢t by executing process a.

Definition 1. [22] Two transitions o and 3 are guarded independent with
respect to a guard ¢ C S if and only if for all s € ¢ and t € S the following hold:

1. € Enabled(s) A s 5t =
B € Enabled(s) < 3 € Enabled(t)

2. 5 € Enabled(s) N s LAV

« € Enabled(s) < o € Enabled(t)
3. o, B € Enabled(s) =

(s,t) eaof e (s,t) € o

The first two conditions guarantee that « and 3 cannot disable nor enable each
other in s, while the third condition requires « and 3 to be commutative in s.

Speeding Up Simulation of SystemC Using Model Checking 7

(1) Exploration using persistent sets (2) Ezxploration using sleep sets

Fig. 1. Example of partial-order reduction using persistent sets (1) and sleep sets (2).
The reduced state graph contains only the transitions depicted with solid lines.

ScooT uses Model Checking to compute the condition ¢. Transitions « and (3
are independent in s if and only if «, 0 are guarded independent with respect to

the guard {s} [25].

Definition 2. [25] Let D C 6x8 be a symmetric and reflexive relation over the
transitions of the system. The relation D is a valid dependency relation for 6 if
and only if (a, B) € D implies that «, 3 are independent in all reachable states.

Similar to [2I], SCOOT uses a data-flow analysis in order to compute an over-
approximating dependency relation.

Definition 3. [25] Let (S, So,0) be a transition system, and sy € S denote one
of its states. A set of transitions T C Enabled(so) is persistent in sg if and only
if for all B € T and all sub-traces sg e Y . Sp+1 obtained from
transitions a; € T, B and «y; are independent in s;.

The Definition [3] is, thus, concerned about what can happen in the future. The
persistent-set technique computes a persistent set of runnable transitions in each
visited state and restricts the exploration to transitions in this set only. Persis-
tent sets are typically computed using information from a preliminary static
analysis.

Figure[Il1 illustrates the effects of the persistent-set technique. In state sg, the
exploration uses the persistent set T' = {a} to avoid visiting some of the states. In
contrast, the sleep-set technique maintains a set of runnable transitions that can
be skipped during the exploration (the sleep set). The method is concerned with
branching information from the past. Figure[Ill2 shows a typical exploration using
sleep sets. Unlike the previous approach, the sleep-set technique only reduces
the number of explored transitions and has no effect on the number of explored
states. The exploration backtracks early when the sleep set contains all runnable
transitions.

3 Implementation

3.1 Overview of Scoot

Figure Pl shows an overview of ScooT. We use an in-house C++ front-end
to translate the SystemC source files into a control flow graph (CFG). The

8 N. Blanc and D. Kroening

Typechecker
Simplified version C 1-Flow Graph e
ontrol-Flow Gra
of tho p C++ Model
SystemC header files Pointer Analysis
Module-Hierarch +
systemc.h Analysis Y Q‘w—
Race—Condition
Analysis
User—provided . Exhaustive
ser—provide Scheduler Synthesis Simul
SystemC models fmutator
Code Re—synthesis
S coot

Fig. 2. Overview of ScooT

front-end of SCOOT accepts a large subset of C++ including inheritance, over-
loading, virtual functions, and many forms of templates.

ScooT abstracts implementation details of the SystemC library by using sim-
plified header files that declare only relevant aspects of the API and omit the
actual implementation. Subsequently, SCOOT uses static analysis techniques to
discover the module hierarchy, the sensitivity list of processes, and the port
bindings. The next step is the computation of race conditions for each pair of
processes, which is explained in Sec. ScooT then generates the code for the
exhaustive simulator. Finally, SCOOT translates the CFG back to a flat C++
program, which no longer requires the SystemC library. We use g++ to compile
the C++ file and to obtain an executable simulator.

We forbid dynamic creation of processes and dynamic modifications of sensi-
tivity lists (next trigger functions). The support for SystemC currently comprises
static creation of processes, static sensitivity lists, waiting using sensitivity lists,
waiting for a specific event, waiting for a certain amount of time, immediate
notification, delta notification, time notification, and communication channels
such as sc signals, sc fifos, and tlm fifos. We have a broad support for the gen-
eral features of C++; e.g., our support for STL container classes is described

in [26].
3.2 A Scheduler with Partial-Order Reduction

Algorithm [M is SCOOT’s implementation of the evaluation phase. In contrast to
the related work, evaluation phase schedules runnable processes using informa-
tion statically collected to reduce the number of interleavings explored. We are
not aware of tools that compute equally strong conditions statically.

The evaluation phase terminates once the set of runnable processes is empty.
The algorithm performs partial-order reduction using persistent sets and sleep
sets, and is a variation of techniques presented by Godefroid [25]. On line 3] the
procedure calls the function runnable() to check if the set of runnable processes
is empty before proceeding to the next iteration.

Speeding Up Simulation of SystemC Using Model Checking 9

Algorithm 1. Evaluation Phase: the commutativity condition checked by
commutative(p;, p;) is a predicate over states computed statically at compile-
time

void evaluation phase ()

2 Set sleeps := 0;
while (runnable()#0) do
4 persistents := get pers ();
awakes := persistents \ sleeps;
6 if (awakes=() then exit (0);
Map next sleeps; // Process —> Set
8 for all (Process p; € awakes) do
for all (Process p; € sleep) do
10 if (commutative(pi,p;))
next sleeps|[pi;] := next sleeps|[p;] U{p;};
12 end for
sleep := sleepU{pi};
14 end for
Process p := nondet select (awakes);
16 run(p);
sleeps := next sleeps|p];
18 end while

At simulation time, the scheduler calls get pers to compute the set persistents
of persistent processes. The subsequent part of the algorithm uses the set sleeps,
declared outside the main loop on line B to perform partial-order reduction.
On line [, the set awakes consists of the persistent processes not in sleeps. If
the set of awaken processes is empty (line [6]), then other traces are covering all
subsequent behaviors, and therefore, the simulator stops the execution. Other-
wise, the scheduler computes the sleep sets for the next iteration using the map
next sleeps, which maps processes to a set of processes (lines [[HI4)). One line [0}
the call to commutative returns true if the processes p; and p; are commuta-
tive in the current state. The scheduler reduces the computation of conditional
independence to the computation of commutativity conditions by considering
that all the processes are always enabled — if p ¢ Enabled(s), then this is in-
terpreted as s 2, 5. This way, two processes are independent in the current
state if and only if they are commutative in this state. SCOOT relies on Model
Checking to compute a conservative condition that guarantees commutativity of
the processes in the current state; the details of this pre-computation are pre-
sented in the following subsection. In contrast, traditional approaches need to
rely on either executing the processes to determine which transitions are inde-
pendent in the current state, which adds overhead, or on an imprecise data-flow
analysis.

Finally, in lines [8HI7, the scheduling algorithm nondeterministically runs a
process from awakes and computes the sleep set of the next iteration.

10 N. Blanc and D. Kroening

3.3 Computing the Process Commutativity Conditions

We present an iterative technique to compute the commutativity condition for
a given pair of processes p; and po based on formal analysis. The condition is
checked during simulation by Alg. [[l In general, SystemC processes need not
terminate, and thus computing the strongest possible commutativity condition
for a given pair of processes p; and p2 is undecidable. We compute a conservative
approximation by applying a Model Checker to the harness given as Program 21

Program 2. Harness for the analysis of race conditions for a given pair of
processes pl and p2. The pre-condition ¢ is true initially, and is then iteratively
strengthened

assume (¢) ;

2 s§p := current state;
pr(); p2();

4 812 := current state;
current state := sp;

o p2(); p1();
s21 := current state;

s assert (si2 # s2,1);

The basic idea of the harness is to run p;(); p2(), and compare the result with
the result of running p2(); p1() on the same initial state. The harness operates as
follows: Initially, ¢ is set to true. The assume statement in the first line restricts
the search to states that satisfy ¢. Then the values of the visible variables are
stored in sg, the pair of processes pi(); p2() is run, and the state is stored in sq 2.
The state is restored to sg, and p2(); p1() is run. The state is stored in sg ;.

ScooT passes the harness to a Model Checker to check the reachability of the
last line, which is modeled by means of an assertion. If the Model Checker returns
a counterexample, we have a trace = with an initial state satisfying the initial
condition ¢, passing through both processes, and ending in a state that violates
the assertion. The path therefore begins in a state in which the two processes
are commutative. SCOOT then computes the weakest precondition of s1 2 = 521
alongside that path. Let P, denote this condition. The executions of p1();p2()
and p2(); p1() from a state s terminate and yield an equal state if s satisfies Py.
Consequently, P, is an under-approximation of the commutativity condition
for p; and po. At this point, SCOOT strengthens ¢ using =P, yielding ¢'. This
removes the trace 7w and any trace similar to 7 that goes through the same control
locations. SCOOT iterates this process until the Model Checker stops reporting
counterexamples. At this point, the predicate P =\/_ P represents the weakest
condition such that the executions of p1(); p2() and p2(); p1() terminate and that
p1 and po are commutative.

In practice, we observe that the number of facts that SCOOT tracks during
the computation of the weakest precondition of s; 2 = s2 1 may explode. There-
fore, instead of comparing the entire state vectors s; 2 and sg 1, we restrict the

Speeding Up Simulation of SystemC Using Model Checking 11

comparison to the variables written by the processes. This set is determined by
means of a standard data-flow analysis.

In the following, we elaborate on our integration of the strengthening loop
into SATABS, a Model Checker based on predicate abstraction. Note that our
approach is independent of the particular Model Checking engine. The general
idea can be extended in different directions. As an example, we can adapt the
strengthening loop to operate on infinite traces using a Model Checker for live-
ness properties such as Terminator [27], or we can replace the Model Checker
with a testing engine to discover terminating traces at the cost of code-coverage
guarantees.

Strengthening Using Predicate Abstraction. Predicate Abstraction is a
technique that abstracts a transition system by mapping sets of concrete states
to a new, smaller abstract state space in a way that conserves the relevant
behaviors of the system [I4JI5]. Each predicate in the abstract model is rep-
resented by a Boolean variable, while the original variables are removed. The
abstract program is created using existential abstraction, which is a conserva-
tive abstraction for reachability properties. If the property holds on the abstract
model, it also holds on the original program. In case a trace in the abstract model
violates the property, the feasibility of the counterexample must be tested in the
concrete model. If the counterexample can be simulated on the original pro-
gram, it is reported to the user. The counterexample is called spurious if it does
not correspond to a concrete trace. In that case, a refinement procedure adds
new predicates in a way that removes the spurious trace. This is automated by
Counterexample Guided Abstraction Refinement (CEGAR) [28] and promoted
by the Model Checker SLAM [I3]. Predicate abstraction has been applied to
SpecC [29] and SystemC [30]. Figure Bl shows the integration of our technique
into SATABS. After strengthening, SATABS retains the abstract model obtained
during previous iterations.

Concrete Abstract . No trace
program @(Model Checking f———»®
End
Abstraction ¢ Abstract trace
Simulation
Spurious Concrete
trace trace T
Refinement Strengthening ¢
New predicates ¢’
]

Fig. 3. Iterative computation of the process commutativity condition using predicate
abstraction

12 N. Blanc and D. Kroening

4 Experimental Evaluation

In this section, we evaluate the benefits of integrating our partial-order reduction
into a simulator that examines all schedules exhaustively using a backtracking
search. The experiments that we present are difficult instances. Commutativity of
processes depends on control flow and data, and the computation of the condition
is susceptible to the state-space explosion problem. We obtained our results on
a 3GHz Linux machine. We make the benchmarks and the tool available for
experimentation by other researchers at www.cprover.org/scoot/ .

4.1 The Running Example

We continue our running example (Program [Il). Figure @l depicts the number
of explored transitions as a function of the number of simulation steps using
persistent and sleep sets (P+S) and without partial-order reduction (No-POR).
We set PMAX to 10. Our simulator performs a state-less search, that is, the
simulator replays transitions to backtrack. Those transitions are counted only
once. With this technique, the number of transitions explored during simulation
grows quadratically with the number of steps, whereas without partial-order
reduction, the curve grows exponentially. As mentioned before, a conventional
dynamic analysis would always detect a read/write dependency between the two
processes, forcing the simulator to explore all schedules.

le+14

"P+S

le+12

le+10

le+08

le+06

Explored Transitions

10000

100

0 5 10 15 20 25 30 35 40
Simulation Steps

Fig. 4. Number of transitions explored at runtime as a function of the number of
simulation steps

4.2 State Machines

We use two different benchmarks to evaluate the benefit of statically computed
race conditions. The first benchmark (B1) consists of a synchronous model with
three dependent processes. One process plays the role of a server waiting for re-
quests, while the other two compete for access to the service. Program [contains
the skeleton of the benchmark. When triggered, the clients and the server execute

Speeding Up Simulation of SystemC Using Model Checking 13

Program 3. Skeleton of Benchmark B1

bool locked; int op;
2 void process client () {

if (!locked){ op=get pid(); locked=true;}
.

void process server (){
6 switch (state) {

8 case Idle: {switch(op) {...} break;}
case End: {state = Idle; locked = false;}
10 }
}

functions process client and process server, respectively. The clients communi-
cate with the server via two shared variables op and locked. If locked is set, then
the server is busy processing the request op. Otherwise, the clients compete for
access to the service. The processes are sensitive to a clock. Figure [compares
the number of explored transitions, and the total exploration time as a func-
tion of the number of simulation steps. We present results without partial-order
reduction (No-POR) and using a combination of sleep sets and persistent sets
(P+S). The exploration time is limited to thirty minutes (1800 seconds).

The results indicate that partial-order reduction using statically computed
commutativity conditions is able to significantly reduce both the number of ex-
plored transitions and the exploration time by about two to three orders of
magnitude. With partial-order reduction, the simulator can exhaustively cover
all the relevant behaviors up to twelve simulation steps in less than thirty min-
utes, whereas the naive approach already times out after seven simulation steps.

Our second benchmark (B2) consists of two synchronous state machines com-
municating via shared variables. The model has three interdependent processes,

le+07 ————T——————7 10000
1e+06 1000 F 4
100000 '
2 _ 100 E
£ 10000 8
z 2 10 :
= 1000 Rk
& 5
** & 1]
100
10 0.1 1
1 0.01 P N s SR
1 23 45 6 7 8 9101112
Simulation Steps Simulation Steps

Fig. 5. Performance effect of static partial-order reduction on B1

14 N. Blanc and D. Kroening

Table 1. Time to compute the race conditions for each of the process-pairs using
SATABs and CBMC. The timeout is set to ten minutes.

Benchmark Pair SATABS [s] CBMC [s]
B1 0 <1 <1
B1 1 3 <1
B1 2 3 <1
B2 0 76 TO
B2 1 19 5
B2 2 19 2

which are sensitive to the clock. The state machines are implemented using case
switches. On this benchmark, partial-order reduction reduces the simulation time
and the number of explored transition by one order of one magnitude.

For each pair of processes, Table [Il shows the time required for the static
analysis running SATABS and CBMC. The cost for B1 is negligible using both
SATABS and CBMC. The results for B2 indicate that CBMC is faster than
SATABS on the second and third pair of processes but times out on the first
one, whereas SATABS provides a result within two minutes. Note that the com-
putation of these conditions can be distributed onto multiple machines, as the
computation for each pair of processes is independent. Furthermore, the preci-
sion of the analysis can be controlled by bounding the number of strengthening
iterations, which yields a conservative approximation. Finally, as demonstrated
by the experiments, the time required for a full exploration grows exponentially
with the number of simulation steps, and therefore, the time spent statically for
a precise analysis eventually pays off.

5 Conclusion

We presented SCOOT, a novel compiler for SystemC that integrates static anal-
ysis and formal verification techniques in order to improve simulation perfor-
mance. We invoke a modified software Model Checker on each pair of dependent
transitions in order to compute a sufficient condition for commutativity of the
transitions. Our technique benefits from the fact that SystemC processes are
not preempted, and thus, only few such pairs have to be checked. Note that the
Model Checker is never applied to the entire model, but only to pairs of tran-
sitions — the static part of the analysis is therefore typically polynomial in the
size and number of processes.

ScooT uses the commutativity condition during simulation in order to elim-
inate unnecessary interleavings. Our analysis is fully automatic and requires no
annotation of the source code by the user. Using Model Checking, our analysis is
able to detect reduction opportunities that depend on subtle control-flow prop-
erties. The experimental results indicate that our formal race-analysis technique
produces valuable information for pruning the state space at runtime.

Speeding Up Simulation of SystemC Using Model Checking 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In:
Proceedings of ICCAD 2008, pp. 356-363. IEEE, Los Alamitos (2008)

Blanc, N., Kroening, D., Sharygina, N.: Scoot: A tool for the analysis of SystemC
models. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 467-470. Springer, Heidelberg (2008)

. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate

abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570-574. Springer, Heidelberg (2005)

. Netzer, R.H.B., Miller, B.P.: What are race conditions? Some issues and formal-

izations. ACM Lett. Program. Lang. Syst. 1, 74-88 (1992)

. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: Programming

language design and implementation (PLDI), pp. 219-232. ACM, New York (2000)

. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A

dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15, 391-411 (1997)

. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and

deadlocks. In: Operating systems principles (SOSP), pp. 237-252. ACM, New York
(2003)

. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: Pro-

gramming language design and implementation (PLDI), pp. 308-319. ACM, New
York (2006)

. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques

for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 27, 1165-1178 (2008)

Vardi, M.Y.: Formal techniques for SystemC verification. In: Design Automation
Conference (DAC), pp. 188-192. ACM, New York (2007)

Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concur-
rent Linux device drivers. In: Automated software engineering (ASE), pp. 501-504.
ACM, New York (2007)

Qadeer, S., Wu, D.: KISS: keep it simple and sequential. SIGPLAN Not. 39, 14-24
(2004)

Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 1-3. ACM, New York (2002)
Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997)
Ball, T., Rajamani, S.: Boolean programs: A model and process for software anal-
ysis. Technical Report MSR-TR~2000-14, Microsoft Research (2000)

Godefroid, P.: Software model checking: The VeriSoft approach. Form. Methods
Syst. Des. 26, 77-101 (2005)

Sen, A., Ogale, V., Abadir, M.S.: Predictive runtime verification of multi-processor
SoCs in SystemC. In: Design Automation Conference (DAC), pp. 948-953. ACM,
New York (2008)

Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of programming languages (POPL), pp. 110-121. ACM,
New York (2005)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558-565 (1978)

16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

N. Blanc and D. Kroening

Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic genera-
tion of schedulings for improving the test coverage of systems-on-a-chip. In: Formal
Methods in Computer Aided Design (FMCAD), pp. 171-178. IEEE Computer So-
ciety, Los Alamitos (2006)

Kundu, S., Ganai, M., Gupta, R.: Partial order reduction for scalable testing of
SystemC TLM designs. In: Design Automation Conference (DAC), pp. 936-941.
ACM, New York (2008)

Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382-396.
Springer, Heidelberg (2008)

Peled, D.: All from one, one for all: On model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer, Heidel-
berg (1993)

Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377-390. Springer, Heidelberg
(1994)

Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS. Springer, Heidelberg (1996)

Blanc, N., Groce, A., Kroening, D.: Verifying C4++ with STL containers via predi-
cate abstraction. In: 22nd IEEE International Conference on Automated Software
Engineering (ASE), pp. 521-524. IEEE, Los Alamitos (2007)

Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415-418. Springer, Heidelberg
(2006)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154-169. Springer, Heidelberg (2000)

Clarke, E., Jain, H., Kroening, D.: Verification of SpecC using predicate abstrac-
tion. Form. Methods Syst. Des. 30, 5-28 (2007)

Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hard-
ware/software partitioning. In: Formal Methods and Models for Co-Design (MEM-
OCODE), pp. 101-110. IEEE Computer Society, Los Alamitos (2005)

	Speeding Up Simulation of SystemC Using Model Checking
	Introduction
	Partial-Order Reduction for SystemC
	An Overview of the Concurrency Model of SystemC
	A Motivating Example
	Background on Partial-Order Reduction

	Implementation
	Overview of Scoot
	A Scheduler with Partial-Order Reduction
	Computing the Process Commutativity Conditions

	Experimental Evaluation
	The Running Example
	State Machines

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

