

Lecture Notes in Computer Science 5902
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marcel Vinícius Medeiros Oliveira
Jim Woodcock (Eds.)

Formal Methods:
Foundations
and Applications

12th Brazilian Symposium on Formal Methods, SBMF 2009
Gramado, Brazil, August 19-21, 2009
Revised Selected Papers

13

Volume Editors

Marcel Vinícius Medeiros Oliveira
Universidade Federal do Rio Grande do Norte
Departamento de Informática e Matemática Aplicada
Campus Universitário, Lagoa Nova, 59078-900 Natal, RN, Brazil
E-mail: marcel@dimap.ufrn.br

Jim Woodcock
University of York
Department of Computer Science
Heslington, York YO1 7BZ, UK
E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: 2009938928

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, D.1, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-10451-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10451-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12793839 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at SBMF 2009: the Brazilian Sym-
posium on Formal Methods, held during August 19–21, 2009 in Gramado, Rio
Grande do Sul, Brazil. The SBMF programme included three invited talks given
by Leonardo de Moura (Microsoft Research), Sebastian Uchitel (University of
Buenos Aires and Imperial College London), and Daniel Kröning (University of
Oxford).

The symposium was accompanied by two short courses:

– Introduction to Software Testing, given by Márcio Eduardo Delamaro (Uni-
versity of São Paulo)

– Formal Models for Automatic Test Case Generation, given by Patŕıcia
Machado and Wilkerson Andrade (Federal University of Campina Grande)

This year, the SBMF symposium had a special section on the Grand Chal-
lenge in Verified Software, inspired by recent advances in theory and tool sup-
port. Work on the grand challenge started with the creation of a Verified Software
Repository with two principal aims:

– To collect a set of verified software components
– To conduct a series of industrial-scale verification experiments with theoret-

ical significance and impact on tool-support

This special session on the grand challenge was dedicated to two pilot projects
currently underway:

– The Flash File Store. The challenge is to verify the correctness of a fault-
tolerant, POSIX-compliant file store implemented on flash memory. Verifica-
tion issues include dependability guarantees as well as software correctness.
Levels of abstraction include requirements specification, software design, ex-
ecutable code, device drivers, and flash translation layers. The challenge was
inspired by the requirements for forthcoming NASA space missions.

– FreeRTOS. The challenge is to verify the correctness of an open source real-
time mini-kernel. FreeRTOS is designed for real-time performance with lim-
ited resources, and is accessible, efficient, and popular: it runs on 17 different
architectures and is very widely used in many applications. There are over
5,000 downloads per month from SourceForge, making it the repository’s
250th most downloaded code (out of 170,000 codes). FreeRTOS presents a
significant verification challenge, in spite of it containing less than 2,500 lines
of pointer-rich code.

Attendance at the session gave speakers and participants an opportunity to
discuss the state of the art in software verification and to discuss open problems
in need of solutions. In particular, it helped to contribute to an open agenda of

VI Preface

research actions for the grand challenge. The papers in the session are of interest
to theoreticians, tool builders, tool users, and industrial practitioners.

SBMF was co-located with SAST 2009, the Brazilian Workshop on System-
atic and Automated Software Testing. There was a joint technical session on
formal aspects of testing, and a joint panel on Academic and Industrial Research
Directions in Software Verification.

SBMF was organized by the Instituto de Informática at the Federal Univer-
sity of Rio Grande do Sul (UFRGS) under the auspices of the Brazilian Computer
Society (SBC). It was sponsored by the following organizations:

– CNPq, the Brazilian Scientific and Technological Research Council
– CAPES, the Brazilian Higher Education Funding Council
– Banrisul, the Rio Grande do Sul state bank
– The Governor of the State of Rio Grande do Sul
– Microsoft Research
– The Federal University of Rio Grande do Norte (UFRN)
– The University of York

The deliberations of the Programme Committee and the preparation of these
proceedings were handled by EasyChair, which made our lives much easier.

September 2009 Marcel Vińıcius Medeiros Oliveira
James Charles Paul Woodcock

Conference Organization

Programme Chairs

Marcel Oliveira and Jim Woodcock

Programme Committee

Aline Andrade
David Aspinall
Luis Barbosa
Roberto Bigonha
Michael Butler
Andrew Butterfield
Ana Cavalcanti
Andrea Corradini
Jim Davies
David Déharbe
Ewen Denney
Clare Dixon
Adolfo Duran
Jorge Figueiredo
Leo Freitas
Rohit Gheyi
Rolf Hennicker
Juliano Iyoda
Moonzoo Kim

Luis Lamb
Gerald Lüttgen
Patŕıcia Machado
Ana Melo
Anamaria Moreira
Álvaro Moreira
Arnaldo Moura
Alexandre Mota
David Naumann
Daltro Nunes
José Nuno Oliveira
Alberto Pardo
Alexandre Petrenko
Leila Ribeiro
Augusto Sampaio
Leila Silva
Adenilso Simão
Willem Visser
Heike Wehrheim

Steering Committee

Ana C. V. de Melo (USP)
Jim Woodcock (University of York)
Leila Ribeiro (UFRGS)
Marcel Oliveira (UFRN)
Patŕıcia Machado (UFCG)

Organizing Committee

Álvaro Freitas Moreira (Chair; UFRGS)
Cláudio Fuzitaki (UFRGS)

VIII Organization

Fabiane Cristine Dillenburg (UFRGS)
Germano Caumo (UFRGS)
Luciana Foss (UFRGS)
Lucio Mauro Duarte (UFRGS)
Olinto E. David de Oliveira (UFRGS)

Table of Contents

Speeding Up Simulation of SystemC Using Model Checking 1
Nicolas Blanc and Daniel Kroening

Partial Behaviour Modelling: Foundations for Incremental and Iterative
Model-Based Software Engineering . 17

Sebastian Uchitel

Satisfiability Modulo Theories: An Appetizer . 23
Leonardo de Moura and Nikolaj Bjørner

Interruption Testing of Reactive Systems . 37
Wilkerson L. Andrade and Patŕıcia D.L. Machado

Test Case Generation of Embedded Real-Time Systems with
Interruptions for FreeRTOS . 54

Wilkerson L. Andrade, Patŕıcia D.L. Machado,
Everton L.G. Alves, and Diego R. Almeida

Concurrent Models of Flash Memory Device Behaviour 70
Andrew Butterfield and Art Ó Catháin

Corecursive Algebras: A Study of General Structured Corecursion 84
Venanzio Capretta, Tarmo Uustalu, and Varmo Vene

Formalizing FreeRTOS: First Steps . 101
David Déharbe, Stephenson Galvão, and Anamaria Martins Moreira

A Mechanized Strategy for Safe Abstraction of CSP Specifications 118
Adriana Damasceno, Adalberto Farias, and Alexandre Mota

Applying Event and Machine Decomposition to a Flash-Based Filestore
in Event-B . 134

Kriangsak Damchoom and Michael Butler

An Integrated Formal Methods Tool-Chain and Its Application to
Verifying a File System Model . 153

Miguel Alexandre Ferreira and José Nuno Oliveira

Towards Safe Design of Synchronous Bus Protocols in Event-B 170
Ricardo Bedin França, Leandro Buss Becker, Jean-Paul Bodeveix,
Jean-Marie Farines, and Mamoun Filali

Mechanising Data-Types for Kernel Design in Z . 186
Leo Freitas

X Table of Contents

A Complete Set of Object Modeling Laws for Alloy 204
Rohit Gheyi, Tiago Massoni, Paulo Borba, and Augusto Sampaio

Undecidability Results for Distributed Probabilistic Systems 220
Sergio Giro

Formalisation and Analysis of Objects as CSP Processes 236
Renata Kaufman, Augusto Sampaio, and Alexandre Mota

Concolic Testing of the Multi-sector Read Operation for Flash Memory
File System . 251

Moonzoo Kim and Yunho Kim

Low-Level Code Verification Based on CSP Models 266
Moritz Kleine and Steffen Helke

Formal Modelling of a Microcontroller Instruction Set in B 282
Valério Medeiros Jr. and David Déharbe

Defining Behaviours by Quasi-finality . 290
Elisabete Freire and Lúıs Monteiro

Verifying Compiled File System Code . 306
Jan Tobias Mühlberg and Gerald Lüttgen

Reasoning about General Quantum Programs over Mixed States 321
Juliana Kaizer Vizzotto, Giovani Rubert Librelotto, and Amr Sabry

A Simple and General Theoretical Account for Abstract Types 336
Hongwei Xi

Author Index . 351

Speeding Up Simulation of SystemC
Using Model Checking�

Nicolas Blanc1 and Daniel Kroening2

1 ETH Zurich, Switzerland
2 Oxford University, Computing Laboratory, UK

Abstract. SystemC is a system-level modeling language that offers a
wide range of features to describe concurrent systems. The SystemC stan-
dard permits simulators to implement a deterministic thread scheduling
policy, which often hides concurrency-related design flaws. We present a
novel compiler for SystemC that integrates a formal race analysis based
on Model Checking techniques. The key insight to make the formal anal-
ysis scalable is to apply the Model Checker only to small partitions of
the model. Our compiler produces a simulator that uses the race anal-
ysis information at runtime to perform partial-order reduction, thereby
eliminating context switches that do not affect the result of the simu-
lation. Experimental results show simulation speedups of one order of
magnitude and better.

1 Introduction

Time-to-market requirements have rushed the Electronic Design Automation
(EDA) industry towards design paradigms that require a very high level of ab-
straction. This high level of abstraction can shorten the design time by enabling
the creation of fast executable verification models. This way, bugs in the de-
sign can be discovered early in the design process. As part of this paradigm,
an abundance of C-like system design languages has emerged. A key feature is
joint modeling of both the hardware and software component of a system using a
language that is well-known to engineers. A promising candidate for an industry
standard is SystemC.

SystemC offers a wide range of language features such as hierarchical design
by means of a hierarchy of modules, arbitrary-width bit-vector types, and con-
currency with related synchronization mechanisms. SystemC permits different
levels of abstraction, from a very high-level specification with big-step transac-
tions down to the gate level. The execution model of SystemC is driven by events,
which start or resume processes. In addition to communication via shared vari-
ables, processes can exchange information through predefined communication
channels such as signals and FIFOs.
� This paper is an extended version of a conference paper that appeared at ICCAD

2008 [1]. This research is supported by ETH research grant TH-21/05-1 and by the
Semiconductor Research Corporation (SRC) under contract no. 2006-TJ-1539.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N. Blanc and D. Kroening

Technically, SystemC programs rely on a C++ template library. SystemC
modules are therefore plain C++ classes, which are compiled and then linked
to a runtime scheduler. This provides a simple yet efficient way to simulate the
behavior of the system. Methods of a module may be designated as threads or
processes. Interleaving between those threads is performed at pre-determined
program locations, e.g., at the end of a thread or when the wait() method
is called. When multiple threads are ready for execution, the ordering of the
threads is nondeterministic. Nevertheless, the SystemC standard allows simu-
lators to adopt a deterministic scheduling policy. Consequently, simulators can
avoid problematic schedules, which often prevents the discovery of concurrency-
related design flaws.

When describing synchronous circuits at the register transfer level, system
designers can prevent races by restricting inter-process communication to deter-
ministic communication channels such as sc signals. However, the elimination
of races from the high-level model is often not desirable: In practice, system
designers often use constructs that yield races in order to model nondetermin-
istic choices implicit in the design. In particular, models containing standard
transaction-level modeling (TLM) interfaces are frequently subject to race phe-
nomena. TLM designs usually consist of agents sharing communication resources
and competing for access to them. An example is a FIFO with two clock domains:
the races model the different orderings of the clock events that can arise.

Contribution. Due to the combinatorial explosion of process interleavings, test-
ing methods for concurrent software alone are unlikely to detect bugs that depend
on subtle interleavings. Therefore, we propose to employ formal methods to stat-
ically pre-compute thread-dependency relations and predicates that predict race
conditions, and to use this information subsequently during the simulation run
to prune the exploration of concurrent behaviors. There are two possible ways
of exploiting the information:

1. In general, proving or refuting process independence requires precise static
analysis. From a designer perspective, the statically computed dependency
relations between the threads provide key insights into potential races.

2. The statically computed race conditions improve the performance of partial
order reduction, which results in a greatly reduced number of interleavings.
The remaining interleavings can then be explored exhaustively, which is a
valuable validation aid.

We have implemented this technique in Scoot [2], a novel research compiler
for SystemC. The static computation of the race conditions relies on a Model
Checker. The technique we propose is independent of the specific formal en-
gine. We have performed our experiments using SatAbs [3], a SAT-based Model
Checker implementing predicate abstraction, and CBMC, a SAT-based bounded
Model Checker. Our experimental results indicate that strong race conditions can
be computed statically at reasonable cost, and result in a simulation speedup of
a factor of ten or better.

Speeding Up Simulation of SystemC Using Model Checking 3

Related Work

Concurrent threads with nondeterministic interleaving semantics may give rise
to races. A data race is a special kind of race that occurs in a multi-threaded
application when several processes enter a critical section simultaneously [4].
Flanagan and Freud use a formal type system to detect race-condition patterns
in Java [5]. Eraser is a dynamic data-race detector for concurrent applications [6].
It uses binary rewriting techniques to monitor shared variables and to find fail-
ures of the locking discipline at runtime. Other tools, such as RacerX [7] and
Chord [8], rely on classic pointer-analysis techniques to statically detect data
races. Data races can also occur in SystemC if processes call synchronization
routines while holding shared resources.

Model Checkers are frequently applied to the verification of concurrent appli-
cations, and SystemC programs are an instance; see [9] for a survey on software
Model Checking. Vardi identifies formal verification of SystemC models as a re-
search challenge [10]. Prior applications of formal analysis to SystemC or similar
languages are indeed limited. We therefore briefly survey recent advances in the
application of such tools to system-level software. DDVerify is a tool for the
verification of Linux device drivers [11]. It places the modules into a concurrent
environment and relies on SatAbs for the verification. KISS is a tool for the
static analysis of multi-threaded programs written in C [12]. It reduces the ver-
ification of a concurrent application to the verification of a sequential program
with only one stack by bounding the number of context switches. The reduc-
tion never produces false alarms, but is only complete up to a specific number
of context switches. KISS uses Slam [13], a Model Checker based on Predicate
Abstraction [14,15], to verify the sequential model.

Verisoft is a popular tool for the systematic exploration of the state space of
concurrent applications [16] and could, in principle, be adapted to SystemC. The
execution of processes is synchronized at visible operations, which are system calls
monitored by the environment. Verisoft systematically explores the schedules
of the processes without storing information about the visited states. Such a
method is, therefore, referred to as a state-less search. Verisoft ’s support for
partial-order reduction relies exclusively on dynamic information to achieve the
reduction. In a recent paper, Sen et al. propose a modified SystemC-Scheduler
that aims to detect design flaws that depend on specific schedules [17]. The
scheduler relies on dynamic information only, i.e., the information has to be
computed during simulation, which incurs an additional run-time overhead. In
contrast, Scoot statically computes the conditions that guarantee independence
of the transitions. The analysis is very precise, as it is based on a Model Checker,
and Scoot is therefore able to detect opportunities for partial-order reduction
with little overhead during simulation.

Flanagan and Godefroid describe a state-less search technique with support
for partial-order reduction [18]. Their method runs a program up to comple-
tion, recording information about inter-process communication. Subsequently,
the trace is analyzed to detect alternative transitions that might lead to differ-
ent behaviors. Alternative schedules are built using happens-before information,

4 N. Blanc and D. Kroening

which defines a partial-order relation on all events of all processes in the sys-
tem [19]. The procedure explores alternative schedules until all relevant traces
are discovered. Helmstetter et al. present a partial-order reduction technique for
SystemC [20]. Their approach relies on dynamic information and is similar to
Flanagan and Godefroid’s technique [18]. Their simulator starts with a random
execution, and observes visible operations to detect dependency between the
processes and to fork the execution. Our technique performs a powerful analy-
sis statically that is able to discover partial-order reduction opportunities not
detectable using only dynamic information.

Kundu et al. propose to compute read/write dependencies between SystemC
processes using a path-sensitive static analysis [21]. At runtime, their simulator
starts with a random execution and detects dependent transitions using static in-
formation. The novelty of our approach is to combine conventional static analysis
with Model Checking to compute sufficient conditions over the global variables
of the SystemC model that guarantee commutativity of the processes.

Wang et al. introduce the notion of guarded independence for pairs of tran-
sitions [22]. Their idea is to compute a condition (or guard) that holds in the
states where two specific transitions are independent. Our contribution in this
context is to compute these conditions for SystemC using a Model Checker.

2 Partial-Order Reduction for SystemC

In this section, we provide a brief introduction to the concurrency model of
SystemC and describe the challenges of applying partial-order reduction in the
context of SystemC.

2.1 An Overview of the Concurrency Model of SystemC

The dominating concurrency model for software permits asynchronous inter-
leavings between threads, that is, running processes are preempted. SystemC is
different as it is mainly designed for modeling synchronous systems. Its sched-
uler has a co-operative multitasking semantics, meaning that the execution of
processes is serialized by explicit calls to a wait() method, and that threads are
not preempted.

The SystemC scheduler tracks simulation time and delta cycles. The simula-
tion time is a positive integer value (the clock). Delta cycles are used to stabilize
the state of the system. A delta cycle consists of three phases: evaluate, update,
and notify.

1. The evaluation phase selects a process from the set of runnable processes and
triggers or resumes its execution. The process runs immediately up to the
point where it returns or invokes the wait function. The evaluation phase is
iterated until the set of runnable processes is empty. The SystemC standard
allows simulators to choose any runnable process, as long as the policy is
consistent between runs.

Speeding Up Simulation of SystemC Using Model Checking 5

Program 1. A SystemC module with a race condition

SC MODULE(m){
s c c l o c k c l k ; int pres su re ;

void guard () {
i f (p re s sure == PMAX) pre s sure = PMAX−1;

}

void increment (){ pres su re ++; }

SC CTOR(m) {
SC METHOD(guard) ; s e n s i t i v e << c l k ;
SC METHOD(increment) ; s e n s i t i v e << c l k ;

}
} ;

2. In order to simulate synchronous executions, processes can delay change-
of-state effects by scheduling update requests. After the evaluation phase
terminates, the kernel executes any pending update request. This is called the
update phase. Signal assignments are typically implemented using the update
mechanism. Therefore, signals keep their value for an entire evaluation phase.

3. Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such pro-
cesses to the set of runnable processes.

The scheduler executes delta cycles until the set of runnable processes is empty
at the beginning of the evaluation phase. Subsequently, it updates the simulation
time and notifies processes waiting for the time event.

2.2 A Motivating Example

Program 1 serves as running example and illustrates the need for a combination
of Model Checking and partial-order reduction. The module m declares two
processes guard and increment. The process guard watches the value of shared
variable pressure, which shall not exceed the value PMAX and is incremented
by process increment. Both processes are sensitive to the clock signal clk. The
semantics of the SystemC scheduler guarantees that a method process is executed
without interruption up to the point where it returns. Thus, the scheduler has to
choose either the scheduling sequence (guard; increment) or (increment; guard)
each time the clock is updated. Consequently, the pressure can exceed the limit if
its value reaches PMAX and the process increment is triggered before guard. It
is clear that the number of traces grows exponentially with the number of clock
cycles. As a result, systematic exploration of all interleavings rapidly becomes
unmanageable, and the bad behavior might go unnoticed.

A conventional static analysis can discover that guard reads the pressure and
that increment modifies the pressure, concluding that the processes are indeed

6 N. Blanc and D. Kroening

dependent and that all interleavings must be explored. Similarly, a conventional
dynamic analysis would always detect a read/write dependency between guard
and increment, forcing the simulator to execute all schedules. However, such
analyses fail to detect that guard and increment are commutative in most cases.
Our tool uses a Model Checker to compute the weakest predicate over the pre-
state variables that guarantees the absence of races between the processes. In
this example, it is easy to see that the execution of increment and guard is
commutative if and only if

pressure �= PMAX− 1 ∧ pressure �= PMAX

holds. Scoot generates a simulator for the systematic exploration of the state
space that checks this condition at runtime to avoid exploring redundant
schedules.

2.3 Background on Partial-Order Reduction

Partial-order reduction is a technique to explore the state space of concurrent
systems in a way that preserves the soundness of the verification result [23,24,25].
The key idea is to exploit commutativity of transitions to obtain a subset of
all possible interleavings from a state such that the reduced state graph re-
tains a representative behavior for each behavior that is removed. Scoot uses
partial-order reduction to generate a simulator that explores only necessary in-
terleavings. We briefly survey the standard definitions from the literature in this
section [25].

The literature distinguishes between partial-order reduction based on persis-
tent sets and reduction based on sleep sets. The two approaches are orthogonal
and achieve better results when combined. Both techniques compute a subset of
the runnable transitions for each visited state and restrict future exploration to
transitions in this set.

We denote the set of states and the set of processes of a SystemC model
by S and θ, respectively. We denote the set of enabled (runnable) processes
(transitions) in a state s by Enabled(s), i.e., Enabled is a mapping from S to
P(θ). Processes are relations between states. We write s

α→ t to denote that the
state changes from s to t by executing process α.

Definition 1. [22] Two transitions α and β are guarded independent with
respect to a guard φ ⊆ S if and only if for all s ∈ φ and t ∈ S the following hold:

1. α ∈ Enabled(s) ∧ s
α→ t⇒

β ∈ Enabled(s) ⇔ β ∈ Enabled(t)

2. β ∈ Enabled(s) ∧ s
β→ t⇒

α ∈ Enabled(s) ⇔ α ∈ Enabled(t)
3. α, β ∈ Enabled(s) ⇒

〈s, t〉 ∈ α ◦ β ⇔ 〈s, t〉 ∈ β ◦ α

The first two conditions guarantee that α and β cannot disable nor enable each
other in s, while the third condition requires α and β to be commutative in s.

Speeding Up Simulation of SystemC Using Model Checking 7

γ β
s0 γ β

α α α

γ β γ β

α α

(1) Exploration using persistent sets

γ β
s0 γ β

α α α

γ β γ β

α α

(2) Exploration using sleep sets

Fig. 1. Example of partial-order reduction using persistent sets (1) and sleep sets (2).
The reduced state graph contains only the transitions depicted with solid lines.

Scoot uses Model Checking to compute the condition φ. Transitions α and β
are independent in s if and only if α, β are guarded independent with respect to
the guard {s} [25].

Definition 2. [25] Let D ⊆ θ×θ be a symmetric and reflexive relation over the
transitions of the system. The relation D is a valid dependency relation for θ if
and only if (α, β) �∈ D implies that α, β are independent in all reachable states.

Similar to [21], Scoot uses a data-flow analysis in order to compute an over-
approximating dependency relation.

Definition 3. [25] Let (S, S0, θ) be a transition system, and s0 ∈ S denote one
of its states. A set of transitions T ⊂ Enabled(s0) is persistent in s0 if and only
if for all β ∈ T and all sub-traces s0

α0→ s1
α1→ s2...sn

αn→ sn+1 obtained from
transitions αi �∈ T , β and αi are independent in si.

The Definition 3 is, thus, concerned about what can happen in the future. The
persistent-set technique computes a persistent set of runnable transitions in each
visited state and restricts the exploration to transitions in this set only. Persis-
tent sets are typically computed using information from a preliminary static
analysis.

Figure 1.1 illustrates the effects of the persistent-set technique. In state s0, the
exploration uses the persistent set T = {α} to avoid visiting some of the states. In
contrast, the sleep-set technique maintains a set of runnable transitions that can
be skipped during the exploration (the sleep set). The method is concerned with
branching information from the past. Figure 1.2 shows a typical exploration using
sleep sets. Unlike the previous approach, the sleep-set technique only reduces
the number of explored transitions and has no effect on the number of explored
states. The exploration backtracks early when the sleep set contains all runnable
transitions.

3 Implementation

3.1 Overview of Scoot

Figure 2 shows an overview of Scoot. We use an in-house C++ front-end
to translate the SystemC source files into a control flow graph (CFG). The

8 N. Blanc and D. Kroening

Pointer Analysis

Typechecker

Race−Condition
Analysis

Scheduler Synthesis

Code Re−synthesis

Scoot

g++Module−Hierarchy

Exhaustive
Simulator

of the
SystemC header files

systemc.h

SystemC models
User−provided

Control−Flow Graph

Analysis

C++ Model
Flat

Simplified version

Fig. 2. Overview of Scoot

front-end of Scoot accepts a large subset of C++ including inheritance, over-
loading, virtual functions, and many forms of templates.

Scoot abstracts implementation details of the SystemC library by using sim-
plified header files that declare only relevant aspects of the API and omit the
actual implementation. Subsequently, Scoot uses static analysis techniques to
discover the module hierarchy, the sensitivity list of processes, and the port
bindings. The next step is the computation of race conditions for each pair of
processes, which is explained in Sec. 3.3. Scoot then generates the code for the
exhaustive simulator. Finally, Scoot translates the CFG back to a flat C++
program, which no longer requires the SystemC library. We use g++ to compile
the C++ file and to obtain an executable simulator.

We forbid dynamic creation of processes and dynamic modifications of sensi-
tivity lists (next trigger functions). The support for SystemC currently comprises
static creation of processes, static sensitivity lists, waiting using sensitivity lists,
waiting for a specific event, waiting for a certain amount of time, immediate
notification, delta notification, time notification, and communication channels
such as sc signals, sc fifos, and tlm fifos. We have a broad support for the gen-
eral features of C++; e.g., our support for STL container classes is described
in [26].

3.2 A Scheduler with Partial-Order Reduction

Algorithm 1 is Scoot’s implementation of the evaluation phase. In contrast to
the related work, evaluation phase schedules runnable processes using informa-
tion statically collected to reduce the number of interleavings explored. We are
not aware of tools that compute equally strong conditions statically.

The evaluation phase terminates once the set of runnable processes is empty.
The algorithm performs partial-order reduction using persistent sets and sleep
sets, and is a variation of techniques presented by Godefroid [25]. On line 3, the
procedure calls the function runnable() to check if the set of runnable processes
is empty before proceeding to the next iteration.

Speeding Up Simulation of SystemC Using Model Checking 9

Algorithm 1. Evaluation Phase: the commutativity condition checked by
commutative(pi, pj) is a predicate over states computed statically at compile-
time

void eva luat ion phase ()
2 Set s l e e p s := ∅ ;

while (runnable () �= ∅) do
4 p e r s i s t e n t s := ge t p e r s () ;

awakes := p e r s i s t e n t s \ s l e e p s ;
6 i f (awakes= ∅) then e x i t (0) ;

Map n e x t s l e e p s ; // Process −> Set
8 for a l l (Process pi ∈ awakes) do

for a l l (Process pj ∈ s l e ep) do
10 i f (commutative (pi, pj))

n e x t s l e e p s [pi] := n e x t s l e e p s [pi] ∪{pj} ;
12 end for

s l e ep := s l e ep∪{pi} ;
14 end for

Process p := nonde t s e l e c t (awakes) ;
16 run (p) ;

s l e e p s := n ex t s l e e p s [p] ;
18 end while

At simulation time, the scheduler calls get pers to compute the set persistents
of persistent processes. The subsequent part of the algorithm uses the set sleeps,
declared outside the main loop on line 2, to perform partial-order reduction.
On line 5, the set awakes consists of the persistent processes not in sleeps. If
the set of awaken processes is empty (line 6), then other traces are covering all
subsequent behaviors, and therefore, the simulator stops the execution. Other-
wise, the scheduler computes the sleep sets for the next iteration using the map
next sleeps, which maps processes to a set of processes (lines 7–14). One line 10,
the call to commutative returns true if the processes pi and pj are commuta-
tive in the current state. The scheduler reduces the computation of conditional
independence to the computation of commutativity conditions by considering
that all the processes are always enabled – if ρ �∈ Enabled(s), then this is in-
terpreted as s

ρ→ s. This way, two processes are independent in the current
state if and only if they are commutative in this state. Scoot relies on Model
Checking to compute a conservative condition that guarantees commutativity of
the processes in the current state; the details of this pre-computation are pre-
sented in the following subsection. In contrast, traditional approaches need to
rely on either executing the processes to determine which transitions are inde-
pendent in the current state, which adds overhead, or on an imprecise data-flow
analysis.

Finally, in lines 15–17, the scheduling algorithm nondeterministically runs a
process from awakes and computes the sleep set of the next iteration.

10 N. Blanc and D. Kroening

3.3 Computing the Process Commutativity Conditions

We present an iterative technique to compute the commutativity condition for
a given pair of processes p1 and p2 based on formal analysis. The condition is
checked during simulation by Alg. 1. In general, SystemC processes need not
terminate, and thus computing the strongest possible commutativity condition
for a given pair of processes p1 and p2 is undecidable. We compute a conservative
approximation by applying a Model Checker to the harness given as Program 2.

Program 2. Harness for the analysis of race conditions for a given pair of
processes p1 and p2. The pre-condition φ is true initially, and is then iteratively
strengthened

assume (φ) ;
2 s0 := c u r r e n t s t a t e ;

p1 () ; p2 () ;
4 s1,2 := c u r r e n t s t a t e ;

c u r r e n t s t a t e := s0 ;
6 p2 () ; p1 () ;

s2,1 := c u r r e n t s t a t e ;
8 a s s e r t (s1,2 �= s2,1) ;

The basic idea of the harness is to run p1(); p2(), and compare the result with
the result of running p2(); p1() on the same initial state. The harness operates as
follows: Initially, φ is set to true. The assume statement in the first line restricts
the search to states that satisfy φ. Then the values of the visible variables are
stored in s0, the pair of processes p1(); p2() is run, and the state is stored in s1,2.
The state is restored to s0, and p2(); p1() is run. The state is stored in s2,1.

Scoot passes the harness to a Model Checker to check the reachability of the
last line, which is modeled by means of an assertion. If the Model Checker returns
a counterexample, we have a trace π with an initial state satisfying the initial
condition φ, passing through both processes, and ending in a state that violates
the assertion. The path therefore begins in a state in which the two processes
are commutative. Scoot then computes the weakest precondition of s1,2 = s2,1
alongside that path. Let Pπ denote this condition. The executions of p1(); p2()
and p2(); p1() from a state s terminate and yield an equal state if s satisfies Pπ .
Consequently, Pπ is an under-approximation of the commutativity condition
for p1 and p2. At this point, Scoot strengthens φ using ¬Pπ, yielding φ′. This
removes the trace π and any trace similar to π that goes through the same control
locations. Scoot iterates this process until the Model Checker stops reporting
counterexamples. At this point, the predicate P =

∨
π Pπ represents the weakest

condition such that the executions of p1(); p2() and p2(); p1() terminate and that
p1 and p2 are commutative.

In practice, we observe that the number of facts that Scoot tracks during
the computation of the weakest precondition of s1,2 = s2,1 may explode. There-
fore, instead of comparing the entire state vectors s1,2 and s2,1, we restrict the

Speeding Up Simulation of SystemC Using Model Checking 11

comparison to the variables written by the processes. This set is determined by
means of a standard data-flow analysis.

In the following, we elaborate on our integration of the strengthening loop
into SatAbs, a Model Checker based on predicate abstraction. Note that our
approach is independent of the particular Model Checking engine. The general
idea can be extended in different directions. As an example, we can adapt the
strengthening loop to operate on infinite traces using a Model Checker for live-
ness properties such as Terminator [27], or we can replace the Model Checker
with a testing engine to discover terminating traces at the cost of code-coverage
guarantees.

Strengthening Using Predicate Abstraction. Predicate Abstraction is a
technique that abstracts a transition system by mapping sets of concrete states
to a new, smaller abstract state space in a way that conserves the relevant
behaviors of the system [14,15]. Each predicate in the abstract model is rep-
resented by a Boolean variable, while the original variables are removed. The
abstract program is created using existential abstraction, which is a conserva-
tive abstraction for reachability properties. If the property holds on the abstract
model, it also holds on the original program. In case a trace in the abstract model
violates the property, the feasibility of the counterexample must be tested in the
concrete model. If the counterexample can be simulated on the original pro-
gram, it is reported to the user. The counterexample is called spurious if it does
not correspond to a concrete trace. In that case, a refinement procedure adds
new predicates in a way that removes the spurious trace. This is automated by
Counterexample Guided Abstraction Refinement (CEGAR) [28] and promoted
by the Model Checker Slam [13]. Predicate abstraction has been applied to
SpecC [29] and SystemC [30]. Figure 3 shows the integration of our technique
into SatAbs. After strengthening, SatAbs retains the abstract model obtained
during previous iterations.

φ′

Spurious
trace

Concrete

Abstract trace
End

No traceConcrete
program

Abstract
prog.

New predicates

πtrace

Simulation

Model Checking

Refinement Strengthening φ

Abstraction

Fig. 3. Iterative computation of the process commutativity condition using predicate
abstraction

12 N. Blanc and D. Kroening

4 Experimental Evaluation

In this section, we evaluate the benefits of integrating our partial-order reduction
into a simulator that examines all schedules exhaustively using a backtracking
search. The experiments that we present are difficult instances. Commutativity of
processes depends on control flow and data, and the computation of the condition
is susceptible to the state-space explosion problem. We obtained our results on
a 3GHz Linux machine. We make the benchmarks and the tool available for
experimentation by other researchers at www.cprover.org/scoot/ .

4.1 The Running Example

We continue our running example (Program 1). Figure 4 depicts the number
of explored transitions as a function of the number of simulation steps using
persistent and sleep sets (P+S) and without partial-order reduction (No-POR).
We set PMAX to 10. Our simulator performs a state-less search, that is, the
simulator replays transitions to backtrack. Those transitions are counted only
once. With this technique, the number of transitions explored during simulation
grows quadratically with the number of steps, whereas without partial-order
reduction, the curve grows exponentially. As mentioned before, a conventional
dynamic analysis would always detect a read/write dependency between the two
processes, forcing the simulator to explore all schedules.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0 5 10 15 20 25 30 35 40

E
xp

lo
re

d
T

ra
ns

iti
on

s

Simulation Steps

P+S
No-POR

Fig. 4. Number of transitions explored at runtime as a function of the number of
simulation steps

4.2 State Machines

We use two different benchmarks to evaluate the benefit of statically computed
race conditions. The first benchmark (B1) consists of a synchronous model with
three dependent processes. One process plays the role of a server waiting for re-
quests, while the other two compete for access to the service. Program 3 contains
the skeleton of the benchmark. When triggered, the clients and the server execute

Speeding Up Simulation of SystemC Using Model Checking 13

Program 3. Skeleton of Benchmark B1

bool locked ; int op ;
2 void p r o c e s s c l i e n t () {

i f (! locked){ op=ge t p id () ; locked=true ;}
4 }

void p r o c e s s s e r v e r (){
6 switch (s t a t e) {

. . .
8 case I d l e : {switch (op) { . . . } break ;}

case End : { s t a t e = I d l e ; locked = fa l se ;}
10 }

}

functions process client and process server, respectively. The clients communi-
cate with the server via two shared variables op and locked. If locked is set, then
the server is busy processing the request op. Otherwise, the clients compete for
access to the service. The processes are sensitive to a clock. Figure 5 compares
the number of explored transitions, and the total exploration time as a func-
tion of the number of simulation steps. We present results without partial-order
reduction (No-POR) and using a combination of sleep sets and persistent sets
(P+S). The exploration time is limited to thirty minutes (1800 seconds).

The results indicate that partial-order reduction using statically computed
commutativity conditions is able to significantly reduce both the number of ex-
plored transitions and the exploration time by about two to three orders of
magnitude. With partial-order reduction, the simulator can exhaustively cover
all the relevant behaviors up to twelve simulation steps in less than thirty min-
utes, whereas the naive approach already times out after seven simulation steps.

Our second benchmark (B2) consists of two synchronous state machines com-
municating via shared variables. The model has three interdependent processes,

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10 11 12 13

T

ra
ns

iti
on

s

Simulation Steps

No-POR
P+S

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
[s

ec
]

Simulation Steps

No-POR
P+S

Fig. 5. Performance effect of static partial-order reduction on B1

14 N. Blanc and D. Kroening

Table 1. Time to compute the race conditions for each of the process-pairs using
SatAbs and CBMC. The timeout is set to ten minutes.

Benchmark Pair SatAbs [s] CBMC [s]
B1 0 < 1 < 1
B1 1 3 < 1
B1 2 3 < 1
B2 0 76 TO
B2 1 19 5
B2 2 19 2

which are sensitive to the clock. The state machines are implemented using case
switches. On this benchmark, partial-order reduction reduces the simulation time
and the number of explored transition by one order of one magnitude.

For each pair of processes, Table 1 shows the time required for the static
analysis running SatAbs and CBMC. The cost for B1 is negligible using both
SatAbs and CBMC. The results for B2 indicate that CBMC is faster than
SatAbs on the second and third pair of processes but times out on the first
one, whereas SatAbs provides a result within two minutes. Note that the com-
putation of these conditions can be distributed onto multiple machines, as the
computation for each pair of processes is independent. Furthermore, the preci-
sion of the analysis can be controlled by bounding the number of strengthening
iterations, which yields a conservative approximation. Finally, as demonstrated
by the experiments, the time required for a full exploration grows exponentially
with the number of simulation steps, and therefore, the time spent statically for
a precise analysis eventually pays off.

5 Conclusion

We presented Scoot, a novel compiler for SystemC that integrates static anal-
ysis and formal verification techniques in order to improve simulation perfor-
mance. We invoke a modified software Model Checker on each pair of dependent
transitions in order to compute a sufficient condition for commutativity of the
transitions. Our technique benefits from the fact that SystemC processes are
not preempted, and thus, only few such pairs have to be checked. Note that the
Model Checker is never applied to the entire model, but only to pairs of tran-
sitions – the static part of the analysis is therefore typically polynomial in the
size and number of processes.

Scoot uses the commutativity condition during simulation in order to elim-
inate unnecessary interleavings. Our analysis is fully automatic and requires no
annotation of the source code by the user. Using Model Checking, our analysis is
able to detect reduction opportunities that depend on subtle control-flow prop-
erties. The experimental results indicate that our formal race-analysis technique
produces valuable information for pruning the state space at runtime.

Speeding Up Simulation of SystemC Using Model Checking 15

References

1. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In:
Proceedings of ICCAD 2008, pp. 356–363. IEEE, Los Alamitos (2008)

2. Blanc, N., Kroening, D., Sharygina, N.: Scoot: A tool for the analysis of SystemC
models. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 467–470. Springer, Heidelberg (2008)

3. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

4. Netzer, R.H.B., Miller, B.P.: What are race conditions? Some issues and formal-
izations. ACM Lett. Program. Lang. Syst. 1, 74–88 (1992)

5. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: Programming
language design and implementation (PLDI), pp. 219–232. ACM, New York (2000)

6. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15, 391–411 (1997)

7. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and
deadlocks. In: Operating systems principles (SOSP), pp. 237–252. ACM, New York
(2003)

8. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: Pro-
gramming language design and implementation (PLDI), pp. 308–319. ACM, New
York (2006)

9. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 27, 1165–1178 (2008)

10. Vardi, M.Y.: Formal techniques for SystemC verification. In: Design Automation
Conference (DAC), pp. 188–192. ACM, New York (2007)

11. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concur-
rent Linux device drivers. In: Automated software engineering (ASE), pp. 501–504.
ACM, New York (2007)

12. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. SIGPLAN Not. 39, 14–24
(2004)

13. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 1–3. ACM, New York (2002)

14. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

15. Ball, T., Rajamani, S.: Boolean programs: A model and process for software anal-
ysis. Technical Report MSR-TR-2000-14, Microsoft Research (2000)

16. Godefroid, P.: Software model checking: The VeriSoft approach. Form. Methods
Syst. Des. 26, 77–101 (2005)

17. Sen, A., Ogale, V., Abadir, M.S.: Predictive runtime verification of multi-processor
SoCs in SystemC. In: Design Automation Conference (DAC), pp. 948–953. ACM,
New York (2008)

18. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of programming languages (POPL), pp. 110–121. ACM,
New York (2005)

19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565 (1978)

16 N. Blanc and D. Kroening

20. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic genera-
tion of schedulings for improving the test coverage of systems-on-a-chip. In: Formal
Methods in Computer Aided Design (FMCAD), pp. 171–178. IEEE Computer So-
ciety, Los Alamitos (2006)

21. Kundu, S., Ganai, M., Gupta, R.: Partial order reduction for scalable testing of
SystemC TLM designs. In: Design Automation Conference (DAC), pp. 936–941.
ACM, New York (2008)

22. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008)

23. Peled, D.: All from one, one for all: On model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

24. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

25. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS. Springer, Heidelberg (1996)

26. Blanc, N., Groce, A., Kroening, D.: Verifying C++ with STL containers via predi-
cate abstraction. In: 22nd IEEE International Conference on Automated Software
Engineering (ASE), pp. 521–524. IEEE, Los Alamitos (2007)

27. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

28. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

29. Clarke, E., Jain, H., Kroening, D.: Verification of SpecC using predicate abstrac-
tion. Form. Methods Syst. Des. 30, 5–28 (2007)

30. Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hard-
ware/software partitioning. In: Formal Methods and Models for Co-Design (MEM-
OCODE), pp. 101–110. IEEE Computer Society, Los Alamitos (2005)

Partial Behaviour Modelling: Foundations for
Incremental and Iterative Model-Based Software

Engineering

Sebastian Uchitel1,2

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London, SW7 2RH, UK

2 Department of Computer Science, FCEN, Universidad de Buenos Aires,
Intendente Güiraldes 2160, C1428EGA, Argentina
suchitel@dc.uba.ar, s.uchitel@doc.ic.ac.uk

Abstract. Rigorous modelling of the intended behaviour of software in-
tensive systems has been shown to be successfull in uncovering require-
ments and design flaws. However, the impact that behaviour modelling
has had among practitioners is limited. The construction of behaviour
models remains a difficult and laborious task that requires significant
expertise. In addition, traditional approaches to behaviour models re-
quire complete descriptions of the system behaviour up to some level
of abstraction. This completeness assumption is limiting in the context
of software development process best practices which include iterative
development, adoption of use-case and scenario-based techniques and
viewpoint- or stakeholder-based analysis; practices which require mod-
elling and analysis in the presence of partial information about system
behaviour. Our aim is to support the iterative and incremental construc-
tion of behaviour models by means of construction, composition and
analysis of partial, heterogeneous, yet formal, descriptions of behaviour.
In this talk we discuss how modal transitions systems can provide the
basis for such support and present some of the model synthesis and com-
position techniques we have developed.

1 Introduction

Software systems are amenable to analysis through the construction of behaviour
models. This corresponds to the traditional engineering approach to construc-
tion of complex systems. Models can be studied to increase confidence on the
adequacy of the product to be built. The advantage of using behaviour models
to describe systems is that they are cheaper to develop than the actual system.
Consequently, they can be analysed and mechanically checked for properties in
order to detect design errors early in the development process and allow cheaper
fixes.

Although behaviour modelling and analysis has been shown to be successful in
uncovering subtle requirements and design errors, adoption by practitioners has
been slow. Partly, this is due to the complexity of building behavioural models

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 17–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 S. Uchitel

in the first place – behaviour modelling remains a difficult, labour-intensive task
that requires considerable expertise. To address this, a wide range of techniques
for supporting automated and semi-automated synthesis of behaviour models
have been investigated. In particular, synthesis from scenarios and use cases
(e.g., [24,10,3,19]), has been studied extensively.

A current limitation of synthesis approaches is that the models being synthe-
sized, e.g., labeled transition systems (LTSs) [14], are typically assumed to be
complete descriptions of the system behaviour. That is, that they completely
classify all behaviours with respect to some fixed alphabet as either behaviour
that the system-to-be is required to exhibit or behaviour that the system-to-be
is prohibited from exhibiting. The required behaviour is decribed by the transi-
tions that appear in the behaviour model. The proscribed behaviour is defined
as anything that is not described by the model’s transitions. This completeness
assumption that usually is attached to behaviour models is problematic if these
models is to be built from a scenario based-specifications which is inherently
partial as synthesis procedures are left to cope with completing the specification
automatically, or the engineer is required to put in more information before any
meaningful analysis can be performed. Utlimately, this completeness assumption
is limiting in the context of software development process best practices which in-
clude iterative development, adoption of use- case and scenario-based techniques
and viewpoint- or stakeholder-based analysis; practices which require modelling
and analysis in the presence of partial information about system behaviour.

A workaround to the completeness assumption is to reinterpret the two sets
of behaviours that a behaviour model describes. Rather than interpreting the
behaviour that cannot be reproduced by the transitions of a model as proscribed
behaviour, it can be interpreted as being “yet to be determined”. This interpre-
tation works for scenario-based specifications that have an existential semantics
(e.g. MSCs [13]) as these specifications provide examples of what the system
must do, but do not say anything about what it must not do. Consequently, a
behaviour model synthesized from scenarios provides a lower bound from which
to identify the behaviours that the system will provide but that have not been
explicitly captured by the scenarios. As these new behaviours are identified, they
are added to the scenario specification which is then used to synthesis a new be-
haviour model that includes these new behaviours. This elaboration process can
be formalised at the behaviour level with some notion of refinements such as
trace inclusion or simulation [20].

An alternative workaround is to consider the behaviour explicitly described
by the transitions of a behaviour model as unclassified and to assume that the
rest of the behaviour is known to be proscribed. This is the interpretation taken
for senario-based specifications that have a universal semantics such as Con-
stant LSCs [10]. In such approaches, as with approaches that do synthesis from
declarative specifications such as goal models [19]. The specification prunes the
acceptable space of behaviours as more universal properties are added to the
specification. The fact that a behaviour satisfies a universal statement does
not mean that the system is required to provide that trace; the trace could be

Partial Behaviour Modelling 19

violating another property, possibly one yet to be elicited. Consequently, a be-
haviour model synthesized from properties should characterize all possible be-
haviours that do not violate the properties. Such a model provides an upper
bound on all the behaviours that the system will actually provide, once imple-
mented. Validation of behaviour models synthesized from properties can prompt
the elicitation of more properties, which in turn will further approximate from
above the intended behaviour of the system to be. In other words, as new prop-
erties are elicited, the resulting synthesized model will be able to do less (notion
that can be formally captured using a traditional notion of refinement such as
simulation), describing behaviour that is closer to that of the system to be.

The problem is that if behaviour models are to be synthesised from rich sce-
nario based languages that use combine existential and universal scenarios as
first envisioned in [10], the target synthesis formalism cannot be in the form
of traditional behaviour models such as LTS because these are not capable of
capturing simultaneously both the upper and lower bounds [22] that universal
and existential statements provide.

2 Partial Behaviour Models

Partial behaviour models, such as Modal Transition Systems (MTS) [17], disin-
guish between three kinds of behaviour, required, proscribed and unknown, and
therefore can describe both an upper and a lower bound to the intended sys-
tem behaviour, allowing both bounds to be refined simultaneously. For instance,
MTS are equipped with two kinds of transitions required transitions and possible
transitions. The former provide a lower bound to system behaviour, while the
latter provide the lower bound to system behaviour.

The semantics of a partial behaviour model can be thought of as a set of tra-
ditional behaviour models. For instance, MTS semantics can be given in terms of
sets of LTSs that provide all of the behaviour required by the MTS, do not pro-
vide any of the behaviour proscribed by the MTS, and make arbitrary decisions
on the MTS’s unknown behaviour. Intuitively, as more information becomes
available, unknown or unclassified behaviour gets changed into either required
or proscribed behaviour. The notion of refinement between MTSs capture this
intuition formally and provides an elegant way of describing the process of be-
haviour model elaboration as one in which behaviour information is acquired
and introduced into the behaviour model incrementally, gradually refining an
MTS until it characterizes a single LTS.

The original notion of refinement was aimed at comparing MTS models with
the same alphabet and no unobservable transitions and is referred to as strong
refinement [17]. Although in [17] a notion of weak refinement that allows for
unobservable actions was defined, this notion was then extended to account
for models different alphabets [23]. More recently, an alternative, possibly more
appropriate observational refinement, based on branching equivalence [25] has
also been proposed [7].

A particularly useful notion in the context of software and requirements engi-
neering is that of merge. Merging two consistent models is a process that should

20 S. Uchitel

result in a minimal common refinement of both models where consistency is de-
fined as the existence of one common refinement. Intuitively, merging builds a
model that characterises the intersection of the LTS characterised by the models
being merged. In other words, the merge characterises the LTSs that provide all
the required behaviour of the MTS being merged, and that do not provide any
of the proscribed behaviour of the MTS being merged.

MTS merging can be used as the conjunction of multiple partial operational
descriptions. The original formulation of was done by Larsen in [16] where an
incomplete merge algorithm was proposed for MTS under strong refinement,
recently we have presented a correct and complete version [8]. The problem of
merge under observational refinements is still open, a partial result can be found
in [23] where incomplete algorithm for merging models with different alphabets
under weak refinement is presented.

We have revisted the problem of behaviour model synthesis in the context of
MTS. We have provided a generic extension of synthesis approaches that start
from existential scenario-based specifications and build LTS models [22]. The
extension, produces an MTS model instead of an LTS which captures appropri-
ately the lower bound to intended system behaviour provided by such specifica-
tions. However, given that MTS are more expressive than LTS, we have explored
opportunities for the defining novel synthesis approaches that start from more
expressive scenarios notations. In particular, we have investigated triggered ex-
istential scenarios [21] which have been neglected in existing scenario description
languages as it is impossible to adequately capture their semantics using tradi-
tional behaviour models.

3 Conclusions

In this talk we discuss Modal Transition Systems [17] and some of their the-
oretical foundations and semantics. We discuss how such models can support
iterative and incremental behaviour modelling based on a notion of refinement
that prunes the space of acceptable implementations of the system-to-be and
based on model merging. We also discuss how merge and synthesis of Modal
Transition Systems can aide in the analysis and elaboration of system behaviour
from multiple, partial and heterogeneous descriptions of behaviour and demon-
strate some of these ideas using the Modal Transition System Analyser, a tool
that aims to support incremental elaboration of partial models [5] and that is
available, open source, at http://sourceforge.net/projects/mtsa/ . We fi-
nalise with a number of open problems and directions of future work.

Acknowledgments

Dario Fischbein, Nicolas D’Ippolito, German Sibay, Greg Brunet, Mathieu Sas-
soulas, Victor Braberman, and Marsha Chechik have all collaborated on parts of
the work we present. The work we present has been funded in part by CONICET
and grant ERC 204853/PBM.

Partial Behaviour Modelling 21

References

1. Antonik, A., Huth, M., Larsen, K., Nyman, U., Wasowski, A.: EXPTIME-complete
Decision Problems for Mixed and Modal Specifications. In: 15th International
Workshop on Expressiveness in Concurrency (August 2008)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity of de-
cision problems for mixed and modal specifications. In: Amadio, R.M. (ed.) FOS-
SACS 2008. LNCS, vol. 4962, pp. 112–126. Springer, Heidelberg (2008)

3. Bontemps, Y., Heymans, P., Schobbens, P.-Y.: From live sequence charts to state
machines and back: A guided tour. IEEE Transactions on Software Engineer-
ing 31(12), 999–1014 (2005)

4. Brunet, G., Chechik, M., Uchitel, S.: Properties of behavioural model merging. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 98–114.
Springer, Heidelberg (2006)

5. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: Mtsa: The modal transi-
tion system analyser. In: 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), L’Aquila, Italy, September 15-19, pp. 475–476.
IEEE, Los Alamitos (2008), http://sourceforge.net/projects/mtsa/

6. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Pro-
ceedings of Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, pp. 193–202. IEEE Computer Society, Los
Alamitos (2008)

7. Fischbein, D., Braberman, V., Uchitel, S.: A sound observational semantics for
modal transition systems. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS,
vol. 5684, pp. 215–230. Springer, Heidelberg (2009)

8. Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial be-
haviour models. In: Harrold, M.J., Murphy, G.C. (eds.) Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, Atlanta, Georgia, USA, November 9-14, pp. 297–307. ACM, New York (2008)

9. Fischbein, D., Uchitel, S., Braberman, V.A.: A foundation for behavioural confor-
mance in software product line architectures. In: Hierons, R.M., Muccini, H. (eds.)
ROSATEA, pp. 39–48. ACM, New York (2006)

10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

11. Huth, M.: Refinement is complete for implementations. Formal Aspects of Com-
puting 17(2), 113–137 (2005)

12. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989)

13. ITU. Recommendation z.120: Message sequence charts. ITU (2000)
14. Keller, R.M.: Formal verification of parallel programs. Commun. ACM (1976)
15. Krka, I., Brun, Y., Edwards, G., Medvidovic, N.: Synthesizing partial component-

level behavior models from system specifications. In: van Vliet, H., Issarny, V.
(eds.) ESEC/SIGSOFT FSE, pp. 305–314. ACM, New York (2009)

16. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology
based on modal transition systems. In: Brinksma, E., Steffen, B., Cleaveland, W.R.,
Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019. Springer, Hei-
delberg (1995)

17. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings, Third Annual
Symposium on Logic in Computer Science, Edinburgh, Scotland, UK, July 5-8.
IEEE Computer Society, Los Alamitos (1988)

http://sourceforge.net/projects/mtsa/

22 S. Uchitel

18. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: Pro-
ceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, Philadel-
phia, Pennsylvania, USA, June 4-7, pp. 108–117. IEEE Computer Society, Los
Alamitos (1990)

19. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Automated Software Engineering
Journal 15(2), 175–206 (2008)

20. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
21. Sibay, G., Uchitel, S., Braberman, V.A.: Existential live sequence charts revisited.

In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, pp. 41–50. ACM,
New York (2008)

22. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Transactions on Software Engineering 35(3), 384–
406 (2009)

23. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Taylor, R.N.,
Dwyer, M.B. (eds.) Proceedings of the 12th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, Newport Beach, CA, USA, October
31 - November 6, pp. 43–52. ACM, New York (2004)

24. Uchitel, S., Kramer, J., Magee, J.: Incremental Elaboration of Scenario-Based Spec-
ifications and Behaviour Models using Implied Scenarios. ACM TOSEM 13(1)
(2004)

25. van Gabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)

Satisfiability Modulo Theories: An Appetizer

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA 98074, USA
{leonardo,nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) is about checking the
satisfiability of logical formulas over one or more theories. The prob-
lem draws on a combination of some of the most fundamental areas
in computer science. It combines the problem of Boolean satisfiabil-
ity with domains, such as, those studied in convex optimization and
term-manipulating symbolic systems. It also draws on the most prolific
problems in the past century of symbolic logic: the decision problem,
completeness and incompleteness of logical theories, and finally com-
plexity theory. The problem of modularly combining special purpose
algorithms for each domain is as deep and intriguing as finding new
algorithms that work particularly well in the context of a combination.
SMT also enjoys a very useful role in software engineering. Modern soft-
ware, hardware analysis and model-based tools are increasingly complex
and multi-faceted software systems. However, at their core is invariably
a component using symbolic logic for describing states and transforma-
tions between them. A well tuned SMT solver that takes into account the
state-of-the-art breakthroughs usually scales orders of magnitude beyond
custom ad-hoc solvers.

1 Introduction

Satisfiability is one of the most fundamental problems in theoretical computer
science, namely the problem of determining whether a formula expressing a con-
straint has a solution. Constraint satisfaction problems arise in many diverse ar-
eas including software and hardware verification, type inference, extended static
checking, test-case generation, scheduling, planning, graph problems, among
others [1]. The most well-known constraint satisfaction problem is propositional
satisfiability SAT, where the goal is to decide whether a formula over Boolean
variables, formed using logical connectives, can be made true by choosing true/
false values for its variables. Some problems require or are more naturally de-
scribed in more expressive logics such as first-order logic. A first-order formula
is formed using logical connectives, variables, quantifiers, function and predicate
symbols. A solution, also known as a model, is an interpretation for the variable,
function and predicate symbols that makes the formula true. Of particular re-
cent interest is satisfiability modulo theories (SMT), where the interpretation of
some symbols is constrained by a background theory. For example, the theory of
arithmetic restricts the interpretation of symbols such as: +, ≤, 0, and 1.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 23–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

24 L. de Moura and N. Bjørner

SMT draws on the most prolific problems in the past century of symbolic logic:
the decision problem, completeness and incompleteness of logical theories, and
finally complexity theory. The computational complexity of most SMT problems
is very high. The problem of modularly combining special purpose algorithms
for each domain is as deep and intriguing as finding new algorithms that work
particularly well in the context of a combination. The theory of linear arithmetic,
which is the basis of linear programming, is one prominent theory that is useful
in many applications. Linear programming algorithms can be used to check
satisfiability of conjunctions of linear arithmetic inequalities, but they do not
directly apply for Boolean combinations. SMT solvers distinguish themselves by
handling such combinations.

It is well-known that SAT is NP-complete and first-order logic is undecidable.
Due to this high computational complexity, it is infeasible to build a procedure
that can solve arbitrary SMT problems. Therefore, most procedures focus on the
more realistic goal of efficiently solving problems that occur in practice. They
rely on the assumption that, although potentially big, most formulas produced
by verification and analysis tools are shallow. That is, only a small fraction
of a formula is really critical for establishing satisfiability. The rest consists of
irrelevant noise.

In recent years, there has been an enormous progress in the scale of problems
that can be solved, thanks to innovations in core algorithms, data structures,
heuristics, and paying attention to implementation details. Modern SAT pro-
cedures can check formulas with hundreds of thousands variables and millions
of clauses. A similar progress has being observed for SMT procedures for the
more commonly occurring theories. The annual competition for SAT and SMT
procedures is a key ingredient in driving progress [2]. In this paper, we provide
a brief overview of SMT and the main technical ideas.

1.1 An Example

We will introduce three theories used in SMT solvers using the following example:

b + 2 = c ∧ f(read(write(a, b, 3), c− 2)) �= f(c− b + 1).

The formula uses the theory of arrays. It was introduced by McCarthy in [3] as
part of forming a broader agenda for a calculus of computation. In the theory of
arrays, there are two functions read and write . The term read(a, i) produces the
value of array a at index i, while the term write(a, i, v) produces an array, which
is equal to a except for possibly index i which maps to v. These properties can
be summarized using the equations:

read(write(a, i, v), i) = v

read(write(a, i, v), j) = read(a, j) for i �= j.

They state that the result of reading write(a, i, v) at index j is v for i = j.
Reading the array at any other index produces the same value as read(a, j). The
formula also uses the function f , therefore for all t and s, if t = s, then f(t) = f(s)

Satisfiability Modulo Theories: An Appetizer 25

(congruence rule). In other words, the only assumption about function f is that
it always produce the same result when applied to the same arguments. The
congruence rule implies that formulas remain equivalent when replacing equal
terms. The example formula is unsatisfiable. That is, there is no assignment
to the integers b and c and the array a such that the first equality b + 2 = c
holds and at the same time the second disequality also is satisfied. One way of
establishing the unsatisfiability is by replacing c by b + 2 in the disequality, to
obtain the equivalent

b + 2 = c ∧ f(read(write(a, b, 3), b + 2− 2)) �= f(b + 2− b + 1),

which after reduction using facts about arithmetic becomes

b + 2 = c ∧ f(read(write(a, b, 3), b)) �= f(3).

The theory of arrays implies that the nested array read/write functions reduce
to 3 and the formula becomes:

b + 2 = c ∧ f(3) �= f(3).

The congruence property of f entails that the disequality is false.

2 Preliminaries

A propositional formula ϕ can be a propositional variable p or a negation ¬ϕ0,
a conjunction ϕ0 ∧ ϕ1, a disjunction ϕ0 ∨ ϕ1, an implication ϕ0 ⇒ ϕ1, or a
bi-implication ϕ0 ⇔ ϕ1 of smaller formulas ϕ0, ϕ1. A truth assignment M for a
formula ϕ maps the propositional variables in ϕ to {true, false}. We say a truth
assignment M satisfies ϕ (M |= ϕ), if M makes ϕ evaluate to true under the usual
truth table interpretation of the connectives. For instance, let ϕ be the formula
p ∨ (¬q ∧ r), then the truth assignment M = {p �→ false, q �→ false, r �→ true}
satisfies ϕ. A formula ϕ is satisfiable if there is an M s.t. M |= ϕ, and ϕ is valid
if for all M , M |= ϕ. We say ϕ1 and ϕ2 are equisatisfiable if ϕ1 is satisfiable iff ϕ2
is satisfiable. A literal is either a propositional variable p or its negation ¬p. A
clause is a disjunction of literals l1 ∨ . . .∨ ln. A formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses C1 ∧ . . . ∧ Cm. We will write CNF
formulas as set of clauses. Any propositional formula can be converted to CNF,
in linear time, by introducing fresh variables for each compound subformula and
adding suitable clauses. For example, let ϕ be the formula ¬p ∨ (q ∧ ¬r), in
converting ϕ into CNF, we label q ∧ ¬r as k1 and encode k1 ⇔ (q ∧ ¬r) using
the set of auxiliary clauses Δ1 = {¬k1 ∨ q, ¬k1 ∨ ¬r, ¬q ∨ r ∨ k1}, similarly,
we label ¬p ∨ k1 as k2 and encode k2 ⇔ (¬p ∨ k1) using the clauses Δ2 =
{p∨ k2, ¬k1 ∨ k2, ¬k2 ∨ ¬p ∨ k1}, hence, the formula ϕ is equisatisfiable to the
set of clauses {k2} ∪Δ1 ∪Δ2.

Many-sorted (first-order) logic is a commonly used formalism and framework
for formulating SMT problems. A many-sorted signature is composed of a set

26 L. de Moura and N. Bjørner

of sorts, a set of function symbols, and a set of predicate symbols. Each function
symbol f has associated with it an arity of the form σ1 × . . . × σn → σ, where
σ1, . . . , σn, σ are sorts. If n = 0, we say f is a constant symbol. Similarly, each
predicate symbol p has associated with it an arity of the form σ1 × . . . × σn.
If n = 0, we say p is a propositional symbol. We assume a set of variables X ,
where each variable is associated with a sort. A term t with sort σ has the form
x or f(t1, . . . , tn), where x is a variable with sort σ, and f is a function symbol
with arity σ1 × . . . × σn → σ, where for each i ∈ {1, . . . , n}, ti has sort σi.
An atom is of the form p(t1, . . . , tn) where p is a predicate symbol with arity
σ1× . . .×σn, and for each i ∈ {1, . . . , n}, ti is a term with sort σi. A formula ϕ is
an atom, or has the form ¬ϕ0, ϕ0 ∧ϕ1, ϕ0 ∨ϕ1, ϕ0 ⇒ ϕ1, ϕ0 ⇔ ϕ1, (∀x : σ.ϕ0),
or (∃x : σ.ϕ0), where ϕ0, ϕ1 are smaller formulas. A Σ-formula ϕ is a formula
where each symbol in ϕ is in Σ. We say a variable x is free in formula ϕ if it
is not bound by any quantifier ∃, ∀. For example, x is free in (∀y : σ. p(x, y)),
but y is not. A sentence is a formula without free variables. We use vars(ϕ) to
denote the set of free variables in ϕ. A quantifier-free formula is a formula not
containing ∃ or ∀.

A structure M for a signature Σ and variables X consists of non-empty do-
mains |M |σ for each sort in Σ, for each x ∈ X with sort σ, M(x) ∈ |M |σ, for
each function symbol f with arity σ1 × . . . × σn → σ, M(f) is a total map
from |M |σ1 × . . . × |M |σn to |M |σ, and for each predicate symbol p with arity
σ1×. . .×σn, M(p) is a subset of |M |σ1×. . .×|M |σn . The interpretation of a term
t is given by M [[x]] = M(x) and M [[f(t1, . . . , tn)]] = M(f)(M [[t1]], . . . ,M [[tn]]).
We assume that, for each sort σ, the equality =σ is a builtin predicate symbol
with arity σ×σ that does not occur in any signature and for every structure M ,
M(=σ) is the identity relation over |M |σ×|M |σ. As a notational convention, we
will always omit the subscript. We use M{x �→ ν} to denote a structure where
the variable symbol x with sort σ is interpreted as ν, ν ∈ |M |σ, and all other
variables, function and predicate symbols have the same interpretation as in M .
Given a formula ϕ and a structure M , satisfaction M |= ϕ is defined as:

M |= p(t1, . . . , tn) ⇐⇒ 〈M [[t1]], . . . ,M [[tn]]〉 ∈M(p)
M |= ¬ϕ ⇐⇒M �|= ϕ
M |= ϕ0 ∨ ϕ1 ⇐⇒M |= ϕ0 or M |= ϕ1
M |= ϕ0 ∧ ϕ1 ⇐⇒M |= ϕ0 and M |= ϕ1
M |= (∃x : σ.ϕ) ⇐⇒M{x �→ ν} |= ϕ for some ν ∈ |M |σ
M |= (∀x : σ.ϕ) ⇐⇒M{x �→ ν} |= ϕ for all ν ∈ |M |σ

Note that an implication ϕ0 ⇒ ϕ1 is equivalent to ¬ϕ0∨ϕ1, and a bi-implication
ϕ0 ⇔ ϕ1 is equivalent to (¬ϕ0 ∨ ϕ1) ∧ (ϕ0 ∨ ¬ϕ1). A formula ϕ is satisfiable if
there is a structure M s.t. M |= ϕ, and is valid if for all structures M , M |= ϕ.
A structure M satisfies a set of formulas S (M |= S) if M |= ϕ for every ϕ ∈ S.
A formula is in negation normal form (NNF) if the negation only occurs in liter-
als of the form ¬p(t1, . . . , tn). A formula can be converted to NNF by using the
equivalences such as: ¬¬ϕ ≡ ϕ, ¬(ϕ0∧ϕ1) ≡ ¬ϕ0∨¬ϕ1, ¬(ϕ0∨ϕ1) ≡ ¬ϕ0∧¬ϕ1,
¬(∃x : σ.ϕ) ≡ (∀x : σ.¬ϕ), and ¬(∀x : σ.ϕ) ≡ (∃x : σ.¬ϕ). We use t[s/x] to de-
note a term t′ where the free variable x is replaced by the term s. Skolemization

Satisfiability Modulo Theories: An Appetizer 27

converts an NNF formula ϕ into an equisatisfiable formula ϕ′ not containing ∃. It
it is based on the observation that if ϕ is NNF, then any subformula (∃x : σ.ϕ0)
can be replaced by ϕ0[f(x1, . . . , xn)/x], where vars(∃x : σ.ϕ0) = {x1, . . . , xn},
and f is a new fresh function symbol. The resulting formula can then be con-
verted in linear time into CNF using an approach similar to the one used for
propositional formulas. The only difference is that if a subformula contains free
variables in the context of universal quantifiers ∀, then the auxiliary clauses are
universally quantified. For example, let ϕ be the formula (∀x : σ. (∀y : σ. (q(y) ∧
p(y))∨¬r(x, y))), the variable y is bound by an universal quantifier ∀, now sup-
pose we want to label the subformula q(y)∧p(y), then we create a new fresh pred-
icate symbol s, and encode ∀y : σ. s(y) ⇔ (q(y)∧p(y)) using the auxiliary clauses
{(∀y : σ.¬s(y) ∨ q(y)), (∀y : σ.¬s(y) ∨ p(y)), (∀y : σ. s(y) ∨ ¬q(y) ∨ ¬p(y))}. In
practice, solvers try to minimize the number of auxiliary clauses by using, when
feasible, the distributivity rule: ϕ0∨(ϕ1∧ϕ2) ≡ (ϕ0∨ϕ1)∧(ϕ0∨ϕ2). Note that, in
the worst case, the repeatedly application of the distributivity rule may exponen-
tially increase the size of the resulting formula. From now on, without loss of gen-
erality, we assume every formula that is being checked for satisfiability is in CNF.
We also use (∀x1 : σ1, . . . , xn : σn.ϕ) to denote (∀x1 : σ1. . . . (∀xn : σn.ϕ) . . .),
and ∀∗ϕ to denote a formula with zero or more ∀.

3 Efficient Case-Analysis

Case-analysis is in the core of most automated deduction tools. Most SMT solvers
rely on SAT procedures for performing case-analysis efficiently. In this section,
we describe the basic techniques used in state-of-the-art SAT solvers. Later, we
describe how SMT specific solvers are combined with SAT solvers.

Most successful SAT solvers are based on an approach called systematic
search. The search space is a tree with each vertex representing a propositional
variable and the out edges representing the two choices (i.e., true and false) for
this variable. For a formula containing n variable, there are 2n leaves in this
tree. Each path from the root to a leaf corresponds to a truth assignment. Given
a formula ϕ, a procedure, based on systematic search, searches the tree for a
truth assignment M that satisfies ϕ. Most search based SAT solvers are based
on the DPLL approach [4]. Given a CNF formula, the DPLL algorithm tries to
build a satisfying truth assignment using three main operations: decide, prop-
agate and backtrack. The operation decide heuristically chooses an unassigned
propositional variable and assigns it to true or false. This operation is also called
branching or case-splitting. The operation propagate deduces the consequences
of a partial truth assignment using deduction rules. The most widely used de-
duction rule is the unit-clause rule, which states that if a clause has all but
one literal assigned to false and the remaining literal l is unassigned, then the
only way for this clause to evaluate to true is to assign l to true. Let C be the
clause p ∨ ¬q ∨ ¬r, and M the partial truth assignment {p �→ false, r �→ true},
then the only way for C to evaluate to true is by assigning q to false. Given a
partial truth assignment M and a clause C in the CNF formula ϕ such that all

28 L. de Moura and N. Bjørner

literals of C are assigned to false in M , then there is no way to extend M to
a complete truth assignment M ′ that satisfies ϕ. We say this is a conflict, and
C is a conflicting clause. A conflict indicates that some of the earlier decisions
cannot lead to a truth assignment that satisfies ϕ, and the DPLL procedure
must backtrack and try a different branch value. If a conflict is detected and
there are no decisions to backtrack, then the formula ϕ is unsatisfiable. Many
significant improvements of this basic procedure have been proposed over the
years. The main improvements are: lemma learning [5], non-chronological back-
tracking [5], efficient indexing techniques for applying the unit-clause rule [6],
and preprocessing techniques.

4 What Is a Theory?

A theory is essentially a set of sentences. More formally, a Σ-theory is a collection
of sentences over a signature Σ. Given a theory T , we say ϕ is satisfiable modulo
T if T ∪{ϕ} is satisfiable. We use M |=T ϕ to denote M |= {ϕ}∪T . For example,
let Σ be the signature containing the symbols 0, 1, +, − and <, and Z be the
structure that interprets these symbols in the usual way over the integers, then
the theory of linear arithmetic is the set of first-order sentences that are true
in Z. Let Ω be a class of structures over a signature Σ, then we use Th(Ω) to
denote the set of all sentences φ over Σ such that M |= φ for every M in Ω. In
the literature, sometimes a theory T is defined as a class of structures, and ϕ
is satisfiable modulo T if there is a structure M in T such that M |= ϕ. Note
that these two definitions are not equivalent when checking the satisfiability of
a formula ϕ over an expanded signature (see discussion at [7]).

We say the satisfiability problem for theory T is decidable if there is a proce-
dure S that checks whether any quantifier-free formula is satisfiable or not. In
this case, we say S is a decision procedure for T .

4.1 Theories

So which theories are integrated with SMT solves? The answer depends on the
SMT solver, yet some theories have gained more attention than others. We sum-
marize some of these here.

Linear Arithmetic. Linear arithmetic, also known as additive arithmetic, is
the theory where the only arithmetical functions are + and −. The functions
may be applied to either numerical constants or variables. Multiplication of a
numerical constant with a variable is also allowed, so 5 · x is a legal term, and
for arithmetic over the reals, 2

3 · x is allowed. The relations for equality and
inequalities (=,≤, <) are used for forming atomic predicates. A conjunction of
= and ≤ atoms can be decided using a procedure based on the dual simplex
algorithm [8]. A method for extending the procedure to strict inequalities is by
working with non-standard reals that contain infinitesimals. This is achieved by
adding a symbolic infinitesimal constant ε to strict inequalities to make them
non-strict.

Satisfiability Modulo Theories: An Appetizer 29

Difference arithmetic. is a fragment of linear arithmetic where predicates
are restricted to be of the form x − y ≤ c, for x, y variables and c a numeric
constant. Conjunctions of difference arithmetic inequalities can be checked very
efficiently for satisfiability by searching for negative cycles in weighted directed
graphs. In the graph representation, each variable corresponds to a node, and an
inequality of the form x− y ≤ c corresponds to an edge from y to x with weight
c. Figure 1 shows a conjunction of difference inequalities and the corresponding
graph, the negative cycle, with weight −1, is shown by dashed lines.

y − x ≤ 1
z − y ≤ 0
x − z ≤ −2
x − w ≤ 0
z − w ≤ 1

x

y

z

w

1 0

-2

0 1

Fig. 1. Difference inequalities example

Non-linear arithmetic. The theory of quantifier-free non-linear arithmetic
over the reals is decidable. Tarski established a stronger result, that the full first-
order theory of reals with addition and multiplication is decidable [9]. Modern
methods for non-linear arithmetic over the reals use algorithms from computer
algebra, such as computing a Gröbner basis from equalities [10]. The situation is
completely different for integers. Hilbert’s famous 10th problem was to develop
an algorithm for solving non-linear equalities over the integers. Matiyasevich
established that this problem was undecidable That is, there is no algorithm for
solving such equalities. It is much worse with quantifiers, which is also known
as Peano arithmetic: Gödel established there is not even a computable set of
axioms for characterizing Peano arithmetic.

Free functions. The free theory over a signature Σ is the first-order theory
with an empty set of sentences. The free theory was used in Section 1.1. It is
also known as the theory of uninterpreted functions. Decision procedures for
this theory are particularly important because the decision problem for many
theories (e.g., arrays) can be reduced to this one. Given a conjunction of equal-
ities between terms using free functions, a congruence closure can be used for
representing the smallest set of implied equalities. This representation can be
used to check if a mixture of equalities and disequalities are satisfiable. Simply
check that the terms on both sides of each disequality are in different equivalence
classes. Efficient algorithms for computing congruence closure has been the sub-
ject of long-running research [11]. In these algorithms, terms are represented as
directed acyclic graphs (DAGS). Figure 2 shows the operation of a congruence
closure algorithm in a small example.

Bit-vectors. The arithmetic of machines is not the same as arithmetic on
mathematical integers. In machine arithmetic, integers fit in fixed size registers.

30 L. de Moura and N. Bjørner

(a) f

g

a

f

g

b c

(b) f

g

a

f

g

b c

(c) f

g

a

f

g

b c

(d) f

g

a

f

g

b c

Fig. 2. Congruence closure example: a = b, b = c, f(a, g(a)) �= f(b, g(c)). (a) A DAG
for all terms in the example. (b) Equivalences a = b and b = c are shown by dashed
lines. (c) Nodes g(a) and g(c) are congruent because a = c is implied by first two
equalities. (d) Nodes f(a, g(a)) and f(b, g(c)) are also congruent, hence the example is
unsatisfiable because f(a, g(a)) �= f(b, g(c)).

A more suitable domain for machine arithmetic is to represent every number
as a fixed-size sequences of bits. On a 64 bit CPU, for instance, an integer is
represented as a bit-vector with 64 bits. The theory of bit-vector arithmetic also
allows mixing bit-wise operations. For example, when x is a 64-bit integer, then
x is a power of two, if and only if 0 = ((x − 1)&x). The theory of bit-vectors
can be reduced to Boolean satisfiability by simply blasting bit-vector formulas
to Boolean formulas. For example, assume x and y are bit-vectors of size 2, then
the formula x + y = 0 can be blasted into:

(x0 xor y0) ⇔ false
(x1 xor y1) xor (x0 ∧ y0) ⇔ false

where x0, x1, y0, y1 are propositions corresponding to the bits of x and y, xor
is the exclusive-or operator, a xor b is defined as a ⇔ ¬b. In this example, we
are essentially encoding a carry look-ahead adder as a Boolean formula. Current
research into efficient decision procedures for bit-vectors seek taking advantage
of methods for modular arithmetic, methods for lazy bit-blasting, and approxi-
mating long bit-vectors by short bit-vectors.

Arrays. We used the theory of (applicative) arrays in Section 1.1. The theory
is useful for encoding state changes to programs with arrays. When a program
updates an array a by setting the value of a field i to v it induces a state change.
The side-effect can be encoded by referring to the updated array as write(a, i, v).
The problem of checking whether a quantifier-free formula is satisfiable modulo
the theory of arrays is decidable, and it allows various extensions which have
been pursued in recent literature [12,13].

Satisfiability Modulo Theories: An Appetizer 31

Other theories. There are several other theories of interest and relevance in
applications of SMT solvers. We cannot survey them all here, but mention a just
few to give an idea of the scope. These include the theory of pairs, or more gen-
erally tuples, allows working with pairs and accessing components within pairs
after they have been built. The basic theory of acyclic finite lists is tailored to
the list data-structure found in functional programming languages. A theory of
strings is closely related to the theory of lists. It is distinguished as concatena-
tion is assumed as the basic way of building strings, as opposed to consing new
elements to the front of a list. Concatenation is found in programs that manipu-
late strings. Of equal relevance for string-manipulating programs are operations
for taking lengths of strings, indexing into strings, and checking membership in
regular and context-free languages. Unfortunately not all combinations of these
extensions remain decidable. The theory of acyclic finite recursive data-types
generalizes both the theory of pairs and lists. It can be used for algebraic data-
types, known from functional programming.

5 SAT + Theory Solvers

The previous section summarized an array of different theories, and described
decision procedures for deciding the satisfiability of conjunction of literals mod-
ulo a given theory. From now on, we say these procedures are theory solvers.
In practice, we are usually interested in deciding the satisfiability of arbitrary
quantifier-free formulas. One simple idea is to integrate SAT techniques described
in Section 3 with theory solvers [14,15,16,17].

First, we introduce an abstraction function α that maps a quantifier-free
formula ϕ into a propositional formula α(ϕ) by replacing atoms in ϕ with
(fresh) propositional variables. More formally, given a formula ϕ with atoms
A = {a1, . . . , an} and a set of propositional variables P = {p1, . . . , pn} not oc-
curring in ϕ, the mapping α from formulas over A to propositional formulas over
P is defined as the homomorphism induced by α(ai) = pi. The inverse γ of such
an abstraction mapping α simply replaces propositional variables pi with their
associated atom ai. For instance, let ϕ be the formula f(x) �� x ∧ f(f(x)) � x,
α(f(x) � x) = p1 and α(f(f(x)) � x) = p2, then α(ϕ) = ¬p1 ∧ p2. Moreover,
the truth assignment M induces a set of literals

γ(M) = {γ(pi) | M(pi) = true} ∪ {¬γ(pi) | M(pi) = false}

Now, given a truth assignment M = {p1 �→ false, p2 �→ true}, γ(M) = {f(x) ��
x, f(f(x)) � x}.

Given an unsatisfiable set of literals S, we say a justification for S is any
unsatisfiable subset J of S. Of course, any unsatisfiable set S is a justification
for itself. We say a justification J is non-redundant if there is no strict subset J ′

of J that is also unsatisfiable.
The basic integration of a SAT solver with a theory solver is reported in

Figure 3. The procedure SAT(ϕ) (satisfiability solver) returns a tuple 〈r,M〉
where r is sat if ϕ is satisfiable and unsat otherwise, and M is a truth assignment

32 L. de Moura and N. Bjørner

SMT-Solver(ϕ)
ϕ′ := α(ϕ)
loop

〈r, M〉 := SAT(ϕ′)
if r = unsat then return unsat
〈r, J〉 := T-Solver(γ(M))
if r = sat then return sat
C :=

∨
l∈J ¬α(l)

ϕ′ := ϕ′ ∧ C

Fig. 3. Basic SAT + Theory Solver integration

that satisfies ϕ if r is sat. The procedure T-Solver(S) (theory solver) returns a
tuple 〈r, J〉 where r is sat if the set of literals S is satisfiable and unsat otherwise,
and J is a justification for S if r is unsat. Note that

∨
l∈J ¬α(l) is a new clause

not in ϕ′, and we say it is a theory lemma.
The algorithm described in Figure 3 is also known as the lazy offline ap-

proach. There are many refinements for this basic algorithm. The basic idea is
to have a tighter integration between the two procedures, where the T-solver is
used to check partial truth assignments being explored by the SAT solver (online
integration). In this refinement, additional performance gains can be obtained
if the theory solver is incremental and backtrackable. Theory deduction rules
can also be used to prune the search space being explored by the DPLL solver
(theory propagation). More formally, let M be a partial truth assignment, and
γ(M) implies γ(li), then li is assigned to true by theory propagation. Finally,
it is desirable to have a theory solver that produces non-redundant justifica-
tions, because they may drastically reduce the search space. This observation
follows from the fact that if J ⊂ J ′, then the clause

∨
l∈J ¬α(l) is smaller than∨

l∈J′ ¬α(l), and consequently the number of truth assignments that satisfy the
first clause is smaller than the second.

6 Combining Procedures

Section 4.1 summarized an array of different theories. Most of these theories
are decidable and their decision procedures use specialized efficient algorithms.
As the example in Section 1.1 illustrated, it does not always suffice to use one
theory in isolation. A fundamental question arises: is the union of two solvable
theories still solvable? If they are, how can procedures be combined? Can the
glue for combining two procedures be defined without specific dependencies on
the theories?

Given a Σ1-theory T1 and a Σ2-theory T2, we use T1 ⊕ T2 to denote the
(Σ1 ∪Σ2)-theory that is the union of the sentences of T1 and T2.

6.1 Strongly Disjoint Theories

We say Σ1-theory T1 and Σ2-theory T2 are strongly disjoint if Σ1 and Σ2 do
not have sort symbols in common, and consequently no function and predicate

Satisfiability Modulo Theories: An Appetizer 33

symbols in common. For example, the theory of arithmetic and bit-vectors are
strongly disjoint. Let Si be a decision procedure for theory Ti, then it is very
easy to build a procedure S for the (Σ1 ∪ Σ2)-theory T1 ⊕ T2. It is based on
the simple observation that any set S of Σ1 ∪ Σ2-literals is of the form S1 ∪ S2
where Si is a set of Σi-literals for i = 1, 2. Hence, S is satisfiable iff S1 and S2
are satisfiable.

6.2 Nelson-Oppen Combination

We say Σ1-theory T1 and Σ2-theory T2 are disjoint if Σ1 and Σ2 do not have
function and predicate symbols in common. Note that Σ1 and Σ2 may have
sort symbols in common. The Nelson-Oppen procedure [18] gives a method for
combining decision procedures for disjoint theories T1 and T2 into one for T1⊕T2.

A theory T is stably infinite with respect to sort σ if for every formula ϕ
satisfiable in T , there exists a structure M s.t. M |=T ϕ and |M |σ is infinite.
We say a (Σ1 ∪ Σ2)-formula ϕ is pure if every literal l in ϕ is a Σi-literal for
i = 1, 2. Every quantifier-free (Σ1 ∪ Σ2)-formula ϕ can be purified into a pure
and equisatisfiable formula ϕp. The basic idea is to use the following satisfiability
preserving transformation:

F [t]� F [u] ∧ u = t, where u is a fresh variable.

For example, let ϕ be the formula f(x − 1) − 1 = x ∧ f(y) + 1 = y, then after
purification we obtain the equisatisfiable formula ϕp:

(u2 − 1 = x ∧ u3 + 1 = y ∧ u1 = x− 1) ∧ (u2 = f(u1) ∧ u3 = f(y))

A partition Π on a set of variables X is a disjoint collection of subsets X1, . . . , Xn

s.t. (
⋃n

i=1 Xi) = X , and for all x, y ∈ Xi, x and y have the same sort. Given
a partition Π , an arrangement AΠ is a union of the set of equalities {x �
y | for some i s.t. x, y ∈ Xi} and disequalities {x �� y | for some i, j s.t. i �=
j, x ∈ Xi, y ∈ Xj}.

Given two disjoint theories T1 and T2 such that Ti is stably infinite with
respect to each sort σ in Σ1 and Σ2, for i = 1, 2. The Nelson-Oppen combination
theorem states that a pure formula ϕ1∧ϕ2 is satisfiable in T1⊕T2 iff there exists
an arrangement AΠ of the shared variables X = vars(ϕ1) ∩ vars(ϕ2) such that
ϕi ∪ AΠ is satisfiable for i = 1, 2. The stable-infiniteness requirement in the
Nelson-Oppen framework is used to bring the interpretation of the shared sorts
to the same infinite cardinality.

A näıve implementation of the Nelson-Oppen combination method simply
tries all possible arrangements. There are many refinements for this basic ap-
proach: the SAT solver is used to “guess” the arrangement (delayed theory combi-
nation [19]), candidate models (structures), produced by Si, are used to “guess”
the right arrangement (model-based theory combination [20]).

A theory T is convex iff for all finite sets S of literals and for all non-empty
disjunctions

∨
i∈I ui � vi of variables, S implies

∨
i∈I ui � vi in T iff S implies

ui � vi in T for some i ∈ I. Intuitively, a theory is convex if for every satisfiable

34 L. de Moura and N. Bjørner

set of literals there is a model where variables not implied to be equal have a
distinct interpretation. The theory of linear rational arithmetic is convex, but
the theory of linear integer arithmetic is not (e.g., if x, y and z are integers,
then {x � 0, y � 1, 0 ≤ z ≤ 1} implies x � z ∨ y � z, but does not imply
x � z or y � z). For convex theories, instead of guessing a partition, one can
deduce the equalities to be shared. The key idea is to propagate x � y to ϕ2
whenever T1∪ϕ1 implies x � y, and vice-versa. This process is repeated until no
further equations can be propagated. Then, the individual procedures are used
to decide whether ϕi is satisfiable. Sharing equalities in this case is sufficient,
because S1 can assume that in the structure M2 produced by S2 to satisfy ϕ2,
M2(x) �= M2(y) whenever x � y was not propagated and vice versa. So, for
convex theories, there is an efficient way to construct a partition of the set of
shared variables.

There are many extensions for the Nelson-Oppen combination method. For
example, some of them are extensions for non-stably infinite theories [21,22] and
for non-disjoint theories [23].

7 Meta-procedures

It is infeasible to implement a (semi-) decision procedure for every possible the-
ory that may be useful in practice. Thus, some SMT solvers implement meta-
procedures for classes of theories that can be described by a finite number of
sentences. A meta-procedure S is a (semi-) decision procedure for a class of the-
ories Ω. Given a theory T ∈ Ω and a formula ϕ, S can decide whether ϕ is
satisfiable modulo T or not.

Instantiation Based Meta-procedures. The effectively propositional class,
EPR, also known as the Bernays-Schönfinkel-Ramsey class of first-order formu-
las, comprises of formulas of the form ∀∗ϕ, where ϕ is a quantifier-free formula
with predicate symbols and constant symbols, but without non-constant func-
tion symbols. The satisfiability problem for the EPR class can be reduced to
Boolean satisfiability problem by instantiating the quantified formulas by all
combinations of constants. Several useful theories, such as the theory of partial
orders, are in the EPR class. The satisfiability problem for many other classes
of formulas can be decided using instantiation methods [13,7,22].

Rewriting Based Meta-procedures. An equational theory is a theory con-
taining only sentences of the form ∀∗t = s. Given a finite equational theory
T , the Knuth-Bendix completion algorithm [24] is an algorithm for transforming
the equations in T into a confluent term rewriting system. When the
algorithm succeeds, it has effectively solved the satisfiability problem for T .
Similarly, a Superposition-Calculus procedure [25] is a semi-decision procedure
for the satisfiability problem for a finite set of many-sorted sentences. In many
cases, superposition-calculus is a decision procedure [26].

Satisfiability Modulo Theories: An Appetizer 35

8 Conclusion

In the last few years, satisfiability became the core engine underlying a wide
range of powerful technologies. SMT is an active and exciting area of research
with many practical applications [1]. We have presented some of the basic ideas,
but a real implementation requires careful attention to a large number of details
and heuristics that we have not covered. SAT and SMT solving technologies are
already making a profound impact on a number of application areas. The theoret-
ical challenges include better representations and algorithms, efficient methods
for combining procedures, and various extensions to the basic search method.

References

1. Bjørner, N., de Moura, L.: Z310: Applications, Enablers, Challenges and Directions.
In: CFV (2009)

2. Barrett, C., de Moura, L., Stump, A.: Design and Results of the 1st Satisfiability
Modulo Theories Competition. JAR (2005)

3. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress,
pp. 21–28 (1962)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM (1962)

5. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satis-
fiability. In: ICCAD (1996)

6. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: DAC (2001)

7. Ge, Y., de Moura, L.: Complete instantiation for quantified SMT formulas. In:
CAV (2009)

8. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

9. Tarski, A.: A decision method for elementary algebra and geometry. Technical
report, 2nd edn. University of California Press, Berkeley (1951)

10. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. Technical report, Mathematical
Institute, University of Innsbruck, Austria (1965)

11. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27, 758–771 (1980)

12. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: LICS, pp. 29–37 (2001)

13. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

14. de Moura, L., Rueß, H.: Lemmas on Demand for Satisfiability Solvers. In: SAT
(2002)

15. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem Proving Using Lazy Proof
Explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 355–367. Springer, Heidelberg (2003)

36 L. de Moura and N. Bjørner

16. Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by
incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, p. 236. Springer, Heidelberg (2002)

17. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53 (2006)

18. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 245–257 (1979)

19. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed
Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Com-
parative Analysis. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 527–541. Springer, Heidelberg (2006)

20. de Moura, L., Bjørner, N.: Model-based theory combination. In: Proc. 5th SMT
Workshop, CAV 2007 (2007)

21. Jovanović, D., Barrett, C.: Polite Theories Revisited (to appear, 2009)
22. de Moura, L., Bjørner, N.: Generalized, Efficient Array Decision Procedures (to

appear, 2009)
23. Tinelli, C., Ringeissen, C.: Unions of Non-Disjoint Theories and Combinations of

Satisfiability Procedures. Theoretical Computer Science (2003)
24. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. Compu-

tational Problems in Abstract Algebra (1970)
25. de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A.,

Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
475–490. Springer, Heidelberg (2008)

26. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM TOCL 10, 129–179 (2009)

Interruption Testing of Reactive Systems

Wilkerson L. Andrade and Patŕıcia D.L. Machado

Federal University of Campina Grande (UFCG), Paráıba, Brazil
{wilker,patricia}@dsc.ufcg.edu.br

Abstract. Reactive systems may be composed of a number of concur-
rent processes and network distributed services, where interruptions in
a flow of execution can occur at any time. These systems are very diffi-
cult to test. One of the reasons is that the possible number of combina-
tions of allowed interruptions at different points of a flow of execution is
huge. This makes exhaustive specification of each possibility infeasible.
Without a specification, automated test case generation and selection is
compromised. This work presents a strategy for testing interruptions in
reactive systems that covers modelling (devoted to testing) of systems
with interruptions, generation and selection of sound test cases. The
strategy is supported by the LTS-BT tool. A case study is presented to
illustrate its applicability in the mobile phone application domain.

1 Introduction

Reactive systems interact with their environment by accepting inputs and pro-
ducing outputs. Apart from being inherently non-terminating, these systems are
becoming more and more complex, for instance, by incorporating features such
as interruptions that are caused by concurrent processes and network distributed
services that demand instant execution in a given device. In this case, the process
running in foreground is instantly suspended to release resources for the inter-
rupting process. After the interruption, the interrupted process should resume
from the point where it stopped. As an example, when a user is composing an
e-mail by using a mobile phone device and an incoming call arrives in this device,
the call feature interrupts the e-mail feature that must successfully resume later.

Considering that any interruption can occur at any point of a flow of exe-
cution, there are infinite possibilities of occurrences. This makes the exhaustive
specification of each possibility infeasible and, consequently, automatic test case
generation and selection is compromised. Effective testing requires a systematic
investigation of all possibilities and, consequently, automation.

To provide an effective solution for interruption testing, it is crucial to de-
fine a model capable of representing such interruptions, and consequently, make
the automatic test case generation process possible. In addition, the model has
to be composable, allowing interruptions to be combined at different points of
possibly different flows of execution. Moreover, due to the huge amount of pos-
sible test cases, selection strategies need to be applied to reduce the size of test
suites.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 37–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 W.L. Andrade and P.D.L. Machado

Fig. 1. Interruption Test Process Fig. 2. Test Architecture

The particular problem of evaluating if a system implementation is in ac-
cordance with its specification by experimentation is referred to as conformance
testing. Considerable progress has already been made in this area from both the-
oretical and practical point of view. The AGEDIS project [1] is an outstanding
initiative. Nevertheless, to the best of our knowledge, approaches that handle
applications with interruptions are practically nonexistent.

This paper presents a strategy for conformance testing of reactive systems
with interruptions that covers modelling (devoted to testing), generation and
selection of sound test cases. The model adopted is named Annotated Labelled
Transition System (ALTS). This kind of Labelled Transition System (LTS) has
special descriptions inserted into the model in order to make the test case gener-
ation process feasible. LTSs are good models for representing functional testing
models because all information needed is the observable interactions between
applications and environment and between applications. Also, they are the un-
derlying formalism of most formal notations for reactive applications. The pro-
posed model is implemented by the LTS-BT tool [2]. A case study illustrates the
benefits of the strategy when compared to manual selection.

The remainder of this paper is structured as follows. Section 2 presents the
general test process considered. Section 3 presents the ALTS behavioural model
structure used to model interruptions. The interruption test case generation
algorithm and a selection strategy based on test purposes are introduced in
Section 4. In Section 5, some properties of the interruption test cases gener-
ated by LTS-BT are discussed. A case study is presented in Section 6. Finally,
Section 7 presents related work and Section 8 concluding remarks.

2 Context

In general, the test process in the context of this work starts with the specifi-
cation of the System Under Test (SUT) and interruptions. Given the high level
specifications, an ALTS model is automatically generated. Finally, the ALTS
model is combined with test purposes for interruption test case generation. The
interruption test process uses test purposes in order to test at specific points of
interest. A general view of this test process is presented in Figure 1.

The interruption test process considers the test architecture presented in
Figure 2. In this test architecture, two elements are important: the SUT and

Interruption Testing of Reactive Systems 39

Fig. 3. Remove Message Specification

the tester. The SUT is composed by the main application and the interruptions
allowed during the test process. The environment is assumed to be fully control-
lable by the tester, thus, during the test execution the tester has total control of
the interruptions, deciding when they start and finish.

The SUT is specified as use cases using a controlled natural language [3]. An
example of a use case of a mobile phone application is shown in Figure 3. This
represents the behaviour of removing a message from inbox. A use case must
have a main flow and can have some alternative flows. The flows are described
through steps that include a user action and the respective system response.
Besides the actor action and the system response, each step has a condition
(System State) that determines if the system response will happen or not. If the
condition is not satisfied, an alternative flow must be specified. As an example,
the step “4M” of the main flow has one alternative flow (steps “1A” and “2A”).

Considering the specification of interruptions, the adopted strategy is to spec-
ify an interruption in the same way and using the same use case template that
is used to specify a simple behaviour of the SUT [4]. Once the interruption flow
is specified, we assume that it can be executed at any time of another use case
execution, i.e., between any step of another use case. With this, interruption
behaviours are defined in a simple manner and all points where an interruption
can occur do not need to be explicitly specified.

3 Interruption Model

This section presents the ALTS model structure capable of representing inter-
ruptions. Firstly, the semantics of an ALTS with interruptions is informally
presented based on simple Input-Output Labelled Transition System (IOLTS)

40 W.L. Andrade and P.D.L. Machado

Fig. 4. Simple IOLTS Fig. 5. Modelling Interruptions Using IOLTS

models. Then the structure of the proposed model is defined and illustrated by
an application in the mobile phone domain. Finally, conformance is discussed.

3.1 Representing Interruptions with IOLTS Models

Basically, LTS models are represented by graphs where nodes are possible system
states and edges represent the action of moving between these states through
occurrence of actions. Particularly, an IOLTS makes distinction between events
of the system that are controllable by the environment (the inputs) and those
that are only observable (the outputs). Internal actions can be represented too.

Figure 4 shows an example of an IOLTS. An input event is defined through the
symbol “?” followed by the event name and an output event is defined through
the symbol “!” followed by the event name.

It is possible to model interruptions using an IOLTS. For this, each possibility
of interruption needs to have a specific set of states, implying that interruption
flows must be duplicated. Figure 5 shows an example of how to model interrup-
tions using IOLTS. Nodes from 0 to 4 are related to a behaviour that can be
interrupted by another behaviour at nodes 1 and 3. Note that state 5 represents
the possibility of interruption at node 1 and state 6 the possibility of interruption
at node 3. Note that nodes 5 and 6 represent the same interruption behaviour.

The replication of the interruption model is due to the semantics of the be-
haviour. Suppose that only one state had been used to represent the interruption
behaviour, then it would not be possible to associate a unique next state to the
end of the interruption execution. After an interruption execution, the flow needs
to continue from the same point where the interruption had started.

3.2 Annotated Labelled Transition Systems

ALTSs are capable of representing interruptions in a more compact way, follow-
ing the same semantics presented in the previous section. This new kind of LTS
follows the same classical LTS definition. The difference is that each label is asso-
ciated with a description. This new description inserted into the model is called
annotation. Before to define an ALTS we need to define a Generic Annotated
Labelled Transition Systems (GALTS).

Definition 1 (GALTS). A GALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

– Q is a countable, non-empty set of locations;
– A is a countable, non-empty set of annotations;
– L is a countable, non-empty set of labels;

Interruption Testing of Reactive Systems 41

– q0 ∈ Q is an initial location;
– T is a set of transitions. Each transition consists of:

• a location q ∈ Q, called the origin of the transition;
• an annotation a ∈ A, called the annotation of the transition;
• a label l ∈ L, called the label of the transition;
• a location q′ ∈ Q, called the destination of the transition.

As said before, each label has an associated description (annotation). So in the
GALTS definition (Definition 1) we have a set A that contains the possible de-
scriptions of the labels. This set can be instantiated according to the information
to be modelled or the context where the model will be used. In our case, we are
interested in a model to support the test process, mainly a model capable of
representing interruptions efficiently. Thus, we define a more specific GALTS
where the set A of annotations has predefined elements.

Definition 2 (ALTS). An ALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

– Q is a countable, non-empty set of locations;
– A = {steps, conditions, expectedResults, beginInterruption X, endInterrup-

tion X} is the set of annotations;
– L is a countable, non-empty set of labels;
– q0 ∈ Q is an initial location;
– T is a set of transitions. Each transition consists of:

• a location q ∈ Q, called the origin of the transition;
• an annotation a ∈ A, called the annotation of the transition;
• a label l ∈ L, called the label of the transition;
• a location q′ ∈ Q, called the destination of the transition.

These annotations were chosen with the following specific goals: (1) guide the
test case generation process, by making the focus on particular interruptions
easier; (2) make it possible for interruption models to be plugged and unplugged
without interfering with the main model; (3) guide test case documentation; (4)
make it possible for conditions to be associated with actions; (5) indicate points
where interruptions can be reasonably observed externally.

The annotation steps is associated with a label l ∈ L (we write [steps]l) to
indicate that l is an input action. When a label l ∈ L represents a condition
associated with an input action, we use the annotation conditions and write
[conditions]l. The expected results are indicated through expectedResults anno-
tation ([expectedResults]l). The two other annotations are used to indicate the
start and the end of an interruption and they are considered as special kinds of
input actions and expected results, respectively. So the labels in L represent the
observable actions or some condition associated to these actions.

Some more notations must be defined. Let W = 〈Q,A,L, q0, T 〉 be an ALTS.

We write q
[a]l→ q′ for (q, a, l, q′) ∈ T and q

[a]l→ for ∃q′ : q
[a]l→ q′. An ALTS can

be defined by its initial state, then we write W → for q0 →. Depending on
the associated annotation, the labels can be classified as input actions, output
actions, or conditions. Thus, let L = LI ∪LO ∪LC , where LI is the set of input

42 W.L. Andrade and P.D.L. Machado

actions, LO is the set of output actions, and LC is the set of conditions. Let
a(i) ∈ A be some annotations, ω(i) ∈ L be some labels, σ ∈ ([A]L)∗ a sequence
of labels with their respective annotations, and q, q′ ∈ Q some states.

Ω(q) Δ= {a ∈ A,ω ∈ L | q [a]ω→} is the set of firable locations in q. Out(q) Δ=
Ω(q) ∩ [A \ {steps, conditions, beginInterruption X}]LO is the set of firable
outputs in q. The definition of Out(q) can be extended for sets of states: for

P ⊆ Q we have Out(P) Δ= {Out(q) | q ∈ P}. Denote q
[a1]ω1...[an]ωn→ q′

Δ=

∃[a0]ω0, ..., [an]ωn : q = q0
[a1]ω1→ q1

[a2]ω2→ ... [an]ωn→ qn = q′. The set q after
σ

Δ= {q′ ∈ Q | q σ→ q′} is the set of locations reachable from q, and P after
σ

Δ=
⋃

q∈P q after σ is the set of locations reachable from the set P . Traces(q) Δ=
{σ ∈ ([A]L)∗ | q σ→} describes the set of labels with their respective annotations
reachable from q. Considering the sequences of labels and annotations reachable
from the initial location of an ALTS W , we define Traces(W) Δ= Traces(q0).

Considering our running example presented in Section 2, Figure 6 presents an
ALTS model that represents the behaviour of removing a message from inbox
(locations from 0 to 13). This application is specified by the use case shown in
Figure 3. This same model also represents the occurrence of interruptions (loca-
tions from 14 to 17). The incoming alert interruption specifies the arrival of a new
kind of text messages where the text appears to the user inside a dialog box.

As we can see, in Figure 6, the interruption model is connected to the feature
that can be interrupted (the main flow) using two new annotations: beginInter-
rruption X and endInterrruption X, where X is a counter. These annotations
are used to memorise where the main flow has been interrupted. They are needed
to represent the behaviour where the main flow continues its execution from the
same point where it had been interrupted. For instance, if an interruption begins
with the beginInterruption 0 annotation it must finish with endInterruption 0.

One of the main advantages of using the Annotated LTS is that we can add
the same interruption behaviour to many different points only manipulating the
two new annotations (beginInterrruption X and endInterrruption X). Thus, we
can represent interruptions in a more compact way than standard LTS, while
preserving the same efficiency and precision in test generation.

Considering the time as being continuous, an interruption can occur at infinite
points during the system execution. But considering the tester’s point of view,
each possibility of interruption can only be observed after each system response.
This happens due to the fact that it is impractical to reproduce a scenario
where an interruption occurs between an input action and the system response,
mainly when tests are manually executed. It is important to remark that this
is a limitation of the test process in general and not of the proposal presented
in this paper. Thus, the intention is to represent only interruptions that occur
immediately after the system responses. In this case, Figure 6 represents all
possibilities of interruption from tester’s point of view.

Note that, as we are considering an LTS model for testing, only functionalities
to be tested are specified. Thus, we have a partial behavioural model. From

Interruption Testing of Reactive Systems 43

Fig. 6. Remove Message behaviour with Interruptions

tester’s point of view, only the specified behaviour is observed, and with this,
all other behaviours are not observed during the test, including other possible
interruptions. We are assuming that the test execution environment is controlled
by the tester, that is, one interruption only occurs when the tester wants.

In practice, this interruption model should not be written by hand because
it is tiresome and not cost-effective. They must be generated directly from ab-
stract specifications. The ALTS model presented in this section is automatically
generated from those use case templates described in Section 2 by the LTS-BT
tool [2]. This tool will be described in more details in the next section.

3.3 Testing Conformance

We are considering a testing theory that is based on the notions of speci-
fication, implementation, and a conformance relation between them [5]. The
specification of a reactive system with interruption can be any notation with

44 W.L. Andrade and P.D.L. Machado

that semantics discussed in Subsection 3.1. But this work only considers use
case templates or an ALTS that respects the constraints on labels use defined
in Subsection 3.2. The implementation can be any computer system that can
be interrupted at any time and can be modelled as an input-output labelled
transition system [5] (Subsection 3.1). Moreover, we assume all interruptions
to be controllable and implementations to be input-enabled, i.e., ∀q ∈ Q, a ∈
A \ {conditions, expectedResults, endInterruption X}, ∀ω ∈ LI , q

[a]ω→ . The lat-
ter assumption is an usual limitation of testing techniques [5,6].

The conformance relation considered is the ioco relation defined by Tretmans
in [5]. Informally, an implementation conforms to a specification for ioco if for
all traces of the specification, the set of output actions of the implementation is
contained in the set of output actions of the specification. This implementation
relation is similar to the one considered by the TGV tool [6].

Definition 3 (ioco Conformance Relation). Let the specification S be an
ALTS and SUT be an input-enabled IOLTS: SUT ioco S

Δ= ∀σ ∈ Traces(S),
Out(SUT after σ) ⊆ Out(S after σ).

4 Interruption Test Case Generation and Selection

This section presents the results related to the automation of the test process
described in Section 2. Firstly, the algorithm developed to generate interruption
test cases from ALTS is presented. Nevertheless, the algorithms used to translate
use case templates to ALTS are not presented due to space restrictions. Finally,
an interruption test case selection strategy based on test purposes is presented.

Intuitively, a test case (Definition 4) is a path from the root location to any
leaf location. A test case can be obtained from ALTS model, using the Depth-
First Search (DFS) method, by traversing the ALTS starting from the initial
location. As a general coverage criterion, all transitions need to be covered, i.e.,
all transitions are visited at least once. In Figure 7, the algorithm to generate
test cases is shown. As this algorithm is based on DFS method, its running time
using the asymptotic notation is O(| Q | + | T |), where |Q | is the number of
locations and |T | is the number of transitions of the ALTS model.

Definition 4 (Test Case). A test case is an ALTS TC = 〈QTC , ATC , LTC ,
qTC
0 , T TC〉. The set of annotations is the same of the specification (ATC = AS)

and the set of labels is LTC = LTC
I ∪ LTC

O ∪ LTC
C , where LTC

I ⊆ LSUT
O (outputs

of the SUT are the inputs of the TC), LTC
O ⊆ LSUT

I (TC emits only inputs
allowed by the SUT), and LTC

C ⊆ LS
C (the conditions are the same specified by

the specification).

The algorithm requires three parameters: loc, a location of the model, indicating
the current one during execution; path, a set of transitions from the model,
indicating the path visited during the processing; and intCode, the interruption
code, indicates that a given interruption is being processed.

Interruption Testing of Reactive Systems 45

Fig. 7. Test Case Generation Algorithm

The extraction is started from the root (the initial location of the ALTS
model), verifying if the current location indicates the end of a path in the model,
indicating that the test case has been extracted. In this case, it needs to be
recorded. If the current location does not indicate the end of a path, then each
of its descendants is visited through the depth-first search strategy.

To visit each of its descendants, the edge between the current location and
its descendant is analysed. The search proceeds only if (Figure 7, Line 12): (i)
the edge does not belong to the current analysed path, i.e., the edge has already
been “visited” (note that when the algorithm is processing the main applica-
tion, the value of intCode is −1); or (ii) if it is an edge from an interruption
behaviour (an edge with the endInterruption X label). This precaution is nec-
essary because after the interruption, the extraction process in the ALTS comes
back to previous location (the last location of the main application before the
interruption), therefore being possible to pass through the same interruption, in
different parts of the model, and constraining that would cause inconsistency.

Due to these conditions, two scenarios are encountered: (1) Conditions (i)
and (ii) are not satisfied: The search stops, recording the entire path as a test
case avoiding loops in the main application and finishing an interruption with
the correct endInterruption X transition. In this case, the recursion step of the
algorithm returns to the next branch that needs to be analysed, continuing the
algorithm; (2) Condition (i) or (ii) is satisfied: The edge between the location
and its descendent is added to the test case and the algorithm continues until it
finds the end of the path, which happens when either a leaf in the graph or an
edge going back to the root of the model are found.

46 W.L. Andrade and P.D.L. Machado

These constraints over the extraction, when using the depth-first search ap-
proach, are required to avoid a burst of paths during the test case extraction
caused by the loops in the ALTS model. This may reduce the number of ex-
tracted test cases, but without those constraints, the number of paths extracted
becomes unfeasible, while most of them may be obtained by combining the ex-
tracted test cases. Also, practice has shown that these excluded paths generally
add redundancy to the test suite, that is, they do not add test cases that would
lead to uncover escaped faults.

An exhaustive interruption test case generation is impractical due to the huge
amount of generated test cases. Particularly, in mobile phone applications con-
text, the majority of test cases are manually executed. In this scenario, test case
selection strategies are badly needed. The strategy used to reduce the test suite
is a test case selection based on purposes. This strategy focuses on a coverage
selection criterion, the test purpose, in order to test a particular system function-
ality. The defined test purpose is used to filter out the model, that is, it is used
to remove all paths that do not lead to the desired behaviour to be tested. After
that, the generation algorithm is executed, for then, generate the test cases.

Test purposes can be defined using a simple notation, where they are defined
through transition sequences. In these sequences, an “*” (asterisk) indicates
that, at this point, any transition can occur. A test purpose always finishes with
a transition that has an Accept label (indicating that all test cases need to be
in conformance with the purpose) or a Refuse label (otherwise).

Definition 5 (Test Purpose). A test purpose is a deterministic LTS TP =
(QTP , LTP , qTP

0 , T TP), equipped with the special labels Accept, Refuse, and “*”,
and with the same alphabet of the specification, i.e., LTP = LS. QTP is a count-
able, non-empty set of states, qTP

0 ∈ QTP is the initial state, and T TP is the
transition relation.

Some hints of how to define test purposes can be given as follows: (1) choose
the behaviour to be observed in the implementation and identify its description
in the specification; (2) if the behaviour to be observed is the first behaviour
of the specification, then the test purpose should start with the description of
this behaviour. Otherwise, add an asterisk followed by the description of the
behaviour to be observed. This indicates that any behaviour can occur before
the observation of the desired behaviour; (3) if there is more behaviours to be
observed in the same test purpose, go back to the first step; (4) if the last
behaviour description added to the test purpose is the last behaviour of the
specification, then go to the next step. Otherwise, an asterisk should be added
to the test purpose. This indicates that any other behaviour can occur after the
desired behaviour; (5) the last step is to add an Accept or a Reject label to the
test purpose. As mentioned before, the Accept label is used to indicate that all
generated test cases must be in conformance with the test purpose. The Reject
label is used otherwise.

As an example of a test purpose, we will use that ALTS model from Figure 6
(only locations from 0 to 13) in order to define a test purpose for a scenario
where a message is not removed because it is blocked. For this scenario, the

Interruption Testing of Reactive Systems 47

Fig. 8. LTS Model of a Test Purpose

following purpose could be defined: “*;‘Blocked messages cannot be removed’
dialog is displayed;*;Accept”. The LTS model that represents this test purpose
is showed in Figure 8.

It is very simple to define test purposes where an interruption can occur.
Given that the behaviour to be interrupted has been chosen, the name of the
interruption must appear immediately after the description of this behaviour
in the test purpose. The ALTS model with interruptions from Figure 6 will
be used to demonstrate how to define test purposes to check specific interrup-
tions. A test purpose will be defined to test the scenario where an alert ap-
pears when the user is accessing the inbox folder. This scenario can be specified
through the following test purpose: “*;All inbox messages are displayed;Incoming
Alert;*;Accept”.

Considering the defined test purpose, the model from Figure 6 is filtered
out to meet it. So, the following edges are removed: beginInterruption 0, end-
Interruption 0, beginInterruption 2, endInterruption 2, beginInterruption 3, end-
Interruption 3, beginInterruption 4, endInterruption 4, beginInterruption 5, and
endInterruption 5. The last step is to execute the test case generation algorithm.

All algorithms are implemented in the LTS-BT tool [2]. In order to make
the test execution activity easier, considering that this activity is manual, the
tool generates test cases in an alternative representation instead of ALTS. Each
selected test case is transformed in matrices, where each condition is considered
as an initial condition to execute the test case.

Figures 9 and 10 present the generated interruption test cases for the example
above (the scenario where an alert appears when the user is accessing the inbox
folder). Note that, in both generated test cases, the interruption occurs when the
user is viewing the inbox folder, as it was specified by the test purpose. Moreover,
all scenarios of the main feature are covered. In the test case of Figure 9, an
interruption occurs in the scenario where the message is removed, whereas, in
the test case of Figure 10, an interruption occurs in the scenario where the
message is not removed because it is blocked.

Notably LTS-BT allows for a systematic and less error-prone coverage of all
possible interruptions automatically, since the tester do not need to specify all
possible points where an interruption can occur – this is assumed by the tool.
Moreover, LTS-BT makes it easier to focus on particular points to be interrupted
and interruptions. These LTS-BT characteristics allow the tester to obtain test
cases in a faster and reliable way. Note that in the current version of LTS-BT, test
cases are selected as paths in the ALTS model. Therefore, even though the model
is capable of representing non-determinism, the tool suits only deterministic
applications. This is currently being addressed.

48 W.L. Andrade and P.D.L. Machado

Fig. 9. Test Case 01 Fig. 10. Test Case 02

5 Properties of the Interruption Test Cases

This section comments on properties of the interruption test cases generated by
the generation algorithm presented in Section 4. Considering the execution of a
test case against a SUT, three kinds of verdicts can be obtained indicating that
the SUT should be approved or not: if the SUT emits the specified outputs for
each input emitted by the test case, the verdict is Pass; if at least one of the
outputs of the SUT is not specified by the specification, the verdict is Fail ; and
the Inconclusive verdict is emitted when the SUT conforms with the specification
but the behaviour described by the test purpose is not exhibited by the SUT.

It is very important to formalize the execution of the test cases in order
to establish some properties as soundness and exhaustiveness, where the con-
formance relation is linked to verdicts obtained during the test execution [6].
Interruptions are clearly asynchronous events, but as we are considering a test
architecture where the environment is fully controllable by the tester, all inter-
ruptions can be analysed as synchronous events. Thus, test cases interact with
the SUT through a synchronous communication, where the execution of a test
case against a SUT is modelled by a parallel composition with synchronisation on
common actions. Basically, the parallel composition is defined by the following

rule: P || Q = p
a→P p′, q

a→Q q′

(p,q) a→P ||Q (p′,q′)
.

Considering the defined model of test case execution, TC || SUT will only
finish when one of the following scenarios is reached: (1) if, at any moment,
any unspecified output is emitted by the SUT, the execution is stopped and
the resulting verdict is Fail ; (2) if the SUT, at any moment, blocks or spends
a lot of time to emit an output the resulting verdict is Inconclusive (a timer
must be used in this case); (3) if the outputs of the SUT are specified by the
specification but the behaviour specified by a test purpose is not exhibited the
resulting verdict is Inconclusive; and (4) if all steps of the test case is executed
and all expected results are observed, then the resulting verdict is Pass. Given
the possible situations with their respective verdicts, the rejection of a SUT by
a test case is defined as follows.

Interruption Testing of Reactive Systems 49

Definition 6 (may reject). TC may reject SUT Δ= ∃σ ∈ Traces(TC || SUT),
verdict(σ) = Fail, where verdict(σ) = Fail Δ= TC after σ �⊆ QS.

The conformance relation of a SUT with respect to a specification is decided
based on the verdicts obtained with the execution of the generated test cases. So,
the next definition formally relates the previously defined conformance relation
(Definition 3) to the verdicts of these executions.

Definition 7 (Soundness and Exhaustiveness). A test case TC is said to
be sound for S and ioco if ∀SUT, SUT ioco S ⇒ ¬(TC may reject SUT) and
it is said to be exhaustive for S and ioco if ∀SUT, ¬(SUT ioco S) ⇒ TC may
reject SUT. Finally, a test suite is said to be complete if it consists of both sound
and exhaustive test cases.

Informally, a test suite is said to be sound if all correct implementations, and
possibly some incorrect implementations, pass in the test (a sound test suite
never rejects a correct implementation). On the other hand, a test suite is said to
be exhaustive if all non-conforming implementations, and possibly some correct
implementations, will not pass in the test. A test suite that can distinguish
between all conforming and non-conforming implementations is called complete.

A complete test suite is a very strong requirement for practical testing. Then,
weaker requirements are accepted. In practice, sound test suites are more com-
monly accepted, since rejection of conforming implementations, by exhaustive
test suites, may lead to unnecessary debugging. In this context, the test cases
generated by LTS-BT have some properties stated by the following theorem:

Theorem 1. For every specification S, all test suites generated by LTS-BT are
sound. Moreover, the test suites can be considered as being exhaustive when they
are associated with test purposes.

The proofs of the Theorem 1 are not detailed here but the main ideas are dis-
cussed. For soundness, we need to prove that if a test case TC may reject a SUT
(implementing the specification S), then ¬(SUT ioco S). In this case, we only
need to prove that a Fail verdict of a test case only occur if the SUT emits an
unspecified output. This was already discussed in this section and the unique
case where a Fail verdict is obtained during a test case execution is exactly when
the SUT emits un unspecified output. For exhaustiveness, we need to prove that
for every non-conforming SUT there is a test purpose TP and a way of gener-
ating a test case TC from S and TP, such that TC may reject SUT. Given that
¬(SUT ioco S), then there is a trace σ of S such that an output of SUT after σ
is not allowed by S. So, the trace σ can be used to define a TP, after that, this
test purpose can be used to generate TCs where the SUT may be rejected.

6 Case Study

The objective of this section is to present a case study performed in order to
evaluate a practical application of the proposed approach. As previously said,

50 W.L. Andrade and P.D.L. Machado

a scenario where interruptions are allowed may have infinite test cases. Thus,
in practice, only a subset of interruption test cases are manually generated and
executed. Considering this context, the main goal is to compare the manual pro-
cess of test case generation with the automatic process implemented by LTS-BT
[2]. In practice, this kind of testing is often conducted by manual processes of
selection guided by expertise. Also, there are not related proposals of more sys-
tematic strategies that could make a good basis for comparison. As the amount
of test cases is large, some test case selection strategy is needed. Particularly, in
this case study, the strategy used to select the test suite was based on test pur-
poses defined in order to cover a fault model defined based on real defects found
in the past. The focus is on interruption testing, generation of test suites for
manual execution, and the main metrics observed were the time wasted during
the test case generation and selection and the coverage of the fault model.

This case study was performed using some reactive applications of the mobile
phone domain. The feature chosen to be interrupted is the Aircraft Mode feature,
it provides the functionality of allowing the user to turn off the radio frequency
transceiver and still be able to use the applications of the phone. This feature
allows the user to use applications of the phone while flying in an aircraft, but
without receiving calls, messages, and so on. The other features of the case
study (Incoming Call, Incoming Message, and Alarm Clock) are responsible for
causing interruptions. It is important to remark that these four features represent
10 use cases and, considering the relationship between all them, the amount of
interruption test cases is more than forty million tests.

The case study was conducted by three testers. Considering the knowledge of
them, they had good test skills and none of them knew the features under test
before the case study execution. They performed the case study based on the
specification of the features according to that notation presented in Section 2
and a fault model defined based on common problems related to feature inter-
ruptions and real defects related to the features under test. The following topics
describe the fault model: (1) after an interruption, the interrupted application
does not maintain data entered by the user; (2) after an interruption, the in-
terrupted application does not continue its execution of the same point where
it was interrupted; (3) possible conflicts related to the use of shared resources
(screen, network, and so on); (4) problems related to interruptions immediately
before enabling the aircraft mode; (5) problems related to interruptions imme-
diately after disabling aircraft mode; (6) problems related to interruptions when
the aircraft mode is enabled. By measuring coverage of an instance of this spec-
ification with actual faults (instead of coverage of the specification), where one
kind of fault may correspond to more than one actual fault, it is possible to
analyse which approach can be more effective to systematically investigate the
implementation by generating a more complete test suite.

All testers had the same preparation time (Table 1). Tester 1 generated the
test suite through automatic process using LTS-BT [2], and Tester 2 and Tester 3
generated the tests through manual process. According to the results, from
Table 1, Tester 1 generated the largest test suite (line “Number of TCs”, where

Interruption Testing of Reactive Systems 51

Table 1. Metrics

Metrics Tester 1 Tester 2 Tester 3

Preparation time 2 h 2 h 2 h

Number of TCs 115 15 12
Generation time 80 min 165 min 150 min

Productivity 86,5 TCs/h 5,4 TCs/h 4,8 TCs/h

Fault model coverage 57,14% 28,57% 28,57%
Number of valid TCs 115 (100%) 11 (73,33%) 8 (66,66%)
Number of ineffective TCs 23 (20%) 13 (86,66%) 7 (58,33%)
Most common TC size 5 6 and 8 8

TCs means Test Cases). Furthermore, Tester 1 generated the tests in less time
(line “Generation time”) implying in more productivity. The productivity was
calculated observing the number of test cases generated per hour.

Considering the fault model coverage (Table 1, line “Fault model coverage”),
Tester 1 reached the best coverage. However, as the process is guided by test
purposes defined by the tester, the quality of the test cases depends on the
tester’s experience. On the other hand, test cases generated through manual
process are error-prone. The line “Number of valid TCs” of Table 1 shows the
number of test cases generated with errors, that is, test cases impossible to run,
mainly because they miss information. Moreover, manually generated test suites
tend to not take all scenarios of an interruption into account. This does not
occur in the automatic process because when the tester decides, for example,
to check the incoming call interruption at some point of the feature under test,
the developed algorithms consider all scenarios of the interruption, for example,
when the call is accepted and when it is rejected by the user.

Considering the number of test cases that actually do not find defects (line
“Number of ineffective TCs”), Tester 1 reached the best results. The last line of
Table 1 gives information about the most common size (w.r.t number of steps) of
generated test cases. This is explained by the fact that test cases were generated
based on a structured document that may induce the same general kind of test
cases to be defined. In practice, manual testing is not usually based on structured
documents and then test cases tend to be as simple as possible. However, not
using the same input document would put a thread to validity of the results.

According to this preliminary investigation, it is possible to conclude that
the proposed strategy contributes to better productivity and fault coverage,
depending on the tester’s experience. Moreover, some problems of the manual
process such as erroneous test cases generation is solved by the automatic process
since all generated tests are sound (Section 5).

7 Related Work

Lorentsen et al. [7] propose a way of identifying categories of interactions and
create behavioural models that capture those interactions, where interruptions

52 W.L. Andrade and P.D.L. Machado

are a type of interaction. They use Colored Petri Nets to manually model the
interactions and a model checker for interactive graphical simulation. As disad-
vantages, the process is manual and the work is not devoted to testing.

Another interesting work is that belonging to Jard and Jéron [6], where the
TGV tool is presented. TGV receives a specification and a test purpose as input
and produces abstract test cases as output. The TGV input format for both
specification and test purpose is IOLTS (already defined in Subsection 3.1). As
we saw in Subsection 3.1, it is possible to represent interruptions through IOLTS
models. So the TGV tool can be used to generate interruption test cases, but an
interruption behaviour needs to be replicated if it can occur at more than one
place. Moreover, it is not possible to represent conditions associated to actions
and due to the fact that the same interruption behaviour is replicated in the
IOLTS model, the test purpose must specify the point where we want to verify
the interruption and all other points where the interruption cannot occur. Thus,
given that the tester needs to manipulate LTS models in the definition of the
TGV test purposes, this notation is not useful in practice.

One possible solution is to consider the tools set proposed by the AGEDIS
project that can generate test cases from high level models (e.g. UML diagrams)
[1], where TGV is internally used to generate test cases. However, the tools
set does not support interruption specifications directly as well as the newest
version of UML (UML 2.0) with is greatly improved diagrams. In this case, the
difficulties on interruption modelling and test purposes definition remain.

Finally, the process algebra CSP (Communicating Sequential Processes) was
designed for describing systems of interacting components [8]. CSP has a specific
operator for describing interruptions but its semantics is very different from our
proposal. This operator specifies that when a process P1 is interrupted by an-
other process P2, the process P1 is discarded and P2 begins its execution. In our
context, the process P1 executes again after the execution of P2. Jovanovic et al.
[9] have proposed an extension of CSP to represent this kind of behaviour but
there is not any tool supporting their proposal. Figueiredo et al. [4] presents a
behavioural model that represents interruptions in CSP without using the inter-
ruption operator, but the model is more suitable for representing the semantics
of interruption behaviour (such as the ones that can be modelled by ALTS).

8 Concluding Remarks

This work proposes a strategy of interruption testing that is based on a model
capable of representing interruptions for reactive systems. The model makes it
possible for interruptions to be combined at different points of possibly different
flows of execution. This model is supported by LTS-BT along with a test case
generation algorithm and a test purpose selection technique. Test selection is cru-
cial for interruption testing since the number of possible test cases is enormous.
Also, in practice, not all possible points of interruption are fault-prone.

The current version of LTS-BT is restricted to deterministic systems. This
may seem unrealistic. However, particularly, if embedded systems such as mo-
bile phone applications are considered, the tool can be largely applied. For these

Interruption Testing of Reactive Systems 53

systems, applications are often deterministic ones that run on single-processor,
single and restricted screen, and so on. But have complex patterns of interrup-
tions which clearly justify the need for modelling and systematic test selection.
Furthermore, ALTS models are capable of representing non-determinism and the
algorithms can be clearly extended to support non-deterministic systems since
the semantics of ALTS and IOLTS are very similar.

As further work, this model is going to be extended to consider multiple
processes and cascade interruptions in order to widen its applicability. More-
over, it is going to be extended to include timing requirements for extending its
application to real-time systems. LTS-BT is going to be extended to support
non-deterministic systems. The tool is also going to be extensively applied to
case studies, particularly in the mobile phone applications domain. This is also
going to be integrated with test code generation tools.

References

1. Hartman, A., Nagin, K.: The agedis tools for model based testing. SIGSOFT Softw.
Eng. Notes 29(4), 129–132 (2004)

2. Cartaxo, E.G., Andrade, W.L., Neto, F.G.O., Machado, P.D.L.: LTSBT: A tool
to generate and select functional test cases for embedded systems. In: SAC 2008:
Proceedings of the 2008 ACM symposium on Applied computing, vol. 2, pp. 1540–
1544. ACM Press, New York (2008)

3. Cabral, G., Sampaio, A.: Formal specification generation from requirement docu-
ments. In: Brazilian Symp. on Formal Methods (SBMF), Natal, pp. 217–232 (2006)

4. de Figueiredo, A.L.L., Andrade, W.L., Machado, P.D.L.: Generating interaction test
cases for mobile phone systems from use case specifications. SIGSOFT Softw. Eng.
Notes 31(6), 1–10 (2006); Proceedings of the AMOST 2006

5. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Margaria, T.,
Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Heidelberg
(1996)

6. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Int. J.
Softw. Tools Technol. Transf. 7(4), 297–315 (2005)

7. Lorentsen, L., Tuovinen, A.P., Xu, J.: Modelling feature interactions in mobile
phones. In: Feature Interaction in Composed Systems (ECOOP 2001), Budapest,
Hungary, pp. 7–13 (2001)

8. Schneider, S.: Concurrent and Real-Time Systems: The CSP Approach. John Wiley
& Sons, Inc., New York (2000)

9. Jovanovic, D.S., Orlic, B., Broenink, J.F.: On issues of constructing an excep-
tion handling mechanism for csp-based process-oriented concurrent software. In:
Proc. of Comm. Process Architectures CPA 2005, Eindhoven, pp. 18–21. IOS Press,
Amsterdam (2005)

Test Case Generation of Embedded Real-Time
Systems with Interruptions for FreeRTOS�

Wilkerson L. Andrade, Patŕıcia D.L. Machado, Everton L.G. Alves,
and Diego R. Almeida

Federal University of Campina Grande (UFCG), Brazil
{wilker,patricia,everton,diegor}@dsc.ufcg.edu.br

Abstract. This paper discusses issues raised in the construction of test
models and automatic generation of test cases for embedded real-time
systems with interruptions that can run on the FreeRTOS operating
system. The focus is on the use of symbolic transition systems (STSs)
as the formalism from which test cases are generated by using the STG
tool. The solution presented considers a test case execution model for
real-time systems with interruptions that can be based on the integrated
use of FreeRTOS components. A case study is presented to illustrate all
steps from the construction of the test model to test case generation.

1 Introduction

The correct functioning of real-time systems depends on the results produced by
the system and the time at which they are produced [1]. These systems are also
reactive systems that can receive both periodic and aperiodic stimuli. Moreover,
these systems are usually organised as a set of concurrent processes, where inter-
ruption mechanisms are defined to handle aperiodic stimuli. Therefore, testing of
these systems inherits all challenges presented by testing concurrent and reactive
systems by additionally bring in issues on timing and interruption.

Real-time systems often run on a special kind of operating system called Real-
Time Operating System (RTOS) that provides facilities to the programmer such
as process execution predictability, data structures and mechanisms for inter-
process communication, including interruption handling primitives. The focus of
this work is on functional testing of real-time systems with interruptions that
run on FreeRTOS [2] – a mini-kernel that can be used to develop real-time sys-
tems for embedded devices [2]. Embedded systems are usually critical systems
with real-time requirements and interruptions. Therefore, dependability is a key
issue that demands rigorous application of V&V activities and also relies on
dependability of FreeRTOS. From a testing perspective, FreeRTOS requires at
least two kinds of testing: 1) unit level, where components are tested in isola-
tion; 2) integration level, where components work together to provide support
for a system application. In both cases, a formal specification of the intended

� Supported by MCT/CNPq/CT-INFO 07/2007 - PD&I-TI - Process 550946/2007-1.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 54–69, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Test Case Generation of Embedded Real-Time Systems 55

behaviour is needed to improve quality and confidence on testing results. As gen-
eral strategies for event handling at application level, for instance interruption
handling, must be implemented by the system developer based on the functional-
ities provided, integration testing of these functionalities can only be performed
upon the existence of applications. In other words, application level integration
testing of FreeRTOS can only be performed in the scope of applications that are
developed on it: execution scenarios of the application are used to identify what
needs to be tested (among a number of possible combinations) and how to test.

The main goal of this work is to propose a test case generation strategy for
real-time systems with interruptions that are designed to run on FreeRTOS.
As a result, the aim is to contribute to the definition of a strategy and an
infrastructure that can support integration testing of the FreeRTOS components
used. For this, a case study – an alarm system – will be considered so that issues
on modelling, test case generation and execution can be investigated. The main
challenges to be faced are: 1) to define an appropriate test model formalism
supported by a well-founded theory that is capable of representing these systems
and 2) to identify and design FreeRTOS infrastructure for running test cases
for these systems. Solutions to both challenges must be encompassed by test
case generation procedures to make test cases valid and executable. Although
much progress has already been made in the theory and practice of testing
real-time systems [3,4], these challenges still have open problems. For instance,
interruptions and real-time requirements are not usually supported by the same
formalism.

In this work, Symbolic Transition Systems (STSs) are considered as the for-
malism from which test cases are generated. The aim is to handle both timing and
symbolic data manipulation that is not addressed by current timed automata-
based approaches (avoiding the need for state space enumeration). Also, a solid
theory along with tool support has already been developed for STSs and there is
a growing interest to extend transition systems to handle real-time issues [5,6].
Transition systems have also been defined as the underlying semantics of many
abstract formalisms and therefore they can be widely applied. In this paper,
an extension of the model defined by Jéron et al. [7,8,9,10] that handles time
requirements and interruptions is proposed. For the sake of abstraction, the spec-
ification of real-time systems starts with the construction of UML 2 [11] models
that are translated into corresponding STSs models. To check whether behaviour
is preserved, both UML and STS models are inspected. Test cases are generated
by using the STG tool [8] based on test purposes that are defined according to
testing goals.

This paper is structured as follows. Section 2 introduces FreeRTOS. Section 3
presents a test execution model that can be implemented in FreeRTOS. Section 4
presents a strategy to model interruptions and introduces an extension of STSs to
handle time requirements. Section 5 presents transformation rules from UML 2 di-
agrams to STSs. Section 6 presents a case study and Section 7 presents concluding
remarks and pointers to further work. We assume the reader to be familiar with
basic concepts on UML 2 [11] diagrams and STSs [7].

56 W.L. Andrade et al.

2 FreeRTOS

FreeRTOS [2] is a portable, open source, mini real-time kernel that can be used to
develop commercial applications for small embedded systems. It was developed
with the goal to be small, simple and easy to use. By now, 17 official versions
for different architectures are available and the code is predominantly written
in C.

In a conventional operating system, each task is an executable program un-
der control of the operating system that can only execute one task at a time.
However, the rapid exchange between tasks can make it appear as a concurrent
execution of them. In a real-time operating system, the principles are the same,
but the goals are different since they are designed to respond to events with
time requirements. The main difference is the scheduling policy. The policy of
a conventional operating system is to provide a fair proportion of time for each
task, whereas FreeRTOS uses a priority policy to ensure time requirements.

FreeRTOS has three scheduling modes: preemptive (a task can be interrupted
at any time by the scheduler), cooperative (a task can block and enable the
scheduler for context switching) and hybrid (preemptive and cooperative). It
supports both tasks and co-routines and provides execution trace. In addition,
it provides queues, semaphores and mutexes as mechanisms for communication
and synchronisation between tasks, or between tasks and interruptions.

Considering the context of real-time systems, events can be classified into
synchronous and asynchronous events. The former are those that occur at pre-
dictable points in the flow of control and are represented by conditional branches,
invocation of procedures or methods, occurrence of internal trap interruptions
(in the case of exception handling), etc. The latter occur at unpredictable points
in the flow of control. An important characteristic of the asynchronous events is
that they are usually caused by external sources, for instance, an alarm system
of a building has sensors to detect intruders and once a movement is detected,
the sensors interrupt the main application of the alarm system. In this scenario,
the main application of the alarm system cannot predict when an event will
occur because it is caused by external sources.

Real-time systems have to take actions in time to respond to events in order
to guarantee time requirements. FreeRTOS does not impose any event process-
ing strategy at the application level, but it provides features that allow simple
implementation of an interruption scheme [12]. For example, a binary semaphore
can be used to unblock a main task each time an interruption occurs. This strat-
egy allows the interruption scheme to be implemented through a synchronised
task named Interruption Service Routine (ISR). When an interruption occurs,
ISR executes and uses a semaphore to unblock the task responsible for handling
the interruption – the Handler task. Once unblocked and as the Handler task
has the highest priority, it starts to execute immediately, leaving the interrupted
task in the ready state. Finally, the Handler task blocks to wait for the next
interruption, allowing a lower priority task to run again.

Test Case Generation of Embedded Real-Time Systems 57

Fig. 1. A test execution model for FreeRTOS

3 Test Execution Model for FreeRTOS

The test execution model under FreeRTOS considered in this work is presented
in Figure 1. This model is adapted from the one presented by Figueiredo et al.
[13] for interruption handling at application level in mobile phone systems. The
model is composed of modules responsible for interruption management, han-
dling, the main application and testing monitoring and execution. Interruption
Handler is a task responsible for treating a given interruption. Interruption
Dispatcher is a task or external entity responsible for generating interrup-
tions. ISR is a task responsible for delegating the interruption handling to the
responsible task.

Interruption Dispatcher communicates with the ISR through two signals:
interrupt and noInterruption. The interrupt signal indicates that an interruption
has occurred in the system, for instance, an incoming message or incoming call.
And with the noInterruption signal follows the information that no interruption
has occurred. Communication with ISR is performed through four signals: al-
lowInterruption, interrupt, restart, and finish. allowInterruption is used by the
tasks to inform the ISR that interruptions are allowed. interrupt is used by ISR
to inform the tasks that an interruption has occurred. restart is used by ISR to
inform the task that it can continue its execution. Finally, finish is used by the
tasks that handle interruptions to inform ISR that such handling has finished.

The arrows in Figure 1 are exemplifying the scenario where an interrup-
tion occurs. At some execution point, Main sends an allowInterruption signal to
ISR informing that in that point interruptions are allowed (1); at this moment,
Interruption Dispatcher can send a noInterruption signal informing that no
interruption has occurred, or an interrupt signal (2), making ISR transfer the
execution to Interruption Handler (3) that is responsible for the interruption
handling. When it finishes the handling, a finish signal is sent to ISR (4) that
sends a restart signal to Main (5), so it can continue its execution from the point
where it stopped.

58 W.L. Andrade et al.

Tester is a task responsible for conducting and monitoring a given test execu-
tion, by providing input stimuli and observing output behaviours. It is assumed
that it has total control of Interruption Dispatcher, deciding when and what
interruptions may occur. Mechanisms for interprocess communication can be
used for communications between Tester and Main, Interruption Dispatcher
and Interruption Handler in order to control and observe behaviour produced
by them.

In summary, when constructing systems with interruptions for FreeRTOS
to be tested under this model, it is necessary to develop ISR, Interruption
Dispatcher and one Interruption Handler for each interruption or group of
interruptions to be handled. For test case generation, it is also necessary to model
detailed behaviour that includes interaction between them and the system tasks
as illustrated in Section 6. The Tester module is developed by the testing team
according to the test cases defined.

It is possible to reuse parts of these modules for different systems, but this
is out of the scope of this paper. As general guidelines, a binary semaphore
can be used to unblock Interruption Handler each time the corresponding
interruption occurs. When either this task is started or when it finishes to handle
an interruption, it gets blocked on this semaphore. Moreover, it is crucial that
this task priority is set as high as it is necessary to ensure it always preempts
other tasks.

4 STSs with Interruptions and Time

This section presents the strategy used to model interruptions through STSs pro-
posed by Andrade and Machado [14] and an extension capable of representing time
requirements that is introduced here. In graphical representations of STSs, input
actions are followed by the “?” symbol and output actions by the “!” symbol.

Figure 2 presents a symbolic model that represents the behaviour of an alarm
system that monitors a room for detecting invasion by checking on occurrences
of movement and door disclosure. This is represented by locations from 1 to 12.
The monitoring process can be interrupted by a power failure handling process
that will start a backup power supply (locations 13 to 21). The interruption is
only allowed before and after checking the sensors (locations 3 and 11). Note
that the interruption handling model is connected to the main process that can
be interrupted (the main flow) using a special action named Interrupt carrying a
parameter (intCode) that identifies the place where the interruption is allowed.
Then, the value of the parameter intCode is saved in the variable choice. Each
point where an interruption is allowed has a different integer value associated
with it (see locations 3 and 11). Another important information is in the last
action of the interruption: there is a guard used to guarantee that the main flow
continues its execution from the same point where it had been interrupted. For
instance, if an interruption begins with the parameter intCode equals to 1, then
it must finish performing the action that has the following guard: choice = 1.

From the testers point of view, only interruptions that are interesting to test
at specific points are added to this model. Also, the idea is that this model is

Test Case Generation of Embedded Real-Time Systems 59

Fig. 2. STS model of an alarm system

automatically generated from a high level notation such as the one introduced
by Figueiredo et al. [13]. Moreover, as only a few combinations will actually be
tested, threats to scalability are so not considerable. For the sake of simplicity,
nested interruptions are not allowed in this model. Nevertheless, this is not a se-
vere constraint to its application since, in practice, usually only one interruption
is tested at a time due to the complexity of the test execution itself and also to
make it easier for faults to be pinpointed (the more complex a test is, the more
error-prone and complex to analyse it is, particularly for concurrent systems).

Some hints of how to link a model with an interruption are: 1) identify the
point where the interruption may occur; 2) link this point to the interruption
behaviour using a transition labelled as follows: the guard is intCode = X and
choice = 0, where X uniquely identifies this point of interruption; the action is
Interrupt?(intCode); the assignment is choice := intCode; 3) connect the last
action of the interruption behaviour to the same point where the interruption
started using a transition labelled with the guard choice = X, where X is the
same value that uniquely identifies this point of interruption.

60 W.L. Andrade et al.

The test case generation strategy where only one interruption is allowed for
each test case is reached because of the second part of the guard (choice = 0)
associated with the Interrupt actions. When an interruption is allowed, the value
of the variable choice is changed to any value different from zero, then all other
interruptions are automatically discarded during the test case generation.

Definition 1 presents an extension of STSs that considers time requirements.

Definition 1 (TIOSTS). Formally, a Timed Input-Output Symbolic Transi-
tion Systems (TIOSTS) is a tuple 〈V, P,Θ, L, l0, Σ, C, T 〉, where:

– V is a countable set of typed variables;
– P is a countable set of parameters. For x ∈ V ∪ P , type(x) is the type of x;
– Θ is the initial condition, a predicate with variables in V ∪ P ;
– L is a countable, non-empty set of locations;
– l0 ∈ L is the initial location;
– Σ = Σ?∪Σ!∪Στ is a countable, non-empty alphabet, where Σ? is a countable

set of input actions, Σ! is a countable set of output actions, and Στ is a
countable set of internal actions. Each action a ∈ Σ has a signature sig(a) =
〈t1, ..., tn〉, that is a tuple of distinct parameters. The signature of internal
actions is the empty tuple;

– C is a countable set of clocks;
– T is a countable set of transitions. Each one is a tuple 〈l, a,G,A, d, l′〉, where:

• l ∈ L is the origin location of the transition,
• a ∈ Σ is the action of the transition,
• G = Ξ ∧ Ψ is the guard of the transition, where Ξ is a predicate with

variables in V ∪ P ∪ sig(a) and Ψ is a clock constraint over C. Ψ is
defined as a conjunction of constraints of the form α#c, where α ∈ C, c
is an integer constant and # ∈ {<,≤,=,≥, >},

• A = K ∪Φ is the assignments of the transition. For each variable x ∈ V
there is exactly one assignment in K, of the form x := Kx, where Kx is
an expression on V ∪ P ∪ sig(a). Φ ⊆ C is a set of clocks to set to zero,

• d ∈ {lazy, delayable, eager} is the deadline of the transition,
• l′ ∈ L is the destination location of the transition.

The main idea is to introduce a new kind of variable for managing time. Figure 3
represents a scenario with a timing requirement: if a movement is detected, the
lights must be switched on within 1 time unit. In Figure 3, note that, according
to Definition 1, clock ∈ C.

Note that this is not intended to be a final solution to modelling time in
STSs, but it will be enough for the purposes of this study, by assuming that the
algorithms will handle the differences between regular and time variables.

Fig. 3. TIOSTS Example

Test Case Generation of Embedded Real-Time Systems 61

Fig. 4. Mapping messages

Fig. 5. Mapping ALT fragment Fig. 6. Mapping time requirements

5 From UML 2 to STSs

This section briefly presents a few rules that can be used to transform UML mod-
els of real-time systems into STSs. The following UML diagrams can be used
for modelling real-time systems: 1) Component diagram, used to specify interac-
tion between subsystems; 2) State machine diagram, used to show which objects
and/or components are susceptible to be interrupted; and 3) Sequence diagram,
used to express the behaviour of the system including time requirements and
structures like loops and conditional commands.

Mapping messages. There are three kinds of messages in sequence diagrams:
1) a message between subsystems: when a message is between two lifelines and
these represent subsystems (this can be detected in the component diagram), a
transition is created, where this one will have an output action labelled with
the same name as the original operation from the message (Figure 4a and

62 W.L. Andrade et al.

Fig. 7. Examples of mapping interruptions

Figure 4d); 2) a message from the user/environment to system: this one does not
have mapping, but the following message will be mapped to a transition with
an input action (Figure 4b and Figure 4e); and 3) a regular message: a regular
message will be mapped to a transition with an action labelled with the same
name as the original operation from the message (Figure 4c and Figure 4f).

Mapping ALT fragment. This allows the specification of alternate behaviours
if a condition on the main flow cannot be satisfied. The flow is split into two
paths. All the transitions of the first flow will have the guard from the first line.
The second flow will have the negation of the same guard (Figure 5).

Mapping time requirements. On the transition that refers to the message
of the initial time requirement, set the clock variable to zero. On the transition
that refers to the message of the end time requirement, add a guard that verifies
if the time constraint is satisfied (Figure 6).

Mapping interruptions. Interruptions can be modelled by: 1) sequence dia-
gram modelling the regular behaviour of the system (Figure 7a); 2) state ma-
chines for each involved object (Figure 7b); and 3) sequence diagram that model
the behaviour of the interruption (Figure 7c). Mapping can be made as follows.
For each mapped message, if the state machine of the target object has a pseudo
state history (Figure 7b), a transition T1 is added to the current location L,
having the interruption model as target. Next, a new transition T2, from the
end of the interruption model with target in L, is added too. T1 will have three
features: 1) a guard that verifies if no interruption occurred before; 2) a spe-
cial action named Interrupt carrying a parameter (intCode) that identifies the
place where the interruption is allowed; and 3) an assignment where a variable

Test Case Generation of Embedded Real-Time Systems 63

V will receive a label from the location L. T2 will have a guard that verifies if
V corresponds to the label of L (Figure 7d).

6 Case Study

This section presents a case study using a practical example adapted from [1] of an
application that can be implemented on FreeRTOS following the execution model
presented in Section 3. The chosen example is a burglar alarm system, a real-time
monitoring system. The objective of the system is to monitor sensors to detect the
presence of intruders in a building. This system uses different kinds of sensors in-
cluding movement detectors in individual rooms, window sensors, which detect
the breaking of a window and door sensors, which detect the opening of doors.
There are 50 window sensors, 30 door sensors, and 200 movement detectors. When
a sensor indicates the presence of an intruder, the system automatically calls the
police and, with a voice synthesiser, reports the position of the alarm. In addition,
the system switches on lights around the area with active sensors and switches on
an audible alarm. The system is normally powered by the central power supply
system, but it is equipped with a battery backup. The loss of power is detected
by a circuit monitor that monitors the main tension. The system switches auto-
matically to backup power when a voltage drop is detected.

Firstly, an UML model of the system is constructed based on the generic
model presented in Section 3. Some of the diagrams produced are presented in
the sequel, focusing on interruption behaviour. Figure 8 shows structurally which
components are part of the system and defines where communications, between
those components, occur. The Building Monitor (Main in the generic model)
and Sensor Manager components are responsible for implementing the regular
system behaviour. The Circuit Monitor Handler component is responsible for the
interruption behaviour (Interruption Handler). As in the generic model, the
Interruption Dispatcher component is responsible for deciding if an interruption
can occur and ISR is the component responsible for delegating the interruption
handling to the responsible tasks. Figure 9 describes the regular alarm system
behaviour evidencing how the interaction between its elements occurs.

Figure 10 and Figure 11 shows how the loss of power interruption behaviour
is modelled. The first one shows how the interaction between the components
responsible for treating the interruption occurs, following the guidelines pre-
sented in Section 3. If no interruption has been raised, then Building Monitor
proceeds its execution. Otherwise, Interruption Dispatcher raises an interruption
and control is transferred to Circuit Monitor Handler. Among the state machines
relative to the system objects, Figure 11 shows the possibility of occurring an in-
terruption during Building Monitor execution. When an interruption occurs, the
noPower internal variable will be set to true and the behaviour of the Running
Backup state will be executed. The pseudo state History (H*) guarantees that,
after the interruption treatment, the system execution goes back to the most re-
cent active configuration of the Running composite state that directly contains
this pseudo state (the state configuration that was active when the Running
composite state was interrupted).

64 W.L. Andrade et al.

Fig. 8. Components diagram of the Alarm System

Fig. 9. Regular behaviour of the Alarm System

After validating these diagrams, the next step is to produce an STS model for
test case generation. This is accomplished by applying mapping rules (Section 5)
to the UML diagrams. As a result, the STS model represented in Figure 2 is

Test Case Generation of Embedded Real-Time Systems 65

Fig. 10. Loss of power interruption behaviour

Fig. 11. State machine from Building Monitor component

obtained. This model also includes the intruder detection behaviour (its sequence
diagram is omitted by the lack of space). This model was inspected to validate
the intended behaviour and therefore to guarantee the validity of the test cases
to be generated with respect to the system requirements.

66 W.L. Andrade et al.

Fig. 12. Test Purpose

Fig. 13. Test Case

Having the STS model, the next step is test case generation. For this, the STG
tool [8] was used. This tool is able to generate test cases from the STS model
and a test purpose defined by the tester. For the sake of space, only a test case
will be shown in the sequel. This is obtained by using the test purpose presented
in Figure 12. As a result, the test case presented in Figure 13 is produced. Note
that inputs and outputs are reversed in the test case when compared to the
source model. The reason is that an input action in the STS model under test is
actually an output that should be provided by Tester when executing the test
case, whereas output actions of the STS are inputs to be observed by Tester.

As test purpose (Figure 12), it was chosen a situation that reflects an in-
teresting scenario in the context of reactive systems with interruption testing.
The situation forces an interruption, the loss of power, followed by the detection

Test Case Generation of Embedded Real-Time Systems 67

of an intruder. That is an interesting situation to test, because it makes the
major locations and transitions of the model to be visited and it tests how the
interruption treatment occurs.

The test case generated covers the occurrence of an interruption while verifi-
cation of intruders’ invasion is executed (verified by the building sensors). This
interruption has as behaviour the following activities: 1) stopping the alarms sys-
tem; 2) switching automatically the power to backup battery; and 3) reactivating
the alarm system.

More specifically, the test case describes the following behaviour: at the begin-
ning, from location 1 begin to 2 begin, the choice variable is initialised. From
location 2 begin there are two possible paths (Tester can observe two possible
behaviours). The first one has a guard with three conditions, this transition can
only be covered if all the guard is true, that is: 1) the time is less than 500ms
(clock < 500), 2) an interruption has occurred (ID.resp != notInterrupt), and
3) an invasion has been detected (res = true). To perform the entire test case,
it is required that Tester forces that all conditions are true. Otherwise, if an
invasion has not been detected, the test case verdict will be set to inconclusive.
With the guard being true, then the verifyInvasion input action will be executed,
and its parameter is stored in the result variable.

After the guard is satisfied, the value of the res variable is true, indicating
that an intruder was located. Next, on the transition starting from location
3 begin, there is the IntCode = 3 guard that forces the system execution to
go through the transition which induce to the interruption treatment. In other
words, Tester has to force the occurrence of the loss of power interruption to
test this behaviour. This can also be understood by the executed commands
in sequence: interrupt, used to force the interruption; and the attribution of
intCode to the choice variable, that will allow the execution flow returns to the
exact point it was before the interruption be launched.

The next three transitions are responsible for the exchange of communication
signals between the components that treat the interruption execution: Build-
ing Monitor, ISR and Interruption Dispatcher (Figure 10). In location 17 int1,
Tester expects that the interruption behaviour is executed. This is represented
by the following events: interruptTheAlarmSystem, transferToBackup and
reactivateTheAlarmSystem. In 17 int1-18 int1 and 19 int1-20 int2, the
clock is initialised and a time requirement is verified through a guard,
respectively.

As soon as interruption treatment finishes, the restart signal should be emit-
ted between ISR and Building Monitor components, allowing the return of
the execution flow to the configuration before the interruption. From 3 int2,
three actions are expected to verify the sensors (verifyMovementeInvasion,
verifyDoorInvasion and verifyWindowInvasion) and their respective results
will be assigned to the internal variables (r1, r2 and r3). Then, in which room
the intruder is at the moment should be located (action localizeRoom), the
phone call is created (createCall) and then it should be executed (realizeCall),

68 W.L. Andrade et al.

according to the time requirements. If this sequence of steps is completely done,
the test case has as verdict the Accept value (location "12 Accept").

This test case provides an interesting integration testing scenario that will
exercise cooperation between the main modules of the system, including the
ones deployed for providing FreeRTOS infrastructure. In practice, this scenario
can be executed in full or in parts, depending on the integration strategy chosen
(incremental or big-bang). Even though this case study addresses application
level behaviour only, the same modelling and test case generation technique can
be applied to model each of the components as a system in order to test lower
level integration of FreeRTOS components. Finally, the case study illustrates the
kind of interactions and behaviour that it is expected from an implementation
of Tester: this should be provided in a way that do not interfere with behaviour
of the application so that deadlines can be accurately checked.

7 Concluding Remarks

This work is part of a research cooperation between Brazilian Institutions
(UFPE, UFCG, UFRN) aimed at the challenge of constructing high quality real-
time embedded systems by combining formal methods and testing techniques.
This is also part of a research cooperation with the VerTeCs team through the
lNRIA’s “Associate Team” programme - Project TReaTiES. Regarding testing,
the goal of these cooperations is to investigate techniques for test case generation
and selection for real-time embedded systems based on a well-founded testing
theory and also by taking into account issues raised at test case execution in a
real RTOS. In this sense, FreeRTOS was chosen as a platform for investigation
and validation of the solutions provided. This paper presents work in progress
in this direction by focusing on test case generation from an extension of STSs.
Application modelling is based on a strategy of interruptions handling that can
be implemented in FreeRTOS. This is illustrated by a case study.

Since reliability of the testing techniques and infrastructure to be provided
is dependent on reliability of FreeRTOS itself, success of this work depends on
initiatives that are being pursued in the same cooperation for modelling and
verification of FreeRTOS functionalities, for instance, by using the B method
[15]. As further work, the aim is to use the B specification to provide information
on testing verdicts extracted from invariants, pre and post conditions. Also, a
strategy of interruption management in the FreeRTOS is under implementation.
This will provide a complete test execution environment. Moreover, mapping
rules from UML to STS models are still only informally defined, demanding
inspection for validity. Investigation on formal transformations and mapping
from other formalisms will be conducted. Finally, empirical studies are planned.

References

1. Sommerville, I.: Software Engineering, 8th edn. International Computer Science
Series. Addison-Wesley, Boston (2006)

2. The FreeRTOS.org Project: FreeRTOS, http://www.freertos.org/

http://www.freertos.org/

Test Case Generation of Embedded Real-Time Systems 69

3. Li, S., Wang, J., Dong, W., Qi, Z.C.: Property-oriented testing of real-time sys-
tems. In: APSEC 2004: Proceedings of the 11th Asia-Pacific Software Engineering
Conference, Washington, DC, USA, pp. 358–365. IEEE Computer Society, Los
Alamitos (2004)

4. Krichen, M.: Model-Based Testing for Real-Time Systems. PhD thesis, Universit
Joseph Fourier (December 2007)

5. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004)

6. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

7. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

8. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: A symbolic test generation
tool. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 470.
Springer, Heidelberg (2002)

9. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 349–364. Springer, Heidelberg (2005)

10. Jéron, T., Marchand, H., Rusu, V.: Symbolic determinisation of extended au-
tomata. In: Proceedings of the 4th IFIP Int. Conference on Theoretical Computer
Science. IFIP book series, vol. 209, pp. 197–212. Springer, Heidelberg (2006)

11. Object Management Group: UML superstructure, v2.1.1. Technical Report
formal/07-02-05, OMG (2007),
http://www.omg.org/cgi-bin/doc?formal/07-02-05

12. Barry, R.: Using the FreeRTOS Real Time Kernel: A practical Guide.
FreeRTOS.org (2009)

13. de Figueiredo, A.L.L., Andrade, W.L., Machado, P.D.L.: Generating interaction
test cases for mobile phone systems from use case specifications. SIGSOFT Softw.
Eng. Notes 31(6), 1–10 (2006); Proceedings of the AMOST 2006

14. Andrade, W.L., Machado, P.D.L.: Modeling and testing interruptions in reactive
systems using symbolic models. In: SAST 2008: Proceedings of the 2nd Brazil-
ian Workshop on Systematic and Automated Software Testing, Porto Alegre, RS,
Brazil, pp. 34–43. Brazilian Computer Society (2008)

15. Déharbe, D., Galvao, S., Moreira, A.M.: Report on an ongoing formal develop-
ment of a real-time operating system with the B method. In: Oliveira, M.V.M.,
Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 54–69. Springer, Heidelberg
(2009)

http://www.omg.org/cgi-bin/doc?formal/07-02-05

Concurrent Models of Flash Memory Device
Behaviour

∗

Andrew Butterfield and Art Ó Catháin

School of Computer Science & Statistics
Trinity College Dublin

Rep. of Ireland
Andrew.Butterfield@cs.tcd.ie

Abstract. We present a CSP model of the internal behaviour of Flash
Memory, based on its specification by the Open Nand-Flash Interface
(ONFi) consortium. This contributes directly to the low-level modelling
of the data-storage technology that is the target of the POSIX filestore
mini-challenge. The key objective was to ensure that the internal be-
haviour was well-specified, and that it was consistent with the specifi-
cation of the external interface of such devices. The FDR toolkit was
used to perform the revelent refinement/model-checking. In addition to
uncovering errors and possible sources of misinterpretation in the ONFi
standard, this work also describes a methodology for model data-entry
based on a “state-chart” dialect of XML (SCXML) using XSLT to trans-
late into CSP, and HTML, to support validation.

1 Introduction

The “Grand Challenge in Computing” [Hoa03] on Verified Software [Woo06,
HLMS07], has a stream focussing on mission-critical filestores, as required, for
example, in space-probe missions [JH05]. Of particular interest are filestores
based on the relatively recent NAND Flash Memory technology, now very pop-
ular in portable datastorage devices such as MP3 players and datakeys.

This paper follows on from initial formal models of NAND Flash Memory,
reported in [BW07, BFW09] based on the specification published by the “Open
NAND Flash Interface (ONFi)” consortium [H+06]. That work looked at a for-
mal model of flash memory in terms of its internal data storage architecture,
and the top-level operations that manipulate that storage.

Here we report work on modelling and analysing the finite-state machines in
[H+06] that describe the internal behaviour of flash devices. The modelling was
done using machine-readable CSP (CSPM) [Ros97] and the FDR2 tool [For05]
for the analysis, and was reported in detail in an M.Sc dissertation [Cat08].
The emphasis of our flash memory modelling to date has been to focus on the
flash memory chips themselves, both their external interfaces as well as their
internal behaviour and to interrelate the two. Whilst of interest to the ONFi
∗

Work reported in this paper was partially supported by Science Foundation Ireland.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 70–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Concurrent Models of Flash Memory Device Behaviour 71

consortium, this work has a relevance to the broader community as using an
ONFi device is not simply a matter or sequencing top-level atomic operations —
in fact few of the operations are atomic, and most are designed to be interleaved,
to exploit internal concurrency in the devices to improve performance. Indeed,
depending on the hardware configuration, key operations like reading and writing
may require interleaving with status checking operations in order to function
at all.

In the next section (§2) we describe the relevant aspects of ONFi flash devices,
and look at related work (§3). We then proceed to present the development of
the CSP model (§4) the analyses performed with it (§5), and conclude (§6).

2 Background

There are two types of Flash Memory: (i) NOR flash, which can be programmed
(written) at byte level, but suits random access; and (ii) NAND flash with higher
speed and density, but where programming must be done at the page level,
making it a sequential access device. The ONFi standard, and this paper, is
solely concerned with NAND flash.

A flash memory device is best viewed as a hierarchy of nested arrays of bytes1,
plus additional state and storage facilities at various levels. At the bottom we
have pages, arrays of bytes, which comprise the basic unit for both writing (pro-
gramming) and reading (operations PageProgram and Read). The next level up
is the block, an array of pages, that is the smallest level at which erasure (op-
eration BlockErase) can take place. Blocks are aggregated together under the
control of a logical unit (LUN), which is the smallest entity capable of inde-
pendent (concurrent) execution. A LUN also has one or more local registers the
same size as a page (page-registers), used as temporary storage when transferring
data to/from block pages, and a status register recording key information about
ongoing operations, or those just completed. The status register has 8 bits, of
which only bit 6 (a.k.a “SR[6]”), is of interest, used to indicate the ready/busy
status of a LUN. LUNs are collected together into targets, which have their own
means of communication off-chip. A physical flash memory chip (or device) may
have several targets, depending on the number of available I/O pins. The work
reported in this paper focusses on the target level and below, with a particular
emphasis on the interactions between LUNs and their containing target.

2.1 Host-Target Communication

Following the ONFi standard [H+06], we use the term host to refer to any entity
interacting with a flash memory device. Most communication between a host
and target is mediated through a single bi-directional byte-wide I/O port, so the
hardware interface is essentially serial. Conceptually, four types of transfer take
place across this port:
1 Some Flash devices are organised on “word” (16-bit) lines, but we ignore this detail

in this paper.

72 A. Butterfield and A. Ó Catháin

Command Write (CW). A single byte denoting a command is sent by the
host to the target.

Address Write (AW). A byte denoting part of an address is sent to the
target.

Data Write (DW). A data-byte is sent to the target.
Data Read (DR). A data-byte is received from the target.

Additional single-bit control pins determine which of the above transfer types
are taking place at any given moment. Executing a typical operation involves
a series of transfers of the four types listed above, typically with some waiting
inbetween. For example, a Read operation involves the following (typical) initial
series of transfers:

CW (readOpcode); AW (addr4); . . . ; AW (addr0); CW (confirm)

The host has then to wait whilst the addressed data is pulled from the rele-
vant page into the selected LUN’s page-register. One way is to poll the target
periodically, asking if the LUN is ready, using the ReadStatus operation:

CW (readStatus); DR(status)

Once the status indicates “ready”, the data is drawn out, one byte at a time,
until the number n of bytes specified in the read operation has been read.

DR(byte0); DR(byte1); . . . ; DR(byten)

The ready/busy part of the status can also be read by hardware directly through
an output pin, so we distinguish between the “hardware” and “software” ap-
proaches to getting status information. The WriteProtect operation is also im-
plemented by a single input pin, rather than via a transfer sequence.

2.2 Flash Translation Layers

The hardware/software subsystem that sits on top of unreliable serial-access flash
memory and provides the abstraction of reliable parallel-addressable memory is
called the flash translation layer (FTL). Most of the extant formal modelling of
flash memory filesystems (see §3) assumes the existence of (at least) the hardware
parts of the FTL. This paper is concerned with what happens beneath the FTL,
and so we do not consider it further.

2.3 Flash Memory Operations

The ONFi standard defines a collection of operations that are to be supported
by flash devices. Some of the operations are mandatory and must be provided
in any ONFi-compliant implementation. The operations, Read , PageProgram,
BlockErase and ReadStatus , have already been introduced. The other opera-
tions include: Change . . .Column operations that support access to part of a
page; Reset to allow software to reset a device,; WriteProtect to direct LUNs

Concurrent Models of Flash Memory Device Behaviour 73

to be locked/unlocked against changes; and ReadID and ReadParameterPage
that return data specific to a device such as manufacturer’s name, and sizing
information.

Other optional operations are also specified, typically providing enhanced
performance-improving features that exploit the parallelism provided by the
LUNs.

2.4 The ONFi State Machines

The internal behaviour of ONFi devices is described by two finite-state machines
(FSMs) [H+06, §7], one describing the behaviour of a target, the other capturing
the actions of a LUN. The target state machine is defined with the aid of seven
state variables, and has a total of 77 state entries. The LUN state machines uses
eight state-variables and 62 states. An example state entry, for the target state
T_RPP_ReadParams (for the ReadParameterPage operation) is shown in Fig.1.
We shall use this as a running example to describe our approach. The box at
on the top-right describes the events that occur on entry to the state. The three
rows below describe the subsequent conditional behaviour in this state. The left
of each row describes a input event or condition whilst the right indicates the
resulting state transition, with the conditions being evaluated in the order in
which they appear.

T_RPP_ReadParams The target performs the following actions:
1. Request LUN tLunSelected clear SR[6] to zero.
2. R/B# is cleared to zero.
3. Request LUN tLunSelected make parameter page data

available in page register.
4. tReturnState set to T_RPP_ReadParams.

1. Read of page complete → T RPP Complete
2. Command cycle 70h (Read Status) received → T RS Execute
3. Read request received and tbStatusOut set to TRUE → T Idle Rd Status

Fig. 1. ONFi Target State example [H+06]

3 Related Work

Formal model-checking techniques have been applied to the verification of the
Samsung OneNAND flash device driver [KCKK08], with particular emphasis
on a multi-sector read operation implemented within the FTL. This proved too
complex for “conventional testing methods”2 to the extent that even when tests
failed, they were not adequate to pinpoint the cause of the error. The model-
checkers explored were NuSMV, Spin and CBMC. The best tool was reported
as CBMC[CKL04], a SAT-solver based model-checker, that works directly with
C source code. It was able to uncover a number of previously unknown bugs in
critical sub-systems of their FTL.
2 Their words.

74 A. Butterfield and A. Ó Catháin

A fully automatic analysis, using Alloy, of a flash filesystem is described in
[KJ08]. This was built on top of a simple flash model (at roughly the same level
of abstraction as [BW07]). and implements wear-leveling and block mapping,
so covering the “soft” parts of the FTL. Similar work, but very much a tools-
integration approach to modelling (VDM/HOL/Alloy), is reported in [FSO08].
The key issue here is matching specific tools to specific verification tasks, and
the need to translate between tool notations, in order to have a complete formal
verification lifecycle. VDM is used as the main modelling tool, with Alloy and
HOL called upon to verify proof obligations that arise.

At the other end of the scale, there is ongoing work on the modelling of the
filesytem from the POSIX level down. This ranges from explorations of modelling
the tree structures characteristic of filesystems (e.g. acyclic graphs), in Event-
B using the Rodin platform [DBA08], to comprehensive machine verification
of the POSIX Z model [FWF09] and part of the IBM CICS system [FWZ09].
Finally, we note recent work looking at computational models of flash memory
devices with performance issues in mind [ABJ+09], of possible interest to the
formal verification community as they suggest the kinds of optimisations to be
considered during the later stages in the refinement to code.

In terms of automated translations from some notation into CSP, we note
the Casper tool developed by Gavin Lowe [Low98], designed for cryptograph-
ical protocols — however this used a tailored notation not suitable for our
purposes.

4 The CSP Model

The main objective of this work was to formalise the Target/LUN FSM descrip-
tions in machine-readable CSP and then use this as a basis for checking their
correctness using the FDR2 refinement checker [For05]. CSP was chosen because
of its familiarity, and the availability of the FDR2 model checker, and because
the basic mechanisms of CSP appeared to be a good match for the FSM model
in the ONFi document.

The main criteria for correctness was that the behaviours possible for the in-
terconnected FSMs was consistent with the behaviour patterns for the operations
mandated by that same standard.

The state machine notation of the ONFi specification allows for a relatively
direct conversion into CSP: there is a one-to-one mapping between ONFi states
and CSP processes. The ONFi FSMs interact by passing messages and waiting to
respond to same, dependent on both the named-state they are in and conditions
over other state-variables. The conceptual match between this and CSP processes
is very close, as examples later will show. The separation of target from LUNs
also echoes the parallel composition features of CSP. Multiple LUN processes can
be interleaved: required to synchronize on events with the target, but not with
each other. The target-LUN communication events (TLEvts) are then hidden
and this is put in parallel with a HOST process that models the behaviour of
the environment that communicates with the flash device. In CSP notation this
is written (for a single target and two LUNs) as:

Concurrent Models of Flash Memory Device Behaviour 75

SYSTEM =̂ HOST ‖ ((TARGET ‖ (LUN (0) ||| LUN (1))) \ TLEvts)

Modelling the communication between host and target was straightforward as
this is well documented as the external interface of ONFi devices, and had al-
ready been modelled in Z at an abstract level[BW07, BFW09]. In CSPM we used
events with names of the form ht_XXXX to model these communications, which
basically consisted of the byte-level transfers of commands, addresses, data and
the single-bit signals (e.g. write-protect input, ready/busy output).

Details of the target-LUN communication (CSPM events of form tl_XXXX)
were much more sketchy, precisely because these are viewed as implementation
details to be resolved appropriately by individual device manufacturers. For
example, during a PageProgram operation, the specification goes into some detail
during the input of address bytes from the host to the target. For the transfer
of the same address from the target to the appropriate LUN, it simply states
“Target issues the [page] Program with associated row address to the LUN”
[H+06, p84]. It is assumed that the target can transfer the address in one go,
rather than serially, byte-by-byte.

Certainabstractions andsimplificationshadtobemadeso that theFDR2model-
checker could perform analysis without running out of memory. So, as just seen
above, most data and address items were modelled as single bits, while the com-
mand datatype was restricted to the set of known command types, rather than be-
ing a full byte. An exception is the column address (address of byte within page),
which was modelled as two bits to support the ChangeXXXXColumn operations.

The 7 state variables of the target FSM had also to be abstracted, and aug-
mented with implicit state data, such as the state of the write protect pin, and
the data and address information temporarily in transit, as well as a counter
for the number of address chunks expected. This resulted in the addition of a
further 12 state components. A similar exercise in augmenting the state had to
be done for the LUN FSM as well, to a lesser degree (8 ONFi variables were
augmented by a further 3).

4.1 CSP Data-Entry: A Challenge

Generating the CSP models for TARGET and LUN was a considerable chal-
lenge, best illustrated by considering the CSP encoding in Fig.2 of the state
shown previously in Fig.1, where we explicitly list the 19 variables needed. A
typical state transition is triggered by a condition on a small subset of those
state-variables, and itself usually only modifies a few of them. Clearly the tasks
of both entering the data for, and checking the correct encoding of, each of the
state-tables, was a daunting and highly error-prone task.

An additional complication arose from the fact that textual ordering is used
to determine which state transitions occur if more than one is possible. So given
an ONFi table of the form on the left, we had to generate CSPM in the form on
the right:

c1 and e1→S1 c1 & e1 -> S1
c2 and e2→S2 (not c1) and c2 & e2 -> S2
c3 and e3→S3 (not c1 and not c2) and c3 & e3 -> S3

76 A. Butterfield and A. Ó Catháin

T_RPP_READPARAMS(tbStatusOut,tbChgCol,tCopyback,tLunSelected,tLastCmd,tReturnState,
 tbStatus78hReq,cmd,isReadyBusy,isWriteProtected,dataBit,addrReceived,lun0ready,
 lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL) =
 tl.tLunSelected!targRequest -> tl_setSR6.tLunSelected!false ->
 tl.tLunSelected!targRequest -> tl.tLunSelected!retrieveParameters ->
 (tl.tLunSelected.readPageComplete -> T_RPP_COMPLETE(tbStatusOut,
 tbChgCol,tCopyback,tLunSelected,tLastCmd,T_RPP_ReadParams,
 tbStatus78hReq,cmd,false,isWriteProtected,dataBit,addrReceived,
 lun0ready,lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,
 addr0ColL)
 []
 ht_ioCmd.cmd70h -> T_RS_EXECUTE(tbStatusOut,tbChgCol,tCopyback,
 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,
 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,
 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)
 []
 (tbStatusOut==true)
 & (ht_read -> T_IDLE_RD_STATUS(tbStatusOut,tbChgCol,tCopyback,
 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,
 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,
 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)))

Fig. 2. CSP encoding

After some initial experimentation with small handcrafted examples, it be-
came very clear that some form of automation was going to be needed if the
CSP encoding was going to be completed in a timely fashion. The solution
adopted was to use State Chart XML (SCXML), a “state-chart” dialect of XML
[BAA+09] for initial data entry. This was chosen because SCXML provided a
textual way to describe states, state-variables, and variable updates at a level
very close to that used in the ONFi descriptions. Given an SCXML encoding,
this could then be translated into the machine-readable form of CSP using XSL
Transformations (XSLT) [W3C99]. The ready availability of parsers and tools to
manipulate XML made this an easier prospect than trying to develop our own
data-entry language with tool support.

The SCXML code to describe the T_RPP_ReadParam state is shown in Fig.3.
The key feature to note is that the data-entry requirements are limited to the
information that appears explicitly in the ONFi behaviour tables.

<state id=T_RPP_ReadParams>

<onentry>

<event name=tl.tLunSelected.setSR6!0"/>

<assign location=readyBusy expr=0"/>

<event name="tl.tLunSelected!retrieveParameters"/>

<assign location="tReturnState" expr="T_RPP_ReadParams"/>

</onentry>

<transition event=tl.readPageComplete target=T_RPP_Complete/>

<transition event=ht_Iocmd.cmd70h target=T_RS_Execute/>

<transition cond=tbStatusOut == true

event=ht_read target=T_Idle_Rd_Status/>

Fig. 3. SCXML encoding

Concurrent Models of Flash Memory Device Behaviour 77

One caveat has to be mentioned: the SCXML we used can be processed by
the standard XSLT translation tools, but is not itself correct SCXML. We are
using the <event name="..."> construct, but our ‘names’ are in fact portions
of CSPM event syntax. However, as we are simply using SCXML for data-entry
to build a CSP model, the fact that we cannot use SCXML tools for analysis is
not a concern.

Validating the data entry is important, and is facilitated by the fact that
these same SCXML sources can also be used to generate HTML that renders
in a style very close to that used by ONFi (Fig.4) — this greatly facilitates the
checking and proof-reading of the entered data. The difference in the number of
state-entry events (6 rather than 4) is that single events in the ONFi document
are sometimes split into several at the SCXML/CSP level.

T_RPP_ReadParams

Event: tl.tLunSelected!targRequest1.
Event: tl_setSR6.tLunSelected!false2.
isReadyBusy set to false3.
Event: tl.tLunSelected!targRequest4.
Event: tl.tLunSelected!retrieveParameters5.
tReturnState set to T_RPP_ReadParams6.

1. tl.tLunSelected readPageComplete -> T RPP Complete
2. ht_ioCmd.cmd70h -> T RS Execute
3. ht_read (if tbStatusOut==true) -> T_Idle_Rd_Status

Fig. 4. HTML rendering

5 Model Analysis

The model analysis fell conceptually into two phases: the first focussed on debug-
ging and validating the model, to ensure that it captured the intent of the ONFi
specification. The second phase was using the model to analyse the consistency
of the entire ONFi document.

5.1 Validating the Model

To model the behaviour of a flash device fully, several processes were necessary
in addition to HOST, TARGET, and LUN. These processes were simpler than
those derived directly from the ONFi state machine, and so were written in CSP
directly rather than via SCXML. The need for these emerged as the model was
being built and animated, using the CSPM ProBE tool.

The first difficulty arose in trying to model the propagation of status informa-
tion from the LUNs, via the target, to the host. In the ONFi document these are
handled within the FSM framework, as events between the LUNs and target. A
particular problem arose in relation to bit 6 of this register (“SR[6]”), used to
record the “Ready/Busy” status of the system (Ready=1,Busy=0). The SR[6]
values of the LUNs are propagated by the target to the host via a single bit pin
called “R/B#”. The ONFi document states (p19) that

78 A. Butterfield and A. Ó Catháin

“ R/B# shall reflect the logical AND of the SR[6] (Status Register bit
6) values for all LUNs on the corresponding target. ”

In effect the propagation of SR[6] from LUNs to target occurs asynchronously,
and concurrently with any other FSM behaviour — trying to model this be-
haviour exactly as described in the ONFi FSM descriptions led to a deadlocking
model. Attempting to augment the target model to sample the SR[6] events more
often did not resolve the deadlock in all cases, and so in order to get a deadlock-
free model that captured the behaviour intended by ONFi, we had to model the
SR[6] and R/B# bit communication using a separate process READYBUSY .
This allowed the asynchronous updating of SR[6] and hence R/B# to be decou-
pled from the target FSM, and made available directly to the host.

However, there were still circumstances that required the target itself to be
aware of changes in any SR[6] values, particularly where interleaved operations
were concerned. These situations essentially arose when the target was itself in
an idle state, so both the target and READBUSY processes had to be augmented
to communicate with each other at such times. The final architecure of the CSP
model now consisted of the main processes and linkages shown in Fig. 5.

HOST

TARGET

READYBUSY
[PASSTHROUGH]

LUNS
Commands, data

Data, status

Ready / Busy updates

C
om

m
an

ds
, d

at
a

D
at

a,
 s

ta
tu

s

S
R

[6
] u

pd
at

es

Targ
et

idl
e /

no
n-i

dle

SR[6]

up
da

tes

Fig. 5. Final CSP Process Structure

Whilst the bulk of the behaviour of the combined FSMs was deterministic,
there was one area of unpredictability that we modelled with non-deterministic
choice. This was related to the fact that the time it took for certain operations
(Read ,PageProgram) to complete was variable, depending on how much data
was being processed. We used a process called LUN INNARDS to model this,
using a counter to record the amount of remaining work, and non-deterministic
choice to decide on how much work (always non-zero) was done in one “step”.
The effect of this was ensure that a bounded number of status reads would return
busy, before finally switching to ready.

Concurrent Models of Flash Memory Device Behaviour 79

5.2 Verifying the FSMs

The combination of Target and LUNs was not deadlock-free: they model passive
hardware that is meant to be driven by an active host, and so if left to run freely
together they quickly enter inconsistent states. So, our analysis had to consist
of an appropriately chosen collection of hosts. We came up with two types of
analysis: those where the host followed the device usage protocols described
in the ONFi standard, which we expected to be deadlock- and livelock-free,
and those where we deliberately modelled incorrect host behaviour, hoping to
see deadlocks. Deadlock freedom ensured that the protocols were correct, in
so far that both the target and LUN FSMs could follow through the required
sequence of events. For deadlock checking we had to ensure that host itself did
not terminate, so a typical test host was something that repeatedly performed
arbitrary commands. Livelock freedom was checked in the case were all but
target-host events were hidden, so ensuring that the host would never run the
risk of having to wait forever for the target to complete some operation.

We used two host models — on assuming the hardware approach to status
checking, the other that it would be done in software (i.e. explicit ReadStatus
operations). Either type of host was implemented as an infinite loop that made
a non-deterministic choice of an operation to execute on each iteration. The host
would then be placed in parallel with a target and two LUNs.

TARGET_TWOLUNS = TARGET [| tl_events |] (LUN(lun0) ||| LUN(lun1))
HOST_SW_TARGET_TWOLUNS

= INITIAL_HS_POWERON [| ht_sw_events |] TARGET_TWOLUNS

A key issue that arose early on was that some of the models were too large to
even compile in FDR (“failed to compile ISM”), let alone model-check. These
were the models that covered all the behaviour in the ONFi FSMs, including that
for both the mandatory and optional operations. One of the FDR compression
techniques, “diamond”, was used, as was increasing the stack size (Unix com-
mand ulimit -s 262144), but in order to get results, the SCXML and XSLT
sources were configured in such a way that a subset of the models containing only
the states and transitions for the mandatory operators could be automatically
generated — it was these -mandatory CSPM files that were used for automated
analysis. The one exception to this was that we included the non-mandatory op-
eration ReadStatusEnhanced , as this was required in order to test the concurrent
operation of two LUNs.

When checking HOST_SW_TARGET_TWOLUNS for deadlock freedom FDR2 re-
ported 4490300 transitions during compilation, that it refined 32,338 states with
78469 transitions, and took 17mins to run on a dual 1.28Ghz UltraSPARC-IIIi
processor with 4Gb RAM, and 20G swap disk.

For example, a test of the Read operation was set up as follows. We took the
HOST_SW_TARGET_TWOLUNS process, hid all events except the host-target read-
related commands and data transfers, and treated this as a specification.

80 A. Butterfield and A. Ó Catháin

READ_SPEC = HOST_SW_TARGET_TWOLUNS
\ diff(Events,

union({ht_ioCmd.cmds
| cmds <-{cmd30h,cmd00h,cmd70h,cmdFFh}}

,{|ht_ioDataOut|}))

We then defined a process that performed an expected sequences of host target
protocol events for a Read (preceded by a POWERON behaviour, as it is present
in the specification model),

POWERON
= ht_ioCmd.cmdFFh -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -> SKIP
READ_IMPL
= POWERON;

ht_ioCmd.cmd00h -> ht_ioCmd.cmd30h
-> ht_ioCmd.cmd70h -> ht_ioDataOut.false -- status busy, so wait
-> ht_ioCmd.cmd70h -> ht_ioDataOut.true -- read ready, so read
-> ht_ioCmd.cmd00h -> ht_ioDataOut.false
-> ht_ioCmd.cmd70h -> ht_ioDataOut.true -> STOP

We then used FDR to check for trace-refinement.

assert READ_SPEC [T= READ_IMPL

This check took 47mins on the dual 1.2GHz 4Gb 20Gb swap Sparc machine
already mentioned.

We also tested for illegal usage of the device, looking at erroneous actions
like the following: BlockErase followed by ReadStatusEnhanced ; Read completed
without ReadStatus (in software model); and Multiple Reads completed followed
by busy indicator. Most of these came from gleaning the ONFi document for
statements regarding required patterns of behaviour.

5.3 Anomalies Uncovered

We have already alluded to the difficulties in how the SR[6] and R/B# pin
behaviour, asynchronous in nature, was described in the FSM format, and how
we had to model it as a separate process — this was not an error in the ONFi
document, but is rather a clarification of what correct behaviour was meant.

Several deadlocks were found the in ReadParameterPage operation, one iron-
ically caused by the target requesting a status update just as a LUN decided,
unsolicited, to provide such an update. In effect the ONFi standard talks about
explicit status update messages when in fact this all occurs asynchronously via
bit SR[6]. It was possible to fix this, by adding extra target-LUN synchronisa-
tion events (tl_sync), but this was now no longer consistent with the implicit
requirement that a host can perform a Read Status at any time to determine
the device’s readiness.

Another deadlock resulted from the user of the tReturnState state variable
to allow some states to ‘return’ to a saved ‘calling state’. Essentially on return

Concurrent Models of Flash Memory Device Behaviour 81

to the saved state, its entry events and state changes get re-executed, involving
setup communication with the LUNs, which in certain cases were not expecting
it, as they had already been setup.

A number of deadlocks were also found in the interaction between the Reset
and ReadStatus operations.

All of the above were reported back to the ONFi consortium, some of which
have lead to an ONFi Technical Errata notice being issued (Errata Id 008). It is
worth pointing out that all the deadlock issues we have discovered are connected
to the ReadStatus operation in some way, and seem to be consequences of trying
to mix the asynchronous reporting of status with the synchronised behaviour of
the FSMs.

6 Conclusions and Future Work

It is safe to say that to verify a specification as complex as ONFis by hand
would have been impossible. Here the one-to-one correspondence between CSP
processes and state machine states allowed for a fairly direct conversion, avoiding
the need to abstract away too much detail.

Unfortunately the full ONFi model proved too much for the FDR2 model-
checker, which failed to compile. The deadlocks described above were discov-
ered in the mandatory-only model. With this limited model we found that
the ONFi specification was basically sound, once we had resolved the syn-
chronous/asynchronous mismatch in the description of status reporting. Feed-
back to ONFi has resulted in corrections to the published specification, now at
version 2.1.

Using XSLT to convert the intermediate XML to CSP undoubtedly saved
time and allowed a more thorough model to be developed. The conversion is
not totally automatic, requiring manual intervention for the following: specifi-
cation, in CSP, of channels, datatypes and sets to differentiate mandatory from
optional commands; minor supplementary CSP processes (LUN INNARDS ,
READYBUSY); parallel composition of host / target / LUN state machines;
and specification of deadlock/livelock checks. The above totalled 583 lines of
CSP, whereas the XSLT translations of the full target and LUN models resulted
in a total of 1348 lines of CSP. These numbers belie the fact that the generated
CSP is far more complex and inscrutable than the hand-generated material.

6.1 Future Work

The full model, including optional commands, remains to be verified. To succeed,
some creativity will be required, since the CSP model (as it currently stands)
runs into the resource limits of the FDR2 model-checker. One possible approach
will be to use FDR Explorer [FW09] to assist us.

ONFi have since released version 2.0 and 2.1 of the specification. The state
machine has not changed significantly, so it should be modelled in the same
framework without much difficulty, which would also bring in changes due to
any relevant errata.

82 A. Butterfield and A. Ó Catháin

At the time of writing, work is underway to take the SCXML sources and
translate them to Circus[OCW06], to allow them to be analysed against the top-
level Z models we already have. We also propose to use the same sources with
new translations to do some comparative work by re-targeting at tools used with
other formalisms. Finally, we intend to use an implementation of the “hard” FTL
components as a case-study for a ongoing work on hardware compilation.

Acknowledgments

We’d like to thank Amber Huffman of Intel and Michael Abraham of Micron
for their assistance and feedback regarding the ONFi standard, and Micheal
Goldsmith of Formal Methods (Europe) Ltd., for his assistance with FDR2.

Sources of the material mentioned in this paper can be downloaded from
https://www.cs.tcd.ie/Andrew.Butterfield/Research/FlashMemory/.

References

[ABJ+09] Ajwani, D., Beckmann, A., Jacob, R., Meyer, U., Moruz, G.: On computa-
tional models for flash memory devices. In: Vahrenhold, J. (ed.) SEA 2009.
LNCS, vol. 5526, pp. 16–27. Springer, Heidelberg (2009)

[BAA+09] Barnett, J., Akolkar, R., Auburn, R.J., Bodell, M., Burnett, D.C., Carter,
J., McGlashan, S., Lager, T.: State chart XML (SCXML): State machine
notation for control abstraction. In: World Wide Web Consortium, Work-
ing Draft WD-scxml-20090507 (May 2009)

[BFW09] Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of
flash memory. Science of Computer Programming 74(4), 219–237 (2009),
Special Issue on the Grand Challenge

[BW07] Butterfield, A., Woodcock, J.: Formalising flash memory: First steps. In:
ICECCS, pp. 251–260. IEEE Computer Society, Los Alamitos (2007)

[Cat08] Catháin, A.Ó.: Modelling flash memory device behaviour using CSP.
Taught M.Sc dissertation, School of Computer Science and Statistics, Trin-
ity College Dublin (2008), Also published as techreport TCD-CS-2008-47

[CKL04] Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C pro-
grams. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 168–176. Springer, Heidelberg (2004)

[DBA08] Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-
structured file system. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)

[For05] Formal Systems (Europe) Ltd. Failures-Divergence Refinement, FDR2
User Manual, 6th edn. (June 2005)

[FSO08] Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying intel ash file system
core specification. In: Larsen, P.G., Fitzgerald, J.S., Sahara, S. (eds.) Mod-
elling and Analysis in VDM: Proceedings of the Fourth VDM/Overture
Workshop, pp. 54–71. School of Computing Science, Newcastle University
(2008), Technical Report CS-TR-1099

[FW09] Freitas, L., Woodcock, J.: FDR explorer. Formal Asp. Comput. 21(1-2),
133–154 (2009)

https://www.cs.tcd.ie/Andrew.Butterfield/Research/FlashMemory/

Concurrent Models of Flash Memory Device Behaviour 83

[FWF09] Freitas, L., Woodcock, J., Fu, Z.: POSIX file store in Z/eves: An experiment
in the verified software repository. Sci. Comput. Program 74(4), 238–257
(2009)

[FWZ09] Freitas, L., Woodcock, J., Zhang, Y.: Verifying the CICS file control API
with Z/eves: An experiment in the verified software repository. Sci. Com-
put. Program 74(4), 197–218 (2009)

[H+06] Hynix Semiconductor. Open NAND Flash Interface Specification. Techni-
cal Report Revision 1.0, ONFI (December 28, 2006), http://www.onfi.org

[HLMS07] Hoare, T., Leavens, G.T., Misra, J., Shankar, N.: The verified software
initiative: A manifesto (2007),
http://qpq.csl.sri.com/vsr/manifesto.pdf

[Hoa03] Hoare, T.: The verifying compiler: A grand challenge for computing re-
search. Journal of the ACM 50(1), 63–69 (2003)

[JH05] Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable file system.
In: Proc. Verified Software: Theories, Tools, Experiments (VSTTE), Zürich
(2005)

[KCKK08] Kim, M., Choi, Y., Kim, Y., Kim, H.: Pre-testing flash device driver
through model checking techniques. In: ICST, pp. 475–484. IEEE Com-
puter Society, Los Alamitos (2008)

[KJ08] Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem
in alloy. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008.
LNCS, vol. 5238, pp. 294–308. Springer, Heidelberg (2008)

[Low98] Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal
of Computer Security 6(1-2), 53–84 (1998)

[OCW06] Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for
circus. In: REFINE 2006. ENTCS, pp. 1–16 (2006)

[Ros97] Roscoe, A.W.: The Theory and Practise of Concurrency. Prentice-Hall
(Pearson) (1997) (revised to 2000 and lightly revised to, 2005)

[W3C99] W3C. XSL Transformations, XSLT (1999), http://www.w3.org/TR/xslt
[Woo06] Woodcock, J.: First steps in the verified software grand challenge. IEEE

Computer 39(10), 57–64 (2006)

http://www.onfi.org
http://qpq.csl.sri.com/vsr/manifesto.pdf
http://www.w3.org/TR/xslt

Corecursive Algebras:
A Study of General Structured Corecursion

Venanzio Capretta1, Tarmo Uustalu2, and Varmo Vene3

1 School of Computer Science, University of Nottingham, United Kingdom
2 Institute of Cybernetics at Tallinn University of Technology, Estonia

3 Department of Computer Science, University of Tartu, Estonia

Abstract. Motivated by issues in designing practical total functional
programming languages, we are interested in structured recursive equa-
tions that uniquely describe a function not because of the properties of
the coalgebra marshalling the recursive call arguments but thanks to the
algebra assembling their results. Dualizing the known notions of recursive
and wellfounded coalgebras, we call an algebra of a functor corecursive,
if from any coalgebra of the same functor there is a unique map to this
algebra, and antifounded, if it admits a bisimilarity principle. Differently
from recursiveness and wellfoundedness, which are equivalent conditions
under mild assumptions, corecursiveness and antifoundedness turn out
to be generally inequivalent.

1 Introduction

In languages of total functional programming [17], such as Cockett’s Charity
[5] and type-theoretic proof assistants and dependently typed languages, unre-
stricted general recursion is unavailable. Instead, these languages support struc-
tured recursion and corecursion schemes for defining functions with inductive
domains resp. coinductive codomains. For inductive types such schemes include
iteration, primitive recursion and recursion on structurally smaller arguments
(“guarded-by-destructors” recursion). Programming with coinductive types can
dually be supported, e.g., by “guarded-by-constructors” corecursion [6,10].

Characteristically, schemes like this define a function as the unique solution
of a recursive equation where the right-hand side marshals the arguments of re-
cursive calls, makes the recursive calls and assembles their results. Operational
intuition tells us that structured recursion defines a function uniquely as the
argument is gradually consumed and structured corecursion because the result
is gradually produced. More generally, instead of structurally smaller recursive
call arguments one can allow arguments smaller in the sense of some wellfounded
relation (not necessarily on an inductive type). We may ask: Does the “produc-
tivity” aspect of structured corecursion admit a similar generalization? What
are some principles for reasoning about functions defined in this way? In this
article we address exactly these questions in an abstract categorical setting.

General structured recursion and induction have been analysed in terms of
recursive and wellfounded coalgebras. A recursive coalgebra (RCA) is a coalgebra

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 84–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Corecursive Algebras: A Study of General Structured Corecursion 85

of an endofunctor F with a unique coalgebra-to-algebra morphism to any F -
algebra. In other words, it is a coalgebra that guarantees unique solvability
of any structured recursive diagram involving it. This abstract version of the
wellfounded recursion principle was introduced by Osius [13]. It was also of
interest to Eppendahl [9], and we have previously studied constructions to obtain
recursive coalgebras from other coalgebras already known to be recursive, with
the help of distributive laws of functors over comonads [4].

Taylor introduced the notion of wellfounded coalgebra (WFCA), an abstract
version of the wellfounded induction principle, and proved that, under mild as-
sumptions, it is equivalent to RCA [14,15],[16, Ch. 6]. Defined in terms of Ja-
cobs’s next-time operator [11], a wellfounded coalgebra is a coalgebra such that
any subset of its carrier containing its next-time subset is isomorphic to the
carrier, so that the carrier is the least fixed-point of the next-time operator. As
this least fixed-point is given by those elements of the carrier whose recursive
calls tree is wellfounded, the principle really states that all of the carrier is in-
cluded in the “wellfounded core”(cf. Bove-Capretta’s method [2] in type theory:
a general-recursive definition is made acceptable by casting it as a definition by
structured recursion on the inductively defined wellfounded core and proving
that the whole domain is in the wellfounded core). A closely related condition
has the coalgebra carrier reconstructed by iterating the next-time operator on
the empty set.

Adámek et al. [1] provided additional characterizations for the important case
when the functor has an initial algebra. Backhouse and Doornbos [8] studied
wellfoundedness in a relational setting.

We look at the dual notions with the aim to achieve a comparable analysis
of structured corecursion and coinduction. It is only to be expected that several
differences arise from the fact that Set-like categories are not self-dual. More
surprisingly, however, they turn out to be quite deep. The dual of RCA is the
notion of corecursive algebra (CRA): we call an algebra corecursive if there is a
unique map to it from any coalgebra. Here the first discrepancy arises: while it is
well-known that initial algebras support primitive recursion and, more generally,
a recursive coalgebra is parametrically recursive ([16, Ch. 6]), the dual statement
is not true: corecursiveness with the option of an escape (complete iterativity in
the sense of Milius [12]) is a strictly stronger condition than plain corecursiveness.

The dual of WFCA is the notion of antifounded algebra (AFA)1. The dual
of the next-time operator maps a quotient of the carrier of an algebra to the
quotient identifying the results of applying the algebra structure to elements
that were identified in the original quotient. AFA is a categorical formulation
of the principle of bisimilarity: if a quotient is finer than its next-time quotient,
then it must be isomorphic to the algebra carrier. Here also the equivalence with
CRA is not satisfied: both implications fail for rather simple algebras in Set.

Finally, we call an algebra focusing (FA), if the algebra carrier can be recon-
structed by iterating the dual next-time operator. In the coalgebra case, one

1 Our choice of the name was motivated by the relation to the set-theoretic antifoun-
dation axioms.

86 V. Capretta, T. Uustalu, and V. Vene

starts with the empty set and constructs a chain of ever larger subsets of the
carrier. Now, we start with the singleton set, which is the quotient of the car-
rier by the total relation, and construct an inverse chain of ever finer quotients.
Intuitively, each iteration of the dual next-time operator refines the quotient.
And while a solution of a recursive diagram in the recursive case is obtained by
extending the approximations to larger subsets of the intended domain, now it is
obtained by sharpening the approximations to range over finer quotients of the
intended codomain. FA happens to be the strongest of the conditions, implying
both AFA and CRA. The inverse implications turn out to be false.

The article is organized around these three notions, treated in Sections 2, 3 and
4, respectively, before we arrive at our conclusions in Section 5. Throughout the
article we are interested in conditions on an algebra (A,α) of an endofunctor F
on a category C. We assume that C has pushouts along epis and that F preserves
epis.2 Our prime examples are C being Set and F a polynomial functor.

2 Corecursive Algebras

Our central object of study in this article is the notion of corecursive algebra,
the dual of Osius’s concept recursive coalgebra [13].

Definition 1. An algebra (A,α) of an endofunctor F on a category C is called
corecursive (CRA) if for every coalgebra (C, γ) there exists a unique coalgebra-
to-algebra map, i.e., a map f : C → A making the following diagram commute:

C
γ ��

f ��

FC
Ff��

A FA.α
��

We write separately CRA-existence and CRA-uniqueness for the statements that
the diagram has at least and at most one solution, respectively.

An algebra is corecursive if every structured recursive diagram (= coalgebra-to-
algebra map diagram) based on it defines a function (in the sense of turning
out to be a definite description). The inverse of the final F -coalgebra, whenever
it exists, is trivially a corecursive F -algebra (in fact the initial corecursive F -
algebra). However, there are numerous examples of corecursive algebras that
arise in different ways.

Example 1. We illustrate the definition with a corecursive algebra in Set, for the
functor FX = E ×X ×X , where E is some fixed set. The carrier is the set of
streams over E, A = Str(E). The algebra structure α is defined as follows:

α : E × Str(E)× Str(E) → Str(E) merge : Str(E)× Str(E)→ Str(E)
α(e, s1, s2) = e :: merge(s1, s2) merge(e :: s1, s2) = e :: merge(s2, s1).

2 In the recursive case it makes sense to additionally require that F preserves pullbacks
along monos. This assumption holds for typical functors of interest. In the presence
of a subobject classifier in C, it guarantees that recursiveness of a coalgebra implies
wellfoundedness. The dual assumption, that F preserves pushouts along epis, is not
as helpful. Moreover, it is too strong: it is false, e.g., for FX = X × X. We drop it.

Corecursive Algebras: A Study of General Structured Corecursion 87

It is easy to see that this algebra is corecursive, although it is not the inverse
of the final F -coalgebra, which is the set of non-wellfounded binary trees with
nodes labelled by elements of E.

A simple example of recursive definition that could be justified by the corecur-
siveness of (A,α) is the following. Let E = 2∗ (lists of bits, i.e., binary words).
We define a F -coalgebra (C, γ : C → 2∗×C×C) by C = 2∗ and γ(l) = (l, 0l, 1l).
We can now be certain that there is exactly one function f : 2∗ → Str(2∗) such
that f = α◦Ff ◦γ. This function sends a binary word to the lexicographical enu-
meration of the binary words which have this given one as a prefix. In particular,
the stream f(ε) is the lexicographical enumeration of all binary words.

Example 2. We also obtain a corecursive algebra by endowing A = Str(E) with
the following algebra structure of the functor FX = E × X (note that this is
different from the inverse of the final F -coalgebra structure also carried by A):

α : E × Str(E)→ Str(E) double : Str(E) → Str(E)
α(e, s) = e :: double(s) double(e :: s) = e :: e :: double(s).

The next notion is an important variation.

Definition 2. An algebra (A,α) is called parametrically corecursive (pCRA) if
for every object C and map γ : C → FC + A (that is, coalgebra of F (−) + A),
there exists a unique map f : C → A making the following diagram commute:

C
γ ��

f ��

FC + A
Ff+idA��

A FA + A.
[α,idA]

��

This notion is known under the name of completely iterative algebra [12].3 While
this term is well-established and we do not wish to question its appropriateness
in any way, we use a different term here, locally, for better fit with the topic of
this article (the adjective “parametrically” remains idiosyncratic however).

To be parametrically corecursive, an algebra must define a function also from
diagrams where, for some arguments, the value of the function is given by an “es-
cape”. The inverse of the final coalgebra always has this property [18]. Examples
1, 2 also satisfy pCRA. We leave the verification to the reader.

Proposition 1. pCRA ⇒ CRA : A parametrically corecursive coalgebra is
corecursive.

Proof. Given a coalgebra (C, γ), the unique solution of the pCRA diagram for
the map (C,C

γ→ FC
inl→ FC + A) is trivially also the unique solution of the

CRA diagram for (C, γ). ��
3 In this terminology inspired by iterative theories, the word “iterative” refers to it-

eration in the sense of tail-recursion. “Completely iterative” means that a unique
solution exists for every coalgebra while “iterative” refers to the existence of such
solutions only for finitary coalgebras, i.e., coalgebras with finitary carriers.

88 V. Capretta, T. Uustalu, and V. Vene

The following counterexamples show that the converse is not true (differently
from the dual situation of recursive and parametrically recursive coalgebras).
We exhibit an algebra that is corecursive but not parametrically corecursive.

Example 3. In the category Set, we use the functor FX = X×X . An interesting
observation is that any corecursive algebra (A,α) for this F must have exactly
one fixed point, that is, one element a such that α(a, a) = a. We take the
following algebra structure on the three-element set A = 3 = {0, 1, 2}:

α : 3× 3 → 3
α(1, 2) = 2
α(n,m) = 0 otherwise.

Proposition 2. CRA � pCRA-uniqueness: Example 3 is corecursive, but does
not satisfy the uniqueness property for parametrically corecursive algebras.

Proof. Example 3 satisfies CRA. Let (C, γ) be a coalgebra. We prove that the
only possible solution f of the CRA diagram is the constant 0. In fact, for c ∈ C,
it cannot be f(c) = 1, because 1 is not in the range of α. On the other hand, if
f(c) = 2, then we must have f(c) = α((f × f)(γ(c))). Let us call c0 and c1 the
two components of γ(c): γ(c) = (c0, c1). Then we have f(c) = α(f(c0), f(c1)).
For f(c) to be equal to 2, it is necessary that f(c0) = 1 and f(c1) = 2. But we
already determined that f(c0) = 1 is impossible. In conclusion, there is a unique
solution: f(c) = 0 for every c ∈ C.

Example 3 does not satisfy pCRA-uniqueness. The pCRA diagram for C = B
and γ : B → B× B + 3 defined by γ(true) = inr(1), γ(false) = inl(true, false), has
two distinct solutions:

B
γ ��

f0 ��
f1��

B× B + 3
f0×f0+id

��
f1×f1+id

��
3 3× 3 + 3

[α,id]
��

f0(true) = 1
f0(false) = 0

f1(true) = 1
f1(false) = 2.

(Note that Example 3 satisfies pCRA-existence: to construct a solution, put it
equal to 0 on all argument values on which it is not recursively forced.) ��

Example 4. Consider the following algebra (A,α) for the functor FX = X ×X
in Set: We take A to be N and define the algebra structure by

α : N× N → N
α(1,m) = m + 2
α(n,m) = 0 if n �= 1.

Proposition 3. CRA � pCRA-existence: Example 4 is corecursive, but does
not satisfy the existence property for parametrically corecursive algebras.

Proof. Example 4 satisfies CRA, essentially by the same argument as for Exam-
ple 3: the unique solution is forced to be the constant 0.

Corecursive Algebras: A Study of General Structured Corecursion 89

Example 4 does not satisfy pCRA-existence. Take C = B and define γ : B →
B× B + N by γ(true) = inr(1) and γ(false) = inl(true, false). For this case, there
is no solution to the pCRA diagram. Indeed, a solution should surely satisfy
f(true) = 1. Therefore we should also have f(false) = α(f(true), f(false)) =
α(1, f(false)) = f(false) + 2, which is clearly impossible.

(Note that Example 4 satisfies pCRA-uniqueness: the value of a solution f(c)
can be undetermined only if γ(c) = inl(c1, c2) with f(c1) = 1 and f(c2) undeter-
mined in turn. But this cannot go on forever because it would give an unbounded
value.) ��

3 Antifounded Algebras

Now we turn to the dual of Taylor’s wellfounded coalgebras. We state the defini-
tion with the help of the dual of the next-time operator of Jacobs [11]. Remember
that we assume that the category C has pushouts along epis and that F preserves
epis.

Definition 3. Given an algebra (A,α). Let (Q, q : A � Q) be a quotient of A
(i.e., an epi with A as the domain4). We define a new quotient (ntA(Q), ntA(q) :
A� ntA(Q)) (the next-time quotient) by the following pushout diagram:

A
ntA(q) ����

FA
Fq����

α��

ntA(Q) FQ
α[q]

��

Note that ntA(q) is guaranteed to be an epi, as a pushout along an epi.
Notice that we abuse notation (although in a fairly standard fashion): First,

ntA is really parameterized not by the object A, but the algebra (A,α). And
further, ntA operates on a quotient (Q, q) and returns another quotient given by
the vertex and one of the side morphisms of the pushout. It is a convention of
convenience to denote the vertex by ntA(Q) and the morphism by ntA(q).

In particular, in the category Set we can give an intuitive definition of ntA
in terms of quotients by equivalence relations. In Set, a quotient is, up to iso-
morphism, an epi q : A � A/≡, where ≡ is an equivalence relation on A, with
q(a) = [a]≡. Its next-time quotient can be represented similarly: ntA(A/≡) =
A/≡′, where ≡′ is the reflexive-transitive closure of the relation

{(α(y0), α(y1)) | y0, y1 ∈ FA, y0 (F≡) y1}.

Here F≡ is the lifting of ≡ to FA: it identifies elements of FA that have the
same shape and equivalent elements of A in corresponding positions (if ≡ is given
by a span (R, r0, r1 : R→ A), F≡ is just (FR,Fr0, F r1)).

The following definition is the dual of Taylor’s definition of wellfounded algebra
[14,15,16].
4 We do not bother to identify equivalent epis, see below.

90 V. Capretta, T. Uustalu, and V. Vene

Definition 4. An algebra (A,α) is called antifounded (AFA) if for every quo-
tient (Q, q : A � Q), if ntA(q) factors through q, then q is an isomorphism. In
diagrams:

A
ntA(q)

������
��

� q
�� ���

��
� A

q����
⇒ is an isomorphism.

ntA(Q) Q
u

�� Q

Note that, if ntA(q) factors, i.e., u exists, then it is necessarily unique, as q is an
epi. Note also that q being an isomorphism means that idA factorizes through q,
i.e., that q is a split mono.

Example 1 is an antifounded algebra. Indeed, let q : Str(E)� Str(E)/≡ be a
quotient of Str(E) such that ntA(q) factors through q. Let ≡′ be the equivalence
relation giving the next-time quotient, that is, ntA(Str(E)/≡) = Str(E)/≡′. It
is the reflexive-transitive closure of the relation

{(e :: merge(s00, s01), e :: merge(s10, s11))
| e ∈ E, s00, s01, s10, s11 ∈ Str(E), s00 ≡ s10 ∧ s01 ≡ s11}

This relation is already reflexive and transitive, so the closure is in fact un-
necessary. The hypothesis that ntA(q) factors through q tells us that ≡ is finer
than ≡′, that is, ∀s0, s1 ∈ Str(E). s0 ≡ s1 ⇒ s0 ≡′ s1. We want to prove that
≡ must be equality. In fact, suppose s0 ≡ s1, then also s0 ≡′ s1. This means
that they must have the same head element e0 and that their unmerged parts
must be equivalent: if s00, s01, s10, s11 are such that s0 = e0 ::merge(s00, s01) and
s1 = e0 :: merge(s10, s11), then it must be s00 ≡ s10 and s01 ≡ s11; repeating
the argument for these two equivalences, we can deduce that s0 and s1 have the
same second and third element, and so on. In conclusion, s0 = s1 as desired.

Example 2 can be seen to be an antifounded algebra by a similar argument.
The next-time equivalence relation ≡′ of an equivalence relation ≡ on Str(E) is
the reflexive closure of the transitive relation

{(e :: double(s0), e :: double(s1)) | e ∈ E, s0, s1 ∈ Str(E), s0 ≡ s1}.

Theorem 1. AFA⇒ pCRA-uniqueness: An antifounded algebra (A,α) satisfies
the uniqueness part of the parametric corecursiveness condition.

Proof. Assume that (A,α) satisfies AFA and let f0 and f1 be two solutions of
the pCRA diagram for some (C, γ : C → FC +A). We must prove that f0 = f1.

Let (Q, q : A → Q) be the coequalizer of f0 and f1. As any coequalizer, it is
epi. We apply the next-time operator to it. We prove that ntA(q)◦f0 = ntA(q)◦f1;
the proof is summarized by this diagram:

C
γ ��

f0 �� f1��

FC + A
Ff0+id �� Ff1+id��

A
q ����

ntA(q)

�� ��������������� FA + A
[α,id]��

Fq+id

��������������

Q
u

�� ntA(Q) FQ + A.
[α[q],ntA(q)]

��

Corecursive Algebras: A Study of General Structured Corecursion 91

By the fact that f0 and f1 are solutions of the pCRA diagram, the top rectangle
commutes for both of them. By definition of the ntA operator, the lower-right
parallelogram commutes. Therefore, we have that ntA(q) ◦ f0 = [α[q] ◦ F (q ◦
f0), ntA(q)] ◦ γ and ntA(q) ◦ f1 = [α[q] ◦F (q ◦ f1), ntA(q)] ◦ γ. But q ◦ f0 = q ◦ f1,
because q is the coequalizer of f0 and f1, so the right-hand sides of the two
previous equalities are the same. We conclude that ntA(q) ◦ f0 = ntA(q) ◦ f1.

Now, using once more that q is the coequalizer of f0, f1, there must exist a
unique map u : Q→ ntA(Q) such that u ◦ q = ntA(q). By AFA, this implies that
q is an isomorphism. As q ◦ f0 = q ◦ f1, it follows that f0 = f1. ��

However, AFA does not imply CRA-existence (and therefore, does not imply
pCRA-existence), as attested by the following counterexample.

Example 5. In Set, we use the identity functor FX = X and the successor
algebra on natural numbers: A = N and α : N → N is defined by α(n) = n + 1.

Proposition 4. AFA � CRA-existence: Example 5 satisfies AFA but not CRA-
existence.

Proof. Example 5 satisfies AFA. Let q : A → A/≡ be a quotient of A such
that ntA(q) factorizes through q. Note that the definition of ≡′ (the next-time
equivalence relation of ≡) is particularly simple, just the reflexive closure of

{(m0 + 1,m1 + 1) | m0,m1 ∈ N,m0 ≡ m1}.

So two distinct numbers are equivalent according to ≡′ if and only if they are
the successors of elements that are equal according to ≡. There is no need of a
transitive closure in this case, since the relation is already transitive. By assump-
tion ≡ is finer than ≡′, that is ∀m1,m2 ∈ N.m0 ≡ m1 ⇒ m0 ≡′ m1. We want to
prove that ≡ is equality. We prove, by induction on m, that [m]≡ = {m}, that
is, every equivalence class is a singleton:

– For m = 0 the statement is trivial: 0 ≡ m′ implies, by hypothesis, that
0 ≡′ m′, but since 0 is not a successor, this can happen only by reflexivity,
that is, if m′ = 0;

– Assume that [m]≡ = {m} by induction hypothesis; we must prove that
[m + 1]≡ = {m + 1}; if m + 1 ≡ m′, then m + 1 ≡′ m′, which can happen
only if either m+ 1 = m′ or m′ is a successor and m ≡ m′ − 1; by induction
hypothesis, this implies that m′ − 1 = m, so m′ = m + 1.

Example 5 does not satisfy CRA-existence. Indeed, if we take the trivial coal-
gebra (1 = {0}, id : 1 → 1), we see that a solution of the CRA diagram would
require f(0) = f(0) + 1, which is impossible. ��

The vice versa also does not hold: CRA does not imply AFA, as evidenced by
the following counterexample.

Example 6. We use the functor FX = 2∗ × X in Set, where 2∗ is the set of
lists of bits (binary words). We construct an F -algebra on the carrier A =

92 V. Capretta, T. Uustalu, and V. Vene

Str(2∗)/�, where � is the equivalence relation defined below. We are particularly
interested in streams of a special kind: those made of incremental components
that stabilize after at most one step. Formally, if l ∈ 2∗ and i, j ∈ 2, we define
(l)ij̄ = (li, lij, lijj, lijjj, . . .), that is,

(l)00̄ = (l0, l00, l000, l0000, l00000, . . .) (l)01̄ = (l0, l01, l011, l0111, l01111, . . .)
(l)10̄ = (l1, l10, l100, l1000, l10000, . . .) (l)11̄ = (l1, l11, l111, l1111, l11111, . . .).

The relation � is the least congruence such that (l)01̄ � (l)10̄ for every l. This
means that two streams that begin in the same way but then stabilize in one of
the two forms above will be equal: (l0, . . . , lk−1)++(l)01̄ � (l0, . . . , lk−1)++(l)10̄. In
other words, the equivalence classes of � are {(l0, . . . , lk−1)++(l)01̄, (l0, . . . , lk−1)
++ (l)10̄} for elements in one of those two forms, and singletons for elements not
in those forms. Notice that we do not equate elements of the forms (l)00̄ and
(l)11̄. For simplicity, we will write elements of A just as sequences, in place of
equivalence classes. So if s ∈ Str(2∗), we will use s also to indicate [s]�. We leave
it to the reader to check that all our definitions are invariant with respect to �.
We now define an algebra structure α on this carrier by:

α : 2∗ × (Str(2∗)/�)→ Str(2∗)/�
α(l, s) = l :: s.

Proposition 5. pCRA � AFA: Example 6 satisfies pCRA but not AFA.

Proof. First we prove that Example 6 satisfies pCRA. Given some (C, γ : C →
2∗ × C + A), we want to prove that there is a unique solution to the pCRA
diagram. Given any element c : C, we have two possibilities: γ c = inr s, in
which case it must necessarily be f c = s; or γ c = inl〈l0, c1〉, in which case it
must be f c = l0 :: (f c1). In this second case, we iterate γ again on c1. The kth
component of f c is decided after at most k such steps, therefore the result is
uniquely determined by commutativity of the diagram.

Now we prove that Example 6 does not satisfy AFA. With this goal we define
an equivalence relation ≡ on A = Str(2∗)/� such that ntA(A/≡) factorizes
through A/≡ but ≡ is strictly coarser than �. The relation ≡ is the reflexive
closure of the following: ∀l ∈ 2∗, i0, i1, j0, j1 ∈ 2. (l)i0j̄0 ≡ (l)i1 j̄1 . In other words,
≡ identifies all elements in the form (l)ij̄ that have the same base sequence l.
Contrary to the case of �, we do not extend ≡ to a congruence: l0 ++ (l1)00̄ �≡
l0++(l1)11̄, but still l0++(l1)01̄ ≡ l0++(l1)10̄, because these elements are equivalent
according to � and ≡ is coarser. So if s0 is not in the form (l)ij̄ , then s0 ≡ s1
is true only if s0 � s1. This equivalence relation is strictly coarser than �, since
(l)00̄ ≡ (l)11̄ but (l)00̄ �� (l)11̄.

Let ≡′ be the next-time equivalence relation of ≡, i.e., such that ntA(A/≡) =
A/≡′. Concretely, ≡′ is the (already reflexive and transitive) relation

{(l :: s0, l :: s1) | l ∈ 2∗, s0, s1 ∈ A, s0 ≡ s1}.

We prove that ≡ is finer than ≡′, i.e., if s0 ≡ s1, then s0 ≡′ s1. There are two
cases.

Corecursive Algebras: A Study of General Structured Corecursion 93

If s0 or s1 is not in the form (l)ij̄ , then its equivalence class is a singleton by
definition, so the other element must be equal to it and the conclusion follows
by reflexivity.

If both s0 and s1 are in the form (l)ij̄ , then their base element must be the
same l, by definition of ≡. There are four cases for each of the two elements,
according to what their i and j parameters are. By considerations of symmetry
and reflexivity, we can reduce the cases to just two:

– s0 = (l)00̄ and s1 = (l)01̄: We can write the two elements alternatively as
s0 = l0 :: (l0)00̄ and s1 = l0 :: (l0)11̄; since (l0)00̄ ≡ (l0)11̄, we conclude that
s0 ≡′ s1;

– s0 = (l)00̄ and s1 = (l)11̄: By the previous case and its dual we have s0 ≡′

(l)01̄ and s1 ≡′ (l)10̄; but (l)01̄ � (l)10̄ so s0 ≡′ s1 by transitivity. ��

We now turn to a higher-level view of antifounded algebras. This is in terms of
the classical fixed point theory for preorders and monotone endofunctions.

For a (locally small) category C and an object A, we define the category of
quotients of A, called Quo(A) as follows:

– an object is an epimorphism (Q, q : A� Q),
– a map between (Q, q), (Q′, q′) is a map u : Q→ Q′ such that u ◦ q = q′.

Clearly there can be at most one map between any two objects, so this category
is a preordered set. (In the standard definition of the category, equivalent epis are
identified, so it becomes a poset. We have chosen to be content with a preorder;
the cost is that universal properties define objects up to isomorphism.) We tend
to write Q ≤ Q′ instead of u : (Q, q) → (Q′, q′), leaving q, q′ and the unique u
implicit.

Clearly, Quo(A) has (A, idA) as the initial and (1, !A) as the final object.
Now, ntA sends objects of Quo(A) to objects of Quo(A). It turns out that

it can be extended to act also on maps. For a map u : (Q, q) → (Q′, q′), we
define ntA(u) : (ntA(Q), ntA(q)) → (ntA(Q′), ntA(q′)) as the unique map from a
pushout, as shown in the following diagram:

A
ntA(q)����

ntA(q′)

		 		

FA
Fq ����

Fq′

α��

ntA(Q)
ntA(u)��

FQ
α[q]

��

Fu ��
ntA(Q′) FQ′

α[q′]
��

Given that Quo(A) is a preorder, this makes ntA trivially a functor (preservation
of the identities and composition is trivial). In preorder-theoretic terms, we say
that ntA is a monotone function.

We can notice that (A, idA) is trivially a fixed point of ntA. Since it is the
least element of Quo(A), it is the least fixed point.

The condition of (A,α) being antifounded literally says that, for any Q, Q ≤
ntA(Q) implies Q ≤ A, i.e., that A is an upper bound on the post-fixed points

94 V. Capretta, T. Uustalu, and V. Vene

of ntA. Taking into account that A, by being the least element, is also trivially
a post-fixed point, this amounts to A being the greatest post-fixed point. Fixed
point theory (or, if you wish, Lambek’s lemma) tells us that the greatest post-
fixed point is also the greatest fixed point.

So, in fact, (A,α) being antifounded means that (A, idA) is a unique fixed
point of ntA. (Recall that this is up to isomorphism.)

4 Focusing Algebras

Our third and last notion of focused algebra, introduced below in Def. 6, is
the condition that an algebra is recoverable by iterating its next-time operator,
starting with the final quotient.

At transfinite iterations, given by limits in C (so that we can prove Theorem 3),
we are not guaranteed to still obtain a quotient. In Prop. 7 we will prove that,
for Example 5, the iteration at stage ω is not a quotient anymore. However, to
apply fixed point theory to Quo(A) in Lemma 6, we need to work with limits in
Quo(A). Below, talking about the iteration at a limit ordinal, we require that
it is a quotient (assuming that so are also all preceding stages), or else we take
it to be undefined. Clearly, this is not a beautiful definition. We regard it as one
possible way to partially reconcile the discrepancy between corecursiveness and
antifoundedness that we have already witnessed.

Definition 5. Given an algebra (A,α), for any ordinal λ we partially define
(Aλ, aλ) (the λ-th iteration of ntA on the final object (1, !A) of Quo(A)) and
maps pλ : Aλ+1 → Aλ, pλ,κ : Aλ → Aκ (for λ a limit ordinal and κ < λ) in C
by simultaneous recursion by

A0 = 1 Aλ+1 = ntA(Aλ) Aλ = limκ<λ Aκ

a0 = !A aλ+1 = ntA(aλ) aλ = 〈aκ〉κ<λ

p0 = !A1 pλ+1 = ntA(pλ) pλ = 〈pκ ◦ ntA(pλ,κ)〉κ<λ

pλ,κ = πλ,κ if κ < λ

where the third column applies if λ is a limit ordinal, the limit limκ<λ Aκ exists
and the mediating map 〈aκ〉κ<λ is epi; otherwise Aλ, aλ, pλ, and pλ,κ are left
undefined.

Diagrammatically,

A
a0=!A ����

A
aλ+1=ntA(aλ) ����

FA
Faλ����

α�� A
aλ=〈aκ〉κ<λ ����

aκ

�� ��������������

A0 = 1 Aλ+1 = ntA(Aλ) FAλ
α[aλ]

�� Aλ = limκ<λ Aκ Aκ

The limit in the limit ordinal case is of the following diagram in C:

(Aκ, pκ, pκ,ι (κ lim. ord., ι < κ))κ<λ.

Corecursive Algebras: A Study of General Structured Corecursion 95

Lemma 1. The above definition is well-formed: for any λ,

1. aλ is an epi (so, for any λ, ntA is applicable to (Aλ, aλ), ensuring (Aλ+1, aλ+1)
is defined),

2. pλ ◦ aλ+1 = aλ and pλ,κ ◦ aλ = aκ (if λ is a limit ordinal, κ < λ) (so, for
any λ, (A, (aκ)κ<λ) in the definition of aλ for λ a limit ordinal form a cone,
ensuring aλ is defined)

Diagrammatically,

A
aλ

���������������������

aκ+1
����

aκ

��
��

��
��

�
a0

�� ���������������������������

. . . Aλ pλ,κ+1 ��
pλ,κ

��

pλ,0

��. . . Aκ+1
pκ �� Aκ

. . . A0

Proof. Both parts are proved by induction on λ.
(1) a0 =!A is an epi. For the successor case, aλ+1 = ntA(aλ) is an epi, since

ntA takes quotients of A to quotients of A. Finally, for λ a limit ordinal, we
have agreed to define aλ as 〈aκ〉κ<λ only if this mediating map is epi, leaving it
undefined otherwise.

(2) It is trivial that p0 ◦ a1 = !A1 ◦ a1 = !A = a0.
For the successor case, pλ+1 ◦ aλ+2 = ntA(pλ) ◦ ntA(aλ+1) = ntA(aλ) = aλ+1

holds by the induction hypothesis pλ◦aλ+1 = aλ, implying ntA(pλ)◦ntA(aλ+1) =
ntA(aλ) by the definition of the functorial extension of ntA.

For λ a limit ordinal, pλ◦aλ+1 = 〈pκ◦ntA(pλ,κ)〉κ<λ◦ntA(aλ) = 〈pκ◦ntA(pλ,κ)◦
ntA(aκ)〉κ<λ = 〈pκ ◦ ntA(aκ)〉κ<λ = 〈pκ ◦ aκ+1〉κ<λ = 〈aκ〉κ<λ = aλ, from the
induction hypotheses pλ,κ ◦ aλ = aκ, implying ntA(pλ,κ) ◦ ntA(aλ) = ntA(aκ)
by the definition of the functorial extension of ntA, and from the induction
hypotheses pκ ◦ aκ+1 = aκ.

For λ a limit ordinal and κ < λ, pλ,κ ◦ aλ = πλ,κ ◦ 〈aκ〉κ<λ = aκ. ��
It is very important to remember that we only accept limκ<λ Aκ (which is a
limit in C) as Aλ for λ a limit ordinal, if it is a quotient of A (otherwise we take
Aλ to be undefined). This is by no means guaranteed. As the next proposition
shows, this implies that Aλ is also a limit in Quo(A), but the vice versa need
not be true. The carrier of a limit in Quo(A) is not necessarily a limit in C, as
evidenced by our analysis of Example 5 below.

Proposition 6. If Aλ is defined for a limit ordinal (meaning that (Aλ, (pλ,κ)κ<λ)
is a limiting cone in C and aλ = 〈aκ〉κ<λ is epi), then ((Aλ, aλ), (pλ,κ)κ<λ) is a
limiting cone in Quo(A).

Proof. To see that

((Aκ, aκ), pκ, pκ,ι (κ lim. ord., ι < κ))κ<λ

is a diagram in Quo(A) we need that pκ ◦ aκ+1 = aι and pκ,ι ◦ aκ = aι (κ a
limit ordinal, ι < κ) for κ < λ. To see that ((Aλ, aλ), (pλ,κ)κ<λ) is a cone we
also need pλ,κ ◦ aλ = aκ. But we have proved these equalities already.

96 V. Capretta, T. Uustalu, and V. Vene

To see that ((Aλ, aλ), (pλ,κ)κ<λ) is a limiting cone, we observe that the sole
map to it from a cone ((Q, q), (fλ,κ)κ<λ) in Quo(A) is given by the unique map
from (Q, (fλ,κ)κ<λ) to (Aλ, (pλ,κ)κ<λ) in C. ��

Given that Quo(A) is a preorder, we have learned that (Aκ)κ<λ is an inverse
chain (if all Aκ are defined) and the limit is the infimum.

Lemma 2. If Aλ is defined and Aλ ≤ Aλ+1, then Aλ is the greatest fixed point
of ntA.

Proof. This is standard fixed point theory for preorders. Aλ is a post-fixed point
of ntA, as Aλ ≤ Aλ+1 = ntA(Aλ). And by induction one checks that Q ≤ Aκ

holds for any post-fixed point Q of ntA and any κ: Q ≤ 1 = A0 is trivial;
Q ≤ ntA(Q) ≤ ntA(Aκ) = Aκ+1 follows from the induction hypothesis Q ≤ Aκ,
as ntA is monotone; and, finally, Q ≤ infι<κAι is immediate from the induction
hypotheses Q ≤ Aι (ι < κ). ��

Definition 6. (A,α) is λ-focusing (λ-FA) if Aλ is defined and Aλ
∼= A.

We show that Example 1 is ω-focusing. In fact we claim that, in this case,
Ai = Str(E)/≡i, where ≡i is the equivalence relation defined by s0 ≡i s1 if the
first 2i − 1 elements of s0 and s1 are the same. The claim is clearly true for
i = 0, because ≡0 is the total relation. Assume, as an induction hypothesis, that
Ai = Str(E)/≡i. Then Ai+1 = ntA(Str(E)/≡i) = Str(E)/≡i+1. Now s0 ≡i+1 s1
holds if s0 = e0 ::merge(s00, s01) and s1 = e0 ::merge(s10, s11) with s00 ≡i s10 and
s01 ≡i s11. By the induction hypothesis, this means that the first 2i−1 elements
of s00 and s10 are the same and the first 2i − 1 elements of s01 and s11 are also
the same. In conclusion, the first 1 + (2i − 1) + (2i − 1) = 2i+1 − 1 elements of
s0 and s1 are the same, that is s0 ≡i+1 s1, as claimed.

We have proved that Ai is isomorphic to the set E2i−1 of vectors of length
2i−1, with pi the projection giving the first 2i−1 elements of a vector of length
2i+1 − 1. Standard reasoning shows that limi<ω Ai is Str(E).

Example 2 is also ω-focusing, but the equivalence relations ≡i are different.
For s0 ≡i s1 to hold, if s0 �= s1, it is not enough that they share the first
2i − 1 elements, say e0, . . . , e2i−2. It must moreover be the case that e1 = e2,
e3 = e4 = e5 = e6, . . . , e2i−1−1 = . . . = e2i−2 and the remainders of s0 and s1
must both be in the image of doublei, i.e., consist of groups of 2i equal elements.

There are examples of λ-focusing algebras that do not converge at the first
limit ordinal ω but at later stages. Here is an example that converges at 2ω.

Example 7. Let us use the functor FX = X + N × X in Set. We define an
F -algebra with carrier A = 2ω + 1 = {0, 1, . . . , ω, ω + 1, ω + 2, . . . , 2ω}:

α : (2ω + 1) + N× (2ω + 1)→ 2ω + 1
α(inl(x)) = x + 1
α(inr(n, x)) = min(ω + x− n, 2ω).

Theorem 2. λ-FA ⇒ AFA: If an algebra (A,α) is λ-focusing, it is antifounded.

Corecursive Algebras: A Study of General Structured Corecursion 97

Proof. Assume that (A,α) is λ-focusing, i.e., that Aλ is defined and Aλ
∼= A.

Then Aλ
∼= A ≤ Aλ+1 trivially, as A is the least element in the preorder Quo(A).

It follows by the previous lemma that Aλ, which is isomorphic to A, is the
greatest fixed point of ntA, i.e., that (A,α) is antifounded. ��

The converse does not hold: Some antifounded algebras are not focusing.

Proposition 7. AFA � ∃λ.λ-FA: Ex. 5 satisfies AFA but not λ-FA for any λ.

Proof. We already proved in Proposition 4 that Example 5 satisfies AFA. Now
we prove that it is not focusing at any ordinal. In fact, we have the following
sequence of iterations of ntA:

A0 = {⊥}, A1 = {0,⊥}, A2 = {0, 1,⊥}, . . . ,
Ai = {0, . . . , i− 1,⊥}, . . . , limi<ω Ai = N ∪ {⊥}.

At the limit, the element ⊥ is not an equivalence class of natural numbers any-
more and the limit limi<ω Ai is not a quotient of A = N. So, in this case, the limit
exists in Set, but is not a limit in the quotient category Quo(A). The reason
that this happens is that, the limit in Set of an inverse chain of quotients given
by equivalence relations is not necessarily the quotient given by the intersection
of these equivalence relations. ��

Notice that (Ai)i<ω has the limit N in Quo(A). So we have to be mindful of the
subtle distinction: λ-FA states that the limit exists in C and happens to be a
quotient; this is a strictly stronger requirement than the condition that the limit
exists in Quo(A).

Theorem 3. λ-FA ⇒ pCRA: If an algebra (A,α) is λ-focusing, it is paramet-
rically recursive.

The proof uses the inverse chain (Aκ)κ<λ+1 as the sequence of codomains for
fuzzy approximations of the solution. The fact that A = Aλ is the inverse limit
establishes that a (sharp) function is achieved. This is analogous to the dual sit-
uation where a (total) solution arises from a sequence of partial approximations
defined on a chain of subsets of the given domain to which the chain is required
to have as the direct limit.

Proof. Assume that (A,α) is λ-focusing, i.e., that Aλ is defined and Aλ =
Aλ+1 = A (we ignore that in general we have isomorphisms, not equalities).

Given (C, γ : C → FC + A), we define, for any κ, a map fκ : C → Aκ by

f0 = !C
fκ+1 = [α[aκ] ◦ Ffκ, aκ+1] ◦ γ

fκ = 〈fι〉ι<κ if κ is a lim. ord.

Diagrammatically,

C

f0 		 !C

C
γ ��

fκ+1 ��

FC + A

F fκ+idA��

C

fκ �� 〈fι〉ι<κ��
fι

��												

A0 = 1 Aκ+1 = ntA(Aκ) FAκ + A
[α[aκ],aκ+1]

�� Aκ = limι<κ Aι Aι

98 V. Capretta, T. Uustalu, and V. Vene

Simultaneously, we show that pκ ◦ fκ+1 = fκ and pκ,ι ◦ fκ = fι.
The base case p0 ◦ f1 = !A1 ◦ f1 = !C = f0 holds trivially.
For the successor case, we conclude pκ+1 ◦ fκ+2 = ntA(pκ) ◦ [α[aκ+1] ◦Ffκ+1,

]aκ+2 ◦ γ = [ntA(pκ) ◦α[aκ+1] ◦Ffκ+1, ntA(pκ) ◦ ntA(aκ+1)] ◦ γ = [α[aκ] ◦F (pκ ◦
fκ+1), ntA(aκ)]◦γ = [α[aκ]◦Ffκ, aκ+1]◦γ = fκ+1 from the induction hypothesis
pκ ◦ fκ+1 = fκ, using the fact pκ ◦ aκ+1 = aκ, which implies ntA(pκ) ◦α[aκ+1] =
α[aκ]◦Fpκ and ntA(pκ)◦ntA(aκ+1) = ntA(aκ) by the definition of the functorial
extension of ntA.

For κ a limit ordinal, pκ ◦ fκ+1 = 〈pι ◦ ntA(pκ,ι)〉ι<κ ◦ [α[aκ] ◦Ffκ, aκ+1] ◦ γ =
〈pι◦ntA(pκ,ι)◦[α[aκ]◦Ffκ, aκ+1]◦γ〉ι<κ = 〈pι◦[ntA(pκ,ι)◦α[aκ]◦Ffκ, ntA(pκ,ι)◦
ntA(aκ)] ◦ γ〉ι<κ = 〈pι ◦ [α[aι] ◦ F (pκ,ι ◦ fι), ntA(aι)] ◦ γ〉ι<κ = 〈pι ◦ [α[aι] ◦
Ffι, aι+1] ◦ γ〉ι<κ = 〈pι ◦ fι+1〉ι<κ = 〈fι〉ι<κ = fκ follows from the induction
hypotheses pκ,ι ◦ fκ = fι and pι ◦ fι+1 = fι, using the facts pκ,ι ◦ aκ = aι, which
imply ntA(pκ,ι) ◦ α[aκ] = α[aι] ◦ Fpκ,ι and ntA(pκ,ι) ◦ ntA(aκ) = ntA(aι) by the
definition of the functorial extension of ntA.

For κ a limit ordinal and ι < κ, it is straightforward that pκ,ι ◦ fκ = πκ,ι ◦
〈fι〉ι<κ = fι.

Given that Aλ = Aλ+1 = A, which implies that pλ = idA, aλ+1 = idA,
α[aλ] = α, it is immediate that fλ is a solution (in f) of the equation

C
γ ��

f ��

FC + A
Ff+idA��

A FA + A
[α,idA]

��

Indeed, fλ = pλ ◦ fλ+1 = fλ+1 = [α[aλ] ◦ Ffλ, aλ+1] ◦ γ = [α ◦ Ffλ, idA] ◦ γ.
To show that it is the only solution, i.e., that, for any other solution f , we

have f = fλ, we show that aκ ◦ f = fκ. We do this by induction.
The base case a0 ◦ f = !A ◦ f = !C = f0 holds trivially.
We also have aκ+1◦f = ntA(aκ)◦f = ntA(aκ)◦ [α◦Ff, idA]◦γ = [ntA(aκ)◦α◦

Ff, ntA(aκ)]◦γ = [α[aκ]◦F (aκ◦f), ntA(aκ)]◦γ = [α[aκ]◦Ffκ, aκ+1]◦γ = fκ+1,
from the induction hypothesis aκ ◦ f = fκ, using that f is a solution.

For κ a limit ordinal, we get aκ ◦ f = 〈aι〉ι<κ ◦ f = 〈aι ◦ f〉ι<κ = 〈fι〉ι<κ = fκ

from the induction hypotheses aι ◦ f = fι (for ι < κ).
From this basis, the desired result f = fλ is already immediate: as aλ = idA,

it is trivial that f = aλ ◦ f = fλ. ��

Finally, notice that since pCRA does not imply AFA, it cannot imply λ-FA.
Example 6 shows this: We proved that it satisfies pCRA but not AFA, hence it
cannot satisfy λ-FA either.

5 Conclusion

We have looked at some notions of support for general structured corecur-
sion/coinduction. They are all properties on an algebra (A,α) of a fixed functor

Corecursive Algebras: A Study of General Structured Corecursion 99

F . The conditions CRA/pCRA state that we can uniquely solve all structured
recursive diagrams based on (A,α). The condition AFA asserts that the principle
of bisimilarity holds for the carrier A: Every equivalence on A that is finer than
its own structural refinement must be equality. Finally, λ-FA says that we can
reconstruct A by iterating structural refinement.

The relations between the four conditions CRA, pCRA, AFA, and λ-FA are
summarized by the following diagram. The solid lines indicate implications, the
dotted lines indicate non-implications.

λ-FA Th.2

��
Th.3

��

AFA
Prop.7

•

Th.1��

Prop.4

•

pCRA-ex
Prop.1 ��

pCRA�� ��
Prop.5

•

pCRA-un
Prop.1��

CRA-ex CRA�� ��
Prop.3

•
Prop.2

•

CRA-un

We conclude from this study that general structured corecursion/coinduction
is more subtle and, at the same time, also more revealing than general struc-
tured recursion/induction from which we drew inspiration. In particular, we
have seen that, for Set-like categories, straightforward dualization of the differ-
ent equivalent conditions of recursion/induction leads to inequivalent conditions
of corecursion/coinduction. This could be an indication that some of the con-
ditions are not really the right ones: perhaps they work for recursion/induction
in Set incidentally, but for smooth generalization to other categories and du-
alization one should proceed from different conditions. While we believe firmly
that recursiveness [corecursiveness] are natural conditions, it may turn out that
some yet unconsidered versions of wellfoundedness [antifoundedness] are more
robustly equivalent to recursiveness [corecursiveness] than the versions we have
considered here.

To achieve progress we must fully understand each of the conditions we have
considered and the role that the different viable assumptions play for the impli-
cations and non-implications between them. We can then seek variants that are
more in line with our intuitive grasp. We expect that this enquiry will produce
new and exciting results.

We would like to be able to tell a type-theoretic version of the story, i.e., to
develop a dual Bove-Capretta method (allowing a general corecursive definition
to be justified by a productivity proof). For this, we must overcome the discrep-
ancies already commented, but likewise it is important that all our constructions
can be made constructively (computationally) meaningful.

We would also very much like to relate our work to approaches to recur-
sion/corecursion based on Banach’s fixed point theorem [7,3].

Acknowledgements. We thank Thierry Coquand and Peter Dybjer for comments
and questions and likewise the referees. T. Uustalu and V. Vene were sup-
ported by the Estonian Science Foundation under grants No. 6940 and 6713. The

100 V. Capretta, T. Uustalu, and V. Vene

research visits between the authors were financed by the EU FP6 IST coordi-
nation action TYPES and the Estonian Tiger University Plus programme. The
latter programme also financed Varmo Vene’s attendance of SBMF 2009.

References

1. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras for finitary functors. Theor.
Inform. and Appl. 41(4), 447–462 (2007)

2. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct.
in Comput. Sci. 14(4), 671–708 (2005)

3. Buchholz, W.: A term calculus for (co-)recursive definitions on streamlike data
structures. Ann. of Pure and Appl. Logic 136(1–2), 75–90 (2005)

4. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform.
and Comput. 204(4), 437–468 (2006)

5. Cockett, R., Fukushima, T.: About Charity. Yellow series report 92/480/18, Dept.
of Comput. Sci., Univ. of Calgary (1992)

6. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

7. Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive
definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
148–161. Springer, Heidelberg (2003)

8. Doornbos, H., Backhouse, R.: Reductivity. Sci. of Comput. Program 26(1-3), 217–
236 (1996)

9. Eppendahl, A.: Coalgebra-to-algebra morphisms. Electron. Notes in Theor. Com-
put. Sci. 29, 8 (1999)

10. Giménez, E.: Codifying guarded definitions with recursion schemes. In: Smith, J.,
Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995)

11. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct. in
Comput. Sci. 12(6), 875–903 (2002)

12. Milius, S.: Completely iterative algebras and completely iterative monads. Inform.
and Comput. 196(1), 1–41 (2005)

13. Osius, G.: Categorical set theory: a characterization of the category of sets. J. of
Pure and Appl. Algebra 4, 79–119 (1974)

14. Taylor, P.: Intuitionistic sets and ordinals. J. of Symb. Logic 61(3), 705–744 (1996)
15. Taylor, P.: Towards a unified treatment of induction, I: The general recursion the-

orem. Unpublished draft 35 pp (1996); // A short version (1996) of 5 pp was dis-
tributed at Gödel 1996 Brno (August 1996), http://www.monad.me.uk/ordinals/

16. Taylor, P.: Practical foundations of mathematics. Cambridge Studies in Advanced
Mathematics, vol. 59, xi+572. Cambridge Univ. Press, Cambridge (1999)

17. Turner, D.A.: Total functional programming. J. of Univ. Comput. Sci. 10(7), 751–
768 (2004)

18. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1), 5–26 (1999)

http://www.monad.me.uk/ordinals/

Formalizing FreeRTOS: First Steps

David Déharbe, Stephenson Galvão, and Anamaria Martins Moreira

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Natal, RN, Brazil

Abstract. This paper presents the current state of the formal develop-
ment of FreeRTOS, a real-time operating system. The goal of this effort
is to address a scientific challenge and is realized within the scope of the
Grand Challenge on Verified Software. The development is realized with
the B method. A model of the main functionalities of the FreeRTOS is
now available and can be a starting point to establish an agreed formal
specification of FreeRTOS that can be used by the research community.

1 Introduction

Computer Science is a fairly young discipline, but has a dramatic impact on
our society and lifestyle. The pervasive nature of computing has given rise to a
very large number of sub-areas and has fragmented the efforts of the research
community. It seems now a good time for the community to pause and reflect
to define scientific challenges that provide the opportunity for these different
sub-areas to share and combine knowledge, efforts and results to achieve ground-
breaking results that attend to existing needs of our societies.

One such initiative has been undertaken by the Brazilian Computer Society [1]
and has identified five grand challenges. One such challenge is concerned with the
technological development of quality: dependable, scalable and ubiquitous systems.
Formal methods have shown to be a successful approach to build dependable
systems. They are currently employed in applications requiring a high level of
safety and integrity.

The work presented in this paper represents a small step in the direction of
this challenge, but it more specifically addresses another one: the International
Grand Challenge on Verified Software [2]. One of the activities associated to this
challenge consists in setting up case studies of increasing complexity to measure
and compare existing approaches to build verified software, to identify their
weaknesses and how they can be improved. It is in that context that real-time
operating system FreeRTOS has been proposed as a case study [3].

FreeRTOS is mainly written in C, with some parts in assembly language. It
is available as a library of types and functions to build real-time, multi-tasking,
embedded software. FreeRTOS is an interesting case study for many reasons.
First, it has a large community of users and its verification would have a strong
impact. Second, although FreeRTOS has a relatively large number of functions,
its source code has medium size. Third, it is easily available, as it is open source

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 101–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

102 D. Déharbe, S. Galvão, and A.M. Moreira

and it is well documented. Finally, and most importantly, modeling and verifying
the kernel of an operating system is scientifically challenging [4]: for instance,
the code includes many complex pointer-based operations.

The verification of a software aims at showing that it is free from errors (or to
find some errors). In the context of this paper, we are interested in design errors,
resulting in a discrepancy between the system behavior and its requirements. In
the case of FreeRTOS, the requirements are distributed throughout the docu-
mentation, are expressed in natural language and are therefore not adequate as
a source for a formal verification effort. The first step towards verifying FreeR-
TOS is thus to build a functional specification of its intended behavior. The goal
of this paper is to present the current state of the model of FreeRTOS, which
covers a significant, and essential, subset of the available functionalities. This
model is available for researchers interested in contributing to the challenge of
the verification of FreeRTOS.

Several formalisms are candidates to specify the functional requirements of
software. In this work, we have chosen the B method [5,6]: it provides not only
a notation, but also a framework for the verification of a specification and its
refinement towards an implementation. It is similar to other well-known formal
specification notations, such as VDM [7] and Z [8]. One important criterion to
choose the B method is that it has a solid tool support for all the development
stages.

Overview of the paper. Sections 2 and 3 lay the ground for this paper by
presenting respectively the main features of FreeRTOS and the B method.
Section 4 then enumerates and describes the functionalities of FreeRTOS that
have been selected for modeling. The resulting functional specification is pre-
sented in Section 5. Section 6 draws conclusions and presents future work.

2 FreeRTOS

FreeRTOS is a simple, easy-to-use real-time operating system. Its source code is
written in C and assembly. It is open source and has little more than 2,200 lines
of code. FreeRTOS has been officially ported to most architectures for embedded
systems, such as 8051, PIC, ARM and Zilog’s Z80.

One key assumption of FreeRTOS is that the target system has a single
processing unit. FreeRTOS provides the following services: task management,
inter-task communication and synchronization, memory management, real-time
events, and control of input and output devices. These services are provided as
a library of types and functions that needs to be linked to the compiled code
of the application being developed. Typically, this code is divided in two parts:
the first one contains the code of the tasks that are going to be executed during
the operation of the system, while the second contains the code responsible for
the system initialization; namely, registering the tasks and starting the sched-
uler. Consequently, the run of an application built with FreeRTOS starts with a
boot phase, to set up the different tasks and communication channels, followed
by an application execution phase, starting when the scheduler is activated: from
that moment on, tasks are scheduled and executed.

Formalizing FreeRTOS: First Steps 103

2.1 Task Management

Tasks form the basic computation unit in multi-tasking applications. A task has
a state, that may be one of running, ready, suspended and blocked, a priority,
an integer value ranging from zero up to a maximum value defined at compile
time, and the execution context storing the call stack and the register values
when the task is not executing.

Task scheduling is based on priorities. The scheduler always chooses one task
with the highest priority among those ready tasks. A direct consequence of that
policy is that the priority of the running task is always greater than or equal to
that of all ready tasks.

Scheduling also equally shares the processing time between tasks with the
same priority. Thus, if there are two or more tasks having the highest priority
among the ready tasks, they shall equally share the processing time.

Finally, FreeRTOS automatically creates a system task, called the idle task,
that has the lowest possible priority. This task guarantees that the processor is
always executing some task and also executes some administration duties of the
operating system, such as memory management.

2.2 Communication and Synchronization

FreeRTOS provides message-passing communication facilities. Tasks may post
messages to queues and read messages from queues. Queues have a fixed, limited
capacity, defined when the task is created. Message-passing is blocking: whenever
a task wants to read from an empty queue or to write to a full queue, it is
blocked. There are however facilities to associate delays to queue access, or to
make non-blocking accesses.

FreeRTOS also provides semaphores as a task synchronization primitive.
Semaphores are actually implemented as queues with capacity one, with the
convention that the semaphore is taken when the queue is empty and it is free
when the queue is full. FreeRTOS also provides counting semaphores, to control
the access to a resource by a maximum number of tasks. To avoid the priority
inversion problem, FreeRTOS also provides mutexes with priority inheritance.

3 The B Method

The B method is a model-driven design methodology to build software com-
ponents reliably, in the sense that the programs produced are guaranteed to
implement the corresponding functional specification. The B method consists in
the following steps: first, a functional specification of the requirements, or part
thereof, is developed. In B, this initial specification is called a machine. This
initial specification is then subject to different kinds of analysis, including type
checking and theorem proving, to establish that it is implementable and that all
executions are safe, in the sense that they may not reach an invalid state.

Once the specification has been built, it is used as the starting point of a series
of refinements, each refinement resulting in an artifact providing a new model of

104 D. Déharbe, S. Galvão, and A.M. Moreira

the system. In B, refinements are usually constructed by the modeler, although
automatic refinement support is now also possible [9]. Each such refinement may
capture new functional requirements or introduce a more concrete description
of the system, by introducing an algorithmic development or an implementable
data representation. The former is called an horizontal refinement and the latter
a vertical refinement [10]. Eventually, a sequence of horizontal and then vertical
refinements shall lead to a fully algorithmic artifact, called an implementation in
the B method. Such modules may then be translated to source code for programs
in imperative languages such as C, Ada or Java.

The theoretical underpinnings of the B method are first-order logic, integer
arithmetic, set theory, substitution calculus, and refinement theory. The different
modules are written in a language called abstract machine notation (or AMN).
An AMN module is divided into sections, each section being responsible for
defining an aspect of the specification, e.g. parameters, basic types, constant
values, state variables, initial states and transitions.

As an illustration, Figure 1 contains a module, called Kernel , specifying a
system which allows to include new tasks up to a maximum number of ten. The
MACHINE section identifies the nature (a functional specification) and the
name of the module. The section SETS introduces a new type of entities, namely
TASK . At this level, no further detail is provided on how this entity is going to be
implemented. The VARIABLES section enumerates the name of the different
state variables. Here, the state is composed of a single variable, named tasks . The
INVARIANT section defines the possible values of the state variables: it defines
their types and other restrictions that shall reflect the functional requirements
of the system. Next, the INITIALISATION section provides a definition of
the set of possible initial states of the system. Last is the OPERATIONS
section, which is where the different types of events that the system may execute
and the corresponding state transitions are defined. The example has a single
operation that takes a task as parameter and adds it to tasks . In B, operations
may have parameters (passed by value), results, and may change the value of
the state variables. Operations are defined in a language called the generalized
substitution language. The constructs of this language are syntactically similar to
that of imperative programming languages, and semantically, they are predicate
transformers.

In the B method, a machine must be verified to satisfy the correctness criteria
stating that it is implementable, that all the states that are reachable are valid

MACHINE
Kernel

SETS
TASK

VARIABLES
tasks

INVARIANT
tasks ∈ P(TASK)∧
card(tasks) ≤ 10

INITIALISATION
tasks := ∅

OPERATIONS

task add(task) =
PRE

task ∈ TASK ∧ task �∈ tasks ∧
card(tasks) < 10

THEN
tasks := tasks ∪{task}

END

Fig. 1. Functional specification of a simple task management system

Formalizing FreeRTOS: First Steps 105

states (i.e. they satisfy the condition expressed in the invariant clause), and that
all expressions appearing in the specification are well-defined. This verification
consists in checking proof obligations that are automatically generated from the
text of the machine. The proof obligations are formulas of first-order logic and
the user is responsible for proving that they are valid.

Consider the example of Figure 1. To guarantee that the machine is imple-
mentable, one needs to prove the satisfiability of the different constraints of
the model. In the case of this example, one needs to show the validity of the
existential quantification of the invariant:

∃tasks • tasks ∈ P(TASK) ∧ card(tasks) ≤ 10.

To guarantee the correctness criterion stating that all reachable states are valid,
one must check that each operation preserves the invariant: if the operation
is applied to a state satisfying the invariant, and if the pre-condition of the
operation is satisfied, then the resulting state must also be valid. The following
formula, generated automatically by the proof obligation generator, states this
property:

tasks ∈ P(TASK) ∧ card(tasks) ≤ 10 ∧
task ∈ TASK ∧ task ∈ tasks ∧ card(task) < 10 ⇒
(tasks ∪{task}) ∈ P(TASK) ∧ card(tasks ∪{task}) ≤ 10.

Finally, it is necessary to show that all the expressions occurring in the specifi-
cation are well-defined. In the case of the example, one must show that tasks is
a finite set in every context where the expression card(tasks) is evaluated.

The proof of these verification conditions is performed either by automatic
theorem provers, or manually, by issuing commands to an interactive theorem
prover. Typically, the automatic theorem prover manages to discharge a signifi-
cant part of the verification conditions. The remaining conditions are either valid
and the user must be able to build a proof of their validity, or are not valid. In
the former case, it might happen that the user cannot build the proof, as the
prover is inherently incomplete; he has then the choice of including additional
rules or to check the condition manually and take responsibility for the verdict.
In the latter case, the specification has some error and must be corrected or the
formula cannot be proved. In the case of an erroneous specification, the infor-
mation provided by the interactive theorem prover is often helpful to locate the
error. Eventually, the user shall reach a point where all verification conditions
have been proved and the refinement process may be initiated.

Note that the functional model may also be used to derive manually an im-
plementation in a programming language. Moreover the functional specification
may also be used as a reference to generate tests [11] of the implementation.

An example of refinement is presented in Figure 2. The state variable tasks
is no longer a set of tasks but a sequence of tasks. Sequences are pre-defined
in AMN and the operators ran and → return respectively the contents of the
sequence (as a set) and addition of an element to the end of the sequence.
The B method also defines a set of verification conditions which, when proved,
guarantee that the refinement is correct with respect to the initial specification.

106 D. Déharbe, S. Galvão, and A.M. Moreira

REFINEMENT
Kernel r

REFINES
Kernel

VARIABLES
tasks r

INVARIANT
tasks r ∈ seq(TASK)∧
ran(tasks r) = tasks

INITIALISATION
tasks r := []

OPERATIONS
task add(task) =

BEGIN
tasks r := task → tasks r

END

Fig. 2. Refinement of the machine Kernel (Figure 1)

4 Overview of the Modeling

Modeling a complex system with the B method may be facilitated by taking into
account the following remarks:

1. Parts of the functional requirements may be abstracted in the initial speci-
fication. Such requirements may be introduced later, by means of horizontal
refinements, or by extending the specification. In order to adopt this ap-
proach, one must first plan a sequence of incremental modeling steps, each
introducing additional entities and functionalities of FreeRTOS. Such steps
are described in Section 4.3.

2. When requirements do not present interdependency, they may specified in
different modules. These modules will then be combined using the compo-
sition mechanism of the B method (e.g inclusion, vision, etc.) The modular
structure of the model is presented in Section 5.

In system development projects, (formal) specifications are usually performed in
the initial stages. In the experience reported in this paper, the system already
exists, its functionalities have been identified and implemented. The presented
model is the result of the analysis of the documentation of the system as well as
of the source code of its implementation.

Based on an informal analysis of FreeRTOS documentation and source code,
we planned an incremental construction of the model. Such increments are pre-
sented in section 4.3.

The main classes of entities provided by FreeRTOS are tasks, message queues,
co-routines, semaphores and mutexes, and each such class has an associated set
of functions. However in the case of FreeRTOS, semaphores are nothing more
than specialized message queues. Therefore, to build a first functional model of
FreeRTOS, two basic kinds of entities were initially chosen for formalization:
tasks and message queues, which form the basic mechanism for task communi-
cation and synchronization.

4.1 Tasks

Functions manipulating tasks can be divided into the functions that manage the
tasks themselves and those that control the scheduler.

The task management functions that we have modeled are task creation
(xTaskCreate), task destruction (xTaskDelete), an accessor to get the priority

Formalizing FreeRTOS: First Steps 107

of a task (uxTaskPriorityGet), task suspension (vTaskSuspend), resumption
of a suspended task, taking it to a ready state (vTaskResume), changing the
priority of a task (vTaskPrioritySet), interruption of a task for a given time
period, starting from the moment the function was called (vTaskDelay), or from
the moment the task was resumed (vTaskDelayUntil).

With respect to the scheduling aspects, we have modeled functions to:
access the currently executing task (xTaskGetCurrentTaskHandle), access
to the state of the schedule, which may be executing, suspended or
uninitialized (xTaskGetSchedulerState), get the number of existing tasks
(uxTaskGetNumberOfTasks), get the time elapsed since the scheduler was ini-
tialized (xTaskGetTickCount), initiate the scheduler and start the so-called
idle task (vTaskStartScheduler), finalize the activities of the scheduler
and put it back in the uninitialized state, deleting all the entities created
(vTaskEndScheduler), suspend the scheduler (vTaskSuspendAll), and resume
the scheduler (xTaskResumeAll).

4.2 Message Queues

We have modeled the following functions related to message queues: construc-
tion of a new, empty, queue (xQueueCreate), sending a message to a queue
(xQueueSend), sending a message to the back of a queue (xQueueSendToBack)
or to the front of a queue (xQueueSendToFront), to retrieve a message from
the front of a queue (xQueueReceive), to read a message from the front of a
queue, without removing it (xQueuePeek), and to delete a message queue. The
presented model does not take into account the (fixed) capacity of the queues,
resulting in non-deterministic models of these functions.

4.3 Increments in the Model

Once the basic funcionalities of the system have been identified (namely, tasks
and message queues), we identified modeling steps such that they could be de-
fined in an incremental fashion:

1. Basic model: In this first step, we considered mainly the behavior of the
functions related to the state of the tasks and the transitions between such
states. The notion of priority was, at this level, left abstract. Also, the state
of the scheduler was defined as well as the concept of elementary timing
events called ticks in FreeRTOS. Message queues were also modeled, and
their size was left abstract. In order to be able to abstract notions such as
queue size and message priority, operations depending on these were defined
non-deterministically.

2. Priority: In this second step, task priority was effectively taken into ac-
count in the model. The main consequence is that functions resulting in the
scheduling of a new task were refined into more deterministic versions.

3. Mutexes: The third stage will consist in specifying this mechanism, that
allows synchronizing tasks without provoking priority inversions.

108 D. Déharbe, S. Galvão, and A.M. Moreira

4. Queue size: The fourth step shall consist in removing non-determinism
related to queue sizes and actually specify the behavior related to the re-
quirements with respect to full or empty queues.

5. Addition of non-elementary entities: We have already mentioned that a
semaphore can be viewed as a message queue. Modeling semaphores and the
related requirements will be performed last, by using the definitions already
available for message queues.

5 The Functional Model

This section presents the first two steps to build the model of FreeRTOS as
described in Section 4. The resulting model thus includes tasks, message queues,
scheduling, and priorities. All the models presented in this section have been
developed and verified using Atelier B 4.0 [12].

Even though only parts of the requirements are considered, the estimated size
of the resulting model seemed large enough to consider a modular structure of
the specification. The components of this structure are:

– The Config machine contains auxiliary definitions of constants that need to
be be instantiated when building an application on top of FreeRTOS; for
instance, the number of priority levels is configurable. Our model simply
defines the domain of these constants.

– The Types machine declares the types of the different entities of the model
of the system such as tasks, queues, messages, return codes.

– The Task machine defines the state variables modeling the tasks in the sys-
tem, as well as the corresponding elementary functions.

– The Queue machine has a role similar to the Task machine, but related to
message queues.

– The Scheduler machine is a very simple machine that justs maintains the
current state of the scheduler.

– The machine FreeRTOSBasic includes an instance of the three machines
Task , Queue and Scheduler and defines models of elementary message pass-
ing functions.

– Finally, the machine FreeRTOS includes an instance of FreeRTOSBasic and
defines models of high-level message-passing functions. The intermediate
machine FreeRTOSBasic is necessary as B does not allow operations in a
machine to refer to operations in the same machine.

5.1 Tasks

The machine Task defines the entities and operations related to tasks (see ex-
cerpts in Figure 1). Several modeling approaches are possible: using disjoint sets,
or using a state function mapping tasks to an enumerated set. We chose the for-
mer, as it allows expressing the invariant using simple sets and is thus easier to
analyze using one of the available theorem provers.

Formalizing FreeRTOS: First Steps 109

The state variable active indicates whether the operating system is active or
not (i.e. it is in the initialization phase of an instance of the system). Variable
tasks represents all the created tasks. In addition, running, ready , blocked and
suspended represent respectively the currently scheduled task, the set of tasks
ready to be scheduled, the set of blocked tasks and the set of suspended tasks.
Finally, variable idle represents the idle system task.

VARIABLES
active , tasks , blocked , running , ready , suspended , idle

INVARIANT
active ∈ BOOL∧ tasks ∈ F(TASK) ∧ running ∈ TASK ∧idle ∈ TASK
∧ blocked ∈ F(TASK) ∧ ready ∈ F(TASK) ∧ suspended ∈ F(TASK)

The invariant includes also constraints to model several requirements: (1) a task
may be in a single state at any time; (2) while the scheduler has not been
activated, tasks are ready to execute; when the scheduler has been activated,
(3) the idle task is always either ready to execute or executing, and (4) there is
always a running task.

blocked ⊆ tasks ∧ ready ⊆ tasks ∧ suspended ⊆ tasks ∧
ready ∩ blocked = ∅ ∧ blocked ∩ suspended = ∅ ∧ suspended ∩ ready = ∅∧
(active = FALSE ⇒ tasks = ready)∧
(active = TRUE ⇒ (idle = running ∨ idle ∈ ready)∧

running �∈ (blocked ∪ ready ∪ suspended)∧
tasks = {running} ∪ suspended ∪ blocked ∪ ready)

In addition, the Task machine contains basic operations that model the elemen-
tary changes to the system state with respect to tasks and the scheduler. Such
operations are used to specify the functions of FreeRTOS related to tasks. There
is a total of twelve such elementary functions, from which two will be presented
here1.

The creation of a new task is specified by the operation t create. This oper-
ation can only be applied when the scheduler has not been initialized. It takes
as parameter the priority of the task, which will be taken into account in a re-
finement, and creates and returns a new task entity which is initially ready to
execute:

result ←− t create(priority) =
PRE

priority ∈ PRIORITY∧
active = FALSE

THEN
ANY task WHERE

task ∈ TASK ∧ task �∈ tasks

THEN
tasks := {task} ∪ tasks ‖
ready := {task} ∪ ready ‖
result := task

END
END;

1 The full models and the corresponding interactive proofs are freely available at
http://code.google.com/p/freertosb/source/browse

http://code.google.com/p/freertosb/source/browse

110 D. Déharbe, S. Galvão, and A.M. Moreira

The second operation shown here is t startScheduler that specifies the state
transition when the scheduler is activated. This corresponds to the change from
the initialisation phase to the execution phase of a FreeRTOS application. In
that phase, the system task idle is created and the scheduler chooses a task for
execution. Again, recall that the priority has not been taken into account at
this level of abstraction and is the subject of a further refinement. It is here left
non-deterministic:

t startScheduler =
PRE

active = FALSE
THEN

active := TRUE ‖
blocked , suspended := ∅, ∅ ‖
ANY idle task WHERE

idle task ∈ TASK ∧
idle task �∈ tasks

THEN

tasks := {idle task} ∪ tasks ‖
idle := idle task ‖
ANY task WHERE

task ∈ ready ∪{idle task}
THEN

running := task ‖
ready := (ready ∪{idle task}) − {task}

END
END

END;

The behavior of the task-related functions of FreeRTOS has then been mod-
eled using these elementary operations. Here, we only show the function
specification of the function xTaskCreate, that provides the task creation func-
tionality in FreeRTOS. This specification uses the previously presented oper-
ation t create. The return value of the function xTaskCreate indicates if the
operation succeeded or failed (for instance due to a lack of available memory)
and a handler to the new task is asssigned to to parameter handler , passed by
reference.

result , handle ←−
xTaskCreate(code ,name,

stackSize , params ,
priority) =

PRE
code ∈ TASK CODE∧
name ∈ NAME∧
stackSize ∈ NATURAL∧
params ⊂ PARAMETER∧
priority ∈ PRIORITY∧
scheduler = NOT STARTED∧

THEN

CHOICE
handle ←

t create(priority) ‖
result := pdPASS

OR
result := errMEMORY ‖
handle :∈ TASK

END
END

Note that in the notation of the B method, parameters are always passed by
value, and operations may return multiple values. In the C implementation of
FreeRTOS, operations such as xTaskCreate return more than one value and use
pointer typed parameters to store these additional results. Wherever this is the
case, the functional model includes an additional return parameter.

Formalizing FreeRTOS: First Steps 111

5.2 Message Queues

The machine Queue defines the basic functionality to handle message queues.
There are two types of entities: QUEUE , the queues, ITEM , the messages.
Its state is formed by a variable queues representing queues, and the variables
items , sending and receiving associating each queue with its contents, the tasks
waiting to write in the queue, and the tasks waiting to read from the queue,
respectively.

VARIABLES
queues ,
items ,
receiving ,
sending

INVARIANT
queues ∈ P(QUEUE)∧
items ∈ QUEUE →+ P(ITEM) ∧ dom(items) = queues∧
receiving ∈ QUEUE →+ P(TASK) ∧ dom(receiving) = queues∧
sending ∈ QUEUE →+ P(TASK) ∧ dom(sending) = queues

The Queue machine also contains operations that define the basic functionality
to manipulate the message queues. There is a total of six such operations. For
instance, the operation sendItem defines the inclusion of a new message item at
position pos of queue, and destination task :

sendItem(queue , item, task , pos) =
PRE

queue ∈ queues∧
item ∈ ITEM∧
task ∈ TASK ∧
pos ∈ COPY POSITION∧
task ∈ receiving(queue)

THEN
items(queue) :=

items(queue) ∪ {item} ‖
receiving(queue) :=

receiving(queue) − {task}
END

Such low-level operations are used to specify the behavior of section of the FreeR-
TOS API dealing with communication. There are basically two classes of func-
tions: one for read access, and one for write access. They can all be specified by
means of two basic operations: xQueueGenericSend and xQueueGenericReceive,
which, in our model, are defined in the machine FreeRTOSBasic. For instance,
the operation xQueueGenericSend specifies a generic write access of a message
i in a queue q. This operation is also parameterized by the access position pos
and the maximum number of ticks wait that the sending task may be blocked
waiting for the queue. The sending task is always the running task. Three dif-
ferent behaviors are possible. First, if the queue is already full, then the running
task is inserted in the set of tasks waiting to write on the queue, and a deadline
is associated to this task with operation t delayTask . In this scenario, the result
is the constant pdTRUE . Second, if the queue is full, but the task is not willing
to wait, the operation returns the constant errQUEUE FULL. Finally, in case
the destination task is already blocked waiting to read from this queue, then this
task is unblocked, and the operation returns pdPASS . Note that the capacity of
the queues is not part of the abstract model, which is why the specification of this
function is non-deterministic. This aspect will be included in the specification
through a refinement.

112 D. Déharbe, S. Galvão, and A.M. Moreira

res ← xQueueGenericSend(q, i, wait, pos) =
PRE

q ∈ queues ∧ i ∈ ITEM ∧ wait ∈ TICK∧
pos ∈ COPY POSITION∧
active = TRUE ∧ running �= idle

THEN
CHOICE

IFwait > 0THEN
q insertTaskWaitingToSend (q , running) ‖
t delayTask(wait) ‖
res := pdTRUE

ELSE
res := errQUEUE FULL

END

OR
ANY tWHERE

t ∈ TASK ∧
t ∈ blocked ∧
t ∈ receiving(q)

THEN
q sendItem(q, i, t, pos) ‖
t unblock(t) ‖
res := pdPASS

END
END

END

Finally, the machine FreeRTOS instantiates these generic operations to spec-
ify the behavior of FreeRTOS’ functions providing task communication facil-
ities. For instance, the operation xQueueSend specifies the behavior of the
homonym FreeRTOS function, one of the three message sending variants in
the API:

res ←− xQueueSend (q , i ,w) =
PRE

q ∈ queues ∧ i ∈ ITEM ∧ w ∈ TICK∧
active = TRUE ∧ running �= idle

THEN
res ← xQueueGenericSend (q , i ,w , queueSEND TO BACK)
END

END

5.3 Taking Priorities into Account

The functional requirements state that the running task should have a priority
greater or equal than all the ready tasks. In order to take into account such
requirement, the invariant needs to be strengthened to define task priorities and
to specify the desired property. From the methodological viewpoint, starting
from the first version of the Task machine (described in Section 5.1), we can
either define a new version, or create a refinement. We chose the latter solution
and we describe it now.

We defined a refinement module called Task r . In it, we defined a type
PRIORITY that represents tasks priorities. The state variable prio maps each
task to its priority and the invariant states that when the scheduler has been
initialised, no ready task has a priority greater than the running task. We also
include restrictions on the priority of the idle task, which is the lowest possible
priority.

Formalizing FreeRTOS: First Steps 113

CONSTANTS
MAX P , IDLE P

PROPERTIES
PRIORITY = 0..(MAX P − 1)∧
MAX P > 0 ∧ IDLE P = 0

VARIABLES
prio

INVARIANT
prio ∈ TASK →+PRIORITY∧
dom(prio) = tasks ∧
(active = TRUE ⇒

prio(idle) = IDLE P∧
∀t .(t ∈ ready ⇒ prio(t) ≤ prio(running))∧
∀t .(t ∈ ready ⇒ IDLE P ≤ prio(t)))

Most of the operations of the Task machine involve defining a new running task,
and these operations need to be refined to maintain the new invariant. In order
to simplify the definition of these refined operations, a scheduling function was
introduced. It takes as input a set of tasks and a function mapping tasks to their
priorities, and it returns those given tasks that have the highest priority:

CONSTANTS
schedule p

PROPERTIES
schedule p : (F(TASK) × (TASK →+PRIORITY))→+ F(TASK)∧
schedule p = λ(tasks , prio)•

(tasks : F(TASK) ∧ prio : TASK →+ PRIORITY ∧ tasks �= ∅ ∧ tasks ⊆ dom(prio)
| tasks ∩ prio−1(max(prio[tasks]))))

To illustrate the refinement of the operations, we present the case of the opera-
tions t create and t startScheduler :

result ←− t create(priority) =
PRE

priority ∈ PRIORITY∧
active = FALSE

THEN
ANY task WHERE

task ∈ TASK ∧ task �∈ tasks

THEN
tasks := tasks ∪{task} ‖
prio := prio ∪ {task �→ priority} ‖
ready := ready ∪{task} ‖
result := task

END
END

t startScheduler =
BEGIN

active := TRUE ‖
blocked , suspended := ∅, ∅ ‖
ANY i WHERE

i ∈ TASK ∧
i �∈ tasks

THEN
tasks := tasks ∪{i} ‖
prio := prio ∪ {i �→ IDLE P} ‖
idle := i ‖

ANY t WHERE
t ∈ TASK ∧
(ready = ∅ ⇒ t = i)∧
(ready �= ∅ ⇒ t ∈ ready ∧

t ∈ schedule p(ready , prio)
THEN

running := t ‖
ready := (ready ∪{i}) − {t}

END
END

END

114 D. Déharbe, S. Galvão, and A.M. Moreira

In t create, a substitution was added to update the information on the new task
priority, and in t startScheduler , idle is registered to have priority 0 and the new
running task is selected among those ready tasks with highest priority (or idle ,
in case there are no ready tasks waiting to be executed).

5.4 Comments on the Verification of the Models

One of the main features of the B method is the tool support for project man-
agement, syntactic verification, and semantic analysis of the produced artifacts.
In particular, the semantic analysis produces proof obligations the verification
of which guarantees: (1) all expressions appearing in the text of the different
artifacts are well-defined, (2) the logic consistency of the specification and its
refinements. The development environment thus includes support for the con-
struction of the proofs, by providing a number of theorem provers. However, due
to the incomplete nature of the specification logic, as well as the computational
complexity of finding proofs, human intervention is needed to establish part of
the proofs. This is a time-consuming activity that pays off in two ways. First,
when confronted with a proof obligation that is not valid, the developer has
access to the context where such proof obligation was generated and has clues
as where the artifact needs to be corrected. Second, when all proof obligations
have been successfully validated, then the user has a very strong confidence in
its models.

To give an idea of the effort needed to establish the correctness of the de-
velopment, Table 1 provides the number of proof obligations generated for each
artifact2. This table does not include however the effort needed to reach consis-
tent models, as several iterations were needed to produce a correct definition of
the invariant and of the operations.

6 Conclusion and Future Work

This paper presented the first steps of a formal modeling, using the B method,
of a significant part of the real-time operating system FreeRTOS. This model
provides a functional specification of the operations related to task management
and message queues. This effort was initiated in response to the challenge set by
Jim Woodcock to the Brazilian community on Formal Methods [3] to contribute
with this case study to the Verified Software Repository [13], as part of the Inter-
national Grand Challenge on Verified Software. Thus, a first contribution of this
work is the execution of a case study for the development of a verified model of
a moderately complex software library. We have already extended the presented
model to specify semaphores and related functions; next, we will include the def-
inition of functional specifications for mutexes and refine the scheduling policy
to take into account fairness requirements.

2 Professionals using the B method estimate that a seasoned practitioner averages
sixteen interactive proofs per day.

Formalizing FreeRTOS: First Steps 115

Table 1. The table presents, for each module, the number of operations defined in
the module, the total number of lines (including comments), the number of proof
obligations (well-definedness lemas, correctness theorems, and total), and the number of
interactive proofs required to establish the correctness theorems. Most of our interactive
proofs have fewer than 10 steps. In the one case (lowering the priority of the running
task below that of at least one ready task), we needed more than a hundred steps. We
do not claim that we were able to find the shortest proofs.

Module Size Proof obligations Interactive
Operations Lines W.D. Corr. Total proofs

Config 0 89 0 0 0 0
Types 0 103 1 1 2 1
Scheduler 5 90 0 0 0 0
Task 12 467 1 219 220 28
Queue 7 231 12 33 45 0
FreeRTOSBasic 19 562 37 46 83 2
FreeRTOS 19 562 43 3 49 0
Task r 12 432 42 100 142 18
Total 55 1974 136 402 538 49

A relevant question in our context is the cost-effectiveness of the approach
we have taken. For circumstantial reasons, this is a difficult question to answer.
Indeed, the model was mainly developed by a student with little previous ex-
perience with formal methods, and even less with guiding an interactive prover.
In retrospect, assuming that the development would be carried out by a profes-
sional with proficiency with the B method and its tool support (including the
interactive prover), we estimate that the model could have been developed in a
few weeks time. Also we are not sure that the modular approach we have taken is
indeed the most suitable, compared to introduce system features such as queues
incrementally, through horizontal refinements. It would certainly be useful for
formal methods practicioners to have a published body of architectural patterns
for large specifications.

Also, we feel that there is some space for improvement in the tool support. In
the case of interactive proofs, hypothesis selection is often required, however the
selection interface is a bit clumsy. Proof management is rudimentary and still
has bugs: at times proofs are lost, at times the prover gets into an infinite loop
and the whole interface needs to be restarted. Also the development environment
was not designed for multi-user efforts and we have not found a satisfactory way
to integrate Atelier B with a version control system. Since the graphical interface
of Atelier B has recently gone open source, we hope that such improvements will
soon be implemented by the community.

A second important question is: what is this model worth for? Several possi-
ble applications could be foreseen. The first would be to use it to verify existing
implementations of FreeRTOS3, or to derive formally a new implementation of
3 It is important to have in mind that part of the implementation is written in assem-

bly, thus needing to be rewritten and re-verified for each target platform.

116 D. Déharbe, S. Galvão, and A.M. Moreira

FreeRTOS. To verify an existing application, we could proceed either by review-
ing code, taking as a reference the functional specification and try to manually
find errors in the source code, or by deriving tests from the specification, using
techniques such as [11]. Another approach to verification would be to use the B
specification to instrument the source code of FreeRTOS with assertions, using
a formalism such as ACSL [14], and formally prove that they are satisfied using
low-level code verifiers such as VCC [15] or Frama-C [16]. A third possibility
would be to use the model of FreeRTOS in formal development of real-time ap-
plications based on this system. It remains to be seen if this is possible to do this
strictly within the scope of the B method, or if it would be necessary to couple
it with other formalisms to handle e.g. concurrency and real-time properties.

The B method could also be applied to build an implementation of FreeRTOS
from the model. However the B method currently has some restrictions that
would make this task more difficult than a straightforward application of existing
techniques. Indeed, the B method is targeted to safety-critical applications where
dynamic memory allocation is prohibited. So current C code generators do not
have support for pointers. However, such functionality is required in the case of
FreeRTOS. It would be necessary to develop solutions to represent and manage
memory representation in B.

Finally, since FreeRTOS is a library to build real-time embedded applications,
the functional model presented in this paper could be used, in combination with
a model checker for B such as ProB [17], as as an oracle when testing real-time
applications based on FreeRTOS as proposed in [18].

Acknowledgements. We thank the anonymous reviewers for many insightful and
challenging comments.

References

1. SBC: Grandes Desafios da Pesquisa em Computação no Brasil: 2006–2016 (2006),
http://www.sbc.org.br

2. Jones, C., O’Hearn, P., Woodcock, J.: Verified software: a grand challenge. Com-
puter 39(4), 93–95 (2006)

3. Woodcock, J.: Grand challenge in software verification. In: Brazilian Symposium
on Formal Methods, SBMF 2008 (2008)

4. Craig, I.D.: Formal Models of Operating System Kernels. Springer, Heidelberg
(2007)

5. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

6. Schneider, S.: The B-Method: An Introduction. Palgrave, Oxford (2001)
7. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Engle-

wood Cliffs (1990)
8. Spivey, J.: The Z Notation: a Reference Manual, 2nd edn. Prentice-Hall Interna-

tional Series in Computer Science. Prentice Hall, Englewood Cliffs (1992)
9. Requet, A.: Bart: A tool for automatic refinement. In: Börger, E., Butler, M.,

Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008)

http://www.sbc.org.br

Formalizing FreeRTOS: First Steps 117

10. Abrial, J.R.: Faultless system: Yes we can! Technical Report 629, Department of
Computer Science, ETH Zurich (2009)

11. Jaffuel, E., Legeard, B.: LEIRIOS test generator: Automated test generation from
B models. In: The 7th International B Conference, pp. 277–280 (2007)

12. Clearsy: Atelier B 4.0 (2009), http://www.atelierb.eu
13. Bicarregui, J., Hoare, C., Woodcock, J.: The verified software repository: a step to-

wards the verifying compiler. Formal Aspects of Computing 18(2), 143–151 (2006)
14. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C Specification Language (2008)
15. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based

modular verification of concurrent c. In: ICSE Companion, pp. 429–430. IEEE, Los
Alamitos (2009)

16. CEA: Frama-c: Software analyzers (2009), http://frama-c.cea.fr
17. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

18. Andrade, W.L., Alves, E.L.G., Almeida, D.R., Machado, P.D.L.: Test case genera-
tion of embedded real-time systems with interruptions for FreeRTOS. In: Brazilian
Symposium on Formal Methods, SBMF 2009 (2009)

http://www.atelierb.eu
http://frama-c.cea.fr

A Mechanized Strategy for Safe Abstraction of
CSP Specifications

Adriana Damasceno, Adalberto Farias, and Alexandre Mota

Center for Informatics, UFPE, P.O. Box 7851, CEP 50740540, Recife-PE, Brazil
{acd,acf,acm}@cin.ufpe.br

Abstract. Infinite models cannot be directly analyzed by model check-
ing. An alternative for achieving that is using data abstraction to derive a
simpler (abstract) but finite model so that the properties can be verified
using the abstract model instead. This work proposes a strategy and an
algorithm for generating abstractions of systems modeled in the process
algebra CSP. These abstractions are safe in the sense that they preserve
trace-based refinements. We show the application of our strategy to an
example.

1 Introduction

Model checking is an automatic technique used to check whether a given model
satisfies a temporal formula [16]. For CSP [12] (Sect. 2.1), the subject language
of this work, we have a variant known as refinement checking. In refinement
checking, two models are compared in terms of a number of CSP semantic models
(traces, failures, and failures-divergences).

Despite having most of its process automatic, model checking is applicable
to systems that have a finite state space representation. Hence, several models
cannot be analyzed by model checking directly because they are based on infinite
domains (integers, for example). This is one of the causes of the problem known
as the state explosion problem. The works reported in [4][11] present a number of
techniques to tackle this problem: Symbolic algorithms, counterexample-guided
abstraction, data abstraction and data independence.

Among these techniques, we consider two of them in this work that are or-
thogonal and complementary to each other; they can be used in a compositional
way. CSP data independence was initially proposed in [11]. It consists in syn-
tactically determining the degree (threshold) of polymorphism of a CSP process
with respect to one of its types. The minimum threshold means the maximum
degree of polymorphism, that is, any concrete type can assume the place of the
independent type without modifying the process behavior. In such cases, a type
can be instantiated by {0} to apply model checking.

Complementarily to data independence, the basic idea of data abstraction
[17] is to use mappings of elements from a concrete domain (real domain of
a system) to elements of an abstract domain. Such a mapping can be said safe
when it preserves trace-based refinements and optimal when it preserves failures-
divergences refinements. The relevance of safe abstractions in relation to optimal

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 118–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Mechanized Strategy for Safe Abstraction of CSP Specifications 119

is that the safe ones is a weaker model, and it is enough to preserve the properties
we want. Hence, safe abstraction can be found in an easier way than optimal
ones.

Therefore, the main contributions of this paper are:

– Extension of the formal definition of an abstraction: We extend the
safe abstraction definition given by [17] (Sect. 2.2).

– An abstraction strategy that preserves trace-based properties: We
present a strategy for calculating a safe abstraction based on predicate sat-
isfaction (Sect. 3.1).

– An algorithmic implementation for deriving abstractions: We pro-
pose an algorithm that implements the proposed strategy in Sect. 3.2.
We present the algorithm in functional language and apply it to a simple
example.

We assume basic knowledge of CSP and Z [18] in this paper. we use CSP to
specify systems, while Z is used in the algorithmic description.

2 Background

We present Communicating Sequential Processes notation and data abstraction
to show our strategy to mechanically generate safe abstractions.

2.1 Communicating Sequential Processes

The notation CSP is used to describe concurrent systems whose components
interact with each other through communications [12]. The verification of prop-
erties of CSP specifications is achieved by using the model checker FDR [15],
which accepts CSPM — the machine-readable dialect of CSP. In this work we
assume familiarity with CSPM as well.

To exemplify this language and our abstraction strategy, we use the following
simple but curious example. It defines the process Main with parameter x.

Main (x) = x ≤ 5 & a!x → Main(x + 1)
[] x ≥ 5 & b!x → Main(x - 3)
[] (x < 4 or x ≥ 6) & c!x → Main(2 * x)

Process Main uses the prefixed process x ≤ 5 & a!x → Main(x + 1) that is
able to perform a!x and behaves as Main(x + 1)(a recursive call to Main with
a different parameter). Note that there are values that enable more than one
path (choices that determine processes behaviors) at the same time and all of
then are integers. For example, when x = 5, the conditions x ≤ 5 and x ≥ 5
are both satisfied.

We can study this and other system behaviors through LTS (Labeled Tran-
sition Systems). For CSP, it is a tuple S = (Q, A, T, q0), where Q is a set of
finite states, A is a set of finite labels, T is a transition relation (Q × A × Q),
and q0 is the initial state (q0 ∈ Q). Figure 1 shows the LTS of our example. We
can see that state 5 allows two paths to follow.

120 A. Damasceno, A. Farias, and A. Mota

An LTS can be finite or infinite. A process is said to have finite states if we can
represent it by a finite LTS. Figure 1 shows two LTS, an infinite (a) and another
finite (b). Both LTSs have the same behavior. Our algorithm will generate a
process that represents the finite LTS (Fig. 1 (b)) while simulating traces of the
infinite one (Fig. 1 (a)).

Fig. 1. LTS for concrete (a) and abstract (b) system

Furthermore, the LTSs in Fig. 1 can be seen as equivalent if we can abstract
the specific integer being communicated by equivalent classes of integers. And
obviously, by dealing with classes of integers we can obtain a finite representation
for the LTS (a).

2.2 Data Abstraction

Data abstraction is an abstraction technique which is based on mapping a con-
crete domain into an abstract one [5]. Its idea is to interpret a program in an
abstract domain, using abstract operations. The main gain is that the concrete
program does not need to be completely executed, although it is possible to
obtain information about its real execution. For example, if one wants to know
the signal resulting from the expression 5 * -3, one can observe the number 5
simply as a positive number pos, -3 as a negative number neg and ∗̃ the new

A Mechanized Strategy for Safe Abstraction of CSP Specifications 121

version of multiplication operator where only signs are observed, such that pos
∗̃ neg = neg. Hence, it is not necessary to evaluate the original expression to
know its resulting signal.

The basic principle of formal verification is to inform if a property is valid in
a given model. Thus, the state explosion problem can be overcame through the
use of a less precise model, but being relevant for properties we want to prove.

In this way, the abstract system presents the same behavior of the concrete
system. This correspondence is formalized by defining abstract interpretations
for all operations, as well as mapping data from a concrete domain to the abstract
one. In the context of this work, we consider abstractions that preserve the traces
model (briefly explained at Sect. 2.1). In these abstractions, each concrete and
infinite domain is partitioned in such a way that each infinite component of the
partition is represented by a single element. This establishes equivalence classes
of values that are mapped to a representant that preserve the execution of the
same traces performed by the concrete system [17] .

This abstraction was originally developed for CSP-OZ [8], an integration of
CSP and Object-Z [14]. In this way, CSP is responsible for dynamic aspects of the
system, while Object-Z is used to describe the static ones. We assume that data
domain to be abstracted are associated to state variables: D1, ...,Dn for variables
v1, ..., vn and domains associated to channels: M1, ...,Mk for channels ch1, ..., chk
(messages). This is also adopted by the work reported in [17]. However, the work
has some restrictions: for instance, it is completely dependent of user expertise
along the abstraction process and a data in the concrete domain that corresponds
to more than one element in the abstract domain cannot be expressed with that
formalism.

Our work deal with [17] by using relations instead of functions. Systems that
have states in the concrete domain with more than one corresponding in the
abstract one cannot use functions, but relations. Hence, abstract data domains
DA

i and M A
i , and relations αin and αout , which represent abstract relations for

input and output channels from the concrete to the abstract domain, are used
with the abstract relation αS for a data (state) variable, as follows:

αs : (D1 × . . .×Dn)↔ (DA
1 × . . .×DA

n)
αin : (M in

1 × . . .×M in
k)↔ (M in,A

1 × . . .×M in,A
k)

αout : (M out
1 × . . .×M out

j)↔ (M out,A
1 × . . .×M out,A

j)

The definition of safe abstraction uses functions and abstraction operations, each
one defined by enable (pre condition) and effect (post condition) functions:

[[enableop]] : (D1 × . . .×Dn)× (M in
1 × . . .×M in

k)→ B

[[effectop]] : (D1 × . . .×Dn)× (M in
1 × . . .×M in

k) →
(D1 × . . .×Dn)↔ (M out

1 × . . .×M out
j)

Definition 1 formally shows safe abstraction.

Definition 1 (Safe Abstraction). An abstract interpretation [[op]]S of enable
and effect predicates of an operation is safe with respect to αS , αin and αout
relations if and only if

122 A. Damasceno, A. Farias, and A. Mota

∀ d ∈ D , in ∈ M in • ∃ dA ∈ DA, inA ∈ M in,A | (d , dA) ∈ αs ∧ (in, inA) ∈
αin • [[enableop]]S (dA, inA)⇔ [[enableop]](d , in)

and

∀ d ∈ D , in ∈ M in • ∃ dA ∈ DA, inA ∈ M in,A | (d , dA) ∈ αs ∧ (in, inA) ∈
αin • [[effectop]]S (dA, inA) =
{(d ′

A, outA) | (d ′, out) ∈ [[effectop]](d , in)∧ (d ′, d ′
A) ∈ αs ∧ (out , outA) ∈ αout}

So, for all concrete states d there exists a corresponding abstract state dA that
are α related such that their preconditions are equivalent. A safe abstraction in-
terpretation assures that in a state of the abstract system, a communication over
a channel is possible when there is a corresponding concrete one in which this
communication is allowed. A particularity of a safe abstraction is that the gener-
ated abstract system PS maintains the same traces as those of the corresponding
concrete system P modulo a renaming function G. Therefore, PS T P[[G]] (P
[[G]] is a refinement of PS). This renaming function G is used to map infinite
communications into finite ones (values from communications are abstracted).
A safe abstraction allows more traces than its equivalent concrete system. In
the concrete system, some movement cannot be allowed, but it happens in its
corresponding abstract one. Theorem 1 [17] formally establishes this property.

Theorem 1 (Traces Refinement). Let P be a CSP process, PS an safe ab-
stract interpretation and Σ → Σ the renaming function G in a way that G(ch .
xin . xout) = ch . gin(xin) . gout(xout). Then,

PS T P [[G]]

3 Mechanized Generation of Safe Abstraction

Section 3.1 informally presents how our strategy works using the same example
previously shown in Sect. 2.1. Hence, Sect. 3.2 shows the formal specification of
our algorithm.

3.1 General Idea

Our strategy inputs the concrete system and requires user intervention to build
the LTS, which is used to retain information necessary to our algorithm process
the concrete system. In the sequence, this last outputs an abstraction relation
for all the variables, and the user is required to manually build the abstracted
system. Figure 2 shows this acquisition strategy.

The algorithm is based on finding subsets in the concrete domain that corre-
spond to single elements in the abstract one. This is achieved by combining the
guards of the original process, in a way that all the possible paths (a sequence
of labels which are connected by transitions) of the system can be analyzed with
respect to before and after state changes.

To keep the values of variables along a given path, we use the type SBind-
ing, which establishes a mapping between variables and expressions. SBinding

A Mechanized Strategy for Safe Abstraction of CSP Specifications 123

Fig. 2. Acquisition of the abstracted system

is defined as a partial function (available at Z language) from a set of Variable
(system variables) to a set of Expression (mathematical expressions).

SBinding == Variable �→ Expression

In the sequence, the type SState identifies the state of the system (a set of variables
or one of the identifiers SKIP or STOP). We represent paths that finish with SKIP
(a successful termination) or STOP (termination with deadlock) processes by the
triple (Predicate, Channel, {}), as those processes do not change state variables.
There is no difference between them because we want to study the behavior of
variable values at system traces. Figure 3 shows the SLTS for our example.

SLabel == Predicate × P Channel × SBinding
SState ::= var 〈〈Variable〉〉 | SKIP | STOP

Additionally, we define a symbolic LTS that we use in our strategy and algorithm.
Definition 2 specifies this element using the abstract types SState and SLabel.

Definition 2 (Symbolic Labeled Transition System). A Symbolic Labeled
Transition System (SLTS) is a tuple S = (Q, A, T, q0) where Q is a finite set
of states of SState type, A is a finite set of labels of type SLabel , T is a transition
relation (Q × A × Q) and q0 is the initial state, where (q0 ∈ Q).

We point out that our current algorithm can only be applied to a CSP process
that satisfies the normal form of Definition 3. It establishes a class of processes
defined by a recursion in which its body is an (external or internal) choice re-
garding to operations in Ops . If a guard enablei(state) is true, the event opi
is given to the system and process P(effecti(state)) is performed. Although our
normal form can be rather restrictive, we can reduce any CSP process to this
normal form by applying the CSP algebraic laws [12].

Definition 3 (Normal Form). Let P(state) be a CSP process with a state, a
set of events Ops and the indexed operator ∇ ∈ {[], |∼|}. The process P(state)
is in our proposed normal form whether it can be written as

P(state) = ∇ opi :Ops@enablei (state) & opi → P(effecti(state))

where none variable names can be repeated. ♦

124 A. Damasceno, A. Farias, and A. Mota

Fig. 3. SLTS of a process where there are three paths with non-disjoint sets

Our abstraction strategy consists of two main steps: (1) Determine which guard
(or combination of guards) can be satisfied by the current state of the system;
(2) After the changes of variable paths, which guard (or combination of them)
can be satisfied in this new state SState of the current path. As, in general,
guards usually do not form a partition, we only determine the specific values for
variables in the Step (2). Step (1) is performed to avoid trying to satisfy more
complex (after state) non-satisfiable predicates. Thus, Table 1 shows three guards
(columns) combined in rows (each row defines a partition and the satisfiable
ones will be used to define other tables) forming the respective partitions. The
column Satisfiability is used to show which combination is satisfiable (True)
or not (False).

Table 1. Guard combinations to find out available partitions of the concrete domain

Path 1 (x ≤ 5) Path 2 (x ≥ 5) Path 3 (x < 4 or x ≥ 6) Satisfability

¬x ≤ 5 ¬x ≥ 5 ¬(x < 4 or x ≥ 6) False
¬x ≤ 5 ¬x ≥ 5 x < 4 or x ≥ 6 False
¬x ≤ 5 x ≥ 5 ¬(x < 4 or x ≥ 6) False
¬x ≤ 5 x ≥ 5 x < 4 or x ≥ 6 True
x ≤ 5 ¬x ≥ 5 ¬(x < 4 or x ≥ 6) True
x ≤ 5 ¬x ≥ 5 x < 4 or x ≥ 6 True
x ≤ 5 x ≥ 5 ¬(x < 4 or x ≥ 6) True
x ≤ 5 x ≥ 5 x < 4 or x ≥ 6 False

A Mechanized Strategy for Safe Abstraction of CSP Specifications 125

Based on the satisfiable partitions (rows) of Table 1, we build the similar
Table 2 where the columns are now divided as: Input has the satisfiable com-
binations of Table 1 to Path 1 (Partitions 2, 3 and 4), Output has all the
partitions of Table 1 but with its variables renamed by the corresponding re-
cursive call. Finally, column Result shows a pair of sets where the first is a
binding between variables and values, indicating a solution to the correspond-
ing predicate, and the second is the simplified predicate representation of the
conjunction between the predicates Input and Output. So, Output considers
the truth branches of the satisfiable partitions with the recursive call (actual
parameters) substituted appropriately.

Table 2. Predicate combinations for Path 1 (Partition 2, 3 and 4)

Input Output Result
(x ≤ 5) ∧ ¬ (x≥5) ∧ ¬
(x < 4 ∨ x ≥ 6)

¬ (x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
¬ (x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
¬ (x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ ¬ (x≥5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
¬ (x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧ ¬
(x+1 < 4 ∨ x+1 ≥ 6)

{{x → 4}, {x == 4}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

¬ (x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
¬ (x+1 < 4 ∨ x+1 ≥ 6)

{{x → 3}, {3 ≤ x < 4}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
(x < 4∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{x → 1}, {x < 3}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧ ¬
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

¬ (x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{x → 5}, {x == 5}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
¬ (x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ ¬ (x+1 ≥ 5) ∧
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x+1 ≤ 5) ∧ (x+1 ≥ 5) ∧ ¬
(x+1 < 4 ∨ x+1 ≥ 6)

{{}, {False}}

Concerning to Path 2, only Partitions 1 and 4 are solvable for it. So, we
only consider the variable effect x �→ x-3 to generate predicates (See Fig. 3), in
the same way as we made for Path 1. We show these results in Table 3.

Finally, Path 3 is satisfiable to Partitions 1 and 3. So, we perform the
combination between this partition with all the predicates from the truth table,
as we show at Table 4. Although some intervals from column Result are rational,
all the variable values are integers.

126 A. Damasceno, A. Farias, and A. Mota

Table 3. Predicate combinations for Path 2 (Partition 1 and 4)

Input Output Result
¬ (x ≤ 5) ∧ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

¬ (x-3 ≤ 5)∧ (x-3 ≥ 5) ∧ (x-
3 < 4 ∨ x-3 ≥ 6)

({x → 10}, {x ≥ 9})

¬ (x ≤ 5) ∧ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5) ∧ ¬ (x-3 ≥ 5) ∧ ¬
(x-3 < 4 ∨ x-3 ≥6)

({x → 7}, {7 ≤ x < 8})

¬ (x ≤ 5) ∧ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5) ∧ ¬ (x-3 ≥ 5) ∧
(x-3 < 4 ∨ x-3 ≥ 6)

({x → 6}, {6 ≤ x < 7})

¬ (x ≤ 5) ∧ (x ≥ 5) ∧
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5) ∧ (x-3 ≥ 5) ∧ ¬
(x-3 < 4 ∨ x-3 ≥ 6)

({x → 8}, {x == 8})

(x ≤ 5) ∧ (x≥5) ∧ ¬
(x < 4 ∨ x ≥ 6)

¬ (x-3 ≤ 5) ∧ (x-3 ≥ 5) ∧
(x-3 < 4 ∨ x-3 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5) ∧ ¬ (x-3 ≥ 5) ∧ ¬
(x-3 < 4 ∨ x-3 ≥ 6)

{{}, {False}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5)∧¬(x-3 ≥ 5) ∧ (x-3
< 4 ∨ x-3 ≥ 6)

{{x → 5}, {x == 5}}

(x ≤ 5) ∧ (x ≥ 5) ∧ ¬
(x < 4 ∨ x ≥ 6)

(x-3 ≤ 5) ∧ (x-3 ≥ 5) ∧ ¬
(x-3 < 4 ∨ x-3 ≥ 6)

{{}, {False}}

Table 4. Predicate combinations of Path 3 (Partitions 1 and 3)

Input Output Result
¬ (x ≤ 5) ∧ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

¬ (2*x ≤ 5) ∧ (2*x ≥ 5) ∧
(2*x < 4 ∨ 2*x ≥ 6)

({x → 7}, {x ≥ 6})

¬ (x ≤ 5) ∧ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ ¬ (2*x ≥ 5) ∧ ¬
(2*x < 4 ∨ 2*x ≥ 6)

({}, {False})

¬ (x ≤ 5) ∧ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ ¬ (2*x ≥ 5) ∧
(2*x < 4 ∨ 2*x ≥ 6)

({}, {False})

¬ (x≤5) ∧ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ (2*x ≥ 5) ∧ ¬
(2*x < 4 ∨ 2*x ≥ 6)

({}, {False})

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

¬ (2*x ≤ 5) ∧ (2*x ≥ 5) ∧
(2*x < 4 ∨ 2*x ≥ 6)

{{x → 3}, {3 ≤ x < 4}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ ¬ (2*x ≥ 5) ∧ ¬
(2*x < 4 ∨ 2*x ≥ 6)

{{x → 2},{2 ≤ x < 5
2
}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ ¬ (2* ≥ 5) ∧ (2*x
< 4 ∨ 2*x ≥ 6)

{{ x → 1}, {x < 2}}

(x ≤ 5) ∧ ¬ (x ≥ 5) ∧ (x
< 4 ∨ x ≥ 6)

(2*x ≤ 5) ∧ (2*x ≥ 5) ∧ ¬
(2*x < 4 ∨ 2*x ≥ 6)

{{}, {False}}

From the Tables 2, 3 and 4 we take (collect) the rows which are satisfiable
to build the abstraction relation αMain . We can conclude that all the concrete
domain is related to abstract data through this relation.

A Mechanized Strategy for Safe Abstraction of CSP Specifications 127

αMain =

{xV: Z |xV < 3 • (‘x’, xV) �→ (‘x’, 1)}∪
{xV: Z |2 ≤ xV < 5/2 • (‘x’, xV) �→ (‘x’, 2)}∪
{xV: Z |3 ≤ xV < 4 • (‘x’, xV) �→ (‘x’, 3)}∪
{xV: Z |xV == 4 • (‘x’, xV) �→ (‘x’, 4)}∪
{xV: Z |xV == 5 •,(‘x’, xV) �→ (‘x’, 5)}∪
{xV: Z |xV ≥ 6 • (‘x’, xV) �→ (‘x’, 7)}∪
{xV: Z |6 ≤ xV < 7 • (‘x’, xV) �→ (‘x’, 6)}∪
{xV: Z |7 ≤ xV < 8 • (‘x’, xV) �→ (‘x’, 7)}∪
{xV: Z |xV ≥ 9 • (‘x’, xV) �→ (‘x’, 10)}

Note that αMain has bindings mapping into bindings, where the name of the
variable is relevant; in this case, variable x. The first bindings contain con-
crete domain instances for x whereas the second bindings abstract domain in-
stances. This example shows the construction of relations instead of functions
(Definition 1). One element in the concrete domain leads to more than one el-
ement in the abstract one. For example, if x = 6 in the concrete domain, it
can assume values 6 or 7 in its corresponding abstract one. Figure 4 shows the
correspondence between the concrete and the abstract domain for process Main.

Fig. 4. Mapping between bindings for process Main

Finally, the safe abstract version of the original CSP specification is built
based on the previous abstract relation αMain . The enabling conditions did not
need to be changed in the abstract process, because they were used to origi-
nate the abstract representers. However, the effects must be abstracted so that
the resulting new state is always inside the abstract domain of the abstraction
relation. To get the abstract result corresponding to evaluating the recursive
call (effect) of the process, we first compute the relational image using the con-
crete binding (name of the variables with corresponding effects), and thus for
each variable of the abstract binding we construct an indexed non-deterministic
choice between these values (ran). This index (abstract variable) is finally used in
the corresponding recursive call. The indexed non-determinism causes no prob-
lem for the kind of properties we can prove with the abstract version because

128 A. Damasceno, A. Farias, and A. Mota

the safe abstraction can only guarantee trace-based properties, which cannot
distinguish between deterministic and non-deterministic processes. A library
containing the implementation of these operators in CSP notation is available
at [6].

Main(x) = x≤5 & a!x→ |∼|xa:ran(αMain(|{(‘x’,x+1)}|))@ Main(xa)
[] x≥5 & b!x→|∼|xa:ran(αMain(|{(‘x’,x-3)}|))@ Main(xa)
[](x< 4 or x≥6) & c!x→ |∼|xa:ran(αMain(|{(‘x’,2*x)}|))

@ Main(xa)

The abstraction relations for channels are not performed because they depend
on the value of x, so they do not need to be abstracted. We show SLTS for
the concrete system (a) and the abstract one (b) at Fig. 1. Note that all the
LTS states of the abstracted system from Fig. 1 are represented at relation
αMain .

3.2 Algorithm

In Sect. 2.2, we showed that for each variable vi with infinite type, there is an
abstraction relation αvi . Then, these relations were grouped according to state
variables (αs ∈ (D ↔ DA)), data input (αin ∈ (M in ↔ M in,A)) and output
(αout ∈ (M out ↔ M out,A)) in such a way that αs = (αv1 , αv2 , . . ., αvn), αin =
(αin

v1
, αin

v2
, . . ., αin

vj) and αout = (αout
v1

, αout
v2

, . . ., αout
vk).

Therefore, this section presents the algorithm to map data from concrete to
abstract domain. We assume there are two sets Variable and Value. From these
sets we build the type Binding and define αv as a relation between bindings. This
type differ from SBinding because it represents concrete instances of expressions,
that is, it does not allow expression usage, but concrete values.

Binding == Variable × Value
αv == Binding ↔ Binding

So, the concrete domain D has Bindings b = (b1, b2, . . ., bn) and the abstract
domain DA has Bindings bA = (bA

1 , bA
2 , . . ., bA

n), such that bi=(vi �→ vali) and
bA
i =(vi �→ valAi), where vi is a variable and vali and valAi are values, with each

variable having a corresponding value. Furthermore, recall from Sect. 2.2 that
the abstract relation αv maps a set of values to variables from the concrete
domain D to the abstract domain DA.

As Definition 1 (safe abstraction) needs an abstract relation for each variable
and we use all the variables Variable of a path in the relation, the abstraction
relations for each variable can be calculated by:

(val , valA) ∈ αv ⇔ valA ∈ ran(αv (|{(‘v ’,val)}|))

The algorithm starts with the top level function findAbstraction, which accepts
an SLTS as input and returns the relation of Bindings between concrete and
abstract domains.

A Mechanized Strategy for Safe Abstraction of CSP Specifications 129

The labels representing paths of the system are found by the function build-
Paths. The set of predicates obtained from paths is used by the function build-
TruthTable to find the possible partitions from the guards.

The variable predicates has the set of tuples (Predicate, PVariable). It is built
by a union between two sets. The first has the predicates obtained with paths
finished by SKIP or STOP (they have an empty set of Bindings where bin =
0) and the second by the paths that finish with recursions (bin �= 0). The set
related to SKIP and STOP processes do not need combinations because they
lead to terminal paths.

Finally, the function safeAbs is responsible for receiving the set of tuples and
returning the relation between the concrete and abstract domains, that is, the
safe abstraction.

findAbstraction :: SLTS → (D ↔ DA)
findAbstraction (Q, A, T, q0) =

let
paths = buildPaths T
partitions = buildTruhTable {(pred, ch, bin): paths • pred}
predicates = {(pred, ch, bin): paths | bin = {} • pred} ∪

buildPredicates {gbefore , gafter : partitions ; (pred, ch, bin): paths | bin �= {}
• (gbefore , (pred, ch, bin), gafter)}

•
safeAbs predicates

The function buildPaths receives a set of labels from SLTS and returns all the
labels, except the starting one. This happens as the determined values for each
variable belongs to one of the resulting partitions in the abstraction and we
cannot take them into account. As we use normal form, we assume there are
recursions (q in == qout) or each path finishes with SKIP/STOP processes. The
use of the operator minus for sets at the recursive call in the function happens
because the pattern combination with the input set allows the possibility of the
element be in the set given as parameter.

buildPaths :: P(SState × SLabel × SState) → P SLabel
buildPaths {} = {}
buildPaths {(q in , r, qout)} ∪ s =

if q in == qout ∨ qout == SKIP ∨ qout == STOP then
{r} ∪ buildPaths s \ {(q in , r, qout)}

else
buildPaths s \ {(q in , r, qout)}

The function buildTruthTable is responsible for combination guards from the
paths to perform the truth table, returning a new set of predicates and it uses
recursion. We need to make a call with the element {gcur} by himself because
this function must return this element and its negation.

130 A. Damasceno, A. Farias, and A. Mota

buildTruthTable :: P Predicate → P Predicate
buildTruthTable {} = {}
buildTruthTable {gcur} = {gcur , ¬gcur}
buildTruthTable {gcur} ∪ s =

combine {gcur} buildTruthTable s \ {gcur} ∪ combine {¬gcur}
buildTruthTable s \ {gcur}

The function buildTruthTable uses the function combine which is responsible for
joining predicates in sets in such a way that the compatibility among elements
of each line is maintained. The partial function denotes the relation when g1 is
the empty set and the contrary case.

combine :: P Predicate �→ P Predicate → P Predicate
combine {g1} { } = { }
combine {g1} {g2} ∪ s =

{g1∧g2}∪ combine g1 s \ {g2}

After renaming all paths and the truth table combination is generated, function
buildPredicates receives the previous guard gbefore , and verifies if it is satisfiable
to the current path predicate through the function reduceGuard. If it is true,
we perform this guard conjunction with the subsequent guard gafter , which is
renamed by function renamePredicate using the corresponding set of bindings.
Besides that, it returns the set of variables for the channels and bindings in an
input tuple.

buildPredicates :: P(Predicate × SLabel × Predicate) → P Predicate
buildPredicates {} = {}
buildPredicates {gbefore , (pred, ch, bind), gafter} ∪ s =

if reduceGuard(gbefore ∧ pred) �= False then
{gbefore ∧ renamePredicate(gafter , bind)} ∪

buildPredicates s \ {gbefore , (pred, ch, bind), gafter}
else

buildPredicates s \ {gbefore , (pred, ch, bind), gafter}

The function reduceGuard receives a predicate and returns its simplified version.
For example, reduceGuard(x > 5 ∧ x > 7) = x > 7 and reduceGuard(x < 5 ∧ x > 7)
= False. In order to update variable values when a recursive call is performed, the
function renamePredicate receives the predicate and a set of symbolic bindings,
returning this predicate renamed by the set of elements.

renamePredicate :: Predicate → P SBinding → Predicate
renamePredicate p {} = True
renamePredicate p {x �→ e} ∪ s =

renamePredicate p[e/x] s \ {x �→ e}

In the sequence, function safeAbs simplifies the predicates (using reduceGuard
again) and finds their corresponding values. In this step, we find mappings among
elements of the abstract and concrete domains and the abstract relation for the

A Mechanized Strategy for Safe Abstraction of CSP Specifications 131

system is returned. We only use reduceGuard to simplify predicates and guarantee
a better visualization to the user.

We need to create bindings of variables and values in a domain (given by
the function Type) in the abstract domain using the function findValues. This
function receives a simplified predicate p through the usage of reduceGuard and
it returns the set of bindings if p can be solved or it is the empty set, otherwise.
We also use the domain restriction operator � [18] to set bindings from the
abstract domain apart from other bindings that do not correspond to a certain
element.

safeAbs :: P Predicate → (D ↔ DA)
safeAbs {} = {}
safeAbs {p} ∪ s =

if reduceGuard p �= False then
{dVar : vars p; dValue: Type(dVar); dBind : findValues p | reduce-

Guard p ∧ dBind ∈ {dVar} � findValues p • (dVar, dValue) �→ dBind}
∪ safeAbs s \ {p}

else
safeAbs s \ {p}

4 Related Work

As far as we know, there is no work which can automate the process of finding a
safe abstraction from a CSP system. The use of automatic abstractions through
predicate abstraction is reported in [10]. With predicate abstraction, concrete
states of the system are mapped to abstract states according to the evaluation
of a set of finite predicates.

The strategy presented in [1] shows the use of the tool C2BP . It performs
the abstraction of C programs through predicate abstraction, giving solutions
to problems as procedure calls. However, there is no selection of data instances,
as the abstraction replaces a predicate that represents a decision point in the
program by true or false values. The automatic verification of concurrent C
programs [19] from safe abstractions, considering many sequential C programs,
is an evolution of [1].

The work [2] describes techniques for concrete and abstract interpretation of
C/C++ programs represented in a language intermediary level called GIMPLE,
which basically produces a control flow graph model for each C/C++ function or
method. The results are implemented in a tool and they are currently applied for
integrated module testing and static analysis of safety-critical embedded systems
software in the railway and avionic domains.

Safe abstraction for CSP-OZ systems was initially proposed by [17] and it
establishes general procedures for obtaining safe abstraction, using abstraction
functions. In addition to this, it gives procedures for abstracting systems using
parallelism and process composition. However, in spite of what is presented in
our work, the choice about abstraction functions does not establishes procedures,
so it is dependent on the user experience.

132 A. Damasceno, A. Farias, and A. Mota

There is an strategy similar to ours that concentrates on finding optimal
abstractions [6] for CSP-Z systems instead of safe ones, preserving failures-
divergences model of a system. Nevertheless, it never terminates if a sequence of
events repetition is not detected.

An evolution of [6] is shown in [7]. Using the data independence criteria,
they apply an internal partitioning to the Z part of a CSP-Z specification. An
algorithm to find a optimal abstraction is build, but channel variables are not
treated if they are dependent of a certain type.

We propose to mechanize safe abstractions. Our work gives a more general
theory where [17] can be inserted, but minimizes the class of systems to be
treated by the usage of a normal form. Our strategy is able to deal with more
general classes of systems than [7], while requiring less computational effort.
Besides that, we can lead with channel and data variable abstractions in any
kind of system which obey our normal form (Definition 2).

5 Conclusions and Future Work

In this paper we proposed a strategy and an algorithm to generate safe abstrac-
tions of CSP systems [12]. We used an example in Sect. 3.1 to introduce the
proposed strategy and in Sect. 3.2 we presented the proposed algorithm based
on a functional Z-based language.

We used data abstraction (Sect. 2.2) to abstract part of the CSP specification
in such a way that this abstraction can always satisfy the abstraction for the data
dependent part of the CSP specification. In particular, by assuming data indepen-
dence [11], we can focus our attention completely on the data dependent part.

Our technique always gives an answer, as it deals with non-determinism and
traces model when using non-parallel systems. Furthermore, we can define ab-
straction relations through a mechanized technique, independently from user
expertise, but we left to the user the work of building our SLTS. Our technique
cover systems which are in the normal form (Definition 3). We intend to use our
strategy into Motorola [13] and Embraer [9] projects, research programs that are
result of a partnership between CIn/UFPE and these companies, as their main
focus is formal testing.

For future work, we have to prove that our algorithm always provides a safe
abstraction from a CSP specification in the proposed normal form. After that,
we plan to investigate the inclusion of parallelism in our strategy based on the
compositional results reported in [17]. Another research interest includes refor-
mulating our algorithm to consider OBDDs [3] instead of truth tables as the
current version. And finally we intend to implement our algorithm in a program
to make the usage of it easier.

Acknowledgements

The authors would like to thank the Brazilian Government for the financial sup-
port through one of its agencies, FACEPE/CAPES. We also thanks Augusto Sam-
paio and Marcio Cornelio for criticisms which helped us to improve our work.

A Mechanized Strategy for Safe Abstraction of CSP Specifications 133

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstrac-
tion of C programs. ACM SIGPLAN Notices 36(5), 203–213 (2001)

2. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. Journal of Func-
tional Programming 2(04), 407–435 (2008)

3. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR) 24(3), 293–318 (1992)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. Informatics-10 Years Back 10, 176–194 (2001)

5. Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. Journal of Logic and
Computation 2(4), 511–547 (2004)

6. Farias, A., Mota, A., Sampaio, A.: Efficient CSP-Z Data Abstraction. In: Boiten,
E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 108–127.
Springer, Heidelberg (2004)

7. Farias, A., Mota, A., Sampaio, A.: Compositional abstraction of CSP-Z processes.
Journal of the Brazilian Computer Society 14, 23–44 (2008)

8. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: Formal Methods
for Open Object-Based Distributed Systems (FMOODS 1997), vol. 2, pp. 423–438
(1997)

9. Forjaz, M.: The origins of Embraer. Tempo Social 17, 281–298 (2005)
10. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
11. Lazic, R., Roscoe, A.: A semantic study of data independence with applications

to model checking. Bulletin-European Association For Theoretical Computer Sci-
ence 71, 259–260 (2000)

12. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall, Englewood
Cliffs (1998)

13. Sampaio, A., Albuquerque, C., Vasconcelos, J., Cruz, L., Figueiredo, L., Caval-
cante, S.: Software test program: a software residency experience. In: ICSE 2005:
Proceedings of the 27th international conference on Software engineering, pp. 611–
612. ACM Press, New York (2005)

14. Smith, G.: The Object-Z Specification Language. Springer, Heidelberg (2000)
15. Systems, F.: Failures-Divergence Refinement - FDR2 User Manual, June 2005.

Formal Systems (Europe) Ltd. (June 2005)
16. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.

Automated Software Engineering 10(2), 203–232 (2003)
17. Wehrheim, H.: Data Abstraction Techniques in the Validation of CSP-OZ Specifi-

cations. Formal Aspects of Computing 12(3), 147–164 (2000)
18. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-

Hall, Inc., Upper Saddle River (1996)
19. Yorav, S., Clarke, E.: Automated Compositional Abstraction Refinement for Con-

current C Programs: A Two-Level Approach. Electronic Notes in Theoretical Com-
puter Science 89(3), 105–127 (2003)

Applying Event and Machine Decomposition to
a Flash-Based Filestore in Event-B�

Kriangsak Damchoom and Michael Butler

University of Southampton
United Kingdom

{kd06r,mjb}@ecs.soton.ac.uk

Abstract. Event-B is a formal method used for specifying and reason-
ing about systems. Rodin is a toolset for developing system models in
Event-B. Our experiment which is outlined in this paper is aimed at
applying Event-B and Rodin to a flash-based filestore. Refinement is a
useful mechanism that allows developers to sharpen models step by step.
Two uses of refinement, feature augmentation and structural refinement,
were employed in our development. Event decomposition and machine
decomposition are structural refinement techniques on which we focus in
this work. We present an outline of a verified refinement chain for the
flash filestore. We also outline evidence of the applicability of the method
and tool together with some guidelines.

Keywords: refinement, event decomposition, machine decomposition,
file system, flash memory, proof, Event-B, Rodin.

1 Introduction

Hoare and Misra [14] outline the importance of undertaking experiments in-
volving the application of theories and tools in order to push forward scientific
progress in formal methods. Experiments help us to understand the strengths
and weaknesses of theories and tools. A flash-based filestore has been selected
as case study for our experiment. This case study was proposed as a challenging
system by Joshi and Holzmann [19]. As stated in [19], the challenge is how to deal
with accidental failures that may occur while performing operations on a flash
memory. For example, how do we cope with power loss or sudden reboot? How
do we manage the data consistency when flash instructions being performed fail?
The flash architecture we chose is the ONFI (Open NAND Flash Interface) spec-
ification proposed in [16]. This specification is open and is commonly referenced
by researchers who are working in this area.

A flash array has physical characteristics that constrain the way it is used.
Taking account of physical characteristics and failure management is required.

� This work was part of the EU research project ICT 214158 DEPLOY (Industrial
deployment of system engineering methods providing high dependability and pro-
ductivity) www.deploy-project.eu.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 134–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Applying Event and Machine Decomposition 135

Reading and writing of files to the flash array are expected to be consistent with
an abstract model of a filesystem.

Our experiment presented in this paper is the development of a verified refine-
ment chain for a flash-based filestore using Event-B and the Rodin platform. This
experiment is an extension of the work we presented in [11] where we outlined
a model of a tree-structured file system. The extension we address here consists
of replacing the abstract file system by the flash specification and dealing with
fault-tolerance. In Section 12 we discuss some related work on applying formal
methods to the file store problem. A distinguishing feature of our treatment of
the file store problem is the use of multiple levels of refinement to relate an ab-
stract model, with large atomic reads and writes on abstract data structures, to a
model with more complex concrete data structures and more fine-grained atomic
steps. The use of multiple levels of refinement means that the abstraction gap
is relatively small at each stage which means the gluing invariants required for
refinement verification are relatively simple. Simpler gluing invariants are easier
for modellers to formulate and lead to simpler proof obligations. We believe the
relative ease of the proof effort, reported in Section 11, testifies to this. Another
distinguishing feature of our development is the use of machine decomposition
to partition the development after several refinement steps. The partitioning led
to sub-models that were refined separately. While it is well-known that decom-
position is critical for scaling of formal development, it is rare to find examples
of its application in practice. Our file store development represents an exemplar
of multi-level refinement and of machine decomposition that we believe others
could learn from. This role as an exemplar is the main contribution of the paper.

Two uses of refinement were employed in our development: horizontal and
vertical refinements (details are given in Section 3). The horizontal development
was mainly presented in [11]. (In this paper, we focus on the vertical refinement.)
We first used horizontal refinement in an incremental way to construct the file
system model. The model started with an abstract tree structure. After that,
new features were gradually added in each refinement step. We finally got five
layers of specification describing an abstract file system.

Vertical refinement was later used to introduce more design details in order
to map the abstract file system to the flash architecture. In the case of vertical
refinement, while refining the file system down to the flash specification, the
event-decomposition technique [6] was used to decompose events like readfile
(read the whole content of the given file from the storage into the memory
buffer) and writefile (write the whole content of the given file on the buffer to
the storage) into three sub-events, start, step (read or write a page) and end.

We also applied the machine decomposition technique [6] to decompose the ma-
chine of the last refinement into two sub-machines representing the specification
of the file system layer and the flash interface layer. The reason we do this is to ex-
plore further refinements of the flash model separately from the file system model.

The paper begins with an introduction to Event-B and Rodin in Section 2.
The refinement and event-decomposition techniques used in our development
are outlined in Section 3 and 4. An overview of an abstract file system is given

136 K. Damchoom and M. Butler

in Section 5. Vertical refinement and event-decomposition used to link the file
system to the flash specification are discussed in Section 6–8. Machine decom-
position and further refinement focusing on the flash specification are outlined
in Section 9 and 10. Proof statistics, related work and conclusion are discussed
in Section 11, 12 and 13, respectively.

Note: An archive of our development in Rodin may be downloaded1. This can
be imported by the Rodin tool release 0.9.2.1 or later2.

2 Event-B and Rodin

Event-B [3] is an extension of the B-method [1] for specifying and reasoning about
systems. An Event-B model is described in terms of contexts and machines. Con-
texts [4,5] contain the static parts of a model. Each context may consist of carrier
sets and constants as well as axioms that are used to describe the properties of
those sets and constants. Contexts may contain theorems which are required to
follow from the preceding axioms and theorems. Machines [4,5] represent the dy-
namic part of an Event-B model consisting of variables and actions. A machine
is made of a state, which is defined by means of variables, invariants, events and
theorems. The theorems of a machine are required to follow from the context
and the invariants of that machine. Variables are typed as mathematical objects
such as sets, relations, numbers, etc. Variables are constrained by invariants.
Invariants are expected to be preserved whenever variable values change. This
must be proved through the discharge of proof obligations [4].

A machine contains a number of atomic events which model the way that
a system may evolve. In general, an event is composed of four elements: name,
parameter, guard and action. The guard is the necessary condition for the event.
The action determines the way in which the state variables are going to evolve
when performing the event [4]. An event is guarded and atomic and may be
performed only when its guard holds. When the guards of several events hold at
the same time, then only one event may be performed at that time. The event
to be performed is non-deterministically chosen.

Refinement is the main development method supported by Event-B. In Event-
B, an event of an abstract machine may be refined by several corresponding
events in a refined machine. A refined machine may also have additional events
that are refinements of skip rather than being refinements of abstract events.
Note this is more flexible than the usual approach in, for example, Z, VDM
or “classical” B, where there is a strong one-to-one correspondence between
abstract and concrete events.

Rodin [4] is an open and extensible toolset for specifying and verifying sys-
tem models in Event-B. It contains a database of modelling elements used for
constructing system models such as variables, invariants, events, etc. The Rodin
toolset is accompanied by various useful plug-ins such as a proof-obligation gen-
erator, provers, model-checkers, UML transformers, etc [9].
1 http://deploy-eprints.ecs.soton.ac.uk/125/
2 www.event-b.org

Applying Event and Machine Decomposition 137

3 Refinement Strategy

Incremental refinement has been used as our strategy to develop a model of a
flash-based file system. Two uses of refinement were employed in our develop-
ment: feature augmentation (or horizontal refinement) and structural refinement
(or vertical refinement) [8]. Feature augmentation is aimed at introducing new
requirements or properties which are not addressed in the initial model or may
be postponed to other levels. Thus, in each refinement step, additional state
variables and related events might be added to incorporate those features which
are introduced. The system models will be enlarged gradually when new prop-
erties are introduced. The purpose of structural refinement, on the other hand,
is to replace an abstract structure with more design details in each refinement
step down to an implementation. This kind of refinement may involve data re-
finement, event decomposition and machine decomposition.

In the development presented in [11], feature augmentation was used in an
incremental way to develop a model of a flash-based file system. That is, we
began with a small set of features and then enlarged the model by introducing
new features in each refinement step. We finally got five levels of a specification
describing an abstract file system. That is, the specification is the abstract model
plus a series of feature augmentations. As stated in [11], we regard the full chain
of augmentation (horizontal) refinements as constituting the specification, not
just the most abstract level.

Structural refinement, which is the focus of this paper, was used to relate
the abstract file system with the specification of the flash interface layer. This
kind of refinement was used to decompose the events readfile and writefile into
sub-events in order to map them with page-read and page-program interfaces
provided by the flash interface layer. Details will be given in Section 6 and 7.

4 Event Decomposition in Event-B

While refining a model we may find that some (atomic) events can be split into
sub-events. We can decompose this kind of event through a refinement step.
Among those sub-events which are split, at least one event refines the abstract
event, while other sub-events refine skip. In our case, for example, instead of
writing the whole content in one step, the abstract file write can be partitioned
into sub-events: (i) start write (set an initial state and buffers), (ii) write a single
page (occurs once for each page of a file) and (iii) end write (reset the state and
buffers of the given file). Note that we achieve this form of event decomposition
using the standard refinement rules of Event-B which allows for the introduction
of events that refine skip in a refinement [3].

To understand more about event decomposition, event refinement diagrams
proposed in [6] will be used to explain how an atomic event can be decomposed
into sub-events. Fig. 1 shows an example of such a diagram. In the figure, the
root represents an abstract event which is partitioned into events start, step, and
end in a refinement. A solid line indicates that the end event refines the abs evt

138 K. Damchoom and M. Butler

event. That means the end event will be proved to refine the abstraction. The
dashed lines state that both start and step refine skip. The oval represents a
quantifier that specifies multiple interleaved instances of an event (i will range
over some set). Order, from left to right, constrains the order in which events
have performed. A step(i) event can be performed only when the start event is
completed, and end can be performed only when all step(i) events have been
occurred. The order amongst the step(i) events is nondeterministic. In Event-
B, there are no explicit sequencing operations. Events are non-deterministically
performed when their guards hold. Thus, in order to control the order of event
execution, each event must be guarded by using additional states or flag vari-
ables. For example, in order to start writing a single page, the given file must
be in the writing state. Thus, a writing state should be introduced and used to
construct guards of events that we want to control.

abs_evt

start step(i) end

abstraction

refinement

all(i)

Fig. 1. An example of event refinement diagram

The event refinement diagrams are used as an aid to constructing and un-
derstanding the formal models rather than being formal objects themselves. As
outlined in [6] , the diagrams were inspired by Jackson Structured Design (JSD)
diagrams [18]. In the future, we plan to investigate a more formal incorporation
of event refinement diagrams into the refinement proof obligations.

5 Outline of Abstract File System

In the development presented in [11], feature augmentation was used in an incre-
mental way to develop the model of an abstract file system. That is, we began
with a small set of features and then augmented the model by adding new fea-
tures in refinement steps. Additional state variables and events which are related
to the new features were introduced in each step. The event-extension feature3

provided by the tool was mainly used to develop this refinement chain. In each
refinement step, when new features were introduced the related events were ex-
tended by adding more details or constraints corresponding to those features.
The event extension may involve adding new parameters, guards and actions.

The layered specification of the abstract file system is briefly described as
follows.

3 Event extension is a new feature of Rodin.

Applying Event and Machine Decomposition 139

Abstraction. Tree properties and basic operations affecting the tree structure
(create, delete, move and copy) were firstly specified in this level. No-loop
and reachability (all objects in a tree are reachable from the root) are two
main properties which were the focus of verification effort.

First refinement. Files and directories were introduced. In the abstraction, files
and directories are treated in the same way as objects which are nodes of
the tree structure. In this level, objects was replaced by files and directo-
ries. That means an object can be either a file or a directory. The abstract
event create was refined into crtfile (create a file) and mkdir (make a direc-
tory).

Second refinement. File content was introduced in this level. Additional con-
straints and events related to file content are also addressed. For example,
each file has a content, an existing file must be opened before reading or
writing.

Third refinement. Access permissions and related constraints were introduced.
For instance, each object has an owner, a group-owner and a list of permis-
sions. The user who issues read- or write-request must have the right to read
or write on the given file.

Fourth refinement. Additional properties which were not addressed in [11] –
such as objects’ name, creation date and last modification date – were in-
troduced here.

Fig. 2 shows the definitions of three variables of the abstract specification along
with an abstract file write event, named writefile, of the abstract file system. The
writefile event writes the whole content of the given file f from the write buffer
(wbuffer) into the storage in one step. Here fcontent represents the content of
each file on the storage, w opened is a set of files which are opened for writing,
and CONTENT is defined as a sequence of DATA in a context seen by this
abstract machine.

...
fcontent ∈ files → CONTENT
w opened ⊆ files
wbuffer ∈ w opened → CONTENT
...

Event writefile =̂
Any f Where

grd1 : f ∈ w opened
Then

act1 : fcontent(f) := wbuffer(f)
End

Fig. 2. Event writefile of the abstract file system

140 K. Damchoom and M. Butler

6 Vertical Refinement

The purpose of this section is to outline the decomposition of the abstract events
readfile and writefile. The decomposition is based on the assumption that the
content of the file is read from or written to the storage one page at a time. As
shown in Fig. 3 (b), for example, instead of writing the buffer content into the
storage in one step, we introduced an intermediate variable named fcont tmp.
This variable behaves like a shadow disk used for accumulating the content of
the pages as they are written one at a time. This shadow becomes the actual
content of that file only when all pages have been written to the shadow. The
use of this shadow allows us to deal with faults that may occur during writ-
ing a file – if a fault occurs, we discard the shadow and keep the original. The
use of the shadow is an abstraction of the fact that when writing a file at the
implementation level we use fresh pages on the flash array rather over-writing
the pages used for the previous version of the file. Additional details are explained
in Section 7.

rbuffer r_tmpfcontent

rbuffer fcontent

r_step r_end

readfile

(a) read a file b) write a file

wbuffer fcont_tmp fcontent

wbuffer fcontent

w_step w_end

writefile

abstraction

refinement

Fig. 3. A diagram of refining events readfile and writefile

Note: Because of space constraints, instead of detailing the decomposition of
both file read and file write which are similar, we will present only file write
which is more interesting. Full details of the specification can be found in the
archive mentioned in Section 1.

7 Decomposing Event writefile

Fig. 4 (a) shows an event refinement diagram for the writefile event which is
decomposed into three sub-events: w start (start write), w step (write one page
at a time) and w end (end write, when all pages are written completely). Event
w end refines writefile of the abstraction while w start and w step refine skip.
This diagram states that w start must be performed before w step. Event w step
will be repeated until all pages are written or programmed into the flash device.

Applying Event and Machine Decomposition 141

In case of failures (see Fig. 4 (b)), in the abstraction, the writefileFail event
does nothing (i.e. skip). The content of file on the storage is not changed and
all memory buffers are released.

writefileFail

w_start w_end_fail refinement

writefile

w_start w_step(p) w_end_ok

all(p)

(a) success (b) fail

abstraction

Fig. 4. Refinement diagram of event writefile

Fig. 5 shows machine invariants in this refinement step. Variable fcont tmp
represents temporary content of the file while it is in the writing state. This vari-
able behaves like a shadow content of the file being written, as already discussed.
This shadow content becomes an actual content (fcontent) when all pages have
been written to the shadow. No change is made to fcontent if writing a file fails
at any point from the start to the end of writing a file. That means the content
of that file will be same as the previous state. We specified writing as a set of
opened files which are in the writing state. Variable wbuffer represents a write-
buffer of each writing file. Invariant inv6.3 states that for any file f which is in
the writing state, the temporary contents of f will be a subset or equal to the
content on its writing buffer.

inv6 .1 : writing ⊆ w opened
inv6 .2 : fcont tmp ∈ writing → CONTENT
inv6 .3 : ∀f ·f ∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

Fig. 5. Machine invariants of the refinement

Fig. 6 shows the refinement of event writefile when it is split into w start,
w step and w end (in cases of success and fail). Consider the w start event. In
order to start writing a file, the given file must be opened for writing and not
already in the writing state (see grd1 and grd2 of event w start). Event w step
writes the contents of page i from the write buffer (wbuffer) into fcont tmp.
In order to do this the given file must be in the writing state (see grd1). The
page being written must be a page in the write buffer that has not already been
written to the storage (see guards grd4 and grd5of event w step). Event w end ok
is enabled when all pages have been written (grd2) and the file is in the writing

142 K. Damchoom and M. Butler

Event w start =̂
Any f Where

grd1 : f ∈ w opened
grd2 : f /∈ writing

Then
act1 : writing := writing ∪ {f }
act2 : fcont tmp(f) := ∅

End

Event w step =̂
Any f, i, cnt Where

grd1 : f ∈ writing
grd2 : i ∈ N
grd3 : cnt ∈ DATA
grd4 : i �→ cnt ∈ wbuffer(f)
grd5 : i /∈ dom(fcont tmp(f))

Then
act1 : fcont tmp(f) := fcont tmp(f) ∪ {i �→ cnt}

End

Event w end ok refines writefile =̂
Any f Where

grd1 : f ∈ writing
grd2 : dom(wbuffer(f)) = dom(fcont tmp(f))

Then
act1 : fcontent(f) := fcont tmp(f)
act2 : writing := writing \ {f }
act3 : fcont tmp := {f }�− fcont tmp

End

Event w end fail =̂
Any f Where

grd1 : f ∈ writing
Then

act1 : writing := writing \ {f }
act2 : fcont tmp := {f }�− fcont tmp

End

Fig. 6. Decomposition of the writefile event

state. The effect of w end ok is to overwrite the existing file content with the
shadow content.

Guard grd2 of the w end ok event and Invariant inv6.3 play an important
role in proving that the w end ok event is a correct refinement of the writefile

Applying Event and Machine Decomposition 143

event (given in Fig 2). Namely, the gluing invariant, inv6.3, is used to show that
fcont tmp(f) is equal to wbuffer(f) when the guards of the w end ok event holds.

8 Linking the Abstract File System to the Flash Interface
Layer

This section outlines our model of the flash specification, which is based on the
ONFI specification given in [16], and shows how it is related to the abstract file
system via data refinement. We first describe an abstract specification of the
flash in Section 8.1 and then show the refinement of the file system layer when
the flash specification is included.

8.1 Abstract Flash Interfaces Layer

An ONFI-based flash device is a collection of LUNs (Logical Units). Each LUN
is composed of a number of blocks. Each block has a number of pages. Each page
is a sequence of data items.

Flash pages are accessed via row addresses consisting of a LUN, a block num-
ber within a LUN and a page number within a block. A flash device can be
specified as an array of pages which are identified by row addresses:

flash ∈ RowAddr → PDATA

where RowAddr is a set of possible row addresses. PDATA represents a page data
within each page. To realise the file system layer, we assume that each PDATA is
composed of file data, the object identity to which the data belongs, the logical
page-id (or page index in the view of file system) and a version number. Fig. 7
represents the structure of PDATA. We model each component of PDATA by a
projection function. For example, the file data stored in a PDATA is modelled
by dataOfpage (axm1). The other projections represent file object, page index
and version number. A set of version numbers (VERNUM) is used to record the
version of data which is programmed in each page.

The flash interface layer provides two main interfaces to the file system layer.
The first is page read, read a page of data from a given row address, and the
second is page program (or page write), write a page of data into the flash device
at a given row address. These two interfaces will become part of the events r step
and w step of the file system layer.

axm1 : dataOfpage ∈ PDATA→ DATA
axm2 : objOfpage ∈ PDATA→OBJECT
axm3 : pidxOfpage ∈ PDATA→ N
axm4 : verOfpage ∈ PDATA→VERNUM

Fig. 7. A structure of PDATA

144 K. Damchoom and M. Butler

8.2 Relating the File System Layer with the Flash Interface Layer

In this refinement step, flash properties are introduced together with variables
used to relate those two layers. Variables fcontent and fcont tmp of the file system
layer are replaced by fat and fat tmp respectively. The variable fat represents
the table of contents of each file. This table is a mapping of each file to a table
that maps each logical page-id of the file to its corresponding row address in
the flash. The corresponding row address represents the location (in the flash)
in which the content of that page is stored.

The properties mentioned above are described by the invariants given in
Fig. 8. Invariants inv7.3 and inv7.4 are gluing invariants introduced to relate
the abstract variables fcontent and fcont tmp with the concrete variables fat
and fat tmp respectively. They play an important role in proving the correctness
of this refinement. Variable programmed pages represents the row addresses of
pages that have already been programmed or written, while obsolete pages is
a set of programmed pages that are invalid to be used. Invariants inv7.8 and
inv7.9 were introduced to relate the content of file with the actual content on
the flash device. For instance, inv7.8 says that for any page whose version equals
to the current version of the file to which the page belongs, the data of that page
will be the data of the given page-id of that file.

Fig. 9 illustrates how the file write of the abstract file system is replaced
by the flash specification. The top diagram represents the abstract file write
which is composed of three sub-events: w start, w step and w end. The bottom
diagram represents the refinement where w step is refined by event pagewrite.

inv7 .1 : fat ∈ files → (N �→ RowAddr)
inv7 .2 : fat tmp ∈ writing → (N �→ RowAddr)
inv7 .3 : ∀f ·f ∈ files ⇒ dom(fat(f)) = dom(fcontent(f))
inv7 .4 : ∀f ·f ∈ files ∧ f ∈ writing ⇒ dom(fat tmp(f)) = dom(fcont tmp(f))

inv7 .5 : flash ∈ RowAddr → PDATA
inv7 .6 : programmed pages ⊆ RowAddr
inv7 .7 : obsolete pages ⊆ programmed pages

inv7 .8 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ files
∧ verOfpage(p) = curr version(objOfpage(p)) ∧ pidxOfpage(p) �= 0
⇒ pidxOfpage(p) �→ dataOfpage(p) ∈ fcontent(objOfpage(p))

inv7 .9 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ writing
∧ verOfpage(p) = writing version(objOfpage(p)) ∧ pidxOfpage(p) �= 0
⇒ pidxOfpage(p) �→ dataOfpage(p) ∈ fcont tmp(objOfpage(p))

...

Fig. 8. Machine invariants of replacing the file system by the flash specification

Applying Event and Machine Decomposition 145

In this event, page program will be called in order to write the content of each
page into the flash device. When each page has been programmed successfully,
the fat tmp will be updated. Finally, the fat tmp will be copied to fat when all
pages have been completely programmed into the flash device.

wbuffer fcont_tmp fcontent

w_step w_end w_start

wbuffer fat_tmp fat

pagewrite w_end w_start

flash

abstraction

refinement

page program

Fig. 9. A diagram of mapping writefile to the flash specification

Event pagewrite refines w step =̂
Any f, i, cnt, r, pdata Where

grd1 : f ∈ writing
grd2 : i ∈ N
grd3 : cnt ∈ DATA
grd4 : i �→ cnt ∈ wbuffer(f)
grd5 : i /∈ dom(fat tmp(f))
grd6 : r ∈ RowAddr
grd7 : r /∈ programmed pages
grd8 : pdata ∈ PDATA
grd9 : verOfpage(pdata) = writing version(f)
grd10 : objOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = i
grd12 : dataOfpage(pdata) = cnt

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i �→ r}
act2 : flash(r) := pdata
act3 : programmed pages := programmed pages ∪ {r}

End

Fig. 10. The refinement of the w step event

146 K. Damchoom and M. Butler

Fig. 10 shows the pagewrite event which is a refinement of the w step event.
The pagewrite event will look for an available page on the flash (grd6-grd7) in
order to write the content of page number i on the wbuffer. Parameter r repre-
sents a row address within the flash. Guards grd9-grd12 describe the contents of
pdata to be written to the flash. Action act1 updates the temporary fat table
of the file f. Action act2 sets the content of the flash at row number r equal to
pdata. The row address identifying that page will be set as a programmed page
by act3.

9 Machine Decomposition

The aim of this section is to decompose the machine into a file system ma-
chine, modelling the file system layer, and a flash machine, modelling the flash
interface layer. As a result, further refinements of the flash interface layer can
be explored separately. The machine decomposition we apply here follows the
style described in [6]. Namely, machine variables and events are partitioned into
sub-machines. Sub-machines interact with each other via synchronisation over
shared parameterised events.

Fig. 11 shows a diagram of machine decomposition illustrating the decom-
position of the events pagewrite and pageread. The top layer represents the file
system sub-machine consisting of machine variables fat, fat tmp, wbuffer, and so
on. The lower layer represents the flash interface sub-machine which contains
machine variables named flash, programmed pages and obsolete pages. The ovals
represent synchronisation over shared parameterised events between the sub-
machines. In this case, both sub-machines interact by synchronising over the
page write and the page read events.

At this point, for example, we partitioned the pagewrite event given in Fig. 10
following the approach of [6] and got a specification of the page program event
of the flash interface layer which is shown in Fig. 12. We also got a specification
of the pagewrite event of the file system layer given in Fig 13. Parameters r and

File System

Flash Interface

 page
write

 page
read

fat, fat_tmp, wbuffer, writing, rbuffer, ...

flash, programmed_pages, obsolete_pages

Fig. 11. A machine-decomposition diagram focusing on events page read and
page write

Applying Event and Machine Decomposition 147

Event page program =̂
Any r, pdata Where

grd6 : r ∈ RowAddr
grd7 : r /∈ programmed pages
grd8 : pdata ∈ PDATA

Then
act2 : flash(r) := pdata
act3 : programmed pages := programmed pages ∪ {r}

End

Fig. 12. An abstract page program of the flash interface layer

Event pagewrite =̂
Any f, i, cnt, r, pdata Where

grd1 : f ∈ writing
grd2 : i ∈ N
grd3 : cnt ∈ DATA
grd4 : i �→ cnt ∈ wbuffer(f)
grd5 : i /∈ dom(fat tmp(f))
grd6 : r ∈ RowAddr
grd8 : pdata ∈ PDATA
grd9 : verOfpage(pdata) = writing version(f)
grd10 : objOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = i
grd12 : dataOfpage(pdata) = cnt

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i �→ r}

End

Fig. 13. Event pagewrite of the file system layer

pdata represent shared parameters which are used for an interaction between
these two events.

After decomposition we finally got a machine specifying the flash interface
layer which consists of events page program and page read that can later be
refined separately from the specification of the file system. We also got a machine
specifying the file system with pagewrite and pageread plus the other events from
earlier refinement such as w start and w end.

148 K. Damchoom and M. Butler

10 Further Refinements

Further refinements are focused on the flash interface layer. After decomposition,
the flash model is refined separately by adding more details of the flash specifi-
cation. For example, each LUN has at least one page register used for buffering
data. Writing a page is done in two phases. The first is writing the given data
into a page register within the selected LUN and the second is programming the
data on the page register into the flash array at the given row address. Simi-
larly for reading page data, the data will be first transferred to the page register
before it is read off chip into the memory buffer.

An additional event that we specify is block-erase. This event has the effect of
erasing a given block in order to be reused for writing. The number of erasures
per block is limited (the number is dependent on its manufacturing). The block
which fails to erase will become a bad block which is no longer to be used. In
order to reclaim a dirty block, the block should contain obsolete data and may
have one or more pages whose data is still valid. All valid pages within the block
being reclaimed must be relocated (moved to another fresh block). After all valid
pages have been relocated, the given block becomes obsolete and ready to be
erased. That means only obsolete blocks are allowed to be erased.

These further refinements mentioned are the refinements of the flash interface
layer which are refined separately from the model of the file system layer.

Note that the wear-levelling process4 is an important feature that has not
been covered in our development yet. It is in our on-going work.

11 Proofs

The proof statistics, given in Table 15, show that 540 proof obligations (POs)
were generated by the Rodin tool. 501 POs (or 93%) were proved automati-
cally while others were discharged by interactive proof. In the case of interactive
proofs, almost 80% of proof steps involved instantiation of universal quantifiers
while the rest involved adding hypotheses, case distinctions, etc. In this table,
MCH0 represents an abstract model; MCH1 up to MCH4 represent the first up
to the fourth horizontal refinements, MCH5 – MCH7 represent the vertical re-
finements. MCH FL0 up to MCH FL3 represent an abstract model (MCH FL0)
of the flash interface layer and its refinements.

In each step of iteration of modelling, modification and proof, POs generated
by the tool were used as guidelines for modelling and reasoning about the model.
For example, they were used to determine which gluing invariant should be added
to the machine (e.g. inv6.3 given in Fig. 5), which guard should be added to
the event in order to strengthen the model, as well as which form of expressions
should be specified to make prove easier. For instance, specifying an expression
4 A technique used for prolonging the life time of flash memory covering reclaiming

and erasing blocks within a flash chip.
5 These proof statistics are slightly different from the table given in [11] because we

have introduced events for deleting a file and removing an empty directory in MCH1.

Applying Event and Machine Decomposition 149

Table 1. Proof statistics

Machines Total POs Automatic Interactive
MCH0 35 22 13
MCH1 57 49 8
MCH2 33 32 1
MCH3 37 34 3
MCH4 26 26 0
MCH5 27 26 1
MCH6 31 30 1
MCH7 109 97 12

MCH FL0 8 8 0
MCH FL1 110 110 0
MCH FL2 57 57 0
MCH FL3 9 9 0

Overall 540 501 (93%) 39 (7%)

like pg �→ obj ∈ objOfpage is easier to discharge than objOfpage(pg) = obj . As a
result, this technique means we get a higher degree of automatic proof.

Results for automatic proof are good, but there is room for improvement. In
principle, when any change is made, Rodin has the ability to avoid re-running
proofs that are still valid. However, in some cases, some (unnecessary) proofs
need to be re-run when some changes are made. As a result, if there is a large
number of POs to be reproved and it can take a lot of time to re-run unnecessary
proofs whenever the model changes.

12 Related Work

A number of formalisations of a file system have been developed by other re-
searchers. For example, a specification of a visual file system in Z by Hughes [15]
is focussed on tree properties and basic file operations affecting the tree struc-
ture, but file content and a manipulation of file content were not specified. The
commonly referenced model developed by Morgan and Sufrin presented in [21]
is a specification of a Unix file system in Z. In this specification, instead of us-
ing a tree structure, the location of each object is formulated as a sequence of
directory names, which is the path of each object. This work is focused on file
contents and naming operations used for manipulating these rather than struc-
ture manipulation operations such as directory copy and move. Based on the
specification of Morgan and Sufrin, Freitas, Woodcock and Fu [13] have devel-
oped a verified model of the POSIX filestore accompanied with a representation
and proof using the Z/Eves proof system. Since the filestore challenge was pro-
posed by Joshi and Holzmann [19] in 2005, other researchers have addressed this
challenge. For example, Butterfield, Freitas and Woodcock [10] have developed
an abstract specification in Z of the ONFI specification [16]. In addition, Fer-
reira et al. [12] have developed and verified a specification of the Intel Flash File

150 K. Damchoom and M. Butler

System Core [17] in VDM. HOL and Alloy were used as a theorem prover and
model checker, respectively. Other work developed by Kung and Jackson [20] is
a formal specification and analysis of a flash-based filestore in Alloy. [20] focusses
on basic operations of a file system, such as read and write, and addresses fault
tolerance and wear-levelling process.

The approach of refining skip events to achieve decomposition of the atomicity
of events was used by Woodcock and Davies [22] to refine a file write operation
with the Z notation. Like us, they use a shadow disk in the refinement. They
show how the decomposition of the file write can be cast as either a forwards
simulation or a backwards simulation. In our case, we work only with forward
simulation as Rodin only supports forward simulation. We have not found this
restriction in Rodin to cause any difficulties.

Other researchers mentioned above also report statistics from mechanical
proof efforts. However, we found it difficult to perform a like-for-like compar-
ison of our results with others. Any comparison would depend heavily on the
nature of the proof obligations and on the proof support provided in the lan-
guage. For example, in Rodin, refined events may contain ‘witness’ clauses that
are used to instantiate existential proof obligations. Without this, we would have
a lot more interactive proofs whose only interactive step would be the provision
of witnesses for existential quantifiers. By providing the witnesses directly in the
model, we achieve a higher degree of automatic proof and the proofs are more
robust against model changes. In the future it would be useful for researchers in
this area to attempt to develop a common framework for comparing proof effort.

13 Conclusion and Discussion

We have presented a model of a flash-based filestore which was developed by
using Event-B and Rodin. In this development, we have outlined the use of
refinement for two different purposes. First refinement was used in feature aug-
mentation (or horizontal refinement) and second for structural refinement (or
vertical refinement).

Feature augmentation is a mechanism used for constructing a model of an ab-
stract file system which was presented in [11]. Instead of specifying everything in
one level that may give rise of proof difficulty, we decided to split the whole sys-
tem features into sub-features. These sub-features were chosen to be introduced
in refinement steps. We have found that this approach makes the model easier to
construct and prove. In addition, we have found that the event-extension feature
provided by the Rodin tool (release 0.9.x) makes models easier to refine. Namely,
some changes can be made to the abstract levels individually and are propagated
down automatically. This is in contrast to when we were developing the model
of [11] using the Rodin tool release 0.8.2 that has no support for event-extension.

Structural refinement was used to relate the abstract file system with the
flash specification. Event-decomposition is a structural refinement on which we
focused in this paper. We have shown how the decomposition technique can be
applied to our case study. This technique was used to partition atomic events
readfile and writefile into a number of sub-events as explained in Section 7.

Applying Event and Machine Decomposition 151

We have found that the event-decomposition technique is very effective for
breaking an atomic event. It can be applied to other work whose events may
require to be decomposed in order to cope with fault-tolerance or concurrency.
An atomic event can be partitioned into sub-events that can be performed in an
interleaved fashion. In addition, as can be seen in Section 7, we could deal with
file write that may fail at any point between the start and the end of writing a
file.

Additionally, in Section 9, the machine decomposition was employed to sep-
arate part of the flash interface layer from the file system layer. The purpose
is to deal with further refinements of the flash interface layer separately. Those
two layers interact with each other via the shared parameterised events. Based
on this evidence, we believe that machine decomposition is useful for other de-
velopments whose specification involves a number of sub-systems that can be
partitioned and refined separately. Rodin does not provide any tool to decom-
pose machines directly, we still need to decompose machines manually using the
editor of the Rodin tool. Thus, in the future, it would be useful if a machine-
decomposition tool could be developed.

Although the proof statistics show a high degree of automatic proof, some
improvements are still required. As explained in Section 11, in some cases, proofs
are required to be re-run every time the model changes although they have
already been proved. This is because Rodin currently uses a mixture of new and
legacy provers and, while the new provers maintain sufficient information about
used hypotheses to be able to avoid re-running proofs, the legacy provers do not.
This is an engineering issue that is being addressed in Rodin.

As mentioned in the introduction, our file store development represents an
exemplar of multi-level refinement and of machine decomposition that we believe
others could learn from.

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: A system development process with Event-B and the Rodin platform.

In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 1–3. Springer, Heidelberg (2007)

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2009) (to be published)

4. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006)

5. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of dis-
crete models: Application to Event-B. Fundamentae Infomatica, 1001–1026 (2006)

6. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

7. Butler, M., Yadav, D.: An Incremental development of the Mondex system in
Event-B. Formal Aspects of Computing 20(1), 61–77 (2008)

8. Butler, M., Abrial, J.-R., Damchoom, K., Edmunds, A.: Applying Event-B and
Rodin to the filestore. VSRNet, ABZ 2008 (2008)

152 K. Damchoom and M. Butler

9. Butler, M.: Rodin deliverable D31: Public versions of plug-in tools. Technical re-
port, University of Southampton, UK (2007)

10. Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of flash
memory. Science of Computer Programming 74(4), 219–237 (2009)

11. Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured
file system in Event-B and Rodin. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)

12. Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying Intel Flash File System Core
Specification. Technical report, University of Minho (2008)

13. Freitas, L., Woodcock, J., Fu, Z.: POSIX file store in Z/Eves: An experiment in
the verified software repository. Science of Computer Programming 74(4), 238–257
(2009)

14. Hoare, T., Misra, J.: Verified software: theories, tools, experiments; Vision of a
Grand Challenge project (2005)

15. Hughes, J.: Specifying a visual file system in Z. Technical report, Department of
Computing Science, University of Glasgow (1989)

16. Cemicondutor, H., et al.: Open NAND Flash Interface Specification, Revision 2.0.
Technical report, ONFI (February 2008), http://www.onfi.org

17. Intel Flash File System Core Reference Guide, version 1. Technical report
304436001, Intel Coorporation (October 2004)

18. Jackson, M.A.: System Development. Prentice Hall, Englewood Cliffs (1983)
19. Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable filesystem. In: Ver-

ified Software: Theories, Tools, Experiments (2005)
20. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.

In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 294–308. Springer, Heidelberg (2008)

21. Morgan, C., Sufrin, B.: Specification of the Unix filing system. IEEE Transaction
on Software Engineering 10, 128–142 (1984)

22. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Englewood Cliffs (1996)

http://www.onfi.org

An Integrated Formal Methods Tool-Chain and
Its Application to Verifying a File System Model

Miguel Alexandre Ferreira1 and José Nuno Oliveira2

1 Software Improvement Group, The Netherlands
m.ferreira@sig.nl

2 Universidade do Minho, Portugal
jno@di.uminho.pt

Abstract. Tool interoperability as a mean to achieve integration is
among the main goals of the international Grand Challenge initiative. In
the context of the Verifiable file system mini-challenge put forward by
Rajeev Joshi and Gerard Holzmann, this paper focuses on the integra-
tion of different formal methods and tools in modelling and verifying an
abstract file system inspired by the IntelR© Flash File System Core. We
combine high-level manual specification and proofs with current state
of the art mechanical verification tools into a tool-chain which involves
Alloy, VDM++ and HOL. The use of (pointfree) relation modelling pro-
vides the glue which binds these tools together.

1 Introduction

There is a healthy trend in formal methods for computer science driven by
the idea of a Grand Challenge (GC). Hoare [21] revisited an old challenge in
computer science: a verifying compiler, capable of performing extended static
analysis of the programs it compiles. Hoare’s paper defines a set of criteria for
an international effort to drive research in computer science forward towards
automatic software verification. Hoare et al [22] proposed that the conditions
set in [21] were met, and that the time to start such a long term international
research project had arrived.

The GC project is expected to “deliver a comprehensive and unified theory of
programming”, “prototype for a comprehensive and integrated suite of program-
ming tools”, and “deliver a repository of verified software”. [22, Section 2]

The current paper is focused on the integration of both programming and
logical tools [22, Section 2.2] that aid in the verification of formally specified
operations. We propose to combine different formal specification languages, and
make their tool sets interoperate, to form a tool-chain supporting a development
and verification life cycle process that yields checked specifications. We assume
our target audience to be already using formal specification and verification
techniques, thus benefiting from a structured approach to break down software
complexity through design, backed up by automated verification tools. The tool-
chain should fulfil the following requirements:

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 153–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 M.A. Ferreira and J.N. Oliveira

– promote incremental development and verification of specifications;
– be agile enough to encourage users to verify even the smallest unit of their

specifications;
– be capable of producing immediate feedback to unveil problems;
– be capable of performing fully automated consistency proofs;
– be amenable to automatic code generation.

As a case study for checking the proposed tool-chain life cycle, a formal model
of an abstract file system was developed [8,9], inspired by the “mini-challenge”
proposed in [26]. Although not yet covering the robustness or hardware require-
ments of [26], the model built in [8,9] is realistic while following the API of the
File System Layer of the architecture for flash file systems designed by Intel Cor-
poration [6, Section 4.14]. Such a model is given in the current paper stripped
of its many details so as to convey the basic idea and method rather than not
so relevant technicalities.

Paper structure. Sections 2 and 3 address the integration of languages and tools
in an agile tool-chain. Section 4 presents the basics of our abstract modelling
strategy, based on diagrams expressing model constraints. In Section 5 the ab-
stract (pointfree) model of Section 4 is converted to Alloy, where it is model
checked for the correctness of the operations. Section 6 describes the refine-
ments to which the Alloy model is subject to so as to render it as a VDM++
executable specification. Section 7 introduces a proof system for VDM++ that
uses the HOL theorem prover to discharge proof obligations. Section 8 addresses
limitations of the tool-chain and a possible implementation. Finally, some con-
cluding remarks are given in Section 10.

It is assumed that the reader has basic knowledge of the Alloy and VDM++
languages, model checking and theorem proving.

2 Tool-Chain

The main motivation for the proposed tool-chain is to combine formal method
tools for model checking, theorem proving, model animation, etc, in a way such
that each tool is placed in the “right” step of the given life-cycle. The version of
the tool-chain which has been the subject of our experimentation involves the
following languages and tools.

Relational PF-notation. Following Tarski’s formalization of set theory without
variables [37], relation algebra has emerged as a language for expressing and
reasoning about logical formulae in a very concise, pointfree (PF) way. References
[32,33] show how to reason about data models using PF-notation, in a typed
way supported by categorial diagrams. This paper exploits the same approach
by regarding PF-notation and diagrams as the starting point of the proposed
verification life-cycle.

An Integrated Formal Methods Tool-Chain 155

Alloy. This is a lightweight modelling language for software design developed
by the Software Design Group at MIT [24]. Its foundations are first order logic
and relational calculus. Alloy’s lemma “everything is a relation” makes the lan-
guage very simple, highly declarative, and well integrated with the relational
PF-notation, as will be explained later. Alloy’s tool support is provided by the
Alloy Analyzer that supports both development and verification of models.

VDM. The Vienna Development Method [4] is a mature formal method whose
origins go back to the IBM Vienna Laboratory in the 1970s. The use of VDM
associated languages to specify and guide the development of software has been
widely described in the literature [12,13]. VDM++ [29] is a widespread VDM di-
alect which, compared to ISO standard VDM-SL [34], introduces object oriented
and concurrency features in the language. Tool support is one of the key strengths
of VDM in general. From the wide variety of tools available we single out the
Overture [28] Automatic Proof System (APS) [38] and the VDMTools [14] for
type checking, interpretation and code generation.

HOL. This theorem prover [18,36] (a descendant of the LCF theorem prover)
was developed with hardware verification in mind. It is an interactive proof
assistant designed for higher order logic, with a vast set of ready to use theories
and proof tactics. Its function definition mechanism provides termination proofs
for recursive functions for free.

3 “All-in-One” Strategy

To effectively build a tool-chain it is necessary to have a strategy for each com-
ponent as well as for the overall set of tools. The main goal of the strategy is to
provide better verification techniques for formal development of software.

Better development means that the first steps in specifying a given problem
should be taken at the most abstract level possible, capturing all the key aspects
of the artifact under specification. This should be followed by incremental re-
finement of the specification in order to obtain an executable version, that can
be used to validate functional requirements with stakeholders. Once verified,
the executable specification is translated to source code in some mainstream
programming language. The leap from abstract specification to executable spec-
ification must allow for early detection of failing functional requirements.

Better verification means that before tackling full-fledged proofs, confidence
in the specification should be gained. In this way, one avoids attempting proofs
that could be demonstrated impossible by counterexamples, or that add no value
to the development since they fail the user requirements.

The kind of proof which is illustrated in the remainder of this paper is known
as satisfiability [25]: for every operation Op whose input is of type A and whose
output is of type B, proof obligation (PO)

∀ a · a ∈ A ∧ pre-Op a⇒∃ b · b ∈ B ∧ post-Op(b, a) (1)

156 M.A. Ferreira and J.N. Oliveira

should be discharged. Because a ∈ A and b ∈ B check for the data type invariants
associated to A and B, respectively, this PO is also referred to as invariant
preservation [25]. Since in our case all our operations are total and deterministic,
the POs we have in hands are actually simpler:

∀ a · a ∈ A ∧ pre-Op a⇒Op(a) ∈ B . (2)

The following situations can take place:

1. While specifying the overall architecture of a system, several interests are
at stake. Often these interests are contradictory. A well founded notation
which is paradigm-, platform- and technology-independent is welcome to
enable reasoning about the high level design.

2. During the design phase, several experiments are performed to assess differ-
ent design options for Op. A model checker able to automatically generate
counterexamples to (2) and thus suggest how to improve Op is welcome.

3. Op satisfies (2) but is semantically wrong, for it ends up not behaving ac-
cording to the requirements. To prevent this situation, running the model as
a prototype in an interpreter is welcome.

4. Both the model checker and the test suite above do not find any flaws. In
this case, a theorem prover is welcome to mechanically check (2).

5. PO (2) is too complex for the theorem prover. In this situation, the ultimate
hope is a pen-and-paper manual proof, or some kind of exercise able to
decompose the too complex PO into smaller sub-proofs.

This 5-step design scenario calls for a PO discharge strategy based on,
respectively:

1. A highly abstract mathematical notation, providing for agile algebraic ma-
nipulation and diagrammatic representation of data models — we have cho-
sen the PF-transform [33] and associated calculus of binary relations.

2. A model checker for timely generation of uninterpreted, unexpected coun-
terexamples — we have chosen Alloy for this purpose.

3. An interpreter enabling one to carry out semantically meaningful animation
and testing — for this purpose we have chosen the VDMTools.

4. A theorem prover — HOL in our case, thanks to the Overture proof system.
5. A pen-and-paper proof strategy regarding POs as “mathematical objects”

which can be calculated upon. For this stage we have been using the PO
calculus described in [33], where POs are represented by arrows which can
be put together or decomposed into simpler ones.

This “all-in-one” strategy is depicted in Figure 1. The process starts from a
highly abstract model of the architectural design of the target system, either
in relational pointfree notation or directly in Alloy. Note the dashed line of the
topmost box in Figure 1 (PF-notation), meaning that it is an optional stage.
Although Alloy is not able to prove properties, it is very useful in finding coun-
terexamples spotting where and why these properties fail.

An Integrated Formal Methods Tool-Chain 157

Alloy
Design & Model

"Checking"

VDM
Prototyping & Testing

HOL
Proof of correction

PF-calculus
Proof simplification

OK

OK

Design validated

Requirements
validated

Unproved goal

Found flaw

Success

Success

Found
flaw

Goal
simplified

PF-notation
Architectural Design

Architecture definedFound flaw

Fig. 1. Tool-chain operation

After validating the design in
Alloy, the model is translated to
VDM++, where more detail is in-
troduced. (Due to Alloy’s nota-
tional compactness, the equivalent
VDM++ specification becomes more
verbose.) In the VDM++ stage
it is already possible to validate
all functional requirements, since
the specification becomes executable.
Validation can be carried out through
unit tests [13, Section 9.5], com-
binatorial tests [30], or by inter-
preting (animating) the specification.
Should dynamic analysis performed
at VDM++ level detect any design
flaw, the process goes back to the
Alloy stage to suppress defective be-
haviour. Once the specification looks
adequate and captures all functional
requirements, the Overture APS is
used to generate all the POs aris-
ing from the VDM++ model and at-
tempt to mechanical discharge them
in HOL.

The last stage (pen-and-paper
proof) caters for POs which HOL could not prove and Alloy could not refute:
the worst scenario. The idea is to use PF-calculation at this stage, aiming at
simplifying POs or dividing them into smaller goals, which are fed back to HOL.

4 Relational Model of a (Simplified) File System

At the highest level of abstraction, a file system model should only capture the
top level relationships among its main components. Capturing the properties
which constrain the system’s overall state is an essential part of This exercise.The
challenge is doing so in a way which helps in reasoning about operations over
such constrained state. At this level, the less detail the better, as long as no key
aspect is overlooked.

Path Path
dirName��

A very abstract relational model of a file sys-
tem is presented using PF-notation. Relational point-
free models are built by depicting binary relations
as arrows between data types in diagrams. The
diagrams have a strong formal semantics, based on category/allegory the-
ory [16], thus ensuring the move from diagrams to symbols, back and forth.
At such an abstract level, a file system stores files in a way such that

158 M.A. Ferreira and J.N. Oliveira

their data becomes accessible through paths. Paths play the double role of
identifying files and revealing the hierarchy under which they are stored.
Following POSIX terminology, we define the relation dirName that for a given
path yields its parent path. This relation establishes the hierarchy of files within
a file system: a file a is said to be the parent of a file b if, in the hierarchy, b lies
exactly underneath a, that is, (path a)dirName(path b) holds.

Path F ile
(fileStore s)�

Just by thinking of paths one pictures a file system
as an hierarchic structure, in fact a tree like structure,
provided some properties of dirName hold. This does
not necessarily mean that a file store must be a tree
structure. As long as it is possible to navigate throughout it, any structure can
implement a file store. Given a file system s, its file store component fileStore s
is abstractly specified as a partial function.

FileHandle F ileDescriptor
(table s)�

Partial functions are often
termed simple relations [3], and
we shall use this terminology too.
Simple relations are so important in our data models (as elsewhere) that we
use special harpoon looking arrows to depict them in diagrams, as above. Files
can be handled by applications through the file system API, provided that all
applications relying on files can reach them, and the files they are using do not
get moved or removed. Applications do not handle files directly, instead they
do it through file handlers. It is the file system’s task to manage the relation
between file handlers and the corresponding file descriptors. These descriptors
keep relevant run-time information about files that are open, and in use by
applications.

FileDescriptor

path
��

FileHandle
table s�

Path
fileStore s

� File

Path

dirName

��

This leads us to a
file system model with
two sub-components: a
file store, and an open-
file table. The file sys-
tem requires from the
file store the ability to
find a file given its path,
and that the open-file table keeps track of the files requested by applications.

Files are the basic unit of a file system, and POSIX [23, Section 3.163] defines
several types of files: regular file, directory, character special file, block special
file, fifo special file, symbolic link and socket. Only regular files and directories
are of interest at this topmost level of abstraction, and to distinguish these two
types of file we introduce the fileT ype relationship, cf.:

FileDescriptor

path
��

FileHandle
table s�

Path
fileStore s

� File
fileType

�� FileT ype

Path

dirName

��

.

An Integrated Formal Methods Tool-Chain 159

The next step in the modelling consists of “gluing” the data structures in the
diagram with constraints spelling out their static semantics (data type invariants,
in the VDM terminology). The following pair of constraints is easily extracted
from [6]:

– Referential integrity: non existing files cannot be handled by applications.
– Paths closure: parent directories always exist and are indeed directories.

In diagrams, constraints take the shape of rectangles, each labelled by the ap-
propriate relational inclusion symbol1:

FileDescriptor

path

��

FileHandle
table s�

�
��

⊆

Path
fileStore s

� File
(fileStore s)◦�� fileType �� FileT ype

id

��
⊆

Path
fileStore s

�

dirName

��

File
Directory

�� FileT ype .

A

R

��

B
S��

V

��
⊆

C D
U

��

The diagram above depicts the two constraints that
were identified: referential integrity (ri) is the top
rectangle, paths closure (pc) is the bottom rectan-
gle. Let us explain the meaning of these diagrams.
A rectangle as displayed aside depicts PF-formula
R · S ⊆ U · V . Once the meaning of relational composition is spelt out, this
PF-formula becomes predicate

∀ c ∈ C, b ∈ B · (∃ a ∈ A · cRa ∧ aSb) =⇒ (∃ d ∈ D · cUd ∧ dV b) .

Should any of R,S, U, V be the top relation #, the corresponding conjunct is
deleted from the formula above because y#x always holds, for any choice of
x and y. Should it be a converse relation, say R◦, then the variables of the
corresponding conjunct are swapped, because yR◦x means the same as xRy.
Finally, should it be a function f , then y f x means the same as y = f x, thus
cancelling quantification over y. In the particular case of f being the everywhere-
k constant function k, y f x shrinks to y = k.

In this way, the rectangle picturing referential integrity — which in symbols
is path · (table s) ⊆ (fileStore s)◦ · # — unfolds (for all b ∈ FileHandle) into
predicate:

(∃ a ∈ FileDescriptor · a(table s)b) =⇒ (∃ d ∈ File · d(FileStore s)(path a)) .

Drawing constraints in this fashion, as rectangles in diagrams, allows for great
notation economy while providing for the visualization of the design in a “UML-
like” style. The interested reader will want to do the exercise of spelling out the
predicate which is pictured by the other rectangle in the diagram.
1 In category/allegory terminology, these rectangles are referred to as “commutative

squares”.

160 M.A. Ferreira and J.N. Oliveira

System× Path
open �� System× FileHandle

System× Path× FileT ype
create �� System

Regarding the file system
API, we specify operations as
arrows again. Aside we con-
sider the two operations open and create, which open a given (regular) file and
create a new (regular or directory) file, respectively. Opening files results in a
new state with a new entry in the open-file table and a file handle referring to
it. Creating a file only modifies the file store, by adding the new file.

In the next section the relational pointfree diagrammatic specification is trans-
lated to Alloy in an almost effortless exercise.

5 From PF Diagrams to Alloy

Transposing the above relational specification to Alloy is almost direct, since
Alloy relations are first class citizens. Still, more detail is required in the Alloy
specification to more accurately specify the file system state and operations.
Once the specification is transliterated to Alloy, and the Alloy Analyzer is asked
to instantiate it, it will display instances where: (a) there are cycles in paths; (b)
there are directories being referenced in the open-file table. Both these situations
should be avoided either because they are erroneous states of the file system (a)
or because they display undesired behaviour (b). To overcome this situation,
more constraints must be added to the specification, and to a certain extent
more detail has to be introduced in signatures (Alloy data types). Considering
the file store only an additional constraint should be enforced:

Paths structure: the dirName relation should be such that: (a) the root di-
rectory is its own parent; (b) it is acyclic for all paths other than the root
directory (thus no links are allowed in the file system).

Regarding the open-file table, one more constraint should be enforced:

Files table: only regular files can be opened, ie. no entry in the open-file table
should refer to a directory.

sig System {

fileStore : Path -> lone File ,

table: FileHandle -> lone FileDescriptor

}

The two simple rela-
tions of the diagrams
lead to the Alloy top-
level signature aside.
In the system defini-
tion, the harpoon ar-
row of the relational
diagram becomes the lone (one or less) multiplicity factor. Hence simplicity
is ensured.

We specify dirName as a simple and total relation on paths, thus a function
from Path to Path. Both simplicity and totality of the relation are specified
with the one multiplicity factor in the range of the relation. This means that no
path has more than one parent path and that, at the same time, every path (in
the relation) has a parent path.

An Integrated Formal Methods Tool-Chain 161

abstract sig Path {dirName: one Path}Note the use of the abstract
keyword in declaring the
Path signature, meaning that there can be no instances of Path. Using this
keyword only makes sense if one extends the signature later on. In Alloy, the
extension mechanism is similar to OO-extension in the sense of inheriting the
structure and properties of the extended entity. Furthermore, by extending an
abstract signature one creates a partition of that signature.

one sig Root extends Path

sig FileNames extends Path {}

The root path is different from any
other path, and this reflects the hier-
archy of a file system, where the root
is the topmost element. To differentiate
the root from the other paths, we intro-
duce it as an extension to Path. Fur-
thermore, the root path is declared to be unique, through signature multiplicity
factor one. The remaining paths are instances of the FileNames signature. Upon
root path differentiation, separate properties can be specified for each type of
path present in the dirName relation, namely:

pred ps[] {

Reflexive [id[Root]. dirName ,Root]

Acyclic[id[FileNames]. dirName ,FileNames]

} .

The path structure (ps) predicate enforces the paths structure constraint, by
declaring that: (a) dirName is reflexive on the root path, ie. root is parent of
itself; (b) dirName is acyclic for all other paths.

sig File {fileType : one FileType }

To specify the remaining con-
straint (files table) it is necessary
to differentiate files by their type.
Although we have already intro-
duced file types in the relational specification, we left room for choice on this
matter.

abstract sig FileType {}

one sig RegularFile , Directory extends FileType {}

pred ft[s: System] {

(s.table). path .(s.fileStore). fileType

in (FileHandle -> RegularFile)

}

pred inv_System [s: System] {

ri[s] and pc[s] and ft[s] and ps[]

}

One way to make such
differentiation explicit is
to partition files, as done
before concerning paths.
However, in this case, it
is not necessary to define
separate relational proper-
ties for each type of file,
and therefore, it suffices to
use a flag as differentiation
mechanism. File types are
defined as a partition composed of regular files and directories.

162 M.A. Ferreira and J.N. Oliveira

The files table (ft) constraint predicate (above) enforces that only (regular)
files can be requested by applications to read and write. (Without prejudice of
directories being browsable.) The overall invariant for the system is then defined
as a conjunction of the two constrains referential integrity (ri) and paths closure
(pc) defined in the relational specification, and the above described constraints
files table (ft) and path structure (ps).

Once the state of the system is defined we proceed to the specification of the
operations. Each operation is specified as n-ary relation Op between an initial
system s and a final state s′, for instance:

pred openFile [fh ’: FileHandle , s’,s: System , p: Path] {

s’. fileStore = s.fileStore

fh’ !in s.table.dom

(one fd: OpenFileInfo {

fd !in s.table.ran and fd.path = p

s’.table = s.table + (fh’ -> fd)

})

} .

The operation openFile does not affect the file store and produces a new entry
in the open-file table. It is guarded by a precondition made of two conjuncts.
The first is meant to preserve referential integrity, and the second to preserve
the open-file table invariant.

pred pre_openFile [s: System , p: Path] {

p in s.fileStore .dom

p.(s.fileStore). fileType = RegularFile

}

With the Alloy Analyzer it is possible to start verifying this operation straight
away, and we do so by first simulating and afterwards verifying. Either because
the scope is too narrow, or because a predicate is a contradiction, verifying
assertions will always succeed if there is no possible instantiation. To detect these
situations, we make sure that the predicate can be instantiated by simulating it.
Simulation with Alloy Analyzer can easily reveal problems as the instances of
the model are depicted in simple (but expressive) diagrams. We have checked the
openFile operations for satisfiability, with a scope of 10 elements2, and found
no counterexamples.

The create operation creates a new file, of a given type, in the file store.

pred create[s’,s: System , p: Path , ft: FileType] {

s’. table = s.table

one f: File {

f.fileType = ft

s’. fileStore = s.fileStore + (p -> f)

}

}

2 In Alloy the state space is limited by the scope. The scope defines how many elements
will be used for each top level signature. Top level signatures are those which do not
extend other signatures.

An Integrated Formal Methods Tool-Chain 163

The operation is guarded by a precondition again made of two conjuncts. The
first prevents from creating files that already exist in the file store. The second
is composed of a disjunction of two other sub-clauses. The first of these allows
one to create the root directory (note that this is only possible if the file store is
empty due to the first clause). The second preserves the paths closure invariant,
in case a path other than the root is passed as argument.

pred pre_create [s: System , p: Path , ft: FileType] {

p !in s.fileStore .dom

((p = Root and ft = Directory)

or

(p.dirName in s.fileStore .dom and

p.dirName .(s.fileStore). fileType = Directory))

}

After simulation and verification, no counterexamples where found for the create
operation, also for a scope of 10 elements.

6 From Alloy to VDM++

Model translation to VDM++ involves additional effort and increases the steep-
ness of the learning curve. However, it helps in further refining the specification,
while giving access to a comprehensive set of tools.

VDM++ translation is guided by the rules described in [9,8]. The outcome
is a sizeable VDM++ model of which we only address an example of where the
abstraction level is lowered, in order for the specification to become executable.

The refinement that has greater impact in the model relates to paths. Paths
in the Alloy model are so abstract that it suffices to differentiate the root and
declare a relation (dirName) recording the path-hierarchy. There are two obvi-
ous models for paths in VDM++: either as a linear recursive data type, or as a
sequence of file names.

Path = <Root > | seq1 of token;

dirName : Path -> Path

dirName(p) ==

cases p:

<Root > -> <Root >,

[-] -> <Root >,

others -> allButLast (p)

end;

The first option would clash with the
mapping we chose to use for the file
store, because it would introduce in-
ductive reasoning (which we decided to
avoid). The second option, which was
chosen, allows us to avoid inductive
reasoning, but introduces some more
constraints. The resulting VDM++
data type that specifies paths is de-
fined as a co-product of root and re-
maining paths, as in Alloy. The differ-
ence resides in the specification of the
remaining paths, now sequences of tokens.

The refinement of paths introduces a new constraint preventing paths, which
are sequences, from being empty. The relation that navigates through paths
(above) must also be refined according to the changes in the data type, where
the alternative pattern [−] matches any singleton sequence.

164 M.A. Ferreira and J.N. Oliveira

Recall, from the specification of openFile, that the entry to be created in the
open-file table should consist of a new file handle and a new file descriptor. In
Alloy it was possible to declare that the file handle should not belong to the
original table; in VDM++ it is necessary to operationalize this behaviour.

open: System * Path -> System * FileHandle

open(s,p) ==

let newFh = newFileHandle (dom s.table),

entry = { newFh |-> mk_OpenFileInfo (p) },

table ’ = s.table munion entry in

mk_(mu(s, table |-> table ’), newFh)

pre p in set dom s.fileStore and

s.fileStore (p). fileType = <RegularFile >;

In the above definition a new file handle is mapped to a new open-file element us-
ing the binary operator |->. The initial state is mutated using the mu operator,
whereby the original table field is replaced by the newly created table′.

7 From VDM++ to HOL

For each PO arising from the specification, the Overture proof system can yield
three different results:

1. the PO evaluates to true (discharged) — no inconsistency found;
2. the PO evaluates to false — a design inconsistency exists;
3. the PO evaluates to an unproven goal — no conclusion from proof.

In the case of a discharged PO (Item 1) the life cycle is over for this particular
PO. If, on the contrary, the PO evaluates to false (Item 2) then it is clear that a
flaw exists in the specification and some action must be taken to correct it. At
this stage the adequate corrective action depends on the kind of flaw detected. It
might be the case that the proof failed because of some error introduced in one
of the previous stages, Alloy or VDM++. So the process should go back to the
appropriate stage to correct the specification. The last possible outcome (Item
3) might result from a proof that stopped before reaching any of the Boolean
values, or from a proof that times out.

Through the Overture proof system the specification was analysed to generate
the two satisfiability proof obligations for the specified operations [8]. A HOL
theory was automatically translated from the VDM++ specification, and a proof
script produced. (Neither the theory nor the proof script are described in this
paper, due to space constraints — see [8] for details.) It followed that the proof
system was able to mechanically discharge the satisfiability proof for

inv inv
open�� , (3)

but not for

inv inv
create�� . (4)

(We adopt the arrow notation of [33] for satisfiability proof obligations.)

An Integrated Formal Methods Tool-Chain 165

Recall that inv is a conjunction of four predicates: referential integrity, paths
closure, files table and path structure. The last is no longer necessary because it
is ensured by the dirName function once refined to the VDM level. Following
the splitting by conjunction rule of the PO-calculus of [33, Section 15], (4) splits
into:

ri inv
create�� , (5)

pc inv
create�� , (6)

ft inv
create�� . (7)

Sub-goals (5) and (7) were mechanically discharged by the proof system, whereas
(6) produced an intermediate goal. Further decomposition applied to (6) branches
the proof into: (a) the case where the argument path is the root directory; (b) the
remainder cases. By manipulating the theorems made available to the prover for
term rewriting, the two branches of (6) where interactively discharged in HOL.

The success of the proof was due to initially limiting the theorems used by
the re-writing procedures. The first attempt to discharge this proof used all
available theorems from the specification theory to re-write and simplify the
goal. However, this approach lead to an intermediate goal whose semantics could
only be perceived by inspecting every proof step to identify all relevant decisions
that took place.

By not allowing the prover to use the theorems for dirName and pc (paths
closure invariant), and re-invoking the same proof tactic we obtained branches
(a) and (b). In this way, goal (6) was split in two sub-goals (one per branch),
the theorems for dirName and pc were made available for the re-writing tactics,
and the remaining proof was carried out automatically by the APS.

8 Discussion

This paper presents a formal methods tool-chain that promotes tool interoper-
ability while transforming abstract models through an iterative process of de-
velopment. The tool-chain disciplines the use of different tools and techniques
ranging from simulation, model checking, testing, interpretation and code gen-
eration, to mathematical proof of correctness.

For the tool-chain to be applicable in the verification of large and complex
models some issues have to be addressed. First of all, not every step in the
tool-chain is automated. Although the Overture APS automates the connection
between VDM++ and HOL, the one between Alloy and VDM++ is still man-
ual. First steps towards this automation have been taken in [9,8] by defining a
set of rules to translate VDM++ data types into Alloy signatures. In the cur-
rent paper similar rules are applied, however from Alloy to VDM++. We agree
that the agility of the tool-chain is compromised until all steps are fully auto-
mated. Although code generation was not addressed in the paper, the tool-chain
“borrows” this capability from the VDMTools.

166 M.A. Ferreira and J.N. Oliveira

Of the tool-chain requirements set up in Section 1, only fully automated
proofs are still far from being a reality. These should eventually include those of
the refinements implicit in translating from one notation (eg. Alloy) to another
(VDM++). It is our intention to experiment with the presented tool-chain to
verify the different refinements it promotes. Extending the verification capabil-
ities of the tool-chain to support refinement proofs would indeed increase its
usefulness and soundness. Surely, there is much work to be carried out in this
respect.

With the file system case study we show how a small model can be fully ver-
ified in a multi-stage process. Stage after stage (Figure 1), more confidence is
gained on the consistency of the model. Throughout this case study care was
taken to independently check small units of models, by constructing the model
piece by piece on a tight loop of development and verification. However, when
verifying models whose development is out of the verifier control, slicing tools
[39] are of great value, since they can isolate the smallest sub-model that accom-
modates some target property, operation or data type. This is another aspect
which calls for automation: operation-wise manual slicing carried throughout the
project [9,8] proved to be very time-consuming.

Both the languages and principles adopted in devising the tool-chain are
generically applicable to software development and verification. We therefore
envisage its integration in the Overture platform in the near future. Overture
includes a framework for generation of abstract syntax trees (ASTs) for lan-
guages modelled in VDM++. This framework is supported by the AST gen-
erator (AstGen) tool, which (for example) was used to generate the Overture
Modelling Language (OML) AST from a VDM specification. OML AST is the
pillar that supports all other Overture tools that manipulate VDM dialects. Both
OML AST and surrounding tools can be automatically implemented in Java (or
C++) [19]. The Overture proof system stands as an example of such automated
implementation. Adding to these features, efforts are currently under way to
integrate the complete Overture tool set in the Eclipse platform, where Alloy
is already integrated [31]. All these conditions together with the fact that the
VDM++ connection to HOL is a component of the Overture tool set, make this
the most interesting option to foster the tool-chain put forward in this paper.

9 Related and Future Work

Verifiable file system. Since the VFS mini-challenge was put forward, contri-
butions have been made at different levels, either focusing on verification or
refinement [27,15,7]. Reference [27] already contemplates NAND flash memory
peculiarities, such as wear levelling, erase unit reclamation, and tolerance to
power loss. More recently, new papers [35,20] on file system formalization have
become available. Theorem proving is used in [20], which follows a top down
approach in formalizing a hierarchical file system. [35] reports on the bottom up
verification of the UBIFS implementation for Linux.

Other file system implementations have also been mechanically verified by
model checking [17,40]. [40] found several errors in widely used file system

An Integrated Formal Methods Tool-Chain 167

implementations that were reported back to the respective developers. [17] anal-
ysed a concurrent model of the Linux Virtual File System, which bridges be-
tween the Linux kernel and the miscellaneous file system implementations that it
supports.

Integration of formal tools. There has been a proliferation of independent lan-
guages and tools that support formal specification and verification. However,
it is already possible to see the results of the effort made towards integrating
these tools in development environments that are more agile and sophisticated.
Good examples of such integration are Alloy4Eclipse [31], the Rodin [5] tool for
Event-B and the Overture tools for VDM.

Part of the tool-chain presented in the current paper is already implemented
in the Overture project, thanks to our work on the APS workflow [10]. Current
efforts go into improving interoperability among Overture internal components,
the VDMTools and HOL. This will hopefully produce a cross platform proof
system, capable of mechanically discharging all VDM-standard POs.

On flash-level refinement. As for current work on the VFS project itself, our
implementation (refinement) strategy is based on the following design princi-
ple: whatever abstract model one writes for file systems, it can be refined into
diagrams of “atomic” (1NF) simple relations using data transformation by calcu-
lation [32]. Inspired by [35], one just has to consider a further, generic refinement
step in moving towards the flash level: that of implementing every simple rela-
tion by a 4-tuple made of the relation itself, the corresponding RAM and flash
indices and the journal. We are currently busy in proving the correctness of this
refinement strategy [11].

10 Summary

The research described in this paper is intended to contribute to the GC trend
while focusing on tool interoperability as a means to obtain an integrated veri-
fication tool-chain taking advantage of the capabilities of each tool in the chain.
Furthermore the approach is tool independent, and other tools like SPIN [2] or
Perfect Developer [1] could also be integrated.

The integration of formal language tool sets in modern development environ-
ments such as Eclipse is today a reality. We propose that communities take an
extra step towards interoperability. This can be done through translators based
on public ASTs, that can be distributed to developers of other communities as
open source code, or binary libraries. However, the soundness of such integration
still needs to be demonstrated through refinement proofs.

This paper shows how the principles of abstraction, iterative development
and proof decomposition help in overcoming the difficulties implicit in verifying
complex operations on states subject to elaborate invariants. Operation can be
broken down in sub-operations that are independently verified. Invariants can
be factored into sub-invariants. In the case study reported in this paper [8,9],

168 M.A. Ferreira and J.N. Oliveira

decomposition helped in identifying properties and sub-operations that were
preventing the proof system from automatically discharging the proof.

In retrospect, the improvements in verification obtained following our “single-
PO, multiple-proof-technology” approach need to be balanced against the fact
that the learning curve becomes steeper and steeper as new technologies are
added to the system. This can only be avoided via automation and transparent
integration.

References

1. Escher Technologies - Products, http://www.eschertech.com/products
2. Spin - Formal Verification, http://spinroot.com
3. Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Science.

Prentice-Hall International, Englewood Cliffs (1997), C.A.R. Hoare, series editor
4. Bjørner, D., Jones, C.B.: The Vienna Development Method: The Meta-Language.

LNCS, vol. 61. Springer, Heidelberg (1978)
5. Coleman, J., Jones, C., Oliver, I., Romanovsky, A., Troubitsyna, E.: RODIN (Rig-

orous open Development Environment for Complex Systems). In: WORDS, pp.
23–26. IEEE Computer Society, Los Alamitos (2005)

6. Intel Corporation. IntelR© Flash File System Core Reference Guide. Technical re-
port 304436-001, Intel Corporation (2004)

7. Damchoom, K., Butler, M., Abrial, J.: Modelling and Proof of a Tree-Structured
File System in Event-B and Rodin. In: Liu, S., Maibaum, T., Araki, K. (eds.)
ICFEM 2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)

8. Ferreira, M.: Verifying IntelR© Flash File System Core. Master’s thesis, Minho Uni-
versity (January 2009)

9. Ferreira, M., Silva, S., Oliveira, J.N.: Verifying Intel Flash File System Core Spec-
ification. In: Fourth VDM/Overture Workshop (CS-TR-1099) (May 2008)

10. Ferreira, M.A.: Implementing the Overture Automatic Proof System (submitted
for publication, 2009)

11. Ferreira, M.A., Oliveira, J.N.: Verifying the (generic) flash memory implementation
of abstract mappings (in preparation, 2009)

12. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in
Software Development. Cambridge University Press, Cambridge (1998)

13. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object-oriented Systems. Springer, New York (2005)

14. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: advances in support for formal
modeling in VDM. SIGPLAN Notices 43(2), 3–11 (2008)

15. Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the
verified software repository. In: ICECCS 2007, Washington, DC, USA, pp. 3–14.
IEEE Computer Society, Los Alamitos (2007)

16. Freyd, P.J., Ščedrov, A.: Categories, Allegories. Math. Lib., vol. 39. North-Holland,
Amsterdam (1990)

17. Galloway, A., Lüttgen, G., Mühlberg, J.T., Siminiceanu, R.: Model-checking the
linux virtual file system. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 74–88. Springer, Heidelberg (2009)

18. Gordon, M.: From LCF to HOL: a short history, pp. 169–185. MIT Press,
Cambridge (2000)

http://www.eschertech.com/products
http://spinroot.com

An Integrated Formal Methods Tool-Chain 169

19. The VDM Tool Group. The VDM++ to Java Code Generator. Technical report,
CSK Systems (January 2008)

20. Hesselink, W.H., Lali, M.I.: Formalizing an Hierarchical File System. Submitted
to FM 2009 (2009)

21. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003)

22. Hoare, T., Misra, J.: Verified Software: Theories, Tools, Experiments Vision of a
Grand Challenge Project. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS,
vol. 4171, pp. 1–18. Springer, Heidelberg (2008)

23. IEEE and The Open Group. Standard for information technology - POSIXR©. Base
Definitions, Issue 6. IEEE Std 1003.1-2001. The Open Group Tech. Std. (2004)

24. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

25. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs (1990)

26. Joshi, R., Holzmann, G.J.: A Mini Challenge: Build a Verifiable File system. In:
Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 49–56. Springer,
Heidelberg (2008)

27. Kang, E., Jackson, D.: Formal Modeling and Analysis of a Flash Filesystem in
Alloy. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS,
vol. 5238, pp. 294–308. Springer, Heidelberg (2008)

28. Larsen, P.G., Batle, N., Fitzgerald, J., Lausdahl, K., Ferreira, M., Verhoef, M.:
The Overture Initiative Integrating all VDM tools (in preparation, 2009)

29. Larsen, P.G., Fitzgerald, J.S., Riddle, S.: Practice-oriented courses in formal meth-
ods using VDM++. Formal Asp. Comput. 21(3), 245–257 (2009)

30. Larsen, P.G., Lausdahl, K., Batle, N.: Combinatorial Testing for VDM++. Sub-
mitted for publication (2009)

31. Leberre, D., Delorme, F.: An eclipse plugin for the alloy4 tool,
http://code.google.com/p/alloy4eclipse/

32. Oliveira, J.N.: Transforming Data by Calculation. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 134–195. Springer, Heidelberg
(2008)

33. Oliveira, J.N.: Extended Static Checking by Calculation using the Pointfree Trans-
form. In: Bove, A., et al. (eds.) LerNet ALFA Summer School 2008. LNCS,
vol. 5520, pp. 195–251. Springer, Heidelberg (2009)

34. Plat, N., Larsen, P.G.: An overview of the ISO/VDM-SL standard. SIGPLAN
Notices 27(8), 76–82 (1992)

35. Schierl, A., Schellhorn, G., Haneberg, D., Reif, W.: Abstract Specification of the
UBIFS File System for Flash Memory. Submitted to FM 2009 (2009)

36. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

37. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. American
Math. Soc., vol. 41. AMS Colloq. Pub., Providence (1987)

38. Vermolen, S.: Automatically Discharging VDM Proof Obligations using HOL. Mas-
ter’s thesis, Radboud University, Computer Science Department (2007)

39. Weiser, M.: Program slicing. In: 5th Int. Conf. on Software Eng., San Diego, Cali-
fornia (March 1981)

40. Yang, J., Twohey, P., Engler, D.R., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24(4), 393–423 (2006)

http://code.google.com/p/alloy4eclipse/

Towards Safe Design of Synchronous Bus
Protocols in Event-B

Ricardo Bedin França1, Leandro Buss Becker1, Jean-Paul Bodeveix2,
Jean-Marie Farines1, and Mamoun Filali2

1 Universidade Federal de Santa Catarina
Campus Universitário – Departamento de Automação e Sistemas

88040-970 Florianópolis
2 Université de Toulouse – IRIT CNRS

118 Route de Narbonne
F-31062 Toulouse – France

Abstract. In this paper1, we address the problem of developing syn-
chronous bus protocols with Event-B. The interest of using Event-B
lies in its parameterized nature, as well as its refinement-based mod-
eling methodology and its formal verification semantics. A synchronous,
generic model was created to serve as a basis for synchronous bus pro-
tocols with a centralized arbiter. Bus protocols and their properties can
then be specified as refinements of the generic model: properties are
specified and verified with the Event-B proof semantics, their preserva-
tion being enforced in the construction of correct refinements. We use
the AMBA bus protocol as an application example of our synchronous
model, with emphasis in its arbitration phase and the mutual exclusion
property.

Keywords: Event-B, bus protocols, parameterized systems, synchronous
systems.

1 Introduction

The increasingly complex modern embedded systems demand powerful design
techniques in order to avoid prohibitive costs in the development and mainte-
nance of such systems. In this context, formal methods are being widely employed
in the specification and verification of embedded systems: formal specifications
enforce early design decisions and may be used in high-level property verification.

A communication bus can be seen as the backbone of an embedded system: the
overall communication speed depends on its hardware aspects, such as bandwidth
capacity, and also on the communication protocol that describes how it is accessed
and shared by its connected devices. Since it affects the system performance in a
directmanner, it is important to specify andverify its behaviorwith soundmethods
that are able to cope with the parameterized nature of bus specifications.
1 This work was partially funded by CAPES (Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior) and TOPCASED (http://www.topcased.org).

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 170–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Safe Design of Synchronous Bus Protocols in Event-B 171

In this paper, we use the Event-B method to design synchronous bus pro-
tocols, with emphasis in an incremental modeling and a formal, parameterized
verification based on theorem proving. The Event-B refinement-based approach
is used to devise a generic model for synchronous bus protocols with a centralized
arbiter; the protocols are then specified as refinements of this generic model.

The paper is structured as follows: Section 2 depicts the most important
aspects of bus protocols in the scope of this paper, Section 3 presents the B and
Event-B methods, Section 4 presents our generic synchronous bus model and
how it is used to specify and verify an actual protocol and Section 5 discusses
the results of our work and similar ones. The final remarks of this paper are
presented in Section 6.

2 Basic Bus Concepts

A bus is, basically, a transmission medium that connects the devices which share
it. This connection is made by a certain number of ‘lines’ that may transmit data,
control, or both, and are accessible by all the connected devices. Since the bus is,
by definition, a shared resource, there must be an access control in order to avoid
data overwriting or inconsistencies; usually, one of the devices – a bus arbiter –
manages the use of the bus by the other devices, which shall be referred in this
paper as the bus controllers.

Stallings [17] classifies buses according to their type (dedicated or multiplexed
lines), method of arbitration (a centralized or distributed arbitration) and timing
(synchronous or asynchronous), as well as the quantity of available lines and data
transfer types.

The behavior of a bus is defined by the control flow among it, its arbiter and the
controllers. Among the main control lines seen in common buses, there are those
who deal with bus access requests, I/O and interruption commands, and trans-
fer acknowledgments. The data transmissions across the bus are achieved by two
stages: firstly there is an arbitration period, where the bus controller shall decide
what component will be able to use the bus and thus become a transfer ‘master’,
and a transfer period, where the master sends or receives data from a slave.

In this work, we shall deal with synchronous bus protocols with only one de-
vice (the arbiter) being responsible for the arbitration process. In a synchronous
protocol, the bus lines are read every clock cycle, before any line is updated by a
controller or the arbiter. The bus controllers and the arbiter send data and control
through the communication lines in any order – all devices update their outputs be-
fore the next clock cycle. Hence, the synchronous data read ensures a synchronous
protocol even if the whole protocol behavior is not completely deterministic.

2.1 The AMBA Protocol

The Advanced Microcontroller Bus Architecture (AMBA [2]) protocol was de-
veloped in 1995 by ARM2. Initially used in the ARM processors, it has been

2 http ://www.arm.com/

172 R.B. França et al.

widely employed in systems-on-a-chip (SoCs). The AMBA specifications pre-
sented in this work are based in the version 2 of this protocol. According to the
classification seen in [17], this protocol has synchronous timing, centralized ar-
bitration, dedicated lines, 32-bit data bus width and several transfer types. The
AMBA may be implemented as a standard system bus (ASB), high-performance
system bus (AHB, used in this work) or peripheral communication bus (APB).
The most important bus lines in the scope of this work are:

HBUSREQ. Control lines that are used to send access requests from the con-
trollers to the arbiter. The bus has one HBUSREQ line for each controller
– we assume that all controllers are able to become masters.

HGRANT. Control lines used by the arbiter to grant bus access to a controller.
There is one HGRANT line for each controller.

HMASTER. Control line used by the arbiter to display the current bus master.
HTRANS. Two control lines used by the master to specify the current transfer

type.
HADDR. 32 address lines used by the master to specify the slave address.
HWDATA. 32 data lines used in write operations.
HRDATA. 32 data lines used in read operations.
HREADY. Control line set by the slave when it is ready to write or read data.
CLK. The system clock line.

The arbitration in the AMBA protocol is “hidden”, therefore, no clock cycles
are wasted in a master change: in a single cycle the HGRANT line of the current
master is reset and the HGRANT line of another one is set. While some transfer
types have a fixed length in clock cycles, others can last until the HBUSREQ
signal of the master reset. In the end of a transfer, the arbiter passes bus control
to a controller which has set its HBUSREQ line in order to require bus access. If
there is no controller waiting to carry out a transfer, control is given to a “default
master”. In such cases, the default master sets the HTRANS lines with a special
value to show that no transfer is taking place.

One period after setting a HGRANT line, the arbiter puts the master address
in HMASTER line and the master puts the slave address in the HADDR line.
In the following clock cycles, the master puts data in the HWDATA lines and
the slave puts data in the HRDATA ones. Since the arbiter changes masters in
the last clock cycle of a transfer in order not to waste cycles, the current master
must reset its HBUSREQ line in the next-to-last cycle if the transfer has no fixed
length. Figure 1 shows the behavior of the HBUSREQ and HGRANT lines in a
typical arbitration timeline.

2.2 Issues with Synchronous Bus Protocols

In order to have proper synchronous specifications and meaningful results with
formal verification, their synchronous, parameterized nature must be taken into
account. The design approaches that use model checking to verify system spec-
ifications are not the most suitable for our objectives: the general case of pa-
rameterized temporal verification was proven undecidable in [3], because of the

Towards Safe Design of Synchronous Bus Protocols in Event-B 173

Fig. 1. Simplified arbitration in the AMBA protocol

infinite state space generated by a parameterization. In some cases, such as ring
topologies, the problem of parameterized verification can be solved with the
use of model checking, as shown by Emerson and Namjoshi [9]: They proved
that a parameterized verification in a ring may be obtained by a normal model-
checking on a small instance of the parameterized ring. However, such proofs are
not trivial and non-ring topologies would require other proofs.

One alternative to the verification with model checking is the theorem proving
approach. Its main drawback is the user interaction that is often required to finish
the proofs, but the set representation of data structures can be seen as a natural
system parametrization. As parameterized verification is a main issue of this
work, this approach is the one used in our work. The bus protocols are specified
and verified with Event-B, a refinement-oriented method that uses invariant and
theorem proving to validate its specifications.

3 The B Method

The B Method is a formal, refinement-based, method for designing discrete sys-
tems. It “essentially deals with the central aspects of the software life cycle,
namely: the design by successive refinement steps, the layered architecture, and
the executable code generation” [1].

This method uses set theory as its notation, thus variables are either sets or
elements of a set. This notation enables the design of parameterized systems,
since the sets do not need to be enumerated to be used.

The basis of a B specification is the machine. A machine specification describes
a system module with its static and dynamic characteristics. The static part is
given mainly by variables, which denote the system state, and invariants - first-
order logic predicates that describe constraints over the state. The dynamic
part of a machine is given by its operations: variable substitutions guarded by
pre-conditions.

The specification is then validated by means of proof obligations: assuming
that all invariants hold before an operation, they must be proven to hold after
the operation, too. B Method tools usually include automatic theorem provers
to help in this validation.

A most useful feature in the B Method is the notion of refinement. When a ma-
chine is refined, its proven invariants are kept in its lower-level specifications, thus

174 R.B. França et al.

ensuring the validity of high-level properties. In the new machine, new events can
be created and the old ones can be refined. New variables can also be created and
abstract variables can be replaced by concrete ones, their mapping being described
with a gluing invariant. Besides the gluing invariant, the mapping of variables re-
lies on witness declared inside events: a witness maps an abstract variable to a
concrete one in an event refinement. A witness must respect the gluing invariant,
correct witnesses underline the mapping between abstract and concrete guards
and actions.

3.1 Event-B

Event-B [13] is a variation of the B Method, that focuses less in low-level aspects
such as software behavior and code generation. In Event-B, operations are re-
placed by events (which are simpler and represent reactive behaviors very well)
and sets, constants and axioms are declared inside contexts. Each machine can
“see” one or more contexts. Figure 2 shows a typical context declaration.

Events have a “any...where...then” basic form, with instantiated variables in
the any clause, the guard predicates in the where clause and the actions (sub-
stitutions) in the then part. Figure 4 shows events where the any or both any
and where clauses are not used.

In this work, the Event-B specifications were verified with the Rodin3 tool.
The proof obligations can be satisfied either with the available automatic provers
or interactively, with direct interference from the user.

4 Synchronous Bus Protocols in Event-B

4.1 The Synchronization Model

As the Event-B method has the notion of refinement, it is clear that the bus
protocols should be designed in several steps, instead of specifying them mono-
lithically. Thus, each refinement may represent a different abstraction layer of a
protocol, making the specifications easier to understand.

Modeling a synchronous bus protocol in Event-B is not completely straight-
forward: the controller and arbiter actions are specified with events, but such
events are not simultaneous, while the controller actions in actual buses are seen
as simultaneous. Since all synchronous protocols must have this modeling prob-
lem solved, it is useful to have a generic, synchronous model that can be used
as a basis for synchronous protocols. Each protocol may then be specified as a
refinement of this basis, using events to describe its actions, and avoiding any
problems related to the synchronization of actions. Such a model has much in
common with the emerging concept of patterns in Event-B [4,12,7], in the sense
that Event-B variables and events are reused in several specifications, but our
model is refined in protocol specifications, while patterns are usually seen as
snippets of code embedded in a B specification.
3 http://www.event-b.org/platform.html

Towards Safe Design of Synchronous Bus Protocols in Event-B 175

CONTEXT synchronous_c
SETS CONTROLLERS

CTR_STATES
END

Fig. 2. The basic context

VARIABLES
finishedArb
globalstateCtr
preglobalstateCtr
busbusy
prebusbusy

INVARIANTS
typinv_fa : finishedArb ∈ BOOL
typinv_gstate : globalstateCtr ∈ CONTROLLERS
→ CTR_STATES
typinv_pgstate : preglobalstateCtr ∈ CONTROLLERS → CTR_STATES
typinv_busbusy : busbusy ∈ BOOL
typinv_prebusbusy : prebusbusy ∈ BOOL

Fig. 3. Abstract specification variables and type invariants

The model comprises a context (synchronous_c) and two machines (syn-
chronous and ctr_async). We decided to use two machines for methodologi-
cal reasons: synchronous depicts the system in a fully synchronous view, while
ctr_async “desynchronizes” the controllers.

The context synchronous_c contains two nonempty4 sets, shown in
Figure 2 – the carrier set CONTROLLERS for the controllers and the enu-
merated set CTR_STATES for the controller abstract states. This structure
could be modified in order not to have abstract state variables, however, in the
Event-B refinement-based approach, it makes sense to start modeling a protocol
with high-level state machines before specifying the concrete variables: abstract
variables are often useful to prove high-level properties and such properties are
preserved in the concrete variables by means of correct gluing invariants. As
different protocols might have different states, the basic model does not define
the elements of the CTR_STATES set.

In the machine synchronous, we have a fully synchronous view of the system.
The most abstract variables of the synchronization model are seen in Figure 3.
We need two flags to show that every controller has acted in the period (we
assume that controllers do act every clock cycle) and the arbiter has also taken
a decision; these flags are the globalstateCtr and finishedArb variables. Also, the
globalstateCtr variable stores the state of each controller, and busbusy shows
the bus internal state. We also create “pre” variables to store past values of the
state variables. Only type invariants are shown here, as system properties shall
be given within actual protocol descriptions.

The desired behavior of the controllers and the arbiter, as well as the clock
mechanism, is represented by the four events of Figure 4: one mandatory initial-
ization event, one for the synchronous system clock, one that triggers an arbiter

4 In B, abstract sets are considered as finite and nonempty.

176 R.B. França et al.

action in a given period, and another that comprises the actions of all controllers
in a period.

The bus state variable busbusy and its “pre” counterpart, as well as preglob-
alstateCtr, are initialized nondeterministically, since at this level the controller
state set is abstract and the arbiter state is not important. The initialization of
globalstateCtr with the empty set means that the controller states for the cur-
rent period are not yet defined – as it will be shown, this enables the controller
actions event and disables the clock event.

The next_step event represents a clock step, saving the current state variable
values in their “pre” variables and resetting other variables. It may be triggered
only if the arbiter and the controllers have taken their actions in the current
period: this guard represents the assumption that every controller manages to
operate its bus lines before the end of the current period. As it updates all the
state variables simultaneously, it is the key to the system synchronization.

A generic arbiter action is given by the generic_arbiter_action event, it states
that if the arbiter did not act in the current cycle, it may take an action, seen in
the action_taken clause. This action must be refined lately, as it is nondetermin-
istic in order to keep the model as generic as possible. The controllers_sync event
depicts a simultaneous action by all the controllers – in the highest abstraction
level, one should have a synchronous view of the controllers.

The machine ctr_async refines the machine synchronous and goes further
in representing the controller actions. It uses the same context as synchronous,
and adds a new variable and a new event to underline the real, independent
way each controller or group of controllers act. The declarations added in this

EVENTS
INITIALISATION BEGIN

ini_pbusbusy : prebusbusy :∈ BOOL
ini_busbusy : busbusy :∈ BOOL
ini_pgstate : preglobalstateCtr :∈ CONTROLLERS → CTR_STATES
ini_gstate : globalstateCtr := ∅ /∗ the set of pairs defining the partial function is empty ∗/
ini_fa : finishedArb := FALSE
END

EVENT next_step WHEN
arb_done : finishedArb = TRUE
ctr_sync : globalstateCtr ∈ CONTROLLERS → CTR_STATES
THEN
update_states : preglobalstateCtr := globalstateCtr
update_arb : prebusbusy := busbusy
reset_gstate : globalstateCtr := ∅

reset_fa : finishedArb := FALSE
END

EVENT generic_arbiter_action WHEN
arb_rdy : finishedArb = FALSE
THEN
arb_done : finishedArb := TRUE
action_taken : busbusy :∈ BOOL
END

EVENT controllers_sync WHEN
not_sync : globalstateCtr = ∅

THEN
ctr_sync : globalstateCtr :∈ CONTROLLERS → CTR_STATES
END

Fig. 4. Basic events of the machine synchronous

Towards Safe Design of Synchronous Bus Protocols in Event-B 177

VARIABLES
stateCtr

INVARIANTS
typinv_stateCtr : stateCtr ∈ CONTROLLERS
→ CTR_STATES

EVENTS
INITIALISATION BEGIN

ini_state : stateCtr := ∅

END
EVENT generic_controller_action

ANY
C, ns
WHERE
some_ctrls : C ∈ P(CONTROLLERS)
didnt_act : C ∩ dom(stateCtr) = ∅

new_states : ns ∈ C → CTR_STATES
THEN
statechange : stateCtr := stateCtr ∪ ns
END

EVENT next_step REFINES next_step
THEN
reset_state : stateCtr := ∅

END
EVENT controllers_sync REFINES controllers_sync

WHEN
not_sync : globalstateCtr = ∅

ctr_done : stateCtr ∈ CONTROLLERS → CTR_STATES
THEN
ctr_sync : globalstateCtr := stateCtr
END

Fig. 5. Added features in the machine ctr_async

machine are depicted in Figure 5 – the clauses of Figures 3 and 4 are preserved
but they were omitted due to space restrictions. The new variable stateCtr has
the same type of globalstateCtr and is also initialized with the empty set, but
it can be modified in several steps, instead of a single step like in the global
variable.

The generic_controller_action event describes generic actions taken by a
group of controllers that have not yet taken an action in the current period.
The next_step event has an extra action to reset the new variable, and the
controllers_sync event has an extra guard to ensure that the synchronization
happens only after the actions of all controllers.

This model can be used regardless of the system topology, assuming that all
the values can be read and written in time. If the generic controller and arbiter
events are correctly refined, each controller will trigger one of the refined events
in any order, the arbiter will also trigger one event, and the synchronizing events
(controllers_sync and next_step) will ensure that the same values are read by
all the controllers and the arbiter. As this behavior is expected in synchronous
protocols, the model can be used to specify any synchronous protocol with a
centralized arbiter.

4.2 Applying the Synchronization Model: The AMBA Protocol

In order to show how our model can be used in an actual protocol specification,
we specified a simplified version of the AMBA protocol as a refinement of the

178 R.B. França et al.

synchronization model. We use three levels of abstraction: level 0 models the
protocol states and its desired protocol property (mutual exclusion), level 1 gives
an abstract view of the protocol (with its abstract transitions) and level 2 refines
the arbitration phase in order to represent the concrete bus arbitration variables.
We keep the transfer phase at an abstract level, since an actual AMBA transfer
is very detailed and we did not intend to verify any properties at a concrete
level.

All Event-B components of this AMBA specification have the amba_ prefix,
followed by a letter (c for a context, m for a machine) and a number to indicate
its level.

Level 0 - A High-Level Invariant. The most abstract machine in the Event-
B specification contains only the necessary elements to state the basic property
we wanted to verify at this level – the bus data lines being used by at most
one controller. Taking into account only the arbitration phase, we have three
states: idle, request and master – at this level, we do not need to model slave
controllers. These states are represented in the automaton of Figure 6.

Fig. 6. Abstract controller behavior for the AMBA protocol

We make use once again of the refinements to model the abstract states at
level 0. As the transitions are not essential to create the invariant that will
state the mutual exclusion property, they will be specified in the next level. The
context amba_c0, created to specify the controller states, is seen in Figure 7.

In order to express the property, new variables had to be created in the spec-
ification presented in the previous section. The variable owner contains the
controller which has the permission to use the bus data lines. As other state
variables, it also has a “pre” counterpart to store its past value.

The basic invariant to express the mutual exclusion property is seen with
the new variables in Figure 8: The set of controllers which are in the master
state must be included in the singleton preowner. It must be noted that the
“pre” value is used because it represents the value seen in the clock cycle – in
the actual protocol, the arbiter and controllers have access only to past values

Towards Safe Design of Synchronous Bus Protocols in Event-B 179

CONTEXT amba_c0 REFINES synchronous_c
CONSTANTS idle, request, master
AXIOMS axm1 : CTR_STATES = {idle, request, master}

axm2 : idle �= request
axm3 : idle �= master
axm5 : request �= master

END

Fig. 7. The amba_c0 context

VARIABLES
owner, preowner

INVARIANTS
typinv_owner : owner ∈ CONTROLLERS
typinv_preowner : preowner ∈ CONTROLLERS

singlemaster : stateCtr−1[{master}] ⊆ {preowner}

Fig. 8. Variables and invariants to express the level 0 basic property

EVENT generic_controller_action REFINES generic_controller_action ANY
C, ns
WHERE
some_ctrls : C ∈ P(CONTROLLERS)
didnt_act : C ∩ dom(stateCtr) = ∅

new_states : ns ∈ C → CTR_STATES

correct_master : ns−1[{master}] ⊆ {preowner}
THEN
statechange : stateCtr := stateCtr ∪ ns
END

Fig. 9. The controller event with a guard to ensure the invariant

of other components. The “pre” values shall be used in property verification
whenever the properties are synchronous – we say a property is synchronous if
it must be checked over the synchronized variable values.

As the invariant singlemaster must be respected, one must specify events
carefully. Since the event generic_controller_action changes the values of the
variable stateCtr, it must be proved that it will never assign the “master” value
to a controller that is not the bus owner of the last period. A new guard (cor-
rect_master) was created in the generic controller event, as Figure 9 shows. This
guard ensures that if a subset of controllers will go to the “master” state, this
subset shall be a subset of {preowner}, as required by the invariant. Thus, every
correct refinement of this generic event will have to refine this generic guard and
the property will be preserved at more concrete levels.

Level 1 - An Abstract Event-B View of the AMBA Protocol. Together
with the synchronization model, level 0 presented the synchronization process
of the bus controllers, as well as the mutual exclusion invariant. At level 2, it
was intended to present the most elementary interactions of the protocol. These
interactions model the arbitration phase of the protocol, when the controllers
try to receive bus access. This level was specified with an Event-B machine
(amba_m1) which refines the abstract synchronous model. No new invariants

180 R.B. França et al.

were created, as there are no new variables and the invariant was already created
and proven in Level 0.

The generic controller event is now decomposed into four new events which
specify the state changes seen in Figure 6: idle to request, request to master, idle
to master (in the case of a default master) and master to idle. Figure 10 shows
the event req2master, which changes the state of a controller from “request”
to “master”: at levels 1 and 2, a controller event changes the state of only one
controller. The witness shows the relations between the abstract set C and the
refined variable c, as well as the set of new states to the state of the single
controller which is involved in the refined event. The guard is_req ensures that
this state transition will happen only with a controller that was waiting for bus
control, as the event req2master is a transition from the “request” to the “master”
state. The guard is_owner refines the guard correct_master seen in level 0: the
event can be triggered only for a controller which was the bus owner in the last
period.

EVENT req2master REFINES generic_controller_action
ANY c
WHERE
a_ctrl : c ∈ CONTROLLERS
didnt_act : c /∈ dom(stateCtr)
is_req : preglobalstateCtr(c) = request
is_owner : prebusbusy = TRUE ∧ preowner = c
WITNESSES C = {c} ∧ ns = {c
→ master}

THEN
going_master : stateCtr := stateCtr �− {c
→ master}
END

Fig. 10. A controller event from level 1

The arbiter generic event is refined into three main events: one that repre-
sents an idle bus granting access to a controller, another for owner changes, and
another one for the busy to idle transition. These events show the concept of
“hidden arbitration” seen in AMBA, since no clock cycles are wasted due to arbi-
tration. As the arbitration specification is still abstract, the “master” controller
has its access removed nondeterministically.

In addition to these events, there are two “default” events, one for the arbiter
and one for the controllers, which are triggered in situations where their states
shall not be changed. The clock cycle event is refined in order to update the
variables created in this level.

At this level, the default master will be chosen randomly. In case of an idle
bus, the default master will have the same “master” state as a normal master,
however, the busbusy variable will store the false value to state that no transfer
is taking place.

Level 2 - Introducing AMBA Arbitration Lines. The Level 2 specification
presents the arbitration phase in a more concrete way, using the HMASTER,
HBUSREQ and HGRANT lines (as well as their pre values) which are seen

Towards Safe Design of Synchronous Bus Protocols in Event-B 181

in the AMBA buses. The presence of these lines permits a further refinement
of the arbitration events which change the bus owner – now the bus access
can be removed when the current master turns off its HBUSREQ line. This level
contains a context (amba_c2) and a machine (amba_m2). The context contains
only the declaration of a default master: a constant called DefCtr which is one
of the controllers. The machine amba_m2 contains the new variables and the
necessary mapping between them and their abstract counterparts, as well as
invariant and event refinements.

As we shall deal with actual AMBA arbitration lines, the abstract arbitration
variables owner and preowner are no longer necessary. Hence, these two variables
are excluded from the amba_m2 machine, but a gluing invariant is necessary to
specify how the mapping between abstract and concrete variables works.

MACHINE amba_m2 REFINES amba_m1 SEES amba_c1
VARIABLES

...
HGRANT
preHGRANT
prepreHGRANT
preprebusbusy
HMASTER
preHMASTER

INVARIANTS
...
inv1 : HGRANT ∈ CONTROLLERS → BOOL
inv2 : HGRANT = (CONTROLLERS × {FALSE}) �− {owner
→ TRUE}
inv3 : preHGRANT ∈ CONTROLLERS → BOOL
inv4 : preHGRANT = (CONTROLLERS × {FALSE}) �− {preowner
→ TRUE}

Fig. 11. Gluing invariants in the AMBA arbitration refinement

Since the AMBA protocol always has a master, the value of the owner abstract
variable will always be the same as the controller which has the true value in the
concrete HGRANT variable. Therefore, there is a gluing invariant that links the
concrete variable to its abstract counterpart. The conjunction of invariants inv2
and inv4 of Figure 11 are the gluing invariant: the HGRANT variable maps all
controllers to the false value, except for the owner. A similar correspondence is
made to the preHGRANT variable. Among the new variables of this level, there
are two with the prepre prefix. These variables are inspired by synchronous lan-
guages, where the memory used to store past values of a given variable depends
on the quantity of nested pre operators. In our case, the HMASTER variable
calculates its value in period n with values from the period (n-2), thus we need
“pre” and “prepre”.

The initialization event must have witnesses which state the mapping between
abstract and concrete variable initializations, when the abstract variables have
a non-deterministic initialization and the concrete ones are initialized with con-
crete values. As it can be seen in Figure 12, the initialization specification starts
with mappings for the owner′ and preowner′ variables. The DefCtr value is now
assigned to the HMASTER variable and its HGRANT line is initialized as true,
placing the default master as the bus owner in its initialization.

182 R.B. França et al.

EVENTS

INITIALISATION

WITNESSES
owner′ : owner′ = DefCtr
preowner′ : preowner′ = DefCtr
ini_fa : finishedArb := FALSE
BEGIN
ini_state : stateCtr := ∅

ini_busbusy : busbusy := FALSE
ini_HGRANT : HGRANT := (CONTROLLERS × {FALSE}) �− {DefCtr
→ TRUE}
act2 : globalstateCtr := ∅

act4 : HMASTER := DefCtr
...
END

Fig. 12. Initialization in the AMBA arbitration refinement

The other events of amba_m2 are refined by means of the inclusion of concrete
variables where abstract variables were used, validating these changes with the
verification of the gluing invariant. Also, a new event is created to specify the
behavior of the HMASTER variable.

5 Discussion and Related Work

5.1 Synchronous Protocol Modeling in Event-B

The specification of a synchronous bus protocol in an asynchronous environment
such as the one seen in Event-B is not a trivial task, however, the synchronous
structure presented here makes it possible to reason about synchronous invari-
ants (such as the mutual exclusion property, which involves the whole set of
controllers) without changing the controllers individual reasoning – events that
modify one controller at a time. The same generic model was used to specify the
PCI Protocol, its specifications and the complete code of the AMBA specification
presented here are available in [11].

It is important to note that this generic model can be used outside our in-
tended domain with minor changes: it can be used in synchronous bus protocols
with distributed arbitration if the arbiter variables and its event are removed.
Also, the next_step event can be used as a pattern in synchronous specifications,
storing past system states and resetting system flags and the current state.

Synchronous languages may be seen as natural tools for designing synchronous
bus protocols. Indeed, the Esterel language was used by Berry et al [5] in the
modeling and verification of a system which uses the CoreConnect bus. However,
system modeling with such languages does not solve the parameterization issues
described in section 2.

The Event-B method was already used in previous works with bus protocols.
Cansell et al [6] used Event-B to prove the consumer-producer property in the
PCI protocol. In their work, the protocol synchronization issues were not dealt
with: their main concern were the complex proof obligations that could arise,
thus an incremental modeling was important to reduce the proving efforts during

Towards Safe Design of Synchronous Bus Protocols in Event-B 183

the verification phase. Zimmermann [18] used a bus protocol as a case study to
illustrate his circuit development methodology, which involves formal modeling
and verification with Event-B and generation of VHDL code. As neither of these
works was concerned with synchronous bus protocols, our synchronization model
for bus protocols is the main contribution of our work.

5.2 Protocol Verification Issues

The use of Event-B ensured a parameterized verification of our specifications,
fulfilling a main concern of this paper. As the necessary proof obligations of
these specifications are fairly simple, the Rodin automatic theorem prover was
able to cope with most proofs. As it can be seen in table 1, there are indeed
some manual proof obligations, but in such cases it was sufficient to change the
automatic theorem prover inside Rodin.

Table 1. Proof obligations of all machines

Specification Automatic POs Manual POs
synchronous 8 0
ctr_async 4 0
amba_m0 5 1
amba_m1 14 13
amba_m2 37 23

Sum 68 37

In such cases where there are not too many complex proofs, and if parame-
terization is more prioritary than automation, it is interesting to use the B and
Event-B methods instead of approaches that use model checking. On the other
hand, if the maximum number of controllers connected in a bus is known be-
forehand (e.g. if one wants to design a bus protocol for a bounded number of
controllers), the user’s interactions seen in Event-B may be a major disadvan-
tage, while model checking works well in finite-state systems (with a reasonable
size).

There is a number of bus-related works that use model checking for system
validation. Clarke et al [8] use the PCI protocol as an example for their mod-
eling methodology that employs Abstract Binary Decision Diagrams to create
efficient system specifications for model checking. Their technique enables state
space reduction, but does not cope with the infinite state space generated by
parameterized systems. The PCI protocol is also used by Shimizu et al [16] in a
monitor-based specification for model checking. The use of monitors is aimed to
ease system modeling, but once again the parameterized verification problem is
not dealt with. Oumalou et al [14] also use the PCI protocol in a design strat-
egy that involves UML in a high-level modeling, Abstract State Machines for
verification with model-checking, and a SystemC-based implementation. This
methodology helps in the formal verification of SystemC implementations but

184 R.B. França et al.

once again the protocol is not verified in a parameterized fashion. A bus-specific
language was created by Pal et al [15] for modeling and verification with model
checking. It has features that enable hierarchical and parameterized modeling,
however, the property verification with model checking requires concrete system
instances. In [10], TLA+ was used for PCI bus modeling purposes, however, at
that time TLA+ did not offer a proof manager to assist system verification.

6 Conclusion

In this paper, we have presented an approach for modeling and verification of
synchronous bus protocols. As refinement-based modeling and parameterized
verification were our top priorities, the Event-B method was chosen to carry out
both modeling and verification.

The main contribution of this work is a reusable, generic synchronous struc-
ture created to specify synchronous bus protocols. This structure eases the
abstract specification of protocols with events that describe independently the
behavior of controllers and the bus arbiter. The necessary verifications in our
example (the AMBA protocol) were carried out by means of refinement and
invariant verification. In spite of the interactive nature of this verification, no
considerable user interference was necessary. With the use of our synchronous
Event-B model, it is possible to put together synchronization (even if the envi-
ronment is asynchronous), parameterization and incremental design.

Possible future works include the application of our structure in the devel-
opment of protocols to an implementation level, as well as further investigation
about other bus-related properties and their representation in Event-B.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. AMBA Specification (Rev. 2). ARM Limited (1999)
3. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett. 22(6), 307–309 (1986)
4. Ball, E., Butler, M.: Event-B patterns for specifying fault-tolerance in multi-agent

interaction. In: Workshop on Methods, Models and Tools for Fault Tolerance, Ox-
ford, pp. 4–13 (2007)

5. Berry, G., Kishinevsky, M., Singh, S.: System Level Design and Verification Using
a Synchronous Language. In: ICCAD 2003: Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design, San Jose, p. 433 (2003)

6. Cansell, D., Gopalakrishnan, G., Jones, M., Méry, D., Weinzoepflen, A.: Incremen-
tal proof of the producer/consumer property for the PCI Protocol. In: Bert, D.,
P. Bowen, J., C. Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 22–41. Springer, Heidelberg (2002)

7. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for event B development.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 140–154.
Springer, Heidelberg (2006)

Towards Safe Design of Synchronous Bus Protocols in Event-B 185

8. Clarke, E., Jha, S., Lu, Y., Wang, D.: Abstract BDDs: A technique for using
abstraction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 172–187. Springer, Heidelberg (1999)

9. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL 1995: Proceedings
of the 22nd ACM SIGPLAN-SIGACT, pp. 85–94. ACM, New York (1995)

10. França, R.B., Farines, J.-M., Bodeveix, J.-P., Becker, L.B., Filali, M.: Modeling a
Bus Protocol: an Incremental Approach. In: 9th WTR. Belém (2007)

11. França, R.B.: An Approach for Modeling and Verification of Synchronous Bus
Protocols (Uma Abordagem para Modelagem e Verificação de Protocolos Sín-
cronos de Barramentos de Comunicação). Master’s dissertation, SAID/Université
de Toulouse (2008), UFSC, Florianópolis (2009),
www.tede.ufsc.br/teses/PEAS0008-D.pdf

12. Lliasov, A.: Refinement patterns for rapid development of dependable systems. In:
Workshop on Engineering Fault Tolerant Systems, article no. 10. ACM, Dubrovnik
(2007)

13. Metayer, C., Abrial, J.-R., Voisin, L.: Rodin Deliverable D7: Event B language.
Project IST-511599, School of Computing Science, University of Newcastle (2005)

14. Oumalou, K., Habibi, A., Tahar, S.: Design for Verification of a PCI Bus in System
C. In: Proceedings of the 2004 International Symposium on System-on-Chip (SOC
2004), pp. 201–204. IEEE, Tampere (2004)

15. Pal, B., Banerjee, A., Dasgupta, P., Chakrabarti, P.: The BUSpec Platform for
Automated Generation of Verification Aids for Standard Bus Protocols. In: MEM-
OCODE 2004, San Diego, pp. 119–128 (2004)

16. Shimizu, K., Dill, D., Hu, A.: Monitor-based formal specification of PCI. In: John-
son, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 335–353.
Springer, Heidelberg (2000)

17. Stallings, W.: Computer Organization and Architecture - Designing for Perfor-
mance. Prentice Hall, Englewood Cliffs (1994)

18. Zimmermann, Y.: Développement formel de circuits électroniques par la méthode
B. In: Approches Formelles dans l’Assistance au Développement de Logiciels, pp.
181–198. ACM, Namur (2007)

www.tede.ufsc.br/teses/PEAS0008-D.pdf

Mechanising Data-Types for Kernel Design in Z

Leo Freitas

Department of Computer Science
University of York, UK
leo@cs.york.ac.uk

Abstract. We present results from the mechanisation of a priority queue
and its operations. Our interest comes from its use in the specification
and refinement of a scheduler for OS kernels for embedded real-time
devices. It is part of a pilot project within the international Grand Chal-
lenge in Verified Software. Our work uncovers important hidden and
missing properties, and their relation to kernel design.

1 Introduction

Formal methods for software development allow the construction of an accurate
characterisation of a problem domain that is firmly based on mathematics; by ap-
plying standard mathematical analyses, these methods can be used to prove the
correctness of systems. The survey presented in [25] describes over 60 industrial
projects, and discusses the effect formal methods have on time, cost, and quality.
It shows that with tools backed by mature theory, formal methods are becoming
cost effective, and their use is easier to justify, not as an academic or legal require-
ment, but as part of a business case. These recent advances in theory and tool
support have inspired industrial and academic researchers to join up in an inter-
national Grand Challenge (GC) in Verified Software [12,23]. Work has started
with the creation of a Verified Software Repository (VSR) with two principal
aims: (i) the construction of verified software components; and (ii) industrial-
scale verification experiments to drive future research in the development of
theory and tool support [2].

This paper is an experiment undertaken as part of a pilot project on verifying
operating system (OS) kernels within the GC. It explores the mechanisation of
proofs of correctness of the formal specification and design of several operating
systems kernels for real-time embedded systems constructed by Craig [5]. In
particular, we focus in this paper on the underlying basic data structures used
by the various kernel components [10]. This is not to be confused with another
pilot project: the mechanisation of FreeRTOS [6], the real-time operating system.
One key difference in Craig’s kernel is the use of refinement from an abstract
specification down to code. We have already mechanised the abstract parts of
the scheduler, which is being prepared for publication [26]. Our contribution in
this paper is in the mechanisation of a priority queue data type used to used to
account for the known kernel’s processes, and their scheduling policy.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 186–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Mechanising Data-Types for Kernel Design in Z 187

Since these models are all in the Z notation [20], it naturally follows that we
use a Z tool, and for us that is the Z/Eves theorem prover (v. 2.4) [19,18]. The
choice is based on its ease of use, long previous experience and, most importantly
for involving students, its gentle learning curve. We had many successful cases
with MSc. students. The next section briefly set the scene, and Sections 3 and 4
present the mechanised abstract data types used in the kernel scheduler design,
together with a collection of interesting properties. After that, in Section 5, we
discuss some of the most important lessons learned through this experiment.
Finally, in Section 6 we present some conclusions.

Related work. In 2006, the first VSR pilot project was undertaken on the ver-
ification of the Mondex smart card [21] to ITSEC Level 6 (Common Criteria
Level 7) [14]. The work is reported in [16], where a summary of Mondex and
its original development and certification are described [16, p.5–19]. The exper-
iment mechanised the original manual proofs in Alloy [16, p.21–39], ASM [16,
p.41–59], Event-B [16, p.61–77], OCL [16, p.79–100], π-calculus [15], Raise [16,
p.101–116], and Z [16, p.117–139]. A second pilot project on POSIX compliant
flash file stores followed [11]. A domain model with widely used terminology
and well-understood requirements is needed, and we have based our mechanised
domain model based on the formal refinement of OS kernel designs [5].

There are two other related GC pilot projects: FreeRTOS [6] and the Microsoft
Hypervisor [4]. FreeRTOS is an open-source real-time embedded operating sys-
tem written in pointer-rich C, and it does not have a specification, making it
an attractive topic for research in formal analysis and top-down development.
The extensive use of pointers offers two complementary challenges: (i) the an-
notation of the code with suitable assertions and the verification of the code
against these assertions; and (ii) the top-down development of the code, starting
from a suitable specification of its abstract behaviour. The goal of the Microsoft
Hypervisor Verification Project is to develop an industrially viable verification
methodology for low-level code, and to use this methodology to verify the func-
tional correctness of the Microsoft Hypervisor [17]. The hypervisor is a 60kLoC
C and assembler program that turns a multi-processor (MP) x64 machine into
a number of virtual MP x64 machines.

2 Verified OS Kernels Pilot Project

An OS kernel is a central component of most operating systems, providing an
interface to the management of hardware and software resources, including mem-
ory, processors, and I/O devices. It offers this interface to application processes
through inter-process communication mechanisms and system calls. Among its
features, the most important are: low-level scheduling of processes; inter-process
communication; process synchronisation; context switching; manipulation of pro-
cess control blocks; hardware interrupt handling; process creation and destruc-
tion; etc.. Kernel development has a reputation for being a very difficult and

188 L. Freitas

complex programming task for two prime reasons. First, every computing sys-
tem requires the OS kernel to provide correct functionality and good perfor-
mance. Second, because the kernel cannot make (direct) use of the abstractions
it provides (e.g., processes, semaphores, etc.), which would make higher-level
programming of embedded and real-time systems easier.

Our pilot project is inspired by Iain Craig’s book on the formal refinement
of OS kernels [5]. The objectives are to demonstrate feasibility of top-down OS
kernel development using formal specification and verification, with refinement
down to a C implementation. Craig uses the Z notation [20,24,13] for specification
and refinement, and recording correctness arguments in hand-written proofs. Our
pilot project investigates the tractability of mechanising all the models in each
kernel development, including formalising all proofs. A key principle is to retain
these models as far as possible, making changes only for correctness, not for
easing the task of mechanisation.

Part of this investigation involves constructing prototype tool chains for the
development process from specification through design and down to code. For
the specification and verification we use Z theorem provers like Z/Eves [19].
Data refinement [24] links the abstract specification to a concrete design that
is closer to code, and we use a Z theorem prover. After that, we use the Z
refinement calculus (ZRC) [3] to go down to the guarded command language.
The invariants and pre- and postconditions for each programming statement
are then converted to a formal annotation language for C, such as Spec# [1].
Finally, tools like Boogie/PL and the Microsoft Verified C Compiler can be used
to perform static and partial correctness analysis. All results, including models,
mechanisation lemmas, papers, tools, etc. are being curated in the VSR.

The pilot project is currently in an exploratory phase, having mechanised the
whole of the simple kernel [26]. We have found some interesting issues, includ-
ing missing and hidden invariants. Although Craig’s models have great insight
from an OS engineer in necessary underlying data types, a series of mistakes are
introduced, both clerical and more substantial design decisions. On the other
hand, despite these errors, the work is carried out using the refinement calcu-
lus [3] and goes down to a real ANSI-C implementation running on embedded
processors, like the Intel IA32 architecture. With this work, our attempt is to
straight up all that effort more rigourously, hence laying out a solid foundation
for the development of formally verified kernels.

This paper is dedicated to our more intimate understanding of the invariants
for the kernel’s basic data structures that are relevant to scheduler design. We
take a step back from OS kernel design and verify its basic data structures to see
which invariants are fundamental, and which can be relaxed and proved as prop-
erties instead. We have reports (summarised in this paper) with all definitions
and proofs that can be found in [7,8,9].

3 Process Table

In Craig’s kernel [5, Ch. 3], processes are represented uniformly (i.e., they all have
the same kind of information). A process table is used to represent a finite list of

Mechanising Data-Types for Kernel Design in Z 189

unique process identifiers, together with the relevant information the kernel keeps
for each of them, such as scheduling priority, execution state and stack pointer,
sleeping timeout, interprocess message exchanges, and so on. It represents a
simple storage for used and free process identifiers.

In this section we present an improved version, where mistakes have been
corrected, and a less verbose modelling approach was adopted. Wherever dif-
ferences emerged due to style, rather than mistakes, equivalence theorems have
been proved to show that we are indeed talking about the same mathematical
artefacts. We follow the style of using Z advocated by Woodcock & Davies [24]
separates two concerns in the specification of data types: the successful behaviour
of each operation is first specified; once this is complete, each operation’s precon-
dition is analysed and appropriate error handling is added. Other specification
patterns for Z exist [22], and a few patterns overlap. The ones used in this work
came directly from previous experience, and our own catalogue (to appear),
which is tailored for proof in Z/Eves. We are also undertaking an interesting
experiment in proving this model together with our catalogue in a different the-
orem prover for Z. That should give us some parameter on whether the catalogue
is tool-oriented or general enough for the VSR. Details on proof strategies within
Z/Eves are beyond the scope of this paper, yet are available in the MSc course
material at York.

We first define a set of valid process identifiers (PID) as a strictly positive
range over some bounded maximum (maxpid ∈ N1), where the invalid identifier
(null) is outside this range. This is an axiomatic definition: it introduces global
constants for the specification, where maxpid constrains process identifier values
to be strictly positive, and min/maxprio will be used to define a non-empty
process priority range.

maxpid : N1; minprio,maxprio : Z

〈〈 rule RangePPRIO 〉〉 maxprio ≤ minprio

These global constants are said to be loosely specified, since although it has a
single value, we do not say precisely which one it is. The label “rule RangePPRIO”
gives a name to the fact that the range of priorities has at least one element, and
that the lowest value represents the highest priority. The rule mark identifies
it as a kind of rewrite rule that needs to be explicitly invoked. Next, the actual
ranges for process identifiers (PID) and their priorities (PPRIO) are declared
as an abbreviation for the set of integers bound by these constants. We also add
an abbreviation to represent time (as positive milliseconds) in process waking
delays. The null PID is an invalid number outside PID .

PID == 1 . . maxpid PPRIO == maxprio . . minprio
null == 0 GPID == PID ∪ {null} TIME == N

We introduce GPID as including the set PID and the null PID . Next, we add
an non-interpreted type to represent memory addresses and messages to be

190 L. Freitas

exchanged between processes. These abstractly specify a set of values as a specific
type. Finally, the different states a process can have is defined.

[MSG,ADDR] PSTATE ::= psterm | psrunning | psready | . . .

It is given as a Z free-type that characterises in this case an enumeration of
(unique) possible states a process may be in. The process table itself has seven
variables: the finite sets (F) of used and free PIDs; and partial functions (�→)
mapping for each used PID , process specific information. The state of the data
type is specified using one of the most characteristics elements of Z: the schema.
PTAB is a named mathematical structure describing an arbitrary instance of
the process table with an invariant constraining the relationship between the
variables. The invariants on free and used identifiers are disjoints and partitions
the whole of PIDs, and we only store process information for identifiers being
used. In other words, the process information mappings are total with respect to
PIDs in use. A PID is in use when it is known within the kernel: its corresponding
process state might then be either running, sleeping, ready, and so on.

PTAB
used , free : F PID ; prio : PID �→ PPRIO ; state : PID �→ PSTATE
stacktop : PID �→ ADDR; smsg : PID �→ MSG; waking : PID �→ TIME

free = (PID \ used) ∧ used = dom prio
dom prio = dom state = dom smsg = dom waking = dom stacktop

Process information is used by the scheduler whilst performing context switches.
Process priority (prio) is used to sort the scheduler’s ready queue. Process
state (state) documents what actions can be taken by the scheduler. The stack
(stacktop) pointers to the top of the process’ stack. As processes can commu-
nicate using synchronous message passing, smsg stores the latest message sent
to each process. Finally, some system calls may put the process to wait for a
specific amount of sleeping time (waking). Once “awake”, a process is returned
to the scheduler’s ready queue for subsequent execution. The refinement to code
use a linked list of (pointers to) process identifiers, a data structure modelled
and mechanised elsewhere [10].

Craig models error cases with separate schemas for the error reports from
the actual error conditions. First, we define some error cases as a free-type. The
complete list is rather long, and we mention only those used here. We also only
add one example schema to save space. It contains an output variable serr ! with
the corresponding error case.

SYSERR ::= sysok | pdinuse | unusedpd | ptabfull | pqfull | pqempty | . . .
ErrSysOk =̂ [serr ! : SYSERR | serr ! = sysok]

The conditions for each error case is given in the PTAB operations defined next.
Schema ErrSysOk reports the successful cases.

Mechanising Data-Types for Kernel Design in Z 191

3.1 PTAB Operations

Schema PTInit establish the initial state as an empty set PIDs. As it represents
the domain of all functions, they are also empty, where free is the whole PID .
Next, two query operations are defined. UsedPID determines for a input p?
whether it is being used, whereas PIDSFree enquires whether there are any free
PIDs left, which is the case if used is a proper subset of PID .

PTInit =̂ [PTAB ′ | used ′ = ∅] PIDSFree =̂ [ΞPTAB | used ⊂ PID]
UsedPID =̂ [ΞPTAB ; p? : PID | p? ∈ used]

In Z, PTAB ′ represents the PTAB schema, where all variables names have
been dashed; they represent the after state for PTAB . Similarly, the ΞPTAB
schema represents the inclusion of PTAB and PTAB ′, where all variables re-
main unchanged (i.e., used ′ = used , prio′ = prio, etc.). For instance, because
the PTAB functions are partial within used , whenever function application over
an input p? occurs in a PTAB operation, a proof obligation that p? belongs
to the domain of the function needs to be discharged (e.g., p? ∈ dom smsg).
As these proof obligations will appear quite often, to discharge those easily
enough and without the need to expand definitions, we add a few lemmas like
∀UsedPID • p? ∈ dom prio. We define two operations that allocate and free
PIDs, respectively. AllocPID has an output p! that is not being used, and then
updates used to know about its nondeterministically chosen value. If p? /∈ used ,
this operation does not affect the state. In the Z schema calculus ΔPTAB rep-
resents the inclusion of PTAB and PTAB ′, where all variable values are left
unconstrained.

AllocPID =̂ [ΔPTAB ; p! : PID | p! /∈ used ∧ used ′ = used ∪ {p!}]

The FreePID schema removes a given p? ∈ PID from used , as well as from each
function. Note the invariant about keeping the remainder of the PID information
constant was missing from the original model.

FreePID
ΔPTAB ; p? : PID

used ′ = used \ {p?}
prio′ = {p?} −� prio
state ′ = {p?} −� state
smsg ′ = {p?} −� smsg
wakingtime′ = {p?} −� wakingtime
stacktop′ = {p?} −� stacktop

An update operation is then defined for each one of the PTAB functions. We
collapse them all in one schema (AddPDESC) below for simplicity. It updates
each corresponding function with a given PID to its corresponding information.
For priorities, that is an input pr? ∈ PPRIO ; for the current process state, a

192 L. Freitas

st? ∈ PSTATE is used; and for the process waiting time, a t? ∈ TIME to sleep
after a system call is given. Finally, the complete process descriptor without
pending message to exchange is shown below.

AddPDESC
ΔPTAB ; p? : PID ; pr? : PPRIO ; st? : PSTATE ; t? : TIME

prio′ = prio ⊕ { (p? �→ pr?) } ∧ state ′ = state ⊕ {(p? �→ st?)}
waking ′ = waking ⊕ { (p? �→ t?) } ∧ smsg ′ = smsg ⊕ { (p? �→ nullmsg) }
{p?} −� stacktop′ = {p?} −� stacktop

The relational override (⊕) operator updates each function with the new
mapping between input p? and its corresponding values. That is, if p? already
belongs to the function, then its value is updated; otherwise, a new mapping is
added. This ensures the after state with information about p? remains functional.
For stacktop′, the effect of the operation is to nondeterministically choose it, as
this is what the model intended. Nevertheless, the original model does not even
mention stacktop′, meaning that previous mappings would have been lost, and
we fix that by saying that everywhere else but on p?, the mappings remain
constant. The mapping for p? in stacktop′ is what remains nondeterministically
chosen. Finally, the complete successful operation, which involves allocating a
PID and updating the corresponding functions accordingly, is defined next.

AddPDOk =̂ (PIDSFree o
9 AllocPID) ∧ AddPDESC [p!/p?] ∧ ErrSysOk

This definition suggests a very operational approach to the specification: first you
check whether there are any free PIDs, then you try allocating one together with
the corresponding updates over each function holding information over PIDs. In
Z, schema composition (S o

9 T) makes the after state of S the before state of T ,
which is kept hidden via existential quantification; the overall before state is that
of S , whereas the overall after state is that of T . Although this is not wrong,
we find it unnecessarily long winded. Instead, we use a simpler, expanded and
simplified version of the above definition, When conjoining schemas, all common
variable names must be type-compatible and no repetition is involved. This
gives the whole schema signature. The invariants are combined according to the
underlying logical operator: Z schemas can be both expressions or predicates,
depending on the context. In order to ensure we are dealing with the same
modelling artefact, we prove a theorem that both definitions are equivalent (e.g.,
AddPDOK ⇔ AddPDOkSimp). This is important to keep modifications sound.

A PID that is already in use cannot be reused, and the appropriate error mes-
sage is reported in the original. Nevertheless, the condition for such situation is
encompassed by the precondition of AddPDOk , hence we removed this operation
here. That means, such an error case is actually just a check of a condition that
would enable successful adding. When used reaches PID , AddPDTabFull reports
that the process table is full. Finally, following Woodcock & Davies’ style of mod-
elling [24], the complete operation AddPD is the disjunction between successful
and error cases accordingly.

Mechanising Data-Types for Kernel Design in Z 193

AddPDPTABFull =̂ [ΞPTAB ; ErrPTABFull | ¬ used ⊂ PID]
AddPD =̂ AddPDOk ∨ AddPDPTABFull

A few query operation over a known (i.e., p? ∈ used) PID are added to
extract information as outputs for each relevant function in the process table.

ProcPrio =̂ [UsedPID ; pr ! : PPRIO | pr ! = prio p?]
WaitingTime =̂ [UsedPID ; t ! : TIME | t ! = waking p?]

At last, we define the complete operation that corresponds to deleting a PID
and all its information from the PTAB . There are two cases: either the input p?
is being used, in which case it is freed and success is reported by DelPDOk ; or
else the PID is unknown, in which case it does not make sense to free it and
an error is reported by DelUnusedPID . The complete case is the disjunction of
possibilities, as in DelPD .

DelPDOk =̂ (UsedPID o
9 FreePID) ∧ ErrSysOk

DelUnusedPID =̂ [ΞPTAB ; p? : PID ; ErrUnusedPID | p? /∈ used]
DelPD =̂ DelPDOk ∨ DelUnusedPID

A final comment is that although Craig’s operational approach to modelling
is not wrong, it can sometimes add a unnecessary burden of proof due to its
verboseness. For these reasons, we will refactor his original specification in the
more complex data structures that follow. As we mentioned before, whenever
such changes take place, an equivalence theorem is added to ensure the correct-
ness of the model. On the other hand, errors of design and indeed modelling
do occur later on. In such cases where an equivalence theorem is not feasible, a
thorough explanation or a weaker (refinement) claim is proved (i.e., Corrected
⇒ Original). Thus, the corrected specification is at least as good as the original,
even if changed for the sake of easying the proofs.

3.2 PTAB Operations Preconditions

A precondition proof is required for each operation, where one can assume in-
puts (p?) and the before state (PTAB). These preconditions are summarised in
Table 1. We also prove that the PTAB can be initialised: (∃PTAB ′ • PTInit),
hence we can establish the state invariant assumed in the precondition proofs.

Table 1. PTAB operations preconditions

PIDSFree, AllocPID ,AddPDOk used ⊂ PID

AddPDPTABFull ¬ used ⊂ PID

UsedPID ,AddPDESC , ProcPrio, DelPDOk ,DelUnusedPID p? ∈ used

FreePID,AddPD, DelPD true

194 L. Freitas

Although these precondition proofs were rather trivial, they exposed a few au-
tomation lemmas needed for the mechanisation (more details in [9]). The pre-
condition for the other ProcXXX query operations are the same as ProcPrio.
The important aspect to notice is that the top-level operations (marked in bold)
have a robust interface: all execution cases are accounted for.

4 Priority Queue

The priority queue is used in the kernel’s scheduler. When a process is added
to this queue, its priority is used to determine where it should be inserted.
Its underlying implementation uses linked lists of processes identifiers with an
extended version of a Chain data type [10].

Capturing the properties of mid-point insertions within ordered lists can be
more complex than one might expect and has certainly be the most difficult to
mechanise. We avoided the operational style in favour of a more straightforward
model. It extends PTAB with a queue variable pq bound by a maximum maxs ,
and within the allocated processes identifiers. Although maxs bounds pq, maxs
is itself also (implicitly) bound by # used because of the ⊆ for pq with respect
to used . The queue is ordered so that the highest priority (e.g., lowest PPRIO
value) corresponds to the sequence’s lowest index.

PRIOQ
PTAB ; pq : seq PID ; maxs : N1

pq ≤ maxs ∧ ran pq ⊆ used
∀ i : dom pq | i < # pq • prio (pq i) ≤ prio (pq (i + 1))

We relaxed the restriction over the sequence elements being strictly within (⊂)
used . It adds unnecessary burden of proof too early. For instance, to keep the
data structure general — the scheduler may add the restriction if needed. Of
course, that invariant is accounted for at the scheduler, when it makes use the
priority queue. As one would expect, these modifications are carried along during
the refinement chain towards code. Here it seems sensible for the scheduler in
order to avoid kernel starvation. This modification is a refinement of the original,
with improved modelling decisions presented next. We modified the original
universal quantifier to the (proved) equivalent one presented here. Instead of
using (i ∈ 1 . . #pq − 1) as in the original, we prefer dom pq with the added side
condition that i must not be the last one (i.e., i < # pq). This small change is
crucial because since pq is a partial function over sequence indexes, when i varies
over 1. .#pq−1, we end up with proof obligations about i belonging to the domain
of pq, which is obvious, as dom pq = 1 . . # pq. For a similar reason, we add a
rewriting rule to say that, providing some PID is within the queue range, it is an
allocated one in PTAB ’s used PIDs That is, many PRIOQ operations mention
prio (pq n), where both n and pq (n) must be within the domain of pq and prio,
respectively. The goal is easily proved since ran pq ⊆ used from PRIOQ , and
used = dom prio from PTAB . The point it is that the concept that one should

Mechanising Data-Types for Kernel Design in Z 195

shape ones model for the tool at hand is paramount. Error reporting schemas
are just as before for PTAB and are omitted here. The conditions for each error
case are given next.

4.1 PRIOQ Operations

For the operations, we strengthen the original invariants to say that PTAB
within the PRIOQ cannot be modified. The priority queue is initialised by
PQInit , which makes pq empty, and binds its maximum to an input on mps?.
In the original specification, the underlying PTAB initialisation is left uncon-
strained, and we initialise it here accordingly.

PQInit =̂ [PRIOQ ′; mps? : N1 | PTInit ∧ maxs ′ = mps? ∧ pq ′ = 〈〉]

The priority queue specify two top-level operations: enqueue, and dequeue, each
of which is split in several possible cases. First, we define a few reusable opera-
tion signatures; this application of the schema calculus is useful to increase the
specification’s modularity while keeping it small and simple, if compared to the
rather lengthy equivalent in the original model [5, Sect.3.5].

PQOp =̂ [ΔPRIOQ ; ΞPTAB | maxs ′ = maxs]
KnownPIDPQ =̂ [PQOp; p? : PID | p? ∈ used]
KnownPIDNEmptyPQ =̂ [KnownPIDPQ | pq �= 〈〉]
CanEnqPQ =̂ [KnownPIDNEmptyPQ | # pq < maxs]

Schema PRIOOp provides the general signature that keeps PTAB and maxs ′

constant, since PRIOQ should not change PTAB , and after initialisation the
upper bound cannot change. Schema KnownPIDPQ extends PRIOOp to men-
tion an allocated PID input. Similarly, schema KnownPIDNEmptyPQ extends
KnownPIDPQ for the non-empty priority queue. Finally, schema CanEnqPQ
encompass the whole set of conditions necessary for enqueuing over non-empty
priority queues: (i) PTAB and maxs are constant; (ii) a PID input to be en-
queued is allocated; (iii) the queue is not empty; and (iv) there is room for
enqueuing, as the size of pq has not reached the maximum bound yet.

Prioritised Enqueue. The complete enqueue operation in the original speci-
fication is given as

PRIOQEnqueue =̂ ErrFullPQ ∨ (CanEnqPQ ∧ ErrSysOk
((IsEmptyPQ ∧ PRIOQAddSingleton) ∨
(ShouldAddPRIOQHd ∧ PRIOQEnqueueHd) ∨
(ShouldAddPRIOQLast ∧ PRIOQEnqueueLast) ∨ PRIOQInsert))

Either one can enqueue with success or fail because the queue is full. If enqueue
is possible, then either: it is empty and a singleton can be added; or, we can add
to either the head or tail; otherwise, mid-point insertion takes place. Although
this may sound intuitive enough, even a cleric error like the missing conditions

196 L. Freitas

for the full queue error report (ErrFullPQ) can be disastrous. When CanEnqPQ
is not the case, the other disjunct does not contain something like the negation
of CanEnqPQ ’s invariants, and simply leave the state unconstraint. So, a report
that the “scheduler is full” could non-deterministically happen inside the kernel!
More serious design errors appeared when investigating mid-point insertion, a
rather complex operation due to the priority ordering of the queue. We start our
refactoring by modelling enqueue over an empty queue. We need an allocated
PID , as defined by the schema EnqEmptyPQ .

EnqEmptyPQ =̂ [KnownPIDPQ | pq = 〈〉 ∧ pq ′ = 〈p?〉]

We enqueue at the front, in which case priority order must be observed: the
element p? concatenated at the front of pq must have a priority strictly higher
than the head of the queue, which has the highest-priority queued PID . This
strict ordering at the front is important to avoid starving the scheduler, say
through a denial-of-service attack, in which a process with priority at least as
high as the currently running process is to be scheduled. This could still happen
with mid-point priorities mentioned later, yet is avoided by preserving the FIFO-
ordering of elements with same priority. Although in usual embedded devices
architectures are closed, the data structure may be used in a more general setting.

EnqHeadPQ =̂ [CanEnqPQ | prio p? < prio (head pq) ∧ pq ′ = 〈p?〉 � pq]
EnqLastPQ =̂ [CanEnqPQ | prio (last pq) < prio p? ∧ pq ′ = pq � 〈p?〉]

Conversely, we can also add to the end of the queue if the priorities of the input
p? is strictly higher than the priority at the end of the queue. The original
design allows prio p? to be within the queue. We insist that the known input p?
is outside the priority queue. Although in itself the original design does not have
a problem here, it creates a more complex proof obligation for the robustness of
the complete enqueue operation, since negating the two original preconditions
from the book for head / last enqueue would give

= ¬ (prio p? < prio (head pq) ∨ prio (last pq) ≤ prio p?)
= prio (head pq) ≤ prio p? < prio (last pq) [original cond. negated]

It characterises the case when one could enqueue anywhere before the last ele-
ment, including the head of the queue itself. In this negated case, the original
model is allowing unwanted scenarios. For instance, suppose we have pq and
the queue of corresponding priorities with the sequence mapping / composition
(prio ◦ pq) as

pq0 = 〈pd1, pd2, pd3, pd4, pd5〉 (prio ◦ pq0) = 〈pr0, pr1, pr2, pr2, pr3〉

for some identifier pdn ∈ PID and corresponding priority prn ∈ PPRIO . Now,
if we enqueue some p? with prio p? = pr2 to pq, the model allows p? to be
enqueued anywhere before/after/between pd3 and pd4. Thus, process p? might
“jump the queue” in the case where its priority prio p? is known within pq.

Mechanising Data-Types for Kernel Design in Z 197

Therefore, although queue priority ordering is preserved, actual first-in-first-out
(FIFO) ordering within elements with equal priority is not. With our small
modification on priority strictness near the queue edges, the same negation of
our preconditions (see Table 2) would lead to

= ¬ (prio p? < prio (head pq) ∨ prio (last pq) < prio p?)
= prio (head pq) ≤ prio p? ≤ prio (last pq) [refactored cond. neg.]

So, the priority of the input p? is within some known priority in the queue.
Although this does not solve the FIFO ordering problem, it does keep it outside
the cases for empty, head, or last enqueuing. That means such “fall-back” case
needs to be addressed by queue mid-point insertion.

With some expansion, the original mid-point operation in the next schema
states that, given enqueuing is possible, we can find two non-empty sequences l
and r that split pq, such that the priority of the element being inserted prio p?
is within the priorities of the last element on l and first element on r .

PRIOQInsert
CanEnqPQ

∃ l , r : seq1 PID | pq = l � r ∧
prio (last l) ≤ prio p? < prio (head r) • pq ′ = l � 〈p?〉 � r

It repeats the idea for head/last inclusion, yet with respect to a mid-point be-
tween sequences left and right splitting pq. If we negate and simplify the original
operations preconditions we would have

= ¬ (prio p? < prio (head pq) ∨ prio (last pq) ≤ prio p? ∨

(∃ l , r : seq1 PIDpq = l � r ∧ prio (last l) ≤ prio p? < prio (head r)))
= prio (head pq) ≤ prio p? < prio (last pq) ∧ (∀ l , r : seq1 PID •

pq = l � r ∧ prio (last l) ≤ prio p? ⇒ prio (head r) ≤ prio p?)

It says p?’s priority is within pq before the last, and for all possible mid-points
available for pq such that the priority of p? is at least within the end of the
left side, then it should be within the right side. The trouble is that we need
to prove this for all possible mid-point cases, which also includes overlapping
cases where prio p? could be on either side. This leads to a lengthy induction
proof on the sizes of l and r with respect to the corresponding length of pq!
We propose a different model for mid-points that provides both simpler proof
and deals with the mistake of loosing FIFO ordering for elements with the same
priority as those previously enqueued. The next auxiliary schema PQMidPoint
arranges the queue’s indexes in three finite sets: left , mid , and right , which
contains indexes with priorities strictly higher , eq, or lower than the priority of
the p? being inserted, respectively.

198 L. Freitas

PQMidPoint
PRIOQ ; p? : PID ; left ,mid , right : F N; higher , eq, lower : P PPRIO

p? ∈ used ∧ eq = {prio p?} ∧ higher = { ph : PPRIO | ph < prio p? }
lower = {pl : PPRIO | priop? < pl} ∧ left = (prio ◦ pq)∼(| higher |)
right = (prio ◦ pq)∼(| lower |) ∧ mid = (prio ◦ pq)∼(| eq |)

Sets higher , mid , and lower gather the disjoint set of priorities. By composing
priorities with the queue (prio ◦ pq), we go from the queue’s domain (N) of
indexes to prio’s range (PPRIO) of priorities via the mid-points (PID) of process
identifiers. We then take the relational image (R(| S |)) of the composed function
inverted (prio ◦pq)∼ with respect to each set of priorities. The inverted function
returns a relation between priorities and indexes; it is not a function since various
indexes might have the same priority. Relational image over a set returns all the
pairs in the range of R that have been filtered by the set S (i.e., R(| S |) =
ran (S � R)). It is a general case of (function) application for relations: if R is
function and S is a singleton set within the domain of R, then the result set is a
singleton that is equivalent to applying the element of S to R. For instance, since
p? ∈ dom prio, prio (| { p? } |) = { prio p? }. Thus, taking the relational image of
(prio ◦ pq)∼ with respect to each disjoint set of priorities gives their disjoint
queue indexes. For instance, for our example queue above where prio p? = pr2,
we would have the follow scenario

pq0 = 〈pd1, pd2, pd3, pd4, pd5〉 [queued PIDs]
prio ◦ pq0 = 〈pr0, pr1, pr2, pr2, pr3〉 [prio per PID]
(prio ◦ pq0)∼ = { (pr0, 1), (pr1, 2), (pr2, 3), (pr2, 4), (pr3, 5)} [prio idx]
left = { 1, 2 } where, higher = { pr0, pr1 } [idx for pr0, pr1]

With these sets partitioning the queue’s indexes by the input’s priority (prio p?),
we ensure that both priority and FIFO-orderings are maintained. Mid-point in-
sertion is defined next. Providing that there is room for enqueuing, and that
we can find a mid-point partition for pq with respect to the input’s p? priority,
the operation updates the queue (pq ′) by concatenating its elements appropri-
ately. Strictly higher priorities than prio p? go first on the left. Then, the equal
priorities are concatenated in the middle. Only after that p? is enqueued, hence
FIFO-ordering is preserved. Lastly, strictly lower priorities than prio p? go at the
right, hence priority ordering is also preserved. Finally, the mid-point enqueue
hides the auxiliary partitioning sets as they are not part of the queue’s state.

EnqMidPQ0 =̂ [CanEnqPQ ; PQMidPoint |
pq ′ = left � pq �mid � pq � 〈p?〉 � right � pq]

EnqMidPQ =̂ EnqMidPQ0 \ (higher , eq, lower , left ,mid , right)
EnqueuePQ0 =̂ (EnqEmptyPQ ∨ EnqHeadPQ ∨

EnqLastPQ ∨ EnqMidPQ) ∧ ErrSysOk

Schema hiding in Z existentially quantify the list of variables on the right from
the schema on the left. The successful cases is combined as usual in schema

Mechanising Data-Types for Kernel Design in Z 199

EnqueuePQ0. For the error cases, when one can no longer enqueue elements, it
is because pq has reached its maximum size as in schema EnqFullPQ , in which
case the report is returned. The other case is when the identifier is not yet
allocated as in schema EnqUnkwnPQ .

EnqFullPQ =̂ [ΞPRIOQ | #pq = maxs]
EnqUnkwnPQ =̂ [ΞPRIOQ ; p? : PID | p? /∈ used]
EnqueuePQ =̂ (EnqFullPQ ∧ ErrFullPQ) ∨

(EnqUnkwnPQ ∧ ErrUnusedPID) ∨ EnqueuePQ0

The complete specification for enqueuing combines the successful and error cases
with their corresponding error reports as usual. The mechanisation of dequeuing
is also interesting and similar to enqueue. We leave it out due to space limitations.

4.2 PRIOQ Operations Preconditions

As before, to prove preconditions (see Table 2), we can assume the before
state PRIOQ and an input p?. We also prove that the PRIOQ can be ini-
tialised: (∃PRIOQ ′ • PQInit), hence we can establish state invariant. These

Table 2. PRIOQ operations preconditions

EnqEmptyPQ p? ∈ used ∧ pq �= 〈〉
CanEnqPQ p? ∈ used ∧ pq �= 〈〉 ∧ # pq < maxs

EnqHeadPQ pre CanEnqPQ ∧ prio p? < prio (head pq)
EnqLastPQ pre CanEnqPQ ∧ prio (last pq) < prio p?
EnqMidPQ pre CanEnqPQ ∧ prio (head pq) ≤ prio p? ≤ prio (last pq)
EnqueuePQ0 p? ∈ used ∧ # pq < maxs

EnqFullPQ # pq = maxs

EnqUnkwnPQ p? /∈ used

EnqueuePQ true

precondition proofs are rather complex, mainly due to the nature of FIFO-
ordering on mid-point insertion, and the state invariant on priority ordering.
Many general properties were found as a result of these proofs.

4.3 Priority Queue Properties

We summarise the proved lemmas on key properties about the priority queue in
Table 3. Lemma L1 is a more general result about priority ordering: it is useful
when proving ordering among elements that are not close to each other, as
the PRIOQ invariant requires (e.g., prio (pq i) ≤ prio (pq (i + 1))). It is proved
by induction on the length of pq. Next, lemma L2 establishes that new valid
identifiers p? within the queue (p? ∈ ran pq) must be at least within the queue’s
highest priority (prio (head pq)). Obviously, this side condition implies that the

200 L. Freitas

Table 3. Properties about priority queues

L1 � ∀PRIOQ • ∀ i , j : dom pq | i < j • prio(pq i) ≤ prio (pq j)
L2 � ∀PRIOQ | p? ∈ ran pq • prio (head pq) ≤ prio p?
L3 � ∀PQMidPoint • {left ,mid , right} ⊆ P (dom pq)
L4 � ∀PQMidPoint • 〈left ,mid , right〉 partition (dom pq)

queue is not empty and that p? ∈ used , since ran pq ⊆ used from PRIOQ ,
and used = dom prio from PTAB . Finally, lemmas L3 and L4 ensure that all
the queue’s indexes are split in three disjoint sets (i.e., sets without common
elements), and that they partition dom pq (i.e., their union equals to dom pq).
This ensures both priority ordering at the strictly different priority cases, as well
as FIFO-ordering at the middle case where elements have the same priority.

5 Interesting Lessons

Mechanising the verification of these data types has led to a deeper understand-
ing of the kernel’s components. We attempted simplifications by weakening some
of the invariants that could have been derived as properties, in order to make our
proofs simpler, but without compromising the specification. The lack of mech-
anisation in [5] led to missing invariants and other errors at the most crucial
data structure in the kernel scheduler: the priority queue. This exercise shows
the importance of tools in formal modelling in general, and theorem proving
in particular, when one wants to provide greater levels of assurance. In prac-
tice, kernels use a matrix of priorities per sequences of identifiers, hence many
problems of having a flat sequence might be simplified. This could be a good
candidate for data refinement of the priority queue.

In fairness to Craig’s original model, despite the mistakes mentioned, the sheer
effort undertaken was considerable and worthwhile. His expertise in operating
systems implementation is clear through the book. Luckily, many of the mistakes
were consistent and easy to spot, which makes correcting them a simple task. And
that is despite its serious consequences at times, like loosing scheduled processes
FIFO ordering when priorities are the same. Overall, the whole exercise has
proved worthwhile in establishing a solid foundation upon which one can build
the top-level kernel components. Work in this front, as well as in the modelling
of a Separation Kernel are under way.

Overall, we tried to strike a balance between reusing good parts of the models
and remodelling from scratch based on the intended goals to capture the under-
lying requirements. The motivation for doing that is to save important invariants
already discovered and modelled by a domain expert.

5.1 Going Back to the Scheduler Design

These data types presented are the core data structures within the kernel. Craig
starts by designing a simple kernel, which later develops into a Separation Ker-
nel. In the latter, all user process address spaces are disjoint, and all process

Mechanising Data-Types for Kernel Design in Z 201

execution times are disjoint. We model the list table of process identifiers and
their corresponding information, as well as a queue for the kernel’s semaphore,
and priority queue for the kernel’s scheduler. Other familiar OS components
are also modelled, such as a global semaphore table, a synchronous message
passing system, a process sleeping mechanism, and so on. The model is for an
embedded/real-time system application, where unique PIDs are sequentially al-
located for every process, where an idle process is allocated first, and an initial
(system) process is allocated second.

The process table is used to represent both these two initial processes, and
the user processes in a uniform manner. It is implemented as an array-based
structure similar to Linux, with the following structure: a stack pointer is used
for context switching; priority is used for sorting the scheduler’s ready queue; a
state variable records whether the process is running, waiting, has terminated,
and so on; an incoming message queue records all pending messages; and a
waking time variable records how long should a process sleep until it becomes
ready for scheduling again. The scheduler itself is a simple priority ready queue,
which is refined to a chain of process identifiers with functional mapping encoded
in the process table. Rescheduling occurs when a non-empty ready queue is
present, where the current process’s priority is lower than ready queue head, or
the current process is neither ready nor running.

Other services like semaphores, message passing, and system calls are also
available. Processes can synchronise using counting semaphores, FIFO queues,
and so on. They are defined as separate mathematical data type, later refined
to a chain of process identifiers [10]. Message passing enable processes to ex-
change messages, where the discipline that receivers wait and senders retry is
observed. System calls can be used to: create or terminate processes; retrieve
process identifiers; send or receive synchronous messages; allocate and release
semaphores; put processes to wait or to sleep, as well as signal them; etc..

6 Conclusions

The Grand Challenge’s pilot projects help us to learn the best ways to model
various application domains and how to verify those models. The intention is to
make it easier for the next team who want to work in the application domain.
In that direction, a series of data types and useful lemmas are needed if one is
to make progress in tackling the central problems with OS kernel scheduling.

The experiments that started with mechanising the refinement of simple OS
kernel schedulers led to the mechanisation of a set of abstract data types useful
for this kind of modelling in general. This in itself instigated thinking about gen-
eral properties for injective functions, transitive closure, sequences, and started
few reports [7,8,9] that are good candidates to become part of the VSR as
reusable mathematical data types. In more detail: we already have most (95%)
of [5, Ch. 3], which is discussed in [26,10] and in here. Our model contains a se-
ries of declarations from Craig’s book, and mechanically verified theorems. The
general theories contain well over 120 theorems about various mathematical data

202 L. Freitas

types [7]. As a result of this work, our library of general theorems grew by 20
theorems; for the declared types, we needed 34 automation lemmas. The three
components have a total of 145 schemas, type, and axiomatic declarations, with
44 precondition proofs, and 16 lemmas about the data type’s properties. In total,
these proofs were discharged with around 1540 proof commands, of which more
than 2/3 were trivial, whereas the reminder 1/3 was divided in either creative
steps involving quantifier’s witnesses, or knowledge on how the tool works.

We improved the specification of most data structures used in the simple ker-
nel and in the Separation Kernel described in [5]. The work incurred mostly in
identifying useful properties about these data types and their use, as well as
calculating the preconditions for each operation, and later proving data refine-
ment about them. This mechanisation enabled both a better understanding of
the various data structures, and a clearer definition of the Separation Kernel’s
scheduler specification use of it. As its use in [5] had modelling errors on data
types, as well as the missing error cases uncovered here, we believe this to be an
important contribution in building theories for formal modelling of OS kernels.

Future work. We are currently writing up reports about the various parts of
the simple kernel, and how they are woven together. We have one MSc student
working on the modelling of the Separation Kernel, as well as the refinement of
the core data structures presented here. Colleagues from another research group
in Brazil are working on combining all the kernel’s components into a single
top-level user-interface. With that in place, we will start to apply the refinement
calculus to derive the kernel’s code. Another approach is to go bottom-up from
the already available C-code up towards the refined specifications.

Acknowledgements. We are grateful to QinetiQ Malvern for its long term support
for our research. We are thankful to Juan Perna and Osmar Santos for fruitful
discussions about properties of various parts of the kernel. We are also grateful
to Iain Craig for producing an useful account of the formal specification and
refinement of OS kernels.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Bicarregui, J., Hoare, T., Woodcock, J.: The verified software repository: a step
towards the verifying compiler. FACJ 18(2), 143–151 (2006)

3. Cavalcanti, A.: A Refinement Calculus for Z. PhD thesis, Oxford (1997)
4. Cohen, E.: Validating the Microsoft Hypervisor. In: Misra, J., Nipkow, T., Sekerin-

ski, E. (eds.) FM 2006. LNCS, vol. 4085, p. 81. Springer, Heidelberg (2006)
5. Craig, I.: Formal Refinement of OS Kernels, 1st edn. Springer, Heidelberg (2007)
6. FreeRTOS, http://www.freertos.org
7. Freitas, L.: Extended Z mathematical toolkit. Technical Report CRG13, University

of York (April 2008)

http://www.freertos.org

Mechanising Data-Types for Kernel Design in Z 203

8. Freitas, L.: Formal model of a reusable Chain data type. Technical Report CRG14,
University of York (April 2008)

9. Freitas, L.: Mechanising data-types for Kernel design in Z. Technical Report
CRG15, University of York (March 2009)

10. Freitas, L., Woodcock, J.: A Chain Datatype in Z. International Journal of Software
Informatics (2009) (in press)

11. Freitas, L., Woodcock, J., Buterfield, A.: POSIX and the Verification Grand Chal-
lenge: a Roadmap. In: IEEE Proceedings of 13th ICECCS, Belfast, pp. 153–162.
IEEE, Los Alamitos (2008)

12. Hoare, T.: The verifying compiler: A grand challenge for computing research. Jour-
nal of the ACM 50(1), 63–69 (2003)

13. ISO/IEC 13568. Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. ISO/IEC, 1st edn. (2002)

14. ITSEC. Information technology security evaluation criteria: primary harmonised
criteria. Technical Report COM(90) 314, Commission of the European Communi-
ties, version 1.2 (June 1991)

15. Jones, C., Pierce, K.: What can the π-calculus tell us about the mondex purse
system. In: 12th International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 300–306. IEEE, New Zealand (2007)

16. Jones, C., Woodcock, J.: Formal Aspects of Computing — special issue on Mondex,
vol. 20(1). Springer, Heidelberg (2008)

17. Neil, M., et al.: Hypervisor Top Level Functional Specification v0.83. Technical
report, Microsoft Coorporation (December 2007)

18. Saaltink, M.: Z/Eves 2.0 Math. Toolkit. ORA, TR-99-5493-05b (October 1999)
19. Saaltink, M.: Z/Eves 2.0 User’s Guide. ORA Canada, TR-99-5493-06a (1999)
20. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, Englewood Cliffs

(1998)
21. Stepney, S., et al.: An Electronic Purse: Specification, Refinement, and Proof. PRG

126, Oxford University (July 2000)
22. Stepney, S., et al.: A z patterns catalogue vol 1. Technical Report YCS-349, Uni-

versity of York (2003)
23. Woodcock, J.: First steps in the verified software grand challenge. IEEE Com-

puter 39(10), 57–64 (2006)
24. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice

Hall, Englewood Cliffs (1996)
25. Woodcock, J., et al.: Formal methods: practice and experience. ACM Computing

Surveys (in press, 2009)
26. Woodcock, J., Freitas, L., Craig, I.: A Verified Simple Operating System Kernel. In:

Workshop on the Verified Software Repository as part of FM Symposium, Turku,
Finland (2008), Formal Methods Europe

A Complete Set of Object Modeling Laws for
Alloy

Rohit Gheyi, Tiago Massoni, Paulo Borba, and Augusto Sampaio

Department of Computing Systems – Federal University of Campina Grande
Informatics Center – Federal University of Pernambuco

{rohit,massoni}@dsc.ufcg.edu.br, {phmb,acas}@cin.ufpe.br

Abstract. Applying transformations to object-oriented systems usually
affects source code and its associated models, involving complex main-
tenance efforts to keep those artifacts up to date. Most projects aban-
don design information in the form of models early in the life cycle, as
their maintenance becomes extremely expensive. In this paper, we pro-
pose a complete catalog of object model laws (bidirectional semantics-
preserving transformations) for Alloy, a formal object-oriented modeling
language. We address relative completeness through a reduction process
that transforms an arbitrary Alloy model into an equivalent model in a
core language (normal form). We evaluate our completeness result using
two distinct normal forms.

1 Introduction

An object model refactoring, which is a structural model transformation that im-
proves design structure while preserving semantics, may be useful, for instance,
to maintain the consistency when refactoring programs that are conforming to
the model invariants. It can be derived from more primitive semantics-preserving
transformations usually referred to as algebraic laws. Our earlier work [1] shows
an example of how an object modeling law can be synchronized with a se-
quence of equivalent program refactorings, ensuring semantic preservation. In
this approach, some program refactorings may have more powerful automation
considering model invariants. In this kind of work, it is important to have a
comprehensive set of laws in order to derive more synchronizations.

In current practice, most object model refactorings rely on informal argu-
mentation. It is difficult to prove that they are sound with respect to a formal
semantics since each transformation may have an impact on a number of well-
formedness rules and on different parts of the semantics. So, defining all enabling
conditions required for a transformation to preserve semantics is not an easy task.
Even a number of object model transformations proposed in the literature may
lead to models with type errors or subtle semantic changes in some situations [2].
To our knowledge, there is no comprehensive set of object model refactorings to
help designers to improve their models.

In this paper, we propose a complete catalog of transformation laws (Section 4)
for Alloy [3], which is a formal object-oriented modeling language (Section 2).

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 204–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Complete Set of Object Modeling Laws for Alloy 205

Two new laws (splitting a relation and introducing a scalar relation), which
were not published before, are presented. We prove that this catalog is relatively
complete (Section 5), in the sense that it is sufficient to reduce an arbitrary Alloy
model to an equivalent one expressed in a restricted subset of the language. We
evaluate the completeness result using two different reduction strategies. Both
reductions use all laws, except for one reduction that does not use the introducing
a subsignature law. This result is important in order to show that our set of laws
is representative enough to derive a large number of refactorings.

Our previous work [4] shows how some of our laws can be used to formally
introduce Alloy design patterns (idioms). By using our catalog, we can derive a
refactoring that allows us to formally switch between idioms. The Alloy laws are
proven sound in the Prototype Verification System (PVS) [5], which encompasses
a formal modeling language and a theorem prover. Our earlier work [6] proposes
a formal semantics for Alloy in PVS and shows in detail how we proved one
law in PVS. Another work [7] proposes a refinement notion, which is used in
our laws, for Alloy encoded in PVS. All details about this formalization and
proofs can be found elsewhere [2]. In this present paper, we focus on proving
completeness for our catalog of Alloy laws. This is the main difference of this
work and the related work (Section 6). So, the contributions of this paper are
the following:

– propose two new laws (Section 4);
– show that our catalog is relatively complete (Section 5).

2 Alloy

An Alloy model or specification is an sequence of paragraphs of two kinds: sig-
natures that are used for defining new types, and constraint paragraphs, such
as facts, used to record constraints. Each signature comprises a set of objects,
which associate with other objects by relations declared in the signatures. A
signature paragraph introduces a type and a collection of relations, called fields,
along with their types and other constraints on their included values.

Next, we model part of the banking system in Alloy, on which each bank is
related to sets of accounts. The following fragment declares some signatures and
relations. In Bank’s declaration, the set qualifier specifies that accs associates
each element in Bank to a set of elements in Account. All top level signatures ,
such as Account and Bank, are implicitly disjoint. Moreover, accounts may be
checking or savings. In Alloy, one signature can extend another, establishing
that the extended signature (subsignature) is a subset of the parent signature.
Signature extension introduces a subtype. Alloy supports single inheritance. The
extensions of a signature are mutually disjoint.

sig Bank {

accs: set Account,

custs: set Customer

}

206 R. Gheyi et al.

sig Customer {}

sig Account { owner: set Customer }

sig ChAcc, SavAcc extends Account {}

fact BankInvs { all acc:Account | one acc.owner }

A fact packages formulae that always hold, such as invariants about the ele-
ments. The previous example introduces a fact named BankInvs, establishing
general properties about the previously introduced signatures. It contains one
formula stating that each account is owned by exactly one customer. The all
keyword represents the universal quantifier. The one keyword, when applied to
an expression, denotes that the expression has exactly one element. In Alloy, the
fact formulae are implicitly conjoined.

3 Equivalence Notion

Before presenting object modeling laws for Alloy, we first define an equivalence
notion (bidirectional refinement), which states when two object models are equiv-
alent. Figure 1 describes two object models of a banking system. Figure 1(a)
shows a model stating that each bank is related directly to a set of accounts,
whereas the model in Figure 1(b) establishes that each bank is related to a
collection, which is directly related to a set of accounts.

Fig. 1. Part of Two Models of a Banking System

The usual notion of equivalence states that object models are equivalent if
they have exactly the same semantics. The models in Figure 1 are intuitively
equivalent, but they are not equivalent using this notion since they have dif-
ferent elements. This notion is useful, but it is not flexible enough to compare
equivalent models with auxiliary elements such as Col, or with different forms
for representing the same concept, such as accs in Figure 1(a).

In order to compare models in such a scenario, we propose a more flexible
notion. Our approach compares the semantics of two object models only for
a number of relevant model elements, abstracting away the values assigned to
the others. The set of relevant elements names is called alphabet (Σ). The names
that are not in the alphabet are auxiliary, or not relevant for the comparison. For
instance, suppose that Σ contains only the Bank and Account names in Figure 1.
If both models have the same instances for those names, they are considered to
be equivalent under this equivalence notion. Other names, such as elems, are
regarded as auxiliary.

A Complete Set of Object Modeling Laws for Alloy 207

Sometimes we might have model elements that, although relevant, cannot be
compared, since they are not part of both models. For instance, suppose that
we include accs to Σ. In this case, we cannot compare the models in Figure 1,
since accs is not part of the model in Figure 1(b). However, it can actually be
expressed as the composition of col and elems. In those cases, our notion has
a view (v), establishing how an element of one model can be interpreted using
elements of another model. Views consist of a set of items such as n→exp, where
n is an element’s name and exp is an expression. In Figure 1, we may choose a
view containing the following item: accs→col.elems. Now we can infer that both
models are equivalent under this notion.

4 Modeling Laws

In this section, we propose a set of primitive laws for Alloy. They are summarized
in Table 1. Each law has the form of an equation and defines two fine-grained
semantics-preserving model transformations, with two templates of models (on
the left and on the right-hand sides of the equations). They are primitive in the
sense that they cannot be derived from other transformations. We have proposed
laws for signatures, relations and formulae.

Table 1. Summary of Semantics-Preserving Transformations

Law Name Law Name
1 Introduce signature 10 Remove Relation’s Expression
2 Introduce generalization 11 Introduce Formula
3 Introduce subsignature 12 Introduce Empty Fact
4 Replace Abstract Qualifier 13 Remove Attached Empty Fact
5 Replace Signature Qualifier 14 Remove Form. from Attached Fact
6 Separate Signature Declaration 15 Split Relation
7 Introduce Relation 16 Introduce One Relation
8 Remove Relation Qualifier 17 Introduce Predicate
9 Separate Relation Declaration 18 Replace Predicate

Each law consists of two templates (patterns) of equivalent Alloy models, on
the left-hand (LHS) and right-hand (RHS) sides. A law is applicable wherever
one of the templates matches a given Alloy model. A matching is an assignment
of all variables occurring in LHS/RHS models to concrete values. Each law may
declare some meta-variables. We use ps to denote a set of signatures and facts,
and forms to denote a set of formulae. Moreover, rs denotes a set of relations.
The exp variable denotes an expression. A variable remains constant if it appears
on both models. We write (→), before a condition, to indicate that the condition
is required when applying the law from left to right. Similarly, we use (←) to
indicate what is required when applying the law in the opposite direction, and
we use (↔) to indicate that a condition is necessary in both directions.

208 R. Gheyi et al.

The first law establishes that we can always introduce an empty signature
declared with a fresh name. It also indicates that we can remove an empty
signature that is not being used. Since a module cannot have two paragraphs
with the same name, we have a condition stating that the new signature name
does not appear in ps.

Law 1 〈introduce signature〉
ps

=Σ,v

ps
sig S {}

(↔) (1) S is not in Σ; (2) for all names in Σ that are not in the resulting model, v
must have exactly one valid item for it;
(→) ps does not declare any paragraph named S;
(←) S does not appear in ps.

It must be stressed that we can only introduce and remove signatures whose
names do not belong to Σ. For instance, suppose that S belongs to Σ and the
S→U item belongs to v, where U is declared in ps with the one cardinality
qualifier. So, S is mapped to exactly one element on the left side of the law.
However, after applying the law, any number of elements can be assigned to S,
hence not preserving semantics. We would need to add the S = U formula on
the RHS of the law in order for S to have the same values in both models. Since
S and U have different types, the formula is only valid when they are empty.
However, if U is not empty, the S = U formula introduces an inconsistency in
the model. So, in case a signature name belongs to Σ, Law 2 must be used since
it introduces a parent signature along with a formula.

The next law allows us to introduce a generalization into a model (applying
from left to right); similarly it can also be used to remove a generalization from
a model (applying from right to left). This law establishes that we can always
introduce a generalization declared with a new name. Since in Alloy a module
cannot have two paragraphs with the same name, we have a condition stating
that the new parent signature name does not appear in the module. It also
indicates that we can remove a parent signature that is not being used.

We can propose a similar law for introducing a generalization between any
number of signatures. Besides conditions for ensuring that the well-formedness
rules are preserved, this law presents other constraints for semantics preservation.
For instance, if U belongs to Σ then v must have the U→S + T item in order
for the left side model to have the same semantics of the right side model. The
+ operator denotes the set union operator. There is another condition applied
to all names in the alphabet that are not in the resulting model, ensuring that v
represents them unambiguously. Adding a new name may turn an unused item
in v to be valid. Similarly, removing a name may turn a valid item in v to be
invalid. So, all laws that add or remove names have this condition. Notice that
all conditions in all laws are syntactic. So, it is straightforward to implement tool
support to verify those automatically. Observe that the new parent signature is

A Complete Set of Object Modeling Laws for Alloy 209

Law 2 〈introduce generalization〉
ps
sig S {

rs
}

sig T {

rs′

}

fact F {

forms
}

=Σ,v

ps
sig U {}

sig S extends U {

rs
}

sig T extends U {

rs′

}

fact F {

forms
U = S + T

}

(↔) (1) if U belongs to Σ, v contains the U→S + T item; (2) for all names in Σ that
are not in the resulting model, v must have exactly one valid item for it;
(→) ps does not declare any paragraph named U ;
(←) U does not appear in ps, rs, rs′ or forms.

always abstract. If S and T do not partition U , then we first introduce an empty
signature applying Law 1 before applying Law 2. This new empty signature will
contain all elements that belong to U but do not belong to S or T .

Law 3 allows us to introduce and remove a subsignature. We can introduce an
empty subsignature declared with a new name along with its definition. Notice
that this definition makes U an abstract signature, indicating that all its elements

Law 3 〈introduce subsignature〉
ps
sig U {

rsU
}

sig S extends U {

rsS
}

fact F {

forms
}

=Σ,v

ps
sig U {

rsU
}

sig S extends U {

rsS
}

sig X extends U {}

fact F {

forms
X = U − S

}

(↔) (1) if X belongs to Σ, v contains the X→(U − S) item; (2) for all names in Σ
that are not in the resulting model, v must have exactly one valid item for it;
(→) (1) ps does not declare any paragraph named X; (2) there is no signature in ps
that extends U ;
(←) (1) X does not appear in ps, rsU , rsS and forms; (2) there does not exist an
expression exp, such that exp≤U and exp �≤S, in ps or v.

210 R. Gheyi et al.

belong to exactly one of its subsignatures. Similarly, the subsignature can be
removed if not used elsewhere, and there is no expression in the model with its
type, in order to avoid type errors.

The ≤ operator denotes the subtype relationship. For instance, if X is direct
or indirect subsignature of Y then X is a subtype of Y (X≤Y). Similarly, if a
signature is not a subtype of another, we use the �≤ operator. We can propose
a similar law when there are any number of subsignatures extending U . Notice
that in order to preserve semantics, there is a condition when X belongs to Σ.
In this case, v must have the item X→(U − S). The other conditions make sure
that we preserve the well-formedness rules.

Besides laws for dealing with signatures, we also define laws for manipulating
relations. Law 7 states that we can introduce a new relation along with its
definition, which is a formula of the form r = exp, establishing a value for the
relation. We can also remove a relation that is not being used.

Law 7 〈introduce relation〉
ps
sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs,
r : set T

}

fact F {

forms
r=exp

}

(↔) (1) if r belongs to Σ, r does not appear in exp and v contains the r→exp item;
(2) for all names in Σ that are not in the resulting model, v must have exactly one
valid item for it;
(→) (1) S’s family in ps does not declare any relation named r; (2) T is a signature
name declared in ps or is S; (3) r does not appear in exp, or exp is r; (4) exp≤r in
the resulting model;
(←) r does not appear in ps or forms.

Law 7 can also be applied to S when it extends a signature. The family of a
signature is the set of all signatures that extend or are extended by it direct or
indirectly. Alloy does not allow two relations with the same name in the same
family. Moreover, exp’s type must be a subtype of r on the right side model in
order to avoid inconsistencies, since r cannot be related to a value that does
not belong to its type. Law 7 can also be applied for multirelations. The only
difference is that we should not use the set relation qualifier. As explained before,
omitting a relation qualifier denotes the unconstrained qualifier different from a
binary relation, in which it represents a total function.

Besides proposing some laws for signatures and relations, Law 11 establishes
that we can add or remove a formula from a fact, as long as it can be deduced

A Complete Set of Object Modeling Laws for Alloy 211

Law 15 〈split relation〉
ps
sig S {

rs,
r : set T

}

fact F {

forms
}

=Σ,v

ps
sig S {

rs,
r : set T

}

sig Col {

x : set S,
y : set T

}

fact F {

forms
r = ˜x.y

}

(↔) (1) Col, x and y do not belong to Σ; (2) for all names in Σ that are not in the
resulting model, v must have exactly one valid item for it;
(→) ps does not declare any paragraph named Col;
(←) Col, x and y do not appear in ps, rs or forms.

from other formulae in the specification. Since f is derived from other formulae,
we guarantee that both specifications have the same meaning. Notice that we
assume that f must be well-typed. The constraints imposed by this formula are
already imposed by the others.

Finally, we propose two new (previously unpublished) laws for relations. For
instance, Law 15 introduces a relation. However, the definition of the new relation
is different from Law 7. By using Law 15, we can split the relation r between
two signatures into x and y. We can also remove the relation x, if it is not being
used elsewhere.

Law 16 〈introduce one relation〉
ps
sig S {

rs
}

fact F {

forms
T != 0

}

=Σ,v

ps
sig S {

rs,
r : one T

}

fact F {

forms
T != 0

}

(↔) (1) r does not belong to Σ; (2) for all names in Σ that are not in the resulting
model, v must have exactly one valid item for it;
(→) S’s family in ps does not declare any relation named r;
(←) r does not appear in ps or forms.

212 R. Gheyi et al.

After Law 15 from left to right, notice that the r relation can be removed
from the model by applying Law 7 from right to left and Law 11 from left to
right and vice-versa, since its definition is present. Moreover, this law can also be
applied to S when it extends a signature. If one desires to move a relation from
rs to the T signature, x and y must be bijective. Law 16 allows us to introduce
a relation that is a function. This law is similar to Law 7. However, the new
relation should not belong to the alphabet. Furthermore, the image of the new
relation must be non-empty.

Although each law defines two semantics-preserving transformations, in fact,
we have more than 36 primitive transformations. Some other laws can be simi-
larly proposed for more than two signatures, such as Laws 2, 3 and 4. Other laws
can be used with a signature extending another, such as Laws 4 and 7. We prefer
to focus on laws for Alloy’s main constructs: signatures, relations and formulae.

5 The Completeness Result

In this kind of work, it is important to show that our catalog is relatively com-
plete, in order to establish that some clearly defined subset of all truths can be
deduced directly from our laws.

In order to do that, we define a reduction strategy (based on primitive laws)
showing how to transform any Alloy model into an equivalent one expressed
in the Alloy normal form (core language). The Alloy core language is defined
by Jackson [3]. It may declare unconstrained signatures without subtyping, and
unconstrained relations. Moreover it includes subset (in), equality, negation,
conjunction and universal quantification formulae. The other kinds of formulae,
such as existential quantification and disjunction, can be derived from those.
It includes binary (union (+), intersection (&), join (.) and product (->)) and
unary (transpose (~) and transitive closure (^)) expressions. So, in this reduction
strategy, we remove the signature hierarchy. In Section 5.6, in order to evaluate
our result, we apply our laws to a different reduction strategy that preserves the
signature hierarchy and pulls up all relations to the parent signature.

If two models have the same resulting model after applying the reduction
strategy, they are equivalent. By defining a reduction strategy, the relative com-
pleteness result implies that our catalog can derive a comprehensive set of ob-
ject model refactorings. We follow the same approach adopted by Tony Hoare
for imperative languages [8]. Next we show an example, in which we apply the
reduction strategy, in which Σ must contain all names in the initial model, in
Sections 5.2-5.4. In Section 5.5, we generalize the reduction strategy (removing
signature hierarchy).

5.1 Example

As an example, we show how our laws can be used to apply the reduction strategy
to an Alloy model of a banking system presented in Figure 2 to an equivalent
one in the core language. Account is an abstract signature, which is represented

A Complete Set of Object Modeling Laws for Alloy 213

Fig. 2. Initial Model of a Banking System

by a box with an italic name. We focus on Alloy’s main constructs and do not
show other syntactic sugar constructs, such as functions and predicates.

Since we will remove all signatures that have subtypes (such as Account), the
view v contains only mappings for them and all relations that refer to it, such
as owner and accs. For instance, the item Account→ChAcc + SavAcc belongs
to v since Account has subtypes. The other items are very similar to this one,
relating a signature or relation name to the union of other names.

5.2 Removing Syntactic Sugar Constructs

In our reduction strategy, firstly we replace all syntactic sugar constructs by
explicit formulae. We apply Laws 4 and 8 from left to right in order to replace
the Account abstract signature qualifier and the one relation qualifier (owner)
and express them by formulae in the BankInv fact, as declared next.

fact BankInv {

custs = accs.owner

Account = SavAcc + ChAcc

all a:Account | one a.owner

}

Removing most of syntactic sugar laws do not have enabling conditions, except
for Laws 4 and 10. However, Law 4 can also be applied to more than two subsig-
natures. So, its condition is always satisfied. Therefore, the syntactic sugar laws
can always be applied. Moreover, all syntactic sugar laws do not introduce an-
other syntactic sugar construct. Therefore, removing syntactic sugar constructs
always terminates and converges to a model that does not have them. We can
apply these laws in any order that the result is always the same.

5.3 Removing Top-Level Signatures

The core language does not have subtyping. Now we are aiming at removing all
top-level signatures, which are signatures that have subtypes and do not extend
another signature. First we must convert them to abstract in order to remove it
later on. In the Figure 2 model, the only parent signature is abstract (Account),

214 R. Gheyi et al.

hence we do not need to apply Law 3 to introduce a subsignature (from left to
right). Avoiding name conflicts, we can always apply Law 3 from left to right.
So, any top-level signature can always be converted to abstract.

As mentioned before, Σ contains all elements in the original model. So, in
this reduction, since the new elements introduced do not belong to Σ, the laws’
conditions related to Σ are always valid. The conditions related to v can always
be satisfied by choosing an appropriate name in order to preserve its validity.

Now that the top-level signature is abstract, our aim is to remove any refer-
ence to each parent signature in order to remove it later on. It can be referred
by relations and formulae. For each relation whose type refers to Account, we
have to introduce a corresponding relation for each subsignature of Account by
applying Law 7 from left to right. In our example, accs and owner refer to
Account. So, we introduce four new relations (ownerCh, ownerSav, accCh and
accSav). BankInv contains their definitions.
fact BankInv {

custs = accs.owner

Account = SavAcc+ChAcc

all a:Account | one a.owner

ownerCh = owner&(ChAcc->Customer)

ownerSav = owner&(SavAcc->Customer)

accCh = accs&(Bank->ChAcc)

accSav = accs&(Bank->SavAcc)

}

Notice that each introduced relation is similarly defined, which satisfies the con-
ditions (the relation does not appear in its definition and the expression has
the same type of the relation) required by applying Law 7 from left to right.
All introduced relations must be equivalent to the intersection of the original
relation with its new type, which is equivalent to the old type but it refers to
a subsignature instead of the parent signature. This law can always be applied
avoiding name conflicts. The same approach should be done for relations with
arity greater than two.

We introduce new relations in order to eventually remove all relations that
refer to a top-level parent signature. For example, using Law 11, we can deduce
that owner = ownerCh+ownerSav from the definitions of the new relations and
because the top-level signature is abstract. By replacing owner by its definition
using Law 11, we can remove every occurrence of it in the model, except for
its declaration and definition. Then, we can remove owner by applying Law 7
from right to left since it does not appear in the model. Since the relation name
belongs to Σ, v must have an item for it (owner→ownerCh + ownerSav). As
mentioned before, all items in v relate a name to a union of other names. In
order to remove accs, we follow a similar approach.

Now our aim is to remove all references of the top-level signatures from
formulae. Firstly we replace every occurrence of Account by its definition
SavAcc+ChAcc in every formula using Law 11. Remember that we always deal
with abstract parent signatures; hence they have a definition. Now Account only
appears in its declaration, definition and in each subsignature extension. So, we

A Complete Set of Object Modeling Laws for Alloy 215

Fig. 3. Final Model of a Banking System

can always apply Law 2 from right to left in order to remove it from the model.
Notice that Account encompasses a valid item for it in v. The resulting model
is depicted in Figure 3.

We have to follow the same approach in order to remove all top-level signa-
tures. This step of the reduction always terminates and converges because the
number of top-level signatures always decreases. We only add a signature when
the top-level signature is not abstract. However, this signature is not top-level
since it does not have subtypes. Additionally, the number of relations intro-
duced is finite since the number of subsignatures of the top-level signature is
finite. Moreover, notice that we justify why we can always apply a law in each
step. The only required condition is that the introduction of new names does
not cause name conflicts.

5.4 Replacing Formulae

Finally, we apply Law 11 to every formula in order to transform it into an
equivalent one in the core language. Applying Law 14, we can always remove all
signature’s attached formulae. When facts are empty, we can always use Laws
12 and 13 from right to left in order to remove them. Moreover we can move all
formulae to one fact by applying Law 11. In Alloy, a formula can be declared in
any fact.

5.5 Generalization

Applying a similar approach used in the previous example, we can always trans-
form any Alloy model into an equivalent one in the core language, as stated by
the following theorem.

Theorem 1. Any Alloy model can always be reduced to Alloy’s core language
by applying Laws 1-14.

The proof of the previous theorem is similar to the details given in the previous
example. We use the same strategy in terms of the applicability of the laws

216 R. Gheyi et al.

discussed in each individual step in the example. The reduction strategy for an
Alloy model M involves the following major steps:

1. remove all syntactic sugar constructs by applying Laws 4-6 and 8-10 from
left to right;

2. apply the following steps to all top-level parent signatures S until there are
no subsignatures in M :
(a) make S an abstract signature by applying Law 3 from left to right;
(b) push down every relation, whose type refers to S, for each subsignature

of S by applying Laws 7 and 11;
(c) replace every occurrence of S in all formulae by its definition using Law

11;
(d) remove S by applying Law 2 from right to left;

3. replace all formulae by an equivalent one in Alloy’s core language by applying
Law 11, and move all formulae to one fact by using Laws 11-14.

In some situations, the resulting model can also be reduced into an equivalent
one containing less signatures and relations. By applying Laws 1 and 15 from
right to left, we can remove all auxiliary signatures and merge relations.

5.6 A Different Reduction Strategy

Our approach uses a normal form, in which there is no signature hierarchy, for
Alloy proposed by Jackson [3]. In order to give more evidence of the previous
result, next we present a reduction strategy for a different normal form, which
is similar to the one proposed for ROOL [9] (a Java-like language). In ROOL’s
reduction, all attributes and methods are pulled up to the super class Object. In
this normal form, the signature hierarchy is preserved in contrast to Jackson’s
one.

Next we present a reduction strategy for a normal form similar to ROOL.
Any Alloy model is reduced to another one expressed, in which all relations
are declared in the parent signature Object. In this new reduction strategy, we
have to apply the same first (removing syntactic sugar constructs) and last step
(replacing formulae) of the previous strategy. The only difference is in the second
step. First, we have to apply Law 2 from left to right in order to introduce
the Object signature. This signature must be the parent signature of all top-
level signatures. We can always apply Law 2 from left to right avoiding naming
conflicts. Then, we pull up all relations from the subsignatures to Object. In order
to do that, we apply Laws 7 and 11. By composing those laws, we can derive the
Pull Up Relation refactoring. We can always apply this refactoring from left to
right avoiding naming conflicts. In this reduction, we use the same laws of the
previous strategy except for Law 3, which is not used in this reduction.

We summarize the new reduction strategy next:

1. remove all syntactic sugar constructs by applying Laws 4-6 and 8-10 from
left to right;

A Complete Set of Object Modeling Laws for Alloy 217

2. introduce Object by applying Law 2 from left to right. All top-level signatures
must have Object as a parent signature;

3. for each relation that is not declared in Object:
(a) apply the Pull Up Relation refactoring from left to right;

4. replace all formulae by an equivalent one in Alloy’s core language by applying
Law 11, and move all formulae to one fact by using Laws 11-14.

So, the normal form proposed by Jackson [3] is better than the previous one
because it allowed us to propose Law 3. In this kind of approach for proving the
relatively completeness result, a normal formal is better than another if it allows
us to propose more laws.

6 Related Work

Banerjee et al. [10] propose a set of primitive transformations for object-oriented
database schemas. These schemas can be represented by a subset of UML class
diagrams. They propose well-formedness rules for schemas and argue that their
transformations preserve well-formedness. They have transformations for adding
and removing signatures, relations, inheritance and methods. We proposed simi-
lar transformations, but we also focus on semantics preservation. Actually some
of their transformations do not preserve semantics. Moreover, our language con-
siders formulae differently from their work.

Bergstein [11] proposed five primitive object-preserving class transformations.
Four of his transformations are very similar to our transformations defined by
Law 2 and Pull Up Refactoring. The other transformation deals with multiple
inheritance, which is not supported by signature extension in Alloy 4. The condi-
tions for each transformation are not precisely defined as presented in our work.
The set of transformations was shown to be complete under his language, which
did not have multiplicities and constraints, and equivalence notion. He presented
a full completeness result by showing that any two models that are equivalent
under his notion can be related using his primitive transformations. So, if two
models m and m’ are equivalent, he showed that is always possible to rewrite
them m=m1=m2=...=m’ by applying his transformations. He has a stronger com-
pleteness result than our work. In his approach, he did not consider a normal
formal different from our work. Since he did not consider formulae, it is much
easier to remove a relation and a signature. The modeling language and trans-
formations considered in our work are more complex then his. In our case, before
removing any name, we have to deduce from the model’s constraints a definition
for it, which is not always possible, and replace it in every constraint.

Sunyé et al. [12] present a set of class diagram refactorings for adding, re-
moving and moving features. Enabling conditions are informally presented, but
some of them are not feasible in practice to be implemented in a tool. Gogolla
and Richters [13] show some transformations for class diagrams and OCL con-
straints. Both approaches fail to propose a formal semantics for class diagrams
and an equivalence notion. None of them guarantee the type system preservation
differently from our work. So, OCL constraints can become ill-typed by applying

218 R. Gheyi et al.

some transformations. In some situations, some of the transformations proposed
do not preserve semantics [2].

Lano and Bicarregui [14] present semantics for some class diagrams, and a
set of transformations for structural and behavioral diagrams. They propose
some structural refactorings, such as the Extract Interface refactoring. Never-
theless, they do not precisely state the enabling conditions. Some class diagram
transformations consider OCL constraints. Evans [15] proposes deductive trans-
formations for a subset of UML class diagrams. A formal semantics is proposed
for a subset of UML class diagrams. He proposes five transformations, such as
the Pull Up Attribute. These transformations can introduce type errors when
considering OCL constraints. None of the previous approaches except for Berg-
stein’s work attempts to propose a relatively complete set of transformations.
McComb [16] investigated refactorings for Object-Z models. He proposed three
refactoring rules and showed that they were complete in the sense that any
Object-Z specification that does not have unbounded recursive constructs, any
design may be derived, which represents a refinement of the original specification.

Frias et al. [17] specified a formal semantics for Alloy 2 (we focus on Alloy 4),
in which there is no notion of subtyping. They consider signatures as syntactic
sugar, different from our work. So, we can propose some interesting transforma-
tions changing the signature hierarchy.

7 Conclusions

We propose a comprehensive catalog of object modeling laws for Alloy. They
are a powerful tool for reasoning about object model transformations. We prove
that this set of transformations is relatively complete, through two reduction
strategies (transforming any Alloy model to another one in the core language):
destroying signature hierarchy, and preserving hierarchy and pulling up all rela-
tions. One of the strategies allowed us to discover Law 3. By composing these
transformations, we can derive a representative set of model transformations. In
our earlier work [4], we derived refactorings that allow us to change between Al-
loy idioms and, more generally, reason about models. In addition, the laws from
this work help formalizing model-driven program refactoring, based on model
invariants, as described before [1].

Suppose that two models are equivalent with respect to an alphabet and a
view. The full completeness result states that we can always relate both models
by applying our laws. Our catalog does not have the full completeness property
due to our approach of proposing laws with syntactic conditions. Introducing
formulae may introduce inconsistencies in a model. So, our laws are very con-
servative in the sense that some of them, such as Law 7, only introduce equality
formulae. We assure that introducing equalities do not introduce inconsistencies
and preserve semantics based on syntactic conditions. We do not have a law for
introducing relations with any kind of formula because we do not want to leave
to the user the burden of checking whether the new formulae preserve semantics
since it is not a trivial task.

A Complete Set of Object Modeling Laws for Alloy 219

Acknowledgments

We thank the anonymous referees for useful suggestions. This work was par-
tially supported by the National Institute of Science and Technology for Soft-
ware Engineering, funded by CNPq and FACEPE, grants 573964/2008-4 and
APQ-1037-1.03/08.

References

1. Massoni, T., Gheyi, R., Borba, P.: Formal model-driven program refactoring. In:
Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 362–376.
Springer, Heidelberg (2008)

2. Gheyi, R.: A Refinement Theory for Alloy. PhD thesis, UFPE (2007)
3. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,

Cambridge (2006)
4. Gheyi, R., Massoni, T., Borba, P.: Formally introducing alloy idioms. In: Brazilian

Symposium on Formal Methods, Brazil, pp. 22–37 (2007)
5. Owre, S., et al.: PVS language reference (2007), http://pvs.csl.sri.com
6. Gheyi, R., Massoni, T., Borba, P.: A rigorous approach for proving model refac-

torings. In: 20th Automated Software Engineering Conference, pp. 372–375 (2005)
7. Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for object mod-

els. Electronic Notes in Theoretical Computer Science 130, 3–21 (2005)
8. Hoare, C., et al.: Laws of programming. CACM 30(8), 672–686 (1987)
9. Borba, P., et al.: Algebraic Reasoning for Object-Oriented Programming. Science

of Computer Programming 52, 53–100 (2004)
10. Banerjee, J., et al.: Semantics and implementation of schema evolution in object-

oriented databases. In: Int. Conf. on Management of Data, pp. 311–322 (1987)
11. Bergstein, P.: Object-preserving class transformations. In: OOPSLA, pp. 299–313

(1991)
12. Sunyé, G., et al.: Refactoring UML models. In: UML, pp. 134–148 (2001)
13. Gogolla, M., Richters, M.: Equivalence rules for UML class diagrams. In: UML,

pp. 87–96 (1998)
14. Lano, K., Bicarregui, J.: Semantics and transformations for UML models. In: UML,

pp. 97–106 (1998)
15. Evans, A.: Reasoning with UML class diagrams. In: 2nd IEEE Workshop on In-

dustrial Strength Formal Specification Techniques, pp. 102–113 (1998)
16. McComb, T.: Refactoring Object-Z specifications. In: Wermelinger, M., Margaria-

Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 69–83. Springer, Heidelberg
(2004)

17. Frias, M., Pombo, C., Baum, G., Aguirre, N., Maibaum, T.: Reasoning about static
and dynamic properties in alloy: A purely relational approach. ACM Transactions
on Software Engineering Methodology 14(4), 478–526 (2005)

http://pvs.csl.sri.com

Undecidability Results for Distributed
Probabilistic Systems�

Sergio Giro

FaMAF, Universidad Nacional de Córdoba - CONICET
Ciudad Universitaria - 5000 Córdoba - Argentina

sgiro@famaf.unc.edu.ar

Abstract. In the verification of concurrent systems involving probabil-
ities, the aim is to find out the maximum/minimum probability that a
given event occurs (examples of such events being “the system reaches
a failure state”,“a message is delivered”). Such extremal probabilities
are obtained by quantifying over all the possible ways in which the pro-
cesses may be interleaved. Interleaving choices are considered a particu-
lar case of nondeterministic behaviour. Such behaviour is dealt with by
considering schedulers that resolve the nondeterministic choices. Each
scheduler determines a Markov chain for which actual probabilities can
be calculated. In the recent literature on distributed systems, particular
attention has been paid to the fact that, in order to obtain accurate re-
sults, the analysis must rely on partial information schedulers, instead of
full-history dependent schedulers used in the setting of Markov decision
processes. In this paper, we present undecidability results for distributed
schedulers. These schedulers were devised in previous works, and aim
to capture the fact that each process has partial information about the
actual state of the system. Some of the undecidability results we present
are particularly impressive: in the setting of total information the same
problems are inexpensive and, indeed, they are used as preprocessing
steps in more general model checking algorithms.

1 Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging
from ecology to computer science. They are useful to model and analyse systems
in which both probabilistic and nondeterministic choices interact. Particularly,
composition oriented versions of MDPs like probabilistic I/O automata [6,23], or
probabilistic modules [8] are aimed to model concurrent and distributed systems.

Model checking is a push-button technique to check properties about the
behaviour of probabilistic systems. Given a property and a model of the system,
model checking algorithms are able to determine whether the formula holds in
the model or not. Probabilistic model checking can be applied to MDPs [22,2].
Moreover, probabilistic model checkers have been developed, notably PRISM [17]
and LiQuor [7].

� Supported by ANPCyT project PICT 26135 and CONICET project PIP 6391.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 220–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Undecidability Results for Distributed Probabilistic Systems 221

The set of execution paths that are relevant to the property being checked
is defined using temporal logic formulae. Such formula rely on the usual modal
operators finally (written F or �) and globally (written G or �). As concrete
example, we may consider the paths in which “globally, the system is not in a
critical state” or “finally, the system reaches a stable state”. Given that MDPs
involve nondeterminism, the probability that a given formula holds depends on
how nondeterminism is resolved (in the concrete case of concurrent systems, it
depends on the order in which the components execute). Verification techniques
are concerned with properties that are required to hold in all possible resolu-
tions, and so the goal of probabilistic model checking is to find out the maximum
(or minimum) probability value of a formula. Such extrema are safe bounds on
the actual probability that the property holds, and so they can be used to state
that “the probability of reaching a failure state is less than 0.05, no matter the
order in which components execute”. To obtain such extrema, the technique
requires to universally quantify on all possible resolutions of the nondetermin-
ism inherent to the MDP. The resolution of nondeterminism is carried out by
the so-called schedulers (called also adversaries or policies, see e.g. [22,2,20]).
Schedulers transform MDPs into Markov chains (MC) by selecting one of the
enabled transitions at every step in the execution of the system. In case we are
analysing a concurrent system, the next component to perform a transition in
the MC is determined by the scheduler’s choice. Therefore, the goal of proba-
bilistic model checking is to find out the maximum (or minimum) probability
value of a temporal formula over all possible schedulers.

Existing model checking techniques consider the full-history dependent sched-
ulers used traditionally in the MDP setting. Such schedulers are functions
mapping execution paths (representing the history of the system) to enabled
transitions. In this way, the scheduler can choose a different enabled transition
in each path. In the case of concurrent systems, a compound model is obtained
by interleaving the models corresponding to the components, thus considering
all the full-history dependent schedulers in the compound model.

There is a research trend focusing on the fact that, in case not all information
is available to all components, some full-history dependent schedulers represent
unrealistic resolutions of nondeterminism (see [1,3,4,6,8], just to name a few).
Another consequence of full-history dependent schedulers is that properties can-
not be proven in a compositional fashion: already in seminal works [20], this
impossibility has been revealed as a rough edge in the theory.

The fictitious availability of information results in fictitious behaviours in
which the system does not necessarily complies with its specification. The fol-
lowing examples show fictitious resolutions of nondeterminism and their impact
on the maximum probability that certain states are reached.

In these examples, we see the execution of the system as a game, and the
failure states we want to avoid as states in which one of the players has lost
the game. The automata in Fig. 1a represent a game in which player T plays
against the team comprising players GH and GT . In such a game, T tosses
a coin and the team GH , GT has to guess. Since we have not introduced the

222 S. Giro

GH GTT

initT

1/2 1/2

ghgt gtgh

h t

initB

chct

initA

ctch

gtgh

sh st

(a) T tosses a coin. GH and GT have
to guess heads or tails

1/21/2

init‖

h t

ch ct

chct

t
1/2

h
1/2 t

1/2
h

1/2

ch ct

gh gt gtgh

(b) The system T‖GH‖GT

init‖

gh gt

1/2 1/2

ch ct

h t

(c) An unrealistic scheduler

h t
1/2 1/2

ghgt gt

initT
initG

gh

ch ct

gh gt

T G

(d) G has to guess

Fig. 1. Full-history dependent schedulers are unrealistic

formalism we use, we describe the problem informally. Players GH and GT take
the guess in the following fashion: in case GH believes that the coin landed
heads, it executes ch and then gh. Conversely, in case GT believes that the
coin landed tails, it executes ct and then gt. The components synchronize in a
CSP fashion. In particular, the transition labelled with ch must be executed in
both GT and GH during the same transition step. So, as soon as one of the
players chooses an option, the other one accepts it and stays quiet. Player T
loses if it receives a gh and the coin has landed heads (the intended meaning
being that GH and GT have correctly guessed heads), and similarly for gt and
tails1. Intuitively, since neither GH not GT have any information about the
outcome of the coin, they cannot arrange in such a way that T loses all the
time. However, in the compound system T ‖ GH ‖ GT (shown in Fig. 1b)
there is a full-history dependent scheduler in which T loses with probability 1.
Such scheduler chooses T in the first place. Then it chooses GH , in case the coin
lands heads; and GT , in case it lands tails (this scheduler is depicted in Fig. 1c).
However, in the real system, the time that GH and GH spend in their initial
states (and, consequently, the order in which they execute their transitions)
cannot depend on information that is not available to them. Hence, full-history
dependent schedulers are not a convenient way to model nondeterminism. The
same observation applies to internal nondeterministic choices (which are used
to model failures or user inputs). Figure 1d depicts players T and G, and the
intended meaning is that T loses in case G guesses the outcome of the coin.
Again, the compound system is that of Fig. 1b, and the scheduler in Fig. 1c
1 Note that T gets very sad in case he loses.

Undecidability Results for Distributed Probabilistic Systems 223

unrealistically assumes that G can change its choice according to the outcome
of the coin (note that G is the parallel composition GH ‖ GT) and so the
probability that T loses is 1. This is the probability that we obtain using the
algorithms behind existing model checkers such as PRISM [17] or LiQuor [7]. In
both examples we would like the maximum probability of reaching �

�¨ to be 1/2
since, if we repeat the game several times, the player G (or the team comprising
GH and GT) will guess correctly half of the times in the long run.

In general, it may be the case that a program is deemed incorrect by an al-
gorithm, while all the behaviours that violate the specification according to the
algorithm (that is, the counterexamples) are fictitious. The bottom line is that
some correct systems may be deemed incorrect by existing algorithms. In this
sense, we can say that such algorithms are “sound” (that is, no incorrect sys-
tems are deemed correct) but not “complete” (some correct systems are deemed
incorrect).

In order to limit the variety of behaviours introduced by full-history depen-
dent schedulers, classes of schedulers that only consider partial information were
proposed in the literature. In particular, we are interested in the class of so-called
distributed schedulers. Such schedulers were studied in [8] in a synchronous set-
ting and in [5,13] in an asynchronous setting. A distributed scheduler is con-
structed from local schedulers, which are schedulers for single components of
the system defined in the usual way, and a mechanism to combine such sched-
ulers. Such mechanism could be related to a projection function [8], a passing
token [6,5], execution rates of the components [14], or schedulers that define the
way in which components interleave [13]. These approaches result in different
types of distributed schedulers. We remark that the scheduler of Fig. 1c would
not be a valid scheduler for T ‖ G in this new setting, since the choice for G de-
pends only on information which is external to (and not observed by) G. In fact,
a local scheduler for G yielding such a behaviour would not be definable, since
the local scheduler depends only on the local history of G, which is certainly the
same as long as G does not execute any transition.

In conclusion, we would like to calculate the extremal probabilities under
distributed schedulers.

In this paper, we present several undecidability results concerning distributed
schedulers. First, the maximum probability that a state is reached under dis-
tributed schedulers cannot be approximated, even in systems that do not exhibit
internal nondeterminism. This result is of a quantitative nature, in the sense that
the problem concerns the calculation of a probability value. Still more interesting
are the results concerning qualitative properties: namely, there is no algorithm to
decide whether there exists a scheduler reaching a set of states with probability
one (nor whether the supremum quantifying over all schedulers is 1). In particu-
lar, it cannot be calculated whether there is a distributed strategy in which the
system stabilizes with probability 1 (let alone calculating such an strategy).

These results are original contributions, and we complete the picture by re-
calling a theorem in [12]. In Sec. 4, we compare the results in this paper against
existing undecidability results for partial information schedulers.

224 S. Giro

2 Interleaved Probabilistic I/O Automata

Our results are presented in the framework of Interleaved Probabilistic I/O Au-
tomata (IPIOA) [13]. This framework is based on the Switched PIOA introduced
by Cheung et al. [6] It uses reactive and generative structures (see [16]). For a
finite set S, we denote by DiscDist(S) the set of all discrete probability distri-
butions over the set S. Given a set ActLab of action labels and a set S of states,
the set of generative transitions TG on (S,ActLab) is DiscDist(S×ActLab), and
the set TR of reactive transitions is DiscDist(S). A generative structure on
(S,ActLab) is a function G : S→ P(TG) and a reactive structure on (S,ActLab)
is a function R : S×ActLab → P(TR). Figure 2 depicts an example of these
structures. Generative transitions model both communication and state change.

A reactive structure with two transitions

1/2
1/2

a?

2/3
1/3

b?

A generative structure with two transitions

1/2
1/2

a!

1/3
2/3

b!b!

a!

Fig. 2. Reactive and generative structures

The component executing a generative transition chooses both a label a to out-
put (the ! in the figure represents output) and a new state s according to a given
distribution. Reactive transitions specify how a component reacts to a given in-
put (the ? in the figure represents input). Since the input is not chosen, reactive
transitions are simply distributions on states. A generative transition such that
g(a1, s1) = p1 and g(a2, s2) = p2 is denoted by p1

a1!−−→s1 +p2
a2!−−→s2 and similarly

for reactive transitions.
In our framework, a system is obtained by composing several probabilistic I/O

atoms. Each atom is a probabilistic automata having reactive and generative
transitions.

Definition 1. A probabilistic I/O atom is a 5-tuple (S,ActLab, G,R, init), where
S is a finite set of states, ActLab is a finite set of actions labels, and G (R, resp.)
is a generative (reactive, resp.) structure in (S,ActLab). init ∈ S is the initial
state. We require the atoms to be input-enabled2, so R(s, a) �= ∅ for every s ∈ S,
a ∈ ActLab. We often write Si to denote the set of states of an atom Ai and
similarly for the other elements of the 5-tuple. In addition, we write TGi (TRi ,
resp.) for the set of generative (reactive, resp.) transitions on (Si,ActLabi).

An interleaved probabilistic I/O system P is a set Atoms(P) of probabilistic
I/O atoms A1, · · · , AN . The set of states of the system is

∏
i Si, and the ini-

tial state of the system is init = (init1, · · · , initN). The parallel composition
of two systems P , Q (denoted by P ‖ Q) is the system having Atoms(P ‖
Q) = Atoms(P) ∪ Atoms(Q). Given two atoms A and B, we denote by A ‖ B

2 This requirement is already present in seminal works introducing I/O automata [18].

Undecidability Results for Distributed Probabilistic Systems 225

the parallel composition of the systems P with Atoms(P) = {A} and Q with
Atoms(Q) = {B}.

In order to define how the system evolves, we define compound transitions,
which are the transitions performed by the system as a whole. In such compound
transitions, all the atoms having the same action label in their alphabet must
synchronize and exactly one of them must participate with an output (genera-
tive) transition (thus modelling multicasting). Formally, a compound transition
is a tuple c = (gi, a, rj1 , · · · , rjm) (we require i �= jk and jk �= jk′ for all k �= k′)
where gi is a generative transition in the atom Ai (the active atom, denoted by
active(c)), a ∈ ActLabi is an action label, the rjk

are reactive transitions in the
atoms Ajk

(the reactive atoms) and {Ai, Aj1 , · · · , Ajm} is the set of all the atoms
such that a ∈ ActLabj . We say that Ai, Aj1 , . . . , Ajm are the atoms involved in
the compound transition. A compound transition (gi, a, rj1 , · · · , rjm) is enabled
in a given state (s1, · · · , sN) if gi ∈ Gi(si) and rjk

∈ Rjk
(sjk

, a). The action
label a of a compound transition c is indicated by label(c). The (sub)probability
c(s, s′) of reaching a state s′ = (s′1, · · · , s′N) from a state s = (s1, · · · , sN) using a
compound transition c = (gi, a, rj1 , · · · , rjm) is gi(s′i, a) ·

∏m
k=1 rjk

(s′jk
) if st = s′t

for every atom not involved in the transition. Otherwise, c(s, s′) = 0. So, for all
A we have

∑
{c|active(c)=A}

∑
s c(s, s

′) = 1.
In order to ease some definitions, we introduce a fictitious “stutter” compound

transition ς. Intuitively, this transition is executed iff the system has reached a
state in which no atom is able to generate a transition. The probability ς(s, s′)
of reaching s′ from s using ς is 1, if s = s′, or 0, otherwise.

A path σ of P is a sequence of the form s1.c1.s2.c2 · · · cn−1.sn where each
si is a (compound) state such that c(si−1, si) > 0 and each ci is a compound
transition enabled in si−1. A path can be finite or infinite. We denote the set
of finite paths by Paths(P). For a path σ as before, we define σ(i) = si. For
all finite σ, we define last(σ) = sn and len(σ) = n. The set σ↑ contains all the
infinite paths starting with σ. Given a set of states U , the set of infinite paths
{ρ | ∃i • ρ(i) ∈ U} is denoted by reach(U).

In the following, we suppose that input-enabled atoms A1, . . . , AN are given,
and we are considering the system P comprising all the atoms Ai. We call this
system “the compound system”. The states (paths, resp.) of the compound sys-
tem are called global states (global paths, resp.) and the states (paths, resp.) of
each atom are called local states (local paths, resp.).

The probability of a set of executions depends on how the nondeterminism is
resolved. A scheduler resolves a nondeterministic choice by selecting one of the
available transitions. Given a system and a scheduler, the probability of a set of
executions is completely determined.

Usually, schedulers assign probabilities to the available transitions taking into
account the complete history of the system. So, arbitrary schedulers are defined
as functions mapping paths to transitions. As we have seen, it may be unrealistic
to assume that the schedulers are able to see the full history of all the components
in the system. In the following, we define restricted classes of schedulers in order
to avoid considering unrealistic behaviours.

226 S. Giro

For simplicity, in this paper we restrict to non-randomized schedulers. Proofs
of the results we present under randomized schedulers can be found in [15].

2.1 Distributed Schedulers

In a distributed setting as the one we are introducing, different kinds of nonde-
terministic choices need to be resolved. An atom needs a corresponding output
scheduler to choose the next generative transition. In addition, it may be the
case that many reactive transitions are enabled for a single label in the same
atom. So, for each atom we need an input scheduler in order to choose a reac-
tive transition for each previous history and for each label. Output and input
schedulers are able to make their decisions based only on the local history of the
atom. So, we need the notion of projection.

Given a path σ, the projection [σ]i of the path σ over an atom Ai is de-
fined inductively as follows: (1) [(init1, · · · , initN)]i = initi , (2) [σ.c.s]i = [σ]i
if label(c) �∈ ActLabi and (3) [σ.c.s]i = [σ]i.label(c).πi(s) (where πi is the usual
projection on tuples), otherwise. The set of all the projections of paths over an
atom Ai is denoted by Proji(P).

An output scheduler for the atom Ai is a function Θi : Proji(P) → TGi such
that, if Gi(last(σ)) �= ∅ then Θi([σ]i) = g =⇒ g ∈ Gi(last([σ]i)). An input
scheduler for an atom Ai is a function Υi : Proji(P)× ActLabi → TRi such that
Υi([σ]i, a) = r =⇒ r ∈ Ri(last([σ]i), a). Note that, if the output scheduler
Θi fixes a generative transition for a given local path [σ]i, then the actions
in the generative transition can be executed in every global path σ′ such that
[σ′]i = [σ]i, since we require the atoms to be input-enabled.

An important difference with respect to the original framework introduced by
Cheung et al. [5] is the addition of an interleaving scheduler that chooses the
next component to perform an output. (For a detailed comparison of previous
approaches to interleaving, see Sec. 4.)

We start by considering arbitrary interleaving schedulers that are able to see
the complete history of the whole system. We restrict interleaving schedulers in
the next subsection.

An interleaving scheduler is a map that, for a given (global) history, chooses
an active atom that will be the next to execute an output transition (accord-
ing to its output scheduler). Formally, an interleaving scheduler is a function I :
Paths(P) → {A1, · · · , AN} such that, if there exists i such that Gi(last([σ]i)) > 0
(that is, if there is some atom being able to generate a transition) then I(σ) =
Ai =⇒ Gi(last([σ]i)) �= ∅. Note that, even if interleaving schedulers are un-
restricted, compound schedulers for the compound system are still restricted,
since the local schedulers can only see the portion of the history corresponding
to the component.

A scheduler for the compound system results from the appropriate composi-
tion of the interleaving scheduler and the output and input schedulers of each
atom.

Definition 2. Given an interleaving scheduler I, input schedulers Υi and
output schedulers Θi for each atom i, the distributed scheduler η obtained by

Undecidability Results for Distributed Probabilistic Systems 227

composing I, Θi and Υi is defined as η(σ)(gi, a, rj1 , · · · , rjm) = 1 iff Ai = I(σ),
Θi([σ]i) = gi and Υjk

(σ, a) = rjk
for all j = 1, · · · ,m. In case there is no gener-

ative transition enabled, we require η(σ)(c) = 1 iff c = ς. The set of distributed
schedulers of P is denoted by Dist(P).

Since each generative transitions may output several different labels, the global
scheduler η does not choose a single transition. The reader familiar with ran-
domized schedulers may notice that

∑
c η(σ)(c) > 1 whenever the generative

transition in c outputs more than one label. (This is in contrast with random-
ized schedulers, which choose probability distributions on transitions.) However,
for every label a, we have

∑
{c|label(c)=a} η(σ)(c) = 1.

The probability of the extension sets σ↑ is inductively defined as follows: the
probability Prη(init↑) of the extensions of the initial state is 1. The probability
of Prη(σ.c.s↑) is Prη(σ) · η(σ)(c) · c(last(σ), s).

Simple arithmetic can be used to show that
∑

c,s′ η(σ)(c) · c(last(σ), s′) = 1,
and so, as usual (namely, by resorting to the Carathéodory extension theo-
rem), this probability can be extended to the least σ-field containing all the
extension sets.

2.2 Strongly Distributed Schedulers

Strongly distributed schedulers were introduced in [13] as a smaller but yet
meaningful class of distributed schedulers.

Distributed schedulers as in Def. 2 provide an accurate model in case the
interleaving scheduler has access to all information. As an example, suppose
that the atoms represent processes running on the same computer, and the
interleaving scheduler plays the role of the operating system scheduler. In case
such an scheduler assigns priorities to the processes by gathering information
from all processes states, a total information interleaving scheduler is a natural
model.

On the contrary side, if we are analysing an agreement protocol and each
atom models an independent node in a network, then the order in which two
nodes execute cannot change according to information that is not available to
them. We recall the example in the introduction to show how the worst-case
probability is affected by the information available to the interleaving scheduler.

Figure 3, depicts the example in Fig. 1a in terms of our formalism. Given the
input-enabledness requirement, we add an input transition in the initial state

GH GTT

initT

1/2 1/2

gh?gt? gt?gh?

h! t!

gh? gt? initB

ch?ct?

initA

ct!ch!

gt!gh!
sh st

Fig. 3. Motivating strongly distributed
schedulers

of T , thus modelling that the game
ends in case GH and GT take their
guess before the coin has been tossed.

In case we consider the system T ‖
GH ‖ GT , the unrealistic scheduler
in Fig. 1c is distributed according
to Def. 2, since distributed schedulers
restrict the resolution of internal non-
deterministic choices, and these atoms
have no such choices (note that there

228 S. Giro

is at most one output transition in each state, and at most one input transition
for each pair state/label). In particular, the interleaving scheduler can arrange
the execution of GH and GT according to the hidden information in T .

Next, we present a condition on the interleaving scheduler. This restriction
prevents the use of external information to change the order in which two
components execute. The information available to atoms A and B can be de-
fined as [σ]A,B = ([σ]A, [σ]B). Note that [σheads]GH ,GT = [σtails]GH ,GT =
(initGH , initGT). In addition, in the unrealistic scheduler I(σ) = GH and I(σ′) =
GT . Intuitively, for all atoms A, B there cannot be two paths σ, σ′ such that:
(1) [σ]A,B = [σ′]A,B and (2) atom A is scheduled in σ and (3) atom B is
scheduled in σ′. Formally:

∀A,B ∈ Atoms(P) • ∀σ • � ∃σ′ • [σ]AB = [σ′]AB ∧ I(σ) = A ∧ I(σ) = B . (1)

Definition 3. A scheduler η is strongly distributed iff η is distributed and (1)
holds on the interleaving scheduler I that defines η. The set of strongly distributed
schedulers of P is denoted by SDist(P).

In [13] (where strongly distributed schedulers are introduced for the first time) we
prove some properties to further support the fact that (1) is a natural restriction
whenever the interleaving nondeterminism is resolved a distributed fashion. In
particular, we prove that (1) implies a more general condition in which A and
B are replaced with two disjoint sets of atoms A and B. Strongly distributed
schedulers also generalize the rate schedulers of [14], in the sense that the set of
rate schedulers is included in the set of strongly distributed schedulers.

3 Undecidability

We start with a quantitative problem for strongly distributed schedulers, namely,
to calculate the supremum probability that a state in a given set U is reached.
Then, we consider the qualitative problem of deciding whether there exists a
scheduler reaching some state in U with probability 1, and the problem of de-
ciding whether the supremum probability quantifying over all schedulers is 1.
These latter problems are not trivially equivalent. In [13] we show that, in some
cases, the supremum probability is 1 and, although there are schedulers reaching
U with probabilities arbitrarily close to 1, there is no scheduler yielding exactly
such probability.

3.1 Quantitative Results

The following theorem is stated in its more “particular” form (that is, restricting
the IPIOA to have no internal nondeterminism), since the stronger undecidabil-
ity results are those concerning smaller input sets. Of course, the problem is
also undecidable if we consider unrestricted IPIOA. The fact that the result
holds for systems without internal nondeterminism shows that the condition we
impose to strongly distributed schedulers introduce undecidability on its own,
independently of the restrictions imposed by the mechanism of input/output
schedulers.

Undecidability Results for Distributed Probabilistic Systems 229

Theorem 1. There is no algorithm such that, for all IPIOA P having no in-
ternal nondeterministic choices, for all sets U , and for all ε > 0, the algorithm
computes r such that ∣∣ sup

η∈SDist(P)
Prη(reach(U))− r

∣∣ ≤ ε .

Proof. In order to prove Theorem 1, we reduce the supremum acceptance prob-
lem for probabilistic finite-state automata (PFA) to the supremum reachability
problem for PIOA with unspecified rates. The supremum acceptance problem
for PFA was proven undecidable in [19].

A PFA is a quintuple (Q,Σ, l, qi, qf) where Q is a finite set of states with
qi, qf ∈ Q being the initial and accepting state respectively, Σ is the input
alphabet, and l : Σ × Q → (Q → [0, 1]) is the transition function such that
l(α, q) is a distribution for all α ∈ Σ and q ∈ Q. A word w is an infinite
sequence of symbols from Σ. The probability Pr(accept(w)) of accepting a word
w is the probability of all paths ρ starting from qi and reaching qf according to
l(wk, sk+1), where wk is the k-th symbol in w and sk+1 is the k + 1-th state in
ρ (the first state in ρ is qi.

We recall Corollary 3.4 in [19]:

For any fixed 0 < ε < 1, the following problem is undecidable: Given a PFA FA

such that either

1. FA accepts some word with probability greater than 1− ε, or
2. FA accepts no word with probability greater then ε;

decide whether case 1 holds.

Given a PFA FA, we can construct an atom AF having only reactive transi-
tions. Such atom AF is defined as follows: SF = Q, ActLabF = Σ, GF (s) = ∅
for all s, RF (s, α) = {l(α, s)} and initF = qi.

In addition to AF , we construct atoms Aα. For each α ∈ Σ, the atom Aα

is defined as follows: SAα = {initα}, ActLabF = {α}, GF (initα) = {gα} where
gα(α, initα) = 1 and Rα(initα, α) = {rα} where rα(initα) = 1 (although rα is not
used, it is required by the input-enabledness condition).

We consider the system P = AF ‖α∈Σ Aα. In this system, every η ∈ SDist(P)
defines a word w for F . In fact, if I (i.e., the interleaving that defines η) chooses
Aα1 in the initial state, then the first symbol of the word is α1. After executing
l(α, s), atom AF can be in several states, but the choice of I must be the same
in all of them, since

[s. (gα1 , α1, l(α1, s)). s′]Aα = [s. (gα1 , α1, l(α1, s)). s′′]Aα = initα .α1. initα

for all α. So, if I(s.(gα1 , l(α1, s)).s′) = α2 for all s′, then α2 is the second symbol
in the word, and so on.

Similarly, every word defines a strongly distributed scheduler. Then, we have

sup
w

Pr(accept(w)) = sup
η∈SDist(P)

Prη(reach({qf})) .

230 S. Giro

And so the result follows from Corollary 3.4 in [19].
By checking the definitions of Aα and AF , we can see that the constructed

system P has no internal nondeterminism.

In order to complete the picture, we state a theorem by Giro and D’Argenio
in [12]. This theorem concerns the undecidability introduced by the fact that
output schedulers can only look at the local history. In fact, the formalism used
to prove the results in [12] is the one of synchronous probabilistic modules in-
troduced by de Alfaro et al. in [8], and so there are no interleaving issues.

We say that a system has no interleaving nondeterminism if, for all states s,
there is at most one atom Ai in which there are generative transitions enabled
in s (that is, Gi(πi(s)) �= ∅ and for all i′ �= i we have Gi′ (πi′(s)) = ∅).

Theorem 2. There is no algorithm such that, for all IPIOA P without inter-
leaving nondeterminism, for all sets U , and for all ε > 0, the algorithm computes
r such that ∣∣ sup

η∈Dist(P)
Prη(reach(U))− r

∣∣ ≤ ε .

In [12] this result is proven using the formalism in [8] and there it is explained
how the proof can be adapted to a PIOA setting as the one in this paper.

3.2 Qualitative Undecidability

In the following proofs, we use reductions of the Post correspondence problem
(PCP), which is a well-known undecidable problem [21].

The PCP problem can be stated as follows: given finite words u1, . . . , un and
v1, . . . , vn over an alphabet S. Is there a finite non-empty sequence of indices
k = k1 · · ·km such that uk1 · · ·ukm = vk1 · · · vkm? We remark that (in contrast to
the PFA acceptance problem explained before) the PCP problem only concerns
finite words.

Intuitively, we can think that we are given n blocks with two words, as shown
in the following example:

aba
a

c
bacab

1 2

These blocks depict the instance u1 = aba, u2 = c, v1 = a and v2 = bacab.
The sequence of indices 1, 2, 1 is a solution, since u1 ·u2 ·u1 = abacaba = v1 ·v2 ·v1.

We say that (w, k) is an upper pair iff k = k1 · · ·kn and w = uk1 · · ·ukn . We
say that (w, k) is a lower pair iff w = vk1 · · · vkn . Note that a word w can appear
in an upper pair (in this case, we say that the word is an upper word) iff w is
in the regular language (u1 + . . .+ un)∗ (which we call the upper language), and
similarly for the words that can appear in a lower pair. Then, an instance of the
PCP problem has a solution iff there exists an upper pair (w, k) such that (w, k)
is also a lower pair. We denote by len(w) the length of a word w.

Next, we prove the qualitative undecidability result for distributed schedulers.

Undecidability Results for Distributed Probabilistic Systems 231

Theorem 3. There is no algorithm that, for all IPIOA P without interleaving
nondeterminism, for all sets U , the algorithm decides whether or not

sup
η∈Dist(P)

Prη(reach(U)) = 1 .

There is no algorithm that, for the same input as above, decides whether or not
there exists η ∈ Dist(P) such that Prη(reach(U)) = 1.

Proof. Given a PCP instance u1, . . . , un, v1, . . . , vn, we construct three atoms W ,
S, I and consider the system P = W ‖ S ‖ I. Roughly speaking, W chooses ei-
ther “upper” or “lower”. If W chooses “upper”, then W probabilistically chooses
an upper word w , communicating the symbols in w to S and the indices ki to
I (and similarly if W chooses “lower”). Once w ends (the end of w is also de-
cided probabilistically), then W outputs stop. After stop, I is able to output
any sequence of indices to S (some of the behaviours we will be interested in are
the behaviours in which I communicates the indices it has received from W).
Then, S has to guess whether W has chosen either “upper” or “lower”. The set
of states U is the set in which S has guessed correctly.

The set ActLabW is S ∪ {1, · · · , n} ∪ {stop, τW }. The behaviour of W is as
follows: W has no nondeterministic choices. In the initial state there is a prob-
abilistic transition (1

2
τW !−−→ initUp + 1

2
τW !−−→ initLo). The states initUp and initLo

represent the fact that W has chosen “upper” or “lower” respectively. In initUp

there is a probabilistic transition (1
n

1!−→startU1 + · · ·+ 1
n

n!−→startUn). The states
startU i represent the fact that the word w will start with ui. Similarly, the states
startLi represent the fact that word w will start with vi. In each state startU i

there is a transition (1
ui1 !
−−→U i1), where ui1 is the first symbol in ui

3 and U i1 rep-
resents the fact that the first symbol in Ui has been output. From each state U ij

with j < len(ui)−1 there is a transition (1
uij+1 !
−−−−→U ij+1). In the state U ilen(ui)−1 ,

there is a transition (1
2

uilen(w) !−−−−−→ initUp + 1
2

stop!−−−→ endWU). The state endWU

indicates that the upper word has ended (similar definitions must be done in
case W chooses “lower”, where we have the state endWL). Since W must be
input-enabled, each state has input transitions for each l ∈ ActLabW . However,
because of the definition of the atoms, the paths in which the labels are output
by other atoms have probability 0 for all schedulers, and so the definitions of the
input transitions are irrelevant.

The set ActLabI is S ∪ {1, · · · , n} ∪ {1′, · · · , n′} ∪ {stop, stop′}. The labels
{1′, · · ·n′} are indices to be communicated to S. However, such labels must be
different from the labels {1, · · · , n} output by W , since S is not allowed to see
such labels. The label stop′ simplifies the construction for similar reasons. In the
initial state initI there are input transitions (1 i?−→ initI) for each 1 ≤ i ≤ n and

also an input transition (1
stop?−−−→outputI). Other input transitions are irrelevant.

3 For simplicity, we omitted the case in which some of the words uk (vk, resp.) are
empty. In this case, when the index k is output in the state initUp, W returns to
initUp instead of moving to startUk.

232 S. Giro

In the state outputI there are transitions (1 i′!−→outputI) for each 1 ≤ i ≤ n, and

also a transition (1
stop′ !−−−→endI).

The set ActLabS is S ∪ {1′, · · · , n′} ∪ {stop′, τS}. In the initial state there
are input transitions (1 a?−→ initS) for every l ∈ S ∪ {1′, · · · , n′} and transition

(1
stop′?−−−−→ guessS). In guessS there are two transitions: (1 τS!−−→ tryUp) and (1 τS !−−→

tryLo).
So, the set U to be reached is {(endWU , endI , tryUp) , (endWL, endI, tryLo)}.

We prove the following statement: there exists a distributed scheduler such
that Prη(reach(U)) = 1 iff the PCP problem has no solution. In addition,
supη∈Dist(P) Prη(reach(U)) = 1 iff the PCP problem has not a solution.

Suppose that the problem has no solution. Then every pair (w, k) can be an
upper or a lower pair, but it cannot be both. So, there exists a function F such
that F(w, k) = Up (F(w, k) = Lo, resp.) iff (w, k) is an upper pair (a lower
pair, resp.). We can construct the following distributed scheduler for P : input
and output schedulers for W are uniquely defined (there are no nondeterminis-
tic choices). The output scheduler for I chooses the transitions that output the
indices in order as they were output by W . The output scheduler for S has to
decide only between going to tryUp or going to tryLo. The only paths with prob-
ability greater than 0 in which this choice is performed have a sequence of action
labels of the form a1 · · · aqk1 · · ·krstop′. If F(a1 · · ·aq , k1 · · · kr) = Up, then the
output scheduler chooses tryUp, otherwise it chooses tryLo. If the path has pos-
itive probability, and a1 · · ·ark1 · · · kq is an upper pair, then (by construction of
W) we know that W is in state endWU . Conversely, if a1 · · · ark1 · · ·kq is a lower
pair, then W is in state endWL, and so the scheduler we constructed reaches U
with probability 1.

Now assume that the PCP problem has a solution. Then, let (w, k = k1 · · ·kr)
be an upper pair that is also a lower pair. Let ε be 1

2 (1
n

1
2)r. We prove that

Prη(reach(U)) ≤ 1 − ε for all η ∈ Dist(P). Given the existence of (w, k =
k1 · · · kr), there exist two paths σ, σ′ whose projection on I is of the form
k1 · · · krstop and, in σ, W has chosen “upper” while in σ′ it has chosen “lower”.
Let ηq be any scheduler in Dist(P). For both σ and σ′, the output scheduler Θq

I

starts to choose transitions in such a way that a certain sequence l1 · · · lr′ stop′

is output (if stop′ is never output, then a state in U cannot be reached and so
ηq yields a probability less than or equal than 1 − ε). Then, in both σ, σ′ the
projection to S is wl1 · · · lr′ stop′. So, if the scheduler for S chooses “upper” in
σ, then it also chooses “upper” in σ′. Since σ′ has probability ε and U cannot
be reached after “upper” has been chosen in σ′, we have Prηq

(reach(U)) ≤ 1− ε.
The same happens in case the scheduler for S chooses “lower”.

Therefore, every ηq ∈ Dist(P) reaches U with probability less than or equal
to 1− ε, and hence the supremum is less than or equal to 1− ε, and there is no
scheduler reaching U with probability 1.

The constructed system P has no interleaving nondeterminism, since first W
selects a word, then I outputs the indices and finally S decides.

Undecidability Results for Distributed Probabilistic Systems 233

Note that the theorem above is the qualitative analogous of Theorem 2 (con-
cerning distributed schedulers). Now, we consider the qualitative analogous of
Theorem 1.

Theorem 4. There is no algorithm that, for all IPIOA P without internal non-
determinism, for all sets U , the algorithm decides whether or not

sup
η∈SDist(P)

Prη(reach(U)) = 1 .

There is no algorithm that, for the same input as above, decides whether or not
there exists η ∈ SDist(P) such that Prη(reach(U)) = 1.

Proof. We use the same idea as in the case of distributed schedulers. When
proving such result, we defined three atoms W , S and I. Here, we reuse the atom
W , excepting for a little modification explained later. The atom S is replaced by
two atoms SUp and SLo . Atom I is replaced by a set of atoms {Ii}n

i=1 ∪{Istop}.
The intended meaning is that SUp and SLo are a team that must guess whether
the word is an upper or a lower one, according to the same information that S
receives in the other reduction (namely, the sequence of symbols output by W
and the sequence of indices output by I, such sequence being now output by
the team comprising atoms {Ii}n

i=1). Atoms SUp and SLo take the guess in the
following fashion: if SUp believes that it is an upper word, then it outputs u.
Conversely, if SLo believes that it is a lower word, then it outputs l. So, both
SUp and SLo behave as S, until the point in which S decides, i.e. at the state

guessS. In this state, SUp has enabled the transition (1 u!−→ tryUp), and SLo has

enabled the transition (1 l!−→ tryLo). In W , the state endWU has the following
input transitions: (1 u?−→good) and (1 l?−→bad). The state endWL has the following
transitions (1 u?−→ bad) and (1 l?−→ good). Then, the state good is reached in the
cases in which the team {SUp, SLo} guesses correctly “upper” or “lower”.

Each atom Ii has all the input transitions in I. In addition, in the initial state

there is an input transition (1
stop′?−−−−→ endI i). The atom Istop has all the input

transitions in I, and only one output transition (1
stop′!−−−→endIstop). So, once Istop

decides to stop, all the Ii reach the state endI i. Each atom Ii has enabled the

output transition (1 i′!−→ initI).
Since we deal with strongly distributed schedulers, in case the indices output

by W coincide in two given paths, the sequence of indices output by the atoms
Ii also coincides, regardless of the symbols output by W . The argument thus
follows as in the case of distributed schedulers (Theorem 3): given two paths σ,
σ′, such that σ (σ′, resp.) represents an upper word (lower word, resp.) followed
by the same sequence of indices, if the upper word in σ and lower word in σ′

coincide, then the indices output by the atoms Ai also do. So, the projections
to SLo and SUp are the same in both σ and σ′. Hence, if “upper” is chosen in
σ, so it is in σ′, and the team comprising SLo and SUp chooses incorrectly in at
least one of these paths.

234 S. Giro

Therefore, the same argument as in the proof for distributed schedulers ap-
plies, thus proving that the supremum probability of reaching good is 1 (there
exists a scheduler reaching good with probability 1, resp.) iff the PCP problem
has no solution.

4 Impact and Related Work

An important aspect of Theorems 1 and 4 (concerning strongly distributed sched-
ulers) is that they are valid for systems with no internal nondeterminism. A
quick look to the case studies in [10] reveals that several protocols (and mod-
els in general) do not involve such nondeterminism. However, the interleaving
nondeterminism is present in all concurrent systems. Therefore, these theorems
have a wider impact than the theorem in [12], which says nothing about systems
without internal nondeterminism.

Since the notion of strongly distributed schedulers was introduced by Giro
and D’Argenio very recently4 in [13], it is quite unlikely that results similar to
Theorems 1 and 4 exist. It is worth mentioning that [14] presents a quantitative
undecidability result for a mechanism to resolve interleaving nondeterminism
using rates, in a fashion similar to the probabilistic I/O automata in [23].

Theorems 3 and 4 (concerning a qualitative problem) are really negative,
since in a total information setting the problem can be solved using simple
graph calculations (see [9, Algorithm 3.2, p. 56]). In fact, in [9] this calculation
is presented as a fast preprocessing step to alleviate the computation of maximal
reachability probabilities.

A concrete problem affected by Theorems 3 and 4 is that of stabilization [11].
If we take U to be the set of correct states, then these theorems imply that it
cannot be told whether there is a distributed strategy that leads the system to
a correct state with probability 1 (i.e. a strategy in which the system complies
with the so-called convergence property).

The problem concerning the infimum probability is not symmetrical with
respect to the supremum, and no clue about its decidability was given in related
previous papers such as [12] or [19]. Completing the picture in this sense will
then require an additional effort.

References

1. Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler.
In: PODC, pp. 209–218 (1997)

2. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic
systems. In: FSTTCS, pp. 499–513 (1995)

3. Canetti, R., Cheung, L., Kirli Kaynar, D., Lynch, N.A., Pereira, O.: Compositional
security for Task-PIOAs. In: CSF, pp. 125–139. IEEE CS, Los Alamitos (2007)

4. Chatzikokolakis, K., Norman, G., Parker, D.: Bisimulation for demonic schedulers.
In: FOSSACS, pp. 318–332 (2009)

4 As explained in [13], the previous approaches involved mechanisms other than sched-
ulers such as token passing, equivalence classes, arbiters, rates, etc.

Undecidability Results for Distributed Probabilistic Systems 235

5. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud Universiteit Nijmegen (2006)

6. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched Probabilistic PIOA:
Parallel composition via distributed scheduling. Theor. Comput. Sci. 365(1-2), 83–
108 (2006)

7. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST 2006, pp. 131–132. IEEE CS, Los Alamitos
(2006)

8. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001)

9. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997), Technical report STAN-CS-TR-98-1601

10. PRISM development team. Prism case studies,
http://www.prismmodelchecker.org/casestudies/index.php

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

12. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

13. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed
probabilistic systems. In: Proc. of QAPL 2009 (2009). Extended version to appear
in ENTCS, cs.famaf.unc.edu.ar/~sgiro/QAPL09-ext.pdf

14. Giro, S., D’Argenio, P.R.: On the verification of probabilistic i/o automata with
unspecified rates. In: SAC 2009: Proceedings of the 2009 ACM symposium on
Applied Computing, pp. 582–586. ACM, New York (2009)

15. Giro, S.: On the automatic verification of Distributed Probabilistic Automata with
Partial Information. PhD thesis, Universidad Nacional de Córdoba (to appear)

16. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified
models of probabilistic processes. Information and Computation 121, 59–80 (1995)

17. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

18. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

19. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1-2), 5–34 (2003)

20. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, MIT (1995)

21. Sipser, M.: Introduction to the Theory of Computation, 2nd edn., pp. 199–205.
Thomson Course Technology (2005)

22. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Procs. of 26th FOCS, pp. 327–338. IEEE Press, Los Alamitos (1985)

23. Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
I/O automata. Theor. Comput. Sci. 176(1-2), 1–38 (1997)

http://www.prismmodelchecker.org/casestudies/index.php
cs.famaf.unc.edu.ar/~sgiro/QAPL09-ext.pdf

Formalisation and Analysis of Objects as CSP
Processes

Renata Kaufman, Augusto Sampaio, and Alexandre Mota

Centro de Informática, Universidade Federal de Pernambuco, P.O. Box 7451, Brazil

Abstract. CSP-OZ is a formal specification language. It is a formal
combination of the process algebra CSP and Object-Z, an object-oriented
version of the model-based Z language. CSP-OZ lacks tool support, ha-
ving only a type checker and a model-checking strategy. Unfortunately,
the model-checking strategy for CSP-OZ does not deal with the object-
oriented features of this language. In this work, we propose design pat-
terns for CSP to capture such features and for CSP-OZ. Our approach
complements the original model-checking strategy by also considering
object-oriented characteristics.

Keywords: CSP, Object-Z, Object-Oriented Specification, Design
Pattern.

1 Introduction

In the formal methods area there has been a lot of interest in the integration
of formalisms in such a way that several facets (data, control, time, mobility,
probability) can be coherently combined in software development. Several efforts
have been dedicated to combine process algebras and model-based specification
languages [1,2,3]. CSP-OZ [1] is a combination of the process algebra CSP [4] and
Object-Z [5], an object-oriented extension of the model-based formalism Z [6].

There are several complex issues to be considered in the integration of lan-
guages: syntax, semantics, proof theory, development methods, analysis tech-
niques, reuse and so on. This paper contributes to the model-checking strategy
for CSP-OZ. The existing model-checking strategy for CSP-OZ [7] is based on the
translation of a CSP-OZ specification into CSP and then on the use of FDR [8]
to carry out the analysis. Unfortunately, this strategy does not deal with object-
oriented features, such as clientship, polymorphism and inheritance. To extend
the existing approach to consider object-oriented constructs, we define a set of
patterns in terms of CSPM [9] (the machine-readable version of CSP supported
by the model checker FDR) that mimic object-oriented features, such as classes,
subclasses, creation and dynamic removal of objects.

Our approach to capture object-oriented features purely in terms of CSP can
be used both as a target for translations from combined formalisms like CSP-
OZ and Circus [2], but also as a more structured style of writing and analysing
process algebra specifications.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 236–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Formalisation and Analysis of Objects as CSP Processes 237

The work was motivated by the need to formalize specifications of an EHRS
(Electronic Health Record System). Other works on formal methods to health
applications have been published. Dallien et all. [10] safety check workflows
of healthcare systems to avoid problems on patient care. Closer to our work,
Baksi [11] uses π-calculus to ensure that service provided by diverse healthcare
entities will interact correctly.

This paper is organised as follows. Section 2 introduces CSP-OZ through an
example. It assumes some basic knowledge of both CSP and Object-Z.
Section 3 presents the proposed patterns to capture object-oriented features
in CSP. Section 4 shows the application of the patterns to a Bank System case
study, including both the specification and analysis of the system. In the final
section, we summarize our results and discuss related and future work.

2 CSP-OZ through an Example

A CSP-OZ specification describes a system as a collection of interacting objects,
each one with its own structure and behaviour. Communication takes place via
channels as in CSP. In general, a CSP-OZ specification consists of several para-
graphs, introducing classes, global variables, functions and types. A CSP-OZ
class has an interface (channels), a control behaviour (expressed in CSP), a
state, and operations over this state (described in Z).

We introduce CSP-OZ through an example of a hypothetical Bank System. It
consists basically of three entities: an Account , a SavingsAccount and the Bank
itself.

The Bank System specification has the given set Password, which represents
the user passwords; the Value and Number abbreviations, which represent banking
operation values and account numbers, respectively as naturals; and the free-type
Message whose values are the system messages.

[Password]
Value == N

Number == N

Message ::= AccountDoesNotExist | InsufficientBalance

As presented in Figure 1, an Account is modelled as a CSP-OZ class that is de-
clared using the Z language style, together with the parameters to initialize the
state of the class instance. The first elements of a class are public/private channel
or method declarations. In the case of the Account class, we use method decla-
rations (keyword method) because this class provides services to other classes.
If we used public channel (keyword channel) declarations this class should be
requiring services from other classes. Finally, we could also use private chan-
nel declarations (keyword local channel) in which case the class will resolve its
behaviour internally.

Following the interface elements of a class, we have its behaviour. It is given in
terms of CSP, where the process main captures the initial behaviour of the class.

238 R. Kaufman, A. Sampaio, and A. Mota

Account(n : Number ; v : Value; p : Password)
method deposit : [v? : Value]
method withdraw : [v? : Value]
method getBalance : [v ! : Value]
method withdrawOk , withdrawNotOk : [v : Value]
main = (deposit?v → main � getBalance!v → main � WD)
WD = withdraw?v → (withdrawOk .v → main � withdrawNotOk .v → main)

num : Number ; bal : Value; passw : Password

bal ≥ 0

INIT =̂ [num = n ∧ bal = v ∧ passw = p]
effect deposit

Δ(bal); v? : Value

bal ′ = bal + v?

effect getBalance

Δ(); v ! : Value

v ! = bal

enable withdrawOk

v : Value

bal ≥ v

effect withdrawOk

Δ(bal); v : Value

bal ′ = bal − v

enable withdrawNotOk

v : Value

bal < v

Fig. 1. Class Account

It always offers deposit and getBalance events to the environment or behaves
like the auxiliary process WD, which offers withdraw and then withdrawOk or
withdrawNotOk . After any choice, it behaves like main again.

After describing the behavioural part, we need to characterize the class struc-
tural part as well. The state space of Account has three elements: the account
number, its balance and its password. And the state invariant is bal ≥ 0.

We are ready to add the operation that initializes the state of the system.
For each channel c, declared in the interface, there must be an effect c schema

and an enable c schema. When the schema is omitted, it means that the pre-
dicate is true. For example, we omitted schemas for effect withdrawNotOk and
enable deposit as can be seen in the schemas of the Account class.

According to the semantics of CSP-OZ, the behaviour of a class is the parallel
composition of the Z part (interpreted as a CSP process) with the CSP part,
synchronizing on all elements of the class’s interface after the initialization takes
place. Thus, for instance, in the Account class, when the event, say withdrawOk,
can be engaged the corresponding Z operation (effect withdrawOk) is executed,
as long as its enabling condition (enable withdrawOk) is satisfied.

Formalisation and Analysis of Objects as CSP Processes 239

We now introduce SavingsAccount (Figure 2), which illustrates the inheri-
tance aspect of CSP-OZ. The syntax of this class is similar to the previous one,
except for the inherit keyword. This class inherits the interface, behaviour and
Z schemas (operations) from the Account class. Apart from the events inherited,
a new event (interest) is introduced, as well as the attribute ratio to record the
interest rate.

Semantically, inheritance is interpreted as the conjunction of the Z part and
the parallel composition of the CSP part of a CSP-OZ specification.

The third class is Bank (Figure 3), which models our hypothetical bank. This
class is responsible for creating and recovering accounts and savings account,
and for delegating some services to them as, for example, deposit, withdraw,
balance and interest (this last one only from SavingsAccount). The state of the
Bank class has the declaration accounts: P ↓ Account, which means that the
set accounts may contain SavingsAccount and Account objects. A polymorphic
declaration is made with the symbol ↓.

As we said previously, channel types can assume three possibilities: method ,
chan and local chan. The first one indicates that the corresponding Z operation,
for example enterAcc, is implemented in the class itself. The second one means
that the operation, like deposit , is implemented by another class (Account). And
the third one is used when the operation, for example found , cannot be observed
from the environment; it is only accessible by the class itself.

SavingsAccount(n : Number ; v : Value; p : Password)
method interest : [t? : Ratio]
inherit Account

main = interest?t → getBalance?s → deposit !(t ∗ s) → main

ratio : Ratio

INIT =̂ [ratio = 0]

effect interest

Δ(ratio); t? : Ratio

ratio′ = t?

Fig. 2. Class SavingsAccount

We observe that operations on SavingsAccount are the same as those for Ac-
count (polymorphism), except for interest, which is exclusive for SavingsAccount
objects. Furthermore, objects are created using the keyword New followed by
the class’s name and the real parameters as usual in object-oriented systems; for
instance, the New c : Account(r , 0, p) in the Bank class.

240 R. Kaufman, A. Sampaio, and A. Mota

Bank(sqId : seq Number)
method createAccount : [p? : Password]
local chan getIndObj : [ind : Number]
method enterAcc, enterSav : [n? : Number]
method depositB : [v? : Value]
method exit, getBalanceB : []
method interestB : [r? : Ratio]
chan getBalance : [b? : Value]
chan deposit : [v ! : Value]
chan message : [m? : Message]
chan interest : [r ! : Ratio]
local chan notFound : [n : Number]
local chan add , update : [cp : ↓ Account]
local chan found : [n : Number ; cp? : ↓ Account] . . .
main = createAccount?p → (getIndObj ?r → New c : Account(r , 0, p) •

add .c → main � . . .)
� enterAcc?n → (found .n?ac → MovAcc(ac)

� notFound .n → message?m → main)
� enterSav?n → (found .n?s → MovSav(s)

� notFound .n → message?m → main)
MovAcc(ac) = depositB?v → (ac [| deposit |] (deposit !v → SKIP));

MovAcc(ac) . . .

� getBalanceB → (ac [| getBalance |] (getBalance?b → SKIP)); MovAcc(ac)
� exit → update.ac → main

MovSav(s) = depositB?v → (s [| deposit |] (deposit !v → SKIP)); MovSav(s) . . .

� getBalanceB → (s [| getBalance |] (getBalance?b → SKIP)); MovSav(s)
� interestB?t → (s [| deposit |] (deposit !t → SKIP)); MovSav(s) � . . .

accounts : P ↓ Account ; msg : Message

∀ a, b : Account | a, b ∈ accounts ∧ a.num = b.num • a = b

INIT =̂ [accounts = ∅] enable getIndObj =̂ [seqIds �= 〈〉]
effect getIndObj =̂ [Δ(seqIds); ind? : Number | ind? = head seqIds ∧

seqIds ′ = tail seqIds]
effect add =̂ [Δ(accounts); cp :↓ Account | accounts ′ = accounts ∪ {cp}]
enable found =̂ [n : Number | ∃ c : Accounts | c.num = n]
effect found =̂ [Δ(); n : Number ; cp? :↓ Account | ∃ c : Accounts |

c.num = n • cp? = c]
enable notFound =̂ [n : Number | �c : Accounts | c.num = n]
effect notFound =̂ [Δ(msg); n : Number | msg ′ = AccountDoesNotExist]

effect update

Δ(accounts); c :↓ Account

∃ as : accounts | as.num = c.num • accounts ′ = (accounts \ {as}) ∪ {c}

...

Fig. 3. Class Bank

Formalisation and Analysis of Objects as CSP Processes 241

3 CSP Patterns for Object-Orientation

Concerning tool support, CSP-OZ has only a type-checker [12] and a model-
checking strategy [7], which transforms a CSP-OZ specification into a CSPM

one. Unfortunately, the proposed model-checking strategy for CSP-OZ does not
deal with its object-oriented aspects. In [1,13], inheritance, for example, is not
dealt appropriately. Implicitly, it is assumed that the inheritance hierarchy is
flattened, according to the semantics. This means the conjunction of the Z part
of the superclass with the Z part of the subclass, and the parallel composition
of the CSP parts of both classes synchronizing on all events of their interfaces.
The process equations of the superclass are inherited by the subclass.

3.1 Polymorphism

A CSP-OZ polymorphic variable is declared by using the polymorphic declara-
tion symbol ↓ followed by the type of the superclass. Recall from Section 2 that
the Bank class has the attribute accounts:↓Account. This declaration allows the
variable accounts to reference Account and SavingsAccount objects.

To obtain such a polymorphic feature in CSPM , we need to explicitly state the
possible varieties using a union type. Thus, to allow Account and SavingsAccount
objects to be referenced we need to create a new type (ObjectContext), which is
the union of AccCtxt.AccountContext and SavCtxt.SavingsAccountContext.

datatype ObjectContext = AccCtxt.AccountContext |
SavCtxt.SavingsAccountContext

The constructors AccCtxt and SavCtxt represent Account and SavingsAccount,
respectively. The AccountContext set has account state tuples and the Savings-

AccountContext set savings account state tuples.

3.2 Dynamic Object Creation

Dynamic object creation is obtained by a function whose input parameters are
the type of a process and its state initialisation:

procName = proc(objectType,objectState)

The call proc(objectType,objectState) is a kind of constructor which returns
an object (process) of the class ObjectType, initialised with objectState.

We use the creation of an object (process) Account to illustrate a CSP specifi-
cation of the pattern. The part of the code presented in Figure 4 belongs to the
flow of the process Bank. The process main receives the account identifier (?an)
by the enterAcc event. If the account is found (found) then a process Account

is created using the proc function, with parameters TACCOUNT (the type of the
object) and e (the state of the process). The state e is recovered by a call to the
function recoverTuple(obj). This function receives one entity of type Account
(AccCtxt.(ind,b,p,v)) and yields the tuple (ind,b,p,v) that represents its state.
If the account does not exist (notFound), the Bank notifies the environment and

242 R. Kaufman, A. Sampaio, and A. Mota

main =

...

enterAcc?an -> (found?obj:ObjectAcc ->

(let

e = recoverTuple(obj)

procAcc = proc(TACCOUNT,e)

Flow = ...

within (procAcc[|{|...|}|] Flow);

main)

[]

notFound -> message?m -> main)

...

Fig. 4. Creation of processes without inheritance

offers its initial events again. The process Flow will be detailed later. As the
channel found is polymorphic (see Section 3.1), we had to constrain its values to
the set ObjectAcc, which only has objects of type Account.

3.3 Object Values

An interesting feature of CSP-OZ is that processes are also communicating va-
lues [1]. This means that we can declare a channel whose type is a process.

However, as CSP does not support such a feature directly [14,8], a possible
solution is to communicate the state of the process as a tuple, using the process
name as a constructor type.

To illustrate how this simple pattern is specified in CSP, we present part of the
process Bank that creates an entity of type Account (Figure 5). The environment
demands that the process Bank creates an account (createAccount). After per-
forming the createAccount event, the process Bank searches for the next available
index (getObjInd) and then creates a new account (AccCtxt.(ind,0,p,0)). The
elements of the tuple (ind,0,p,0) stand for account number, balance, password
and amount respectively. After that, it adds this account to the set of accounts
(add), and offers its initial events again. Otherwise (NotGetObjInd), the environ-
ment is notified with an error message (message) and offers its initial events
again. The channel add is polymorphic because it can receive entities of Account

or SavingsAccount types as parameters.

3.4 Pattern for the Object Lifecycle

The pattern we propose here assumes the general form presented in Figure 6. In
this template, procName captures the behaviour of an object, which is the result of
the function proc(objectType,objectState)1 . This process represents an object
(in the original CSP-OZ specification) of class ObjectType. ObjectState is a tuple

1 CSPM includes a functional language which can yield processes as results.

Formalisation and Analysis of Objects as CSP Processes 243

main = createAccount?p ->

(getObjInd?ind -> add.(AccCtxt.(ind,0,p,0)) -> main

[]

NotGetObjInd -> message?m -> main)

[]

...

Fig. 5. Creation of entities of type Account

let

procName = proc(objectType, objectState)

Flow = PEvents

[]

exit -> getStateName.y -> [action] -> terminate -> SKIP

within (procName[|{|...|}|] Flow)

Fig. 6. Pattern for the object lifecycle

that holds the current values to initialize the state of the process. Flow is the
client process (for example, a collection) that has the control flow to be performed
by the reference process procName. It also has other events that synchronize
with the environment. It is formed of two processes. The first process, PEvents,
contains the events for the execution flow itself. The second process, exit ->

getStateName?y -> [action] -> terminate -> SKIP, has the events needed for
synchronizing with the process procName until termination. In which case the
state of the object procName is obtained or passed through channel getStateName;
some actions (optional) can be performed; Z part finalizes(terminate); and CSP
part ends(SKIP). The last sentence within (procName[|{|...|}|] Flow) stands
for the parallel composition between procName and Flow. The events in which
they synchronize are listed in the set {|...|}.

This pattern works in the following way: procName is a passive object (pro-
cess) that offers its events to the active process Flow. Process Flow then selects
the events to be realized by procName. An operation is performed when both
(procName and Flow) synchronize in the event corresponding to that operation.

Representing object-oriented features as CSP processes involves several pat-
terns. In the following sections we present each identified pattern illustrating its
use in our case study.

3.5 Delegation

Once we have shown how objects are created, in this section we discuss how such
objects are used by a client. For the sake of conciseness, we omit the generic
pattern, which is presented in [15].

The patterns are illustrated using the examples presented in Figures 7 and 8
which show the description of the processes Bank and Account in CSPM . To ease

244 R. Kaufman, A. Sampaio, and A. Mota

main = ...

enterAcc?an ->

(found?obj:ObjectContextAcc ->

(let

e = recoverTuple(obj)

procAcc = proc(TACCOUNT,e)

Flow = depositB?v -> deposit.v -> Flow

[]withdrawB?v -> withdraw.v ->

(withdrawOk -> getMoney -> Flow

[]

withdrawNotOk -> message?m -> Flow)

[]getBalanceB -> getBalance?b -> Flow

[]exit -> getStateAcc?st2 -> update.(AccCtxt.st2) ->

terminate -> SKIP

within (procAcc [|{|deposit,withdraw,withdrawOk,
withdrawNotOk,getBalance,getStateAcc,exit|}|] Flow);

main)

[]notFound -> message?m -> main)

...

Fig. 7. Behaviour of the Bank in relation to interaction with Account

reading our specifications, we use the name of the related process (or part of it) to
build the name of our events. For instance, the event getStateAcc belongs to the
process Account due to the suffix Acc. Bank can receive requests from a user. For
example: depositB, withdrawB, getBalanceB and exit. After that, Bank delegates
to the process Account the responsibility to execute the relevant operation (as
in a standard object oriented modelling). Termination is captured by the event
exit, which allows Bank to obtain the state of Account (getStateAcc), updates
its account collection and finalizes. The Account finalizes after sending its state.

We observe in Figure 7 that the process Flow synchronizes with the process
Account in the events deposit, withdraw, withdrawOk, withdrawNotOk, getBalance,
getStateAcc and exit. The other events of the Flow allow it to synchronize with
the environment. After Account and Flow terminate together, the process Bank

offers its initial events again. The events getBalanceDup and depositDup (Figure 8)
are discussed in the next section.

3.6 Delegation with Inheritance

In our proposal, inheritance is captured using parallelism. That is, if a class
C inherits from a class A then our process representation of C , say PC , must
create an instance of A, say process PA, and behave synchronously with it. This
composition handles the following situations:

– An event specific to process PC : only process PC handles it.
– An event of process PC inherited from process PA, but not redefined in

process PC : PA handles it.

Formalisation and Analysis of Objects as CSP Processes 245

main = deposit?v -> main

[] withdraw?v ->

(withdrawOk -> main

[]

withdrawNotOk -> main)

[] getBalance?v -> main

[] getBalanceDup?v -> main

[] depositDup?b -> main

[] exit -> getStateAcc?st -> terminate -> SKIP

Fig. 8. Behavioural part of the process Account

– An event of process PC inherited from process PA and redefined: PA and
PC synchronize and each one is responsible for a part of the task. PA carries
out its original responsibility concerning this event, and PC performs the
complement related to the redefinition.

It is worth observing that our specification assumes that, regarding redefini-
tion, the original behaviour of the process is preserved by behavioural
subclassing [16].

We observe in Figure 9 that the creation of the process SavingsAccount gen-
erates a process of type Account with the values of the variables (inherited)
from SavingsAccount. The operator “\” (hiding), that appears in the innermost
within, is used to hide the events that should not synchronize with the environ-
ment (Bank). The function Semantics translates the Z part into a process and
puts this process in parallel with the CSP part. See [17] for further details on
this function.

To illustrate our model of inheritance in further details, we use the processes
Bank (Figure 11), SavingsAccount (Figure 10) and Account (Figure 8). We can
observe that Bank receives the same requests of the Account and SavingsAccount,
in addition to interestB, which is responsible to pay interest. When the requests
are the same as those of Account, they are delegated to the process Account, as

SavingsAccount(nu,bl,ps,va,rt) =

let

...

main =

let

e = (nu,bl,ps,va)

procAcc = proc(TACCOUNT,e)

Flow = ...

within (procAcc [|{|...|}|] Flow)\ {|...|}
within Semantics(...)

Fig. 9. Creation of the process SavingsAccount

246 R. Kaufman, A. Sampaio, and A. Mota

...

main =

let

e = (nu,bl,ps,va)

procAcc = proc(TACCOUNT,e)

Flow = interest?t -> getBalanceDup?b -> depositDup.(b*t) -> Flow

[]

exit -> getStateAcc?st1 -> recoverState?st ->

getStateSav!makeContext(st1,st) -> terminate -> SKIP

within (procAcc

[|{|getStateAcc,getBalanceDup,depositDup, terminate,exit|}|]
Flow)\ {|getBalanceDup,depositDup|}

Fig. 10. Behavioural part of the process SavingsAccount

already explained: SavingsAccount behaves as Account in relation to the events
that were inherited from Account.

Regarding the event interestB, the process Bank receives it and thus dele-
gates it to the process SavingsAccount, which invokes the event interest. Then
SavingsAccount requests from Account the balance and the deposit of the inter-
est, through the respective getBalanceDup and depositDup events. These events
are called duplicates (Dup) because they do exactly the same as deposit and
getBalance events from Account. The duplication is used to allow the synchro-
nization between Account and SavingsAccount, without Bank interference. We
must distinguish local from global synchronization. Furthermore, these dupli-
cated events are not problematic because we hide them at the top level of the
process.

...

main = ...

enterSav?sn ->

(found?obj:ObjectContextSav ->

(let

e = recoverTuple(obj)

procSav = proc(TSAVING,e)

Flow = depositB?v -> deposit.v -> Flow

...

[] interestB?r -> interest.r -> Flow

[] exit -> getStateSav?st1 -> update.(SavCtxt.st1) ->

terminate -> SKIP

within (procSav [|{|deposit,...,interest,getStateSav,exit|}|] Flow);

main)

[] notFound -> message?m -> main)

...

Fig. 11. Behaviour of the Bank in relation to interaction with SavingsAccount

Formalisation and Analysis of Objects as CSP Processes 247

Finally, the event exit makes Bank to request the state of SavingsAccount

(getStateSav), which asks for the state of Account (getStateAcc). Account, after
providing its state, finalizes Z and CSP parts. SavingsAccount, after receiving
part of the state that is in Account, recovers its own state (recoverState), re-
turns the complete state to Bank (getStateSav), finalizes Z and CSP parts. And
Bank, after receiving the state of SavingsAccount, updates its account collection
(update), finalizes Z and CSP parts and then offers its initial events again.

4 Applying the Patterns

In this section we further consider the bank account example, and illustrate
how the approach proposed in [7] (to translate CSP-OZ specifications to CSPM)
together with our translation patterns can be used to translate and analyse CSP
specifications preserving the object-oriented structure.

The ObjType set has the constants TACCOUNT, TBANK and TSAVING, that represent
the types of the objects. These constants can be passed as parameters to the
function proc, which is responsible for the creation of the corresponding process.

datatype ObjType = TACCOUNT | TBANK | TSAVING

The function proc creates the processes dynamically. Its input parameters are the
type of the process and the initial values of the state variables. These parameters
determine the active process.

proc(TBANK,(cc,sa)) = Bank(cc,sa)
proc(TACCOUNT,(n,b,p,v)) = Account(n,b,p,v)
proc(TSAVING,(n,b,p,v,r)) = SavingsAccount(n,b,p,v,r)

The specification uses several channel types. Among them we have Number,
ObjectContext and Value. From the channel types, we can present the decla-
ration of the channels.

channel enterSav:Number
channel update,add,found:ObjectContext
channel depositB,depositDup,getBalanceDup:Value
...

The process Bank is defined as follows. The identifier Ops keeps the names of the
channels used by the process concerning the Z part and LocOps the names of the
local channels.

Bank(cts,sqId) =
let
Ops = {enterSav,found,notFound,...,update}
LocOps = {update,found,...}
main = ...
enterSav?sn ->(found?obj:ObjectContextSav ->
(let

248 R. Kaufman, A. Sampaio, and A. Mota

e = recoverTuple(obj)
procSav = proc(TSAVING,e)
Flow = depositB?v -> deposit.v -> Flow

...
[] interestB?r -> interest.r -> Flow
[] exit -> getStateSav?st1 ->update.(SavCtxt.st1) ->

terminate -> SKIP
within (procSav[|{|deposit,...,interest,getStateSav,exit|}|]

Flow); main)
...

within Semantics(Ops,LocOps,in,out,enable,effect,init,...,main,
event)

The process Account is partially defined as (see Figure 8 for its complete
definition):

Account(nu,bl,ps,va) =
let ...

main = deposit?v -> main
...
[] getBalanceDup?v -> main
[]depositDup?b -> main
[]exit -> getStateAcc?st -> terminate -> SKIP
...

within Semantics(Ops,LocOps,in,out,enable,effect,init,...,main,
event)

and the process SavingsAccount as (see Figure 7):

SavingsAccount(nu,bl,ps,va,rt) =
let ...
main =
let e = (nu,bl,ps,va)

procAcc = proc(TACCOUNT,e)
Flow = interest?t -> getBalanceDup?b -> depositDup!(b*t)->

Flow
[]
exit -> getStateAcc?st1 -> recoverState?st ->

getStateSav!makeContext(st1,st) -> terminate ->
SKIP

within (procAcc [|{|getStateAcc,getBalanceDup,depositDup,
terminate,exit|}|] Flow)\{|getBalanceDup,depositDup|}

...
within Semantics(Ops,LocOps,in,out,enable,effect,init,...,main,

event)

The process main includes the creation of the process Account that performs the
inherited events of the class Account . The process Flow has specific SavingsAccount

Formalisation and Analysis of Objects as CSP Processes 249

events only. The inherited events are not in Flow because its process Account realize
those events.

The Bank system specification in this section shows that the application of the
design patterns together with the extended model-checking strategy [7] allows to
create CSPM specifications using object-oriented concepts. This specification was
analysed using the FDR tool, considering classical properties like deadlock free-
dom; clearly, other domain specific properties can be analysed in a similar way.

5 Conclusions

This paper has presented a way to deal with object-oriented concepts in the CSP
process algebra concerning both specification and analysis (model-checking). In
particular, we have shown that inheritance, dynamic binding, creation and dy-
namic removal of objects and polymorphic structures, can all be elegantly mod-
elled in CSPM . The proposed patterns have been applied to a Bank system
specification, where the use of all proposed patterns has been illustrated.

The formalisation of a more realistic and extensive case study can be found
in [15], where the patterns are used to formalise and analyse a healthcare record
protocol.

We conclude that there is a systematic way to apply the FDR tool to object-
oriented concurrent systems to perform property analysis, in particular, the
deadlock freedom analysis.

As far as we are concerned, the contribution of this work is original in the
sense of capturing object-oriented aspects in a process algebra aiming at model
checking. We could not find any work in the literature which shows how object-
oriented concepts can be captured by a process algebra. Nevertheless, in the field
of formal semantics of object-oriented languages, there are works [18,19] that use
process algebras to define the semantics of the language.

For future research, we intend to formalize and to develop a conversion tool
that converts CSP-OZ specifications into CSPM notation using patterns.

Acknowledgments

We deeply thank Ana Lucia Caneca Cavalcanti for her cosupervision in the
Masters thesis that originated this paper. We would also like to thank Adalberto
Farias, Rafael Duarte and Leonardo Lucena for their comments on early drafts
of this paper.

References

1. Fischer, C.: Combination and Implementation of Processes and Data From CSP-
OZ to Java. PhD thesis, Oldenburg University (2000)

2. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 451–470. Springer,
Heidelberg (2002)

250 R. Kaufman, A. Sampaio, and A. Mota

3. Galloway, A.J., Stoddart, W.: An operational semantics for ZCCS. In: Hinchey, M.,
Liu, S. (eds.) International Conference of Formal Engineering Methods (ICFEM),
pp. 272–282. IEEE Computer Press, Los Alamitos (1997)

4. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs (1985)

5. Smith, G.: A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 62–81. Springer, Heidelberg (1997)

6. Spivey, J.M.: Z notation (1998),
http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf

7. Fischer, C., Wehrheim, H.: Model-checking CSP-OZ specifications with FDR. In:
Proceedings of the 1st International Conference on Integrated Formal Methods
(IFM), pp. 315–334 (1999)

8. Formal Systems(Europe) Ltd.: Failures–Divergence Refinement, Revision 2.0
(1997)

9. Scattergood, B.: The Semantics and Implementation of Machine–Readable CSP.
PhD thesis, Programming Research Group, Oxford University (1998)

10. Dallien, J., MacCaull, W., Tien, A.: Initial work in the design and development
of verifiable workflow management systems and some applications to health care.
In: 5th International Workshop on Model-based Methodologies for Pervasive and
Embedded Software, 2008. MOMPES 2008, Budapest, Hungary, pp. 78–91. IEEE,
Los Alamitos (2008)

11. Baksi, D.: Formal interaction specification in public health surveillance systems
using π-calculus. Computer Methods and Programs in Biomedicine 92(1), 115–120
(2008)

12. Garrel, J.V.: Parsing, Typechecking und Transformation von CSP-OZ nach jass.
Master’s thesis, University of Oldenburg (1999)

13. Olderog, E.R., Wehrheim, H.: Specification and (Property) inheritance in CSP-OZ.
Science of Computer Programming 55, 227–257 (2004)

14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1997)

15. Kaufman, R.E.M.: Modelling and Analysis of Objects as CSP Processes: Design
Pattern and Case Study. Master’s thesis, Federal University of Pernambuco (2003)

16. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16, 1811–1841 (1994)

17. Mota, A., Sampaio, A.: Model-checking CSP-Z: strategy, tool support and indus-
trial application. Sci. Comput. Program. 40(1), 59–96 (2001)

18. Jones, C.B.: Process-algebraic foundations for an object-based design notation.
Technical report, University of Manchester, Technical Report, UMCS-93-10-1
(1993)

19. Walker, D.: π-calculus semantics of object-oriented programming languages. Tech-
nical report, Computer Science Department, Edinburgh University, Technical Re-
port, ECS-LFCS-90-122 (1990)

http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf

Concolic Testing of the Multi-sector Read Operation for
Flash Memory File System�

Moonzoo Kim and Yunho Kim

CS Dept. KAIST
Daejeon, South Korea

moonzoo@cs.kaist.ac.kr,
kimyunho@kaist.ac.kr

Abstract. In today’s information society, flash memory has become a virtually
indispensable component, particularly for mobile devices. In order for mobile de-
vices to operate successfully, it is essential that flash memory be controlled cor-
rectly through file system software. However, as is typical for embedded software,
conventional testing methods often fail to detect hidden flaws in the software due
to the difficulty of creating effective test cases. As a different approach, model
checking techniques guarantee a complete analysis, but only on a limited scale.

In this paper, we describe an empirical study wherein a concolic testing
method is applied to the multi-sector read operation for a flash memory. This
method combines a symbolic static analysis and a concrete dynamic analysis to
automatically generate test cases and perform exhaustive path testing accordingly.
In addition, we analyze the advantages and weaknesses of the concolic testing
approach on the domain of the flash file system compared to model checking
techniques.

1 Introduction

Due to attractive characteristics such as low power consumption and strong resistance
to physical shock, flash memory has become a crucial component for mobile devices.
Accordingly, in order for mobile devices to operate successfully, it is essential that the
file system software of the flash memory operates correctly. However, conventional
testing methods often fail to detect hidden bugs in the file system software for flash
memory, since it is very difficult to create effective test cases that provide a check of all
possible execution scenarios generated from the complex file system software. Thus, the
current industrial practice of manual testing does not achieve high coverage or provide
cost-effective testing. In another testing approach, randomized testing can save human
effort for test case generation, but does not achieve high coverage, because random
input data does not necessarily guarantee high coverage of a target program.

� This work was supported by the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology(MEST)/Korea Science and Engineering Foun-
dation(KOSEF) (grant number R11-2008-007-03002-0) and the MKE(Ministry of Knowl-
edge Economy), Korea, under the ITRC(Information Technology Research Center) support
program supervised by NIPA(National IT Industry Promotion Agency) (NIPA-2009-(C1090-
0902-0032)).

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 251–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

252 M. Kim and Y. Kim

These deficiencies of conventional testing incur significant overhead to manufactur-
ers. In particular, ensuring reliability and performance are the two most time-consuming
tasks to produce high quality embedded software. For example, a multi-sector read
(MSR) function was added to the flash software to improve the reading speed of a Sam-
sung flash memory product [2]. However, this function caused numerous errors in spite
of extensive testing and debugging efforts, to the extent that the developers seriously
considered removing the feature. Considering that MSR is a core logic used for most
flash software with variations, and that improvement of the reading speed through MSR
can provide important competitive power to flash memory products, research on the
effective analysis of MSR is desirable and practically rewarding.

In spite of the importance of flash memory, however, little research work has been
conducted to formally analyze flash file systems. In addition, most of such work [8,10,4]
focuses on the specification of file system design, not real implementation. In this pa-
per, we describe experiments we carried out to analyze the MSR code of the Sam-
sung flash file system using CREST [12], an open source concolic testing [22,20,5]
tool for C programs. With a given compilable target C code, a concolic (CONCrete +
symbOLIC) testing combines both a concrete dynamic analysis and a symbolic static
analysis [13,23] to automatically generate test cases that achieve high coverage. How-
ever, it is necessary to check the effectiveness of concolic testing on a flash file system
through empirical studies, since the success of this testing approach depends on the
characteristics of the target program under test. MSR has complex environmental con-
straints between sector allocation maps and physical units for correct operation (see
Section 2.2) and these constraints may cause insufficient coverage and/or high runtime
cost for the analysis when concolic testing is applied.

Furthermore, we compare the empirical results obtained from analyzing MSR
through concolic testing with those yielded by model checking [9]. As an alternative
solution to achieve high reliability, model checking guarantees complete analysis re-
sults; the authors reported on the effectiveness of model checking for the verification
of MSR in [15]. However, model checking has a limitation with respect to scalability,
and thus the analysis results can be applied on a small scale only. Thus, comparison of
these two different techniques to analyze MSR can clearly show their relative strengths
and weaknesses and will serve as a basis for developing an advanced analysis technique
suitable for flash file systems.

The organization of this paper is as follows. Section 2 overviews the file system
for the flash memory and describes multi-sector operation in detail. Section 3 briefly
explains the concolic testing algorithm. Section 4 describes the experimental results
obtained by applying concolic testing to MSR. Section 5 discusses observations from
the experiments. Section 6 concludes the paper with directions for future work.

2 Overview of Multi-sector Read Operation

Unified storage platform (USP) is a software solution to operate a Samsung flash mem-
ory device [2]. USP allows applications to store and retrieve data on flash memory
through a file system. USP contains a flash translation layer (FTL) through which data
and programs in the flash memory device are accessed. The FTL consists of three

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 253

layers - a sector translation layer (STL), a block management layer (BML), and a low-
level device driver layer (LLD). Generic I/O requests from applications are fulfilled
through the file system, STL, BML, and LLD, in order. MSR resides in STL.1

2.1 Overview of Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors.

When new data is written to flash memory, rather than overwriting old data directly,
the data is written on empty physical sectors and the physical sectors that contain the
old data are marked as invalid. Since the empty physical sectors may reside in separate
physical units, one logical unit (LU) containing data is mapped to a linked list of physi-
cal units (PU). STL manages this mapping from logical sectors (LS) to physical sectors
(PS). This mapping information is stored in a sector allocation map (SAM), which re-
turns the corresponding PS offset from a given LS offset. Each PU has its own SAM.

Logical
unit 7

SAM of physical unit 1

Logical offset Physical offset

Physical
unit 4

Physical
unit 1

unit 7

SAM of physical unit 4

Logical offset Physical offsetLogical offset Physical offset

0 3
1 2
2

unit 4
LS2

unit 1
LS0
LS1
LS1

Logical offset Physical offset

0
1
2 02

3

LS1
LS0

2 0
3

Fig. 1. Mapping from logical sectors to physical sectors

Figure 1 illustrates a mapping from logical sectors to physical sectors where 1 unit
consists of 1 block and 1 block contains 4 pages, each of which consists of 1 sector.
Suppose that a user writes LS0 of LU7. An empty physical unit PU1 is then assigned
to LU7, and LS0 is written into PS0 of PU1 (SAM1[0]=0). The user continues to write
LS1 of LU7, and LS1 is subsequently stored into PS1 of PU1 (SAM1[1]=1). The user
then updates LS1 and LS0 in order, which results in SAM1[1]=2 and SAM1[0]=3.
Finally, the user adds LS2 of LU7, which adds a new physical unit PU4 to LU7 and
yields SAM4[2]=0.

2.2 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented
in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 2.1), the function for MSR is 157 lines long and
highly complex, having 4-level nested loops. Figure 2 describes simplified pseudo code

1 This section is taken from [15].

254 M. Kim and Y. Kim

of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-
18) until the numScts amount of the logical sectors are read completely. The second
outermost loop iterates until the LS’s of the current LU are completely read (line 5-16).
The third loop iterates over PUs mapped to the current LU (line 7-15). The innermost
loop identifies consecutive PS’s that contain consecutive LS’s in the current PU (line
8-11). This loop calculates conScts and offset, which indicate the number of such
consecutive PS’s and the starting offset of these PS’s, respectively. Once conScts
and offset are obtained, BML READ rapidly reads these consecutive PS’s as a whole
(line 12).

01:curLU = LU0;
02:while(numScts > 0) {
03: readScts = # of sectors to read in the current LU
04: numScts -= readScts;
05: while(readScts > 0) {
06: curPU = LU->firstPU;
07: while(curPU != NULL) {
08: while(...) {
09: conScts = # of consecutive PS’s to read in curPU
10: offset = the starting offset of these consecutive PS’s
11: }
12: BML_READ(curPU, offset, conScts);
13: readScts = readScts - conScts;
14: curPU = curPU->next;
15: }
16: }
17: curLU = curLU->next;
18:}

Fig. 2. Loop structures of MSR

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PU0, PU1, and PU2 are mapped to LU0 (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order, as depicted in Figure 3(a). Initially, MSR
accesses SAM0 to find which PS of PU0 contains LS0(‘A’). It then finds SAM0[0]=1
and reads PS1 of PU0. Since SAM0[1] is empty (i.e., PU0 does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LS1(‘B’) and LS2(‘C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML READ and continues its reading
operation.

The requirement for MSR is that the content of the read buffer should be equal to the
original data in the flash memory when MSR finishes reading, as given by assert(
∀i.LS[i]==buf[i]) inserted at the end of MSR.

In these analysis tasks, we assume that each sector is 1 byte long and each unit has
four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction, since the values of logical sectors

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 255

1 0
1 1
2

3

E
AB F

C
D

3 3
0 2

3
1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

(a) A distribution of
“ABCDEF”

B
D

F
AC E

PU0~PU4SAM0~SAM4 SAM0~SAM4

(c) A distribution of
“FEDCBA”

(b) Another distribution of
“ABCDEF”

1 0
1 1
2

3

B
F E A

D
C

PU0~PU4SAM0~SAM4

Fig. 3. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

should not affect the reading operations of MSR, but the distribution of logical sec-
tors into physical sectors does. For example, for the same data “ABCDEF”, the reading
operations of MSR are different for Figure 3(a) and Figure 3(b), since they have dif-
ferent SAM configurations (i.e. different distributions of “ABCDEF”). However, for
“FEDCBA” in Figure 3(c), which has the same SAM configuration as the data shown in
Figure 3(a), MSR operates in exactly same manner as for Figure 3(a). Thus, if MSR
reads “ABCDEF” in Figure 3(a) correctly, MSR reads “FEDCBA” in Figure 3(c) cor-
rectly too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for l LS’s and n physical units, where 5 ≤ l ≤ 8 and n ≥ 2, increases
exponentially in terms of both n and l, and can be obtained by

n−1∑
i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

For example, if a flash has 1000 physical units with data occupying 6 LS’s, there exist
a total of 3.9 × 1022 different distributions of the data. Table 1 shows the total num-
ber of possible cases for 5 to 8 logical sectors and various numbers of physical units,
respectively, according to the above formula.

MSR has characteristics of a control-oriented program (4-level nested loops) and a
data-oriented program (large data structure consisting of SAMs and PUs) at the same
time, although the values of PS’s are not explicitly manipulated. As seen from Figure 3,
the execution paths of MSR depend on the values of SAMs and the order of PUs linked
to LU. In other words, MSR operates deterministically, once the configuration of the
SAMs and PUs is fixed.

Table 1. Total number of the distribution cases

PUs 4 5 6 7 8

l = 5 61248 290304 9.8 × 105 2.7 × 106 6.4 × 106

l = 6 239808 1416960 5.8 × 106 1.9 × 107 5.1 × 107

l = 7 8.8 × 105 7.3 × 106 3.9 × 107 1.5 × 108 5.0 × 108

l = 8 3.4 × 106 4.2 × 107 2.9 × 108 1.4 × 109 5.6 × 109

256 M. Kim and Y. Kim

3 Overview of the Concolic Testing Approach

This section presents an overview of the concolic testing algorithm [22,20,5]. The
concolic testing algorithm executes a target program both concretely and symboli-
cally [13,23] at the same time. Note that the symbolic path is built following the path
that the concrete execution takes. The concolic testing algorithm proceeds in the fol-
lowing five steps:

1. Instrumentation
A target C program is statically instrumented with probes, which record sym-
bolic path constraints from a concrete execution path when the target program is
executed.

2. Concrete execution
The instrumented C program is executed with given input values and the concrete
execution part of the concolic execution constitutes the normal execution of the
program. For the first execution of the target program, initial input values are as-
signed with random values. For the second execution and onward, input values are
obtained from step 5.

3. Symbolic execution
The symbolic execution part of the concolic execution collects symbolic constraints
over the symbolic input values at each branch point encountered along the con-
crete execution path. Whenever each statement Sj of the original target program
is executed, a corresponding probe Pj inserted at Sj updates the symbolic map of
symbolic variables if Sj is an assignment statement, or collects a corresponding
symbolic path constraint Cj if Sj is a branch statement. Thus, a complete sym-
bolic path formula φi is built at the end of the ith execution by combining all path
constraints Cj ’s.

4. Deciding the next execution path
Given a symbolic path formula φi obtained in step 3, φi+1 (the next execu-
tion path to test) is created by negating one path constraint Cj . For example, if
depth first search (DFS) is used, φi+1 is generated by negating the last sym-
bolic path constraint of φi. If there is no further new paths to test, the algorithm
terminates.

5. Selecting the next input values
A constraint solver such as a Satisfiability Modulo Theory (SMT) solver [3] gener-
ates a model that satisfies φi+1. This model assigns concrete values to input values
and the whole concolic testing procedure iterates from stage 2 again with these
input values.

Note that the above algorithm does not raise any false alarms, since it executes a
concrete path. However, there is a clear limitation in step 5. A constraint solver cannot
solve complex path formulas to compute concrete values; most constraint solvers cannot
handle statements containing arrays, pointers, and non-linear arithmetic. To address this
difficulty, symbolic constraints are simplified by replacing some of the symbolic values
with concrete values, which may result in incomplete coverage.

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 257

4 Empirical Study on Concolic Testing MSR

In this section, we describe two series of experiments for concolically testing MSR,
both of which target the same MSR code, but with different environment models - a
constraint-based model and an explicit model. Our hypotheses are as follows:

– H1: Concolic testing is effective for analyzing the MSR code
– H2: Concolic testing is more efficient than model checking for analyzing the MSR

code

Regarding H1, we expect that concolic testing can detect bugs effectively, since it
tries to explore all feasible execution paths. For H2, considering that model checking
analyzes all possible value combinations of variables, concolic testing may analyze the
MSR code faster (note that different value combinations of variables may execute a
same path).

4.1 Testbed for the Experiments

All experiments were performed on 64 bit Fedora Linux 9 equipped with a 3 GHz
Core2Duo processor and 16 gigabytes of memory. We used CREST [1] as a concolic
testing tool for our experiments, since it is an open source tool and we could obtain more
detailed experimental results by modifying the CREST source code for our purposes.
However, since the CREST project is in its early stage, CREST has several limitations
such as lack of support for dereferencing of pointers and array index variables in the
symbolic analysis. Consequently, the target MSR code was modified to use an array
representation of the SAMs and PUs. We used CREST 0.1.1 (with DFS search option),
gcc 4.3.0, Yices 1.0.19 [6], which is a SMT solver used as an internal constraint solver
by CREST for solving symbolic path formulas.

For model checking experiments, CBMC 2.6 [7] and MiniSAT 1.14 [18] were used.
The target MSR codes used for concolic testing and model checking are identical, ex-
cept nominal modification replacing the assumption statements in CBMC experiments
with if statements to terminate testing if the assumptions are evaluated false (i.e. in-
valid test cases (see Section 4.2)). Model checking experiments were performed on the
same testbed as that of concolic testing experiments.

To evaluate the effectiveness of concolic testing, we applied mutation analysis [14]
by injecting the following three types of frequently occuring bugs (i.e. mutation opera-
tors), each of which has three instances:

1. Off-by-1 bugs

– b11: while(numScts>0) of the outermost loop (line 2 of Figure 2) to
while(numScts>1)

– b12: while(readScts>0) of the second outermost loop (line 5 of Figure 2)
to while(readScts>1)

– b13: for(i=0;i<conScts; i++) of BML READ() (line 12 of Figure 2)
to for(i=0;i<conScts-1;i++)

258 M. Kim and Y. Kim

2. Invalid condition bugs

– b21: if(SAM[i].offset[j]!=0xFF) in the third outermost loop to
if(SAM[i].offset[j]==0xFF)

– b22: readScts=((4-j)>numScts)?numScts:4-j in the innermost
loop to readScts=((4-j)<numScts)?numScts:4-j

– b23: if((firstOffset+nScts)==SAM[i].offset[j]) in the inner-
most loop to if((firstOffset+nScts)!=SAM[i].offset[j])

3. Missing statement bugs

– b31: missing nScts=1 in the second outermost loop
– b32: missing nReadScts-- in the second outermost loop
– b33: missing nLun++ corresponding the line 17 of Figure 2

Furthermore, we injected an artificial corner case bug bc by changing line 13 of
Figure 2 as follows:

readScts = readScts - conScts -
(PU[1].sect[3]==’A’ && PU[0].sect[0]==’B’ &&
PU[2].sect[3]==’C’ && PU[1].sect[1]==’D’ &&
PU[4].sect[3]==’E’ && PU[3].sect[2]==’F’)

Note that bc causes an error only when the configuration of the PUs and SAMs
satisfies the given condition illustrated in Figure 1.(b). bc is very hard to detect, since the
probability of detecting bc through testing is extremely low (e.g. 7×10−8 = 1/1416960
when 6 logical sectors are distributed over 5 PUs (see Table 1)). Therefore, although bc

is not a realistic bug, the effectiveness of concolic testing can be shown more clearly by
detecting bc.

4.2 Experiments with a Constraint-Based Environment Model

Constraint-based Environment Model. As described in Section 2.2, a test case for
MSR is a configuration of SAMs and PUs (see Figure 3). MSR assumes randomly
written logical data on PUs and a corresponding SAM records the actual location of
each LS. Unfortunately, however, the writing is not purely random, but is subject to
several constraint rules; the following are some of the representative rules applied to
the random writing. For example, the last two rules can be enforced by the constraints
in Figure 4.

1. One PU is mapped to at most one LU.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is the number of
sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the ' i

m(th LU.

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 259

∀i, j, k (LS[i] = PU [j].sect[k] → (SAM [j].valid[i mod m] = true

& SAM [j].offset[i mod m] = k

& ∀p.(SAM [p].valid[i mod m] = false)

where p �= j and PU [p] is mapped to� i

m
�th LU))

Fig. 4. Environment constraints for MSR

If a given configuration of SAMs and PUs satisfies the constraints, this configuration
is valid; invalid, otherwise. It is important to check whether a given test case is valid
or not, since an invalid test case may produce an incorrect testing result. Therefore, for
accurate unit testing, it is essential to provide a precise environment model to feed valid
test cases only.

To enforce the constraint-based environment model on the test cases, all ele-
ments of the SAM tables and PUs are declared to be analyzed symbolically through
CREST unsigned char(PU[i].sect[j]) and CREST unsigned char(
SAM[i].offset[j]) statements for all valid i and j. Then, a test driver/
environment model checks whether concrete values assigned by CREST to those vari-
ables satisfy the constraints in Figure 4. If not, the execution terminates immediately
without testing MSR. Note that these constraints are encoded as if statements in nested
loops handling universally quantified i, j, k, and p, which results in a complex environ-
ment model.

Experimental Results. Due to a time limitation, we could perform 4 experiments with
4 to 5 PUs with 5 to 6 LSes. The total numbers of test cases generated and the ratios
of the valid test cases over the total test cases are depicted in Figure 5. For example,
CREST generated a total of 5.6× 105 test cases for 4 PUs with 5 LSes, and only 61248
test cases (around 11% of the total test cases) among them were valid. Note that the
numbers of the valid test cases for these 4 experiments are equal to the numbers of
all possible configurations of the SAMs and PUs (see Table 1). This means that the
concolic testing covers all possible execution scenarios of MSR.2 Consequently, all
injected bugs b11 to b33 as well as bc were detected; most of them were detected in a
few seconds through the first few hundred test cases.

The performance of the concolic testing is shown in Figure 6. For example, CREST
took 2594 seconds for the experiments with 4 PUs and 5 LSes. The amount of time
to analyze MSR increases exponentially in terms of the number of PUs and LSes.
Figure 6(a) shows that CREST is several hundred times slower than CBMC. Figure 6.(b)
shows that symbolic execution, Yices, and system execution (e.g. launching a target pro-
gram) take around 40%, 40%, and 20% of the total execution time. However, all experi-
ments use around 10 megabytes of memory only, since the DFS search in CREST needs

2 We tried to perform the same experiments with CUTE (32 bit binary) [22] but failed; CUTE
crashed after consuming 4 gigabytes of memory at the constraint solving step at the third
iteration. We could not continue the experiments with CUTE, since neither the source code
nor user support was available.

260 M. Kim and Y. Kim

Fig. 5. Generated test cases with constraint-based environment model

Fig. 6. Analysis time with constraint-based environment model

only a small amount of information regarding the previous execution path, not the whole
execution tree. In comparison, CBMC consumed 40 megabytes and 89 megabytes for 4
PUs with 5 LSes and 5 PUs with 6 LSes, respectively. Therefore, the memory bottleneck
problem associated with model checking does not exist for concolic testing.

4.3 Experiments with an Explicit Environment Model

Explicit Environment Model. As we have seen from Figure 5(b), the constraint-based
environment model generated too many invalid test cases. Thus, we decided to use an
explicit environment model that generates test cases explicitly by selecting a PU and
its sector to contain the l th logical sector (PU[i].sect[j]=LS[l]) and setting the
corresponding SAM accordingly (SAM[i].offset[l]=j). Therefore, most of the
generated test cases satisfy the constraints between SAMs and PUs.

However, since CREST cannot support accessing array elements through a symbolic
array index variable, we have to modify assignments of SAMs and PUs in the environ-
ment model so that these assignments access array elements through constants, not in-
dex variables. This workaround solution is depicted in Figure 7. idxPU and idxSect,

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 261

01:for (i=0; i< NUM_LS; i++){
02: unsigned char idxPU, idxSect;
03: CREST_unsigned_char(idxPU);
04: CREST_unsigned_char(idxSect);
05: ...
06: //The switch statements encode the following two statements:
07: // PU[idxPu].sect[idxSect]= LS[i];
08: // SAM[idxPu].sect[i]= idxSect;
09: switch(idxPU){
10: case 0: switch(idxSect) {
11: case 0: PU[0].sect[0] = LS[i];
12: SAM[0].offset[i] = idxSect; break;
13: case 1: PU[idxPU].sect[1] = LS[i];
14: SAM[0].offset[i] = idxSect; break;
15: ... }
16: break;
17: case 1: switch(idxSect) {
18: ...

Fig. 7. Explicit environment model for MSR

which indicate the physical location of the ith logical sector data (LS[i]), are de-
clared to be handled symbolically (lines 3 and 4). In the explicit environment model,
the switch statements starting at line 9 and line 10/17 respectively handle idxPU and
idxSect case by case. Note that, although this explicit environment model does not
generate many invalid test cases, it increases the total number of execution paths due to
these additional switch statements.

Experimental Results. Due to a time limitation, we could perform only 4 experiments
with 4 to 5 PUs with 5 to 6 LSes with the explicit environment model. The total numbers
of test cases generated and the ratios of the valid test cases over the total test cases are
depicted in Figure 8. For example, CREST generated a total of 105 test cases for 4
PUs with 5 LSes, 61248 test cases (around 60% of the total test cases) among them

Fig. 8. Statistics on the generated test cases with explicit environment model

262 M. Kim and Y. Kim

Fig. 9. Analysis time with explicit environment model

being valid. Thus, the explicit environment model generates test cases more efficiently
compared to the constraint-based model. Similar to the experiments with the constraint-
based model, the numbers of valid test cases for these 4 set of experiments are equal
to the numbers of all possible configurations of the SAMs and PUs (see Table 1). All
injected bugs b11 to b33 and bc were detected, but within fewer test cases; most of them
were detected in 3 seconds through the first 50 test cases.

The performance of the concolic testing approach with the explicit environment
model is depicted in Figure 9. For example, CREST took 1203 seconds for the ex-
periments with 4 PUs and 5 LSes. Although the concolic testing with the explicit model
is twofold faster than the testing with the constraint-based model, it is still a hundred
times slower compared to CBMC (see Figure 6). Yices takes around 75% of the total ex-
ecution time, since invalid test cases are significantly reduced, which thus decreases the
portion of symbolic execution time and system execution time. Note that the symbolic
execution path formulas for invalid test cases are very short and are solved quickly.
Therefore, improvement of the SMT solver is an important issue with regard to the
success of concolic testing.

5 Discussion

In this section, several issues are discussed on the basis of our experience of applying
concolic testing to MSR.

5.1 Weaknesses of Concolic Testing

Although our hypothesis H1 is accepted through the empirical study (i.e. the concolic
testing method demonstrates capability of detecting bugs through high coverage), H2 is
rejected (i.e. its performance on MSR is worse than the performance of model checking
MSR by CBMC (see Figure 6 and Figure 9)). This poor performance was caused by
several steps of the concolic testing algorithm (see Section 3).

First, for a target program with a complex environmental model such as MSR, the
concolic testing wastes a large amount of time to generate invalid test cases. In the ex-
periments with the constraint-based environment model and the explicit environment

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 263

model, around 90% and 45% of the total test cases generated were invalid respectively
(see Figure 5 and Figure 8). Considering a unit under testing often has preconditions
or constraints enforced by its interacting components, the concolic testing framework
should provide an efficient way to control the generation of concrete input values so as
to generate only valid test cases. Second, concolic execution (see steps 2 and 3 of the
algorithm in Section 3) causes high overhead, since each original C statement is supple-
mented with a probe reflecting a concrete execution in a symbolic manner; around 40%
and 15% of the total execution times were spent for the concolic executions with the
constraint-based model and the explicit model, respectively (see Figure 6 and Figure 9).
Note that the original MSR code takes less than 0.1% of the concolic execution time.
Lastly, the performance of the constraint solver Yices was slow, although the path for-
mulas of MSR are conjunctions of only linear arithmetic conditions and can be solved
rapidly by many efficient algorithms [21]. Therefore, from our experiments, we can
conclude that CREST needs to be improved for practical usage.

5.2 Importance of an Environment Model

Through the various experiments carried out to analyze MSR, including conventional
testing [16], concolic testing, and model checking [15], we found that it is important
to build an accurate and efficient environment model for the analysis of a flash file
system. Also, it was found that different analysis techniques can commonly use the
same environment model. For example, the constraint-based environmental model (see
Section 4.2) was originally designed for model checking through CBMC and used as is
with only nominal modification. Similarly, the explicit environmental model was orig-
inally designed for model checking through SPIN [11]. We used this environmental
model for SPIN with slight modification due to the limitation of CREST (i.e., array in-
dex variables are not symbolically handled). Furthermore, the design of the environment
model substantially affects the analysis performance (see Section 4.2 and Section 4.3).

Considering the importance of an environment model in unit testing, the claim of
automated test case generation by concolic testing is only partially true, since an expe-
rienced user has to build an environment model.

5.3 Comparison with Model Checking

Concolic testing can be considered as a light-weight model checking method, since it
generates all test cases corresponding to all possible execution paths. However, these
two different analysis techniques have as many different characteristics as common
characteristics. Table 2 compares these techniques briefly based on our experience, al-
though this comparison result might not be applicable to other target programs.

In general, model checking provides better accuracy, since the coverage of concolic
testing may not be complete if a target program contains complex statements that can-
not be solved by a constraint solver (note that this was not the case for MSR). Also,
constraint solvers used for concolic testing are not sufficiently advanced to manipu-
late symbolic execution path formulas efficiently. However, in terms of applicability,
concolic testing has notable advantages, since it can analyze a target program with

264 M. Kim and Y. Kim

Table 2. Comparison of concolic testing and model checking

Accuracy Analysis Memory User Applicability
speed usage effort

Concolic testing High Slower Low Middle High
Model checking Highest Slow High High Low

underlying binary libraries as it is, without manual abstraction, which is necessary for
model checking.

5.4 Hard Characteristics of MSR for Concolic Testing

It was found that MSR is a hard instance for concolic testing. Concolic testing can
efficiently analyze programs whose data domain can be significantly abstracted. For
example, concolic testing can analyze binary search programs or sort programs quickly.
The data domain of MSR (especially SAMs), however, cannot be abstracted, since every
different value in every single element of SAMs leads to a unique execution path. Thus,
as shown in Section 4.2 and Section 4.3, the total number of valid test cases generated
is exactly the same as the number of all possible configurations of the PUs and SAMs
(see Table 1). In other words, in the analysis of MSR, concolic testing is burdened by
as much complexity as model checking. The same difficulty in analysis of MSR applies
to model checking and a scalability issue remains.

6 Conclusion and Future Work

We reported our experience of applying a concolic testing method to analyze the MSR
code, a complex unit of a flash file system, and analyzed the strengths and weaknesses of
the approach empirically. Although several goals of the concolic testing method could
be achieved through the experiments (e.g., automated test case generation, high cov-
erage, and detection of bugs), CREST suffered from a few limitations including slow
analysis speed and lack of support for array index variables. We expect that CREST
will be able to overcome these limitations in the near future.

As future study, we plan to build a flash file system model that can be used by file-
system-dependent applications in a concolic testing framework. One inspiring related
work was carried out by Microsoft [17], where an intelligent mock object (an environ-
ment model in our terminology) for a file system was developed to test target applica-
tions in the PEX framework [19]. The mock file system automatically generates various
possible test cases necessary to test applications, which can save significant effort to test
file-system-dependent applications.

Acknowledgments

We would like to thank Hotae Kim at Samsung Electronics and Prof. Yunja Choi at
Kyungpook National University for their valuable discussion on the environment mod-
els for flash file systems.

Concolic Testing of the Multi-sector Read Operation for Flash Memory File System 265

References

1. CREST - automatic test generation tool for C, http://code.google.com/p/crest/
2. Samsung OneNAND fusion memory,

http://www.samsung.com/global/business/semiconductor/
products/fusionmemory/Products OneNAND.html

3. SMT-LIB: The satisfiability module theories library,
http://combination.cs.uiowa.edu/smtlib/

4. Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of flash memory.
Science of Computer Programming 74(4) (February 2009)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Operating System Design and Implemen-
tation, OSDI (2008)

6. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

8. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy. Abstract
state machines, B and Z (2008)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
10. Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying Intel flash file system core specification.

In: 4th VDM-Overture Workshop (2008)
11. Holzmann, G.J.: The Spin Model Checker. Wiley, New York (2003)
12. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. Technical Report

UCB/EECS-2008-123, EECS Department, University of California, Berkeley (September
2008)

13. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7)
(1976)

14. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing experi-
ments? In: International Conference on Software Engineering (2005)

15. Kim, M., Choi, Y., Kim, Y., Kim, H.: Formal verification of a flash memory device driver -
an experience report. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 144–159. Springer, Heidelberg (2008)

16. Kim, M., Kim, Y., Choi, Y., Kim, H.: Pre-testing flash device driver through model checking
techniques. In: IEEE Int. Conf. on Software Testing, Verification and Validation (2008)

17. Marri, M., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: An empirical study of testing
file-system-dependent software with mock objects. In: Automation of Software Test (2009)

18. Een, N., Sorensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

19. Tillmann, N., Schulte, W.: Parameterized unit tests. In: European Software Engineering Con-
ference/Foundations of Software Engineering (2005)

20. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In: Program-
ming Language Design and Implementation, PLDI (2005)

21. Berezin, S., Ganesh, V., Dill, D.L.: An online proof-producing decision procedure for mixed
integer linear arithmetic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 521–536. Springer, Heidelberg (2003)

22. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In: European
Software Engineering Conference/Foundations of Software Engineering (2005)

23. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. In:
International Symposium on Software Testing and Analysis (2004)

http://code.google.com/p/crest/
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products_OneNAND.html
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products_OneNAND.html
http://combination.cs.uiowa.edu/smtlib/

Low-Level Code Verification Based on CSP
Models

Moritz Kleine and Steffen Helke

Technical University of Berlin
Institute for Software Engineering and Theoretical Computer Science

Berlin, Germany
{mkleine,helke}@cs.tu-berlin.de

Abstract. This paper contributes to the broad field of software verifi-
cation by proposing a methodology that uses CSP to verify implemen-
tations of real-life multithreaded applications. We therefore use CSP to
formalize the compiler intermediate representation of a program. Our
methodology divides the low-level representation into three parts: an
application-specific part, describing the behavior of threads; a domain-
specific part, which encapsulates low-level software concepts such as
scheduling; and a platform-specific part, which is the hardware model.
These three parts form a low-level CSP model that enables us to prove
properties, e.g. the absence of race conditions in the model, by either
model checking or theorem proving. The application-specific part is syn-
thesized from the LLVM intermediate representation of a multithreaded
program.

1 Introduction

In this paper, we address the problem of developing methods to increase confi-
dence in safety-critical systems. To verify the C++ implementations of concur-
rent systems, we propose an approach that builds on the automated extraction
of a CSP model of the Low Level Virtual Machine (LLVM) compiler intermedi-
ate representation (IR) of programs and the use of established CSP tools such
as the refinement checker FDR2 [1] and the LTL model checker ProB [2] to
analyze the generated model. Our methodology divides the low-level representa-
tion of a concurrent system into three parts: an application-specific one, which
describes the behavior of threads; a domain-specific one, which encapsulates low-
level software concepts such as scheduling; and a platform-specific one, which is
the hardware model. The latter two are parameterized and highly reusable. The
application-specific part as well as most of the parameters for the platform-
specific and domain-specific parts are to be automatically generated from the
LLVM IR of the program. Examples of such parameters are typing information
for the channels and the set of thread identifiers.

We outline an algorithm that extracts the parameters for the domain-specific
and platform-specific parts from the LLVM IR and gathers the information

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 266–281, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Low-Level Code Verification Based on CSP Models 267

needed for synthesizing the application-specific model of the program. Confor-
mance of the implementation to its CSP-based specification is shown by proving
that the generated model is a refinement of the system’s specification. Unlike
methods that require a formally proven refinement chain from the specifica-
tion down to executable code, the approach presented in this paper retains
the option of manually tweaking the performance of the final implementation
without losing conformance of the implementation to its specification. As an
example application of our method, we investigate a system of multiple threads
accessing a shared counter variable to illustrate our verification methodology.
To our knowledge, this is a new approach to relating CSP specifications and
implementations.

1.1 Structure of the Paper

The following two subsections introduce the process calculus CSP and its
machine-readable form CSPM in Sect. 1.2, and the LLVM compiler infrastructure
in Sect. 1.3. These form the basis of the framework presented in this paper. The
paper begins by investigating the current role of CSP in software engineering
in Sect. 2 and motivates the approach to developing a new CSP-based software
engineering methodology. The example of a simple concurrent program is in-
troduced which is used throughout the paper to illustrate our concepts. Our
approach of verifying low-level code using CSP models is presented in Sect. 3.
The three different parts of the resulting CSPM model are introduced and we
explain how they fit together. In Sect. 4 we present the application-specific part
of the low-level model and show how it is obtained from the LLVM IR of a con-
current program. The paper closes with pointers to related work in Sect. 5, and
conclusions and ideas for future work in Sect. 6.

1.2 Brief Introduction to CSP

Communicating Sequential Processes (CSP) is a process calculus developed in
the early 1980s [5]. It is capable of specifying and verifying reactive and con-
current systems, where the modeling of communication plays a key role. CSP is
equipped with a rich set of process operators for defining possibly infinite transi-
tion systems by, e.g., prefixing (a → P), sequential composition (P1; P2), hiding
(P\A) and parallel composition (P1[| A |]P2). The semantics of CSP processes
can be given in different ways. The most popular semantics are trace semantics,
failure semantics and failure-divergence semantics [12]. In the trace semantics
of CSP, a process is represented by the set of all its possible communication
sequences. By contrast, the failure semantics additionally records the refusals of
a process, i.e. the events a process can refuse after a particular communication
sequence. Both these semantics are unable to recognize processes with infinite in-
ternal behavior. The failure-divergence semantics fills exactly this gap. All these
semantics are supported by the automatic refinement checker FDR2 [1], which
is one of the tools we use for verification purposes.

268 M. Kleine and S. Helke

CSPM [13] is a machine-readable version of CSP that has been developed
as the input language for the FDR2 tool. CSPM extends CSP by a small but
powerful functional language, which offers constructs such as lambda and let
expressions and supports advanced concepts like pattern matching and currying.
The language provides a number of predefined data types, e.g. booleans, integers,
sequences and sets, and also allows user-defined data types. The global event set
is defined by the set of typed channel declarations of a CSPM script.

CSPM is now the de facto standard of machine-readable CSP. Besides FDR2,
the model checker and animator ProB supports CSPM , so CSPM models can
also be explored by animation and verified by LTL model checking.

1.3 Brief Introduction to LLVM

The LLVM compiler infrastructure provides a modular framework that can be
easily extended by user-defined compilation passes. It also offers a diverse set
of predefined analyses, i.e. points-to analysis by Steensgaard [16], and optimiza-
tions that can be used out of the box. This makes LLVM a great platform for
the development of source code transformation and analysis tools. The heart
of the compiler infrastructure project is its intermediate representation (IR). It
is a typed assembler-like language [8], which is used internally as the basis for
compiler optimizations. The LLVM framework provides gcc-based frontends for
a variety of programming languages, including C++. The existence of the gcc-
based front-end enables us to adapt our approach, which currently only supports
C++, to a couple of other programming languages with little effort because it
is source-language-independent and relies on the LLVM IR only.

2 Motivation: Relating CSP Models to Programs

In this section, we first present the example that is used throughout the paper
to illustrate our verification methodology, and discuss how CSP is commonly
used to model and analyze such systems. As a consequence of the discussion, we
propose another way of using CSP for the verification of the example.

2.1 A Simple Concurrent Program

We consider a concurrent program composed of a finite number of threads that
increase a shared counter. The most obvious unwanted phenomena are that the
system deadlocks or that a race condition occurs. Access to shared resources may
be controlled using a counting semaphore, which offers the two methods P and
V that must enclose the critical region to protect it. The example application is
implemented on a minimal C++ library operating system, BOSS [10], realizing
preemptive multithreading. BOSS offers an abstract class Thread requiring that
implementations override the run method. It also offers primitives that allow us
to enable and disable preemption of threads. Its InterruptLock class disables in-
terrupts within its constructor and enables interrupts within its destructor. Our

Low-Level Code Verification Based on CSP Models 269

example application is realized by two classes Thread1 and Semaphore. The con-
structor of the Semaphore class takes the initial value of the semaphore’s counter
as argument. The method Semaphore::P blocks if the semaphore’s counter is less
than one. Otherwise, it decreases the counter and returns. This has to be done
atomically. One way of realizing this atomicity is temporarily disabling preemp-
tion. The method Semaphore::V is used to release the shared resource. It increases
the semaphore’s counter and returns. The implementation of the class Thread1
calls Semaphore::P, increases the shared counter, calls Semaphore::V and repeats
this sequence in a loop as its run method. As the implementation of the semaphore
is obviously crucial for the correct functioning of the program, the most impor-
tant question that arises is, Does the implementation of the semaphore work as
expected? This question is answered in the sequel.

2.2 Discussion: Modeling and Analyzing the Example with CSP

As stated above, a number of threads sharing a single resource must use some
kind of synchronization mechanism to avoid interfering with each other when
accessing the shared resource. A simple CSP model of such a system can be
made up of a set of processes that run in parallel, synchronizing on events that
model acquirement and release of a lock to protect the critical regions. The
following process P models such a process:

P(id) = Q0; claim?x → (if x = id then Q1 else SKIP fi); release.x → P(id)

Within this process the channels claim, release : T communicate the thread
identifiers from the set T . P is parameterized with a process identifier id ∈ T ,
which determines which process claims and releases the lock. The processes Q0
and Q1 define unprotected and protected regions of the processes, respectively.
In our example, we define the set N = {0..3} of valid values of the shared counter
and the channels read ,write : N . Then we let Q0 = SKIP and

Q1 = read?y → (if y < 3 thenwrite.(y + 1) → SKIP else STOP fi).

This definition of Q1 requires synchronization with another process E that stores
the value of the shared counter and allows read and write access to it. A system
Psys of P processes that synchronize on the event set modeling the lock can
now be composed and synchronized with the process E . The resulting processes
are:

Psys = ‖
{|claim|}

x : T • P(x) E (v) = read .v → E (v) � write?x → E (x)

S = Psys ‖
{|write,read|}

E (0)

S can be encoded in CSPM easily. With the help of a tool such as FDR2 or
ProB, it can then be proved that S fulfills the requirement that the critical re-
gion may not be entered by two processes in parallel, which implies that no race
condition on the shared counter can occur. The CSPM encoding of S serves as
specification for the implementation that is sketched in the previous section. To

270 M. Kleine and S. Helke

Fig. 1. Overview of the relations between high-level specification, source code, compiler
IR and low-level CSP model in our verification methodology

prove the specification S race-condition-free, we used the LTL model checker
ProB to verify the LTL formula:

G(([claim] ⇒ X [read]) ∧ ([read] ⇒ X (deadlock ∨ [write])) ∧ ([write] ⇒ X [release]))

This formula can be informally rephrased as “it is always the case, that a claim is
followed by a read, a read is followed by either a deadlock or a write and a write
is followed by a release”. Thus, racing cannot occur, because it is impossible that
thread A reads the counter and before writing the increased counter, thread B
reads it. Note that ProB supports keywords such as deadlock in LTL formulas.
The brackets test if the enclosed channel name is enabled in a state. This formula
checks for a deadlock state because the CSPM encoding ofS has a bounded counter
variable. In the case that the counter variable reaches its maximum value, the
variable can be read once more, then the process deadlocks. In the other case, the
variable is increased and then written.

Nevertheless, this model does not in any way describe the lock itself. However,
executable code of such a system must provide implementations of locks, so
stepwise refinement is commonly used to push the specification as close to the
implementation as possible.

It is clear that we cannot generate machine code for a single-processor system
directly from an arbitrary CSP specification because parallelism and synchrony
have to be resolved beforehand. Furthermore, any sensible specification of any
system should abstract away technical details such as context switches. Since
the strength of CSP lies in modeling concurrent systems, it is not advisable to
limit oneself to using CSP in a way that avoids nondeterminism and parallelism
in the first place. CSP is not a programming language, though programming
languages inspired by CSP like OCCAM [3] do exist.

2.3 Overview: Analyzing the Implementation with CSP

Rather than exploring the classical approach of refining specifications down to
executable code again, we propose that the software engineering process begin
with the development of a high-level specification in some CSP-based formalism
on the top level, as shown in Fig. 1. On the top level, either a CSPM specification
or a specification in an arbitrary CSP-based formalism for which a transforma-
tion into CSPM exists, is required. For the reasons given in the last paragraph

Low-Level Code Verification Based on CSP Models 271

of Sect. 2.2, we cut the refinement chain at a level that still abstracts from im-
plementation details, instead of automatically refining the specification down to
executable code by CSP-based code generators. It is then the programmer’s job
to produce efficient and robust code – symbolized by arrow (1). Unlike code
obtained using automatic code generators, our approach makes it more feasible
to create high-performance code that meets the application’s needs in terms of
memory and power consumption.

This procedure induces a semantic gap between the high-level specification
and the final implementation, which we bridge by generating another CSP model.
This model is generated from the LLVM IR, which is automatically obtained
during the compilation process with an LLVM-based compiler (arrow (2)). The
generation process of the low-level model, which is described by arrow (3) in
Fig. 1, is the subject of this paper.

The basic idea behind synthesizing a CSPM model from a low-level represen-
tation of a program is that a CSP event is an arbitrary observation point inside
a program. We would have to deal with the interpretation of events if we tried
to automatically generate code from a given CSP model. This need is avoided
by our approach, which extracts a detailed CSP model from the implementation
of a concurrent program and includes data access, function calls and annotated
observation points.

Fig. 1 also relates the generated CSPM model to the high-level specification
by arrow (4), which stands for a refinement proof. This is necessary to prove
that the implementation meets its specification. Steps (3) and (4) can be used
to investigate the implementation from different points of view. Especially if
independent aspects have to be met by the implementation, they should be ex-
plored separately. This reduces the size of the low-level model, which is desirable
for analysis by refinement and model checking.

As shown later on, to prove that the implementation for specification S is race-
condition- and deadlock-free, the low-level CSPM model is created with respect to
any of the accesses to the shared counter and to the behavior of the semaphore.

3 Low-Level Verification with CSP

The generation of the low-level model relies on data dependence analyses and
alias analyses such as the points-to analysis by Steensgaard1, which computes
the set of memory locations to which a variable can point. As will be explained
in the sequel, the low-level CSPM model abstracts from all function calls and
data accesses that none of the data to be considered depends on. If, for exam-
ple, concurrent accesses to a shared counter variable have to be proved race-
condition-free, it is sufficient to build the model from the accesses to this shared
counter and the locks protecting it.
1 Even though data dependence analyses are not in general automatic, several analyses

have been implemented in the LLVM framework. These analyses can be reused for
the implementation of tools that work on the LLVM IR of programs, such as the
LLVM IR to CSPM transformation tool that we are currently implementing.

272 M. Kleine and S. Helke

Fig. 2. Illustration of the relations between hardware and software of a multithreading
system with the three components of our verification methodology

Fig. 2 refines and extends arrow (3) in Fig. 1. The low-level CSPM model
contains not only processes, types and channels that are generated from the
LLVM IR of a program but also some predefined parts which require thorough
explanation. The complete low-level model presented in this paper is an example
of the overall methodology adopted to verify multithreaded applications running
on a single-processor system because it describes the behavior of such a system
in great detail.

First of all, the low-level model is divided into three distinct parts. The
platform-specific part comprises the environment model and hardware details,
while the domain-specific part encompasses aspects that are common to a domain
of applications, e.g. system startup and scheduling, which are provided as foun-
dation libraries that the program builds on. These two parts are mostly manually
modeled but are parameterized so that they can be reused by all applications
of the domain they have been designed for. The platform-specific and domain-
specific parts together make up a model of interleaved concurrency that describes
the behavior of a single-processor computing system and which is suitable for
verifying multithreaded programs without considering the concrete concurrency
implementation. The third part is the application-specific one, which describes
the behavior of the threads of a multithreaded program with respect to a set of
given variable names, function calls and annotations. Applications make up a
single sequential process which is the interleaving of sequences belonging to one
of the implemented threads. Threads are identified by a bijective mapping from
the set thread ids = {0 .. (number of threads −1)} to the thread instances.
Data storage is modeled by zero-indexed lists. Per thread data is modeled by
lists, which hold the data belonging to a thread at the index being the thread’s
identifier.

Any peculiarity that is introduced by a manual abstraction to keep the model
a reasonable size for analysis with FDR2 or ProB is made explicit by a subpro-
cess of the structure error code -> STOP where error code is a fresh event
introduced to mark the violation of that very abstraction. This is necessary to
maintain the soundness of our methodology. An example of such an abstraction

Low-Level Code Verification Based on CSP Models 273

ENV = ENV1(global_vars_list)

ENV1(l) = env_read?t.i!elemAt(l, i) -> ENV1(l)

[] env_write?t.i.e -> ENV1(insertAt(l, i, e))

[] p_lock?t -> ENV2(l,t, 0) [] preempt -> ENV1(l)

ENV2(l, t, c) = ...

[] p_release.t -> (if (c == 0) then ENV1(l) else ENV2(l, t, c-1))

[] p_lock.t -> (if c < max_lock_depth then

ENV2(l, t, c + 1) else e_terminate -> STOP)

Fig. 3. The ENV process models the global memory and preemption

is that (unsigned) integers are commonly reduced to a much smaller range (e.g.
zero to three instead of zero to 232 − 1). If an integer increases beyond three in
this example, the process would only offer the event that is the error code for
this incident and then deadlock. Note that the shared counter variable of our
program can safely be reduced to such a small range without loss of generality:
the concrete values are irrelevant to race condition detection; all that matters is
the order of read/write accesses to it.

The platform-specific and domain-specific parts used to verify the exam-
ple presented in Sect. 2 are described in the sequel. Sect. 4 is devoted to the
application-specific part.

3.1 The Platform-Specific Part

For the platform-specific part, we developed an environment model that de-
scribes the very basic behaviors of a computing system, such as read/write access
to global data, enabling and disabling of preemption and triggering preemption
itself. The environment is modeled as a recursive process ENV (Fig. 3) that carries
a fixed-size list global vars list of the global variables along as it evolves. In
our example, the list is <0, 1>. The first element is the initial value of the shared
counter, the second element is the initial value of the semaphore’s counter. The
list is accessed whenever an event representing read or write access is consumed.
Preemption, modeled by the preempt event, is enabled at any point in time,
provided that preemption has not been locked. If it is locked, preemption is
disabled until the preemption lock is released again. To facilitate verification of
systems that allow nesting of preemption locks, our model also supports nest-
ing of preemption locks2. Due to the restrictions of FDR2, the nesting depth is
bounded by the predefined constant max lock depth, which must be adjusted
to fit the application’s needs. The error code for violating the predefined lock
nesting depth is e terminate. The list of global variables global vars list is

2 Preemption is commonly implemented by a timer interrupt. Enabling and disabling
of preemption thus can be understood as enabling and disabling of interrupts, re-
spectively. The reason for explicitly modeling nesting of preemption locks is that it
is often allowed by operating systems even though the outer-most lock is the one
that affects the system’s behavior.

274 M. Kleine and S. Helke

channel intern_read_0, intern_write_0 : thread_ids . { 0 .. max_int}

channel intern_read_1, intern_write_1 : thread_ids . { 0 .. max_int}

ThreadState(l) = intern_read_0?t!elemAt(elemAt(l,t),0) -> ThreadState(l)

[] intern_read_1?t!elemAt(elemAt(l,t),1) -> ThreadState(l)

[] intern_write_0?t?val ->

ThreadState(insertAt(l, t, insertAt(elemAt(l,t), 0, val)))

[] intern_write_1?t?val -> ...

Fig. 4. The ThreadState process handles thread-internal data

a parameter of the platform-specific model. It can be derived from the typing
information inherent to the LLVM IR of the program to be analyzed.

Data being read from or written to the main memory of the computing system
is transferred to the near memory or first written to the near memory, which
might be a register or a cache. This is done by the application-specific processes
that are explained in the next section. The process modeling the near memory is
called ThreadState. This process keeps track of the values to be transferred from
or to the main memory. Its CSPM encoding that suits the variables and typing of
our example is shown in Fig. 4. Like the environment process, this process main-
tains the values in a fixed-size list that must match the memory-consumption
needs of the applications. The typed channel definitions for the process are also
parameters of the platform-specific model and have to be generated according
to the typing information of the LLVM IR of the program under consideration.
The channels intern read 0 and intern write 0 communicate the value of
the semaphore’s counter, while intern read 1 and intern write 1 communi-
cate the value of the shared counter. Thus the types of the variables used by
threads are represented by the typing of the channels used by the ThreadState
process. Note that local variables and intermediate results of the methods (e.g.
condition evaluations) are stored in the near memory as well. The ThreadState
process runs in parallel to the application-specifc part and synchronizes with
it on the intern read and intern write events as shown at the end of this
section. Each communication carries the id of the owning thread, so the threads
cannot interfere with each other when communicating with their local mem-
ories. In the shared counter example, the process ThreadState is initialized
with the list initialState = <<0,0>,<0,0>,<0,0>>. This initialization means
that the model supports up to three threads, each assuming the shared counter
and the semaphore’s counter to be zero.

3.2 The Domain-Specific Part

The domain-specific part models aspects such as scheduling and the entry to the
application-specific processes. The entry to the application-specific processes is
the initial choice of a thread to run, while scheduling happens after each of the
atomic steps of a thread and is the act of deciding which thread to run next.
Both aspects require the two lists procDefs and threadStacks. The former is an

Low-Level Code Verification Based on CSP Models 275

procDefs = <Thread1_run, Semaphore_P, Semaphore_V>

threadStacks = <(<0>,<0>),(<0>,<0>),(<0>,<0>)>

AppSpecific = [] t: thread_ids @ CONTINUE(t, 0, threadStacks)

CONTINUE(t,pc,s) =

let s’ = setPC(t, s, pc) within (getProc(t, s)(t,pc,s) []

(preempt -> []x : thread_ids@getProc(x, s’)(x, getPC(x, s’), s’)))

TS = {|intern_read_0, intern_write_0, intern_read_1,

intern_write_1|} TE = {|env_read,env_write, p_lock, p_release,

preempt|} Threads = ThreadState(initialState) [| TS |] AppSpecific

LowLevelModel = Threads [| TE |] ENV

Fig. 5. Important lists, processes and sets of the domain-specific part

unmodifiable list of the process definitions defined by the application-specific
part. It is thus a mapping from integers to process definition names where
each process definition represents one of the program’s methods as explained
in Sect. 4. The latter is a list of pairs in which each pair models the stack of a
thread. The first component of any pair is a list recording the index of the process
definition that describes the method a thread is currently executing. The second
component is the program counter within the same method. A thread starting
with process definition x of the procDefs list at program counter p has the
stack (<x>,<p>). The entry to the application-specific part is the process called
AppSpecific. Fig. 5 shows these two lists and the definition of AppSpecific as
they occur in our example. The model of the system startup is a very simple
one, which nondeterministically picks a thread identifier and allows it to start
a program position 0 with the initial list of thread stacks. The definition of the
CONTINUE process is far more interesting because it describes the advancement
of the system. This process is a very abstract model of a scheduler: either the
currently running thread continues at its current position or it is preempted.
In the latter case, the state of the currently running thread is pushed onto the
stack, then another thread is chosen, its state is popped from the stack and
control is passed to this thread. Passing control to a thread is modeled by the
process continuing with the process definition, id and program counter of the
new thread. The function getProc returns the process definition (which itself is
a function) for a given thread identifier according to its current stack state. It
is important to notice, that any process obtained by getProc is an application-
specific one, which finally evolves to the CONTINUE process. The CSPM model
of this process is also shown in Fig. 5. The set thread ids is another param-
eter that has to be generated from the LLVM IR of the program. CALL and
RETURN are two more important process definitions in the domain-specific part
of the model. They model method calls and returns and use the threadStack
list to record the positions of threads in the application-specific process defini-
tions. Furthermore, the two processes have to deal with stack overflow and un-
derflow. The error codes are channel e_call_stack_overflow : thread_ids
and channel e_call_stack_underflow : thread_ids, respectively. Stack
overflow is computed with respect to an unmodifiable predefined stack size,

276 M. Kleine and S. Helke

while stack underflow simply tests for emptiness of the stack. If none of the error
cases occurs, both processes evolve to the CONTINUE process. The final system
is represented by the process LowLevelModel, which is the parallel composition
of the running threads with the environment over the following event set TE.
The running threads are modeled by the process Threads, which is the parallel
composition of the thread’s state-holding process and the threads themselves,
synchronized over the event set TS. The CSPM encoding of these event sets and
the processes Threads and LowLevelModel is also shown in Fig. 5. The process
LowLevelModel is the one that, according to arrow (4) of Fig. 1, must be proved
to be a refinement of the high-level specification.

4 Extracting a CSP Model from a Program

In this section we outline an algorithm for synthesizing the application-specific
part of a program in LLVM IR. The synthesized CSPM model is a set of functions
that yield processes that match the control flow graph of the IR. To reduce the
size of the resulting models, the synthesis procedure keeps track of the accesses
to a predefined set of variables. For example, to prove that the implementation
of the threads concurrently increasing a shared counter is race-condition-free, it
is sufficient to track the accesses to this counter, to the counter of the semaphore
as well as disabling and locking preemption. The set of variables to be tracked
has to be extended with all variables that influence any of the variables under
consideration. The extended set of variables is called D in the sequel. To com-
pute D , we use the points-to analysis [16]. The mapping of function calls to be
tracked is limited to functions that do not modify any variable that is a member
of D . In addition to data access and function calls, arbitrary user-defined obser-
vation points can be included within the synthesized model. Such an observation
point can be defined by using the ghost method llvm2csp annotate within the
program’s source code3.

Our llvm2csp algorithm is sketched in Fig. 6. It takes as input the LLVM IR of
the implementation, a mapping M of function names to events and a list of data
variables V . It outputs chunks of a CSPM script that make up the application-
specific part. It also creates the parameters for the platform- and domain-specific
parts of the resulting CSPM model, i.e. the data types and channel definitions,
by exploiting the typing information that is present in the LLVM IR.

In Fig. 6, CSPM code is typeset in typewriter font and LLVM-IR code in
cursive typewriter font. The algorithm uses the following auxiliary variables: f
records the name of the function currently being analyzed, c is a per method line
counter and b is a flag indicating whether or not a sequential process has been
opened but not yet been closed. Furthermore, we use the function (| |) which
translates the address of a variable into an integer being the index of that same
variable in the global vars list that is passed to the ENV process (see Fig. 3).

3 A ghost method is a method that modifies ghost variables only while a ghost variable
is a variable that is used for verification purposes only.

Low-Level Code Verification Based on CSP Models 277

Input: L =̂ LLVM IR of program, V =̂ List of variables to be tracked
M =̂ Mapping from function names to events

Perform dependence analysis and compute the set D
Gather typing information, emit CSPM data types and channel definitions
f = nil , c = 0 and b = false
for all lines l ∈ L do

if l is inside a method definition then
if ¬ b then

b = true and emit process declaration, i.e. emit f (t,c,state) = . . .
end if
if l loads v ∈ D then

read (| v |) from environment and write [v] to state holder,
i.e. transform %8 = load i32* %a

into env read.t.(|%a |)?val -> intern write.t.[%8]!val -> . . .
else if l is an event annotation then

emit event A(l), i.e. transform
call void (i8*, ...)* @ Z17llvm2csp annotatePKvz(i8* %a1)

into a -> . . .
else if l is a call to a method m that modifies any v ∈ D then

emit CALL(t, m, c, state)

else if l is a call to m ∈ domM then
emit event M (l), i.e. transform
call void @ ZN13InterruptLockD1Ev(%struct.InterruptLock* %1)

into p lock.t -> . . .
else if . . . then

{ descriptions of store, arithmetic, comparison, branch and return omitted}
else

continue
end if
if l is neither a branch operation, nor function call nor return then

terminate the process by emitting CONTINUE(t, c, state)

end if
b = false and increase c by one

else if l is a method declaration then
record the method’s name in f

end if
end for

Fig. 6. Sketch of the llvm2csp algorithm

Analogously, [] is the function that gives the variable’s index of the threads’ vari-
ables in the initialState list (see Fig. 5). Method definitions are translated into
CSPM functions, which yield a sequential process that models the behavior of a
thread executing that same function. The sketch of the algorithm demonstrates
the intended use of the annotation ghost method llvm2csp annotate. Whenever
a call to such a method is encountered in the LLVM IR, the original name of the
first variable passed to it is determined by the function A and translated into a
single event. The mapping M makes it possible to match a function call in the
IR with an arbitrary event. An example of this is the matching of the methods

278 M. Kleine and S. Helke

Thread1_run(t, 0, state) = CALL(t, 1, 1, state)

Thread1_run(t, 1, state) = env_read.t.0?sharedVal ->

intern_write_0.t!sharedVal -> CONTINUE(t,2, state)

Thread1_run(t, 2, state) = intern_read_0.t?sharedVal -> let

nval = sharedVal+1 within write_int(t,0,nval,CONTINUE(t, 3, state))

Thread1_run(t, 3, state) = CALL(t, 2, 4, state)

Thread1_run(t, 4, state) = CONTINUE(t, 0, state)

Semaphore_P(t, 0, state) = p_lock.t -> CONTINUE(t, 1, state)

Semaphore_P(t, 1, state) =

env_read.t.1?sem -> intern_write_1.t!sem -> CONTINUE(t, 2, state)

Semaphore_P(t, 2, state) = intern_read_1.t?sem ->

if sem < 1 then CONTINUE(t,3, state) else CONTINUE(t, 4, state)

Semaphore_P(t, 3, state) = p_release.t -> CONTINUE(t, 0, state)

Semaphore_P(t, 4, state) = intern_read_1.t?sem ->

let nsem = sem-1 within write_int(t,1,nsem,CONTINUE(t, 5, state))

Semaphore_P(t, 5, state) = p_release.t -> CONTINUE(t, 6, state)

Semaphore_P(t, 6, state) = claim.t -> CONTINUE(t, 7, state)

Semaphore_P(t, 7, state) = RETURN(t, state)

Fig. 7. Generated CSP code for a simple thread using a semaphore to protect access
to a shared counter variable

that disable or enable preemption with the events p lock.t and p release.t,
respectively. Calling the constructor of the InterruptLock class, which realizes
locking of preemption, is translated into the event p lock.t, for example.

Fig. 7 shows the generated model of the thread introduced in Sect. 2.1 that
uses a semaphore to protect a global counter variable. The implementation of the
semaphore is that the P method waits until the semaphore becomes greater than
zero and then reduces the semaphore by one. The semaphore is incremented by
one in the V method. The CSPM model of the Thread1::run method consists of
five sequential processes, modeling the calls to Semaphore::P and Semaphore::V
at positions 0 and 3, the accesses to the shared counter at positions 1 and
2 and finally the jump back to the entry of the method at position 4. Thus,
increasing and decreasing an integer is not modeled as an atomic operation, so
race conditions can be detected in the case of bad locking. The Semaphore P
process is also of great interest. At position 0 the p lock.t event is emitted,
which models a method call that is mapped to an event by M as explained
above. Conditional branching is used at position 2, while position 3 models
unconditional branching.

Interestingly, there are no env write events in Thread1 run and Semaphore P.
Instead, the function write int is used. This function returns a process, that ei-
ther emits the env write event and then terminates successfully or deadlocks in
the case of integer overflow. Fig. 7 also shows the use of annotations at position 6
of the process modeling Semaphore::P. Before the method returns, the claim.t
event is emitted, which is introduced for verification purposes as explained later
on. As explained in Sect. 3, the process Thread1 run is used by the domain-specific

Low-Level Code Verification Based on CSP Models 279

part of the model. The entry point to this process is the process CONTINUE which
is first used by the model of the startup routine AppSpecific.

In Sect. 2.2, we have proved by LTL model checking that the specification is
race-condition-free. As stated in [9], failures refinement of finitely-branching CSP
processes preserves satisfaction of LTL formulas. Thus, to conclude that the imple-
mentation is race-condition-free, the low-level model must be a failures refinement
of the specification. Before this can be checked with FDR2, some of the events of
either of the two processes have to be renamed. Furthermore, we are not interested
in the implementation of the semaphore anymore. It is sufficient to know that the
methods Semaphore::P and Semaphore::V have been executed. This means that
the events of these methods, apart from the annotated claim.t and release.t
events, can be hidden. The events modeling read and write accesses to the shared
counter are the ones of interest. They are therefore renamed so that they match
those of the specification, resulting in the process LowLevelModel2. The final as-
sertion that has been successfully checked with FDR2 is:

assert S [F= LowLevelModel2\diff(Events,{|read, write, claim, release|})

In addition to race conditions, we checked the low-level model for deadlock free-
dom in the failures-divergences semantics. FDR2 comes up with an error trace
that ends with the t terminate event. This is the error code for overflow of the
shared counter variable. We therefore slightly modified the implementation so
that the counter is increased modulo its maximum value and checked for dead-
lock freedom again. The modified system is deadlock-free, which means that the
implementation is deadlock-free as well.

5 Related Work

Our approach is related to work that verifies source code using CSP models.
The following tools use CSP as a basis to enable the detection of racing con-
flicts, deadlocks and livelocks. A CSP-based model for Java multithreading was
presented by Welch and Martin in [18]. They used that model as the founda-
tion of the JCSP library that offers CSP-like concurrency for Java programs.
The model focuses on locks, offering no support for thread-internal data, global
variables or a model of the underlying machine as our model does. In [15], an
experimental tool called Java2CSP is presented. It translates concurrent Java
programs into CSP processes to verify deadlock and livelock using the model
checker FDR, but the work is poorly documented. An automatic generation of
CSP specifications is presented in [14]. As in our work, the authors divide a CSP
specification into two parts. One part is generated from a behavioral model and
the other comes from the source code. In contrast to our work, the authors use
state machines to describe the model part, and data variables are not supported.

Finally, there are a number of projects tackling software verification issues on
the level of LLVM IR, e.g. the SAFECode project [7] and the Nasa MCP, a soft-
ware model checker for LLVM IR [17]. The SAFECode project aims to provide
memory safety guarantees to C/C++ programs. This is the project from which

280 M. Kleine and S. Helke

LLVM stems. MCP is an explicit state model checker that operates on LLVM IR
and has been successfully applied to verify C++ aerospace applications. In [19],
the model checker SPIN is used to verify multithreaded C programs based on
LLVM byte code. The authors apply a model-driven verification approach, by
which a virtual machine executes LLVM bytecode during the verification process.

6 Conclusions and Future Work

In this paper, we presented a CSP-based methodology for verifying the imple-
mentations of concurrent systems. Verifying such a system requires both its ab-
stract CSP-based specification and its C++ implementation. Our methodology
determines how significant parts of a low-level model can be synthesized from
the LLVM IR of the implementation and it requires that the low-level model
be a refinement of the specification. The low-level model of the implementation
is divided into application-, domain- and platform-specific parts. We illustrated
our methodology by specifying and implementing a system composed of threads
concurrently incrementing a shared counter. We proved the specification to be
deadlock- and race-condition-free. For the domain- and platform-specific parts,
we presented a low-level CSP model of a computing system implementing in-
terleaved concurrency by employing a nondeterministic preemptive scheduler.
Finally, we presented the application-specific part of the system and proved that
it is a failures refinement of the specification. This proved that the implementa-
tion is indeed deadlock- and race-condition-free.

Our approach enables us to use state-of-the-art CSP tools such as FDR2 and
ProB for the automated verification of concurrent programs written in a high-
level programming language supported by the LLVM system. Furthermore, the
presented model of concurrency is reusable for other applications developed for
a great number of multithreading library implementations. It is well suited for
verifying the absence of any unwanted phenomenon of concurrency thanks to its
nondeterministic abstract scheduler.

Instead of outputting a CSPM script for animation, model and refinement
checking, we plan to output Isabelle/HOL code. Propitious target theories are
those of the CSP Prover [6] and, in case we move from CSP to Timed CSP, the
Isabelle/HOL formalization of Timed CSP [4] as well. Targeting an Isabelle/HOL
theory would enable us to use a much more powerful type system than that of
CSPM . Additionally, it would eliminate the need to justify the abstractions
introduced when reducing the ranges of the types so that model and refinement
checking can be applied to the CSPM model. Switching from CSP to Timed
CSP is promising for the analysis of implementations of real-time systems. This
can be supported by integrating tools for worst-case execution time analysis on
LLVM IR, such as the one presented by Oechslein in [11].

Acknowledgements. We thank the anonymous referees for their helpful com-
ments on preliminary versions of this paper. We also thank Björn Bartels and
Thomas Göthel for fruitful discussions on this work. This work is funded by the
German Research Foundation (DFG).

Low-Level Code Verification Based on CSP Models 281

References

1. FDR2 User Manual (2005), http://www.fsel.com/documentation/fdr2/
2. ProB Manual (2005), http://www.stups.uni-duesseldorf.de/ProB/
3. Barrett, G.: occam 3 Reference Manual. Inmos Ltd. (1992)
4. Göthel, T., Glesner, S.: Machine Checkable Timed CSP. In: The First NASA For-

mal Methods Symposium (2009)
5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall Int., Engle-

wood Cliffs (1985)
6. Isobe, Y., Roggenbach, M.: A generic theorem prover of CSP refinement. In: Halb-

wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 108–123. Springer,
Heidelberg (2005)

7. Lattner, C., Adve, V.: Automatic pool allocation for disjoint data structures. In:
ACM SIGPLAN Workshop on Memory System Performance, Germany (2002)

8. LLVM Reference Manual (2008), http://llvm.org/docs/LangRef.html
9. Leuschel, M., Massart, T., Currie, A.: How to make FDR Spin: LTL model checking

of CSP using refinement. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS,
vol. 2021, p. 99. Springer, Heidelberg (2001)

10. Montenegro, S., Briess, K., Kayal, H.: Dependable Software (BOSS) for the
BEESAT pico satellite. In: DASIA 2006 - Data Systems In Aerospace, Germany
(2006)

11. Oechslein, B.: Statische WCET Analyse von LLVM Bytecode. Master’s thesis,
Universität Erlangen (2008)

12. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1997)

13. Scattergood, B.: The semantics and implementation of machine-readable CSP PhD
thesis, University of Oxford (1998)

14. Scuglik, F., Sveda, M.: Automatically generated CSP specifications. Journal of
Universal Computer Science 9(11), 1277–1295 (2003)

15. Shi, H.: Java2CSP: A system for verifying concurrent Java programs. In: Workshop
on Tools for System Design and Verification (FM-TOOLS), Ulmer Informatik-
Berichte (2000)

16. Steensgaard, B.: Points-to analysis in almost linear time. In: Int. Symposium on
Principles of programming languages (POPL), pp. 32–41. ACM, New York (1996)

17. Thompson, S., Brat, G.: Verification of C++ Flight Software with the MCP Model
Checker. In: Aerospace Conference, pp. 1–9. IEEE, Los Alamitos (2008)

18. Welch, P.H., Martin, J.M.R.: A CSP model for Java multithreading. In: Software
Engineering for Parallel and Distributed Systems, pp. 114–122. IEEE, Los Alamitos
(2000)

19. Zaks, A., Joshi, R.: Verifying multi-threaded C programs with Spin. In: Havelund,
K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 325–342.
Springer, Heidelberg (2008)

http://www.fsel.com/documentation/fdr2/
http://www.stups.uni-duesseldorf.de/ProB/
http://llvm.org/docs/LangRef.html

Formal Modelling of a Microcontroller
Instruction Set in B

Valério Medeiros Jr. and David Déharbe

Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil

Abstract. This paper describes an approach to model the functional
aspects of the instruction set of microcontroller platforms using the no-
tation of the B method. The paper presents specifically the case of the
Z80 platform. This work is a contribution towards the extension of the
B method to handle developments up to assembly level code.

1 Introduction

The B method [1] supports the construction of safety systems models by verifica-
tion of proofs that guarantees its correctness. So, an initial abstract model of the
system requirements is defined and then it is refined until the implementation
model. Development environments based on the B method also include source
code generators for programming languages, but the result of this translation
cannot be compared by formal means. The paper [4] presented recently an ap-
proach to extend the scope of the B method up to the assembly level language.
One key component of this approach is to build, within the framework of the B
method, formal models of the instruction set of such assembly languages.

This work gives an overview of the formal modelling of the instruction set of
the Z80 microcontroller [6]1. Using the responsibility division mechanism pro-
vided by B, auxiliary libraries of basic modules were developed as part of the
construction of microcontroller model. Such library has many definitions about
common concepts used in the microcontrollers; besides the Z80 model, it is used
by two other microcontrollers models that are under way.

Other possible uses of a formal model of a microcontroller instruction set in-
clude documentation, the construction of simulators, and be possibly the starting
point of a verification effort for the actual implementation of a Z80 design. More-
over the model of the instruction set could be instrumented with non-functional
aspects, such as the number of cycles it takes to execute an instruction, to prove
lower and upper bounds on the execution time of a routine. The goal of
this project, though, is to provide a basis for the generation of software artifacts
at the assembly level that are amenable to refinement verification within the B
method.

This paper is focused on the presentation of the Z80 model, including elemen-
tary libraries to describe hardware aspects. The paper is structured as follows.
1 The interested reader in more details is invited to visit our repository at:

http://code.google.com/p/b2asm.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 282–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Formal Modelling of a Microcontroller Instruction Set in B 283

Section 2 provides a short introduction to the B method. Section 3 presents the
elementary libraries and the modelling of some elements common to microcon-
trollers. Section 4 presents the B model of the Z80 instruction set. Section 5
provides some information on the proof effort needed to analyze the presented
models. Related work is discussed in Section 6. Finally, the last section is devoted
to the conclusions.

2 Introduction to the B Method

The B method for software development [1] is based on the B Abstract Machine
Notation (AMN) and the use of formally proved refinements up to a specification
sufficiently concrete that programming code can be automatically generated from
it. Its mathematical basis consists of first order logic, integer arithmetic and set
theory, and its corresponding constructs are similar to those of the Z notation.

A B specification is structured in modules. A module defines a set of valid
states, including a set of initial states, and operations that may provoke a tran-
sition between states. The design process starts with a module with a so-called
functional model of the system under development. In this initial modelling
stage, the B method requires that the user proves that, in a machine, all the its
initial states are valid, and that operations do not define transitions from valid
states to invalid states.

Essentially, a B module contains two main parts: a header and the available
operations. Figure 1 has a very basic example. The clause MACHINE has the
name of module. The next two clauses respectively reference external modules
and create an instance of an external module. The VARIABLES clauses declares
the name of the variables that compose the state of the machine. Next, the
INVARIANT clause defines the type and other restrictions on the variables. The
INITIALIZATION specifies the initial states. Finally, operations correspond to
the transitions between states of the machine.

MACHINE micro
SEES TYPES ,ALU
INCLUDES MEMORY
VARIABLES pc
INVARIANT pc ∈ INSTRUCTION

INITIALISATION pc := 0
OPERATIONS
JMP(jump) =

PRE jump ∈ INSTRUCTION
THEN pc := jump
END

END

Fig. 1. A very basic B machine

3 Model Structure and Basic Components

We have been developed a reusable set of basic definitions to model hardware
concepts and data types concepts. These definitions are grouped into two se-
parate development projects and are available as libraries. A third project is

284 V. Medeiros Jr. and D. Déharbe

devoted to the higher-level aspects of the platform. Thus, the workspace is com-
posed of: a hardware library, a types library and a project for the specific plat-
form, in this case the Z80. The corresponding dependency diagram is depicted
in Figure 2; information specific to each project is presented in the following.

Fig. 2. Dependency diagram of the Z80 model

3.1 Bit Representation and Manipulation

The entities defined in the module BIT DEFINITION are the type for bits, logi-
cal operations on bits (negation, conjunction, disjunction, exclusive disjunction),
as well as a conversion function from booleans to bits.

First, bits are modelled as a set of integers: BIT = 0 ..1 . The negation is an
unary function on bits and it is defined as:

bit not ∈ BIT → BIT ∧ ∀(bb).(bb ∈ BIT ⇒ bit not(bb) = 1− bb)
The module also provides lemmas on negation that may be useful for the users
of the library to develop proofs:

∀(bb).(bb ∈ BIT ⇒ bit not(bit not(bb)) = bb)
Conjunction is an unary function on bits and it is defined as:

bit and ∈ BIT × BIT → BIT ∧
∀(b1 , b2).(b1 ∈ BIT ∧ b2 ∈ BIT ⇒

((bit and(b1 , b2) = 1)⇔ (b1 = 1) ∧ (b2 = 1)))
The module provides the following lemmas for conjunction, either:

∀(b1 , b2).(b1 ∈ BIT ∧ b2 ∈ BIT ⇒
(bit and(b1 , b2) = bit and(b2 , b1))) ∧

∀(b1 , b2 , b3).(b1 ∈ BIT ∧ b2 ∈ BIT ∧ b3 ∈ BIT ⇒
(bit and(b1 , bit and(b2 , b3)) = bit and(bit and(b1 , b2), b3)))

The module provides definitions of bit or (disjunction) and bit xor (exclusive
disjunction), as well as lemmas on those operators. These are standard and their
expression in B is similar as for bit and , they are thus omitted.

Finally, the conversion from booleans to bits is simply defined as:

bool to bit ∈ BOOL→ BIT ∧ bool to bit = {TRUE �→ 1,FALSE �→ 0}

Formal Modelling of a Microcontroller Instruction Set in B 285

Observe that all the lemmas that are provided in this module have been me-
chanically proved by the theorem prover included with our B development envi-
ronment. None of these proofs requires human insight.

3.2 Representation and Manipulation of Bit Vectors

Sequences are pre-defined in B, as functions whose the domain is an integer
range with lower bound 1 (one). Indices in bit vectors usually range from 0
(zero) upwards and the model we propose obeys this convention by making an
one-position shift where necessary. This shift is important to use the predefined
functions of sequences. We thus define bit vectors as non-empty sequences of bits,
and BIT VECTOR is the set of all such sequences: BIT VECTOR = seq(BIT).

The function bv size returns the size of a given bit vector. It is basically a
wrapper for the predefined function size that applies to sequences.

bv size ∈ BIT VECTOR → N 1 ∧
bv size = λ bv.(bv ∈ BIT VECTOR | size(bv))

We also define two functions bv set and bv clear that, given a bit vector, and
a position of the bit vector, return the bit vector resulting from setting the
corresponding position to 0 or to 1, and a function bv get that, given a bit vector,
and a valid position, each one returns the value of the bit at that position. Only
the first definition is shown here:

bv set ∈ BIT VECTOR ×N → BIT VECTOR ∧ bv set =
λ v, n.(v ∈ BIT VECTOR ∧ n ∈ N ∧ n < bv size(v) | v �−−{n + 1 �→ 1})

Additionally, the module provides definitions for the classical logical combina-
tions of bit vectors: bit not , bit and , bit or and bit xor . Only the first two are
presented here. Observe that the domain of the binary operators is restricted to
pairs of bit vectors of the same length:

bv not ∈ BIT VECTOR → BIT VECTOR ∧
bv not = λ v.(v ∈ BIT VECTOR | λ i.(1..bv size(v)) | bit not(v(i))) ∧
bv and ∈ BIT VECTOR × BIT VECTOR → BIT VECTOR ∧
bv and = λ v1, v2.(v1 ∈ BIT VECTOR ∧ v2 ∈ BIT VECTOR ∧

bv size(v1) = bv size(v2) | λ i.(1..bv size(v1)) | bit and(v1(i), v2(i)))
We provide several lemmas on bit vector operations. These lemmas express prop-
erties on the size of the result of the operations as well as classical algebraic
properties such as associativity and commutativity.

3.3 Modelling Bytes and Bit Vectors of Length 16

Bit vectors of length 8 are bytes. They form a common entity in hardware de-
sign. We provide the following definitions:

BYTE WIDTH = 8 ∧ BYTE INDEX = 1 . . BYTE WIDTH∧
PHYS BYTE INDEX = 0 . . (BYTE WIDTH-1) ∧
BYTE = { bt | bt ∈ BIT VECTOR ∧ bv size(bt)=BYTE WIDTH} ∧
BYTE ZERO ∈ BYTE ∧ BYTE ZERO = BYTE INDEX × {0}

286 V. Medeiros Jr. and D. Déharbe

The BYTE INDEX is the domain of the functions modelling bytes. It starts
at 1 to obey a definition of sequences from B. However, it is common in hardware
architectures to start indexing from zero. The definition PHYS BYTE INDEX
is used to provide functionalities obeying this convention. The BYTE type is
a specialized type from BIT VECTOR, but it has a size limit. Other specific
definitions are provided to facilitate further modelling: the type BV16 is created
for bit vector of length 16 in a similar way.

3.4 Bit Vector Arithmetics

Bit vectors are used to represent and combine numbers: integer ranges (signed
or unsigned). Therefore, our library includes functions to manipulate such data,
for example, the function bv to nat that maps bit vectors to natural numbers:

bv to nat ∈ BIT VECTOR → N ∧
bv to nat = λ v.(v ∈ BIT VECTOR |

∑
i.(i ∈ dom(v).v(i) × 2i−1))

An associated lemma is: ∀n.(n ∈ N 1 ⇒ bv to nat(nat to bv (n)) = n)

3.5 Basics Data Types

The instruction set of microcontrollers usually have common data types. These
types are placed in the types library. Each type module has functions to manip-
ulate and convert its data. There are six common basics data types represented
by modules, see details in table 1.

Table 1. Descriptions of basic data types

Type Name UCHAR SCHAR USHORTINT SSHORTINT BYTE BV16
Range 0..255 -128..127 0..65.535 -32.768..32.767 – –

Physical Size 1 byte 1 byte 2 bytes 2 bytes 1 bytes 2 bytes

Usually, each type module just needs to instantiate concepts that were already
defined in the hardware modelling library. For example, the function bv to nat
from bit vector arithmetics is specialized to byte uchar . As the set BYTE is a
subset of the BIT VECTOR, this function can defined as follows:

byte uchar ∈ BYTE → N ∧
byte uchar = λ(v).(v ∈ BY TE|bv to nat(v))

The definitions of the library types reuse the basic definitions from the hard-
ware library. This provides greater confidence and facilitates the proof process,
because the prover can reuse the previously defined lemma.

The inverse function uchar byte is easily defined:

uchar byte ∈ UCHAR → BYTE ∧
uchar byte = (byte uchar)−1

Similarly, several other functions and lemmas were created for all other
data types.

Formal Modelling of a Microcontroller Instruction Set in B 287

4 Description of the Z80 B Model

The Z80 is a CISC microcontroller developed by Zilog [6]. It supports 158 dif-
ferent instructions and all of them were specified. These instructions are classi-
fied into these categories: load and exchange; block transfer and search; arith-
metic and logical; rotate and shift; bit manipulation; jump, call and return;
input/output; and basic cpu control.

The main module includes an instance of the memory module and accesses
the definitions from basic data types modules and the ALU module.

MACHINE
Z80

INCLUDES
MEMORY

SEES
ALU, BIT DEFINITION, BIT VECTOR DEFINITION,
BYTE DEFINITION, BV16 DEFINITION,
UCHAR DEFINITION, SCHAR DEFINITION,
SSHORT DEFINITION ,USHORT DEFINITION

Each instruction is represented by a B operation in the module Z80. By default,
all parameters from operations are either predefined elements in the model or
integers values in the decimal representation. The internal registers contain 208
bits of reading/writing memory. It includes two sets of six general purpose reg-
isters which may be used individually as 8-bits registers or as 16-bits register
pairs. The working registers are represented by variable rgs8 . The domain of rgs8
(id regs8) is a set formed by identifiers of registers of 8 bits. These registers can
be accessed in pairs, forming 16-bits, resulting in another set of identifiers of
16-bits registers, named id reg16 . The main working register of Z80 is the accu-
mulator (rgs8 (a0)) used for arithmetic, logic, input/output and loading/storing
operations.

4.1 Modelling Registers, Input and Output Ports and Instructions

The Z80 has different types of registers and instructions. The CPU contains
general-purpose registers (id reg 8), a stack pointer (sp), program counter (pc),
two index registers (ix and iy), an interrupt register (i), a refresh register (r),
two bits (iff1 , iff2) used to control the interruptions, a pair of bits to define the
interruption mode (im) and the input and output ports (i o ports). Below, part
of the corresponding definitions are replicated from the INVARIANT:

rgs8 ∈ id reg 8 → BYTE ∧ pc ∈ INSTRUCTION ∧
sp ∈ BV16 ∧ ix ∈ BV16 ∧ iy ∈ BV16 ∧
i ∈ BYTE ∧ r ∈ BYTE ∧ iff1 ∈ BIT ∧ iff2 ∈ BIT ∧
im ∈ (BIT × BIT) ∧ i o ports ∈ BYTE → BYTE

A simple example of instruction is a LD n A, as shown below. Many times,
to model an instruction is necessary to use the predefined functions, these help

288 V. Medeiros Jr. and D. Déharbe

the construction of model. This instruction use the updateAddressMem function
from Memory module and it receives an address memory and its new memory
value. Finally it increments the program counter (pc) and update the refresh
register (r).

LD n A (nn) =
PRE nn ∈ USHORT
THEN
updateAddressMem (ushort to bv16 (nn) , rgs8 (a0)) ||
pc := instruction next (pc) || r := update refresh reg(r)

END

The microcontroller model can specify security properties. For example, the
last operation could have a restriction to write only in a defined region of
memory.

5 Proofs

The proof obligations allow to verify the data types, important system properties
and if the expressions are well-defined (WD)2. The properties provide additional
guarantees, because they can set many safety rules. However, the model can be
very difficult to prove.

Several iterations were needed to provide the good library definitions as well as
to fine-tune the model of the microcontroller instructions by factoring common
functionalities into auxiliary definitions.

However, few proof commands3 need to be used to prove most proof obliga-
tions. As there are many similar assembly instructions, some human-directed
proofs, when replayed, could discharge other proof obligations. A good example
is a set of 17 proof commands that quickly aided the verification of 99% (2295)
of WD proofs. We also set up a proving environment consisting of networked
computers to take advantage of the distribution facilities now provided in the B
development environment. Finally, all of the 2926 proof obligations were proved
using the tool support of the development environment.

6 Related Works

There are in the literature of computer science some approaches [2,3] to model
hardware and the virtual machines using the B method. Then, in both works
the B method has been used successfully to model the operational semantic.
However the cost of modelling was still expensive and this paper quoted some
techniques to lower the cost of modelling.

2 An expression is called “well-defined” (or unambiguous) if its definition assigns it a
unique interpretation or value.

3 The proof commands are steps that direct the prover to find the proof, and cannot
introduce false hypothesis.

Formal Modelling of a Microcontroller Instruction Set in B 289

In general, the researchers employing the B method have focused on more
abstract level of description of software. Considering low-level aspect, there has
been previous work on modelling the Java Virtual Machine [3].

The main motivation of our research is the development of verified software up
to the assembly level, which requires specifying the semantics of the underlying
hardware. Thus, some aspects were not modelled in our work such as the execu-
tion time of the instructions. Also we did not consider the microarchitecture of
the hardware as the scope of our work does not include hardware verification.
However, there are many other specialized techniques to verify these questions.

7 Conclusions

This work has shown an approach to the formal modelling of the instruction set
of microcontrollers using the B method. During the construction of this model,
some ambiguities and errors were encountered in the official reference for Z80
microcontroller [6]. As the B notation has a syntax that is not too distant from
that of imperative programming languages, such model could be used to improve
the documentation used by assembler programmers. Besides, the formal notation
used is analyzed by software that guarantees the correctness of typing, the well-
definedness of expressions, in addition to safety properties of the microcontroller
state.

Future works comprise the development of software with the B method from
functional specification to assembly level, using the Z80 model presented in this
paper. The mechanic compilation from B algorithmic constructs to assembly
platform is also envisioned.

Acknowledgements. This work received support from ANP (Agência Nacional
do Petróleo, Gás Natural e Biocombust́ıveis) and CNPq (Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico).

References

1. Abrial, J.R.: The B Book: Assigning Programs to Meanings, 1st edn. Cambridge
University Press, USA (1996)

2. Aljer, P.D., Boulanger, S.T.J.-L., Bhdl, G.M.: Circuit Design in B. A. In: ACSD,
Third International Conference on Application of Concurrency to System Design,
pp. 241–242 (2003)

3. Casset, L., Lanet, J.L.: A Formal Specification of the Java Bytecode Semantics using
the B method. Technical Report, Gemplus (1999)

4. Dantas, B., Déharbe, D., Galvão, S.L., Moreira, A.M., Medeiros Jr., V.G.: Applying
the B Method to Take on the Grand Challenge of Verified Compilation. In: SBMF,
Savaldor (2008), SBC

5. Hoare, C.A.R.: The verifying compiler, a grand challenge for computing research.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, p. 78. Springer, Heidelberg
(2005)

6. Zilog. Z80 Family CPU User Manual,
http://www.zilog.com/docs/z80/um0080.pdf

http://www.zilog.com/docs/z80/um0080.pdf

Defining Behaviours by Quasi-finality

Elisabete Freire1 and Lúıs Monteiro2

1 CITI, Departamento de Matemática, Universidade dos Açores,
9501-801 Ponta Delgada, Portugal

freire@notes.uac.pt
2 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
lm@di.fct.unl.pt

Abstract. This paper proposes a notion of quasi-final object for any
concrete category, by relegating to the underlying category some of the
requirements that final objects must satisfy in the main category. We
present some very basic properties of quasi-final objects and show how
known behaviours like traces and failures for transition systems, and
behaviours extracted from the final sequence of an arbitrary endofunctor
(here restricted to the first ω terms) can be described by quasi-final
objects.

1 Introduction

For over a decade now the theory of coalgebras has been hailed as the appropri-
ate mathematical framework for the study of state-based computational systems.
This framework provided a uniform treatment of a great variety of types of sys-
tems and facilitated novel insights into the notions of behaviour, bisimilarity
and coinductive definition and proof, among others. The basic constituents of a
coalgebra are simple: a state space and a function that specifies the dynamics of
the system in a stepwise fashion. By iterating the dynamics, we obtain the be-
haviours of the system. Often the set of these behaviours can itself be structured
into a coalgebra and the assignment of a behaviour to each state is a morphism
of coalgebras, and in fact the unique morphism from the given coalgebra to the
coalgebra of behaviours. This coalgebra is then a final object in the category of
coalgebras under consideration. This is the standard way to view behaviour in
coalgebraic terms.

For many types of systems, however, notions of behaviour have been proposed
that do not fit into this pattern. There may be at least two reasons for this.
One is that we may be interested in notions of behaviour for a given class of
systems that are different from the one offered by final coalgebras. The other is
that the category of interest may not even have final coalgebras. For transition
systems, for example, we find the two types of situations. On the one hand,
if we consider general transition systems and not just say finitely-branching or
image-finite ones, there is no final transition system. On the other hand, many
non-equivalent notions of behaviour have been proposed for transition systems,
which raises the question of describing them coalgebraically.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 290–305, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Defining Behaviours by Quasi-finality 291

This paper proposes a coalgebraic notion of behaviour that relaxes the requi-
site of finality and still retains some of its familiar properties, like the uniqueness
of morphisms to final objects. Specifically, we propose the notion of quasi-final
object for any concrete category, by relegating to the underlying category some
of the requirements that final objects must satisfy in the main category. (In
this paper we shall assume for simplicity that the underlying category is the
category of sets and functions.) It turns out that morphisms (in the main cat-
egory) preserve behaviours with respect to quasi-final objects, but there may
be behaviour-preserving functions in the underlying category of sets that are
not morphisms in the main category. By extending the main category with all
behaviour-preserving functions, the quasi-final object becomes a final object.
This way, quasi-final objects still satisfy a uniqueness property similar to that
for final objects, that may prove useful for defining quasi-final semantics.

The structure of the paper is simple. After this section, there is a section intro-
ducing quasi-final objects and some basic properties. There follow two sections
with examples: the first of the two presents traces and failures for transition
systems as quasi-final objects, and the second one does the same for behaviours
extracted from the final sequence (here restricted to the first ω terms) of an
arbitrary endofunctor. The paper ends with some conclusions and future work.

The research reported in this paper started in [1], where a notion of “behaviour
object” was introduced. The notion of quasi-final object is a simplification and
a generalization of that notion. In [1] it was shown that some behaviours in
van Glabbeek’s spectrum [2], namely traces, ready-traces and failures can be
described in coalgebraic terms using behaviour objects. In the present paper
we have restricted ourselves to traces and failures for illustrative purposes, but
several other notions could equally well have been considered. For the examples
on the final sequence of a functor we rely on the work of Worrell in [3]. Some of
the results we obtained appear also in the work of Kurz and Pattinson [4], but
with a somewhat different presentation. The fact that there is a final Pfin(A×−)-
coalgebra was proved by Barr [5], based on a quotient construction, which differs
from our proof, which is based on a kind of coinductive argument. Other works on
trying to capture in coalgebraic terms traces of systems that are not necessarily
transition systems appear in [6, 7, 8]. As prerequisites we assume familiarity
with the notions of trace and failure as can be found in [2]; these notions will be
defined in the present paper but no motivation for them will be supplied. From
category theory we only assume knowledge of the basic notions of category,
functor, natural transformation and final object. From the theory of coalgebras
we will only need the notions of coalgebra itself, morphism of coalgebras and
bisimulation. All these notions will be recalled here; for further motivation and
information see [9].

2 Quasi-final Coalgebras

A final object Z in a category C may be characterized by saying that there is
a natural transformation β : I → Z from the identity functor I to the constant

292 E. Freire and L. Monteiro

functor Z such that βZ : Z → Z is the identity morphism. Indeed, if such a β
exists and f : S → Z is a morphism, βZ ◦ f = idZ ◦ βS = βS by the naturality
of β, so f = βS because βZ = idZ; thus, βS is the only morphism from S to Z;
conversely, if Z is a final object, the unique morphism βS : S → Z is natural in
S and βZ = idZ.

Now suppose C is a concrete category over Set, that is, there is a faithful
forgetful functor U : C→ Set. As usual, we identify morphisms f in C with the
functions Uf .

Definition 1. An object Z in C is said to be quasi-final if there is a natural
transformation β : U → UZ from U to the constant functor UZ from C to Set
such that βZ : UZ → UZ is the identity idUZ. The behavioural equivalence Z=S

induced on S is the kernel of βS, Ker(βS) = {(s, t) ∈ (US)2 : βS(s) = βS(t)}.

An object I such that UI is a singleton is quasi-final, each βS being the unique
function from US to UI; in this case, I=S is (US)2. For example, in a category
of labelled transition systems with say transition preserving functions as mor-
phisms, any transition system with a single state (and arbitrary transitions) is
quasi-final. This already shows that there can be many non-isomorphic quasi-
final objects, even on the same underlying set. More elaborate examples will be
presented later.

Definition 2. A function f : US1 → US2 is a β-morphism from S1 to S2 if
βS2 ◦ f = βS1 . Let C ↓ β be the category with the same objects as C and with
β-morphisms as morphisms.

Clearly, morphisms in C are β-morphisms. Since βZ ◦ βS = βS, the βS are β-
morphisms; furthermore, βS is the only β-morphism from S to Z.

Proposition 1. A quasi-final object Z in C with respect to β is final in C↓β.

We have noticed that quasi-final objects need not be isomorphic, giving rise in
general to different behavioural equivalences. The next result gives a sufficient
condition for a behavioural equivalence to be a refinement of another one. This
situation will be illustrated later with the equivalences induced by traces and
failures.

Definition 3. Suppose Z and Z′ are quasi-final with respect to β and β′, respec-
tively. We say β′ preserves β if β′

S
is a β-morphism for every S.

Proposition 2. Let Z and Z′ be quasi-final with respect to β and β′, respec-

tively. If β′ preserves β, then Z
′

=S⊆ Z=S.

Proof. We have βZ′ ◦ β′
S

= βS, since β′ preserves β. In particular, Ker(β′
S
) ⊆

Ker(βS), that is, Z
′

=S⊆ Z=S.

Defining Behaviours by Quasi-finality 293

In the sequel we shall see examples of quasi-final objects in the category C of
coalgebras over an endofunctor F on Set. We recall here the main definitions; for
more information see [9]. A coalgebra for F , or F -coalgebra, is a pair S = 〈S, ψ〉
where S is a set and ψ is a function ψ : S → F (S), called the dynamics of the
coalgebra. A morphism f : S1 → S2 of F -coalgebras is a function f : S1 → S2
such that the following diagram commutes:

S1

ψ1

��

f �� S2

ψ2

��
FS1

Ff
�� FS2 .

(1)

When the functor F is clear from the context, we just say coalgebra instead
of F -coalgebra. The forgetful functor U applies any coalgebra S = 〈S, ψ〉 to its
underlying set S and any coalgebra morphism to itself as a function.

In the next section we consider quasi-final transition systems qua coalgebras
based on traces and failures. Let A �= ∅ be a set of actions. Recall that a (labelled)
transition system with labels in A is a pair 〈S,→〉, where S is a set of states
and → is a ternary relation →⊆ S ×A× S; as usual, we write s

a→ t instead of
(s, a, t) ∈→. There are several ways to view a transition system as a coalgebra
S = 〈S, ψ〉; in this paper we assume that ψ maps S to P(A× S), where ψ(s) =
{(a, t) : s a→ t} for all s ∈ S. Thus, transition systems are basically coalgebras
for the functor P(A × −); in the sequel we shall still often write s

a→ t as an
abbreviation of (a, t) ∈ ψ(s), for clarity; sometimes we write s

a→ to mean that
s

a→ t for some t. If S′ = 〈S′, ψ′〉 is another transition system, a morphism
f : S → S′ is just a P(A×−)-coalgebra morphism, this is, a function f : S → S′

such that ψ′ ◦ f = P(A× f) ◦ ψ. It is easy to see that this notion is equivalent
to the following two conditions taken together:

– whenever s
a→ t in S, then f(s) a→ f(t) in S′;

– if f(s) a→ t′ in S′, there is t ∈ S such that s
a→ t in S and f(t) = t′.

For the rest of this section we fix a quasi-final coalgebra Z = 〈Z, ζ〉 with respect
to a natural transformation β : U → UZ.

From a coalgebra S = 〈S, ψ〉 we can build a new coalgebra 〈FS, Fψ〉, to be
denoted FS. Applying F to all objects and arrows in (1), we conclude that Ff
is a morphism FS1 → FS2; this shows F extends to an endofunctor on C, also
denoted F . Drawing the appropriate instance of (1), it is easy to conclude that
ψ is a morphism from S to FS. Thus, ψ is a β-morphism, so that βFS ◦ ψ = βS.
If we replace 〈S, ψ〉 with 〈Z, ζ〉, we further conclude that βFZ ◦ ζ = βZ = idZ ;
thus, ζ is injective, hence is monic in C [9].

It is interesting to compare behaviour equivalences with bisimulations, a no-
tion that can be defined as follows [9]. Given coalgebras S1 and S2, a relation
R ⊆ US1 × US2 is a bisimulation if there is a coalgebra R such that R = UR
and the projections p1 : R → US1 and p2 : R → US2 are coalgebra morphisms.

294 E. Freire and L. Monteiro

When applied to transition systems, this definition coincides with the classical
one [10]: for all (s, t) ∈ R, whenever s

a→ s′, there is t′ such that t
a→ t′ and

(s′, t′) ∈ R, and whenever t
a→ t′, there is s′ such that s

a→ s′ and (s′, t′) ∈ R.
In the sequel we only consider the case where S1 = S2 = S. There is a largest
bisimulation on any S, called the bisimilarity relation and denoted ∼S, which
is an equivalence relation. On final coalgebras, bisimilarity coincides with the
identity relation, which constitutes the so-called coinduction proof principle. As
we shall see shortly, the same principle holds for quasi-final coalgebras.

Proposition 3. Suppose C has a quasi-final coalgebra Z with respect to β. The
behavioural equivalence Z=S= Ker(βS) is larger than any bisimulation in S, that
is, is larger than ∼S.

Proof. Let R ⊆ US × US be a bisimulation in S, that is, there is a coalgebra
R such that R = UR and the projections p1 : R → US and p2 : R → US are
coalgebra morphisms. As coalgebra morphisms are β-morphisms, βS ◦p1 = βR =
βS ◦ p2, hence, for all (s1, s2) in R, βS(s1) = βS(p1(s1, s2)) = βS(p2(s1, s2)) =
βS(s2). Thus, s1

Z=S s2, so R ⊆ Z=S.

Note that Z=S may be much larger than ∼S. For example, if UZ is a singleton,
then Z=S is (US)2, but if S is e.g. a final coalgebra, ∼S is ΔUS (the identity
or diagonal relation on US). It can be shown that if the functor F preserves
weak pullbacks, the relations Z=S and ∼S coincide whenever βS is a coalgebra
morphism. Here, as a corollary to the previous proposition, we just prove that
any quasi-final coalgebra satisfies the coinduction proof principle.

Corollary 1. Any quasi-final coalgebra Z satisfies the coinduction proof princi-
ple: for every bisimulation R on Z, R ⊆ ΔUZ.

Proof. Since βZ is the identity function on UZ, Z=Z is ΔUZ. The conclusion follows
from the previous proposition.

3 Quasi-final Transition Systems

Here we consider just traces and failures as examples of behaviours than can
be viewed as quasi-final transition systems. In [1] these notions together with
ready-traces have been shown to give rise to so-called “behaviour objects”, which
are essentially equivalent to quasi-final objects, and the presentation below can
be seen as a simplification of the one in that paper. Note that the category of
P(A×−)-coalgebras does not have final elements due to cardinality reasons [9].

3.1 Traces

Let S = 〈S, ψ〉 be a transition system. A finite string x = a1 · · · an ∈ A∗ is a
trace of s ∈ S if s

a1→ · · · an→ t, which we abbreviate to s
x→ t (note that s

ε→ s

Defining Behaviours by Quasi-finality 295

for all s, where ε is the null string). The set TrS(s) = {x : ∃t, s x→ t} of traces
from s ∈ S is nonempty and prefix-closed, that is, ε ∈ TrS(s) and whenever
xy ∈ TrS(s), then x ∈ TrS(s). Let T be the set of all nonempty and prefix-
closed subsets of A∗, often called “trace languages”; we turn T into a transition
system T = 〈T , ζT〉 by defining ζT : T → P(A× T) by the transitions

L
a→ {x : ax ∈ L}

for a ∈ L (to guarantee that {x : ax ∈ L} �= ∅). Note that TrS : S → T
is not in general a morphism from S to T. We next show that Tr : U → UT
is a natural transformation and TrT is the identity, so that T is a quasi-final
transition system. The next two lemmas are folklore; the proposition that follows
is new in the present form though a different version appeared previously in [1].

Lemma 1. If f : S1 → S2 is a morphism of transition systems and s is a
state of S1, then s and f(s) have the same traces. Thus, TrS2 ◦ f = TrS1 , so
Tr : U → UT is a natural transformation.

Proof. More precisely, we show that if s
x→ t in S1, then f(s) x→ f(t) in S2;

and if f(s) x→ t′ in S2, there is t ∈ US1 such that s
x→ t in S1 and f(t) = t′.

For the first statement, it is immediate that s
a1→ s1

a2→ · · · an→ sn in S1 implies
f(s) a1→ f(s1)

a2→ · · · an→ f(sn) in S2. Conversely, if f(s) a1→ s′1
a2→ · · · an→ s′n in

S2, there is s1 such that s
a1→ s1 and f(s1) = s′1; since f(s1)

a2→ s′2, there is s2

such that s1
a2→ s2 and f(s2) = s′2; continuing in this way, we conclude that

s
a1→ s1

a2→ · · · an→ sn in S1 and f(sn) = s′n.

Lemma 2. If L is in T , then TrT(L) = L. Thus, TrT = idT.

Proof. Both TrT(L) and L contain the empty string ε; now consider a nonempty
string x = a1 · · · an (n > 0). If x ∈ L, then a1 ∈ L by prefix closure, so L

a1→ L1
with L1 = {y : a1y ∈ L}. Since a2 · · · an ∈ L1, we can repeat the reasoning
n − 1 times to find a sequence of transitions L

a1→ L1
a2→ · · · an→ Ln that show

that x ∈ TrT(L). Conversely, from L
a1→ L1

a2→ · · · an→ Ln we obtain successively
ε ∈ Ln, an ∈ Ln−1, an−1an ∈ Ln−2, . . . , a1 · · ·an ∈ L.

Proposition 4. T is quasi-final in C.

3.2 Failures

In this section a pair (x,X) ∈ A∗ × P(A) will be called a failure. Given a
transition system S = 〈S, ψ〉 and s ∈ S, I(s) = {a : ∃t, s a→ t} is the set of
initials of s. We say (x,X) ∈ A∗ × P(A) is a failure of s ∈ S if there exists t

such that s
x→ t and I(t) ∩ X = ∅; thus, (x,X) states that s has trace x but

may end in a state where no action in X is possible. The set of failures of s will
be written FlS(s). What follows is a much reduced version of the treatment of
failures in [1] with the purpose of deriving Proposition 9, which is new in the
present form.

A failure-set over A is any set F ⊆ A∗ ×P(A) such that the following condi-
tions hold:

296 E. Freire and L. Monteiro

F1 (ε, ∅) ∈ F .
F2 (ε,X) ∈ F ⇒ ∀a ∈ X, (a, ∅) �∈ F .
F3 (xy,X) ∈ F ⇒ (x, ∅) ∈ F .
F4 (x,X) ∈ F ∧ Y ⊆ X ⇒ (x, Y) ∈ F .
F5 (x,X) ∈ F ∧ ∀a ∈ Y, (xa, ∅) �∈ F ⇒ (x,X ∪ Y) ∈ F .

Let F be the set of all failure-sets. The following is easy to check.

Proposition 5. For any state s of a transition system S, FlS(s) is a failure-set.
Thus, FlS is a function FlS : S → F .

Given F ∈ F and x ∈ A∗, let CF (x) = {a ∈ A : (xa, ∅) ∈ F} be the set of
continuations of x in F . Using continuations, conditions F2 and F5 above can
be rewritten as follows:

F2′ (ε,X) ∈ F ⇒ X ∩ CF (ε) = ∅.
F5′ (x,X) ∈ F ∧ Y ∩ CF (x) = ∅ ⇒ (x,X ∪ Y) ∈ F .

Given F ∈ F , we call (a,X) ∈ F a primary failure of F if X ⊆ CF (a). We then
put

F
a,X−→ F ′

where
F ′ = {(ε, Y) : Y ∩ (CF (a)−X) = ∅}

∪
{(bx, Y) : (abx, Y) ∈ F, b �∈ X}.

Proposition 6. F ′ in the previous definition is a failure-set.

Proof. The conditions defining failure-set are easy to check, except F2 and F5.
For F2, or rather F2′, first note that CF ′(ε) = {b : (b, ∅) ∈ F ′} = {b : (ab, ∅) ∈
F, b �∈ X} = CF (a)−X . Now if (ε, Y) ∈ F ′, then Y ∩CF ′(ε) = Y ∩(CF (a)−X) =
∅, by definition of F ′, so F2′ holds. Next consider F5′. Assume (y, Y) ∈ F ′ and
Z ∩ CF ′(y) = ∅; we must conclude that (y, Y ∪ Z) ∈ F ′. By definition of F ′, we
must distinguish the cases where y = ε and y = bx. In the first case, to conclude
that (ε, Y ∪Z) ∈ F ′ we must show that (Y ∪Z)∩(CF (a)−X) = ∅; this is certainly
the case since Y ∩(CF (a)−X) = ∅, by F2′, and Z∩(CF (a)−X) = Z∩CF ′(ε) = ∅,
by hypothesis. In the second case, by definition of F ′, (abx, Y) ∈ F and b �∈ X .
But given that b �∈ X , we have CF ′(bx) = CF (abx), since b �∈ X implies that
(bxc, ∅) ∈ F ′ iff (abxc, ∅) ∈ F for every c ∈ A; thus, the hypothesis Z∩CF ′(bx) =
∅ is equivalent to Z ∩ CF (abx) = ∅; this condition together with (abx, Y) ∈ F
allows to conclude that (abx, Y ∪ Z) ∈ F , by F5′ applied to F ; by definition of
F ′, (bx, Y ∪ Z) ∈ F ′.

The relations
a,X−→ turn F into a transition system with label set A × P(A). To

obtain a transition system with label set A put F
a→ F ′ if F

a,X−→ F ′ for some X .
This defines a transition system F = 〈F , ζF〉.

Defining Behaviours by Quasi-finality 297

Proposition 7. If f : S1 → S2 is a morphism of transition systems and s is a
state of S1, then s and f(s) have the same failures. Thus, FlS2 ◦ f = FlS1 , so
Fl : U → UF is a natural transformation.

Proof. Let (x,X) be a failure of s, so that there exists t such that s
x→ t and

I(t) ∩X = ∅. Since f is a morphism, f(s) x→ f(t) and I(t) = I(f(t)); it follows
that (x,X) is a failure of f(s). Conversely, if we start with a failure of f(s), the
proof that it is a failure of s is similar.

Lemma 3. Let F be a failure-set.

1. I(F) = CF (ε).
2. If F

a,X−→ F ′, then I(F ′) = CF (a)−X.

Proof. For the first statement, it is easy to see that F
a→ iff (a, ∅) ∈ F for all

a ∈ A, so I(F) = {a ∈ A : (a, ∅) ∈ F} = CF (ε). For the second statement, if

F
a,X−→ F ′, then I(F ′) = {b ∈ A : (b, ∅) ∈ F ′} = {b ∈ A : (ab, ∅) ∈ F, b �∈ X} =

CF (a)−X .

Proposition 8. For all F ∈ F , F = FlF(F). Thus, FlF = idF.

Proof. Let us show first that F ⊆ FlF(F). Given (x,X) ∈ F , we must find F ′

such that F
x→ F ′ and I(F ′)∩X = ∅. Note that I(F) = CF (ε), by Lemma 3. We

treat separately the case where x = ε and prove the remaining cases by induction
on the length of x. When x = ε, from (ε,X) ∈ F we deduce, by F2′, that
I(F)∩X = CF (ε)∩X = ∅, hence (ε,X) ∈ FlF(F). For x = a, let Y = X∩CF (a)
and Z = X∩(A−CF (a)); then (a, Y) is a primary failure and there is a transition

F
a,Y−→ F ′. We have I(F ′) = CF (a) − Y , by Lemma 3, so I(F ′) ∩ Y = ∅ and

I(F ′) ∩ Z = ∅. Thus, I(F ′) ∩ X = ∅, hence (a,X) ∈ FlF(F). Finally, suppose

x = aby. Since (a, ∅) ∈ F , by F3, there is a transition F
a,∅−→ F ′. By definition

of the transition relation, (by,X) ∈ F ′, so (by,X) ∈ FlF(F ′), by induction

hypothesis. Thus, there exists F ′′ such that F ′ by−→ F ′′ and I(F ′′) ∩X = ∅. But

then F
aby−→ F ′′ and I(F ′′) ∩X = ∅, so (aby,X) ∈ FlF(F).

We next prove that FlF(F) ⊆ F . Given (x,X) ∈ FlF(F), there is F ′ such that
F

x→ F ′ and I(F ′) ∩X = ∅. Like before, we proceed by induction on the length
of x, the case x = ε being treated separately. When x = ε, we have F ′ = F ;
since I(F) = CF (ε), by Lemma 3, it follows that I(F ′) ∩ X = ∅ is equivalent
to CF (ε) ∩ X = ∅; from (ε, ∅) ∈ F and X ∩ CF (ε) = ∅, we conclude that

(ε,X) ∈ F , by F5′. Next, assume x = a. Let W ⊆ CF (a) such that F
a,W−→ F ′.

First note that (a,W) ∈ F , hence (a,X ∩W) ∈ F , by F4. Second, by Lemma 3,
I(F ′) = CF (a) − W = (A − W) ∩ CF (a), so the condition I(F ′) ∩ X = ∅
reads (X −W)∩CF (a) = X ∩ (A−W)∩CF (a) = ∅. Thus, (a,X ∩W) ∈ F and
(X−W)∩CF (a) = ∅, so (a,X) ∈ F , by F5′. Finally, if x = aby, there is F ′′ such

that F
a→ F ′′ by−→ F ′. The condition I(F ′) ∩X = ∅ implies (by,X) ∈ FlF(F ′′),

hence (by,X) ∈ F ′′, by induction hypothesis. By the definition of the transition
relation, it follows immediately that (aby,X) ∈ F .

298 E. Freire and L. Monteiro

Proposition 9. F is quasi-final in C.

Proposition 10. The relation of failure equivalence is finer than trace equiva-
lence.

Proof. Note that failures preserve traces and apply Proposition 2.

4 Quasi-final Coalgebras from the Final Sequence of a
Functor

Here we investigate the existence of quasi-final coalgebras associated with the
final sequence of a functor, restricted to the first ω terms. Only the results on
quasi-finality are new. For the rest we rely heavily on [3] and in part on [4].

4.1 The Final Sequence of a Functor

Let F : Set → Set be a functor, where we assume that FX �= ∅ if X �= ∅. We
shall also assume, without loss of generality, that the functor F preserves set
inclusion and function restriction; this means that FX ⊆ FY whenever X ⊆ Y
and if g : V → W is a restriction of f : X → Y with V ⊆ X and W ⊆ Y , then
F (g) is a restriction of F (f). The final sequence of F is a sequence of sets Zn

indexed by the ordinals n together with a family of functions pn
m : Zn → Zm for

all ordinals m ≤ n such that:

– pn
n = idZn and pn

k = pm
k ◦ pn

m for k ≤ m ≤ n.
– If n is a limit ordinal, (Zn, p

n
m)m<n is a limit; in particular, Z0 is a singleton.

– Zn+1 = FZn, pn+1
m+1 = Fpn

m and pn+1
k is the mediating function Zn+1 → Zk

for a limit ordinal k.

Here is a summary of this section. For every coalgebra C = 〈C, γ〉, there is
a standard way to define a function γn : C → Zn for every ordinal n. Our
main result is that if n is a limit ordinal, it is possible to find a subset Z of
Zn, containing the images γn(C) for all 〈C, γ〉, on which can be defined an F -
coalgebra which is quasi-final and has essentially the γn as behaviour functions.
For reasons of space, we shall restrict ourselves here to the finite ordinals and
ω, and prove the existence of a quasi-final F -coalgebra as a subset of Zω (the
general case will be dealt with in a forthcoming paper). We then apply the results
to general and to finitely-branching transition systems.

Let us recast the definition of the final sequence when it is restricted to the
finite ordinals. By the first clause above, we only need to define the pn+1

n , which
we abbreviate to pn. Let 1 be a singleton and denote by !X the unique function
X → 1 for any set X . For every n ≥ 0, we have Zn = Fn1 and pn = Fn!F1.
Thus, p0 =!F1 : F1 → 1 and in general pn : Zn+1 → Zn. We also need Zω, which
we shall write Z̄ henceforth; in the same vein, the functions pω

n will be written
πn. By the second clause above, Z̄, together with the πn, is a limit of the Zn, pn

for finite n. We may write Z̄ = {(zn)n≥0 : ∀n ≥ 0, zn ∈ Zn and zn = pn(zn+1)}
and πn : Z̄ → Zn is given by πn(z̄) = zn, where n ≥ 0 and z̄ = (zn)n≥0.

Defining Behaviours by Quasi-finality 299

We have pn ◦ πn+1 = πn for all n. If pn ◦ fn+1 = fn for all n, we denote by
f̄ the function determined by the fn, that is, the unique function X → Z̄ such
that πn ◦ f̄ = fn for all n. In particular, the functions πn determine π̄ = idZ̄ .
Other functions to Z̄ are obtained by applying the next result.

Lemma 4. Any function f̄ : X → Z̄ can be lifted to a function f̄F : F (X)→ Z̄
with components fF

n = pn ◦ F (fn) for all n:

X

fn

��

F (X)
fF

n

��

F (fn)

��

Zn Zn+1 .
pn

��

(2)

Furthermore, fF
n+1 = F (fn) for all n.

Proof. We calculate pn ◦ fF
n+1 = pn ◦ pn+1 ◦ F (fn+1) = pn ◦ F (pn ◦ fn+1) =

pn ◦ F (fn) = fF
n , so f̄F is well-defined. Finally, fF

n+1 = pn+1 ◦ F (fn+1) =
F (pn ◦ fn+1) = F (fn).

4.2 Quasi-final Coalgebras Based on Z̄

Let 〈C, γ〉 be an F -coalgebra. We define functions γn : C → Zn by γ0 =!C and
γn+1 = F (γn) ◦ γ as in the diagram:

C
γ0

��� � � � � �
γn

��

γn+1

��������
γ

�� FC

F (γn)
��

Z0 Zn··· Zn+1
pn�� ···

(3)

Lemma 5. For all n, pn ◦ γn+1 = γn.

Proof. This is clear for n = 0 because both γ0 and p0 ◦ γ1 are !C . Assuming
the conclusion for n, we calculate: pn+1 ◦ γn+2 = F (pn) ◦ F (γn+1) ◦ γ = F (pn ◦
γn+1) ◦ γ = F (γn) ◦ γ = γn+1.

This allows us to define γ̄ : C → Z̄ and γ̄F : F (C) → Z̄.

Lemma 6. If f : 〈C, γ〉 → 〈D, δ〉 is a coalgebra morphism, then δ̄ ◦ f = γ̄.

Proof. Clearly, δ0 ◦ f = γ0. Assuming δn ◦ f = γn, we calculate δn+1 ◦ f =
F (δn) ◦ δ ◦ f = F (δn) ◦ F (f) ◦ γ = F (δn ◦ f) ◦ γ = F (γn) ◦ γ = γn+1.

For our next result, recall that we are assuming that the functor F preserves
set inclusion and function restriction. Also, for any function f : A→ B and any
X ⊆ A, we denote by f [X] = {f(x) : x ∈ X} the image of X under f .

300 E. Freire and L. Monteiro

Theorem 1. Let 〈Z, ζ〉 be a coalgebra such that: (i) Z ⊆ Z̄ and ζ̄ : Z → Z̄ is the
inclusion; (ii) γ̄[C] ⊆ Z for every coalgebra 〈C, γ〉. Then 〈Z, ζ〉 is a quasi-final
coalgebra whose behaviour function for any coalgebra 〈C, γ〉 is the restriction of
γ̄ to C → Z. Furthermore, if every such restriction is a coalgebra morphism,
then 〈Z, ζ〉 is final.

Proof. In view of condition (ii), every γ̄ restricts to a function C → Z. In general
the restriction is also denoted by γ̄, for simplicity, but in this proof it is convenient
to keep things separate so we denote the restriction here by γ̂. Now for the first
statement, we prove that the family of the γ̂ satisfies two properties: (1) if
f : 〈C, γ〉 → 〈D, δ〉 is a coalgebra morphism, then δ̂ ◦ f = γ̂ as functions C → Z;
(2) ζ̂ = idZ as a function Z → Z. The first property was proved in Lemma 6,
and the second property is condition (i). For the second statement, we have a
coalgebra morphism γ̂ : C → Z for every coalgebra 〈C, γ〉, by hypothesis, and
uniqueness follows from the fact that 〈Z, ζ〉 is quasi-final.

We next prove the existence of a coalgebra 〈Z, ζ〉 in the conditions of the previous
theorem. In the first version of this paper the proof employed a technique adapted
from previous work on sets with families of equivalences [11]; this is no longer the
case in the current version, which contains a rather simplified and more compact
proof.

Theorem 2. Let 〈Z, ζ〉 be an F -coalgebra where:

– Z ⊆ Z̄ is the greatest fixed point of the function X �→ π̄F [F (X)] from P(Z̄)
to itself.

– ζ : Z → F (Z) is a right inverse of the restriction of π̄F to F (Z)→ Z.

Then 〈Z, ζ〉 is a quasi-final coalgebra whose behaviour function for any coalgebra
〈C, γ〉 is the restriction of γ̄ to C → Z.

Proof. Let us denote the function X �→ π̄F [F (X)] by π̄F [F (−)]. By our assump-
tion on F , π̄F [F (−)] is monotone, so has a gretest fixed point Z by Tarski’s
lemma. Since π̄F [F (Z)] = Z, the restriction of π̄F to F (Z) is surjective, so ζ
is well defined. To establish the result we show that ζ̄ : Z → Z̄ is the inclusion
and γ̄[C] ⊆ Z for every coalgebra 〈C, γ〉, and apply Theorem 1. To show that
ζ̄ is an inclusion, we show that ζn(z̄) = zn for all n. For n = 0 this immediate;
for the inductive case we obtain a sequence of equalities, whose justification is
given below:

ζn+1(z̄) = F (ζn)(ζ(z̄)) (i)
= F (πn)(ζ(z̄)) (ii)
= πF

n+1(ζ(z̄)) (iii)
= pn+1(π̄F ((ζ(z̄))) (iv)
= pn+1(z̄) (v)
= zn+1. (vi)

Defining Behaviours by Quasi-finality 301

Justification: (i) By (3), instantiated to ζ : Z → FZ; (ii) by induction hypothesis,
ζn is a restriction of πn, so F (ζn) is a restriction of F (πn) by our assumption on
F ; (iii) by Lemma 4 with πn in place of fn; (iv) by definition of the mediating
function π̄F ; (v) by hypothesis, ζ is a right inverse of the restriction of π̄F ; (vi)
by definition of pn+1. Next, to prove that γ̄[C] ⊆ Z for every coalgebra 〈C, γ〉 it
is enough, by the proof of Tarski’s lemma, to show that γ̄[C] is a post-fixed point
of π̄F [F (−)], that is, γ̄[C] ⊆ π̄F [F (γ̄[C])]; more precisely, given c ∈ C, we must
find u ∈ F (γ̄[C]) such that γ̄(c) = π̄F (u), that is, γn(c) = πF

n (u) for all n. We put
u = F (γ̄)(γ(c)), which makes sense because F (γ̄) applies F (C) to F (γ̄[C]) (F
preserves restrictions) and γ(c) ∈ F (C). We calculate (see justification below):

πF
n (u) = πF

n (F (γ̄)(γ(c))) (i)
= (pn ◦ F (πn))(F (γ̄)(γ(c))) (ii)
= pn(F (πn ◦ γ̄)(γ(c)) (iii)
= pn((F (γn) ◦ γ)(c)) (iv)
= (pn ◦ γn+1)(c) (v)
= γn(c). (vi)

Justification: (i) By definition of u; (ii) by definition of πF
n ; (iii) functors preserve

composition; (iv) γ̄ is a mediating function; (v) by (3); (vi) by Lemma 5. This
ends the proof.

We now consider the two extreme cases in which Z = Z̄ or 〈Z, ζ〉 is a final
coalgebra, and investigate conditions under which these cases hold. The results
will be applied below to powerset functors and more specifically to transition
systems. Recall that given a coalgebra 〈C, γ〉, the function γ̄ : C → Z̄ is defined
by (3) and γ̄F : F (C) → Z̄ is defined by (2).

Lemma 7. For any coalgebra 〈C, γ〉, the diagram

C
γ̄

��

γ

��

Z̄

F (C)
F (γ̄)

�� F (Z̄)

π̄F

��

commutes.

Proof. We have πF
n ◦ F (γ̄) ◦ γ = pn ◦ F (πn) ◦ F (γ̄) ◦ γ = pn ◦ F (πn ◦ γ̄) ◦ γ =

pn ◦ F (γn) ◦ γ = pn ◦ γn+1 = γn for all n, hence the conclusion.

Proposition 11. Let 〈Z, ζ〉 be the quasi-final coalgebra of Theorem 2. Consider
the function π̄F : F (Z̄)→ Z̄.

– If π̄F is surjective, then Z = Z̄.
– If π̄F is injective, then 〈Z, ζ〉 is a final coalgebra.

302 E. Freire and L. Monteiro

Proof. To say π̄F is surjective is the same as saying that Z̄ = π̄F [F (Z̄)]. Thus,
Z̄ is the greatest fixed point of π̄F [F (−)] and the first statement follows. Next
assume π̄F is injective. The proof of Theorem 2 shows that 〈Z, ζ〉 satisfies the
conditions of Theorem 1; by the last statement of that theorem and in the
notation introduced in its proof, we only need to show that for any coalgebra
〈C, γ〉, the restriction γ̂ : C → Z of γ̄ is a coalgebra mophism. Since F preserves
inclusions and restrictions, F (γ̂) : F (C) → F (Z) is the restriction of F (γ̄).
Denoting by π̂F : F (Z) → Z the restriction of π̄F , the diagram

C
γ̂

��

γ

��

Z̄

F (C)
F (γ̂)

�� F (Z̄)

π̂F

��

commutes, by Lemma 7, that is, γ̂ = π̂F ◦ F (γ̂) ◦ γ. Since π̄F is injective, π̂F is
bijective, with inverse ζ. It follows that ζ ◦ γ̂ = ζ ◦ π̂F ◦F (γ̂) ◦ γ = F (γ̂) ◦ γ, thus
showing that γ̂ is a coalgebra morphism.

4.3 Examples from Transition Systems

We first consider F = P(A × −) for a fixed nonempty set A. It is convenient
in this case to put 1 = {∅}. We turn Z̄ into a P(A × −)-coalgebra by defining
ζ : Z̄ → P(A× Z̄) by

ζ(z̄) = {(a, ū) : ∀k, (a, uk) ∈ zk+1}.

Note that this definition makes sense because zk+1 ∈ Zk+1 = P(A × Zk), that
is, zk+1 ⊆ A× Zk, so indeed uk ∈ Zk.

Proposition 12. 〈Z̄, ζ〉 is a quasi-final coalgebra.

Proof. We show that ζ is a right inverse of π̄F and the conclusion will follow
from Theorem 2 and Proposition 11. Specifically, we show that πF

m(ζ(z̄)) =
zm for every m. For m = 0 we have πF

0 (ζ(z̄)) = ∅ = z0. For m = n + 1,
first recall by Lemma 4 that πF

n+1 = P(A × πn), so that for M ⊆ A × Z̄ we
have πF

n+1(M) = {(a, zn) : (a, z̄) ∈ M}. Given this we calculate πF
n+1(ζ(z̄)) =

{(a, un) : (a, ū) ∈ ζ(z̄)} = {(a, un) : ū ∈ Z̄, ∀k.(a, uk) ∈ zk+1} = zn+1, where
we still have to justify the last equality. The inclusion ⊆ is immediate. For
⊇ take (a, u) ∈ zn+1; we must find ū ∈ Z̄ with (a, uk) ∈ zk+1 for all k and
un = u. The sequence of the zk starts with the empty set z0 = ∅ and for k > 0,
since zk = pk(zk+1) = P(A × pk−1)(zk+1), the function A × pk−1 applies zk+1
surjectively onto zk. So we obtain a sequence of pairs (a, uk) ∈ zk+1 for k ≥ 0
as follows. We start at position n with (a, un) = (a, u); for lower indices we put
(a, un−1) = (a, pn−1(un)) and so on; for upper indices, we let (a, un+1) be some
element in zn+2 mapped to (a, un) by A× pn and so on. The sequence of the uk

defines an element ū ∈ Z̄ satisfying the required properties.

Defining Behaviours by Quasi-finality 303

Proposition 13. The behaviour equivalence generated by 〈Z̄, ζ〉 is finer than
failure equivalence.

Proof. This is another application of Proposition 2, since it is easy to see that
for any transition system 〈S, ψ〉, the function ψ̄ : S → Z̄ preserves failures.

We end with a remark concerning finitely branching transition systems, that is,
coalgebras for the functor Pfin(A× −) where Pfin is the finite powerset. In this
case Z �= Z̄, but π̄Pfin(A×−) : Pfin(A× Z̄)→ Z̄ is injective, so by Proposition 11
this gives another proof that there is a final Pfin(A×−)-coalgebra.

Lemma 8. For F = Pfin(A×−), π̄F : F (Z̄) → Z̄ is injective.

Proof. Suppose M,N are finite subsets of A× Z̄ and π̄F (M) = π̄F (N), that is,
πF

n+1(M) = πF
n+1(N) for all n. Let (a, ū) ∈ M . Since πF

n+1(M) = F (πn)(M) =
{(a, un) : (a, ū) ∈ M}, we have (a, un) ∈ πF

n+1(N). There is v̄(n) ∈ Z̄ such that
(a, v̄(n)) ∈ N and v

(n)
n = un. Note that

v
(n)
k = pk(· · · pn−1(v(n)

n) · · ·) = pk(· · · pn−1(un) · · ·) = uk (4)

for all k < n. Since N is finite, the (a, v̄(n)) can not be all distinct, so there is
(a, v̄) ∈ N such that v̄ = v̄(n) for infinitely many n. By (4), vk = uk for all k,
so v̄ = ū. Thus, (a, ū) ∈ N , hence M ⊆ N . By symmetry, N ⊆ M , therefore
M = N .

Proposition 14 (Barr [5]). There is a final Pfin(A×−)-coalgebra.

Proof. By Lemma 8 and Proposition 11.

5 Concluding Remarks

This paper presents another attempt at capturing coalgebraically notions of
behaviour that can not be described in terms of final coalgebras of the category
under consideration. The examples considered so far seem to suggest that the
notion of quasi-final object proposed here has the potential to be a useful tool
for describing behaviours of systems and study their properties. But this is work
still in progress, and much remains of course to be done. To begin with, since
distinct quasi-final objects are not necessarily isomorphic, we need to understand
better the structure of the “space” of quasi-final objects. This paper is a very
first step in that direction. For example, given quasi-final objects Z, β and Z′, β′,
the relation defined by Z, β Z′, β′ if β′ preserves β is a preorder, but what
are its properties? It is easy to see that any coalgebra on a singleton (recall
the remark after Definition 1) is a minimal element and a final object is the
greatest element, but most properties remain to be studied. Also, it was shown
that the ωth element of the final sequence of a non-trivial endofunctor contain
a largest subset on which a quasi-final coalgebra can be defined. The same is
true for the 0th element: just take any coalgebra on a singleton. Actually, this

304 E. Freire and L. Monteiro

result can be extended to all ordinals (work in preparation). What role (if any)
play these quasi-final objects in the space of all quasi-final objects? And in the
characterization of final coalgebras, as in the work of Adámek [12] and Worrell
[3]? Another line of work is to adapt the bialgebraic semantics of Turi and Plotkin
[13], based on previous work by Rutten [14] and by Rutten and Turi [15]. We
intend to define in those terms the semantics of CSP and compare it with other
coalgebraic semantics of CSP like the one studied by Wolter [16]. It seems also
that the bialgebraic setting with distributive functors may be the appropriate
framework to compare the present approach based on quasi-finality with the
work of Jacobs and his co-workers [7, 8]. As a general final remark, we note that
any topic involving final objects may in principle lend itself to a study in terms
of quasi-final objects.

Acknowledgements. We thank the anonymous referees for their comments,
which have led to several improvements.

References

[1] Monteiro, L.: A coalgebraic characterization of behaviours in the linear time -
branching time spectrum. In: Corradini, A., Montanari, U. (eds.) WADT 2008.
LNCS. Springer, Heidelberg (2009)

[2] van Glabbeek, R.: The linear time–branching time spectrum I: the semantics
of concrete, sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.)
Handbook of process algebra, pp. 3–99. Elsevier, Amsterdam (2001)

[3] Worrell, J.: On the final sequence of a finitary set functor. Theoretical Computer
Science 338(1-3), 184–199 (2005)

[4] Kurz, A., Pattinson, D.: Coalgebraic modal logic of finite rank. Mathematical
Structures in Computer Science 15(03), 453–473 (2005)

[5] Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer
Science 114(2), 299–315 (1993)

[6] Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Hof-
mann, M., Rosolini, G., Pavlovic, D. (eds.) CTCS 1999, Conference on Category
Theory and Computer Science. Electronic Notes in Theoretical Computer Science,
vol. 29, pp. 259–274. Elsevier, Amsterdam (1999)

[7] Jacobs, B.: Trace semantics for coalgebras. In: Adamek, J., Milius, S. (eds.) Coal-
gebraic Methods in Computer Science. Electronic Notes in Theoretical Computer
Science, vol. 106, pp. 167–184. Elsevier, Amsterdam (2004)

[8] Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log-
ical Methods in Computer Science 3(4:11), 1–36 (2007)

[9] Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence 249(1), 3–80 (2000)

[10] Milner, R.: Communication and Concurrency. International Series in Computing
Science. Prentice Hall International, Englewood Cliffs (1989)

[11] Monteiro, L.: Semantic domains based on sets with families of equivalences. In:
Jacobs, B., Moss, L., Reichel, H., Rutten, J. (eds.) Coalgebraic Methods in Com-
puter Science (CMCS 1998). Electronic Notes in Theoretical Computer Science,
vol. 11, pp. 73–106. Elsevier, Amsterdam (1998)

Defining Behaviours by Quasi-finality 305

[12] Adámek, J.: On final coalgebras of continuous functors. Theoretical Computer
Science 294, 3–29 (2003)

[13] Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proc.
12th LICS Conf., pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)

[14] Rutten, J.: Processes as terms: non-well-founded models for bisimulation. Math-
ematical Structures in Computer Science 15, 257–275 (1992)

[15] Rutten, J., Turi, D.: Initial algebra and final coalgebra semantics for concurrency.
In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS,
vol. 803, pp. 530–582. Springer, Heidelberg (1994)

[16] Wolter, U.: CSP, partial automata, and coalgebras. Theoretical Computer Sci-
ence 280, 3–34 (2002)

Verifying Compiled File System Code

Jan Tobias Mühlberg and Gerald Lüttgen

Software Engineering and Programming Languages Research Group,
University of Bamberg, 96052 Bamberg, Germany

{jan-tobias.muehlberg, gerald.luettgen}@swt-bamberg.de

Abstract. This paper presents a case study on retrospective verifica-
tion of the Linux Virtual File System (VFS), which is aimed at checking
for violations of API usage rules and memory properties. Since VFS
maintains dynamic data structures and is written in a mixture of C and
inlined assembly, modern software model checkers cannot be applied.
Our case study centres around our novel verification tool, the SOCA
Verifier, which symbolically executes and analyses compiled code. We
describe how this verifier deals with complex program features such
as memory access, pointer aliasing and computed jumps, while reduc-
ing manual modelling to the bare minimum. Our results show that the
SOCA Verifier is capable of reliably analysing complex operating system
components such as the Linux VFS, thereby going beyond traditional
testing tools and into niches that current software model checkers do not
reach.

1 Introduction

In the context of the grand challenge proposed to the program verification com-
munity by Hoare [16], a mini challenge of building a verifiable file system (FS)
as a stepping stone was presented by Joshi and Holzmann [17]. As FSs are vital
components of operating system kernels, bugs in their code can have disastrous
consequences. Unhandled failure may render all application-level programs un-
safe and gives way to serious security problems.

This paper applies an analytical approach to verifying an implementation of
the Virtual File System (VFS) layer [5] within the Linux operating system ker-
nel, using our novel, automated Symbolic Object-Code Analysis (SOCA) tech-
nique. As described in Sec. 2, the VFS layer is of particular interest since it
provides support for implementing concrete FSs such as EXT3 and ReiserFS [5],
and encapsulates the details on top of which C POSIX libraries are defined;
such libraries in turn provide functions, e.g., open and remove, that facilitate
file access. Our case study aims at checking for violations of API usage rules
and memory properties within VFS, and equally at assessing the feasibility of
our SOCA technique to reliably analysing intricate operating system compo-
nents such as the Linux VFS implementation. We are particularly interested
in finding out to what degree the automatic verification of complex properties

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 306–320, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Verifying Compiled File System Code 307

involving pointer safety and the correct usage of locking APIs within VFS is
possible.1

Since the Linux VFS implementation consists of more than 65k lines of com-
plex C code including inlined assembly and linked dynamic data structures,
its verification is not supported by current software model checkers such as
BLAST [15] and CBMC [8]. Thus, previous work by us focused on the ques-
tion whether and how an appropriate model of the VFS can be reverse engi-
neered from its implementation, and whether meaningful verification results can
be obtained using model checking on the extracted model [13]. This proved to
be a challenging task since automated techniques for extracting models from C
source code do not deal with important aspects of operating system code, includ-
ing macros, dynamic memory allocation, function pointers, architecture-specific
and compiler-specific code and inlined assembly. Much time was spent in [13] on
extracting a model by hand and validating this model via reviews and simula-
tion runs, before it could be proved to respect data-integrity properties and to
be deadlock-free using the SMART model checker [7]. Our SOCA technique ad-
dresses these shortcomings, providing automated verification support that does
away with manual modelling and ad-hoc pointer analysis.

The contributions of this paper are threefold. In Sec. 3 we summarise our
SOCA technique for automated analysis of compiled programs by means of
bounded symbolic execution, using the SMT solver Yices [11] as execution and
verification engine. Analysing the object code enables us to bypass limitations
of software model checkers with respect to the accepted input language, so that
analysing code sections written in inline assembly does not represent a bar-
rier for us. Our technique is especially designed for programs employing com-
plex heap-allocated data structures and provides full counterexample paths for
each bug found. While generating counterexamples is often impossible for static
analysis techniques due to precision loss in join and widening operations [14],
traditional model checking requires the manual construction of models or the
use of techniques such as predicate abstraction [3] which do not work well in
the presence of heap-allocated data structures. Hence, symbolic execution is our
method of choice over static analysis and model checking. Despite only employ-
ing path-sensitive and heap-aware slicing, the SOCA technique scales well for
the Linux VFS. Moreover, manual modelling efforts are reduced to a bare mini-
mum, namely to the abstract specification of a program’s execution context that
specifies input and initial heap content.

The paper’s second contribution lies in demonstrating how verification prop-
erties can be expressed for symbolic object-code analysis, for which two differ-
ent approaches are employed in Sec. 4. Firstly, properties may be presented to
the SMT solver as assertions on the program’s register contents at each execu-
tion point. Alternatively, the program may be instrumented during its symbolic
execution, by adding test and branch instructions to its control flow graph.

1 Doing so is in the remit of Joshi and Holzmann’s mini challenge: "researchers
could choose any of several existing open-source filesystems and attempt to verify
them" [17].

308 J.T. Mühlberg and G. Lüttgen

Verifying a particular property then involves checking for the reachability of a
specific code section. While the first approach allows us to express safety proper-
ties on pointers, we use the latter technique for checking preconditions of kernel
API functions reflecting particular API usage rules.

Our last, but not least, contribution is the formal verification of a group of
commonly used VFS functions, namely those for creating and removing files
and directories, which we report in Sec. 5. By applying symbolic execution and
leaving the parameters of these functions as unspecified as possible, our analysis
covers low-probability scenarios. In particular, we look for program points where
pointers holding invalid values may be de-referenced or where the violation of
API usage rules may cause the VFS to deadlock. The experimental results show
that the SOCA technique works well on the Linux VFS and that it produces
a relatively low number of false-positive counterexamples while achieving high
code coverage. Therefore, the absence of any flagged errors contributes to raising
confidence in the correctness of the Linux VFS implementation.

Fig. 1. VFS environment and data structures, where arrows denote pointers

2 The Linux Virtual File System

This section introduces the Linux FS architecture and, in particular, the Virtual
File System layer; the reader is referred to [5] for a more detailed description.
An overview of the VFS internals and data structures is presented in Fig. 1.

The Linux FS architecture consists of multiple layers. The most abstract is the
application layer which refers to the user programs; this is shown as "process"

Verifying Compiled File System Code 309

in Fig. 1. Its functionality is constructed on top of the file access mechanisms
offered by the C POSIX library, which provides functions facilitating file access
as defined by the POSIX Standard, e.g., open file open(), delete file remove(),
make directory mkdir() and remove directory rmdir(). The next lower layer is
the system call interface which propagates requests for system resources from
applications in user space to the kernel, e.g., to the VFS.

The Virtual File System layer is an indirection layer, providing the data struc-
tures and interfaces needed for system calls related to a standard Unix FS. It
defines a common interface that allows many kinds of specific FSs to coexist,
and enables the default processing needed to maintain the internal representa-
tion of a FS. The VFS runs in a highly concurrent environment as its interface
functions may be invoked by multiple, concurrently executing application pro-
grams. Therefore, mechanisms implementing mutual exclusion are widely used
to prevent inconsistencies in VFS data structures, such as atomic values, mu-
texes, reader-writer semaphores and spinlocks. In addition, several global locks
are employed to protect the global lists of data structures while entries are ap-
pended or removed. To serve a single system call, typically multiple locks have
to be obtained and released in the right order. Failing to do so could drive the
VFS into a deadlock or an undefined state, effectively crashing the operating
system.

Each specific file system, such as EXT3 and ReiserFS, then implements the
processing supporting the FS and operates on the data structures of the VFS
layer. Its purpose is to provide an interface between the internal view of the FS
and physical media, by translating between the VFS data structures and their
on-disk representations. Finally, the lowest layer contains device drivers which
implement access control for physical media.

The most relevant data structures in the VFS are superblocks, dentries and
inodes. As shown in Fig. 1, all of them are linked by various pointers inside the
structures. In addition, the data structures consist of sets of function pointers
that are used to transparently access functionality provided by the underlying FS
implementation. The most frequently used data objects in the VFS are dentries.
The dentry data structures collectively describe the structure of all currently
mounted FSs. Each dentry contains a file’s name, a link to the dentry’s parent,
the list of subdirectories and siblings, hard link information, mount information,
a link to the relevant super block and locking structures. It also carries a reference
to its corresponding inode and a reference count that reflects the number of
processes currently using the dentry. Dentries are hashed to speed up access; the
hashed dentries are referred to as the Directory Entry Cache, or dcache, which
is frequently consulted when resolving path names.

In our initial verification attempt to the VFS [13], our work was focused on
manually abstracting these data structures and their associated control flow,
so as to obtain a sufficiently small model for automated verification via model
checking. Hence, much effort was put into discovering relations between the
different data structures employed by the VFS [13]. The focus of this paper differs
in the sense that no models of data structures, memory layout or control flow are

310 J.T. Mühlberg and G. Lüttgen

derived from the implementation. Instead, each path of the compiled program is
translated automatically into a corresponding constraint system which is then
analysed by an SMT solver, thus fully automating the verification process.

3 The SOCA Technique

One of the disadvantages of today’s model checking tools results from their re-
striction to the analysis of source code. They usually ignore powerful program-
ming constructs such as pointer arithmetic, pointer aliasing, function pointers
and computed jumps. Furthermore they suffer from not being able to consider
the effects of program components that are not available in the desired form of
source code: functions linked in from libraries and the use of inlined assembly are
common examples for this. In addition, many errors, especially in operating sys-
tem components, arise because of platform-specific and compiler-specific details
such as the byte-alignment in memory and registers, memory-layout, padding
between structure fields and offsets [1]. Thus, software model checkers including
Blast [15] and SLAM/SDV [4] assume either that the program under consid-
eration "does not have wild pointers" [2] or, as we show in [20], perform poorly
when analysing such software.

Analysis outline. In this paper we employ a novel approach to verifying prop-
erties in software components based on bounded path-sensitive symbolic execution
of compiled and linked programs as illustrated in Fig. 2. As shown in the illus-
tration, we automatically translate a program given in its object code into an
intermediate representation (IR), borrowed from the Valgrind binary instrumen-
tation framework [21], by iteratively following each program path and resolving
all target addresses of computed jumps and return statements. From the IR we
generate systems of bit-vector constraints for each execution path, which reflect
the path-relevant register and heap contents of the program under analysis. We
then employ the Yices SMT solver [11] to check the satisfiability of the resulting
constraint systems and thus the validity of the path. This approach also allows
us to add in a range of pointer safety properties, e.g., whether a pointer points
to an allocated address, as simple assertions over those constraint systems, while
more complex properties such as preconditions for functions can be expressed by
instrumenting the program. These instrumentations are also performed on the
IR, and whence access to the source code is not required.

In contrast to other methods for software verification checking, our technique
does not employ program abstraction but only path-sensitive and heap-aware
program slicing, which means that our slices are not computed over the entire
program but only over a particular path during execution. Furthermore, we do
not consider the heap as one big data object but compute slices in respect of
those heap locations that are data-flow dependents of a location in a program
path for which a property is being checked. A safe over-approximation is used for
computing these slices. In addition, our technique leaves most of the program’s
input (initially) unspecified in order to allow the SMT solver to search for subtle

Verifying Compiled File System Code 311

Fig. 2. Illustration of the SOCA technique

inputs that will drive the program into an error. Obviously, our analysis by
symbolic execution cannot be complete: the search space has to be bounded
since the total number of execution paths and the number of instructions per
path in a program is potentially infinite. However, our experimental results on
the Linux VFS reported in Sec. 5 will show that this boundedness is not a
restriction in practice: many programs are relatively "shallow" and may still be
analysed either exhaustively or up to an acceptable depth.

Valgrind’s IR language. Valgrind’s IR language is a typed assembly language
in static-single-assignment form [9, 19] using temporary registers and some mem-
ory for storing the guest state, i.e., the registers available in the architecture for
which the program under analysis is compiled. The language consists of a set of
basic blocks containing a group of statements such that all transfers of control
to the block are to the first statement in the group. Once the block has been
entered, the statements in that block are executed sequentially.

In Valgrind’s IR all arithmetic expressions including address arithmetic are
decomposed into simple expressions with a fixed number of operands using

312 J.T. Mühlberg and G. Lüttgen

IA32 Assembly IR Instructions

xor %eax,%eax t9 = GET:I32(0) ;; t9 := eax
t8 = GET:I32(0) ;; t8 := eax
t7 = Xor32(t9,t8) ;; t7 := t9 xor t8
PUT(0) = t7 ;; eax := t7

Fig. 3. Intel assembly instruction and its respective IR statements (types omitted)

temporary registers for intermediate results. Furthermore, all load and store
operations to memory cells and to the guest state are made explicit. While
normalising a program by transforming it into its IR increases the number of
instructions, it reduces the complexity of the program’s representation because
IR instructions are relatively simple and side-effect free. An example for an as-
sembly statement and its respective IR statements is given in Fig. 3. The figure
shows how the xor statement is decomposed into explicitly loading (GET) the
source register 0 into the temporary registers t8 and t9, and performing the xor
operation followed by storing (PUT) the result back to the guest state.

IR Instruction Constraint Representation

t9 = GET:I32(0) (define t9::(bitvector 32) (bv-concat
(bv-concat r3 r2) (bv-concat r1 r0))

t8 = GET:I32(0) (define t8::(bitvector 32) (bv-concat
(bv-concat r3 r2) (bv-concat r1 r0))

t7 = Xor32(t9,t8) (define t7::(bitvector 32) (bv-xor t9 t8))

PUT(0) = t7 (define r0::(bitvector 8)(bv-extract 31 24 t7))
(define r1::(bitvector 8)(bv-extract 23 16 t7))
(define r2::(bitvector 8)(bv-extract 15 8 t7))
(define r3::(bitvector 8)(bv-extract 7 0 t7))

Fig. 4. IR statements from Fig. 3 and their constraint representation in Yices

From IR to bit-vector constraints. Having a sequence of instructions de-
coded in the above way makes it relatively easy to generate a bit-vector con-
straint system for that sequence. An example with respect to the above IR
instructions is given in Fig. 4, illustrating how the GET instruction can be imple-
mented in Yices as the concatenation (bv-concat) of byte-aligned CPU registers
(i.e., the parameter of the GET:I32 instruction, which is denoted as r0 to r3 in
the constraint representation) from the guest state to word-aligned temporary
registers. The PUT instruction is handled as bit-vector extraction (bv-extract
<end> <start> <source>), respectively.

Note that CPU registers are assigned in "reverse byte order" to the temporary
registers, i.e. with the least significant 8 bits in r0 and the most significant
bits in r3. This is because the above constraints are generated from a binary

Verifying Compiled File System Code 313

compiled for Intel 32-bit CPUs (IA32), while arithmetic expressions in Yices
are implemented for bit vectors that have the most significant bit at position 0.
Since access operations to the guest state may be 8, 16, 32 or 64 bit aligned, we
have to use two encodings here.

Furthermore, the IR is in static-single-assignment form only for the temporary
registers within a single IR block. Hence, we have to be more precise when
generating variable names for Yices: we simply append the instruction’s location
and the invocation number to each variable. Finally, since our analysis handles
loops by unrolling them while exploring a path, a single instruction might appear
multiple times in the path.

Heap-aware program slicing. Most difficulties in program analysis arise from
the need to analyse accesses to a program’s heap and stack. Valgrind’s IR lan-
guage provides two instructions, LD and ST, for loading and storing values from
and to memory, respectively. While these instructions are in principle as easily
mapped to constraints as the above GET and PUT instructions, handling them
in the analysis phase requires care: including the entire 32-bit address space
of a program into the constraint systems and performing access operation on
pointer variables that hold potentially symbolic address values quickly becomes
infeasible. Our approach tackles this problem by employing heap-aware program
slicing: for each pointer used along a program’s execution path we compute its
potential target address range. When checking a property regarding some value
obtained by de-referencing a particular pointer p, we only add those store in-
structions and their dependents to the constraint system that may have updated
the value pointed to by p. The slicing mechanism used here is inspired by the in-
terprocedural algorithm presented in [12]; our adaptation focuses on computing
dynamic slices over a given program path.

4 VFS Execution Environment and Properties

This section discusses our model of the VFS execution environment and also
presents the pointer safety properties and locking API usage rules relevant for
the Linux VFS implementation.

Modelling the environment. One problem for program verification arises
when program functions make use of an external data environment, i.e., de-
reference pointers to data structures that are not created by the function under
analysis. This is particularly common in case of the VFS as the majority of the
VFS code operates on dentries that are assigned either when an FS is mounted
or during previous path-lookup operations. The problem becomes particularly
awkward since all these data structures are organised as linked lists which contain
function pointers for accessing the specific file system underlying the VFS layer.
This is because symbolic execution can easily cope with symbolic data objects
of which only a pointer to the beginning of the structure is defined, while the
remainder of the structure is left unspecified. However, in the case of linked data
structures, some unspecified component of a given data object may be used as a

314 J.T. Mühlberg and G. Lüttgen

pointer to another object. Treating the pointer symbolically will not only result
in many false warnings since the pointer may literally point to any memory
location, but may also dramatically increase the search space.

In our case study we "close" the VFS system to be analysed by defining
a small number of dentries and associated data structures as static compo-
nents of the kernel binary. As far as necessary, these data structures are di-
rectly defined in the VFS C source code by assigning a static task_struct
(cf. include/linux/sched.h in the Linux source hierarchy) defining the logi-
cal context, including the working directory and a list of 15 dentries describing
the FS’s mount point and a simple directory hierarchy. The data objects are
partially initialised by a handcrafted function that is used as a preamble in our
analysis process. Note that the actual parameters to the VFS interface functions
and the majority of data fields in the predefined data objects are still treated
as symbolic values. Our modelling of the external environment is conducted by
successively adding details to the initial memory state while carefully avoiding
to be over-restrictive. We only intend to reduce the number of false warnings by
eliminating impossible initial memory states to be considered in our analysis.

Pointer safety properties. We check three basic safety properties for every
pointer that is de-referenced along an execution path:

1. The pointer does not hold value NULL.
2. The pointer only points to allocated data objects.
3. If the pointer is used as a jump target (call, return or computed jump), it

may only point inside the .text section of the kernel binary, which holds the
actual program code. Obviously, the program binary also has other sections
such as the symbol table or static data which are, however, invalid as jump
targets.

A check of the above properties on the IR is performed by computing an over-
approximation of the address range the pointer may point to. That is, we assume
that the pointer may address any memory cell between the maximal and mini-
mal satisfying model determined by the constraint system for that pointer. For
programs involving only statically assigned data we can directly evaluate the
above properties by checking (a) whether the address range is assigned in the
program binary and (b) whether it belongs to appropriate program sections for
the respective use of the pointer. If dynamic memory allocation is involved, we
keep track of objects and their respective locations currently allocated within
the program’s constraint representation. Checking the above properties is then
performed as an assertion check within Yices.

Locking API usage rules. Being designed for a range of multiprocessor
platforms, the Linux kernel is inherently concurrent. Hence, it employs various
mechanisms implementing mutual exclusion, and primarily locking, to protect
concurrently running kernel threads. The locking APIs used within the VFS
are mainly spinlocks and semaphores, and each of the VFS structures contains
pointers to at least one lock. In addition to these per-object locks, there exist
global locks to protect access to lists of objects.

Verifying Compiled File System Code 315

At a high level of abstraction, all locking APIs work in a similar fashion. If
a kernel thread attempts to acquire a particular lock, it waits for this lock to
become available, acquires it and performs its critical actions, and then releases
the lock. As a result of this, a thread will wait forever if it attempts to acquire
the same lock twice without releasing it in-between. Checking for the absence of
this problem in single- and multi-threaded programs has recently attracted a lot
of attention in the automated verification community [4, 15, 24, 23]. For software
systems like the Linux kernel with its fine grained locking approach, conducting
these checks is non-trivial since locks are passed by reference and due to the vast
number of locks employed. A precise analysis of pointer aliasing relationships
would be required to prove programs to be free of this sort of errors, which is
known to be an undecidable problem in general.

In our approach, locking properties are checked by instrumenting locking re-
lated functions in their IR in such a way that a guarded jump is added to
the control flow of the program, passing control to a designated "error location"
whenever acquiring an already locked lock structure is attempted or an unlocked
lock is released. Our symbolic analysis is then used to evaluate whether the guard
may possibly be true or not, and an error message for the path is raised if the
error location is reachable.

5 Applying the SOCA Verifier to the VFS

The current implementation of the SOCA Verifier is written in C, mainly for
facilitating integration with the Valgrind VEX library [21]. For applying it to
the VFS, we used the VFS implementation of version 2.6.18.8 of the Linux kernel,
compiled with gcc 4.3.3 for the Intel Pentium-Pro architecture. All configuration
options of the kernel were left as defaults. Our experiments were then carried
out on an Intel Core 2 Quad machine with 2.83 GHz and 4 GBytes of RAM,
typically analysing three VFS functions in parallel.

The bounds for the SOCA Verifier were set to a maximum of 1000 paths to
be analysed, where a single program location may appear at most 1000 times per
path, thereby effectively bounding the number of loop iterations or recursions to
that depth. The Yices SMT solver was set to a timeout of 60 seconds per invoca-
tion, which was never reached in our experiments. All these bounds were chosen
so that code coverage is maximised, while execution time is kept reasonably small.
Statistics and performance. Our experimental results are summarised in
three tables. Table 5 provides a statistical overview of the VFS code. We report
the total number of machine instructions that have been translated into IR by
following each function’s control flow. The lines in source code give an estimate
of the checked implementation’s size as the size of the C functions involved (ex-
cluding type definitions and header files, macro definitions, etc.). The next values
in the table present the numbers of paths and, respectively, the lengths of the
shortest and longest paths, in instructions explored by our verifier with respect
to the calling context of the analysed function. The pointer and locking opera-
tions resemble the numbers of pointer de-references and lock/unlock operations
encountered along the analysed paths, respectively.

316 J.T. Mühlberg and G. Lüttgen

Table 1. Experimental Results I: Code statistics by VFS function analysed

creat unlink mkdir rmdir rename totals
no. of instructions 3602 3143 3907 3419 4929 19000
lines in source code 1.4k 1.2k 1.6k 1.4k 2k 7.6k
no. of paths 279 149 212 318 431 1389
min. path length 91 41 87 72 72 41
max. path length 4138 3218 5319 3017 5910 5910
pointer operations 2537 2190 2671 2466 4387 14251
concrete 2356 2134 2458 2368 3989 13305
symbolic 181 56 213 98 398 946

locking operations 287 231 391 319 451 1679

Table 2. Experimental Results II: SOCA Verifier statistics

creat unlink mkdir rmdir rename totals
total time 2h27m 1h22m 2h42m 1h34m 3h45m 11h50m
max. memory (SOCA) 1.03G 752M 1.15G 743M 1.41G 1.41G
max. mem. (SOCA + Yices) 1.79G 800M 1.92G 791M 2.18G 2.18G
exec. bound exhausted X X X X X X
path bound exhausted - - - - - -
paths reaching end 154 112 165 215 182 828
assertions checked 13.4k 12.4k 15.8k 11.8k 21.9k 75.3k
ratio of failed checks 0.043 0.012 0.041 0.019 0.049 0.033

Table 3. Experimental Results III: Yices statistics

creat unlink mkdir rmdir rename totals
total Yices calls 27533 21067 31057 20988 44439 145k
total time spent in Yices 2h22m 1h11m 2h22m 1h24m 3h8m 10h28m
average time 311ms 192ms 271ms 198ms 376ms 248ms
standard deviation 3.7s 0.9s 5.2s 1.4s 5.9s 4.8s

max CS size in vars 450k 97k 450k 95k 450k 450k
average CS size in vars 2844 2871 2871 2862 2939 2877
standard deviation 14619 8948 14618 8898 16052 13521

max. memory consumption 766M 48M 766M 48M 766M 766M

In Table 5 we report the performance of the SOCA Verifier, showing the total
time needed for analysing the kernel functions and our tool’s maximum memory
consumption. The maximum memory consumption of our tool together with the
Yices solver engine is an estimate generated by summing up our tool’s and Yices’
maximum memory usage as given in Table 5; however, these may not necessarily
hit their peak memory at the same time. The next two rows denote whether the
analysis bounds were reached. We also report the number of paths reaching the
end of the function analysed, the total number of assertions checked and the
percentage of failed checks. Paths not reaching a return statement in the target

Verifying Compiled File System Code 317

function are terminated either due to bound exhaustion, or due to a property
being violated that does not permit continuation of that path.

Finally, we outline in Table 5 the usage and behaviour of the SMT solver Yices,
by reporting the number of times Yices was called when checking a particular
VFS function and the total and average time spent for SMT solving. We also give
the size of the checked constraint systems (CS) in boolean variables, as output
by Yices and show the maximum amount of memory used by Yices.

Our analyses usually achieve a statement and condition coverage of 60% to
80% in this case study.2 The main reason for this, at-first-sight low percentage,
is that VFS functions often implement multiple different behaviours of which
only a few are reachable for the given execution environment. For example, the
implementation of the creat() system call resides mainly in the open_namei()
function alongside different behaviours implementing the open() system call.
Taking this into account, the coverage achieved by the SOCA Verifier is remark-
ably high when compared to testing-based approaches.

It should be noted that the above tables can only give a glimpse of the total
scale of experiments that we have conducted for this case study.2 Depending on
how detailed or coarse the execution environment is specified, we experienced run
times reaching from a few minutes up to several days, achieving different levels of
statement and condition coverage (ranging from 20% to 80%) and different error
ratios (ranging from 0 to 0.5). The discriminating value in all these experiments is
the total number of "symbolic" pointers; a symbolic pointer is a pointer where the
exact value cannot be determined at the point at which it is de-referenced. This
usually happens when the entire pointer or some component of it (e.g., its base
or offset) is retrieved from an incompletely specified component of the execution
environment or directly from the input to the analysed function. While these
symbolic values are generally bad for the performance of the SOCA technique
since slicing is rendered inefficient and search spaces are increased, they are
important for driving the analysis into paths that may be hard to reach in
testing-based approaches to system validation.

Errors and false positives. As our verification technique does not include
infeasible paths, all errors detected by the SOCA Verifier can actually be repro-
duced in the code, provided that other kernel components match the behaviour
of our employed execution environment.

In advance of the experiments reported in this paper, we had tested our imple-
mentation of the SOCA technique on a variety of hand-crafted examples and also
on the Verisec suite [18] which provides 280 examples of buffer overflow vulner-
abilities taken from application programs. In all these cases we experienced low
false-positive rates of less than 20%. However, as these examples represent closed
systems not using external data objects, they are handled more efficiently by the
SOCA Verifier than the VFS which makes heavy use of external data objects.

2 A complete account of the experiments will be published in the first author’s forth-
coming PhD thesis and on the SOCA website located at
http://swt-bamberg.de/soca/

http://swt-bamberg.de/soca/

318 J.T. Mühlberg and G. Lüttgen

Our above result tables show that our analysis approach detects a number of
errors of about 3% of the total number of checked assertions in each VFS func-
tion analysed. We have inspected each reported error in detail and discovered
that all of them are due to an imprecisely specified execution environment. As
explained in the previous section, specifying a valid but non-restrictive environ-
ment is particularly hard as all VFS functions operate on data structures that
are allocated and assigned by other kernel sub-systems before the VFS functions
are executed. As most of these structures form multiple lists, modelling them
manually is tedious and error-prone. Therefore, our strategy was to leave many
fields of those structures initially unspecified and successively add as much detail
as necessary to eliminate false positives. This proved to be a good way to specify
valid and at the same time non-restrictive execution environments.

Not discovering any real errors in the analysed VFS code contributes to our
high confidence in the Linux kernel and is to be expected: the VFS consists of a
well established and extensively used and tested code base.

6 Related Work

A survey on automated techniques for formal software verification can be found in
[10]. Verification approaches employing predicate abstraction to model-check the
source code of operating system components are presented in [4, 6, 15]. In theory,
these are able to prove a file system implementation to be, e.g., free of deadlock,
by checking the proper use of locking mechanisms. However, modern model check-
ers such as BLAST [15] require extensive manual preprocessing and are not able
to deal with general pointer operations [20]. Recent work [22] shows further that,
again in contrast to our verifier, BLAST cannot analyse programs with multiplic-
ities of locks since its specification language does not permit the specification of
observer automatons for API safety rules with respect to function parameters.

A bounded model checker for C source code based on symbolic execution
and SAT solving is SATURN [24]. This tool is specialised on checking locking
properties and null-pointer de-references. The authors show that their tool scales
for analysing the entire Linux kernel. Unlike the SOCA Verifier, the approach
in [24] computes function summaries instead of adding the respective code to
the control flow, unwinds loops a fixed number of times and does not handle
recursion. Hence, it can be expected to produce more unsound results but scale
better than our SOCA technique.

Actual file system implementations were studied by Engler et al. in [25, 26].
In [26], model checking is used within the systematic testing of EXT3, JFS and
ReiserFS. The employed verification system consists of an explicit-state model
checker running the Linux kernel, a file system test driver, a permutation checker
which verifies that a file system can always recover, and a recovery checker using
the fsck recovery tool. The verification system starts with an empty file system
and recursively generates successive states by executing system calls affecting the
file system under analysis. After each step, the verification system is interrupted,
and fsck is used to check whether the file system can recover to a valid state.

Verifying Compiled File System Code 319

In contrast to this, our work focuses on checking a different class of properties,
namely pointer safety and locking properties. Thanks to our memory model we
can analyse these properties precisely and feed back detailed error traces together
with specific initial heap state information leading to the error.

7 Conclusions and Future Work

The initial motivation for our SOCA technique to automated program verifi-
cation was to explore the possibilities of using symbolic execution for analysing
compiled programs. Indeed, object-code analysis is the method of choice for deal-
ing with programs written in a combination of programming languages such as C
and inlined assembly. This is particularly true for operating system code which
is often highly platform specific and makes extensive use of programming con-
structs such as function pointers. As we show in this paper, these constructs can
be dealt with efficiently in path-wise symbolic object-code analysis, while they
are usually ignored by static techniques or by source-code-based approaches.

While the ideas behind the SOCA technique, namely symbolic execution,
path-sensitive slicing and SMT solving, are well-known, the way in which these
are integrated into the SOCA Verifier is novel. Much engineering effort went also
into our SOCA implementation so that it scales to complex real-world operat-
ing system code such as the Linux VFS implementation. The SOCA Verifier is
expected to scale even better for programs employing fewer external data struc-
tures than the VFS does. For example, the majority of Linux device drivers
including actual file system implementations satisfies this criterion.

Regarding future work, we wish to extend the SOCA Verifier so as to be able to
analyse concurrent programs. This would help for checking the VFS implementa-
tion for erroneous behaviour that is only exhibited when multiple kernel threads
interact. In addition, the SOCA verifier should be integrated into widely used
operating software development environments so that counterexamples found in
object code can be presented in source code to the developer.

References
[1] Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You

See Is Not What You eXecute. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 202–213. Springer, Heidelberg (2008)

[2] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. In: EuroSys 2006, USA, vol. 4, pp. 73–85. ACM, New York (2006)

[3] Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. SIGPLAN Not. 36(5), 203–213 (2001)

[4] Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties
of interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 102–122.
Springer, Heidelberg (2001)

[5] Bovet, D., Cesati, M.: Understanding the Linux Kernel. O’Reilly, Sebastopol (2005)
[6] Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., Yorav, K.: Efficient

verification of sequential and concurrent C programs. FMSD 25(2-3), 129–166
(2004)

320 J.T. Mühlberg and G. Lüttgen

[7] Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.I.: Logic and stochastic mod-
eling with SMART. Perform. Eval. 63(6), 578–608 (2006)

[8] Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

[9] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
TOPLAS 13(4), 451–490 (1991)

[10] D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(7), 1165–1178 (2008)

[11] Dutertre, B., de Moura, L.: The Yices SMT solver. Technical Report 01/2006,
SRI International (2006), http://yices.csl.sri.com/tool-paper.pdf

[12] Ferdinand, C., Martin, F., Cullmann, C., Schlickling, M., Stein, I., Thesing, S.,
Heckmann, R.: New developments in WCET analysis. In: Reps, T., Sagiv, M.,
Bauer, J. (eds.) Program Analysis and Compilation, Theory and Practice. LNCS,
vol. 4444, pp. 12–52. Springer, Heidelberg (2007)

[13] Galloway, A., Lüttgen, G., Mühlberg, J.T., Siminiceanu, R.: Model-checking the
Linux Virtual File System. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 74–88. Springer, Heidelberg (2009)

[14] Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract
interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 474–488. Springer, Heidelberg (2006)

[15] Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, p. 526. Springer, Heidelberg (2002)

[16] Hoare, T.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003)

[17] Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable filesystem. Formal
Aspects of Computing 19(2), 269–272 (2007)

[18] Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE 2007, USA, pp. 389–392. ACM, New York (2007)

[19] Leung, A., George, L.: Static single assignment form for machine code. In: PLDI
1999, USA, pp. 204–214. ACM, New York (1999)

[20] Mühlberg, J.T., Lüttgen, G.: BLASTing Linux code. In: Brim, L., Haverkort,
B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS,
vol. 4346, pp. 211–226. Springer, Heidelberg (2007)

[21] Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: PLDI 2007, USA, vol. 42, pp. 89–100. ACM, New York (2007)

[22] Sery, O.: Enhanced property specification and verification in BLAST. In: Chechik,
M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 456–469. Springer,
Heidelberg (2009)

[23] Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concur-
rent Linux device drivers. In: ASE 2007, USA, pp. 501–504. ACM, New York (2007)

[24] Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean
satisfiability. ACM TOPLAS 29(3), 16 (2007)

[25] Yang, J., Sar, C., Twohey, P., Cadar, C., Engler, D.R.: Automatically generating
malicious disks using symbolic execution. In: Security and Privacy, pp. 243–257.
IEEE, Los Alamitos (2006)

[26] Yang, J., Twohey, P., Engler, D.R., Musuvathi, M.: Using model checking to find
serious file system errors. In: OSDI, pp. 273–288. USENIX (2004)

http://yices.csl.sri.com/tool-paper.pdf

Reasoning about General Quantum Programs
over Mixed States

Juliana Kaizer Vizzotto1, Giovani Rubert Librelotto2, and Amr Sabry3

1 Mestrado em Nanociências, Centro Universitário Franciscano
Santa Maria, RS/ Brazil

2 DELC/CT, Cidade Universitária
Universidade Federal de Santa Maria, RS/ Brazil

3 Department of Computer Science, Indiana University
Bloomington, USA

Abstract. In this work we present a functional programming language
for quantum computation over mixed states. More interestingly, we de-
velop a set of equations for the resulting programming language, propos-
ing the first framework for equational reasoning about quantum
computations over mixed states.

1 Introduction

Quantum computation and programming with mixed states [1,2] generalises
standard quantum programming models with pure quantum states. In the pure
approach of quantum computation, which allows just unitary (i.e., reversible)
evolution, it is difficult or impossible to deal formally with an important class
of non-unitary (i.e., non-reversible) quantum effects, including measurements,
decoherence, or noise [1,3]. Summarizing, in general a quantum system is not in
a pure state. Following [1] this may be attributed to the fact that we have only
partial knowledge about the system, or that the system is not isolated from the
rest of universe, so it does not have a well defined pure state.

A mixed quantum state is a probability distribution over pure quantum states
and can be understood as an observer knowledge of the quantum system [4].
Besides to deal with the quantum effects mentioned above and to directly work
with the practical information we can extract from a quantum system, the mixed
approach seems to be nearer from real implementations of quantum computers.
Noise and decoherence are key obstacles in implementing quantum computation
devices [1]. Yet another promising approach for quantum computers architecture
is based on measurements [5].

In recent work [6] we present a lambda calculus for quantum computations
including measurements that builds on well-understood and familiar program-
ming patterns and reasoning techniques. We define the calculus in three levels.
We start with simply-typed lambda calculus, then we add the monadic construc-
tions of Moggi’s computational lambda calculus [7] to express pure quantum
computations, and finally we add the constructions of the arrow calculus [8] to
express mixed quantum computations.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 321–335, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

Based on the facts discussed above about quantum computation with mixed
states, and based on the idea that if we consider just the mixed state approach
we can define a simpler and more elegant version of the quantum arrow cal-
culus presented in [6], we present here a two level arrow calculus for quantum
computations with mixed states. In contrast with the previous defined quantum
arrow calculus, the arrow calculus for mixed states goes directly from classical
states to mixed states. Going directly to mixed states turns the calculus simpler,
with less constructions and, more interestingly, turns the set of equations sim-
pler and more intuitive. Considering only mixed state computations generalises
the previous language by working with the observer knowledge of the quantum
system. Besides to use the equations from simply-typed lambda calculus, and
arrow calculus [8], we define equations for sum of arrows (arrowplus) and scalar
products for arrows. The constructors for sum and scalar product are now used
to express classical probability distributions.

The essential point is that the equations of the calculus for mixed states
showed as an attractive framework for equational reasoning about general quan-
tum programs.

Moreover, we claim that our language implements the general probabilistic
subroutines (functions) computed by standard quantum circuits [1]. This defi-
nition solves the problem of using subroutines in standard (or pure) quantum
circuits, as the function computed by any circuit is a probabilistic one, and the
standard theory of quantum circuits allows pure states only.

The remainder of this work is structured as follows. Section 2 reviews general
quantum computations. Section 3 presents the quantum arrow calculus for mixed
states, which is a generalisation of the calculus presented in [6]. We construct
the calculus for mixed states in two levels: we start with simply-typed lambda
calculus with booleans, and then we add the arrow calculus constructions to
express general quantum computations. Additionally, to encompass the observer
knowledge of the quantum system we add sum of arrows to represent the proba-
bility distribution generated by superpositions, and scalar product to represent
the probability of each state in the mixture. In Section 4 we introduce a set of
equations for the calculus. Essentially, besides to use the equations from simply-
typed lambda calculus and from the arrow calculus [8], we define the equations
for sum of arrows and for scalar product. We claim the soundness of the new
equations using the methodology presented in [8] for defining the calculus exten-
sions for specialised arrows. That is, soundness can be proved by showing that
the laws follow in the translation of the constructions to classic arrows [9]. To
illustrate the use of the equations we prove the correctness of three traditional
quantum programs written with the calculus language. Section 5 remarks some
related work. Section 6 concludes.

2 General Quantum Computations

Quantum computation [10] can be seen as processing of information using quan-
tum systems. Its basic idea is to encode data using quantum bits (qubits).

Reasoning about General Quantum Programs over Mixed States 323

In quantum theory, considering a closed quantum system, the qubit is a unit
vector living in a complex inner product vector space know as Hilbert space [10].
We call such a vector a ket (from Dirac’s notation) and denote it by |v〉 (where
v stands for elements of an orthonormal basis), a column vector. Differently
from the classical bit, the qubit can be in a superposition of the two basic states
written as α|0〉+ β|1〉, or (

α
β

)

with |α|2 + |β|2 = 1. Intuitively, one can think that a qubit can exist as a
0, a 1, or simultaneously as both 0 and 1, with numerical coefficient (i.e., the
probability amplitudes α and β) which determines the probability of each state.
The quantum superposition phenomena is responsible for the so called “quantum
parallelism.”

Operations acting on those isolated or pure quantum states are linear op-
erations, more specifically unitary matrices S. A matrix S is called unitary if
S∗S = I, where S∗ is the adjoint of S, and I is the identity. Essentially, those uni-
tary transformations act on the quantum states by changing their probability
amplitudes, without loss of information (i.e., they are reversible). The appli-
cation of a unitary transformation to a state vector is given by usual matrix
multiplication.

Unfortunately in this model of quantum computation, it is difficult or impos-
sible to deal formally with another class of quantum effects, including measure-
ments, decoherence, or noise.

Measurements are critical to some quantum algorithms, as they are the only
way to extract classical information from quantum states.

A measurement operation projects a quantum state like α|0〉+ β|1〉 onto the
basis |0〉,|1〉. The outcome of the measurement is not deterministic and it is
given by the probability amplitude, i.e., the probability that the state after the
measurement is |0〉 is |α|2 and the probability that the state is |1〉 is |β|2. If
the value of the qubit is initially unknown, than there is no way to determine α
and β with that single measurement, as the measurement may disturb the state.
But, after the measurement, the qubit is in a known state; either |0〉 or |1〉.
In fact, the situation is even more complicated: measuring part of a quantum
state collapses not only the measured part but any other part of the global state
with which it is entangled. In an entangled state, two or more qubits have to
be described with reference to each other, even though the individuals may be
spatially separated 1.

There are several ways to deal with measurements in quantum computation,
as summarized in our previous work [3]. To deal formally and elegantly with
measurements, the state of the computation is represented using a density matrix
and the operations are represented using superoperators [1]. Using these notions,
the projections necessary to express measurements become expressible within
the model.

1 For a more detailed explanation about entanglement, see [10].

324 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

Intuitively, density matrices can be understood as a statistical perspective of
the state vector. In the density matrix formalism, a quantum state that used to
be modeled by a vector |v〉 is now modeled by its outer product |v〉〈v|, where
〈v| is the row vector representing the adjoint (or dual) of |v〉. For instance, the
state of a quantum bit |v〉 = 1√

2
|0〉+ 1√

2
|1〉 is represented by the density matrix:

(1
2 − 1

2
− 1

2
1
2

)

Note that the main diagonal shows the classical probability distribution of basic
quantum states, that is, these state has 1

2 of probability to be |0〉 and 1
2 of

probability to be |1〉.
However, the appeal of density matrices is that they can represent states

other than the pure ones above. In particular if we perform a measurement on
the state represented above, we should get |0〉 with probability 1/2 or |1〉 with
probability 1/2. This information, which cannot be expressed using vectors, can
be represented by the following density matrix:(

1/2 0
0 0

)
+

(
0 0
0 1/2

)
=

(
1/2 0
0 1/2

)

Such a density matrix represents a mixed state which corresponds to the sum
(and then normalization) of the density matrices for the two results of the ob-
servation.

The two kinds of quantum operations, namely unitary transformation and
measurement, can both be expressed with respect to density matrices [4]. Those
operations now mapping density matrices to density matrices are called super-
operators. A unitary transformation S maps a pure quantum state |u〉 to S|u〉.
Thus, it maps a pure density matrix |u〉〈u| to S|u〉〈u|S∗. Moreover, a unitary
transformation extends linearly to mixed states, and thus, it takes any mixed
density matrix A to SAS∗.

As one can observe in the resulting matrix above, to execute a measurement
corresponds to setting a certain region of the input density matrix to zero.

In next section, we present a calculus to express general quantum computa-
tions over mixed states.

3 The Quantum Arrow Calculus for Mixed States

In this section we present the quantum arrow calculus for mixed states. The
calculus for mixed states is a generalisation of the calculus presented in [6], and
gives a functional programming language for general quantum computations.

3.1 The Background

As first noted in [11] the pure model of quantum computation based on vec-
tors and linear operators can be expressed as monads [7]. We build on that and

Reasoning about General Quantum Programs over Mixed States 325

establish in [3] that the superoperators used to express mixed quantum compu-
tations (with measurements) are an instance of the category-theoretic concept
of arrows [9], a generalization of monads [7] and idioms [12]. Originally, ar-
rows were introduced to the programming approach by extending simply-typed
lambda calculus with three constants satisfying nine laws. Translating this in-
sight to a practical programming paradigm has been difficult however. On one
hand, directly using arrows is highly non-intuitive, requiring programming in
the so-called “point-free” style where intermediate computations are manipu-
lated without giving them names. Furthermore reasoning about arrow programs
uses nine, somewhat idiosyncratic laws.

In recent work, Lindley et. al. [8] present the arrow calculus, which is a calculus
version for the original presentation of arrows [9]. The arrow calculus augment
the simply typed lambda calculus with four constructs satisfying five laws. Two
of these constructs resemble function abstraction and application, and satisfy
familiar beta and eta laws. The remaining two constructs resemble the unit and
bind of a monad, and satisfy left unit, right unit, and associativity laws. Basically,
using the arrow calculus we can understand arrows through classic well-known
patterns.

Hence, in [6] we propose to express quantum computations using the arrow
calculus extended with monadic constructions. We show that quantum program-
ming can be expressed using well-understood and familiar classical patterns for
programming in the presence of computational effects. We define the calculus
in three levels. We start with simply-typed lambda calculus, then we add the
monadic constructions of Moggi’s computational lambda calculus [7] to express
pure quantum computations, and finally we add the constructions of the arrow
calculus [8] to express mixed quantum computations.

However, as motivated in the introduction, we consider in this work the mixed
state approach and define a simpler and more elegant version of the quantum
arrow calculus. In contrast with the previous defined quantum arrow calculus, the
arrow calculus for mixed states goes directly from classical states to mixed states.
Going directly to mixed states turns the calculus simpler, with less constructions
and, more interestingly, turns the set of equations simpler and intuitive.

3.2 The Calculus

We construct the calculus for mixed states in two levels: we start with simply-
typed lambda calculus with booleans, and then we add the arrow calculus con-
structions to express general quantum computations. Additionally, to encompass
all quantum features we add sum of arrows to represent the probability distribu-
tion generated by superpositions, and scalar product to represent the probability
of each state in the mixture.

The entire calculus is shown in Figure 1. Let A,B,C range over types, L,M,N
range over terms, and Γ,Δ range over environments. A type judgment Γ *M : A
indicates that in environment Γ term M has type A. As presented in the arrow
calculus [8], we are using a Curry formulation, eliding types from terms.

326 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

Syntax for classical terms
Types A,B, C ::= Bool | A × B | A → B
Terms L, M, N ::= x | True | False | (M, N) | fst L | snd L | λx.N | L M

let x = M in N | if L then M else N
Environments Γ, Δ ::= x1 : A1, . . . , xn : An

Classical Types

∅
 False : Bool ∅
 True : Bool

(x : A) ∈ Γ

Γ
 x : A

Γ
 M : A Γ
 N : B

Γ
 (M, N) : A × B

Γ
 L : A × B

Γ
 fst L : A

Γ
 L : A × B

Γ
 snd L : B

Γ, x : A
 N : B

Γ
 λx.N : A → B

Γ
 L : A → B Γ
 M : A

Γ
 L M : B

Γ
 M : A Γ, x : A
 N : B

Γ
 let x = M in N : B

Γ
 L : Bool Γ
 M, N : B

Γ
 if L then M else N : B

Syntax for general quantum computations over mixed states
Probabilities p, q ∈ R
Typedef Dens A = (A,A) → C Super A B = (A, A) → Dens B
Types A, B, C ::= . . . |Dens A | Super A B
Terms L, M, N ::= ... | λ•x.Q
Commands P, Q, R ::= L • M | [M] | letA x = P in Q | trL |

P ++ Q | (p, q) ∗ [if L then M else N] | zeroarrow
Arrow Types

Γ ; x : A
 Q! Dens B

Γ
 λ•x.Q : Super A B

Γ
 L : Super A B Γ ;Δ
 M : A

Γ ; Δ
 L • M ! Dens B

Γ, Δ
 M : A

Γ ; Δ
 [M]! Dens A

Γ ; Δ
 P ! Dens A Γ ; Δ, x : A
 Q! Dens B

Γ ;Δ
 letA x = P in Q! Dens B

Γ ; Δ
 trL ! Dens B Γ ; Δ
 zeroarrow ! Dens A

Γ ; Δ
 P, Q ! Dens A

Γ ; Δ
 P ++ Q ! Dens (A)

Γ ; Δ
 [if L then M else N] ! Dens A

Γ ; Δ
 (p, q) ∗ [if L then M else N] ! Dens A

Fig. 1. The Quantum Arrow Calculus for Mixed States

We start the language with the constructs from simply-typed lambda calculus
with booleans, products, let and if.

The presentation of the constructs for general quantum computations over
mixed states begins with type definitions (i.e, type synonyms) for convenience.
Type Dens A stands for density matrices. Type Super A B means a superop-
erator mapping a density matrix of type A to a density matrix of type B.

Reasoning about General Quantum Programs over Mixed States 327

As inherited from the arrow calculus [8], there are two syntactic categories.
Quantum terms are ranged over by L,M,N , and commands leading to mixed
states are ranged over by P,Q,R. The new term form is an arrow abstraction
λ•x.Q representing a superoperator, i.e., a probabilistic function over mixed
states. There are seven command forms: superoperator application L•M , arrow
unit [M], the constructor for mixed states, composition letA x = P in Q, the
partial trace superoperator trL, sum of superoperators P ++ Q, scalar product
(p, q) ∗ [if L then M else N], and the failure superoperator zeroarrow.

In addition to the term typing judgment Γ *M : A there is also a command
typing judgment Γ ;Δ * P ! Dens A. An important feature of the arrow calculus
is that the command type judgment has two environments, Γ and Δ, where
variables in Γ come from ordinary lambda abstractions λx.N , while variables in
Δ come from superoperators λ•x.Q (i.e, arrow abstraction).

The superoperator abstraction converts a mixed state into a term. This con-
struct closely resembles function abstraction, save that the body Q is a mixed
state, and the bound variable x goes into the second environment (separated
from the first by a semicolon).

Application of a superoperator is given by L •M ! Dens B, embeding a term
(superoperator) into a command (mixed state). Arrow application closely resem-
bles function application. The arrow to be applied is denoted by a term, not a
command; this is because there is no way to apply an arrow that is itself yielded.
This is why there are two different environments, Γ and Δ: variables in Γ may
denote arrows that are applied to arguments, but variables in Δ may not.

Unit, [M]! Dens A, promotes a term to a mixed state. Note that in the
hypothesis there is a term judgment with one environment (i.e, there is a comma
between Γ and Δ), while in the conclusion there is a command judgment with
two environments (i.e, there is a semicolon between Γ and Δ).

Using the command to compose superoperators letA, the value returned by a
superoperator may be bound.

To encompass all quantum features we add sum of arrows (++), to repre-
sent the probability distribution generated by superpositions, and the composed
scalar product (p, q) to represent the probability of each state in the mixture.
The composed scalar product is introduced together with the if, as p is the
probability of the first branch and q is the probability of the second branch.
Semantically, this corresponds to the density matrix for a base value qubit (True
or False). The zeroarrow construct represents the failure superoperator.

We have also add a partial trace superoperator, trL, which traces out or
projects part of the quantum state. In the pure model, this operation is not
allowed, as it requires a measurement before tracing. It is called trLeft as it
traces out (or sends to trash) the left part of the quantum state.

Lastly, it is worth to comment that we do not need a specific measurement
superoperator, as we are directly working with the observer perspective of the
quantum system. Any operation in our language denotes a probabilistic function
computed by quantum operations. As discussed in [1] this solves the problem
of subroutines in standard (or pure) models of quantum computation, as the

328 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

function computed by any pure circuit or operation is at the end a probabilistic
one, and the standard theories allow pure states only.

4 Reasoning about Quantum Programs

In this section we introduce a set of equations/laws for the quantum language
presented in section above. Additionally, we express three well know quantum
algorithms using the quantum arrow calculus for mixed states, and show how
the combined set of laws, from classical lambda calculus and arrows can be used
to equational reasoning about them.

4.1 The Equations

We show the complete set of equations in Figure 2. We start with the well know
equations for simply-typed lambda calculus with products, if and let.

Following, we show the laws from the arrow calculus [8]. Arrow abstraction and
application satisfy beta and eta laws, (β�) and (η�), while arrow unit and bind
satisfy left unit, right unit, and associativity laws, (left), (right), and (assoc).
The beta law equates the application of an abstraction to a bind; substitution
is not part of beta, but instead appears in the left unit law. The (assoc) law has
the usual side condition, that x is not free in R.

Then we add our equations for sum of arrows, ++. The arrowplus is a general-
isation of the monadic construction monadplus [13]. The intuition behind these
laws is the same for the monadic ones, i.e., ++ is a disjunction of goals and let
is a conjunction of goals. The conjunction evaluates the goals from left-to-right
and is not symmetric.

Finally, we define the equations for the composed scalar product: p1 is the
simple letA with scalar products, p2 stands for a distributive law for composed
scalar products, it just mimics the usual distributive law for products.

We claim soundness of the arrowplus equations using the methodology pre-
sented in [8] for defining the calculus extensions for specialised arrows. That is,
soundness can be proved by showing that the equation holds for the translation
of the construction in the calculus to classic arrows [9]. The translation of ++ is
straightforward: [[P ++Q]] = [[P]] arrowPlus [[Q]], where arrowPlus is defined in [9].

Soundness for the composed scalar products can be easily showed by using
simple products.

4.2 Hadamard

To exemplify the use of the constructions, consider, for example, the hadamard
quantum gate, which is the source of superpositions. For instance, hadamard
applied to |False〉2 returns |False〉+ |True〉, and applied to |True〉 returns |False〉−
|True〉. In our mixed calculus, is expected that the output of any quantum pro-
gram is a probabilistic one. Hence hadamard applied to |False〉 would give |False〉
2 Using the booleans as the basis for the vector space.

Reasoning about General Quantum Programs over Mixed States 329

(βx
1) fst (M, N) = M

(βx
2) snd (M, N) = N

(ηx) (fst L, snd L) = L

(β→) (λx.N)M = N [x := M]
(η→) λx.(L x) = L

(let) let x = M in N = N [x := M]
(βif

1) if True then M else N = M

(βif
2) if False then M else N = N

() if (if x then M else N) then L else T = if x then (if M then L else T)
else (if N then L else T)

() let x = (if y then M else N) in L = if y then (let x = M in L)
else (let x = N in L)

(β�) (λ•x.Q) • M = Q[x := M]
(η�) λ•x.(L • [x]) = L

() let x = [M] in Q = Q[x := M]
() let x = P in [x] = P

() let y = (let x = P in Q) in R = let x = P in (let y = Q in R)

(1) zeroarrow ++ P = P

(2) P ++ zeroarrow = P

(3) P ++ (Q ++ R) = (P ++ Q) ++ R

(4) let x = zeroarrow in P = zeroarrow
(5) let x = (P ++ Q) in R = (let x = P in R) ++ (let x = Q in R)

(1) let x = (κ, ι) ∗ [M] in Q = (κ, ι) ∗ Q[x := M]
(2) (p1, p2) ∗ ((p3, p4) ∗ P ++(p5, p6) ∗ Q) = (p1 ∗ p3, p2 ∗ p4) ∗ P ++(p1 ∗ p5, p2 ∗ p6) ∗ Q

(3) ((p1, p2) ∗ P ++(p3, p4) ∗ P) = (p1 + p3, p2 + p4) ∗ P

(4) (0, 0) ∗ P = zeroarrow

Fig. 2. Equations for the Quantum Arrow Calculus

with probability 1/2 and |True〉 with probability 1/2, and the same for hadamard
applied to |True〉. Then, we define hadamard as

hadamard = λ•x. (1/2, 1/2) ∗ [if x then True else False] ++
(1/2, 1/2) ∗ [if x then False else True] : Super Bool Bool

where we have used the arrowplus construction, ++ , to represent the probability
distribution generated by the superpositions which hadamard generates. It is clear
from the definition that if we apply hadamard to |False〉 we would get 1/2[True] +
+1/2[False], and the same for application to |True〉, which is the right behavior for
a probabilistic function computing the output of standard quantum gates/circuits.

Obviously, this probabilistic behavior of hadamard is not reversible. As ex-
plained in [1] the probabilistic functions solve the problem of subroutines in
quantum computation affecting the state in a non-unitary manner.

330 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

For this reason, if we apply hadamard again to the output mixture, we would
get the same result again. The idea is that we are going to apply hadamard to
1/2[True] and to 1/2[False]. This would give (1/4[True]++1/4[False])++(1/4[True]+
+1/4[False]) = 1/2[True] ++1/2[False].

A program which applies hadamard twice is written as:

λ•x.letA w = hadamard • x in hadamard • w : Super Bool Bool

The proof goes as follows:

λ•x.letA w = hadamard • x in hadamard • w
≡β�

λ•x.letA w = (1/2, 1/2) ∗ [if x then True else False] ++
(1/2, 1/2) ∗ [if x then False else True]
in hadamard •w

≡ap5

λ•x.(letA w = (1/2, 1/2) ∗ [if x then True else False] in hadamard • w) ++
(letA w = (1/2, 1/2) ∗ [if x then False else True] in hadamard • w)

≡q1

λ•x.(1/2, 1/2)∗ ((1/2, 1/2) ∗ [if (if x then True else False) then True else False])
++ (1/2, 1/2) ∗ [if (if x thenTrue else False) then False else True])

++ (1/2, 1/2)∗ ((1/2, 1/2) ∗ [if (if x then False else True) then True else False])
++ (1/2, 1/2) ∗ [if (if x then False else True) then False else True])

≡comm

λ•x.(1/2, 1/2)∗ ((1/2, 1/2) ∗ [if x then True else False])
++ (1/2, 1/2) ∗ [if x then False else True])

++ (1/2, 1/2)∗ ((1/2, 1/2) ∗ [if x then False else True])
++ (1/2, 1/2) ∗ [if x then True else False])

≡p2

λ•x.(1/4, 1/4)∗ [if x then True else False]) ++
(1/4, 1/4)∗ [if x then False else True]) ++
(1/4, 1/4)∗ [if x then False else True]) ++
(1/4, 1/4)∗ [if x then True else False])

≡
λ•x.(1/2, 1/2)∗ [if x then True else False]) ++

(1/2, 1/2)∗ [if x then False else True])

As one can note, the proof follows in a strikingly attractive way, very similar to
the way we make proofs in classical functional programming languages. We start
using the β-equation for arrows, then we use the letA equation for arrowplus as
a conjunction of disjunctions. Finally, we just simplify things using sums and
products.

4.3 Generating Entangled Pairs

The quantum state of a system is said to be entangled when it arises from the
superposition of states of identifiable correlated subsystems that cannot be fac-
torized [14]. Entanglement is a quantum mechanical feature without a classical

Reasoning about General Quantum Programs over Mixed States 331

analogue. Essentially, if we have a pair of entangled qubits, a local interaction on
one of the particle pair induces a change in the quantum state of its partner. En-
tanglement is an important quantum characteristic for quantum computation.
Several quantum algorithms are deeply based on that, such as quantum tele-
portation [15], super dense coding [16], quantum cryptography [17], quantum
algorithms for distributed systems [18], etc.

A traditional way for generating entangled pairs is through application of a
controlled not operation to a control state in superposition. The controlled not
receives two qubits as arguments and behaves as follows: if the first qubit (i.e.,
the control) is True then not is applied to the second one, otherwise, nothing
happens. Bellow we show the implementation of Cnot in our quantum calculus.

Cnot : Super (Bool,Bool) (Bool,Bool)
Cnot = λ•(x, y). (1, 1) ∗ [if x then (True, not y) else (False, y)]

Then, to generate an entangled pair we just need to build a quantum program
which receives two qubits, applies hadamard to the first (i.e., to the control) to
make it in a superposed state, and then applies Cnot.

epr : Super (Bool,Bool) (Bool,Bool)
epr = λ•(x, y).letA w = hadamard • x in Cnot • (w, y)

The proof shows the program behaves exactly as expected, generating entangled
pairs.

λ•(x, y).letA w = hadamard • x in Cnot • (w, y)
≡β�

λ•(x, y).letA w = (1/2, 1/2) ∗ [if x then True else False] ++
(1/2, 1/2) ∗ [if x then False else True]
in Cnot • (w, y)

≡ap5

λ•(x, y).(letA w = (1/2, 1/2) ∗ [if x then True else False] in Cnot • (w, y)) ++
(letA w = (1/2, 1/2) ∗ [if x then False else True] in Cnot • (w, y))

≡q1

λ•(x, y).(1/2, 1/2) ∗((1, 1) ∗ [if (if x then True else False)
then (True, not w) else (False, w)]) ++

(1/2, 1/2) ∗((1, 1) ∗ [if (if x then False else True)
then (True, not w) else (False, w)])

≡comm

λ•(x, y).(1/2, 1/2) ∗((1, 1) ∗ [if x then (True, not w) else (False, w)] ++
(1/2, 1/2) ∗((1, 1) ∗ [if x then (False, w) else (True, not w)]

≡p2

λ•(x, y).(1/2, 1/2)∗ [if x then (True, not w) else (False, w)]) ++
(1/2, 1/2)∗ [if x then (False, w) else (True, not w)])

332 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

4.4 Teleportation

A traditional example of quantum algorithm which requires a measurement op-
eration is the quantum teleportation [15]. It allows the transmission of a qubit
to a partner with whom is shared an entangled pair. The correctness of this
algorithm can showed by proving that it is equivalent to identity. This is an
important result in the field of quantum computation.

We call the two partners of the teleportation algorithm, Alice and Bob. Alice
has a qubit, which is going to be teleported to Bob. To realize this task it is
necessary that the two partners share an entangled pair of qubits before the
communication. The idea of the algorithm is that Alice interacts the qubit to
be teleported with her part of the pair. In this way, some information about
the qubit is passed via entanglement to the Bob’s part of the pair. Alice then
measures her two qubits and send this information to Bob, who is going to
recuperate the qubit through application of some simple quantum operations.
Therefore, the algorithm works with three qubits:

Tel : Super (Bool,Bool,Bool) Bool
Tel = λ•(x, y, z). let (y′, z′) = epr • (y, z) in

let (x′, y′′) = Alice • (x, y′) in Bob (x′, y′′, z′)

where y and z stand for the entangled pair: y is the Alice’s part and z is the
Bob’s part. The qubit to be teleported is represented by x. Alice interacts the
qubit x with her part of the entangled pair, y, via the following procedure:

Alice : Super (Bool,Bool) (Bool,Bool)
Alice = λ•(x, y). let (x′, y′) = Cnot • (x, y) in (Had • x′, y′)

where Cnot and Had are the quantum controlled not operation, and the opera-
tor generating superpositions, respectively. Both implementations are showed in
section above. It is interesting to note that none specific measurement operation
is needed at the end of Alice’s subroutine. This is because we are already working
with the mixed state of the system.

Bob then interacts the result of Alice’s procedure, x and y below, with his
part of the entangled pair, z.

Bob : Super (Bool,Bool,Bool) Bool
Bob = λ•(x, y, z). let (y′, z′) = Cnot • (y, z) in

let (x′, y′′) = (Cz • (x, y′)) in trL • ((y′′, z′), x′)

Besides the Cnot, he also uses a controlled phase operation, Cz. The behavior of
Cz is captured by the following program:

Cz : Super (Bool,Bool) (Bool,Bool)
Cz = λ•(x, y). ((1, 1), (1, 1)) ∗ [if x then (if y then (True,True) else (True,False))

else (if y then (False,True) else (False,False))]

The proof of correctness about the behavior of teleportation follows the same
style of the proofs presented in sections above. Lets structure the proof. We start
reasoning about Alice’s subroutine.

Reasoning about General Quantum Programs over Mixed States 333

λ•(x, y). let (x′, y′) = Cnot •(x, y) in (Had • x′, y′)
≡β�

λ•(x, y). letA w = (1, 1)∗ [if x then (True, not y) else (False, y)]
in (Had • (fst w), snd w)

One can easily follow the proof and conclude that the hadamard operation is
going to be applied to identity over x. Then we can do the same for Bob:

λ•(x, y, z). let (y′, z′) = Cnot •(y, z)
in let (x′, y′′) = (Cz •(x, y′)) in trL • ((y′′, z′), x′)

≡β�

λ•(x, y). letA w = (1, 1)∗ [if x then (True, not y) else (False, y)]
in let (x′, y′′) = (Cz •(x, y′)) in trL • ((y′′, z′), x′)

and substitute the results in the Tel subroutine. This is going to show that it
returns identity over z.

5 Related Work

In [1] it is defined a mathematical framework for quantum circuits with mixed
states. Aharonov et al. present the concept of general probabilistic subroutines
(functions) computed by standard quantum circuits. This definition solves the
problem of using subroutines in standard (or pure) quantum circuits, as the
function computed by any circuit is a probabilistic one, and the standard theory
of quantum circuits allows pure states only.

Zuliani [2] builded over Aharonov et al.’s work and proposed a programming
approach based on mixed states. The author extends the qGCL [19], which is a
quantum version for Dijkstra’s guarded command language, to work with mixed
states. The extension is more like a mathematical specification language for
quantum programs and no equational reasoning techniques are claimed.

Concerning the subject of functional quantum programming languages we can
cite the following related works.

In [20] we have proposed equational reasoning techniques, however for pure
quantum programs.

Also, in [21] the author presents a quantum lambda calculus based on linear
logic, but just for pure quantum computations.

In very recent work [22] the authors set up a System F type system for the
Linear Algebraic λ-Calculus. The aim of this work is to seek for a quantum
physical logic related with probabilistic systems.

6 Conclusion

We have presented a functional programming language for quantum computation
over mixed states. Every quantum construct of the language semantically denotes
a probabilistic function computed by pure or general quantum operations. More
interestingly, we show the first framework proposing equational reasoning about

334 J.K. Vizzotto, G.R. Librelotto, and A. Sabry

quantum computations over states representing the observer perspective of the
quantum system.

As future work we plan to investigate the relation between arrows and comon-
ads [23]. It seems that the side effect produced by measurements, destroying
superpositions, can be expressed using the dual concept of monads. Moreover,
the study about higher order, recursiveness and other quantum data types is let
for future work.

References

1. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In:
Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp.
20–30. ACM Press, New York (1998)

2. Zuliani, P.: Quantum programming with mixed states. Electron. Notes Theor.
Comput. Sci. 170, 185–199 (2007)

3. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-
ators as arrows. Journal of Mathematical Structures in Computer Science: special
issue in quantum programming languages 16, 453–468 (2006)

4. Selinger, P.: Towards a quantum programming language. Journal of Mathemati-
cal Structures in Computer Science: special issue in quantum programming lan-
guages 16, 527–586 (2006)

5. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum com-
putation with cluster states. Physical Review A 68, 022312 (2003)

6. Vizzotto, J.K., DuBois, A.R., Sabry, A.: The arrow calculus as a quantum pro-
gramming language. FoLLI/LNAI Lecture Notes in Computer Science, vol. 5514,
pp. 379–393. Springer, Heidelberg (2009)

7. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in computer science, pp. 14–23. IEEE Press,
Los Alamitos (1989)

8. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus. Technical Report EDI-INF-
RR-1258, The University of Edinburgh, School of Informatics (June 2008)

9. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

11. Mu, S.C., Bird, R.: Functional quantum programming. In: Second Asian Workshop
on Programming Languages and Systems, KAIST, Korea (December 2001)

12. Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

13. HaskellWiki: MonadPlus (2005), http://www.haskell.org/hawiki/MonadPlus
14. Perez, R.B.: Entanglement and quantum computation: an overview. Technical Re-

port ORNL/TM-2000/64, Oak Ridge - National Laboratory (December 2000)
15. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.:

Teleporting an unknown quantum state via dual classical and EPR channels. Phys.
Rev. Lett., 1895–1899 (1993)

16. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators
on einstein–podolsky–rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

17. Ekert, A., Palma, G.: Quantum cryptography with interferometric quantum en-
tanglement. Journal of Modern Optics 41, 2413–2424 (1994)

http://www.haskell.org/hawiki/MonadPlus

Reasoning about General Quantum Programs over Mixed States 335

18. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states.
Quantum Information and Computation 6(2), 173–183 (2006)

19. Sanders, J.W., Zuliani, P.: Quantum programming. In: Mathematics of Program
Construction, pp. 80–99. Springer, Heidelberg (1999)

20. Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum
programming. Electron. Notes Theor. Comput. Sci. 170, 23–47 (2007)

21. Tonder, A.v.: A lambda calculus for quantum computation. SIAM J. Com-
put. 33(5), 1109–1135 (2004)

22. Arrighi, P., Díaz-Caro, A.: Scalar system F for linear-algebraic λ-calculus: Towards
a quantum physical logic. In: Proceedings of the 6th International Workshop on
Quantum Physics and Logic, Oxford, UK, pp. 206–215 (2009)

23. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Central European
Functional Programming School, pp. 135–167 (2006)

A Simple and General Theoretical Account for
Abstract Types�

Hongwei Xi

Boston University

Abstract. A common approach to hiding implementation details is
through the use of abstract types. In this paper, we present a simple
theoretical account of abstract types that make use of a recently devel-
oped notion of conditional type equality. This is in contrast to most of
the existing theoretical accounts of abstract types, which rely on exis-
tential types (or similar variants). In addition, we show that this new
approach to abstract types opens a promising avenue to the design and
implementation of module systems that can effectively support large-
scale programming.

1 Introduction

Program organization is a vital issue in the construction of large software. In
general, software evolves constantly in order to accommodate emerging needs
that are often difficult to foresee, and the ability to effectively localize changes
made to the existing programs is of great importance during software develop-
ment, maintenance and evolution. Most realistic programming languages offer
some forms of module system to facilitate the task of partitioning programs into
manageable components and then assembling such components into a coherent
whole. As experience indicates, a fundamental problem in the design of a mod-
ule system lies in properly addressing the tension between the need for hiding
information about a program unit from the other program units and the need
for propagating information between program units. The former need helps the
construction of a program unit in relative isolation and thus restricts changes in
one unit to affect other units while the latter need helps the assembly of program
units into a coherent whole.

A common approach to hiding implementation details is through the use ab-
stract types [Lis86, Wir82, CDJ+89]. In type theory, existential types [MP85]
are often used to give a theoretical account of abstract types. However, there is
a rather unpleasant consequence with this account of abstract types. As pointed
out long ago (e.g., [Mac86]), hiding type information through existential types
often result in too much type information being hidden. In particular, if an ex-
istentially quantified package is opened twice, the two abstract type variables
thus introduced cannot be assumed equal. As a consequence, an opened ex-
istentially quantified package often requires a usage scope so large that most
� Partially supported by NSF grants no. CCR-0229480 and no. CCF-0702665.

M.V.M. Oliveira and J. Woodcock (Eds.): SBMF 2009, LNCS 5902, pp. 336–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Simple and General Theoretical Account for Abstract Types 337

benefits of abstract types may simply be lost. This issue is certainly of great
concern and there have already been many attempts to address it. In most of
such attempts, some new forms of types (e.g., dependent types [Mac86], static
dependent types [SG90], abstract types via dot notation [CL90], translucent sum
types [HL94], manifest types [Ler94]) are introduced to overcome certain limi-
tations of existential types in hiding type information. However, the underlying
type theories for these new forms of types are often rather complicated and
can become a great deal more complicated if features such as recursive mod-
ules [CHP99] and modules as first-class values [Rus00] are to be accommodated.

The primary contribution of the paper lies in a novel theoretic account of ab-
stract types. Instead of relying on existential quantifiers, we make use of recently
introduced conditional type equality [Xi04], a seemingly simple notion that we
believe is of great potential. Generally speaking, conditional type equality means
that type equality is determined under the assumption that certain equations
on types hold. For instance, the need for conditional type equality occurs imme-
diately once guarded recursive datatypes are made available [XCC03]. We are
to argue that conditional type equality offers an effective means to hiding type
information that requires no need for introducing new and unfamiliar forms of
types.

We organize the rest of the paper as follows. In Section 2, we form a language
λ⊃

2 that supports conditional type equality and then establish the type soundness
of λ⊃

2 , presenting a formal account of conditional type equality. We then extend
λ⊃

2 to λ⊃
2 + to support local binding on abstract type constructors declared at top

level. In Section 3, we present some examples to illustrate how certain features
of modular programming can be directly supported in λ⊃

2 +. Lastly, we mention
some related work and then conclude. As for a proof of concept, we point out
that the programming language ATS [Xi] is currently under active development
and its module system, which is largely based on the abstract types presented
here, is already functioning.

2 Formal Development

In this section, we first present a language λ⊃
2 , which is largely based upon

the standard second-order polymorphically typed λ-calculus, and then extend
λ⊃

2 to λ⊃
2 + to handle local bindings on abstract type constructors. To simplify

the presentation, we only consider quantification over type variables, that is,
variables ranging over types, though we also allow quantification over static
terms of other sorts (e.g., bool, int) in ATS. The syntax of λ⊃

2 is given as follows.

types τ ::= α | TC(τ1, . . . , τn) | {l1 : τ1, . . . , ln : τn} |
τ1 → τ2 | ∀α.τ | ∃α.τ

bindings B ::= TC(τ1, . . . , τn) = τ

exp. e ::= x | f | {l1 = e1, . . . , ln = en} | e.l | lam x.e | fix f.e |
app(e1, e2) | ∀+(v) | ∀−(e) | ∃(e) | let ∃(x) = e1 in e2

values v ::= x | {l1 = v1, . . . , ln = vn} | lam x.e | ∀+(v) | ∃(v)

338 H. Xi

α ∈ �α

�α � α : type

TC is n-ary �α � τ1 : type · · · �α � τn : type

�α � TC(τ1, . . . , τn) : type

l1, . . . , ln are distinct �α � τ1 : type · · · �α � τn : type

�α � {l1 : τ1, . . . , ln : τn} : type

�α � τ1 : type �α � τ2 : type

�α � τ1 → τ2 : type

�α, α � τ : type

�α � ∀α.τ : type

�α, α � τ : type

�α � ∃α.τ : type

Fig. 1. The rules for forming types

We use x for a lam-variable and f for a fix-variable, and xf for either a lam-
variable or a fix-variable. A lam-variable is a value but a fix-variable is not.
We use TC for a type constructor of some fixed arity. Also, we use B for a
binding of the form TC(α1, . . . , αn) = τ such that the arity of TC is n and
α1, . . . , αn * τ : type is derivable, and say that B is a binding on TC. It is
important to notice that for each binding TC(α1, . . . , αn) = τ , every free type
variable in τ must be αi for some 1 ≤ i ≤ n. We may write TC for TC() if the
arity of TC is 0. Also, we write "α for a sequence of type variables α1, . . . , αn and
"B for a sequence of bindings B1, . . . , Bn, and we use ∅ for the empty sequence.
The rules for forming types are given in Figure 1. In particular, given a type
constructor TC of arity n and types τ1, . . . , τn, we can form a type TC(τ1, . . . , τn).
We use {l1 : τ1, . . . , ln : τn} as a type for labeled records. All other forms of types
are standard.

To assign a call-by-value dynamic semantics to expressions in λ⊃
2 , we make

use of evaluation contexts, which are defined below:

eval. ctx. E ::= [] | E.l | app(E, d) | app(v,E) |
∀−(E) | ∃(E) | let ∃(x) = E in e

Definition 1. We define redexes and their reductions as follows.

– {l1 = v1, . . . , ln = vn}.li is a redex, and its reduction is vi, where 1 ≤ i ≤ n.
– app(lam x.e, v) is a redex, and its reduction is e[x �→ v].
– fix f.e is redex, and its reduction is e[f �→ fix f.e].
– ∀−(∀+(v)) is a redex, and its reduction is v.
– let ∃(x) = ∃(v) in e is a redex, and its reduction is e[x �→ v].

Given two expression e1 and e2 such that e1 = E[e] and e2 = E[e′] for some
redex e and its reduction e′, we write e1 ↪→ e2 and say that e1 reduces to e2 in
one step. We use ↪→∗ for the reflexive and transitive closure of ↪→.

The markers ∀+(·), ∀−(·) and ∃(·) are mainly introduced to guarantee that the last
rule applied in the typing derivation of an expression e be uniquely determined by
the structure of e. This in turn makes it significantly easier to establish Theorem 1

A Simple and General Theoretical Account for Abstract Types 339

�B |= α ≡ α
(tyeq-var)

�B |= τ ′
1 ≡ τ1

�B |= τ2 ≡ τ ′
2

�B |= τ1 → τ2 ≡ τ ′
1 → τ ′

2

(tyeq-→)

�B |= τ ≡ τ ′

�B |= ∀α.τ ≡ ∀α.τ ′ (tyeq-∀)

�B |= τ ≡ τ ′

�B |= ∃α.τ ≡ ∃α.τ ′ (tyeq-∃)

�B |= �τ ≡ �τ ′

�B |= TC(�τ) ≡ TC(�τ ′)
(tyeq-tc)

TC(�α0) = τ0 is in �B

�B |= TC(�τ) ≡ τ0[�α0 �→ �τ]
(tyeq-unfold)

TC(�α0) = τ0 is in �B

�B |= τ0[�α0 �→ �τ] ≡ TC(�τ)
(tyeq-fold)

�B |= τ1 ≡ τ2
�B |= τ2 ≡ τ3

�B |= τ1 ≡ τ3

(tyeq-trans)

Fig. 2. The rules for conditional type equality

(subject reduction) and Theorem 2 (progress). Without these markers, it would be
more involved to construct proofs by structural induction on typing derivations.

A typing judgment in λ⊃
2 is of the form "α;Γ * �B e : τ , which basically means

that e can be assigned the type τ under the context "α;Γ if the type equality
is decided under "B through the rules presented in Figure 2. The typing rules
for λ⊃

2 are listed in Figure 3, where the obvious side conditions associated with
certain rules are omitted. In the following presentation, we may write D :: J to
mean that D is a derivation for some form of judgment J .

Example 1. Let "B be (TC = TC → TC) for some type constructor TC of arity
0. Then for every pure untyped closed λ-expression e, that is, every closed ex-
pression in λ⊃

2 that can be constructed in terms of lam-variables and lam and
app constructs, the following typing judgment is derivable:

∅; ∅ * �B e : TC

By Theorem 2, which is to be proven shortly, the evaluation of every pure untyped
closedλ-expression either terminates or goes on forever; it can never become stuck.

Of course, it is a trivial fact that the evaluation of a pure λ-expression can never
become stuck, and Example 1 presents an argument for this fact in λ⊃

2 . Note
that "B in Example 1 is cyclic (according to a definition given later). In general,
conditional type equality under a cyclic binding sequence may not be decidable.
On the other hand, we are to prove that conditional type equality under an
acyclic binding sequence is decidable.

We first show that conditional equality is an equivalence relation.

340 H. Xi

�α; Γ ��B e : τ �B |= τ ≡ τ ′

�α; Γ ��B e : τ ′ (ty-eq)

Γ (xf) = τ

�α; Γ ��B xf : τ
(ty-var)

�α; Γ ��B e1 : τ1 · · · �α; Γ ��B en : τn

�α; Γ ��B {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn} (ty-rec)

�α; Γ ��B e : {l1 : τ1, . . . , ln : τn}
�α; Γ ��B e.li : τi

(ty-sel)

�α; Γ, x : τ1 ��B e : τ2

�α; Γ ��B lam x.e : τ1 → τ2
(ty-lam)

�α; Γ, f : τ ��B e : τ

�α; Γ ��B fix f.e : τ
(ty-fix)

�α; Γ ��B e1 : τ1 → τ2 �α; Γ ��B e2 : τ1

�α; Γ ��B app(e1, e2) : τ2
(ty-app)

�α, α; Γ ��B e : τ

�α; Γ ��B ∀+(e) : ∀α.τ
(ty-∀+)

�α; Γ ��B e : ∀α.τ �α � τ0 : type

�α; Γ ��B ∀−(e) : τ [α �→ τ0]
(ty-∀−)

�α; Γ ��B e : τ [α �→ τ0] �α � τ0 : type

�α; Γ ��B ∃(e) : ∃α.τ
(ty-∃+)

�α; Γ ��B e1 : ∃α.τ1 �α, α; Γ, x : τ1 ��B e2 : τ2

�α; Γ ��B let ∃(x) = e1 in e2 : τ2
(ty-∃−)

Fig. 3. The typing rules for λ⊃
2

Proposition 1. We have the following:

1. "B |= τ ≡ τ for every type τ , and
2. "B |= τ1 ≡ τ2 implies "B |= τ2 ≡ τ1 for every pair of types τ1, τ2.

Therefore, conditional type equality is an equivalence relation by (1) and (2) plus
the rule (tyeq-trans).

Proof. By an inspection of the rules in Figure 2.

For every "B, there is a corresponding term rewriting system TRS("B) on types
such that for each binding TC("α) = τ in "B, there is a corresponding rewriting
rule TC("α) ⇒ τ in TRS("B), and we use⇒�B for the rewriting relation of TRS("B).
Obviously, the relation "B |= · ≡ · is the least equivalence relation containing⇒�B.

Given a sequence "B of bindings TC1("α1) = τ1, . . . , TCn("αn) = τn, we say that
"B is linear if TC1, . . . , TCn are distinct from each other.

Proposition 2. If "B is linear, then ⇒�B is confluent.

Proof. If "B is linear, then there are no critical pairs in TRS("B) and thus ⇒�B is
confluent.

A Simple and General Theoretical Account for Abstract Types 341

Given a type τ , we define hd(τ) to be {l1, . . . , ln},→, ∀ and ∃ if τ is of the form
{l1 : τ1, . . . , ln : τn}, τ1 → τ2, ∀α.τ0 or ∃α.τ , respectively, and hd(τ) is undefined
otherwise. Clearly, if τ ⇒�B τ ′ and hd(τ) is defined, then hd(τ ′) = hd(τ).

Lemma 1. Assume "B is linear and "B |= τ1 ≡ τ2 holds for some types τ1 and
τ2. Then hd(τ1) = hd(τ2) if both hd(τ1) and hd(τ2) are defined.

Proof. By Proposition 2, we know τ1 ⇒�B τ and τ2 ⇒�B τ for some type τ .
Assume hd(τ1) = hd1 and hd(τ2) = hd2 for some hd1, hd2. Then hd(τ) = hd1
and hd(τ) = hd2. Hence, hd1 = hd2.

The following lemma, which is needed for proving Theorem 2, states that the
form of a well-typed closed value is uniquely determined by the type τ of the
value if hd(τ) is defined.

Lemma 2 (Canonical Forms). Assume D :: ∅; ∅ * �B v : τ for some linear "B.
Then we have the following:

1. If τ = {l1 : τ1, . . . , ln : τn}, then v is of the form {l1 = v1, . . . , ln = vn}.
2. If τ = τ1 → τ2, then v is of the form lam x.e.
3. If τ = ∀α.τ0, then v is of the form ∀+(v0).
4. If τ = ∃α.τ0, then v is of the form ∃(v0).

Proof. Given that the proof is a bit nonstandard, we present some details as
follows. In particular, please notice the use of Lemma 1.

We prove (2) by induction on the height of D. If the last typing rule in D
is (ty-lam), then v is obviously of the form lam x.e. Otherwise, D is of the
following form,

D′ :: ∅; ∅ * �B v : τ ′ "B |= τ ′ ≡ τ

∅; ∅ * �B v : τ
(ty-eq)

and, by Lemma 1, the following two subcases are the only possibilities:

– τ ′ = τ ′1 → τ ′2 such that both "B |= τ ′1 ≡ τ1 and "B |= τ2 ≡ τ ′2 are derivable.
Then by induction hypothesis on D′, we know v is of the form lam x.e.

– τ ′ = TC("τ ′). Then D′ must be of the form,

D′′ :: ∅; ∅ * �B v : τ ′′ "B |= τ ′′ ≡ τ ′

∅; ∅ * �B v : τ ′
(ty-eq)

and therefore, we have the following derivation D∗ as "B |= τ ′′ ≡ τ holds:

D′′ :: ∅; ∅ * �B v : τ ′′ "B |= τ ′′ ≡ τ

∅; ∅ * �B v : τ
(ty-eq)

Note that h(D) = 1 + h(D∗). By induction hypothesis on D∗, we know that
v is of the form lam x.e.

342 H. Xi

Hence, (2) holds. (1), (3) and (4) can be proven similarly.

Lemma 3 (Substitution). We have the following.

1. Assume that "α, α;Γ * �B e : τ and "α * τ0 : type are derivable. Then "α;Γ [α �→
τ0] * �B e : τ [α �→ τ0] is derivable.

2. Assume that "α;Γ, xf : τ1 * �B e2 : τ2 and "α;Γ * �B e1 : τ1 are derivable. Then
"α;Γ * �B e2[xf �→ e1] : τ2 is derivable.

Proof. By structural induction.

We are now ready to establish the soundness of the type system of λ⊃
2 by proving

the following theorems:

Theorem 1 (Subject Reduction). Assume D :: ∅; ∅ * �B e : τ in λ⊃
2 and

e ↪→ e′ holds. Then ∅; ∅ * �B e′ : τ is derivable.

Proof. Assume that e = E[e0] and e′ = E[e′0] for some redex e0 and its reduction
e′0. The proof proceeds by structural induction on E. In the most interesting case
where E = [], the proof makes use of Lemma 3.

Theorem 2 (Progress). Assume D :: ∅; ∅ * �B e : τ in λ⊃
2 and "B is linear.

Then e is a value or e ↪→ e′ holds for some e′.

Proof. The theorem follows from structural induction on D.

We now extend λ⊃
2 with a language construct to support type information hiding.

We use the name λ⊃
2 + for this extended language, which contains the following

additional syntax for forming expressions:

exp. e ::= . . . | assume B in (e : τ)

Note that assume . . . in . . . corresponds to the following concrete syntax:

local assume ... in ... end

We define two functions | · | and B(·) as in Figure 4. Given an expression e in
λ⊃

2 +,

– |e| is the expression in λ⊃
2 obtained from erasing in e all the local bindings

on abstract type constructors, and
– B(e) returns a sequence consisting of all the local bindings on abstract type

constructors that occur in e, from left to right.

Given a sequence of bindings "B, then dom("B) is a sequence of type constructors
TC defined as follows:

dom(∅) = ∅
dom(TC("α) = τ, "B)] = TC,dom("B)

We say TC is linear if any TC can occur at most once in TC.

A Simple and General Theoretical Account for Abstract Types 343

|c| = c
|xf | = xf

|{l1 = e1, . . . , ln = en}| = {l1 = |e1|, . . . , ln = |en|}
|lam x.e| = lam x.|e|
|fix f.e| = fix f.|e|

|app(e1, e2)| = app(|e1|, |e2|)
|∀+(e)| = ∀+(|e|)
|∀−(e)| = ∀−(|e|)
|∃(e)| = ∃(|e|)

|let ∃(x) = e1 in e2| = let ∃(x) = |e1| in |e2|
|assume B in (e : τ)| = |e|

B(c) = ∅
B(xf) = ∅

B({l1 = e1, . . . , ln = en}) = B(e1), . . . ,B(en)
B(lam x.e) = B(e)
B(fix f.e) = B(e)

B(app(e1, e2)) = B(e1),B(e2)
B(∀+(e)) = B(e)
B(∀−(e)) = B(e)
B(∃(e)) = B(e)

B(let ∃(x) = e1 in e2) = B(e1),B(e2)
B(assume B in (e : τ)) = B,B(e)

Fig. 4. Two functions on expressions in λ⊃
2 +

The typing rules for λ⊃
2 + are given in Figure 5, where a typing judgment

is of the form "α; "B;Γ *TC e : τ such that dom(B(e)) = TC. Note that the
obvious side conditions associated with certain rules are omitted. We use "B
for a sequence of bindings B and TC for a sequence of type constructors TC.
Please note that the occurrence of TC in a typing judgment "α; "B;Γ *TC e :
τ is necessary for supporting separate type-checking as it may not be realis-
tic to assume that (the source code of) e is always available for computing
TC.

Theorem 3. Assume D :: "α; "B;Γ *TC e : τ in λ⊃
2 + such that (dom("B), TC) is

linear. Then "α;Γ *(�B,B(e)) |e| : τ is derivable in λ⊃
2 .

Proof. By structural induction on D.

Theorem 3 is the main technical result of the paper, which provides a simple
and clean theoretical account of abstract types that requires no use of existential
types.1 We emphasize that the binding sequence "B in Theorem 3 is only required
to be linear (so that Lemma 1 can be established). In particular, because "B is

1 Note that the existential types in λ⊃
2 are not used to represent abstract types and

they can be completely eliminated if one wants to.

344 H. Xi

�α; �B; Γ �TC e : τ �B |= τ ≡ τ ′

�α; �B; Γ �TC e : τ ′ (ty-eq)

Γ (xf) = τ

�α; �B; Γ �∅ xf : τ
(ty-var)

�α; �B; Γ �TC1
e1 : τ1 · · · �α; �B; Γ �TCn

en : τn

TC = (TC1, . . . , TCn) is linear

�α; �B; Γ �TC {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}
(ty-rec)

�α; �B; Γ �TC e : {l1 : τ1, . . . , ln : τn}
�α; �B; Γ �TC e.li : τi

(ty-sel)

�α; �B; Γ, x : τ1 �TC e : τ2

�α; �B; Γ �TC lam x.e : τ1 → τ2

(ty-lam)

�α; �B; Γ, f : τ �TC e : τ

�α; �B; Γ �TC fix f.e : τ
(ty-fix)

�α; �B; Γ �TC1
e1 : τ1 → τ2 �α; �B; Γ �TC2

e2 : τ1

(TC1, TC2) is linear

�α; �B; Γ �TC1,TC2
app(e1, e2) : τ2

(ty-app)

�α, α; �B; Γ �TC e : τ

�α; �B; Γ �TC ∀+(e) : ∀α.τ
(ty-∀+)

�α, α; �B; Γ �TC e : ∀α.τ �α � τ0 : type

�α; �B; Γ �TC ∀−(e) : τ [α �→ τ0]
(ty-∀−)

�α; �B; Γ �TC e : τ [α �→ τ0] �α � τ0 : type

�α; �B; Γ �TC ∃(e) : ∃α.τ
(ty-∃+)

�α; �B; Γ �TC1
e1 : ∃α.τ1 �α, α; �B; Γ, x : τ1 �TC2

e2 : τ2

(TC1, TC2) is linear

�α; �B; Γ �TC1,TC2
let ∃(x) = e1 in e2 : τ2

(ty-∃−)

�α; �B, TC(�α0) = τ0; Γ �TC e : τ (TC, TC) is linear

�α; �B; Γ �TC,TC assume TC(�α0) = τ0 in (e : τ) : τ
(ty-assume)

Fig. 5. The typing rules for λ⊃
2 +

allowed to be cyclic, Theorem 3 cannot be proven by simply “expanding out”
the bindings in "B.

By Theorem 3, if ∅; ∅; ∅ *TC e : τ is derivable in λ⊃
2 + for some linear sequence

of type constructors TC, then |e| can be assigned the type τ in λ⊃
2 under a

linear sequence of bindings B(e). Therefore, by Theorem 2 and Theorem 1, the
evaluation of |e| either terminates with a value or goes on forever; it can never
become stuck.

We say that "B is acyclic if "B is empty or "B = ("B′, TC(α) = τ) such that "B′

is acyclic and TC has no occurrences in either τ or "B′; otherwise, "B is cyclic.
Given a binding and a type τ , the type τ [B] is defined as follows:

A Simple and General Theoretical Account for Abstract Types 345

{l1 : τ1, . . . , ln : τn}[B] = {l1 : τ1[B], . . . , ln : τn[B]}
(τ1 → τ2)[B] = τ1[B] → τ2[B]

(∀α.τ)[B] = ∀α.τ [B]
(∃α.τ)[B] = ∃α.τ [B]

TC("τ)[B] =
{

τ ′["α �→ "τ [B]] if B is TC("α) = τ ′;
TC("τ [B]) otherwise.

Furthermore, given a sequence of bindings "B and a type τ , the type τ ["B] is
defined as follows:

τ ["B] =
{

τ if "B = ∅;
τ [B]["B′] if "B = "B′, B.

Proposition 3. Assume "B is an acyclic sequence of bindings. Then "B |= τ1 ≡
τ2 if and only if τ1["B] = τ2["B] holds.

Proof. Straightforward.

Therefore, conditional type equality under an acyclic sequence of bindings can
be readily decided. As a design choice, we may simply not allow the use cyclic
binding sequences and thus guarantee the decidability of conditional type equal-
ity. Whether this choice is too restrictive to support some useful programming
styles still needs to be investigated further. We have so far encountered no real-
istic cases where cyclic sequences of bindings are needed. An argument for this
can probably be made as follows. Note that typing the code like the following
does not involve cyclic binding sequences:

local assume TC1 = TC2 -> TC2 in ... end
local assume TC2 = TC1 -> TC1 in ... end

as the two bindings can never be joined together for deciding type equality. A
probably more convincing argument is that we can readily handle the need for
splitting mutually defined datatypes, as is to be shown in the next section, with
no need for cyclic binding sequences.

Given an expression e in λ⊃
2 , there is in general no principal type for e. For

instance, in the following example:

abstract PairType: (type, type) -> type

local
assume PairType (a1, a2) = a2 * a1

in
fun makePair (x: a1, y: a2) = (y, x)
...

end

the function makePair can be given either the type ∀α1.∀α2.α1 ∗α2 → α2 ∗α1 or
the type ∀α1.∀α2.α1 ∗ α2 → PairType(α1, α2), which are considered equivalent

346 H. Xi

in the scope of the binding PairType(α1, α2) = α2 ∗α1; however, these two types
become unrelated out of the scope. In such a case, it is the responsibility of the
programmer to determine through the use of type annotation which type should
be assigned to makePair.2

3 Examples

In practice, we have frequently encountered the demand for recursive modules,
which are unfortunately not supported in the module system of SML [MTHM97].
When forming recursive modules, we often need to split recursively defined
datatypes. For instance, we first present a definition for two datatypes boolexp
and intexp in Figure 6 that are intended for representing boolean and integer
expressions, respectively. We then show how two abstract types boolexp t and
intexp t can be introduced to split the definition into two. In practice, we may
declare boolexp t and intexp t in a header file and put the two new definitions

datatype boolexp =

| Bool of bool | IntEq of (intexp, intexp)

and intexp =

| Int of int | Cond of (boolexp, intexp, intexp)

// in the file exp.sats

abstype boolexp_t

abstype intexp_t

// in the file boolexp.dats

datatype boolexp =

| Bool of bool | IntEq of (intexp_t, intexp_t)

assume boolexp_t = boolexp

// in the file intexp.dats

datatype intexp =

| Int of int | Cond of (boolexp_t, intexp_t, intexp_t)

assume intexp_t = intexp

Fig. 6. A splitting of mutually defined datatypes

2 In an implementation, one may use a strategy that always expands an abstract type
constructor if no type annotation is given. In the case of makePair, this means that
the type ∀α1.∀α2.α1 ∗ α2 → α2 ∗ α1 should be assigned to makePair.

A Simple and General Theoretical Account for Abstract Types 347

in two other files. If, say, the definition of intexp needs to be modified later,
the modification cannot affect the definition of boolexp. While this approach
to splitting the definition of mutually defined datatypes may look exceedingly
simple, it does not seem simple at all to justify the approach through the use of
existential types (or similar variants). On the other hand, a justification based
on conditional type equality can be given straightforwardly. Furthermore, it is
probably fair to say now that the notion of conditional type equality can also
significantly influence the design of module systems.

4 Related Work and Conclusion

There have been a large number of proposals for modular programming, and
it is evidently impossible for us to mention even a moderate portion of these
proposals here. Instead, we focus on the line of work centered around the module
system of Standard ML (SML) [MTHM97], which primarily aims at setting up
a theoretical foundation for modular programming based on type theories.

Type abstraction, which can be used to effectively isolate or localize changes
made to existing programs, has now become one of the most widely used tech-
niques in specifying and constructing large software systems [GHW85, Lis86].
In [MP88], a theoretical account of abstract types is given through the use of
existential types. While this account is largely satisfactory in explaining the fea-
tures of abstract types, it does not properly address the issue of type equality
involving abstract types. Motivated by problems with existential types in mod-
eling abstract types, MacQueen [Mac86] proposed an alternative approach in
which abstract types are modeled as a form of dependent sum types, taking
into account the issue of type equality involving abstract types. However, in
the presence of such dependent sum types, type equality is greatly complicated,
and it becomes even more complicated when features such as polymorphism,
generativity, higher-order modules and modules as first-class values need to be
accommodated. As a compromise between existential types and dependent sum
types, translucent sum types [HL94, Lil97] and manifest types [Ler94] were pro-
posed to better address the issue of hiding type information. There is already
a considerable amount of work that studies how these new forms of types can
be used to address generativity and applicativity, higher-order modules, recur-
sive modules, modules as first-class values, etc. [Ler95, DCH03, CHP99, Rus01].
There is also work on expressing modular structures in SML and Haskell with
only existential types [Rus00, SJ02].

Though the notion of conditional type equality seems surprisingly simple,
it had not been recognized in clear terms until recently. We first encountered
the notion of conditional type equality in a recent study on guarded recursive
datatypes [XCC03].3 This notion has since been generalized in the framework
Applied Type System [Xi04].
3 In Dependent ML (DML) [XP99, Xi98], the type equality may also be classified

as conditional type equality. However, the conditions involved are on type indexes
rather than on types as in the case of guarded recursive datatypes.

348 H. Xi

The major contribution of the paper lies in the recognition and the formaliza-
tion of a simple and clean theoretic account of abstract types that is based on
conditional type equality. In particular, we make no use of existentially quantified
types in this account of abstract types, thus completely avoiding the well-known
problems associated with the use of existentially quantified types in modeling
abstract types. We claim that the presented approach to hiding type information
through conditional equality is simple as well as general and it opens a promis-
ing avenue for the design and implementation of module systems in support of
large-scale programming. As for a proof of concept, we point out that the module
system of ATS, which is largely based on λ⊃

2 +, is already functioning.4

Acknowledgments. The author acknowledges some discussion with Chiyan
Chen, Assaf Kfoury, Likai Liu, Mark Sheldon and Franklyn Turbak on the sub-
ject of the paper. The research conducted in this paper has been supported in
part by NSF grants no. CCR-0229480 and no. CCF-0702665.

References

[CDJ+89] Cardelli, L., Donahue, J., Jordan, M., Kalso, B., Nelson, G.: The Modula-
3 Type System. In: Proceedings of 16th Annual ACM Symposium on
Principles of Programming Languages (POPL 1989), Austin, TX, January
1989, pp. 202–212 (1989)

[CHP99] Crary, K., Harper, R., Puri, S.: What is a recursive module? In: SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI 1999), June 1999, pp. 56–63 (1999)

[CL90] Cardelli, L., Leroy, X.: Abstract Types and the Dot Notation. Technical
Report 56, DEC SRC (1990)

[DCH03] Dreyer, D., Crary, K., Harper, R.: A Type System for Higher-Order Mod-
ules. In: Proceedings of 30th Annual ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2003), New Orleans, LA,
January 2003, pp. 236–249 (2003)

[GHW85] Guttag, J.V., Horning, J.J., Wing, J.M.: The Larch Family of Specifica-
tion Languages. IEEE Software 2(5), 24–36 (1985)

[HL94] Harper, R.W., Lillibridge, M.: A type-theoretic approach to higher-order
modules with sharing. In: Proceedings of 21st Annual ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 1994), Port-
land, Oregon, pp. 123–137 (1994)

[Ler94] Leroy, X.: Manifest Types, Modules, and Separate Compilation. In: Pro-
ceeding of 21st Annual ACM Conference on Principles of Programming
lanugages (POPL 1994), Porland, OR (January 1994)

[Ler95] Leroy, X.: Aplicative functors and fully transparent higher-order modules.
In: Proceedings of 22nd ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 1995), San Francisco, CA, January 1995,
pp. 142–153 (1995)

4 The current implementation of ATS is named Anairiats, which is documented and
freely accessible to the public [Xi].

A Simple and General Theoretical Account for Abstract Types 349

[Lil97] Lillibridge, M.: Translucent Sums: A Foundation for Higher-Order Module
Systems. Ph. D. dissertation, Carnegie Mellon University (May 1997)

[Lis86] Liskov, B.: Abstraction and Specification in Program Development. MIT
Press, Cambridge (1986)

[Mac86] MacQueen, D.B.: Using Dependent Types to Express Modular Structure.
In: Proceeding of 13th Annual ACM Symposium on Principles of Pro-
gramming Languages, St. Petersburg Beach, FL, pp. 277–286 (1986)

[MP85] Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. In:
Proceedings of 12th Annual ACM Symposium on Principles of Program-
ming Languages (POPL 1985), New Orleans, Louisiana, pp. 37–51 (1985)

[MP88] Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM
Transactions on Programming Languages and Systems 10(3), 470–502
(1988)

[MTHM97] Milner, R., Tofte, M., Harper, R.W., MacQueen, D.: The Definition of
Standard ML (Revised). MIT Press, Cambridge (1997)

[Rus00] Russo, C.V.: First-Class Structures for Standard ML. Nordic Journal of
Computing 7(4), 348–374 (2000)

[Rus01] Russo, C.V.: Recursive Structures for Standard ML. In: Proceedings of
International Conference on Functional Programming, September 2001,
pp. 50–61 (2001)

[SG90] Sheldon, M.A., Gifford, D.K.: Static Dependent Types for First-Class
Modules. In: Proceedings of ACM Conference on Lisp and Functional
Programming, pp. 20–29 (1990)

[SJ02] Shields, M., Jones, S.P.: First-class modules for haskell. In: Proceedings of
9th International Workshop on Foundations of ObjectOriented Languages
(FOOL 9), Portland, OR (January 2002)

[Wir82] Wirth, N.: Programming with Modula-2. Texts and Monographs in Com-
puter Science. Springer, Heidelberg (1982)

[XCC03] Xi, H., Chen, C., Chen, G.: Guarded Recursive Datatype Constructors.
In: Proceedings of the 30th ACM SIGPLAN Symposium on Principles
of Programming Languages, New Orleans, LA, pp. 224–235. ACM press,
New York (2003)

[Xi] Xi, H.: The ATS Programming Language, http://www.ats-lang.org/
[Xi98] Xi, H.: Dependent Types in Practical Programming. PhD thesis, Carnegie

Mellon University (1998), viii+181 pp. pp. viii+189,
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps

[Xi04] Xi, H.: Applied Type System (extended abstract). In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 394–408.
Springer, Heidelberg (2004)

[XP99] Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In:
Proceedings of 26th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pp. 214–227. ACM Press, San Antonio (1999)

http://www.ats-lang.org/
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps

Author Index

Almeida, Diego R. 54
Alves, Everton L.G. 54
Andrade, Wilkerson L. 37, 54

Becker, Leandro Buss 170
Bjørner, Nikolaj 23
Blanc, Nicolas 1
Bodeveix, Jean-Paul 170
Borba, Paulo 204
Butler, Michael 134
Butterfield, Andrew 70

Capretta, Venanzio 84

Damasceno, Adriana 118
Damchoom, Kriangsak 134
Déharbe, David 101, 282
de Moura, Leonardo 23

Farias, Adalberto 118
Farines, Jean-Marie 170
Ferreira, Miguel Alexandre 153
Filali, Mamoun 170
França, Ricardo Bedin 170
Freire, Elisabete 290
Freitas, Leo 186

Galvão, Stephenson 101
Gheyi, Rohit 204
Giro, Sergio 220

Helke, Steffen 266

Kaufman, Renata 236
Kim, Moonzoo 251
Kim, Yunho 251
Kleine, Moritz 266
Kroening, Daniel 1

Librelotto, Giovani Rubert 321
Lüttgen, Gerald 306

Machado, Patŕıcia D.L. 37, 54
Massoni, Tiago 204
Medeiros Jr., Valério 282
Monteiro, Lúıs 290
Moreira, Anamaria Martins 101
Mota, Alexandre 118, 236
Mühlberg, Jan Tobias 306

Ó Catháin, Art 70
Oliveira, José Nuno 153

Sabry, Amr 321
Sampaio, Augusto 204, 236

Uchitel, Sebastian 17
Uustalu, Tarmo 84

Vene, Varmo 84
Vizzotto, Juliana Kaizer 321

Xi, Hongwei 336

	Title Page
	Preface
	Organization
	Table of Contents
	Speeding Up Simulation of SystemC Using Model Checking
	Introduction
	Partial-Order Reduction for SystemC
	An Overview of the Concurrency Model of SystemC
	A Motivating Example
	Background on Partial-Order Reduction

	Implementation
	Overview of Scoot
	A Scheduler with Partial-Order Reduction
	Computing the Process Commutativity Conditions

	Experimental Evaluation
	The Running Example
	State Machines

	Conclusion
	References

	Partial Behaviour Modelling: Foundations for Incremental and Iterative Model-Based Software Engineering
	Introduction
	Partial Behaviour Models
	Conclusions
	References

	Satisfiability Modulo Theories: An Appetizer
	Introduction
	An Example

	Preliminaries
	Efficient Case-Analysis
	What Is a Theory?
	Theories

	SAT + Theory Solvers
	Combining Procedures
	Strongly Disjoint Theories
	Nelson-Oppen Combination

	Meta-procedures
	Conclusion
	References

	Interruption Testing of Reactive Systems
	Introduction
	Context
	Interruption Model
	Representing Interruptions with IOLTS Models
	Annotated Labelled Transition Systems
	Testing Conformance

	Interruption Test Case Generation and Selection
	Properties of the Interruption Test Cases
	Case Study
	Related Work
	Concluding Remarks
	References

	Test Case Generation of Embedded Real-Time Systems with Interruptions for FreeRTOS
	Introduction
	FreeRTOS
	Test Execution Model for FreeRTOS
	STSs with Interruptions and Time
	From UML 2 to STSs
	Case Study
	Concluding Remarks
	References

	Concurrent Models of Flash Memory Device Behaviour
	Introduction
	Background
	Host-Target Communication
	Flash Translation Layers
	Flash Memory Operations
	The ONFi State Machines

	Related Work
	The CSP Model
	CSP Data-Entry: A Challenge

	Model Analysis
	Validating the Model
	Verifying the FSMs
	Anomalies Uncovered

	Conclusions and Future Work
	Future Work

	References

	Corecursive Algebras: A Study of General Structured Corecursion
	Introduction
	Corecursive Algebras
	Antifounded Algebras
	Focusing Algebras
	Conclusion
	References

	Formalizing FreeRTOS: First Steps
	Introduction
	FreeRTOS
	Task Management
	Communication and Synchronization

	The B Method
	Overview of the Modeling
	Tasks
	Message Queues
	Increments in the Model

	The Functional Model
	Tasks
	Message Queues
	Taking Priorities into Account
	Comments on the Verification of the Models

	Conclusion and Future Work
	References

	A Mechanized Strategy for Safe Abstraction of CSP Specifications
	Introduction
	Background
	Communicating Sequential Processes
	Data Abstraction

	Mechanized Generation of Safe Abstraction
	General Idea
	Algorithm

	Related Work
	Conclusions and Future Work
	References

	Applying Event and Machine Decomposition to a Flash-Based Filestore in Event-B
	Introduction
	Event-B and Rodin
	Refinement Strategy
	Event Decomposition in Event-B
	Outline of Abstract File System
	Vertical Refinement
	Decomposing Event $writefile$
	Linking the Abstract File System to the Flash Interface Layer
	Abstract Flash Interfaces Layer
	Relating the File System Layer with the Flash Interface Layer

	Machine Decomposition
	Further Refinements
	Proofs
	Related Work
	Conclusion and Discussion
	References

	An Integrated Formal Methods Tool-Chain and Its Application to Verifying a File System Model
	Introduction
	Tool-Chain
	``All-in-One'' Strategy
	Relational Model of a (Simplified) File System
	From PF Diagrams to Alloy
	From Alloy to VDM++
	From VDM++ to HOL
	Discussion
	Related and Future Work
	Summary
	References

	Towards Safe Design of Synchronous Bus Protocols in Event-B
	Introduction
	Basic Bus Concepts
	The AMBA Protocol
	Issues with Synchronous Bus Protocols

	The B Method
	Event-B

	Synchronous Bus Protocols in Event-B
	The Synchronization Model
	Applying the Synchronization Model: The AMBA Protocol

	Discussion and Related Work
	Synchronous Protocol Modeling in Event-B
	Protocol Verification Issues

	Conclusion
	References

	Mechanising Data-Types for Kernel Design in Z
	Introduction
	Verified OS Kernels Pilot Project
	Process Table
	$PTAB$ Operations
	$PTAB$ Operations Preconditions

	Priority Queue
	$PRIOQ$ Operations
	$PRIOQ$ Operations Preconditions
	Priority Queue Properties

	Interesting Lessons
	Going Back to the Scheduler Design

	Conclusions
	References

	A Complete Set of Object Modeling Laws for Alloy
	Introduction
	Alloy
	Equivalence Notion
	Modeling Laws
	The Completeness Result
	Example
	Removing Syntactic Sugar Constructs
	Removing Top-Level Signatures
	Replacing Formulae
	Generalization
	A Different Reduction Strategy

	Related Work
	Conclusions
	References

	Undecidability Results for Distributed Probabilistic Systems
	Introduction
	Interleaved Probabilistic I/O Automata
	Distributed Schedulers
	Strongly Distributed Schedulers

	Undecidability
	Quantitative Results
	Qualitative Undecidability

	Impact and Related Work
	References

	Formalisation and Analysis of Objects as CSP Processes
	Introduction
	CSP-OZ through an Example
	CSP Patterns for Object-Orientation
	Polymorphism
	Dynamic Object Creation
	Object Values
	Pattern for the Object Lifecycle
	Delegation
	Delegation with Inheritance

	Applying the Patterns
	Conclusions
	References

	Concolic Testing of the Multi-sector Read Operation for Flash Memory File System
	Introduction
	Overview of Multi-sector Read Operation
	Overview of Sector Translation Layer (STL)
	Multi-sector Read Operation

	Overview of the Concolic Testing Approach
	Empirical Study on Concolic Testing MSR
	Testbed for the Experiments
	Experiments with a Constraint-Based Environment Model
	Experiments with an Explicit Environment Model

	Discussion
	Weaknesses of Concolic Testing
	Importance of an Environment Model
	Comparison with Model Checking
	Hard Characteristics of MSR for Concolic Testing

	Conclusion and Future Work
	References

	Low-Level Code Verification Based on CSP Models
	Introduction
	Structure of the Paper
	Brief Introduction to CSP
	Brief Introduction to LLVM

	Motivation: Relating CSP Models to Programs
	A Simple Concurrent Program
	Discussion: Modeling and Analyzing the Example with CSP
	Overview: Analyzing the Implementation with CSP

	Low-Level Verification with CSP
	The Platform-Specific Part
	The Domain-Specific Part

	Extracting a CSP Model from a Program
	Related Work
	Conclusions and Future Work
	References

	Formal Modelling of a Microcontroller Instruction Set in B
	Introduction
	Introduction to the B Method
	Model Structure and Basic Components
	Bit Representation and Manipulation
	Representation and Manipulation of Bit Vectors
	Modelling Bytes and Bit Vectors of Length 16
	Bit Vector Arithmetics
	Basics Data Types

	Description of the Z80 B Model
	Modelling Registers, Input and Output Ports and Instructions

	Proofs
	Related Works
	Conclusions
	References

	Defining Behaviours by Quasi-finality
	Introduction
	Quasi-final Coalgebras
	Quasi-final Transition Systems
	Traces
	Failures

	Quasi-final Coalgebras from the Final Sequence of a Functor
	The Final Sequence of a Functor
	Quasi-final Coalgebras Based on "7016Z
	Examples from Transition Systems

	Concluding Remarks
	References

	Verifying Compiled File System Code
	Introduction
	The Linux Virtual File System
	The SOCA Technique
	VFS Execution Environment and Properties
	Applying the SOCA Verifier to the VFS
	Related Work
	Conclusions and Future Work
	References

	Reasoning about General Quantum Programs over Mixed States
	Introduction
	General Quantum Computations
	The Quantum Arrow Calculus for Mixed States
	The Background
	The Calculus

	Reasoning about Quantum Programs
	The Equations
	Hadamard
	Generating Entangled Pairs
	Teleportation

	Related Work
	Conclusion
	References

	A Simple and General Theoretical Account for Abstract Types
	Introduction
	Formal Development
	Examples
	Related Work and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

