
Heterogeneous Gossip

Davide Frey2, Rachid Guerraoui1, Anne-Marie Kermarrec2, Boris Koldehofe3,
Martin Mogensen4, Maxime Monod1,�, and Vivien Quéma5

1 Ecole Polytechnique Fédérale de Lausanne
2 INRIA Rennes-Bretagne Atlantique

3 University of Stuttgart
4 University of Aarhus

5 CNRS

Abstract. Gossip-based information dissemination protocols are con-
sidered easy to deploy, scalable and resilient to network dynamics. Load-
balancing is inherent in these protocols as the dissemination work is
evenly spread among all nodes. Yet, large-scale distributed systems are
usually heterogeneous with respect to network capabilities such as band-
width. In practice, a blind load-balancing strategy might significantly
hamper the performance of the gossip dissemination.

This paper presents HEAP, HEterogeneity-Aware gossip Protocol,
where nodes dynamically adapt their contribution to the gossip dissemi-
nation according to their bandwidth capabilities. Using a continuous, itself
gossip-based, approximation of relative bandwidth capabilities, HEAP
dynamically leverages the most capable nodes by increasing their fanout,
while decreasing by the same proportion that of less capable nodes. HEAP
preserves the simple and proactive (churn adaptation) nature of gossip,
while significantly improving its effectiveness. We extensively evaluate
HEAP in the context of a video streaming application on a testbed of 270
PlanetLab nodes. Our results show that HEAP significantly improves the
quality of the streaming over standard homogeneous gossip protocols, es-
pecially when the stream rate is close to the average available bandwidth.

1 Introduction

Gossip protocols are especially appealing in the context of large-scale dynamic
systems. Initially introduced for maintaining replicated database systems [6],
they are particularly useful for effective dissemination [1].

In the context of decentralized live streaming, for instance, gossip protocols
[3, 18, 19] constitute an interesting alternative to classical mesh-based techniques
for large-scale dynamic systems. While efficient under steady state, mesh-based
solutions require sophisticated and sometimes expensive repair schemes to main-
tain possibly several dissemination paths in case of churn [17]. In the streaming

� Maxime Monod has been partially funded by the Swiss National Science Foundation
with grant 20021-113825.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 42–61, 2009.
c© IFIP International Federation for Information Processing 2009

Heterogeneous Gossip 43

context, churn might be caused by failures, overloads, leaves and joins (e.g., users
switching TV channels).

In a gossip protocol, each node periodically forwards every packet identifier
it received to a subset of nodes picked uniformly at random. The size of this
subset is called the fanout. Nodes subsequently request the packet whenever
necessary. As no particular structure needs to be maintained, there is no need
for a recovery protocol in case of churn, which is considered the norm rather
than the exception. Robustness stems from the proactive and random selection
of communication partners. This proactiveness is a major difference with respect
to mesh-based techniques, relying on a rather static neighborhood, which react to
churn by having every node select new neighbors after noticing malfunctions [17,
35]. In a sense, gossip-based protocols build extreme forms of mesh-based overlay
networks with a continuously changing set of neighbors, and an ultimate splitting
procedure where each packet is potentially disseminated through continuously
changing dissemination paths, as opposed to explicit substream creation leading
to multi-trees [4, 17, 35].

Gossip in action. Consider a stream of 600kbps produced by a single source and
intended to be disseminated to 270 PlanetLab nodes in a decentralized manner.
Our preliminary experiments revealed the difficulty of disseminating through a
static tree without any reconstruction even among 30 nodes. The static nature
of the tree exacerbates the loss rate of UDP packets particularly in the pres-
ence of heavily loaded nodes, which may see their upload capabilities change by
20% from one experiment to the other. One might consider sophisticated reac-
tive mechanisms to cope with the network dynamics but these are particularly
challenging in highly dynamic environments.

Instead, we could obtain a good quality stream using a simple gossip protocol
over all 270 PlanetLab nodes. Figure 1 reports on our experiments (which we

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

99% delivery

Fig. 1. Without constraining upload capabilities, a gossip with fanout 7 provides a
stream of high quality and low lag to a large number of PlanetLab nodes

44 D. Frey et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

f=7 dist1
f=15 dist1
f=20 dist1
f=25 dist1
f=30 dist1

f=7 dist2
f=15 dist2
f=20 dist2

Fig. 2. When constraining the upload capability in a heterogeneous manner (with
an average upload capability of 691kbps – dist1), the stream lag of all nodes signifi-
cantly deteriorates. Adjusting the fanout (e.g., between 15 and 20) slightly improves
the stream lag but a blind fanout increase (e.g., if it goes over 25) degrades perfor-
mance. Moreover, the good fanout range in this case (fanouts of 15, 20 in dist1) reveals
bad with a different distribution (uniform distribution - dist2) having the same average
upload capability. With dist2, a fanout of 7 is optimal and much more effective than
fanouts of 15 and 20.

detail later in the paper) by conveying a high average delivery ratio (the number
of stream packets received over the total number of stream packets produced),
and a low stream lag (the difference between the time the stream is produced at
the source and the time it is viewed): 50% of the nodes receive 99% of the stream
with a stream lag of 1.3 s, 75% of the nodes receive the same amount after 2.4 s
and 90% after 21 s. The fanout considered here is 7. In a system of size n, and
assuming a uniformly random peer selection, a fanout of ln(n) is the theoretical
threshold between a non-connected and a well-connected communication graph.
By overestimating ln(n), theory [15] and experiences [9] reveal that the graph
gets fully connected with high probability.

However, this simple experiment, as well as the encouraging ones of [19, 18],
rely on all nodes having uniform and high upload capabilities. Assuming nodes
with limited and different upload capabilities (e.g., users having heterogeneous
bandwidths), the situation is less favorable as shown in Figure 2. Several fanouts
are tested given two upload capability distributions having the same average of
691kbps. Dist1 contains three classes of nodes with 512 kbps, 768kbps, and
3Mbps of upload bandwidth (more details about the distributions are provided
in Section 3), while dist2 is a uniform distribution.

A case for adaptation. A major reason for the mixed behavior of gossip in a
heterogeneous setting is its homogeneous and load-balanced nature. All nodes
are supposed to disseminate the same number of messages for they rely on the
same fanout and dissemination period. However, this uniform distribution of load

Heterogeneous Gossip 45

ignores the intrinsic heterogeneous nature of large-scale distributed systems
where nodes may exhibit significant differences in their capabilities. Interest-
ingly, and as conveyed by our experiments (and pointed out in [7]), a gossip
protocol does indeed adapt to heterogeneity to a certain extent. Nodes with
high bandwidth gossip rapidly, get thus pulled more often and can indeed sus-
tain the overload to a certain extent. Nevertheless, as the bandwidth distribution
gets tighter (closer to the stream rate) and more skewed (rich nodes get richer
whereas poor nodes get poorer), there is a limit on the adaptation that tradi-
tional homogeneous gossip can achieve.

Heterogeneous gossip. Echoing [2,7, 17,27,29, 30], we recognize the need to ac-
count for the heterogeneity between peers in order to achieve a more effective
dissemination. This poses important technical challenges in the context of a
gossip-based streaming application. First, an effective dissemination protocol
needs to dynamically track and reflect the changes of available bandwidth over
time. Second, the robustness of gossip protocols heavily relies on the proactive
and uniform random selection of target peers: biasing this selection could im-
pact the average quality of dissemination and the robustness to churn. Finally,
gossip is simple and thus easy to deploy and maintain; sophisticated extensions
that account for heterogeneity could improve the quality of the stream, but they
would render the protocol more complex and thus less appealing.

We propose a new gossip protocol, called HEAP (HEterogeneity-Aware Gossip
Protocol), whose simple design follows from two observations. First, mathemati-
cal results on epidemics and empirical evaluations of gossip protocols convey the
fact that the robustness of the dissemination is ensured as long as the average
of all fanouts is in the order of ln(n) [15] (assuming the source has at least a
fanout of 1). This is crucial because the fanout is an obvious knob to adapt the
contribution of a node and account for heterogeneity. A node with an increased

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

99% delivery

Fig. 3. With the same constrained distribution (dist1), HEAP significantly improves
performance over a homogeneous gossip

46 D. Frey et al.

(resp. decreased) fanout will send more (resp. less) information about the pack-
ets it can provide and in turn will be pulled more (resp. less) often. Second,
using gossip dissemination, one can implement an aggregation protocol [13,28]
to continuously provide every node with a pretty accurate approximation of its
relative bandwidth capability. Using such a protocol, HEAP dynamically lever-
ages the most capable nodes by increasing their fanouts, while decreasing by the
same proportion those of less capable nodes. HEAP preserves the simplicity and
proactive (churn adaptation) nature of traditional (homogeneous) gossip, while
significantly improving its effectiveness.

Applying HEAP in the PlanetLab context of Figure 2, i.e., assuming a hetero-
geneous bandwidth distribution exemplifying users using ADSL, we significantly
improve streaming delay and quality (Figure 3). With an average fanout of 7,
50% of nodes receive 99% of the stream with 13.3 s lag, 75% with 14.1 s, and
90% with 19.5 s. More generally, we report on an exhaustive evaluation which
shows that, when compared to a standard gossip, HEAP: (i) better matches
the contributions of nodes to their bandwidth capabilities; (ii) enables a better
usage of the overall bandwidth thus significantly improving the stream quality
of all nodes and; (iii) significantly improves the resilience to churn.

Summary of contributions. We present HEAP, an information dissemination
protocol that preserves the simplicity of standard gossip protocols, while sig-
nificantly outperforming them with respect to the efficiency of streaming and
resilience to churn. We also report on a full implementation of a P2P video
streaming application using a proactive gossip protocol over a 270 PlanetLab
node testbed with constrained and heterogeneous bandwidth distribution.

Roadmap. The rest of the paper is organized as follows. Section 2 gives some
background on gossip-based content dissemination protocols and describes HEAP
in detail. We report on the results of our experiments on PlanetLab in Section 3.
Related work is covered in Section 4. Concluding remarks are given in Section 5.

2 HEAP

This section presents HEAP, HEterogeneity-Aware Gossip Protocol, a gossip pro-
tocol for collaborative content distribution in heterogeneous environments. We
start this section by giving a short background on gossip-based content dissem-
ination.

2.1 Background: Gossip-Based Content Dissemination

Consider a set of n nodes, and an event e to be disseminated in the system: e typ-
ically contains a series of application blocks (e.g., stream packets in a streaming
application), as well as control information. Gossip-based content dissemination
generally follows a three-phase push-request-push protocol as depicted in Al-
gorithm 1. The use of a three-phase mechanism is essential when dealing with

Heterogeneous Gossip 47

high payloads in that it guarantees that a packet may never be delivered more
than once to the same node, thus causing the average data rate induced by the
protocol to be less than or equal to the stream rate.

The protocol operates as follows. Each node periodically contacts a fixed
number, f (fanout), of nodes chosen according to the selectNodes() function and
proposes a set of event identifiers (ids) to them with a [Propose] message (line 5
for the broadcaster and 6 for other nodes). A node receiving such a message pulls
the content it has not yet retrieved by sending a [Request] to the proposing peer.
The peer being pulled sends back the actual content (the payload) in a [Serve]
message that contains the requested events. This procedure is then iterated
according to an infect-and-die model [8]. Each node proposes each event id,
exactly once, to f other peers, thus avoiding the need to deal with time-to-
live.

Algorithm 1. Standard gossip protocol
Initialization:
1: f := ln(n) + c {f is the average fanout}
2: eToPropose := eDelivered := eRequested := ∅

3: start(GossipTimer(gossipPeriod))

Phase 1 – Push event ids

procedure publish(e) is
4: deliverEvent(e)
5: gossip({e.id})

upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(eToPropose)

7: eToPropose := ∅ {Infect and die}

Phase 2 – Request events

upon receive [Propose, eProposed] do
8: wantedEvents := ∅

9: for all e.id ∈ eProposed do
10: if (e.id /∈ eRequested) then
11: wantedEvents := wantedEvents ∪ e.id
12: eRequested := eRequested ∪ wantedEvents
13: reply [Request, wantedEvents]

Phase 3 – Push payload

upon receive [Request, wantedEvents] do
14: askedEvents := ∅

15: for all e.id ∈ wantedEvents do
16: askedEvents := askedEvents ∪ event(e.id)
17: reply [Serve, askedEvents]

upon receive [Serve, events] do
18: for all e ∈ events do
19: if (e /∈ eDelivered) then
20: eToPropose := eToPropose ∪ e.id
21: eDelivered := eDelivered ∪ e
22: deliver(e)

Miscellaneous

function selectNodes(f) returns set of nodes is
23: return f uniformly random nodes

procedure gossip(event ids) is
24: commPartners := selectNodes(getFanout())
25: for all p ∈ commPartners do
26: send(p) [Propose, event ids]

function getFanout() returns Integer is
27: return the fanout of gossip dissemination

As discussed in the introduction, standard gossip-based content dissemina-
tion works very well in unconstrained or otherwise homogeneous network
environments, in which the load-balancing features of gossip provide the great-
est benefit. Nevertheless, it becomes inefficient in constrained [9] and hetero-
geneous scenarios. In these, the standard homogeneous gossip described in
Algorithm 1 stabilizes at a state in which low-capability nodes saturate their
bandwidth, while high-capability ones are underutilized. This results in con-
gested queues and increases the transmission delays introduced by low-capability
nodes, impacting the overall performance experienced by all the nodes in
the system.

48 D. Frey et al.

2.2 Adapting Contribution

Algorithm 2. HEAP protocol details
Initialization:
1: capabilities := ∅

2: b := own available bandwidth
3: stdGossip.Initialization
4: start(AggregationTimer(aggPeriod))

Fanout Adaptation

function getFanout() returns Integer is

5: return b/b · f

Retransmission

upon receive [Propose, eProposed] do
6: stdGossip.receive [Propose, eProposed]
7: start(RetTimer(retPeriod, eProposed))

upon receive [Serve, events] do
8: stdGossip.receive [Serve, events]
9: cancel(RetTimer(retPeriod, events))

upon (RetTimer mod retPeriod) = 0 do
10: receive [Propose, eProposed]

Aggregation Protocol

upon (AggregationTimer mod aggPeriod) = 0 do

11: commPartners := selectNodes(f)
12: for all p ∈ commPartners do
13: fresh = 10 freshest values from capabilities
14: send(p) [Aggregation, fresh]

upon receive [Aggregation, otherCap] do
15: merge otherCap into capabilities
16: update b using capabilities

HEAP addresses the limitations of
standard gossip by preventing conges-
tion at low-capability nodes through
the adaptation of each node’s work-
load. Consider two nodes A and B with
upload capabilities bA and bB. HEAP
adapts the contribution of each node
to its capability and thus causes the
upload rate resulting from node A’s
[Serve] messages to be bA/bB times as
large as that of node B.

Key to HEAP’s adaptation mecha-
nism is the fact that, in a non-congested
setting, each [Propose] message has
roughly the same probability, p, to be
accepted (thereby generating a subse-
quent [Serve] message) regardless of
the bandwidth capability of its sender1.
HEAP exploits this fact to dynamically
adapt the gossip fanouts of nodes so
that their contribution to the stream
delivery remains proportional to their
available bandwidth. Specifically, be-

cause the average number of proposals accepted in each gossip round can be
computed as p · f , f being the fanout of the proposing node, we can derive that
the fanout fA of node A should be bA/bB times the fanout of node B.

fA =
bA

bB
· fB (1)

Preserving reliable dissemination. Interestingly, Equation (1) shows that deter-
mining the ratios between the fanouts of nodes is enough to predict their average
contribution as the three phases of Algorithm 1 guarantee that the average up-
load rate2 over all nodes is less than or equal to the stream rate. However, simply
setting the fanouts of nodes to arbitrary values that satisfy Equation 1 may lead
to undesired consequences. On the one hand, a low average fanout may hamper
the ability of a gossip dissemination to reach all nodes. On the other hand, a
large average fanout may unnecessarily increase the overhead resulting from the
dissemination of [Propose] messages.

HEAP strives to avoid these two extremes by relying on theoretical results
showing that the reliability of gossip dissemination is actually preserved as long
1 In reality, proposals from low-capability nodes incur in higher transmission delays

and thus have a slightly lower probability of acceptance, but this effect is negligible
when dealing with small [Propose] messages in a non-congested setting.

2 Not counting the overhead of [Propose] and other messages.

Heterogeneous Gossip 49

as a fanout value of f = ln(n) + c, n being the size of the network, is ensured
on average [15], regardless of the actual fanout distribution across nodes. To
achieve this, HEAP exploits a simple gossip-based aggregation protocol (see
Algorithm 2) which provides an estimate of the average upload capability b
of network nodes. A similar protocol can be used to continuously approximate
the size of the system [13], but, for simplicity, we consider here that the initial
fanout is computed knowing the system size in advance. The aggregation protocol
works by having each node periodically gossip its own capability and the freshest
received capabilities. We assume a node’s capability is either (i) a maximal
capability given by the user at the application level (as the maximal outgoing
bandwidth the user wants to give to the streaming application) or (ii) computed,
when joining, by a simple heuristic to discover the nodes upload capability, e.g.,
starting with a very low-capability while trying to upload as much as possible in
order to reach its maximal capability as proposed in [34]. Each node aggregates
the received values and computes an estimate of the overall average capability.
Based on this estimate, each node, pi, regulates its fanout, fpi , according to the
ratio between its own and the average capability, i.e., fpi = f · bpi/b.

3 Evaluation

We report in this section on our evaluation of HEAP in the context of a video
streaming application on a testbed of ∼270 PlanetLab nodes. This includes a
head-to-head comparison with a standard gossip protocol. In short, we show that,
when compared to a standard gossip protocol: (i) HEAP adapts the actual load
of each node to its bandwidth capability (Section 3.3), (ii) HEAP consistently
improves the streaming quality of all nodes (Section 3.4), (iii) HEAP improves
the stream lag from 40% to 60% over standard gossip (Section 3.5), (iv) HEAP
resists to extreme churn situations where standard gossip collapses (Section 3.6).
Before diving into describing these results in more details, we first describe our
experimental setup.

3.1 Experimental Setup

Video streaming application. We generate stream packets of 1316 bytes at a
stream rate of 551kbps on average. Every window is composed of 9 FEC-coded
packets and 101 buffered stream packets resulting in an effective rate of 600kbps.

Gossiping parameters. The gossiping period of each node is set to 200ms, which
leads to grouping an average of 11.26 packet ids per [Propose]. The fanout is set
to 7 for all nodes in the standard gossip protocol, while in HEAP, the average
fanout is 7 across all nodes. The aggregation protocol gossips the 10 freshest
local capabilities every 200ms, costing around 1KB/s and is thus completely
marginal compared to the stream rate.

50 D. Frey et al.

Message retransmission and bandwidth throttling. Given the random nature of its
gossip-based dissemination process, HEAP does not attempt to establish stable
TCP connections, but rather combines UDP datagrams with a retransmission
mechanism. To further reduce message losses, HEAP also exploits a bandwidth
throttling mechanism. This guarantees that nodes never attempt to send bursts
of data that exceed their available bandwidth. Excess packets resulting from
bursts are queued at the application level, and sent as soon as there is enough
available bandwidth. To guarantee a fair comparison in our evaluation, we also
integrated both retransmission and bandwidth throttling into the standard gos-
sip protocol.

PlanetLab and network capabilities. PlanetLab nodes, located mostly in re-
search and educational institutions, benefit from high bandwidth capabilities.
As such, PlanetLab is not representative of a typical collaborative peer-to-peer
system [26], in which most nodes would be sitting behind ADSL connection,
with an asymmetric bandwidth and limited upload/download capabilities. We
thus artificially limit the upload capability of nodes so that they match the
bandwidth usually available for home users. We focus on upload as it is a well-
known fact that download capabilities are much higher than upload ones. As we
rely on UDP, we implemented, at the application level, an upload rate limiter
that queues packets which are about to cross the bandwidth limit. In practice,
nodes never exceed their given upload capability, but some nodes (between 5%
and 7%), contribute way less than their capability, because of high CPU load
and/or high bandwidth demand by other PlanetLab experiments. In other words,
the average used capability of nodes is always less than or equal to their given
upload limit.

We consider three different distributions of upload capabilities, depicted in
Table 1 and inspired from the distributions used in [35]. The capability supply
ratio (CSR, as defined in [35]) is the ratio of the average upload bandwidth
over the stream rate. We only consider settings in which the global available
bandwidth is enough to sustain the stream rate. Yet the lower the capability
ratio, the closer we stand to that limit. The ms-691 distribution was referred to
as dist1 in Section 1.

Table 1. The reference distributions ref-691 and ref-724, and the more skewed distri-
bution ms-691

Fraction of nodes
Name CSR Average 2Mbps 768 kbps 256 kbps
ref-691 1.15 691 kbps 0.1 0.5 0.4
ref-724 1.20 724 kbps 0.15 0.39 0.46
Name CSR Average 3Mbps 1Mbps 512 kbps
ms-691 1.15 691 kbps 0.05 0.1 0.85

Heterogeneous Gossip 51

Each distribution is split into three classes of nodes. The skewness of an upload
distribution is characterized by the various percentages of each class of nodes:
in the most skewed distribution we consider (ms-691), most nodes are in the
poorest category and only 15% of nodes have an upload capability higher than
the stream rate.

3.2 Evaluation Metrics

In the following, we first show that HEAP adapts the contribution of nodes
according to their upload capability, and then we show that HEAP provides users
with a good stream. We consider two metrics. The first is the stream lag and is
defined as the difference between the time the stream was published by the source
and the time it is actually delivered to the player on the nodes.3 The second is the
stream quality, which represents the percentage of the stream that is viewable.
A FEC-encoded window is jittered as soon as it does not contain enough packets
(i.e., at least 101) to be fully decoded. A X% jittered stream therefore means
that X% of all the windows were jittered. Note that a jittered window does not
mean that the window is entirely lost. Because we use systematic coding, a node
may still receive 100 out of the 101 original stream packets, resulting in a 99%
delivery ratio in a given window. We therefore also assess the quality of the
jittered windows by giving the average delivery ratio in all jittered windows.

3.3 Adaptation to Heterogeneous Upload Capabilities

We considered all three configurations. In ref-691, ref-724 and ms-691, resp.
60%, 54% and 15% of the nodes have an available bandwidth higher than the
one required on average for the stream rate. As we observed similar results in
ref-691 and ref-724, we only report on ref-691 in Figure 4a. Results on ms-691
are reported on Figure 4b.

Figure 4a depicts the breakdown of the contributions among the three classes
of nodes. For example, the striped bar for standard gossip means that nodes hav-
ing an upload capability of 768kbps use 97.17 % of their available bandwidth. It
is interesting to observe that nodes contribute somewhat proportionally to their
upload capabilities even in standard gossip. This is because of the correlation
between upload capability and latency: packet ids sent by high-capability nodes
are received before those sent by lower-capability ones. Consequently, the for-
mer are requested first and serve the stream to more nodes than the latter. In
addition, nodes with low capabilities are overloaded faster and therefore natu-
rally serve fewer nodes (either because they are slower or because they are sub-
ject to more packet drops). Yet, despite this natural self-adaptation, we observe
that high-capability nodes are underutilized in standard gossip. To the contrary,
HEAP homogeneously balances the load on all nodes by correctly adapting their
3 A different and complementary notion, startup delay, is the time a node takes to

buffer the received packets until they are sent to the video player. Note that in a
gossip protocol like HEAP the startup delay of all nodes is similar because of the
unstructured and dynamic nature of gossip.

52 D. Frey et al.

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

Standard-Gossip HEAP

256kbps

768kbps

2Mbps

Average Bandwidth Usage by Bandwidth Class

10
0%

97
.1

7%

69
.8

1%

83
.5

9%

92
.5

8%

90.63%256kbps
768kbps

2Mbps

(a) ref-691

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

2.5Mbps

3Mbps

Standard-Gossip HEAP

512kbps

1Mbps

3Mbps

Average Bandwidth Usage by Bandwidth Class

99
.8

9%

91
.5

6%

48
.4

4%

94
.3

7%

90
.5

8%

87.56%
512kbps

1Mbps
3Mbps

(b) ms-691

Fig. 4. Bandwidth consumption

gossip fanout: all nodes approximately consume 90% of their bandwidth. This
highlights how the bandwidth consumption of standard gossip and HEAP on
Figure 4a are caused by opposite reasons: congestion of low-capability nodes in
standard gossip and fanout adaptation, which prevents congestion, in HEAP.

Figure 4b conveys the limits of the self-adaptation properties of standard
gossip with an upload distribution in which only 15% of the nodes have an
upload capability higher than the stream rate (ms-691). We observe that with
standard gossip, the 5% nodes with high capabilities only use 48.44% of their
bandwidth because their limited fanout does not allow them to serve more nodes.
In HEAP, on the other hand, the 5% high-capability nodes can serve with up to
87.56% of their bandwidth, lowering the congestion of the low-capability nodes
and providing much better performance than standard gossip in terms of quality
as we show in next section.

3.4 Stream Quality

Our next experiment compares the percentages of jitter-free windows received
by nodes in the three considered scenarios. Results are depicted in Figures 5, 6a
and 6b. For instance, the black bar in Figure 5 for standard gossip indicates that
nodes with low capabilities in ref-691 have only 18% of the windows that are
not jittered (considering packets received with a stream lag of up to 10 s.). The
same figure also shows that HEAP significantly improves this value, with low-
capability nodes receiving more than 90% of jitter-free windows. This reflects
the fact that HEAP allows high-capability nodes to assist low-capability ones.
Results in Figure 6a are even more dramatic: high-capability nodes receive less
than 33% of jitter-free windows in standard gossip, whereas all nodes receive
more than 95% of jitter-free windows with HEAP.

Figure 6b clearly conveys the collaborative nature of HEAP when the global
available bandwidth is higher (ref-724). The whole system benefits from the fact
that nodes contribute according to their upload capability. For instance, the

Heterogeneous Gossip 53

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

Fig. 5. Stream Quality (ref-691)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

512kbps
1Mbps
3Mbps

(a) ms-691

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

(b) ref-724

Fig. 6. Stream quality by capability class

number of jitter-free windows that low-capability nodes obtain increases from
47% for standard gossip to 93% for HEAP. These results are complemented by
Table 2, which presents the average delivery ratio in the jittered windows for
both protocols, for each class of nodes in the three considered distributions.
Again, results show that HEAP is able to provide good performance to nodes
regardless of their capability classes. It should be noted, however, that the table
provides results only for the windows that are jittered, which are a lot more in
standard gossip than in HEAP. This explains the seemingly bad performance of
HEAP in a few cases such as for high-bandwidth nodes in ref-724.

Figure 7 conveys the cumulative distribution of the nodes that view the stream
as a function of the percentage of jitter. For instance, the point (x = 0.1, y = 85)
on the HEAP - 10 s lag curve indicates that 85% of the nodes experience a jitter
that is less than or equal to 10%. Note that in this figure, we do not differ-
entiate between capability classes. We consider standard gossip and HEAP in
two settings: offline and with 10 s lag. We present offline results in order to
show that, with standard gossip, nodes eventually receive the stream. However,

54 D. Frey et al.

Table 2. Average delivery rates in windows that cannot be fully decoded

Standard gossip HEAP
upload capability 256 kbps 768 kbps 2 Mbps 256 kbps 768 kbps 2Mbps

ref-691 63.4% 87.1% 89.3% 80.4% 77.1% 89.8%
ref-724 75.6% 88.6% 89.6% 87.9% 87.7% 64.4%

upload capability 512 kbps 1Mbps 3 Mbps 512 kbps 1 Mbps 3Mbps
ms-691 42.8% 56.5% 64.5% 83.7% 80.7% 90.9%

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Percentage of jitter

Cumulative distribution of nodes as a function of the experienced jitter

standard gossip - 10s stream lag
standard gossip - offline viewing

HEAP - 10s stream lag
HEAP - offline viewing

Fig. 7. Cumulative distribution of experienced jitter (ref-691). With HEAP and a
stream lag of 10 s, 93% of the nodes experience less than 10% jitter.

with a 10 s lag, standard gossip achieves very poor performance: most win-
dows are jittered. In contrast, HEAP achieves very good performance even with
a 10 s lag.

3.5 Stream Lag

Next, we compare the stream lag required by HEAP and standard gossip to
obtain a non-jittered stream. We report the results for ref-691 and ms-691 on
Figures 8a and 8b, respectively. In both cases, HEAP drastically reduces the
stream lag for all capability classes. Moreover, as shown in Figure 8b, the positive
effect of HEAP significantly increases with the skewness of the distribution.

Figures 9a and 9b depict the cumulative distribution of nodes viewing the
stream as a function of the stream lag, without distinguishing capability classes.
We compare standard gossip and HEAP in two configurations: without jitter
and with less than 1% of jitter. Sporadically, some PlanetLab nodes seem tem-
porarily frozen, due to high CPU load and/or suffer excessive network problems
explaining why neither protocol is able to deliver the stream to 100% of the
nodes.4 Still, both plots show that HEAP consistently outperforms standard
gossip. For instance, in ref-691, HEAP requires 12 s to deliver the stream to 80%
of the nodes without jitter, whereas standard gossip requires 26.6 s.
4 Note that when running simulations without messages loss, 100% of the nodes re-

ceived the full stream.

Heterogeneous Gossip 55

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Standard-Gossip HEAP

S
tr

ea
m

 L
ag

 (
s)

Average stream lag to obtain a jitter-free stream

256kbps
768kbps

2Mbps

(a) ref-691

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Standard-Gossip HEAP

S
tr

ea
m

 L
ag

 (
s)

Average stream lag to obtain a jitter-free stream

512kbps
1Mbps
3Mbps

(b) ms-691

Fig. 8. Stream lag by capability class

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

standard gossip - no jitter
standard gossip - max 1% jitter

HEAP - no jitter
HEAP - max 1% jitter

(a) ref-691

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

HEAP - no jitter
HEAP - max 1% jitter

standard gossip - no jitter
standard gossip - max 1% jitter

(b) ms-691

Fig. 9. Cumulative distribution of stream lag values

Table 3. Percentage of nodes receiving a jitter-free stream by capability class

Standard gossip HEAP
bandwidth 256 kbps 768 kbps 2Mbps 256 kbps 768 kbps 2 Mbps

ref-691 (10 s lag) 0 29.80 86.67 65.93 79.61 96.55
ref-724 (10 s lag) 0 67.52 97.73 61.95 74.34 93.02

bandwidth 512 kbps 1Mbps 3Mbps 512 kbps 1 Mbps 3 Mbps
ms-691 (20 s lag) 0 0 0 84.58 89.66 85.71

56 D. Frey et al.

Table 3 complements these results by showing the percentage of nodes that
can view a jitter-free stream for each bandwidth class and for the three de-
scribed distributions. In brief, the table shows that the percentage of nodes
receiving a clear stream increases as bandwidth capability increases for both
protocols. However, HEAP is able to improve the performance experienced by
poorer nodes without any significant decrease in the stream quality perceived
by high-bandwidth nodes.

3.6 Resilience to Catastrophic Failures

Finally, we assess HEAP’s resilience to churn in two catastrophic-failure sce-
narios where 20% and 50% respectively of the nodes fail simultaneously 60 s
after the beginning of the experiment. The experiments are based on the ref-691
bandwidth distribution, while the percentage of failing nodes is taken uniformly
at random from the set of all nodes, i.e., keeping the average capability supply
ratio unchanged. In addition, we configure the system so that surviving nodes
learn about the failure an average of 10 s after it happened.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
er

ce
nt

ag
e

of
 n

od
es

 r
ec

ei
vi

ng
 e

ac
h

w
in

do
w

Stream time

Failure of 20% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

(a) 20% of nodes crashing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
er

ce
nt

ag
e

of
 n

od
es

 r
ec

ei
vi

ng
 e

ac
h

w
in

do
w

Stream time

Failure of 50% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

(b) 50% of nodes crashing.

Fig. 10. Resilience in the presence of catastrophic failures

Figure 10a depicts, for each encoded window in the stream, the percentage
of nodes that are able to decode it completely, i.e., without any jitter. The plot
highlights once more the significant improvements provided by HEAP over stan-
dard gossip-based content dissemination. The solid line showing HEAP with a
12 s lag shows that the percentage of nodes decoding each window is always close
to 100% (or to the 80% of nodes remaining after the failure) except for the stream
packets generated immediately before the failure. The reason for the temporary
drop in performance is that the failure of a node causes the disappearance of
all the packets that it has delivered but not yet forwarded. Clearly, windows
generated after the failure are instead correctly decoded by almost all remaining
nodes. The plot also shows two additional lines depicting the significantly worse
performance achieved by standard gossip-based dissemination.

Heterogeneous Gossip 57

The number of nodes receiving the stream with a 20 s lag in standard gossip
is, in fact, much lower than that of those receiving it with only 12 s of lag in
HEAP. Only after 30 s of lag is standard gossip able to reach a performance that
is comparable to that of HEAP after 12 s. The figure also highlights that the
number of packets lost during the failure is higher in standard gossip than in
HEAP (the width of the drop is larger). The reason is that in standard gossip
upload queues tend to grow larger than in HEAP. Thus packets that are lost
as a result of nodes that crash span a longer time interval in standard gossip
than they do in HEAP. Finally, the continuous decrease in the 20 s-lag line for
standard gossip shows that the delay experienced by packets in standard gossip
increases as time elapses: this is a clear symptom of congestion that is instead
not present in HEAP.

Figure 10b provides similar information for a scenario in which 50% of the
nodes fail simultaneously. HEAP is still able to provide the stream to the re-
maining nodes with a lag of less than 12 s. Conversely, standard gossip achieves
mediocre performance after as many as 20 s of lag.

4 Related Work

When contrasting HEAP with related work, we distinguish two classes of
content-dissemination protocols: (i) proactive protocols that continuously change
the dissemination topology, namely gossip-based dissemination schemes, and (ii)
reactive protocols which only change the dissemination topology (possibly in a
random manner) in case of malfunctions (e.g., churn). This latter set includes
tree and mesh-based protocols.

4.1 Proactive Protocols

Several proactive protocols have incorporated some adaptation features, but
none does so by dynamically adapting the fanout of the nodes according to
their relative (bandwidth) capabilities. The protocol of [10] aims at increasing
the reliability of a spanning tree, by having each node in the tree dynamically
adapt its number of children using global knowledge about the reliability of
nodes and network links.

In Smart Gossip [16], nodes of a wireless network may decide not to gossip
depending on the number of nodes in their surrounding. In CREW [7], a three-
phase gossip protocol (similar to that of Section 2.1) is used to disseminate large
content in the context of file sharing. Nodes locally decide, when their bandwidth
is exhausted, to stop offering data.

In Gravitational Gossip [14], the fanin of nodes (i.e., the number of times
a node is chosen as a gossip target) may be adjusted based on the quality of
reception they expect. This is achieved by biasing the node selection such that
some nodes have a higher probability to be selected for gossip than others. The
technique is however static and focuses on the incoming traffic that nodes receive.
Because of the three-phase nature of HEAP, nodes have a payload fanin of 1.

58 D. Frey et al.

4.2 Reactive Protocols

Some tree- and mesh-based protocols do have nodes dynamically adapt their
neighborhood sets. However, such adaptation is only achieved after churn or
malfunctions, and as such it is not proactive as in HEAP, or in any gossip
dissemination protocol.

Multi-tree schemes such as Splitstream [4] and Chunkyspread [29] split
streams over diverse paths to enhance their reliability. This comes for free in
gossip protocols where the neighbors of a node continuously change. In a sense, a
gossip dissemination protocol dynamically provides different dissemination paths
for each stream packet, providing the ultimate splitting scheme. Chunkyspread
accounts for heterogeneity using the SwapLinks protocol [30]. Each node con-
tributes in proportion to its capacity and/or willingness to collaborate. This is
reflected by heterogeneous numbers of children across the nodes in the tree.

The approaches of [2, 27] propose a set of heuristics that account for band-
width heterogeneity (and node uptimes) in tree-based multicast protocols. This
leads to significant improvements in bandwidth usage. These protocols aggregate
global information about the implication of nodes across trees, by exchanging
messages along tree branches, in a way that relates to our capability aggregation
protocol.

Mesh-based systems [5,17,20,22,23,24,35] are appealing alternatives to tree-
based ones. They are similar to gossip in the sense that their topology is un-
structured. Some of those, namely the latest version of Coolstreaming [17] and
GridMedia [35] dynamically build multi-trees on top of the unstructured over-
lay when nodes perceive they are stably served by their neighbors. Typically,
every node has a view of its neighbors, from which it picks new partners if it
observes malfunctions. In the extreme case, a node has to seek for more or differ-
ent communication partners if none of its neighbors is operating properly. Not
surprisingly, it was shown in [17,20] that increasing the view size has a very pos-
itive effect on the streaming quality and is more robust in case of churn. Gossip
protocols like HEAP are extreme cases of these phenomena because the views
they rely on keep continuously changing.

Finally, [31] addresses the problem of building an optimized mesh in terms
of network proximity and latency, in the presence of guarded peers, i.e., peers
that are behind a NAT or firewall. This work led to mixing application level
multicast with IP multicast whenever possible [34]. The core of this research is
now commercially used in [33] but little is known on the dissemination protocol.
At the time the prototype was used for research, some nodes were fed by su-
per peers deployed on PlanetLab and it is reasonable to think that those super
peers are now replaced by dedicated servers in the commercial product. It is
for instance known that the dissemination protocol of PPLive [25] substantially
relies on a set of super peers and thus does not represent a purely decentralized
solution [12].

Heterogeneous Gossip 59

5 Concluding Remarks

This paper presents HEAP, a new gossip protocol which adapts the dissemi-
nation load of the nodes to account for their heterogeneity. HEAP preserves
the simplicity and proactive (churn adaptation) nature of traditional homoge-
neous gossip, while significantly improving its effectiveness. Experimental re-
sults with a video streaming application on PlanetLab convey the improve-
ment of HEAP over a standard homogeneous gossip protocol with respect to
stream quality, bandwidth usage and resilience to churn. When the stream rate
is close to the average available bandwidth, the improvement is even more sig-
nificant.

A natural way to further improve the quality of gossiping is to bias the
neighbor selection towards rich nodes in the early steps of dissemination. Our
early experiments reveal that this can be beneficial at the first step of the
dissemination (i.e., from the source) but reveals not trivial if performed in
later steps.

We considered bandwidth as the main heterogeneity factor, as it is indeed
crucial in the context of streaming. Other factors might reveal important in other
applications (e.g., node interests, available CPU). We believe HEAP could easily
be adapted to such factors by modifying the underlying aggregation protocol
accordingly. Also, we considered the choice of the fanout as the way to adjust
the load of the nodes. One might also explore the dynamic adaptation of the
gossip targets, the frequency of the dissemination or the memory size devoted
to the dissemination.

There are some limitations to adaptation and these provide interesting re-
search tracks to pursue. While adapting to heterogeneity, a natural behav-
ior is to elevate certain wealthy nodes to the rank of temporary superpeers,
which could potentially have an impact in case of failures. Moreover, an at-
tacker targeting highly capable nodes could degrade the overall performance
of the protocol. Likewise, the very fact that nodes advertise their capabili-
ties may trigger freeriding vocations, where nodes would pretend to be poor
in order not to contribute to the dissemination. We are working towards a
freerider-tracking protocol for gossip in order to detect and punish freeriding
behaviors [11].

Finally, since gossip targets are periodically changing and because sent
messages are very small, it is quite natural to transfer them via UDP. Neverthe-
less, doing so can have a negative impact on other applications competing for
bandwidth. In other words, our protocol is not TCP-friendly as it might simply
take priority over other applications, similar to most commercial voice-over-IP
protocols. Making protocols using multiple incoming streams TCP-friendly was
quite difficult [21, 32] assuming the serving nodes were static. Doing the same
for ever changing neighbors such as in a gossip is therefore a problem on its own
and needs further research.

60 D. Frey et al.

Acknowledgements

The authors would like to thank Ken Birman, Pascal Felber, Ali Ghodsi and
Dahlia Malkhi for useful comments.

References

1. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
Multicast. TOCS 17(2), 41–88 (1999)

2. Bishop, M., Rao, S., Sripanidulchai, K.: Considering Priority in Overlay Multicast
Protocols under Heterogeneous Environments. In: Proc. of INFOCOM (2006)

3. Bonald, T., Massoulié, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic Live
Streaming: Optimal Performance Trade-Offs. In: Proc. of SIGMETRICS (2008)

4. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-Bandwidth Multicast in Cooperative Environments. In: Proc.
of SOSP (2003)

5. Chu, Y.-H., Rao, S., Zhang, H.: A Case for End System Multicast. JSAC 20(8),
1456–1471 (2000)

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. In: Proc. of PODC (1987)

7. Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubramanian, N., Mehro-
tra, S.: CREW: A Gossip-based Flash-Dissemination System. In: Proc. of ICDCS
(2006)

8. Eugster, P., Guerraoui, R., Handurukande, S., Kermarrec, A.-M., Kouznetsov, P.:
Lightweight Probabilistic Broadcast. TOCS 21(4), 341–374 (2003)

9. Frey, D., Guerraoui, R., Kermarrec, A.-M., Monod, M., Quéma, V.: Stretching
Gossip with Live Streaming. In: Proc. of DSN (2009)

10. Garbinato, B., Pedone, F., Schmidt, R.: An Adaptive Algorithm for Efficient Mes-
sage Diffusion in Unreliable Environments. In: Proc. of DSN (2004)

11. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M.: On Tracking Freerid-
ers in Gossip Protocols. In: Proc. of P2P (2009)

12. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A Measurement Study of a Large-
Scale P2P IPTV System. TMM 9(8), 1672–1687 (2007)

13. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-Based Aggregation in Large Dy-
namic Networks. TOCS 23(3), 219–252 (2005)

14. Jenkins, K., Hopkinson, K., Birman, K.: A Gossip Protocol for Subgroup Multicast.
In: Proc. of ICDCS Workshops (2001)

15. Kermarrec, A.-M., Massoulié, L., Ganesh, A.: Probabilistic Reliable Dissemination
in Large-Scale Systems. TPDS 14(3), 248–258 (2003)

16. Kyasanur, P., Choudhury, R.R., Gupta, I.: Smart Gossip: An Adaptive Gossip-
based Broadcasting Service for Sensor Networks. In: Proc. of MASS (2006)

17. Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang, X.: Inside the New
Coolstreaming: Principles, Measurements and Performance Implications. In: Proc.
of INFOCOM (2008)

18. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson, L., Alvisi, L., Dahlin,
M.: FlightPath: Obedience vs Choice in Cooperative Services. In: Proc. of OSDI
(2008)

Heterogeneous Gossip 61

19. Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR
Gossip. In: Proc. of OSDI (2006)

20. Liang, C., Guo, Y., Liu, Y.: Is Random Scheduling Sufficient in P2P Video Stream-
ing? In: Proc. of ICDCS (2008)

21. Ma, L., Ooi, W.: Congestion Control in Distributed Media Streaming. In: Proc. of
INFOCOM (2007)

22. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer Receiver-drIven MEsh-based
Streaming. In: Proc. of INFOCOM (2007)

23. Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.: Chainsaw: Elimi-
nating Trees from Overlay Multicast. In: Castro, M., van Renesse, R. (eds.) IPTPS
2005. LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005)

24. Picconi, F., Massoulié, L.: Is There a Future for Mesh-Based live Video Streaming?
In: Proc. of P2P (2008)

25. PPLive, http://www.pplive.com
26. Spring, N., Peterson, L., Bavier, A., Pai, V.: Using Planetlab for Network Research:

Myths, Realities, and Best Practices. OSR 40(1), 17–24 (2006)
27. Sung, Y.-W., Bishop, M., Rao, S.: Enabling Contribution Awareness in an Overlay

Broadcasting System. CCR 36(4), 411–422 (2006)
28. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A Robust and Scalable

Technology for Distributed System Monitoring, Management, and Data Mining.
TOCS 21(2), 164–206 (2003)

29. Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous Un-
structured Tree-Based Peer to Peer Multicast. In: Proc. of ICNP (2006)

30. Vishnumurthy, V., Francis, P.: On Heterogeneous Overlay Construction and Ran-
dom Node Selection in Unstructured P2P Networks. In: Proc. of INFOCOM (2006)

31. Wang, W., Jin, C., Jamin, S.: Network Overlay Construction under Limited End-
to-End Reachability. In: Proc. of INFOCOM (2005)

32. Widmer, J., Handley, M.: Extending Equation-based Congestion Control to Mul-
ticast Applications. In: Proc. of SIGCOMM (2001)

33. Zattoo, http://www.zattoo.com
34. Zhang, B., Wang, W., Jamin, S., Massey, D., Zhang, L.: Universal IP multicast

delivery. Computer Networks 50(6), 781–806 (2006)
35. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the Power of Pull-Based

Streaming Protocol: Can We Do Better? JSAC 25(9), 1678–1694 (2007)

http://www.pplive.com
http://www.zattoo.com

	Heterogeneous Gossip
	Introduction
	HEAP
	Background: Gossip-Based Content Dissemination
	Adapting Contribution

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Adaptation to Heterogeneous Upload Capabilities
	Stream Quality
	Stream Lag
	Resilience to Catastrophic Failures

	Related Work
	Proactive Protocols
	Reactive Protocols

	Concluding Remarks
	References

