

Lecture Notes in Computer Science 5896
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean M. Bacon Brian F. Cooper (Eds.)

Middleware 2009

ACM/IFIP/USENIX
10th International Middleware Conference
Urbana, IL, USA, November 30 - December 4, 2009
Proceedings

13

Volume Editors

Jean M. Bacon
Computer Laboratory, University of Cambridge
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, UK
E-mail: jmb25@cl.cam.ac.uk

Brian F. Cooper
Yahoo! Research
4401 Great America Parkway, Santa Clara, CA 95054, USA
E-mail: cooperb@yahoo-inc.com

Library of Congress Control Number: 2009938872

CR Subject Classification (1998): D.4, B.1, D.2, C.2, C.2.4, D.1, D.2.5

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-10444-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10444-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12791705 06/3180 5 4 3 2 1 0

© IFIP International Federation for Information Processing 2009

DOI:

The original version of the book frontmatter was revised:
The copyright line was incorrect. The Erratum
to the book frontmatter is available at

10.1007/978-3-642-10445-9_22

http://dx.doi.org/10.1007/978-3-642-10445-9_22

Preface

This edition marks the tenth Middleware conference. The first conference was
held in the Lake District of England in 1998, and its genesis reflected a growing
realization that middleware systems were a unique breed of distributed system
requiring their own rigorous research and evaluation. Distributed systems had
been around for decades, and the Middleware conference itself resulted from the
combination of three previous conferences. But the attempt to build common
platforms for many different applications required a unique combination of high-
level abstraction and low-level optimization, and presented challenges different
from building a monolithic distributed system.

Since that first conference, the notion of what constitutes “middleware” has
changed somewhat, and the focus of research papers has changed with it. The
first edition focused heavily on distributed objects as a metaphor for building
systems, including six papers with “CORBA” or “ORB” in the title. In fol-
lowing years, the conference broadened to cover publish/subscribe messaging,
peer-to-peer systems, distributed databases, Web services, and automated man-
agement, among other topics. Innovative techniques and architectures surfaced
in workshops, and expanded to become themes of the main conference, while
changes in the industry and advances in other research areas helped to shape
research agendas. This tenth edition includes papers on next-generation plat-
forms (such as stream systems, pervasive systems and cloud systems), managing
enterprise data centers, and platforms for building other platforms, among oth-
ers. However, a common theme runs through all this diversity: the need to build
reliable, scalable, secure platforms to serve as the key ingredient for distributed
applications.

Again, this year, the program reflected a very strong set of contributions.
In the research track, 21 papers were selected from 110 submissions. The con-
ference’s industrial track reflected the ongoing need for researchers and practi-
tioners to work together to realize middleware systems in practice. In addition,
the conference included a diverse workshop program, including a symposium for
doctoral students.

We would like to thank everyone who contributed to the conference this
year. The Program Committee worked hard to provide high-quality reviews, and
the rest of the Organizing Committee put a great deal of effort into planning
and holding the conference. The Steering Committee, and Chairs of previous
conferences, provided valuable advice and a needed continuity from previous
years. Finally, we would like to thank the authors who made the effort to write
up and share their research results with the community.

September 2009 Brian Cooper
Jean Bacon

Organization

Middleware 2009 was organized under the joint sponsorship of the Association
for Computing Machinery (ACM), the International Federation for Information
Processing (IFIP) and USENIX.

Organizing Committee

Conference Chair Roy H. Campbell (University of Illinois at
Urbana-Champaign, USA)

Program Chairs Jean Bacon (University of Cambridge
Computer Laboratory, UK)

Brian Cooper (Yahoo! Research, USA
Industrial Chair Dejan Milojicic (HP Labs, USA
Publicity Chairs Vibhore Kumar (IBM Research, USA)

Riccardo Scandariato (Katholieke Universiteit
Leuven, Belgium)

Local Arrangements Chair Reza Ferivar (University of Illinois at
Urbana-Champaign, USA)

Workshops Chair Cecilia Mascolo (University of Cambridge, UK)
Tutorials Chair Francois Taiani (Lancaster University, UK)
Doctoral Symposium Chair Peter Triantafillou (University of Patras,

Greece)

Steering Committee

Gordon Blair (Chair) Lancaster University, UK
Jan De Meer SmartSpaceLab, Germany
Peter Honeyman University of Michigan, USA
Arno Jacobsen University of Toronto, Canada
Elie Najm ENST Paris, France
Maarten van Steen Vrije Universiteit, The Netherlands
Shanika Karunasekera University of Melbourne, Australia
Renato Cerqueira PUC-Rio, Brazil
Nalini Venkatasubramanian University of California, Irvine, USA
Wouter Joosen KUL-DistriNet, Belgium
Valerie Issarny INRIA, France

Organization

Program Committee

Gustavo Alonso ETH Zurich, Switzerland
Yolande Berbers KUL-DistriNet, Belgium
Gordon Blair Lancaster University, UK
Roy Campbell University of Illinois at Urbana Champaign,

USA
Renato Cerqueira PUC-Rio, Brazil
Lucy Cherkasova HP Labs, USA
Paolo Costa Microsoft Research, UK
Francis David Microsoft, USA
Fred Douglis Data Domain, USA
Frank Eliasson University of Oslo, Norway
Markus Endler PUC-Rio, Brazil
David Eyers University of Cambridge, UK
Paulo Ferreira INESC ID / Technical University of Lisbon,

Portugal
Nikolaos Georgantas INRIA, France
Paul Grace Lancaster University, UK
Indranil Gupta University of Illinois at Urbana Champaign,

USA
Qi Han Colorado School of Mines, USA
Gang Huang Peking University, China
Valerie Issarny INRIA, France
Hans-Arno Jacobsen University of Toronto, Canada
Wouter Joosen KUL-DistriNet, Belgium
Shanika Karunasekera University of Melbourne, Australia
Himanshu Khurana University of Illinois at Urbana Champaign,

USA
Fabio Kon University of Sao Paulo, Brazil
Vibhore Kumar IBM Research, USA
Joe Loyall BBN Technologies, USA
Cecilia Mascolo University of Cambridge, UK
Elie Najm ENST Paris, France
Gian Pietro Picco University of Trento, Italy
Peter Pietzuch Imperial College, UK
Antony Rowstron Microsoft Research, UK
Riccardo Scandariato KU Leuven, Belgium
Rick Schantz BBN Technologies, USA
Karsten Schawn Georgia Tech, USA
Francois Taiani Lancaster University, UK
Kian-Lee Tan National University of Singapore, Singapore
Sotirios Terzis University of Strathclyde, UK
Eli Tilevich Virginia Tech, USA

X

Organization IX

Scott Trent IBM Tokyo, Japan
Peter Triantafillou University of Patras, Greece
Akshat Verma IBM Research, India
Jun Yang Duke University, USA
Pin Zhou, IBM Research, USA
Jan De Meer SmartSpaceLab, Germany

Referees

Ioannis Aekaterinidis
Mourad Alia
Marco Antonio Casanova
Juliana Aquino
Michael Atighetchi
Mikael Beauvois
Arquimedes Canedo
Alex Cheung
Lincoln David
Oleg Davidyuk
Frederik De Keukelaere
Lieven Desmet
Amer Farroukh
Marco Gerosa

Peter Honeyman
Jeff Kephart
Patrick Lee
Guoli Li
Sand Luz Correa
Marcelo Malcher
Bala Maniymaran
Vinod Muthusamy
Nikos Ntarmos
Valeria Quadros
Jan Rellermeyer
Kurt Rohloff
Romain Rouvoy
Francoise Sailhan

Reza Sherafat
Pushpendra Singh
Thomas Springer
Amir Taherkordi
Naweed Tajuddin
Luis Veiga
Junyi Xie
Chunyang Ye
Young Yoon
Apostolos Zarras
Charles Zhang

Sponsoring Institutions

BBN Technologies (www.bbn.com)
IBM (www.ibm.com)
USENIX (www.usenix.org)
Yahoo! (labs.yahoo.com)
Department of Computer Science, University of Illinois at Urbana-Champaign
(cs.illinois.edu)

Table of Contents

Communications I (Protocols)

MANETKit: Supporting the Dynamic Deployment and Reconfiguration
of Ad-Hoc Routing Protocols . 1

Rajiv Ramdhany, Paul Grace, Geoff Coulson, and David Hutchison

Automatic Generation of Network Protocol Gateways 21
Yérom-David Bromberg, Laurent Réveillère, Julia L. Lawall, and
Gilles Muller

Heterogeneous Gossip . 42
Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec,
Boris Koldehofe, Martin Mogensen, Maxime Monod, and
Vivien Quéma

Communications II (Optimization)

CCD: Efficient Customized Content Dissemination in Distributed
Publish/Subscribe . 62

Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra, and
Nalini Venkatasubramanian

Calling the Cloud: Enabling Mobile Phones as Interfaces to Cloud
Applications . 83

Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and
Gustavo Alonso

Efficient Locally Trackable Deduplication in Replicated Systems 103
João Barreto and Paulo Ferreira

Service Component Composition/Adaptation

QoS-Aware Service Composition in Dynamic Service Oriented
Environments . 123

Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova,
Nikolaos Georgantas, and Valérie Issarny

Self-adapting Service Level in Java Enterprise Edition 143
Jérémy Philippe, Noël De Palma, Fabienne Boyer, and
Olivier Gruber

XI Table of Contents

A Cost-Sensitive Adaptation Engine for Server Consolidation of
Multitier Applications . 163

Gueyoung Jung, Kaustubh R. Joshi, Matti A. Hiltunen,
Richard D. Schlichting, and Calton Pu

Monitoring

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 184
Qin Yin, Adrian Schüpbach, Justin Cappos, Andrew Baumann, and
Timothy Roscoe

How to Keep Your Head above Water While Detecting Errors 205
Ignacio Laguna, Fahad A. Arshad, David M. Grothe, and
Saurabh Bagchi

PAQ: Persistent Adaptive Query Middleware for Dynamic
Environments . 226

Vasanth Rajamani, Christine Julien, Jamie Payton, and
Gruia-Catalin Roman

Pervasive

Middleware for Pervasive Spaces: Balancing Privacy and Utility 247
Daniel Massaguer, Bijit Hore, Mamadou H. Diallo,
Sharad Mehrotra, and Nalini Venkatasubramanian

Achieving Coordination through Dynamic Construction of Open
Workflows . 268

Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and
Christopher Gill

Power Aware Management Middleware for Multiple Radio Interfaces . . . 288
Roy Friedman and Alex Kogan

Stream Processing

COLA: Optimizing Stream Processing Applications via Graph
Partitioning . 308

Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan,
Joel Wolf, Kun-Lung Wu, Henrique Andrade, and Buğra Gedik

Persistent Temporal Streams . 328
David Hilley and Umakishore Ramachandran

V

Table of Contents X

Failure Resilience

Why Do Upgrades Fail and What Can We Do about It?: Toward
Dependable, Online Upgrades in Enterprise System 349

Tudor Dumitraş and Priya Narasimhan

DR-OSGi : Hardening Distributed Components with Network Volatility
Resiliency . 373

Young-Woo Kwon, Eli Tilevich, and Taweesup Apiwattanapong

Support for Testing

Automatic Stress Testing of Multi-tier Systems by Dynamic Bottleneck
Switch Generation . 393

Giuliano Casale, Amir Kalbasi, Diwakar Krishnamurthy, and
Jerry Rolia

DSF: A Common Platform for Distributed Systems Research and
Development . 414

Chunqiang Tang

Author Index . 437

Erratum to: Middleware 2009 . E1
Jean M. Bacon and Brian F. Cooper

V

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 1–20, 2009.
© IFIP International Federation for Information Processing 2009

MANETKit: Supporting the Dynamic Deployment
and Reconfiguration of Ad-Hoc Routing Protocols

Rajiv Ramdhany, Paul Grace, Geoff Coulson, and David Hutchison

Computing Department,
Lancaster University,

South Drive,
Lancaster, LA1 4WA, UK

{r.ramdhany,gracep,geoff,dh}@comp.lancs.ac.uk

Abstract. The innate dynamicity and complexity of mobile ad-hoc networks
(MANETs) has resulted in numerous ad-hoc routing protocols being proposed.
Furthermore, numerous variants and hybrids continue to be reported in the lit-
erature. This diversity appears to be inherent to the field—it seems unlikely that
there will ever be a ‘one-size-fits-all’ solution to the ad-hoc routing problem.
However, typical deployment environments for ad-hoc routing protocols still
force the choice of a single fixed protocol; and the resultant compromise can
easily lead to sub-optimal performance, depending on current operating condi-
tions. In this paper we address this problem by exploring a framework approach
to the construction and deployment of ad-hoc routing protocols. Our framework
supports the simultaneous deployment of multiple protocols so that MANET
nodes can switch protocols to optimise to current operating conditions. The
framework also supports finer-grained dynamic reconfiguration in terms of pro-
tocol variation and hybridisation. We evaluate our framework by using it to
construct and (simultaneously) deploy two popular ad-hoc routing protocols
(DYMO and OLSR), and also to derive fine-grained variants of these. We
measure the performance and resource overhead of these implementations com-
pared to monolithic ones, and find the comparison to be favourable to our
approach.

Keywords: Ad-hoc routing, protocol frameworks.

1 Introduction

Mobile ad-hoc networks (MANETs) employ routing protocols so that out-of-range
nodes can communicate with each other via intermediate nodes. Unfortunately, it is
hard to design generically-applicable routing protocols in the MANET environment.
This is for two main reasons: First, MANETs are inherently characterised by dynamic
variations in network conditions—for example in terms of network size, topology,
density or mobility. Second, MANETs are subject to a diverse and dynamic set of
application requirements in terms of quality of service (QoS) demands and traffic
patterns (i.e. in terms of messaging, request-reply, multicast, publish-subscribe,
streaming, etc.). In response to these two types of pressures—from both ‘below’ and

2 R. Ramdhany et al.

‘above’—MANET researchers have been proposing an ever-proliferating range of
routing protocols: e.g. AODV [23], DYMO [5], OLSR [8], ZRP [14], TORA [22] and
GPSR [17] to name but a few. However, none of these proposals comes close to pro-
viding optimal routing under the full range of operating conditions encountered in
MANET environments; and it is becoming ever clearer that the ‘one-size-fits-all’ ad-
hoc routing protocol is an impossibility.

We therefore believe that future MANET systems will need to employ multiple ad-
hoc routing protocols and to support switching between these as runtime conditions
dictate. Our view is that this is best achieved through a runtime framework based
approach in which different ad-hoc routing protocols can be dynamically deployed—
both serially and simultaneously—depending on current operating conditions. In our
view, such a framework should further employ a fine-grained compositional approach
so that ad-hoc routing functionality can be built by composing fine-grained building
blocks at runtime. Such an approach would support the creation of variants and hy-
brids of protocols at run-time so that we can adapt to changing runtime conditions in a
finer-grained manner than switching protocols. Such an approach would also support
the sharing of common functionality between protocols (thus reducing both develop-
ment effort and resource overhead), and ease the task of deploying and porting newly-
designed protocols and protocol updates.

In this paper we propose such a framework. The specific goals of the framework,
which is called MANETKit, are:

1. To support the dynamic deployment of ad-hoc routing protocols, both serially

and simultaneously, and also to support their fine-grained dynamic reconfigura-
tion.

2. To do this while achieving comparable performance and resource overhead to
equivalently-functioning monolithic implementations.

3. To further support protocol diversity by shortening the protocol development
cycle and the time to port protocols to different operating systems.

This paper is an in-depth motivation, description and evaluation of MANETKit. The
remainder of the paper is structured as follows. Section 2 makes the case for
MANETKit in more detail, based on an analysis of the design space of ad-hoc routing
protocols and a survey of existing protocol construction frameworks. Section 3 then
provides brief background on the key technologies and concepts underpinning our
framework, Section 4 presents the framework itself, and Section 5 illustrates its use
by means of case study implementations of some popular ad-hoc routing protocols
(OLSR and DYMO). Section 6 then provides an empirical evaluation against the three
goals specified above, and Section 7 offers our conclusions.

2 Related Work

Ad-hoc Routing Protocols. The design space of ad-hoc routing protocols can be
divided into three broad categories:

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 3

• Proactive (or table-driven) protocols (e.g. [8]) continuously evaluate routes from
each node to all other nodes reachable from that node.

• Reactive (or on-demand) protocols (e.g. [5]), on the other hand, discover routes to
destinations only when there is an immediate need for it.

• Hybrid protocols (e.g. [14]) combine aspects of both proactive and reactive
types—e.g. by employing proactive routing within scoped domains and reactive
routing across domains.

As mentioned in the introduction, the pressures that are driving the proliferation of
ad-hoc routing protocols are coming from both ‘below’ and ‘above’. From ‘below’,
the biggest determining factor in which protocol is the most appropriate is the size of
the network: generally, proactive protocols are better suited to smaller networks, reac-
tive ones to larger networks, and hybrid protocols to networks that can structured
hierarchically. But where the network varies in size (e.g. grows), an initial choice of
protocol (e.g. proactive) can become sub-optimal. As another example, a reactive
protocol will do well where pairs of interacting source-destination nodes (i.e. an in-
fluence from ‘above’) tend to be stable, while proactive protocols are typically better
where interaction patterns are more dynamic (although only where the network is not
too big). In addition, peer-to-peer services running over MANETs tend to prefer pro-
active protocols [3]; and applications requiring QoS differentiation can benefit from
intelligent path selection as enabled by multipath routing algorithms like TORA [22]
or Multipath DYMO [10]—although these carry overhead that is unnecessary for
other applications (or application use-cases).

As well as proposing many new protocols in each of the above categories, re-
searchers have since investigated numerous variations on already-existing protocols.
For example, path accumulation [5], pre-emptive routing [12], multi-path routing
[10], power-efficient routing [33], fish-eye routing [34], and numerous styles of
flooding [8, 26, 1, 15] are examples of techniques that can be ‘switched on’ to im-
prove a particular property of an underlying base protocol under certain operating
conditions, but which may be counter-productive under other conditions. Flooding
(which is typically used to propagate control information) is a particularly rich area in
this respect. For example, Multipoint Relaying [8] is good at reducing control over-
head in denser networks, whereas Hazy-Sighted Link State [26] provides better per-
formance as the network grows in diameter. Various epidemic/ gossip algorithms (e.g.
[1] [15]) can also be applied in this context.

The key conclusion is that no single protocol or class of protocols is well suited to
more than a subset of the operating conditions to be found in any given MANET envi-
ronment at any given time.

Protocol Frameworks. We are not alone in recognising the benefits of the frame-
work approach for ad-hoc routing protocols: MANET researchers have recently de-
veloped a number of such frameworks, prominent among which are ASL [18] and
PICA [4]. ASL, for example, enhances underlying system services and provides
MANET-specific APIs such that routing protocols can be developed in user-space.
PICA alternatively provides multi-platform functionality for threading, packet queue
management, socket-event notifications to waiting threads, and network device list-
ing, as well as minimising platform-related differences in socket APIs, and kernel

4 R. Ramdhany et al.

route table manipulation. We have therefore found these useful inspiration for the
design of analogous functionality in MANETKit. In addition, the popular Unik-olsrd
[32] implementation of OLSR supports a plug-in framework which has been well
used by researchers [33, 34]. However, unlike MANETKit, all of these frameworks
offer purely design-time and implementation-time facilities; they do not address the
run-time configuration/ reconfiguration support which we argue is key to the support
of future MANET environments.

As well as MANET-specific frameworks, a range of more general protocol compo-
sition frameworks have been proposed. These fall mainly into two lineages: the
x-kernel [30] to Cactus [2] lineage, and the Ensemble [27] to Appia [24] lineage.
Unfortunately, all such frameworks are of limited relevance to our ad-hoc routing
domain. This is for two main reasons. Firstly, general purpose frameworks do not
address the resource scarcity inherent to MANET environments. Cactus, for example,
is significantly more resource hungry than MANETKit: the C version of Cactus occu-
pies 466KB empty, whereas MANETKit supporting two ad-hoc routing protocols
occupies only 236.6KB (see Section 6.2). Secondly, they focus on traditional end-to-
end protocols such as TCP/IP and do not support or emphasise routing-specific func-
tionality such as that supported by, say, PICA (see above). In addition, they offer poor
support for the fact that application execution and packet forwarding are inherently
concurrent in ad-hoc routing protocol deployments: Appia supports only a single-
threaded concurrency model, and Cactus, while it supports multi-threading, leaves
concurrency control entirely up to the developer. Furthermore, Appia’s strictly lay-
ered model is problematic in the ad-hoc routing protocol domain where cross layer
optimisation is important.

3 Background Concepts Underpinning MANETKit

Before introducing MANETKit, this Section briefly covers essential background that
underpins our framework. This mainly consists of the OpenCom software component
model [9] and its associated notion of ‘component frameworks’ which we use as the
basis of modularisation, composition and dynamic reconfiguration in MANETKit. We
also introduce the ‘CFS pattern’ [31] that we use to structure the implementation of
ad-hoc routing protocols.

OpenCom and Component Frameworks. OpenCom is a run-time component model
that uses a small runtime kernel to support the dynamic loading, unloading, instantia-
tion/destruction, composition/decomposition of lightweight programming language
independent software components. Components have interfaces and receptacles that
describe their points of interaction with other components. OpenCom also supports
so-called reflective meta-models to facilitate the dynamic inspection and reconfigura-
tion of component configurations. In particular, it employs (i) an interface meta-
model to provide runtime information on the interfaces and receptacles supported by a
component; and (ii) an architecture meta-model that offers a generic API through
which the interconnections in a composed set of components can be inspected and
reconfigured. Component frameworks [16] (hereafter, CFs) are domain tailored com-
posite components that accept ‘plug-in’ components that modify or augment the CF’s

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 5

behaviour. Plug-ins are inserted and manipulated by means of an ‘architecture’ reflec-
tive meta-model that is exported by each CF. Crucially, CFs actively maintain their
integrity to avoid ‘illegal’ configurations of plug-ins—attempts to insert and manipu-
late plug-ins are policed by sets of integrity rules registered with the CF. As CFs are
themselves components, they can easily be nested: i.e. more complex CFs can be built
by composing simpler ones; and they can be loaded and unloaded dynamically so that
only functionality that is actually instantiated needs to be paid for. Full detail on
OpenCom and CFs is available in the literature [9].

Fig. 1. MANETKit’s Control-Forward-State (CFS) pattern (interfaces are shown as dots and
receptacles as cups)

The Control-Forward-State Pattern. We have identified an architectural pattern
called Control-Forward-State (‘CFS’ for short; see Fig. 1) that we have found useful in
the structuring of protocol implementations in MANETKit. We first used the pattern in
a different context in our GRIDKIT platform [31]. In the CFS pattern, the Control (C)
element encapsulates the algorithm used to establish and maintain a virtual network
topology (as often maintained by ad-hoc routing protocols); the Forward (F) element
encapsulates a forwarding strategy over this topology; and the State (S) element gives
access to protocol state (such as the neighbour list that embodies the virtual topology).
The key benefit of the CFS pattern is that it naturally captures the typical elements of an
ad-hoc routing protocol and thus allows the diversity such protocols to be treated in a
consistent manner. Furthermore, when protocols are reconfigured it lets the C and F
elements be replaced independently (e.g. maintaining the same overlay but changing the
forwarding strategy, or vice versa). Additionally, the pattern naturally supports vertical
stacking—e.g. for piggybacking data on the packets of a lower CFS element. Such
stacking can be at a finer-grained level than that of entire CFS units: for example, the C
element of a higher level CFS unit may use (and therefore be stacked on) the F element
of a lower level unit. Finally, because a CFS instance is a composition of components, it
is naturally realised as a CF and thus benefits from the above-mentioned integrity main-
tenance machinery that is available to all CFs.

4 The Design of MANETKit

4.1 Overview

MANETKit is an OpenCom CF that supports the development, deployment and
dynamic reconfiguration of ad-hoc routing protocols. It provides the developer with
an extensible set of common ad-hoc routing protocol functionality (encapsulated in

Forward

StateControl

6 R. Ramdhany et al.

components), and tools to configure and reconfigure protocol graphs implemented as
nested CFs. It builds heavily on OpenCom’s support for the dynamic reconfiguration
of component topologies (i.e. the architecture reflective meta-model), and on the
support for nested composition and structural integrity provided by CFs (via integrity
rules). In addition, thanks to OpenCom’s inherent programming language independ-
ence, MANETKit supports the development of protocols in different programming
languages.

The below presentation is structured by first describing and motivating, in Section
4.2, MANETKit’s main CF types and its approach to protocol composition at two
granularity levels: coarse and fine. Section 4.3 then discusses further built-in CFs that
provide library-like functionality for ad-hoc routing protocols, Section 4.4 focuses on
the important issue of concurrency, and Section 4.5 discusses MANETKit’s approach to
dynamic reconfiguration.

4.2 Protocol Composition

Our approach to protocol composition builds directly on the CFS architectural pattern
outlined in Section 3. This naturally leads to a two-level composition model involving
coarse-grained compositions of CFS units (i.e. protocol implementations); and fine-
grained compositions of elements within CFS units. We now discuss these two levels.

Fig. 2. Coarse-grained protocol composition in MANETKit

Coarse-grained Composition. At the coarse-grained level, MANETKit offers two key
(sub)CFs: a so-called ‘System CF’ that encapsulates common system-related functions;
and a generic ‘ManetProtocol CF’ that is instantiated and tailored for each ad-hoc rout-
ing protocol developed in MANETKit. As shown in Fig. 2, a MANETKit deployment
running on a node typically comprises a number of composed ManetProtocol instances
atop a single System instance. ManetProtocol instances may be placed at the same level
or stacked on top of each other.

Manet
Control

CF

Forward State

Forward State

Manet
Control

CF

Forward State

Manet
Control

CF

Forward State Event propa-
gation &
direct calls

ManetProtocol
CFs

System CF

Frame-
workMan-

ager CF

Sys
Control CF

MANETKit CF

ICFMeta
Interface

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 7

Communication between CFS units within a MANETKit deployment—e.g. the flow
of packets or context information—is carried out using events1. The set of events sup-
ported in a given MANETKit deployment is based on an extensible polymorphic ontol-
ogy. To leverage existing efforts in the direction of consolidation of ad-hoc routing
protocols, we employ the increasingly-used PacketBB packet format [7] as the basis of
our event structure.

Rather than being built explicitly, the organisation of a stacking topology of CFS
units is derived automatically based on declarative statements of the types of event
provided by and required by each CFS unit. More specifically, each unit defines a tuple:
<required-events, provided-events> in which ‘required-events’ is the set of event types
that the CF instance is interested in receiving, and ‘provided-events’ is the set it can
generate. On the basis of these event tuples, the Framework Manager (see Fig. 2) auto-
matically generates and maintains an appropriate set of receptacle-to-interface bindings
between protocols such that, if an event e is in the provided-event set of protocol P, and
the required-event set of protocol Q, the Framework Manager creates an OpenCom
binding between interfaces/receptacles on P and Q to enable the passage of events of
type e2. Overall, the resulting loosely hierarchical organisation yields the following
benefits:

• Changes in topology can be automatically updated when the event tuples on CFS
units are changed at run-time (declarative automatic dynamic reconfiguration).

• The scheme naturally supports ‘broadcast’ event propagation (i.e. because multiple
CF instances can ‘require’ an event of a single lower layer instance, or a lower layer
instance can require an event of multiple higher-layer instances).

• It also naturally supports cross-layer interaction that omits layers, and minimises
overhead where events need to pass directly between non-adjacent CF instances
(avoids the need for strict layering).

• The inherent decoupling of protocols enables us to support different concurrency
models without changing protocol implementations (see Section 4.4).

Finally, because it is an OpenCom CF, MANETKit can use the CF notion of integrity
rules to sanity check the configuration defined by the provided-event / required-event
mechanism. For example, we might use this mechanism to ensure that only one instance
of a reactive routing protocol exists in a given MANETKit deployment.

Fine-grained Composition. At the fine-grained level, we structure the individual C, F
and S elements of ManetProtocol instances in terms of component compositions (see
Fig. 3). For the C element, we provide a generic sub-CF called ManetControl which
encapsulates a number of areas of functionality (especially event management) that are

1 As well as using events as discussed in this section, it is possible to make direct calls from one

CFS unit to another. Such calls are typically used for ‘out of band’ purposes such as obtaining
state from another’s S element. Direct calls typically benefit from OpenCom’s ‘interface
meta-model’ to dynamically discover interfaces at runtime.

2 This is a simplification. The design is slightly more complex—for example, to allow compo-
nents to exclusively receive (require) a given event, meaning that other components would not
receive the event even if it were in their required set. A mechanism to avoid loops is included
for cases where a component provides and requires the same event type.

8 R. Ramdhany et al.

expected to be common across a range of ad-hoc routing protocols. For example,
ManetControl’s C component provides generic operations to initialise, start or stop a
protocol’s execution, maintains an Event Registry that supports the above-mentioned
automatic event binding mechanism, and offers operations to push/pop events. The F
and S areas are much more specific to individual protocol implementations; therefore
there is less value in providing richly configurable sub-CFs in those areas.

Fig. 3. Fine-grain protocol composition (i.e. within a ManetProtocol CF instance)

In general, each new ManetProtocol instance comes with default machinery and
settings that can be modified or replaced depending on the developer’s specific re-
quirements. As at the coarse-grained level, subsequent tailoring of a new instance is a
relatively safe process because the integrity rules (architectural constraints) built into all
the generic CFs ensure that attempts to compose them do not violate per-CF structural
invariants: for example, ManetControl rejects attempts to add more than one C element.
Aside from this common functionality, the core logic of a routing protocol implementa-
tion is embodied as a set of Event Source and Event Handler components within the
ManetControl CF (Event Sources only emit events—typically driven by a timer—
whereas Event Handlers process events, and may emit further events in response.) In
general, interaction among these fine-grained components follows the same approach as
interaction at the coarse-grained level: individual CFS elements and sub-elements com-
municate both either via events or via direct calls.

4.3 Other Key Frameworks

We now briefly introduce two further key CFs supported by MANETKit. These are
the above-mentioned System CF, a singleton CF that abstracts over low level systems
oriented functionality; and the Neighbour Detection CF, which provides generic sup-
port for network topology management. Aside from these, MANETKit provides a
wide range of other utility components/CFs such as timers, threadpools, routing tables
and queues.

The System CF. As we have seen, the System CF (see Fig. 4) is a base layer CFS
unit on top of which ManetProtocol instances are stacked. Thanks to MANETKit’s

Control Event-EventSource

IEventSink

IEventSource

EventHandler

EventHandler
IState

IEventSink

IEvent
Source

Forward

State

ManetControl CF

ICFMeta
Interface

Configurator

ContextSensor IContext

Configurator

Context
Sensor

IThreadPool

IScheduler

Demux

IEventIPush

Demux

IPop

IPush IPop
IForward

IQueue

IForward I<Proto>State

IForward IState
.

I<Proto>State dynamic
receptacles

ManetProtocol
CF

IControl

Event
Registry

MsgGenerator

MsgParser

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 9

abstraction of inter-component communication, the System CF itself and ManetProto-
col instances above it, need not be aware of the kernel-user boundary or whether the
System CF itself is implemented as a kernel or a user-space module. The main role of
the System CF is to facilitate portability by acting as a surrogate for OS-specific func-
tionality such as thread management and routing environment initialisation. Its C
component provides OS-independent operations to initialise the host’s routing envi-
ronment (e.g. IP forwarding, ICMP redirects) and provide access to system-oriented
context information to inform dynamic reconfiguration. Its S component provides
operations to manipulate the kernel routing table, and query/list network devices. Its F
component provides send/receive primitives for the exchange of protocol messages
that abstract over the use of multiple network technologies. Both the C and F elements
provide and require events which higher-level ManetProtocol instances can specify in
their event tuples. The raising and capturing of events is ultimately grounded in
mechanisms such as network sockets, packet capture libraries (such as libpcap), and
packet filters (like Netfilter in Linux or the NDIS intermediate driver in Windows).

Fig. 4. The System CF

Neighbour Detection CF. This is a generally-useful ManetProtocol instance that
maintains information on neighbouring nodes that are one or two hops away. Based
on this information, it generates events to notify ManetProtocol instances about link
breaks with lost neighbours for purposes of route invalidation. The information main-
tained by the CF is also useful as a means of optimising flooding approaches such as
Multipoint Relaying. It is designed to be pluggable so that alternative mechanisms can
be applied where appropriate (e.g. HELLO message based, or link layer feedback
based). The CF additionally offers a useful means of disseminating information peri-
odically to neighbours via piggybacking. For instance, AODV implementation might
piggyback routing table entries so that neighbours can learn new routes.

4.4 Concurrency

MANETKit’s concurrency provision is strictly orthogonal to the basic structure of the
framework. This allows the use of alternative concurrency models within the frame-
work, which in turn enables us easily to adapt the framework to different deployment
environments. Regardless of which concurrency model is selected, the user-provided
parts of a ManetProtocol instance can always be assumed to run as a single critical

Forward

IPop ISysState IEvent

Control

 Event

Registry

 Event
Handlers

Event
Sources

State

IForward

FromDevice

IPush IControl

SysControl

IScheduler

IThreadpool
Demux

Configurator

ContextSensor

Queue ICFMeta
Interface

IContext

10 R. Ramdhany et al.

section. This has the beneficial effect that Event Handlers can always be assumed to
run atomically.

In more detail, MANETKit supports the following concurrency models: single-
threaded, thread-per-message or thread-per-ManetProtocol. Note that these designa-
tions apply only to the handling of events originating from ‘below’ the selected
MANETKit instance (i.e. originating from the System CF): regardless of the concur-
rency model in use, it is always possible to use multiple threads to call MANETKit
from above. In the single-threaded model, all ManetProtocol instances rely on a sin-
gle thread hosted by the System CF. In cases where an event needs to be passed to
more than one higher-layer ManetProtocol instance, the same thread is used to call
each ManetProtocol instance in turn. Besides the obvious benefit of the absence of
race conditions, this model potentially allows MANETKit to be applied in primitive
low-resource environments such as sensor motes.

In the thread-per-message model (a slight variant of this, called the thread-per-n-
messages model, is midway between single-threaded and thread-per-message) distinct
threads are used to shepherd individual events up the protocol graph. Where an event
needs to be passed to more than one ManetProtocol instance in the layer above, a new
thread is created for each, thus providing more concurrency than the single threaded
model. Regardless, events are always processed in the same FIFO order so that
ManetProtocol instances sharing the same interest in a set of events all process them
in the same order.

Finally, in the thread-per-ManetProtocol model the ManetProtocol instance instan-
tiates its own dedicated thread and an associated FIFO queue in which to store wait-
ing events. A thread passing an event from a ManetProtocol instance in the layer
below will immediately return, with the event being handed off to the higher-layer
ManetProtocol’s dedicated thread/queue. The thread-per-ManetProtocol model repre-
sents an intermediate point in terms of protocol throughput and resource overhead
between the single-threaded model (low resource overhead and low protocol through-
put) and the thread-per-message model (high resource overhead and high protocol
throughput).

To select either of the single-threaded or thread-per-message model it is only nec-
essary to ask the System CF to use one or other model, and the selected model is
applied throughout the MANETKit instance. The thread-per-ManetProtocol model,
on the other hand, can be selected on a per-ManetProtocol instance basis, and will
function the same regardless of whether the System CF uses one or more threads.

4.5 Reconfiguration Management

The focus of MANETKit is on enabling the dynamic reconfiguration of ad-hoc rout-
ing protocols. A fully comprehensive dynamic reconfiguration solution for ad-hoc
routing protocols would involve a closed-loop control system that comprises: (i) con-
text monitoring, (ii) decision making (based, e.g., on feeding context information to
event-condition-action rules), and (iii) reconfiguration enactment. MANETKit pro-
vides the first and last of these elements (as described next) but leaves the decision
making to higher-level software. For example, a complete reconfigurable system
could be built by combining MANETKit with the decision-making machinery
proposed in [13].

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 11

Context Monitoring. The System CF provides a range of event types relating to
context information such as link quality, signal strength, signal-to-noise ratio, avail-
able bandwidth, CPU utilisation, memory consumption and battery levels.. In addi-
tion, individual ManetProtocol instances can choose to provide protocol-specific
context events. For example, our DYMO implementation provides events relating to
packet loss, and the number of route discoveries initiated per unit time. MANETKit
also provides a ‘concentrator’ for context events in the Framework Manager CF (see
Fig. 2). This acts as a façade for higher-level software and also hides the fact that
some low level context information might be obtained by polling rather than by wait-
ing for events.

Reconfiguration enactment. We support two complementary methods of reconfigu-
ration enactment. The first is by updating the <required-events, provided-events>
tuples of ManetProtocol instances. This enables protocol configurations to be rewired
in a very straightforward, declarative, manner, although only at the coarse granularity
level. The second method is more general and supports the fine granularity level: it
follows the standard OpenCom approach of manipulating component compositions—
i.e. by adding/removing/ replacing components and/or the bindings between them.
This is carried out through standard OpenCom and CF facilities—especially the archi-
tecture reflective model outlined in Section 3. This method of reconfiguration enact-
ment is considerably simplified by the fact that ManetProtocol instances are critical
sections which only a single thread can enter at a time (see above), thus avoiding the
possibility of race conditions between a reconfiguration thread and a protocol process-
ing thread. By ensuring that any current processing of protocol events is completed
before reconfiguration operations are run and further event-shepherding threads are
blocked, the critical section enables the ManetProtocol instance to be in a stable state
in which reconfiguration changes can be safely made. To date our experience has
been that the integrity of almost all reconfiguration operations can be ensured with
this critical section mechanism alone. For very complex reconfigurations (e.g. involv-
ing transactional changes across multiple ManetProtocol instances), we can fall back
on OpenCom’s general-purpose ‘quiescence’ mechanism as described in [25].

The other commonly-cited problematic issue in dynamic reconfiguration is state
management. We have found that the CFS pattern is of considerable help here as it
encourages designers to factor out the state from their protocol designs and put it into
distinct S components. Given this, if it is required to replace one ManetProtocol in-
stance with another while maintaining state it is often enough simply to carry over an
S component from the old ManetProtocol instance to the new one.

5 Implementation Case Studies

To evaluate MANETKit, we have used the framework to implement a number of
popular ad-hoc routing protocols. In the first instance, as a proof of concept, we used
an initial Java-based implementation of MANETKit [35] to build the well-known
AODV protocol. Thereafter, to investigate the feasibility of the framework in more
memory-constrained devices, we developed a C version of MANETKit (based on the
C version of OpenCom) and used this to implement RFC-complaint versions of the

12 R. Ramdhany et al.

popular OLSR and DYMO protocols. In the remainder of this Section, we describe
these implementations. In doing so, we illustrate how MANETKit makes it straight-
forward to develop and deploy ad-hoc routing protocols, and also how variants of
protocols can easily to created via dynamic reconfiguration when current operating
conditions call for them.

5.1 OLSR

MANETKit’s OLSR implementation is built using two separate ManetProtocol in-
stances: one for OLSR proper and the other for an underlying implementation of Mul-
tipoint Relaying (MPR) [8] that is used by OLSR. MPR is responsible for link sensing
and relay selection; and maintains state in its S component to underpin these. The
OLSR ManetProtocol itself uses topology information garnered by MPR and uses the
latter’s forwarding services to flood topology information.

Fig. 5. The composition of OLSR in MANETKit; hatched boxes represent protocol-specific
components (the rest are reusable generic components)

We have found that MANETKit simplifies the process of writing protocols such as
OLSR. This is first manifested in the separation of concerns enabled by software
components in general and the CFS pattern in particular. At a finer granularity than
the OLSR/MPR split we have already seen, reifying protocol state into a distinct S
component clarifies thinking about protocol design (as well as easing dynamic recon-
figuration), and the ManetProtocol CF’s plug-in Event Handlers naturally correspond
to the way designers think about protocols. It is also useful to be able to call
on MANETKit’s range of generic tools such as routing table templates and timers

Forward

IPop

Control

IForwardIPush

IForward

IOLSRState

OLSR State TC Handler

Route Table

IPop

Forward

State Control

Power
Status

IPush

 OLSR CF

System
CF

ISysState

ISysState

IEventSrc

ManetControl CF
Topology Set

SysControl
CF

Forward

Control

IForward

IPush

IMPRState

MPR State

MPR Calcula-
tor

Neigh Table

IForward

ISysState

ManetControl CF
2Hop Neigh

IForward

Hello Handler

TC Generator

Fish Eye

Hysteresis

Link Set

IPop

MPR CF

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 13

(e.g. the latter are needed to drive the OLSR Event Source components that periodi-
cally diffuse link state information across the network).

Having written the elements of the protocol, installing it in a running MANETKit
deployment mainly involves defining the <required-events, provided-events> event
tuples of each ManetProtocol instance. The OLSR instance provides a TC_OUT event
(this corresponds to an outgoing OLSR ‘Topology Change’ message); and it requires
TC_IN, NHOOD_CHANGE (which notifies a change in the underlying network
neighbourhood) and MPR_CHANGE (which notifies a change in relay selection).
The latter two event types are provided by the MPR instance. The MPR instance also
provides and requires, respectively, HELLO_OUT and HELLO_IN events used for
neighbour detection. Finally, the MPR instance requires POWER_STATUS events.
These are context events that report the node’s current battery levels; they are used to
dynamically determine the willingness of a node acting as a relay to forward mes-
sages on behalf of its neighbours, this ‘willingness’ metric being factored into the
relay selection process.

Protocol installation also typically entails reconfiguring some existing MANETKit
CFs and if necessary, loading additional components to satisfy specific requirements.
In the OLSR case, the System CF is instructed to load a ‘NetworkDriver’ component
that requires and provides HELLO_OUT/TC_OUT and HELLO_IN/TC_IN respec-
tively, and a ‘PowerStatus’ component that generates POWER_STATUS events. Fig.
5 illustrates the final protocol composition for our OLSR implementation; only the
major inter-layer bindings are shown in the figure for the sake of clarity.

Protocol Variations. It is straightforward to dynamically reconfigure our OLSR
implementation to better suit new operating conditions it may encounter. We describe
here two such variations: power-aware routing and fish-eye routing. The power-aware
routing variant is based on the algorithm described in [33], and aims to maximise the
lifetime of a route between selected source-sink pairs within the MANET. It operates
by trying to find and maintain the route between such a pair that has the least energy
consumption of all possible routes. It is interesting to consider this as an OLSR varia-
tion because it is only beneficial when an application requires this particular QoS
emphasis (i.e. long lifetime connectivity between particular node pairs). If there is no
such requirement, or the requirement goes away because the application no longer
needs it, the variation becomes a hindrance (and therefore should be removed) be-
cause it incurs significantly more overhead than standard OLSR routing. To imple-
ment and deploy the power-aware routing variation, the MPR ManetProtocol’s Hello
Event Handler and MPR Calculator components (see Fig. 5) are replaced by power-
aware versions (the new Hello Handler determines link costs in terms of transmission
power; and this is then used by the new MPR Calculator to determine relay selection).
In addition, a new ‘ResidualPower’ component is plugged into the OLSR CF to de-
termine the node’s residual battery level and to disseminate this to other nodes in the
network via MPR’s flooding service. Both adding and removing the variant behaviour
is straightforward and incurs only a small number of operations on the OLSR CF’s
architecture reflective meta-model.

The purpose of the fish-eye routing variant [34] is to aid scalability when networks
grow large, albeit at the cost of sub-optimal routing to distant nodes. It basically
works by refreshing topology information more frequently for nearby nodes than for

14 R. Ramdhany et al.

distant nodes. This variant is straightforwardly implemented as a component that
modifies TC_OUT events according to the fish eye strategy outlined above (in fact it
works by modifying the TTL and timing of OLSR Topology Change messages). The
component is specified to both require and provide TC_OUT events; and so all that is
required to insert it into the protocol graph is to request re-evaluation of the automatic
event-tuple-based binding process. This automatically results in the component being
interposed in the path of TC_OUT events passing between the OSLR and MPR CFs.

5.2 DYMO

The MANETKit configuration for DYMO consists of one new ManetProtocol in-
stance atop the System CF. It also uses the Neighbour Detection CF that was dis-
cussed in Section 4.3. The three CF instances are configured using <required-events,
provided-events> tuples is a similar manner to that already described for OLSR. For
example, in order to be kept abreast of network neighbourhood changes, the DYMO
instance requires a NHOOD_CHANGE event from the Neighbour Detection instance
for route invalidation upon link breaks.

Fig. 6. The composition of DYMO in MANETKit; hatched boxes represent protocol-specific
components (the rest are reusable generic components)

As a reactive protocol, DYMO requires additional machinery to ensure that route
discoveries are triggered, and route lifetime updates are performed correctly. To
achieve this, DYMO additionally requires the deployment of a ‘NetLink’ component
in the System CF that is responsible for packet filtering. In implementation, this com-
ponent encapsulates the loading of a kernel module that employs Linux Netfilter
hooks to examine, hold, drop, etc. packets. It provides NO_ROUTE,
ROUTE_UPDATE and SEND_ROUTE_ERR events which are used by the DYMO

Forward

IPop

Control

RE Handler

IForwardIPush

IPush IPop

IForward

IDYMOState

State

Pending RREQ
RERR Handler

UERR Handler
Route Table

ForwardControl

IPop

State
Hello

Handler Neighbour
Table

Forward

State Control

IPush

INeighbour
State ISysStateIForward

IForward

DYMO
ManetProtocol

CF

Neighbour
Detection CF

System
CF

IState

IPop

ISysState

IEventSink

ICFMeta
Interface

ManetControl

Netlink SysControl
CF

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 15

ManetProtocol instance for the purposes of (respectively): route discovery (i.e. when
no route is found for an outgoing data packet), extending existing route lifetimes, and
initiating route invalidations. On successful route discovery, the DYMO ManetProto-
col instance sends a ROUTE_FOUND event to the Netlink component to trigger the
re-injection of buffered packets into the network.

Protocol Variations. The variations we describe for DYMO are optimised flooding
and multi-path DYMO. In the optimised flooding variant, DYMO, like OLSR, uses
Multipoint Relaying as a flooding optimisation. As with OLSR, this curbs the over-
head associated with broadcasting control messages when a network topology is
dense, although at the expense of maintaining additional state. To apply this variation,
the Neighbour Detection CF is simply replaced with the MPR ManetProtocol instance
discussed in the previous Section. If a co-existing OLSR ManetProtocol instance is
already deployed in the framework, then the MPR CF is directly shareable between
the reactive and proactive protocols, thus leading to a leaner deployment.

The goal of the multi-path DYMO variant is to reduce the overhead of frequent
flooding for route discovery, although at the expense of additional route discovery
latency. It works by computing multiple link-disjoint paths within a single route dis-
covery attempt, based on the algorithm described in [10]—with the notable difference
that our implementation is real rather than merely simulator based. To configure
multi-path DYMO, three components need be replaced (please refer to Fig. 6). Firstly,
the S component is replaced with a new version that accommodates the new formats
of protocol messages and routing table entries (a path list now exists for each route).
Secondly, the RE (Routing Element) Event Handler is replaced with a new version
that contains the logic to compute link-disjoint paths. Atomic execution of this Han-
dler (as guaranteed by MANETKit) is essential since duplicate route requests are no
longer systematically discarded but rather processed to find alternative paths. Lastly,
the RERR Event Handler is replaced with a new version that handles route error
events/ messages differently. For instance, on receiving a SEND_ROUTE_ERROR
event, the new Handler only sends a route error message when an alternative path is
not available; otherwise, it installs the new path in the OS’s kernel routing table.

6 Evaluation

Section 5 has illustrated the feasibility of supporting the dynamic deployment of mul-
tiple ad-hoc routing protocols in MANETKit, and also of supporting their fine-
grained dynamic reconfiguration—i.e. the satisfaction of the first of the three goals set
out in the introduction has already been demonstrated. In this Section, we evaluate the
remaining two goals: i.e. Goal 2: to compare favourably with equivalent monolithic
implementations of ad-hoc routing protocols in terms of performance (Section 6.1)
and resource overhead (Section 6.2); and Goal 3: to shorten the protocol development
cycle and time to port protocols (Section 6.3).

All measurements in this Section are based our C/Linux implementation of
MANETKit and use the OLSR and DYMO implementations described above. These
were deployed on a testbed consisted of an 802.11b/g ad-hoc network of 5 nodes (3.2
GHz CPU with 2 GB of RAM) running Ubuntu 7.10, with an Ethernet backplane for

16 R. Ramdhany et al.

testbed management. The 5 nodes are arranged in a linear topology: we used a combi-
nation of MAC-level filtering and the MobiEmu emulator [28] to emulate the required
multi-hop connectivity. We used Unik-olsrd [32] as a comparator for our OLSR im-
plementation, and DYMOUM v0.3 [29] for our DYMO implementation. These were
chosen because they are the two most popular public domain implementations of
these protocols. For comparability we configured our MANETKit implementations
with the single threaded concurrency model and with identical configuration parame-
ters to the comparator implementations (e.g. identical HELLO and Topology Change
intervals, and route hold times).

6.1 Performance

Our metrics for performance are (i) Time to Process Message—i.e. the time taken to
process a protocol message from receipt to completion within an MANETKit de-
ployment (for OLSR this is a Topology Change message; and for DYMO it is a
RREQ message); and (ii) Route Establishment Delay—i.e. the time taken to establish
a route in our testbed environment (for OLSR this is the time taken for a newly-
arrived node arriving at one end of the existing linear network topology to compute a
fully-populated routing table; and for DYMO it is the time taken to perform a route
discovery operation under similar circumstances). The former metric is a ‘micro’
level indicator of the overhead of MANETKit’s componentisation of the protocol
processing path, while the latter is a ‘macro’ measure of control plane performance.

Table 1. Comparative Performance of MANETKit Protocols

 Unik-olrsd MKit-OLSR DYMOUM-0.3 MKit-DYMO

Time to Process Message (ms) 0.045 0.096 0.135 0.122

Route Establishment Delay (ms) 995 1026 37 27.3

Referring to Table 1, we can see that on the Time to Process Message metric, the
measurements are very small in absolute terms and, as such, probably insignificant in
practice. The Route Establishment Delay metric puts them in perspective, and shows
that comparable real-world performance levels are attained by the MANETKit im-
plementations: MANETKit-OLSR is 3% slower than Unik-olrsd in establishing a
route in our experimental set-up, whereas MANETKit-DYMO is actually 35% faster
than DYMOUM-0.3. (Overall, our implementation of OLSR is slower on both met-
rics than the comparator, but our implementation of DYMO is faster on both.) We can
conclude that that MANETKit achieves broadly comparable performance to typical
monolithic implementations.

6.2 Resource Overhead

To assess the relative resource overhead of the MANETKit-implemented protocols
we again compared these implementations with their monolithic counterparts—this
time in terms of the memory footprints incurred. Memory footprint is the most direct
measure of MANETKit’s applicability for resource-constrained mobile nodes.

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 17

As can be deduced from in Table 2, MANETKit-OLSR incurs an 31% memory
overhead over its monolithic competitor, and MANETKit-DYMO incurs an 48%
overhead. These overheads are not surprising and are mainly due, of course, to the
(necessary) inclusion of the generic MANETKit machinery and the OpenCom run-
time (the latter occupies 22KB)3. However, as soon as we accept the premise that it is
important to be able to deploy multiple ad-hoc routing protocols, as argued in this
paper, we can see the benefits of MANETKit: the footprint of deploying the two pro-
tocols together in MANETKit is 8% smaller than the sum of the two monolithic pro-
tocol implementations; and the difference will clearly become more significant still as
more protocols (plus variants) are added and the fixed MANETKit/ OpenCom over-
heads are further amortised. The key conclusion is that the overhead/flexibility trade-
off is already in MANETKit’s favour with only two protocols deployed.

Table 2. Comparative Resource Overhead of MANETKit Protocols

 Unik-olsrd MKit-
OLSR

DYMOUM-
0.3

MKit-
DYMO

Unik-olsrd +
DYMOUM-0.3

MKit OLSR+
MKit-DYMO

Memory Footprint (KB) 136.3 179.0 120.4 178.1 256.7 236.6

6.3 Time Taken to Develop and Port Protocols

We now evaluate the extent to which the MANETKit approach can minimise the time
needed to develop and port protocols. We do this in an indirect manner—specifically,
by measuring the degree of code reuse achieved across the MANETKit implementa-
tions of OLSR and DYMO.

Table 3. Reused generic components in MANET protocol compositions

 Lines of Code OLSR DYMO
System CF Forward 1276 X X
System CF State 702 X X
Netlink (+ Kernel Module) 734 X
Queue 60 X X
Threadpool 591 X X
Timer 228 X X
PacketGenerator 950 X X
PacketParser 795 X X
RouteTable 1046 X X
ManetControl CF 827 X X
NeighbourDetection CF 1684 X
MPRCalculator 745 X

MPRState 3876
4
 X

Configurator 405 X X

Reused Generic Components - 12 12
Protocol-specific Components - 4 5

3 Once a desired configuration has been achieved (which possibly includes multiple protocols)

it is possible to unload the OpenCom kernel to free up memory space. The overheads would
drop in such a case to 15% for OLSR and 30% for DYMO.

4 The reason that this component is so large is that there are several different types of table
involved for the various types of data stored. There remains significant scope for optimising
this figure by coalescing table handling routines.

18 R. Ramdhany et al.

Table 3 gives a coarse-grained indication of the degree of code reuse by listing the
generic components used in the implementation of these protocols (we also show the
size of each component in terms of lines of code). In both cases, the generic compo-
nents outnumber the specific ones (shown at the bottom of Table 3) by a factor of at
least 2. This is especially significant because OLSR and DYMO are considered to be
very different protocols.

Fig. 7 takes a finer-grained perspective by showing the number of lines of code in
the generic, as well as the protocol-specific, components used by each protocol. The
proportion contributed by the reusable components to each protocol’s codebase is
57% for OLSR and 66% for DYMO, indicating a substantial saving in developer
effort. Overall we can see that the structure of MANETKit fosters a significant degree
of code reuse across protocols. Based on these measures and our knowledge of other
ad hoc routing protocols we fully expect to see similar levels of reuse when we add
further protocols to the framework.

0

2000

4000

6000

8000

10000

12000

14000

16000

OLSR DYMO

Protocol-Specific

Reused

Fig. 7. The proportion of reusable code in each protocol

7 Conclusions and Future Work

This paper has proposed a run-time component framework for the implementation,
deployment and dynamic reconfiguration of ad-hoc routing protocols. It is motivated
by the fact that the range of operating conditions under which ad-hoc routing proto-
cols must operate is so diverse and dynamic that it is infeasible for a single protocol to
be optimal under all such conditions. MANETKit therefore supports the serial and
simultaneous deployment of multiple protocols, plus the generation of protocol vari-
ants and hybrids via fine-grained dynamic reconfiguration. It uses the ‘CFS’ pattern
and <required-events, provided-events> tuples to allow protocols to be easily stacked
or composed in a variety of ways and to be straightforwardly dynamically reconfig-
ured. Another novel feature of MANETKit is its use of pluggable concurrency mod-
els, which enables it to be used in a variety of deployment environments with varying
performance/resource trade-offs. MANETKit also helps protocol developers in the
traditional way by providing a rich set of tools specifically tailored to the ad-hoc rout-
ing environment, and by isolating developers from OS specificities (including
whether protocols are implemented in kernel or user space). And it also enables re-
searchers to experiment with protocol optimisation techniques.

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 19

We have evaluated MANETKit by showing how it can be used to straightfor-
wardly build and dynamically deploy two major ad-hoc routing protocols (i.e. OLSR
and DYMO) and how these deployments can be variegated in a number of ways to
suit different operating conditions. Furthermore, our empirical evaluation shows that
MANETKit meets our stated goals by achieving comparable performance to mono-
lithic implementations of the same protocols, achieving smaller resource overheads
when more than one protocol is implemented in comparison to the monolithic ap-
proach, and also achieving significant code reuse across protocols (the latter being a
strong indicator that the MANETKit approach should generally shorten protocol de-
velopment and porting time).

In the future, our immediate plans are to integrate MANETKit into a wider dy-
namic reconfiguration environment by incorporating policy-driven decision making.
This will be based on existing work [13], and will also include coordinated distributed
dynamic reconfiguration as well as merely per-node reconfiguration. We also plan to
further explore reconfiguration strategies in real-world application scenarios, to fur-
ther investigate the hybridisation of protocols, and to generally gain more experience
of implementing protocols in the MANETKit environment.

A version of the MANETKit software is available for download from
http://www.comp.lancs.ac.uk/~ramdhany/.

References

1. Bani-Yassein, M., Ould-Khaoua, M.: Applications of probabilistic flooding in MANETs.
International Journal of Ubiquitous Computing and Communication (January 2007)

2. Bhatti, N.T., Schlichting, R.D.: A system for constructing configurable high-level proto-
cols. SIGCOMM Comput. Commun. Rev. 25(4) (October 1995)

3. Borgia, E., Conti, M., Delmastro, F.: Experimental comparison of routing and middleware
solutions for mobile ad-hoc networks: legacy vs cross-layer approach. In: E-WIND 2005
(2005)

4. Calafate, C.M.T., Manzoni, P.: A multi-platform programming interface for protocol de-
velopment. In: 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (2003)

5. Chakeres, I., Perkins, C.: Dynamic MANET on-demand (DYMO) routing, draft-ietf-
manet-dymo-11, IETF’s MANET WG (November 2007)

6. Chiang, C.: Routing in clustered multihop, mobile wireless networks with fading channel.
In: IEEE SICON 1997 (October 1997)

7. Clausen, T., Dearlove, C., Jacquet, P.: Generalized MANET message format, draft-ietf-
manet-packetbb-07 internet draft (2007)

8. Clausen, T., Dearlove, C.: Optimized link state routing protocol, v2, draft-ietf-manet-
olsrv2-03.txt

9. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.:
A generic component model for building systems software. ACM Trans. Comput.
Syst. 26(1) (February 2008)

10. Galvez, J.J., Ruiz, P.M.: Design and performance evaluation of multipath extensions for the
DYMO protocol. In: 32nd IEEE Conference on Local Computer Networks, October 15 (2007)

11. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange language.
In: Conference of the Centre for Advanced Studies on Collaborative Research, Toronto,
Ontario, Canada (November 1997)

12. Goff, T., Abu-Ghazaleh, N.B., Phatak, D.S., Kahvecioglu, R.: Preemptive routing in ad-
hoc networks. In: MobiCom 2001 (2001)

20 R. Ramdhany et al.

13. Grace, P., Coulson, G., Blair, G.S., Porter, B.: A distributed architecture meta-model for
self-managed middleware. In: ARM 2006 (2006)

14. Haas, Z.J., Pearlman, M.R., Samar, P.: The zone routing protocol (ZRP) for ad-hoc net-
works, Internet Draft, draft-ietf-manet-zone-zrp-04.txt (July 2002)

15. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-based ad-hoc routing. In: INFOCOM 2002 (2002)
16. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.: Mapping ADL specifications to a recon-

figurable runtime component platform. In: WICSA 2005 (2005)
17. Karp, B., Kung, H.T.: Greedy perimeter stateless routing for wireless networks. In: Proc.

6th Annual ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom 2000 (2000)

18. Kawadia, V., Zhang, Y., Gupta, B.: System services for ad-hoc routing: architecture, im-
plementation and experiences. In: MobiSys 2003 (2003)

19. Kon, F.: Automatic configuration of component-based distributed systems. PhD Thesis.
University of Illinois at Urbana-Champaign (May 2000)

20. Kuladinithi, K.: University of Bremen Java-AODV implementation,
http://www.aodv.org

21. Marina, M.K., Das, S.R.: On-demand multipath distance vector routing in ad-hoc net-
works. In: Proc. International Conference for Network Procotols (2001)

22. Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for mobile wire-
less networks. In: INFOCOM 1997 (1997)

23. Perkins, C., Royer, E.: Ad-hoc on demand distance vector routing, Internet Draft rfc3561
(2003)

24. Pinto, A.: Appia: A flexible protocol kernel supporting multiple coordinated channels. In:
ICDCS. IEEE, Los Alamitos (2001)

25. Pissias, P., Coulson, G.: Framework for quiescence management in support of reconfigur-
able multi-threaded component-based systems. IET Software 2(4), 348–361 (2008)

26. Santiváñez, C.A., Ramanathan, R., Stavrakakis, I.: Making link-state routing scale for ad-
hoc networks. In: Proc. 2nd ACM international Symposium on Mobile Ad-Hoc Networking
(October 2001)

27. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building adaptive sys-
tems using Ensemble. Technical Report. UMI Order Number: TR97-1638, Cornell Univer-
sity (1997)

28. Zhang, Y.: An integrated environment for testing mobile ad-doc networks. In: MobiHoc
2002 (2002)

29. Implementation of the dymo routing protocol dymoum-0.3,
http://masimum.inf.um.es/?Software:DYMOUM

30. Hutchinson, N.C., Peterson, L.L.: The X-Kernel: An Architecture for Implementing Net-
work Protocols. IEEE Trans. Softw. Eng. 17(1) (January 1991)

31. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., Duce, D., Cooper, C.:
GRIDKIT: Pluggable Overlay Networks for Grid Computing. In: Meersman, R., Tari, Z.
(eds.) OTM 2004. LNCS, vol. 3291, pp. 1463–1481. Springer, Heidelberg (2004)

32. Implementation of the OLSR routing protocol, Unik-olsrd website:
http://www.olsr.org/

33. Mahfoudh, S., Minet, P.: An energy efficient routing based on OLSR in wireless ad hoc
and sensor networks. In: Proc. 22nd International Conference on Advanced Information
Networking and Applications – Workshops (2008)

34. Gerla, M., Hong, X., Pei, G., Fisheye State Routing Protocol (FSR) for Ad Hoc Networks.
IETF MANET Working Group Internet Draft (2002)

35. Ramdhany, R., Coulson, G.: ManetKit: A Framework for MANET Routing Protocols. In:
Proc. 5th Workshop on Wireless Ad hoc and Sensor Networks (WWASN 2008), workshop
attached to the International Conference on Distributed Computing Systems (ICDCS), Bei-
jing, China (June 2008)

Automatic Generation of Network Protocol
Gateways

Yérom-David Bromberg1, Laurent Réveillère1, Julia L. Lawall2,
and Gilles Muller3

1 University of Bordeaux, France
2 University of Copenhagen, Denmark

3 Ecole des Mines de Nantes / INRIA-Regal, France

Abstract. The emergence of networked devices in the home has made
it possible to develop applications that control a variety of household
functions. However, current devices communicate via a multitude of in-
compatible protocols, and thus gateways are needed to translate between
them. Gateway construction, however, requires an intimate knowledge
of the relevant protocols and a substantial understanding of low-level
network programming, which can be a challenge for many application
programmers.

This paper presents a generative approach to gateway construction,
z2z, based on a domain-specific language for describing protocol behav-
iors, message structures, and the gateway logic. Z2z includes a compiler
that checks essential correctness properties and produces efficient code.
We have used z2z to develop a number of gateways, including SIP to
RTSP, SLP to UPnP, and SMTP to SMTP via HTTP, involving a range
of issues common to protocols used in the home. Our evaluation of these
gateways shows that z2z enables communication between incompatible
devices without increasing the overall resource usage or response time.

1 Introduction

The “home of tomorrow” is almost here, with a plethora of networked devices
embedded in appliances, such as telephones, televisions, thermostats, and lamps,
making it possible to develop applications that control many basic household
functions. Unfortunately, however, the different functionalities of these various
appliances, as well as market factors, mean that the code embedded in these
devices communicates via a multitude of incompatible protocols: SIP for tele-
phones, RTSP for televisions, X2D for thermostats, and X10 for lamps. This
range of protocols drastically limits interoperability, and thus the practical ben-
efit of home automation.

To provide interoperability, one solution would be to modify the code, to take
new protocols into account. However, the code in devices is often proprietary,
preventing any modification of the processing of protocol messages. Even if the
source code is available, it may not be possible to install a new implementation
into the device. Therefore, gateways have been used to translate between the
various kinds of protocols that are used in existing appliances.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 21–41, 2009.
c© IFIP International Federation for Information Processing 2009

22 Y.-D. Bromberg et al.

Developing a gateway, however, is challenging, requiring not only knowledge of
the protocols involved, but also a substantial understanding of low-level network
programming. Furthermore, there can be significant mismatches between the ex-
pressiveness of various protocols: some are binary while others are text-based,
some send messages in unicast while other use multicast, some are synchronous
while others are asynchronous, and a single request in one protocol may corre-
spond to a series of requests and responses in another. Mixing this complex trans-
lation logic, which may for example involve hand coding of callback functions
or continuations in the case of asynchronous responses, with equally complex
networking code makes implementing a gateway by hand laborious and error
prone. Enterprise Service Buses [1] have been proposed to reduce this burden
by making it possible to translate messages to and from a single fixed interme-
diary protocol. Nevertheless, the translation logic must still be implemented by
hand. Because each pair of protocols may exhibit widely differing properties, the
gateway code is often not easily reusable.

This paper. We propose a generative language-based approach, z2z, to simplify
gateway construction. Z2z is supported by a runtime system that hides low-
level details from the gateway programmer, and a compiler that checks essential
correctness properties and produces efficient code. Our contributions are:

– We propose a new approach to gateway development. Our approach relies
on the use of a domain-specific language (DSL) for describing protocol be-
haviors, message structures, and the gateway logic.

– The DSL relies on advanced compilation strategies to hide complex issues
from the gateway developer such as asynchronous message responses and
the management of dynamically-allocated memory, while remaining in a low-
overhead C-based framework.

– We have implemented a compiler that checks essential correctness properties
and automatically produces an efficient implementation of a gateway.

– We have implemented a runtime system that addresses a range of proto-
col requirements, such as unicast vs. multicast transmission, association of
responses to previous requests, and management of sessions.

– We show the applicability of z2z by using it to automatically generate a
number of gateways: between SIP and RTSP, between SLP and UPnP, and
between SMTP and SMTP via HTTP. On a 200 MHz ARM9 processor, the
generated gateways have a runtime memory footprint of less than 260KB,
and with essentially no runtime overhead as compared to native service ac-
cess.

The rest of this paper is organized as follows. Section 2 presents the range of
issues that arise in implementing a gateway, as illustrated by a variety of case
studies. Section 3 describes the z2z gateway architecture and introduces a DSL
for describing protocol behaviors, message structures, and the gateway logic.
Section 4 describes the compiler and runtime system that support this language.
Section 5 demonstrates the efficiency and scalability of z2z gateways. Section 6
discusses related work. Finally, Section 7 concludes and presents future work.

Automatic Generation of Network Protocol Gateways 23

RTSP

Agent
Gateway

DESCRIBE

Unicast async

Response

SIP

Agent

Unicast INVITE

SETUP

PLAY

RTSP

SIP RTSP

RTSP

Unicast sync.

Video Stream

Fig. 1. SIP to RTSP gateway

2 Issues in Developing Gateways

A gateway must take into account the different degrees of expressiveness of the
source and target protocols and the range of communication methods that they
use. These issues are challenging to take into account individually, requiring
substantial expertise in network programming, and the need to address both of
them at once makes gateway development especially difficult. We illustrate these
points using examples that involve a wide range of protocols.

Mismatched protocol expressiveness. The types of messages provided by a proto-
col are determined by the kinds of exchanges that are relevant to the targeted
application domain. Thus, different protocols may provide message types that
express information at different granularities. To account for such mismatches, a
gateway must potentially translate a single request from the source device into
multiple requests for the target device, or save information in a response from
the target device for use in constructing multiple responses for the source device.

The SIP/RTSP gateway shown in Fig. 1 illustrates the case where the requests
accepted by the target device are finer grained than the requests generated by the
source device. This gateway has been used in the SIP-based building-automation
test infrastructure at the University of Bordeaux. It allows a SIP based telephony
client to be used to receive images from an Axis IP-camera.1 This camera is a
closed system that accepts only RTSP for negotiating the parameters of the
video session. Once the communication is established, the gateway is no longer
involved, and the video is streamed directly from the camera to the SIP client
using RTP [2]. Because SIP and RTSP were introduced for different application
domains, there are significant differences in the means they provide for estab-
lishing a connection. Thus, as shown in Fig. 1, for a single SIP INVITE message,
the gateway must extract and rearrange the information available into multiple
RTSP messages.

The SMTP/HTTP and HTTP/STMP gateways shown in Fig. 2 illustrate the
case where information must be saved from a target response for use in con-
structing multiple responses for the source device. These gateways are used in
1 Axis: http://www.axis.com/products/

24 Y.-D. Bromberg et al.

SMTP

Service

Unicast async

SMTP

Client

Unicast sync.

Gateway Gateway

SMTP over TCP HTTP over UDP SMTP over TCP

POST

POST

POST

HELO

MAIL FROM

QUIT QUIT

MAIL FROM

HELO

...... ...

Unicast sync.

Fig. 2. HTTP tunneling gateways

a tunneling application that enables SMTP messages to be exchanged between
two end-points over HTTP, as is useful when the port used by SMTP is closed
somewhere between the source and the destination. The first gateway encapsu-
lates an SMTP request into an HTTP message and sends it asynchronously using
UDP to the second gateway, which extracts relevant information to generate the
corresponding SMTP request. The response is sent back similarly.

Because all SMTP messages have to flow within the same TCP stream, the
HTTP/SMTP gateway needs to know which TCP connection to use when an
HTTP request is received. To address this issue, the gateway generates a unique
identifier when opening the TCP connection with the destination SMTP server
and includes this identifier within the HTTP response. The first gateway then
includes this identifier in all subsequent HTTP requests, enabling the second
gateway to retrieve the connection to use. To implement this, the first gateway
needs to manage a state within a session to store the identifier returned in the
first response in order to be able to find it for the subsequent requests.

Heterogeneous communication methods. Protocols differ significantly in how they
interact with the network. Requests may be multicast or unicast, responses may
be synchronous or asynchronous, and network communication may be managed
using a range of transport protocols, most commonly TCP or UDP.

The gateway between SLP and UPnP shown in Fig. 3 involves a variety of
these communication methods. Such a gateway may be used in a service discov-
ery environment that provides mechanisms for dynamically discovering available
services in a network. For example, a washing machine may search for a loud-
speaker service and use it to play a sound once the washing is complete. In this
scenario, the washing machine includes a SLP (Service Location Protocol) user
agent and the speaker uses a UPnP (Universal Plug and Play) service agent to
advertise its location and audio characteristics. UPnP is a wrapper for SSDP [3]
and HTTP [4], which are used at different stages of the service discovery process.

From a multicast SLP SrvRQST service discovery request, the SLP/UPnP
gateway extracts appropriate information, such as the service type, and sends a
multicast SSDP SEARCH request. If a service is found, the UPnP service agent
asynchronously returns a unicast SSDP response containing the URL of the
service description to the gateway. Then, the gateway extracts the URL and
sends a unicast HTTP GET request to it to retrieve the service description as

Automatic Generation of Network Protocol Gateways 25

UPnP

Service
Gateway

Multicast

Search

XML Document

Unicast

GET URL

Unicast sync.

Multicast

SrvRQST

Unicast async.

SrvRPLY

SLP

Client

Unicast async.

 Response URL
SLP

SSDP

HTTP

Fig. 3. SLP to UPnP gateway

an XML document. Finally, the gateway extracts information from the XML
document and creates an SLP SrvRPLY response, which it returns to the SLP
client. This gateway must manage both multicast and unicast requests, and
synchronous and asynchronous responses. Mixing the translation logic with these
underlying protocol details complicates the development of the gateway code.

3 Specifying a Gateway Using Z2z

As illustrated in Section 2, a gateway receives a single request from the source
device, translates it into one or a series of requests for one or more target devices,
and then returns a response to the source device. It may additionally need to save
some state when the source protocol has a notion of session that is different from
that used by the target protocol, or when the interaction with the target device(s)
produces some information that is needed by subsequent source requests.

Our case studies show that there are two main challenges to developing such
a gateway: (1) manipulating messages and maintaining session state, to deal
with the problem of mismatched protocol expressiveness, and (2) managing the
interaction with the network, to deal with the problem of heterogeneous commu-
nication methods. In z2z, these are addressed through the combination of a DSL
that allows the gateway developer to describe the translation between two or
more protocols in a high-level way, and a runtime system that provides network
interaction and data management facilities specific to the domain of gateway
development. We describe the DSL in this section, and present the architecture
of the runtime system in the next section.

3.1 Overview of the z2z Language

To create a gateway, the developer must provide three kinds of information: 1)
how each protocol interacts with the network, 2) how messages are structured,
and 3) the translation logic. To allow each kind of information to be expressed
in a simple way, z2z provides a specific kind of module for each of them: protocol
specification (PS) modules for defining the characteristics of protocols, message
specification (MS) modules for describing the structure of protocol messages,

26 Y.-D. Bromberg et al.

PS PSMT

MS

SIP MESSAGE RTSP MESSAGE

SOURCE PROTOCOL TARGET PROTOCOL

SIP

SDP MEDIA

RTSP

SIP

SDP

MS

MS

MS

SDP MEDIA

RTSP

SDP

MS

MS

SIP RTSP

Fig. 4. The structure of a z2z gateway specification (arrows represent dependencies)

and a message translation (MT) module for defining how to translate messages
between protocols. These modules are implemented using the z2z DSL, which
hides the complexities of network programming and allows specifying the relevant
operations in a clear and easily verifiable way.

As illustrated in Section 2, a gateway may involve any number of protocols.
Thus, a gateway specification may contain multiple protocol specification mod-
ules and message specification modules, according to the number of protocols
and message types involved. A gateway specification always contains a single
message translation module. Fig. 4 shows the architecture of the SIP/RTSP
gateway in terms of its use of these modules. We now present these modules in
more detail, using this gateway as an example.

3.2 Protocol Specification Module

The protocol specification module defines the properties of a protocol that a gate-
way should use when sending or receiving requests or responses. As illustrated
in Fig. 5 for the SIP protocol, this module declares the following information.

Attributes. Protocols vary in their interaction with the network, in terms of
the transport protocol used, whether requests are sent by unicast or by multi-
cast, and whether responses are received synchronously or asynchronously. The
attributes block of the protocol specification module indicates which combina-
tion is desired. Based on this information, the runtime system provides appro-
priate services. For example, SIP relies on UDP (transport attribute, line 2),
sends requests in unicast (mode attribute, line 2), and receives responses asyn-
chronously. If the transmission mode is asynchronous, the protocol specification
must also include a flow block (line 9) describing how to match requests to
responses.

Request. The entry point of a gateway is the reception of a request. On receiving
a request, the gateway dispatches it to the appropriate handler in the message
translation module. The request block (lines 3-6) of the protocol specification
module declares how to map messages to handlers. For each kind of request

Automatic Generation of Network Protocol Gateways 27

1 protocol sip {
2 attributes { transport = udp/5060; mode = async/unicast; }
3 request req {
4 response invite when req.method == "INVITE";
5 response bye when req.method == "BYE";
6 void ack when req.method == "ACK"; }
7 sending request req { . . . }
8 sending response resp (request req) { resp.cseq = req.cseq; resp.callid = req.callid; . . . }
9 flow = { callid, cseq }

10 session flow = { callid } }

Fig. 5. The PS module for the SIP protocol

that should be handled by the gateway, the request block indicates the name
of the handler (invite, bye, and ack, for SIP), whether the request should be
acknowledged by a response (response if a response is allowed and void if no
response is needed), and a predicate, typically defined in terms of the fields of
the request, indicating whether a request should be sent to the given handler.

Sending. A protocol typically defines certain basic information that all messages
must contain. Rather than requiring the developer to specify this information
in each handler, this information is specified in a sending block for each of
requests and responses. The sending block for requests is parameterized by only
the request, while the sending block for responses is parameterized by both the
corresponding request and the response, allowing elements of the response to be
initialized according to information stored in the request. For example, the SIP
sending block for responses copies the cseq and callid fields from the request
to the response (line 8). The protocol specification module may declare local
variables in which to accumulate information over the treatment of all messages.

Flow and session flow. When a target protocol sends responses asynchronously,
an incoming response must be associated with a previous request, to restart the
associated handler. The flow block (line 9), specifies the message elements that
determine this association. In SIP, a request and its matching response have the
same sequence number (cseq) and call id (callid). A session flow block (line
10) similarly specifies how to recognize messages associated with a session.

The information in the protocol specification module impacts operations that
are typically scattered throughout the gateway. In providing the protocol speci-
fication module as a language abstraction, we have identified the elements of the
protocol definition that are relevant to gateway construction and collected them
into one easily understandable unit. Furthermore, creating a protocol specifica-
tion module is lightweight, involving primarily selecting properties rather than
implementing their support, making it easy to incorporate many different kinds
of protocols into a single gateway, as illustrated by the SLP/UPnP gateway
described in Section 2.

28 Y.-D. Bromberg et al.

3.3 Message Specification Module

A network message is organized as a sequence of text lines, or of bits, for a
binary protocol, containing both fixed elements and elements specific to a given
message. A gateway must extract relevant elements from the received request
and use them to create one or more requests according to the target protocol(s).
Similarly, it must extract relevant elements from the received responses and
ultimately create a response according to the source protocol. Extracting values
from a message represented as a sequence of text or binary characters is unwieldy,
and creating messages is even more complex, because the element values may
become available at different times, making it difficult to predict the message
size and layout.

In z2z, the message specification module contains a description of the messages
that can be received and created by a gateway. Based on this description, the z2z
compiler generates code for accessing message elements and inserting message
elements into a created message. There is one message specification module per
protocol relevant to the gateway, including both the source and target protocols,
as represented by the protocol specification modules, and one per any higher
level message type that can be embedded in the requests and responses. For
example, the SIP/RTSP camera gateway uses not only SIP and RTSP message
specification modules but also message specification modules for SDP Media and
SDP, which are not associated with protocol specification modules.

A message specification module provides a message view describing the rel-
evant elements of incoming messages and templates for creating new messages.
The set of elements is typically specific to the purpose of the gateway, not generic
to the protocol, and thus the message specification module is separate from the
protocol specification module. We illustrate the declarations of the message view
and the templates in the SIP message specification module used in our camera
gateway.

Message view. A message view describes the information derived from received
messages that is useful to the gateway. It thus represents the interface between
the gateway and the message parser. Z2z does not itself provide facilities for
creating message parsers, but instead makes it possible to plug in one of the
many existing network message parsers2 or to construct one by hand or using a
parser generator targeting network protocols, such as Zebu [5].

Because SIP is the source protocol of the camera gateway, its message view
describes the information contained in a SIP request. An excerpt of the declara-
tion of this view is shown in Fig. 6a. It consists of a sequence of field declarations,
analogous to the declaration of a C-language structure. A field declaration indi-
cates whether the field is mandatory or optional, whether it is public or private,
its type, and its name. A field is mandatory if the protocol RFC specifies that
it is always present, and optional otherwise. A field is public if it can be read by
2 oSIP: http://www.gnu.org/software/osip

Sofia-SIP: http://opensource.nokia.com/projects/sofia-sip/
Livemedia: http://www.livemediacast.net/about/library.cfm

Automatic Generation of Network Protocol Gateways 29

1 read {
2 mandatory private int cseq;
3 mandatory private fragment callid;
4 mandatory private fragment via;
5 mandatory private fragment to;
6 mandatory private fragment from;
7 mandatory private fragment method;
8
9 optional private fragment to tag;

10 optional private int cseqsss;
11
12 mandatory public fragment uri, body;
13 mandatory public fragment from host;
14 }

a) View of SIP requests

1 response template Invite ok {
2 magic = "foo";
3 newline = "\r\n";
4 private fragment from, to, callid, via, contact;
5 private int cseq, content length;
6 public fragment body, to tag;
7 −−foo
8 SIP/2.0 200 OK
9 Via: <%via%>

10 [. . .]
11 Content−Length: <%content length%>
12
13 <%body%>
14 −−foo }

b) Template for an INVITE method success response

Fig. 6. SIP message specification for the camera gateway

the gateway logic, and private if it can only be read by the protocol specification.
The type of a field is either integer, fragment, or a list of one of these types. A
field of type fragment is represented as a string, but the gateway logic can cause
it to be parsed as a message of another protocol, such as SDP or SDP Media, in
our example.

Templates. Z2z maintains messages to be created as a pair of a template view
and a template. The template language is adapted from that of Repleo [6]. A
message is created in the message translation module by making a new copy
of the template view, and initializing its fields, in any order. At a send or re-
turn operation in the message translation module, the template representing the
message is flushed, filling its holes with the corresponding values from the view.

Because SIP is the source protocol of our camera gateway, its templates de-
scribe the information needed to create SIP responses. Typically, there are mul-
tiple response templates for each method, with one template for each relevant
success and failure condition. Fig. 6b shows the template for a response indicat-
ing the success of an INVITE request.

A template declaration has three parts: the structural declarations (lines 2-3),
the template view (lines 4-6), and the template text (lines 7-14). The structural
declarations indicate a string, magic, marking the start and end of the template
text, and the line separator, newline, specified by the protocol RFC. The tem-
plate view is analogous to the message view, except that the keywords mandatory
and optional are omitted, as all fields are mandatory to create a message. The
private fields are filled in by the sending block of the protocol specification.
The public fields are filled in by the message translation module. Finally, the
template text has the form of a message as specified by the protocol RFC, with
holes delimited by <% and %>. These holes refer to the fields of the template view,
and are instantiated with the values of these fields when the template is flushed.
Binary templates, as needed for SLP messages in our service discovery gateway
(Section 2), can be defined, using the keyword binary.

30 Y.-D. Bromberg et al.

1 fragment session id = "";
2
3 sip response invite (sip request s) {
4 rtsp response rr;
5 sip response sr, failed;
6 sdp media message rtsp m, sip m, media resp;
7 sdp message sdp rtsp, sdp sip, sdp resp;
8 fragment list inv medias, rtsp medias;
9

10 // Create error response
11 failed=Invite failure(code=400,to tag=random());
12
13 sdp rtsp = (sdp message)(s.body);
14 inv medias = (fragment list)(sdp rtsp.medias);
15
16 // Notify that something is happening
17 preturn Invite provisional(body = "",
18 to tag = random());
19
20 // Retrieve the description of a media object
21 rr = send(Describe(resource = s.uri uname));
22 if (empty(rr.body)) return failed;
23 sdp sip = (sdp message)(rr.body);
24 rtsp medias = (fragment list)(sdp sip.medias);
25
26 // See whether a compatible video format exists
27 foreach (fragment rtsp m = rtsp medias) {
28 rtsp m = (sdp media message)rtsp m ;
29 if (rtsp m.type == "video") {
30 foreach (fragment sip m = inv medias) {
31 sip m = (sdp media message)sip m ;

32 if ((rtsp m.type == sip m.type) &&
33 (rtsp m.profile == sip m.profile)) {
34 // Found something compatible
35 if (empty(rtsp m.control))
36 return failed;
37 // Specify the transport mechanism
38 rr = send(Setup(uri=rtsp m.control,
39 destination=s.from host,
40 port1=sip m.port,
41 port2=sip m.port+1));
42 if (empty(rr.sessionId) | |
43 empty(rr.code) | | rr.code > 299)
44 return failed;
45 session start();
46 session id = rr.sessionId;
47 // Tell the server to start sending data
48 rr = send(Play(resource = s.uri uname,
49 sessionId = session id));
50 if (empty(rr.code) | | rr.code > 299) {
51 session end(); return failed; }
52 media resp = Media(type = sip m.type,
53 profile = sip m.profile);
54 if (empty(rr.server port))
55 media resp.port = 0;
56 else media resp.port = rr.server port;
57 sdp resp = Sdp media(header=
58 sdp rtsp.header,media=media resp);
59 return Invite ok(body = sdp resp,
60 to tag = random());
61 }}}}
62 return failed; }

Fig. 7. The INVITE handler of the message translation module for the camera gateway

3.4 Message Translation Module

The message translation module expresses the message translation logic, which
is the heart of the gateway. This module consists of a set of handlers, one for
each kind of relevant incoming request, as indicated by the protocol specification
module. Handlers are written using a C-like notation augmented with domain-
specific operators for manipulating and constructing messages, for sending re-
quests and returning responses, and for session management. Fig. 7 shows the
invite handler for the camera gateway.

Manipulating message data. A handler is parameterized by a view of the cor-
responding request. The information in the view can be extracted using the
standard structure field access notation (line 13). If a view element is designated
as being optional in the message specification module, it must be tested using
empty to determine whether its value is available before it is used (line 22). A
view element of type fragment can be cast to a message type, using the usual
type cast notation. In line 23, for example, the body of the request is cast to an
SDP message, which is then manipulated according to its view (line 24).

A handler creates a message by invoking the name of the corresponding tem-
plate (line 17). Keyword arguments can be used to initialize the various fields
(lines 17-18) or the fields can be filled in incrementally (lines 54-56). A created
message is maintained as a view during the execution of the handler and flushed
to a network message at the point of a send or return operation.

Automatic Generation of Network Protocol Gateways 31

Sending requests and returning responses. A request is sent using the operator
send, as illustrated in line 38. If the protocol specification module for the corre-
sponding target protocol indicates that a response is expected, then execution
pauses until a response is received, and the response is the result of the send op-
eration. If the protocol specification indicates that no response is expected, send
returns immediately. There is no need for the developer to break the handler up
into a collection of callback functions to receive asynchronous responses, as is
required in most other languages used for gateway programming. Instead, the
difference between synchronous and asynchronous responses is handled by the
z2z compiler, as described in Section 4. This strategy makes it easy to handle the
case where the gateway must translate a single request from the source device
into multiple requests for the target device, requiring multiple send operations.

If the protocol specification module indicates a return type for a handler,
then the handler may return a response. This is done using return (line 59),
which takes as argument a message and terminates execution of the handler.
A provisional response, as is needed in SIP to notify the source device that a
message is being treated, can be returned using preturn (line 17). This operator
asynchronously returns the specified message, and handler execution continues.

Session management. A session is a state that is maintained over a series of
messages. If the protocol specification module for the source protocol declares
how messages should be mapped to sessions (session flow), then the message
translation module may declare variables associated with a session outside of
any handler. The camera gateway, for example, declares the session variable
session id in line 1. The message translation module initiates a session using
session start() (line 45). Once the session has started any modification made
to these variables persists across requests within the session, until the session
is ended using session end(). At this point, all session memory is freed. The
SMTP/HTTP/SMTP gateways described in Section 2 similarly use sessions to
maintain the TCP connection identifier across multiple requests.

4 Implementation

Our implementation of the z2z gateway generator comprises a compiler for the
z2z language and a runtime system. From the z2z specification of a gateway, the
z2z compiler generates C code that can then be compiled using a standard C
compiler and linked with the runtime system. The generated code is portable
enough to run on devices ranging from desktop computers to constrained devices
such as PDAs or home appliances. The runtime system defines various utility
functions and amounts to about 7500 lines of C code. The z2z compiler is around
10500 of OCaml code. Note that the compiler can be used offline to produce the
gateway code and therefore is not required to be present on the gateway device.
We first describe the verifications performed by the compiler, then present the
main challenges in code generation, and finally present the runtime system.

32 Y.-D. Bromberg et al.

4.1 Verifications

The z2z compiler performs consistency checks and dataflow analyses to detect
erroneous specifications and to ensure the generation of safe gateway code.

Consistency checks. As was shown in Fig. 4, there are various dependencies
between the modules making up a z2z gateway. The z2z compiler performs a
number of consistency checks to ensure that the information declared in one
module is used elsewhere according to its declaration. The main inter-module
dependencies are derived from the request and sending blocks of the proto-
col specification and the types and visibilities of the elements of the message
views. The request block associated with the source protocol declares how to
dispatch incoming requests to the appropriate handlers and whether a response is
expected from these handlers. The z2z compiler checks that the message transla-
tion module defines a handler for each kind of message that should be handled by
the gateway and that each handler has an appropriate return type. The sending
block of a protocol specification module initializes some fields for all requests or
responses sent using that protocol. The compiler checks that every template
view defined in the corresponding message specification module includes all of
these fields. Finally, the message specification module indicates for each field of
a view the type of value that the field can contain and whether the field can be
accessed by the message translation module (public) or only by the protocol
specification module (private). The z2z compiler checks that the fields are only
used in the allowed module and that every access or update has the declared
type.

Dataflow analyses. The z2z compiler performs a dataflow analysis within the
message translation module to ensure that values are well-defined when they
are used. The principal issues are in the use of optional message fields, session
variables, and created messages. A message specification module may declare
some message fields as optional, indicating that they may be uninitialized. The
z2z compiler enforces that any reference to such a field is preceded by an empty
check. Session variables cannot be used before a session start operation or
after a session end operation. The z2z compiler checks that references to these
variables do not occur outside these boundaries. Finally, the z2z compiler checks
that all public fields of a template are initialized before the template is passed
to send and that all execution paths through the sending block of the corre-
sponding protocol specification module initialize all private fields.

4.2 Code Generation

The main challenges in generating code from a z2z specification are the imple-
mentation of the send operation, the implementation of the variables used by the
message translation module, and the implementation of memory management.

Automatic Generation of Network Protocol Gateways 33

The send operation. The handlers of a z2z message translation module are spec-
ified as sequential functions, with send having the syntax of a function call that
may return a value. If the target protocol returns responses synchronously, the
z2z compiler does indeed implement send as an ordinary function call. If the
target protocol returns responses asynchronously, however, this treatment is not
sufficient. In this case, the implementation of send does not return a value, but
must instead receive as an argument information about the rest of the handler
so that the handler can be restarted when a response becomes available. The
standard solution is to decompose the code into a collection of callback functions,
which are tedious, error-prone, and unintuitive to write by hand. Fortunately, it
has been observed that such callback functions amount to continuations, which
can be created systematically [7]. The z2z compiler thus splits each handler at
the point of each send to create a collection of functions, of which the first rep-
resents the entry point of the handler and the rest represent some continuation.

resp1 = send(req1);

if (expr) {

resp2 = send(req2);

} else {

resp3 = send(req3);

}

s1

s2

s3

Fig. 8. Code slicing for continua-
tions

Fig. 8 illustrates the splitting of a han-
dler performed by the z2z compiler when the
target protocol of a send returns responses
asynchronously. This code contains three send
operations, one on line s1 and the others in
each of the if branches (lines s2 and s3). The
continuation function for the send on line s1
contains the code in the region labeled (2).
The continuation function for the send on line
s2 contains the code in region (3) and the one
for the send on line s3 contains the code in
region (4). As shown, the latter two continua-
tion functions explicitly contain only the code
within the corresponding if branch. The exe-
cution of the handler must, however, continue
to the code following the if statement, which
is in the continuation of both send operations.
To reduce the code size, the z2z compiler fac-
torizes the code after the if statement into a separate continuation function,
labeled (5), which is invoked by both (3) and (4) after executing the if branch
code [8].

Variables. Splitting a handler into a set of disjoint continuation functions in
the asynchronous case complicates the implementation of the handler’s local
variables when these variables are used across sends and thus by multiple con-
tinuations. The z2z compiler identifies handler variables whose values must be
maintained across asynchronous sends, and implements them as elements of
an environment structure that such a send passes to the runtime system. The
runtime system stores this environment, and passes it back to the stored contin-
uation function when the corresponding response is received.

Session variables are similarly always implemented in an environment struc-
ture, as by design they must be maintained across multiple invocations of the

34 Y.-D. Bromberg et al.

message translation module. Between handler invocations, the runtime system
stores this environment with the other information about the session.

Dynamic memory management. Template constructors dynamically allocate
memory, analogous to Java’s new operation. This memory may be referenced
from arbitrary local and session variables of the message translation module,
and must be freed when no longer useful. Had we translated z2z into a garbage
collected language such as Java, then we could rely on the garbage collector to
free this memory. We have, however, used C, to avoid the overhead of including
a fully-featured runtime system such as the JVM. To avoid the risk of dangling
pointers, the z2z compiler generates code to manage reference counts [9]. An
alternative, for future work, is to use a garbage collector for C code [10].

4.3 Runtime System

The z2z runtime system implements a network server capable of simultaneously
handling many messages, that may rely on various protocols. The server is pa-
rameterized by the information specific to each protocol, as provided in the
corresponding protocol specification module (Section 3.2). When a message is
received, the runtime system invokes the corresponding parser to construct a
message view as defined in the message specification module. The runtime sys-
tem then executes the code generated from the message translation module for
the handler corresponding to the incoming request. The runtime system also
provides various utility functions that are used by the code generated by the z2z
compiler to send requests synchronously or asynchronously, to save and restore
environments, to manage sessions, and to perform various other operations.

Receiving network messages. The z2z runtime system is designed to efficiently
juggle many incoming requests simultaneously. It is multithreaded, based on the
use of a single main thread and a pool of worker threads. The main thread detects
an incoming connection, and then assigns the processing of this connection to
an available worker thread. The pool of worker threads avoids the high overhead
that would be entailed by spawning a new thread per connection, and thus
contributes to the overall efficiency of the approach. It furthermore avoids the
mutex contention that would be incurred by the use of global shared variables.
The z2z developer does not need to be aware of these details.

TCP poses further challenges. In this case, a stream of messages arrives within
a single connection. Depending on the protocol, substantial computation may be
required to isolate the individual messages within a stream. To avoid dropping
messages, the main thread assigns two worker threads to a TCP connection. One,
the producer, receives data from the incoming TCP stream and separates it into
messages, while the other, the consumer, applies the gateway logic. These threads
communicate via shared memory. When the producer has extracted a message
from the incoming stream, it sends a signal to the consumer, which then reads
the message in the shared memory and processes it. On completion, it sends a

Automatic Generation of Network Protocol Gateways 35

signal to the producer. This approach allows the main thread to multiplex I/O
on a set of server sockets to provide gateway service to multiple devices.

Network protocol gateways furthermore must manage multiple concurrent con-
nections between many devices. This adds significantly to the complexity of the
gateway implementation. For example, to communicate with a device that uses
SMTP, multiple requests must be sent inside the same TCP connection, while
for a RTSP device each request requires the creation of a new TCP connection.
The z2z runtime system hides these details from the gateway developer. As illus-
trated by the HTTP/SMTP example, the runtime system must keep open the
TCP connection used to send SMTP requests even if incoming requests are re-
sponded to asynchronously. However, in this case, subsequent incoming requests
are not related to each other and the runtime system needs to know which TCP
connection to use. To address this issue, the runtime system maintains a table
of current active TCP connections and provides references to them, so that they
can be retrieved later. The runtime system can also seamlessly switch from IPv4
to IPv6, send messages in unicast or multicast, and use UDP or one or many
TCP connections, as specified by attributes in the protocol specification module,
without requiring any additional programming from the gateway developer.

Processing a message. When a thread is assigned the processing of a message, it
executes the message parser of the corresponding protocol to construct a message
view, as described in Section 3.3. Then, it calls the dispatch function, generated
by the z2z compiler from the PS module, to select the handler to execute. If a
handler sends requests asynchronously, the runtime system explicitly suspends
the control flow and saves the current continuation, handler state, and session
state in a global shared memory. The local memory allocated for the current
thread is freed and the thread returns to the main pool. When a response is
received by the main thread, the runtime system assigns its processing to an
available worker thread, restores the corresponding states and continuation, and
execution of the handler continues.

5 Evaluation

To assess our approach, we have implemented the SIP/RTSP, SLP/UPnP,
SMTP/HTTP and HTTP/SMTP gateways described in the case studies of Sec-
tion 2. In the latter case, although our experiments use HTTP over UDP or
TCP for the encapsulation, it is possible to use other protocols such as SIP over
UDP. We have implemented our gateways on a Single Board Computer (SBC) to
represent the kind of limited but inexpensive or energy-efficient devices that are
found in PDAs, mobile devices and home appliances. We use a Eukréa CPUAT91
card,3 based on a 200 MHz ARM9 processor. The SBC has 32MB of SDRAM,
8MB of flash memory, an Ethernet controller, and runs a minimal Linux 2.6.20
kernel. For the SIP/RTSP experiment, we use the open-source Linphone video-
phone client4 and an Axis RTSP camera. For the SLP/UPnP experiment, we
3 Eukréa. http://www.eukrea.com/
4 Linphone: http://www.linphone.org/

36 Y.-D. Bromberg et al.

Input specification Parser wrapper Z2z gateway (size in KB)
(lines of z2z code) (lines of C code) Generated Runtime TotalPS MS MT Parser or wrapper modules system

SIP/RTSP

SIP 24 118

102

168

72 80 152RTSP 20 104 210
SDP - 12 52
SDP media - 15 83

SLP/UPnP
SLP 12 21

5
166

44 80 124SSDP 6 31 223
HTTP 9 43 178

SMTP/HTTP

UDP SMTP 10 23 83 96 40

80

120HTTP 9 92 103
TCP SMTP 10 23 71 96 36

116alive HTTP 9 64 105
TCP SMTP 10 23 83 96 36non-alive HTTP 9 92 114

HTTP/SMTP

UDP HTTP 9 43 69 160 32

80

112SMTP 10 23 44
TCP HTTP 9 43 63 488 36 116alive SMTP 10 23 34
TCP HTTP 9 43 75 190 32 112non-alive SMTP 10 23 44

Fig. 9. The size of the input specifications and the generated gateway

use a handcrafted SLP client based on the INDISS framework [11] and a UPnP
service provided by CyberLink.5 For the SMTP/HTTP/SMTP experiment, we
use the multi-threaded SMTP test client and server distributed with Postfix [12]
to stress the generated gateways.

Fig. 9 shows the size of the various specifications that must be provided to
generate each gateway. A protocol specification module is independent of the
targeted gateway and thus can be shared by all gateways relevant to the proto-
col. The message translation module for the SLP/UPnP gateway is particularly
simple, being only 5 lines of code. Indeed, the complete z2z specification for this
gateway is less than 100 lines of code. As described in Section 3.3, the message
specification module must provide a parser for incoming messages. For our exper-
iments, we have implemented simple parsers for each message type, amounting
to at most 488 lines of C code. Each of the generated gateways does not exceed,
in the worst case, 150KB of compiled C code, including 80KB for the runtime
system.

Fig. 10 shows the response time for the SIP/RTSP, SLP/UPnP, and SMTP/-
HTTP/SMTP gateways, as well as the native protocol communication costs. In
each case, at the client side we measure the time from sending an initial request
to receiving a successful response. These experiments were performed using the
loopback interface to remove network latency. As illustrated in Fig. 10(a), the
z2z implementation of the SIP/RTSP gateway does not introduce any overhead
as compared to an ideal case of zero-cost message translation, since its response
time is less than the sum of the response times for SIP and RTSP separately.
The response time for the SLP/UPnP gateway is a little more than that of SLP
and UPnP separately. The cost of the z2z gateway is due in part to the polling
done by the main thread in the case of asynchronous responses, as described in
Section 4.3. This strategy introduces some time overhead, but reduces memory
requirements. The response time for UPnP, furthermore, depends heavily on the

5 CyberLink: http://www.cybergarage.org/net/upnp/java/

Automatic Generation of Network Protocol Gateways 37

Native service access
SIP↔SIP RTSP↔RTSP

Time 351 701
SLP↔SLP UPnP↔UPnP

Time 2 58

Z2z
SIP/RTSP SLP/UPnP

Time 986 78
(a)

Native service access - SMTP/SMTP
Nb client Mail size (KB) Nb Mail Time

1 1 1 10
1 10 1 10
1 10 10 15
10 10 10 15

Z2z - SMTP/HTTP/SMTP
Nb Mail size Nb Time increase

client (KB) Mail factor

UDP

1 1 1 50 5
1 10 1 65 6.5
1 10 10 645 43
10 10 10 146 9.7

TCP alive

1 1 1 48 4.8
1 10 1 50 5
1 10 10 410 27.3
10 10 10 98 6.5

TCP non-alive

1 1 1 53 5.3
1 10 1 53 5.3
1 10 10 400 26.6
10 10 10 111 7.4

(b)

Fig. 10. Native service access vs. z2z (ms)

stack that is used. If we use a Siemens stack6 rather than the CyberLink stack,
the native UPnP time rises to 593ms, substantially higher than the gateway cost.

Fig. 10(b) shows the performance of the gateways generated in order to tunnel
SMTP traffic into HTTP. We consider three types of tunnel according to the
nature of transport layer protocol being used to exchange either asynchronously
(i.e. UDP or TCPnon-alive) or synchronously (i.e. TCPalive) messages between the
two tunnel end-points. When sending one e-mail, with a size from 1KB up to 10
KB, passing through a HTTP tunnel roughly increases the native response time
by a factor of 5 whatever the tunnel considered. This overhead comes primarily
from the mailing process. According to the SMTP RFC5321, sending an e-mail
involves sending at least 5 SMTP commands and acknowledgements, of at most
512 bytes each, and splitting the mail content in order to send chunks of at most
998 bytes. Commands, acknowledgements, and data chunks are packets that need
to be encapsulated into the HTTP protocol and de-encapsulated on both sides of
the HTTP tunnel. Increasing the number of packets being encapsulated at tunnel
end-points inherently increases the response time. Our experimental results show
that sending a sequence of 10 emails increases the response times at most by 43
as compared to a native implementation in the worst case. However, when the
mail is sent in parallel (10 clients), response times only increase by a factor of
at most 10. The latter result highlights the efficiency of the parallelism provided
by our generated gateways. Furthermore, note that the SMTP test server simply
throws away without processing the messages received from network, whereas
the tunnel end-points must process them, therefore increasing the response time.
The native response time obtained with a real deployed SMTP server such as
Postfix [12] may be up to 18x slower than the SMTP test server, which is much
closer to the response times obtained via the generated gateways.

Finally, Fig. 11 shows the amount of dynamic memory used during the lifetime
of each of our generated gateways. The memory footprint is directly related to

6 Siemens UPnP: http://www.plug-n-play-technologies.com/

38 Y.-D. Bromberg et al.

Time

M
em

or
y

co
ns

um
pt

io
n

(K
B

)

0

12

10

8

6

4

2

(a) SLP/UPnP gateway

Time

M
em

or
y

co
ns

um
pt

io
n

(K
B

)

0

12

14

10

8

6

4

2

(b) SIP/RTSP gateway

0

50

100

150

200

250

300

M
em

or
y

co
ns

um
pt

io
n

(K
B)

)

Time

10 clients; 1KB/mail; 100 mails

UDP (SMTP/HTTP)

UDP (HTTP/SMTP)

TCP alive

TCP non alive

(c) HTTP tunnelling

Fig. 11. Dynamic memory consumption (KB)

the network input/output traffic. When idle, the memory consumption is low and
does not exceed 2KB for the considered gateways. At peak time, both the SIP/-
RTSP and SLP/UPnP gateways consume at most 14KB, as shown in Figs. 11(a)
and 11(b). Comparatively, the SMTP/HTTP/SMTP gateways based on TCP
use only at most 60KB to process 100 1KB mails sent by 10 simultaneous clients.
However, the memory consumption of the UDP-based gateway may reach up to
159KB-260KB as shown in Fig. 11(c). This overhead is inherent in the use of
UDP, as a dedicated 1500 byte buffer is allocated for each incoming UDP packet.
TCP, on the other hand, enables reading variable-size messages into a stream.

6 Related Work

Other approaches to interoperability. The middlewares ReMMoC [13], RUNES
[14], MUSDAC [15], and BASE [16] for use in networked devices allow the device
code to be developed independently of the underlying protocol. Plug-ins then
select the most appropriate communication protocol according to the context.
Many applications, however, have not been developed using such middleware
systems and cannot be modified because their source code is not available.

Bridges provide interoperability without code modification. Direct bridges,
such as RMI-IIOP7 and IIOP-.NET,8 provide interoperability between two fixed

7 RMI-IIOP:http://java.sun.com/products/rmi-iiop/
8 IIOP-.NET: http://iiop-net.sourceforge.net/index.html

Automatic Generation of Network Protocol Gateways 39

protocols. A direct bridge must thus be developed separately for every pair of
protocols between which interaction is needed. The diversity of protocols that
are used in a networked home implies that this is a substantial development
task. Indirect bridges such as Enterprise Service Buses (ESBs) [1], translate
messages to and from a single fixed intermediary protocol. This approach reduces
the development effort, but may limit expressiveness, as some aspects of the
relevant protocols may not be compatible with the chosen intermediary protocol.
INDISS [11] and NEMESYS [17] also use a single intermediary protocol, but one
that is specific to the protocols between which interoperability is desired. Still,
none of these approaches addresses the problem of implementing the bridge,
which requires a thorough knowledge of the protocols involved and low-level
network programming. This makes it difficult to quickly integrate devices that
use an unsupported protocol into a home environment.

Z2z can be used in the context of either direct or indirect bridges. Our ap-
proach targets the weak point of both: the difficulty of bridge development. We
propose a high-level interface definition language that abstracts away from net-
work details, makes relevant protocol properties explicit, provides static verifica-
tion at the specification level, and automatically generates low-level code.

Compilation. Z2z uses a number of advanced compilation techniques to be able
to provide a high-level notation while still generating safe and efficient code.
Krishnamurthi et al. [7] pioneered the use of continuations to overcome the
asynchrony common in web programming. Our implementation of continuations
in C code is based on that presented by Friedman et al. [18]. Our dataflow
analysis uses standard techniques [19], adapted to the operations of the z2z DSL.
Finally, reference counting has long been used to replace garbage collection [9].

7 Conclusion and Future Work

In this paper, we have presented a generative language-based approach, z2z
to simplify gateway construction, a problem that has not been considered by
previous frameworks for gateway development. Z2z is supported by a runtime
system that hides low-level networking intricacies and a compiler that checks
essential correctness properties and produces efficient code. We have used z2z
to automatically generate gateways between SIP and RTSP, between SLP and
UPnP, and between SMTP and SMTP via HTTP. The gateway specifications
are 100-400 lines of z2z code while the generated gateways are at most 150KB of
compiled C code and run with a runtime memory footprint of less than 260KB,
with essentially no runtime overhead.

We are currently extending the z2z approach to generate code that can be
deployed on existing middleware systems such as ReMMoC [13]. We are also
exploring the extension of z2z to enable dynamic adaptation of gateway code
according to context information. Following our approach, there are a number
of other application areas to explore in the future, including Web services and
network supervision. These new application areas should enable us to further re-
fine our language, compiler and runtime system. Finally, we are considering how

40 Y.-D. Bromberg et al.

z2z can efficiently handle failures within the participants of an interaction. To
address this issue, we are defining language extensions to specify failure recovery
policies and runtime primitives to support these new features.

Availability. Source code: http://www.labri.fr/perso/reveille/projects/z2z/

References

1. Chappell, D.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)
2. Perkins, C.: RTP - Audio and Video for the Internet. Addison-Wesley, Reading

(2003)
3. Goland, Y.Y., Cai, T., Leach, P., Gu, Y.: Simple service discovery protocol/1.0:

Operating without an arbiter (October 1999),
http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard)
(June 1999) Updated by RFC 2817

5. Burgy, L., Réveillère, L., Lawall, J.L., Muller, G.: A language-based approach for
improving the robustness of network application protocol implementations. In: 26th
IEEE International Symposium on Reliable Distributed Systems, Beijing, October
2007, pp. 149–158 (2007)

6. Arnoldus, J., Bijpost, J., van den Brand, M.: Repleo: a syntax-safe template engine.
In: GPCE 2007: Proceedings of the 6th international conference on Generative
programming and component engineering, pp. 25–32. ACM, New York (2007)

7. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the PLT Scheme web server. Higher-Order
and Symbolic Computation 20(4), 431–460 (2007)

8. Steele Jr., G.L.: Lambda, the ultimate declarative. AI Memo 379, Artificial In-
telligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts (November 1976)

9. Cohen, J.: Garbage collection of linked data structures. ACM Computing Sur-
veys 13(3), 341–367 (1981)

10. Boehm, H., Weiser, M.: Garbage collection in an uncooperative environment. Soft-
ware Practice & Experience 18(9), 807–820 (1988)

11. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183.
Springer, Heidelberg (2005)

12. Hildebrandt, R., Koetter, P.: The book of Postfix: state-of-the-art message trans-
port. NO-STARCH (2005), http://www.postfix.org/

13. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interac-
tion in heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun.
Rev. 9(1), 2–14 (2005)

14. Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G.P., Zachariadis, S.: Re-
configurable component-based middleware for networked embedded systems. Inter-
national Journal of Wireless Information Networks 14(2), 149–162 (2007)

15. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol
approach to service discovery and access in pervasive environments. In: The 3rd
Annual International Conference on Mobile and Ubiquitous Systems: Networks and
Services, San Jose, CA, USA, July 2006, pp. 1–9 (2006)

http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt
http://www.postfix.org/

Automatic Generation of Network Protocol Gateways 41

16. Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: Base: A micro-broker-based
middleware for pervasive computing. In: PERCOM 2003: Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications,
Washington, DC, USA, p. 443. IEEE Computer Society, Los Alamitos (2003)

17. Bromberg, Y.D.: Solutions to middleware heterogeneity in open networked envi-
ronment. Phd Thesis, INRIA/UVSQ (2006)

18. Friedman, D.P., Wand, M., Haynes, C.T.: Essentials of Programming Languages.
MIT Press, Cambridge (1992)

19. Appel, A.: Modern Compiler Implementation in ML. Cambridge University Press,
Cambridge (1998)

Heterogeneous Gossip

Davide Frey2, Rachid Guerraoui1, Anne-Marie Kermarrec2, Boris Koldehofe3,
Martin Mogensen4, Maxime Monod1,�, and Vivien Quéma5

1 Ecole Polytechnique Fédérale de Lausanne
2 INRIA Rennes-Bretagne Atlantique

3 University of Stuttgart
4 University of Aarhus

5 CNRS

Abstract. Gossip-based information dissemination protocols are con-
sidered easy to deploy, scalable and resilient to network dynamics. Load-
balancing is inherent in these protocols as the dissemination work is
evenly spread among all nodes. Yet, large-scale distributed systems are
usually heterogeneous with respect to network capabilities such as band-
width. In practice, a blind load-balancing strategy might significantly
hamper the performance of the gossip dissemination.

This paper presents HEAP, HEterogeneity-Aware gossip Protocol,
where nodes dynamically adapt their contribution to the gossip dissemi-
nation according to their bandwidth capabilities. Using a continuous, itself
gossip-based, approximation of relative bandwidth capabilities, HEAP
dynamically leverages the most capable nodes by increasing their fanout,
while decreasing by the same proportion that of less capable nodes. HEAP
preserves the simple and proactive (churn adaptation) nature of gossip,
while significantly improving its effectiveness. We extensively evaluate
HEAP in the context of a video streaming application on a testbed of 270
PlanetLab nodes. Our results show that HEAP significantly improves the
quality of the streaming over standard homogeneous gossip protocols, es-
pecially when the stream rate is close to the average available bandwidth.

1 Introduction

Gossip protocols are especially appealing in the context of large-scale dynamic
systems. Initially introduced for maintaining replicated database systems [6],
they are particularly useful for effective dissemination [1].

In the context of decentralized live streaming, for instance, gossip protocols
[3, 18, 19] constitute an interesting alternative to classical mesh-based techniques
for large-scale dynamic systems. While efficient under steady state, mesh-based
solutions require sophisticated and sometimes expensive repair schemes to main-
tain possibly several dissemination paths in case of churn [17]. In the streaming

� Maxime Monod has been partially funded by the Swiss National Science Foundation
with grant 20021-113825.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 42–61, 2009.
c© IFIP International Federation for Information Processing 2009

Heterogeneous Gossip 43

context, churn might be caused by failures, overloads, leaves and joins (e.g., users
switching TV channels).

In a gossip protocol, each node periodically forwards every packet identifier
it received to a subset of nodes picked uniformly at random. The size of this
subset is called the fanout. Nodes subsequently request the packet whenever
necessary. As no particular structure needs to be maintained, there is no need
for a recovery protocol in case of churn, which is considered the norm rather
than the exception. Robustness stems from the proactive and random selection
of communication partners. This proactiveness is a major difference with respect
to mesh-based techniques, relying on a rather static neighborhood, which react to
churn by having every node select new neighbors after noticing malfunctions [17,
35]. In a sense, gossip-based protocols build extreme forms of mesh-based overlay
networks with a continuously changing set of neighbors, and an ultimate splitting
procedure where each packet is potentially disseminated through continuously
changing dissemination paths, as opposed to explicit substream creation leading
to multi-trees [4, 17, 35].

Gossip in action. Consider a stream of 600kbps produced by a single source and
intended to be disseminated to 270 PlanetLab nodes in a decentralized manner.
Our preliminary experiments revealed the difficulty of disseminating through a
static tree without any reconstruction even among 30 nodes. The static nature
of the tree exacerbates the loss rate of UDP packets particularly in the pres-
ence of heavily loaded nodes, which may see their upload capabilities change by
20% from one experiment to the other. One might consider sophisticated reac-
tive mechanisms to cope with the network dynamics but these are particularly
challenging in highly dynamic environments.

Instead, we could obtain a good quality stream using a simple gossip protocol
over all 270 PlanetLab nodes. Figure 1 reports on our experiments (which we

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

99% delivery

Fig. 1. Without constraining upload capabilities, a gossip with fanout 7 provides a
stream of high quality and low lag to a large number of PlanetLab nodes

44 D. Frey et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

f=7 dist1
f=15 dist1
f=20 dist1
f=25 dist1
f=30 dist1

f=7 dist2
f=15 dist2
f=20 dist2

Fig. 2. When constraining the upload capability in a heterogeneous manner (with
an average upload capability of 691kbps – dist1), the stream lag of all nodes signifi-
cantly deteriorates. Adjusting the fanout (e.g., between 15 and 20) slightly improves
the stream lag but a blind fanout increase (e.g., if it goes over 25) degrades perfor-
mance. Moreover, the good fanout range in this case (fanouts of 15, 20 in dist1) reveals
bad with a different distribution (uniform distribution - dist2) having the same average
upload capability. With dist2, a fanout of 7 is optimal and much more effective than
fanouts of 15 and 20.

detail later in the paper) by conveying a high average delivery ratio (the number
of stream packets received over the total number of stream packets produced),
and a low stream lag (the difference between the time the stream is produced at
the source and the time it is viewed): 50% of the nodes receive 99% of the stream
with a stream lag of 1.3 s, 75% of the nodes receive the same amount after 2.4 s
and 90% after 21 s. The fanout considered here is 7. In a system of size n, and
assuming a uniformly random peer selection, a fanout of ln(n) is the theoretical
threshold between a non-connected and a well-connected communication graph.
By overestimating ln(n), theory [15] and experiences [9] reveal that the graph
gets fully connected with high probability.

However, this simple experiment, as well as the encouraging ones of [19, 18],
rely on all nodes having uniform and high upload capabilities. Assuming nodes
with limited and different upload capabilities (e.g., users having heterogeneous
bandwidths), the situation is less favorable as shown in Figure 2. Several fanouts
are tested given two upload capability distributions having the same average of
691kbps. Dist1 contains three classes of nodes with 512 kbps, 768kbps, and
3Mbps of upload bandwidth (more details about the distributions are provided
in Section 3), while dist2 is a uniform distribution.

A case for adaptation. A major reason for the mixed behavior of gossip in a
heterogeneous setting is its homogeneous and load-balanced nature. All nodes
are supposed to disseminate the same number of messages for they rely on the
same fanout and dissemination period. However, this uniform distribution of load

Heterogeneous Gossip 45

ignores the intrinsic heterogeneous nature of large-scale distributed systems
where nodes may exhibit significant differences in their capabilities. Interest-
ingly, and as conveyed by our experiments (and pointed out in [7]), a gossip
protocol does indeed adapt to heterogeneity to a certain extent. Nodes with
high bandwidth gossip rapidly, get thus pulled more often and can indeed sus-
tain the overload to a certain extent. Nevertheless, as the bandwidth distribution
gets tighter (closer to the stream rate) and more skewed (rich nodes get richer
whereas poor nodes get poorer), there is a limit on the adaptation that tradi-
tional homogeneous gossip can achieve.

Heterogeneous gossip. Echoing [2,7, 17,27,29, 30], we recognize the need to ac-
count for the heterogeneity between peers in order to achieve a more effective
dissemination. This poses important technical challenges in the context of a
gossip-based streaming application. First, an effective dissemination protocol
needs to dynamically track and reflect the changes of available bandwidth over
time. Second, the robustness of gossip protocols heavily relies on the proactive
and uniform random selection of target peers: biasing this selection could im-
pact the average quality of dissemination and the robustness to churn. Finally,
gossip is simple and thus easy to deploy and maintain; sophisticated extensions
that account for heterogeneity could improve the quality of the stream, but they
would render the protocol more complex and thus less appealing.

We propose a new gossip protocol, called HEAP (HEterogeneity-Aware Gossip
Protocol), whose simple design follows from two observations. First, mathemati-
cal results on epidemics and empirical evaluations of gossip protocols convey the
fact that the robustness of the dissemination is ensured as long as the average
of all fanouts is in the order of ln(n) [15] (assuming the source has at least a
fanout of 1). This is crucial because the fanout is an obvious knob to adapt the
contribution of a node and account for heterogeneity. A node with an increased

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

99% delivery

Fig. 3. With the same constrained distribution (dist1), HEAP significantly improves
performance over a homogeneous gossip

46 D. Frey et al.

(resp. decreased) fanout will send more (resp. less) information about the pack-
ets it can provide and in turn will be pulled more (resp. less) often. Second,
using gossip dissemination, one can implement an aggregation protocol [13,28]
to continuously provide every node with a pretty accurate approximation of its
relative bandwidth capability. Using such a protocol, HEAP dynamically lever-
ages the most capable nodes by increasing their fanouts, while decreasing by the
same proportion those of less capable nodes. HEAP preserves the simplicity and
proactive (churn adaptation) nature of traditional (homogeneous) gossip, while
significantly improving its effectiveness.

Applying HEAP in the PlanetLab context of Figure 2, i.e., assuming a hetero-
geneous bandwidth distribution exemplifying users using ADSL, we significantly
improve streaming delay and quality (Figure 3). With an average fanout of 7,
50% of nodes receive 99% of the stream with 13.3 s lag, 75% with 14.1 s, and
90% with 19.5 s. More generally, we report on an exhaustive evaluation which
shows that, when compared to a standard gossip, HEAP: (i) better matches
the contributions of nodes to their bandwidth capabilities; (ii) enables a better
usage of the overall bandwidth thus significantly improving the stream quality
of all nodes and; (iii) significantly improves the resilience to churn.

Summary of contributions. We present HEAP, an information dissemination
protocol that preserves the simplicity of standard gossip protocols, while sig-
nificantly outperforming them with respect to the efficiency of streaming and
resilience to churn. We also report on a full implementation of a P2P video
streaming application using a proactive gossip protocol over a 270 PlanetLab
node testbed with constrained and heterogeneous bandwidth distribution.

Roadmap. The rest of the paper is organized as follows. Section 2 gives some
background on gossip-based content dissemination protocols and describes HEAP
in detail. We report on the results of our experiments on PlanetLab in Section 3.
Related work is covered in Section 4. Concluding remarks are given in Section 5.

2 HEAP

This section presents HEAP, HEterogeneity-Aware Gossip Protocol, a gossip pro-
tocol for collaborative content distribution in heterogeneous environments. We
start this section by giving a short background on gossip-based content dissem-
ination.

2.1 Background: Gossip-Based Content Dissemination

Consider a set of n nodes, and an event e to be disseminated in the system: e typ-
ically contains a series of application blocks (e.g., stream packets in a streaming
application), as well as control information. Gossip-based content dissemination
generally follows a three-phase push-request-push protocol as depicted in Al-
gorithm 1. The use of a three-phase mechanism is essential when dealing with

Heterogeneous Gossip 47

high payloads in that it guarantees that a packet may never be delivered more
than once to the same node, thus causing the average data rate induced by the
protocol to be less than or equal to the stream rate.

The protocol operates as follows. Each node periodically contacts a fixed
number, f (fanout), of nodes chosen according to the selectNodes() function and
proposes a set of event identifiers (ids) to them with a [Propose] message (line 5
for the broadcaster and 6 for other nodes). A node receiving such a message pulls
the content it has not yet retrieved by sending a [Request] to the proposing peer.
The peer being pulled sends back the actual content (the payload) in a [Serve]
message that contains the requested events. This procedure is then iterated
according to an infect-and-die model [8]. Each node proposes each event id,
exactly once, to f other peers, thus avoiding the need to deal with time-to-
live.

Algorithm 1. Standard gossip protocol
Initialization:
1: f := ln(n) + c {f is the average fanout}
2: eToPropose := eDelivered := eRequested := ∅

3: start(GossipTimer(gossipPeriod))

Phase 1 – Push event ids

procedure publish(e) is
4: deliverEvent(e)
5: gossip({e.id})

upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(eToPropose)

7: eToPropose := ∅ {Infect and die}

Phase 2 – Request events

upon receive [Propose, eProposed] do
8: wantedEvents := ∅

9: for all e.id ∈ eProposed do
10: if (e.id /∈ eRequested) then
11: wantedEvents := wantedEvents ∪ e.id
12: eRequested := eRequested ∪ wantedEvents
13: reply [Request, wantedEvents]

Phase 3 – Push payload

upon receive [Request, wantedEvents] do
14: askedEvents := ∅

15: for all e.id ∈ wantedEvents do
16: askedEvents := askedEvents ∪ event(e.id)
17: reply [Serve, askedEvents]

upon receive [Serve, events] do
18: for all e ∈ events do
19: if (e /∈ eDelivered) then
20: eToPropose := eToPropose ∪ e.id
21: eDelivered := eDelivered ∪ e
22: deliver(e)

Miscellaneous

function selectNodes(f) returns set of nodes is
23: return f uniformly random nodes

procedure gossip(event ids) is
24: commPartners := selectNodes(getFanout())
25: for all p ∈ commPartners do
26: send(p) [Propose, event ids]

function getFanout() returns Integer is
27: return the fanout of gossip dissemination

As discussed in the introduction, standard gossip-based content dissemina-
tion works very well in unconstrained or otherwise homogeneous network
environments, in which the load-balancing features of gossip provide the great-
est benefit. Nevertheless, it becomes inefficient in constrained [9] and hetero-
geneous scenarios. In these, the standard homogeneous gossip described in
Algorithm 1 stabilizes at a state in which low-capability nodes saturate their
bandwidth, while high-capability ones are underutilized. This results in con-
gested queues and increases the transmission delays introduced by low-capability
nodes, impacting the overall performance experienced by all the nodes in
the system.

48 D. Frey et al.

2.2 Adapting Contribution

Algorithm 2. HEAP protocol details
Initialization:
1: capabilities := ∅

2: b := own available bandwidth
3: stdGossip.Initialization
4: start(AggregationTimer(aggPeriod))

Fanout Adaptation

function getFanout() returns Integer is

5: return b/b · f

Retransmission

upon receive [Propose, eProposed] do
6: stdGossip.receive [Propose, eProposed]
7: start(RetTimer(retPeriod, eProposed))

upon receive [Serve, events] do
8: stdGossip.receive [Serve, events]
9: cancel(RetTimer(retPeriod, events))

upon (RetTimer mod retPeriod) = 0 do
10: receive [Propose, eProposed]

Aggregation Protocol

upon (AggregationTimer mod aggPeriod) = 0 do

11: commPartners := selectNodes(f)
12: for all p ∈ commPartners do
13: fresh = 10 freshest values from capabilities
14: send(p) [Aggregation, fresh]

upon receive [Aggregation, otherCap] do
15: merge otherCap into capabilities
16: update b using capabilities

HEAP addresses the limitations of
standard gossip by preventing conges-
tion at low-capability nodes through
the adaptation of each node’s work-
load. Consider two nodes A and B with
upload capabilities bA and bB. HEAP
adapts the contribution of each node
to its capability and thus causes the
upload rate resulting from node A’s
[Serve] messages to be bA/bB times as
large as that of node B.

Key to HEAP’s adaptation mecha-
nism is the fact that, in a non-congested
setting, each [Propose] message has
roughly the same probability, p, to be
accepted (thereby generating a subse-
quent [Serve] message) regardless of
the bandwidth capability of its sender1.
HEAP exploits this fact to dynamically
adapt the gossip fanouts of nodes so
that their contribution to the stream
delivery remains proportional to their
available bandwidth. Specifically, be-

cause the average number of proposals accepted in each gossip round can be
computed as p · f , f being the fanout of the proposing node, we can derive that
the fanout fA of node A should be bA/bB times the fanout of node B.

fA =
bA

bB
· fB (1)

Preserving reliable dissemination. Interestingly, Equation (1) shows that deter-
mining the ratios between the fanouts of nodes is enough to predict their average
contribution as the three phases of Algorithm 1 guarantee that the average up-
load rate2 over all nodes is less than or equal to the stream rate. However, simply
setting the fanouts of nodes to arbitrary values that satisfy Equation 1 may lead
to undesired consequences. On the one hand, a low average fanout may hamper
the ability of a gossip dissemination to reach all nodes. On the other hand, a
large average fanout may unnecessarily increase the overhead resulting from the
dissemination of [Propose] messages.

HEAP strives to avoid these two extremes by relying on theoretical results
showing that the reliability of gossip dissemination is actually preserved as long
1 In reality, proposals from low-capability nodes incur in higher transmission delays

and thus have a slightly lower probability of acceptance, but this effect is negligible
when dealing with small [Propose] messages in a non-congested setting.

2 Not counting the overhead of [Propose] and other messages.

Heterogeneous Gossip 49

as a fanout value of f = ln(n) + c, n being the size of the network, is ensured
on average [15], regardless of the actual fanout distribution across nodes. To
achieve this, HEAP exploits a simple gossip-based aggregation protocol (see
Algorithm 2) which provides an estimate of the average upload capability b
of network nodes. A similar protocol can be used to continuously approximate
the size of the system [13], but, for simplicity, we consider here that the initial
fanout is computed knowing the system size in advance. The aggregation protocol
works by having each node periodically gossip its own capability and the freshest
received capabilities. We assume a node’s capability is either (i) a maximal
capability given by the user at the application level (as the maximal outgoing
bandwidth the user wants to give to the streaming application) or (ii) computed,
when joining, by a simple heuristic to discover the nodes upload capability, e.g.,
starting with a very low-capability while trying to upload as much as possible in
order to reach its maximal capability as proposed in [34]. Each node aggregates
the received values and computes an estimate of the overall average capability.
Based on this estimate, each node, pi, regulates its fanout, fpi , according to the
ratio between its own and the average capability, i.e., fpi = f · bpi/b.

3 Evaluation

We report in this section on our evaluation of HEAP in the context of a video
streaming application on a testbed of ∼270 PlanetLab nodes. This includes a
head-to-head comparison with a standard gossip protocol. In short, we show that,
when compared to a standard gossip protocol: (i) HEAP adapts the actual load
of each node to its bandwidth capability (Section 3.3), (ii) HEAP consistently
improves the streaming quality of all nodes (Section 3.4), (iii) HEAP improves
the stream lag from 40% to 60% over standard gossip (Section 3.5), (iv) HEAP
resists to extreme churn situations where standard gossip collapses (Section 3.6).
Before diving into describing these results in more details, we first describe our
experimental setup.

3.1 Experimental Setup

Video streaming application. We generate stream packets of 1316 bytes at a
stream rate of 551kbps on average. Every window is composed of 9 FEC-coded
packets and 101 buffered stream packets resulting in an effective rate of 600kbps.

Gossiping parameters. The gossiping period of each node is set to 200ms, which
leads to grouping an average of 11.26 packet ids per [Propose]. The fanout is set
to 7 for all nodes in the standard gossip protocol, while in HEAP, the average
fanout is 7 across all nodes. The aggregation protocol gossips the 10 freshest
local capabilities every 200ms, costing around 1KB/s and is thus completely
marginal compared to the stream rate.

50 D. Frey et al.

Message retransmission and bandwidth throttling. Given the random nature of its
gossip-based dissemination process, HEAP does not attempt to establish stable
TCP connections, but rather combines UDP datagrams with a retransmission
mechanism. To further reduce message losses, HEAP also exploits a bandwidth
throttling mechanism. This guarantees that nodes never attempt to send bursts
of data that exceed their available bandwidth. Excess packets resulting from
bursts are queued at the application level, and sent as soon as there is enough
available bandwidth. To guarantee a fair comparison in our evaluation, we also
integrated both retransmission and bandwidth throttling into the standard gos-
sip protocol.

PlanetLab and network capabilities. PlanetLab nodes, located mostly in re-
search and educational institutions, benefit from high bandwidth capabilities.
As such, PlanetLab is not representative of a typical collaborative peer-to-peer
system [26], in which most nodes would be sitting behind ADSL connection,
with an asymmetric bandwidth and limited upload/download capabilities. We
thus artificially limit the upload capability of nodes so that they match the
bandwidth usually available for home users. We focus on upload as it is a well-
known fact that download capabilities are much higher than upload ones. As we
rely on UDP, we implemented, at the application level, an upload rate limiter
that queues packets which are about to cross the bandwidth limit. In practice,
nodes never exceed their given upload capability, but some nodes (between 5%
and 7%), contribute way less than their capability, because of high CPU load
and/or high bandwidth demand by other PlanetLab experiments. In other words,
the average used capability of nodes is always less than or equal to their given
upload limit.

We consider three different distributions of upload capabilities, depicted in
Table 1 and inspired from the distributions used in [35]. The capability supply
ratio (CSR, as defined in [35]) is the ratio of the average upload bandwidth
over the stream rate. We only consider settings in which the global available
bandwidth is enough to sustain the stream rate. Yet the lower the capability
ratio, the closer we stand to that limit. The ms-691 distribution was referred to
as dist1 in Section 1.

Table 1. The reference distributions ref-691 and ref-724, and the more skewed distri-
bution ms-691

Fraction of nodes
Name CSR Average 2Mbps 768 kbps 256 kbps
ref-691 1.15 691 kbps 0.1 0.5 0.4
ref-724 1.20 724 kbps 0.15 0.39 0.46
Name CSR Average 3Mbps 1Mbps 512 kbps
ms-691 1.15 691 kbps 0.05 0.1 0.85

Heterogeneous Gossip 51

Each distribution is split into three classes of nodes. The skewness of an upload
distribution is characterized by the various percentages of each class of nodes:
in the most skewed distribution we consider (ms-691), most nodes are in the
poorest category and only 15% of nodes have an upload capability higher than
the stream rate.

3.2 Evaluation Metrics

In the following, we first show that HEAP adapts the contribution of nodes
according to their upload capability, and then we show that HEAP provides users
with a good stream. We consider two metrics. The first is the stream lag and is
defined as the difference between the time the stream was published by the source
and the time it is actually delivered to the player on the nodes.3 The second is the
stream quality, which represents the percentage of the stream that is viewable.
A FEC-encoded window is jittered as soon as it does not contain enough packets
(i.e., at least 101) to be fully decoded. A X% jittered stream therefore means
that X% of all the windows were jittered. Note that a jittered window does not
mean that the window is entirely lost. Because we use systematic coding, a node
may still receive 100 out of the 101 original stream packets, resulting in a 99%
delivery ratio in a given window. We therefore also assess the quality of the
jittered windows by giving the average delivery ratio in all jittered windows.

3.3 Adaptation to Heterogeneous Upload Capabilities

We considered all three configurations. In ref-691, ref-724 and ms-691, resp.
60%, 54% and 15% of the nodes have an available bandwidth higher than the
one required on average for the stream rate. As we observed similar results in
ref-691 and ref-724, we only report on ref-691 in Figure 4a. Results on ms-691
are reported on Figure 4b.

Figure 4a depicts the breakdown of the contributions among the three classes
of nodes. For example, the striped bar for standard gossip means that nodes hav-
ing an upload capability of 768kbps use 97.17 % of their available bandwidth. It
is interesting to observe that nodes contribute somewhat proportionally to their
upload capabilities even in standard gossip. This is because of the correlation
between upload capability and latency: packet ids sent by high-capability nodes
are received before those sent by lower-capability ones. Consequently, the for-
mer are requested first and serve the stream to more nodes than the latter. In
addition, nodes with low capabilities are overloaded faster and therefore natu-
rally serve fewer nodes (either because they are slower or because they are sub-
ject to more packet drops). Yet, despite this natural self-adaptation, we observe
that high-capability nodes are underutilized in standard gossip. To the contrary,
HEAP homogeneously balances the load on all nodes by correctly adapting their
3 A different and complementary notion, startup delay, is the time a node takes to

buffer the received packets until they are sent to the video player. Note that in a
gossip protocol like HEAP the startup delay of all nodes is similar because of the
unstructured and dynamic nature of gossip.

52 D. Frey et al.

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

Standard-Gossip HEAP

256kbps

768kbps

2Mbps

Average Bandwidth Usage by Bandwidth Class

10
0%

97
.1

7%

69
.8

1%

83
.5

9%

92
.5

8%

90.63%256kbps
768kbps

2Mbps

(a) ref-691

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

2.5Mbps

3Mbps

Standard-Gossip HEAP

512kbps

1Mbps

3Mbps

Average Bandwidth Usage by Bandwidth Class

99
.8

9%

91
.5

6%

48
.4

4%

94
.3

7%

90
.5

8%

87.56%
512kbps

1Mbps
3Mbps

(b) ms-691

Fig. 4. Bandwidth consumption

gossip fanout: all nodes approximately consume 90% of their bandwidth. This
highlights how the bandwidth consumption of standard gossip and HEAP on
Figure 4a are caused by opposite reasons: congestion of low-capability nodes in
standard gossip and fanout adaptation, which prevents congestion, in HEAP.

Figure 4b conveys the limits of the self-adaptation properties of standard
gossip with an upload distribution in which only 15% of the nodes have an
upload capability higher than the stream rate (ms-691). We observe that with
standard gossip, the 5% nodes with high capabilities only use 48.44% of their
bandwidth because their limited fanout does not allow them to serve more nodes.
In HEAP, on the other hand, the 5% high-capability nodes can serve with up to
87.56% of their bandwidth, lowering the congestion of the low-capability nodes
and providing much better performance than standard gossip in terms of quality
as we show in next section.

3.4 Stream Quality

Our next experiment compares the percentages of jitter-free windows received
by nodes in the three considered scenarios. Results are depicted in Figures 5, 6a
and 6b. For instance, the black bar in Figure 5 for standard gossip indicates that
nodes with low capabilities in ref-691 have only 18% of the windows that are
not jittered (considering packets received with a stream lag of up to 10 s.). The
same figure also shows that HEAP significantly improves this value, with low-
capability nodes receiving more than 90% of jitter-free windows. This reflects
the fact that HEAP allows high-capability nodes to assist low-capability ones.
Results in Figure 6a are even more dramatic: high-capability nodes receive less
than 33% of jitter-free windows in standard gossip, whereas all nodes receive
more than 95% of jitter-free windows with HEAP.

Figure 6b clearly conveys the collaborative nature of HEAP when the global
available bandwidth is higher (ref-724). The whole system benefits from the fact
that nodes contribute according to their upload capability. For instance, the

Heterogeneous Gossip 53

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

Fig. 5. Stream Quality (ref-691)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

512kbps
1Mbps
3Mbps

(a) ms-691

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 ji

tte
r-

fr
ee

 s
tr

ea
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

(b) ref-724

Fig. 6. Stream quality by capability class

number of jitter-free windows that low-capability nodes obtain increases from
47% for standard gossip to 93% for HEAP. These results are complemented by
Table 2, which presents the average delivery ratio in the jittered windows for
both protocols, for each class of nodes in the three considered distributions.
Again, results show that HEAP is able to provide good performance to nodes
regardless of their capability classes. It should be noted, however, that the table
provides results only for the windows that are jittered, which are a lot more in
standard gossip than in HEAP. This explains the seemingly bad performance of
HEAP in a few cases such as for high-bandwidth nodes in ref-724.

Figure 7 conveys the cumulative distribution of the nodes that view the stream
as a function of the percentage of jitter. For instance, the point (x = 0.1, y = 85)
on the HEAP - 10 s lag curve indicates that 85% of the nodes experience a jitter
that is less than or equal to 10%. Note that in this figure, we do not differ-
entiate between capability classes. We consider standard gossip and HEAP in
two settings: offline and with 10 s lag. We present offline results in order to
show that, with standard gossip, nodes eventually receive the stream. However,

54 D. Frey et al.

Table 2. Average delivery rates in windows that cannot be fully decoded

Standard gossip HEAP
upload capability 256 kbps 768 kbps 2 Mbps 256 kbps 768 kbps 2Mbps

ref-691 63.4% 87.1% 89.3% 80.4% 77.1% 89.8%
ref-724 75.6% 88.6% 89.6% 87.9% 87.7% 64.4%

upload capability 512 kbps 1Mbps 3 Mbps 512 kbps 1 Mbps 3Mbps
ms-691 42.8% 56.5% 64.5% 83.7% 80.7% 90.9%

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Percentage of jitter

Cumulative distribution of nodes as a function of the experienced jitter

standard gossip - 10s stream lag
standard gossip - offline viewing

HEAP - 10s stream lag
HEAP - offline viewing

Fig. 7. Cumulative distribution of experienced jitter (ref-691). With HEAP and a
stream lag of 10 s, 93% of the nodes experience less than 10% jitter.

with a 10 s lag, standard gossip achieves very poor performance: most win-
dows are jittered. In contrast, HEAP achieves very good performance even with
a 10 s lag.

3.5 Stream Lag

Next, we compare the stream lag required by HEAP and standard gossip to
obtain a non-jittered stream. We report the results for ref-691 and ms-691 on
Figures 8a and 8b, respectively. In both cases, HEAP drastically reduces the
stream lag for all capability classes. Moreover, as shown in Figure 8b, the positive
effect of HEAP significantly increases with the skewness of the distribution.

Figures 9a and 9b depict the cumulative distribution of nodes viewing the
stream as a function of the stream lag, without distinguishing capability classes.
We compare standard gossip and HEAP in two configurations: without jitter
and with less than 1% of jitter. Sporadically, some PlanetLab nodes seem tem-
porarily frozen, due to high CPU load and/or suffer excessive network problems
explaining why neither protocol is able to deliver the stream to 100% of the
nodes.4 Still, both plots show that HEAP consistently outperforms standard
gossip. For instance, in ref-691, HEAP requires 12 s to deliver the stream to 80%
of the nodes without jitter, whereas standard gossip requires 26.6 s.
4 Note that when running simulations without messages loss, 100% of the nodes re-

ceived the full stream.

Heterogeneous Gossip 55

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Standard-Gossip HEAP

S
tr

ea
m

 L
ag

 (
s)

Average stream lag to obtain a jitter-free stream

256kbps
768kbps

2Mbps

(a) ref-691

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Standard-Gossip HEAP

S
tr

ea
m

 L
ag

 (
s)

Average stream lag to obtain a jitter-free stream

512kbps
1Mbps
3Mbps

(b) ms-691

Fig. 8. Stream lag by capability class

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

standard gossip - no jitter
standard gossip - max 1% jitter

HEAP - no jitter
HEAP - max 1% jitter

(a) ref-691

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 n

od
es

 (
cu

m
ul

at
iv

e
di

st
rib

ut
io

n)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

HEAP - no jitter
HEAP - max 1% jitter

standard gossip - no jitter
standard gossip - max 1% jitter

(b) ms-691

Fig. 9. Cumulative distribution of stream lag values

Table 3. Percentage of nodes receiving a jitter-free stream by capability class

Standard gossip HEAP
bandwidth 256 kbps 768 kbps 2Mbps 256 kbps 768 kbps 2 Mbps

ref-691 (10 s lag) 0 29.80 86.67 65.93 79.61 96.55
ref-724 (10 s lag) 0 67.52 97.73 61.95 74.34 93.02

bandwidth 512 kbps 1Mbps 3Mbps 512 kbps 1 Mbps 3 Mbps
ms-691 (20 s lag) 0 0 0 84.58 89.66 85.71

56 D. Frey et al.

Table 3 complements these results by showing the percentage of nodes that
can view a jitter-free stream for each bandwidth class and for the three de-
scribed distributions. In brief, the table shows that the percentage of nodes
receiving a clear stream increases as bandwidth capability increases for both
protocols. However, HEAP is able to improve the performance experienced by
poorer nodes without any significant decrease in the stream quality perceived
by high-bandwidth nodes.

3.6 Resilience to Catastrophic Failures

Finally, we assess HEAP’s resilience to churn in two catastrophic-failure sce-
narios where 20% and 50% respectively of the nodes fail simultaneously 60 s
after the beginning of the experiment. The experiments are based on the ref-691
bandwidth distribution, while the percentage of failing nodes is taken uniformly
at random from the set of all nodes, i.e., keeping the average capability supply
ratio unchanged. In addition, we configure the system so that surviving nodes
learn about the failure an average of 10 s after it happened.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
er

ce
nt

ag
e

of
 n

od
es

 r
ec

ei
vi

ng
 e

ac
h

w
in

do
w

Stream time

Failure of 20% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

(a) 20% of nodes crashing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
er

ce
nt

ag
e

of
 n

od
es

 r
ec

ei
vi

ng
 e

ac
h

w
in

do
w

Stream time

Failure of 50% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

(b) 50% of nodes crashing.

Fig. 10. Resilience in the presence of catastrophic failures

Figure 10a depicts, for each encoded window in the stream, the percentage
of nodes that are able to decode it completely, i.e., without any jitter. The plot
highlights once more the significant improvements provided by HEAP over stan-
dard gossip-based content dissemination. The solid line showing HEAP with a
12 s lag shows that the percentage of nodes decoding each window is always close
to 100% (or to the 80% of nodes remaining after the failure) except for the stream
packets generated immediately before the failure. The reason for the temporary
drop in performance is that the failure of a node causes the disappearance of
all the packets that it has delivered but not yet forwarded. Clearly, windows
generated after the failure are instead correctly decoded by almost all remaining
nodes. The plot also shows two additional lines depicting the significantly worse
performance achieved by standard gossip-based dissemination.

Heterogeneous Gossip 57

The number of nodes receiving the stream with a 20 s lag in standard gossip
is, in fact, much lower than that of those receiving it with only 12 s of lag in
HEAP. Only after 30 s of lag is standard gossip able to reach a performance that
is comparable to that of HEAP after 12 s. The figure also highlights that the
number of packets lost during the failure is higher in standard gossip than in
HEAP (the width of the drop is larger). The reason is that in standard gossip
upload queues tend to grow larger than in HEAP. Thus packets that are lost
as a result of nodes that crash span a longer time interval in standard gossip
than they do in HEAP. Finally, the continuous decrease in the 20 s-lag line for
standard gossip shows that the delay experienced by packets in standard gossip
increases as time elapses: this is a clear symptom of congestion that is instead
not present in HEAP.

Figure 10b provides similar information for a scenario in which 50% of the
nodes fail simultaneously. HEAP is still able to provide the stream to the re-
maining nodes with a lag of less than 12 s. Conversely, standard gossip achieves
mediocre performance after as many as 20 s of lag.

4 Related Work

When contrasting HEAP with related work, we distinguish two classes of
content-dissemination protocols: (i) proactive protocols that continuously change
the dissemination topology, namely gossip-based dissemination schemes, and (ii)
reactive protocols which only change the dissemination topology (possibly in a
random manner) in case of malfunctions (e.g., churn). This latter set includes
tree and mesh-based protocols.

4.1 Proactive Protocols

Several proactive protocols have incorporated some adaptation features, but
none does so by dynamically adapting the fanout of the nodes according to
their relative (bandwidth) capabilities. The protocol of [10] aims at increasing
the reliability of a spanning tree, by having each node in the tree dynamically
adapt its number of children using global knowledge about the reliability of
nodes and network links.

In Smart Gossip [16], nodes of a wireless network may decide not to gossip
depending on the number of nodes in their surrounding. In CREW [7], a three-
phase gossip protocol (similar to that of Section 2.1) is used to disseminate large
content in the context of file sharing. Nodes locally decide, when their bandwidth
is exhausted, to stop offering data.

In Gravitational Gossip [14], the fanin of nodes (i.e., the number of times
a node is chosen as a gossip target) may be adjusted based on the quality of
reception they expect. This is achieved by biasing the node selection such that
some nodes have a higher probability to be selected for gossip than others. The
technique is however static and focuses on the incoming traffic that nodes receive.
Because of the three-phase nature of HEAP, nodes have a payload fanin of 1.

58 D. Frey et al.

4.2 Reactive Protocols

Some tree- and mesh-based protocols do have nodes dynamically adapt their
neighborhood sets. However, such adaptation is only achieved after churn or
malfunctions, and as such it is not proactive as in HEAP, or in any gossip
dissemination protocol.

Multi-tree schemes such as Splitstream [4] and Chunkyspread [29] split
streams over diverse paths to enhance their reliability. This comes for free in
gossip protocols where the neighbors of a node continuously change. In a sense, a
gossip dissemination protocol dynamically provides different dissemination paths
for each stream packet, providing the ultimate splitting scheme. Chunkyspread
accounts for heterogeneity using the SwapLinks protocol [30]. Each node con-
tributes in proportion to its capacity and/or willingness to collaborate. This is
reflected by heterogeneous numbers of children across the nodes in the tree.

The approaches of [2, 27] propose a set of heuristics that account for band-
width heterogeneity (and node uptimes) in tree-based multicast protocols. This
leads to significant improvements in bandwidth usage. These protocols aggregate
global information about the implication of nodes across trees, by exchanging
messages along tree branches, in a way that relates to our capability aggregation
protocol.

Mesh-based systems [5,17,20,22,23,24,35] are appealing alternatives to tree-
based ones. They are similar to gossip in the sense that their topology is un-
structured. Some of those, namely the latest version of Coolstreaming [17] and
GridMedia [35] dynamically build multi-trees on top of the unstructured over-
lay when nodes perceive they are stably served by their neighbors. Typically,
every node has a view of its neighbors, from which it picks new partners if it
observes malfunctions. In the extreme case, a node has to seek for more or differ-
ent communication partners if none of its neighbors is operating properly. Not
surprisingly, it was shown in [17,20] that increasing the view size has a very pos-
itive effect on the streaming quality and is more robust in case of churn. Gossip
protocols like HEAP are extreme cases of these phenomena because the views
they rely on keep continuously changing.

Finally, [31] addresses the problem of building an optimized mesh in terms
of network proximity and latency, in the presence of guarded peers, i.e., peers
that are behind a NAT or firewall. This work led to mixing application level
multicast with IP multicast whenever possible [34]. The core of this research is
now commercially used in [33] but little is known on the dissemination protocol.
At the time the prototype was used for research, some nodes were fed by su-
per peers deployed on PlanetLab and it is reasonable to think that those super
peers are now replaced by dedicated servers in the commercial product. It is
for instance known that the dissemination protocol of PPLive [25] substantially
relies on a set of super peers and thus does not represent a purely decentralized
solution [12].

Heterogeneous Gossip 59

5 Concluding Remarks

This paper presents HEAP, a new gossip protocol which adapts the dissemi-
nation load of the nodes to account for their heterogeneity. HEAP preserves
the simplicity and proactive (churn adaptation) nature of traditional homoge-
neous gossip, while significantly improving its effectiveness. Experimental re-
sults with a video streaming application on PlanetLab convey the improve-
ment of HEAP over a standard homogeneous gossip protocol with respect to
stream quality, bandwidth usage and resilience to churn. When the stream rate
is close to the average available bandwidth, the improvement is even more sig-
nificant.

A natural way to further improve the quality of gossiping is to bias the
neighbor selection towards rich nodes in the early steps of dissemination. Our
early experiments reveal that this can be beneficial at the first step of the
dissemination (i.e., from the source) but reveals not trivial if performed in
later steps.

We considered bandwidth as the main heterogeneity factor, as it is indeed
crucial in the context of streaming. Other factors might reveal important in other
applications (e.g., node interests, available CPU). We believe HEAP could easily
be adapted to such factors by modifying the underlying aggregation protocol
accordingly. Also, we considered the choice of the fanout as the way to adjust
the load of the nodes. One might also explore the dynamic adaptation of the
gossip targets, the frequency of the dissemination or the memory size devoted
to the dissemination.

There are some limitations to adaptation and these provide interesting re-
search tracks to pursue. While adapting to heterogeneity, a natural behav-
ior is to elevate certain wealthy nodes to the rank of temporary superpeers,
which could potentially have an impact in case of failures. Moreover, an at-
tacker targeting highly capable nodes could degrade the overall performance
of the protocol. Likewise, the very fact that nodes advertise their capabili-
ties may trigger freeriding vocations, where nodes would pretend to be poor
in order not to contribute to the dissemination. We are working towards a
freerider-tracking protocol for gossip in order to detect and punish freeriding
behaviors [11].

Finally, since gossip targets are periodically changing and because sent
messages are very small, it is quite natural to transfer them via UDP. Neverthe-
less, doing so can have a negative impact on other applications competing for
bandwidth. In other words, our protocol is not TCP-friendly as it might simply
take priority over other applications, similar to most commercial voice-over-IP
protocols. Making protocols using multiple incoming streams TCP-friendly was
quite difficult [21, 32] assuming the serving nodes were static. Doing the same
for ever changing neighbors such as in a gossip is therefore a problem on its own
and needs further research.

60 D. Frey et al.

Acknowledgements

The authors would like to thank Ken Birman, Pascal Felber, Ali Ghodsi and
Dahlia Malkhi for useful comments.

References

1. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
Multicast. TOCS 17(2), 41–88 (1999)

2. Bishop, M., Rao, S., Sripanidulchai, K.: Considering Priority in Overlay Multicast
Protocols under Heterogeneous Environments. In: Proc. of INFOCOM (2006)

3. Bonald, T., Massoulié, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic Live
Streaming: Optimal Performance Trade-Offs. In: Proc. of SIGMETRICS (2008)

4. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-Bandwidth Multicast in Cooperative Environments. In: Proc.
of SOSP (2003)

5. Chu, Y.-H., Rao, S., Zhang, H.: A Case for End System Multicast. JSAC 20(8),
1456–1471 (2000)

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. In: Proc. of PODC (1987)

7. Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubramanian, N., Mehro-
tra, S.: CREW: A Gossip-based Flash-Dissemination System. In: Proc. of ICDCS
(2006)

8. Eugster, P., Guerraoui, R., Handurukande, S., Kermarrec, A.-M., Kouznetsov, P.:
Lightweight Probabilistic Broadcast. TOCS 21(4), 341–374 (2003)

9. Frey, D., Guerraoui, R., Kermarrec, A.-M., Monod, M., Quéma, V.: Stretching
Gossip with Live Streaming. In: Proc. of DSN (2009)

10. Garbinato, B., Pedone, F., Schmidt, R.: An Adaptive Algorithm for Efficient Mes-
sage Diffusion in Unreliable Environments. In: Proc. of DSN (2004)

11. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M.: On Tracking Freerid-
ers in Gossip Protocols. In: Proc. of P2P (2009)

12. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A Measurement Study of a Large-
Scale P2P IPTV System. TMM 9(8), 1672–1687 (2007)

13. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-Based Aggregation in Large Dy-
namic Networks. TOCS 23(3), 219–252 (2005)

14. Jenkins, K., Hopkinson, K., Birman, K.: A Gossip Protocol for Subgroup Multicast.
In: Proc. of ICDCS Workshops (2001)

15. Kermarrec, A.-M., Massoulié, L., Ganesh, A.: Probabilistic Reliable Dissemination
in Large-Scale Systems. TPDS 14(3), 248–258 (2003)

16. Kyasanur, P., Choudhury, R.R., Gupta, I.: Smart Gossip: An Adaptive Gossip-
based Broadcasting Service for Sensor Networks. In: Proc. of MASS (2006)

17. Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang, X.: Inside the New
Coolstreaming: Principles, Measurements and Performance Implications. In: Proc.
of INFOCOM (2008)

18. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson, L., Alvisi, L., Dahlin,
M.: FlightPath: Obedience vs Choice in Cooperative Services. In: Proc. of OSDI
(2008)

Heterogeneous Gossip 61

19. Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR
Gossip. In: Proc. of OSDI (2006)

20. Liang, C., Guo, Y., Liu, Y.: Is Random Scheduling Sufficient in P2P Video Stream-
ing? In: Proc. of ICDCS (2008)

21. Ma, L., Ooi, W.: Congestion Control in Distributed Media Streaming. In: Proc. of
INFOCOM (2007)

22. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer Receiver-drIven MEsh-based
Streaming. In: Proc. of INFOCOM (2007)

23. Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.: Chainsaw: Elimi-
nating Trees from Overlay Multicast. In: Castro, M., van Renesse, R. (eds.) IPTPS
2005. LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005)

24. Picconi, F., Massoulié, L.: Is There a Future for Mesh-Based live Video Streaming?
In: Proc. of P2P (2008)

25. PPLive, http://www.pplive.com
26. Spring, N., Peterson, L., Bavier, A., Pai, V.: Using Planetlab for Network Research:

Myths, Realities, and Best Practices. OSR 40(1), 17–24 (2006)
27. Sung, Y.-W., Bishop, M., Rao, S.: Enabling Contribution Awareness in an Overlay

Broadcasting System. CCR 36(4), 411–422 (2006)
28. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A Robust and Scalable

Technology for Distributed System Monitoring, Management, and Data Mining.
TOCS 21(2), 164–206 (2003)

29. Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous Un-
structured Tree-Based Peer to Peer Multicast. In: Proc. of ICNP (2006)

30. Vishnumurthy, V., Francis, P.: On Heterogeneous Overlay Construction and Ran-
dom Node Selection in Unstructured P2P Networks. In: Proc. of INFOCOM (2006)

31. Wang, W., Jin, C., Jamin, S.: Network Overlay Construction under Limited End-
to-End Reachability. In: Proc. of INFOCOM (2005)

32. Widmer, J., Handley, M.: Extending Equation-based Congestion Control to Mul-
ticast Applications. In: Proc. of SIGCOMM (2001)

33. Zattoo, http://www.zattoo.com
34. Zhang, B., Wang, W., Jamin, S., Massey, D., Zhang, L.: Universal IP multicast

delivery. Computer Networks 50(6), 781–806 (2006)
35. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the Power of Pull-Based

Streaming Protocol: Can We Do Better? JSAC 25(9), 1678–1694 (2007)

http://www.pplive.com
http://www.zattoo.com

CCD: Efficient Customized Content
Dissemination in Distributed Publish/Subscribe

Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra,
and Nalini Venkatasubramanian

Dept. of Computer Science, Univ. of California at Irvine
{hjafarpo,bhore,sharad,nalini}@ics.uci.edu

Abstract. In this paper, we propose a new content-based publish/
subscribe (pub/sub) framework that enables a pub/sub system to accom-
modate richer content formats including multimedia publications with
image and video content. The pub/sub system besides being responsible
for matching and routing the published content, is also responsible for
converting the content into the suitable (target) format for each sub-
scriber. Content conversion is achieved through a set of content adap-
tation operators (e.g., image transcoder, document translator, etc.) at
different nodes in the overlay network. We study algorithms for place-
ment of such operators in the pub/sub broker overlay in order to min-
imize the communication and computation resource consumption. Our
experimental results show that careful placement of these operators in
pub/sub overlay network can lead to significant cost reduction.

Keywords: Publish/Subscribe, Operator placement, Content
dissemination.

1 Introduction

Publish/Subscribe (pub/sub) systems provide a selective dissemination scheme
that delivers published content only to the receivers that have specified interest
in it [1, 3, 5]. To provide scalability, pub/sub systems are implemented as a set
of broker servers forming an overlay network. Clients connect to one of these
brokers and publish or subscribe through that broker. When a broker receives a
subscription from one of its clients, it acts on behalf of the client and forwards
the subscription to others in the overlay network. Similarly, when a broker re-
ceives content from one of its clients, it forwards the content through the overlay
network to the brokers that have clients with matching subscriptions. These
brokers then deliver the content to the interested clients connected to them.

In this paper, we consider the problem of customized delivery in which clients,
in addition to specifying their interest also specify the format in which they wish
the data to be delivered. The broker network, in addition to matching and dis-
seminating the data to clients also customizes the data to the formats requested
by the clients. As the published content becomes richer in format, considering
content customization within the pub/sub system can significantly reduce re-
source consumption. Such content customizations have become more attractive
due to recent technological advances that has led to significant diversification

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 62–82, 2009.
c© IFIP International Federation for Information Processing 2009

CCD: Efficient Customized Content Dissemination 63

of how users access information. Emerging mobile and personal devices, for in-
stance, introduce specific requirements on the format in which content is de-
livered to the user. Consider a distributed video dissemination application over
Twitter[2] where users can publish video content that must be delivered to their
followers (subscribers). Followers may subscribe to such a channel using a vari-
ety of devices and prefer the content to be customized according to their needs.
Additionally, device characteristics such as screen resolution, available network
bandwidth etc., may also form the basis for required customization. Another
example of such customized content dissemination system is dissemination of
GIS maps annotated with situational information in responding to natural or
man made disasters. In this case, receivers may require content to be customized
according to their location or language.

Simply extending the existing pub/sub architectures by forcing the subscribers
or publishers to customize content may result in significant inefficiencies and sub-
optimal use of available resources in the system. Therefore, there is a need for
novel approaches for customized dissemination of content through efficient use
of available resources in a distributed networked system. The key issue in cus-
tomized content dissemination using distributed pub/sub framework is where in
the broker network should the customization be performed for each published
content? An immediate thought is to perform requested customizations at the
sender broker prior to delivery. Such approach could result in significant network
cost. Consider a simple broker network in Figure 1 where node A publishes a
high resolution video in ‘mpeg4’ format and nodes G, H and I have subscribers
that requested this content in ‘avi’, ‘flv’ and ‘3gp’ formats, respectively. By per-
forming customizations in the sender broker, A, the same content is transmitted
in three different formats through <A, B> and <B, D> links which results in
increased network cost. The alternate might be to defer customizations to the
receiver brokers or broker D. Consider another case where J, K and L have
subscribers with hand held devices that requested the video in ‘3gp’ format. If
the customizations are deferred to receiver brokers, conversion from ‘mpeg4’ to
‘3gp’ is done three times, once in each receiving broker which results in higher
consumption of computation resource in brokers. This also increases the commu-
nication cost by transmitting larger size video in ‘mpeg4’ format while it could
be transmitted in ‘3gp’ format that has smaller size.

The resulting communication and computation costs can be reduced by intel-
ligently embedding customization operators in the pub/sub overlay network. For
instance, the increased network cost in the first scenario could be prevented if the
published video is sent to broker D in the original format and the customization
operators are performed in this broker. Also by performing the conversion once
at broker A or C, computation cost can be reduced significantly in the second
scenario.

The above example shows merit of placement of operators in the network.
In this paper, we explore this problem systematically and develop algorithms
for efficient placement of operators. We model published content and required
customization operators as a graph structure called Content Adaptation Graph
(CAG). Then, we propose an optimal operator placement algorithm for small
CAGs. The proposed algorithm performs the required operators in broker overlay

64 H. Jafarpour et al.

such that the resulting communication and computation cost is minimized. For
the larger CAGs, we show that the problem is NP-hard and propose a greedy
heuristics-based iterative algorithm that significantly reduces customized dis-
semination cost compared to the cases where customizations are done either in
the sender broker or in the subscriber brokers. Our extensive experiments show
that the proposed algorithms considerably reduce bandwidth consumption and
total customization cost in variety of scenarios.

The overall contributions of this paper are:

– We formally define the customized content dissemination, CCD, problem in
a distributed pub/sub systems (Section 2). We also show that CCD with
minimum cost is NP-hard when the number of requested formats is large.

– For small number of requested formats where enumeration of format sets is
feasible, we propose an optimal operator placement algorithm in pub/sub
broker network that minimizes the customization and dissemination cost
(Section 4).

– For large number of requested formats we propose a greedy heuristics-based
algorithm (Section 5).

– We present results of our extensive evaluation of the proposed techniques
that show the considerable benefit of using them (Section 6).

We finally present related work in Section 7 followed by conclusions in Section 8.

2 Customized Content Dissemination

DHT-based Pub/Sub systems: Our CCD system architecture is based on a
DHT-based pub/sub system [10, 11]. It consists of a set of content brokers that
are connected through a structured overlay network. Each client connects to one
of the brokers and communicates with the system through this broker. Often in
DHT-based pub/sub, content space is partitioned among the brokers. Each bro-
ker maintains subscriptions for its partition of content space and is responsible
for matching them with publications falling in its partition. In fact, each broker
is the Rendezvous Point (RP) for the publication and subscriptions correspond-
ing to its partition. When a broker receives a subscription from its client, it first
finds the broker(s) responsible for partition(s) that the subscription falls in and
forwards it to them. Similarly, when a broker receives a published content from
its client, it finds the corresponding RP broker and forwards the content to the
RP. The content is matched with the subscriptions at the RP and the list of
brokers with matched subscriptions is created. Then the RP disseminates the
content to all of these brokers through a dissemination tree constructed using the
DHT-based routing scheme in the broker overlay network. Finally, every broker
(with at least one client having a matching subscription) receive the content and
transfer it to the respective clients. Since a broker acts as a proxy for all clients
that connect to it, we can assume that it is the the subscriber or publisher and
therefore simply concentrate on the broker overlay network. Various DHT-based
routing techniques have been proposed in the literature [7, 8] that can be used
for routing content from RP to the matching brokers. In this paper we use the
Tapestry routing scheme [7], however, we can easily generalize our approach to

CCD: Efficient Customized Content Dissemination 65

other DHT-based routing schemes. In this paper we assume that given a set
of subscribers (receivers), a broker can construct the dissemination tree as in
Tapestry which then remains fixed for this particular instance of the dissemi-
nation event. For more details on dissemination tree construction we refer the
interested reader to [9]. We choose the DHT-based pub/sub on Tapestry for a
variety of reasons, two important ones being (i) In DHT-based pub/sub systems,
for a given publication, a single broker (RP) has complete information about all
brokers with matching subscriptions as well as formats in which content is to be
delivered to them. (ii) Tapestry enables brokers to estimate the dissemination
path for content, which is used to estimate the dissemination tree. Note that
the estimated dissemination tree may not be same as the actual dissemination
tree. An alternative for using the estimated dissemination tree is to discover the
actual dissemination tree using a tree discovery message that is initiated at the
RP and sent to all subscribing brokers. The leaf brokers in the dissemination tree
then resend the message to the RP. Each message keeps information about the
route from the RP to the leaf brokers which is then used by the RP to construct
the exact dissemination tree for the given publication. In this paper we use tree
discovery messages for constructing dissemination trees for publications. Figure
1 depicts a sample dissemination tree.

2.1 Content Adaptation Graph

Fig. 1. Sample dissemination tree

We assume every client has a profile
describing receiving-device characteristic
(e.g., screen size and resolution) and con-
nection characteristics (e.g., connection
type and bandwidth). The client profile
is registered at its broker and is used to
determine the format(s) in which content
needs to be delivered. Each subscription
of the client along with its profile is for-
warded to the corresponding RP which
uses this information for optimal routing
computation.

Similar to the conventional DHT-based
pub/sub systems, the published content is forwarded to the corresponding RP.
However, after detecting the brokers with matching subscriptions, the published
content must be customized and disseminated according to the profiles of the
matched subscriptions. For simplicity, let us assume that the computational
resources at the brokers and transmission links between them (represented by
edges in the dissemination tree) are identical, i.e., their characteristics such as
bandwidth, delay, CPU speed etc. are same in every part of the tree1. Now,
if the set of required formats is F = {F0, ..., Fm−1}, for content C and format
Fi ∈ F , we can associate a transmission-cost TFi(C) for each link. Let O(i,j)
denote the operator that converts content format from Fi to Fj and its associated

1 We have also considered the general case where brokers and links are not identical,
however, due to space constraint we do not present it in this paper.

66 H. Jafarpour et al.

conversion cost by CO(i,j) (C). This represents the computation cost of performing
this operator at any broker2. Note that it may not always be feasible to convert
content from any given format Fi into another format Fj . For example, it might
not be possible to convert a low resolution image into a higher resolution one.
Alternatively, the system might not support particular conversions even if it were
possible, e.g., converting video in ‘avi’ format into ‘flv’. In such cases we assume
O(i,j) to be undefined.

Fig. 2. A sample CAG and dissemina-
tion plan

We use a directed, weighted graph
structure to represent the required for-
mats for a published content and the re-
lationship between these formats. We will
call this the Content Adaptation Graph
(CAG). The vertices in CAG correspond
to the various content formats and the di-
rected edges between two vertices repre-
sents the operator that converts content
from the source format to the sink format
directly. The associated conversion cost is
represented by the weight of the edge. Similarly, a weight associated with each
node of the CAG represents the per-unit transmission cost in that format. Fig-
ure 2 illustrates a CAG involving four formats of an ‘mpeg4’ video content with
different frame sizes and bit-rates. In this CAG we represent the transmission
cost in Megabytes (MB) and the conversion cost in seconds.

2.2 Cost-Based Customized Dissemination

Consider the problem of customized dissemination of content C in format F0 from
RP to a set of brokers R = {R1, .., Rr} (R ⊆ N). Let FRj be the set of formats
required at broker Rj . Let T denote the dissemination tree constructed according
to the Tapestry framework where N = {N1, .., Nn} be the set of nodes and E be
the set of edges in this tree. We denote the rendezvous node RP by N1.

For a given dissemination tree T, a customized content dissemination plan
or CCD plan is an annotated tree P (with the same set of nodes and edges
as T) where each node and edge is annotated by the customization operators
performed at the node and the formats in which the content is transmitted along
the link respectively. Figure 2 shows a sample plan where the published content
is delivered in format F1 to brokers N2 and N5, in format F2 to broker N6 and in
format F3 to broker N7. A subtree in the customization plan is called a subplan.

A customization plan provides the following information for each node, Ni,
and link < Ni, Nj > in the dissemination tree.

– ONi : the operators that are performed at Ni. E.g., in the plan depicted in
Figure 2, ON1 = {O(0,1), O(1,3)} that convert format F0 to format F1 and
format F1 to format F3, respectively.

– FNi

in : the set of content formats that are received at Ni (from its parent).
E.g., FN2

in = {F1} in Figure 2.

2 In general we will assume these costs to represent the per-unit costs.

CCD: Efficient Customized Content Dissemination 67

– FNi
out: the set of content formats that are required in Ni or are being sent by

Ni to its children. E.g., FN3
out = {F1, F2} in Figure 2.

– F<Ni,Nj>: the set of formats that content is transmitted over < Ni, Nj >.
E.g., F<N1,N2> = {F1}.

In every customization plan the content to be disseminated is available at the
root node (RP) of the dissemination tree in its original published format. In
a valid plan at every node Ni the input format set is identical to the set of
formats that Ni receives from its parent. The input format for each operation
O(m,n) performed at node is either forwarded by its parent or is generated at the
node as a result of other operations. Likewise, the formats in which content is
forwarded by Ni to its children are either received from its parent or generated
in situ as a result of an executed operation. Finally, in a valid plan for every link
< Ni, Nj > the formats transmitted over it needs to pre-exist at its source i.e.,
F<Ni,Nj> ⊆ FNi

out.

Cost Model: The conversion cost of a plan is the sum of costs of carrying out
the operators specified for each of its nodes and transmission cost is the sum
of costs of transmitting the content in the specified formats over all the links
in the dissemination tree. Our model is similar to the one used in [18, 20] for
in-network stream processing and cache replacement. We denote the conversion
cost of a plan P by ϕP and the transmission cost by τP.

The total cost of the plan P for content C is denoted by ΘP(c), as a function of
its conversion and transmission costs. In general one can use an additive formula
such as:

ΘP(C) = ατP + βϕP , where ϕP and τP are normalized values, α, β ≥ 0

The parameters α and β in the above cost function provide flexibility to cus-
tomize the total cost function based on the system characteristics. For instance,
if processing resources in a system are limited and expensive, the total cost
function can reflect this by giving more weight to computing cost. Based on the
above discussion, the computation cost of the plan depicted in Figure 2 is 110
and the communication cost of this plan is 73. Assuming α, β = 1, the total cost
of this plan will be 183. Therefore, the optimization problem can be stated as
follows:

Customized Content Dissemination (CCD) Problem: Given a dissemi-
nation task find a valid customization plan with minimum total cost.

Theorem 1. CCD problem is NP-hard.

Proof. We show that the CCD problem is NP-hard when there is only one broker
in the system. Clearly, if the problem is NP-hard for one broker, it remains NP-
hard for n(> 1) brokers too. We show that the NP-hard problem of computing
the “Minimum directed Steiner Tree” can be reduced to an instance of the CCD
problem. The minimum directed Steiner tree problem is the following: Given
a directed graph G = (V, E) with edge-weights, a set of terminals (vertices)
S ⊆ V , and a root vertex r, find a minimum weight connected tree rooted at r,

68 H. Jafarpour et al.

such that all vertices in S are included in the tree [12]. It is easy to see that any
instance of the directed Steiner tree problem is equivalent to the degenerate CCD
problem where there is only one broker in the network, the content adaptation
graph CAG is set to be the same as G, the vertices’s in S correspond to the
set of formats (corresponding to a set of nodes in the CAG) in which content
is required, and r is the original format of content. Since the CCD problem is
NP-hard for the case of one broker, it remains NP-hard in the general case as
well. �

3 Multilayer Graph Representation of CCD

Fig. 3. A sample subtree and a CAG

An interesting observation is that CCD
problem can be formulated as a minimum
directed Steiner tree problem in a mul-
tilayer graph constructed from the given
CAG and dissemination tree. In fact this
observation was made in [13] for multicas-
ting problem. A multilayer graph for CCD
problem is constructed by combining the
dissemination tree and the content adap-
tation graph (CAG) as follows:

Generate m replicas of the dissemina-
tion tree, each representing a layer corre-
sponding to a format in the CAG (m is the number of formats in the CAG). The
restriction being that within each layer, data can be transmitted along the edges
in the format corresponding to that layer only. We denote the multilayer graph
by GML = (V , E) such that V = Vd × Vc where Vc is the set of vertices in CAG
and Vd is the set of nodes in the dissemination tree. Each vertex in V is therefore
associated with exactly one pair of nodes - where the first member of the pair is
a node in the dissemination tree and the other corresponds to a format in the
CAG. For a vertex v in a multilayer graph the corresponding format in the CAG
is referred by v.format and the corresponding node in the dissemination tree by
v.node. The edge set of GML comprises the following two kinds of edges - edges
that connect two nodes in the same layer (called transmission edges) and edges
that connect nodes across layers (called conversion edges. There is a directed
transmission edge in every layer corresponding to a link in the original dissem-
ination tree. Similarly, there is a directed conversion edge joining the vertices
corresponding to the same (physical) node across layers Li and Lj if and only if
there is an edge from format Fi to Fj in the CAG. The weight of a transmission
edge in layer Li is equal to the transmission cost of its corresponding format,
i.e., Fi. Similarly, the weight of a conversion edge between two layers Li and Lj

is the same as the conversion cost from format Fi to Fj in the CAG. As dis-
cussed in Section 2.2, we will assume that the transmission cost and conversion
cost are measured in the same unit and have been normalized, i.e., one unit of
transmission cost is same as one unit of conversion cost.

Now, it is easy to see that any valid plan for the CCD problem can be rep-
resented as a tree in the corresponding multilayer graph. In fact, the minimum

CCD: Efficient Customized Content Dissemination 69

cost plan for a CCD problem corresponds to the minimum cost directed Steiner
tree in GML. For each format Fk that is assigned to a link between Ni and Nj

in the optimum plan, the transmission edge between corresponding nodes for
Ni and Nj in the layer associated to Fk is also included in the minimum cost
Steiner tree. For each operator O(s,w) assigned to node Ni in the optimum plan,
the conversion edge between corresponding nodes for Ni between the layers as-
sociated with Fs and Fw is included in the minimum cost Steiner tree. Finally,
one can see that cost of the optimal CCD plan is the same as the total weight
of the edges in the minimum Steiner tree in the multilayer graph.

Fig. 4. Multi layer graph for Figure 3

As an example consider the CAG and
dissemination tree depicted in Figure 3.
Figure 4 depicts the associated multilayer
graph for the given CAG and dissemi-
nation tree. The source for the Steiner
tree in the multilayer graph is the corre-
sponding node for the dissemination tree’s
root in the layer associated with the ini-
tial format. The set of terminals for the
Steiner tree consists of the corresponding
nodes for subscriber brokers in their layers
associated with their requested formats.
Therefore, in the next two sections we de-
velop two CCD algorithms that generate
CCD plans with a small cost. In fact our

first algorithm is designed to find the optimum CCD plan and can be used when
the number of formats in CAG is small (less than 5). The second algorithm is
meant for large CAGs (more than 5 nodes) and uses heuristics to generate low
cost plans.

4 Optimal CCD Algorithm

In this section we describe an algorithm for finding minimum cost dissemination
plan when the CAG contains small number of formats (less than 5). In many
situations we may be able to categorize the devices into a small set of classes
where determining an optimum dissemination plan is possible. For instance, in
an image dissemination system , e.g., “PC with high speed connection”, “PC
with dial-up connection”, “Mobile device with Wi-Fi connection” and “Mobile
device with GSM connection”. An important advantage of this algorithm over
the multilayer graph based approach is that it scales linearly with the dissemi-
nation tree size and can therefore be used for efficiently computing the optimal
plan for large dissemination trees when the CAG is small.

Let us describe the main idea behind the optimal algorithm using an example.
Consider a broker Ni that receives content in formats specified in the set FNi

in

from its parent (as shown in Figure 5). Let Ni have two children Nj and Nk.
Let us assume that for every child node the minimum-cost dissemination plan
for the subtree rooted at the node is known in advance for each possible input
format set (recall, the sub-plan cost includes the transmission cost along the

70 H. Jafarpour et al.

incoming edge at the node). Now, if the number of formats in the CAG is m,
there are potentially 2m distinct input sets for each child. Given the costs of
these 2m optimal sub-plans for each child of Ni (shown as arrays in the figure),
let us see how to find the minimum cost plan for the subtree rooted at Ni

parameterized on its input FNi

in . Take the simple case when FNi

in is a singleton
set {F2} from the CAG shown in Figure 2. To compute the minimum cost for
this specific input, we generate all the formats that can be potentially generated
from {F2} (based on the CAG) and note the corresponding conversion costs. For
our example CAG, let the format sets generated from {F2} at Ni be denoted
by F∗

i = {{F2}, {F3}, {F2, F3}}. Of course, in the worst case |F∗
i | = 2m. Now,

given the input {F2} at Ni, the best plan is the one that minimizes the sum of
transmission cost of content in format F2 to Ni (from its parent), the costs of the
least expensive plans at Nj and Nk when inputs at Nj and Nk are restricted to
be an element of F∗

i and the corresponding conversion cost at Ni to generate the
union of the two input sets for Nj and Nk from {F2}. Observe that irrespective
of what formats are sent to Nj and Nk, their union has to be an element of F∗

i .
We use this observation to efficiently compute the best sub-plan for input {F2}
at Ni as follows: For each f∗

i ∈ F∗
i , determine input sets f∗

j ⊆ f∗
i for Nj and

f∗
k ⊆ f∗

i for Nk independently such that the sub-plan cost at Nj and Nk are
minimized. Add to the sum of these two costs, the cost of conversion from {F2}
to f∗

i (i.e., the Minimum directed Steiner tree cost denoted as S({F2} � f∗
i)).

When there are k children this operation can be completed in O(k.2m) time if
m is small and the array at each node is sorted in increasing order of sub-plan
costs. We simply need to determine the minimum total cost over f∗

i (i.e., best
element in F∗

i). Since |F∗
i | is at most 2m, we can determine the best plan for any

given input at Ni ({F2} in this case) in O(k.22m). Further, since there are 2m

distinct inputs possible, we can fill the array at Ni in O(k.23m) time in the worst
case.

Fig. 5. Optimal CCD for a node

Given the optimal substructure char-
acteristic of this problem, we can give
a dynamic programming based algo-
rithm that computes the minimum cost
plan for the CCD problem. Algorithm 1
shows the steps required for one broker
Ni in the dissemination tree for a spec-
ified input format set FNi

in . The algo-
rithm needs the input format set along
with the dissemination subtree rooted
at Ni and the list of arrays consisting
of the best plans at its children nodes (ChildSubP lansNi[]). As mentioned, the
algorithm assumes that the minimum cost plan for all input format sets are
available for every child of Ni. We then initialize the empty plan P with infinite
cost (Lines 4-5). Now, for each possible output format set at Ni the algorithm
first finds the conversion cost using a directed Steiner tree algorithm [12] in line
(8). Note that the minimum conversion cost can be computed efficiently since
the CAG is assumed to be small. Then it computes the least expensive plan
as illustrated in the example above (Lines 9-13). If the newly computed plan

CCD: Efficient Customized Content Dissemination 71

Algorithm 1. OptimalCCD
1: INPUT: F

Ni
in (Set of input formats), TNi

(Dissemination subtree rooted at Ni),
ChildSubPlansNi

()(List of best child subplans)

2: OUTPUT: Pi: Least cost subplan at Ni for input F
Ni
in ;

3:
4: P ← Empty plan;
5: ΘP ← ∞;
6: for all Fsub ∈ PowerSet(F) do
7: Ptemp ← Operators performed in Ni;
8: ΘPtemp ← αS(FNi

in � Fsub); // S(FNi
in � Fsub):the minimum cost of converting content

from a set of available formats, Fin into set of output formats, Fout

9: for all Nj ∈ Children(Ni) do

10: PNj
← MIN{ChildSubplansNi

(Nj)} s. t. F
Nj
in ⊆ Fsub;

11: Add PNj
to Ptemp;

12: ΘPtemp+ = TotalCost(PNj
); // TotalCost(P): the total cost of the plan

13: end for
14: if ΘP > ΘPtemp then
15: P ← Ptemp;
16: ΘP ← ΘPtemp ;
17: end if
18: end for
19: ΘP+ = (1 − α)

∑
Fk∈F

Ni
in

TFk
(C);

20: return P;

had smaller cost than the previous plans, the algorithm updates the minimum
plan and its cost (Lines 14-17). Finally, the computed minimum plan’s cost is
updated by the transmission cost of the input format set and is returned as the
minimum cost plan.

To find the minimum cost plan for a given dissemination tree, we call the
OptimalCCD algorithm in the RP broker with FRP

in = {F0}. After running the
algorithm, the minimum cost plan is available and the system uses it to detect
which operators must be executed in each broker and which content formats
must be transmitted over each link. Each node in the dissemination tree receives
the content formats along with the portion of plan corresponding to the subtree
rooted at that node. It then investigates the received plan and performs the
operators that are assigned to it in the plan and forwards the content in the for-
mats indicated in the plan to each of its children along with their corresponding
parts of the dissemination plan.

Theorem 2. The complexity of the optimal CCD algorithm is O(nkavg23mS),
where n is the number of nodes in the dissemination tree, m is the number of
formats in the CAG, kavg is the average number of children a node has and S

is the complexity of computing the minimum cost directed Steiner tree in the
CAG .

Proof. The algorithm is recursively called for each node and there are n nodes in
all. Now, if we denote the average number of children of a node in the dissemina-
tion tree by kavg and the maximum cost paid for an instance of the “Minimum
Steiner Tree” problem at any node by S (which is assumed to be almost lin-
ear due to the small value of m), then from the analysis done in the example

72 H. Jafarpour et al.

above (Figure 5), we can show that the worst case complexity of Algorithm 1 is
O(nkavg23mS). �

During implementation, the optimal CCD algorithm can be sped up by reducing
the number of format sets to be considered in the output set of a node. If we
cannot derive a particular format set from the input format set, there is no need
to compute those sub-plans. However, in the worst case where CAG is a fully
connected directed graph the algorithm may need to consider all 2m subsets of
formats.

5 CCD Problem for Large CAGs

In this section we present an iterative algorithm for CCD problems with large
CAGs. Given an initial CCD plan, the algorithm iteratively selects a node in the
dissemination tree and refines the local plan at the node to reduce the cost of the
solution. The refining process may include the following two actions: (i) changing
the conversion operators at this node and its children; (ii) changing the set of
formats in which content is transmitted to each one of its children. The modified
plan always has a cost lower than the previous one and acts as an input for
the next iteration. The iterative CCD algorithms is shown below (Algorithm 2).
We show through extensive experimentation (in Section 6) that these heuristics
work very well in practice. In fact, in Section 6 we show empirically that the final
plan costs are within a small factor of the minimum possible cost by establishing
a theoretical lower bound to the cost of a CCD plan.

Algorithm 2. Iterative CCD algorithm for large CAG
1: INPUT: P: The initial plan, K: Number of iterations ;
2: OUTPUT: P: The refined plan;
3:
4: for all j = 0 to K do
5: Ni = SelectNode(P)
6: RefinePlan(P,Ni)
7: end for
8: return P;

The algorithm starts with an initial plan, then greedily selects a node using
the SelectNode function call and applies the RefinePlan procedure to generate
a better plan. In general, one may use a variety of criteria for termination,
such as the magnitude of change in cost over successive iterations, number of
iterations, time bound etc. In this paper, we just iterate for a fixed K times
which is provided by the user as an input parameter. Next, we present details
about the initialization, node selection and plan refinement steps of our iterative
algorithm.

Step 1: Initial Plan Selection. We can initiate the above algorithm using
any valid plan. In this paper, we seed the algorithm using either one of the three
following strategies. We call the first plans the All-in-root plan and the second

CCD: Efficient Customized Content Dissemination 73

one All-in-leaves plan. Both of these algorithms avoid in-network placement of
customization operators and perform all the required operators either at the dis-
semination tree’s root or at the leaves. The All-in-root CCD algorithm generates
all the required formats in the dissemination tree by performing the necessary
operators in the root (RP). Then, the generated content in various formats are
forwarded towards the leaves based on their requests. On the other hand, the
All-in-leaves CCD algorithm forwards the published content to all leaves and all
of the nodes with matching subscription convert the content into the formats
requested by its clients from the original format. We refer to the third initial
plan as the Single-format plan. In this plan content is transmitted over a link
exactly in one format, the one with the smallest transmission cost.

Step 2: Node Selection for Plan Refinement. We considered several strate-
gies for node selection. The first strategy is to select the nodes of the tree ran-
domly in every iteration. We will refer to this as the Random scheme. While
the random scheme is the most obvious, a smarter approach would be to base
the selection on some estimation of the potential cost-reduction one can achieve
by refining a given scheme. We use a greedy heuristic that selects the next node
(i.e., dissemination plan) based on the difference between the current cost of a
sub-plan and the estimated lower bound to the minimum achievable cost for the
sub-plan. The SelectNode function returns the node N∗

i from the set of all nodes
Ni in the tree such that the slack in the total cost paid in the local region of Ni

is maximized. The slack = (total conversion cost paid in the local region of Ni

- the lower bound of the total conversion cost in the local region of Ni) + (total
transmission cost in the local region of Ni - lower bound to the total transmission
cost in the local region of Ni). We will refer to this as the Slack scheme from
here onwards. Since our cost model consists of content transmission and content
conversion costs, to find a lower bound for a plan we need a lower bound for
each of these components in the total cost. We describe how the lower bounds
are computed next.
Transmission-cost lower bound: We define a lower bound for transmission cost
for each link in the dissemination tree and define the lower bound for the tree as
the sum of the lower bounds for each one of its links. Consider a link < Ni, Nj >
in the dissemination tree where Nj is a leaf node. The content formats trans-
mitted over this link depend on the formats requested by the clients attached
to Nj . Consider the case where content is requested only in Fk by the clients
at Nj. Since the transmission costs are proportional to the ”size” of the content
format, the minimum transmission cost for the link is at least as much as the
size of the smallest format in the CAG that we can convert into Fk. In other
words, the minimum transmission cost along < Ni, Nj > corresponds to the
transmission cost for the format with the smallest size, say Fmin

k such that there
is a path from Fmin

k to Fk in the CAG. In general, if the content is required
in more than one format at a node, say {Fmin

k1
, . . . , Fmin

kl
} we can compute the

corresponding smallest formats and take the transmission cost of the largest of
these as the lower bound for the link. This lower bound applies to edges between
internal nodes of the dissemination tree as well. The set of formats requested at
any internal node Nt is simply taken to be the union of formats requested at any

74 H. Jafarpour et al.

client of a node in the subtree rooted at Nt. Below, we describe how one can
quickly determine such a format for any link in the dissemination tree.

We maintain a sorted array of all the formats in the CAG in ascending order
of their transmission costs. This is a one time operation which takes O(mlog(m))
time at most. Then, for a given target format Fk we go down the array and select
the smallest format such that there is a path from this format to Fk in the CAG
(this could very well be Fk itself). The transmission cost of this format is chosen
as the lower bound for Fk. When the content is required in multiple formats in
the subtree rooted at the child node of the link, we determine the lower bound
for each format separately and set the largest of these as the lower bound for
the link. The lower bound to the transmission cost of the whole tree (subtree) is
simply the sum of the lower bounds for every link in the tree(subtree). We will
denote this by Tlow(t) for a subtree t or simply by Tlow for the whole tree.
Conversion cost lower bound: Computing the lower bound for the total conver-
sion cost is straightforward. The minimum conversion cost that needs to be paid
for a plan is the cost of converting the original format into all the requested
formats in the tree at least once. This is simply the cost of minimum directed
Steiner tree of the CAG where the set of terminals is the set of all requested
formats. We will denote this global lower bound to the conversion cost by Clow.
Note, in contrast to the transmission cost which is a positive number for every
link in the dissemination tree, the lower bound for conversion cost is zero for each
node because there is always a valid plan in which no operation is performed at
a given node. As a result the lower bound for conversion cost of any node is 0.

Algorithm 3. RefinePlan
1: INPUT: P: The initial plan, Ni: Selected node ;
2:
3: GML(V,E) = createMLGraph(Ni);
4: Source ← φ; //Set of source vertices;
5: Terminal ← φ; // Set of terminal vertices;
6: for every v ∈ V do
7: if v.node = Ni AND v.format ∈ F

Ni
in then

8: Source = Source ∪ {v};
9: end if

10: if Nj ∈ Children(Ni) AND v.node = Nj AND v.format ∈ F
Nj
out then

11: Terminal = Terminal ∪ {v};
12: end if
13: end for
14: SteinerTree = MinSteiner(GML, Source, Terminal);
15: if SteinerTree.cost < SubPlanCost(P,Ni) then
16: Update(P);
17: end if

Step 3: Plan Refinement Using Multilayer Graph. The RefinePlan pro-
cedure takes as input a valid plan and a node Ni and updates the plan to a new
one with smaller cost by modifying conversion operations and transmissions in
the local region of Ni. Algorithm 3 shows the steps of RefinePlan procedure. In
line 3 it creates the multilayer graph corresponding to the local region of Ni.
In other words, it creates the multilayer graph corresponding to the “stump” of
the sub-plan underneath Ni involving Ni and its children only. Therefore, the

CCD: Efficient Customized Content Dissemination 75

refinement step focuses on the conversion operation performed at one of these
nodes and the transmission formats along the links between Ni and its children
in the current plan. Next, the source and terminal nodes for the minimum cost
Steiner tree computation in the multilayer graph must be determined. Any ver-
tex with Ni as its associated node and one of the input formats in FNi

in is added
to the set of source vertices for the Steiner tree. Similarly any vertex in the mul-
tilayer graph that corresponds to one of Ni’s children and an output format of
the child in the current plan is added to the set of terminals for the Steiner tree.
Lines 6-13 show the steps of forming these source and terminal sets. Once these
sets have been determined, we use an approximation algorithm for Steiner tree
computation [12] as shown in line 14. Finally, if the total cost of the computed
Steiner tree is strictly smaller than the cost before refinement the plan is up-
dated to the reflect the new operations and transmissions in the dissemination
tree as described below (lines 15-17).

The Update(P) process does the following: For each transmission edge in the
Steiner tree, the format associated to the layer is added to the set of formats
that are transmitted through the link between Ni and the corresponding child.
Similarly, for each conversion edge in the Steiner tree the corresponding operator
in the CAG is added to the list of operators that are performed at the associated
node in the current plan. Note that the input format set for Ni and the output
format sets for Ni’s children remain unchanged after the call to RefinePlan pro-
cedure. Since we use approximate Steiner tree algorithm, the Steiner tree may
result in the higher cost plan where in this case no action is taken. It is easy to
see that the refined plan remains a valid plan after performing an update.

Note that since we construct a multilayer graph for a node and its children
only, the size of the graph is significantly smaller than the multilayer graph for
all of the dissemination tree. Assume the maximum number of children for a
node in a network with 1000 brokers is 10 and there are 10 formats in the CAG
and all formats are requested in every child. The multilayer graph in this case
has 150 vertices. The complexity of the Steiner tree algorithm for K iteration is
O(1602×1504×K) which is significantly less than O(100002×35004) which was
the complexity of the example in Section 3.

6 Experimental Evaluation

6.1 System Setup

To evaluate our algorithms we developed a message level, event-based simu-
lator on top of Tapestry routing scheme. We implemented our algorithms and
customization operators in Java. Since the focus of this paper is content dissemi-
nation among brokers, we performed our simulations only for the broker overlay.
There are 1024 brokers in the overlay network. We use the matching ratio as
our main parameter, which is the fraction of the brokers that have matching
subscriptions for a published content. As argued in [4], studying the behavior
of our algorithms over the range of matching ratios enables us to interpret the
results for both Zipf and uniform distribution of publications and subscriptions
over the content space. For instance, the behavior of the algorithms for Zipf

76 H. Jafarpour et al.

distribution in which a small portion of the event space is very popular while
the majority of the event space has only few subscribers can be shown by the
behavior of the algorithm for very high and very low matching ratios. For each
matching ratio, the reported results are averages taken for 100 runs. We also use
tree discovery message to detect the dissemination tree and the node and link
costs. We account for the computation cost of performing our algorithms and
the communication overhead of tree discovery message. Based on our prototyp-
ing, the average execution time of the algorithms was about 100ms and we set
the probe message size to be 0.1 KB. Publishers and subscribers in the broker
overlay are selected randomly for each run. Similarly, the requested formats by
a subscriber are sampled uniformly at random from the set of all formats. Each
broker has subscriptions for at most 1

4 of the available formats in the CAG. The
default value for α and β is set to 1 in the cost function indicating that the
normalized communication and computation cost units have equal weight.

6.2 Dissemination Scenarios

For our experimental study we used variety of small and large CAGs, however,
because of space limitation in this section we present our results for two CAGs
representing two dissemination scenarios. The first CAG is a small one that is
used to evaluate our optimal CCD algorithm while the second one is a large
CAG that is used to evaluate the heuristic based CCD algorithm.

Annotated Map Dissemination: For the first scenario, we considered cus-
tomized dissemination of annotated maps to subscribers in the context of emer-
gency. For instance, in case of wild fire an annotated map depicting shelters for
evacuees and open roadways in a specific geographic region might need to be
disseminated to the local population.

Fig. 6. Sample content and CAG for
Annotated Map scenario

The published content in this scenario is
an annotated map along with brief text de-
scription about each annotated item. Our
system provides content in four different
formats. The original format of the anno-
tated map is PDF (F0). Depending on their
preference and device, receivers can request
the content in JPG image format (F1),
text format (F2) or voice format which is
text to speech conversion of the first anno-
tated item(F3). For PDF to JPG and Text
customizations we used PDFBox package
(http://www.pdfbox.org/) and for Text to Voice conversion we used FreeTTS
package (http://freetts.sourceforge.net/). Figure 6 depicts the corresponding
CAG where the costs were computed based on our extensive prototyping.

Customized Video Dissemination: In the second scenario we consider dissem-
ination of video content in variety of formats. In this scenario the CAG has
16 formats. The original content is in high quality ‘mpeg4’ format. The CAG
contains four nodes in ‘mpeg4’ format that differ in frame size and bit rate.
Also there are four nodes in CAG for each of ‘avi’, ‘flv’ and ‘3gp’ formats. Simi-
larly, each of these nodes represent specific frame size and bit rate for the video

CCD: Efficient Customized Content Dissemination 77

content. We also measure the content adaptation costs in the CAG based on
extensive prototyping of possible transcoding between the available formats in
the CAG. The costs of nodes in this CAG are in the range of [0,30]. For video
transcoding we used FFmpeg which is a complete, cross-platform solution to
record, convert and stream audio and video and includes libavcodec - a leading
audio/video codec library3. The edge costs in this CAG are in the range of [0,60].
Because of very complex representation of this CAG (16 vertices and 210 edges)
we only represent the CAG with 24 edges out of 210 edges in Figure 8.

6.3 Experiments

Based on the described system setup and the CAGs we present set of experiments
that aim to evaluate the following:

– The effect of using optimal and heuristic CCD algorithms in reduction of
content dissemination cost.

– The quality of the heuristic CCD algorithm results.
– The effect of different parameters.
– The effect of the relationship between communication and computation costs

on the algorithm.

We use the small CAG from the annotated map scenario in the first two ex-
periments to evaluate the benefit of using CCD algorithms and quality of the
heuristic CCD algorithm compared to the optimal one. In the rest of experiments
we use the large CAG of the video dissemination scenario to evaluate different
factors that are involved in the heuristic CCD algorithm.

Effect of CCD algorithms on cost: In this experiment we evaluate the effect
of using the proposed CCD algorithms in reducing the dissemination cost. We
compare our CCD algorithms with two alternative approaches, All-In-Leaevs
(AIL) and All-In-Root (AIR). Figure 7 represents the percentage of savings in
the dissemination cost in our CCD algorithms compared to the AIL and AIR
approaches for different α and β ratios. The first graph depicts the results for the
optimal CCD algorithm and the small CAG and the second one shows the results
for the heuristic CCD algorithm and the large CAG. As it can be seen in both
cases using CCD algorithms result in reduction of dissemination cost, however,
the amount of saving may significantly vary for AIL and AIR approaches as α
and β change. The amount of cost reduction depends on several factors including
the communication and computation costs in the CAG, the number of different
requested formats in brokers and the relationship between communication and
computation costs in the system. An interesting fact shown in the graphs is
that the CCD algorithms result in much higher savings as compared to the AIL
approach when α

β = 0.1. In contrast, when α
β = 10 the AIR approach performs

much worse than the CCD algorithms. The reason is when α
β = 0.1 computation

cost unit is much higher than communication cost unit and since AIL performs
operators in leaves, an operator may be performed several times which results
in higher total cost. In such cases as expected the difference between CCD plans
3 For information on FFmpeg please refer to ”http://www.ffmpeg.org/”

78 H. Jafarpour et al.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

C
os

t r
ed

uc
tio

n
pe

rc
en

ta
ge

 (
%

)

Matching Ratio (%)

Optimal CCD algorithm vs. All In Leaves (AIL) and All In Root (AIR)

CCD vs. AIL, α/β=1
CCD vs. AIR, α/β=1

CCD vs. AIL, α/β=10
CCD vs. AIR, α/β=10
CCD vs. AIL,α/β=0.1

CCD vs. AIR, α/β=0.1

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

C
os

t r
ed

uc
tio

n
pe

rc
en

ta
ge

 (
%

)

Matching Ratio (%)

Heuristic CCD algorithm vs. All In Leaves (AIL) and All In Root (AIR)

CCD vs. AIL, α/β=1
CCD vs. AIR, α/β=1

CCD vs. AIL, α/β=10
CCD vs. AIR, α/β=10
CCD vs. AIL,α/β=0.1

CCD vs. AIR, α/β=0.1

Fig. 7. Cost reduction percentage in Optimal and Heuristic CCD algorithms compared
to AIL and AIR for different α and β values

and AIR is not very significant because the computation cost is minimized in
AIR. On the other hand, when α

β = 10 the generated plans by CCD algorithms
are closer to AIL because communication cost is higher whereas AIR results
in higher communication cost because of redundant transmission of the same
content in different formats over some links. In general, these results show that
regardless of CAG and requested formats in brokers, using our CCD algorithms
always results in reduction of dissemination cost compared to at least one of the
AIL or AIR approaches.

Quality of CCD heuristic: In this experiment we evaluate the effectiveness of
the heuristic CCD algorithm in finding a dissemination plan. We compare the
cost of the plan resulting from the heuristic CCD algorithm with the cost of
the optimal dissemination plan that has the minimum cost. Since finding the
minimum cost plan when the CAG is large is NP-hard we use our small CAG in
this experiment. The minimum cost plan in this experiment is computed using
our optimal CCD algorithm. Figure 9 depicts the percentage of cost difference
between the minimum cost plan and the plan resulting from the heuristic CCD
algorithm for 1000 iterations. The cost difference after a few iterations sharply
falls to around 1% for all matching ratios. This shows that the proposed heuristic
CCD produces dissemination plans significantly close to the minimum dissemi-
nation plans. Also this plan is achieved with very small number of iterations in
the heuristic CCD algorithm.

In the previous experiments we showed that the CCD algorithms reduce the
dissemination cost and the heuristic CCD algorithm results in close to optimal
dissemination plans. In the rest of the experiments in this section we present the
effect of different parameters on the effectiveness of the heuristic CCD algorithm.

Initial plan selection: In this experiment we compare three different dissem-
ination plans, All In Root (AIR), All In Leaves (AIL) and Single format (SF).
An important factor that affects the final plan cost is the relationship between
communication and computation costs in the system. If the communication re-
sources in a system are more expensive than computation resources, the initial
plan that is used for the heuristic CCD algorithm may be different than when
the computation resources are costlier than the communication resources. Fig-
ure 10 plots the costs of three initial dissemination plans for different matching

CCD: Efficient Customized Content Dissemination 79

Fig. 8. Video dissemination CAG with sub-
set of edges

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 c

os
t d

iff
er

en
ce

 (
%

)

Iteration number

Cost difference between optimal and heurictic CCD

Matching ratio = 1%
Matching ratio = 5%

Matching ratio = 10%
Matching ratio = 20%
Matching ratio = 50%
Matching ratio = 70%

Fig. 9. Goodness of the heuristic CCD
algorithm compared to the optimal
algorithm

rations in three different scenarios. As it is seen when the computation resources
have more importance in the system (α

β = 0.1), the AIR initial plan has smallest
cost for all matching ratios. This is clear because of AIR plans have minimum
computation cost. On the other hand, if the communication resources are more
expensive, AIR plan results in more consumption of communication resources
and therefore results in larger dissemination cost. Therefore, AIR s the worst
initial plan when α

β = 10. As it is seen in this case SF is a better initial plan to
consider.

Note that these results are for specific CAG and subscription distribution
among brokers. We have similar results for different CAGs and subscription
distributions where single format or All In Root may result in better initial
plan. Therefore, we conclude that to find a better initial plan, the heuristic
CCD algorithm computes all possible initial CCD plans and selects the one with
the smallest cost as the initial plan for refining the plan using iterations.

Next step selection: In this experiment we evaluate the random and slack
based selection techniques. Figure 11 depicts the percentage of cost improvement
compared to the cost of initial plan for 500 iterations and three matching ratios,

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 P
la

n
C

os
t(

x1
00

00
)

Matching Ratio (%)

Average cost for different initial plans

SF,α/β=1
AIL,α/β=1
AIR,α/β=1
SF,α/β=10
AIL,α/β=10
AIR,α/β=10
SF,α/β=0.1
AIL,α/β=0.1
AIR,α/β=0.1

Fig. 10. Initial plan comparison for differ-
ent α and β values

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

C
os

t r
ed

uc
tio

n
pe

rc
en

ta
ge

 (
%

)

Iteration number

Cost reduction in Random and Slack selections

Random (10%)
Slack (10%)

Random (50%)
Slack (50%)

Random (70%)
Slack (70%)

Fig. 11. Next node selection effect on cost
reduction rate

80 H. Jafarpour et al.

10%, 50% and 70%. As it is seen for all matching ratios the rate in which the slack
based techniques refines the dissemination plan to lower cost plan is significantly
faster than the random technique. For instance, in 70% matching ratio the slack
based technique results in 25% reduction in cost after around 150 iterations
while it takes more than 500 iteration for the random technique to achieve the
same percentage in cost reduction. Therefore, if we limit the number of iterations
that the heuristic CCD algorithm performs for refining the plan, the slack based
technique is superior to the random one. Another fact that is shown in the figure
is that regardless of the next step selection technique, both random and slack
based heuristic CCD algorithms converge to the same final dissemination plan
after sufficient number of iterations. This means if there are enough resources
available for a large number of iterations, both techniques achieve the same final
refined dissemination plan.

7 Related Work

Most of the existing pub/sub systems have concentrated on providing efficient
dissemination service for simple publication formats such as numerical or text
content [1, 3, 5]. Shah et al. studied filter placement in content-based pub/sub
network [15]. The objective of this approach is to minimize the total network
bandwidth utilization resulting from dissemination of published content. How-
ever, their system does not consider the overhead resulting from filter operations
in the cost function and only consider single filtering operation type. The con-
tent format also is not customized and published content is delivered in the same
format to all receivers.

Diao et al. proposed ONYX, a customized XML dissemination framework
that provides scalability and expressiveness [16]. ONYX provides incremental
message transformation by using early projection and early restructuring of con-
tent. However, since content transformation operations are XML filtering and
restructuring operations, ONYX does not consider overhead of transformation
and only aims to minimize content transmission overhead.

The Echo pub/sub system is a high performance event delivery middleware de-
signed for grid environments with large scale event rates [19]. While Echo provides
event filtering and transformation service in pub/sub system, there are significant
differences between Echo and our proposed CCD approach. Unlike CCD which is
proposed for content-based pub/sub systems, Echo is a channel-based pub/sub
system. Event types define C-style structures made up of atomic data types. For
event filtering and transformation Echo extends event channels via derivation.
However, all the required computation for filtering and transforming events are
performed in the same source node for the original event channel.

Some multimedia content dissemination systems expand the multicasting con-
cept by providing content customization services for group members. In [14],
Lambrecht, et al. formally defined the multimedia content transcoding problem
in a multicast system and provided heuristic algorithms for transcoding content
into the format that is requested by each receivers. A similar system has been
proposed in [13] where the multicast tree is mapped into a multilevel graph and
an approximate Steiner tree algorithm to find efficient content transcoding in

CCD: Efficient Customized Content Dissemination 81

the network. However, unlike our proposed system, both of the systems assume
that the multicast group is a fixed and predefined group. Also these systems only
consider dissemination of multimedia content in the same file format which is a
subset of the problem we consider here.

Content customization has been subject to extensive research in multime-
dia community. Nahrstedt et al. proposed Hourglass[17], a multimedia content
customization and dissemination framework. Hourglass composes requested con-
tent formats from specified sources by efficiently placing composition services in
the network and disseminates composed format to receivers in their requested
formats. However, Hourglass assumes each adaptation service is performed only
once in the system and also content dissemination is done using multiple dissemi-
nation trees: one for each content format. Both of these assumptions significantly
simplify the customized content dissemination problem.

8 Conclusions and Future Work

We have introduced customized content dissemination system where content is
only delivered to receivers that have requested it and in their desired format.
We proposed operator placement algorithms on top of a DHT-based pub/sub
framework in order to customize content format such that dissemination cost,
which we defined as a linear function of customization (computing) and trans-
mission (communication) costs, is minimized. We formally defined the problem
and showed that it is NP-hard. We proposed two approaches to generate an effi-
cient operator placement plan. Our first algorithm, the optimal CCD, finds the
minimum cost CCD plan when the number of requested formats in the system is
small. For the scenarios with large number of required formats we proposed an
iterative heuristic algorithm that considerably reduces the CCD cost compared
to performing customizations in the dissemination tree root or in the receiver
brokers. We also showed the benefit of using our algorithms through extensive
experiments. We have extended our proposed algorithms to take into account
the heterogeneity of brokers and links along with the effect of concurrent publi-
cations in computing dissemination plans. However, due to the space limitation
we did not present these extensions along with the corresponding experimental
results in this paper.

In the heuristic CCD algorithm we used a multilayer graph for a subtree of
depth one in the dissemination tree. As part of our future work we are investigat-
ing the trade-off in choosing subtrees with higher depth and complexity of the
minimum directed Steiner tree computation. We are also working on a heuristic
algorithm based on our Optimal CCD algorithm to generate a more effective
initial plan for our heuristic CCD algorithm when the CAG is large. We are also
investigating other cost models including dissemination time and the ways that
the CCD algorithms can be adapted for such cost models.

References

1. Castelli, S., Costa, P., Picco, G.P.: HyperCBR: Large-Scale Content-Based Routing
in a Multidimensional Space. In: IEEE INFOCOM 2008 (2008)

2. http://www.twitter.com

http://www.twitter.com

82 H. Jafarpour et al.

3. Aekaterinidis, I., Triantafillou, P.: PastryStrings: A Comprehensive Content-Based
Publish/Subscribe DHT Network. In: IEEE ICDCS 2006 (2006)

4. Cao, F., Pal Singh, J.: MEDYM: Match-Early with Dynamic Multicast for Content-
Based Publish-Subscribe Networks. In: Alonso, G. (ed.) Middleware 2005. LNCS,
vol. 3790, pp. 292–313. Springer, Heidelberg (2005)

5. Li, G., Muthusamy, V., Jacobsen, H.A.: Adaptive Content-Based Routing in Gen-
eral Overlay Topologies. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS,
vol. 5346, pp. 1–21. Springer, Heidelberg (2008)

6. Tam, D., Azimi, R., Jacobsen, H.A.: Building Content-Based Publish/Subscribe
Systems with Distributed Hash Tables. In: Aberer, K., Koubarakis, M., Kalogeraki,
V. (eds.) VLDB 2003. LNCS, vol. 2944, pp. 138–152. Springer, Heidelberg (2004)

7. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.:
Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal
on Selected Areas in Communications 22(1) (2004)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

9. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.: Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In:
Proceedings of ACM NOSSDAV 2001 (2001)

10. Baldoni, R., Marchetti, C., Virgillito, A., Vitenberg, R.: Content-Based Publish-
Subscribe over Structured Overlay Networks. In: IEEE ICDCS 2005 (2005)

11. Gupta, A., Sahin, O., Agrawal, D., El Abbadi, A.: Meghdoot: Content-Based Pub-
lish/Subscribe over P2P Networks. In: Jacobsen, H.-A. (ed.) Middleware 2004.
LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

12. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation algorithms for directed steiner problems. In: ACM-SIAM symposium
on Discrete algorithms (1998)

13. Henig, A., Raz, D.: Efficient management of transcoding and multicasting multime-
dia streams. In: 9th IFIP/IEEE International Symposium on Integrated Network
Management (2005)

14. Lambrecht, T., Duysburgh, B., Wauters, T., De TurckBart Dhoedt, F., Demeester,
P.: Optimizing multimedia transcoding multicast trees. Computer Networks 50(1,
16), 29–45 (2006)

15. Shah, R., Ramzan, Z., Jain, R., Dendukuri, R., Anjum, F.: Efficient Dissemination
of Personalized Information Using Content-Based Multicast. IEEE Trans. Mob.
Comput. 3(4), 394–408 (2004)

16. Diao, Y., Rizvi, S., Franklin, M.J.: Towards an Internet-Scale XML Dissemination
Service. In: VLDB Conference (August 2004)

17. Nahrstedt, K., Yu, B., Liang, J., Cui, Y.: Hourglass Content and Service Compo-
sition Framework for Pervasive Environments. In: Elsevier Pervasive and Mobile
Computing (2005)

18. Chang, C.-Y., Chen, M.-S.: On Exploring Aggregate Effect for Efficient Cache
Replacement in Transcoding Proxies. IEEE Trans. on Parallel and Dist. Sys. 14(7)
(2003)

19. Eisenhauer, G., Schwan, K., Bustamante, F.E.: Publish-Subscribe for High-
Performance Computing. IEEE Internet Computing 10(1), 40–47 (2006)

20. Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network
stream query processing. In: ACM PODS 2005 (2005)

21. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: IEEE INFOCOM 2006 (2006)

Calling the Cloud: Enabling Mobile Phones
as Interfaces to Cloud Applications

Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

{igiurgiu,oriva,alonso}@inf.ethz.ch

Abstract. Mobile phones are set to become the universal interface to
online services and cloud computing applications. However, using them
for this purpose today is limited to two configurations: applications ei-
ther run on the phone or run on the server and are remotely accessed
by the phone. These two options do not allow for a customized and
flexible service interaction, limiting the possibilities for performance op-
timization as well. In this paper we present a middleware platform that
can automatically distribute different layers of an application between
the phone and the server, and optimize a variety of objective functions
(latency, data transferred, cost, etc.). Our approach builds on existing
technology for distributed module management and does not require new
infrastructures. In the paper we discuss how to model applications as a
consumption graph, and how to process it with a number of novel algo-
rithms to find the optimal distribution of the application modules. The
application is then dynamically deployed on the phone in an efficient
and transparent manner. We have tested and validated our approach
with extensive experiments and with two different applications. The re-
sults indicate that the techniques we propose can significantly optimize
the performance of cloud applications when used from mobile phones.

Keywords: Mobile phones, cloud applications, OSGi, performance.

1 Introduction

Mobile phones are set to become a main entry point and interface to the grow-
ing number of cloud computing services and online infrastructures. They are
also increasingly perceived as the most convenient access point for a variety of
situations: from payments to ticket purchase, from carrying boarding passes to
hotel check-in, from browsing a shop catalog to activating a coffee machine.

Today, the implementation of such scenarios is limited by the lack of flexibility
in deploying mobile phone applications. They either run entirely on the server,
typically incurring large data transfer costs, high latencies, and less than optimal
user interfaces; or they run entirely on the phone, thereby imposing many limita-
tions on what can be achieved due to the constraints of mobile phone hardware,
as well as placing an undue burden on the end users who need to install, update,

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 83–102, 2009.
c© IFIP International Federation for Information Processing 2009

84 I. Giurgiu et al.

and manage such applications. In this paper we explore how to deploy such ap-
plications in a more optimal way by dynamically and automatically determining
which application modules should be deployed on the phone and which left on
the server to achieve a particular performance target (low latency, minimization
of data transfer, fast response time, etc.). Having such a possibility creates a
wealth of opportunities to improve performance and the user experience from
mobile phones, turning them into an open, universal interface to the cloud.

To optimally partition an application between a mobile phone and a server, we
approach the problem in two steps. First, we abstract an application’s behaviour
as a data flow graph of several inter-connected software modules. Modules encap-
sulate small functional units supplied by the application developer. Each module
provides a set of services, and modules are connected through the correspond-
ing service dependencies. Through an offline application profiling, modules and
service dependencies are characterized in terms of their resource consumption
(data exchange, memory cost, code size), thus providing the knowledge base for
the optimization process. Given this graph, in the second step, a partitioning
algorithm finds the optimal cut that maximizes (or minimizes) a given objec-
tive function. The objective function expresses a user’s goal such as to minimize
the interaction latency or the data traffic. Moreover, the optimization also takes
into account a mobile phone’s resource constraints such as memory and network
resources available.

We propose two types of partitioning algorithms: ALL and K-step. We look
at the problem both as a static and dynamic optimization. In the first case,
the best partitioning is computed offline by considering different types of mobile
phones and network conditions. In the second case, the partitioning is computed
on-the-fly, when a phone connects to the server and specifies its resources and
requirements. ALL fits the first scenario, while K-step the second one.

Our approach does not require new infrastructures as it uses existing software
for module management such as R-OSGi [1] and a deployment tool like Al-
fredO [2], that can support the actual distributed deployment of an application
between a phone and a server.

This paper makes the following contributions. First, we model the partitioning
problem and the algorithms that can solve it. Second, we show the effectiveness
of this approach with two prototype applications. Third, we present a compre-
hensive evaluation involving realistic application scenarios of mobile phones. Our
measurements show that the system can quickly identify the optimal partition
given various phone constraints, and provide an improvement of tens of seconds
compared to the case in which the phone hosts the entire application or leaves
all the service logic on the server.

The rest of the paper is organized as follows. The next section gives an
overview of the AlfredO platform we use. Section 2.2 describes how application
profiling is used to produce an application’s consumption graph, while Section 3
presents the partitioning algorithms. Section 4 evaluates our approach and Sec-
tion 5 describes an application using it. We then conclude and discuss limitations
and open problems of your approach as well as related work.

Calling the Cloud: Enabling Mobile Phones as Interfaces 85

2 Flexible Module Deployment

This section starts by providing background on AlfredO and then describes how
application profiling is used to generate a consumption graph.

2.1 AlfredO Overview

We use AlfredO [2] to carry out the physical distribution of an application’s
modules between a mobile phone and a server. AlfredO is based on OSGi [3],
which has been traditionally used to decompose and loosely couple Java appli-
cations into software modules. In the OSGi terminology, software modules are
called bundles, and bundles typically communicate through services, which are
ordinary Java classes with a service interface.

Given an OSGi-based application with a presentation tier, a logic tier, and
a data tier, where each tier consists of several OSGi bundles, AlfredO allows
developers to decompose and distribute the presentation and logic tiers between
the client and server side, while always keeping the data tier on the server.

In a typical example of interaction, the minimal requirement for interacting
with a certain application is to acquire the presentation tier. Once AlfredO has
built the presentation tier, the logic tier’s services can be invoked. This happens
by either redirecting invocations to remote services provided by the server side
or by acquiring and running some parts of the logic tier locally.

Figure 1 shows an example of client-server interaction. Both devices run OSGi
with the R-OSGi [1] bundle installed, which enables remote service execution
across OSGi platforms. The AlfredO system consists of three bundles: AlfredO-
Client and Renderer on the client, and AlfredOCore on the server.

Upon explicit discovery (e.g., using a service discovery protocol such as SLP [4]
provided by R-OSGi) or by direct connection to a known address (e.g., the re-
mote server periodically broadcasts invitations), the connection is established
and the client requests a selected application. Using one of the available parti-
tioning algorithms (described in the next section), AlfredOCore computes the
optimal deployment for such an application, and then returns to AlfredOClient

R
-O

S
G

i

A
lfr

ed
O

C
lie

nt

R
en

de
re

r

B
un

dl
e

A

P
ro

xy
 (

B
un

dl
e

B
)S1

S3

S2

OSGi
(Concierge)

R
-O

S
G

i

A
lfr

ed
O

C
or

e

B
un

dl
e

A

B
un

dl
e

B

S1

S3

S2

OSGi
(Concierge)

SWT

AWT

ApplicationApplication

Fig. 1. AlfredO architecture

86 I. Giurgiu et al.

the application’s descriptor (also explained later) and the list of services to be
fetched. The application’s descriptor is used by the Renderer to generate the
corresponding AWT or SWT user interface, while AlfredOClient fetches the
specified services via R-OSGi.

In the general case, a server provides bundles offering services. If a client
wants to use a server’s service, the server provides the client with the service
interface of such a service. Then the R-OSGi framework residing on the client
side generates from the service interface a local proxy. The local proxy delegates
service calls of the client to the remote server and each proxy is registered with
the local R-OSGi service registry as an implementation of the particular service.
If it happens that the service interface references types provided by the original
service module and these are located on the server side, the corresponding classes
are also transmitted and injected into the proxy module.

Alternatively, rather than invoking a remotely executing service, a client can
decide to fetch it. In the example in the figure, if the client wants to acquire S1,
the corresponding bundle A is transferred to the client side and plugged into the
OSGi platform. When the client receives the service interface of S1, it is also
provided with a list of the associated service’s dependencies. Let us assume that
S1 depends on S2, and S2 depends on S3, which are both offered by another
bundle B. The client can either acquire only S1 and create a local proxy for S2
and S3, or it can also acquire S2 and S3.

2.2 Application Profiling

The first step in optimizing an application’s deployment is to characterize the
behaviour of such an application through a resource consumption graph. We
assume applications to be built using the OSGi module system, but the same
method could be extended to work with applications modularized in other ways.

We instrument every bundle composing the application to measure the con-
sumed memory, the data traffic generated both in input and output, and its
code size. We then execute the instrumented application on one or multiple
phone platforms and collect on a debug channel the amount of consumed re-
sources. Each bundle’s cost represents how much a phone has to pay if it wants
to acquire and run that particular bundle locally.

In our optimization problem, we focus mainly on user interface type of func-
tionality, since these are the modules that are more likely to be suitable for
moving and running on a resource-constrained mobile phone. In addition, the
large heterogeneity of the mobile platforms encountered today and the lack of
one reference CPU architecture for mobile phones makes it hard to obtain stable
estimations for CPU consumption that could be correctly applied to interactions
with non-profiled phone platforms. We therefore simplify the profiling process
by omitting a bundle’s CPU cost.

An application developer classifies bundles as movable and non-movable based
on their computation needs. Non-movable bundles are computing-intensive com-
ponents that are bound to always execute on the server side. This simplification
has so far proven sufficient for the interactive applications we have considered

Calling the Cloud: Enabling Mobile Phones as Interfaces 87

and that AlfredO primarily targets, since the most critical factor in the overall
performance is usually the amount of transferred data.

The profiling output is then used to generate the application descriptor. A
snippet of the descriptor used in the example of Figure 1 is the following:

<tier>

<requires>

<service name="S3" data="350"/>

</requires>

<provides>

<service name="S2"/>

</provides>

<memory>155</memory>

<code>30</code>

<type>movable</type>

</tier>

This descriptor specifies that service S2 requires S3 for its execution (i.e., S2
depends on S3) and the total amount of data that needs to acquire from S1
and return to S3 is 350 bytes. Other requirements include the memory cost of S2
when executed on the phone, and the size of the bundle to which it is associated.

2.3 Consumption Graph

The output of the profiling process is used to represent the application as a
directed acyclic graph G = {B, E}, where every vertex in B is a bundle Bi and
every edge eij in E is a service dependency between Bi and Bj . Each bundle Bi

is characterized by five parameters:

– type: movable or non-movable bundle,
– memoryi: the memory consumption of Bi on a mobile device platform,
– code sizei: the size of the compiled code of Bi,
– inji: the amount of data that Bi takes in input from Bj ,
– outij : the amount of data that Bi sends in output to Bj .

Figure 2 shows an example of a graph consisting of 6 bundles. We call this
an application’s consumption graph. Notice that although our implementation
currently considers these five parameters, the model is generic enough to be
easily extended with more variables.

In this work we make the simplifying assumption that every bundle exposes
only one service, i.e., bundle:service mapping is 1:1. This implies that a bundle
can be interconnected to multiple bundles, but always through the same service
interface. As ongoing work, we are relaxing this assumption by differentiating
among the type and number of service dependencies.

The graphs we consider for optimization are not extremely large because, first,
we focus on the presentation layer, and, second, modularity is not at the class
or object level, but at the functional level. Therefore, we expect applications to
have in most cases a few tens of modules.

88 I. Giurgiu et al.

1 1

2 2

3 3

5 5
6 6

4 4

21
12

42

24

53

35

31

13

52

25

65

56

i i

i i

Fig. 2. Example of application’s consumption graph

3 Partitioning Algorithms

In this section, we describe the AlfredO’s algorithms used to optimize an ap-
plication’s distribution between a phone and a server. The server is assumed to
have infinite resources, while a client is characterized by several resource con-
straints. We start by describing how the optimization problem is defined and
which assumptions are made, and then present the partitioning algorithms.

3.1 Optimization Problem

The partitioning problem seeks to find a cut in the consumption graph such that
some modules of the application execute on the client side and the remaining
ones on the server side. The optimal cut maximizes or minimizes an objective
function O and satisfies a phone’s resource constraints. The objective function
expresses the general goal of a partition. This may be, for instance, minimize the
end-to-end interaction time between a phone and a server, minimize the amount
of exchanged data, or complete the execution in less than a predefined time.

A phone’s constraints include memoryMAX , the maximum memory available
for all potentially acquired bundles, and code sizeMAX , the maximum amount
of bytes of compiled code a phone can afford to transfer from the server.

Let us consider an application consisting of n bundles of type movable, de-
noted as B = {B1, ..., Bn}. A configuration Cc is defined as a tuple of par-
titions from the initial set of bundles, < Bclient, Bserver >, where Bclient =
{Ba|a ∈ [1, ..., k]} and Bserver = {Bb|b ∈ [1, ..., s]} with Bserver

⋂
Bclient = φ

and Bserver

⋃
Bclient = B.

An example of objective function that we will use to evaluate our approach
minimizes the interaction latency between a phone and a server, while taking
into account the overhead of acquiring and installing the necessary bundles. This
can be modelled in the following way:

minOCc = min(
t<k∑
i=1

w∑
j=1

(inij + outji) ∗ fij

α
+

k∑
i=1

code sizei

β
+

w<s∑
i=1

proxy costi)

Calling the Cloud: Enabling Mobile Phones as Interfaces 89

The first part in the function models the cost due to the application’s data
exchange when k bundles run on the mobile phone and t bundles out of these
have dependency relationships with w bundles residing on the server side. As we
consider only movable bundles with a very low computation cost, this mainly
consists of communication cost. The parameter α approximates the capacity of
the communication link between the client and server achievable in real settings
and also takes into account the overhead imposed by the device platform to set
up the communication. Depending on the type of interaction a user may invoke
a certain module multiple times. This is modelled through the fij parameter
which specifies how many times the communication between i and j occurs.

The second part models the cost to fetch, install, and start the k bundles on
the mobile phone. The parameter β takes into account the capacity of the com-
munication link as well as the installation overhead. The third part represents
the cost for building the local proxies necessary to interact with the w remote
bundles. Notice that the f parameters appears only in the first member as hav-
ing one or multiple interactions solely affects the amount of data sent back and
forth between the mobile device and the server, while the cost of shipping the
code and building local proxies remains the same.

Given the objective function and the consumption graph we want to find the
optimal partition. Although many tools exist for graph partitioning, they do not
prove to be suitable for our problem. Tools like METIS [5] are designed specifi-
cally for partitioning large scientific codes for parallel simulation. Moreover, they
apply heuristic solutions in order to create a fixed number of balanced graph
partitions, thus fixing predefined seeds and not allowing for flexibility. Other
tools like Zoltan [6] represent an application as a graph, where data objects are
vertices and pairwise data dependencies are edges. The graph partitioning prob-
lem is then to partition the vertices into equal-weighted parts, while minimizing
the weight of edges with endpoints in different parts. This approach does not
allow for unlimited and unspecified capacity for the server partition, and ex-
pects a single weight on each edge and each vertex. This constraint limits the
applicability of the method, since it cannot support heterogeneity of different
platforms.

Another option is to consider traditional task scheduling algorithms. However,
the main drawback of task scheduling is that it does not fit a non-deterministic
data flow model, since it assumes that all tasks are executed exactly once. There-
fore, it does not fit scenarios where a user may interact with an application
several times and spontaneously.

We therefore propose an alternative approach with two novel algorithms.

3.2 Pre-processing

Before running the actual algorithms, we pre-process the consumption graph to
reduce the search space, but without eliminating optimal solutions. For large
graphs, this step is essential to reduce the graph size and therefore the number
of possible configurations, thus improving the algorithm’s performance. The idea
is to identify bundles that yield a very high cost and therefore cannot be moved

90 I. Giurgiu et al.

to the client or bundles that exchange a lot of data, and therefore should always
execute on the same device.

Given a consumption graph G = {B, E}, if the cost of an edge eij ∈ E is
such that inij + outji > dataMAX , then Bi and Bj are merged into one bundle
Bi: all input and output edges are updated accordingly, and the cost of the new
bundle Bi is given by the sum of the relative costs of the old Bi and Bj .

3.3 ALL Algorithm

After the pre-processing step, two classes of algorithms can be applied to find
the optimal cut. The reason for having two different algorithms is that the
optimization problem can be looked as a static problem, where the optimal
partitioning for several types of mobile devices is pre-computed offline or as a
dynamic problem where the partition must be calculated on-the-fly, once a mo-
bile connects and communicates its resources. In this work, we consider both
options and we propose ALL for offline optimization and K-step for online opti-
mization.

The ALL algorithm always guarantees to find the optimal cut. It operates in
three steps. First, it generates all “valid” configurations. Given B, we define C =
{Cc|c ∈ [1, ..., m]} the set of all valid configurations, where m is the total number
of configurations obtained by traversing the consumption graph in an adapted
topological order that combines both breadth-first and depth-first algorithms. A
valid configuration is such that if bundle Bp and Bq belong to Bclient, if Bp and
Bq are not connected through a direct edge epq, then all bundles on the possible
paths between Bp and Bq also belong to Bclient.

Second, for all valid Cc configurations with k being the number of bundles to
be fetched, installed, and run on the phone, it chooses the ones that satisfy the
phone’s constraints:

1.
∑k

i=1 memoryi ≤ memoryMAX ;
2.

∑k
i=1 code sizei ≤ code sizeMAX ;

Third, the algorithm evaluates the objective function for each valid configuration
and chooses the one providing its maximum (or minimum) value.

3.4 K-Step Algorithm

While the ALL algorithm inspects all possible configurations and identifies the
“global” optimal cut, the K-step algorithm evaluates a reduced set of configura-
tions and finds a “local” optimum. The K-step algorithm is therefore by design
faster than the ALL algorithm, but can be less accurate.

Instead of generating all configurations and then choosing the best ones, this
algorithm computes the best configuration at every step and on-the-fly. At the
beginning, K-step adds to the current configuration the entry node of the graph
and computes the current value for the objective function. Then, at each step, it
adds K new nodes to the current configuration, only if these new nodes provide a
configuration with an objective value larger (the goal is maximize O) or smaller

Calling the Cloud: Enabling Mobile Phones as Interfaces 91

(the goal is minimize O) than the current one and if the phone’s constraints are
still respected. Depending on K, the algorithm can add one single node (K=1) or
a subgraph of size K (K>1) computed by combining depth-first and breadth-first.

More specifically, at each step the algorithm maintains a queue containing
all nodes in the graph (not yet acquired) within a distance of K hops from all
nodes present in the current configuration. The algorithm generates all possi-
ble configurations with the nodes in the queue and the nodes already added to
the current configuration. It then evaluates the objective function for each new
possible configuration. If any of the new configurations provides an objective
value better than the current one, then a new local optimum has been found.
However, the K nodes enabling such a configuration are added only if their re-
source demands respect the phone’s constraints. If the constraints are violated,
the algorithm will evaluate them for the second best new configuration and so
forth until a better configuration respecting the phone’s constraints is found. If
none of the new configurations provide a better objective value, while satisfying
the phone constraints, the algorithm stops and returns the current configuration.
Otherwise, if a configuration is found, the new K nodes are added to the current
configuration and removed from the queue. The queue will be updated and the
evaluation continues. The algorithm ends when the queue is empty or when the
objective value cannot be improved any further.

4 Evaluation

To evaluate our approach we have explored two directions. First, we have built
from scratch a prototype application and used it to test our algorithms under
various resource and network constraints. This application is specifically designed
to allow several configurations and stress the operation of the algorithms. Second,
we have taken an existing application for home interior design and modified it
to support our approach. In this section we focus on the experiments with the
first application, while the second use case is presented in the next section.

In all results presented in the following the client runs on a Nokia N810
Internet tablet and the server on a regular laptop computer (Intel Core 2 Duo
T7800 at 2.60 GHz). N810 handhelds, released in November 2007, run Linux
2.6.21, have a 400 MHz OMAP 2420 processor, 128 MB of RAM, and 2 GB of
flash memory built in. N810 devices were connected to the laptop either through
IEEE 802.11b in ad hoc mode or through Bluetooth.

4.1 Application Bundles and Service Dependencies

The prototype application we built implements some of the image composition
functions of the interior design application described in the next session. This
is a very interactive application exhibiting a good mixture of light and heavy
processing components. Using it a user can upload an image of his/her house
and a photo of a furniture item, position the furniture item on top of the house
plan, set several properties such as object focus, rotation, color, and dimension,
and then invoke specialized image processing libraries for image composition.

92 I. Giurgiu et al.

4

7

6

5

13

14

8

2
12

3

translation

diffusion small image

large image

16

1817

9 10

11

band select

15 19

rotation
sharpen

blur

init

metadata

properties

shear

reduce

contourcrystallize

maximize
oil

upper

lower

1

Fig. 3. Application graph

This application was built using the OSGi module system. The entire appli-
cation consists of bundles with varying requirements in terms of processing and
communication resources. The service dependencies between bundles generate
the graph configuration shown in Figure 3, where we can identify two flows of
bundles that process the small image (the furniture item in this case) and the
large image (the house image) separately, and then merge through bundle 15
and 19. The heavy computation bundles, namely 14, 15 and 19, are marked as
non-movable by the developer (in dark gray in the figure).

In the following experiments, we consider the objective function described in
Section 3.3. The goal is to minimize the end-to-end interaction time observed
by the client, including the time necessary to acquire and install the necessary
code at the beginning of the interaction.

4.2 Startup Process

We start by analyzing the startup time of some selected configurations. We
measure the time necessary to fetch, install, and start the necessary bundles to
be run locally as well as to generate the R-OSGi proxies necessary for invoking
services of remote bundles. The results are shown in Table 1.

The fetching time obviously increases with the number and size of the bun-
dles acquired. The installation time is typically of 1–1.5 seconds per bundle.
The proxy generation time depends on how many service dependencies exist
with remote bundles. For example, in the first case, init has 3 dependencies:
translation, properties, and metadata. Although the fetching and installa-
tion overhead can be even 30 seconds, as in the last case when 15 bundles are
acquired, our algorithms opt for these kinds of configuration only when the per-
formance gain is high enough. For smaller configurations, such as the first few

Calling the Cloud: Enabling Mobile Phones as Interfaces 93

Table 1. Startup time (average and [standard deviation]) with Bluetooth

Configuration Fetch & Install Proxy generation Total time
size (bytes) time (ms) num time (ms) (ms)

1 13940 4776 [180] 3 1044 [339] 5820
1–4 38907 9512 [100] 3 852 [66] 10364
1–5,12,14 98226 15006 [214] 5 1367 [196] 16373
1–4,6,13,16–18 82212 18650 [299] 4 1511 [176] 20161
1–6,9,12,13,16–18 109616 22666 [376] 8 2165 [221] 24831
1–6,8–13,16–18 135454 30413 [2180] 4 660 [93] 31073

cases, the overhead is comparable to the startup time of other common applica-
tions on mobile phones (e.g., text editor, web browser, etc.).

Once the interaction with an application ends, all the modules that have been
fetched on the mobile device are erased such to free the phone’s memory. This
guarantees to consume resources only during the interaction.

4.3 Interaction Time

To assess the effectiveness of our algorithms in identifying the configuration that
minimizes the given objective function, we first run some grounding experiments
where we quantify the cost and performance of each valid configuration of the
application’s bundles. The performance is in this case the overall interaction time
as observed by the user. The cost is the extra price in terms of fetched bundle
code and allocated memory a client has to pay to run some bundles locally.

Figure 4(a) shows the interaction time both with WiFi and Bluetooth, and
Figure 4(b) the resource consumption in terms of size of shipped code and mem-
ory consumed on the tablet. The pair of images submitted to the application is
< 100kB, 30kB >. As the number of configurations for the given application’s
graph is more than 100, we report results for 25 random configurations.

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 15 20 25

in
te

ra
ct

io
n

tim
e

(s
)

configuration

Bluetooth
WiFi

(a) Interaction time

 0

 20

 40

 60

 80

 100

 120

 140

 1 5 10 15 20 25
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

to
ta

l c
od

e
si

ze
 (

kB
)

to
ta

l m
em

or
y

si
ze

 (
kB

)

configuration

Total code size
Total memory size

(b) Resource consumption

Fig. 4. Overall interaction time (a) and resource consumption (b)

94 I. Giurgiu et al.

These experiments allow us to draw two important conclusions. First, there
is no clear correlation between the interaction latency observed by the end-user
and the number and size of bundles acquired by the client. There are cases in
which acquiring more code does increase the interaction latency of more than 10
seconds (for example, passing from configuration 20 to 21) and others in which
the opposite occurs (for example, passing from configuration 11 to 10). Second,
there is a large variation in performance with even 60 seconds of difference from
one configuration to the other. This indicates that there is potential to use the
proposed algorithms to select the best configuration.

4.4 Multiple Service Invocations

The space of improvement is much larger than that shown by the previous results.
Indeed, in running those experiments the test was configured for a “minimal
number of iterations” (i.e., one invocation of every service). However, in reality
this rarely occurs. For example, in setting the position, dimension, or rotation
of a furniture item a user may need multiple iterations and will rarely get the
properties set in a satisfying manner at the first attempt. Moreover, a user will
typically place more than one furniture item in the same room thus invoking the
same operations multiple items.

In these tests we investigate the impact of the number of iterations on the
overall time. To this purpose we select 7 example configurations. In Figure 5
we plot the results obtained with the same images of before. The overall time
includes the overhead for acquiring and installing the remote bundles and build-
ing the local proxies, and the actual interaction time measured using WiFi.
The overhead installation time is 8.5 seconds for the Bclient = {1, 2, 3}, 12
seconds for Bclient = {1, 2, 3, 4}, and 16–18 seconds for all other configura-
tions.

As the number of iterations increases different configurations may provide
better or worse performance. In the graph in Figure 5(a), we compare the per-
formance of the configuration Bclient = {1, 2, 3} with Bclient = {1, 2, 3, 4} when
the number of invocation of bundle 4 increases, and of Bclient = {1, 2, 3, 4, 5}
with Bclient = {1, 2, 3, 4, 5, 12} when the number of invocations of bundle 12
increases. The question in both comparisons is when it is convenient to acquire
an additional bundle such as 4 or 12 respectively. In the first pair of configura-
tions we see that acquiring bundle 4 becomes convenient only when the number
of interactions with bundle 4 is above 2. Otherwise, the overhead of acquiring
bundle 4 is higher than the benefit provided. With the second pair of configura-
tions, acquiring bundle 12 is always more convenient and with 6 iterations the
performance gain is more than 14 seconds.

In Figure 5(b), we see the opposite behaviour. While with one iteration the
performance of all configuration is similar, with an increasing number of config-
urations the acquisition of bundle 16 or 17 becomes less and less convenient as
the number of invocations of bundle 16 and 17 respectively increases.

The number of iterations of certain operations is therefore a key factor in
deciding on the best configuration. This parameter can be estimated by averaging

Calling the Cloud: Enabling Mobile Phones as Interfaces 95

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

ov
er

al
l t

im
e

(s
)

number of iterations

Bclient=1,2,3
Bclient=1,2,3,4

Bclient=1,2,3,4,5
Bclient=1,2,3,4,5,12

(a) Increasing invocations of 4 and 12

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6

ov
er

al
l t

im
e

(s
)

number of iterations

Bclient=1,2,3,4,6,13
Bclient=1,2,3,4,6,13,17
Bclient=1,2,3,4,6,13,16

(b) Increasing invocations of 16 and 17

Fig. 5. Overall time with multiple service invocations with WiFi

over the behaviour of a few user interactions and it is strongly application-
dependent. For example, a user interacting with a vending machine will more
likely invoke the operations only once, unless in case of errors. Instead, in an
application as the one considered that includes a visualization of the properties
set, it is more likely to expect multiple iterations of the same function. These
results clearly show that even light operations, such as bundle 4 that simply
positions an image on top of another, can provide a high performance gain if
performed locally (with 6 iterations, more than 12 seconds).

4.5 Algorithm Performance

The last set of tests quantifies the performance of the two proposed algorithms,
ALL and K-step. We consider several user scenarios, with varying memMAX and
codeMAX constraints and two different consumption graphs. Table 2 presents
the results obtained.

In the first consumption graph (“one iteration app”), every bundle is invoked
exactly once. Therefore, we expect few components to be acquired on the client
side, since the fetching overhead is in most cases higher than the performance
gain. As expected, ALL provides in all scenarios the optimal solution. As the
optimal solution always correspond to an early cut in the graph, the 1-step and
3-step algorithms also find the best solution.

The second consumption graph (“multiple iteration app”) models the situa-
tion in which a user invokes an application’s functions (i.e., bundles) multiple
times. In this case, acquiring some bundles locally allows for a larger improve-
ment of the performance. In most cases the optimal solution is to acquire 5 or
more bundles, except in the first case where the phone’s constraints do not allow
for large acquisitions. The results of the three algorithms vary quite a lot, with
3-step outperforming 1-step in all cases.

Although the performance of ALL and K-step with an increasing K is typi-
cally the best, there exists a trade-off between processing time and accuracy of
the solution. We explore this by measuring the processing time of ALL, 1-step,

96 I. Giurgiu et al.

Table 2. ALL and K-step performance

Scenario Algorithm One iteration app Multiple iteration app
Conf O Error Conf O Error

memMAX : 1MB ALL 1 14.45 0.03 1,4 39.37 0.02
codeMAX : 50kB 1-STEP 1 14.45 0.03 1,4 39.37 0.02

3-STEP 1 14.45 0.03 1,4 39.37 0.02

memMAX : 10MB ALL 1,4 11.66 0.07 1,4,6,13 38.2 0.05
codeMAX : 50–100kB 1-STEP 1,4 11.66 0.07 1,4,6 50.53 0.32

3-STEP 1,4 11.66 0.07 1,4,6,13 38.2 0.05

memMAX : 20–30MB ALL 1,4 11.66 0.07 1,4,5,12 38.07 0.06
codeMAX : 50kB 1-STEP 1,4 11.66 0.07 1,4,5,6 47.72 0.32

3-STEP 1,4 11.66 0.07 1,4,5,12 38.07 0.06

memMAX : 20–30MB ALL 1,4 11.66 0.07 1,4–6,12,13,16 37.76 0.06
codeMAX : 100kB 1-STEP 1,4 11.66 0.07 1,4–6,13,16-18 49.78 0.24

3-STEP 1,4 11.66 0.07 1,4–6,12,13,16–18 45.51 0.14

 0.1

 1

 10

 100

 1 2 3 4

ov
er

al
l t

im
e

(s
)

number of edges

1-step
3-step
5-step

All

Fig. 6. Processing time for ALL, 1-step, 3-step and 5-step

3-step, and 5-step with an application graph consisting of 50 bundles and a
varying number of bundle dependencies. Results are shown in Figure 6.

The processing time of all algorithms increases as the average number of edges
from each node in the graph increases. This happens because a larger number
of graph cuts become possible. The 5-step algorithm can be even 10 times faster
than ALL and 1-step even 100 times faster.

We can conclude that while ALL suits an offline optimization, the K-step algo-
rithm fits better dynamic scenarios where the decision has to be made on-the-fly.
While 1-step can easily incur in a wrong local optimum, 3-step or 5-step provide
a limited error.

Calling the Cloud: Enabling Mobile Phones as Interfaces 97

5 Use Case

In addition to building the image composition application and assess the algo-
rithms performance, we also took an existing application and applied AlfredO to
it. This experience helped us to quantify the effort necessary to use AlfredO with
real-world applications and to better identify the limitations of our approach.
To this purpose, we used the open source Sweet Home 3D [7] application. This
is a quite popular application for home interior design, which allows users to
browse furniture items, place them in a 2D plan of their house, and visualize a
3D preview of it.

To run this application on a mobile phone several problems need to be con-
sidered. First, the application is too computational intensive to run on a phone
platform. Second, its user interface uses Java Swing components, not supported
by standard Java implementations available on phone platforms (i.e., Java ME
CDC or CLDC). Third, considering the user interface of the application, the
limited screen size of the phone would not allow for a good user experience.

To solve these problems, one possible solution would be to re-implement the
entire application and customize it to the phone platform’s characteristics. In-
stead, AlfredO solves these problems in a much faster way and provides a more
extensible approach capable of integrating future extensions of the application.

We applied AlfredO by first modularizing the application and running it on
the OSGi platform. As the application was originally designed according to the
Model-View-Controller design pattern, this allowed us to quickly identify its
main functional components. The current modularization accounts for 13 bun-
dles. However, we are currently working on further decomposing some of the iden-
tified bundles to provide even more flexibility. A second modification we made
was providing other alternative user interfaces implemented using the Java AWT
library, which is supported by existing phone platforms. We currently support
three different user interfaces with an increasing level of complexity. Also, having
three rather than one user interface provides more flexibility and customization.

In the application’s graph this translates in having different entry points to the
same application. The appropriate entry point is selected by taking into account
additional properties of the phone client such as screen size, color resolution,
etc. Once the entry point is selected our algorithms are applied to determine the
best graph cut and the corresponding configuration.

At a high-level, three classes of configurations can be supported. The simplest
case is when the phone client acts only as a mouse controller of the remote
application. The output returned to the mobile phone consists of a screenshot
of the application display. This kind of interaction reuses the MouseController
concepts we presented in [2].

A second possibility shown in Figure 7(b) is when the phone acquires the user
interface necessary to select furniture items and specify their width and position
(as x,y coordinates) locally. On the server side, items are placed accordingly in
the 2D plan and the 3D preview is generated. A final option shown in Figure 7(c)
is when the phone supports item selection and also placement in the 2D plan.

98 I. Giurgiu et al.

(a) SweetHome 3D server

(b) Catalog list and item placement on
a N810

(c) Catalog list, item placement and map
preview on N810

Fig. 7. Sweet Home 3D application running on a server (a) and on Nokia N810
handhelds (b and c)

Within each of these three types of configuration, different distributions of the
application components are possible depending on the algorithm’s decision. The
overhead introduced by our modularization approach was found to be negligible
compared to the original application.

6 Limitations and Open Problems

The experiment of using AlfredO with an existing application helped us to define
better its scope of applicability and limitations.

In many applications, the user interface and the service logic are tightly cou-
pled in complex relationships. This means that a modularization at the level of
service logic requires changes at the user interface too. As we saw with Sweet
Home 3D, we modularized the application into several bundles and identified
three high-level functionalities, such as catalog selection and item placement,
2D plan operations, and 3D rendering and visualization. In order to support
these functions alone or all together, we needed to provide different user in-
terfaces: one that displays a list of furniture items and a table with the item
properties, one that adds to the first interface a 2D plan, and one that adds a
further image panel for 3D functions. On the other hand, we saw how with a

Calling the Cloud: Enabling Mobile Phones as Interfaces 99

much simpler application, such as the one for image composition that we built,
one user interface was enough to allow high flexibility at the service level.

Our experience has shown that AlfredO can work well with both types of
application. Obviously, more complex applications require to be modularized,
but the effort has proven to be reasonable. In the case of Sweet Home 3D, a
Master student, with no knowledge of the application and OSGi, took less than
two months to modularize it and build the three user interfaces described in
Section 5. Thereby, we expect that for simpler applications, less than a month
would be enough to make them run on AfredO. Furthermore, the advantage of
AlfredO is that it builds on existing technology for distributed module manage-
ment, based on the OSGi standard. OSGi is maintained by the OSGi Alliance
with many major players of the software industry, such as IBM, Oracle, and SAP,
and also device vendors, such as Nokia, Ericsson, Motorola. Moreover, OSGi has
been used in several applications including Eclipse IDE [8] and we expect that
in the future more and more developers will be acquainted with it.

Finally, our algorithms require profiling of the resource consumption of an ap-
plication’s bundles and their inter-communication. We instrumented our appli-
cations manually, however there are tools available or under study for automatic
profiling of applications. Some are discussed in the related work section.

7 Related Work

There is a considerable amount of reseach on how to automatically partition and
distribute applications based on resource profiling. One of the very early work
in this context was the Interconnected Processor System (ICOPS) [9]. ICOPS
used scenario-based profiling to collect statistics about resource requirements.
Static data such as procedure inter-connections and dynamic statistics about
resource usage were then combined to find the best assignment of procedures
to processors. ICOPS was the first system using a minimum cut algorithm to
select the best distribution. On the other hand, ICOPS considered very small
programs of seven modules and only three of these could be moved between the
client and server. A more recent work in this context is Coign [10]. Coign assumes
applications to be built using components conforming Microsoft’s COM. It builds
a graph model of an application’s inter-component communication by scenario-
based profiling. The application is then partitioned to minimize execution delay
due to network communication. Several other works exist such as [11].

Our techniques share with these systems the idea of building a graph model of
the application and applying a graph-cutting algorithm to partition it. However,
we differ from them in several aspects. We do not focus on building a tool for ap-
plication resource profiling, but rather on dynamically optimizing the interaction
with an application given the constraints of the current execution environment.
On the other hand, these or similar tools could be integrated in AlfredO to au-
tomatically characterize the resource requirements of an application’s modules
or even partition a non-modularized application. This would allow to extend
AlfredO to non-OSGi applications.

100 I. Giurgiu et al.

A second important difference is the concept of “distribution” itself. The
algorithms we propose do not target distributing an application on a cluster of
machines or a cloud infrastructure, but rather installing all or parts of it in order
to use on a mobile phone. The decision is intrinsically client-driven. In this sense,
AlfredO is closer to a web browser that provides access to Internet services and
requires the user to install plugins.

Finally, AlfredO is designed to work in heterogeneous and dynamic contexts.
Clients exhibit large variability in terms of device platforms, local resources, type
of network communication, etc. This heterogeneity needs to be captured by the
optimization problem and hidden to the end user.

Related work is also in the context of other non-phone specific distributed
systems. For example, in the context of sensor networks systems like Wish-
bone [12], Tenet [13], VanGo [14], in the context of mobile ad hoc networks with
SpatialViews [15], and in the context of cluster computing with Abacus [16]. All
these systems are not applicable to our problem space for different reasons. For
instance, Wishbone partitions programs to run on multiple and heterogeneous
devices in a sensor network. Wishbone is primarily concerned with high-rate data
processing applications, aims at statically minimizing a combination of network
bandwidth and CPU load, and is used at compile time. Abacus dynamically
partitions applications and filesystem functionality over a cluster of resources.
It primarily targets data-intensive applications and attempts to optimize the
placement of mobile objects, by using a fixed objective function that combines
variations in network topology, application cache access pattern, application data
reduction, contention over shared data and dynamic competition for resources
by concurrent applications. Our techniques target less computational- and data-
intensive applications and provide support for multiple objective functions.

The vision of pervasive computing [17], as the creation of physical environ-
ments saturated with a variety of computing and communication capabilities, is
also relevant to our work. The solutions proposed in that context allow devices
to interact with the surrounding environment by either statically preconfiguring
the devices and the environment with the necessary software [18], or by moving
around the necessary software through techniques such as mobile agents [19,20].
The first approach can work only in static environments or to support applica-
tions that are accessed on a very frequent basis. The second approach is more
flexible, but it is not used in practice due to security issues.

We address the problem in a different manner. To use an application on a mo-
bile phone, today a user has two options: 1) install the application locally or 2)
if this is available in the Internet, access it through a web browser. We propose
a new model where the phone is seen as an application controller. The minimal
configuration sees a phone that acquires only a user interface, thus achieving
high security. For more advanced and optimized interactions, some parts of the
application can be installed. The acquisition of an application occurs in a more
controlled manner and with clearly identified boundaries dependent on the re-
source constraints of the mobile device and the type of network communication.

Calling the Cloud: Enabling Mobile Phones as Interfaces 101

8 Conclusions

We have presented our approach to automatically and dynamically distributing
several components of an application between a mobile and a serve in order
to optimize different objective functions such as interaction time, communica-
tion cost, memory consumption, etc. Compared to the current state-of-the-art
in building applications on mobile phones, our approach enables an efficient de-
ployment of several types of applications on mobile phones thus allowing these
resource-constrained platforms to achieve better performance with a controlled
overhead. Our optimization has focused so far only on the client side and has
assumed the server’s resources to be infinite. As future work, we are investigating
how to extend our application’s model to include also CPU consumption and
include into the optimization problem also how the server side can be distributed
over a cloud infrastructure with heterogeneous resources.

Acknowledgments

The work presented in this paper was supported by the Microsoft Innovation
Cluster for Embedded Software (ICES) and the ETH Fellowship Program. We
thank Jan Rellermeyer for his advise and help during the development of AlfredO
on top of R-OSGi.

References

1. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed applications
through software modularization. In: Cerqueira, R., Campbell, R.H. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

2. Rellermeyer, J.S., Riva, O., Alonso, G.: AlfredO: An Architecture for Flexible
Interaction with Electronic Devices. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 22–41. Springer, Heidelberg (2008)

3. OSGi Alliance: OSGi Service Platform, Core Specification Release 4, Version 4.1,
Draft (2007)

4. Guttman, E., Perkins, C., Veizades, J.: Service Location Protocol, Version 2. RFC
2608, Internet Engineering Task Force, IETF (1999),
http://www.ietf.org/rfc/rfc2608.txt

5. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

6. Boman, E., et al.: Zoltan: Parallel partitioning, load balancing and data-
management services user’s guide. Sandia National Laboratories (2007)

7. Sweet Home 3D: (2009), http://www.sweethome3d.eu/
8. Eclipse Foundation: Eclipse (2001), http://www.eclipse.org
9. Stabler, G.: A system for interconnected processing. PhD thesis, Providence, RI,

USA (1975)
10. Hunt, G., Scott, M.: The coign automatic distributed partitioning system. In: Pro-

ceedings of the 3rd symposium on Operating systems design and implementation
(OSDI 1999), pp. 187–200. USENIX Association (1999)

http://www.ietf.org/rfc/rfc2608.txt
http://www.sweethome3d.eu/
http://www.eclipse.org

102 I. Giurgiu et al.

11. Hamlin, J., Foley, J.: Configurable applications for graphics employing satellites
(cages). In: Proceedings of the 2nd annual conference on Computer graphics and
interactive techniques (SIGGRAPH 1975), pp. 9–19. ACM, New York (1975)

12. Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden, S.: Wishbone: Profile-
based Partitioning for Sensornet Applications. In: Proceedings of the 5th Sympo-
sium on Networked Systems Design and Implementation (NSDI 2009), pp. 395–408
(2009)

13. Gnawali, O., Jang, K.Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki,
A., Estrin, D., Kohler, E.: The Tenet architecture for tiered sensor networks. In:
Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 2006), pp. 153–166. ACM, New York (2006)

14. Greenstein, B., Mar, C., Pesterev, A., Farshchi, S., Kohler, E., Judy, J., Estrin, D.:
Capturing high-frequency phenomena using a bandwidth-limited sensor network.
In: Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 2006), pp. 279–292. ACM, New York (2006)

15. Ni, Y., Kremer, U., Stere, A., Iftode, L.: Programming ad-hoc networks of mobile
and resource-constrained devices. In: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation (PLDI 2005),
pp. 249–260. ACM, New York (2005)

16. Amiri, K., Petrou, D., Ganger, G., Gibson, G.: Dynamic Function Placement for
Data-intensive Cluster Computing. In: Proceedings of the 18th USENIX annual
technical conference (USENIX 2000), pp. 307–322 (2000)

17. Weiser, M.: The Computer for the Twenty-First Century. Scientific Ameri-
can 265(3), 94–104 (1991)

18. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The personal
server: Changing the way we think about ubiquitous computing. In: Borriello, G.,
Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 194–209. Springer,
Heidelberg (2002)

19. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on Software Engineering 24(5), 342–361 (1998)

20. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, places, things: Web presence for the real world. In: Proceedings of the 3rd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2000),
p. 19 (2000)

Efficient Locally Trackable Deduplication
in Replicated Systems�

João Barreto and Paulo Ferreira

Distributed Systems Group - INESC-ID/Technical University of Lisbon
{joao.barreto,paulo.ferreira}@inesc-id.pt

Abstract. We propose a novel technique for distributed data dedu-
plication in distributed storage systems. We combine version tracking
with high-precision, local similarity detection techniques. When com-
pared with the prominent techniques of delta encoding and compare-
by-hash, our solution borrows most advantages that distinguish each
such alternative. A thorough experimental evaluation, comparing a full-
fledged implementation of our technique against popular systems based
on delta encoding and compare-by-hash, confirms gains in performance
and transferred volumes for a wide range of real workloads and scenarios.

Keywords: Data deduplication, data replication, distributed file sys-
tems, compare-by-hash, delta encoding.

1 Introduction

Many interesting and useful systems require transferring large sets of data across
a network. Examples include network file systems, content delivery networks,
software distribution mirroring systems, distributed backup systems, cooper-
ative groupware systems, and many other state-based replicated systems [1].
Unfortunately, bandwidth remains a scarce, and/or costly in battery and price,
resource for most networks [2], including the Internet and mobile networks.

Much recent work has proposed data deduplication techniques [3,4] for ef-
ficient transfer across the network, which may be combined with conventional
techniques such as data compression [5] or caching [6]. Consider two distributed
sites, a sender, S, and receiver, R. At some moment, each one locally stores a
set of versions (of some objects, not necessarily the same set of objects at both
sites), which we denote VS and VR, respectively. If S wishes to send some of its
local versions, T (where T ⊆ VS), to R, some data chunks in T can be identical
to chunks in VR. Data deduplication exploits such content redundancy as follows:
when S determines that a chunk of data in some version in T is redundant, S
avoids uploading the chunk and simply tells R where in VR R can immediately
obtain the redundant chunk.

The key challenge of data deduplication is in detecting which data is redun-
dant across the versions to send and the versions the receiver site holds. The

� Funded by FCT grant PTDC/EIA/66589/2006.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 103–122, 2009.
c© IFIP International Federation for Information Processing 2009

104 J. Barreto and P. Ferreira

difficulty of the problem greatly depends on the forms of chunk redundancy
each approach tries to detect and exploit. We distinguish two such forms.

A first one arises from cases where newer versions borrow data chunks from
older version(s) (of the same object, or of another object) that were locally
available when the new versions were created. More precisely, consider some
new version, v, created at S, that S wishes to send to R. If v shares a chunk
with some older local version, vold in VS , and R also happens to hold vold (in
VR), we say there exists locally trackable redundancy. In fact, in such conditions,
if S (by some means) learns that vold is common to both sites, S is able to detect
the redundant chunk by merely comparing local versions (v and vold).

Otherwise, we have locally untrackable redundancy. For instance, this is the
case where two users, one at S and another at R, copy new identical data chunks
from some common external source (e.g. a web page) and write it to new versions,
vS and vR, that each user creates at her site, respectively. If S then decides
to send vS to R, clearly there exist redundant chunks in vS that S can avoid
transferring. However, in order to detect them, we must inevitably compare data
chunks that are distributed across the two sites.

The prominent approach of compare-by-hash1 [3,4,7,8,9,10] tries to detect both
forms of redundancy by exchanging cryptographic hash values of the chunks to
transfer, and comparing them with the hash values of the receiver’s contents.
Compare-by-hash complicates the data transfer protocol with additional round-
trips (i), exchanged meta-data (ii) and hash look-ups (iii). These may not always
compensate for the gains in transferred data volume; namely, if redundancy is
low or none, or when, aiming for higher precision, one uses finer-granularity
chunks [8,4,9]. Moreover, any known technique for improving the precision and
efficiency of compare-by-hash [8,10] increases at least one of items (i) to (iii).

Earlier alternatives to compare-by-hash narrow the problem down to detecting
locally trackable redundancy only. The most relevant example of locally trackable
deduplication is delta-encoding [11,12,13,14,15]. Recent deduplication literature
often regards such techniques as second-class citizens, leaving them out of the
state-of-the-art that is considered when experimentally evaluating new dedupli-
cation solutions [3,4,7,8,9,10]. In part, two factors explain this. Firs, the inherent
inability to exploit locally untrackable redundancy. Second, in the case of delta-
encoding, the fact that, for some version, it can only detect redundancy with at
most one other version (rather than across any set of versions, as in compare-
by-hash) and the time-consuming algorithms involved [14].

This paper revisits locally trackable redundancy, proposing a novel combi-
nation of previous techniques. For a wide set of usage scenarios, we unify the
advantages of both compare-by-hash and earlier locally trackable deduplication
approaches. The key insight to our work is that detecting locally trackable redun-
dancy exclusively is a much simpler problem, hence solvable with very efficient
algorithms, than aiming for both forms of redundancy. It is easy to see that
the problem now reduces to two main steps: (I) to determine the set of object
versions that the sender and receiver site store in common; and (II) to determine

1 We use the expression compare-by-hash for coherence with related literature, al-
though it can have different meanings in other domains. By compare-by-hash, we
mean chunk-based deduplication through distributed hash exchange and comparison.

Efficient Locally Trackable Deduplication in Replicated Systems 105

which chunks of the versions to send are (locally trackable) redundant with such
a common version set.

Since the versions that one must compare for redundancy detection (step II)
now happen to exist locally at the sender site, we can now solve such a hard
problem with local algorithms (instead of distributed algorithms that exchange
large meta-data volumes over the network, such as hash values with compare-
by-hash). No longer being constrained by network bandwidth, one can now: (i)
perform a much more exhaustive analysis, thus detecting more locally trackable
redundancy; (ii) and asynchronously pre-compute most of the algorithm ahead
of transfer time. Furthermore, the network protocol is now a very simple one,
(iii) with low meta-data overhead and (iv) incurring no additional round-trips:
the receiver site simply needs to piggy-back some version tracking information
in the request sent to the sender site (so that the latter performs step I).

For step I, we use very compact version tracking structures, called knowledge
vectors. Most importantly, for step II, our approach can employ any local dedu-
plication algorithm (e.g., [16,17,18]) for detecting locally trackable redundancy
across any object and any version, with high precision and time efficiency. This
is a significant distinction with regard to delta-encoding.

We have implemented our technique in the context of a novel distributed
archival file system, called redFS. Using a full-fledged prototype of redFS for
Linux, we have evaluated both single-writer/multiple-reader and multiple-writer
usage scenarios based on real workloads, representative of a wide range of doc-
ument types. By comparing redFS with popular state-of-the-art tools that rely
on delta-encoding and compare-by-hash, we have confirmed our advantages over
both approaches. Namely:

– redFS consistently transfers less (or, in few exceptions, comparable) bytes of
data and meta-data than all evaluated solutions, obtaining reductions of up
to 67% over relevant systems from both compare-by-hash and delta encoding
approaches, namely LBFS [4], rsync [3] and svn [11].

– redFS transfers files considerably faster than all evaluated alternatives (or,
exceptionally, comparable to the best alternative), accomplishing perfor-
mance gains of more than 42% relatively to rsync, LBFS and svn, for net-
works of 11 Mbps and below. Except for svn, such gains even increase if
we consider that file transfer starts after the local pre-computation steps of
the redundancy algorithm have already completed. Furthermore, such speed-
ups hold even for real workloads with relevant sources of locally untrackable
redundancy, and assume reasonable log-space requirements.

The rest of the paper is organized as follows. Section 2 describes the system
model. Section 3 then introduces our data deduplication protocol. Section 4
proposes two techniques that address the issue of efficient log storage. Section
5 describes the implementation of our protocol in redFS. Section 6 evaluates
our solution, while Section 7 addresses related work. Finally, Section 8 draws
conclusions.

106 J. Barreto and P. Ferreira

2 System Model

We assume a replicated system where a number of distributed sites (denoted S,
R, ...) can replicate a number of logical objects (such as files or databases). As
we explain next, we impose little restrictions on the replication protocol, hence
making our solution widely applicable. Each site has a pre-assigned, well-known
unique identifier. For simplicity of presentation, and without loss of generality,
we assume all sites are trusted, as well as communication.

When a local applications writes to a local replica, it creates a new value of
the object, called a version. Replicas maintain a finite version logs, with their
latest version histories. The oldest logged versions may be pruned at anytime.

To simplify presentation, we assume that no write contention exists, hence no
version conflicts exist. Nevertheless, our solution can be transparently combined
with commitment protocols [1] to handle concurrent/conflicting versions.

We divide the object space into disjoint sets of objects, called r-units. We as-
sume the individual r-unit to be the minimum replication grain in the underlying
system; possibly, a r-unit may comprise a single file. Each site may replicate any
arbitrary set of r-units. A site replicating a r-unit maintains replicas for all ob-
jects of that r-unit. As we explain later, larger r-units allow sites to maintain,
exchange and analyze less bytes and perform faster data deduplication; while
smaller r-units enable finer granularity in the choice of which objects to repli-
cate. The problem of optimal partitioning of the object space into r-units is out
of the scope of this paper. For simplicity of presentation, and again without loss
of generality, the set of sites replicating each r-unit is assumed to be static.

Each logged version is identified by the identifier of the site where the version
was created (denoted v.creator) and a sequence number (denoted v.sn). Hence,
even if two objects happen to be created at different sites with the same textual
name, their actual identifier (〈v.creator, v.sn〉) is unique. For a given r-unit, the
sequence number monotonically increases among the versions created by site v.s
at any object belonging to that r-unit. For example, given r-unit u = {a, b}, if
site S creates a new version of object a, then another version of object b, the
first version will be identified by 〈S, 1〉, the second one by 〈S, 2〉, and so on.

According to some arbitrary replication protocol, sites replicating common
r-units exchange new versions to bring each other up-to-date. Without loss of
generality, such a step occurs in unidirectional pair-wise synchronization sessions,
in which a sender site, S, sends a set of versions, T , to a receiver site, R.

3 Data Deduplication Protocol

We now describe the data deduplication protocol, which complements the under-
lying log-based replication protocol. Our solution may be seen as a combination
of a space-efficient version tracking and local similarity detection algorithms.

We follow such a structure in the following sections. Recall from Section 1 that
the generic approach to locally trackable deduplication consists of 2 steps: (I)
to determine the set of object versions that the sender and receiver site store in
common; and (II) to determine which chunks of the versions to send are (locally
trackable) redundant with such a common version set. We describe our novel

Efficient Locally Trackable Deduplication in Replicated Systems 107

solution to each such step in Sections 3.1 and 3.2, respectively. Section 3.3 then
combines the two steps in a complete deduplication protocol.

3.1 Step I: Version Tracking

Given a pair of sites, S and R, that are about to synchronize, the goal of Step I
is to make S infer the the set of common versions both sites currently share. We
denote such a set as C. One naive solution would be to maintain and exchange
lists of version identifiers for each r-unit they replicate. Of course, the inherent
space requirements, as well as network transfer and look-up times, would easily
become prohibitive for systems with reasonably large object/version sets.

Instead, we rely on a pair of vectors, each with one counter per site replicating
the r-unit, which we call knowledge vectors. Each site, S, maintains, along with
each r-unit, u, that S replicates, two knowledge vectors, denoted Ki

S(u) and
Kf

S(u). From Ki
S(u) and Kf

S(u), we can infer that S currently stores any version,
v, of any object in u such that Ki

S(u) ≤ v.sn ≤ Kf
S(u).

Such a pair of vectors can only represent a version set in which every version
created by the same site i (for all i) have sequence numbers that can be ordered
consecutively without any gap. When, for each r-unit a site replicates, the set of
versions it stores satisfies the previous condition, knowledge vectors constitute
a very space- and time-efficient representation. To simplify presentation, for the
moment we assume that sites receive and prune versions in sequential number
order, with no gaps. Under this assumption, we can precisely represent a site’s
version set by pairs of knowledge vectors, one for each r-unit the site replicates.

This assumption is not artificial, as most log-based replication protocols sys-
tems either ensure it (e.g. Bayou [19]), or may easily be adapted to accomplish it
(e.g. Coda [20]). More generally, it is trivial to show that any system that guar-
antees the widely-considered prefix property [19] satisfies such an assumption.
Section 4 then addresses cases where version gaps can occur.

Given some site, S, and a r-unit that site replicates, S maintains Ki
S(u) and

Kf
S(u) as follows. Both vectors start as zero vectors. As S accepts a new write

request, creating a new version v, it updates its vectors to reflect the new version:
i.e. Kf

S(u)[S] ← v.c (and, if Ki
S(u)[S] = 0, then Ki

S(u)[S] ← v.c). Furthermore,
if S deletes a given version, v, it sets Ki

S(u)[S] ← v.c + 1 (recall that, for now,
we assume that version deletions occurs in sequential number order). Besides
versions that the local site creates and deletes, S’s version set will also evolve as S

receives a new version, v, from some remote site. In this case, S sets Kf
S(u)[S] ←

v.c (again, assuming the ordered propagation with no gaps).
When the receiver site, R, sends a first message requesting for synchronization

to start from a sender site, S, R piggy-backs the knowledge vectors of each r-
unit that R replicates. Thus, imposing no extra round-trips on the underlying
synchronization protocol, S can infer which versions are common to both sites.

While such knowledge vectors tell S which versions R held right before syn-
chronization started, at some point during synchronization R will already have
received other versions (during the current synchronization session from S). Ev-
idently, set C also includes the latter versions. In order to keep track of them,
S maintains, for each r-unit, u, involved in the current (ongoing) synchronization

108 J. Barreto and P. Ferreira

session, a pair of knowledge vectors, denoted knowledge vectors ti(u) and tf (u).
Both vectors start null (when synchronization starts) and grow to represent each
version (of the corresponding r-unit) that S sends.

From the copy S has received of R’s knowledge vectors, as well from ti(u) and
tf (u) (for each r-unit involved in the synchronization session), S can easily deter-
mine whether a given version that S stores, vS , is also stored at R (i.e. whether
vS ∈ C) by testing if any of the following conditions hold:

Ki
R(vS .runit)[vS .creator] ≤ vS .sn ≤ Kf

R(vS .runit)[vS .creator]
or

ti(vS .runit)[vS .creator] ≤ vS .sn ≤ tf (vS .runit)[vS .creator].

Hence, we can determine whether vS ∈ C in constant time, with few operations.
The first condition means R already stored vS before synchronization started,
while the second one means that R has received vS in the meantime.

3.2 Step II: Local Chunk Redundancy Detection

Given a set of versions to transfer, T , from site S and R, and a set of common
versions between S and R, C, Step II determines which chunks of T are redundant
across C. We solve step II very efficiently by observing that most of it needs not
be computed synchronously while the synchronization session is taking place.

We divide step II into 2 sub-steps. A first sub-step is the most computation-
ally intensive. It detects redundancy across every version that S stores, writing
its findings to redundancy vertices and per-version redundancy vertex reference
lists, both maintained locally. This sub-step is independent of any synchroniza-
tion session. Hence, it can be computed ahead of synchronization time as a
background thread that updates the local redundancy vertices when S is idle.

When synchronization starts, only the second sub-step needs to run: deter-
mining, for the ongoing session, which chunks of T are redundant across C. This
sub-step takes advantage of the pre-computed data structures, being able to
return a result by a simple query to such data structures.

The next sections describe each sub-step in detail.

Pre-Computing Chunk Redundancy Data Structures. Conceptually, we
divide the contents of all the versions a site stores into disjoint contiguous por-
tions, called chunks. We determine locally trackable redundancy relationships
among the entire set of chunks a site stores by running some (local) redundancy
detection algorithm. If such an algorithm finds that two chunks have identical
contents, we designate them as redundant across the set of versions. A chunk
with no redundant chunks is called literal.

In a typical configuration, the redundancy detection algorithm runs as a low-
priority thread, which starts from time to time. At each run, it analyzes the
set of local versions that, relatively to the last run of the algorithm, are new,
comparing their chunks with the chunks of the remaining versions.

The resulting redundancy relationships are maintained in local data structures
called redundancy vertices. Each redundancy vertex either represents a literal
chunk or a set of redundant chunks (sharing identical contents). A redundancy

Efficient Locally Trackable Deduplication in Replicated Systems 109

vertex is simply a list of [version identifier, byte offset, chunk size] tuples, each
pointing to the effective contents of a chunk within the local versions.

As we explain later, redundancy vertices should ideally reside in main memory,
for the sake of synchronization performance. However, for sufficiently large data
repositories, that may not be possible due to the fine chunk granularity our
solution is designed for (e.g., 128 bytes). For example, in a file system with an
average chunk size of 128 bytes, supporting up to 4G file versions, each up to
1 TB, would require 9-byte chunk pointers at redundancy vertices (one pointer
per stored chunk). Thus, redundancy vertices would introduce a space overhead
of 7%; e.g., 60 GB of version contents would imply 4-GB of redundancy vertices.
If such space requirements exceed the available primary memory, we can store
the redundancy vertices in secondary memory and maintain the elements that
are more likely to be consulted in upcoming synchronization sessions in a cache
in main memory (for instance, using a least-recently-used substitution policy).
A detailed evaluation of this option is left for future work.

Any version that the redundancy detection algorithm has already analyzed
has each of its chunks referenced by exactly one redundancy vertex. Along with
each such version, the redundancy detection algorithm stores an ordered list of
references to the redundancy vertices corresponding to each chunk in the version.

Our contribution is not tied to any particular redundancy detection algorithm,
and we can transparently use any algorithm that works for local deduplication.
Namely, approaches such as the fixed-size sliding block method of rsync [3],
diff-encoding [14], similarity-based deduplication [18], among others [16].

Nevertheless, to better illustrate our solution, and without loss of generality,
we hereafter consider one of such possible alternatives: a local variant of LBFS’s
distributed algorithm [4]. This algorithm is able to detect redundancy spanning
across any versions, possibly from distinct objects or r-units.

Very succinctly, the algorithm works as follows. We maintain a chunk hash
table, whose entries comprise a pointer to a redundancy vertex and the hash
value of contents of the corresponding chunk(s). For each new version (either
locally created or received from a remote site), we divide it into chunks (using
LBFS’s sliding window fingerprinting scheme [4]) and look their hash values up
in the chunk hash table. If we find a match, then there exists at least one other
identical chunk. In this case, we add a pointer to the new chunk to the existing
redundancy vertex. Otherwise, the new chunk is literal, thus we create a new
single-chunk redundancy vertex pointing to the chunk, and add a new entry to
the chunk hash table (referencing the redundancy vertex and the chunk’s hash
value). Once we finish processing each version, we trivially construct the corre-
sponding redundancy vertex reference list and store it along with the version.

Similarly to the previous discussion concerning redundancy vertices, main-
taining an in-main-memory chunk hash table that covers every local fine-grained
chunk can be impossible. Solving this problem is out of the scope of this paper.
Possible directions include storing the chunk hash table in secondary memory
and a cache in main memory, or resorting to similarity-based schemes [18].

Determining Redundant Chunks Across T and C. Using the previously
maintained data structures (redundancy vertices and redundancy vertex refer-
ence lists) as input, the actual step of determining which chunks to transfer

110 J. Barreto and P. Ferreira

are actually redundant across both sites is reduced to simple queries to such
information.

More precisely, for each version v that site S is about to transfer (i.e. v ∈ T),
we iterate over its redundancy vertex reference list and, for each reference, we
(1) read the corresponding redundancy vertex; and (2) iterate over the redun-
dancy vertex’s chunk pointer list until we find the first chunk of a version vr ∈ C
(using the expression from Section 3.1). If the latter chunk is found, we can just
send a reference to where, among the versions R stores, R can obtain the redun-
dant chunk. More precisely, the following remote chunk reference is sufficient to
univocally identify such a location: [vr.id, offset, chunk size].

Since we consider fine-grained chunks, it is frequent to find consecutive remote
chunk references to contiguous (and consecutive) chunks in some version in C.
We optimize these cases by coalescing the consecutive remote chunk references
into a single reference to a larger chunk comprising all the consecutive smaller
chunks. This simple optimization has the crucial importance of dissociating the
local redundancy detection granularity from the effective remote chunk reference
volume that we send over the network.

As it is shown elsewhere [21], reference coalescing ensures that, by decreasing
the average chunk size, either: (i) we transfer the same remote chunk reference
volume (if no additional redundancy is detected); or (ii) the increase in remote
chunk reference volume is compensated by the decrease in transferred data vol-
ume (if smaller chunks unveil more redundancy).

The algorithm above implies O(d) verifications for membership in C using
the condition from Section 3.1, where d is the average cardinality of each set of
redundant chunks in a redundancy vertex. In contrast, LBFS’s approach requires
look-ups to the receiver site’s chunk hash table that involve O(log(n)) hash
comparisons, where n is the total number of local chunks. As, for most workloads,
d << logn, the local computation phase of our protocol is substantially faster
than the one of LBFS (an observation we confirm in Section 6).

3.3 Putting It All Together

After running the previous steps, site S can finally transfer each version v ∈ T to
R. The actual transfer of each such version involves sending three components.
Firstly, v’s identifier and size. Secondly, an array of remote chunk references to
redundant chunks. We send remote chunk references in the order by which the
corresponding chunks appear in v. Finally, we send the contents of every literal
chunk of v, again in their order of appearance within the version.

Upon reception of the above components, R starts reconstructing v by copying
the redundant contents from the locations (among R’s versions) that the remote
chunk references point to. The gaps are then filled with the literal contents that
R has received.

4 Log Storage and Maintenance

The effectiveness of our data deduplication solution depends on the ability of
each site to maintain long-term version logs. To substantially increase log effi-
ciency, we can resort to two compression schemes.

Efficient Locally Trackable Deduplication in Replicated Systems 111

A first scheme is called redundancy compression. The principle behind redun-
dancy compression is the same as in local deduplication solutions [17]: whenever
two or more versions share a common chunk, we store the chunk only once and
suppress the redundant copies. We achieve this by storing only the first chunk
referenced at each redundancy vertex. If there are additional chunks at that re-
dundancy vertex, we set an absent flag at the redundancy vertex reference list
of the versions such chunks belong to. This flag means that, to read the chunk’s
contents, we must follow the first chunk pointer in the redundancy vertex.

When redundancy compression is insufficient, we inevitably need to erase both
the redundant and literal chunks of one or more versions, thus losing their con-
tents. Still, we can retains the version’s redundancy vertex reference list, which
constitutes a footprint of the redundancy relationships of the erased version with
other versions. The footprints of versions that have been erased at the sender
site can still be (artificially) considered when determining the set of common
versions, C, during synchronization. In fact, if S determines that some version,
v, for which S only holds its footprint (since it has already discarded its con-
tents) is (fully) stored at the receiver site, R, then S considers v to be in C.
Hence, if S determines that some chunk to transfer is redundant with v (which
S can determine by simply inspecting v’s footprint), then S can exploit such re-
dundancy and send a remote chunk reference to version v that R stores. Notice
that the fact that S has already erased the contents of v is irrelevant as long as
R still stores them. Incorporating footprints into the protocol described so far is
straightforward; for space limitations, we describe it elsewhere [21].

Eventually, completely erasing both contents and footprint of a version will
also occur, once space limitations impose it. In this case, care has to be taken
in order to update the knowledge vectors of the r-unit in which the object being
pruned is included. More precisely, such vectors need to be changed in order to
reflect the smaller version set of the local site.

However, the completely erased version can cause a gap in the version set that
was previously denoted by the knowledge vectors. For instance, if Ki

S(u)[S] = 1
and Kf

S(u)[S] = 10 and the user decides to delete version 〈S, 3〉. In this case, we
can no longer use the knowledge vectors to represent the version set. Instead,
we set such vectors to represent a the subset with highest identifiers that has no
gaps. Recalling the previous example, we would set Ki

S(u)[S] ← 4. The choice
for the subset with the highest identifiers follows the heuristic that since versions
with higher identifiers are probably most recent, then they are more likely to be
synchronized to other sites. Therefore, it is more valuable for our deduplication
solution to keep track of such versions than those with lower identifiers.

Similarly to complete erasure of a version, gaps can also happen when a site
receives new versions from a remote site. In this case, the same solution is taken.

5 Implementation

We have instantiated our solution in a full-fledged distributed archival file
system, called redFS.2 redFS supports distributed collaboration through file

2 Source code available at: http://www.gsd.inesc-id.pt/~jpbarreto/redFS.zip

http://www.gsd.inesc-id.pt/~jpbarreto/redFS.zip

112 J. Barreto and P. Ferreira

sharing. Applications can create shared files and directories, and read from/write
to them in an optimistic fashion. redFS implements on-close version creation [22].

redFS runs on top of the FUSE [23] kernel module, version 2.6.3, in Linux. For
synchronization, redFS runs a variant of Bayou’s update propagation protocol
[19], complemented with our data deduplication scheme. We use SUN RPC over
UDP/IP, resorting to TCP/IP sockets to transfer literal contents.

The unit of storage is what we call a segment. Each segment has a unique
version identifier and is stored as an individual file in a native file system. Every
directory and file version has its data stored in a segment.

For directories, we adopt a similar solution as in the Elephant file system [22].
A directory is stored in a single segment, identified by the directory version,
and comprising a directory entry for each object in the directory. Changes to
the directory (e.g., objects added, removed, or attributes changed) result in
appending a new entry to the directory segment and setting an active flag
(see [22]) of the previous entry corresponding to the affected object to false.

Each directory references a set of files/directories by storing the corresponding
file identifiers. A file identifier of a given file/directory consists of the version
identifier of the initial version of the file/directory. To open a file we need to
map the file identifier to the identifier of its current version. redFS maintains a
version information table, indexed by file identifier, which contains, for each file:
version identifier, size, compression mode (plain, redundancy or footprint-only),
and the segment identifier of the file log (if any), among other flags. If a file has
only a single version, it has no log segment. This is an important optimization
since many files of a file system are never changed. Otherwise, the log consists of
a list of version information entries, similar to the ones in the version information
table, providing access to archived versions.

A similarity detector thread runs asynchronously, and an explicit shell com-
mand starts each run. Currently, we maintain redundancy vertices and the
chunk hash table exclusively in main-memory. Redundancy vertex reference lists
are stored at the head of the corresponding versions.

6 Evaluation

Assuming a synchronization session from site S to site R, which transfers a set
of versions, T , an efficient deduplication approach should minimize the following
metrics:

1. Transferred volume, the amount of bytes (including both data and meta-
data) transferred across the network in order to transfer T ;

2. Full transfer time, the time it takes for S to, immediately after obtaining
T , transfer the versions in T to R.

3. Foreground transfer time, the time it takes for S to transfer T to R, assuming
S has already had, in background, the opportunity to perform some local
pre-computation phase.

4. Space Requirements, the amount of memory that both sites need to maintain.

We now evaluate redFS under different workloads and network settings, both
in single-writer and multiple-writer scenarios. We compare redFS with relevant

Efficient Locally Trackable Deduplication in Replicated Systems 113

alternatives employing compare-by-hash and delta-encoding, and plain file trans-
fer. Our evaluation tries to answer 2 questions. Firstly: how does redFS compare
to its alternatives in terms of transferred volume, full transfer time and fore-
ground transfer time, assuming unbounded space resources? Secondly: how does
redFS’s efficiency degrade as the available (bounded) space resources decrease?

For space limitations, the following sections discuss the most relevant results
only. An exhaustive evaluation can be found in [21].

6.1 Experimental Setting

The experiments consider two sites replicating files from real workloads. As new
versions are produced at either one or both sites, they synchronize their local
replicas. To simplify our analysis, we start by assuming that both sites replicate
a common r-unit only and have unbounded logs. Later in the section, we lift
these restrictions, and extend our analysis to multiple r-units and bounded logs.

A first site, S, runs Ubuntu 6.06 (kernel version 2.6.15) on a Pentium 4 3GHz
processor with 1GB of RAM. The second site, R, runs Debian 4.0 (kernel ver-
sion 2.6.18) on an Athlon 64 processor 3200+ with 2 GB of RAM. All experi-
ments were run during periods of negligible load from other processes running
at each machine (approximately < 1% CPU usage by other applications). A
100 Mbps full-duplex Fast Ethernet LAN interconnected both sites. For more
complete results, we use a class based queue (CBQ) to emulate relevant network
technologies, namely IEEE 802.11g (54 Mbps) and 802.11b (11 Mbps) wireless
LANs, Bluetooth 2.0 personal area networks (3 Mbps). Performance measure-
ments were taken with the time command of Linux, with millisecond precision.
The presented results are averages of 3 executions of the each experiment.

We evaluate a representative set of solutions, covering all relevant actual ap-
proaches for network traffic deduplication:

– redFS with different expected chunk sizes (128 bytes, 2 KB, 8 KB).3
– Solutions based on compare-by-hash, namely: lbfs, our implementation of

LBFS’s original protocol [4], in the same modes as for redFS (we do not
directly evaluate LBFS because no public stand-alone implementation of
the original solution was available); rsync [3], version 2.6.3 of the popular
compare-by-hash Linux tool, using the default fixed chunk size, 700 bytes;
and TAPER, using the published results [8] (no prototype nor full source
code was publicly available).

– svn [3], version 1.4.6 of the popular distributed version control system, which
relies on delta encoding for committing versions to the server, using its most
efficient server (svnserve).

– Finally, as a base reference, we also evaluate plain remote file transfer.

The results presented herein were obtained with data compression [5] disabled.
Not considering data compression simplifies our analysis, as it excludes any mea-
surement noise caused by different data compression algorithms and options used
3 The choice of chunk sizes is driven by the observations that: (i) lower chunk sizes than

128 bytes do not compensate the meta-data overhead of remote chunk references,
and (ii) higher chunk sizes than 8 KB yielded no advantage.

114 J. Barreto and P. Ferreira

by each evaluated system.4 The exception is svn, in which data compression is
hard-coded. For a fair comparison, we present measurements for a hypotheti-
cal variant of svn with no data compression, extrapolated by svn’s performance
relatively to the one of rsync with compression on.

We replay replica updates with workloads taken from real world collaborative
situations, ranging from more than 100 MB up to more than 500 MB, and from
more than 850 files up to more than 42,000 files.

Single-Writer, Multiple-Reader Scenarios. A first group of workloads con-
sists of workloads that relevant compare-by-hash work uses as their evaluation
basis; namely, LBFS’s [4] and TAPER’s [8] original papers consider either such
workloads or very similar ones. These workloads reflect a single-writer, multiple-
reader scenario. It is easy to see that, by definition, all redundancy in this sce-
narios is locally trackable (assuming sufficiently large version logs).

Site S acts as a writer that sequentially produces two sets of versions in the
r-unit. Site R is a reader, which synchronizes after each version set is ready.

We test workloads of different categories in such a scenario:
Software development sources. These workloads are representative of col-

laborative code development scenarios. They include, for different real-world
open-source projects, two consecutive versions of their source code releases. We
have selected the source trees of recent versions of the gcc compiler (versions
3.3.1 and 3.4.1), the emacs editor (20.1 and 20.7), and the Linux kernel (2.4.22
and 2.4.26). Hereafter we call such workloads gcc, emacs and linux-source, re-
spectively. Nearly all redundancy in these workloads (> 95%) is found between
pairs of files with the same name (each from each version). The choice of projects
and versions is the same as adopted for the evaluation of TAPER [8]; this allows
us to compare our results with theirs.

Operating system executable binaries. One workload, usrbin, consid-
ers binary files, which have very different characteristics when compared to the
previous text-based files (namely, in data compressibility and cross-file and cross-
version redundancy). It includes the full contents of the /usr/bin directory trees
of typical installations of the Ubuntu 6.06 32-bit and 7.10 64-bit Linux distribu-
tions, which include most of the executable code binaries that are bundled with
a Linux installation. All redundancy is between files with the same name.

Multiple-Writer Scenarios. A second group of workloads consider multiple-
writer scenarios, where actual concurrency (hence, locally untrackable redun-
dancy) can finally occur. In this case, two writer sites, start with a common
initial version set. Each writer site then independently modifies its local repli-
cas. Finally, both sites synchronize their divergent replicas.

We consider two workloads, obtained from real collaborative document edit-
ing scenarios. Both result from real data from two undergraduate courses of
Technical University Lisbon. Their data spans across a full semester.

A first workload, called course-docs, consists of snapshots of two CVS reposi-
tories shared by lecturers of each course to keep pedagogical material
(e.g. tutorials, lecture slides, code examples and project specifications) and

4 We confirm in [21] that enabling data compression yields equivalent conclusions.

Efficient Locally Trackable Deduplication in Replicated Systems 115

private documents (e.g. individual student evaluation notes and management
documents).

The initial version of the workload includes the contents of both repositories
at the beginning of the semester. The type of files varies significantly, rang-
ing from text files such as Java code files or html files, to binary files such as
pdf documents, Java libraries, Microsoft Word documents and Microsoft Excel
worksheets. Significant data was copied across different files: only 30% redun-
dancy is found between versions with identical file names. Both courses were
tightly coordinated, as their students are partially evaluated based on a large
code project that is common to both courses. Consequently, lecturers of both
courses carried an eminently collaboratively activity, involving regular meetings.
Inevitably, both repositories had regular locally untrackable interactions, such
as frequent email exchanges, and weekly meetings.

A second workload, student-projects, captures the collaborative work
among students of both courses. Teams of 9 students were given the assignment
of developing a code project in Java, which they were demanded to develop on
a CVS repository. To ease their coding effort, they were provided with a bundle
of auxiliary Java libraries and illustrative code examples. Most teams relied on
this bundle as a basis from which they started developing their final project.

The project lasted for 3 months. The initial version set is a snapshot of the
initial library/code bundle that was made available to every student. We then
randomly selected two final projects from the CVS repositories, which constitute
a divergent version set at each site. The snapshots consist mainly of binary Java
libraries, Java code files, as well as Microsoft Word and pdf documents. Again,
this workload had sources of locally untrackable redundancy; e.g. code examples
that the students incorporated into their project were provided to both teams
through the courses’ web sites, hence locally untrackable.

6.2 Results

This section is organized as follows. We start by focusing on transferred volume,
full and foreground transfer times. We start by considering the single-writer,
multiple-reader scenario, where no locally untrackable redundancy can arise,
and assuming infinite logs. We then depart to the expectedly more challeng-
ing multiple-writer scenario, where locally untrackable does occur. Finally, we
analyze space requirements associated with finite logs of increasing depths.

Single-Write, Multiple Reader Scenarios. In a first experiment, we ran all
workloads of the single-writer case, plus single-writer variants of course-docs
and student-projects (considering only one of the two divergent versions).

On average over all workloads, the volume that redFS transfers across the
network during synchronization is substantially lower than rsync and lbfs (on
average over all workloads, both rsync and lbfs-128 transfer 35% more bytes
than redFS-128). TAPER’s intricate solution transfers comparable volume to
redFS (TAPER transfers 0.29% less on average).

With respect to delta encoding tools, since svn does not output transferred
volumes, we evaluate the xdelta [24] local delta-encoding tool for such a mea-
surement. redFS is, in general, more efficient (9% lower volume on average over

116 J. Barreto and P. Ferreira

all workloads). However, for workloads with a sufficiently stable directory/file
tree and where in-object redundancy dominates cross-object redundancy (which
is the case of the gcc workload), delta encoding can substantially outperform
redFS. Hence, an interesting direction for future improvement is to complement
redFS’s similarity detection and reference encoding with a variant based on delta
encoding. Such a hybrid approach is clearly compatible with our solution.

Figure 1 illustrates transferred volumes for a workload where most redundancy
is across consecutive versions of the same file (gcc), and for a workload where
cross-file redundancy is significant (course-docs).

Figure 1 includes redFS-128 NCL, a variant where we disable reference coa-
lescing. It illustrates how crucial the optimization is to redFS when using fine-
grained chunks. Coalescing references allows redFS-128 to send 8x and 14x less
remote chunk references in gcc and course-docs, respectively. Overall, redFS-
128 NCL entails 18% and 11% overheads in transferred volume, respectively.

More important than transferred volume is to analyze the actual performance
of redFS relatively the other solutions, namely in terms of their full and fore-
ground transfer times. Figure 2 presents such measurements for three very dis-
tinct workloads: emacs, a highly-redundant workload (more than 54% redun-
dant chunks), where most redundancy occurs between consecutive versions of
the same file; usrbin, a workload exhibiting less than 30% redundant chunks;
and course-docs, with relatively high cross-file redundancy.

In the case of redFS, we depict the full and foreground transfer times with 128
bytes expected chunk size (resp. labeled redFS-128-fullsynch and redFS-128),
as such variant exhibited best performance among the others. Regarding svn
and rsync, we can only obtain their full transfer time, as their implemen-
tations only consider a full synchronization option (resp. svn-fullsynch and
rsync-fullsynch). Just for curiosity, we also depict svn ’s original full transfer
time, with data compression on. Regarding our implementation of lbfs, for pre-
sentation simplicity, we depict its foreground transfer times only, and consider
the highest performance variant, lbfs-8KB. Finally, in the case of plain transfer,
its full and foreground times are, by definition, the same.

Perhaps the strongest conclusion from this analysis is that, considering all
workloads, redFS-128’s average full transfer times are lower than the same

Fig. 1. Transferred data volumes for course-docs and gcc workloads

Efficient Locally Trackable Deduplication in Replicated Systems 117

Fig. 2. Transfer times for different workloads, for varying bandwidths

measurement of every other evaluated solution (with data compression off), for
bandwidths of 11 Mbps and below. Furthermore, this conclusion is true for work-
loads with very distinct characteristics, which Figure 2 shows. As we consider
higher bandwidths, however, the time penalty of redFS-128’s local chunk detec-
tion algorithm becomes increasingly decisive.

However, as Section 3.2 discusses, our technique is mainly intended to have the
local chunk detection phase running in background. In typical cases, when the
user initiates synchronization with another site, such a background algorithm
will already have completed and, therefore, the only delay that the user will
notice is the foreground transfer time – therefore, the most important metric.

Relatively to lbfs-8KB, redFS-128’s foreground transfer time is consistently
lower (from 5% with 100 Mbps to 34% lower with 3 Mbps). This is easily ex-
plained by lbfs’s exchange of hash values across the network, as well by its lower
precision in detecting redundancy (as analyzed previously). Naturally, the im-
pact of such drawbacks become more dominant as bandwidth drops.

Unfortunately, we cannot precisely compare redFS’s foreground transfer time
with rsync’s. However, the portion of rsync’s algorithm that one can pre-
compute is significantly smaller than in the case of redFS (most notably, rsync
must exchange hash values of the versions to transfer in foreground). Hence, we
can safely infer that, for the workloads where redFS’s full transfer time is lower
than rsync’s, redFS’s foreground transfer times will also outperform rsync’s.

Since TAPER’s source code is not fully available, we could not consider it in
the present performance analysis. Nevertheless, our observations are that (i) the
data volumes transferred by redFS and TAPER are comparable, as well as that
(ii) redFS’s single-round-trip protocol is expectedly lighter than TAPER’s intri-
cate 3-round-trip protocol. These strongly suggest that redFS would be faster
than TAPER in the evaluated workloads.

Moreover, concerning svn ’s delta-encoding solution, clearly its local delta
encoding delays dominate svn ’s full transfer times. Nevertheless, for the specific
workloads in which delta encoding yielded lower transferred volumes, we expect
svn to have lower foreground transfer times than redFS.

It is worth noting that, with the low redundancy usrbin workload, redFS-128
was the only solution to achieve an actual speed-up in foreground transfer time,
an evidence of redFS’s low protocol overhead.

118 J. Barreto and P. Ferreira

Finally, we repeated the same experiments with multiple r-units in common
between both sites. Theoretically, we know that, with r common r-units, (i) the
receiver site sends r knowledge vectors in the message requesting synchroniza-
tion; and (ii) for each local chunk that is redundant with a chunk to send, the
sender site performs r verifications (in the worst case) of the conditions in Sec-
tion 3.1. The impact of (i) is negligible for the considered workload sizes, even
for the lowest bandwidths. Concerning factor (ii), we observe that its impact
is limited (less than 10% higher foreground transfer time) as long as we con-
sider less than 1000 common r-units, even with highly redundant workloads and
high bandwidths. For instance, with emacs (54% redundancy detected) and 100
Mbps, redFS-128 ’s foreground transfer time drops linearly as the number of
common r-units grows, reaching the 10% degradation limit at 2000 r-units.

Multiple-Writer Scenarios. In contrast to the previous single-write scenarios,
multiple-writer scenarios, such as those arising from replicated systems support-
ing distributed collaborative work, incur locally untrackable redundancy. In order
to assert whether redFS is still advantageous in such scenarios, we need to quan-
tify locally untrackable redundancy. For that, we consider the two concurrent
workloads, course-docs and student-projects.

The methodology for quantifying locally untrackable redundancy is to measure
how much data volume redFS-128 would be able to detect as (locally trackable)
redundant, versus the data volume that lbfs-128 would detect as redundant (both
locally trackable and untrackable), and then to subtract both values.

Perhaps surprisingly, the redundancy that results from locally untrackable
data exchanges during several months is almost insignificant when compared
to locally trackable redundancy. In the course-docs workload, lbfs-128 detects
just 1,01% more (locally untrackable) redundant contents than redFS. The stu-
dent-projectsworkload exhibits more locally untrackable redundancy, but still
at relatively insignificant levels: lbfs-128 detects 4,37% more redundant data.

Our results confirm that locally untrackable redundancy does occur in concur-
rent scenarios. But, most importantly, they show that locally trackable redun-
dancy strongly dominates locally untrackable redundancy. Hence, the advantages
of redFS over other state-of-the-art alternatives that the previous sections ex-
posed are also effective in an important class of multi-writer scenarios.

We then evaluated redFS, rsync and lbfs when synchronizing sites holding the
concurrent versions of course-docs and student-projects.The results confirm
that the low values of locally untrackable redundancy have, as expected, a low
impact on the effective transferred volume (data+metadata) and performance.

Space Requirements of Version Logs. Since redFS can only detect redun-
dancy across the versions to send (T) and the common version set (C), the larger
such an intersection is, the more redundancy redFS will be able to exploit. An
assumption made so far is that the version logs at each synchronizing site could
stretch arbitrarily. In practice, however, available log space is bounded. Hence,
our ability to efficiently log versions determines how deep can the logged history
at each replica be. The deeper the logged history, the higher the probability of
larger C sets during synchronization with other sites.

Efficient Locally Trackable Deduplication in Replicated Systems 119

To evaluate the impact of bounded log space on redFS’s efficiency, we now
consider multi-version variants of course-docs and student-projects.5 For
both workloads, we have obtained an exhaustive version set, comprising daily
snapshots of the corresponding CVS repositories. Each version sequence spans
across the whole duration of each workload: 168 days in course-docs, and 74
days in student-projects. Each version in the sequence exclusively includes the
files whose contents have been modified relatively to the previous day’s version.

For each workload, we assume that replica S has created every daily version
of the workload, from day 0 to the last day, d, but may have already pruned the
m oldest versions; hence, R stores every version from day d − m to day d. In
turn, replica R wishes to synchronize its stale replicas from S, as the last time
S did that was in day d′. For simplicity, we assume R has enough space to log
every version from day 0 to day d′.

When S and R synchronize, if m > d′, both replicas will share no common
version (i.e., C is empty). Hence, in this case, S will detect no redundancy at all
between the versions to send to R and the contents that R already stores.

Fig. 3. Space requirements of version log for multi-version student-projects workload

Of course, S can only ensure sufficiently deep logs if their space requirements
are below the available log space. Hence, we need to evaluate what are the space
log requirements at S for increasingly deep logs. We have studied such require-
ments in both course-docs and student-projects workloads, considering the
different schemes for log storage that Section 4 addresses: plain storage, redun-
dancy compression and footprints, with different expected chunk sizes. Figure 3
presents such results for the latter workload.

A first observation is that, even with plain log storage, space cost grows only
moderately with log depth. With course-docs (resp. student-projects), the
space cost associated with a plain log is of additional 16.3% (resp. 16.3%) disk
space than the most recent version, which requires 102 MB (resp. 37 MB), per
logged month of update activity. Furthermore, more efficient log storage schemes
are still able to substantially reduce such a space overhead. For both workloads,
using redundancy compression, redFS can maintain the entire version history of 3
and 6 months, respectively, at the average cost of 4% space overhead per logged
month of update activity. Finally, footprints offer almost negligible overhead,
dropping to levels below 0.7% space overhead per logged month.
5 Daily snapshots were not available for the other workloads.

120 J. Barreto and P. Ferreira

7 Related Work

Significant work has addressed the exploitation of duplicate contents for im-
proved storage and network dissemination of state-based updates. The main fo-
cus of our work is on the latter. We can divide most existing solutions to it into
three main categories: delta-encoding, cooperating caches and compare-by-hash.

Systems such as SVN [11], Porcupine [12], BitKeeper [13], XDFS [14] and
Git [15] use delta-encoding (or diff-encoding) to represent successive file ver-
sions. Starting from a base version of a file, they encode successive versions by
a compact set of value-based deltas to the value of the preceding version. Sys-
tems that use delta encoding for distributed file transfer need to maintain some
version tracking state at the communicating sites, similarly to our approach.

Our approach extends delta-encoding, improving the potential efficiency gains
of the latter. Whereas delta-encoding is limited to locally untrackable redun-
dancy between pairs of consecutive versions of the same file, we are able to
exploit any cross-version and cross-object locally trackable redundancy.

A different technique [25] relies on a pair of cooperating caches maintained
by a pair of sites. At any moment, both caches hold the same ordered set of n
fixed-size blocks of data, which correspond to the last blocks propagated between
the sites. Hence, before sending a new block, the sender checks whether its local
cache already holds the block. If so, the site sends a token identifying the position
of the block within the cache, instead of the block’s contents.

Our approach shares the same principle, based on a conservative estimation
of a common version/value set between the communicating sites. From such
an estimate, both approaches exploit locally trackable cross-version and cross-
object redundancy. Nevertheless, our approach scales gracefully to large numbers
of sites and is able to cover a practically unlimited common version set; whereas
cooperating caches need one cache per site and limit the common version set by
cache size. Furthermore, cooperating caches cannot detect situations of transitive
redundancy, whereas we can; i.e. when site A knows that it shares some chunk,
c, with site B, and site B knows that it shares c with a third site, C, neither A
nor C infer that both share c when they synchronize.

Finally, recent work [3,4,7,26,27] has followed the compare-by-hash approach
for distributed data deduplication. They either divide values into contiguous
(non-overlapping) variable-sized chunks, using content-based chunk division al-
gorithms [4], or fixed-size chunks [3]. Compare-by-hash is able to detect both lo-
cally trackable and untrackable redundancy. Nevertheless, compare-by-hash has
the important shortcomings discussed in Section 1.

Some work has proposed intricate variations of the technique for higher ef-
ficiency. The TAPER replicated system [8] optimizes bandwidth efficiency of
compare-by-hash with a four-phase protocol, each of which works on a finer
similarity granularity. Each phase works on the value portions that, after the
preceding phase, remain labeled as non-redundant. A first phase detects larger-
granularity redundant chunks (whole file and whole directories), using a hash
tree; the Jumbo Store [10] distributed utility service employs a similar principle
in a multi-phase protocol. A second phase runs the base compare-by-hash tech-
nique with content-based chunks. A third phase identifies pairs of very similar

Efficient Locally Trackable Deduplication in Replicated Systems 121

replicas (at each site) and employs rsync’s technique upon each pair. Finally, a
fourth phase employs delta-encoding to the remaining data.

8 Conclusions

We propose a novel technique for distributed locally trackable data dedupli-
cation. When compared with the prominent solutions for the distributed data
deduplication problem, namely delta encoding and compare-by-hash, our solu-
tion borrows most advantages that distinguish each such alternative.

The results presented herein, obtained from real workloads, complement pre-
vious evidence [28] that contradicts a common conviction that, to some extent, is
subjacent to most literature proposing compare-by-hash [4,7,8,10,9]. More pre-
cisely, our results show that, for the very workloads that the latter works consider
and evaluate, there does exist a solution based exclusively on locally trackable
deduplication that outperforms compare-by-hash. Perhaps more surprisingly, we
show that even in scenarios with clear sources of locally untrackable redundancy,
the impact of locally untrackable redundancy can be negligible. Consequently,
our solution still outperforms compare-by-hash in such cases.

While it is easy to devise multiple-writer scenarios where locally untrackable
redundancy prevails (e.g. two remote users that frequently copy identical data
from a common external source, such a web site or an email server, to their local
replicas of a object that both share), our work identifies important scenarios
where it is advantageous to opt for locally trackable deduplication (which in-
cludes approaches such as delta-encoding, cooperative caching and ours) instead
of compare-by-hash. More precisely, these include single-writer multiple-reader
scenarios as long as sufficient disk space for logs is available, hence all redundancy
is locally trackable. The same holds in multiple-writer scenarios where locally
untrackable redundancy is negligible; our experience with workloads from real
collaborative work scenarios suggests that this is often the case.

Acknowledgements

We would like to thank the anonymous reviewers, Lucy Cherkasova (our shep-
herd), Diogo Paulo and João Paiva for their helpful comments on previous ver-
sions of this paper.

References

1. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37(1),
42–81 (2005)

2. Dahlin, M., Chandra, B., Gao, L., Nayate, A.: End-to-end wan service availability.
IEEE/ACM Transactions on Networking 11(2), 300–313 (2003)

3. Trigdell, A., Mackerras, P.: The rsync algorithm. Technical report, Australian Na-
tional University (1998)

4. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file system.
In: 8th ACM Symposium on Operating Systems Principles (SOSP), pp. 174–187
(2001)

122 J. Barreto and P. Ferreira

5. Lelewer, D., Hirschberg, D.: Data compression. ACM Computing Surveys 19(3),
261–296 (1987)

6. Levy, E., Silberschatz, A.: Distributed file systems: Concepts and examples. ACM
Computing Surveys 22(4), 321–374 (1990)

7. Cox, L., Noble, B.: Pastiche: Making backup cheap and easy. In: 5th Symposium
on Operating Systems Design and Implementation, pp. 285–298. ACM, New York
(2002)

8. Jain, N., Dahlin, M., Tewari, R.: Taper: Tiered approach for eliminating redun-
dancy in replica sychronization. In: 4th USENIX FAST, p. 21 (2005)

9. Bobbarjung, D., Jagannathan, S., Dubnicki, C.: Improving duplicate elimination
in storage systems. ACM Transactions on Storage 2(4), 424–448 (2006)

10. Eshghi, K., Lillibridge, M., Wilcock, L., Belrose, G., Hawkes, R.: Jumbo store:
providing efficient incremental upload and versioning for a utility rendering service.
In: 5th USENIX conference on File and Storage Technologies (FAST), p. 22 (2007)

11. Pilato, C., Fitzpatrick, B., Collins-Sussman, B.F.: Version Control with Subversion.
O’Reilly, Sebastopol (2004)

12. Saito, Y., Bershad, B.N., Levy, H.M.: Manageability, availability, and performance
in porcupine: a highly scalable, cluster-based mail service. ACM Trans. Comput.
Syst. 18(3), 298 (2000)

13. Henson, V., Garzik, J.: Bitkeeper for kernel developers (2002),
http://infohost.nmt.edu/~val/ols/bk.ps.gz

14. MacDonald, J.: File system support for delta compression. Masters thesis, Univer-
sity of California at Berkeley (2000)

15. Lynn, B.: Git magic (2009),
http://www-cs-students.stanford.edu/~blynn/gitmagic/

16. Policroniades, C., Pratt, I.: Alternatives for detecting redundancy in storage sys-
tems data. In: USENIX Annual Technical Conference (2004)

17. Quinlan, S., Dorward, S.: Venti: A new approach to archival data storage. In: 1st
USENIX Conference on File and Storage Technologies (FAST), p. 7 (2002)

18. Aronovich, L., Asher, R., Bachmat, E., Bitner, H., Hirsch, M., Klein, S.T.: The
design of a similarity based deduplication system. In: ACM SYSTOR, pp. 1–14
(2009)

19. Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers, A.: Flexible update
propagation for weakly consistent replication. In: ACM SOSP, pp. 288–301 (1997)

20. Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the coda file system.
SIGOPS Oper. Syst. Rev. 25(5), 213–225 (1991)

21. Barreto, J.: Optimistic Replication in Weakly Connected Resource-Constrained
Environments. PhD thesis, IST, Technical University Lisbon (2008)

22. Santry, D., Feeley, M., Hutchinson, N., Veitch, A., Carton, R., Ofir, J.: Deciding
when to forget in the elephant file system. In: ACM SOSP, pp. 110–123 (1999)

23. Szeredi, M.: FUSE: Filesystem in Userspace (2008),
http://sourceforge.net/projects/avf

24. MacDonald, J.: xdelta, http://code.google.com/p/xdelta/
25. Spring, N.T., Wetherall, D.: A protocol-independent technique for eliminating re-

dundant network traffic. SIGCOMM Comput. Comm. Rev. 30(4), 87–95 (2000)
26. Tolia, N., Kozuch, M., Satyanarayanan, M., Karp, B., Perrig, A., Bressoud, T.:

Opportunistic use of content addressable storage for distributed file systems. In:
USENIX Annual Technical Conference, pp. 127–140 (2003)

27. Annapureddy, S., Freedman, M.J., Mazières, D.: Shark: scaling file servers via
cooperative caching. In: USENIX Symp. Net. Sys. Design & Impl., pp. 129–142
(2005)

28. Henson, V.: An analysis of compare-by-hash. In: USENIX Workshop on Hot Topics
in Operating Systems (2003)

http://infohost.nmt.edu/~val/ols/bk.ps.gz
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://sourceforge.net/projects/avf
http://code.google.com/p/xdelta/

QoS-Aware Service Composition
in Dynamic Service Oriented Environments

Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova,
Nikolaos Georgantas, and Valérie Issarny

INRIA Paris-Rocquencourt, France
{nebil.benmabrouk,sandrine.beauche,elena.kuznetsova}@inria.fr,

{nikolaos.georgantas,valerie.issarny}@inria.fr

Abstract. QoS-aware service composition is a key requirement in Ser-
vice Oriented Computing (SOC) since it enables fulfilling complex user
tasks while meeting Quality of Service (QoS) constraints. A challenging
issue towards this purpose is the selection of the best set of services to
compose, meeting global QoS constraints imposed by the user, which
is known to be a NP-hard problem. This challenge becomes even more
relevant when it is considered in the context of dynamic service environ-
ments. Indeed, two specific issues arise. First, required tasks are fulfilled
on the fly, thus the time available for services’ selection and composi-
tion is limited. Second, service compositions have to be adaptive so that
they can cope with changing conditions of the environment. In this pa-
per, we present an efficient service selection algorithm that provides the
appropriate ground for QoS-aware composition in dynamic service envi-
ronments. Our algorithm is formed as a guided heuristic. The paper also
presents a set of experiments conducted to evaluate the efficiency of our
algorithm, which shows its timeliness and optimality.

1 Introduction

Service Oriented Computing (SOC) and its underlying technologies such as Web
Services have emerged as a powerful concept for building software systems [1].
An interesting feature of SOC is that it provides a flexible framework for reusing
and composing existing software services in order to build value-added service
compositions able to fulfill complex tasks required by users. A key requirement
in services’ composition is to enable these tasks while meeting Quality of Service
(QoS) constraints set by users.

QoS-aware service composition underpins this purpose since it allows for com-
posing services able to fulfill user required tasks while meeting QoS constraints.
Assuming the availability of multiple resources in service environments, a large
number of services can be found for realizing every sub-task part of a complex
task. A specific issue emerges to this regard, which is about selecting the best
set of services (i.e., in terms of QoS) to participate in the composition, meeting
user’s global QoS requirements.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 123–142, 2009.
c© IFIP International Federation for Information Processing 2009

124 N.B. Mabrouk et al.

QoS-aware composition becomes even more challenging when it is considered
in the context of dynamic service environments characterized with changing con-
ditions. The dynamics of service environments bring about two specific problems
in service selection. First, as dynamic environments call for fulfilling user requests
on the fly (i.e., at run-time) and as services’ availability cannot be known a pri-
ori, service selection and composition must be performed at runtime. Hence, the
execution time of service selection algorithms is heavily constrained, whereas the
computational complexity of the problem is NP-hard. The second issue is about
the fluctuation of QoS conditions due to the dynamics of such environments.
This problem arises for example when one or more services that make part of
a service composition are no longer available or their QoS decreases (e.g., due
to network disconnection or weak network connectivity) during the execution of
the composition. Thus, a service selected to participate in a composition based
on its QoS may no longer provide the same QoS when the time comes to be
actually invoked. The overall question asked to this regard is: how to cope with
the dynamics of service environments during the selection, the composition and
the execution of services?

In this paper, we present a service selection algorithm that copes with the
above issues. Our algorithm is designed in the context of the SemEUsE research
project1, which targets semantic QoS-aware middleware for dynamic service
oriented environments. The middleware architecture presented in SemEUsE is
centered on dynamic binding [2,3] of services, i.e., binding one out of multiple
possible services just-in-time before its invocation according to its QoS measured
at runtime (hereafter referred to as runtime QoS). Our selection algorithm un-
derpins this purpose since it selects multiple services for every sub-task part of
a complex task required by users, based on their nominal QoS (hereafter re-
ferred to as advertised QoS). Our algorithm consists in a guided heuristic. Our
choice of a heuristic-based approach addresses the two issues stated above for
dynamic environments. First, since the time available for service selection is
limited, brute-force-like algorithms are inappropriate for such purpose, as they
target determining the optimal composition, which is NP-hard. Second, finding
the optimal composition may prove useless in the end since, due to dynamics,
there is no guarantee that the selected composition will be possible at runtime
or that its runtime QoS will not decrease with respect to the advertised one.
To this regard, our algorithm aims at determining a set of near-optimal service
compositions, i.e., compositions that: (i) respect global QoS constraints imposed
by the user on the whole composition, and (ii) maximize a QoS utility function.
At runtime, if a specific service composition is no longer possible or its QoS de-
creases, an alternative composition will be executed. To give a concrete example
where our approach can be applied, we present the following scenario.

Motivating Scenario. An important use case where our solution can take
place is the management of medical visits in large hospitals. Traditionally the
management of medical visits in hospitals is static with predetermined

1 SemEUsE project: http://www.semeuse.org

QoS-Aware Service Composition in Dynamic Service Oriented Environments 125

allocation of visits to doctors. Nevertheless, the availability of doctors can change
with respect to some conditions. For instance, one or more doctors may be ab-
sent or they may be overloaded with new visits (e.g., due to some emergency
cases unforeseen during the scheduling of visits). Human-based re-scheduling of
medical visits is a time-consuming process entailing negotiations with doctors
with respect to their specialties and agreements on the number of additional
visits to be taken in charge.

A second issue concerns the process (i.e., the different activities) entailed by
medical visits. Related to this, patients need to move between different points
in the hospital in order to fulfill their visits. Ordinarily, they have to register, to
pay for the visit, to meet the doctor and then to go to the pharmacy for buying
medicines, which is a long and hard process especially for patients.

To avoid such complicated situations and to prevent patients unnecessarily
moving between different points, hospitals need to manage their medical visits as
a single request by composing the aforementioned activities in a unique process.
Moreover, they need to dynamically handle these processes in order to cope with
changing conditions in the hospital.

The SOC paradigm offers a flexible framework for managing the medical visits
by reusing and composing existing software services of the hospital. Medical
visits will be thus formed as processes (e.g., BPEL processes) underpinned by
Web Services (e.g., registration, payment, doctor’s service, chemist’s service).

Let us consider a scenario where patients use the terminals available in the
waiting room of the hospital to submit their medical visit requests. Using our so-
lution, the hospital software system will be able to discover, select and compose
the medical visit services (e.g., registration, payment, doctor’s service, chemist’s
service) on-the-fly with respect to their QoS. Our solution considers common
QoS features (e.g., response time) and domain-specific QoS features (e.g., doc-
tors’ specialties). Additionally, if the doctor’s availability changes in-between, the
hospital system will be able to dynamically update the composition by affecting
the visit to another available doctor having the same specialty.

The remainder of this paper is structured as follows. In Section 2, we give
an overview of related work. In Section 3, we present our service composition
approach and we define the QoS model and the composition model underpinning
this approach. In Section 4, we give the details of our selection algorithm, and we
conduct a set of experiments to evaluate its timeliness and optimality in Section
5. Finally, in Section 6, we conclude with a summary of our contributions and
the future perspectives of this work.

2 Related Work

Several selection algorithms have been proposed to select service compositions
with different composition structures and various QoS constraints. A taxonomy
of these solutions may be produced based on their objectives and the way they
proceed. According to this, a first class of approaches aim at determining the
optimal service composition (i.e., composition with the highest QoS utility) using

126 N.B. Mabrouk et al.

brute-force-like algorithms (e.g., Global Planning [4], BBLP, MCSP, WS-IP [5]).
These solutions have high computational cost and they can not provide a solution
in a satisfying amount of time, thus they are inappropriate to be used in the
context of dynamic service environments.

To cope with this issue, other approaches propose heuristic-based solutions
(e.g., WS-HEU and WFlow [5], Genetic algorithm [8,9,6,7,10,11,12]) aiming to
find near-optimal compositions, i.e., compositions that respect global QoS con-
straints and maximize a QoS utility function. Yu et al. [5] present two heuris-
tics, WS-HEU and WFlow, for the service selection problem. WS-HEU is specific
heuristic applied to sequential workflows (i.e., workflows structured as a sequence
of activities), whereas WFlow is designed for general workflow structures (i.e.,
sequential, conditional, parallel). The main idea of WFLow is to decompose
workflows into multiple execution routes. WFlow considers a parameter ξi for
every route indicating its probability to be executed. Therefore, it focuses on
the route with the highest probability, whereas in our approach we aim at giving
feasible service compositions regardless of the way the workflow will be executed.

Other approaches [8,9,6,7,10,11,12] present heuristics based on a genetic algo-
rithm. The application of such algorithm to the service selection problem presents
two main drawbacks: first, the order in which service candidates are checked is
randomly chosen (e.g., Crossing [6]), whereas in our approach we aim at check-
ing services in an ordered way to optimize the timeliness and the optimality
of our algorithm. Second, as the genetic algorithm can run endlessly, the users
have to define a constant number of iterations fixed a priori. However, fixing a
high number of iterations does not give any guarantee about the quality of the
result. Therefore, the genetic algorithm is deemed non useful for our purpose
(i.e., selecting near-optimal compositions).

More recently, Alrifai et al. [13] presented a novel approach that combines local
and global optimization techniques. This approach starts from the global level
and resolves the selection problem at the local level. It proceeds by decomposing
global QoS constraints (i.e., imposed by the user on the whole composition) into
a set of local constraints (i.e., for individual sub-tasks, part of the composition).
To do so, it uses MILP (mixed integer linear programming) techniques to find
the best decomposition of QoS constraints. The main drawback of this approach
is that it represents a greedy selection method, since it selects services at the
local level and does not ensure that the global QoS constraints are respected.

3 Composition Approach Overview

Our approach starts from the assumption that the user (e.g., the patient in our
scenario) uses a Graphical User Interface (e.g., terminals available in the waiting
room of the hospital) to submit his/her request (e.g., medical visit). The interface
guides the user to express his request in terms of functional and QoS require-
ments, and then it formulates these requirements as a machine-understandable
specification.

QoS-Aware Service Composition in Dynamic Service Oriented Environments 127

User functional requirements are formulated as an abstract task (hereafter
referred to as abstract service composition) brought about by the composition of
a set of abstract sub-tasks (hereafter referred to as activities) (e.g., registration,
payment, doctor’s service, chemist’s service). These activities are described with
abstract information (i.e., function, I/O description). Abstract service compo-
sitions are later transformed into concrete service compositions by assigning a
concrete service to every activity in the composition. Considering the multiple
resources available in service environments, it is common that several concrete
services are found for every activity; we refer to these services as service candi-
dates of the considered activity.

Concerning user QoS requirements, they are formulated as a set of constraints
(hereafter referred to as global QoS constraints) on the whole composition. These
constraints cover several QoS attributes specified by the user. Further details
about QoS attributes are given in Section 3.1, where we present the QoS model
underpinning our approach.

Once user requirements are specified, we proceed by automatically building
executable service compositions with respect to user requirements and the dy-
namics of the service environment. Building executable compositions consists
of: (i) discovering, (ii) selecting, and (iii) composing services on-the-fly (i.e., at
runtime).

Concerning services’ discovery, we adopt a semantic-based approach intro-
duced by Ben Mokhtar et al. [14,15]. This approach uses domain-specific and
QoS ontologies to match user functional and QoS requirements to services avail-
able in the environment. The matching is based on an efficient semantic reasoning
performed at runtime. For every activity in the composition, the discovery phase
gives the set of service candidates able to fulfill the activity (i.e., functional as-
pect) and to respect user QoS requirements. Services’ discovery uses advertised
QoS of services to perform a preliminary filtering ensuring that individual service
candidates respect user QoS requirements.

Refining the first filtering, the selection phase ensures user QoS requirements
at the global level (i.e., for the whole composition) based on the advertised QoS
of services. That is, it selects a set of service candidates for each abstract ac-
tivity that, when composed together, meet global QoS constraints. To achieve
this, we introduce a heuristic algorithm based on clustering techniques, notably
K-Means [16]. Clustering techniques, applied to our purpose, allow for grouping
services with respect to their QoS into a set of clusters, to which we refer as
QoS levels. Further, we use the resulting QoS levels to determine the utility of
service candidates regarding our objective, i.e., selecting near-optimal composi-
tions. More specifically, our heuristic algorithm deals with the service selection
problem in two phases: (1) a local classification phase, which aims at determin-
ing the utilities of service candidates using clustering; this phase is performed
for every activity in the composition; (2) a global selection phase which uses the
obtained utilities to guide the selection of near-optimal compositions.

Once the global selection is fulfilled, the composition phase uses the selected
services to define an executable service composition, by replacing every abstract

128 N.B. Mabrouk et al.

activity in the composition with a ‘dynamic binding’ activity that takes as input
the set of selected candidate services for this activity. At runtime, a unique service
is selected and enacted among the provided ones with respect to its runtime QoS.

3.1 QoS Model

We consider a generic QoS model based on our previous work [17], in which
we introduced a semantic QoS model formulated as a set of ontologies for QoS
specification in dynamic service environments. This model allows for specifying
cross-domain QoS attributes like response time, availability, reliability, through-
put as well as domain-specific QoS attributes, e.g., medical visit price with re-
spect to our scenario. Our model provides a detailed taxonomy of QoS which is
flexible and easily extendible. Herein, we introduce an extension that concerns a
particular classification of QoS attributes needed for our composition approach.
QoS attributes can be divided into two groups: quantitative attributes (e.g., re-
sponse time, availability, reliability, throughput) and qualitative attributes (e.g.,
security, privacy of medical information in our scenario). The former attributes
are quantitatively measured using metrics, whereas the latter attributes can not
be measured, they are rather evaluated in a boolean manner (i.e., they are ei-
ther satisfied or not). For the sake of simplicity and without loss of generality,
in this work we will consider only quantitative QoS attributes, since qualitative
attributes can be represented as quantitative attributes determined by boolean
metrics (i.e., 0 and 1).

Quantitative QoS attributes are in turn divided into two classes: negative
attributes (e.g., response time, medical visit price) and positive attributes (e.g.,
availability, reliability, throughput). The first class of attributes has a negative
effect on QoS, (i.e., the higher their values, the lower the QoS), hence they need to
be minimized. On the contrary, positive QoS attributes need to be maximized,
since they increase the overall QoS (i.e., the higher their values, the higher
the QoS).

On the other hand, QoS attributes’ values are determined in two ways: Dur-
ing the selection of services, these values are given by service providers (e.g.,
based on previous executions of services or using users’ feedback). As already
stated, we refer to these values as advertised QoS, which is specified in services’
descriptions. At runtime, QoS values are provided by a monitoring component
to enable further dynamic evaluation of services. As already stated, we refer to
these values as runtime QoS.

3.2 Composition Model

Our algorithm aims at determining a set of near-optimal compositions. Such
purpose requires evaluating the QoS of possible service compositions with respect
to their structure and the way QoS is aggregated. That is, the evaluation of QoS
depends on the structuring elements used to build the composition, to which we
refer as composition patterns, and also QoS aggregation formulas associated with
each pattern. Next, we describe the composition patterns on which our approach

QoS-Aware Service Composition in Dynamic Service Oriented Environments 129

is based and we give the aggregation formulas associated with QoS attributes
and composition patterns.

Composition Patterns. We consider a set of patterns commonly used by
composition approaches [4,5], which cover most of the structures specified by
composition languages (such as BPEL) [18,19]:

- Sequence: sequential execution of activities
- AND: parallel execution of activities
- XOR: conditional execution of activities
- Loop: iterative execution of activities

Computing the QoS of Composite Services. For every activity in the ab-
stract service composition, we represent the QoS of a single candidate service
Si by using a vector QoSSi = 〈qi,1, ..., qi,n〉, where n represents the number of
QoS attributes required by the user and qi,j represents the value of the QoS
attribute j (1 ≤ j ≤ n). The QoS of a service composition is evaluated based on
the QoS vectors of its constituent services while taking into account the com-
position patterns. Regarding QoS associated with AND and XOR, we adopt a
pessimistic approach that considers worst-case QoS values. That is, to deter-
mine the values of the QoS attributes of a service composition, we consider the
worst QoS values of all the possible executions of the composition. For instance,
to determine the response time of parallel activities (i.e., AND), we consider
the activity with the longest response time. Concerning the particular case of
iterative activities (i.e., structured as a loop), we adopt a history-based estima-
tion that considers the maximum number of loops (i.e., pessimistic approach).
This number is determined from previous executions of the activity. In Table
1, we show examples of QoS computation with respect to QoS attributes and
composition patterns. These examples can be classified as cross-domain QoS
attributes (e.g., response time, reliability, availability, throughput) and domain-
specific QoS attributes (e.g., medical visit price), but also as negative attributes

Table 1. QoS computation examples: rti, rei, avi, thi, pi represent respectively,
response time, reliability, availability, throughput and the medical visit price of
services candidates structured with respect the composition patterns, whereas
RT, RE,AV, TH,P represent the aggregated values of response time, reliability, avail-
ability, throughput and the medical visit price, respectively

QoS Composition Patterns

attributes Sequence AND XOR Loop

Response time (RT)
∑n

i=1
rti max(rti) max(rti) rt × k

Reliability (RE)
∏

n

i=1
rei

∏
n

i=1
rei min(rei) rek

Availability (AV)
∏n

i=1
avi

∏n

i=1
avi min(avi) avk

Throughput (TH) min(thi) min(thi) min(thi) th

Medical visit price (P)
∑

n

i=1
pi

∑
n

i=1
pi max(pi) p × k

130 N.B. Mabrouk et al.

(e.g., response time, medical visit price) and positive attributes (e.g., reliability,
availability, throughput). Let us consider for example, the QoS computation of
the medical visit price. Concerning the Sequence and AND patterns, the price
is the sum of pi values associated with the involved services (e.g., meeting doc-
tors, buying medicines). For the XOR pattern (e.g., meeting two doctors with
different specialties in an exclusive manner decided based on pre-diagnosis) the
price is the maximum among pi values of the involved services. Finally, for the
iterative pattern (i.e., loop), the aggregated price is the value p of the repeated
service multiplied by the number of loops k.

Notations. To state the problem that we are addressing in a formal way, we
use the following notations:

- AC = {A1, ..., Ax} is an abstract service composition with x activities.
- CC = {S1, ..., Sx} is a concrete service composition with x service can-

didates, every service candidate Si is bound to an abstract activity Ai

(1 ≤ i ≤ x).
- U = {U1, ..., Un} is a set of global QoS constraints imposed by the user on

n QoS attributes.
- QoS of a service candidate Si is represented as a vector QoSSi = 〈qi,1, ..., qi,n〉

where qi,j is the advertised value of QoS attribute j (1 ≤ j ≤ n).
- QoS of a concrete service composition CC is represented as a vector

QoSCC = 〈Q1, ..., Qn〉 where Qj is the aggregated value of QoS attribute j
(1 ≤ j ≤ n).

- Each service candidate Si has an associated utility function fi.
- Each concrete service composition CC has an associated utility function F .

4 Service Selection Algorithm

In the literature, service selection algorithms fall under two general approaches:
(i) local [4] and (ii) global selection [5]. The former proceeds by selecting the
best services (in terms of QoS) for every abstract activity individually. This
approach has a low computational cost but it does not guarantee meeting global
QoS constraints imposed by the user. For instance, regarding our scenario, this
approach proceeds by selecting services offering the best trade-off between the
required QoS attributes (e.g., response time, availability, reliability, throughput
and medical visit price) for every activity apart. Thus, it cannot handle, for
example, the global response time of the whole composition.

Conversely, global selection ensures meeting global QoS constraints since it
selects the optimal service composition, i.e, a composition which respects global
QoS constraints and has the highest QoS. This approach considers all possible
compositions of services and selects the optimal one.

Nevertheless, the computational cost of global selection is NP-hard. To meet
global QoS constraints in a timely manner, we present a heuristic algorithm

QoS-Aware Service Composition in Dynamic Service Oriented Environments 131

that combines local and global selection techniques. Starting from the assump-
tion that service candidates (for every activity in the abstract process) are al-
ready given by the semantic discovery phase, our algorithm proceeds through
the following phases:

1. Scaling phase, which is a pre-processing phase aiming to normalize QoS
values associated with negative and positive QoS attributes;

2. Local classification, which aims at classifying candidate services (for every
activity in the abstract process) according to different QoS levels; this clas-
sification is further used to determine the utilities of every service candidate
regarding our purpose;

3. Global selection, which aims at using the obtained utilities to guide the
selection of near-optimal compositions.

4.1 Scaling Phase

As already mentioned, QoS attributes can be either negative or positive, thus
some QoS values need to be minimized whereas other values have to be maxi-
mized. To cope with this issue, the scaling phase normalizes every QoS attribute
value by transforming it into a value between 0 and 1 with respect to the formulas
below [4].

Negative attributes : q′i,j =

{
qmax
j −qi,j

qmax
j

−qmin
j

if qmax
j − qmin

j �= 0

1 else
(1)

Positive attributes : q′i,j =

{
qi,j−qmin

i

qmax
j

−qmin
j

if qmax
j − qmin

j �= 0

1 else
(2)

where q′i,j denotes the normalized value of QoS attribute j associated with service
candidate Si. It is computed using the current value qi,j and also qmax

j and qmin
j ,

which refer respectively to the maximum and minimum values of QoS attribute
j among all service candidates.

The same formulas are also used to normalize the aggregated QoS values of
concrete service compositions. Each composition CC is represented by a vector
QoSCC = 〈Q1, ..., Qn〉 with n QoS attributes. The normalization produces a QoS
vector QoSCC = 〈Q′

1, ..., Q
′
n〉. The values of Q′

j (1 ≤ j ≤ n) are computed based
on the current value Qj, and also Qmax

j and Qmin
j , which refer respectively to the

maximum and minimum values of Qj among all concrete service compositions.

4.2 Local Classification

Local classification is performed locally for every activity in the abstract service
composition. It aims at classifying service candidates associated with a given
activity into multiple QoS levels (i.e., clusters) with respect to their QoS. Each
level contains the set of service candidates having roughly the same QoS. This
classification is further used to determine the relative importance of service can-
didates regarding our objective (i.e., selecting near-optimal compositions). To
do so, we use clustering techniques, notably the K-means [16] algorithm.

132 N.B. Mabrouk et al.

Classification Overview. K-means provides a simple and efficient way to
classify a set of data points into a fixed number of clusters. These data points
are characterized by their N-dimensional coordinates 〈x1, x2, .., xn〉. The main
idea of K-means is to define a centroid c = 〈xc,1, xc,2, .., xc,n〉 for every cluster
and to associate each data point dpi = 〈xi,1, xi,2, .., xi,n〉 to the appropriate
cluster by computing the shortest N-dimensional Euclidian distance D between
the data point and each centroid:

D(c,dpi) =

√√√√ n∑
j=1

(xc,j − xi,j)2 (3)

Further, the values of centroids are updated by computing the average of their
associated data points. The clustering iterates by alternating these two steps
(i.e., updating centroids, clustering data points) continuously until reaching a
fixpoint (i.e., centroids’ values do not change any more). The result of K-means
will be the set of final clusters and their associated data points. It is worth noting
that K-means has a polynomial computational cost in function of the number of
iterations [20].

Fig. 1. Example of K-means with 2 dimensions (x, y) and 3 clusters: min, middle and
max

In our context, we use K-means to group service candidates of every activity
in the abstract service composition into multiple QoS levels. QoS levels are thus
represented as clusters and service candidates are considered as data points
determined by the QoS vectors QoSSi = 〈qi,1, ..., qi,n〉.

QoS Levels Computation. To cluster service candidates, we need first to
determine the initial values of QoS levels (i.e., centroids). For this matter, we

QoS-Aware Service Composition in Dynamic Service Oriented Environments 133

define m QoS levels (i.e., QLl, (1 ≤ l ≤ m)), where m is a constant number
fixed a priori (Fig. 2). The value of m differs from an activity to another and it
is supposed to be given by domain experts with respect to the service density[17]
of the considered activity. For instance, in our medical visit scenario, the number
of QoS levels related to the doctors’ activity is fixed by the hospital system
administrator with respect to the number of doctors in the hospital. Once the
number of QoS levels is fixed, the value of each level is determined by dividing
the range of the n QoS attributes (fixed by the global QoS constraints) into m
equal quality ranges qr with respect to the following formula:

qrl
j = qmin

j +
l − 1
m − 1

∗ (qmax
j − qmin

j) 1 ≤ l ≤ m (4)

where qrl
j denotes the quality range l of QoS attribute j with (1 ≤ j ≤ n),

whereas qmax
j and qmin

j refer to the maximum and minimum values of the at-
tribute j, respectively. The initial value of each QoS level is then:
QLl = 〈qrl

1, ..., qr
l
n〉 with 1 ≤ l ≤ m.

Once the initial values of QoS levels are determined, we perform the clustering
of service candidates, and then we obtain the final set of QoS levels which is used
to determine the utility of service candidates.

Fig. 2. Computation of Quality Levels

Service Utility Computation. The objective of our algorithm is selecting
near-optimal compositions, but also obtaining a number of near-optimal compo-
sitions as large as possible. Indeed, the larger the number of selected compositions
is, the larger is the choice of services allowed during dynamic binding. Addition-
ally, providing a large number of compositions helps preventing the starvation
problem during dynamic binding of services. This problem arises when, e.g., a
few number of services are selected for dynamic binding but none of them is
available at runtime.

For this matter, we consider a utility function fi which characterizes the
relative importance of a service candidate Si regarding the objective above. The
utility fi is calculated based on two parameters: (i) QoS of Si and, (ii) the number

134 N.B. Mabrouk et al.

of services in the QoS level to which Si belongs. The first parameter is interpreted
as follows: the higher QoS of Si, the higher its ability to be part of feasible
compositions. Concerning the second parameter, it represents the importance of
the QoS level QLl to which Si belongs, i.e., if the number of service candidates
associated with QLl is large, this means that using QLl would eventually lead
to finding more feasible compositions. Therefore, fi is computed as follows:

fi = (r/t) ∗ qosi where qosi = (
n∑

j=1

q′i,j)/n (5)

where r is the number of services in the QoS level QLl to which Si pertains, t is
the total number of service candidates for the activity, and qosi is the QoS utility
of service Si. It is computed as the average of the normalized QoS attributes’
values q′i,j . As the values (r/t) and qosi are comprised between 0 and 1 (i.e.,
since r ≤ t and 0 ≤ qi,j ≤ 1, respectively), the value of fi is also comprised
between 0 and 1.

4.3 Global Selection

Global selection aims at selecting near optimal compositions, i.e., compositions
that (i) respect global QoS constraints and (ii) maximize the utility function
F . The utility function F of a concrete service composition CC with QoSCC =
〈Q′

1, ..., Q
′
n〉 is defined as the average of its normalized QoS values Q′

j:

F = (
n∑

j=1

Q′
j)/n (6)

Therefore, the problem that we are addressing can be stated as finding concrete
service compositions that fulfill these two conditions:

1. For every QoS attribute j (1 ≤ j ≤ n),
- Qj ≤ Uj for negative attributes;
- Qj ≥ Uj for positive attributes;

2. The QoS utility F is maximized.

Heuristic Overview. The goal of our heuristic is to use the utilities fi resulting
from the local classification phase to select near-optimal compositions without
considering all possible combinations of services. Towards this purpose, we fix
a utility threshold T that allows for considering only service candidates with a
utility value fi ≥ T , thus enabling to focus on the most eligible services (i.e.,
services with the highest fi values).

The choice of the threshold T is of great importance in our algorithm since it
allows for tuning the trade-off between the number of resulting compositions and
the timeliness of the algorithm. Indeed, if T increases, the number of considered
services possibly decreases and consequently so will the number of compositions
to check. Hence, the execution time of the algorithm decreases, but the number of

QoS-Aware Service Composition in Dynamic Service Oriented Environments 135

resulting near-optimal compositions decreases as well. Conversely, if T decreases,
the number of services to consider possibly increases and hence, the number of
obtained compositions possibly increases, too. However, the execution time of
the algorithm increases as well.

The latter point leads to another important result, which is about the ap-
plication of our algorithm. Indeed, tuning T makes our algorithm generic and
flexible, so that it can be applied to multiple dynamic service environments ac-
cording to their characteristics, particularly their service density [17] and also
time constraints in such environments. For instance, if a service environment has
a high service density, the system can tune T so that the algorithm will be more
selective and give a satisfying number of service compositions. By the same, if
the execution time in dynamic service environments is heavily constrained (e.g.,
highly dynamic environments), the system can also tune T to make the algo-
rithm check a limited number of service compositions, thus enabling to respect
timeliness constraints of such environments.

Pruning the Search Tree. Our algorithm proceeds by exploring a combina-
torial search tree built from candidate services according to the following rules:

- Every service candidate Si having fi ≥ T is a node in the search tree;
- If there is a link (i.e., control flow) from activity Ax to activity Ay in the

abstract service composition, then the candidate services of Ax will be the
child nodes of every service candidate in Ay ;

- Child nodes (i.e., services associated with an activity Ai) are sorted from
left to right according to their utility values fi. Services with higher values
of fi are on the left and those with lower values are on the right.

- Add a virtual root node to all the nodes without incoming links.

Once the search tree is built, our heuristic algorithm ensures that its constituent
service compositions meet user QoS requirements. Towards this purpose, it first
generates a global QoS aggregation formula (i.e., for the whole composition) for
every QoS attribute by exploring the structure of the composition. Then it uses
the generated formulas to compute the aggregated QoS value of each attribute
and the QoS utility of service compositions. The algorithm further checks the
feasibility of these compositions by setting the global QoS constraints given by
the user as upper bounds for the aggregated QoS values. The above step in
performed along with the following optimizations aiming to prune the search
tree of our algorithm.

– Pruning using incremental computation. As our algorithm traverses
down the search tree from the root node to the leaf nodes, the aggregated
QoS values increase along with the traversal of the tree. Consequently, if the
aggregated QoS values calculated at any non-leaf node in the traversal of
the tree, does not respect QoS constraints, then all the sub-tree under the
non-leaf node will be pruned. This optimization is useful when we deal with
long running processes having a large number of activities.

136 N.B. Mabrouk et al.

– Pruning using utility values approximation. This idea concerns an
approximation rather than an exact optimization. It utilizes the fact that our
algorithm explores the search tree in an ordered way, i.e., it checks services
with higher fi values first. Therefore, if a service candidate Si does not lead
to any feasible composition, all its following nodes (i.e., service candidates
of the same activity but with lower fi values) will be not considered for
the rest of the computation, which reduces the number of services to check.
This approximation is convenient when we have a large number of candidate
services per activity.

Our algorithm uses the above optimizations together, along with an additional
improvement allowing to enhance the timeliness of the algorithm. Indeed, to
reduce the time needed for computing the aggregated QoS values of service
compositions, we ensure that only one service candidate changes when the algo-
rithm switches from a composition to another. That is, the difference between
two consecutive compositions CCv and CCw is that a service candidate Si in
the first composition will be replaced by a service Sj in the second one. Thus,
instead of computing the whole aggregated QoS values of CCw , the algorithm
updates the aggregated QoS values of CCv with respect to QoSSi and QoSSj .

Finally, our algorithm produces as output the set of near-optimal compositions
ranked according to their utilities F . The obtained compositions are then used
for the generation of an executable service composition underpinning dynamic
binding of services.

5 Experimental Evaluation

5.1 Experimental Setup

We conducted a set of experiments to evaluate the quality of our algorithm.
These experiments were conducted on a Dell machine with two AMD Athlon
1.80GHz processors and 1.8 GB RAM. The machine is running under Windows
XP operating system and Java 1.6. In these experiments, we focus on two metrics:

– Execution time. This metric measures the response time of our algorithm
with respect to the size of the problem in terms of the number of activities
and the number of services per activity. In these experiments, we measure
separately the execution time of local classification and global selection.

– Optimality. This metric measures how close the utility of the best com-
position given by our algorithm to the utility of the optimal composition
given by the brute-force algorithm. The optimality metric is then given by
the following formula:

Optimality = F/Fopt (7)

where F is the utility of the best composition given by our heuristic algorithm
and Fopt is the utility of the optimal composition given by the brute force
algorithm.

QoS-Aware Service Composition in Dynamic Service Oriented Environments 137

In our experiments, we use the data given by previous studies about Web Ser-
vices’ QoS [21,22]. In these studies, the authors provide a set of QoS metrics
(i.e., response time, throughput, availability, validation accuracy, cost) related
to current email validation Web services (Table 2). We use these metrics as a
sample input data for our algorithm. Nevertheless, the number of Web services
considered in these studies is too limited compared to the number of services
that we need to assess the scalability of our algorithm. To this regard, we devel-
oped a Data Generator that randomly generates input data for our algorithm
between the minimmum and maximum values of the QoS metrics given in Table
2. Further, we developed a Process Generator that randomly generates abstract

Table 2. QoS metrics for email validation Web Services

Service Response Throughput Availability Validation Accuracy Cost

Provider Time (ms) (req./min) (%) (%) (cents/invoke)

XMLLogic 720 6.00 85 87 1.2

XWebservices 1100 1.74 81 79 1

StrikeIron 912 10.00 96 94 7

CDYNE 910 11.00 90 91 2

Webservicex 1232 4.00 87 83 0

ServiceObjects 391 9.00 99 90 5

processes to use as input for experimenting with our algorithm. The Process
Generator takes as arguments the number of activities and the number of can-
didate services per activity, and it yields as output a process by structuring the
activities with respect to randomly chosen composition patterns. The Process
Generator uses the Data Generator to provide the QoS values associated with
service candidates of each activity in the process.

For the purpose of these experiments, we vary the number of activities and
the number of services per activity between 10 and 50. Concerning the number
of QoS constraints, it is comprised between 2 and 5 constraints. Finally, for the
sake of precision we execute each experiment 20 times and we calculate the mean
value of the obtained results.

Once data input is generated, we need to fix the values of the following pa-
rameters before launching the experiments:

– We set the values of global constraints given by the user to the mean value
m of every QoS attribute aggregated with respect to the structure of the
generated process composition.

– We use the method of computing QoS levels described in Section 3.2 to
cluster service candidates according to 3 clusters: Min, Middle and Max.

– Concerning the computation of the utility threshold T , we fix it to (m + σ)
where m and σ denote respectively, the mean value and standard deviation
of fi utilities of all service candidates. As we have a large number of service

138 N.B. Mabrouk et al.

candidates, we assume that the values of fi are normally distributed. Ac-
cording to this, the central limit theorem[23] states that the value (m + σ)
allows for discarding approximately 74% of service candidates.

5.2 Experimental Results

During the experiments, we aimed to compare the execution time of our algo-
rithm to the execution time of a brute-force algorithm that we developed for
the purpose of these experiments. Nevertheless, the latter algorithm takes a long
time to execute (i.e., several hours) for a number of activities more than 20.
Hence, we are not going to present the execution time of both algorithms, we
will rather present the measurements obtained for our algorithm.

Fig. 3. Execution time of the local
classification phase (for a fixed number
of QoS constraints)

Fig. 4. Execution time of the global
selection phase (for a fixed number
of QoS constraints)

Figures 3 and 4 show the execution time of local classification and global
selection, respectively. These measurements are obtained by fixing the number
of QoS constraints to 5 and varying the number of activities and the number of
service candidates per activity between 10 and 50. The obtained measurements
show that the execution time of our algorithm increases along with the number
of activities and the number of services per activity, which is an expected result.
Conversely, in Figures 5 and 6, we measure the execution time of our algorithm
while fixing the number of service candidates per activity to 50, and varying
the number of activities between 10 and 50 and the number of QoS constraints
between 2 and 5. These figures show that the execution time of our algorithm also
increases along with the number of activities and the number of QoS constraints.

Additionally, it is worth noting that the execution time of the local classifi-
cation phase is approximately negligible compared to the execution time of the
global selection phase (i.e., 45ms � 0.8s), which is an expected result given
that K-Means is a simple algorithm with a polynomial computational cost[20].
Overall, in almost all cases our algorithm is executed in a reasonable amount of

QoS-Aware Service Composition in Dynamic Service Oriented Environments 139

Fig. 5. Execution time of the local
classification phase (for a fixed number
of services)

Fig. 6. Execution time of the global
selection phase (for a fixed number
of services)

time (i.e., less than 0.9s) if we compare it, e.g., to the response time of the email
validation Web services described in Table 2.

Concerning the optimality of our algorithm, we measure it while fixing the
number of QoS constraints to 5, and varying the number of activities and the
number of services per activity between 10 and 50. Figure 7 shows that the
optimality of our algorithm increases along with the number of activities and
the number of services per activity. This means that, when it deals a large
number of compositions, our algorithm finds more feasible compositions that
may provide a better utility. This is explained by the fact that the utility of
the best composition increases along with the probability to find services with
QoS values close to the optimal QoS (i.e., near-optimal QoS values). As the
service candidates are randomly generated, this probability increases along with
the number of generated services and also with the number of activities, thus
increasing the utility of the overall composition.

Fig. 7. Optimality of our algorithm

140 N.B. Mabrouk et al.

In general, our algorithm produces a satisfying optimality (i.e., more than
62%). However, this metric can be further enhanced by tuning the utility thresh-
old T with respect to the trad-off between the desired optimality and the time-
liness of the algorithm.

6 Conclusion

The objective of this work has been to address services’ selection and composition
in the context of a QoS-aware middleware for dynamic service environments. For
this purpose, we have proposed an efficient QoS-based selection algorithm. The
importance of our algorithm is three-fold. First, it introduces a novel approach
based on clustering techniques. Applying such techniques for services’ selection
brings new ideas in this research area. Second, by producing not a single but
multiple service compositions satisfying the QoS constraints, our algorithm un-
derpins the concept of dynamic binding of services, which allows for coping with
changing conditions in dynamic environements. Third and most importantly,
our algorithm shows a satisfying efficiency in terms of timeliness and optimality,
which makes it appropriate for on-the-fly service composition in dynamic service
environments.

The presented work makes part of our ongoing research addressing QoS-aware
middleware for pervasive environments. Our next steps concern further inversti-
gating clustering techniques for improving our heuristic algorithm, and consider-
ing in our QoS model network-level QoS and middleware-based QoS enhancement
for service compositions.

Acknowledgement

This research is partially supported by the SemEUsE project2 funded by the
french National Research Agency (ANR).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

2. Pautasso, C., Alonso, G.: Flexible Binding for Reusable Composition of Web
Services. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS,
vol. 3628, pp. 151–166. Springer, Heidelberg (2005)

3. Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto, E.:
WS Binder: a framework to enable dynamic binding of composite web services. In:
SOSE 2006: Proceedings of the 2006 international workshop on Service-oriented
software engineering, pp. 74–80. ACM, New York (2006)

4. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

2 SemEUsE project: http://www.semeuse.org

QoS-Aware Service Composition in Dynamic Service Oriented Environments 141

5. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. ACM Trans. Web 1(1), 6 (2007)

6. Jaeger, M.C., Mühl, G.: QoS-based Selection of Services: The Implementation of a
Genetic Algorithm. In: Braun, T., Carle, G., Stiller, B. (eds.) Kommunikation in
Verteilten Systemen (KiVS 2007) Industriebeträge, Kurzbeiträge und Workshops,
Bern, Switzerland, March 2007, pp. 350–359. VDE Verlag, Berlin und Offenbach
(2007)

7. Kobti, Z., Zhiyang, W.: An Adaptive Approach for QoS-Aware Web Service Com-
position Using Cultural Algorithms. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 140–149. Springer, Heidelberg (2007)

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO 2005: Proceedings
of the 2005 conference on Genetic and evolutionary computation, pp. 1069–1075.
ACM, New York (2005)

9. Zhang, C., Su, S., Chen, J.: A Novel Genetic Algorithm for QoS-Aware Web Ser-
vices Selection. In: Lee, J., Shim, J., Lee, S.-g., Bussler, C.J., Shim, S. (eds.) DEECS
2006. LNCS, vol. 4055, pp. 224–235. Springer, Heidelberg (2006)

10. Cao, L., Li, M., Cao, J.: Using genetic algorithm to implement cost-driven web
service selection. Multiagent Grid Syst. 3(1), 9–17 (2007)

11. Gao, C., Cai, M., Chen, H.: QoS-aware Service Composition Based on Tree-Coded
Genetic Algorithm. In: COMPSAC 2007: Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Conference, Washington, DC, USA,
pp. 361–367. IEEE Computer Society, Los Alamitos (2007)

12. Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization of
service composition and deployment. In: SIPE 2008: Proceedings of the 3rd inter-
national workshop on Services integration in pervasive environments, pp. 13–18.
ACM, New York (2008)

13. Alrifai, M., Risse, T., Dolog, P., Nejdl, W.: A Scalable Approach for QoS-based Web
Service Selection. In: 1st International Workshop on Quality-of-Service Concerns
in Service Oriented Architectures (QoSCSOA 2008) in conjunction with ICSOC
2008, Sydney (December 2008)

14. Mokhtar, S.B., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service
discovery in pervasive computing environments. In: van Steen, M., Henning, M.
(eds.) Middleware 2006. LNCS, vol. 4290, pp. 240–259. Springer, Heidelberg (2006)

15. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. J. Syst. Softw. 81(5), 785–808 (2008)

16. Lloyd, S.P.: Least squares quantization in PCM. Unpublished memorandum, Bell
Laboratories (1957)

17. Mabrouk, N.B., Georgantas, N., Issarny, V.: A Semantic End-to-End QoS Model
for Dynamic Service Oriented Environments. In: Principles of Engineering Ser-
vice Oriented Systems (PESOS 2009), held in conjunction with the International
Conference on Software Engineering, ICSE 2009 (2009)

18. Moscato, F., Mazzocca, N., Vittorini, V., Di Lorenzo, G., Mosca, P., Magaldi,
M.: Workflow Pattern Analysis in Web Services Orchestration: The BPEL4WS
Example. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC
2005. LNCS, vol. 3726, pp. 395–400. Springer, Heidelberg (2005)

142 N.B. Mabrouk et al.

19. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern
Based Analysis of BPEL4WS. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer, Heidelberg
(2003)

20. Arthur, D., Vassilvitskii, S.: On the Worst Case Complexity of the k-means Method.
Technical Report 2005-34, Stanford InfoLab (2005)

21. Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services,
August 2007, pp. 529–534 (2007)

22. Al-Masri, E., Mahmoud, Q.H.: Discovering the Best Web Service. In: WWW 2007:
Proceedings of the 16th international conference on World Wide Web, pp. 1257–
1258. ACM, New York (2007)

23. Hogben, L., Greenbaum, A., Brualdi, R., Mathias, R.: Handbook of Linear Algebra.
Chapman & Hall, Boca Raton (2007)

Self-adapting Service Level in Java
Enterprise Edition

Jérémy Philippe1, Noël De Palma1,2, Fabienne Boyer1, and Olivier Gruber3

1 INRIA Rhône-Alpes, France
2 Grenoble Institute of Technology

3 University of Grenoble I
Firstname.Lastname@inria.fr

Abstract. Application servers are subject to varying workloads, which
suggests an autonomic management to maintain optimal performance.
We propose to integrate in the component-based programming model of-
ten used in current application servers the concept of service level adap-
tation, allowing some components to dynamically degrade or upgrade
their level of service. Our goal is to be able, under heavy workloads, to
trade a lower service level of the most resource-intensive components for
a stable performance of the server as a whole. Upgrading or degrading
components is autonomously performed through runtime profiling, which
is used to estimate the application’s hot spots and target adaptations. In
addition to finding the best adaptations, this performance profile allows
our system to characterize the effects of past adaptations; in particular
given the current workload, it is possible to estimate if a service level up-
grade might result in an overload. As a result, by stabilizing the server at
peak performance via component adaptations, we are able to drastically
improve both overall latency and throughput. For instance, on both the
RUBiS1 and TPC-W benchmarks2, we are able to maintain peak perfor-
mance in heavy load scenarios, far exceeding the initial capacity of the
system.

Keywords: Quality of service, service-level degradation, control loop,
performance profile, self-adaptation.

1 Introduction

Autonomic management is increasingly important, especially regarding adap-
tive behaviors in the presence of varying workloads. Application servers openly
available on the Internet are especially subject to such workloads and offer the
incentive to design and evaluate adaptive behaviors. Some of our previous work
has studied autonomic optimization exploiting load balancing in clusters [1].
This work focuses on exploiting application-level adaptations that are naturally
present in Internet applications.
1 http://rubis.objectweb.org/
2 http://www.tpc.org/tpcw/

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 143–162, 2009.
c© IFIP International Federation for Information Processing 2009

144 J. Philippe et al.

Indeed, it is our experience that components of Internet applications often
contain the opportunity for behavioral adaptations. A common example of such
adaptations can be found in the context of multimedia streaming servers, where
the resolution and encoding of the content can be adapted to control the demand
in CPU and network bandwidth [2]. Limiting the size and precision of search
results is also a well-known and efficient adaptation of Internet applications.
Sorting is always an expensive operation on large results, which may be avoided
or approximated in some cases. Transactions are also a classical source of over-
heads that can be mitigated through smaller transactions, less consistency, or
playing with the granularity of locks.

In our approach, we request component designers to explicit possible behav-
ioral adaptations, in the form of alternative (and generally degraded) service
levels. Each component can be individually moved up or down that sequence,
raising or lowering the level of the provided service. At lower levels, a compo-
nent generally uses less resources to provide its service. Explicit levels of service
offer autonomic managers the opportunity to adapt the overall resource usage
of an application, trading a lower service level of individual components for an
improved quality of service of the application as a whole (i.e. better latency and
peak throughput). We use a dynamic approach in which an autonomic man-
ager decides to degrade or upgrade service levels at runtime, based on workload
fluctuations.

The decision to apply or unapply an adaptation is fully autonomic. We only
request that component designers express service levels. We felt important that
we do not require them to measure or estimate the resource usage of these service
levels. Indeed, such estimates are not only difficult to make accurately for an
individual component but are almost impossible to make when considering all
possible architectures and combinations of service levels for other components.
To estimate resource usage, we rely on a traditional profiling technique based
on request sampling, that we tailor to our component-oriented architecture. In
particular, we abstract the traditional call stack into a more abstract component
stack that provides an execution pattern in the sampled system. For each such
execution pattern, we can estimate its intrinsic cost per resource. Using this
intrinsic cost, we can calibrate the gains of adaptations per component stack
and per resource. Through such gains, we learn about past effects of adaptations,
helping us to optimize future adaptation decisions.

The challenge of this approach is to obtain adaptation gains that are work-
load independent. Indeed, gains are estimated on past workloads and used to
predict effects of adaptation on future workloads. Using our knowledge of the
architecture, we estimate our adaptation gains at the fine-grain level of com-
ponent stacks, achieving enough workload independence. Our experiments show
that effectively, our autonomic manager accurately estimates the effects of adap-
tations and efficiently corrects both overload and underload situations, even in
the presence of varying workloads.

We prototyped our autonomic adaptation system in the context of Internet
application servers based on the Java EE model (Java Enterprise Edition). This

Self-adapting Service Level in Java Enterprise Edition 145

prototype is an extension of the open-source JOnAS middleware. The modifica-
tions are minimal and incur no significant overhead. In particular, our continu-
ous 10Hz sampling incurs no measurable overhead in both RUBiS and TPC-W
benchmarks. Our sampling rate is enough to compute component stack costs
with good precision and thereby measure reliable adaptation gains. Our exper-
iments show that our system consistently improves the overall performance of
JEE applications under heavy workloads, both reducing latency and increasing
throughput. Our experiments also show that our system is not prone to oscilla-
tions and adapts quickly to changing workloads.

The rest of this paper is organized as follows. In Section 2, we present the
design of our autonomic adaptation system based on techniques from control
theory. In Section 3, we details our sampling techniques and how we approach
workload-independent gains. In Section 4, we present a simple example illus-
trating our performance metric and simple adaptive behaviors. In Section 5, we
discuss the adaptive behavior obtained on the RUBiS and TPC-W benchmarks.
In Section 6, we discuss related work. In Section 7, we conclude.

2 Autonomic Adaptation

Our autonomic adaptation system uses techniques from control theory, which has
become a common practice in autonomic systems [3][4][5]. The configuration of
our control loop is composed of two thresholds defined for each resource. The
overload threshold is the usage ceiling above which the controller looks for a
service degradation to lower the usage of the overloaded resource. The underload
threshold is the usage floor upon which the controller may consider a service
upgrade.

Our adaption system follows the simple state machine depicted in Figure 1. The
adaptation system has a regulation mode and a calibration mode. In regulation
mode, the control loop monitors the load of each resource. It reacts to overload
situations by selecting the most efficient adaptation that is not yet applied and
applies it. It reacts to underload situations by selecting amongst already applied
adaptations which one is the most effective to unapply. After each regulation, the
adaptation system steps into calibration mode for a fixed calibration period. Dur-
ing this calibration period, further regulations are inhibited.

In calibration mode, the autonomic adaptation system measures the impacts
on resource usage of the adaptation it just applied. The calibration period has
been experimentally fixed to 10 seconds, which is neither too short nor too long.
Too short, we would not be able to accurately estimate the effects of a regula-
tion on resource usage. Too long, changes in workloads could interfere with our
estimate. Moreover, a long calibration delay hinders regulation since regulations
are inhibited during calibration. Calibration will be detailed in Section 3.

Regarding regulation, one of the main challenges is stability, which we address
using an asymmetrical selection of adaptations. In the overload case, the control
loop looks for an adaptation δ to apply with a high effect on resource usage
(noted ΔδUR) and a low degradation on the level of service, noted wδ. This

146 J. Philippe et al.

regulation
period

overload
severe

Under−load
adaptation

overload

under−load adaptation

calibration delay

calibration delay

adaptation

no adaptation

no adaptation

Regulation

adaptation
Overload

Calibration

Fig. 1. Autonomic Adaptation Design

wδ is provided by component designers who annotate their adaptations with
their relative impact on the quality of service of their component. The ΔδUR is
automatically estimated by our system, which is detailled later on. This overload
goal is captured by the following definition where E(δ+) is the efficiency of
applying the adaptation δ:

E(δ+) =
ΔδUR

wδ

In the underload case, the control loop looks for an adaptation to unapply with
a low effect on resource usage and a high improvement of the level of service.
This goal is captured by the following definition where E(δ−) is the efficiency of
unapplying the adaptation δ.

E(δ−) =
wδ

ΔδUR

It is important to point out that these definitions imply, through ΔδUR, a mean
to estimate the effects of adaptation δ on resource usage. Also, estimating impact
on resource usage is important to make sure that an adaptation targeting a
particular resource will not overload another resource (in the case of adaptations
intended to find a trade-off between several resources). To estimate ΔδUR, we
define characteristics called adaptation gains, which are evaluated based on the
observed effects of the past regulations that used adaptation δ.

Self-adapting Service Level in Java Enterprise Edition 147

3 Adaptation Gains

The gain of an adaptation captures the effects on resource usage of that adap-
tation. We estimate the gain of an adaptation when it is applied under a certain
workload but we want to predict the effects of applying or unapplying that same
adaptation at some later time under a potentially unrelated workload.

The challenge is therefore to characterize the gain in a way that is as much work-
load independent as possible. We compute the gain when we calibrate by measur-
ing the usage delta of a resource R which results from applying adaptation δ:

ΔδUR = U+
R − U−

R

U+
R is the usage of resource R sampled and averaged during the calibration delay,

after adaptation δ is applied. U−
R is the usage of resource R sampled and averaged

right before adaptation δ is applied.
A simple approach to modeling the gain of adaptation δ on resource R could

be to define the gain Gδ(R) as follows:

Gδ(R) =
U+

R

U−
R

However, this simple approach does not adequately isolate the effects of the
adaptation δ. This gain captures the usage delta of the resource R due not only
to tasks executing within the adapted component but also due to tasks whose
executions are never touching the adapted component. Changes of workload, un-
related to the adaptated component, happening during calibration, could affect
our gain estimate. In particular, the more the adapted component is involved in
the workload, the higher the impact on resource usage. A better approach is to
focus our gain estimation solely on tasks whose executions involve the adapted
component.

We therefore need to separately account resource usage depending on the com-
ponents involved in the tasks, which we achieve through a profiling technique
called statistical sampling [6][7]. The traditional approach periodically captures
the call stacks of active threads in a system. In our approach, we extract com-
ponent stacks from call stacks as depicted in figure 2. In this example, we have
a simple assembly of components in the architecture: a component A connected
to two components B and C. We show the call stack of one active task, making
function calls in component A and B. The corresponding component stack, noted
A−B, abstracts away from the individual stack frames, providing an execution
pattern (or signature) for the currently executing tasks from an architectural
point of view.

Once we have component stacks, we can link them to resources as follows.
Typically, we start by modelling the processor as a CPU resource and I/O sub-
systems as I/O resources. In a sample, we relate each component stack appearing
in that sample with one and only one resource. Given the component stack of
an active task, we associate that component stack with an I/O resource R if

148 J. Philippe et al.

frame in A

frame in A

Bframe in

Bframe in

Bframe in

splitting call stack
by component

Call Stack

Resulting
Component Stack: A−B

A

B

C

B

A

Fig. 2. From call stacks to component stacks

the corresponding task is explictely waiting for I/O on that resource R when
sampled. Otherwise, the component stack is associated with the CPU resource.

Once component stacks are associated with resources, we define for each sam-
ple the hit rate of a component stack. The hit rate of a component stack S,
noted H(S), is the percentage of component stacks S in the sample that are
associated with the same resource R. Once we have the hit rate of component
stacks, we compute for each sample the usage of the associated resource R by a
given component stack S, which defined as follows:

UR(S) = H(S).UR

UR is the overall usage of the resource R given by the operating system at the
time of the sample. Having the resource usage per component stacks offers a
better gain estimate, defined as follows:

Gδ
R(S) =

U+
R (S)

U−
R (S)

In practice, we experienced too much volatility when considering a single sam-
ple. In our empirical tests, we have found that averaging the samples over a
fixed window (simple moving average) yields good results. Even using averaged
UR(S), the previous gain is not workload independent enough. We certainly
made progress since we focus our estimation on gains per component stacks on
a resource R. However, this gain is still sensitive to the actual execution count
of each component stack, which may vary from one workload to another.

To illustrate this variability, we assume that we have an adaptation δ that im-
proves by 50% the CPU usage. With a constant workload, applying this adapta-
tion would produce an estimated gain close to 0.5 for all stacks using the adapted
component. Other stacks would see a gain close to one. However, a varying work-
load would affect these gain estimates. Indeed, if we assume that we have many

Self-adapting Service Level in Java Enterprise Edition 149

Metric Name Definition Unit

H(S) Hit ratio Proportion of tasks with stack S None
in the profiling samples

UR(S) Resource usage Proportion of time the resource R is used None
by a task with stack S

W (S) Execution rate Frequency at which tasks call the stack S Hertz

CR(S) Cost
Usage duration of resource R each time

Seconds
the stack S is called by a task

Fig. 3. Metrics used to define and measure adaptation gains

queued requests when we regulate (a common case in an overload situation), the
idle CPU time that our regulation just freed is likely to be used to process some
of the pending requests, right during our calibration. If these processed requests
trigger the pattern S, H(S) will increase since we have more executions of the
stack S. This may yield a Gδ

R(CPU) that could be much higher than 0.5, i.e. the
adaptation appears less efficient than it actually is. To remove this variability,
we need to measure the execution rate of component stacks and introduce the
cost of a stack S on a resource R, noted CR(S) and defined as follows:

CR(S) =
UR(S)
W (S)

W (S) captures the execution rate (or workload) of the component stack S,
computed during each sample. W (S) is obtained by counting the number of times
a task enters a component with stack S. Using the cost rather than the resource
usage of stacks, we can measure a gain that remains fine grain at the level
of a single execution pattern and that becomes fairly independent of workload
changes. Thus, the final definition of our gain is as follows:

Gδ
R(S) =

C+
R (S)

C−
R (S)

C+
R (S) is the cost of the stack S estimated right after we apply the adaptation

δ. C−
R (S) is the cost of the stack S right before we apply the adaptation δ.

Using the measured gains Gδ
R(S) of adaptations that we applied in the past,

we can make a good estimation of the future effects of these adaptations even if
the workload changes. Through runtime sampling, we know the complete per-
formance profile of the managed system: all resource usages (∀R, UR), the active
stacks, their hit rate (H(S)), and their costs per resource (CR(S)). Figure 3
summarizes these metrics and their meaning.

Using the current performance profile, our control loop can estimate the vari-
ation (ΔδUR) on resource usage of applying or unapplying a given adaptation δ
as the sum over all stacks in the current profile of the effects on the usage of the
resource R:

150 J. Philippe et al.

ΔδUR =
∑
∀S

(U+
R (S) − U−

R (S))

Since we have:

CR(S) =
UR(S)
W (S)

We then have:

ΔδUR =
∑
∀S

(C+
R (S).W (S) − C−

R (S).W (S))

We can express in this formula C+
R (S) with both C−

R (S) and Gδ
R(S). However,

we have to consider the overload and underload case separately. In the case of
an overloaded resource R, we expresss C+

R (S) as follows:

C+
R (S) = Gδ

R(S).C−
R (S)

We therefore have:

ΔδUR =
∑
∀S

(Gδ
R(S) − 1).C−

R (S).W (S) (1)

In the case of underloaded resource R, we estimate C+
R (S) differently from C−

R (S)
and Gδ

R(S):

C+
R (S) =

C−
R (S)

Gδ
R(S)

We therefore have:

ΔδUR =
∑
∀S

(1 − Gδ
R(S))

Gδ(S)
.C−

R (S).W (S) (2)

Using formula (1) or (2), our system can estimate accurately the effects of ap-
plying or unapplying the adaptation δ in the current workload. The estimate is
accurate because the metrics are obtained at the fine granularity of individual
stacks and we only sum the estimated effects for the relevant stacks. The rele-
vant stacks are the very stacks identified in the last performance profile, which
characterizes the current workload.

4 Example

Figure 4 represents a simple architecture with a resource R and three components
A, B, and C. The table represents a possible performance profile for this system,

Self-adapting Service Level in Java Enterprise Edition 151

showing our metrics H(S), UR(S), W (S) and CR(S). In this performance profile,
the usage of resource R, UR(S), is 80%. The performance profile also shows the
active component stacks associated with R: stack A − B and stack A − C.

A performance profile allows to observe how a system uses its resources. For
instance, the resource usage metric UR(S) shows that stack A − B causes the
same usage of R as stack A−C. Furthermore, the execution rate and cost W (S)
and CR(S) show that the cost of A − B is lower than the cost of A − C since
both stacks cause equal resource usage, while A−B receives an higher workload.

80%

40%

40%

A

B

C

R

S UR(S) W (S) CR(S)
A-B 40% 10 Hz 40 ms
A-C 40% 5 Hz 80 ms

Fig. 4. Example of a performance profile

Based on this performance profile, we now illustrate the results of several
possible adaptations. Suppose that if we degrade component B, the degradation
produces the effects described in the performance profile shown in figure 5. We
see that the service degradation mechanism provided by B lowers the cost of
stack A − B from 40ms down to 20ms, but has no effect on the cost of stack
A − C. This illustrates that adapting a component usually does not impact the
stacks that are not involved with the adapted component.

Instead of degrading B, suppose that if we degrade the service level of A, this
produces the effects described in figure 6. We see that the service degradation
mechanism provided by A lowers the cost of stack A − C from 80ms down to
40ms, but has no effect on the cost of stack A − B. This illustrates that adapt-
ing a component does not always impact all component stacks equally, i.e. an
adaptation can affect only some of the tasks involving the adapted component.

Notice that we have no variation of workload in the above example. However,
consider the case shown in figure 7, which depicts the effects of the same adap-
tation on component A but as the execution rate increases because of request
queueing. We see that if our gain estimates were based on resource usage only,
the adaptation gains would be incorrectly estimated. By using the cost metric,
these estimations are protected from workload fluctuations.

152 J. Philippe et al.

40% 20%

40% 40%

80% 60%A

B

C

R

S UR(S) W (S) CR(S) G
δA

R
(S) G

δB

R
(S)

A − B 40% → 20% 10 Hz 40 ms → 20 ms ?? ?? → 0.5
A − C 40% → 40% 5 Hz 80 ms ?? ?? → 1.0

Fig. 5. Adapting component B, constant workload

40%40%

40% 20%

80% 60%

B

A

C

R

S UR(S) W (S) CR(S) G
δA

R
(S) G

δB

R
(S)

A − B 40% → 40% 10 Hz 40 ms ?? → 1.0 0.5
A − C 40% → 20% 5 Hz 80 ms → 40 ms ?? → 0.5 1.0

Fig. 6. Adapting component A, constant workload

80% 72%

B

A

C

R

48%40%

40% 24%

S UR(S) W (S) CR(S) G
δA

R
(S) G

δB

R
(S)

A − B 40% → 48% 10 Hz → 12 Hz 40 ms 1.0 0.5
A − C 40% → 24% 5 Hz → 6 Hz 80 ms → 40 ms 0.5 1.0

Fig. 7. Adapting component A, changing workload

Self-adapting Service Level in Java Enterprise Edition 153

5 Evaluation

5.1 Implementation Requirements

We have prototyped our autonomic adaptation system in the context of multi-
tier Java EE application servers, which are based around a presentation tier
(Servlets/JSP), a business logic tier (Enterprise Java Beans – EJBs) and a
database tier. To enable adaptation capabilities, we have slightly extended the
Java EE model to allow EJB components to provide alternative runtime modes.
These alternative modes correspond to degraded or improved service levels,
which can be enabled or disabled dynamically, either by the application server
(programmatically) or by a human administrator (interactively). This dynamic
configuration is currently done through the JMX API (Java Management Ex-
tensions).

Otherwise, we rely on the standard Java EE concepts of components and de-
pendencies: capturing Servlets, EJBs and databases as components with explicit
dependencies in the architecture. However, recall that our approach also requires
that physical resources are made explicit in the model, to be able to link com-
ponent stacks with resources. We currently do this at a relatively coarse grain
through the application server’s knowledge of the physical machine(s) used by
each tier. For instance, a component stack that corresponds to an EJB compo-
nent will be associated to the machine (or set of machines) running the EJB tier.

Then, to profile the application, we extend the application server in order to
capture component stacks and count their execution rates. To achieve this, we
associate each request with a profiling context that contains its current stack
and we intercept component calls to update the stacks and execution counts. To
make sure that the stack has a global scope, this context must be propagated
both through local component calls (using a thread-local variable) and through
remote component calls (using serialization mechanisms). Most often, such con-
text propagation facilities are already present in Java EE application servers, for
security and transaction management.

Once this low-level instrumentation is provided, our autonomic management
extension is essentially composed of two services. A profiling service periodically
samples the component stacks of all ongoing requests to produce the metric H(S),
and monitors their execution rates to produce the metric W (S). Then, by moni-
toring resource usage, it produces the per-stack resource usage and cost metrics,
UR(S) and CR(S). Secondly, an adaptation service implements our autonomic
manager, by dynamically reacting to overload and underload conditions, using
the profiling service to select optimal adaptations and estimate adaptation gains.

5.2 Software Environment

Our prototype is an extension of the JOnAS application server. Software versions
are as follows: Java v1.5, JOnAS v4.8, MySQL v5.0 and Fedora Core 6 Linux.
Our test machines have the following specifications: Intel Core Duo 1.66 GHz, 2
GB memory, Gigabit Ethernet network. In our experiments, three machines are

154 J. Philippe et al.

dedicated to the application (one machine per tier) and one machine is dedicated
to load injection (except when running the two benchmarks together, in which
case two machines are used to isolate the load injectors).

Our performance evaluation is based on the RUBiS and TPC-W benchmarks.
RUBiS simulates an online auction application [8]. Load injection in RUBiS is
configured by a transition matrix, and two specific matrices are generally used
to produce either a read-only workload or a read-write workload. Regarding
TPC-W, we have used the implementation from Rice University, which is based
on Servlets only. Since our prototype is based on adaptable EJB components,
we have modified this implementation, wrapping the JDBC calls with session
beans. An interesting side-effect of this modification is to produce a finer-grained
component-oriented description. Load injection in TPC-W is also configured
by transition matrices. The TPC-W specification defines a read-only matrix
(browsing mix), a write-20% matrix (shopping mix), and a write-50% matrix
(ordering mix).

5.3 Profiling Overhead

Our first experiment shows that the overhead of our profiling mechanism is
negligible in the context of these benchmarks. We begin by noting that profiling
overhead is mostly dependent on the following two factors:

– Interception of component calls, proportional to throughput.
– Request sampling, proportional to sampling frequency.

To measure the profiling overhead, we first checked that there is no performance
difference between the baseline system (running the benchmarks in an unmodi-
fied environment) and the instrumented system when profiling is used with a very
low sampling frequency (e.g. 0.1 Hz). Then, we measured the benchmark’s peak
performance for increasing sampling frequencies, since this parameter is crucial
in controlling both the profiling precision and its overhead. As figure 8 shows in
the case of the RUBiS benchmark, we have not been able to detect a significant
overhead, even for high sampling frequencies. In practice, we observed that a fre-
quency as low as 1 Hz provides a reasonable precision for the purpose of adap-
tation (although the following experiments were done with a 10 Hz frequency to
improve precision). As a side knowledge, this figure also shows that the CPU of
the database tier is the bottleneck in RUBiS. TPC-W yields the same results as
RUBiS (i.e. no overhead and the database is the benchmark’s bottleneck).

5.4 RUBiS Benchmark

In all experiments, calibration delay is set to 10 seconds and sampling frequency
is set to 10 Hz. We first present the results of profiling RUBiS for a typical sta-
tionary workload: 256 emulated clients and a read-write mix, with 900 seconds
of runtime. All metrics (hit rates, resource usage, workload and cost) were aver-
aged over the entire experiment. We only show the performance profiles for the

Self-adapting Service Level in Java Enterprise Edition 155

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100

T
hr

ou
gh

pu
t (

re
q/

s)

Sampling frequency (Hz)

Throughput

 0

 20

 40

 60

 80

 100

 120

 0.1 1 10 100

C
P

U
 u

sa
ge

Sampling frequency (Hz)

Servlets
EJBs

Database

Fig. 8. RUBiS Performance vs. Sampling Frequency

database CPU, since we already established that this resource is the bottleneck
and the only one triggering adaptations. The database is about 180 MB for a lit-
tle over forty thousands items and one hundred thousands customer records. The
four most database intensive stacks (i.e. those with the highest hit rate) were:

Stack H(S) W(S) C(S)
SearchByCategory.Category 64.1 % 6.60 Hz 55.8 ms
SearchByRegion.Category 30.4 % 2.22 Hz 78.4 ms

AboutMe.User 0.95 % 11.4 Hz 0.49 ms
SearchByRegion.Item 0.83 % 16.7 Hz 0.29 ms

These results show that only two component stacks are responsible for most of
the CPU usage on the database tier. These stacks—SearchByCategory.Category
and SearchByRegion.Category,are associated to the search for auctioned items.
Consequently, we have implemented two adaptations, both based on deactivat-
ing sorting—a costly operation on the database side, especially with large tables.
One adaptation is on the SearchByCategory component and the other is
on the SearchByRegion component. Our results show that the adaptation on
SearchByCategory.Category is significantly more effective than the one on
SearchByRegion.Category. This is because the former generally involves sort-
ing more items than the later; the straightforward consequence of a less selective
filter.

To evaluate our dynamic adaptation, we configure a workload that far exceeds
the normal benchmark capacity (about 650 clients): 1024 emulated clients and
a read-write mix, with 60 seconds of ramping up and 300 seconds of runtime.
We are targeting an agressive goal in terms of CPU usage: overload threshold
of 90% and underload threshold of 80%. The rationale is to show that we can
target a high and narrow window of CPU usage, one that is sufficiently high
for reaching and staying at peak performance but consistently avoiding the trap
of thrashing. Only an automatic approach, with an accurate prediction, can
attempt this; most systems have to be more conservative regarding their CPU
usage target.

156 J. Philippe et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

La
te

nc
y

(s
)

Time (s)

Regulation and calibration
Regulation only

No regulation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

re
q/

s)

Time (s)

Regulation and calibration
Regulation only

No regulation

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400

C
P

U
 U

sa
ge

 (
D

at
ab

as
e)

Time (s)

Regulation and calibration
Regulation only

No regulation

Fig. 9. RUBiS Performance

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

La
te

nc
y

(s
)

Time (s)

Regulation and calibration
Regulation only

No regulation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

re
q/

s)

Time (s)

Regulation and calibration
Regulation only

No regulation

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

C
P

U
 U

sa
ge

 (
D

at
ab

as
e)

Time (s)

Regulation and calibration
Regulation only

No regulation

Fig. 10. TPC-W Performance

Figure 9 shows our results for RUBiS. We can see that our system maintains
the database CPU around 80%, dividing latency by ten and improving through-
put in the order of 75%. We can see that without regulations, the database
CPU is consistently thrashing at about 95%, which explains the large latency
and the poor throughput. With regulations but without calibration, we observe
harmful oscillations since our system cancels adaptations as soon as the resource
usage crosses the underload threshold. These oscillations are especially visible
on latency and throughput where the performance with regulation but without
calibration oscillates between the performance without regulation at all and the
performance with regulation and calibration.

Self-adapting Service Level in Java Enterprise Edition 157

5.5 TPC-W Benchmark

We present the results of profiling TPC-W for stationary workload of 256 clients
and a shopping mix. Like RUBiS, our experiments show that the bottleneck
is the database CPU. The database is about 1.1GB, with an extra 2.6GB for
images (stored as static files). The database contains about 28.8 millions clients
and 10,000 books. The four most sampled stacks were:

Stack H(S) W(S) C(S)
execute search.author search 39.0 % 1.98 Hz 119.2 ms

best sellers 28 % % 1.73 Hz 97.5 ms
execute search.title search 18.4 % 2.03 Hz 54.9 ms

buy confirm 2.5 % 2.25 Hz 6.75 ms

These results show that three component stacks are almost equally responsible
for most of the CPU usage on the database tier. These stacks—execute search.
author search, best sellers, and execute search.title search—are asso-
ciated to the search for books, by authors, by title, or by best sellers. Conse-
quently, we have implemented three adaptations, one for each stack. For the
stacks execute search.author search and execute search. title search,
the adaptation limits searching by looking for an exact match on titles or authors,
avoiding costly substring matching. For the stack best sellers, the adaptation
looks for recent sellers as opposed to best sellers.

Like for our RUBiS experiments, we evaluate dynamic adaptation with a
workload that exceeds the normal benchmark capacity (about 500 clients): 768
emulated clients and a shopping mix, with 60 seconds of ramping up and 300
seconds of runtime. We fixed the same agressive goal in terms of CPU usage,
for the same reasons. Figure 10 shows our results for TPC-W. We can see that
without regulations, the database tier is consistently thrashing with a CPU at
about 95%, which explains the large latency and the poor throughput. We can
also notice two sharp drop in CPU usage at time 100 and 260 seconds, that are
totally avoided with our adaptive approach.

The CPU usage patterns and improvements are entirely consistent across the
two benchmarks. With regulations but without calibration, our system is unable
to predict the effects of applying or unapplying adaptations, which produces
harmful oscillations. These oscillations are again quite visible on latency and
throughput. With calibration, our system maintains the database CPU around
80%, dividing latency by ten and improving throughput in the order of 60%.
Moreover, our system maintains a much more stable level of quality of service.
Notice how much smoother the regulated latency and throughput are compared
to the unregulated ones at 100, 250, and 350 seconds in the experiments. This
is also visible in the much more stable CPU usage when regulated.

5.6 Combining TPC-W and RUBiS

To evaluate our system under non-stationary workloads, we combined both
benchmarks as follows. We started TPC-W first and we started RUBiS about

158 J. Philippe et al.

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700

La
te

nc
y

(s
)

Time (s)

Regulation and calibration (RUBiS)
No regulation (RUBiS)

Regulation and calibration (TPC−W)
No regulation (TPC−W)

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

re
q/

s)

Time (s)

Regulation and calibration (RUBiS)
No regulation (RUBiS)

Regulation and calibration (TPC−W)
No regulation (TPC−W)

Fig. 11. TPC-W and RUBiS Combined

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700

C
P

U
 U

sa
ge

 (
D

at
ab

as
e)

Time (s)

Regulation and calibration
No regulation

 0 100 200 300 400 500 600 700

A
da

pt
at

io
n

Time (s)

SearchByCategory (RUBiS)
SearchByRegion (RUBiS)

author_search (TPC−W)
best_sellers (TPC−W)
title_search (TPC−W)

Fig. 12. CPU Usage and Adaptation Details

200 seconds later. The two benchmarks therefore overlaps for about 200 seconds.
During the final period of 300 seconds, we only have RUBiS. The latency and
throughput results are depicted in Figure 11.

As expected, the first period shows very similar results to TPC-W alone. Dur-
ing the overlap period, the system is heavily overloaded. Without regulation,
latency increases sharply and throughput drops significantly, for both bench-
marks. With regulation, our system preserves as much overall quality of service
as possible—it divides latency by 4 and almost doubles throughput. Further-
more, it is important to notice that our autonomic management reacts quickly
to workload changes. Indeed, there is no visible period of instability as the work-
load changes, that is, when RUBiS starts at 200 seconds in the experiement and
when TPC-W stops at 400 seconds in the experiment.

Figure 12 shows when adaptions are applied and unapplied during this ex-
periment, combined with the CPU usage of the database tier. Up to about 300
seconds in the experiment, all available adaptations but one are dynamically

Self-adapting Service Level in Java Enterprise Edition 159

and incrementally applied. Notice some oscillations happen. These oscillations
are however few and sparse since we only have four of them in total, over 700
seconds, even though we consider applying or unapplying adaptations every 5
seconds. This means our prediction works, avoiding the vast majority of oscil-
lations. This is confirmed by the fact that, although the CPU usage is often
just below our 80% threshold, our autonomic manager maintains the adapta-
tions, accurately predicting the CPU overload situation that would result if any
adaptation would be unapplied.

Our approach mostly avoids oscillations, but large variations in resource usage
may temporarily trick our prediction. Notice that no oscillation happens during
the last period where RUBiS runs alone; this is because RUBiS has a more
stable workload than TPC-W. Indeed, we noticed throughout our experiments
a relatively higher instability in CPU usage for TPC-W, which we explain by
the fact that TPC-W queries are more complex on a larger working set. While
temporary low CPU usage may trigger a mistake, such mistakes are corrected
quite rapidly. Furthermore, we argue that such mistakes induce an acceptable
volatility in latency and throughput, most of the time within 20%. In particular,
notice that this volatility never resulted in our experiments in the regulated
quality of service dropping below the unregulated quality of service.

6 Related Work

6.1 Service-Level Adaptation

Service-level adaptation provides an efficient mechanism to regulate resource
consumption and avoid overload. However, it has been reserved in the past to
specific types of systems, where adaptations are well-known and can be charac-
terized in advance. For example, service adaptation has been used in the context
of multimedia streaming servers, where increasing compression will save network
bandwidth at the expense of content quality [2]. Another example resides in the
context of security systems, where simpler encryption algorithms might require
less processing while being less secure [9]. Similar examples can be found in the
context of static web servers or distributed monitoring [10][11][12].

Our work contributes to service adaptation in the context of general dis-
tributed systems, where adaptations often cannot be characterized in advance.
The key point of our approach is the dynamic construction of a performance
profile, based on a component-based representation of the system.

6.2 Performance Profiles

Performance profiles are used to locate and analyze the bottlenecks of a com-
puting system [13]. A typical method to build performance profiles consists in
tracking execution to find the code involved in each task, combined with resource
usage measurements to find the most resource-intensive tasks.

Complex distributed systems make it difficult to use OS-level techniques be-
cause not only tasks often involve non-obvious sub-tasks but resources are also

160 J. Philippe et al.

accessed through intermediate abstraction layers. One solution is to introduce
new OS abstractions, but this is a complex and non-generic solution [14][15].

At the other end of the spectrum, another approach is to use statistical re-
gression techniques to measure correlation between workload and resource us-
age [16][17]. This requires no instrumentation but only works if workload is highly
variable (non-stationary). Furthermore, the system must be observed during a
significant period to compute the regression with reasonable accuracy, which
makes it inapplicable in the context of our work since our adaptation model
requires the ability to observe the immediate effects of applied adaptations.

Our approach is an intermediate solution, based on the work of Chanda et
al. [18][19]. First, a context is attached to each task and is propagated through
the distributed system. This context contains the current path of the task
through the distributed system. Then, statistical sampling is used to indirectly
measure resource usage, and requires no intrusive OS-level instrumentation [20].

However, the contributions of Chanda et al. stop at computing performance
profiles—using profiles for optimization purposes is left to a developer or an ad-
ministrator. Our approach goes farther by considering an autonomic approach
that leverages the knowledge of the component architecture of the observed sys-
tem. Using component stacks, we can estimate gains and make useful predictions
of component-level adaptations that can be used by a closed-loop control [21][22].

7 Conclusion

In this article, we have presented a novel approach to automatically regulate
resource consumption in Internet application servers, such as Java EE servers,
which often use a component-based programming model. Our proposition is to
integrate the concept of service level adaptation to allow for automatically low-
ering the service level of individual components in order to preserve the overall
performance in high-workload situations. By focusing adaptations on costly exe-
cution patterns, our approach optimizes service level while ensuring that resource
usage does not exceed a predefined threshold.

The heart of our approach is a performance profile, which is used to estimate
the effects of component adaptations. The challenge was to characterize these
effects in a workload independent way so that the observation of past adaptation
attempts could be reused to predict the effects of future adaptations, even if the
workload is completely different. Combining runtime sampling and the knowl-
edge of the component architecture, we designed the concept of adaptation gains
at the granularity of component stacks. Our experiments show that our gains are
workload independent enough so that our predictions are accurate and support
our decision making to apply or unapply adaptations. The potentially harmful
phenomenon of oscillations is kept to a minimum and results in no substantial
instability in latency or throughput. Also, even when oscillations occur, the per-
formance of the regulated system is always much higher than that of the baseline
system.

Self-adapting Service Level in Java Enterprise Edition 161

References

1. Taton, C., Palma, N.D., Hagimont, D., Bouchenak, S., Philippe, J.: Self-
Optimization of Clustered Message-Oriented Middleware. In: The 9th International
Symposium on Distributed Objects, Middleware, and Applications (DOA), Vilam-
oura, Portugal (November 2007)

2. Layaida, O., Hagimont, D.: Designing Self-adaptive Multimedia Applications
Through Hierarchical Reconfiguration. In: Kutvonen, L., Alonistioti, N. (eds.)
DAIS 2005. LNCS, vol. 3543, pp. 95–107. Springer, Heidelberg (2005)

3. Diao, Y., Neha, G., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics with Application to
the Apache Web Server. In: Proceedings of the IEEE/IFIP Network Operations
and Management Symposium (NOMS), Florence, Italy (April 2002)

4. Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 13(1), 80–96 (2002)

5. Kihl, M., Robertsson, A., Andersson, M., Wittenmark, B.: Control-Theoretic Anal-
ysis of Admission Control Mechanisms for Web Server Systems. World Wide Web
Journal 11(1), 93–116 (2008)

6. Graham, S.L., Kessler, P.B., Mckusick, M.K.: gprof: a Call Graph Execution Pro-
filer. ACM SIGPLAN Notices 17(6), 120–126 (1982)

7. Liang, S., Viswanathan, D.: Comprenhensive Profiling Support in the Java Virtual
Machine. In: Proceedings of the USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS), San Diego, California, USA (May 1999)

8. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and Scalability of EJB
Applications. In: Proceedings of the Symposium on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), Seattle, Washington, USA
(November 2002)

9. Wright, C.P., Martino, M.C., Zadok, E.: NCryptfs: A Secure and Convenient Cryp-
tographic File System. In: Proceedings of the USENIX Annual Technical Confer-
ence, San Antonio, Texas, USA (June 2003)

10. Abdelzaher, T.F., Bhatti, N.: Web Content Adaptation to Improve Server Overload
Behavior. In: Proceedings of the World Wide Web Conference (WWW), Toronto,
Canada (May 1999)

11. Elnozahy, M., Kistler, M., Rajamony, R.: Energy Conservation Policies for Web
Servers. In: Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS), Seattle, Washington, USA (March 2003)

12. Sadler, C.M., Martonosi, M.: Data Compression Algorithms for Energy-
Constrained Devices in Delay Tolerant Networks. In: Proceedings of the ACM
Conference on Embedded Networked Sensor Systems (SenSys), Boulder, Colorado,
USA (October 2006)

13. Menascé, D.A., Dowdy, L.W., Almeida, V.A.: Performance by Design: Computer
Capacity Planning By Example. Prentice Hall, Englewood Cliffs (2004)

14. Banga, G., Druschel, P., Mogul, J.C.: Resource Containers: A New Facility for
Resource Management in Server Systems. In: Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USA (February 1999)

15. Blanquer, J., Bruno, J., Gabber, E., McShea, M., Özden, B., Silberschatz, A.,
Singh, A.: Resource Management for QoS in Eclipse/BSD. In: Proceedings of the
FreeBSD Conference, Berkeley, California, USA (October 1999)

162 J. Philippe et al.

16. Stewart, C., Kelly, T., Zhang, A.: Exploiting Nonstationarity for Performance
Prediction. In: Proceedings of the EuroSys Conference, Lisbon, Portugal (March
2007)

17. Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., Smirni, E.: R-Capriccio:
A Capacity Planning and Anomaly Detection Tool for Enterprise Services with
Live Workloads. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 244–265. Springer, Heidelberg (2007)

18. Chanda, A., Elmeleegy, K., Cox, A.L., Zwaenepoel, W.: Causeway: Operating
System Support for Controlling and Analyzing the Execution of Multi-tier Ap-
plications. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 42–59.
Springer, Heidelberg (2005)

19. Chanda, A., Cox, A.L., Zwaenepoel, W.: Whodunit: Transactional Profiling for
Multi-Tier Applications. In: Proceedings of the EuroSys Conference, Lisbon, Por-
tugal (March 2007)

20. Froyd, N., Mellor-Crummey, J., Fowler, R.: Low-Overhead Call Path Profiling of
Unmodified, Optimized Code. In: Proceedings of the ACM International Confer-
ence on Supercomputing, Cambridge, Massachusetts, USA (June 2005)

21. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Transac-
tions on Computers 36(1), 41–50 (2003)

22. Sicard, S., Boyer, F., de Palma, N.: Using Components for Architecture-Based
Management: The Self-Repair Case. In: Proceedings of the International Confer-
ence on Software Engineering (ICSE), Leipzig, Germany (May 2008)

A Cost-Sensitive Adaptation Engine for Server
Consolidation of Multitier Applications

Gueyoung Jung1, Kaustubh R. Joshi2, Matti A. Hiltunen2,
Richard D. Schlichting2, and Calton Pu1

1 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
{gueyoung.jung,calton}@cc.gatech.edu

2 AT&T Labs Research, 180 Park Ave, Florham Park, NJ, USA
{kaustubh,hiltunen,rick}@research.att.com

Abstract. Virtualization-based server consolidation requires runtime
resource reconfiguration to ensure adequate application isolation and
performance, especially for multitier services that have dynamic, rapidly
changing workloads and responsiveness requirements. While virtualiza-
tion makes reconfiguration easy, indiscriminate use of adaptations such
as VM replication, VM migration, and capacity controls has performance
implications. This paper demonstrates that ignoring these costs can have
significant impacts on the ability to satisfy response-time-based SLAs,
and proposes a solution in the form of a cost-sensitive adaptation engine
that weighs the potential benefits of runtime reconfiguration decisions
against their costs. Extensive experimental results based on live work-
load traces show that the technique is able to maximize SLA fulfillment
under typical time-of-day workload variations as well as flash crowds,
and that it exhibits significantly improved transient behavior compared
to approaches that do not account for adaptation costs.

1 Introduction

Cloud computing services built around virtualization-based server consolidation
are revolutionizing the computing landscape by making unprecedented levels
of compute power cheaply available to millions of users. Today, platforms such
as Amazon’s EC2, AT&T’s Synaptic Hosting, Google’s App Engine, and Sales-
force’s Force.com host a variety of distributed applications including multitier
enterprise services such as email, CRM, and e-commerce portals. The sharing of
resources by such applications owned by multiple customers raises new resource
allocation challenges such as ensuring responsiveness under dynamically chang-
ing workloads and isolating them from demand fluctuations in co-located virtual
machines (VMs). However, despite the well-documented importance of respon-
siveness to end users [1, 2, 3], cloud services today typically only address avail-
ability guarantees and not response-time-based service level agreements (SLAs).

Virtualization techniques such as CPU capacity enforcement and VM migra-
tion have been proposed as ways to maintain performance [4, 5, 6, 7, 8, 9].
However, there is little work that considers the impact of the reconfiguration ac-
tions themselves on application performance except in very limited contexts. For

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 163–183, 2009.
c© IFIP International Federation for Information Processing 2009

164 G. Jung et al.

Table 1. End-to-End Response Time (ms) during VM Migration

Before Apache % Chg. Tomcat % Chg. MySQL % Chg.

102.92 141.62 37.60 315.83 206.89 320.93 211.83

example, while [10] shows that live migration of VMs can be performed with a
few milliseconds of downtime and minimal performance degradation, the results
are limited only to web servers. This can be very different for other commonly
used types of servers. For example, Table 1 shows the impact of VM migration
of servers from different J2EE-based tiers on the end-to-end mean response time
of RUBiS [11], a widely used multitier benchmark, computed over 3 minute in-
tervals. Futhermore, because of interference due to shared I/O, such migrations
also impact the performance of other applications whose VMs run on the same
physical hosts (see Section 4). Cheaper actions such as CPU tuning can some-
times be used to achieve the same goals, however. These results indicate that
the careful use of adaptations is critical to ensure that the benefits of runtime
reconfiguration are not overshadowed by their costs.

This paper tackles the problem of optimizing resource allocation in consoli-
dated server environments by proposing a runtime adaptation engine that auto-
matically reconfigures multitier applications running in virtualized data centers
while considering adaptation costs and satisfying response-time-based SLAs even
under rapidly changing workloads. The problem is challenging—the costs and
benefits of reconfigurations are influenced not just by the software component
targeted, but also by the reconfiguration action chosen, the application structure,
its workload, the original configuration, and the application’s SLAs.

To address these challenges, we present a methodology that uses automatic
offline experimentation to construct cost models that quantify the degradation
in application performance due to reconfiguration actions. Using previously de-
veloped queuing models for predicting the benefits of a new configuration [8], we
show how the cost models allow an analysis of cost-benefit tradeoffs to direct the
online selection of reconfiguration actions. Then, we develop a best-first graph
search algorithm based on the models to choose optimal sequences of actions. Fi-
nally, experimental results using RUBiS under different workloads derived from
real Internet traces show that our cost-sensitive approach can significantly re-
duce SLA violations, and provide higher utility as compared to both static and
dynamic-reconfiguration-based approaches that ignore adaptation costs.

2 Architecture

We consider a consolidated server environment with a pool of physical resources
H and a set of multitier applications S. We focus only on a single resource pool
in this paper—a cluster of identical physical servers (hosts). Each application s
is comprised of a set Ns of component tiers (e.g., web server, database), and for
each tier n, a replication level is provided by reps(n). Each replica nk executes

A Cost-Sensitive Adaptation Engine for Server Consolidation 165

Fig. 1. Architecture

Time

Measurement

Interval (mi)

Long term controller actions

Stability Interval

ck: Old

Config

mi

Short term controller actions

mi mi

ck+1 ck+2 ck+3

Fig. 2. Control Timeline

in its own Xen VM [12] on some physical host, and is allocated a fractional share
of the host’s CPU, denoted by cap(nk), that is enforced by Xen’s credit-based
scheduler. Therefore, system configurations consist of: (a) the replication degree
of each tier of each application, (b) the name of the physical machine that hosts
each replica VM, and c) the fractional CPU capacity allocated to the replica.

Each application is also associated with a set of transaction types Ts (e.g.,
home, login, search, browse, buy) through which users access its services. Each
transaction type t generates a unique call graph through some subset of
the application tiers. For example, a search request from the user may involve
the web-server making a call to the application server, which makes two calls to
the database. The workload for each application is then defined as a vector of
the mean request rate for each transaction type, and the workload for the entire
system as the vector of workloads for each application.

We associate each application with an SLA that specifies the expected ser-
vice level in the form of a target mean response time for each transaction, and
the rewards and penalties for meeting or missing the target response time, as
computed over a pre-specified measurement interval. The rewards and penalties
can vary according to the application workload, thus giving rise to a step-wise
utility function that maps mean response time and workload to a utility value
that reflects the revenue gained (or lost) during the measurement interval. Using
other SLA metrics does not fundamentally alter our approach.

To decide when and how to reconfigure, the adaptation engine estimates
the cost and the potential benefit of each adaptation in terms of changes in
the utility. Since the utility is a function of the mean end-to-end response time,
the cost of adaptation for a given adaptation depends on its duration and impact
on the applications’ response times. On the other hand, the benefit of adaptation
depends on the change in applications’ response times and how long the system
remains in the new configuration.

The adaptation engine manages the shared host pool by performing various
adaptation actions such as CPU capacity tuning, VM live-migration, and com-
ponent replication. As shown in Figure 1, it consists of a workload monitor, esti-
mator, and controller. The workload monitor tracks the workload at the ingress
of the system as a set of transaction request rates for each hosted application.

166 G. Jung et al.

The estimator consists of an LQN solver, a cost mapping, and an ARMA filter.
The LQN solver uses layered queuing models [13] described in Section 3 to esti-
mate the mean response time RT s for each application given a workload W and
configuration c. The cost mapping uses cost models to estimate the duration da

and performance impact ΔRT s
a of a given adaptation a. Both types of models are

constructed using the results of an off-line model parametrization phase. Finally,
the ARMA (auto-regressive moving average) filter provides a prediction of the
stability interval Ep that denotes the duration for which the current workload
will remain stable.

The controller invokes the estimator to obtain response time and cost esti-
mates for an action’s execution, which it uses to iteratively explore candidate
actions. Using a search algorithm and the utility function, the controller chooses
the set of actions that maximizes the overall utility. The search is guided by the
upper bound on the utility U∗ calculated using a previously-developed offline
optimization algorithm [8] that provides the configuration that optimizes utility
for a given workload without considering reconfiguration cost.

To balance the cost accrued over the duration of an adaptation with the bene-
fits accrued between its completion and the next adaptation, the algorithm uses
a parameter, called the control window, that indicates the time to the next adap-
tation. Adaptations occur only because of controller invocations. If the controller
is invoked periodically, the control window is set to the fixed inter-invocation in-
terval. If the controller is invoked on demand when the workload changes, the
control window is set to the stability interval prediction Ep provided by the
ARMA filter. An adaptation is only chosen if it increases utility by the end of
the control window. Therefore, a short control window produces a conservative
controller that will typically only choose cheap adaptation actions, while a longer
control window allows the controller to choose more expensive adaptations.

Multiple controllers, each with different control windows can be used in an
hierarchical fashion to produce a multi-level control scheme operating at differ-
ent time-scales, and with different levels of aggressiveness. Our implementation
of the adaptation engine uses a two-level hierarchical controller to achieve a
balance between rapid but cheap response to short term fluctuations and more
disruptive responses to long term workload changes (Figure 2). The short term
controller is invoked periodically once every measurement interval, while the
long term controller is executed on-demand when the workload has changed
more than a specified threshold since the last long term controller invocation.
To avoid multiple controller executions in parallel, the timer tracking the short
term controller’s execution is suspended while the long term controller is active.

3 Technical Approach

In this paper, we consider five adaptation actions: increase/decrease a VM’s
CPU allocation by a fixed amount, addition/removal of the VM containing an
application tier’s replica, and finally, migration of a replica from one host to
another. Replica addition is implemented cheaply by migrating a dormant VM

A Cost-Sensitive Adaptation Engine for Server Consolidation 167

from a pool of VMs to the target host and activating it by allocating CPU
capacity. A replica is removed simply by migrating it back to the standby pool.
Some actions also require additional coordination in other tiers, e.g., changing
the replication degree of the application server tier requires updating the front-
end web servers with new membership.

Models. Our approach for cost estimation is based on approximate models that
are constructed using off-line experimental measurements at different represen-
tative workloads using the following process. For each application s, workload
w, and adaptation action a, we set up the target application along with a back-
ground application s′ such that all replicas from both applications are allocated
equal CPU capacity (40% in our experiments). Then, we run multiple experi-
ments, each with a random placement of all the replica VMs from both applica-
tions across all the physical hosts. During each experiment, we subject both the
target and background application to the workload w, and after a warm-up pe-
riod of 1 minute, measure the end-to-end response times of the two applications
RT s(w) and RT s′

(w). Then, we execute the adaptation action a, and measure
the duration of the action as ds

a(w), and the end-to-end response times of each
application during adaptation as RT s

a (w) and RT s′
a (w). If none of application s’s

VMs are colocated with the VM impacted by a, no background application mea-
surements are made. We use these measurements to calculate a delta response
time for the target and the background applications, or ΔRT s

a = RT s
a − RT s

and ΔRT s′
a = RT s′

a − RT s′
. These deltas along with the action duration are

averaged across all the random configurations, and their values are encoded in
a cost table indexed by the workload.

When the optimizer requires an estimate of adaptation costs at runtime, it
measures the current workload w and looks up the cost table entry with the
closest workload w′. To determine the impact of the adaptation a on its tar-
get application s, it measures the current response time of the application as
RT s and estimates the new response time during adaptation as RT s

a (w) =
RT s(w) + ΔRT s

a (w′). For each application s′ whose components are hosted
on the same machine targeted by a, it calculates the new response times as
RT s′

a (w) = RT s′
(w) + ΔRT s′

a (w′). Although this technique does not capture
fine-grained variations due to the difference between configurations or workloads,
we show in Section 4 that the estimates are sufficiently accurate for making good
decisions.

To estimate the potential benefits of a reconfiguration action, we use previ-
ously developed layered queuing network models. Given a system configuration
and workload, the models compute the expected mean response time of each
application. A high-level diagram of the model for a single three-tier application
is shown in Figure 3. Software components (e.g., tier replicas) are modeled as
FCFS queues, while hardware resources (e.g., hosts, CPU, and disk) are modeled
as processor sharing (PS) queues. Interactions between tiers that result from an
incoming transaction are modeled as synchronous calls in the queuing network.
We account for the I/O overhead imposed by the Xen Dom-0 hypervisor, known
to have significant impact (e.g., [14]), via a per-network-interaction VM monitor

168 G. Jung et al.

VMM

Web

Server

Disk

App.

Server

Disk

DB

Server

Disk

Net Net NetClient

CPU CPU CPU

Disk Disk Disk

VMMVMM

Network Ping Measurement

Servlet.jar Instrumentation

LD_PRELOAD Instrumentation

Function call

Resource use

Fig. 3. Layered queueing network model

(VMM) delay. Although this effect impacts all VMs on the host, we model it on
a per-VM basis to reduce the time to solve the model. Section 4 shows that the
models provide sufficient accuracy despite this approximation.

The parameters for the models, i.e., the call graph for each transaction and
the per-transaction service times at the CPU, network, disk, I/O queues at the
various tiers are measured in an off-line measurement phase. In this phase, each
application is deployed both with and without virtualization and instrumented
at different points using system call interception and JVM instrumentation. It
is then subjected to test transactions, one request at a time, and measurements
of the counts and delays between incoming and outgoing messages are used to
parameterize the LQNS model. The models are then solved at runtime using the
LQNS analytical solver [13]. More details can be found in [8].

Estimating Stability Intervals. The stability interval for an application s at
time t is the period of time for which its workload remains within a band of ±b
of the measured workload W s

t at time t. This band [W s
t - b, W s

t + b] is called
the workload band Bs

t . When an application’s workload exceeds the workload
band, the controller must evaluate the system for potential SLA misses. When
the workload falls below the band, the controller must check if other applications
might benefit from the resources that could be freed up. Both cases can entail
reconfiguration. Thus the duration of stability intervals impacts the choice of
actions. If the workload keeps on changing rapidly, reconfiguration actions such
as live-migration and replication become too expensive because their costs may
not be recouped before the workload changes again. However, if the stability
interval is long, even expensive adaptations are worth considering. Therefore,
good predictions of the stability interval can benefit adaptation action selection.

At each measurement interval i, the estimator checks if the current workload
W s

i is within the current workload band Bs
j . If one or more application workloads

are not within their band, the estimator calculates a new stability interval pre-
diction Ep

j+1 and updates the bands based on the current application workloads.
To predict the stability intervals, we employ an autoregressive moving averages
(ARMA) model of the type commonly used for time-series analysis, e.g. [15].
The filter uses a combination of the last measured stability interval Em

j and an
average of the k previously measured stability intervals to predict the next sta-
bility interval using the Equation: Ep

j+1 = (1−β) ·Em
j +β ·1/k

∑k
i=1 Em

j−i. Here,

A Cost-Sensitive Adaptation Engine for Server Consolidation 169

the factor β determines how much the estimator weighs the current measure-
ment against past historical measurements. It is calculated using an adaptive
filter as described in [16] to quickly respond to large changes in the stability
interval while remaining robust against small variations. To calculate β, the
estimator first calculates the error εj between the current stability interval mea-
surement Em

j and the prediction Ep
j using both current measurements and the

previous k error values as εj = (1 − γ) · |Ep
j − Em

j | + γ · 1/k
∑k

i=1 εj−i. Then,
β = 1−εj/ maxi=0...k εj−i. This technique dynamically gives more weight to the
current stability interval measurement by generating a low value for β when the
estimated stability interval at time i is close to the measured value. Otherwise,
it increases β to emphasize past history. We use a history window k of 3, and set
the parameter γ to 0.5 to give equal weight to the current and historical error
estimates.

Balancing Cost and Benefit. To convert the predicted response times to
utility values, the controller first calculates the instantaneous rate at which an
application accrues utility either during normal operation in a configuration c,
or during the execution of an adaptation action a. To do so, it uses the SLA
to get the per-application workload dependent target response times TRT s, the
per-application workload dependent reward of Rs(W s

i) that is awarded every
measurement interval of length M if the target response time is met, and a
penalty of P s(W s

i) imposed if the target is not met. Therefore, if the predicted
response time is RT s, the rate us at which utility is accrued by application s is
given by:

us = 1[RT s ≤ TRT s] · Rs(W s
i)/M − 1[RT s > TRT s] · P s(W s

i)/M (1)
In this equation, 1[. . .] is an indicator function that returns 1 if its argument is
true, and 0 otherwise. During normal operation in a configuration c, the predicted
response time RT s

c is provided by the queuing models. The cost due to adaptation
action a is estimated as RT s

c,a = RT s
c +ΔRT s

a . Substituting these values instead
of RT s in Equation 1 yields us

c and us
c,a, the utility accrual rate during normal

execution in configuration c, and during execution of adaptation action a starting
from a configuration c, respectively.

The controller then uses the control window as an estimate of how long the
system will remain in a new configuration after adaptation. The control window
is statically set to the controller inter-invocation time for periodic controllers
and dynamically set to the stability interval for on-demand controllers. Consider
the controller at the end of measurement interval i with current configuration ci,
control window CW , and evaluating an adaptation sequence Ai represented as a
series of actions a1, a2, . . . an. Let d1, d2, . . . , dn be the length of each adaptation
action, and let c1, c2, . . . , cn be intermediate configurations generated by apply-
ing the actions starting from the initial configuration ci. Let c0 be the initial
configuration ci and cn be the final configuration ci+1. Then, the utility is:

U =
∑

ak∈Ai

(dak

∑
s∈S

us
ck−1,ak) + (CW −

∑
ak∈Ai

dak) ·
∑
s∈S

us
ci+1

= Ua + Uc (2)

The first term Ua of the equation sums up the utility accrued by each application
during each action in the adaptation sequence over a period equal to its action

170 G. Jung et al.

…
… …
…

…
…

do nothing

act1:migrate(tomcat)

-cost(d1,u1)

act2:cpu(db)+10%

-cost(d2,u2)

v0

exit

v1 v2

v3 v4 v5

vopt*

do

nothing

act3:add(www)

-cost(d3,u3)
act2

-cost(d2,u2)
act3

-cost(d3,u3)

Candidate configuration

Intermediate configuration

act1
-cost(d1,u1)

do nothing

-Uopt

-U1

-U3

Fig. 4. Adaptation action search graph

length, and second term Uc sums the utility of the resulting configuration ci+1
over the remainder of the control interval.

Search Algorithm. The goal of the search algorithm is to find a configuration
(and the corresponding adaptation actions) for which the utility U is maximized.
Configurations must satisfy the following allocation constraints: (a) for each
application, only one replica from each tier can be assigned to a host, (b) the
sum of CPU allocations on a host can be at most 1, and (c) the number of VMs
per host is restricted to fit the available memory on the host.

Starting from a current configuration, a new configuration at each step is built
by applying exactly one adaptation action as shown in Figure 4. The vertices
represent system configurations, and the edges represent adaptation actions. We
frame the problem as a shortest path problem that minimizes the negative of
the utility, i.e., maximizes the actual utility. Therefore, each edge has a weight
corresponding to the negative of the utility obtained while the action is being
executed (i.e., −da

∑
s∈S us

c,a). If multiple action sequences lead to the same
configuration, the vertices are combined. Configurations can be either interme-
diate or candidate configurations as represented by the white and gray circles
in the figure, respectively. A candidate configuration satisfies the allocation con-
straints, while an intermediate configuration does not, e.g., it may assign more
CPU capacity to VMs than is available, requiring a subsequent “Reduce CPU”
action to yield a candidate configuration. Neither type of configuration is allowed
to have individual replicas with CPU capacity greater than one.

Only candidate configurations have a do nothing action that leads the goal
state, labeled as exit in the figure. The weight for the do nothing action in a
configuration c is the negative of the revenue obtained by staying in c until the
end of the prediction interval (i.e. −Uc), assuming that the best known path is
used to get to c. Then, the shortest path starting from the initial configuration
to the exit state computes the best U , and represents the adaptation actions
needed to achieve optimal revenue. Intermediate configurations do not have do
nothing actions, and thus their utility is not defined.

A Cost-Sensitive Adaptation Engine for Server Consolidation 171

Input: ci: current config., Wi: predicted workload, CW : control window length
Output: Ai

opt - the optimized adaptation action sequence
(c∗, u∗) ←UtilityUpperBound (Wi)
if c∗ = ci then return [anull] (do nothing)
v0.(aopt, c, Ua, U, D) ← (φ, ci, 0, u∗, 0); V ← {v0}
while forever do

v ← argmaxv′∈Vv′.U
if v.aopt[last] = anull then return v.aopt

foreach a ∈ A ∪ anull do
vn ← v, vn.aopt ← v.aopt + a
if a = anull then

uc ← LQNS (Wi, v
n.c); vn.U ← (CW − vn.D) · uc + vn.Ua

else
vn.c ← NewConfig (vn.c, a); (da, ua) ←Cost (vn.c, a, Wi)
vn.Ua ← vn.Ua + da · ua; vn.D ← vn.D + da;
vn.U ← (CW − vn.D) · u∗ + vn.Ua

if ∃v′ ∈ V s.t. v′.c = vn.c then
if v′.U > vn.U then v′ ← vn

else
V ← V ∪ vn

Algorithm 1. Optimal adaptation search

Although the problem reduces to a weighted shortest path problem, it is not
possible to fully explore the extremely large configuration space. To tackle this
challenge without sacrificing optimality, we adopt an A* best-first graph search
approach as described in [17]. The approach requires a “cost-to-go” heuristic to
be associated with each vertex of the graph. The cost-to-go heuristic estimates
the shortest distance from the vertex to the goal state (in our case, the exit
vertex). It then explores the vertex for which the estimated cost to get to the goal
(i.e., the sum of the cost to get to the vertex and the cost-to-go) is the lowest.
In order for the result to be optimal, the A* algorithm requires the heuristic to
be “permissible” in that it underestimates the cost-to-go.

As the cost-to-go heuristic, we use the utility u∗ of the optimal configuration
c∗ that is produced by our previous work in [8] using bin-packing and gradient-
search techniques. This utility value represents the highest rate at which utility
can be generated for the given workload and hardware resources. However, it
does not take into account any costs that might be involved to change to that
configuration, and thus overestimates the utility that can practically be obtained
in any given situation. Therefore, the utility U calculated by using u∗ instead of∑

s∈S us
ci+1

in Equation 2 is guaranteed to overestimate the true reward-to-go
(i.e., underestimate cost-to-go), and thus forms a permissible heuristic.

The resulting search algorithm is shown in Algorithm 1. After using the Util-
ityUpperBound function to compute the cost-to-go heuristic u∗ for the initial
configuration v0, it begins the search. In each iteration, the open vertex with the
highest value of U is explored further. New open vertices are created by apply-
ing each allowed adaptation action to the current vertex and updating v.aopt,

172 G. Jung et al.

the optimal list of actions to get to v. When applying the do nothing action,
the algorithm invokes the LQNS solver to estimate the response times of the
current configuration and computes the utility. Otherwise, it invokes NewConfig
to produce a new configuration and uses the cost model to compute both the
adaptation cost Ua and the overall utility U as explained above. The algorithm
terminates when a.null, i.e., “do nothing”, is the action chosen.

Reducing the Search Space. The running time of the algorithm depends
on the number of configurations explored by the search. The algorithm avoids
lengthy sequences of expensive actions due to the optimal utility bound. How-
ever, to prevent it from getting stuck exploring long sequences of cheap actions
such as CPU allocation changes, we have implemented several techniques to sig-
nificantly reduce the number of states generated without affecting the quality
of the adaptations produced. The first is depth limiting (DL), which limits the
search of paths to those of no more than n adaptation actions and effectively
makes the search space finite. In our experiments, we chose n = 7 as the largest
value that ensured that the controller always produced a decision within 30 sec-
onds. The second is partial order reduction (PO), which addresses the issue that
CPU tuning actions can interleave in many ways to produce the same results,
but require different intermediate states, e.g., WS+10%, WS+10%, DB-10%
and DB-10%, WS+10%, WS+10%. To prevent multiple interleavings without
affecting the actual candidate configurations, we consider all CPU increases and
decreases in a strict canonical order of components. The final technique is action
elimination (AE), which eliminates known poor action choices, for example, dis-
abling add replica actions when the workload for an application has diminished.

Table 2. State Space Reduction

Technique States Time (sec) Technique States Time (sec)

Naive 83497 3180 DL+PO 599 210
DL 19387 1420 DL+PO+AE 62 18

Table 2 shows the magnitude of reductions that are achievable with these
techniques using an experiment in which 10 VMs across two applications were
being optimized. Adding more replicas to an application does not affect the size
of the state-space. However, adding more applications does. While these results
indicate that the search algorithm can be made fast enough to be used in an
on-line manner while still retaining a high quality of adaptation for deployments
of small to moderate size (Section 4), scalability is potentially a problem for
large deployments. We are addressing this limitation in ongoing work using a
combination of both better engineering and better algorithms.

4 Experimental Results

The experimental results are divided into three parts. In the first part, we de-
scribe the testbed and workloads used, and then present the measurements used

A Cost-Sensitive Adaptation Engine for Server Consolidation 173

Fig. 5. Test-bed architecture

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

P
e
n

a
lt

y
 /

 R
e
w

a
rd

Request rate (per second)

Reward

Penalty

Fig. 6. SLA-based utility function

in the adaptation cost models. In the second part, we evaluate the accuracy of
the individual controller components: the LQNS performance models, the cost
models, and the ARMA-based workload stability predictor. Finally, in the third
part, we evaluate our approach holistically in terms of the quality of the adap-
tation decisions the controller produces and their impact on application SLAs.

4.1 Model Calibration and Testbed

Testbed. Our target system is a three-tier version of the RUBiS application [11].
The application consists of Apache web servers, Tomcat application servers, and
MySQL database servers running on a Linux-2.6 guest OS using the Xen 3.2 [12]
virtualization platform. The hosts are commodity Pentium-4 1.8GHz machines
with 1GB of memory running on a single 100Mbps Ethernet segment. Each VM
is allocated 256MB of memory, with a limit of up to 3 VMs per host. The Xen
Dom-0 hypervisor is allocated the remaining 256MB. The total CPU capacity of
all VMs on a host is capped to 80% to ensure enough resources for the hypervi-
sor even under loaded conditions. Figure 5 illustrates our experimental test-bed.
Four machines are used to host our test applications, while two are used as
client emulators to generate workloads (not shown). One machine is dedicated
to hosting dormant VMs used in server replication, and another one is used as
a storage server for VM disk images. Finally, we run the adaptation engine on
a separate machine with 4 Intel Xeon 3.00 GHz processors and 4 GB RAM.
For MySQL replication, all tables are copied and synchronized between replicas.
The Tomcat servers are configured to send queries to the MySQL replicas in a
round-robin manner. We deploy two applications RUBiS-1 and RUBiS-2 in a de-
fault configuration that evenly allocates resources among all components except
for the database servers, which are allocated an additional 20% CPU to avoid
bottlenecks. The rewards and penalties for the applications are as specified in
Figure 6 for meeting or missing a target mean response time of 84 ms in every
measurement interval, respectively. The target response time was derived exper-
imentally as the mean response time across all transactions of a single RUBiS

174 G. Jung et al.

(a) Time-of-day (b) Flash crowd

Fig. 7. Workloads

application running in isolation in the initial configuration driven by a constant
workload equal to half of the design workload range of 5 to 80 requests/sec.

Workload Scenarios. During experiments, we drive the target applications
using two workloads, a time-of-day workload and a flash crowd workload. The
time-of-day workload was generated based on the Web traces from the 1998
World Cup site [18] and the traffic traces of an HP customer’s Internet Web
server system [19]. We have chosen a typical day’s traffic from each of these
traces and then scaled them to the range of request rates that our experimental
setup can handle. Specifically, we scaled both the World Cup requests rates of
150 to 1200 requests/sec and the HP traffic of 2 to 4.5 requests/sec to a range of
5 to 80 requests/sec. Since our workload is controlled by adjusting the number
of simulated clients, we created a mapping from the desired request rates to the
number of simulated RUBiS clients. Figure 7(a) shows these scaled workloads
for the two RUBiS applications from 15:00 to 22:30, where RUBiS-1 uses the
scaled World Cup workload profile and RUBiS-2 uses the scaled HP workload
profile. The flash crowd workload shown in Figure 7(b) uses the first 90 minutes
of the time-of-day workloads, but has an additional load of over 50 requests per
second added to RUBiS-2 around 15:30 for a short interval.

Adaptation Costs. To measure adaptation costs, we deployed both applica-
tions and used the methodology described in Section 3. One application was
the “target application” for the action, while the other was the “shared applica-
tion” that was co-located with the target application, but was not reconfigured.
We measured the adaptation length da and response time impact ΔRT s

a for all
adaptation actions and combinations of workloads ranging from 100 to 500 users
for both the target and shared application. For example, Figures 8(a) and 8(b)
show ΔRT s

a and da for the target application when subjected to actions affect-
ing the MySQL server and when the workload for both applications is increased
equally. As is seen, ΔRT for adding and removing MySQL replicas increases as
workloads increase, but the adaptation durations are not greatly affected. The
costs of CPU reallocation are very small in terms of both ΔRT and da.

A Cost-Sensitive Adaptation Engine for Server Consolidation 175

0

100

200

300

400

500

600

700

100:100 200:200 300:300 400:400 500:500

Users of adapted:shared applications

MySQL live migration

MySQL add

MySQL remove

CPU tuning

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

(a) Action ΔRT

0

10000

20000

30000

40000

50000

60000

70000

80000

100:100200:200300:300400:400500:500

A
d

a
p

ta
ti

o
n

 l
e
n

g
th

 (
m

s
e
c
)

Users of adapted:shared applications

(b) Adaptation Duration da

0

50

100

150

200

250

300

MySQL Tomcat Apache

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Before

Overall avg.

Pre-copy avg.

(c) Live Migration RT

Fig. 8. Costs for various adaptation actions

200
300

400
500

0

100

200

300

400

500

600

100

200

300
400

500

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Users

(Target App)

Users

(Shared App)

(a) Target App ΔRT

200
300

400
500

0

50

100

150

100

200

300
400

500

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Users

(Target App)

Users

(Shared App)

(b) Shared App ΔRT

200
300

400
500

0

10000

20000

30000

40000

50000

60000

70000

100

200
300

400
500

A
d

a
p

ta
ti

o
n

 L
e
n

g
th

 (
m

s
e
c
)

Users

(Target App)

Users

(Shared App)

(c) Adaptation Duration

Fig. 9. Costs for MySQL live-migration

The most interesting results were those for live migration, which has been
proposed in the literature as a cheap technique for VM adaptation (e.g., [10]).
However, we see that live-migration can have a significant impact on a multi-
tier application’s end-to-end responsiveness both in magnitude and in duration.
For each of the three server types, Figure 8(c) shows the mean end-to-end re-
sponse time for RUBiS measured before migration of that server, over the entire
migration duration, and during the “pre-copy” phase of migration. This figure
shows that although live-migration is relatively cheap for the Apache server, it is
very expensive for both the Tomcat and MySQL servers. Moreover, most of this
overhead incurs during the pre-copy phase. During this phase, dirty pages are
iteratively copied to the target machine at a slow pace while the VM is running.
In the subsequent stop-and-copy phase, the VM is stopped and the remaining
few dirty pages are copied rapidly. Claims that VM migration is “cheap” often
focus on the short (we measured it to be as low as 60msec) stop-and-copy phase
when the VM is unavailable. However, it is the much longer pre-copy phase with
times averaging 35 sec for Apache, 40 sec for MySQL, and 55 sec for the Tomcat
server that contributes the most to end-to-end performance costs.

Migration also affects the response time of other VMs running on the same
host. Figures 9(a) and 9(b) show the ΔRT for the target and shared appli-
cations, respectively during MySQL migration. While increases in the shared
application’s number of users (i.e., workload) impact the target application’s
response time, the target application migration has an even more significant
impact on the shared application, especially at high workloads. Figure 9(c)
shows how the adaptation duration increases with the target workload due to an

176 G. Jung et al.

0

20

40

60

80

100

120

140

1
5
:0

2
1
5
:1

4
1
5
:2

6
1
5
:3

8
1
5
:5

0
1
6
:0

2
1
6
:1

4
1
6
:2

6
1
6
:3

8
1
6
:5

0
1
7
:0

2
1
7
:1

4
1
7
:2

6
1
7
:3

8
1
7
:5

0
1
8
:0

2
1
8
:1

4
1
8
:2

6
1
8
:3

8
1
8
:5

0
1
9
:0

2
1
9
:1

4
1
9
:2

6
1
9
:3

8

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

Time

Exp.

Model

0

50

100

150

200

250

1
5
:0

0
1
5
:1

2
1
5
:2

4
1
5
:3

6
1
5
:4

8
1
6
:0

0
1
6
:1

2
1
6
:2

4
1
6
:3

6
1
6
:4

8
1
7
:0

0
1
7
:1

2
1
7
:2

4
1
7
:3

6
1
7
:4

8
1
8
:0

0
1
8
:1

2
1
8
:2

4
1
8
:3

6
1
8
:4

8
1
9
:0

0
1
9
:1

2
1
9
:2

4
1
9
:3

6

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

Time

Exp.

Model

Fig. 10. Prediction accuracy for both applications under time-of-day workload

increase in the working set memory size. In Table 3, we also show the standard
deviations for these costs as percentages of the mean and calculated across all
the random configurations used for measurement. The variances are quite low
indicating that exact knowledge of the configuration does not significantly im-
pact migration cost, and validating our cost model approximations. The only
outlier we saw was for the response time of RUBiS-2 when two MySQL servers
were co-located under high load.

Table 3. Variance of Adaptation Costs for MySQL Migration

Workload Action Length RUBiS-1 ΔRT RUBiS-2 ΔRT

100:500 2.34% 2.95% 14.52%
300:500 7.45% 10.53% 17.14%
500:500 8.14% 6.79% 101.80%

4.2 Model Prediction Accuracy

We evaluate the accuracy of the LQN models and the cost models in a single
experiment by using the first 220 minutes from the time-of-day workloads. Specif-
ically, at each controller execution point and for each application, we recorded
the response time predicted by the models (RT s) for the next control interval
and then compared it against the actual measured response time over the same
time period. This comparison includes both the predictions of adaptation cost
and performance. Figure 10 shows the results for each application. Despite the
simplifications made in our cost models, the average estimation error is quite
good at around 15%, with the predictions being more conservative than reality.

Second, we evaluated the accuracy of our stability interval estimation. To do
this, the ARMA filter is first trained using 30 minutes of the respective work-
loads. As shown in Figure 11(a), the filter is executed 68 times during the time-
of-day experiment and provides effective estimates. The absolute prediction error
against the measured interval length is around 15% for the time-of-day work-
loads. Meanwhile, the flash crowd workload causes an increase in the estimation

A Cost-Sensitive Adaptation Engine for Server Consolidation 177

0

2

4

6

8

10

12

14

1 4 7 1013161922252831343740434649525558616467

monitored
estimated

In
te

rv
a

l
(m

in
)

Stability window

(a) Time-of-day (b) Flash crowd

Fig. 11. Stability interval prediction error for different workloads

error of the ARMA filter due to the short and high unexpected bursts. The
results are presented in Figure 11(b). The error reaches approximately 23% be-
cause the filter over-estimates the length until the 5th stability interval when
the flash crowd appears. However, the estimation quickly converges on the lower
length and matches the monitored length of the stability interval until the 14th

interval, when the flash crowd goes away and the filter starts to under-estimate
the length. Even under such relatively high prediction errors, we show below
that our cost-sensitive strategy works well.

4.3 Controller Evaluation

We evaluate our Cost-Sensitive (CS) strategy under both time-of-day workload
and flash crowd scenarios by comparing its response time and utility against the
following strategies: Cost Oblivious (CO) reconfigures the system to the optimal
configuration whenever the workload changes, and uses the optimal configura-
tions generated using our previous work [8]. 1-Hour reconfigures the system to
the optimal configuration periodically at the rate of once per hour; this strat-
egy reflects the common policy of using large consolidation windows to mini-
mize adaptation costs. No Adaptation (NA) maintains the default configuration
throughout the experiment. Finally, Oracle provides an upper bound for utility
by optimizing based on perfect knowledge of future workload and by ignoring
all adaptation costs.

We use the current measured workload at the controller execution point to
be the predicted workload for the next control window for the CS and CO
strategies. The measurement interval is set to 2 minutes to ensure quick reaction
in response to workload changes. The workload monitor gets the workload for
each measurement interval by parsing the Apache log file. Finally, we choose a
narrow workload band b of 4 req/sec to ensure that even small workload changes
will cause the controller to consider taking action.

End-to-End Response Time. First, we compare the mean end-to-end re-
sponse time for all the strategies as measured at each measurement period. The

178 G. Jung et al.

(a) Time-of-day Workload (b) Flash Crowd

Fig. 12. Response times for RUBiS-1 under different adaptation strategies

results for the RUBiS-1 application are shown for the CS, CO, and NA strategies
in Figures 12; the Oracle and 1-Hour plots are omitted for legibility. Figure 12(a)
shows the results for the time-of-day workload. Predictably, the NA strategy is
very sensitive to workload changes and shows large spikes once the workload
intensity reaches the peak in both applications. For the CO and CS strategies, a
series of spikes corresponds to when the adaptation engine triggers adaptations.
The CS strategy has relatively short spikes and then the response time stabilizes.
Meanwhile, the CO strategy has more and larger spikes than the CS strategy.
This is because the CO strategy uses more adaptation actions, including rela-
tively expensive ones such as live-migration of MySQL and Tomcat and MySQL
replication, while the CS strategy uses fewer and cheaper actions, especially
when the estimated stability interval is short.

Although the response time of the CO strategy is usually better than the CS
strategy after each adaptation has completed, the overall average response time
of CS is 47.99 ms, which is much closer to the Oracle’s result of 40.91ms than
the CO, 1-Hour, and NA values, which are 58.06 ms, 57.41 ms, and 71.18 ms
respectively. Similarly, for the flash crowd scenario, although the ARMA filter
over- and under-estimates several stability intervals, the CS strategy’s mean
response time of 57.68 ms compares favorably with the CO, 1-Hour, and NA
values of 67.56 ms, 70.42 ms, and 116.35 ms, respectively, and is closer to the
Oracle result of 40.14ms. Not surprisingly, the difference between CS and Oracle
is larger for the flash crowd workload than the time-of-day one because the
ARMA filter is wrong more often in its stability interval predictions. Also, the
1-Hour strategy does more poorly in the flash crowd case because it is unable
to respond to the sudden workload spike in time. The results for RUBiS-2 were
similar. Thus, the CS controller is able to outperform the CO strategy over the
long run by trading-off short-term optimality for long-term gain.

To appreciate how the different strategies affect adaptation in the flash crowd
scenario, consider what happens when the load to RUBiS-2 suddenly increases
at 15:30. The CO controller removes a MySQL replica of RUBiS-1 and adds a
MySQL replica to RUBiS-2. Meanwhile, the CS strategy also removes a MySQL

A Cost-Sensitive Adaptation Engine for Server Consolidation 179

Table 4. Total Number of Actions Triggered

Action CS CO Action CS CO

CPU Increase/Decrease 14 36 Migrate (Apache replica) 4 10
Add (MySQL replica) 1 4 Migrate (Tomcat replica) 4 10
Remove (MySQL replica) 1 4 Migrate (MySQL replica) 0 2

(a) Time-of-day Workload (b) Flash Crowd

Fig. 13. Measured utility for different adaptation strategies

replica from RUBiS-1, but then it only tunes the CPU allocation of Tomcat
servers, which are much cheaper actions than adding a replica to RUBiS-2. Table
4 summarizes the number of actions of each type produced by the CS and CO
strategies for the flash crowd scenario.

Utility. Using the monitored request rates and response times, we compute the
utility of each strategy at every measurement interval to show the impact of
adaptation actions on the overall utility. For the time-of-day workload, Figure
13(a) shows that both the CO and CS strategies have spikes when adaptation
actions are triggered. However, the CO strategy has more and much deeper spikes
than the CS strategy including some that lead to negative utility by violating
SLAs of both applications. Meanwhile, the CS strategy chooses actions that
do not violate SLAs. The utility for the flash crowd scenario in Figure 13(b)
similarly shows that the CS strategy has a couple of spikes corresponding to
the onset and exit of the flash crowd. However, these spikes are less severe than
those of the CO strategy. The CS strategy violates the SLA of RUBiS-1 only in
the measurement periods where it removes or adds a MySQL replica of RUBiS-1
(when the flash crowd starts and then after it disappears), while the CO strategy
violates SLAs of both applications in many periods.

We also computed the total utility accumulated over the entire experiment
duration. The values for all the different strategies and workloads are shown in
Table 5. Because the absolute value of the utility can differ greatly depending on
the exact reward, penalty, and response time threshold values used in the SLA, it
is more important to note the relative ordering between the different approaches.

180 G. Jung et al.

Table 5. Cumulative Utility for all Strategies

Workload Oracle CS 1 Hour CO NA

Time of day 16535 15785 10645 9280 2285
Flash Crowd 3345 3120 2035 1620 -630

As can be seen, the CS strategy performs the best and has a utility very close to
the Oracle for both workloads. The NA strategy predictably performs the worst.
While neither the CO nor the 1-Hour strategy are competitive with CS, it is
interesting to note that CO performs worse than 1-Hour. This is because CO is so
aggressive in choosing optimal configurations that it incurs too much adaptation
cost compared to 1-Hour, which limits adaptations to once every hour. The
higher frequency of response time spikes for the CO and NA approaches indicates
that this ordering is not likely to change even if a different utility function is
used. These results demonstrate the value of taking workload stability and costs
into account when dynamic adaptations are made.

5 Related Work

The primary contributions of this paper are (a) a model for comparing on a
uniform footing dramatically different types of adaptation actions with varying
cost and application performance impacts (e.g., CPU tuning vs. VM migration),
and (b) considering workload stability to produce adaptations that are not nec-
essarily optimal in the short term, but produce better results over the long run
when workload variations are taken into account. We are not aware of any other
work that addresses these issues, especially in the context of multitier systems
with response time SLAs.

Several papers address the problem of dynamic resource provisioning [20, 21,
4, 5, 6, 7]. The authors in [7] even use queuing models to make decisions that pre-
serve response time SLAs in multitier applications. However, none of these papers
consider the performance impact of the adaptations themselves in their decision
making process. The approach proposed in [22] learns the relationships between
application response time, workload, and adaptation actions using reinforcement
learning. It is implicitly able to learn adaptation costs as a side-benefit. However,
it cannot handle never-before seen configurations or workloads, and must spend
considerable time relearning its policies in case of even workload changes.

Recently, some efforts including [23, 25, 27, 26] address adaptation costs.
Only one adaptation action, VM migration, is considered in [23], [25], and [24].
These papers propose controllers based on online vector-packing, utilization to
migration cost ratios, and genetic algorithms, respectively, to redeploy compo-
nents whose resource utilization causes them to fit poorly on their current hosts
while minimizing the number or cost of migrations. Migrations are constrained
by resource capacity considerations, but once completed, they are assumed not
to impact the subsequent performance of the application. Therefore, the ap-
proaches cannot be easily extended to incorporate additional action types since

A Cost-Sensitive Adaptation Engine for Server Consolidation 181

they possess no mechanisms to compare different performance levels that could
result from actions such as CPU tuning or component addition. pMapper fo-
cuses on optimizing power given fixed resource utilization targets produced by
an external performance manager [27]. It relies solely on VM migration, and
propose a variant of bin-packing that can minimize the migration costs while
discarding migrations that have no net benefit. It also does not provide any way
to compare the performance of different types of actions that achieve similar
goals. Finally, [26] examines an integer linear program formulation in a grid job
scheduler setting to dynamically produce adaptation actions of two types — VM
migration and application reconfiguration — to which users can assign different
costs. However, there is again no mechanism to compare the different perfor-
mance benefits of the different actions, and the user must resort to providing a
manual weight to prioritize each type of action.

In summary, the above “cost aware” approaches only minimize adaptation
costs while maintaining fixed resource usage levels. They do not provide a true
cost-performance trade-off that compares different levels of performance result-
ing from different kinds of actions. Furthermore, none of the techniques consider
the limited lifetime that reconfiguration is likely to have under rapidly chang-
ing workloads and adjusts its decisions to limit adaptation costs accordingly.
In that sense, they are more comparable to our “cost oblivious” policy which
reconfigures the system whenever it finds a better configuration for the current
workload, irrespective of future trends.

The only work we are aware of that explicitly considers future workload varia-
tions by using a limited lookahead controller (LLC) is presented in [9]. The algo-
rithm balances application performance with energy consumption by switching
physical hosts on and off. However, it only deals with a single type of coarse
grain adaptation action, and requires accurate workload predictions over multi-
ple windows into the future, something that is hard to get right. In contrast, our
approach does not require any workload predictions, but can benefit from much
simpler to obtain estimates of stability windows if they are available. Moreover, it
is not clear whether it is practical to extend the LLC approach to allow multiple
types of actions with a range of granularities.

Energy saving is considered an explicit optimization goal in [9] and [27] and is
realized by shutting down machines when possible. Our current approach does
not factor in the cost of energy and therefore does not consider power cycling
actions. CPU power states are virtualized in [28] to produce “soft power states”
exported by an hypervisor to its VMs. In this approach, each VM implements
its own power management policy through the soft-states, and the management
framework arbitrates requests from multiple VMs to either perform frequency
scaling, or VM capacity scaling along with consolidation. It leaves policy de-
cisions, i.e., (a) how performance goals and workload are mapped to resource
targets, and (b) when and which VMs are consolidated to which physical hosts,
to the application to decide. Our goal is to automatically produce such policies.

182 G. Jung et al.

6 Conclusions

In this paper, we have shown that runtime reconfiguration actions such as vir-
tual machine replication and migration can impose significant performance costs
in multitier applications running in virtualized data center environments. To
address these costs while still retaining the benefits afforded by such reconfig-
urations, we developed a middleware for generating cost-sensitive adaptation
actions using a combination of predictive models and graph search techniques.
Through extensive experimental evaluation using real workload traces from In-
ternet applications, we showed that by making smart decisions on when and how
to act, the approach can significantly enhance the satisfaction of response time
SLAs compared to approaches that do not take adaptation costs into account.

Acknowledgments. Thanks to our shepherd A. Verma for his many helpful
suggestions. This research has been funded in part by NSF grants ENG/EEC-
0335622, CISE/CNS-0646430, and CISE/CNS-0716484; AFOSR grant FA9550-
06-1-0201, NIH grant U54 RR 024380-01, IBM, Hewlett-Packard, Wipro
Technologies, and the Georgia Tech Foundation through the John P. Imlay, Jr.
Chair endowment. Any opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect the views of
NSF or the other funding agencies and companies.

References

[1] Galletta, D., Henry, R., McCoy, S., Polak, P.: Web site delays: How tolerant are
users? J. of the Assoc. for Information Sys. 5(1), 1–28 (2004)

[2] Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., Shneiderman, B.: Determining
causes and severity of end-user frustration. Intl. J. of Human-Computer Interac-
tion 17(3), 333–356 (2004)

[3] WebSiteOptimization.com: The psychology of web performance. WWW (May
2008),
http://www.websiteoptimization.com/speed/tweak/

psychology-web-performance/ (accessed, April 2009)
[4] Bennani, M., Manesce, D.: Resource allocation for autonomic data centers using

analytic performance models. In: Proc. IEEE ICAC, pp. 217–228 (2005)
[5] Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: On the use of fuzzy mod-

eling in virtualized data center management. In: Proc. IEEE ICAC, pp. 25–34
(2007)

[6] Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for
dynamic resource provisioning of multi-tier applications. In: Proc. IEEE ICAC,
pp. 27–36 (2007)

[7] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic
provisioning of multi-tier internet applications. ACM Trans. on Autonomous and
Adaptive Sys. 3(1), 1–39 (2008)

[8] Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation
policies for multi-tier applications in consolidated server environments. In: Proc.
IEEE ICAC, pp. 23–32 (2008)

http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/

A Cost-Sensitive Adaptation Engine for Server Consolidation 183

[9] Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., Jiang, G.: Power and perfor-
mance management of virtualized computing environments via lookahead control.
In: Proc. IEEE ICAC, pp. 3–12 (2008)

[10] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proc. ACM/Usenix NSDI
(2005)

[11] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Perfor-
mance comparison of middleware architectures for generating dynamic web con-
tent. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp.
242–261. Springer, Heidelberg (2003)

[12] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Wareld, A.: Xen and the art of virtualization. In: Proc. ACM SOSP,
pp. 164–177 (2003)

[13] Franks, G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J., Woodside, M.: Per-
formance analysis of distributed server systems. In: Proc. Intl. Conf. on Software
Quality, pp. 15–26 (1996)

[14] Govindan, S., Nath, A., Das, A., Urgaonkar, B., Sivasubramaniam, A.: Xen and
co.: Communication-aware CPU scheduling for consolidated Xen-based hosting
platforms. In: Proc. ACM VEE, pp. 126–136 (2007)

[15] Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control,
3rd edn. Prentice Hall, Englewood Cliffs (1994)

[16] Kim, M., Noble, B.: Mobile network estimation. In: Proc. ACM Conf. Mobile
Computing & Networking, pp. 298–309 (2001)

[17] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs (2003)

[18] Arlitt, M., Jin, T.: Workload characterization of the 1998 World Cup web site.
HP Tech. Rep., HPL-99-35 (1999)

[19] Dilley, J.: Web server workload characterization. HP Tech. Rep., HPL-96-160
(1996)

[20] Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, M., Krishnakumar, S., Pazel,
D., Pershing, J., Rochwerger, B.: Oceano SLA based management of a computing
utility. In: Proc. IFIP/IEEE IM, pp. 855–868 (2001)

[21] Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data
centers using online measurements. In: Proc. IEEE IWQoS, pp. 155 (2003)

[22] Tesauro, G., Jong, N., Das, R., Bennani, M.: A hybrid reinforcement learning ap-
proach to autonomic resource allocation. In: Proc. IEEE ICAC, pp. 65–73 (2006)

[23] Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance manage-
ment in virtualized server environments. In: Proc. IEEE/IFIP NOMS, pp. 373–381
(2006)

[24] Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., Kemper, A.: An
integrated approach to resource pool management: Policies, efficiency and quality
metrics. In: Proc. IEEE/IFIP DSN, pp. 326–335 (2008)

[25] Wood, T., Shenoy, P., Venkataramani, A.: Black-box and gray-box strategies for
virtual machine migration. In: Proc. Usenix NSDI, pp. 229–242 (2007)

[26] Garbacki, P., Naik, V.K.: Efficient resource virtualization and sharing strategies
for heterogeneous grid environments. In: Proc. IFIP/IEEE IM, pp. 40–49 (2007)

[27] Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware appli-
cation placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Mid-
dleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)

[28] Nathuji, R., Schwan, K.: Virtualpower: Coordinated power management in virtu-
alized enterprise systems. In: Proc. ACM SOSP, pp. 265–278 (2007)

Rhizoma: A Runtime for Self-deploying,
Self-managing Overlays

Qin Yin1, Adrian Schüpbach1, Justin Cappos2,
Andrew Baumann1, and Timothy Roscoe1

1 Systems Group, Department of Computer Science, ETH Zurich
2 Department of Computer Science and Engineering, University of Washington

Abstract. The trend towards cloud and utility computing infrastruc-
tures raises challenges not only for application development, but also for
management: diverse resources, changing resource availability, and dif-
fering application requirements create a complex optimization problem.
Most existing cloud applications are managed externally, and this sepa-
ration can lead to increased response time to failures, and slower or less
appropriate adaptation to resource availability and pricing changes.

In this paper, we explore a different approach more akin to P2P
systems: we closely couple a decentralized management runtime (“Rhi-
zoma”) with the application itself. The application expresses its resource
requirements to the runtime as a constrained optimization problem. Rhi-
zoma then fuses multiple real-time sources of resource availability data,
from which it decides to acquire or release resources (such as virtual
machines), redeploying the system to continually maximize its utility.

Using PlanetLab as a challenging “proving ground” for cloud-based
services, we present results showing Rhizoma’s performance, overhead,
and efficiency versus existing approaches, as well the system’s ability to
react to unexpected large-scale changes in resource availability.

1 Introduction

In this paper, we investigate a new technique for distributed application man-
agement over a utility computing infrastructure. Commercial “cloud computing”
facilities like Amazon’s EC2 [3] provide a managed, low-cost, stable, scalable in-
frastructure for distributed applications and are increasingly attractive for a
variety of systems. However, such services do not remove the burden of applica-
tion management, but instead modify it: deployment of hardware and upgrades
of software are no longer an issue, but new challenges are introduced.

First, such services are not totally reliable, as recent Amazon outages show [4].
Second, changing network conditions external to the cloud provider can signif-
icantly affect service performance. Third, pricing models for cloud computing
services change over time, and as competition and the pressure to differentiate
in the sector intensifies, we can expect this to happen more frequently. Finally,
the sheer diversity of pricing models and offerings presents an increasing chal-
lenge to application providers who wish to deploy on such infrastructures.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 184–204, 2009.
c© IFIP International Federation for Information Processing 2009

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 185

These challenges are typically addressed at present by a combination of a sepa-
rate management machine outside the cloud (possibly replicated for availability
or managed by a company like RightScale1) and human-in-the-loop monitor-
ing. Such arrangements have obvious deficiencies: slow response time to critical
events, and the cost of maintaining an infrastructure (albeit a much smaller one)
to manage the virtual infrastructure which the application is using.

This paper evaluates an alternative approach whereby the application man-
ages itself as a continuous process of optimization [23], and makes the following
contributions. First, we present Rhizoma, a runtime for distributed applications
that obviates the need for a separate management console and removes any such
single point of failure by turning the application into a self-deploying system
reminiscent of early “worm” programs [19]. Second, we show how constraint
logic programming provides a natural way to express desired application behav-
ior with regard to resources, and can be applied to simplify the task of acquiring
and releasing processing resources autonomously as both external conditions and
the needs of the application itself change. Finally, using PlanetLab, we show that
in spite of its flexibility, our approach to resource management results in better
application performance than a centralized, external management system, and
can adapt application deployment in real time to service requirements.

In the next section, we provide background and motivation for our approach,
and Section 3 describes how application providers deploy a service using Rhi-
zoma. In Section 4 we detail how Rhizoma operates at runtime to manage the
application and optimize its deployment. Section 5 presents our current experi-
mental implementation on PlanetLab, and Section 6 shows results from running
Rhizoma in this challenging environment. Finally, Section 7 covers related work,
and we discuss future work and conclude in Section 8.

2 Background and Motivation

Deploying and maintaining applications in a utility computing environment in-
volves important decisions about which resources to acquire and how to respond
to changes in resource requirements, costs, and availability.

An operator deploying an application must first consider the offerings of as-
sorted providers and their costs, then select a set of nodes on which to deploy
the application. Amazon’s EC2 service currently offers a choice of node types
and locations, and the selection will become increasingly complex as multiple
providers emerge with different service offerings and pricing models.

The selected compute resources must then be acquired (typically purchased),
and the application deployed on the nodes. Following this, its status must be
monitored, as offered load may change or nodes might fail (or an entire service
provider may experience an outage [4]). These factors may require redeploying
the application on a larger, smaller, or simply different set of nodes. This leads
to a control and optimization problem that in many cases is left to a human
operator working over timescales of hours or days.
1 http://www.rightscale.com/

186 Q. Yin et al.

Alternatively, a separate management system is deployed (and itself main-
tained) on dedicated machines to keep the application running and to respond
to such events. In autonomic computing this function may be referred to as an
“orchestration service”, and typically operates without the application itself be-
ing aware of such functionality. Such separation and (logical) centralization of
management can have benefits at large scales, but introduces additional complex-
ity and failure modes, which are particularly significant to operators deploying
smaller services where the cost of an additional dedicate node is hard to justify.

To address these problems, we explore an alternative model for application
management and present our experience building a runtime system for dis-
tributed applications which are self-hosting: the application manages itself by
acquiring and releasing resources (in particular, distributed virtual machines)
in response to failures, offered load, or changing policy. Our runtime, Rhizoma,
runs on the same nodes as the application, performing autonomous resource
management that is as flexible and robust to failure as the application itself.

In order to remove a human from direct management decisions, and to de-
couple Rhizoma’s management decisions from the application logic, we need a
way to specify the application’s resource requirements and performance goals.
This specification needs to be extensible in terms of resource types, must be
able to express complex relationships between desired resources, and must al-
low for automatic optimization. These requirements led us to choose constraint
logic programming (CLP) [21] as the most tractable way to express application
demands; we introduce CLP and further motivate its use below.

2.1 Constraint Logic Programming

CLP programs are written as a set of constraints that the program needs to meet
and an objective function to optimize within those constraints. This provides a
direct mapping between the operator’s expression of desired performance and
cost, and the application’s underlying behavior. Rather than an operator trying
to find out how many program instances need to be deployed and where to
deploy them, the CLP solver treats the task as an optimization problem and
uses application and system characteristics to find an optimal solution.

A constraint satisfaction problem (CSP) consists of a set of variables V =
V1, . . . , Vn. For each Vi, there is a finite set Di of possible values it can take (its
domain). Constraints between the variables can always be expressed as a set of
admissible combinations of values. CLP combines logic programming, which is
used to specify a set of possibilities explored via a simple inbuilt search method,
with constraints, which are used to minimize the reasoning and search by elim-
inating unwanted alternatives in advance. A solution of a CSP is an assignment
of values to each variable such that none of the constraints are violated.

CLP is attractive for application management for another reason: As in the
resource description framework (RDF), CLP programs have powerful facilities
for handling diversity in resource and information types, since CLP can use
logical unification to manage the heterogeneity of resource types, measurement
and monitoring data, and application policies. This allows a CLP program to

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 187

easily add new resources and data sources while continuing to utilize the existing
ones. Unlike RDF query languages, however, CLP provides a natural way to
express high-level optimization goals.

We are not the first to make this observation. There is an increasing consensus
that constraint satisfaction has a powerful role to play in systems management
(for example, in configuration management [7]), and indeed the CLP solver we
use in Rhizoma was originally written to build network management applications
[5]. A novel feature of Rhizoma is embedding such a CLP system within the
application, allowing it to manage and deploy itself.

2.2 Network Testbeds

The challenges outlined above will also be familiar to users of networking and
distributed systems testbeds such as PlanetLab [15]. A number of systems for
externally managing PlanetLab applications have appeared, such as Plush [2]
and AppManager [9]. In this paper, we evaluate Rhizoma on PlanetLab, however
our target is future cloud computing infrastructure. PlanetLab is a very different
environment to cloud providers like EC2 in several important respects.

Firstly, PlanetLab is much less stable than services like EC2. This helps us
to understand how Rhizoma can deal with server, provider or network outages.
PlanetLab is an excellent source of trouble: deploying on PlanetLab is likely to
exercise weaknesses in the system design and reveal problems in the approach.

Secondly, PlanetLab nodes are more diverse (in hardware, location, connec-
tivity and monitored status) than current cloud offerings nodes, allowing us to
exercise the features of Rhizoma that handle such heterogeneity without waiting
for commercial offerings to diversify.

Finally, we can deploy measurement systems on PlanetLab alongside Rhizoma
for instrumentation, which is hard with commercial infrastructure services.

3 Using Rhizoma

In this section, we describe how Rhizoma is used as part of a complete application
deployment. The Rhizoma runtime executes alongside the application on nodes
where the application has been deployed, and handles all deployment issues.
Consequently, the only nodes used by Rhizoma are those running the application
itself – there are no management nodes per se and no separate daemons to install.

We use our current, PlanetLab implementation for concrete details, and use
the term “application” to refer to the whole system, and “application instance”
or “instance” for that part of the application which runs on a single node.

3.1 Initial Deployment

Rhizoma targets applications that are already capable of handling components
which fail independently and organize into some form of overlay. To deploy such
an application, a developer packages the application code together with the

188 Q. Yin et al.

Rhizoma runtime, and supplies a constraint program specifying the deployment
requirements (described in Section 3.2 below) and short scripts that Rhizoma can
call to start and stop the application on a node. These scripts can be extremely
short (typically one or two lines) and are the only part where explicit interaction
between the application and Rhizoma is required.

Other interaction is optional, albeit desirable, for applications that wish to
direct resource allocation based on application metrics. For example, a Rhizoma-
aware web cluster can scale up or down in response to workload changes while
considering the current system configuration, so that resource consumption can
be optimized without sacrificing quality of service. Application developers can
also benefit from the underlying Rhizoma facilities, as described in Section 3.4.

A developer can deploy the application by simply running the package on one
node (even a desktop or laptop computer). No further action and no specific
software is required on any other node – Rhizoma will start up, work out how
to further deploy the application on a more appropriate set of nodes, and vacate
the initial machine when it has acquired them. Rhizoma can in fact be seen as
a “worm”, albeit a benign one, in that it moves from host to host under its own
control. We discuss the relationship with early worm programs in Section 7.

3.2 The Constraint Program

The constraint program specifies how the application is to be deployed, and
can be supplied by the developer or operator of the application. It can also
be changed (with or without human intervention) while the application is run-
ning, though this capability has not been used to date. The program specifies a
constraint list, a utility function, and a cost function.

The constraint list is a set of logical and numeric constraints on the node set,
i.e. the set of nodes on which the application is to execute. These are conditions
which must be satisfied by any solution.

The utility function U(N) for a given node set gives a value in the interval
(0, 1) representing the value of a deployment. This function may make use of any-
thing that Rhizoma knows about the nodes, such as their pairwise connectivity
(latency, bandwidth), measured CPU load, etc.

The cost function C(Δ) specifies a cost for deploying or shutting down the
application on a node. As with utility, this function may take into account any
information available to Rhizoma. Its definition might range from a constant
value to a complex calculation involving pricing structures and node locations.

Rhizoma will attempt to find a node set which satisfies the constraints and
maximizes the value of the objective function, defined as the utility U(N) minus
the cost C(Δ) of moving to the new set from the current one.

3.3 Example: PsEPR

To provide a concrete example of deploying an application with Rhizoma, we take
a publish/subscribe application inspired by the (now defunct) PsEPR service on
PlanetLab [6]. Informally, PsEPR’s requirements were to run on a small set of

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 189

node_constraint(Host) :-
 comonnode{hostname: Host},
alive(Host),
light_loaded(Host),
is_avail(Host),

 get_node_attr(Host, cpuspeed, Cpuspeed),
 get_node_attr(Host, freecpu, Freecpu),
 Cpuspeed*Freecpu/100 > 1.5.

group_constraint(NodeList) :-
assemble_values(NodeList, location, Locs),
length(NodeList, Len),
Max is ((Len-1)//4)+1,

 (for(I, 1, 4), param(Locs, Max) do
count_element(I, Locs, Num),

 Num =< Max).

path_constraint(LenList, Max) :
max(LenList, Max),
diameterUtil(_, DiameterMax, _),
Max < DiameterMax.

util_function(NodeList, Util, Params) :-

 % Compute utility values for different node attributes
fiveminloadUtil(LoadMin, LoadMax, LoadWeight),
assemble_values(NodeList, fiveminload, LoadList),
util_value("<", LoadList, LoadMin, LoadMax, LoadUtil),

 % Omitting utility values for liveslices and freecpu, the same as above

 % Utility of max distance from fixed nodes to the overlay
 findall(P, fixednode(P), Fixed),
minlatency(MinLat),
maxneighUtil(_, NeighMax, NeighWeight),
get_nearest_neighbor_list(Fixed, NodeList, NeighList),
max(NeighList, MaxDist),
util_value("<", [MaxDist], MinLat, NeighMax, NeighUtil),

 % Utility of overlay network diameter
diameterUtil(_, DiamMax, DiamWeight),

 util_value("<", Params, MinLat, DiamMax, DiamUtil),

 % Weighted average of the utilities above
weighted_avg([LoadUtil, SliceUtil, CpuUtil, NeighUtil, DiamUtil],

 [LoadWeight, SliceWeight, CpuWeight, NeighWeight, DiamWeight], Util).

Definition of util_value:
util_value< = avgi ((xmax bound(xi))/(xmax xmin))
util_value> = avgi ((bound(xi) xmin)/(xmax xmin))
bound(x) = max(min(x, xmax), xmin)

CONSTRAINTS UTILITY FUNCTION

COST FUNCTION

CONFIGURATIONS

 fiveminloadUtil(0, 10, 2). liveslicesUtil(0, 10, 1). freecpuUtil(1, 4, 3). maxneighUtil(0, 500, 2). diameterUtil(0, 1000, 2).
addCostParam(0.012). removeCostParam(0).

migration_cost(Actions, MigrateCost) :-
 count_element(add, Actions, AddLen),
 count_element(remove, Actions, RmvLen),

addCostParam(AddParam),
removeCostParam(RmvParam),

 MigrateCost is AddParam*AddLen +
RmvParam*RmvLen.

Fig. 1. PsEPR application requirements

well-connected, lightly loaded, and highly available PlanetLab nodes which were
sufficiently distributed to be “close” to the majority of other PlanetLab nodes.

Deployment of the original PsEPR system was performed by hand-written
parallel SSH scripts. Nodes were selected based on informal knowledge of lo-
cation properties, together with human examination of data from the CoMon
monitoring service [14], which includes status information such as node reacha-
bility, load, and hardware specifications. Node failures were noticed by human
operators, and new nodes were picked manually. The set of nodes was reviewed
irregularly (about once a month) [1].

Constraints: PsEPR is an example of a distributed application with require-
ments that cannot be expressed simply as number of nodes or minimum per-node
resources. Figure 1 shows how PsEPR’s requirements can be expressed as a set
of Rhizoma constraints. These constraints are applied to data acquired by Rhi-
zoma as described in Section 5.2, and include node constraints (which a node
must satisfy for it to be considered), group constraints (defined over any group
of nodes), and network constraints (specifying desired network characteristics).

190 Q. Yin et al.

node constraint uses several pre-defined Rhizoma predicates. alive requires
that the node responds to ping requests, accepts SSH connections, has low clock
skew, and a working DNS resolver. light loaded specifies maxima for the mem-
ory pressure, five-minute load, and number of active VMs on the node. Finally,
is avail checks that the node is not listed in Rhizoma’s “blacklist” of nodes on
which it has previously failed to deploy. Moreover, developers can also define new
logical and numeric constraints on node properties. Here, we require the node
to have a certain amount of “free” CPU cycles available, as calculated from its
CPU utilization and clock speed.

group constraint specifies that nodes are evenly distributed over four geo-
graphical regions. Here we use the fact that the data available for every node
includes an integer in the range [1, 4] indicating a geographical region (North
America, Europe, Asia, or South America). We specify that the number of nodes
in any region is no greater than the integer ceiling of the total number of nodes
divided by the number of regions.

path constraint limits a maximum diameter for each shortest network path
between any two nodes of the resulting overlay network.

Utility Function: The constraints define “hard” requirements the system
must satisfy and limit the allowable solutions. However, a system also has “soft”
requirements which are desirable but not essential. To address this, we specify
a utility function that calculates a utility value for any possible deployment, for
which Rhizoma attempts to optimize. Here, we construct the utility function as a
weighted average of the deviation of various node parameters from an ideal. For
PsEPR, we consider for every node the five-minute load, the number of running
VMs (or live slices, in PlanetLab terminology) and available CPU, the network
diameter, and the maximum latency to the overlay from each of a set of ten
manually chosen, geographically dispersed anchor nodes.

In utility function, assemble values gathers a list of values for a given
parameter for every node in the node list. util value is a built-in function that
computes the utility for an individual parameter given the list of values for the
parameter: (xmin, xmax, weight). As an example, for the experiments reported
in Section 6, the values are configured as shown at the bottom of Figure 1.
util value computes utility as an average of the deviations of a parameter
xi from the ideal (xmax or xmin) as defined in utility function of Figure 1.
get nearest neighbor list finds for every node in the list of fixed nodes, the
nearest neighbor to it in the overlay. minlatency is the minimum latency to any
node, as determined by Rhizoma at run-time. Finally, weighted avg computes
the weighted average of a list of values given a list of weights.

Cost Function: This function incorporates two notions: the cost of a particular
deployment, and the cost of migrating to it. The former is relatively straight-
forward: in PlanetLab it is generally zero, and for commercial cloud computing
services can be a direct translation of the pricing structure. Indeed, the ability
to optimize for real-world costs is a powerful feature of Rhizoma.

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 191

Fig. 2. Visualizing a Rhizoma application Fig. 3. Rhizoma architecture

However, quantifying the cost of migration is much harder, and does not
correspond to something a developer is generally thinking of. In Figure 1, we
adopt a simple linear model in which the migration cost increases with the
number of nodes added and removed. The deployment effect of varying the
migration cost by tuning the constant coefficients is investigated in Section 6.5.
The migration cost could also consider application details and configuration
changes. Ideally, it would be learned online by the system over time.

3.4 Rhizoma-Aware Programs

Although we have presented the minimal interface required for existing applica-
tions to be deployed with Rhizoma, the runtime’s functionality is also available
to applications. Rhizoma maintains an overlay network among all members of
the node set, and uses this for message routing. It also maintains up-to-date
status information for all nodes in the application, plus considerable external
monitoring data gathered for the purpose of managing deployment, along with
a reasoning engine that applications can use to execute queries.

This functionality is exposed via a service provider/consumer interface for
applications written using Rhizoma’s module framework. The framework main-
tains module dependencies through service interaction, and can be extended by
developers with additional application modules.

3.5 Observing the Application

Since the node set on which the application is deployed is determined by Rhizoma
as an ongoing process, a human user cannot necessarily know at any moment
where the application is running (though it is straightforward to specify some
“preferred” nodes in the constraint program). For this and debugging reasons,
Rhizoma additionally stores the IP addresses of the node set in a dynamic DNS
server, and also exports a management interface, which allows arbitrary querying
of its real-time status from any node in the application. It is straightforward to
build system visualizations, such as the one in Figure 2, using this data.

192 Q. Yin et al.

3.6 Discussion

Rhizoma relieves service operators of much of the burden of running a service:
deploying software, choosing the right locations and machines, and running a sep-
arate management service. However, this simplicity naturally comes at a price:
despite their attractiveness, constraint solvers have never been a “magic bullet”.

The first challenge is computational complexity. It is very easy to write con-
straint programs with exponential performance curves that become intractable
even at low levels of complexity. In Section 4.4, we describe one approach for
preventing this in Rhizoma. More generally, the art of writing good constraint
programs lies in selecting which heuristics to embed into the code to provide
the solver with enough hints to find the optimum (or a solution close enough
to it) in reasonable time. This is a hard problem (and a topic of much ongoing
research in the constraint community).

Application developers may find it difficult to write constraints in a language
such as the Prolog dialect used by our CLP solver. While constraints and opti-
mization provide a remarkably intuitive way to specify requirements at a high
level, there is a gap between the apparently simple constraints one can talk about
using natural language, and the syntax that must be written to specify them.

We address both of these issues by trading off expressivity for complexity (in
both senses of the word). We provide a collection of useful heuristics based on
our experience with PlanetLab, embedded in a library that provides high-level,
simplified constraints which use the heuristics. This library can also serve as
the basis for a future, simplified syntax. In this way, developers are assured of
relatively tractable constraint programs if they stick to the high-level constructs
we supply (and need only write a few lines of code). However, the full expressive
power of CLP is still available if required.

4 Operation

The architecture of a Rhizoma node is shown in Figure 3. As well as the rea-
soning engine introduced in the previous section, Rhizoma consists of an overlay
maintenance component, and resource interfaces to one or more distributed in-
frastructures (such as PlanetLab). The application interface could be as simple
as configuring a constraint file or as complex as using the component services to
build an application from scratch.

In this section, which describes the operation of a Rhizoma system in practice,
we first introduce the sensors/actuators and knowledge base (KB in the figure),
two key components of the Rhizoma architecture, and describe the maintenance
of an overlay network. We then give a detailed discussion of the steady-state
behavior of Rhizoma, including the components used to construct it, followed
by what happens at bootstrap and when a new node is started.

4.1 Sensors and Knowledge Base

Sensors in Rhizoma periodically take a snapshot of resource information about
node or network status from external and internal monitoring services. External

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 193

monitoring services provide coarse-grained information about the whole hosting
environment, while internal monitoring services provide fine-grained measure-
ment of more up-to-date resource information on a given overlay.

To maintain and optimize the system, Rhizoma stores data collected by the
sensors in the knowledge base used by the CLP solver. Every member of the
overlay maintains its own knowledge base, though their content and usage differ,
as described in the following section. As part of the CLP solver, the knowledge
base provides a query interface. High-level knowledge can be derived from low-
level facts. For example, based on the overlay status data, we can compute the
network diameter in terms of latency.

The knowledge base in the current implementation stores only the latest infor-
mation retrieved by the sensors, however in the future we intend to time-stamp
the available data and maintain historical information such as moving averages,
which could be used by constraint programs.

4.2 Coordinator Node

To manage the overlay, Rhizoma elects one node as a coordinator. The coordi-
nator can be any node in the overlay, and any leadership election algorithm may
be used. The currently-implemented election algorithm simply chooses the node
with the lowest IP, although we intend to explore leadership-election based on
node resources as future work. This node remains the coordinator as long as it
is alive and in the overlay. A new coordinator is elected if the node crashes, or
if the optimization process decides to move to another node.

Only the coordinator node runs the constraint program, storing in its knowl-
edge base the complete data set, which provides it with a global view of the
hosting environment. To optimize the use of communication and computation
resources within the overlay, other nodes maintain only the overlay status.

4.3 Steady-State Behavior

To respond to changes in resource utilization, Rhizoma performs several periodic
operations in its steady state. First, the coordinator collects information from
the sensors, and updates the knowledge base periodically. The periods are based
on the characteristics of different sensors, such as their update frequency and
data size. Real-time overlay information from the resource monitoring service is
collected by the coordinator and disseminated to each member in the overlay.

Since every member in the overlay knows the current overlay status, it can take
decisions to optimize the resource usage. Rhizoma currently supports shortest-
path routing and minimum spanning-tree computation for broadcast communi-
cation. In the future, the performance optimization of applications subject to
available overlay resources could also be investigated.

To adapt to changes in the host environment, the coordinator periodically
solves the developer-provided constraints based on the current resource capacity
and utilization. If the current overlay state is not suitable, it yields a list of

194 Q. Yin et al.

actions to apply to it. These actions will move the current network configuration
towards a new one that meets the application’s constraints and has higher utility.

4.4 Optimization Process

The actions derived from periodic solving include acquiring new nodes and re-
leasing existing nodes. In principle, the solver tries to maximize the value of the
objective (defined as the utility function minus the cost function) based on the
current knowledge base, subject to the constraints.

In practice, this approach would lead to exponential complexity increases,
particularly in a PlanetLab-like environment where the number of node options is
very large (more than 600 live nodes at any time) – an optimal overlay of c nodes
would require examining on the order of

(600
c

)
possible configurations. Rhizoma’s

solver instead derives an optimal set of at most n add(node) or remove(node)
actions which will improve the utility of the current deployment subject to the
cost of the actions. Here, n is a relatively small horizon (such as two or three),
which makes the optimization considerably more tractable. Such incremental
optimization also has a damping effect, which prevents Rhizoma from altering
its configuration too much during each period.

This technique is a case of the well-known hill-climbing approach, and can
lead to the familiar problem of local maxima: it is possible that Rhizoma can
become stuck in a sub-optimal configuration because a better deployment is too
far away to be reached. In practice, we have not observed serious problems of
this sort, but it can be addressed either by increasing the horizon n, or using
one of several more sophisticated optimization algorithms from the literature.

4.5 Adding or Removing Nodes

The actions chosen by the solver are executed by an actuator. To remove a node,
the actuator calls a short cleanup script on that node, for example, copying back
logs and stopping the application. To add a node, the actuator will first test its
liveness, and then copy the relevant files (the application and Rhizoma) before
starting Rhizoma. If Rhizoma runs successfully on the new node, it connects to
other members of the overlay using a seed list passed by the actuator, replicates
the overlay status into its knowledge base, and starts the application.

All nodes in Rhizoma’s overlay run a failure detector to identify failed nodes.
If the coordinator itself fails, a new one is elected and takes over running the
constraint program. To handle temporary network partitions and the possible
situation of multiple coordinators, each node maintains a “long tail” list of failed
nodes that it attempts to re-contact. If a failed node is contacted, the node sets
will be merged, a new coordinator elected, and the reasoning process restarted.

5 Implementation

In this section we provide an overview of the current Rhizoma runtime system,
as implemented for PlanetLab. Rhizoma is implemented in Python, using the

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 195

ECLiPSe [5] constraint solver (which is written in C). We currently assume the
presence of a Python runtime on PlanetLab nodes, although Rhizoma is capable
of deploying Python as part of the application, and a port to Windows uses this
technique. Rhizoma is built in a framework loosely inspired by the OSGi module
system, allowing sensors, actuators, the routing system, CLP engine, and other
interfaces to be easily added or removed. The bulk of the runtime is a single-
threaded, event-driven process, with the CLP engine (see below) in a separate
process that communicates over a local socket.

5.1 Use of ECLiPSe

Our implementation uses the ECLiPSe constraint solver, which is based around
a Prolog interpreter with extensions for constraint solving, and a plugin archi-
tecture for specialized solvers (such as linear or mixed-integer programming). At
present, Rhizoma uses only the core CLP functionality of the solver.

We also use ECLiPSe to hold the knowledge base. Status information about
the nodes and the connectivity between them, sensor data and overlay member-
ship are stored in the form of Prolog facts – expressions with constant values
that can easily be queried by means of the term and field names. Since ECLiPSe

is based on logic programming, it is easy to unify and fuse data from differ-
ent sources by specifying inference rules, the equivalent of relational database
views. This provides writers of constraint programs with logical data indepen-
dence from the details of the sensor information and its provenance, and also
provides Rhizoma with a fallback path in case of incomplete data.

ECLiPSe runs on each node in the Rhizoma overlay, but only the coordinator
executes the constraint program. This approach is suitable for an environment
such as PlanetLab with well-resourced nodes and a uniform runtime environ-
ment, and it is useful to have the knowledge base available on each node. We
discuss relaxing this condition for heterogeneous overlays in Section 8.

5.2 PlanetLab Sensors and Actuators

Sensors: Our PlanetLab implementation of Rhizoma uses three external
information sources: the PlanetLab Central (PLC) database, the S3 monitor-
ing service [22], and CoMon [14]. S3 provides Rhizoma with connectivity data
(bandwidth and latency) for any two PlanetLab nodes. The CSV text format of
a complete S3 snapshot is about 12MB in size, and is updated every four hours.
CoMon provides status information about individual nodes and slices, such as
free CPU, CPU speed, one-minute load, DNS failure rates, etc. The text format
of a short CoMon node-centric and slice-centric view is about 100kB, and is up-
dated every five minutes. PLC provides information which changes infrequently,
such as the list of nodes, slices, and sites.

Rhizoma also measures a subset of the information provided by S3 and CoMon
for nodes that are currently in the overlay. This data is more up-to-date, and

196 Q. Yin et al.

in many cases more reliable. Inter-node connectivity and latency on Rhizoma’s
overlay is measured every 30 seconds, and the results are reported back to the
coordinator, together with current load on the node as a whole, obtained by
querying the local CoTop daemon2. Rhizoma’s rules privilege more frequently-
updated information over older data.

Actuators: Rhizoma uses a single actuator on PlanetLab for acquiring and re-
leasing virtual machines. Releasing a VM is straightforward, but adding a new
node is a complex process involving acquiring a “ticket” from PLC, contacting
the node to create the VM, and using an SSH connection to transfer files and
spawn Rhizoma. Failures and timeouts can (and do) occur at any stage, and
Rhizoma must deal with these by either giving up on the node and asking the
solver to pick another, or retrying. Rhizoma models this process using a state
machine, allowing all deployment operations to run concurrently, rather than
having to wait for each action to complete or timeout before proceeding.

The actuator is naturally highly platform-specific. An experimental actuator
for Windows clusters uses an entirely different mechanism involving the psexec
remote execution tool, and we expect node deployment on Amazon EC2 to be
a more straightforward matter of XML RPC calls.

5.3 Discussion

PlanetLab is, of course, not representative of commercial utility computing,
though it shares many common features. PlanetLab is more dynamic (with nodes
failing and performance fluctuations), and so has been useful in revealing flaws
in earlier versions of Rhizoma. Current and future commercial utility-computing
platforms will (one hopes) be more predictable.

Different providers also have different methods of deploying software, some-
thing that Rhizoma in the future must handle gracefully. We have started work
on a cross-platform Rhizoma, using PlanetLab and clusters, which picks an ap-
propriate node deployment mechanism at runtime, but do not present it here.

However, cloud computing is still in its infancy and PlanetLab is perhaps a
more interesting case than current providers in aspects other than reliability
and deployment. Note that Rhizoma does not need to deal with specific nodes
and is just as capable of dealing with generic “classes” of nodes when running.
Where PlanetLab offers several hundred distinct, explicitly named nodes, com-
mercial providers typically offer a small number of node classes (for example,
EC2 currently offers five node types, each available in the US or Europe).

As utility computing evolves, we expect to see many more deployment alter-
natives in the commercial space, and increasingly complex pricing models (as we
have seen with network connectivity). An open question is whether the external
measurement facilities seen in PlanetLab will be duplicated in the commercial
space. If not, Rhizoma would have to rely on its own measurements.

2 CoTop is the per-node daemon responsible for collecting information for CoMon.

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 197

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

O
v
e

rl
a

y
 N

o
d

e
s

Time (Min)

planetlab1.ani.univie.ac.at

planetlab-node-01.ucd.ie

planetlab3.eecs.northwestern.edu

147-179.surfsnel.dsl.internl.net

planetlab1.cs.uchicago.edu

planetvs1.informatik.uni-stuttgart.de

planetlab2.eecs.northwestern.edu

planetlab2.cesnet.cz

146-179.surfsnel.dsl.internl.net

pluto.cs.brown.edu

Node Timeline
Coord Timeline

Deployment Success
Deployment Fail

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120

U
ti
lit

y
 V

a
lu

e

Time (Min)

Rhizoma Solution Utility
Rhizoma Configuration Trace Utility

Actions to Take
Node Added

Node Removed

Fig. 4. Short trace deployment timeline and utility

6 Evaluation

Rhizoma is a (rare) example of a system not well served by controlled emulation
environments such as FlexLab [18]. Since Rhizoma can potentially choose to
deploy on any operational PlanetLab node (there are more than 600), realistic
evaluation under FlexLab would require emulating all nodes, a costly operation
and not something FlexLab is designed for.

We adopt an approach conceptually similar in some respects. We deploy Rhi-
zoma with PsEPR application requirements (though in this experiment no “real”
application) on PlanetLab for about 8 hours to observe its behavior, and log three
sources of information:

1. All local measurements taken by Rhizoma, the coordinator’s actions, and
overlay status. This includes per-node CoTop data, per-link overlay latency,
the coordinator’s decisions, and successful or failed deployment attempts.
This logging is performed by Rhizoma and backhauled to our lab.

2. The results of querying CoMon, S3, and PLC (as Rhizoma does) during the
period of the trace. Unlike Rhizoma, we perform this centrally.

3. For this trace, we also run a measurement slice on all usable PlanetLab nodes,
which performs fine-grained measurement of inter-node latency. We expect
this to resemble the measurements taken by Rhizoma (1), but the extra
coverage represents more of a horizon than is available to Rhizoma. This
trace is stored on the nodes and transferred to our lab after the experiment.

Unless otherwise stated, our constraints, utility and cost function are as in
Figure 1. For space reasons, we focus on one trace; other results are similar.

6.1 Basic Performance Measures

We first consider the initial two hours of the overall trace. Figure 4 shows Rhi-
zoma’s behavior during this period. From the timeline in the left graph, we see
that Rhizoma ran on a total of ten different nodes, and redeployed 18 times,

198 Q. Yin et al.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120

U
ti
lit

y
 V

a
lu

e

Time (Min)

Rhizoma Configuration External Utility
Rhizoma Configuration Overlay Utility

Rhizoma Configuration Trace Utility

Fig. 5. Measures of utility

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120

U
ti
lit

y
 V

a
lu

e

Time (Min)

Rhizoma Configuration Trace Utility
External Configuration Trace Utility

Fig. 6. Effect of overlay monitoring

with the coordinator changing three times. The right graph explains Rhizoma’s
behavior; it shows both the utility value and actions taken by Rhizoma to change
the overlay. Configuration utility depicts the actual performance of the Rhizoma
configuration. Whenever Rhizoma detects a significant opportunity to improve
the utility, it generates a new deployment plan (shown by points marked actions
to take) which is then executed as node additions and removals. Solution utility
shows what the solver expects the utility value to be after taking the actions.
As we can see, the configuration follows this expectation but does not exactly
meet it due to variance between the sensor data and actual node performance.

The two sharp drops in utility are due to short periods of very high latency
(one more than three seconds) observed to the coordinator node. In both cases,
Rhizoma responds by redeploying, although the first redeployment attempt fails.

6.2 Different Measures of Utility

Rhizoma attempts to move its configuration to one that maximizes an objective
function (utility minus cost), which expresses the cost of deploying on new nodes
or vacating old ones. Utility is a measure of the value of a given configuration,
but since this is itself a function of machine and network conditions, it can be
calculated in different ways.

Figure 5 shows the utility of Rhizoma’s actual configuration for the trace
duration, as calculated using different information sources. Overlay utility uses
the information Rhizoma uses for optimization: CoMon and S3 data, plus its
own real-time overlay monitoring results – this is Rhizoma’s view of itself, and
matches the configuration utility in Figure 4. External utility users only CoMon
and S3 data, and excludes Rhizoma’s overlay measurements. This is how Rhi-
zoma’s performance appears to an observer with access to only the external
monitoring information. As CoMon updates every five minutes, and S3 every
four hours, the utility value changes less frequently. Trace utility is based on
CoMon, S3, and our detailed PlanetLab-wide trace data.

As expected, the overlay and trace utilities are almost identical, since Rhizoma
is in this case duplicating data collected by the monitoring slice, and both are

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 199

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

O
v
e

rl
a

y
 N

o
d

e
s

Time (Min)

Node Timeline
Coord Timeline

Deployment Success
Deployment Fail

(a) Timeline

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 50 100 150 200 250 300 350 400 450

M
e

a
n

 C
P

U
 U

ti
lit

y
 (

G
H

z
)

Time (Min)

Rhizoma Configuration
First Configuration

(b) Mean CPU cycles

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450

N
e

tw
o

rk
 D

ia
m

e
te

r
(m

s
)

Time (Min)

Rhizoma Configuration
First Configuration

(c) Overlay network diameter

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300 350 400

U
ti
lit

y
 V

a
lu

e

Time (Min)

Rhizoma Configuration Trace Utility
First Configuration Trace Utility

(d) Total utility

Fig. 7. Adaptivity to unpredictable event versus first configuration

reflected by the external utility. However, we also see that the trace utility lags
behind the overlay utility, since Rhizoma’s monitoring information is updated
every 30 seconds, whereas the trace data is updated once per minute (due to the
overhead of measuring latency between all pairs of PlanetLab nodes).

Furthermore, only Rhizoma observes the sharp spikes in latency to the coor-
dinator. An observer or management system using the external data would not
have noticed this problem. Under extreme conditions, this effect may lead to
Rhizoma taking actions that would appear detrimental to an external observer.

6.3 Effect of Overlay Monitoring

Rhizoma’s resource allocation decision-making is integrated with the application,
rather than relegated to a separate management machine. One potential advan-
tage is that Rhizoma can use real-time measurements of application performance
in addition to externally-gathered information about PlanetLab.

We use our trace data to simulate Rhizoma without overlay data. Figure 6
shows a somewhat negative result: compared to the full system (Rhizoma con-
figuration), the achieved utility of the simulation (external) is similar. While we

200 Q. Yin et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400

U
ti
lit

y
 V

a
lu

e

Time (Min)

Offline Configuration (cost=0) Trace Utility
Offline Configuration (cost=0.03) Trace Utility
Offline Configuration (cost=0.06) Trace Utility

First Configuration Trace Utility
Offline Configuration (cost=0.09) Trace Utility

Fig. 8. Sensitivity to cost function

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

U
ti
lit

y
 V

a
lu

e

Time (Min)

Rhizoma
SWORD

Fig. 9. Comparison with SWORD

believe that high-level application information can still be beneficial, it seems
that in this case Rhizoma has little to gain from its own overlay measurements.

6.4 Adaptivity to Failure

Figure 7 shows a larger and more dramatic section of the complete trace. At
about 150 minutes, a buggy slice on PlanetLab caused a large increase in CPU
usage across many nodes. Our utility function in this deployment favors avail-
able CPU over network diameter. As Figure 7a shows, this caused Rhizoma to
redeploy from nodes in Europe to the US and Asia (the coordinator remains up,
since although starting in Vienna by this point it was running in the US).

Figure 7b shows the mean CPU availability on the node set during the event.
After an initial drop, Rhizoma’s redeployment recovers most CPU capacity in
a few minutes, and continues to optimize and adapt as conditions change. By
comparison, the mean CPU availability across the nodes in the initial stable con-
figuration has dropped by more than 30%. The tradeoff to enable this is shown
in Figure 7c: for the duration of the event, the overlay diameter increases by
about 80% as Rhizoma moves out of Europe. After two hours, more CPU capac-
ity becomes available and Rhizoma moves back, reducing the overlay diameter
to its former value. The overall effect on utility is shown in Figure 7d.

This reaction to a sudden, transient change in network conditions at these
timescales is infeasible with a human in the loop, moreover, it requires no dedi-
cated management infrastructure – indeed, as Figure 7a shows, Rhizoma main-
tains its service even though no node participates in the system for the full
duration of the trace. We are unaware of any other system with this property.

6.5 Cost Function Sensitivity

To explore the effect of the cost function on Rhizoma’s behavior, we simulated
different cost weights (that is, different values of addCostParam). Figure 8 plots
the simulated utility value (calculated using the trace data), averaged over 30-

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 201

minute windows. First configuration shows the utility of the first stable config-
uration achieved by the system, which is equivalent to an infinite cost.

We see that, in general, increasing cost reduces the likelihood that Rhizoma
changes nodes, and thus its ability to adapt to changes in resource availability.
The simulated Rhizoma with cost weight of 0.09 performs worse than the first
configuration because it changed nodes to satisfy the free CPU constraint, but
the nodes that it moved to were also affected, and although the first solution
happens to perform slightly better during the period of 150–250 minutes, the
difference (utility ≈ 0.05) is not great enough to cause it to redeploy. The period
around 200–300 minutes shows a situation where the simulated Rhizoma with
zero cost found a local maximum, as described in Section 4.4.

6.6 Strawman Comparison with SWORD

We next present a comparison with configurations returned by SWORD [12], a
centralized resource discovery tool for PlanetLab. Figure 9 shows a trace of the
utility function for a Rhizoma overlay. During the trace, we also captured the
results of a periodic SWORD query designed to match the Rhizoma constraint
program as closely as possible, and use our PlanetLab-wide measurements to
evaluate the utility function of this hypothetical SWORD-maintained network.

SWORD is not as expressive as Rhizoma, and in particular does not support
network-wide constraints such as diameter, and so we omit these from Rhi-
zoma’s constraint program here. Moreover, SWORD cannot consider migration
cost. Rhizoma still performs significantly better, largely due to its optimization
framework. However, the differences in design and goals between the two systems
make this comparison purely illustrative.

6.7 Overhead

Finally, we briefly describe the overhead of using Rhizoma to maintain an appli-
cation overlay. Rhizoma currently uses link-state routing which, while suitable
for the modest (tens of nodes) overlays we are targeting, would need to be re-
placed for very large overlays, perhaps with a DHT-like scheme.

In the current implementation, a Rhizoma node in a network of size N must
send about 100 bytes each minute for failure detection, leader election, and local
CoTop information, plus 128 × N bytes for link-state and latency information.
Rhizoma must send this information to all N − 1 other nodes. For a 25-node
network, this therefore results in about 1500 bytes/second/node of maintenance
bandwidth, which is roughly comparable with that used in DHTs [17]. Each run
of the ECLiPSe solver takes around five seconds of CPU time.

7 Related Work

Early examples of autonomous, mobile self-managing distributed systems were
the “worm” programs at Xerox PARC [19], themselves inspired by earlier

202 Q. Yin et al.

Arpanet experiments at BBN. As with Rhizoma, the PARC worms were built
on a runtime platform that maintained a dynamic set of machines in the event
of failures. Rhizoma adds to this basic idea the use of CLP to express deploy-
ment policy, a more sophisticated notion of resource discovery, and an overlay
network for routing. We are aware of very little related work in the space of
autonomous, self-managing distributed systems since then, outside the malware
community. However, the use of knowledge-representation techniques (which ar-
guably includes CLP) in distributed systems is widespread in work on intelligent
agents [20], and techniques such as job migration are widely used.

Oppenheimer et al. [13] studied the problem of service placement in Planet-
Lab, concluding (among other things) that redeployment over timescales of tens
of minutes would benefit such applications. While they target large-scale appli-
cations, their findings support our motivation for adaptive small-scale services.

In PlanetLab-like environments, management is generally performed by a sep-
arate, central machine, although the management infrastructure itself may be
distributed [9,10,11]. The Plush infrastructure [2] is representative of the state-
of-the-art in these systems. Plush manages the entire life cycle of a distributed
application, provides powerful constructs such as barriers for managing execution
phases, performs resource discovery and monitoring, and can react to failures by
dynamically acquiring new resources. In addition to its externalized management
model and emphasis on application life-cycle, the principal difference between
Plush and Rhizoma is that the former’s specification of resource requirements is
more detailed, precise, and low-level. In contrast, Rhizoma’s use of constraints
and optimization encourages a higher-level declaration of resource policy.

The resource management approach closest to Rhizoma’s use of CLP is Con-
dor’s central Matchmaking service [16], widely used in Grid systems. Condor
matches exact expressions against specifications in disjunctive normal form, a
model similar to the ANSA Trading Service [8]. Rhizoma’s specification language
is also schema-free, but allows more flexible expression of requirements spanning
aggregates of nodes, and objective functions for optimizing configurations.

8 Conclusion and Future Work

We showed that a fully self-managing application can exist on a utility computing
infrastructure, dynamically redeploying in response to changes in conditions,
according to behavior specified concisely as a constraint optimization program.

A clear area for future work on Rhizoma is in autotuning the cost function
based on performance measurements, and feeding application-level metrics back
into the optimization process. Also in the near term, we are enhancing Rhizoma
to run across multiple clusters and commercial utility computing providers, and
to incorporate real pricing information into our cost functions, in addition to
continuing to gain experience with using Rhizoma on PlanetLab.

Longer term, the same features of CLP that are well-suited to heterogeneous
providers can be used to express additional constraints on which functional com-
ponents of an application can or should run on which nodes – at present, Rhizoma
assumes all nodes in the overlay run the same application software.

Rhizoma: A Runtime for Self-deploying, Self-managing Overlays 203

The Rhizoma approach is no panacea, and we see a place for both externally
and internally managed applications in cloud computing. We have demonstrated
the feasibility of the latter approach, and pointed out some of the challenges.

Acknowledgements

We would like to thank the anonymous reviewers for their comments, and Re-
becca Isaacs and Simon Peter for many helpful suggestions for how to improve
the paper.

References

1. Adams, R.: PsEPR operational notes (May 2008),
http://www.psepr.org/operational.php

2. Albrecht, J., Braud, R., Dao, D., Topilski, N., Tuttle, C., Snoeren, A.C., Vah-
dat, A.: Remote control: distributed application configuration, management, and
visualization with Plush. In: LISA 2007, pp. 1–19 (2007)

3. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
4. Amazon Web Services. Amazon S3 availability event (July 2008),

http://status.aws.amazon.com/s3-20080720.html

5. Apt, K.R., Wallace, M.G.: Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press, Cambridge (2007)

6. Brett, P., Knauerhase, R., Bowman, M., Adams, R., Nataraj, A., Sedayao, J.,
Spindel, M.: A shared global event propagation system to enable next generation
distributed services. In: WORLDS 2004 (December 2004)

7. Delaet, T., Anderson, P., Joosen, W.: Managing real-world system configurations
with constraints. In: ICN 2008 (April 2008)

8. Deschrevel, J.-P.: The ANSA model for trading and federation. Architecture Report
APM.1005.1, Architecture Projects Management Limited (July 1993)

9. Huebsch, R.: PlanetLab application manager (November 2005),
http://appmanager.berkeley.intel-research.net/

10. Isdal, T., Anderson, T., Krishnamurthy, A., Lazowska, E.: Planetary scale control
plane (August 2007),
http://www.cs.washington.edu/research/networking/cplane/

11. Liang, J., Ko, S.Y., Gupta, I., Nahrstadt, K.: MON: On-demand overlays for dis-
tributed system management. In: WORLDS 2005, pp. 13–18 (2005)

12. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Distributed resource
discovery on PlanetLab with SWORD. In: WORLDS 2004 (December 2004)

13. Oppenheimer, D., Chun, B., Patterson, D.A., Snoeren, A., Vahdat, A.: Service
placement in a shared wide-area platform. In: USENIX 2006 (June 2006)

14. Park, K., Pai, V.S.: CoMon: a mostly-scalable monitoring system for PlanetLab.
SIGOPS Oper. Syst. Rev. 40(1) (2006)

15. Peterson, L., Culler, D., Anderson, T., Roscoe, T.: A Blueprint for Introducing
Disruptive Technology into the Internet. In: HotNets-I (October 2002)

16. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource manage-
ment for high throughput computing. In: HPDC7 (July 1998)

17. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In:
USENIX 2004 (June 2004)

http://www.psepr.org/operational.php
http://aws.amazon.com/ec2
http://status.aws.amazon.com/s3-20080720.html
http://appmanager.berkeley.intel-research.net/
http://www.cs.washington.edu/research/networking/cplane/

204 Q. Yin et al.

18. Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M., Atkinson, K., Zhang, J.,
Kasera, S., Lepreau, J.: The Flexlab approach to realistic evaluation of networked
systems. In: NSDI 2007 (April 2007)

19. Shoch, J.F., Hupp, J.A.: The “worm” programs — early experience with a dis-
tributed computation. Commun. ACM 25(3), 172–180 (1982)

20. Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelligent
agents. IEEE Expert (December 1996)

21. Wallace, M.: Constraint programming. In: Liebowitz, J. (ed.) The Handbook of
Applied Expert Systems. CRC Press, Boca Raton (1997)

22. Yalagandula, P., Sharma, P., Banerjee, S., Basu, S., Lee, S.-J.: S3: a scalable sensing
service for monitoring large networked systems. In: INM 2006 (2006)

23. Yin, Q., Cappos, J., Baumann, A., Roscoe, T.: Dependable self-hosting distributed
systems using constraints. In: HotDep 2008 (December 2008)

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 205–225, 2009.
© IFIP International Federation for Information Processing 2009

How to Keep Your Head above Water While
Detecting Errors

Ignacio Laguna, Fahad A. Arshad, David M. Grothe, and Saurabh Bagchi

Dependable Computing Systems Lab (DCSL)
School of Electrical and Computer Engineering, Purdue University
{ilaguna,faarshad,dgrothe,sbagchi}@purdue.edu

Abstract. Today’s distributed systems need runtime error detection to catch er-
rors arising from software bugs, hardware errors, or unexpected operating con-
ditions. A prominent class of error detection techniques operates in a stateful
manner, i.e., it keeps track of the state of the application being monitored and
then matches state-based rules. Large-scale distributed applications generate a
high volume of messages that can overwhelm the capacity of a stateful detec-
tion system. An existing approach to handle this is to randomly sample the mes-
sages and process a subset. However, this approach, leads to non-determinism
with respect to the detection system’s view of what state the application is in.
This in turn leads to degradation in the quality of detection. We present an intel-
ligent sampling algorithm and a Hidden Markov Model (HMM)-based algo-
rithm to select the messages that the detection system processes and determine
the application states such that the non-determinism is minimized. We also pre-
sent a mechanism for selectively triggering computationally intensive rules
based on a light-weight mechanism to determine if the rule is likely to be
flagged. We demonstrate the techniques in a detection system called Monitor
applied to a J2EE multi-tier application. We empirically evaluate the perform-
ance of Monitor under different load conditions and error scenarios and com-
pare it to a previous system called Pinpoint.

Keywords: Stateful error detection, High throughput distributed applications,
J2EE multi-tier systems, Intelligent sampling, Hidden Markov Model.

1 Introduction

1.1 Motivation

Increased deployment of high-speed computer networks has made distributed applica-
tions ubiquitous in today’s connected world. Many of these distributed applications
provide critical functionality with real-time requirements. These require online error
detection functionality at the application level.

Error detection can be classified as stateless or stateful detection. In the former, de-
tection is done on individual messages by matching certain characteristics of the mes-
sage, for example, finding specific signatures in the payload of network packets.
A more powerful approach is stateful error detection, in which the error detection

206 I. Laguna et al.

system builds up knowledge of the application state by collecting information from
multiple application messages. The stateful error detection system then matches be-
havior-based rules, based on the application’s state rather than on instantaneous in-
formation. For simplicity, we refer to stateful error detection as just detection in this
paper.

Stateful detection is looked upon as a powerful mechanism for building dependable
distributed systems [1][10]. However, scaling a stateful detection system with increas-
ing rate of messages is a challenge. The increasing rate may happen due to a greater
number of application components or increasing load from existing components. The
stress on the detection system is due to the increased processing load of tracking the
application state and performing rule matching. The rules can be heavy-duty and can
impose large overhead for matching. Thus the stateful detection system has to be
designed such that the resource usage, primarily computation and memory, is mini-
mized. Simply throwing more hardware at the problem is not enough because applica-
tions also scale up demanding more from the detection system.

In prior work, we have presented Monitor [10] which provides stateful detection by
observing the messages exchanged between application components. Monitor has a
breaking point in terms of the rate of messages it has to process. Beyond this breaking
point, there is a sharp drop in accuracy or rise in latency (i.e., the time spent in rule
matching) due to an overload caused by the high incoming rate of messages. All de-
tection systems that perform stateful detection are expected to have such a breaking
point, though the rate of messages at which each system breaks will be different.
For example, the stateful network intrusion detection system (NIDS) Snort running on
a general-purpose CPU can process traffic up to 500 Mbps [15]. For Monitor, we
have observed that the breaking point on a standard Linux box is around 100 pack-
ets/sec [10].

We have shown in previous work [11] that we can reduce the processing load of a
stateful detection system by randomly sampling the incoming messages. The load per
unit time in a detection system is given by the incoming message rate × processing
overhead per message. Thus, processing only a subset of messages by sampling them
reduces the overall load. However, sampling introduces non-determinism in the detec-
tion system. In sampling mode, messages are either sampled (and processed) or
dropped. When a message is dropped, the detection system loses track of which state
the application is in. This causes inaccuracies in selecting the rules to match because
the rules are based on the application state (and the observed message). This leads to
lower quality of detection, as measured by accuracy (the fraction of actual errors that
is detected) and precision (the complement of false alarms).

1.2 Our Contributions

─ Intelligent Sampling: We propose an intelligent sampling technique to reduce the
non-determinism caused by sampling in stateful detection systems. This technique is
based on the observation that in an application’s Finite State Machine (FSM), a mes-
sage type can be seen as a state transition in multiple states. If the system selectively
samples and processes the messages with a high discriminating property, i.e., ones
that can narrow down which state the application is in, this would limit the non-
determinism.

 How to Keep Your Head above Water While Detecting Errors 207

─ Probabilistic State Determination: Even with the proper selection of messages,
there is remaining non-determinism about the application state. We propose a Hidden
Markov Model (HMM)-based technique to estimate the likelihood of the different
application states, given an observed sequence of messages, and perform rule match-
ing for only the more likely states.
─ Efficient Just-in-Time Rule Matching: We propose a technique for selectively
matching computationally expensive rules. These rules are matched only when evi-
dence of an imminent error is observed. Instability in the system, which is detected
through a light-weight mechanism, is taken as evidence of such an imminent error.

We show that the three techniques make Monitor scale to an application with a high
load, with only a small degradation in detection quality.

For the evaluation, we use a J2EE multi-tier application, the Duke’s Bank applica-
tion [12], running on Glassfish [13]. We inject errors in pairs of the combination
(component, method), where ‘component’ can be a Java Server Page (JSP), a servlet,
or an Enterprise Java Bean (EJB), and ‘method’ is a function call in the component.
The injected errors can cause failures in the web interaction in which this combination
is touched, for example, by delaying the completion of the web interaction or by pre-
maturely terminating a web interaction without the expected response to the user. Our
comparison points are Pinpoint [7] for detecting anomalies in the structure of web
interactions and Monitor with random sampling [11].

The rest of the paper is organized as follows. In Section 2 we present background
material on stateful detection. In Sections 3 and 4, we present the intelligent sampling
and HMM-based application state estimation algorithms. In Section 5 and 6 we ex-
plain our experimental testbed, experiments and results for the intelligent sampling
and HHM-based techniques. In Section 7 we present our efficient rule matching tech-
nique. In Section 8 we review related work and in Section 9 we present the conclu-
sions, limitations of this work and future directions.

2 Background

In previous work we developed Monitor, a framework for online error detection in
distributed applications [10]. Online implies the detection happens when the applica-
tion is executing. Monitor observes the messages exchanged between the application
components and thereby performs error detection under the principle of black-box
instrumentation, i.e., the application does not have to be changed to allow Monitor to
detect errors.

2.1 Fault Model

Monitor can detect any error that manifests itself as a deviation from the application’s
model and expected behavior that is given to the Monitor as input—an FSM and a set
of application-level behavior-based rules. The FSM can be generated from a human-
specified description (e.g., a protocol specification), or from analysis of application
observations (e.g., function call traces, as done here). We define a web interaction as
the set of inter-component messages that are caused by one user request. The end
point of the interaction is marked by the response back to the user. In the context of

208 I. Laguna et al.

component-based web applications, an FSM is used to pinpoint deviations in the
structure of the observed web interactions, while rules are used to determine devia-
tions from the expected normal behavior of application’s components.

2.2 Stateful Detection

Monitor architecture consists of three primary components, as shown in Fig. 1: the
PacketCapturer engine, the StateMaintainer engine, and the Rule-
Matching engine. The PacketCapturer engine is in charge of capturing the
messages exchanged between the application components, which can be done through
middleware forwarding (as done here) or through network assist (such as, port for-
warding or using a broadcast medium). When Monitor receives a rate of incoming
messages close to the maximum rate that it can handle, the PacketCapturer is
responsible for activating a sampling mechanism to reduce the workload for state
transition and rule matching [11].

An incoming mes-
sage into Monitor may
be sampled, meaning, it
will be processed (by
performing a state tran-
sition and matching
rules based on that mes-
sage), or it may be
dropped. In random
sampling, messages are
sampled randomly with-
out looking at the type
or content of the mes-
sage. As shown in [10],

under non-sampling conditions, Monitor’s accuracy and precision suffer when the rate
of incoming messages goes above a particular point which is denoted as Rth. There-
fore, random sampling is activated at any rate R > Rth, in which Monitor drops mes-
sages uniformly.

Sampled messages are passed to the StateMaintainer engine to perform state
transitions according to the FSM. For each received message, the StateMain-
tainer engine is in charge of determining which states the application may be in.
This is called the state vector and represented by ω. Here, the events are messages
from the application that are observed at Monitor. When Monitor is in non-sampling
mode, the state vector typically contains only one state (|ω|=1) since Monitor has an
almost-complete view of the events generated in the application—some states that do
not involve externally visible messages will not be revealed to Monitor, thus ω will
not always reflect the current state of the application. However, when sampling mode
is activated, Monitor loses track of the actual state of the application since it is not
observing every event generated by the application. Then, ω becomes a set of the
possible states in which the application can be in. Once a message m is sampled, ω is
updated. This is performed by observing (in the FSM) the new state (or states) to

State
Maintainer

Engine

Rule
Matching

Engine

FSM
Database

Rule
Database

Monitor

Packets Intelligent
Sampling
Random
Sampling

HMM μ

Packet Capturer
Engine

ω Alarms
msg

Fig. 1. Monitor architecture. One-sided and two-sided arrows
show unidirectional and bidirectional flow of information re-
spectively. Gray boxes indicate new components added to
Monitor in this work.

 How to Keep Your Head above Water While Detecting Errors 209

where the application could have moved, from each state in ω given m. We define this
mechanism as pruning the state vector and it is explained in further detail in Section
3.1. Typically, when ω is pruned, its size is reduced. The RuleMatching engine is
responsible for matching rules associated with the state(s) in ω. In previous work [10]
we developed a syntax for rule specification for message-based applications. We now
extend the syntax to be more flexible so that it can be applied more naturally to RPC-
style component-based applications. For detecting performance problems in distrib-
uted applications, we use a set of temporal rules that characterize allowable response
time of subcomponents, i.e., the lower bound and upper bound for response time of
each subcomponent. We consider that the issue of how to generate appropriate rules is
outside the scope of this paper. If RuleMatching engine determines that the appli-
cation does not satisfy a rule, we say the rule is flagged, implying the error is
detected.

A challenge in Monitor, when performing random sampling, is to maintain high
levels of accuracy and precision even while dropping messages. Due to the random-
ness of the sampling approach proposed in [11], we obtained a maximum accuracy of
0.7 when detecting failures in TRAM, a reliable multicast protocol. Systems running
critical services often demand higher levels of accuracy while having low detection
latency.

2.3 Building FSM from Traces

We build an FSM for the Duke’s Bank Application from traces when the application
is exercised with a given workload. A state Si in the FSM is defined as a tuple (com-
ponent, method). In the rest of the paper we use the term subcomponent to denote the
tuple (component, method). This level of granularity allows Monitor to pinpoint per-
formance problems or errors in particular methods, rather than only in components. A
state change is caused by a call or return event between two subcomponents. We
create the FSM by imposing a workload on the application which consists of as nearly
an exhaustive list of transactions supported in the application as possible. We cannot
claim this is exhaustive since it is manually done and no rigorous mechanism is used
to guarantee completeness. When we generate application traces, no error injection is
performed and we assume that design faults in the application, if any, are not acti-
vated, an assumption made in many learning-based detection systems [4][7][16]. For
large-scale distributed applications, the traces may grow large, but this does not pose
a significant problem because the process is offline and traces can be stored on terti-
ary storage and parts of them can be cached in an as-needed basis.

3 Handling High Streaming Rates: Intelligent Sampling

3.1 Sampling in Monitor

With increasing incoming message rates, Monitor opts for sampling (and dropping)
messages to maintain acceptable detection latency. When a message is dropped,
Monitor cannot determine the correct application state, resulting in an undesirable
condition, which we call state non-determinism. As an example, consider an FSM

210 I. Laguna et al.

fragment in Fig. 2. Suppose that the application is in state SA at time t1, and that a
message is dropped. From the FSM, Monitor determines that the application can be in
state SB or state SC, so the state vector ω = {SB, SC}. If another message is dropped at
time t2, ω grows to {SB, SD, SE, SF}.

Monitor’s RuleMatching engine matches rules for all the states in ω. To avoid
matching rules in incorrect states, Monitor prunes invalid states from the state vector
once a message is sampled. For example, if the current state vector is {SB, SC} and
message m2 is sampled, the state vector is reduced to {SB} because this is the only
possible transition from any state in the state vector given the event m2, assuming that
the sampled message is not erroneous. The HMM-based algorithm (Section 4) han-
dles the case when the sampled message may be erroneous.

A large state vector increases the computa-
tional cost since a larger number of potentially
expensive rules have to be matched leading to
high detection latency. For example, an expen-
sive rule we encounter in practice is checking
consistency of multiple database tables.
Worse, a large and inaccurate state vector
degrades the quality of detection through an
increase in false alarms and missed alarms.
Our goal is then to keep the state vector size
bounded so that the detection latency does not
exceed a threshold (Lth), and the detection
quality stays acceptable.

3.2 Intelligent Sampling Approach

We hypothesize that sampling based on some inherent property of messages from the
FSM can lead to a reduction in the state vector size when pruning is performed. We
have observed that messages in the application have different properties with respect
to the different transitions in the FSM that they appear in. For example, some mes-
sages can appear in multiple transitions while others appear in only one. Suppose for
example that state vector ω = {SB, SC} at time t2 following Fig. 2. If m3 is sampled,
StateMaintainer would prune ω to {SD}, while if m4 is sampled, ω would be
pruned to {SE, SF}. Thus, the fact that m3 appears in one transition while m4 appears in
two ones, makes a difference to the resulting state vector. We say therefore that m3
has a more desirable property than m4 in terms of sampling.

We use an intelligent sampling approach whereby all incoming messages are ob-
served, and a subset of messages with a desirable property is sampled; the others are
dropped. A message is observed by determining its type at the application level,
which determines the transition in the FSM. For our application, type is given by the
combination (component, method, call|return). Let us define discriminative size dm as
the number of times a message m appears in a state transition to different states in the
FSM. In the intelligent sampling approach, a message with a small dm is more likely
to be sampled. The discriminative sizes of all messages can be determined by consid-
ering the message labels on edges that are incoming into the states of the FSM.

SA

SC

SE

SD

SF

m1

m3

m4

m6

m4

SB

m2

…

…

…

…
time

t1 t2 t3

Fig. 2. A fragment of a Finite State
Machine (FSM) to demonstrate non-
determinism introduced by sampling

 How to Keep Your Head above Water While Detecting Errors 211

3.3 Intelligent Sampling Algorithm

To guarantee that the rate of messages processed by Monitor is less than Rth, it sam-
ples n messages in a window of m messages, where n < m and the fraction n/m is
determined by the incoming message rate. Now, given a window of m messages,
which particular messages should Monitor sample? Ideally, Monitor should wait for n
messages with a discriminative size less than a particular threshold dth. However,
since we do not know in advance what the discriminative sizes of messages in the
future will be, Monitor could end up with no sampled messages at all by the end of
the window. To address this, Monitor tracks the number of messages seen in the win-
dow and the number of messages already sampled in counters numMsgs and num-
Sampled respectively. If Monitor reaches a point where the number of remaining
messages in the window (m − numMsgs) is equal to the number of messages that it
still needs to sample (n − numSampled) all the remaining messages (m − numMsgs)
are sampled without looking at their discriminative sizes. We call this point the last
resort point. Before reaching the last resort point, Monitor samples only those mes-
sages with discriminative sizes less than dth; after that, it samples all remaining mes-
sages in the window. Because of lack of space we omit the pseudocode of the intelli-
gent sampling algorithm. The interested reader can find the pseudocode in [22].

4 Reducing Non-determinism: HMM-Based State Vector
Reduction

There are two remaining problems when pruning the state vector with the intelligent
sampling approach. First, when a message is sampled and the state vector is pruned,
the size of the new state vector can still be large making detection costly and inaccu-
rate. This situation arises if the FSM has a large number of states and the FSM is
highly connected, or if highly discriminative messages are not seen in a window. The
second disadvantage is that if the sampled message is incorrect, Monitor can end up
with an incorrect state vector—a state vector that does not contain the actual applica-
tion’s state. An incorrect message is one that is valid according to the FSM, but is
incorrect given the current state. For example, in Fig. 2, if state vector ω = {SB, SC},
only messages m2, m3, and m4 are correct messages. Incorrect messages can be seen
due to a buggy component, e.g., a component that makes an unexpected call in an
error condition. To overcome these difficulties, we propose the use of a Hidden
Markov Model to determine probabilistically the current application state.

4.1 Hidden Markov Model

A Hidden Markov Model (HMM) is an extension of a Markov Model where the states
in the model are not observable. In a particular state, an outcome, which is observ-
able, is generated according to an associated probability distribution.

The main challenge of Monitor, when handling non-determinism, is to determine
the correct state of the application when only a subset of messages is sampled.
This phenomenon can be modeled with an HMM because the correct state of the

212 I. Laguna et al.

application is hidden from Monitor while the messages are observable. Therefore, we
use an HMM to determine the probability of the application being in each of its states.

An HMM is characterized by the set of states, a set of observation symbols, the
state transition probability distribution A, the observation probability distribution B
(given a state i, what is the probability of observation j), and the initial state probabil-
ity distribution π. We use λ = (A, B, π) as a compact notation for the HMM.

We used the Baum-Welch algorithm [24] to estimate HMM parameters to model
the Duke’s Bank application. The HMM is trained with the same set of traces used to
build the application FSM. More details about the estimation of the HMM parameters
can be found in [22].

4.2 Algorithm for Reducing the State Vector Using HMM

We have implemented the ReduceStateVector algorithm (Fig. 3) for reducing
the state vector using an HMM. When Monitor samples a message, it asks the HMM
for the k most probable application states. Monitor then intersects the

previous state vector with the set
of k most probable states. Then an
updated state vector is computed
from the FSM using pruning (as
defined in Section 2.2), i.e., by
asking the FSM that given the set
of states from the intersection and
the sampled message, what are the
possible next states.

The HMM is implemented in
Monitor in the frontend thread, the
PacketCapturer. Thus, the
HMM observes all messages since
they are needed to build complete
sequences of observations.

The ReduceStateVector
algorithm consists of three steps:

─ Step 1: Calculate what is the
probability that, after seeing a
sequence of messages O, the
application is in each of the
possible states s1, … sN? This is
expressed as P(qt = si | O, λ).
This step produces a vector of
probabilities μt (lines 1−3).

─ Step 2: Sort the vector μt by the
probability values. This pro-
duces a new vector of probabili-
ties αt (line 4).

ReduceStateVector computes a new
state vector based on: the HMM, an
observation sequence and a previous state
vector.
Input: λ: Hidden Markov Model; O:
observation sequence O = {O1, O2,…,Ot};
ωt: application’ state vector at time t; k:
Filtering criteria for the number of
probabilities estimated by the HMM.
Output: ωt+1

Variables: μt: probability vector μt = {p1,
p2,…,pN}, where pi = P(qt = si | O, λ), for all
i in S={s1,…,sN} (the states in the FSM) and
qt is the state at time t; αt: sorted μt.

ReduceStateVector(λ, O, ωt, k):
1. μt ← ∅
2. For each i in S
3. Add P(qt = si | O, λ) to μt

4. αt ← sort(μt) by pi

5. I ← ∅
6. I ← ωt ∩ αt[1…k]
7. if (I = ∅) then
8. ωt+1 ← ωt ∪ αt[1…k]
9. else
10. ωt+1 ← I
11.return ωt+1

Fig. 3. Pseudocode for reducing state vector using
HMM’s estimate of probability of each application
state

 How to Keep Your Head above Water While Detecting Errors 213

─ Step 3: Compute a new state vector ωt+1 as the intersection of the current state
vector ωt and the top k elements in αt. By using a small k, Monitor is able to reduce
the state vector to few states. If the intersection of ωt and αt is null, we take the un-
ion of the two sets. This is a safe choice because having the intersection of ωt and
αt equal to null implies that either the HMM or ωt is incorrect. We acknowledge
that if both HMM and state vector are incorrect, this scheme will not work. How-
ever, proper training of the HMM makes a concurrent error highly unlikely, and
one that never occurred in any of our experiments. This step is executed in lines 5-
11.

Fig. 4 shows points in time when the algorithm is invoked in StateMaintainer.
FSMLookup(ω, n) calculates the new state vector from ω given that n consecutive

messages have been dropped (as
explained in Section 3.1).

The time complexity of the
algorithm is proportional to the
time in computing P(qt = si |O, λ)
for all the states, the time to sort
the array μt, and the time to
compute the intersection of ωt
and the top k elements in αt. The
vector μt can be computed in
time O(N3T), where N is the
number of states in the HMM
(and the FSM), and T is the
length of the observation se-
quence O. Sorting μt can be
performed in O(N log N), and the

intersection of ωt and αt[1…k] can be performed in O(Nk). Hence, the overall time
complexity is O(N3T).

5 Experimental Testbed

5.1 J2EE Application and Web Users Emulator

We use the J2EE Duke’s Bank Application [12] running on Glassfish v2 [13] as our
experimental testbed. Glassfish has a package called CallFlow that provides a cen-
tral function for Monitor—a unique ID is assigned to each web interaction. It also
provides caller and called component and methods, without needing any application
change.

To evaluate our solutions in diverse scenarios such as high user request rates and
multiple types of workload, we developed WebStressor, a web interactions emulator.
WebStressor takes different traces and replays them by sending each message to the
tested detection systems. Each trace contains sequences of web interactions that
would be seen in CallFlow when a user of Duke’s Bank application is executing

Time Operations in Monitor

t11 Dropped message
ωt10 ← ReduceStateVector(λ, O, ωt10, k)
ωt11 ← FSMLookup(ωt10 , 1 dropped message)

...

t16 m16 is sampled
ωt15 ← ReduceStateVector(λ, O, ωt15, k)
ωt16 is pruned from ωt15 given m16

... (Sampled messages. Last sampled
message at time t10.)

(Dropped messages. Last dropped
message at time t15.)

Fig. 4. Example of points in time when the ReduceS-
tateVector algorithm is invoked

214 I. Laguna et al.

multiple operations. WebStressor also has error injection capabilities which are ex-
plained in Section 6.3.

5.2 Pinpoint Implementation

We implemented Pinpoint [7] that proposes an approach for tracing paths through
multiple components, triggered by user requests. A Probabilistic Context Free Gram-
mar (PCFG) is used to model normal path behavior and to detect anomalies whenever
a path’s structure does not fit the PCFG. A PCFG has productions represented in
Chomsky Normal Form (CNF) and each production is assigned a probability after a
training phase. Pinpoint-PCFG is trained using the same traces from Duke’s Bank that
are used to build the FSM and to train the HMM. We call this implementation Pin-
point-PCFG in the paper.

6 Experiments and Results

In this section we report experiments to evaluate the performance of Monitor and
compare it with that of the Pinpoint-PCFG algorithm. When we refer to Monitor, we
mean baseline Monitor [10], with the addition of two techniques intelligent sampling
and HMM. The machines used have 4 processors, each an Intel Xeon 3.4 GHz with
1024 MB of memory and 1024 KB of L1 cache. All experiments are run with exclu-
sive access to the machines. We show 95% confidence intervals for some representa-
tive plots, but not all, to keep the graphs readable.

6.1 Benefits of Intelligent Sampling

We run experiments to verify our hypothesis that intelligent sampling helps in reduc-
ing the size of the state vector ω. For this, we run WebStressor with a fixed moderate
user load (8 concurrent users) and with no error injection. When a message is
dropped, ω increases or stays constant. When a message is sampled, ω is pruned and
it is passed to the RuleMatching engine.

10 20 30 40 50 60 70 80 90 100
0

10
20
30

Discrete Time

S
ta

te
 V

ec
to

r
S

iz
e Random Sampling

10 20 30 40 50 60 70 80 90 100
0

10
20
30

Discrete Time

S
ta

te
 V

ec
to

r
S

iz
e Intelligent Sampling

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Pruned State Vector Size

C
D

F
 o

f s
iz

e
of

 ω

Random Sampling
Intelligent Sampling

(a) (b)

Fig. 5. Performance results when comparing Monitor random sampling and intelligent sam-
pling. (a) Sampled values of state vector ω for Monitor with random and intelligent sampling;
(b) CDF for the pruned state vector ω with random and intelligent sampling.

 How to Keep Your Head above Water While Detecting Errors 215

In each mode, we obtained 3337 sample values of ω’s size. Fig. 5(a) shows 100
snapshots of these values for Random Sampling (RS) and Intelligent Sampling (IS)
modes. Here the size of ω is shown for every message arriving at Monitor. The high-
peaks pattern that we observe in RS mode is due to the deficiency of random sam-
pling in selecting messages with small discriminative size. In contrast we do not ob-
serve this pattern in IS mode, because it preferentially samples the discriminating
messages, producing smaller pruned state vectors ω.

Next, we measure ω’s size only after it is pruned. Recall that the pruned state vec-
tor ω is the one used for rule instantiation and matching. Hence, it is at this point that
it is critical to have a small ω. Fig. 5(b) shows the cumulative distribution function
(CDF) for the observed values of ω’s size. In IS mode, ω’s size of 1 has a higher
frequency of occurrence (about 83%) than in RS mode (60%). In contrast, all ω’s size
values > 1 have higher frequency of occurrence in RS than in IS. After being pruned,
ω can have a maximum size of 7. This is due to the nature of Duke’s Bank application
in which the maximum discriminative size of a message is 7.

6.2 Definition of Performance Metrics

We introduce the metrics that we use to evaluate detection quality. Let W denote the
entire set of web interactions generated in the application in one experimental run. For
W, we collect the following variables, I: out of W, the web interactions where faults
were injected; D: out of W, the web interactions in which Monitor detected a failure;
C: out of I, the web interactions in which Monitor detected a failure (these are the
correct detections).

Based on these variables, we calculate two metrics:

Accuracy = |C| / |I|; Precision = |C| / |D|

Accuracy expresses how well the detection system is able to identify the web interac-
tions in which problems occurred, while precision is a measure of the inverse of false
alarms in the system.

Another performance metric is the latency of detection. Let Ti denote the time
when a fault is injected and Td the time when the failure caused by the injected fault is
detected by the detection system. We define detection latency as Td – Ti. When a
delay δ is injected (emulating a performance problem in a component of the applica-
tion), δ is subtracted from the total time since it represents only a characteristic of the
injected fault and not the quality of the detection system.

6.3 Error Injection Model

Errors are injected by WebStressor at runtime when mimicking concurrent users. This
results in errors in the application traces which are fed to the detection systems. We
inject four kinds of errors that occur in real operating scenarios:

1. Response delay: a delay d is selected randomly between 100 msec and 500 msec,
and is injected in a particular subcomponent. This error simulates subcomponent’s
response delays due to performance problems.

216 I. Laguna et al.

2. Null Call: a called subcomponent is never executed. This error terminates the web
interaction prematurely and the client receives a generic error report, e.g., HTTP
500 internal server error.

3. Runtime Exception: an undeclared exception, or a declared exception that is not
masked by the application, is thrown. As in null calls, the web interaction is termi-
nated prematurely and the client receives an error report.

4. Incorrect Message Sequences: an error that occurs for which there is an exception
handler that invokes an error handling sequence. This sequence changes the normal
structure of the web interaction. We emulate this by replacing the calls and returns
in N consecutive subcomponents. The value of N is selected randomly between 1
and 5.

Of these, Pinpoint-PCFG cannot detect response delay errors. We perform compara-
tive evaluation of Monitor with Pinpoint-PCFG for the other error types.

6.4 Detecting Performance Problems

We inject delays to simulate performance problems in the set of 5 subcomponents
listed in Table 1. A category of errors that is difficult to detect is transient errors—
those that are caused by unpredictable random events and that are difficult to repro-
duce and isolate. We want to test Monitor in detecting this category of errors. In order
to mimic this scenario in our injection strategy, we inject delays only 20% of the time
a subcomponent is touched in a web interaction.

Before running the ex-
periment, we determine
the best set of parameter
values in Monitor. We
generate ROC (Receiver
Operating Characteristic)
curves by varying their
configuration parameters
(i.e., number of rules) and
the imposed load of users
to the application. Then,

we select the operational
point as the one closest to
the ideal point (0, 1); in
case of a tie, we use the
point with the better preci-
sion. Because of lack of
space we omit the ROC
curves; however, the
reader can refer to [22] for
these.

For the performance delay rules, first, we measure the average (μ) and standard

deviation (σ) of the response time from the components in the application during the

Table 1. List of subcomponents (component, method) in which
performance delays are injected

Name Method Type of Component
AccountControllerBean createNamedQuery EJB

TxControllerBean deposit EJB
/template/banner.jsp JspServlet.service servlet

/bank/accountList.faces FacesServlet.service servlet
/logon.jsp JspServlet.service servlet

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

A
cc

ur
ac

y

μ ± σ
μ ± 2σ
μ ± 3σ

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

P
re

ci
si

on

μ ± σ
μ ± 2σ
μ ± 3σ

Fig. 6. Accuracy and precision of Monitor in detecting per-
formance delays for three type of rules

 How to Keep Your Head above Water While Detecting Errors 217

training phase. We then create rules with the following thresholds for response times
in each component: μ±σ, μ±2σ and μ±3σ.

Fig. 6 shows the results of this experiment. We observe that using μ±2σ provides
the best combination of accuracy and precision. For rule types μ±σ and μ±2σ we
observe a decrease in accuracy of about 10% as concurrent users are increased from 4
to 16, and an increase in the same order of magnitude as users are increased to 24.
The reason for the increase in accuracy is due to the precision rate that decreases
rapidly after 16 concurrent users. Because of the large rate of false alarms generated
after this point, accuracy is increased as a trade-off.

We also evaluate the performance of random and intelligent sampling in detecting
performance delays. For this experiment, we use similar definitions for accuracy and
precision as in the previous experiments, but we change the granularity of detection
from web interactions to individual subcomponents. Detection at the level of a sub-
component is helpful in diagnosis—finding the root cause of the problem—since it
helps in pinpointing suspect subcomponents. The results are shown in Fig. 7(f). We
observe that accuracy and precision are higher for IS for most loads (4−16 concurrent
users). Although, for high loads (20 and 24 users), random and intelligent sampling
exhibit almost the same (poor) performance.

6.5 Detecting Anomalous Web Interactions

We evaluate Monitor’s performance in detecting anomalous web interactions by in-
jecting null calls, runtime exceptions and incorrect message sequences. We also
evaluate Pinpoint-PCFG’s performance here.

Monitor detects anomalous web interactions at the StateMaintainer. If an
event is unexpected according to the current state in Monitor’s state vector, an error is
flagged. This avoids the need for explicit rules for this type of detection. For the
Duke’s Bank application, if the correct state is Sc and the state vector after a message
is sampled and pruning is completed, is ω, then we find empirically that in all cases Sc
∈ ω. Thus, a detection happens at Monitor only if the message is incorrect, i.e., there
is an actual fault. This gives a precision value of 1 for Monitor’s detection of anoma-
lous web interactions in Duke’s Bank.

We empirically determine the best value of parameter k for the HMM-based state
vector reduction algorithm. Fig. 7(a) shows Monitor running with different values of
k while we inject anomalous web interactions. Parameter k=0 represents Monitor
running without HMM. We observe that, with no HMM, in both low and high loads,
accuracy is very low (about 0.4). Since Monitor with k > 0 performs better than with k
= 0, this validates our design choice of using an HMM. In high load, two conditions
cause Monitor to have a decreasing accuracy with increasing k. Monitor samples less
often leading to an increase in the size of ω. With large k, few states get pruned and if
the observed erroneous message is possible in any of the remaining states of ω, the
error is not detected. Second, when the erroneous message may not be sampled, the
HMM is particularly important. Increasing k effectively reduces the impact of the
HMM, since even states with low probabilities given by the HMM are considered.

For the remaining experiments, we use k=1 as it allows Monitor to have the best
accuracy in both low and high load. We determine the best configuration parameter

218 I. Laguna et al.

setting for Pinpoint-PCFG to get ROC curves under low and high loads. Pinpoint-
PCFG’s ROC curves can be found in [22].

Fig. 7(b)−(c) show the results for accuracy and precision of Monitor and Pinpoint-
PCFG. We observe that on average, Monitor’s accuracy is comparable to that of Pin-
point-PCFG. In Monitor, accuracy decreases for higher loads due to dropping more
messages in a sampling widow. As the load increases, Pinpoint-PCFG maintains a
high accuracy because it is not dropping messages—messages are being enqueued for
eventual processing. However its latency of detection suffers significantly in high
loads—it is in the order of seconds (Fig. 7(e)) while in Monitor it is in the order of
milliseconds (Fig. 7(d)).

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Parameter k

A
cc

ur
ac

y

Low Load
High Load

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

A
cc

ur
ac

y

Monitor
Pinpoint-PCFG

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

P
re

ci
si

on

Monitor
Pinpoint-PCFG

(a) (b) (c)

4 8 12 16 20 24
0

50

100

150

200

Concurrent Users

D
et

ec
tio

n
La

te
nc

y
(m

se
c)

Monitor

4 8 12 16 20 24
0

50

100

150

200

Concurrent Users

D
et

ec
tio

n
La

te
nc

y
(s

ec
)

Pinpoint-PCFG

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

Concurrent Users

RS-Accuracy
IS-Accuracy
RS-Precision
IS-Precision

(d) (e) (f)

Fig. 7. Performance results for Monitor and Pinpoint when detecting anomalous web interac-
tions. (a) Accuracy in Monitor when varying parameter k in the HMM-based state vector reduc-
tion algorithm; (b)−(c) Accuracy and precision for Monitor and Pinpoint-PCFG;
(d)−(e)Detection latency for Monitor and Pinpoint-PCFG; (f) Accuracy and Precision for Ran-
dom Sampling and Intelligent Sampling for performance delay errors.

We observe the robustness of

Pinpoint-PCFG to false positives
as it maintains on average almost
the same precision (0.9) with in-
creasing number of users. How-
ever, the precision in Pinpoint-
PCFG is lower than that in Moni-
tor of 1.0.

The high detection latency in Pinpoint-PCFG is due to the fact that the parsing al-
gorithm in the PCFG has time complexity O(L3) and space complexity O(RL2), where
R is the number of rules in the grammar and L is the size of a web interaction. In the

Table 2. Memory consumption for the compared
systems

Virtual Memory Memory in RAM
Monitor 282.27 25.53
Pinpoint-PCFG 933.56 696.06

Average Memory Usage (MB)

 How to Keep Your Head above Water While Detecting Errors 219

Duke’s Bank application we observe that the maximum length of a web interaction is
256 messages, and the weighted average size is 70. Previous work [14] has shown
that the time to parse sentences of length 40 can be 120 seconds even with optimized
parameters. Moreover, in Pinpoint-PCFG, error detection can only be performed after
the end of web interactions which also explains longer detection latencies than in
Monitor. Another cause of the high latency in Pinpoint-PCFG is the large amount of
virtual memory that the process takes (933.56 MB for a load of 24 concurrent users as
shown in Table 2). This makes the Pinpoint-PCFG process thrash.

To look into the issue of memory consumption further, we measure average mem-
ory consumption for Monitor and Pinpoint-PCFG under a load of 24 concurrent users.
Physical and virtual memory usage are collected every 5 seconds by reading the
/proc file system and averaged over the duration of each experimental run. Table 2
shows the results of this experiment.

7 Efficient Rule Matching

7.1 Motivation

We present a technique for selectively matching computationally expensive rules in
Monitor, thereby allowing it to operate under higher application message loads. The
technique is based on the observation that the computationally expensive rules do not
have to be matched all the time. Rather they can be matched when there is evidence of
system instability. Previous work [21] has shown that errors are more likely when
instability in the system is observed. For example, an increasing average response
time in a web server may indicate an imminent failure because of resource exhaus-
tion. Therefore, we use a light-weight mechanism of determining system instability to
trigger the computationally expensive rules.

Many rules can be computationally expensive both in time and space. For example,
a pattern matching rule such as calculating the convolution of two signals, as pre-
sented in [8], requires long computations, while matching strings with probabilistic
context free grammars, as in Pinpoint [7], demands a large amount of memory space.
For other rules, the system requires to re-train its model for detecting anomalies based
on newly observed data, as in semi-supervised learning techniques [23]. The re-
training is often quite expensive.

7.2 Selective Rule Matching Approach

We propose an approach for matching computationally expensive rules if evidence of
instability is observed in the system. Instability can be observed by measuring differ-
ent metrics in the application or the underlying middleware, for example, response
time, memory, or CPU usage. Manifestation of instability can be in the form of abrupt
changes in the measurements (either increasing or decreasing), or in fluctuations in
the measurements.

Our approach for selectively matching rules is as follows. Let Ct denote the condi-
tion of the system at time t. Thus, Ct can take one of two conditions of the set {stable,
unstable}; let {c+, c−} denote these conditions. Suppose that at time t, a message mt is
observed, a rule R has to be matched, and a sequence of the n previously observed

220 I. Laguna et al.

messages {mt-n , mt-n+1 ,…, mt-1} are kept in a buffer B. Then, if Ct = c−, R is matched,
otherwise, B becomes {mt-n+1,…, mt} and Monitor waits for the next message to
arrive.

The main challenge in this approach is to infer and use an accurate classifier func-
tion F mapping the universe of possible messages (i.e., system-level measurements)
to the range of system conditions C, so that the probability of catching an error when
Ct = c− and the rule R is matched is maximized. A complete study for addressing this
challenge is out of the scope of this paper and will be pursued in future work. How-
ever, we present an example in which this technique is used in Monitor for detecting a
memory leak in the Apache Tomcat web server [17] by using a simple estimator of
instability.

7.3 Memory Leak Injection

We instrumented the Apache Tomcat web server to inject a memory leak dynami-
cally. Upon receiving a request, an unused object is created with probability pleak in
the server’s thread-pool, and it is kept referenced so that it is not taken by the Java
garbage collector. The result is an increase in memory usage that can be observed
from the Java process running the server.

We perform experiments to observe the
pattern of memory consumption of the
web server in both normal conditions and
when the memory leak is injected. We use
a testbed of an e-commerce site that simu-
lates the operation of an online store as
specified by the TPC-W benchmark [18].
We use the benchmark WIPSo mixture
(50% browsing and 50% ordering) that is
intended to simulate a web site with a
significant percentage of order requests.

Fig. 8 shows the results of the experi-
ment when the probability pleak of the
memory leak injection is set to 0.5, and
when a load of 50 concurrent users is
imposed. Memory measurements are

taken in a fixed interval of 1 second for a window of 10 minutes after the server is
started.

7.4 Rule for Detecting Memory Leak Error

Previous work on software rejuvenation [19] has proposed the use of time series
analysis to model memory usage patterns in the Apache web server. In this paper, we
use time series analysis to build rules that are able to pinpoint a memory leak. In par-
ticular, the web server memory consumption is modeled as an autoregressive (AR)
moving average (MA) process ARMA(p, q). This process is formally defined as fol-
lows [20]:

0

5

10

15

20

25

30

0 2 4 6 8 10

M
em

o
ry

 u
sa

ge
 (

%
)

Time (min.)

Normal usage
Memory leak

Fig. 8. Percentage of memory usage of the
Apache Tomcat web server under normal
conditions and with a memory leak fault
injection

 How to Keep Your Head above Water While Detecting Errors 221

• A memory usage measurement Xt is an ARMA(p, q) process if for every time t,

,

where εt is the error term, C is a constant, and {ϕ1, …, ϕp} and {θ1, …, θp} are
the parameters of the model.

• The error term εt is considered to be white noise, i.e., independently and identi-
cally distributed with mean 0 and variance σ2.

We collect training data in several runs of the Apache Tomcat server for generating
two ARMA(p, q) models λ and λ′ that represent memory usage under normal condi-
tions and memory leak conditions respectively. The models are inferred by maximum
likelihood estimation by using the statistical tool R. To estimate the number of p and
q parameters that best fit the models, while keeping the number of parameters small,
we vary p and q over 1, 2, and 3. We then select the values of p and q that produce
the minimum root-mean-square (RMS) error when comparing test data and new data
generated with the models. For this, test data is labeled as being normal or erroneous
when selecting the parameters in λ and λ′ respectively. For our test-bed, p=3 and q=2
resulted in the best configuration for the models.

7.5 Rule Matching Latency Reduction

After the two models λ and λ’ are trained, we build a rule for detecting the memory
leak in the web server by observing to which model the test data fits better. The rule
takes as input a sequence A of n old observed messages, and a sequence B of n new
observed messages in which it will look for errors. Then, two simulated sequences S
and S’ are generated by using the two models λ and λ′ respectively on observations A.
Finally, S and S’ are compared to B by measuring the RMS error. If B fits better with
S’, an error is flagged by the rule indicating a possible memory leak.

We detect instability in the system by measuring the standard deviation σ of the m
previous observed memory consumption values and if it is greater than a threshold Pth

we conclude Ct = c−, the rule is matched.
Table 3 shows the results for 3

different configurations in Monitor
when the memory leak is injected in
the web server. For the three ex-
periments, n=10, m = 5, and the
same workload that we used for
training is imposed on the web
server. The initial values of 0.5 and
1.0 for σ are taken from the average
standard deviation observed in the
training data set for the web server

running under normal conditions which is around 1.2 % of memory usage. This con-
firms that, in normal conditions, memory usage variation is much less than in unstable
conditions.

Table 3. Detection coverage and average rule
matching delay for the ARMA-based rule

Rule Matching
Criteria

Memory Leak
Detected

Average Matching
Latency (msec.)

Always matched yes 19.283

σ ≥ 0.5 yes 7.115

σ ≥ 1.0 no 1.25

222 I. Laguna et al.

We notice that when the rule is always matched, the average latency is the maxi-
mum as expected, and as we increase σ, the latency decreases. This is due to an inher-
ent reduction in the chances of matching the ARMA-based rule which is more compu-
tationally expensive than evaluating σ. However, if σ is too low, the error may be
missed since the ARMA-rule may not be matched at all, as is the case when σ=1.0.

Detection of the memory leak presented here can be done by many other profiling
tools. The point behind this experiment is not to claim any novel detection capability.
Rather, it is to show how instability can be used to trigger more computationally ex-
pensive rule matching.

8 Related Work

Error Detection in Distributed Systems: Previous approaches of error detection in
distributed systems have varied from heartbeats to watchdogs. However, these de-
signs have looked at a restricted set of errors (such as, livelocks) as compared to our
work, or depended on alerts from the monitored components.

A recent work closely related to ours is Pinpoint [7]. Authors present an approach
for tracing paths from user requests and use a Probabilistic Context Free Grammar
(PCFG) to model normal path behavior as seen during a training phase. A path’s
structure is then considered anomalous if it significantly deviates from a pattern that
can be derived from the PCFG. Pinpoint however does not consider the problem of
dealing with high rates of requests. We provide a comparative evaluation of Monitor
with Pinpoint in Section 6.5. A variant of the Pinpoint work [16] uses a weighting for
long web interactions so that they are not mistakenly flagged as erroneous. This
weighting seems less useful for Duke’s Bank since the probabilities for the less likely
transitions differ significantly from the expected probability. This work also uses an
additional parameter (α) to pick a particular point in the false alarm-missed alarm
spectrum. We believe that an equivalent effect is achieved through our ROC-based
characterization.

Performance Modeling and Debugging in Distributed Systems: There is recent
activity in providing tools for debugging problems in distributed applications, notably
Project5 [8][9] and Magpie[6]. These approaches provide tools for collecting trace
information at different levels of granularity which are used for automatic analysis,
often offline, to determine the possible root causes of the problem.

Project5’s main goal is detecting performance characteristics in black-box distrib-
uted systems. In [8] models for performance delays on RPC-style and message-based
application for LAN environments are proposed—authors focus on finding causal
path patterns with unexpected timing or shape. In [9] authors present an algorithm for
performance debugging in wide-area systems. We determined that this work’s focus
is on determining the performance characteristics of different components in a com-
plete black-box manner. Since Project 5 does not assume a uniform middleware, such
as J2EE, it cannot assign a unique identifier to all messages in a causal path as they
occur. We use the GlassFish-assigned unique identifier to a path of causal request-
responses. In our work, we use both these features. However, Project5's accuracy
suffers greatly when detecting anomalous patterns under concurrent load (in fairness,

 How to Keep Your Head above Water While Detecting Errors 223

this is not the goal of the work either). Therefore, we did not perform a quantitative
comparison with Project5 for detecting performance problems (in Section 6.4).

The Magpie project [6] is complementary to our work—it is a tool that helps in
understanding system behavior for the purposes of performance analysis and debug-
ging in distributed applications. Magpie collects CPU usage and disk access for user
requests as they travel though the system components. These workload models of
request behavior can be used in Monitor to specify performance-based rules.

Stateful Intrusion Detection in High Throughput Streams: In the area of intrusion
detection, techniques have been proposed to allow network-based intrusion detection
systems (NIDS) to keep up with high network bandwidths by parallelizing the work-
load [1] and by efficient pattern matching [2]. Although distributing the detection load
in multiple machines helps, this does not solve the fundamental problem of how to
manage the resource usage in individual machines, which we address.

Sampling Techniques for Anomaly Detection: Recently there is an increased effort
in finding network failures, anomalies and attacks through changes in high-speed
network links. For example, in [3] authors propose a sketch-based approach, where a
sketch is a set of hash tables that models data as a series of (key, value) pairs; key can
be a source/destination IP address, and the value can be the number of bytes or pack-
ets. A sketch can provide accurate probabilistic estimates of the changes in values for
a key. Sampling has also been used in high-speed links as input for anomaly detection
[4], for example, for detecting denial-of-service (DoS) attacks or worm scans. How-
ever, some studies show that these sampling techniques introduce fundamental bias
that degrades performance when detecting network anomalies [5]. Our work matches
rules based on aggregated information at the application level, while this work
matches rules based on network level traffic statistics of the traffic.

9 Conclusions and Limitations

This paper presents an intelligent sampling algorithm and an HMM-based technique
to enable stateful error detection in high throughput streams. The techniques are ap-
plied and tested in the Monitor detection system and provide a high quality of detec-
tion (accuracy and precision) for a range of real-world errors in distributed applica-
tions with low detection latency. It compares favorably to an existing detection sys-
tem for distributed component-based systems called Pinpoint. We also present a tech-
nique to optimize the cost of matching computationally expensive rules for detecting
resource exhaustion. Our technique relies on triggering the expensive rules only on
detecting, through lightweight means, evidence of system instability.

The techniques were tested successfully in Dukes’s Bank (an online banking appli-
cation) and in the Apache Tomcat web server, and they can be applied to distributed
systems that are composed of multiple interacting components. In general the advan-
tage of Monitor would be the highest when messages are discriminating in terms of
state transitions to different extents in the application’s FSM.

A disadvantage of our HMM-based technique is that an application with a large
number of states can make the HMM processing too expensive. It is a subject of fu-
ture work to determine what size of the FSM would cause a cross-over beyond which

224 I. Laguna et al.

HMM execution will have to be done with an incomplete sequence of messages,
which will call for a novel algorithm itself. Another limitation of Monitor is that in
sampling mode some states may not be examined. If such a state happens to contain
the error condition, Monitor will miss the error. In future work we will address this
problem by developing a sampling scheme that allows Monitor to preferably sample
messages (or sequence of messages) that are likely to point to errors in the applica-
tion. We will also work on automatic generation of rules from traces that can be ob-
tained in previous runs of the applications, and on scaling the matching of different
computationally expensive rules.

Acknowledgements

The authors would like to thank Patrick Reynolds for discussions explaining the pow-
ers and limits of Project5’s algorithms, and Harpreet Singh of Sun Microsystems for
his help in understanding and instrumenting CallFlow in the Glassfish server.

References

[1] Kruegel, C., Valeur, F., Vigna, G., Kemmerer, R.: Stateful intrusion detection for high-
speed network’s. In: IEEE Symp. on Security and Privacy (2002)

[2] Jiang, W., Song, H., Dai, Y.: Real-time Intrusion Detection for High-speed Networks.
Computers & Security 24(4), 287–294 (2005)

[3] Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: Meth-
ods, evaluation, and applications. In: IMC 2003 (2003)

[4] Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies Using Traffic Feature Distribu-
tions. ACM SIGCOMM Comput. Commun. Rev. 35(4) (October 2005)

[5] Mai, J., Chuah, C., Sridharan, A., Ye, T., Zang, H.: Is Sampled Data Sufficient for
Anomaly Detection? In: IMC 2006 (2006)

[6] Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Extraction
and Workload Modeling. In: USENIX OSDI (2004)

[7] Chen, M.Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., Brewer, E.:
Path-based failure and evolution management. In: USENIX NSDI (2004)

[8] Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Perform-
ance debugging for distributed systems of black boxes. In: ACM SOSP (2003)

[9] Reynolds, P., Wiener, J.L., Mogul, J.C., Aguilera, M.K., Vahdat, A.: WAP5: black-box
performance debugging for wide-area systems. In: WWW 2006 (2006)

[10] Khanna, G., Varadharajan, P., Bagchi, S.: Automated online monitoring of distributed
applications through external monitors. IEEE Trans. on Dependable and Secure Comput-
ing 3(2), 115–129 (2006)

[11] Khanna, G., Laguna, I., Arshad, F.A., Bagchi, S.: Stateful Detection in High Throughput
Distributed Systems. In: SRDS 2007 (2007)

[12] The Java EE 5 Tutorial (September 2007),
http://java.sun.com/javaee/5/docs/tutorial/doc/

[13] GlassFish: Open Source Application Server (2008),
https://glassfish.dev.java.net/

[14] Klein, D., Manning, C.D.: Parsing with treebank grammars. Assoc. for Computational
Linguistics (2001)

 How to Keep Your Head above Water While Detecting Errors 225

[15] Schuff, D.L., Pai, V.S.: Design Alternatives for a High-Performance Self-Securing
Ethernet Network Interface. In: IPDPS 2007 (2007)

[16] Kiciman, E., Fox, A.: Detecting application-level failures in component-based Internet
services. IEEE Trans. Neural Networks 16(5), 1027–1041 (2005)

[17] Apache Tomcat: An Open Source JSP and Servlet Container,
http://tomcat.apache.org/

[18] TPC-W Benchmark, http://www.tpc.org
[19] Grottke, M., Li, L., Vaidyanathan, K., Trivedi, K.S.: Analysis of Software Aging in a

Web Server. IEEE Trans. on Reliability 55(3), 411–420 (2006)
[20] Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. (1998)
[21] Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: Black-Box Failure Prediction in

Distributed Systems. In: IPDPS (2007)
[22] Laguna, I., Arshad, F.A., Grothe, D.M., Bagchi, S.: How To Keep Your Head Above

Water While Detecting Errors. ECE Technical Reports, Purdue University,
http://docs.lib.purdue.edu/ecetr/379

[23] Wu, Y.S., Bagchi, S., Singh, N., Wita, R.: Spam Detection in Voice-Over-IP Calls
through Semi-Supervised Clustering. In: IEEE/IFIP DSN 2009 (2009)

[24] Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE 77(2) (February 1989)

PAQ: Persistent Adaptive Query Middleware
for Dynamic Environments

Vasanth Rajamani1, Christine Julien1, Jamie Payton2,
and Gruia-Catalin Roman3

1 The University of Texas at Austin
{vasanthrajamani,c.julien}@mail.utexas.edu

2 The University of North Carolina, Charlotte
payton@uncc.edu

3 Washington University in Saint Louis
roman@wustl.edu

Abstract. Pervasive computing applications often entail continuous
monitoring tasks, issuing persistent queries that return continuously up-
dated views of the operational environment. We present PAQ, a mid-
dleware that supports applications’ needs by approximating a persistent
query as a sequence of one-time queries. PAQ introduces an integration
strategy abstraction that allows composition of one-time query responses
into streams representing sophisticated spatio-temporal phenomena of
interest. A distinguishing feature of our middleware is the realization
that the suitability of a persistent query’s result is a function of the
application’s tolerance for accuracy weighed against the associated over-
head costs. In PAQ, programmers can specify an inquiry strategy that
dictates how information is gathered. Since network dynamics impact
the suitability of a particular inquiry strategy, PAQ associates an intro-
spection strategy with a persistent query, that evaluates the quality of
the query’s results. The result of introspection can trigger application-
defined adaptation strategies that alter the nature of the query. PAQ’s
simple API makes developing adaptive querying systems easily realiz-
able. We present the key abstractions, describe their implementations,
and demonstrate the middleware’s usefulness through application exam-
ples and evaluation.

1 Introduction

Computing and communication have undergone a dramatic change with the
introduction of mobile devices and sensor networks, enabling new applications
characterized by a tight embedding of computation to the environment, dynamic
network topologies, and the physical distribution of application components. The
ad hoc nature of such networks aligns with fluid applications that must respond
to rapid and frequent changes. As such, applications are often designed to mon-
itor changes in information or conditions in the surrounding environment. As
examples, an application on a construction site may monitor for the presence of
a hazardous materials leak to ensure safety conditions, and a driver’s navigation

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 226–246, 2009.
c© IFIP International Federation for Information Processing 2009

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 227

system may monitor a network of vehicles to detect traffic conditions that could
impact the planned travel route.

Programming applications that monitor information across an open and
rapidly changing network can be challenging. A persistent query is an abstraction
that can simplify the development of applications that require continuous mon-
itoring. A persistent query allows a programmer to describe the data of interest
to the application without requiring him to specify network communication de-
tails. At the abstract level, a persistent query may be defined as the continuous
reporting of relevant state changes in a dynamic network. However, accurate
evaluation of a persistent query that continuously reports all state changes is
feasible only in relatively static networks; the cost of continuous monitoring is
prohibitive in the face of networks that exhibit rapid change.

To support application development using persistent queries, we introduce the
Persistent Adaptive Query (PAQ) middleware. PAQ introduces strategies that
approximate a persistent query using a sequence of reports generated by suc-
cessive one-time queries, i.e., queries evaluated once at a given time over some
portion of the network. Although query processing systems exist which execute
long-lived queries in this manner [1,2,3,4], the results are typically presented to
the application in a traditional static database format. In contrast, PAQ presents
the results in a way that more closely simulates continuous monitoring, convey-
ing the dynamic and streaming nature of the persistent query. Key to supporting
this is a new abstraction called an integration strategy, which specifies how the
history generated by consecutive one-time queries is transformed into a seman-
tically precise approximation of the corresponding persistent query. Integration
strategies go beyond capturing simple aggregation schemes, such as those in [1,3],
allowing the programmer to specify compositions of one-time query results that
relate to spatial, temporal, and semantic properties of the collected information.
For example, a developer can specify an integration strategy in which the result
delivered to a construction site supervisor shows materials that were not used
throughout the day (i.e., the result includes data items that remained available
and unchanged throughout the execution of a persistent query).

A key insight in our work is that the suitability of an inquiry strategy, which
controls when, how, where, and what type of one-time queries are issued, depends
on the application’s needs with respect to overhead and the desired degree of ac-
curacy in the approximated persistent query result. For example, an application
that requires a high degree of accuracy and can tolerate significant overhead may
employ a query that floods the entire network, while an application with stricter
overhead constraints may employ an inquiry strategy that randomly samples
a set of network nodes. To balance these tradeoffs, PAQ allows an application
developer to specify an inquiry strategy that is best suited to serve the applica-
tion’s needs. More important, however, is the realization that the suitability of
the inquiry strategy changes as the dynamics of the network change. Therefore,
PAQ provides a programming abstraction called an introspection strategy, which
assesses properties of a persistent query’s execution as well as returned results
to determine its suitability. For example, an introspection strategy may use the

228 V. Rajamani et al.

locations of responding hosts to determine if the query adequately covers a de-
sired area. Based on the value of such introspection metrics, an application can
use an adaptation strategy to dynamically adjust its inquiry strategy.

In this paper, Section 2 reviews related work on query processing and adapta-
tion. Section 3 presents an overview of the PAQ middleware. Details on PAQ’s
abstractions for query execution and appear in Section 4, while Section 5 de-
scribes abstractions related to adapting query execution. Section 6 describes
our prototype implementation using two application examples, and Section 7
presents a performance evaluation. Section 8 concludes.

2 Related Work and Motivation

In the sensor networks and database communities, several query processing sys-
tems provide some version of persistent queries [1,2,3]. Persistent queries (also
called “continuous queries”) are typically implemented either as 1) a continuous
push of updated data from sensors to a collector with queries executed over the
collected data, or 2) as a sequence of one-time queries periodically propagated
over the network. The “push” approach requires maintenance of a distributed
data structure, which can be costly in dynamic settings. In addition, this method
often requires that a query issuer interact with a collector that is known in ad-
vance and reachable at any instant, which is often an unreasonable assumption.
Therefore, we think of a persistent query as being approximated by a sequence
of one-time queries issued with a given frequency from any node.

Researchers have recognized that a query’s environment changes over time
and that query processing should adapt [5]. The focus is typically to change the
order of query operations to optimize for the dynamics. For example, Continuous
Queries (CACQ) [6] relies on eddies [7] to determine the order in which tuples are
processed by different operators. Similarly, SteamMon [8] adapts the query plan
to accommodate arbitrary changes in the data stream. These approaches use
system-defined adaptations. Alternate approaches use a model that suppresses
the amount of data collected from the network. In model-driven approaches [9],
a local model of the environment is constructed and used to answer queries.
The model obtains data from the network only when it cannot answer a query.
Adaptive filters [10] uses a model of the network to adjust the rate of updates
that stream from each node in the network to a collector as part of a persistent
query; the adjustment is based on acceptable tradeoffs between an application’s
tolerance of numerical imprecision and the current cost of sending updates. A
centralized coordinator periodically adjusts the bounds of each update filter on
each node to suit application needs. Such model-based approaches are not well-
suited for dynamic environments because they are computationally expensive.
Also, these systems lack non-relational operators for the temporal analysis.

None of the above approaches to adaptive query processing provide gen-
eral support for dynamically adapting a persistent query based on application-
specified strategies. For example, while using numerical precision bounds as a
trigger for adaptation is useful, support is still needed for expressing richer types

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 229

of adaptation triggers, such as “does the query cover an adequate area of the net-
work”, that would be useful in applications deployed in dynamic environments.
We focus on providing the tools required to expose information about changes
taking place in a dynamic environment and the ability to respond to them.

In general, this ability to inspect and act is called reflection [11,12], and the
PAQ middleware embodies our effort to systematically provide abstractions for
reflection on persistent queries in dynamic networks. Consequently, we provide
programming abstractions that support the construction of applications that
dynamically evaluate the cost of executing a query in the current environment
and adjust the query’s processing according to the application’s needs.

3 A Middleware for Persistent Query Processing

A persistent query should provide a reflection of the “ground truth,” the actual
state of the world during query execution. This is equivalent to a complete
picture of all of the states of the environment that exist during the persistent
query’s execution. We approximate the results by modeling a persistent query
as a sequence of non-overlapping one-time queries, or queries that appear to
be issued over a single state of the environment. In this section, we introduce
foundational concepts to create and control this kind of approximated persistent
query. We begin by reviewing a model of one-time query execution [13] and then
use the model to precisely define the PAQ perspective and its abstractions.

3.1 A Model of One-Time Query Execution

A mobile ad hoc network is a closed system of hosts, each represented as a triple
(ι, ζ, ν), where ι is the host’s unique identifier, ζ is its context, and ν is its data
value. In a simple model, the context can be simply a host’s location, but it can
be extended to include a list of neighbors, routing tables, and other information.
A snapshot of the global abstract state of a network, a configuration, C, is simply
a set of these host tuples, one for every host in the network.

We capture network connectivity through a binary logical connectivity rela-
tion, K, to express the ability of a host to communicate with a neighbor. Using
the values in a host triple, one can derive physical and logical connectivity re-
lations, e.g., if a host’s context, ζ, includes the host’s location, a connectivity
relation can be defined based on communication range.

The environment evolves as the network topology changes, value assignments
occur, and hosts exchange messages. Network evolution is modeled as a state
transition system where the state space is the set of possible configurations and
transitions are configuration changes. A single configuration change consists of
a: 1) neighbor change: the connectivity relation, K changes; 2) value change: a
single host changes its stored data value; or 3) message exchange: a host sends
a message that is received by one or more neighboring nodes.

We assign subscripts to configurations (e.g., C0, C1, etc.) and use Ki to refer
to the connectivity relation for configuration i. We define query reachability in-
formally, to determine whether it was possible to deliver a one-time query to and

230 V. Rajamani et al.

receive a response from some host h within the sequence of configurations [13].
A host’s response to a one-time query is a copy of its host tuple. A one-time
query’s result (ρ), then, is a subset of a configuration: it is a collection of host
tuples that constitute responses to the query. No host in the network is repre-
sented more than once in ρ, though it is possible that a host is not represented
at all (e.g., because it was never reachable from the query issuer).

3.2 The PAQ Perspective

Ideally, a persistent query re-

(

Fig. 1. A Persistent Query Framework

flects the ground truth. An exact
reflection of the ground truth is
equivalent to acquiring all of the
configurations (C0 . . . Cj) of the
persistent query’s execution. Since
providing such accuracy is feasible
only in relatively static networks,
we extend our model to approxi-
mate a persistent query as a se-
quence of non-overlapping one-time
queries. Fig. 1 provides an overview
of our middleware model, described
below.

In evaluating a persistent query’s component one-time queries, it is important
to understand the behavior of an underlying query processing protocol. For ex-
ample, flooding may be expensive but may achieve strongly consistent results,
while randomly sampling a few nodes provides much weaker consistency, but is
much less expensive. The manner in which we query the environment, the in-
quiry strategy, includes not only the one-time query protocol (called the inquiry
mode) but also the frequency of the one-time queries.

A persistent query’s result is formed from the component queries using an
integration strategy, a function f evaluated (and reevaluated) over the sequence
of one-time query results. We denote the results of the sequence of one-time
queries as ρ0 . . . ρi, and the result of a persistent query after the results of the
ith component query have been incorporated as πi = f(ρ0 . . . ρi). This result is
still a set of host tuples, but without the constraint that the set contain only
one result from any single host.

As application requirements and conditions change, applications must deter-
mine the suitability of their particular inquiry strategy. We define an introspec-
tion strategy also as a function over host tuples. However, in the introspection
strategy, a function, d, generates not a set of host tuples but instead a value for
a metric that describes the quality of that history. Based on the value of this
metric, an application can specify adaptation strategies that govern how the in-
quiry strategy is changed. In the remainder of this paper, we discuss how inquiry,
integration, introspection, and adaptation work together to enable applications
to process expressive persistent adaptive queries over dynamic mobile networks.

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 231

(a) (b) (c)

A

(d) (e)

Fig. 2. Query protocols. The query issuer has a dark boundary. (a) Sample network.
(b) Flooding. (c) Probabilistic protocol. Every node within the constraint (3 hops) that
receives the packet retransmits it to 2 randomly selected neighbors. (d) Location based
protocol that queries the nodes in region A. (e) Random protocol that queries 5 nodes.

4 Two Abstractions for Persistent Query Processing

We next present PAQ abstractions that are essential to creating a persistent
query result. Using these, applications can specify how to retrieve information
from the network and how to combine intermediate results over time.

4.1 Inquiry Strategies

A persistent query’s inquiry strategy comprises the inquiry mode, or the protocol
used to disseminate the one-time queries, and the frequency with which one-time
queries are issued, represented as a tuple 〈I, freq〉. The PAQ interface is:

Listing 1: InquiryStrategy

public class InquiryStrategy{
public InquiryStrategy(InquiryMode mode, int frequency);

}

Defining an inquiry mode effectively entails generating a routing protocol that
defines how the query and its replies propagate in the network. Fig. 2 depicts a
sample network and example inquiry modes. The most common type of queries
in mobile networks are flooding queries and their derivatives that reduce over-
head by restricting the query’s scope [1,14,15]. Fig. 2(b) depicts a simple scoped
flooding query restricted to a two hop radius around the query issuer. Several ap-
proaches explore parameterizing flooding protocols using probabilities [16,17,18],
as shown in Fig. 2(c). Location information can direct queries to particular re-
gions (Fig. 2(d)). Finally, a random sampling algorithm randomly selects k hosts
to send the query, as depicted in Fig. 2(e). The network paths used to commu-
nicate in random sampling depend on the network’s connectivity. In all these
cases, significant differences between successive one-time queries can occur even
if they are issued close in time using the same inquiry mode. Variance stems

232 V. Rajamani et al.

from randomness, network dynamics, and even environmental factors. These as-
pects can all influence the suitability of a particular inquiry mode to a particular
persistent query.

To specify an inquiry mode in PAQ, we rely on the insight of previous work [13],
which showed that inquiry modes can be described as a combination of a forward
and a respond function; these functions use a host’s state to determine whether
the host should propagate the query and respond to it, respectively. In PAQ, we
leverage these abstractions to allow developers to create new inquiry modes as
a combination of forwards and responds functions.

4.2 Integration Strategies

A PAQ application can define an integration strategy, which dictates how a
history of one-time query results are transformed into a persistent query result.
An integration strategy’s execution is managed by the PAQ middleware. As we
will see, since a one-time query’s result is a set of host tuples, a natural way to
express integration is through the use of set operations.

In the PAQ middleware, an application developer can introduce a new inte-
gration strategy by implementing the IntegrationStrategy interface:

Listing 2: IntegrationStrategy

public interface IntegrationStrategy{
QueryResult integrate(Vector<QueryResult> history);

}

In the above, history is the complete set of historical one-time query results.
Next, we present a set of integration strategies; this set is not exhaustive, but
instead demonstrates PAQ’s ability to address the needs of a variety of queries.

The simplest way to get a persistent query result from a sequence of one-time
queries’ results is to simply return all results to the application. Such cumulative
integration is useful when a persistent query is intended to generate a picture
of all results available over the query’s lifetime. For example, on a construction
site, the supervisor may want to monitor the identities of all workers and visitors
to the site. In this case, the persistent query result is: πi = πi−1∪ρi. Cumulative
integration is depicted in Fig. 3(a).

A cumulative integration strategy that uses only a specified window of the
history of one-time query results to construct a persistent query result can be
expressed by providing an implementation for the IntegrationStrategy in-
terface, and, most importantly, defining the integrate method1:
1 We provide only this single example of an integration strategy implementation due

to space constraints. Section 6 demonstrates their use, and the complete PAQ im-
plementation can be found at
http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 233

component query results (i) persistent query
result (i)

(a)

component query results (i) persistent query
result (i)

(b)

Fig. 3. Cumulative Integration (a) and Stable Integration (b). The query issuer is
white. Other colors indicate data values. Between the first two queries, two nodes were
added and two departed. Between the last two queries, two nodes’ values changed.

Cumulative integration may result in delivering an overwhelming amount of data
to an application, much of which may not be required. More tailored strategies
may better serve the needs of specific applications; we give examples below.

Stable Integration (Fig. 3(b)). A stable integration gives the results that have
not changed during the query. A construction supervisor may want to know
which materials are not commonly used and thus available for reallocation. A
stable integration’s persistent query result is: πi = πi−1∩ρi. This result depends
only on the result at the previous stage and the result of the current query.

Additive and Departure Integration (Fig. 4). Two additional integrations
collect results that have added or departed since the start of the query. The
former allows the construction supervisor to monitor materials that have been
delivered, while the latter allows him to keep track of assets that have been
consumed. An additive integration is the difference between the current result
and the first result: πi = ρi−ρ0. A departure integration is the difference between
the first and current results: πi = ρ0−ρi. These compare results for two instances

Listing 3: WindowedCumulativeIntegration

public QueryResult integrate(Vector<QueryResult> history){
//omitted: define top and bottom of history window
QueryResult temp = new QueryResult();

for(int i = top; i>=bottom; i--){
QueryResult nextResult = history.elementAt(i);
Vector<HostResult> results = nextResult.getResults();
for(int j = 0; j < results.size(); j++){
if(!temp.getResults().contains(results.elementAt(j)))
temp.addResult(results.elementAt(j));

}
}
return temp;

}
}

234 V. Rajamani et al.

component query results (i) persistent query
result (i)

(a)

component query results (i) persistent query
result (i)

(b)

Fig. 4. Additive Integration (a) and Departure Integration (b)

in time; they cannot collect transient changes. More sophisticated (and therefore
potentially more expensive) transient integrations can capture these semantics.

Transient Additive and Departure Integration (Fig. 5). Transient additive
integration provides a complete view of all assets added to the site, even if
they were subsequently consumed: πi = (πi−1 ∪ ρi) − ρ0. Transient departure
integration monitors results that departed, even if they returned. For example,
a construction supervisor may keep track of tool usage since frequently used
equipment may require maintenance. Recursively, this is: πi = πi−1 ∪ (ρ0 ∩
(ρi−1 − ρi)). A straightforward extension would count the number of times a
particular result departed, the result πi being a set of pairs.

component query results (i) persistent query
result (i)

(a)

component query results (i) persistent query
result (i)

(b)

Fig. 5. Transient Additive Integration (a) and Transient Departure Integration (b)

Returns Integration (Fig. 6). A re-

component query results (i) persistent query
result (i)

Fig. 6. Returns Integration

turns integration gives exactly those
results that departed, but have since
returned; this could give a construction
site supervisor a picture of all of the
tools used today.
The returns integration is more difficult
to state in terms of previous persistent
query results, but the result is directly

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 235

related to a transient departure integration. A returns integration simply checks
whether a departed result is present in the current query result:

πi = πi−1 ∪ 〈set p : p ∈ ρi ∧ p ∈ πt departs
i−1 :: p〉2

The negation of this could monitor tools that went missing during the query.
This example demonstrates the power of integration; by defining fundamental
integration strategies, new strategies can be defined.

5 Two Abstractions for Persistent Query Adaptation

Different inquiry and introspection strategies entail different tradeoffs. A pro-
grammer must be able to evaluate these tradeoffs in light of his application
needs. We describe PAQ’s two abstractions for query adaptation: introspection
and adaptation. The former specifies when to adapt and the latter defines how.

5.1 Introspection Strategies

We define an introspection strategy as the use of information about a persistent
query’s execution to determine how well-suited the associated inquiry strategy
is. An introspection strategy examines the persistent query’s history and com-
pares it to an idealized result3. We model introspection as a function d over the
component query results and the ideal result; d maps to a single numeric value
that conveys the quality of the result; the range of d must be a partial ordering.
The application also defines a threshold δ that is the application’s tolerance for
the introspection metric. Although introspection strategies may often be simi-
lar to integration strategies, the purpose is fundamentally different. While the
result of integration answers an application-level question, the result of intro-
spection measures the quality of that answer. In PAQ, an application developer
can introduce a new introspection strategy through the following interface:

Listing 4: IntrospectionStrategy Interface

public interface IntrospectionStrategy{
double introspect(Vector<QueryResult> history);

}

Environmental Introspection Metrics. Introspection can determine the qual-
ity of a persistent query with respect to a desired property of the execution envi-
ronment, as captured by the context (ζ) for each host tuple. In general, this kind
2 In the three-part notation: 〈op quantified variables : range :: expression〉, the vari-

ables from quantified variables take on all possible values permitted by range. Each
instantiation of the variables is substituted in expression, producing a multiset of
values to which op is applied. If no instantiation of the variables satisfies range, the
value of the three-part expression is the identity element for op, e.g., true if op is ∀.

3 In this section, we expand on concepts developed in [13] for persistent queries.

236 V. Rajamani et al.

of distance metric can be expressed as d = (γ,P), where γ is the ideal property
and P is a function over the history of query results. The context-aware com-
puting community has performed introspection over context data successfully in
the past. For example, context-aware tour guides adapt displays according to a
tourist’s location and interests [19]. Consider the following example of environ-
mental introspection in the PAQ middleware.

Spatial Coverage Introspection. Applications may require queries to provide
sensing coverage of a physical area. For example, a persistent query that monitors
a chemical’s dissipation across a construction site to ensure readings are within
safety guidelines will have to acquire readings from across the entire site. We
can determine the spatial coverage achieved by the persistent query using the
location information included in the context associated with query results. We
can then compare this achieved spatial coverage to the desired spatial coverage
to determine whether or not the inquiry strategy is appropriate in the current
operational environment. The distance metric can be expressed simply as the
difference between the achieved spatial coverage region s and the ideal region
(i.e., d = |ideal − s|).

For example, a construction supervisor may describe the desired coverage area
as a circle centered at some point on the site. For each component query, we can
find the radius of the region by finding the maximum distance between a pair of
points using the location information λ in the context variable ζ:

r = 〈max ζ.λ, ζ′.λ′, i : (ι, ζ.λ, ν) ∈ ρi ∧ (ι, ζ′.λ′, ν) ∈ ρi ::| ζ.λ − ζ′.λ′ |〉

We can then find the center of the circle; using the center of the spatial coverage
area and the radius, we can plot the actual circular coverage area achieved by
the component query. We can then determine the amount of overlap between
the circle that represents the achieved spatial coverage region and the circle that
represents the ideal spatial coverage region.

Semantic Introspection Metrics. The quality of a query can also be assessed
based on data collected; we call this semantic introspection. These metrics are
computed over the data values (ν) in result’s host tuples. We give the implemen-
tation of the introspect method for a simple semantic discovery metric. Here,
the introspection metric evaluates to 1 if a specified value is found in the history
of query results and to 0 otherwise. We model the complete history of results as
always being provided to an introspection strategy, even if the introspection only
uses part of the history (in this case the most recent result). In this strategy, the
variable value is the target value that triggers adaptation.

This metric could be used in a construction site supervisor’s safety moni-
toring application to trigger adaptation from a low-overhead inquiry strategy
like random sampling to a flooding inquiry with higher accuracy when a dan-
gerous chemical reading is discovered. Semantic introspection metrics like this
one, however, are not limited to evaluation over data values of direct interest
to an application. Instead, these metrics can be evaluated over any data values
collected for the purpose of measuring the quality of the query’s execution.

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 237

Listing 5: SemanticDiscoveryIntrospection

double introspect(Vector<QueryResult> history)
QueryResult newResult = history.elementAt(history.size()-1)
Vector<HostResult> results = newResult.getResults();
for(int i = 0; i < results.size(); i++){
if(results.elementAt(i).getValue().equals(value))

return 1;
}
return 0;

}

Each of our integration strategies can be translated into a semantic introspec-
tion metric that quantifies the kinds of changes that occur. In general, this is
captured by quantifying the difference between the query result at stage k and
a windowed history of previous results. For example, we can define an intro-
spection metric based on stable integration. The interesting part of this metric
describes an evaluation over the history of results; here, P is defined as:

P =| 〈set ν : (ι, ζ, ν) ∈ ρk :: ν〉 −
k−1⋃
i=j

〈set ν : (ι, ζ, ν) ∈ ρi :: ν〉 |

where k is the current stage of the persistent query, and 0 ≤ j < k − 1.

Data Change Rate Introspection. In many cases, the suitability of an in-
quiry strategy depends on the data dynamics. Our data change rate introspection
measures the rate at which values change over time. For example, if the data
values in the network are relatively stable, an expensive flooding based high fre-
quency strategy may not be necessary. Similarly, we define additive data change
rate introspection as a running percentage of data values that have been added
to the persistent query’s result. The introspection metric relates to the use of
the history of results to describe the achieved quality in defining P :

i∑
j=i−k+1

| 〈set ν : (ι, ζ, ν) ∈ ρj :: ν〉 − 〈set ν : (ι, ζ, ν) ∈ ρj−1 :: ν〉
〈set ν : (ι, ζ, ν) ∈ ρj :: ν〉 |

k

When k = i, this measures the rate since the beginning of the persistent query.
This introspection can be specified for departures and changes in a similar fash-
ion. In measuring the rate of change due to newly arriving hosts, we instead sum
the number of data values associated with new unique host identifiers.

5.2 Adaptation Strategies

Applications can use introspection to assess the quality of the persistent query’s
reflection of the environment. If the persistent query’s result does not meet
the application’s requirements, adaptation strategies can be used to change the
persistent query to achieve, for example, higher quality results or to process the
persistent query at a lower cost. In general, an adaptation strategy is:

238 V. Rajamani et al.

〈〈I, freq〉, d, δ+/−, 〈I∗, freq∗〉〉,
where 〈I, freq〉 is the persistent query’s current inquiry strategy, d is the intro-
spection strategy used when the persistent query uses this particular inquiry
strategy, and δ+/− is a threshold on the value resulting from applying d to the
history of one-time query results. If the superscript on δ is +, the adaptation is
triggered if the value of d exceeds δ; if the superscript is −, then the adaptation
is triggered if the value of d falls below δ. The persistent query switches to the
new inquiry strategy, 〈I∗, freq∗〉, when the computed value of the introspection
strategy, d goes either above or below the threshold δ.

As a simple example of how an adaptation strategy could be employed, con-
sider a persistent query using the basic flooding inquiry mode in which the
component one-time queries are issued every 10 seconds. The application may
associate with this persistent query an introspection strategy that changes the
frequency of the one-time queries if the rate of change between the component
queries grows too large. This adaptation policy would be defined as:

〈〈Iflooding , 10s〉, ddata change rate , 0.05+, 〈Iflooding , 5s〉〉
where the initial inquiry strategy 〈Iflooding , 10s〉 adapts to be 〈Iflooding , 5s〉

when the data rate of change introspection strategy indicates a greater than 5%
rate of change in the data reported for successive one-time queries.

To define adaptation strategies in the PAQ middleware, an appli-
cation developer instantiates an AdaptationStrategy that com-
prises a set of AdaptationPolicy instances. Specifically, to create an
AdaptationStrategy, the interface presented to the developer is:

Listing 6: AdaptationStrategy

public class AdaptationStrategy{
public AdaptationStrategy();
public addAdpatationPolicy(AdaptationPolicy toAdd);
public removeAdpatationPolicy(AdaptationPolicy toRemove);

}

The interface to construct an AdaptationPolicy is:

Listing 7: AdaptationPolicy

public class AdaptationPolicy{
public AdaptationPolicy(InquiryStrategy start,

IntrospectionStrategy introspect,
double threshold, InquiryStrategy end);

}

More complex realizations of adaptation policies are also possible; for example,
the adaptation may change not only the inquiry but also the integration strategy.

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 239

6 The PAQ Middleware: Example Applications

This section describes our Persistent Adaptive Query (PAQ) Middleware and
demonstrates its use and performance through a pair of application examples.

6.1 Monitoring Hazardous Conditions

We first explore an application for an instrumented construction site that would
allow monitoring recording, and reacting to the presence of a dangerous volatile
organic compound (VOC). If a VOC leak occurs, the area of the incident may
spread as liquid chemicals spill and as airborne droplets are released. A site
supervisor wants emergency response crews to have as much and as accurate
information about the incident as possible to facilitate containment and response.

The application issues a persistent query over sensors scattered across the con-
struction site. If there is not a high risk for or evidence of a leak, the application
should be conservative in its use of network resources to perform background
monitoring of hazardous materials. So the query initially uses random sampling
with a low frequency to sample over the entire construction site. If the query
detects a dangerous concentration, the supervisor requires additional informa-
tion to determine if the reading is anomalous or indicative of an actual leak.
Therefore, this query will use introspection for detection of a particular value (a
high concentration) and will adapt the query to a much more frequent flood of
the entire site to attempt to corroborate the initial detection. To summarize:

– Inquiry strategy: random sampling with a low probability (e.g., k = 0.5),
low frequency (e.g., 5 seconds)

– Integration strategy: windowed cumulative integration, to acquire all con-
centrations that were sampled over the last 20 seconds

– Introspection strategy: semantic discovery of any dangerous reading
– Adaptation strategy: upon detection of a value over the threshold, change

the approach to flood the network with high frequency

In the PAQ middleware, defining this persistent query requires instantiating each
of the strategies, and creating and starting the persistent query.

Listing 8: Initial Query

private void startQuery(){
myInquiry = new Inquiry(new RandomSampling(0.5), 5000);
myIntegration = new WindowedCumulativeIntgration(4);
myIntrospection =

new SemanticDiscoveryIntrospection(new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, initialAdaptation);

}

240 V. Rajamani et al.

The initial adaptation (initialAdaptation) takes the persistent query
from this query strategy to its second phase. In this second phase, the application
is alerted to a potential hazardous leak and begins a more expensive but robust
detection to corroborate the initial detection. This new query is:

– Inquiry strategy: flooding with a high frequency (e.g., 0.5 seconds)
– Integration strategy: cumulative integration, to acquire all concentrations

sampled since adapting the persistent query
– Introspection strategy: semantic additive change rate to measure the rate

of discovery of corroborating detections
– Adaptation strategy: if more than 10% of the sensors are newly detecting

a leak, localize the persistent query around the area of detection

Listing 9: Flooding Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new Flooding(), 500);
myIntegration = new CumulativeIntegration();
myIntrospection =

new SemanticAdditiveIntrospection(new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, leakAdaptation);

}

This second adaptation policy (leakAdaptation) changes the query strat-
egy from this second phase to target the persistent query exactly around the area
of the detected leak. This allows the network’s resources and the application’s
attention to be focused on exactly the desired sensing area. The persistent query
continues to monitor this area, adapting the size and scope of the target area as
the detected values change. This phase of the query continues until the danger
dissipates, when the query returns to the original random sampling:

– Inquiry strategy: location-based flooding, focused around the leak
– Integration strategy: windowed cumulative, to acquire the readings over

the threshold in the last 60 seconds
– Introspection strategy: spatial coverage, to ensure the area around the

leak is well-covered
– Adaptation strategy: adjust the flooding area if the coverage is poor;

return to random sampling if the leak disappears

Here, mid is the location at the center of the detected leak and radius is the
sensed spread of the leak. This application and the PAQ middleware are available
for download4. Fig. 7 shows a sequence of screenshots that demonstrate the three
phases described above.
4 http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 241

Listing 10: Location Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 500);
myIntegration = new WindowedCumulativeIntegration(6);
myIntrospection =

new SpatialCoverageIntrospection(mid.x, mid.y, radius);
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, locationAdaptation);

}

Fig. 7. A sample execution for a network of 25 nodes. The values of black nodes are
unknown. The values of green nodes are below the threshold. The values of red nodes
are above the threshold. The left shows a snapshot in the middle of the first phase of
the persistent query; the middle shows a snapshot in the middle of the second phase;
the right shows a snapshot in the middle of the third phase.

6.2 Road Traffic Monitoring

Most cities have troublesome spots that have periodic episodes of jammed traffic.
We next use the PAQ middleware to construct an application for intelligent
traffic monitoring. The application monitors an area of interest and informs the
application if there is a backlog of vehicles. We imagine a scenario where both
vehicles and stationary objects are equipped with networked sensors.

The application issues a persistent query over sensors that have been scattered
across the an area of interest to monitor location information of the vehicles in
the area. Initially, the query probes only the area of interest to conserve the bat-
tery of the hosts in the area. If the application detects several stationary vehicles
in the monitored area for an extended period of time, it can be deduced that a
traffic jam has indeed occurred. Therefore, this query will use an introspection
strategy that checks whether a certain number of hosts are present in several
continuous query results. Once, the traffic jam has been detected, the applica-
tion performs a random sample the entire network to detect alternative routes
to the application. This phase can be summarized as:

– Inquiry strategy: location-based random sampling, focused on a known
traffic trouble spot, low frequency query (e.g., 20 seconds)

– Integration strategy: None

242 V. Rajamani et al.

– Introspection strategy: windowed stable integration to measure whether
the same cars remain in the query area in multiple consecutive queries

– Adaptation strategy: upon detection of a value over the threshold indi-
cating stranded cars, change the approach to random sampling of the entire
network with higher frequency

In the PAQ middleware, defining this persistent query requires instantiating each
of the strategies, and creating and starting the persistent query:

Listing 11: Initial Query

private void startQuery(){
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 20000);
myIntegration = null;
myIntrospection =

new WindowedStableIntrospection(3, new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, trafficjamAdaptation);

}

This adaptation (trafficjamAdaptation) is invoked if the initial query no-
tices an unacceptable number of stranded cars. It takes the persistent query from
this query strategy to its second phase in which the application issues randomly
distributed queries to find alternate routes to re-route the stalled traffic:

– Inquiry strategy: random sampling with a relatively low probability (e.g.,
k = 0.5) but a higher frequency (e.g., 5 seconds)

– Integration strategy: cumulative integration, to observe all elements of
all of the roadways and get a picture of where to reroute the stranded cars

– Introspection strategy: counting introspection, to ensure that this par-
ticular component query has been issued a given number of times (e.g., 5)

– Adaptation strategy: when the query has sent alternate routes to the
jammed cars (not part of the persistent query), return to monitoring the
initial area to ensure that the traffic is clearing.

Aside from its use of CountingIntrospection, this query is similar to the
initial query in the first application; we omit its listing for brevity.

This second query’s adaptation policy changes the query strategy to once
again target the original location to see if the rerouting instructions are causing
it to clear of traffic. This phase continues unless the re-route did not succeed,
and cars cleared from this location are returning:

– Inquiry strategy: location-based flooding, focused on the original location
– Integration strategy: windowed cumulative integration, to acquire the

readings over the threshold (i.e., returning a number of cars indicative of a
traffic jam) in the last 60 seconds

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 243

– Introspection strategy: windowed returns introspection, to see if cars that
were instructed to reroute are in fact returning to the trouble spot

– Adaptation strategy: if the process has failed to clear the traffic, repeat
by resampling for rerouting possibilities

Listing 12: Location Based Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 5000);
myIntegration = new WindowedCumulativeIntegration(10);
myIntrospection =

new WindowedReturnsIntrospection(5, new Integer(thresh));
PersistentQuery locationQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, trafficjamAdaptation);

}

This query employs WindowedReturnsIntrospection, which checks for ve-
hicles that return to the trouble spot. If many of the same vehicles return,
(trafficjamAdaptation) is used again, and the process repeats. An applica-
tion may also define a more complex persistent query that becomes increasingly
aggressive about finding alternate routes as it cycles through the process.

7 Evaluating the PAQ Middleware

In addition to the middleware implementation, we also prototyped PAQ using
OMNeT++ [20,21]. We executed the described applications, modeling the net-
work space as a 1000m × 900m rectangular area. We used the 802.11 MAC
protocol.5 The included graphs show 95% confidence intervals.

We used the first example application to explore PAQ’s performance in the ab-
sence of mobility. We implemented two different types of adaptation: “moderate”
and “aggressive.” Given a leak detection, the “aggressive” version immediately
starts issuing flooding queries at a high frequency. The “moderate” adaptation
increases the query rate more slowly (i.e., by increasing the query rate by one
every five seconds). We compare the behavior of these two adaptive approaches
with two standard query styles: “flooding,” a query that floods all of the time,
and “sampling,” a query that always samples half of the reachable hosts.6 Fig. 8
highlights the value of employing adaptation to lowering overhead.

5 The source code and settings used are available at
http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

6 While we experimented with different values of k for the random sampling approach,
k = 0.5 provides representative results.

http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

244 V. Rajamani et al.

Allowing applications to adapt leads to substantially lower overhead, espe-
cially as network density increases. The moderate version has lower overhead
than randomly sampling. At first glance, the overhead of the aggressive approach
is similar to flooding; however, the aggressive version issues three times as many
queries because it adapts the query rate after leak detection based on the ap-
plication’s requirements. Even the moderate version issues 30% more queries in
certain time periods but still transmits far fewer messages.

These performance ben-

0

5000

10000

15000

20000

25000

50 100 150 200 250 300 350

N
um

be
r
of

M
es
sa
ge
s

Number of Hosts

Flooding

Aggressive
Adaptive
Sampling
(p=0.5)
Moderate
Adaptive

Fig. 8. Number of packets exchanged

efits may come at a cost to
accuracy. Since the nodes
are initially randomly sam-
pled, it is possible for the
leak to go undetected if
relevant sensors are not
sampled. Fig. 9 shows the
percentage of times the
leak is successfully detected
for the different versions.
In sparse networks, none of
the versions are very effec-

tive because the leak is often in an unreachable network partition. The moderate
approach does not flag a leak unless two values pass the semantic introspection
test while the aggressive version requires only one detected leak value before
switching to a flooding based inquiry. Consequently, the moderate version misses
more leaks. Both the aggressive and flooding approaches produce a highly accu-
rate picture. A similar effect can be observed when the leak detection latency is
compared. A flooding strategy detects the leak slightly faster than the aggressive
strategy which in turn is slightly faster than the moderate strategy. This graph
is omitted for brevity.

Using our second appli-

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

Pe
rc
en

ta
ge

of
D
et
ec
ti
on

s

Number of Hosts

Sampling
p=0.5
Moderate
Adaptive
Aggressive
Adaptive
Flooding

Fig. 9. Percentage of Detections

cation scenario (the traffic
monitoring example), we
have also evaluated the
impact of mobility on
PAQ’s query processing
capabilities. In our exper-
iment, the query is issued
from a central station at
one end of the 1000m ×
900m field. The simulation
consists of a well con-
nected network with 150

hosts. One-half of these hosts are on vehicles while the remaining one-half half
represent sensors on stationary objects (e.g., traffic signals). A location is deemed
to be “jammed” if more than five vehicles are stationary at a region of interest

PAQ: Persistent Adaptive Query Middleware for Dynamic Environments 245

over three consecutive queries. In this experiment, we varied the speed at which
hosts are moving from very slow (5mph) to reasonably fast (45 mph).

Fig. 10 shows rates of

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

5 mph 15 mph 23 mph 45 mph
Tr
af
fic

Ja
m

D
et
ec
ti
on

Pe
rc
en

ta
ge

Average Speed of Hosts

Successful Detection vs. Speed

Sampling p=0.5 Flooding Adaptive

Fig. 10. Percentage of Detections

traffic jam detections. Re-
gardless of the strategy
used, some traffic jams go
undetected due to the net-
work dynamics. This is cor-
roborated by the consis-
tent downward slope for all
of the approaches with in-
creasing mobility. However,
in addition to maintain-
ing its lower overhead, the
adaptive strategy achieves
a slightly better traffic jam
detection success rate than
flooding. This is because the flooding approach generates many more messages
in the network, resulting in more messages dropped due to collision. Our adap-
tive strategy targets only a particular area of the network, thereby reducing the
number of messages in the network. Consequently, fewer messages are dropped
leading to better detection.

From these results it can be seen that having a flexible mechanism for adapta-
tion is clearly beneficial to application developers. The PAQ middleware provides
software developers a flexible and simple API that allows domain experts to
specify their design choices in a powerful way, allowing applications to explicitly
consider performance tradeoffs in developing their query uses.

8 Conclusions

In this paper, we introduced the PAQ middleware to help programmers quickly
construct applications that use adaptive persistent queries in dynamic networks.
We highlighted the different abstractions (and class implementations) in PAQ
that support simple specification of policies for adaptive applications. Integration
allows programmers to create application-specific methods of composing and
interpreting approximate one-time query results into a result that resembles
streaming data. Inquiry strategies elegantly dictate how data should be gathered
from a network. PAQ’s introspection strategy abstraction provides programmers
with the power to specify arbitrary methods of assessing the quality of achieved
results as the persistent query executes; this assessment can be used to trigger
adaptation of the query. Our evaluation of PAQ through the implementation of
two adaptive applications indicates that our approach is feasible and can support
adaptivity, and can potentially reduce persistent query costs.

246 V. Rajamani et al.

References

1. Intanagonwiwat, C., Govindan, R., Estrin, D., Heideman, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE Trans. on Net. 11(1), 2–16 (2003)

2. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: Proc. of ACM SIGMOD, pp. 491–502
(2003)

3. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation service
for ad-hoc sensor networks. In: Proc. of OSDI (December 2002)

4. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: Tele-
graphCQ: Continuous dataflow processing for an uncertain world. In: Proc. of
CIDR (2003)

5. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends
databases 1(1), 1–140 (2007)

6. Madden, S., Shah, M., Hellerstein, J., Raman, V.: Continuously adaptive continu-
ous queries over streams. In: Proc. of ACM SIGMOD (2002)

7. Avnur, R., Hellerstein, J.: Eddies: Continuously adaptive query processing. In:
Proc. of ACM SIGMOD (2000)

8. Babu, S., Widom, J.: Streamon: an adaptive engine for stream query processing.
In: Proc. of ACM SIGMOD, pp. 931–932 (2004)

9. Deshpande, A., Guestrin, C., Madden, S., Hellersetin, J., Hong, W.: Model-driven
data acquisition in sensor networks. In: Proc. of VLDB (2004)

10. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over dis-
tributed data streams. In: Proc. of ACM SIGMOD (2003)

11. Capra, L., Blair, G.S., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflection
in mobile computing middleware. ACM Mobile Comput. and Comm. Review 6(4),
34–44 (2002)

12. Chan, A., Chuang, S.N.: Mobipads: a reflective middleware for context-aware mo-
bile computing. IEEE Trans. Soft. Eng. 29(12), 1072–1085 (2003)

13. Rajamani, V., Julien, C., Payton, J., Roman, G.C.: Inquiry and introspection for
non-deterministic queries in mobile networks. In: Proc. of FASE, March 2009, pp.
401–416 (2009)

14. Johnson, D.B., Maltz, D.A., Broch, J.: Dsr: The dynamic source routing protocol
for multi-hop wireless ad hoc networks. Ad Hoc Networking 1, 139–172 (2001)

15. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mobile
computing. In: Proc. of ICSE, pp. 363–373 (2002)

16. Haas, Z., Halpern, J., Li, L.: Gossip-based ad hoc routing. IEEE Trans. on Net-
working 14(3), 479–491 (2006)

17. Kyasanur, P., Choudhury, R., Gupta, I.: Smart gossip: An adaptive gossip-based
broadcasting service for sensor networks. In: Proc. of MASS (October 2006)

18. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proc. of MobiCom, pp. 151–162 (1999)

19. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proc. of MobiCom, pp. 20–31. ACM Press, New York (2000)

20. Loebbers, M., Willkomm, D., Koepke, A.: The Mobility Framework for OMNeT++
Web Page, http://mobility-fw.sourceforge.net

21. Vargas, A.: OMNeT++ Web Page, http://www.omnetpp.org

http://mobility-fw.sourceforge.net
http://www.omnetpp.org

Middleware for Pervasive Spaces:
Balancing Privacy and Utility

Daniel Massaguer, Bijit Hore, Mamadou H. Diallo, Sharad Mehrotra,
and Nalini Venkatasubramanian

Donald Bren School of Information and Computer Science
University of California, Irvine

{dmassagu,bhore,mamadoud,sharad,nalini}@ics.uci.edu

Abstract. Middleware for pervasive spaces has to meet conflicting re-
quirements. It has to both maximize the utility of the information ex-
posed and ensure that this information does not violate users’ privacy.
In order to resolve these conflicts, we propose a framework grounded
in utility theory where users dynamically control the level of disclosure
about their information. We begin by providing appropriate definitions
of privacy and utility for the type of applications that would support col-
laborative work in an office environment—current definitions of privacy
and anonymity do not apply in this context. We propose a distributed
solution that, given a user’s background knowledge, maximizes the utility
of the information being disclosed to information recipients while meet-
ing the privacy requirements of users. We implement our solution in the
context of a real pervasive space middleware and provide experiments
that demonstrate its behaviour.

1 Introduction

Large and dense sensing, communications, and computing infrastructures are en-
abling the creation of pervasive spaces that offer new possibilities, conveniences
and functionalities. Instrumented pervasive spaces that allow observation of enti-
ties enable a rich set of applications ranging from surveillance, situational aware-
ness to collaborative applications. Consider for instance, an office environment—
here, collaboration can be greatly enhanced if members of a team know where
teammates are, what they are doing, and if they are available for discussions.
Unfortunately, while a system that provides this information has the potential
to improve efficiencies, it can encroach on the privacy of the target individuals
(e.g., Peter wants to find Alice who may not wish to be interrupted). A typi-
cal technology solution is to provide opt-in/opt-out mechanisms, where targets
disable the capture/release of personalizing information either physically (e.g.,
Alice turns off localization device) or via suitable access control policies.

We argue that such a binary modality is not sufficient to address the privacy
needs of future pervasive space applications—individuals are often willing to
make personalizing information available based on the needs and context of
the request and requestor (e.g Alice is willing to be interrupted if Peter needs
an urgent signature). In this paper, we develop a utility-centric formulation of
pervasive applications. Observers requesting information specify the utility of the
information and targets (about whom information is being requested) express
their privacy needs as a negative utility of releasing that information, e.g. Alice’s
negative utility of being interrupted and Peter’s positive utility of finding Alice.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 247–267, 2009.
c© IFIP International Federation for Information Processing 2009

248 D. Massaguer et al.

Fig. 2 illustrates the role of a pervasive system middleware. Given application
needs, the system observes the pervasive space by probing sensors and interprets
the sensor readings to obtain a useful view of the state of the pervasive space.
The role of the pervasive space middleware is to (a) generate a semantically
meaningful view of the pervasive space state (e.g., where people are and what
they are doing) while hiding the details of how this state is obtained and (b)
determine whether (and in what format) to release information to an observer
in the pervasive space by realizing the privacy/utility tradeoffs expressed via
privacy/utility policies. This paper focuses on the design of the privacy manager,
a key component in such a system.

While the basic idea is straightforward, there are a few complications in de-
veloping a generalized and flexible system that can address the privacy/utility
tradeoff. First, information can be inferred in such a system, without explicit re-
quests. For example, knowledge of associations (e.g. Alice and Mary co-program
for a project) can inadvertantly reveal information. In the above case, knowledge
that Alice is in the conference room and that Mary is in a meeting regarding
the project reveals Mary’s location (i.e., the conference room). This is a problem
if Mary perceives this additional knowledge as a violation of her privacy. This
leads us to our first challenge: the system must account for inferred information
in determining a tradeoff. Second, information can be represented at different
granularities—information can be characterized in a hierachical manner—from
least descriptive to most descriptive. In the above request, the system can pre-
serve Mary’s location privacy by (a) generalizing Alice’s location or (b) hiding
information on the nature of Mary’s meeting. The latter solution would pro-
vide Alice’s location but increment the uncertainty of Mary’s inferred location,
which might preserve Mary’s privacy. The system must be able to capture and
exploit the natural generalization hierarchy offered by the information revealed
instead of completely denying access to the information. Third, the discussion
above implicetly assumes that people can specify their privacy and information
needs. What those needs are, however, is often not clear. Typical privacy defi-
nitions where privacy is a binary concept on top of which statistical guarantees
are formulated (e.g., k-anonymity, l-diversity, and the like [35,29,30], or those
based on differential privacy [18,28]) do not suffice in our scenario since privacy
is no longer a binary concept. Furthermore, specifying these needs is at best
cumbersome, cognitively difficult and even unfeasible if we expect users to con-
tinuously specify their needs for all possible values, contexts, and users. Realistic
mechanisms must be in place to obtain the utility functions.

The goal of this paper is to develop a principled approach and framework
that can address the above challenges and enable the privacy-utility balance in
pervasive space applications.

Contributions. The following are the key contributions of this paper.

1) We develop a model of pervasive spaces to represent the various entities (e.g.
users, objects), their static properties (e.g. name), and their dynamic properties
(e.g. location, activity) the values of which can be represented at different levels
of granularity (Section 2).

2) We model the notion of privacy (for targets), not as a binary concept, but
as the negative utility associated with each piece of information, and formu-
late the problem of maximizing the net utility of the information released by the

Middleware for Pervasive Spaces: Balancing Privacy and Utility 249

Fig. 1. OfficeMonitor: a sample application Fig. 2. Our pervasive space

pervasive space system (to an observer) while avoiding privacy violations due to
inference (Section 3).
3) We propose a solution to address the privacy preservation and utility maxi-
mization problem based on a distributed simulated annealing algorithm
(Section 4).
4) We extend the existing SATware middleware [21] for pervasive spaces with a
privacy manager module (Fig. 2) which incorporates (i) a policy language and
mechanisms to express privacy and utility requirements, and (ii) a background
knowledge model based on first-order probabilistic datalog clauses and machine
learning techniques to populate it, and (iii) the disclosure component that im-
plements the aforementioned simulated annealing-based algorithm (Section 5).
5) We study the performance of our techniques as implemented in a real system
(Section 6) by experimenting with scenarios typical from a motivating Office-
Monitor application. OfficeMonitor is a collaborative application that allows
a user (observer) to graphically browse through a university campus map and
observe locations and tasks of other people. OfficeMonitor also allows targets
(users being monitored) to specify rules on whether and how information about
them (e.g., current location, activity) should be released. With this improved
awareness, office occupants, for example, are able to prompt their co-workers for
impromptu meetings in the most appropriate time

2 Pervasive Space Model as Viewed by the Applications

From the point of view of the applications, a pervasive space is a physical space
in which activities and objects are embedded. In this space, there are 3 types of
objects: (1) spatial objects such as rooms, floors, and buildings, (2) people such
as Mary, Peter, and Alice, and (3) inanimate objects such as coffee pots, recycle

250 D. Massaguer et al.

bins, and refrigerators. Each of these objects have attributes such as name,
occupancy level, location, salary, level of coffee, and so on. These attributes are
either static or dynamic (i.e., they change as a function of time). For instance,
name and salary are static whereas location is static for spatial objects but
dynamic for people. We call observable attributes the subset of attributes that
can be sensed by the pervasives space. For example, a pervasive space with video-
based people counters and RFID readers can detect both the level of occupancy
of a room as well as recognize the people in it.

Our pervasive space middleware will allow applications to view the space as a
database whose main table contains the values of the observable attributes over
time. The main table has 4 columns: ObjectId, AttributeName,AttributeValue, and
Time. We call such a database an observable database (ODB), and the main table
is called the Base table. An example of an ODB.Base table is depicted in Fig. 3.

Fig. 3. ODB.Base and generalization hierarchy

OfficeMonitor type of applications pose continuous queries on ODB.Base. The
pervasive space middleware continously answers these queries by deciding which
sensors need to be queried and how to interpret the data streams generated by the
sensors [21]. At any point of time t the query answers are a set of tuples Yreq =
{< id, att, v, t >} where id identifies an object, att identifies an attribute, and v is
the observedvalue. For the OfficeMonitor -type of applications we only need simple
filter queries that use selections on the observable attributes such as1

SELECT AttributeValue FROM ODB.Base WHERE ObjectId=Alice
AND AttributeName=Location AND Time=Now

We refer to the users who pose these queries as observers. We refer to the objects
of queries as targets. Target identities, attribute values, and time are considered
to be generalizable—hierarchies exist to capture these concepts.

2.1 Modeling Generalization Hierarchies

People may be organized into a hierarchy according to their occupation, location
may be organized according to physical inclusion, and time may be generalized
from seconds to minutes, hours, and days. Given the type of pervasive applica-
tions we are interested in enabling (e.g., OfficeMonitor), in this paper we only
1 More complex queries (e.g., “select the location and picture of whoever is nearest to the

exit”), can be modeled as queries on views that are defined on top of ODB.Base and
other tables that contain extra information regarding the space objects, the sensing
infrastructure, and so on.

Middleware for Pervasive Spaces: Balancing Privacy and Utility 251

focus on generalizing attribute values. Fig. 3 illustrates a generalization hierar-
chy for the attribute Location. A query for Alice’s location may now use this
hierarchy to return information at the room, floor, building, or campus level.

We denote generalizations with the ≺ partial order and use the notation
x ≺n y to indicate that the minimum number of generalizations between x and
y is n. For example, <Mary, Location, Campus1, Now> ≺1 <Mary, Location,
Campus1/Building1, Now> and <Mary, Location, Unknown, Now> ≺2 <Mary,
Location, Campus1/Building1, Now>. We extend the definition of ≺ to sets of
tuples; we say that X ≺1 Y , iff ∃y ∈ Y, x ∈ X s.t. x ≺1 y and X−{x} = Y −{y};
we say that X ≺n Y , iff ∃ Z ≺n−1 Y and X ≺1 Z. We define the partial order �
as x � y iff x = y or x ≺ y, and X � Y iff X = Y or X ≺ Y . At the top of each
attribute generalization hierarchy (i.e., at level 0) there is the null value [35],
which we call Unknown.

Last, two further assumptions that we make in our model are: (i) we trust the
sentient system software and hardware—no privacy leakage is due to them, and
(ii) the interest is in the current state: information utility regarding an attribute
value decreases exponentially with time.

3 Problem Formulation

The task of pervasive space applications such as the OfficeMonitor is to provide
answers to users’ queries. While the utility of a query response is maximized for
the observer when the data is in “the most precise” form, the utility may be
quite the opposite for the target of the query. For instance, if location privacy is
a concern then revealing accurate information about location is certainly detri-
mental for the target. There is often such a conflict between the “positive” and
“negative” utilities associated with a piece of information that comprises a query
response. Traditional access control mechanisms are geared towards deciding be-
tween the binary options of granting and denying access to a piece of information.
In contrast, we consider a much larger set of options where the same information
is revealed to the observer at a different granularity, i.e. level of generalization.
For instance, the system may decide to send the tuple <Mary, Location, Cam-
pus1/Building1, Now> instead of the most accurate version <Mary, Location,
Campus1/Building1/Floor1/Room1, Now> if it determines (using some criteria
which we will describe later) that this is the resolution that achieves the de-
sired degree of tradeoff between privacy of targets and utility of the observer.
We claim that our approach allows a greater amount of useful information to
be released in general and is acceptable for many pervasive application scenar-
ios where strict access control happens to be too restrictive. Another important
feature of our privacy analysis is that we factor in the information disclosed
due to inference. The inference problem is especially critical in pervasive spaces
where the observer may have substantial amount of background knowledge and
historic information (i.e., the contents of ODB.Base over time) using which he
can deduce more facts besides what is revealed directly by the response gener-
ated by the system. The inference algorithms can lead to substantial increase
in load on a real-time system as the knowledge base grows. Therefore, an ef-
ficient and scalable implementation is required to deliver a practical solution.
In the remainder of this section we describe how we model background knowl-
edge, observer and target utilities, and the information release problem as a
constrained optimization problem in an utility theoretic framework. In the next

252 D. Massaguer et al.

section, we will describe our solution methodology and give efficient algorithms
for the optimization problem.

3.1 Background Knowledge Model

We model an observer’s background knowledge (BKobs) as a set of probabilistic
first-order Datalog (pDatalog) clauses [25]. pDatalog is much more expressive
than propositional logic variations usually used in inference control on statistical
databases [30] in that it allows us to model relationships among attributes as
well as relationships between attributes and time. With the use of variables,
rules can be expressed more concisely. Moreover, pDatalog allows us to reason
with probabilities. An example of a rule is:

Tuple(Alice, Location, l, t) : p ∗ 0.8 ← Tuple(Mary, Location, l, t) : p (1)

A data element is represented as a multi-attribute tuple of the form Tuple
(objectId, attributeName, attributeValue, time):certainty. The rule above states
that if Mary is at location l at time t with probability p, then Alice is also
present at the same location (as Mary) with a probability of 0.8*p. Here 0.8*p
is the certainty factor associated with the consequent tuple. The knowledge base
consists of rules of the above form along with some other auxiliary information
in the form of hierarchies and facts.

The background knowledge base with respect to each observer is the set of
rules in the union of a general knowledge base (KBG) (which is common to
all observers) and a knowledge base KBTold consisting of the facts that the
system has recently revealed to that observer i.e., KBobs = KBG ∪ KBTold.
The general knowledge base KBG, in turn comprises generalization hierarchies
(KBGH) as shown in Fig. 3, a knowledge base that expresses the intended us-
age of the space and its characteristics (KBS), and a set of rules that expresses
the individual usage of the space and further attribute and value relationships
(KBD) (i.e., KBG = KBGH ∪ KBS ∪ KBD). We call BKsys the union of all
observer’s background knowledge model, a.k.a. the system’s background knowl-
edge. In Section 5.2 we give examples of rules in KBD and KBS and describe
how the knowledge bases are populated.

3.2 Privacy vs Utility

We argue that the potential use (or misuse) of information is what defines the
expected utility of information. Given this premise, we derive the definitions of
positive expected utility of a piece of information for the observer and neg-
ative expected utility of a piece of information for the target. We formulate
our problem as a maximization problem based on these utilities.

Let Tell(obs, Yrel ⊆ ODB.Base) be the action of the system releasing in-
formation Yrel to an observer obs, where Yrel is a set of tuples of the form
yr =< id, att, v, t > where id identifies an object, att identifies an attribute, and
v is the attribute’s value at time t. Given that an observer’s possible actions are
a function of the information he believes in [31,40,39], the possible outcomes of
Tell(obs, Yrel) is defined by the set of actions that the observer could respond
with. For example, if due to Tell(Peter, Yrel) Peter believes that Mary is in her
office, he might go there, and if she is actually in her office, Mary will get inter-
rupted. Furthermore, we assume that the probability of the observer attempting
to perform that action is equal to his belief that the piece of information is true.

Middleware for Pervasive Spaces: Balancing Privacy and Utility 253

The outcome of an observer’s action has a utility for both the observer and the
target of the information released by the system. Namely, it has an immediate
positive utility for the observer (Peter gets help from Mary) and an immediate
non-positive utility for the target (Mary gets interrupted). We will classify a
tuple as private information if it has some associated negative utility. Further-
more, since the observer can potentially infer information about other targets
(e.g., Alice’s location), the observer’s might incur a non-positive utility for other
targets2. The functions utilityO(obs, y, ctxtobs) and utilityT (obs, y, ctxttgt) re-
turn a number between [0.0, 1.0) and [−1.0, 0.0] respectively, which represent the
utility for the observer and the target of an observer learning a specific piece of
information y ∈ ODB.Base in a given context. A user’s context is defined as a
subset of tuples regarding himself and some “benign” objects whose state does
not disclose (directly or via inference) private information3:

ctxtu = {y =< id, att, v, t > |id = u or id = benignObj, y ∈ ODB.Base} (2)
We define the observer’s expected utility for a piece of information as the prod-
uct of “the probability of the user successfully performing an action (which is
equivalent to the observer’s belief that a piece of information is true times the
probability that the information is true)” and “the utility of the outcome of such
an action”. For notational simplicity, we suppress the obs and context terms from
the expression:

EUO(y) = P (y | Yrel, KBGH) ∗ P (y | Yrel, BKsys) ∗ utilityO(y) (3)

where P (y | Yrel, KBGH) represents the observer’s belief that y is true, and
P (y | Yrel, BKsys) represents the probability that y is true.

We define the target’s expected utility in a similar manner except for the
fact that we have to consider inferences regarding (a) future data and (b) other
targets. For example, if Peter knows that Mary joins Alice for dessert, he can
infer where Mary might be in the near future if he knows where Alice is having
lunch. This way, the target’s expected utility can be defined as the product of
the probability that the observer will deduce a new piece of information, the
information being true, and the (negative) utility for the target4:

EUT (y) = P (y | Yrel, BKobs) ∗ P (y | Yrel, BKsys) ∗ utilityT (y) (4)

Note that for the target’s expected utility we consider the entire observer’s
background knowledge (BKobs) whereas for the observer’s expected utility we
consider the generalization knowledge base (KBGH). For the targets, we are
interested in a worst-case scenario; thus we need to consider any possible leak-
age of information. For the observer, on the other hand, we are only concerned
2 Utility can also be negative for the observer and positive for the targets [17,11]. In

this paper, however, we focus on a simpler model.
3 In general, there exists no “benign” object since for any given information, theoreti-

cally exists some background knowledge that can be applied to obtain some private
information [18]. In practice, however, there is information which is more unlikely
to allow an observer to infer private information. For example, benign information
includes tuples such as <Campus1/Building1, onFire, true, now>.

4 Note how this definition is very similar to the disclosure risk definitions of privacy-
preserving data publishing [30]. The main difference is that we multiply the disclosure
risk by the utility and the probability of a future action happening.

254 D. Massaguer et al.

Table 1. Symbols

Symbol Description

Yreq tuples before discl. control
Yrel tuples after discl. control

Yderived info inferrable from Yrel

GH(Yrel) info inferrable from yrel based on gen. hierarchies
Tell(obs, Yrel) sentient system’s action

≺, � generalization relations
BKobs = KBG ∪ KBTold obs’s background knowledge

KBG = KBGH ∪ KBS ∪ KBD general KB
KBGH generalization hierarchy KB
KBS intended space usage KB
KBD domain KB

utilityO obs’s utility for a piece of info
utilityT tgt’s utility for a piece of info

EUO Observer’s expected utility
EUT Target’s expected utility

with the attributes he posed the continuous queries on—i.e., the attributes he
is in fact interested in. All the notations are summarized in the Table 1 for
easy reference.

Let us denote by GH(Yrel) all the information that can be inferred from Yrel

given the generalization hierarchy knowledge base KBGH . Denote by Yderived

all the information that can be inferred from Yrel given the observer’s knowledge
base KBobs. Then, we define the expected utility of Tell(obs, Yrel) as the sum
of the expected utilities of the data the observer receives as long as these data
do not violate the privacy constraints:

EUTell(obs,Yrel) =
{∑

y∈GH(Yrel)
EUO(y) if Private(Yderived)

−∞ otherwise (5)

where Private(Yderived) is a boolean function that decides whether privacy is
violated or not. In this paper, we take a simple criteria for checking privacy
violation. We say that privacy is met if there is no data whose negative utility
is larger than the observer’s utility of either that data or any other piece of data
that contributed to its inference. Let us define a minimal independent partition
Y i

rel as a subset of Yrel such that no piece of information in Y i
rel allows one to

infer a piece of information in Yderived − Y i
rel and vice versa, then privacy is

met if:

Private(Y i
rel) =

{
true if |EUT (yd) ∗ ω(yd.t)| ≤ EUO(yr)

∀yr ∈ GH(Yreli),∀yd ∈ Y i
derived

false otherwise
(6)

where ω(t) = 2 1
1+e|now−yd.t|/τ , with τ as a small constant (e.g., 1), accounts for

information utility decreasing exponentially with time (Section 2).

Middleware for Pervasive Spaces: Balancing Privacy and Utility 255

3.3 The Utility Maximization Problem

We cast the problem as a maximization problem where the objective is to find
a generalization Y i

rel � Y i
req for each minimum independent partition Y i

rel that
maximizes (5) and meets the privacy requirements (6). Namely, the objective is
to maximize the observer aggregated expected utility of the information released
while ensuring that the largest negative utility of all the information pieces the
observer can infer, given his background knowledge and the information being
released, is not greater than the largest positive utility of all the information
pieces the observer can infer given the generalization hierarchy and the informa-
tion being released. Formally it can be stated as:

max
Y i
rel

EUO(Y i
rel) (7)

such that
min EUT (Y i

rel) + max EUO(Y i
rel) ≥ 0.0 (8)

Y i
rel � Y i

req (9)

where
EUO(Y i

rel) =
∑

∀yr∈GH(Yreli)

EUO(yr)

min EUT (Y i
rel) = min

yd∈Y i
derived

EUT (yd)

max EUO(Y i
rel) = max

yr∈GH(Y i
rel)

EUO(yr) (10)

4 Solution

In this section, we describe how the optimization problem is solved in our system.
We utilize the generalization hierarchies to compute a suitable generalization
of the tuples before releasing them to the observer. If an observer poses N
continuous queries, it is possible that on an event N distinct tuples might need
to be generalized. The algorithm therefore has to search for a joint generalization
scheme for these N tuples. If there are m levels of generalization per attribute (on
average) and N tuples, the number of different generalization schemes is O(mN).
Similar to problems of privacy preservation in data publishing applications, it
can be easily shown that this problem is in fact NP-hard for most cases and,
hence, efficient polynomial time solutions are unlikely. Now, we describe the
properties of the objective function and, based on those, propose a stochastic
and distributed scalable algorithm based on simulated annealing to look for an
optimal generalization.

4.1 Problem Characterization

An important property of the objective function (5) is its parallel nature. That
is, minimal independent partitions can be solved independently and in parallel.
Another important property, is the fact that the utility of a piece of information
is never smaller than its generalization, which allows for prunning of the solution
space. Formally:

256 D. Massaguer et al.

Property 1. If Y j
rel is a feasible solution, it is better than any Y q

rel ≺ Y j
rel.

Proof. For any Y q
rel ≺ Y j

rel,
∑

y∈Y j
rel

EUO(y) =
∑

y∈Y q
rel

EUO(y) +∑
y∈{Y j

rel−Y q
rel}

EUO(y) →
∑

y∈Y j
rel

EUO(y) >
∑

y∈Y q
rel

EUO(y). In other words,
the utility of a piece of information is never smaller than its generalization.

Given the exponential size of the feasible region, the need for real-time solutions,
the parallel nature of the problem formulation, and the distributed computing
affinity of sentient systems, we propose a distributed stochastic solution.

4.2 A Simulated Annealing Based Solution

Our solution is based on distributed simulated annealing [26,32,34,27]. Fig. 4
depicts the algorithm. We use the Rete algorithm [19] (an optimized incre-
mental forward-chaining algorithm [34]) on the union of Y i

rel and BKobs to
find the minimal independent partitions (findMinIndPartitions). That is, ev-
ery time a rule fires in Rete, all the involved facts along with the rule are joined
with every other set that contains any of the involved facts. The time complex-
ity of this first step is polynomial because we make the following assumptions
on the background knowledge model. We assume that uncertainty functions
(f) adhere to the “natural restrictions” [25] of monotonicity (f(x1, . . . , xn) ≤
f(y1, . . . , yn) ∀i∈[1..n] xi ≤ yi), boundedness (f(x1, . . . , xn) ≤ xi∀i∈[1..n]), and
continuity w.r.t its arguments—that is, the higher the premises the higher the
consequent, the new data being inferred is as good as its premises, and the cer-
tainty function is continuously defined. Since the background knowledge is used
to model possible privacy violations, resulting facts that are identical except
for their associated uncertainty are combined with the MAX function. In the
worst-case, the observer will know the rule that resulted in the highest certainty.
With these assumptions, the inference analysis terminates in a finite number of
steps [25].

Furthermore, the worst-case time complexity of Rete is still linear w.r.t. the
number of rules (r) and polynomial w.r.t. the number of facts (f c, c = ruleLength
+ ruleArity) as it is for non-probabilistic Datalog clauses [34]. Given that the
actions taken for every time a rule is fired have a time complexity of O(f3+2fr),
this first part of the algorithm has a worst-case time complexity of O(rf c+r(f3+
2rf)) = O(rf c + r2f).

Every minimal independent

Yrel =findMinIndPartitions(Yreq,BKobs)

for each(Y i
rel ∈ Yreq)

do n times in parallel

SimulatedAnnealing(Y i
rel)

enddo
endfor

Fig. 4. Maximization algorithm

partition Y i
rel is optimized by

multiple simultaneous instances
of the simulated annealing al-
gorithm from Fig. 5.In this al-
gorithm, a state’s neighbor is
generated by randomly select-
ing a tuple and then generaliz-
ing it. A neighbouring state is
accepted according to the typi-
cal acceptance function for sim-
ulated annealing accept(s, T) =
e−ΔE/T . We define a state’s en-
ergy E(Y j

rel) as:

Middleware for Pervasive Spaces: Balancing Privacy and Utility 257

E(Y j
rel) = ρ(

∑
yr∈Y j

rel
EUO(yr)

|Y j
rel|

) +
1
ρ
(Nat(− max

yr∈Y j
rel

(EUO(yr))−

min
yd∈Y j

derived

(EUT (yd) ∗ ω(yd.t))) (11)

where Nat(y) returns y if y >= 0.0 or 0.0 otherwise, and ρ = 10−r, with r ≥ 1,
is the penalty associated with violating Constraint 8 . Note that if the initial
solution Y i

req is feasible, then ΔE(Y i
req) ≤ ρ, which is a number close to 0.0.

We choose the initial temperature

function SimulatedAnnealing(Y i
rel)

Y j
rel = Y i

rel.neighbor()

Y ∗
rel = max(Y j

rel,Y
i

rel)
T = initial Temperature
while(!terminate)

if(accept(Y j
rel, T))

if(Y j
rel.energy < Y ∗

rel.energy)

Y ∗
rel = Y j

rel
endif

endif
if(!change temperature)

Y j
rel = Y j

rel.neighbor()
else

T.decrease();
if(!terminate)

Y j
rel = Y j

rel.neighbor()
endif

endif
endwhile
return Y ∗

rel

endfunction

Fig. 5. Simulated annealing

T0 to be 1
ρ according to the follow-

ing reasoning. The worst-case ΔE
that we consider is when the neigh-
boring state violates Constraint 8
by the approximate same amount
but utility drops drastically. An up-
per bound on ΔE is thus ΔE = ρ.
In order to accept this state with
a high probability at high tempera-
tures, we set T0 = 1

ρ since 1
eρ/T0

=
0.99 for ρ = 0.1.

We change the temperature ev-
ery N ′∗max(m′)

2 iterations (m′ < m
is the maximum number of granu-
larities in Y i

rel) because N ′∗max(m′)
2

is the average distance from the ini-
tial state to the optimal. The tem-
perature schedule follows the typi-
cal geometric rule Tk = δ ∗ Tk−1.
Normally, with such a temperature
schedule, δ is chosen very close to
1.0 such as 0.9 or 0.99 [32]; however,
and in a manner similar to [27], since
we are running multiple instances of the simulated annealing operator in parallel,
we choose a small δ (e.g, for r = 1, delta = ρ = 0.1).

The algorithm terminates when a state with energy 0.0 has been found, the
temperature reaches δ, or a feasible solution has been found (Property 1). The
time complexity of the distributed simulated annealing becomes O(logδ(δ/T0) ∗
N ′∗m′

2 ∗ (rf c + N)) = O(logδ(δ ∗ ρ) ∗ N ′∗m′
2 ∗ (rf c + N)) = O(logδ(δ2) ∗ N ′∗m′

2 ∗
(rf c + N)) = O(Nrf c + N2). Consequently, the worst-time complexity of the
whole maximization algorithm is O((rf c +r2f)+(Nrf c+N2))—i.e., polynomial
w.r.t. the size of the knowledge base and number of queries.

5 Implementation

We implemented the Privacy Manager in a real pervasive space composed of the
Responsphere infrastructure [4] and the SATware middleware [21]. Together,

258 D. Massaguer et al.

Fig. 6. PrivacyManager Fig. 7. Utility Scales

Responsphere and SATware provide a campus-wide pervasive testbed for inter-
disciplinary research in situation monitoring and awareness. Responsphere is a
pervasive sensing, communications, computing, and storing infrastructure that
covers a third of our university campus. It includes more than 200 sensors of
different types such as video cameras, RFID readers, networked people counters,
and wireless sensor networks (i.e., motes). SATware [21] is a middleware we have
developed for executing pervasive applications on top of such an infrastructure.
It provides applications with a semantically richer level of abstraction of the
physical world compared to raw sensor streams. SATware’s processing and pro-
gramming model is based on operators, which serve as the transition between
raw sensor streams to semantically richer information streams. Operators are
Java-based mobile agents that implement a simple and data-centric function.
For example, SATware provides operators that given a stream of video frames
generates a stream of tuples that indicate whether motion has been detected.
The Responsphere-SATware framework has been and is being used to test and
develop applications such as privacy-preserving video surveillance [22,7,43], sit-
uational awareness for firefighters (SAFIRE) [6], building visitor tracking [5],
technology-induced recycling behaviour, fresh coffee alerts, and others.

In order to enable further applications such as the OfficeMonitor, we extended
SATware with the Privacy Manager. The high-level design for integrating the
Privacy Manager into SATware is shown in Fig. 6, which has 3 key components:
(1) Policy Manager, (2) Background Knowledge Generator, and (3) Disclosure
Control module.

In the Policy Manager, privacy policies and utilities are specified by users
through the Policy Editor, validated by the Policy Processor, and stored into
the Privacy DB. The knowledge base representing the background knowledge of
users is partly populated by system and space administrators and partly learned
(on-the-fly) by the system using the BK Generator, and stored into the BK-DB.
Continuous queries are posed by an observer through an application, and their
results are transmitted to the Disclosure Control module which analyses the
possible information (using the proposed distributed simulated annealing tech-
nique) that the observer could infer and, with the active policies, decides which
information should be generalized and how. We now describe implementation
details (and issues) for the 3 modules.

Middleware for Pervasive Spaces: Balancing Privacy and Utility 259

5.1 Policy Manager

We developed the Policy Language for Pervasive Spaces (PLPS) based on the
Platform for Privacy Preference (P3P) [16] to assist users (observers and targets)
in specifying the privacy policies and utilities (positive for observers and negative
for targets). P3P is a W3C standard that enables websites to express their pri-
vacy policies in a computer-readable format and provides a protocol to read and
process the policies automatically through web browsers. Additionally, it allows
web users to express their privacy preferences that can be match with privacy
policies specified by the websites. Based on these concepts, PLPS is designed to
enable users of pervasive spaces to express their privacy policies to protect their
personal information. In PLPS, a policy is defined as a set of statements, where
each statement contains: (a) a piece of information; (b) the observer; (c) the
retention that defines the length of the observation; (d) the context; and (e) the
utility. In addition, each policy is associated with the mandatory elements name
of the policy and observer who owns the policy, and the optional elements policy
creation date, expiration date, and description. A policy is formally defined as a
tuple of the form PP = {PolicyID, Target, CreationDate, ExpirationDate, State-
ments}, where Statements is a set of statements and each statement is formally
stated as a tuple of the form Statement = {Observer, Retention, Context, Data,
Utility}. The Retention element is defined as a tuple of the form {StartDate,
EndDate, Frequency}. The Frequency element indicates the repetition of the
observation defined in the statement and it is drawn from the set {Once, Daily,
Weekly, Monthly, Yearly}. An example of a target’s privacy policy in the Of-
ficeMonitor application could be “Between 01/01/2009 and 03/30/2009, every
Monday between 1pm and 4pm, Mary allows the system to tell if she is in her
office to her research group members, but not to other users”. This example is
encoded as follows:

{Policy1, Mary, 01/01/2009, 03/30/2009,
{Group1, [01/05/09-1:00, 01/05/09-4:00, Weekly], Location, C1/B1/F2/R1, 0.0},
{Others, [01/05/09-1:00, 01/05/09-4:00, Weekly], Location, C1/B1/F2/R1, -1.0}}.
PLPS is not only flexible in terms of representing, managing, and interconnect-
ing various types of policies; it also allows the definition of policies at different
granularity levels for data attributes. Furthermore, policies are not static but
rather the system dynamically updates them as the users specify new needs or
tune old ones. We use the Web Ontology Language (OWL) [2] to represent the
privacy policy rules modeled in PLPS in the form of ontology and complement
it with the Semantic Web Rule Language (SWRL) [3] to express more com-
plex rules. The advantage of using the Semantic Web to represent the policies,
is the ability to perform various operations on the policies, including consis-
tency checking, through ontology reasoners. We used the Jena API to implement
the module.

Specifying Utilities: An important factor in defining the privacy policies is how
to obtain the utility values. Obtaining the user’s utility function is cognitively
difficult [14] and specifying the utility of every possible piece of information for
every target, observer, and context is an incredibly tedious task, which can hinder
the usability of the approach. To address this issue, we propose a model that
allows users to dynamically change their utility values for each policy statement
based on their experiences and needs using a graphical continuous sliding scale

260 D. Massaguer et al.

with 5 labels homogeneously distributed5. Fig. 7 shows the 5 labels and the
utility values associated with them. Recall that the utility for the observer is in
the range [0.0, 1.0) and the utility for the target in the range [0.0,−1.0].

We extended the scale approach by adopting the Conditional Outcome Pref-
erence Network (COP-network) [12], for eliciting user preferences and estimating
utilities. Applied to our policy model, a COP-network is a directed graph that
represents the relative user preferences of the different data. Using this network
of preferences and a few utilities “anchored” in some of the labels from Fig. 7,
one can estimate the remaining utilities. Three techniques for estimating utilities
are included with the COP-network approach, and we have selected and imple-
mented the one that is proven to be more effective: the Longest-Path technique.
In short, this technique takes as inputs a COP-network and a set of known “an-
chored” utilities, selects the longest path of private data in the network for which
utilities are unknown, and compute utilities for those private data in a way that
the preference ordering in the network is preserved. This process continues until
all the private data has been considered.

5.2 Background Knowledge Generator

The privacy manager implementation also needs to deal with the issue of pop-
ulating the knowledge base that represents the background knowledge of the
users. In our background knowledge model, we identified three types of back-
ground knowledge that we modeled with pDatalog clauses: the generalization
hierarchy (KBGH), the space intended usage (KBS) such as most people check
their emails in their office, and the space individual usage (KBD). We propose
populating the knowledge bases as follows. The information in KBGH and KBS

is initially populated by system and space administrators and continuously cal-
ibrated by the middleware. Calibration of rules in KBGH and KBS is done
by regularly matching the recent data observed by the system with their rules.
Borrowing the terminology from rule-mining algorithms, we call support s% the
number of times a rule’s premises appear divided by the number of tuples ob-
served, and we call confidence c% the percentage of these times that the rule
consequent also appears. We update a rule in KBGH or KBS when s% is above
a threshold and we cannot reject the null hypothesis that the average times the
rule holds for all individuals c% has not changed.

The information in KBD is not pre-populated; rather, it is learned by the
system overtime. Similar to KBGH or KBS, we create an exception rule in
KBD when s% is above a threshold and we cannot reject the null hypothesis
that the average times the rule holds for some individual i (ci%) and the average
times the rule holds for all individuals (c%) are different (e.g., whereas most
people check their emails in their office, Peter does it at the conference room).
Furthermore, KBD contains rules learned by regularly running association-rule
mining algorithms, such as [9], on the information observed by the system. Given
a set of items I = {i0, . . . , ik} and a set of transactions/baskets T = {t0, . . . , tn |
ti ⊆ I}, rule association mining algorithms produce propositional rules of the
form Y ← X , with X ⊂ I and Y ⊂ I, where each rule has an associated
confidence c% and support s%. We propose basketizing the data observed by the

5 We used 5 intervals as in the Likert scale, which is a well-accepted psychometric
ordinal scale used in questionnaires and survey research [1]. Five levels are the usual
choice since 3 do not provide enough variability and 7 offer to many choices.

Middleware for Pervasive Spaces: Balancing Privacy and Utility 261

system into time-based baskets at different time granularities and then mining
association rules for each granularity. For instance, we would (i) put all the tuples
whose time is within the same second in the same basket and then mine for rules
such as “Mary writes emails at her office”; (ii) put all the tuples whose time is
between 8 a.m. and noon in the same basket and mine for rules such as “Peter
has coffee in the mornings”; (iii) put all the tuples whose time is in a Tuesday
and derive that “Alice goes to board meetings on Tuesdays”; and so on up to
weekly baskets. Note that we can, this way, derive both rules regarding the space
usage (e.g, “Mary writes emails at her office”) and inter-object relationships (e.g.,
“Mary’s location is the same as Alice’s 4/5 times”).

We will then upgrade the resulting propositional rules to pDatalog rules by
using c% as the uncertainty associated with the rule and fixing s% as a system
parameter. Moreover, whenever a rule appears consistently among entities it will
be generalized and added to KBS—for example, if most people have coffee in
the morning. The implementation details of the background knowledge learning
algorithms are out of the scope of this paper. In here, we limit ourselves to show
that the knowledge can be obtained and, hence, assumed that it has.

5.3 Disclosure Control

The disclosure control module is the key to the approach. Given a set of base re-
sults to an observer’s queries, the disclosure control consults the policy database
and BK to determine how to release the information without violating the target
privacy, while maximizing the observer utility. Fig. 8 depicts the details of the
implementation of the disclosure control module. Our solution is implemented
as a graph of operators. The B operator outputs a series of sets where each set
contains meta-information on an independent component. Namely, each set con-
tains a small knowledge base with the relevant rules for this component and a
subset of the tuples in Yreq. Similar to [15], we extend the Jess deffact template
with an extra slot for the associated uncertainty and an extra rule to handle
the combination of evidences on the same fact. The output of the B operator is
forwarded to the scheduling operator, which forwards each input to a different
PSA operator in a round-robin manner. Each PSA operator executes the paral-
lel simulated annealing on the minimum independent components using also the
extended Jess. The utility functions come from the CTXT operators which, de-
pending on the current context, query the policy DB for the active policies. The

Fig. 8. Disclosure control

262 D. Massaguer et al.

results of the PSA operators are forwarded to the π operators. The π operators
then filter the data so the UI operators receive the < id, att, v, t > tuples they
expected.

6 Experiments

The main goal of the disclosure control submodule is to be able (i) to produce
good results (high utility with adequate privacy) and (ii) to do so in real-time.
To test the parallel simulated annealing based approach (PSA), we compared
it to two simpler and centralized approaches: a brute force search (BF) and
an anonymity-based approach (minGen). The BF approach was implemented
as a depth-first search (DFS) with pruning based on Property 1. The minGen
approach was an adaptation of the typical privacy definition in data publish-
ing [37], where data is either private or public and the goal is to guarantee that
private data attains a certain degree of anonymity while the information lost due
to generalization is minimized. We measured the information lost as the average
uncertainty introduced. Formally:

max
Yrel

∑
yq∈Yreq

P (yq|Yrel, KBGH)
|Yreq|

s.t.∀(yd∈Yderived,yd∈P) P (yd|Yrel, BKobs) > (1/k) (12)

where P is the set of private data. This algorithm was implemented also with
DFS with pruning. For comparison purposes, we considered all data with nega-
tive utility to be private and we assumed a fixed value of k = 4. We implemented
3 versions of the disclosure control submodule, one for each approach.

The experiments setup was as follows. We used scenarios from the OfficeMon-
itor application to create a realistic experimental setup. For the basic case, we
instantiated the OfficeMonitor queries for a typical project group (7 people).
Queries generated tuples of the form <id,att,v,t> which were then routed to the
Disclosure Control submodule. The query set generated 9 tuples every second
over a period of time (our results are an average of 36 of such runs). The tuples
represented 2 different minimal independent partitions. For the first partition,
the utility values were set such that the solution was 5 generalizations away
from the initial solution (the distance to generalizing everything to unknown
was 28 generalizations). For the second partition, the solution was 0 generaliza-
tions away from the initial solution. The knowledge base had 12 facts, and 47
rules (similar to rule (1)), 14 of which were related to the 9 tuples being sent.
We believe this to be a typical setup and dimensioning for the OfficeMonitor
application.

Our first set of experiments compared the PSA approach with the BF and
the minGen approaches. In order to further study the characteristics of the PSA
approach, we instantiated 5 variations of it. These instantiations differed on the
degree of concurrent exploration (i.e., number of threads) being used. We call
these PSA(x) where x is the number of concurrent explorations on the same
partition. We then compared PSA(1), PSA(6), PSA(11), PSA(16), and PSA(21)
with the BF and minGen versions in terms of time overhead and utility loss.
Fig. 9 shows the results of our experiments with a dual-core machine featuring
an AMD Turion 64 X2 at 2.0Ghz, with 3GB of memory, and running Linux.

Middleware for Pervasive Spaces: Balancing Privacy and Utility 263

Fig. 9. Comparing average time overhead and utility loss of PSA with different con-
current explorations with BF and minGen

While the BF approach always finds the optimal, it takes far more time than
the PSA approaches (minutes versus a few hundred milliseconds), which manage
to return a solution very close to the optimal when incrementing the amount
of concurrent exploration. The greatest utility loss is incurred by minGen, as
expected (recall from above that minGen can only differentiate between public
and private data and thus, it considers all data with negative utility equally
private).

Our second set of experiments studied the scalability properties of the PSA ap-
proach. Fig. 10 suggests that, whereas our approach still takes a feasible amount
of time for 12, 18, 24, and 30 tuples per second, it does not scale linearly but
polynomially (which is expected, recall from Section 4.2 that the time-complexity
of the disclosure control algorithm is polynomial w.r.t. the number of queries).
PSA might not scale for other applications beyond the OfficeMonitor where ap-
plications need a large amount of tuples per second. However, the scalability of
our approach can be improved by making use of (a) the parallel nature of the
problem at hand and (b) the very nature of pervasive spaces which allows for
distributed computing. In most cases, query results will have several minimum
independent partitions in it. Each of these partitions can be optimized separately.
Fig. 11 studies the effect of adding more PSA operators. It shows that, since, we
had 2 minimum partitions, there is an important reduction of the time needed to
find the solution when we had a number of PSA operators close to the number
of independent partitions. With one PSA operator, independent partitions get

Fig. 10. Behaviour of PSA as the num-
ber of tuples/sec increases

Fig. 11. Effect of the increase of num-
ber of PSA operators

264 D. Massaguer et al.

queued in front of the operator; with 2 or more PSA operators, these queues tend
to be small or almost empty; however, there is a point where the overhead of
having the extra operators starts weighing more than their distributed benefit.

7 Related Work

Several privacy and anonymity definitions and metrics along with specific solu-
tions have been proposed in the literature. For instance, [35] presents the metric
of k-anonymity, which expresses the fact that in the worst-case the value of
a user’s sensitive attribute can only be narrowed to a set of size k. In [37],
the authors present a framework to achieve k-anonymity by generalization and
suppression. In [29] the authors extend the k-anonymity metric with l-diversity
which guarantees that it takes at least l−1 pieces of negative background knowl-
edge (i.e., “Tom does not have arthrities”) to sufficiently disclose the sensitive
value of any individual by assuring that the l most frequent sensitive values
are approximatly equi-probable. Positive background knowledge regarding the
sensitive attribute of the type “If Tom has the flu his wife has it as well” is con-
sidered in [30], where its authors show the k worst rules that can be in a users’
background knowledge and provide polynomial mechanisms to still be able to
guarantee a degree of anonymity. In [18] the author proves the impossibility for
absolute privacy in statistical databases and defines the alternative metric of dif-
ferential privacy, which is a metric relative to the risk of a user participating in a
statistical database. Nonetheless, none of the previous definitions applies to our
scenario: we need a non-binary definition regarding information that is not use-
ful in an anonymous manner—the OfficeMonitor is not interested in statistical
data.

Our work here is similar to QoS-related work in stream systems. Stream sys-
tems such as Aurora [13] use semantic shedding [38] as one of the techniques to
decide which tuples to drop when resources run low—that is, the less useful the
data is for the recipient, the earlier it gets dropped. Here we take this concept
further by deciding to drop (or generalize) tuples when a user’s privacy would
be violated.

Privacy in pervasive spaces has been researched at multiple levels. At the
network layer, [10] combines hop-to-hop routing based on handles with limited
public-key cryptography to preserve privacy from eavesdroppers and traffic an-
alyzers. At the architectural level, and in a manner similar to outdoor GPS [24],
solutions such as Cricket [33] and Place Lab [36] protect a user’s (private) loca-
tion by having a user’s carry-on device calculate its location based on a series of
beacons from the infrastructure rather than having the infrastructure compute
the location as in [42] and [8]. In contrast, we assume that the sensor might not
have enough context and resources to compute observations nor it is the final
recipient of information (i.e., it is the system who captures and interprets the
information and applications, on behalf of their users, the recipients of infor-
mation). Other work regarding privacy in pervasive spaces includes the frame-
work for evaluating privacy control and feedback proposed for IMBuddy con-
textual IM service [23], which strives to improve users understanding of privacy
implications through feedbacks. They do not take into account, however, infor-
mation that can be inferred as a result of the information being disclosed.

Using Semantics Web technologies as means for describing and reasoning
about privacy policies in different domains including pervasive environments

Middleware for Pervasive Spaces: Balancing Privacy and Utility 265

are becoming common [41,20]. Relevant to our privacy policy language is the
semantic context-aware policy model based on Description Logic (DL) ontolo-
gies and Logic Programming (LP) rules in [41]. Central to this approach is the
specification of policies based on context rather than the usual way of using
roles and identities of users. In user-centric pervasive space applications such as
OfficeMonitor, however, identity-based policies are still necessary since privacy
is an individual-centric concept.

8 Conclusions and Future Work

To build a pervasive space middleware that allows applications to query the state
of the objects in a given space is indeed a challenging task. One of the main chal-
lenges stems from the fact that some of the objects being monitored are people.
The middleware needs to make sure that the query answers it provides to the
applications do not violate privacy. In this paper, we proposed a novel approach
for modeling privacy in the context of pervasive-space-supported collaborative
work. We turned away from a traditional binary definition where information is
either public or private and proposed a utility-based definition where informa-
tion is associated with a positive utility for the querier and a negative utility for
the target of the query. Moreover, further information that the querier might be
able to infer is also associated with a negative utility. With this definition, we
proposed a framework where the system has to decide, at every time instant,
which information should be generalized and how much, such that privacy is
preserved and utility for the querier is maximized.

Our first approach to solve the maximization problem is based on a distributed
simulated annealing algorithm. We implemented our approach in an existing
pervasive space middleware. To realistically instantiate such an approach, we also
had to address the problem of obtaining and representing the utility functions
and obtaining and representing a user’s background knowledge. We proposed
solutions for both problems.

Future directions opened by this paper include considering other types of
applications where aggregated information and other mechanisms beyond gen-
eralization of attributes are relevant. We did not deal here with queries such
as “Select the room with the maximum number of people in it”. Privacy on
these type of information is of a different nature and has its own challenges—
anonymity-based definitions might be more appropriate. Examples of further
mechanisms one might want to explore are generalization of identity and time.
Identity generalization is specially interesting and, again, of a different nature:
a system can only safely generalize “Alice” to “programmer” if the querier is
learning information about other k − 1 programmers and he cannot tell who
they really are. Last, another mechamism would be to trade delay for privacy
to avoid time-and-domain based inferences such as inferring that Alice is still in
the building because she was in its top floor two minutes ago—which could be
a privacy violation if the context had changed over the last two minutes.

Acknowledgements
The authors would like to thank the SATware team for their dedication to the
project and specially to Roberto Gamboni and Jay Lickfett for his help on mantain-
ing andextending the implementation,FranciscoServant for implementing thefirst

266 D. Massaguer et al.

version of the policy management system, Haynes Mathew George for implement-
ing the first prototype of the SATware’s query processor, and Ronen Vaisenberg
for his advise on the early stages of the paper on how to focus it. We would also like
to thank the anonymous reviewers for their helpful comments.

This research has been supported by the National Science Foundation under
award numbers 0331707, 0403433, and 0331690.

References

1. Likert scale. wikipedia, the free encyclopedia
2. Owl web ontology language guide (February 2004)
3. Swrl: A semantic web rule language combining owl and ruleml (May 2004)
4. Responsphere (2007), http://www.responsphere.org
5. RFID Tag lookup (2009),

http://www.ics.uci.edu/community/events/openhouse/rfid.php
6. SAFIRE (2009), http://www.ics.uci.edu/%7Eprojects/cert/verticals.html
7. SATrecorder (2009), http://www.ics.uci.edu/%7Eprojects/SATware
8. Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A., Hopper,

A.: Implementing a sentient computing system. Computer 34(8), 50–56 (2001)
9. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB

(1994)
10. Al-Muhtadi, J., Campbell, R., Kapadia, A., Mickunas, M., Yi, S.: Routing through

the Mist: Privacy Preserving Communication in Ubiquitous Computing Environ-
ments. In: ICDCS, vol. 22, pp. 74–83 (2002)

11. Anderson, K., Dourish, P.: Situated privaces: Do you know where you mother
(trucker) is? In: Proc. HCI International (2005)

12. Buffett, S., Fleming, M.: Applying a Preference Modeling Structure to User Pri-
vacy. NRC Publication Number: NRC 49372 (2007)

13. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams–a new class of data manage-
ment applications. Technical Report CS-02-04, Brown Computer Science (February
2007)

14. Chajewska, U., Koller, D., Parr, R.: Making Rational Decisions Using Adaptive
Utility Elicitation. In: AAAI, pp. 363–369 (2000)

15. Corsar, D., Sleeman, D., McKenzie, A., Aberdeen, U.: Extending Jess to Handle
Uncertainty. In: AI 2007. Springer, Heidelberg (2007)

16. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The
Platform for Privacy Preferences 1.0 (P3P1. 0) Specification. W3C Recommenda-
tion, 16 (2002)

17. Dourish, P., Anderson, K.: Collective information practice: Exploring privacy and
security as social and cultural phenomena. In: HCI, vol. 21, pp. 319–342 (2006)

18. Dwork, C., et al.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

19. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match
problem. In: IEEE Computer Society Reprint Collection, pp. 324–341 (1991)

20. Hogben, G.: Describing the p3p base data schema using owl. In: A WWW 2005
Workshop on Policy Management for the Web (2005)

21. Hore, B., Jafarpour, H., Jain, R., Ji, S., Massaguer, D., Mehrotra, S., Venkatasub-
ramanian, N., Westermann, U.: Design and implementation of a middleware for
sentient spaces. In: Proceedings of ISI 2007 (2007)

22. Hore, B., Wickramasuriya, J., Mehrotra, S., Venkatasubramanian, N., Massaguer,
D.: Privacy-preserving event detection in pervasive spaces. In: PerCom 2009 (2009)

http://www.responsphere.org
http://www.ics.uci.edu/community/events/openhouse/rfid.php
http://www.ics.uci.edu/%7Eprojects/cert/verticals.html
http://www.ics.uci.edu/%7Eprojects/SATware

Middleware for Pervasive Spaces: Balancing Privacy and Utility 267

23. Hsieh, G., Tang, K., Low, W., Hong, J.: Field deployment of IMBuddy: A study
of privacy control and feedback mechanisms for contextual IM. In: Krumm, J.,
Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717,
pp. 91–108. Springer, Heidelberg (2007)

24. Ivan, A.: Getting. The global positioning system. IEEE Spectrum 30(12), 36 (1993)
25. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty.

In: Gyssens, M., Van Gucht, D., Paredaens, J. (eds.) ICDT 1988. LNCS, vol. 326,
pp. 102–117. Springer, Heidelberg (1988)

26. Kirkpatrick, S., Gelatt, C.D.J., Vecchi, M.P.: Optimization by Simulated Anneal-
ing. Science 220(4598), 671–680 (1983)

27. Krishna, K., Ganeshan, K., Ram, D.J.: Distributed simulated annealing algorithms
for job shop scheduling. IEEE Transactions on Systems, Man. and Cybernet-
ics 25(7) (July 1995)

28. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: The-
ory meets practice on the map. In: ICDE 2008, pp. 277–286 (2008)

29. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-Diversity:
Privacy Beyond k-Anonymity

30. Martin, D., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.: Worst-Case
Background Knowledge for Privacy-Preserving Data Publishing. In: ICDE (2007)

31. Massaguer, D., Balasubramanian, V., Mehrotra, S., Venkatasubramanian, N.:
Multi-Agent Simulation of Disaster Response. In: ATDM–AAMAS 2006 (May
2006)

32. Pham, D., Karaboga, D.: Intelligent Optimisation Techniques: Genetic Algorithms,
Tabu Search, Simulated Annealing and Neural Networks. Springer-Verlag New
York, Inc, Secaucus (1998)

33. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The Cricket location-support
system. In: MobiComp, pp. 32–43. ACM Press, New York (2000)

34. Russel, S., Norvig, P.: Artificial Intelligence: a modern approach, 2nd edn. Prentice-
Hall, Englewood Cliffs (2003)

35. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy (1998)
(Technical report)

36. Schilit, B., LaMarca, A., Borriello, G., Griswold, W., McDonald, D., Lazowska,
E., Balachandran, A., Hong, J., Iverson, V.: Challenge: ubiquitous location-aware
computing and the” place lab” initiative. In: WMASH, pp. 29–35. ACM, New York
(2003)

37. Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization
and Suppression. Int’l. journal of uncertainty fuzziness and knowledge based sys-
tems 10(5), 571–588 (2002)

38. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load
shedding in a data stream manager. In: VLDB, pp. 309–320 (2003)

39. Thow-Yick, L.: The basic entity model: A Fundamental Theoretical Model of
Information and Information Processing. Information Processing and Manage-
ment 30(5), 647–661 (1994)

40. Thow-Yick, L.: The basic entity model: A theoretical model of information process-
ing, decision making and information systems. Information Processing and Man-
agement 32(4), 477–487 (1996)

41. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: A semantic context-aware
access control framework for secure collaborations in pervasive computing envi-
ronments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 473–486.
Springer, Heidelberg (2006)

42. Want, R., Hopper, A., Gibbons, V.: The Active Badge Location System. ACM
Transactions on Information Systems 10(1), 91–102 (1992)

43. Wickramasuriya, J., Datt, M., Mehrotra, S., Venkatasubramanian, N.: Privacy pro-
tecting data collection in media spaces. In: ACM Multimedia 2004 (2004)

Achieving Coordination through Dynamic
Construction of Open Workflows

Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christopher Gill

Department of Computer Science and Engineering
Washington University in St. Louis

{thomasl,wilsonj,roman,cdgill}@cse.wustl.edu

Abstract. Workflow middleware executes tasks orchestrated by rules
defined in a carefully handcrafted static graph. Workflow management
systems have proved effective for service-oriented business automation
in stable, wired infrastructures. We introduce a radically new paradigm
for workflow construction and execution called open workflow to sup-
port goal-directed coordination among physically mobile people and de-
vices that form a transient community over an ad hoc wireless network.
The quintessential feature of the open workflow paradigm is dynamic
construction of custom, context-specific workflows in response to unpre-
dictable and evolving circumstances by exploiting the knowledge and
services available within a given spatiotemporal context. This paper in-
troduces the open workflow approach, surveys open research challenges
in this promising new field, and presents algorithmic, architectural, and
evaluation results for the first practical realization of an open workflow
management system.

1 Introduction

With the development of small, powerful wireless devices, computing must em-
brace the frequent, transient, ad hoc interactions of mobile environments. As
computing and communication become more and more integrated into the fab-
ric of our society, new kinds of enterprises and new forms of social interactions
will continue to emerge. We ask the fundamental question: how can ad hoc com-
munities of people (and their personal devices) coordinate to solve problems?
Application domains that motivate or even require this form of interaction in-
clude low profile military operations, emergency responses to major natural dis-
asters, scientific expeditions in remote parts of the globe, field hospitals, and
large construction sites. These application domains share several key features:
ad hoc interactions among people, high levels of mobility, the need to respond to
unexpected developments, the use of locally available resources, prescribed rules
of operation, and specialized knowhow. For instance, consider a construction
worker discovering a mercury spill. While there is a prescribed response, it is his
supervisor who has the needed expertise and training. She initiates the response,
but access to the spill is made difficult by a support structure whose disman-
tling requires special intervention which only the chief engineer can manage. The

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 268–287, 2009.
c© IFIP International Federation for Information Processing 2009

Achieving Coordination through Dynamic Construction of Open Workflows 269

result is a series of frantic phone calls and the dispatching of various workers
and equipment to execute what might be seen as a workflow that is reactive,
opportunistic, composite, and constrained by the set of participants present on
the site along with their knowledge and resources.

Current workflow middleware allows people to initiate complex goal-oriented
activities that leverage services made available by a wide range of service-oriented
portals. In the typical scenario, a user employs a web browser to make a request
to a workflow engine responsible for executing a predefined workflow that can
satisfy the specific user need, e.g., to print photos, reserve tickets, or make a
bid in an online auction. The workflow is a directed acyclic graph with vertices
denoting tasks and edges defining an execution order along with the flow of data
and control. Each task is a specification for a service to be discovered and invoked
by the workflow engine. What makes the workflow paradigm successful is the
high degree of decoupling that it exhibits at multiple levels: between the user’s
need and the workflow required to satisfy it, between the task specifications and
the services that implement them, and between the workflow engine that invokes
a service and the service provider that executes it.

Despite workflow middleware being well established, efforts toward using it
in ad hoc wireless environments are relatively new. Our previous research in
this area includes the development of workflow execution engines targeted to
small portable devices [1], and techniques for executing workflows in mobile
wireless networks [2]. These studies reveal the need for a major reevaluation
of the way one thinks about workflow middleware: hosts may move, service
availability may depend upon which hosts are within communication range, user
needs tend to be situational, and one cannot anticipate the range of responses
demanded by changing circumstances. These observations suggest that in ad hoc
wireless settings it is desirable to tailor or generate workflows dynamically.

Starting with this premise, we pose the question of how workflow middleware
might be reshaped for use in the absence of any wired connectivity. In this paper,
we explore whether workflow middleware can become a coordination mechanism
for activities that are carried out in an ad hoc setting.

We use the term open workflow to denote a workflow specification, construc-
tion, and execution paradigm that is shaped by the dynamics and constraints
of an activity whose underlying infrastructure is a mobile ad hoc wireless net-
work. We assume a set of participants (people and the host devices they carry)
who share a sense of purpose and who can move about and interact with each
other and with the real world. The participants form a transient community
that evolves over time. In our approach, one of the members of a community
identifies a need for action, which then results in the dynamic construction of a
workflow to satisfy the need and the execution of that workflow in a distributed
and cooperative manner. The defining feature of the open workflow paradigm
is the workflow construction process: workflow fragments encoding individual
knowledge distributed across the set of participants are assembled into a custom
workflow both automatically and contextually. In doing so, we also consider the
available resources (expressed as services offered by the participants) along with

270 L. Thomas et al.

the mobility of the participants and their willingness to commit to being present
at a specific place and time and to delivering results to any dependent partici-
pants. The latter highlights another feature of the open workflow paradigm, its
sensitivity to the time and location considerations necessary when performing
activities in the real world.

Exploring the challenges of building a workflow on the fly from available con-
textual knowledge, i.e., the open workflow paradigm, and building a platform
for further experimentation with that approach define the core technical con-
tribution of this paper. We present a formalism for describing open workflow
construction in Section 2. Section 3 explains our algorithms for the collabora-
tive construction, allocation, and execution of open workflows. In Section 4, we
present our open workflow management system and discuss its architecture. In
Section 5, we evaluate its performance and discuss directions for future work.
Section 6 highlights related research and contrasts it with this work. We provide
conclusions in Section 7.

2 Problem Definition

2.1 Motivating Example

To highlight the possibilities and advantages of the open workflow paradigm,
consider how a corporate catering facility might use open workflow to organize
meals for a meeting of corporate executives. Suppose an executive assistant calls
the manager at the catering office and requests breakfast and lunch for the
upcoming meeting. The manager adds the request to the open workflow system
on her mobile device to schedule the activities necessary to prepare the meals for
the meeting. The open workflow engine begins by collecting knowledge contained
on other mobile devices owned by the employees in the catering office, which
include a master chef, kitchen staff, wait staff, and other personnel. For example,
the master chef’s PDA contains a workflow fragment consisting of tasks and
conditions that describe how to serve omelets for breakfast. Figure 1 shows the
collection of workflow fragments obtained from the office community.

Using the available knowledge, the open workflow engine searches for a sub-
graph that meets the conditions and requirements given by the manager. As-
suming breakfast and lunch ingredients are available, we see that setting up
an omelet bar and cooking omelets will result in breakfast being served, and
preparing a soup and salad and setting them out as a buffet will result in lunch
being served. Thus, this sub-graph constitutes a workflow that meets the re-
quirements. The open workflow engine then searches for participants that are
able to perform the activities indicated by the sub-graph. The system schedules
the kitchen staff to set out the ingredients for breakfast and an appointment is
added to the master chef’s PDA to cook the omelets. Similarly, the kitchen staff
must later cook lunch and set out the buffet. The manager’s work is complete,
and the members of the staff go about their scheduled activities.

Clearly, changes in the requirements will affect the generated workflow. For
example, if lunch was not requested, then no lunch activities will be included

Achieving Coordination through Dynamic Construction of Open Workflows 271

breakfast ingredients

make pancakes set out ingredients

buffet items prepared

serve breakfast buffet

breakfast served

doughnuts ordered

pick up doughnuts

doughnuts available

set out doughnuts

omelet bar setup

cook omelets

lunch ingredients

prepare soup and salad

lunch prepared

serve tables serve buffet

lunch served

box lunches ordered

pick up box lunches

box lunches available

set out box lunches

Fig. 1. Available knowledge in a corporate catering facility

in the final workflow. Consider a scenario where the master chef is out of the
office. The workflow fragment concerning the preparation of omelets will never
be collected and considered by the workflow engine. Consequently, one of the two
alternatives (coffee and doughnuts or a breakfast buffet) will be chosen instead.
A similar scenario where the wait staff are absent demonstrates how changes in
the set of available capabilities can affect the construction of the workflow. The
master chef knows that lunch can either be served with buffet service or with
table service but the open workflow engine must select buffet service since no
one in the available community is capable of serving tables.

Consider the difficulties of using a traditional static workflow to manage the
catering facility. To be sensitive to the variety of catering requests and the indi-
vidual capabilities and dynamic availability of the employees, the workflow would
contain a large number of conditional branches which must be carefully crafted
and assiduously maintained. Such a static workflow cannot respond rapidly to
new resources or changes in the environment. Sensitivity to context, in the
form of knowledge, capabilities, and availability, is the driving force behind the
creation of our open workflow system.

2.2 Formalization

A workflow is defined as a collection of interlinked abstract tasks. A task repre-
sents a single abstract behavior or accomplishment without completely specifying
how it must be performed. A service is a concrete implementation of a task and
may involve a computation by the device, an activity performed by the user, or
some combination of the two. Execution of a task thus consists of the invoca-
tion of a service satisfying the respective task specification. Within a workflow,
different tasks may be performed in sequence or in parallel by one actor or by
multiple actors. Each task has preconditions that must be met before the task
can be performed, and postconditions that describe the results of performing the
task. Abstractly, we can enable the performance of a given task by performing
one or more preceding tasks whose postconditions taken together ensure the pre-
conditions necessary for the given task. The order, timing, and executors of the

272 L. Thomas et al.

preceding tasks are unconstrained so long as the given task’s preconditions hold
when it is to be performed.

We assume that each input (precondition) and output (postcondition) of a
task is represented by a label, where each label has a distinct meaning. We also
assume that a task is either conjunctive, requiring all of its inputs, or disjunctive,
requiring only one of its inputs, and that a task produces all of its outputs. Tasks
are joined by matching the labels on inputs and outputs exactly. Labels and tasks
within a workflow thus may be considered nodes in a bipartite directed acyclic
graph. We assume that each node has a semantic identifier; nodes with the same
identifier are equivalent.

A workflow has the additional constraints that (1) all sources (nodes without
any incoming edges) and all sinks (nodes without any outgoing edges) are labels,
(2) a label can have at most one incoming edge, and (3) there are no duplicate
nodes in the graph. This definition allows us to compose two workflows by merg-
ing (a) identical sinks from one workflow with the corresponding sources from
the other workflow and (b) identical sources in both workflows. Two workflows
are composable if and only if matching sinks and sources yields a valid work-
flow. For instance, a workflow W1 with sources {a, b, c} and sinks {d, e, f} and
a workflow W2 with sources {c, d, e} and sinks {g, h} can be composed into a
new workflow W with sources {a, b, c} and sinks {f, g, h}. Workflow fragments
are merely small workflows (possibly even a single task) that are intended to be
composed into larger workflows at a later time. In the example graph in Figure 1,
the boxes are tasks and the ovals are labels. The graph represents the available
knowledge of the catering facility but is not a valid workflow because some labels
have multiple incoming edges.

A workflow is constructed in response to an expressed need. In general, this
need is stated in terms of a specification S: a predicate that indicates whether
or not a workflow is satisfactory. The inset and the outset of a workflow are its
sources and sinks respectively. We assume S is of the form

S ∈ P(Labels) × P(Labels) �→ Boolean

A workflow W with inset W.in and outset W.out then satisfies a specification S
if and only if S(W.in, W.out) is true.

Composing workflow fragments may produce a workflow that cannot satisfy
a specification S only due to the existence of extra sinks or sources. We can
prune a workflow to remove unnecessary data flows, subject to the following
constraints which ensure the result remains a valid workflow: (1) task outputs
that are sinks can be pruned so long as every task has at least one output, (2)
task inputs that are sources can be pruned for disjunctive tasks so long as every
task has at least one input, and (3) tasks can be pruned so long as any task
inputs that are sources and any task outputs that are sinks are also pruned.

Once a problem has been identified and a specification given, the knowhow
(in the form of workflow fragments) and capabilities (in the form of services) of
the local community are synthesized to form a plan by constructing a workflow.
The construction problem is defined as follows. Given a workflow specification

Achieving Coordination through Dynamic Construction of Open Workflows 273

S and a set of workflow fragments K, find a set of workflow fragments in K
which may be composed (subject to pruning) into a workflow W that satisfies
S — we say that W is feasible given S and K. It is important to note that
the defining features of the open workflow paradigm rest with the fact that
the specification S can be generated dynamically in response to a new need,
context change, or other event, and that the set K represents the combined
knowledge of the community as a whole. K is distributed and dynamic. As
participants move around in space, the knowledge available to the community
changes with its membership and their experiences. For the same specifications,
different communities may respond differently or may be unable to construct an
appropriate workflow.

As the plan is formed, tasks must be allocated to participants who will even-
tually execute corresponding services. The availability of services and resources
within the community determines to whom tasks are allocated. Service avail-
ability is determined by whether any participant can commit to providing a
service: that is, (1) whether the participant is capable of performing the service,
(2) whether the participant has time available, (3) whether the participant can
travel to the necessary location to perform the service, (4) whether the partic-
ipant can gather the necessary inputs and distribute any outputs in a timely
manner, and (5) whether the participant is willing (according to their prefer-
ences) to perform the service. If the community is stable and all participants are
mutually reachable, it is easy to guarantee that the participants supporting the
execution of tasks that depend upon each other are able to communicate the
needed results in a timely fashion. More sophisticated routing techniques and
analysis [3] may be needed if the movement of participants results in temporary
disconnections. Once a participant has made a commitment, it is responsible for
ensuring the service is executed as agreed. A participant is thus free to move
about and requires no further communication with the community except possi-
bly for previously agreed upon meetings to gather inputs or distribute outputs.
As individual participants execute their assigned services from the dynamically
constructed workflow, the community as a whole thus performs the activities
necessary to satisfy the specification and achieve the original goal.

3 Collaborative Construction, Allocation, and Execution

3.1 Construction

We begin this section by introducing a construction algorithm for open work-
flows. We assume a participant has identified a need for action and generated a
specification S of the form

W.in ⊆ ι ∧ W.out = ω

where ι and ω are sets of labels with ι being the labels that represent the trig-
gering conditions and ω being the labels that represent the goal. The participant
is in contact with the other members of a community and can collect from each

274 L. Thomas et al.

a set of workflow fragments. For the purposes of illustration, we start with the
simplifying assumption that the participant initially collects all the fragments
in the community to create the set K. Using the gathered information, the par-
ticipant runs our algorithm to find a feasible workflow — a workflow composed
of fragments from K (subject to pruning) that satisfies S — if one exists. We
only consider here the issue of generating one feasible workflow, although there
are potentially many ways of combining fragments in K to satisfy S. While our
algorithm chooses arbitrarily among equivalent options, any heuristic may be
incorporated to direct the search toward more favorable solutions.

Our algorithm is based on graph traversal and graph coloring, and takes its
inspiration from spanning tree algorithms and routing algorithms such as AODV
[4]. Our strategy is to combine all workflow fragments from K into one large
graph, henceforth called the workflow supergraph G. The supergraph represents
a unified view of all possible actions represented in the set K, however it is
not necessarily a valid workflow since it may have cycles, outputs produced by
multiple tasks, unavailable inputs, or undesired outputs. We use a node coloring
process on the supergraph G to identify one feasible workflow within this graph.
We start by coloring the nodes corresponding to set ι of the specification S.
Following the data flows, we explore the graph, growing the colored section as
we identify which tasks and labels are reachable from ι. We call a label reachable
when it is in ι or when it denotes the output of a reachable task; a task is
reachable when all necessary input labels are available for its execution via some
path starting from ι.

Once we have reached all the elements of ω, we prune the reachable set down
to a valid workflow. Working backwards with a new color, we identify only those
paths which are actually required to reach ω. The pruning phase removes cycles,
ensures only one task produces each output, and excludes undesirable outputs.
Once the second color has swept all the way back to ι, we have fully identified
W , a valid workflow that satisfies specification S and that is composed only of
fragments in K that have been pruned of unneeded outputs and paths.

With this general strategy in mind, we present the full pseudo-code in Algo-
rithm 1. For purposes of the algorithm, we annotate every node and edge in G
with a color (initially uncolored) and every node with a distance (initially ∞)
from a source on the graph. Nodes are marked green for reachability during the
exploration phase and blue for workflow membership during the pruning phase;
purple identifies nodes on the boundary of the blue region. Label nodes are con-
sidered disjunctive. The algorithm selects nodes nondeterministically; any node
may be processed next so long as it matches the guard condition.

We offer a proof sketch of the correctness of our algorithm by highlighting
several key invariants. First, we claim that every green node is reachable starting
from ι, and all of its prerequisites have a smaller distance. A node is reachable
when it is in ι, or when its prerequisites are reachable. The invariant holds after
every step of the algorithm because we start with the nodes in ι with distance 0
and we work outward one edge at a time, coloring a node n green only when n’s

Achieving Coordination through Dynamic Construction of Open Workflows 275

Algorithm 1. Workflow Construction (given ι, ω, and K)
— Construct Supergraph —
G ← ∅
for all fragments F ∈ K do

for all nodes n ∈ F do if n /∈ G then G ← G ∪ {n} end if end for
for all edges e ∈ F do if e /∈ G then G ← G ∪ {e} end if end for

end for

— Exploration Phase —
Track the set of greenNodes (initially empty).
for all n ∈ ι do (n.color, n.distance) ← (green, 0) end for
until ω ⊆ greenNodes ∨ none of the following cases apply, for some n ∈ G do

if n is disjunctive ∧ any of n’s parents are green then
d ← min{p ∈ n’s parents ∨ p.color = green | p.distance}
if (n.color = uncolored ∨ (n.color = green ∧ n.distance > d + 1)) then

(n.color, n.distance) ← (green, d + 1)
end if

else if n is conjunctive ∧ all of n’s parents are green then
d ← max{p ∈ n’s parents ∨ p.color = green | p.distance}
if (n.color = uncolored ∨ (n.color = green ∧ n.distance > d + 1)) then

(n.color, n.distance) ← (green, d + 1)
end if

end if
end until
if ¬(ω ⊆ greenNodes) then there is no solution — exit.

— Pruning Phase —
Track the set of purpleNodes (initially empty).
for all n ∈ ω do n.color ← purple end for
until purpleNodes = ∅ for some n ∈ purpleNodes do

if n.distance = 0 then
requiredParents ← ∅

else if n is disjunctive then
requiredParents ← {the parent of n with minimum distance}

else if n is conjunctive then
requiredParents ← n’s parents

end if
for all p ∈ requiredParents do

edge(p, n).color ← blue
if p.color = green then p.color ← purple end if

end for
n.color ← blue

end until
The set of nodes and edges colored blue is the constructed workflow.

276 L. Thomas et al.

prerequisites are already green (reachable) and assigning n a distance greater
than any of its prerequisites.

Second, once ω is colored blue, we claim that after every even number of
iterations, the graph of blue nodes and blue edges is a valid workflow. At each
step we choose a node n which is in the inset of the blue portion of the supergraph
as it has no blue parents. Once we color the prerequisites of n blue, n is no longer
a member of the inset but the prerequisite nodes are now members, so n and
thus n’s dependents are still reachable from the inset. On an odd iteration we
color a task, and on the even iteration we color its prerequisite labels. Thus,
after each pair of steps, the sinks and sources of the graph will be labels and the
graph will be a valid workflow.

Finally, we claim that the coloring of blue nodes will eventually terminate,
and upon termination the graph formed by the blue nodes and edges will be a
workflow satisfying specification S. From the first invariant, every node n with
distance greater than 0 must have prerequisites with distance strictly less than
n’s distance. Every time a node n in the inset is replaced with its prerequisites,
the distance of the nodes added to the inset is strictly less than the distance of
the node removed. Eventually the inset will consist solely of nodes with distance
0 (thus nodes in ι) and the algorithm will terminate. As the inset is a subset
of ι and the outset is equal to ω, the workflow consisting of the blue nodes and
edges satisfies S.

While there are many ways to maintain a community and share knowledge
within that community, we chose an approach that places few restrictions on
the members. We define a community as the participants who are within com-
munication range of each other and announce their willingness to participate;
consequently, the community is dynamic as members join and leave at will.

We observe that the coloring process requires only local knowledge. Thus, we
relax the assumption that all of the workflow fragments are collected from the
community before the coloring process begins. In our implementation, the mem-
ber constructing the workflow builds the set of workflow fragments K and thus
the supergraph G incrementally by querying other members of the community
for workflow fragments that can be used to extend G. Members joining after
the algorithm has started can still contribute knowledge, and the departure of a
member does not affect the knowledge already collected in the supergraph.

3.2 Allocation and Execution

After a workflow is constructed, it must be allocated to participants in the
community. The approach we take here is an auction algorithm similar to prior
work done for Collaboration in Ad hoc Networks (CiAN). A more in-depth
discussion may be found in [2].

The participant who constructs the workflow assumes the role of auction man-
ager. The auction manager begins the allocation phase by computing metadata
for each task used in allocating and executing the workflow. Next, the auction
manager solicits bids for each task in the workflow from all of the participants in
the community. The participants compare the task’s required time, location, and

Achieving Coordination through Dynamic Construction of Open Workflows 277

service with their own capabilities and availability. If a participant can commit
to performing a task, it submits a firm bid on that task to the auction manager.
The bid includes ranking information such as the degree to which the participant
is specialized for the task in question. The auction manager uses this information
to select a best-suited participant to perform the task. A participant which pro-
vides fewer services is preferred over a participant with a wider array of services,
because scheduling the more capable participant removes a larger number of ser-
vices from the community’s resource pool. Participants also submit a deadline
for a response from the auction manager based on their schedule.

The auction manager selects the bid that best matches the selection criterion
and makes a tentative task allocation to that participant. As new bids arrive, the
tentative allocation is continually re-evaluated. A final decision is made when
the deadline given by the participant who has the current tentative allocation
has arrived. The auction manager waits as long as possible to assign a task to a
participant in order to obtain the best possible bid, but once some participant
has been found who can do a task, the task is guaranteed to be allocated. As bids
are firm, a participant cannot cancel a bid, but they can update the deadline for
a bid and force the auction manager to make a decision.

When a participant is allocated a task, it adds a commitment to its schedule
that contains all the necessary information to execute the appropriate service as
directed by the auction manger. The participant is free to roam, but is responsi-
ble for meeting its commitments. Thus the execution phase of an open workflow
proceeds in a fully decentralized, distributed manner. To meet a commitment,
the participant must (1) acquire the required inputs for the service from the
executor of the preceding tasks, (2) be at the required location for executing the
service, and (3) execute the service at the required time. The participant moni-
tors these conditions and, based upon their knowledge of their location and the
travel times involved, travels and communicates as necessary to meet the condi-
tions and successfully execute the service. Once the service has been executed,
the participant’s final responsibility is to communicate the service’s outputs to
any other participants that require them.

4 System Architecture

4.1 An Open Workflow Management System

We have designed and implemented a complete open workflow management sys-
tem in Java. Our approach offers an intuitive calendar-like interface, behind
which integrated goal specification, communication, and service invocation fea-
tures combine to enable construction and execution of sophisticated open work-
flows. Source code and executables for the application are available at our web
site [5].

The basic steps in deploying an application using our open workflow man-
agement system are (1) installing the program on the users’ devices, (2) adding
knowhow in the form of workflow fragments, and (3) adding service descriptions.
In our implementation, we use XML configuration files to provide the task and

278 L. Thomas et al.

service definitions for each device. Once this initial configuration has been com-
pleted, any participant can use their device to create a problem specification. In
response, the system will automatically construct, allocate, and (by prompting
the users) execute an appropriate workflow.

(a) Add Problem Tab (b) Schedule Tab

Fig. 2. Application Screenshots

Figure 2 shows two screenshots from community members participating in an
open workflow. The tabs on the left are for reviewing static knowledge. On the
top are tabs for dynamic activities and alerts. Figure 2(a) shows the form that
allows the user to create a problem specification by entering information about
the triggering conditions and goal. In Figure 2(b), the Schedule tab allows the
user to view their schedule of commitments. The necessary travel time is also
blocked out in the schedule, and the system has added an alert tab to notify the
user that they must soon begin traveling to meet their scheduled commitment.
The system supports services that require user action by presenting a form for
data entry or just a button to click when the task is complete. The remaining
tabs allow the user to configure the list of workflow fragments (knowhow), the
list of local services (capabilities), and other system settings.

4.2 Goals, Design Principles, and Architecture

Our goal is a system that will support the coordination and participation of
devices with diverse capabilities. Further, we want to build a system robust

Achieving Coordination through Dynamic Construction of Open Workflows 279

enough and flexible enough to encourage rather than hinder innovations from
future research. Consideration of these goals led us to the following two design
principles. First, the architecture should break apart the major responsibilities
of the system into independent components, allowing each host to provide only
the components that are appropriate to the host’s physical capabilities. Second,
the architecture should isolate and hide the highly variable details of the trans-
ports, protocols, and caching schemes used during communication by providing
an abstract communications layer. Furthermore, passing messages through an
intermediary ensures that local and remote components are accessed uniformly.

Based upon these design principles, we identified the following major respon-
sibilities for our open workflow management system, as illustrated in Figure 3.
We first observe that for a particular open workflow problem, one host acts as
the initiator while all hosts (including the initiator) may act as participants. We
therefore split the system responsibilities into two corresponding subsystems:
the construction subsystem and the execution subsystem. The construction sub-
system is responsible for identifying the problem to be solved, issuing queries to
discover knowhow and capabilities, formulating the plan of action, and assign-
ing work. The execution subsystem is responsible for replying to knowhow and
capability queries, accepting appropriate work assignments, and actually doing
the processing or communicating necessary to complete the work.

Construction Subsystem. The Workflow Initiator is responsible for interacting
with the user to define the trigger conditions and goal for the new problem. The
Workflow Manager is the core component of the construction subsystem. The
Workflow Manager creates and maintains a separate workspace for each open

Location

Schedule

Service

Execution

Fragment

Auction Participation

Service
Instances

UI

UI

UIUI

UI

Workflow
Initiator

Workflow

UI

UI
Workflow

Workspaces
Auction

Inter-service Messages

Execution Subsystem Construction Subsystem

Communications
Layer

Auction Messages

Fragment Messages

Service Feasibility Messages

Fig. 3. System Architecture

280 L. Thomas et al.

workflow, allowing it to work simultaneously on multiple isolated and indepen-
dent problems. The Workflow Manager issues queries to discover knowhow and
capabilities, integrates the responses into the graph, and constructs the open
workflow. It then delegates to the Auction Manager the job of allocating each
task to a suitable host.

Execution Subsystem. The Fragment Manager is responsible for maintaining
a host’s database of workflow fragments and responding to knowhow queries
during workflow construction. The Auction Participation Manager encapsulates
the complex interactions and state tracking needed for the host to bid in task
auctions during the allocation phase. The Schedule Manager is the keystone
component of the execution subsystem. It manages the host’s availability by
tracking the host’s location, schedule, and scheduling preferences. It maintains
a database of all commitments, primarily consisting of scheduled service invo-
cations and their associated location and travel time details, which is the key
data structure for both allocation and execution of an open workflow. The Ex-
ecution Manager monitors the input and temporal conditions required for each
scheduled service invocation during the execution phase. Once an invocation’s
necessary conditions are met, it triggers service execution, and publishes any out-
put messages. Finally, the Service Manager maintains the list of services exposed
by this host and responds to capability queries from the Workflow Manager. It
also provides a uniform service invocation interface to the Execution Manager
by handling parameter marshaling and any other mechanics required to actually
invoke a local service during the execution phase.

Our architecture permits multiple open workflows to be constructed and exe-
cuted concurrently within the same community and even within the same host.
The Workflow Manager maintains a separate workspace containing construc-
tion state information for each workflow. The remaining components (such as
the Auction Manager, Fragment Manager, Schedule Manager, etc.) act at task
granularity and thus handle two task-based requests from two separate work-
flows no differently than they handle two task-based requests from the same
workflow. While multiple workflows will necessarily compete for utilization of
the same resources (in the form of hosts, their capabilities, and other resources
present in the environment), there is no impedance at an architectural level to
constructing and executing multiple open workflows at once.

5 Evaluation

We use a combination of simulation and empirical evaluation to test our system
and demonstrate the viability of the open workflow paradigm. We focus on char-
acterizing the performance of the system in terms of three variables that have
the greatest impact on the scalability of our architecture: the number of partic-
ipants in the community, the number of tasks known to the entire community,
and the difficulty of the problem being solved which we characterize by the size
of the resulting workflow.

Achieving Coordination through Dynamic Construction of Open Workflows 281

Our experimental set up is as follows. Given the number of hosts, the global
number of tasks, and the length of the workflow as parameters for an experiment,
we configure the hosts, establish connectivity within the community, and then
measure the time taken from when the specification is given to the initiating
host to the time when all tasks of the resulting workflow have been successfully
allocated to some host.

To configure the hosts, we first construct a workflow supergraph of the chosen
size by creating the desired number of nodes and then repeatedly adding edges
between disconnected nodes until the graph is strongly connected. From this
single supergraph we can then draw a large number of guaranteed-satisfiable
specifications by randomly picking any triggering conditions and goal. We use
only disjunctive task nodes in order to maintain the guarantee of satisfiability
during our automated evaluations. Given a supergraph and a chosen number of
hosts, we finish setting up the scenario by distributing the tasks randomly and
evenly amongst the hosts, and independently distributing corresponding services
randomly and evenly amongst the hosts. Each of the n hosts has only 1

n th of
the entire supergraph, so the hosts must cooperate to solve the posed problem.
For each test run, the test driver randomly choses a path of the desired length
through the supergraph, and the initial and final label nodes of the path are
used as the specification for that test run. In all of the figures below, the results
for each path length are the average of one thousand runs.

For the simulations, all the hosts were run within in a single JVM and com-
municate solely through a simulated network. The simulations were run on a
Windows XP workstation with a 2.8 GHz Intel Xeon processor and 2.75 GB of
memory, running the Java 1.6.0 11 HotSpot Client VM.

In Figure 4, we show the average time for each path length from a supergraph
with 100 task nodes as the number of participating hosts varies from 2 to 15. The
average time grows roughly linearly with the number of hosts as the initiating
host communicates pairwise with every member of the community during the
construction and allocation phases. We note that even if we were to broadcast
requests rather than using pairwise communication, the processing of responses
by the initiating host would still require time linear in the number of hosts in
the community.

In Figure 5, we show the average time for each path length for 2 participating
hosts as the number of task nodes in the supergraph varies from 25 to 500.
The rate of increase grows with the number of task nodes because the Workflow
Manager encounters more nodes during its search through the densely connected
supergraph as the number of tasks increases. The longest path through the graph
also increases as the size of the graph increases, which explains the absence of
timings for path lengths greater than 10 in the small 25 task supergraph.

After the simulations, we performed empirical evaluation of our application us-
ing four laptops connected by an ad hoc wireless network using 802.llg
(54Mbit/s). The first host (which was the initiating host during these tests) was
a MacBook Pro running OS X 10.5.5 with a 2.16 GHz Intel Core Duo processor
and 1 GB of 667 MHz DDR2 memory. The second host was a MacBook Pro

282 L. Thomas et al.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

2 4 6 8 10 12 14 16 18 20 22
Path length

S
ec

o
n

d
s

15 host

10 host

5 host

4 host

3 host

2 host

Fig. 4. Simulation of 100 task nodes partitioned across different numbers of hosts

0.000

0.010

0.020

0.030

0.040

0.050

0.060

2 4 6 8 10 12 14
Path length

S
ec

o
n

d
s

500 task

250 task

100 task

50 task

25 task

Fig. 5. Simulation of different numbers of task nodes partitioned across 2 hosts

Achieving Coordination through Dynamic Construction of Open Workflows 283

running OS X 10.5.6 with a 2.33 GHz Intel Core 2 Duo processor and 2 GB
of 667 MHz DDR2 memory. The third and fourth hosts were MacBook Pros
running OS X 10.5.6 with 2.4G Hz Intel Core 2 Duo processors and 4 GB of
1067 MHz DDR3 memory. All hosts were running the Java 1.5.0 16 HotSpot
Client VM. Connectivity among the hosts was verified before the measurements
were started. The timing results for workflow graphs with 25, 50, and 100 task
nodes are shown Figure 6.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

2 4 6 8 10 12 14 16 18 20

Path length

S
ec

o
n

d
s

100 task
50 task
25 task

Max path length
for small graph

Max path length
for medium graph

Max path length
for large graph

Fig. 6. Empirical performance of ad hoc wireless networking for different numbers of
task nodes partitioned across 4 hosts

We can see from this graph that even in a realistic networking environment,
our system shows the potential to solve large problems quickly. For example,
even with a community knowledge base of one hundred tasks to explore, and a
solution path length of twenty, our system finds and allocates a solution in under
two tenths of a second on average.

5.1 Directions for Future Work

These encouraging results demonstrate that our system is ready to be evaluated
against large-scale real-world problems. In order to accomplish this, we will seek
a community to serve as a source of realistic benchmarks. We expect to face
new issues when adapting our system to the rigors and challenges posed by our
sample community.

One such concern for future research is the representation of tasks and spec-
ifications. Weakening our initial assumption that a specification only involves
the inset and outset would allow specifications that include constraints on all

284 L. Thomas et al.

aspects of the workflow graph, such as path length, task preferences, and ex-
ternal temporal and spatial constraints. Furthermore, the specification can be
expanded to influence the allocation and execution phases. A specification, for
example, could minimize the set of participants or restrict the locations of cer-
tain tasks. In order to realize richer specifications, a more expressive formalism
for describing tasks and preconditions and postconditions is necessary. For ex-
ample, an extended formalism may allow associating variables and constraints
with preconditions and postconditions such as type, capacity, and duration, or
propagating constraints from one task to the next. As the sophistication of the
formalism increases, more advanced planning techniques will come into play.

The handling of errors, community dynamics, and changes in the environment
by the open workflow paradigm is another area for future research. For exam-
ple, the allocation phase could wait indefinitely for a member with the needed
capability and availability to join the community. During this time, an alterna-
tive workflow that avoids this resource limitation could be constructed. A failure
during execution should result in a revised or repaired workflow, which requires
reconstruction, reallocation, and compensating execution. Extending the current
implementation with feedback mechanisms between the construction, allocation,
and execution phases seems like a promising approach. Developing an appropri-
ate commitment model that allows the participants to accomplish these activities
in a mobile ad hoc setting is a focus for future work.

We also want to investigate relaxing the current restriction that construction
and allocation are performed by a single host. A middleware that supports dis-
tribution of these tasks would allow construction and allocation in the face of
fragmentation of the community and support localized recovery after a failure.
When location constraints prohibit a rendezvous for data transfer, the system
should be extended to consider scheduling participants into the workflow as
couriers.

Finally, as with any application facing the rigors of the real world, security is
critical. In addition to the usual concerns of trust, authorization, and privacy, the
open workflow paradigm presents new challenges as it encourages participation
across multiple administrative domains and social networks. Recognizing and
handling changes in authorization and privacy due to roles and social context
and resolving conflicting and competing specification ontologies are topics for
future research.

6 Related Work

In this paper, we have focused on overcoming the challenges of bringing workflows
to transient communities connected by mobile ad hoc networks. Standard work-
flow management systems, such as ActiveBPEL [6], Oracle Workflow Engine [7],
JBoss [8], and BizTalk [9], are designed to work in fully wired environments, such
as corporate LANs or across the Internet. Reliance on centralized control and
reliable communication mean such solutions cannot successfully operate under
the constraints of dynamic mobile environments.

Achieving Coordination through Dynamic Construction of Open Workflows 285

Several workflow systems have been developed which extend the realms in
which workflows may operate. The work on federating separate execution engines
running independent workflows by Omicini, et al., [10] removes the requirement
of centralized control. Chafle, et al., [11], investigate decentralized orchestra-
tion of a single workflow by partitioning the workflow at build time and using
message passing at run time. Both approaches still assume reliable communica-
tion and a fixed group of participants. MoCA [12] uses proxies for distributed
control and has some design features that support mobile environments while
Exotica/FDMC [13] describes a scheme to handle disconnected mobile hosts.
In AWA/PDA [14], the authors adopt a mobile agent based approach based on
the GRASSHOPPER agent system. WORKPAD [15] is designed to meet the
challenges of collaboration in a peer-to-peer MANET involving multiple human
users, however WORKPAD retains the requirement that at least one member of
the MANET be connected with a central coordinating entity that orchestrates
the workflow and shoulders any heavy computational loads. Sliver [1] brings
a full BPEL execution engine to a single cell phone, however that phone still
acts as the sole coordinator. Finally, CiAN [2] presents a workflow management
system which eliminates the need for a central arbiter by distributing not only
service execution but also the task allocation problem across multiple hosts.

While our system builds upon CiAN’s model of distributed workflow allo-
cation and execution, all these systems assume that a thoughtfully designed
and fully specified workflow already exists. Open workflow is designed for set-
tings where the availability of resources and the range of responses demanded
by changing circumstances cannot be anticipated. The workflow to be executed
must be generated on the fly to match the present situation.

The automatic composition of services has been explored using a variety of AI
planing engines, including Golog [16], Workflow Prolog [17], and PDDL [18]. A
review of further automated service composition methods may be found in [19].
Ponnekanti and Fox create workflows by rule-based chaining in SWORD [20],
and discuss situations in which the resulting workflows may not produce the de-
sired results due to the preconditions and postconditions of each task not being
sufficiently specified. Fantechi and Najm [21] present an approach for ensur-
ing correct service composition by using a more detailed formal specification of
the service behavior. While the initial open workflow construction algorithm we
present is a simplified alternative to the powerful techniques presented in these
papers, it also addresses a new problem specific in the mobile ad hoc environ-
ment. All these systems assume that the knowledge base from which to build
the workflow already exists. We have built upon their work by showing how to
construct both the knowledge base and the derived workflow on the fly based on
the knowhow and capabilities available within the community.

7 Conclusions

In this paper we have introduced the open workflow paradigm and presented
the first algorithm for constructing open workflows in ad hoc wireless mobile

286 L. Thomas et al.

environments. A system for open workflow creation, allocation, and execution
was proposed, implemented, and evaluated.

The open workflow paradigm is novel and enables the development of new
classes of applications that are designed to exploit community knowledge in
solving real world problems that arise unexpectedly and can be addressed only
through the coordinated exploitation of capabilities distributed among the mem-
bers of the community. The open workflow paradigm presents significant new
challenges for the middleware, MANET, workflow, planning, and human-com-
puter interaction research communities. The work presented in this paper is only
the first step toward characterizing and addressing these concerns.

In producing the first practical implementation of an open workflow manage-
ment system, we have affected a major paradigm shift in workflow middleware.
Open workflows are much more than sophisticated scripts that enable one to ex-
ploit available services — they are a coordination vehicle for social and business
activities that allows cooperating participants to construct and execute responses
to needs identified by the participants. The open workflow paradigm enables the
development of an entirely new class of systems that are nimble, mobile, and
supportive of this new style of coordination.

Acknowledgments. This paper is based upon work supported in part by the
National Science Foundation (NSF) under grant No. IIS-0534699. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of NSF.

References

1. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 503–508. Springer, Heidelberg (2006)

2. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A workflow engine for MANETs. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 280–295.
Springer, Heidelberg (2008)

3. Handorean, R., Gill, C.D., Roman, G.C.: Accommodating transient connectivity
in ad hoc and mobile settings. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE
2004. LNCS, vol. 3001, pp. 305–322. Springer, Heidelberg (2004)

4. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing.
In: WMCSA, pp. 90–100. IEEE Computer Society, Los Alamitos (1999)

5. Mobilab Group: Open workflow project web site, http://mobilab.wustl.edu/

projects/openworkflow/

6. Active-Endpoints: ActiveBPEL engine,
http://www.active-endpoints.com/active-bpel-engine-overview.htm

7. Oracle Inc.: Oracle workflow,
http://www.oracle.com/technology/products/integration/workflow/

workflow_fov.html

8. JBoss Labs: JBoss application server, http://www.jboss.com/docs/index
9. Microsoft Corp.: The BizTalk server, http://www.microsoft.com/biztalk/

http://mobilab.wustl.edu/projects/openworkflow/
http://mobilab.wustl.edu/projects/openworkflow/
http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://www.oracle.com/technology/products/integration/workflow/workflow_fov.html
http://www.oracle.com/technology/products/integration/workflow/workflow_fov.html
http://www.jboss.com/docs/index
http://www.microsoft.com/biztalk/

Achieving Coordination through Dynamic Construction of Open Workflows 287

10. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006)

11. Chafle, G., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of
composite web services. In: Proc. of the 13th Intl. WWW Conference, pp. 134–143
(2004)

12. Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.D.S., Gonçalves, K.,
Bueno, G.A.: An architecture supporting the development of collaborative appli-
cations for mobile users. In: Proc. of WETICE 2004, pp. 109–114 (2004)

13. Alonso, G., Gunthor, R., Kamath, M., Agrawal, D., Abbadi, A.E., Mohan, C.: Ex-
otica/FDMC: A workflow management system for mobile and disconnected clients.
Parallel and Distributed Databases 4(3) (1996)

14. Stormer, H., Knorr, K.: PDA- and agent-based execution of workflow tasks. In:
Proceedings of Informatik 2001, pp. 968–973 (2001)

15. Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., Dustdar, S.:
WORKPAD: an adaptive peer-to-peer software infrastructure for supporting col-
laborative work of human operators in emergency/disaster scenarios. In: Interna-
tional Symposium on Technologies and Systems, pp. 173–180 (2006)

16. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR 2002), pp. 482–493 (2002)

17. Gregory, S., Paschali, M.: A prolog-based language for workflow programming.
In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp.
56–75. Springer, Heidelberg (2007)

18. McDermott, D.: Estimated-regression planning for interactions with web services.
In: Proceedings of the 6th International Conference on AI Planning and Scheduling,
pp. 204–211. AAAI Press, Menlo Park (2002)

19. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005)

20. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composi-
tion. In: Proceedings of the 11th World Wide Web Conference, Honolulu, Hawaii,
USA (May 2002)

21. Fantechi, A., Najm, E.: Session types for orchestration charts. In: Lea, D., Zavat-
taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 117–134. Springer,
Heidelberg (2008)

Power Aware Management Middleware
for Multiple Radio Interfaces

Roy Friedman and Alex Kogan

Department of Computer Science, Technion
{roy,sakogan}@cs.technion.ac.il

Abstract. Modern mobile phones and laptops are equipped with multiple wire-
less communication interfaces, such as WiFi and Bluetooth (BT), enabling the
creation of ad-hoc networks. These interfaces significantly differ from one
another in their power requirements, transmission range, bandwidth, etc. For
example, BT is an order of magnitude more power efficient than WiFi, but its
transmission range is an order of magnitude shorter. This paper introduces a
management middleware that establishes a power efficient overlay for such ad-
hoc networks, in which most devices can shut down their long range power hun-
gry wireless interface (e.g., WiFi). Yet, the resulting overlay is fully connected,
and for capacity and latency needs, no message ever travels more than 2k short
range (e.g., BT) hops, where k is an arbitrary parameter. The paper describes the
architecture of the solution and the management protocol, as well as a detailed
simulations based performance study. The simulations largely validate the abil-
ity of the management infrastructure to obtain considerable power savings while
keeping the network connected and maintaining reasonable latency. The perfor-
mance study covers both static and mobile networks.

Keywords: Wireless Ad-hoc Networks, Power Aware Overlays, Multiple Radio
Interfaces.

1 Introduction

Mobile devices enabled with multiple wireless interfaces are becoming increasingly
common. As evidence, most laptops, smartphones and PDAs are equipped with WiFi
and BlueTooth (BT) radios. Future devices are expected to include even more interfaces,
supporting currently emerging standards, such as WiMax and ZigBee. An important as-
pect of these technologies is their ability to create mobile ad-hoc networks (MANETs),
which enable direct communication between devices in an infrastructure independent
manner and offer fast and easy deployment in situations where it is not possible or not
cost effective otherwise.

Yet, mobile devices are typically battery operated. Hence, any application or middle-
ware for such ad-hoc networks must be energy efficient. Researchers have found that
wireless communication is one of the main sources of power consumption in mobile de-
vices [2,15,7]. Consequently, efficient power utilization by the wireless communication
sub-system is crucial for the success of such networks.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 288–307, 2009.
c© IFIP International Federation for Information Processing 2009

Power Aware Management Middleware for Multiple Radio Interfaces 289

All aforementioned technologies for wireless communication differ dramatically one
from another in several parameters, e.g., maximum transmission range, energy require-
ments and available bandwidth [8,15]. Hence, the choice of which wireless technology
to use has great impact on the power consumption of the devices, but also on the net-
work connectivity and capacity. For example, a simple approach of switching off WiFi
and only keeping BT operational may result in a disconnected network. On the other
hand, leaving all interfaces up all the time is too wasteful. This is because, especially
in WiFi, the power consumed by an idle interface is only slightly lower than the power
consumed while transmitting or receiving [3, 4, 7, 15].

Power utilization in mobile ad-hoc networks has received substantial attention in
recent years. Most previous works, however, consider devices with a single wireless
interface. The proposed solutions range from constructing an energy-efficient over-
lay of active nodes, e.g., [4, 19, 20], through adjusting transmission range of radios,
e.g., [9, 11, 13], to exploiting interface-specific techniques, such as the power-saving
mode (PSM) of WiFi, e.g., [1, 2, 12]. All approaches, however, share the problem of
potentially lost connectivity and pose non-trivial assumptions on the underlying sys-
tem, such as the availability of location information, radios with a varying transmission
range, synchronized clocks, etc.

In this paper, we take a different, more integrated approach to the problem of power
utilization for networks in which the devices own two wireless communication inter-
faces, e.g., WiFi and BT.1 Specifically, we develop a middleware service, called Overlay
Construction and Maintenance (OCM), that controls which wireless interfaces should
be used on each device in the following manner: OCM constructs an overlay of de-
vices such that each device who is a member of the overlay keeps both its interfaces
active. All other devices not in the overlay shut down their long range power hungry
wireless interfaces (typically WiFi). In order to keep the network latency and capacity
reasonable, no device is further than k short range hops from its nearest overlay mem-
ber, where k is an arbitrary parameter. Moreover, the transitive network formed by the
collection of short range radios and active long range radios must be fully connected.
Also, devices elected by OCM to the overlay tend to be the ones with highest remaining
battery power, and the overlay is constantly maintained in order to reflect both dynamic
changes in the network topology as well as remaining battery power.

Each overlay member acts as a cluster-head for its non-overlay short-range k-hop
neighborhood. OCM interacts with a slightly modified routing infrastructure at the IP
layer such that messages are routed using a standard reactive routing protocol, such
as DSR [10], to the cluster-head closest to the target node. From the cluster-head, the
message is forwarded through table driven routing, also managed and dictated by OCM,
along short range hops to the actual destination device.

Although at the abstract level our solution does not assume any specific technol-
ogy, the most natural scenario for the application of OCM is a network composed
from laptops and mobile phones equipped with BT and WiFi radios. Hence, we eval-
uate the performance of OCM with typical power consumption parameters for BT and
WiFi network cards under several network conditions, such as density and mobility of
nodes. For the latter, we use several mobility models, e.g., a static model with random

1 Extending our solution to multiple interfaces is straight forward.

290 R. Friedman and A. Kogan

placement and random way-point [10]. Yet, one of the possible domains for the appli-
cation of OCM is a university campus or a school. In these settings, the entire network
can consist of hundreds of nodes. However, at any given time, there are sets of dozens
of devices that remain in proximity for long periods of time, but may also move from
one location to another. In order to capture the specific characteristics of this domain,
we introduce and evaluate OCM under a novel mobility model. In this model nodes
prefer to stay or move in the vicinity of one of the preselected hot-spots, correspond-
ing to classrooms and gathering places (such as cafeterias, libraries, meeting rooms,
etc.). Nodes mostly switch between these places at the same times, corresponding to
beginnings and endings of classes and breaks.

Since measuring the performance for a network of a few hundreds of nodes was not
feasible, we opted to present simulation results. Yet, the simulations were performed
with the complete Java code of the implementation. Through extensive simulations, we
show that OCM is able to save significant portions of energy, while keeping the latency
under tolerable limits. As could be expected, the energy gain produced by OCM is
especially high when the network becomes denser and mobility is low, which matches
well campus and school environments.

The rest of the paper describes and evaluates the OCM middleware. The related work
is surveyed in Section 2. Section 3 presents the architecture of OCM and Section 4
provides details on its management module. The integration of OCM with routing is
discussed in Section 5. Section 6 presents an extensive simulation based evaluation
of the performance of OCM. The technical details on extensions implemented in the
simulator to enable our evaluation are given in Appendix A. We conclude in Section 7.

2 Related Work

A few recent papers consider wireless networks consisting of devices equipped with
multiple radio interfaces. The most related to our work is that of Bahl et al. [3], which
outlines the advantages behind systems that use two radios in an integrated manner.
They investigate multi-radio solutions to several problems in wireless computing, such
as energy management and capacity enhancement, and show significant benefits for
such solutions over single-radio ones. Although their work does not rely on any partic-
ular radio technology, it requires, however, that all radios of the sender should be able
to communicate with all radios of the receiver, meaning effectively that devices should
stand close enough or all radios should have the same transmission range.

Pering et al. [15] introduce a system called CoolSpot that enables traditional WiFi
hot-spots with BT interfaces and with a policy for multi-radio management. The pa-
per considers single-hop communication between a wireless mobile device and such a
hot-spot, where a closely located device is able to switch automatically between two in-
terfaces in order to reduce its power consumption. The authors also provide an empirical
evaluation of several policies that effectively manage radio switching.

Energy efficiency in single-radio wireless networks is a well studied problem. Brevity
precludes us from mentioning all of the works, so we will refer to exemplary ones, and
explain the difference between their approach and ours.

The idea of constructing an overlay of active nodes responsible for routing while
other nodes may turn their radios off was examined by several researchers. Xu et al. [20]

Power Aware Management Middleware for Multiple Radio Interfaces 291

propose the GAF algorithm, which partitions a wireless network into small virtual grids.
Based on location information provided by a GPS or similar systems, GAF selects one
node in each grid to remain active, while the rest of the nodes are put into sleep. Chen
et al. [4] present SPAN, a probabilistic power-saving technique where a node decides to
join an overlay if it discovers two neighboring nodes that cannot communicate directly
or through another node in the overlay. Similar ideas are used by Wu et al. [19] in
order to build an overlay consisting of nodes with high remaining energy level. Since
these works consider a single wireless interface (SPAN is even designed for WiFi only),
when a node turns its radio off, it is unable to receive incoming messages, eventually
increasing the number of lost messages, or requiring overlay nodes to store messages
for relatively long durations, increasing the latency and buffering requirements. Thus,
this approach is inappropriate in systems with heavy communication patterns.

Another extensively studied power-saving technique is to control the topology by
varying the transmission range of the radios, e.g., [9, 11, 13]. The main tradeoff in the
topology control comes from the following fact: Decreasing the transmission range
decreases the power consumption significantly and reduces the interference. On the
other hand, it may hurt network connectivity and increase the diameter of the network
(in terms of number of hops), which in turn may increase the communication latency
and decrease the network capacity. In addition, power consumption in idle state still
remains a problem.

The IEEE 802.11 standard defines a power-saving mode (PSM), which allows to
switch the wireless card into sleep mode in case of no activity and wake it periodically
to probe an access point for pending messages. While PSM can significantly reduce the
power consumption during idle periods, it was found that in certain common interactive
applications it may cause substantial increase in latency and even in power [1,12]. In or-
der to cope with the limitations of PSM, several enhancements were proposed, tailored
mainly to application specific domains, such as web-browsing [2, 12] and distributed
file systems [1]. Besides being developed solely for WiFi, though, PSM is orthogonal
to the approach presented in this paper, and thus can be used in addition to it.

In order to evaluate the performance of OCM, we integrate it with an ad-hoc routing
protocol in a way that uses a reactive routing on the long range interface between the
overlay nodes, while the routing to/from non-overlay nodes is done proactively on the
short range interface. The resulting scheme resembles several protocols proposed for
hierarchical routing in single-radio networks (e.g., [14, 16]). The main benefit of such
protocols is scalability, since only a small fraction of nodes, i.e., those in the overlay,
are involved in the route discovery process.

3 Architecture of OCM

The OCM architecture is depicted in Figure 1. Its main part is a management module,
accompanied by a couple of heartbeat modules, all running as independent processes
within a MANET device equipped with two radio interfaces. The management mod-
ule is responsible for the construction of the power aware overlay and its maintenance
according to dynamic changes in the topology and remaining battery power of the de-
vices. Based on the internal logic described in the following section, the management

292 R. Friedman and A. Kogan

p
a
c
eradio 1

k
e
r
n
e
l

s

table−driven
routing

ad−hoc
routing

application
user

OCM

management beat 1 beat 2

IP

heart− heart−

MAC 1 MAC 2

connector

radio 2

layer

physical
layer

u

c
a
p
s

r
e

s y s t e m c a l l s

s

IP
layer

MAC

e

Fig. 1. Architecture overview

module decides to switch radios on and off by executing system calls to corresponding
MAC modules of the radios, as shown in Figure 1. By a slight abuse of terminology, in
the sequel, when referring to OCM, we actually mean the management module.

The management module is assisted by heartbeat modules that utilize the common
technique of periodically broadcasting heartbeat messages for discovery of new neigh-
bors and notification on lost neighbors. When a heartbeat message from a previously
unknown node is received, this node is considered as a new neighbor. When no heart-
beat message is received from a neighbor during some predefined period of time, the
link with this neighbor is considered to be lost. A clear trade-off exists between the
accuracy of the information and the frequency of broadcasts.

The OCM middleware interacts with a connector module, which is a slightly modi-
fied routing infrastructure at the IP layer. The module gets its name from the capability
to connect between two independent radio interfaces. It exposes a standard routing API
for the IP module and encompasses two routing protocols: a reactive ad-hoc routing
intended for the long range interface and a proactive table-driven routing intended for
the short range interface. The routing table for the latter is managed by OCM through
system calls. When the connector module is given a packet to be routed from the IP
module, it passes this packet to one of the two routing protocols depending on source

Power Aware Management Middleware for Multiple Radio Interfaces 293

and destination addresses of the packet. The integration of OCM with the connector
module is detailed in Section 5.

4 The OCM Management Module

OCM is designed to manage the wireless communication interfaces by clustering the
network. This section presents the assumed network model and data structures used by
OCM, and gives high-level as well as elaborated details of the clustering process.

4.1 Network Model and Data Structures

The system consists of a set of nodes communicating by exchanging messages over
a wireless network. Each node is equipped with two wireless network interfaces A
and B, with transmission ranges R and r, respectively, so that R � r. The nodes
have unique identifiers and may move independently. Two nodes may communicate
through an interface A (B) when the distance is less than or equal to R (r, respectively).
Communication links of both types are unreliable, FIFO and mostly bidirectional. To
cope with possible omissions, OCM employs local, unsynchronized clocks. Yet, the
system as a whole is asynchronous.

We assume that the power consumed by B is lower than the power consumed by A.
In other words, it is preferred to use interface B over A for communication whenever
possible. Note that we do not make any assumptions on the technology type of A and B:
they can be completely different (i.e., A is WiFi, while B is BT or TR100 low-power
radio [3]) or can be identical (i.e., both A and B are WiFi’s, operating at different
predefined transmission ranges). At any given time, each interface may be active or
turned off.

Each node pi maintains up to three data structures, depending on the number of
its active interfaces. They are: a list of the long range interface neighbors (for brevity,
referred later as long neighbors), a list of the short range interface neighbors (referred
later as short neighbors) and an intra-cluster routing table. As the name of the latter
suggests, it is used for routing messages between nodes inside clusters created by OCM,
and implemented as an adjacency matrix with a row and a column allocated for each
node in the cluster to which the owner of the table belongs. Note that the total space
required at each node is proportional to k and the maximal number of neighbors on
each interface, but does not depend on the total number of nodes. This makes OCM
very scalable for large systems.

4.2 High-Level Overview

The objective of the middleware protocol is to create an overlay consisting of nodes
with both interfaces turned on. The overlay is required to be connected at the level of the
long interface. Additionally, the protocol strives to minimize the value of the function∑

i
1

el(i) , where el(i) is the energy level of a node i belonging to the overlay. The idea is
to have an overlay, which is small in the number of nodes, and which consists of nodes
that have high remaining energy level. Another requirement from OCM is that all nodes

294 R. Friedman and A. Kogan

sufficiently long time

received merge-accept message

peercluster-head

received retire message
CH is unreachable

no message from CH for

Fig. 2. State transitions in OCM. CH stands for the ”cluster-head”.

which are not a part of the overlay are associated with some node in the overlay and are
within k short range hops from it, where k is an arbitrary parameter of the protocol.

To achieve the above requirements, OCM employs the following scheme. A node
pi with an active long range interface periodically publishes information regarding its
cluster to long neighbors. The neighbors check several conditions and decide whether
they wish to merge with the cluster of pi. If they decide positively, they send a corre-
sponding message, and pi chooses the best candidate pj from those who agreed for the
merge. Then pi sends a message to that candidate, and if pj is still ready for the merge,
it becomes the head of the united cluster. The details are described below.

4.3 Clusters Merging

During the run of the protocol, each node can be in one of two states: cluster-head or
peer. A cluster-head is the node that has both interfaces enabled; this is the initial state
of every node in the network. A node becomes a peer when it decides to turn its power-
consuming long range interface off and associate itself with some cluster-head. A state
transition diagram is shown in Figure 2.

A cluster-head pj periodically broadcasts merge-inquiry messages (on its long inter-
face), which include information on its energy level, current short and long neighbors
and the intra-cluster routing table. When a cluster-head pi receives such a message from
pj , it decides to respond with merge-agree if all four conditions hold: (1) pi and pj are
connected by a path of short edges; (2) in the united routing table there is no path from
any peer to pi consisting of more than k short links; (3) the set of pi’s long neighbors
contains a certain portion, β, of the long neighbors of pj; (4) pi’s rank is higher than the
rank of pj . In our implementation, the ranking was based solely on the energy level of
a node (with IDs used to break ties), although more sophisticated functions are possible
(e.g., a ratio between the energy level and the number of nodes in the cluster).

Condition (3) is motivated by the request to create an overlay connected at the level
of the long range interface. In order to ensure connectivity, one should set β to 1,
i.e., pi’s set of long neighbors should include all long neighbors of pj . This is a very
strong limitation on the ability of clusters to merge, especially in dense networks. On
the other hand, setting β close to 0 increases the chances of ending up with a discon-
nected overlay, especially in sparse networks. Although many heuristic approaches are
possible, including the ones that adapt dynamically to the sparsity of the network, in
our implementation we simply use the value of 0.25. We show empirically that this

Power Aware Management Middleware for Multiple Radio Interfaces 295

value suffices to achieve a connected overlay with relatively large clusters (see Sec-
tion 6).

After sending the merge-inquiry message, node pj waits Tmi seconds (in our im-
plementation, Tmi = 1) for merge-agree messages from its neighbors, which include
information on their energy level. Then pj selects the cluster-head with the highest en-
ergy level, pk, as a candidate for the merge and sends a merge-request message to pk.
Node pk responds with merge-accept if it does not wait for such a message from another
cluster-head. Finally, if pj receives the merge-accept message within Tmr seconds (in
our implementation, Tmr = 1), it broadcasts a new-cluster-head message to all peers
in its cluster, which notifies them on the change of their cluster-head, and switches the
long range interface off to become a peer.

A node in the peer state remains with the long range interface turned off until one of
the following three events occurs (cf. Figure 2): (1) it receives a retire message from its
cluster-head, sent by the cluster-head when its energy level reduces below a predefined
threshold (see details below); (2) it does not receive any message from its cluster-head
for sufficiently long period of time; (3) it receives a notification on a failure of its ad-
jacent short link, which makes the cluster-head unreachable by a path of short links
between nodes in the cluster.

In order to implement the last event, as well as to keep the overlay structure current
with the temporal network topology, the OCM protocol utilizes the common heartbeat
technique. The technique is implemented in the corresponding heartbeat module dis-
cussed in Section 3. Note that OCM employs the heartbeat module on every active
interface, i.e., a cluster-head runs two such modules, while a peer only issues heartbeats
on a single interface.

To extend the lifetime of the network and distribute the load of the cluster-head duty
on all nodes, OCM employs the following simple load balancing approach. The cluster-
head pi records its current energy level at the first time some peer joins the cluster. Node
pi continues to serve as the cluster-head for its peers until its energy level reduces below
a predefined threshold compared to the recorded value. When it happens, pi broadcasts
a retire message to all its peers, indicating that they need to transit into the cluster-
head mode. Hence, they start running the merge procedure. Since pi wasted much more
energy than those in the peer state and since the ranking of nodes relates directly to their
remaining energy, pi is unlikely to serve as a cluster-head for too long.

The detailed pseudo-code for the merge procedure is presented in Algorithm 1. Be-
sides the el variable used to specify the energy level of each node, the pseudo-code uses
RT , LN and SN variables to specify the intra-cluster routing table and the set of long
and short neighbors, respectively.

5 Integration of OCM with Routing

Although routing is purely a networking issue not related to the core operation of the
OCM middleware, for the clarity of the whole picture we provide more details on the
integration of OCM with the connector module, presented in Section 3. When the con-
nector receives a packet to route, it looks-up the destination of the packet in the routing
table provided by OCM. If the destination is in the routing table, the packet is given to

296 R. Friedman and A. Kogan

Algorithm 1. Merge procedure, executed periodically by cluster-heads; code for
node i
1: broadcast merge-inquiry(eli, RTi, LNi, SNi) to all long neighbors
2: wait for merge-agree(elj) messages from all j ∈ LN for Tmi seconds
3: chosen ← choose j with merge-agree(elj) s.t. elj is maximal
4: if chosen �= nil then // there was some j that can be joined
5: send merge-request(RTi) to chosen
6: wait for merge-accept from chosen for Tmr seconds
7: if received merge-accept then
8: broadcast new-cluster-head(chosen) to all peers in the cluster
9: switch to peer state // and switch long interface off

10: when merge-inquiry(elj, RTj , LNj , SNj) is received from j
11: if 〈elj, idj〉 < 〈eli, idi〉 ∧
12: there is a path of short edges between i and j ∧
13: max distance between any peer and i in the joined RT ≤ k short edges ∧
14: |LNi ∩ LNj|/|LNj| ≥ β then
15: send merge-agree(eli) to j

16: when merge-request(RTj) is received from j
17: if not waiting for merge-accept then
18: send merge-accept to j
19: update RTi with RTj

20: if inside merge procedure then
21: stop merge procedure

the table-driven routing mechanism to be sent to its destination. If not, but the source
of the packet is not a cluster-head, the table-driven routing is used again, this time to
route the packet to the cluster-head of the source. Otherwise, the packet is given to the
standard, off the shelf, ad-hoc routing mechanism, slightly modified as described below.

Consequently, the routing between nodes inside a cluster is managed solely by OCM,
based on the intra-cluster routing table maintained at every node as part of the manage-
ment module. A reactive ad-hoc routing protocol is not used for intra-cluster routing
since the clusters are expected to be relatively small and dynamic, thus the overhead
created by routing protocols on routes discovery and/or maintenance would not be
cost-effective. A cluster-head is responsible for updating the routing table every time
it absorbs another cluster (during the process of clusters merging) or when it gets a
notification on failed links inside the cluster. Such a notification may arrive from the
heartbeat module after a failure of an adjacent link or from some peer. The routing
table is broadcasted periodically to all peers in the cluster. If a peer does not receive
the update for sufficiently long time, it assumes that its cluster-head is unreachable and
therefore transits into the cluster-head state, switching its long range interface on (cf.
Figure 2).

As indicated above, inter-cluster routing is performed through an off the shelf ad-hoc
routing protocol, which is run solely by cluster-heads. In principle, the OCM proto-
col can utilize any ad-hoc routing algorithm. The only required modification is that an

Power Aware Management Middleware for Multiple Radio Interfaces 297

instance of the routing protocol running on a cluster-head should act as a proxy for
peers in its cluster. In practice, this means that when the ad-hoc routing algorithm run-
ning on a cluster-head inspects a message addressed to another node, it should query
OCM whether the destination node is a peer in the cluster. If this is the case, the rout-
ing protocol should generate a response as expected from the actual destination. In our
experiments, we evaluate OCM integrated with the well-known DSR [10] algorithm,
modified according to the above.

Note that OCM decides to switch nodes to a peer state independently of the routing
protocol. Thus, if a node is actively participating in routing, such transition may cause
message losses, especially when the node serves as a cluster-head for a large cluster. In
practise, however, the DSR algorithm succeeded to rediscover new routes and adapt to a
new topology very fast, keeping the failure rate below 1% in most simulated scenarios.
A possible optimization that may further reduce the failure rate is to inform the routing
protocol about the planned change in the state of the node. Additionally, a cluster-head
that merges its cluster into another cluster may update the new cluster-head regarding
active routes.

6 Performance Evaluation

We evaluate the performance of OCM in the Java-based SWANS simulator [6]. We
would like to emphasize that the code used in the simulations is the full Java im-
plementation of the protocol, including all modules specified in Section 3. To enable
our evaluation, we have made two extensions to the simulator: monitoring the energy
level of nodes and supporting two radio interfaces on the same device. The first exten-
sion is implemented by collecting information on the times each interface is in send-
ing/receiving/idle/sleeping modes. The second extension required to synchronize the
location of two radios and address interference issue. For more technical details, refer
to Appendix A.

We assume a simulation area of size 500x500m2 with nodes placed at uniformly
random locations. The number of nodes varies from 100 to 500 or from 100 to 1000
in steps of 100. The length of each simulation is 1000 (real time) seconds, where the
first 100 seconds are considered as a warmup time and measurements are taken during
the last 900 seconds. Each reported data point is produced by taking an average over 10
experiments.

In our experiments, each node is equipped with two types of radios: (1) WiFi with
a transmission range of 100m and bandwidth of 11Mbps; (2) BT with a transmission
range of 10m and bandwidth of 1Mbps. The numbers are taken according to the nominal
transmission ranges and bandwidths of WiFi and BT technologies, as reported in [8].
We assume (and extend the simulator accordingly) that transmissions emitted by these
radios do not interfere. This is in accordance with findings of several works that propose
techniques to significantly mitigate the interference of BT and WiFi [5, 18].

Due to lack of support for a true BT MAC layer in the simulator, both radios use
the same 802.11 MAC layer. We also do not explore the specific limitations existing in
BT’s network configuration, where the network is composed from piconet units, which
are built from up to eight devices working together [8]. (Nevertheless, due to the short

298 R. Friedman and A. Kogan

Table 1. The summary of simulation parameters. The power consumed by BT in the sleeping
mode is not stated since we do not use this mode in our simulations.

range of BT, the simulated networks are not dense enough at the BT level. Hence, this
does not pose a real limitation). All these issues are left for the future work. We note
that we are not aware of any simulator providing a precise implementation of both BT
and WiFi MAC layers.

The performance metrics we consider are the average latency of the sent messages
and the average energy consumed by nodes during the simulation. Specifically, the con-
sumed energy reflects the instantaneous consumed power multiplied by the duration of
consumption. Simulation traffic was generated by choosing random source and desti-
nation nodes every second and sending a packet of 256 bytes. The latency is calculated
only for packets received at the selected destinations. Unless otherwise specified, the
failure rate of transmissions, i.e., the ratio of packets not received by the selected desti-
nation nodes, was below 1%. The simulation parameters are summarized in Table 1.

6.1 Energy Model

The power consumption model of the WiFi interface is based on the measurements
reported by Feeney and Nilsson [7] for a 802.11 wireless card operating at 11Mbps.
They report costs of 1346mW for transmission, 900mW for receiving, 740mW for idle
state and 47mW for sleeping. The numbers are similar to those reported by several other
works for similar cards, e.g., [4, 20]. As for the BT interface, we use the measurements
reported by Pering et. al. [15] for BlueCore3 BT radio operating at 1Mbps: 81mW
for transmission and 5.8mW for idle state. This work does not report on the power

Power Aware Management Middleware for Multiple Radio Interfaces 299

consumed during receiving, thus we conservatively assume that receiving requires as
much as transmitting, i.e., 81mW.

These values for instantaneous power are summarized in Table 1. Note that in the
simulation, we are not really turning off the WiFi radio, but put it into sleep mode.
Although it still incurs a small cost in power (which is negligible compared to other
WiFi modes), it allows to ignore the time required to switch from sleeping to active
mode: as specified in [2], this time is insignificant.

To ensure that our measurements are fair, we conservatively assume that when the
OCM middleware is disabled, nodes operate with BT radio turned off. Thus, in the fol-
lowing figures, when OCM is disabled, we report only on energy consumed by WiFi.
Hence, the actual benefit from OCM might be even slightly better than reported if this
is not the case. Note that our consumed energy measurements account for all messages
transmitted, including messages generated by OCM and/or DSR as well as traffic gen-
erated for the purpose of the simulation.

6.2 Mobility Models

We evaluate the performance of OCM under several mobility models. The first one is
a static setting where nodes remain in their initial random locations during the entire
simulation. The second model is the well-known random way-point model [10], where
nodes alternate between pausing and moving to a randomly chosen position at a fixed
speed. We consider speeds selected randomly from the range between 1 and 2m/s
(thereby avoiding some of the pitfalls of the random way-point model), corresponding
to walking speeds, and two pause times: 60 and 180 seconds. Note that the first (static)
model can be considered as a private case of the second model with the pause time set
to the length of the simulation.

In order to better capture the environment of a campus or a school, which appears to
be an attractive domain for OCM implementation, we propose a new mobility model.
In this new model, two sets of special locations, or hot-spots, are preselected and nodes
alternate between the following two phases: In the first phase, the nodes are static and
assigned random locations near one of the hot-spots from the first set, corresponding to
classrooms. In the second phase, the nodes move to a new position, which is selected
randomly (with low probability) or near one of the hot-spots from the second set (with
high probability), corresponding to a gathering place in the campus, such as a cafeteria
or a library. When a node reaches a position near the hot-spot, it prefers to remain
nearby (i.e., move to a close location) with high probability, move to another hot-spot
with lower probability, or choose a completely random location with low probability.
The movement is done with speeds selected randomly from the range between 1 and
2m/s (walking speed).

We refer to the model presented above as a two-phase model with hot-spots. In addi-
tion to the already mentioned parameters, such as probabilities and speeds, the model is
tuned by the number of iterations during the simulation, where each iteration consists
of two phases, and a pivot controlling the ratio between duration of the first phase and
duration of the whole iteration. We set the number of iterations to 3: this is a small
value, meaning relatively long phases, yet larger than 1, allowing to capture the effect
of transitions between phases. We experiment with two pivots: 1, which means that the

300 R. Friedman and A. Kogan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900 1000

co
ns

um
ed

 e
ne

rg
y

(J
)

of nodes

with OCM k=1
with OCM k=3
with OCM k=5
without OCM

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

(m
s)

of nodes

with OCM k=1
with OCM k=3
with OCM k=5
without OCM

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

(m
s)

of nodes

with OCM k=1
with OCM k=3
with OCM k=5
without OCM

(c)

Fig. 3. Comparison of energy consumed by wireless communication (a) and latency ((b) and (c))
vs. the number of nodes in the static system, when OCM is run with various values of k and
when OCM is disabled. The traffic in (a) and (b) consists of 256B messages and in (c) of 10KB
messages.

second phase is empty, and 0.75, which means the first phase is three times longer than
the second, corresponding to an alternation between classes and breaks.

To summarize, we have experimented with five mobility models: static, random way-
point with pause time of 60 and 180 seconds and the two-phase model with hot-spots
with pivots of 1 and 0.75.

6.3 The Impact of k on the Performance of OCM

The first set of results presents the impact of the value of k, the maximal number of
short range hops between a peer and its cluster-head, on the performance of OCM. In
order to exploit the potential of larger clusters, nodes should remain close enough (i.e.,
in the transmission range of BT of up to 10 meters one from another) and stay that way
as long as possible. Thus, we first evaluate the impact of k in the static system.

Figure 3(a) presents the measurements of the energy consumed by the wireless com-
munication as a function of the number of nodes in the system. The average energy
consumed without OCM is almost stable, increasing only slightly with the number of
nodes. The increase in the denser network occurs because of the overhearing effect ob-
served in [17], due to which more nodes receive transmissions not intended for them.

Power Aware Management Middleware for Multiple Radio Interfaces 301

On the other hand, the power consumed when OCM is enabled reduces linearly with the
number of nodes, since more effective clustering can be created, and thus more nodes
may turn their WiFi radios off. The gain in power produced with k = 1 is lower than
with larger k’s, since when OCM is restricted to create small clusters, the result is larger
overlays. There is no observable difference, however, between k = 3 and k = 5. This
can be explained by the fact that even with 1000 nodes, the system is not dense enough
at the BT level to allow for the creation of very large clusters. Thus, under the densities
we experimented with in the static setting, further increase in k does not provide OCM
with an opportunity to reduce the size of the overlay and save more energy.

Figure 3(b) compares the latency of transmitted messages. Here, surprisingly, we can
see that although OCM uses slower BT hops, it performs better than communication
without OCM. In addition, the latency exposed by OCM is insensitive to the value of
k, even though larger k means that a message may traverse larger number of BT hops.
The explanation to these phenomena is hidden in the relatively small size of generated
messages (256 bytes), which cancels the superiority of faster WiFi links and, on the
other hand, emphasizes the advantage of the hierarchical routing: the overhead of route
discovery is eliminated when both source and destination belong to the same cluster or
when the route is already cached by a cluster-head.

In order to validate this claim, we have measured the latency (and consumed energy)
with traffic produced by larger messages of 10 kilobytes. The latency results, shown in
Figure 3(c), fully comply with our hypothesis (the measurements of consumed energy
exhibit similar behavior to the one shown in Figure 3(a) and thus are omitted). With
larger messages, the higher bandwidth of WiFi plays a significant role. Thus, the latency
produced with OCM is higher, and it increases for k > 1. The difference between
k = 3 and k = 5 is almost not observable, due to the reasons explained above in the
comparison of consumed energy.

To summarize, it seems that for the densities we experiment with, OCM achieves the
best trade-off between consumed energy and latency with k = 3. Thus, the rest of the
experiments are conducted with this value for k.

6.4 The Effect of Mobility on the Performance of OCM

Figure 4 presents the behavior of the network under the random way-point mobility
model with two values for pause times: 60 and 180 seconds. The power savings pro-
duced by OCM are expected to be less than in the static setting, since when nodes move,
BT links are very unstable due to their relatively short range. As a result, according to
Figure 2, peers transit frequently to the cluster-head state. This intuition is confirmed
by Figure 4(a), which compares the energy consumed by nodes: OCM succeeds to save
less energy than in the static setting and the savings are higher with longer pause time.

Figure 4(b) compares the latencies exhibited by the network. For the longer pause
time, the latency does not change much due to the use of OCM; when the pause time is
short, however, OCM introduces more considerable increase in latency. This happens,
again, due to frequent changes in BT links, which break routes discovered by the DSR
routing protocol. As explained in Section 5, a cluster-head responds to route discovery
messages intended for its peers. In the time interval until the actual message arrives,
its peer may move far enough to break the path of BT links between them, thus the

302 R. Friedman and A. Kogan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500

co
ns

um
ed

 e
ne

rg
y

(J
)

of nodes

with OCM pause=60s
with OCM pause=180s

without OCM pause=60s
without OCM pause=180s

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500

la
te

nc
y

(m
s)

of nodes

with OCM pause=60s
with OCM pause=180s

without OCM pause=60s
without OCM pause=180s

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500

fa
ile

d
de

liv
er

ie
s

(%
)

of nodes

with OCM pause=60s
with OCM pause=180s

without OCM pause=60s
without OCM pause=180s

(c)

Fig. 4. Comparison of energy consumed by wireless communication (a), latency (b) and percent-
age of failed deliveries (c) vs. the number of nodes in the system. The nodes move according to
the random way-point model with a pause time of 60s and 180s.

cluster-head would not be able to forward the message and would generate a route
error. As a result, the sender of the message would retry to discover another route and
then resend the message with a new route.

The process of route rediscovery may occur several times, until the routing protocol
gives up and drops the message. As Figure 4(c) presents, this happens too often with
OCM, especially when the pause time is short. Another source for failed deliveries,
originating from the same issue of failing BT links, is intra-cluster routing. When a
message is originated at a peer and destined to some node outside the cluster, it is
relayed first to the cluster-head of the peer using the intra-cluster routing table (same
for a message received by a cluster-head, but intended for its peer). Such relay is done
by table-driven routing mechanism using point-to-point transmissions along the shortest
path consisting of BT links. A failure of even one link along that path may cause to the
omission of the message.

In order to cope with the problem of such intra-cluster omissions, we propose the
following recovery mechanism: whenever a notification on a failed point-to-point trans-
mission is received from the BT MAC layer, the connector module notifies OCM that
considers the link as lost (which may cause the peer to switch into the cluster-head
state) and tries to resend the message. The retransmission may occur on another BT

Power Aware Management Middleware for Multiple Radio Interfaces 303

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500

fa
ile

d
de

liv
er

ie
s

(%
)

of nodes

with OCM pause=60s
with OCM pause=180s

without OCM pause=60s
without OCM pause=180s

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500

la
te

nc
y

(m
s)

of nodes

with OCM pause=60s
with OCM pause=180s

without OCM pause=60s
without OCM pause=180s

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

la
te

nc
y

(m
s)

% of messages

OCM without MAC notification
OCM with MAC notification

(c)

Fig. 5. Comparison of percentage of failed deliveries (a) and latency (b) when the MAC notifica-
tion mechanism is enabled. Figure (c) compares average latency vs. the percentage of delivered
messages sorted by latency (i.e., data point (x, y) shows the average latency (y) for x% of the
fastest messages) in the system of 500 nodes with and without the MAC notification mechanism.
The nodes move according to the random way-point model with a pause time of 60s and 180s
in (a) and (b), and 60s in (c).

link or on a WiFi link, enabling the DSR routing with its own retrying mechanism men-
tioned above. Note that such a notification can be generated by any implementation of
the MAC layer which provides reliable point-to-point transmissions and, in particular,
by 802.11 MAC.

Figure 5 studies the impact of the recovery mechanism on the performance of OCM.
As can be seen in Figure 5(a), the reliability of the protocol increases sharply: for ex-
ample, for the short pause time and 500 nodes, the percentage of failed deliveries drops
from 9% to less than 2%. The average latency, on the other hand, increases from 269 to
347 milliseconds (Figure 5(b)). This increase is introduced by messages that now suc-
ceed to reach their target using the recovery mechanism, but suffer from a delay caused
by the first unsuccessful transmission on the BT link.

In order to validate that only recovered messages are delayed by the introduction
of the recovery mechanism, we compile a graph showing the average latency of x%
shortest deliveries in the setting of 500 nodes and the pause time of 60 seconds vs.
x (Figure 5(c)). Here we can see that in both scenarios, i.e., with and without the

304 R. Friedman and A. Kogan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500

co
ns

um
ed

 e
ne

rg
y

(J
)

of nodes

with OCM pivot=0.75
with OCM pivot=1

without OCM pivot=0.75
without OCM pivot=1

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500

la
te

nc
y

(m
s)

of nodes

with OCM pivot=0.75
with OCM pivot=1

without OCM pivot=0.75
without OCM pivot=1

(b)

 0

 1

 2

 3

 4

 5

 100 200 300 400 500

fa
ile

d
de

liv
er

ie
s

(%
)

of nodes

with OCM pivot=0.75
with OCM pivot=1

without OCM pivot=0.75
without OCM pivot=1

(c)

Fig. 6. Comparison of energy consumed by wireless communication (a), latency (b) and percent-
age of failed deliveries (c) vs. the number of nodes in the system. The nodes move according to
the two-phase mobility model with hot-spots, with pivots of 0.75 and 1.

recovery mechanism, approximately 90% of messages experience the similar average
delay, confirming that the increase in the total latency occurs due to recovered messages.
As a conclusion, the recovery mechanism appears to be a successful tool in coping with
the reliability issue of OCM in mobile setting, while the latency of messages not requir-
ing this tool remains unchanged.

6.5 The Performance of OCM under Two-Phase Mobility with Hot-Spots

The performance of OCM under the two-phase mobility model with hot-spots is shown
in Figure 6. Due to similarity of phenomena to the ones discussed in the previous sec-
tion, we present only the measurements performed with the recovery mechanism de-
tailed above. The energy savings produced by OCM are impressive: in the static setting,
i.e., when the pivot is set to 1, only 38.2% of the energy is consumed when OCM is en-
abled in the system of 500 nodes compared to the system without OCM (Figure 6(a)).
When nodes move, i.e., when the pivot is set to 0.75, less than half of the energy is
consumed. Such encouraging results are explained by the characteristics of the mobil-
ity model, where nodes concentrate around hot-spots, providing OCM with a potential
to create smaller overlays.

Power Aware Management Middleware for Multiple Radio Interfaces 305

The latency exhibits similar behavior to the ones measured under the static and ran-
dom way-point models (Figure 6(b)). With the pivot set to 1, OCM achieves much better
latency due to the hierarchical routing employed, while with the pivot set to 0.75, the
latency of OCM is higher due to the recovery mechanism used (without it, OCM per-
forms better even though nodes move). The percentage of failed messages is slightly
higher for OCM, but still kept under 1% in most scenarios (Figure 6(c)).

7 Conclusions

This paper presents OCM, an efficient middleware that reduces power consumption
in mobile ad-hoc networks composed of devices with multiple communication inter-
faces. OCM does not assume any specific communication technology; it requires only
one interface with a larger transmission range and power consumption than the other.
Moreover, it way be applied in addition to other power-saving techniques, such as PSM
of WiFi [2].

OCM constructs an overlay of nodes connected at the level of long range interface,
having the rest of nodes with their long range interface turned off and connected to some
node in the overlay through an adjustably short path of short range links. The nodes
are selected into the overlay based on their remaining energy level and the number
of neighbors they can communicate with on both interfaces. OCM adapts quickly to
topology changes by using local timers and turning long range interfaces on when a
node suspects that it has lost a connection with its associative node in the overlay. Thus,
wrong detection of link failures may hurt only the performance, but not the correctness
of the protocol.

We evaluate the performance of OCM with typical parameters of BT and WiFi cards
and show that the power savings produced by OCM are significant, while the latency
and message loss are almost the same as with the standard ad-hoc routing algorithm.
It is notable that in the static setting, OCM even achieves considerably better latency.
In addition, OCM adapts well to the density of the network, exhibiting the behavior
of “add more to improve service”, similar to [20] and opposite to [4]. This feature is
particularly important as the number of devices equipped with several communication
interfaces continuously increases.

A possible direction for future research would be to evaluate the middleware with
other technologies for wireless communication, e.g., WiMax and ZigBee, in addition
to WiFi and BT or instead of them. The middleware can be easily extended to manage
more than two wireless interfaces. For example, given a network consisting of devices
that have also WiMax radio, OCM would construct an overlay with nodes having all
radios active; this overlay would be connected at the level of WiMax. Another sub-
overlay would be created out of nodes having WiMax turned off; every node in the sub-
overlay would have a path of up to k WiFi links to some node in the overlay. Finally,
the rest of nodes in the network would have both WiMax and WiFi turned off and have
a path of up to k BT links to some node in the sub-overlay.

Another issue that warrants investigation is dealing with capacity enhancement. Al-
though OCM keeps the number of short links in each path below the predefined thresh-
old and thus preserves a significant portion of the original capacity, it may not be enough

306 R. Friedman and A. Kogan

for certain applications. A possible direction is to adapt the middleware to local com-
munication requirements on each node. That is, switch a peer into the cluster-head state
when it generates or receives traffic above some threshold.

References

1. Anand, M., Nightingale, E.B., Flinn, J.: Self-tuning wireless network power management.
Wireless Networking 11(4), 451–469 (2005)

2. Anastasi, G., Conti, M., Gregori, E., Passarella, A.: 802.11 power-saving mode for mo-
bile computing in Wi-Fi hotspots: limitations, enhancements and open issues. Wireless Net-
works 14(6), 745–768 (2008)

3. Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with multiple
radios. ACM SIGCOMM Comput. Commun. Rev. 34(5), 39–46 (2004)

4. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless networks. ACM Wireless Networks
Journal, 85–96 (2001)

5. Chiasserini, C.F., Rao, R.R.: Coexistence mechanisms for interference mitigation between
IEEE 802.11 WLANs and Bluetooth. In: Proc. IEEE INFOCOM, vol. 2, pp. 590–598 (2002)

6. Cornell University. JiST/SWANS – Java in Simulation Time / Scalable Wireless Ad Hoc
Network Simulator, http://jist.ece.cornell.edu

7. Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless network in-
terface in an ad hoc networking environment. In: Proc. IEEE INFOCOM, pp. 1548–1557
(2001)

8. Ferro, E., Potorti, F.: Bluetooth and Wi-Fi wireless protocols: a survey and a comparison.
IEEE Wireless Communications 12(1), 12–26 (2005)

9. Gomez, J., Campbell, A.: Variable-range transmission power control in wireless ad hoc net-
works. IEEE Transactions on Mobile Computing 6(1), 87–99 (2007)

10. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Mobile
Computing, pp. 153–181. Kluwer Academic Publishers, Dordrecht (1996)

11. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio net-
works. Theoretical Computer Science 243(1-2), 289–305 (2000)

12. Krashinsky, R., Balakrishnan, H.: Minimizing energy for wireless web access with bounded
slowdown. Wireless Networking 11(1-2), 135–148 (2005)

13. Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: Analysis of a cone-based dis-
tributed topology control algorithm for wireless multi-hop networks. In: Proc. 20th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 264–273 (2001)

14. Pei, G., Gerla, M., Hong, X.: LANMAR: Landmark routing for large scale wireless ad hoc
networks with group mobility. In: Proc. IEEE/ACM MobiHOC, pp. 11–18 (2000)

15. Pering, T., Agarwal, Y., Gupta, R., Power, C.: Coolspots: Reducing the power consumption
of wireless mobile devices with multiple radio interfaces. In: Proc. ACM MOBISYS, pp.
220–232 (2006)

16. Rieck, M.Q., Dhar, S.: Hierarchical routing in ad hoc networks using k-dominating sets.
SIGMOBILE Mob. Comput. Commun. Rev. 12(3), 45–57 (2008)

17. Singh, S., Raghavendra, C.S.: PAMAS: Power aware multi-access protocol with signalling
for ad hoc networks. ACM Computer Communication Review 28, 5–26 (1998)

18. Song, M., Shetty, S., Gopalpet, D.: Coexistence of IEEE 802.11b and Bluetooth: An inte-
grated performance analysis. Mobile Networks and Applications 12(5), 450–459 (2007)

http://jist.ece.cornell.edu

Power Aware Management Middleware for Multiple Radio Interfaces 307

19. Wu, J., Dai, F., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating
sets for efficient routing in ad hoc wireless networks. J. Communications and Networks,
59–70 (2002)

20. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad hoc rout-
ing. In: Proc. 7th Int. Conf. on Mobile Computing and Networking (MOBICOM), pp. 70–84
(2001)

A Extensions to SWANS

This section provides technical details on the extensions introduced into the SWANS
simulator [6] in order to enable the experiments with OCM. The sources can be down-
loaded from http://www.cs.technion.ac.il/˜sakogan/SWANS.

Consumed energy measurements: Our energy model implies that a radio may be
in one of the four following states: sleeping, idle, receiving or transmitting. These are
also the modes used by SWANS for its radios. Thus, we intercept an event of the mode
change in a radio, recording the time of the change and the new mode. At the subsequent
mode change, we calculate the length of the interval for the current mode and, again,
record the time of the change and the new mode. Thus, we accumulate the times during
which the radio was in each of the four modes. During the simulation and at its end, we
multiply these values by the power consumed at each mode (cf. Section 6.1) to receive
the amount of energy consumed by wireless communication sub-system at each node
up to that point.

Supporting multi-radio devices: The SWANS simulator features a limited support
for nodes with multiple radios, which is summarized by an ability to add more than one
radio and MAC module to the same node. These radios, however, operate independently
from one another, which means that a movement of one does not imply the movement of
another. In our extension, we eliminated this shortcoming by synchronizing the location
of both radios, i.e., under any mobility model, both radios are always moved to a new
location simultaneously.

Another issue we addressed in our support for multiple radios is interference. As
opposite to the previous point, the handling of the interference depends tightly on the
types of radios as well as on the system model assumptions. As mentioned above, in
the base version of SWANS radios behave independently, which results in interference
of a transmission by one radio with any other transmission in the range, no matter what
the types of transmitting radios are and even if both transmissions are emitted from
the same device. Moreover, the transmissions on one interface can be received by the
other interface (in fact, two interfaces on the same device always receive transmissions
one of the other). Choosing to experiment with common wireless technologies, namely
BT and WiFi, and following the findings of several papers [5, 18], we assumed that
transmissions by different types of radios do not interfere. Thus, we extended the way
a packet is transmitted on a simulation field by filtering packets sent by one radio type
from being received by another radio type.

http://www.cs.technion.ac.il/~sakogan/SWANS

COLA: Optimizing Stream Processing
Applications via Graph Partitioning

Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Joel Wolf,
Kun-Lung Wu, Henrique Andrade, and Buğra Gedik

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
{rohitk,hildrum,sujay,drajan,jlwolf,klwu,hcma,bgedik}@us.ibm.com

Abstract. In this paper, we describe an optimization scheme for fus-
ing compile-time operators into reasonably-sized run-time software units
called processing elements (PEs). Such PEs are the basic deployable
units in System S, a highly scalable distributed stream processing mid-
dleware system. Finding a high quality fusion significantly benefits the
performance of streaming jobs. In order to maximize throughput, our
solution approach attempts to minimize the processing cost associated
with inter-PE stream traffic while simultaneously balancing load across
the processing hosts. Our algorithm computes a hierarchical partition-
ing of the operator graph based on a minimum-ratio cut subroutine. We
also incorporate several fusion constraints in order to support real-world
System S jobs. We experimentally compare our algorithm with several
other reasonable alternative schemes, highlighting the effectiveness of our
approach.

Keywords: stream processing, operator fusion, graph partitioning,
optimization, scheduling.

1 Introduction

We live in an increasingly data-intensive age. By some estimates [1], roughly
15 petabytes of new data are generated every day. It is becoming an ever more
mission critical goal for corporations and other organizations to process, ana-
lyze and make real-time operational decisions based on immense quantities of
data being dynamically generated at high rates. Distributed systems built to
handle such requirements, called stream processing systems, are now becoming
extremely important. Such systems have been extensively studied in academic
settings [2, 3, 4, 5, 6, 7, 8], and are also being implemented in industrial envi-
ronments [9, 10]. The authors of this paper are involved in one such stream
processing project, known as System S [11,12,13,14,15,16,17,18,19,20], which
is highly scalable distributed computer system middleware designed to support
complex analytical processing. It has been evolving for the past six years.

1.1 Operator Graphs and the Fusion Problem

Application development in System S is facilitated by the spade development
environment. Among other things, spade defines a programming model based on

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 308–327, 2009.
c© IFIP International Federation for Information Processing 2009

COLA: Optimizing Stream Processing Applications via Graph Partitioning 309

type-generic streaming operators, as well as a stream-centric language to compose
these operators into parameterizable, distributed stream processing applications.
In this model, depicted in Figure 1(a), an application is organized as a data flow
graph consisting of operators at the nodes connected by directed edges called
streams which carry data from the source to destination operators. Examples of
streaming operators include functors (such as projections, windowed aggregators,
filters), stream punctuation markers, and windowed joins. spade also allows
flexible integration of complex user-defined constructs into the application.

(a) Operator-level Data Flow Graph (b) PE-level Data Flow Graph

Fig. 1. Operators, PEs and Data Flow Graphs

The operator-level graph of Figure 1(a) represents a logical view of the appli-
cation. When the application is executed on a System S cluster, these operators
must be distributed onto the compute nodes for execution. From the point of
view of the Operating System (OS) on a node, the unit of execution is a process.
One of the main tasks of the spade compiler is to convert the logical operator-
level data flow graph into a set of executables that can be run on the cluster
nodes. A System S application executable is called a processing element (PE),
which serves as a container for one or more operators, and maps to a process
at the OS level. Coalescing several operators into a single PE is called fusion
(described in detail in [13]). A compiled spade-generated application becomes
a physical data flow graph consisting of PEs with data streams flowing between
them. This is depicted in Figure 1(b), with the shaded regions representing PEs.
One can think of the PEs as essentially supernodes in the original operator data
flow graph.

When data is sent on a stream between two operators in the same PE, the
spade compiler converts it into a function call invocation of the “downstream”
operator by the “upstream” operator. Sending data on streams between PEs
is performed by inter-process communication, such as TCP sockets. Thus, only
the inter-PE (physical) streams remain as edges in the PE-level graph. As a
result of this transformation, passing data on an intra-PE stream has almost no
processing cost compared to an inter-PE stream, which requires inter-process
communication.

310 R. Khandekar et al.

The goal of this paper is to tackle the fusion problem: how to map a logi-
cal operator-level graph into an optimal physical PE-level graph. A good fusion
algorithm is critical to enable high-performance distributed stream processing
applications that can be flexibly deployed on heterogenous hardware. But there
are tradeoffs involved. To see this, consider the two extreme solutions to the op-
erator fusion problem. On one end of the spectrum, suppose all operators were
fused into a single PE. This solution eliminates all communication cost because
all downstream operators are invoked via function calls. However, the resulting
PE is a single process which is limited to one node, and does not exploit the
available hardware parallelism of multiple nodes. On the other end of the spec-
trum, suppose no operators were fused, each operator corresponding to its own
PE. If the PEs were well distributed on the nodes, they would exploit the avail-
able hardware resources. However, they would incur significant communication
cost. The ideal solution would be someplace in between, so that fusion is used
to reduce communication cost while providing flexibility to exploit the available
compute capacity across multiple nodes. Our experiments show that relative to
the unfused case, a good fusion algorithm allows the application to achieve over
3 times higher throughput on the same set of resources.

1.2 Our Contributions

In this paper, we describe cola, a profile-driven fusion optimizer, which oper-
ates as part of the spade compilation process. cola supports an environment
with heterogeneous hosts, while allowing the user to specify a variety of impor-
tant real-world constraints about the fusion. Its input is information about an
application being compiled by spade, along with some attributes of a set of
representative System S hosts. We say cola is profile-driven since it relies on
application information in the form of performance metrics indicating the CPU
demands of the operators and data rates of each stream.

Although we use the phrase fusion, cola works from the top down rather than
from the bottom up. Starting with all operators fused together into a single PE,
the cola algorithm iteratively splits “large” PEs into two separate “smaller”
PEs by solving a specially formulated graph partitioning scheme. Then a PE

1

2

3

4

5

1

2

3
4

2
3

1

5

Fig. 2. Iterative graph partitioning in cola

COLA: Optimizing Stream Processing Applications via Graph Partitioning 311

scheduler, serving as a compile time surrogate for the run time scheduler, hypo-
thetically assigns the resulting PEs to potential hosts in an attempt to balance
the load. If the combined solution to the graph partitiong and PE scheduling
problems is not satisfactory, an oracle chooses one of the current PEs to split
next, and the process iterates. Finally, the best solution found is chosen as cola

output, and the fused PEs are compiled. Several sample cola iterations are
shown in the format of a binary tree in Figure 2. At the root of the tree all
operators are in one PE. The PEs created by solving the first graph partitioning
problem are shown at depth 2. The oracle then picks one of these PEs to par-
tition further (in this example, the first), and these PEs are shown at depth 3.
And so the process continues. At the end of the last iteration the leaf nodes of
the binary tree (shown shaded) represent the output cola PEs.

In this paper, we describe two variants of cola. The first version, called Basic
cola, generates a set of partitions that minimizes the communication cost, while
ensuring that the fused PEs will still “fit” within the CPU capacities of the
available nodes. While this basic version is not as sophisticated as the second
version, it does illuminate several key ideas and components of the overall design.
It also suffices for many applications. The second version is called Advanced
cola. In addition to the goals of Basic cola, it (a) attempts to balance the
load across the nodes, and (b) enables the user to restrict the fusion via a set
of real-world constraints on the operators and PEs. We support six different
types of constraints, three of which are resource matching (an operator requires
a host with specific attributes such as CPU type), PE exlocation (operators
cannot be fused together), and host colocation (operators must go on the same
host). We retain and enhance the graph partitioning scheme used for Basic cola,
and introduce an integer programming formulation and solver to handle the PE
scheduling problem in a more precise manner. The basic operator fusion problem
has been tackled [13] using a greedy heuristic. We will show in this paper that
cola can provide a significant improvement over this heuristic. No other work
to our knowledge has attempted to address the full version of the fusion problem
with additional constraints.

Note that although cola does consider the actual target system during its op-
eration, it is not the same as the System S runtime scheduler called soda [18].
When an application (job) is actually executed on the system, it is soda that
manages the job. In particular, soda provides functionality such as admission
control (based on available resources), as well as load-balancing the cluster
among multiple jobs and dynamically adapting to changing load conditions. For
its evaluation purposes, cola, which is invoked only at compile time, includes a
simpler PE placement mechanism that mimics the full soda algorithm.

Our contributions in this paper include the following.

– A new scheme for fusing spade operators into nearly optimal PEs in System

S, appropriate for general, heterogeneous processing host environments, and
working synergistically with the scheduler.

– Support within the scheme for a wide variety of additional real-world con-
straints.

312 R. Khandekar et al.

– A new and practical generalization of a classic graph partitioning problem,
and a novel solution scheme.

– An effective compile-time PE scheduler which mimics the soda System S

run-time scheduler.
– Experimental evidence suggesting that the cola scheme has a major impact

on the performance of System S.

The remainder of this paper is organized as follows. Section 2 describes the Basic
cola problem formulation and the solution approach. In Section 3, we describe
the formulation and solution strategy for Advanced cola. Experiments showing
the performance of the Basic cola variant are described in Section 4. (The
infrastructure to support the constraints is not yet available in System S, so
we defer experiments involving the Advanced cola scheme for now.) Finally, in
Section 5 we give conclusions and list future work.

2 Basic COLA

2.1 Problem Formulation

Consider a directed graph G = (V, E) in which the vertices V represent the
spade operators and the directed edges E represent the streams flowing between
the operators. Assume that we are given operator costs wv ≥ 0 for v ∈ V that
represent the CPU costs of the corresponding operators, and communication
costs we ≥ 0 for e ∈ E that represent the CPU costs due to sending and receiving
tuples associated with the corresponding streams. (We will measure all CPU
costs in terms of millions of instructions per second, or mips .) This input data
is computed in spade via the use of efficient profiling methodology [13]. For a
subset S ⊆ V , let δ(S) denote the set of edges with exactly one end-point in S.
Let the size of a subset S ⊆ V be defined as

size(S) =
∑
v∈S

wv +
∑

e∈δ(S)

we. (1)

Intuitively speaking, size(S) denotes the total CPU utilization that a PE consist-
ing of the subset of operators S would incur. Recall that the streams contained
completely inside a PE are converted into function calls during compilation
and incur negligible CPU cost. For two sets S and T , we denote the set differ-
ence (set of elements of S that are not elements of T) by S � T . To simplify
the notation, we denote w(S) =

∑
v∈S wv and w(δ(S)) =

∑
e∈δ(S) we. Thus,

size(S) = w(S) + w(δ(S)).
Assume that we are also given a list of hosts H = {h1, . . . , hk} with their

CPU speed capacities B1, . . . , Bk, also in mips . The cola fusion optimization
problem can be stated as follows: find a fusion of the operators into PEs and an
assignment of the PEs to hosts such that the total CPU cost of a host is at most
its capacity and the total communication cost across the PEs is minimized. More
formally, the problem is to partition V into PEs S = {S1, . . . , St} and compute
an assignment function π : S → H such that

COLA: Optimizing Stream Processing Applications via Graph Partitioning 313

(i). for any hi ∈ H, we have
∑

S∈S:π(S)=hi
size(S) ≤ Bi, and

(ii).
∑

S∈S w(δ(S)) is minimized.

Expression (i) describes scheduling feasibility: The assigned operators must fit
on the hosts. Recall that in this Basic cola variant we do not require that the
load be balanced well, just acceptably. The expression (ii) measures the total
communication cost across the PEs. Technically, it is twice the total commu-
nication cost across the PEs, since each edge going between different PEs is
counted coming and going. This multiplicative factor does not, of course, affect
the graph partitioning optimization in any way. This problem can be shown to
be NP-hard by a reduction from the balanced cut problem [21].

As an application developer, one is primarily interested in maximizing the
amount of data that is processed by the job. This can be measured as the ag-
gregate data rate at the source (input) operators of the job, and is commonly
referred to as ingest rate or throughput. Since this metric is hard to model as a
function of the operator fusion, cola attempts to minimize the total inter-PE
communication as a surrogate.

2.2 Solution Approach

1. Run Pre-processor
2. Use PE scheduler to compute an LPT schedule
3. Repeat until the schedule is feasible:

(a) Use Oracle to identify PE p to split next
(b) Use Graph Partitioner to split p into two PEs
(c) Use PE scheduler to compute an LPT schedule

4. Run Post-processor

The pseudocode of the Basic cola algorithm is given above. We will go into
the key components in more detail below, but we first describe a high-level view
of the scheme. To begin with, a pre-processor is used to “glue” certain adjacent
operators together provided doing so would not affect the optimality of the final
PE solution. Once these operators are identified we will simply revise the problem
definition and treat the glued operators from then on as super operators. Then
the main body of the scheme begins. At any point, the cola algorithm maintains
a current partitioning S = {S1, . . . , St} of the given graph into PEs. Initially, it
places all the operators into a single PE, so that t = 1 and S1 = V . The PE
scheduler then finds an assignment π of PEs to hosts. Next, cola checks to see
if expression (i) is satisfied. If not, the oracle picks the next PE to split, the
graph partitioner performs the split, attempting to minimize expression (ii), and
the process iterates. At some point the PE assignments should become feasible.
(For ease of exposition we will not discuss the handling of pathological cases,
for example, one in which a single operator is too large to schedule.) Finally, a
post-processor is employed in an effort to improve the solution slightly before
the PEs are output.

314 R. Khandekar et al.

Pre-processor. The pre-processor performs certain immediate fusions of adja-
cent operators into super operators, motivated by the following lemma. Essen-
tially, the lemma proves that if, for any vertex v, the communication cost of one
its edges (say, e = (u, v)) is larger than the sum of the operator cost of the vertex
and the communication costs of all its other incident edges, then the edge e can
be collapsed by fusing vertices u and v. Thus, the pre-processor fuses adjacent
operators by collapsing edges with sufficiently large communication costs.

Lemma 1. Consider a directed edge e = (u, v) ∈ E from operator u to v and
suppose we ≥ min{wu + w(δ({u}) � {e}), wv + w(δ({v}) � {e})} holds. There
exists an optimum solution in which u and v belong to the same PE. Here, for
two sets X and Y , X �Y denotes the set with the elements from X that are not
in Y .

Proof. Consider any feasible solution in which u and v belong to distinct PEs S1
and S2 respectively. It is enough to show how to modify this solution so that u
and v belong to the same PE without increasing its cost or violating its feasibility.
Assume without loss of generality that we ≥ wu + w(δ({u})�{e}). In this case,
we move u from S1 to S2. That is, we let S′

1 ← S1�{u} and S′
2 ← S2∪{u}. It is

easy to see that size(S′
1) ≤ size(S1)−wu +w(δ({u})�{e})−we ≤ size(S1) and

size(S′
2) ≤ size(S2) + wu + w(δ({u}) � {e})− we ≤ size(S2). Furthermore, the

new objective value is at most the old objective value plus w(δ({u})�{e})−we ≤
0. Thus the proof is complete.

The pre-processor iteratively fuses pairs of operators {u, v} for which the condi-
tion in the above lemma holds. Once we fuse {u, v} into a super operator U , we
update its weight as wU = wu +wv and the weight of the edges incident to U as
wUx =

∑
x∈V �{u,v}(wux + wvx) and wxU =

∑
x∈V �{u,v}(wxu + wxv). The super

operators are simply treated operators in the following iterations. Our exper-
iments show that this pre-processing step, while employed rather rarely, helps
improve the quality of the final solution.

The resulting graph with all (super and other) operators placed in a single
PE is then employed in the first iteration of the main body of the scheme.

PE Scheduler. Given a current set of PEs S = {S1, . . . , St}, the role of the
scheduler in the Basic cola scheme is to determine if these PEs can be feasibly
scheduled on the given hosts H. That is, it tries to find an assignment function π :
S → H such that expression (i) is satisfied. To find a relatively good assignment
quickly we borrow and modify for our needs the well-known Longest Processing
Time first (LPT) scheduling scheme [22]. The LPT scheme enjoys several near-
optimality properties [22] and is simple to implement. As its name hints, LPT
processes the PEs in order of decreasing size. The intuition is that by doing
so this greedy scheme will dispense with the largest PEs in the beginning, and
then “recover” the load balance by dealing with the smallest PEs in the end. So
we order the PEs by size, and reindex so that size(S1) ≥ · · · ≥ size(St). LPT
initializes the “current used capacity” B′

i of each host hi to be B′
i ← 0. At any

point, it processes the next PE, say Si, and assigns it to a host, say hj , that

COLA: Optimizing Stream Processing Applications via Graph Partitioning 315

would have the minimum resulting utilization if assigned there. More formally,
it assigns Si to a host π(Si) = hj such that

hj = argminhk∈H
B′

k + size(Si)
Bk

.

It then updates the current used capacity of host hj by setting B′
j ← B′

j +
size(Si). So at each stage the current used capacity is simply the sum of the
sizes of the PEs assigned to it. The tentative assignment is feasible if, after
the last iteration,

∑
S∈S:π(S)=hj

size(S) = B′
j ≤ Bj holds for all hj ∈ H. If the

assignment is feasible, cola outputs that the current PEs and passes the control
to the post-processor. Otherwise, cola must split another PE. This involves the
oracle and the graph partitioner.

Oracle. The oracle decides the next PE to split, and it is very simple. It sim-
ply returns that PE with more than one operator which has the largest size.
A reasonable alternative would be to split the largest size multi-operator PE
assigned to the most over-utilized host. Splitting large PEs is obviously an in-
tuitively good strategy. As a side benefit it will tend to minimize the number of
calls to the graph partitioner, helpful because each such call adds to the overall
communication cost.

Graph Partitioner. The graph partitioner is the central component of the
cola algorithm. Given a PE S, its role is to determine how to split it into two
non-empty PEs, say S1 and S2. It bases its decision on two objectives:

1. to minimize the communication cost between the resulting PEs S1 and S2,
and

2. to avoid highly unbalanced splits such that size(S1) is either very large or
very small as compared to size(S2).

To achieve this, we use the following well-studied problem, called the minimum-
ratio cut or sparsest cut problem. Given a graph H = (VH , EH) with vertex-
weights wv ≥ 0 and edge-weights we ≥ 0, find a cut (S1, S2) where S2 = VH �S1
such that the following ratio, also called the sparsity, is minimized:

w(δ(S1))
min{w(S1), w(S2)}

. (2)

This objective minimizes the weight of the cut w(δ(S1)) while favoring the “bal-
anced” cuts for which min{w(S1), w(S2)} is large.

Since the sparsest cut problem is NP-hard [23], we use an algorithm of Leighton
and Rao [24] to find an approximate solution. We choose their algorithm since
it is efficient to implement and provably finds a cut with sparsity within a fac-
tor that is logarithmic in the number of operators of the optimum sparsity. We
outline their approach here. They first set up a linear programming (LP) formu-
lation of the sparsest cut problem as follows. One can think of the graph H as
a flow network where vertices are sources and sinks and the edges e ∈ EH are

316 R. Khandekar et al.

“pipes” that have flow capacity we. The LP encodes the following flow problem.
Route a demand of wu ·wv between each pair of vertices u, v ∈ VH , possibly split
along several paths, and minimize the maximum “congestion” on any edge. In
other words, minimize maxe∈EH fe/we, where fe denotes the flow sent on edge
e ∈ E. Intuitively, a cut (S1, S2) with a small ratio (2) will have edges with high
congestion, since the capacity w(δ(S1)) of the cut is small compared to the total
demand w(S1) · w(S2) that needs to be routed across the cut. The cut is then
identified from the fractional solution of the LP using the above intuition. We
omit the details from here and refer the reader to Leighton and Rao [24].

Because finding the solution to the LP can be slow even with the best lin-
ear solver packages, we implement this step with a well-known combinatorial
algorithm [25] that approximates the solution to the multicommodity flow LP.

Post-processor. The post-processor performs certain “greedy” PE merges in
order to improve the solution quality without violating the property that the
partitioning has a feasible assignment to hosts. The idea is to partly correct for
the possibly less than perfect ordering of the graph partitioning iterations. It
first determines if a pair of PEs, say Si and Sj , can be merged, as follows. It
tentatively merges Si and Sj into a single PE Si∪Sj . If the resulting partitioning
has a feasible host-assignment using the LPT scheme, it marks this pair of PEs as
“mergeable”. It then greedily merges that pair of mergeable PEs which gives the
maximum reduction in the total communication cost. This process is repeated
until there are no pairs that can be merged, and the resulting PEs are the output
of the Basic cola scheme.

3 Advanced COLA

In order to make cola useful for a wide variety of scenarios, it should allow
the user to guide or constrain the fusion process. This version supports six such
types of constraints, and it also considers a more complex objective function.

3.1 User-Defined Fusion Constraints

We have incorporated the following six types of constraints, and for each we offer
motivating examples.

1. Resource matching: An operator may be allowed to be assigned to only a
subset of the hosts. The rationale here is that some operators may need a
resource or a performance capability not present on all hosts.

2. PE colocation: Two operators may be required to be fused into the same
PE. Motivation includes the sharing of some per-process resource, such as a
JVM instance or some other language-binding runtime.

3. Host colocation: Two operators may be required to be assigned to the same
host. Clearly, PE colocation implies host colocation, but the reverse need
not be true. As motivation, two operators may wish to share a host license,
local files, or have shared memory segments.

COLA: Optimizing Stream Processing Applications via Graph Partitioning 317

4. PE exlocation: Two operators may be required to be fused into separate PEs.
This may allow some work to continue if a PE crashes.

5. Host exlocation: Two operators may be required to be assigned to separate
hosts. In this case, host exlocation implies PE exlocation, but not the re-
verse. Motivation for host exlocation includes a common per-process resource
requirement for which a single host would be insufficient.

6. High availability: In order to support the notion of hot standbys a subgraph
of the overall operator data flow graph may be identically replicated several
times. See Figure 3(a), where there are three subgraph replicas. The con-
straint requires that the fused PEs respect this subgraph in the sense that
they are either entirely contained within a single replica or do not inter-
sect with any replicas. Figures 3(b) and 3(c) present two feasible PE fusion
solutions; each shaded subsection corresponds to a PE. High availability con-
straints must also ensure that any PE contained within one replica will not
be assigned to the same host as a PE contained within another replica. Ad-
ditionally, one may optionally insist that the PEs within one replica have the
identical structures as those within the other replicas. An example of PEs
chosen with this isomorphic condition turned on is shown in Figure 3(b). An
example of PEs chosen with the isomorphic condition switched off is shown
in Figure 3(c). In either case, there are implied host exlocation constraints
for all pairs of differently shaded PEs. The motivation for all of this is, as the
name implies, high availability: If the work in one replica cannot be done,
perhaps because of a host failure, there will likely be immediate backups
available on disjoint hosts.

(a) HA Sections (b) Isomorphic HA PEs

(c) Non-Isomorphic HA PEs

Fig. 3. High Availability

318 R. Khandekar et al.

One could also think of two additional constraints, called PE dedication and
host dedication. PE dedication would mean that an operator must be its own
PE. Host dedication would mean that an operator must be its own PE and
assigned alone on a host. Thus, host dedication implies PE dedication. Both
these constraints can be easily incorporated via a small change to the cola pre-
processor and the addition of PE exlocation and host exlocation constraints. As
a result, we do not treat these as separate constraints in COLA, even though we
could expose them as constraints to the user.

3.2 Problem Formulation

The two somewhat competing goals are to ensure that

(iii). the maximum utilization U = maxhi∈H
∑

S∈S:π(S)=hi
size(S)/Bi is mini-

mized, and
(iv). the overall communication cost C =

∑
S∈S w(δ(S)) is minimized.

Assuming the maximum utilization in expression (iii) is less than or equal to
1, which we will require, this expression is simply a more quantifiable version
of the scheduling feasibility condition employed in the Basic cola scheme. As
before we will omit a discussion of how we handle pathological cases in which
this scheduling feasibility is not possible.

We will handle both goals simultaneously by minimizing an arbitrary user-
defined function f(U, C) of U and C. This function can (and typically will) be
as simple as a weighted average of the two metrics. It represents the tradeoff of
the scheduling flexibility measured in expression (iii) with the efficiency measure
in expression (iv).

Our final solution will obey:

– the six types of constraints, namely resource matching, PE colocation, host
colocation, PE exlocation, host exlocation and high availability.

– the scheduling feasibility constraint.

We will call a solution which meets the six types of constraints valid, regardless
of whether the solution satisfies the scheduling feasibility constraint. A valid
solution which also satisfies the scheduling constraint will be known as feasible,
as is standard.

3.3 Solution Approach

The pseudocode for the Advanced cola scheme is given in Figure 4. First we
give a high-level overview of our approach. We build upon the algorithm for Basic
cola, though we must add and modify many steps. There is a pre-processor, as
before. It is augmented to resolve the PE colocation constraints. It also partially
handles the HA constraints. Depending on whether or not HA constraints exist
there may be multiple PEs rather than a single PE by the end of the pre-
processing stage.

COLA: Optimizing Stream Processing Applications via Graph Partitioning 319

– Run Pre-processor
– Phase 1. Repeat

• Compute the communication cost c of the current partitioning
• If PE exlocation constraints are satisfied, go to Phase 2
• Use Oracle for phase 1 to find a PE p to split next
• Use Graph Partitioner for phase 1 to split p into two PEs

– Phase 2. Repeat
• Use PE scheduler to compute a schedule with utilization u
• If the schedule is valid, go to Phase 3
• Use Oracle for phase 2 to find a PE p to split next
• Use Graph Partitioner for phase 2 to split p into two PEs
• Compute the communication cost c of the current partitioning

– Phase 3. Repeat
• Let s ← f(u, c)
• If the schedule is feasible, go to Phase 4
• Use Oracle for phase 3 to find a PE p to split next
• Use Graph Partitioner for phase 3 to split p into two PEs
• Compute the communication cost c of the current partitioning
• Use PE scheduler to compute a schedule with utilization u

– Phase 4. Repeat
• Use Oracle for phase 4 to find a PE p to split next
• Use Graph Partitioner for phase 4 to split p into two PEs
• Compute the communication cost C of the current partitioning
• If C > (1 + T)c, go to Post-processor
• Use PE scheduler to compute a schedule with utilization U
• Let S ← f(U, C)
• s ← min{s, S}

– Run Post-processor

Fig. 4. Advanced cola Pseudocode

In the main body of our algorithm we solve the problem iteratively, as we
did in the basic scheme. In each iteration we employ, as needed, a PE scheduler,
an oracle to determine which PE to split next, and a graph partitioner to split
that PE. However, the main body of the Advanced cola scheme is composed of
four successive phases of the iterative process. These phases are similar to each
other, but not quite identical. During phase 1 the PE exlocation constraints are
resolved. During phase 2 the host colocation, host exlocation and high availability
constraints are resolved, which means that the solution at this point will be valid.
Alternatively, cola will have shown that there is no valid solution, because the
graph partitioner will have split the operator flow graph all the way down into
singleton operators without reaching validity. The user will be notified of this,
and cola will terminate. An important property of validity is that it will persist
as we continue the graph partitioning process. (To see this, consider a single split
of a PE in a valid solution, and consider the scheduling assignment in which the
two new PEs are assigned to their previous host, and all other PEs are assigned
to their previous hosts as well. This assignment also satisfies the six types of

320 R. Khandekar et al.

constraints. A corollary of this persistence property is that the existence of a valid
solution can be determined by employing our iterative partitioning scheme.) In
the normal case that a valid solution exists, the scheme continues. During phase
3 the scheduling feasibility constraints will be resolved. This means that we do
have a feasible solution to the cola problem. Denote the utilization at the end
of phase 3 by u, and the overall communication cost by c. We can compute
the objective function as s = f(u, c). Note that the overall communication cost
is monotonic: It increases with every new graph partitioning. We continue the
iterative process past this point, into phase 4, and at each stage we will compute
a new utilization U and a new overall communication cost C. Now scheduling
feasibility does not necessarily persist as we split PEs, because the sizes of the
PEs increase. The new solution is likely to be scheduling feasible, because of the
the increased sizes should be counterbalanced by increased scheduling flexibilty.
If the solution is scheduling feasible, that is, if U ≤ 1, we check to see if S =
f(U, C) < s. If so, we replace s by S, and we have found an improved solution.
When do we stop the iterative process? The answer is that we will constrain the
overall communication cost to be within a multiplicative user-input threshold
T of the cost c of our first feasible solution: C ≤ (1 + T)c. We stop when this
condition fails, or when we have reached the bottom of the binary tree, so that
all PEs are single operators. The value of T determines how much the algorithm
is willing to compromise on overall communication cost in an attempt to find
more scheduling flexible solutions. For instance, if T = 1, then the algorithm will
continue to find more scheduling flexible solutions until the communication cost
of the current solution (C) is twice the cost of the first feasible solution (c). On
the other hand, if T = 0, then the algorithm skips phase 4 completely. Finally
there is a post-processor to greedily improve the solution.

Figure 5 shows the four iterative phases of the Advanced cola scheme. At
the end of each phase we are further down the binary tree. The final solution,
denoted in the figure with stars, occurs at some point in the tree between the
end of phases 3 and 4.

LEGEND

Phase 1
Phase 2
Phase 3

Phase 4
Optimum

Fig. 5. Iterative Algorithmic Phases

COLA: Optimizing Stream Processing Applications via Graph Partitioning 321

Pre-processor. The pre-processor fuses unconstrained adjacent operators ac-
cording to the conditions of Lemma 1. It also fuses PE colocated operators. And
it separates HA replicas into separate PEs. So there will be one PE for each
HA replica, plus potentially a catchall PE for all operators not part of any HA
replicas. Recall Figure 3(a). If the isomorphic condition is turned on we will also
replace each relevant operator cost with the average values of the corresponding
operators across all the replicas. Similarly, we will replace each relevant com-
munication cost with the average values of the corresponding streams across all
the replicas. These values will probably be close in any case, but the reason for
doing this is overall robustness, as will become clear below in the description of
the graph partitioner. Finally, we will mark each relevant pair of PE replicas as
host-exlocated, and continue to the main body of the scheme.

PE Scheduler. The component of the Basic cola scheme that changes most
relative to that of the basic algorithm is the PE scheduler. It is not needed in
phase 1, but is used in phases 2 through 4. The LPT algorithm of the Basic cola

scheme is very fast, the complexity typically being dominated by the reordering
of the PEs. It is an effective and robust scheme in the absense of additional con-
straints. LPT can certainly be adapted easily to handle resource matching, host
colocation and host exlocation. But it will produce far lower quality solutions in
a scenario with many such constraints, because it is a one-pass greedy scheme.
We therefore formulate and solve the problem as a more computationally expen-
sive integer program (IP). Specifically we define decision variable xp,h to be 1 if
PE p is assigned to host h, and 0 otherwise. Let Rp denote the set of resource
matched hosts for PE p. Host colocation defines an equivalence relation which
we denote by ≡HC . Host exlocation does not determine an equivalence relation,
but we define the set HE to be the set of pairs (p1, p2) of exlocated PEs. We
then solve the following:

Minimize max
h

∑
p

size(Sp) · xp,h/Bh (3)

subject to xp,h = 0 if h /∈ Rp, (4)
xp1,h = xp2,h ∀ h, if p1 ≡HC p2, (5)

xp1,h + xp2,h ≤ 1 ∀ h, if (p1, p2) ∈ HE, (6)∑
h

xp,h = 1 ∀ p, (7)

xp,h ∈ {0, 1} ∀ p, h. (8)

The objective function 3 measures the maximum utilization of any host. Con-
straint 4 enforces the resource matching constraints. Constraint 5 enforces the
host colocation constraints. Constraint 6 enforces the host exlocation constraints.
Constraint 7 ensures that each PE is assigned to one host. Finally, constraint 8
ensures that the decision variables are binary.

322 R. Khandekar et al.

Oracle. In phase 1 the oracle will return any PE which fails to meet a PE
exlocation constraint. This means there are at least two operators in the PE
which are supposed to be PE exlocated. The choice is otherwise irrelevant, since
all such constraints will need to be satisfied by the end of the phase. In phases
2 through 4 the oracle is identical to that of the Basic cola scheme.

Graph Partitioner. Here there are two differences from Basic cola. One is
specific to all four phases, and relates to the HA constraints with isomorphic
condition on. The other is relevant, as before, only to phase 1.

– If the isomorphic condition is on and the graph partitioner splits a PE that is
part of one replica the scheme will force this solution immediately on all the
other replicas. Since we have chosen averages it does not matter which replica
is chosen to be split first. Furthermore, the graph partitioning solution should
be relatively close to optimal for all replicas. If the isomorphic condition is
off each replica can be split independently.

– The graph partitioner approach in phase 1 is again slightly modified. We wish
to encourage the PE exlocated operators to be split by the graph partitioning
process. So we add additional demand between all such operator pairs, which
makes them more likely to be split, and solve the revised graph partitioning
problem as before.

Post-Processor. The postprocessor in the Advanced cola scheme is identical
to that of the basic scheme.

4 COLA Experiments

To evaluate how cola performs in practice, we use a job called vwap that runs
on System S. The job vwap [26] represents a financial markets scenario in
which a stream of real-time quotes is processed to detect bargains and trading
opportunities. Figure 6 shows the directed graph G corresponding to this job,
as well as a typical operator fusion computed by cola. The boxes correspond
to PEs and the numbers in the boxes correspond to the sizes of PEs in terms
of CPU fractions. (Figure 6(b) is an enlarged view of a portion of Figure 6(a).)
This job consists of 200 operators and 283 arcs.

0.116727 0.0464151

0.154569

0.413348

0.36173

0.129848

0.2377180.0560763

0.859986

0.622368

0.150825

0.8305630.816655

0

1

2

3

4 53 102 151

5 54 103 152

6

7

17

18

28

29

39

40

8 11 14

10 13 16

19 22 25

21 24 27

30 33 36

32 35 38

41 44 47

43 46 49

9 12 15

50 51 52

20 23 26 31 34 37 42 45 48

55 56 66

67

77

78

88

89

57

60 63

5962

65 6871 74

7073 76

7982 85

8184 87

9093 96

9295 98

58

61 64

99100 101

6972 75 8083 869194 97

104

105

115

116

126

127

137

138

106109 112

108111 114

117120123

119122125

128131134

130133136

139142145

141144147

107110 113

148149150

118121124129132135 140143146

153

154

164

165

175

176

186

187

155 158 161

157 160 163

166 169 172

168 171 174

177 180 183

179 182 185

188

191

194

190 193 196

156 159 162

197 198 199

167 170 173 178 181 184189

192

195

(a) The vwap Job (b) Enlarged view

Fig. 6. cola Operator Fusion

COLA: Optimizing Stream Processing Applications via Graph Partitioning 323

The experiments discussed in this paper were performed using a System S

deployment on a cluster consisting of IBM BladeCenters running Linux 2.6.9.
We employed between 4 and 7 blades, each having dual-CPU, dual-core 3.2GHz
Intel Xeon processors with 4GB of RAM. The blades are in the same rack, and
are inter-connected using a high-speed 20GB/s backplane. These homogeneous
blades were reserved for these experiments. Thus, no other processes were allowed
to use the blade resources.

The cola fusion strategy was compared against two alternative fusion
strategies:

– none: No fusion. Thus each operator lies in a distinct PE.
– fint: This fint fusion strategy, proposed in [13], also takes the operator

and communication costs as input. It employs a bottom-up rather than a
top-down approach to compute a fusion. It initially places all operators into
distinct PEs and iteratively fuses them into larger PEs till some criteria is
met.

Another natural fusion strategy is to fuse all operators into a single PE. However
this typically results in a highly computationally intensive PE yielding very low
throughput values. It is therefore not evaluated further in our experiments.

We evaluate a given fusion alternative by job throughput. This is a measure of
how much data (in Mbps) is processed by the job. It is intended to be a measure
of the job’s “effective capacity”. Each vwap experiment is characterized by the
fusion strategy employed and the number of blades used.

Both the cola or fint fusion strategies require operator and communications
costs as input. The good news is that System S incorporates efficient profiling
methodology [13]. But there is bad news as well. Specifically, to use the profiling
mode in an application run, we need to choose an operator fusion. To create an
operator fusion, on the other hand, we need the profiling data. This is a chicken
and egg problem. Since the none fusion strategy does not require operator or
communication costs as input, we first run this fusion in the profiling mode.
However, the none fusion is observed to yield low throughput values and hence
only moderately useful profiling data. So we employ an iterative approach, as
follows: Using the none profiling data, we compute the fusion, referred to as
iteration 1, again in profiling mode. Then, using the new profiling data, we
compute the fusion again, this time using the new profiling data. This becomes
iteration 2, and we continue in this manner. This iterative approach is used for
both fint and cola fusions.

Furthermore, we adopt one additional heuristic in the iterative process. Since
the early fusions yield lower throughputs, we compensate for this in cola as
follows. In iteration 1, we scale the CPU capacities Bi of the hosts by a factor
γ < 1. In the experiments described below, we set γ = 0.5 in iteration 1. Then
we gradually increase γ from 0.5 to 1.0 by 0.1 through 6 subsequent iterations,
since we expect to obtain more and more accurate estimates on the operator and
communication costs.

Figure 7 demonstrates the benefit of multiple iterations, particularly for cola.
Fortunately, only a few seem to be required. The cola fusion strategy shows

324 R. Khandekar et al.

FINT COLA

NONE 1 1 972154.76 972154.76 972154.76

1 2.71 2.39 2634894.87 2323042.99 972154.76

2 2.87 3.4 2785272.67 3301139.07 972154.76

3 2.44 3.14 2376396.66 3051976.87 972154.76

4 2.82 2.86 2740871.6 2776850.38 972154.76

5 2.58 3.23 2509748.67 3137018.12 972154.76

6 2.5 3.18 2431260.12 3087061.61 972154.76

NONE 1 2 3 4 5 6

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5
FINT

COLA

Iterations

R
e
la
ti
v
e
th
ro
u
g
h
p
u
t

Fig. 7. Profiling iterations for fint and cola on 5 blades. The y-axis represents the
relative throughput of the runs, scaled so that the throughput of none run is 1.

Table 1. Theoretical Comparison of fint and cola

vwap1 none fint cola

Blades Cut size PE size Cut size PE size Cut size PE size
4 0.3792 0.3218 0.0661 0.5353 0.0332 0.4990
5 0.3703 0.2980 0.0441 0.5476 0.0587 0.4676
6 0.7236 0.8169 0.2698 0.8169 0.1998 0.7560
7 0.6833 0.6697 0.2492 0.6697 0.1860 0.6666

vwap2 none fint cola

Blades Cut size PE size Cut size PE size Cut size PE size
4 0.3544 0.3677 0.0618 0.4185 0.0618 0.4185
5 0.5740 0.6030 0.2577 0.6030 0.1530 0.5547
6 0.5571 0.5764 0.3367 0.5764 0.1552 0.5294
7 0.5888 0.5813 0.2600 0.5813 0.1587 0.5813

a significant increase in the throughput in the first two iterations. We typically
see that cola reaches its maximum throughput value quickly.

In Table 1, we show how cola compares to fint and none in terms of both
cut size and maximum PE size. We study two versions of the vwap job: vwap1
consists of 200 operators and 283 arcs, while vwap2 consists of 217 operators
and 315 arcs. The cut size is the measure of the total cost of sending traffic
between PEs. The larger the cut size, the more CPU cycles are being devoted
to sending data. The intuition is that a high quality fusion has a low cut size
without making any PEs too big to fit on a processor. We can see that the cut
sizes for cola are signifcantly lower than the cut sizes for fint, and cola often
maintains a maximum PE size which is smaller than that of fint.

COLA: Optimizing Stream Processing Applications via Graph Partitioning 325

Table 2. Throughput Values for vwap Runs with fint and cola

vwap1 none fint cola

blades 1st 1st-local Max 1st 1st-local Max
4 99.4 (1) 273 (2.75) 295 (2.96) 295 (2.96) 284 (2.86) 286 (2.88) 303 (3.05)
5 97.2 (1) 263 (2.71) 279 (2.87) 279 (2.87) 232 (2.39) 330 (3.40) 330 (3.40)
6 189 (1) 286 (1.51) 286 (1.51) 293 (1.55) 280 (1.48) 379 (2.00) 391 (2.06)
7 179 (1) 268 (1.50) 322 (1.80) 336 (1.88) 267 (1.50) 349 (1.95) 363 (2.03)

vwap2 none fint cola

blades 1st 1st-local Max 1st 1st-local Max
4 92.6 (1) 212 (2.29) 212 (2.29) 212 (2.29) 187 (2.02) 237 (2.56) 249 (2.69)
5 150 (1) 219 (1.47) 219 (1.47) 258 (1.73) 229 (1.53) 332 (2.22) 332 (2.22)
6 146 (1) 227 (1.55) 260 (1.78) 260 (1.78) 238 (1.63) 346 (2.37) 346 (2.37)
7 154 (1) 226 (1.46) 369 (2.39) 369 (2.39) 253 (1.64) 362 (2.35) 362 (2.35)

Next we discuss throughput, our prime practical metric. Table 2 presents the
throughput values for none and various iterations of fint, and cola. Since
the throughput values from different iterations can be quite different, a natural
question to ask is which iteration one should finally chose. To this end, we
evaluate several different choices: the first iteration (1st); the first iteration that
achieves a local maximum throughput (1st-local); and the iteration (among the
first few) that achieves the overall maximum throughput (Max).

We again study two versions, vwap1 and vwap2, as described above. The
rows represent distinct sets of experiments run on different number of reserved
blades given in the first column. For each such set of experiments, 6 iterations
were used for each of fint and cola. The throughput values are truncated to
three significant digits. The numbers in parentheses represent the relative gain
over the none fusion, i.e., throughput values scaled so that the throughput of
the none fusion is 1.

The throughput values of both fint and cola are significantly higher than
those of none, while the throughput values of cola for 1st-local and Max are
usually higher than those of fint.

5 Conclusions and Future Work

In this paper we have described and solved an important operator fusion prob-
lem which arises naturally in System S. Our scheme works in heterogeneous
processor environments, and supports a wide variety of real-world constraints.
We believe that the cola scheme is mathematically novel and interesting. Ini-
tial experiments support the value of our approach to the spade operator fusion
problem. We list some future enhancements.

– As may be seen in Table 2, for example, adding more hosts to the cola

problem does not necessarily improve performance. We are thinking about

326 R. Khandekar et al.

approaches in which cola might automatically choose fewer hosts than those
offered to it. This issue is easier in the case of the basic scheme with homo-
geneous hosts.

– The function f(U, C) used by the Advanced cola scheme could be a weighted
average of U and C. But we have not described how to pick these weights.
We believe the appropriate weights could be learned by examining the effects
of alternative choices on throughput.

– It appears to be useful to have the Advanced cola scheme quickly decide
if the six types of real-world constraints allow a feasible solution or not.
(This would allow a user to modify inconsistent constraints and resubmit.)
Our current scheme provides an answer this feasibility question, but not
necessarily in the fastest timeframe. We plan to modify our approach to
better handle this issue.

– We currently consider processing hosts as single units. But in today’s envi-
ronment they are often composed of several multi-core processors. Our LPT
and IP PE scheduling scheme does not consider this processor hierarchy at
present. We believe both schemes can be enhanced to do so, and we will be
experimenting to see if such an approach is valuable.

References

1. ThomsonReuters, http://ar.thomsonreuters.com
2. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,

J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The design of the Borealis stream processing engine. In: Proceedings
of Conference on Innovative Data Systems Research (2005)

3. Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Con-
vey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.:
Retrospective on Aurora. VLDB Journal (2004)

4. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Proceed-
ings of Conference on Innovative Data Systems Research (2003)

5. Girod, L., Mei, Y., Newton, R., Rost, S., Thiagarajan, A., Balakrishnan, H., Mad-
den, S.: XStream: A signal-oriented data stream management system. In: Proceed-
ings of the International Conference on Data Engineering (2008)

6. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
stream data manager. IEEE Data Engineering Bulletin 26 (2003)

7. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming
applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, p. 179. Springer,
Heidelberg (2002)

8. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Balakr-
ishnan, H.: The Aurora and Medusa projects. IEEE Data Engineering Bulletin 26
(2003)

9. Coral8 (2007), http://www.coral8.com
10. StreamBaseSystems (2007), http://www.streambase.com/

http://ar.thomsonreuters.com
http://www.coral8.com
http://www.streambase.com/

COLA: Optimizing Stream Processing Applications via Graph Partitioning 327

11. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y.,
Venkatramani, C.: SPC: A distributed, scalable platform for data mining. In: Pro-
ceedings of the Workshop on Data Mining Standards, Services and Platforms (2006)

12. Douglis, F., Palmer, J., Richards, E., Tao, D., Tetzlaff, W., Tracey, J., Yin, J.:
Position: Short object lifetimes require a delete-optimized storage system. In: ACM
SIGOPS European Workshop (2004)

13. Gedik, B., Andrade, H., Wu, K.L.: A code generation approach to optimizing high-
performance distributed data stream processing. In: Proceedings of the ACM In-
ternational Conference on Information and Knowledge Management (2009)

14. Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: The System S
declarative stream processing engine. In: Proceedings of the ACM International
Conference on Management of Data (2008)

15. Hildrum, K., Douglis, F., Wolf, J., Yu, P.S., Fleischer, L., Katta, A.: Storage opti-
mization for large-scale stream processing systems. ACM Transactions on Storage 3
(2008)

16. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani,
C.: Design, implementation and evaluation of the linear road benchmark on the
stream processing core. In: Proceedings of the ACM International Conference on
Management of Data (2006)

17. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle, R.: Towards au-
tonomic fault recovery in System-S. In: Proceedings of Conference on Autonomic
Computing (2007)

18. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L.,
Fleischer, L.: SODA: An optimizing scheduler for large-scale stream-based dis-
tributed computer systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 306–325. Springer, Heidelberg (2008)

19. Wu, K.L., Yu, P.S., Gedik, B., Hildrum, K.W., Aggarwal, C.C., Bouillet, E., Fan,
W., George, D.A., Gu, X., Luo, G., Wang, H.: Challenges and experience in proto-
typing a multi-modal stream analytic and monitoring application on System S. In:
Proceedings of the International Conference on Very Large Data Bases Conference
(2007)

20. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L.: Job
admission and resource allocation in distributed streaming systems. In: Workshop
on Job Scheduling Strategies for Parallel Processing, IPDPS (2009)

21. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman and Com-
pany, New York (1979)

22. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice Hall, Engle-
wood Cliffs (1995)

23. Śıma, J., Schaeffer, S.E.: On the NP-completeness of some graph cluster measures.
In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 530–537. Springer, Heidelberg (2006)

24. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46, 787–832 (1999)

25. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM J. Comput. 37, 630–652 (2007)

26. Andrade, H., Gedik, B., Wu, K.L., Yu, P.S.: Scale-up strategies for processing high-
rate data streams in System S. In: Proceedings of the International Conference on
Data Engineering (2009)

Persistent Temporal Streams

David Hilley and Umakishore Ramachandran

College of Computing
Georgia Institute of Technology

davidhi@cc.gatech.edu

rama@cc.gatech.edu

Abstract. Distributed continuous live stream analysis applications are
increasingly common. Video-based surveillance, emergency response, dis-
aster recovery, and critical infrastructure protection are all examples of
such applications. They are characterized by a variety of high- and low-
bandwidth streams as well as a need for analyzing both live and archived
streams. We present a system called Persistent Temporal Streams (PTS)
that supports a higher-level, domain-targeted programming abstraction
for such applications. PTS provides a simple but expressive stream
abstraction encompassing transport, manipulation and storage of stream-
ing data. In this paper, we present a system architecture for imple-
menting PTS. We provide an experimental evaluation which shows the
system-level primitives can be implemented in a lightweight and high-
performance manner, and an application-based evaluation designed to
show that a representative high-bandwidth stream analysis application
can be implemented relatively simply and with good performance.

1 Introduction

Continuous live data streams are ubiquitous and their analysis is a central
component of many applications. Network monitoring, surveillance, robotics,
inventory tracking, traffic or weather analysis, disaster response and many other
application domains fall under this umbrella. All of these applications have one
common trait: live streaming data is analyzed continuously, and the results are
used in some sort of feedback loop to direct further analysis and perform exter-
nal side-effects such as triggering alerts, producing continuous data summaries
for human monitoring or manipulating the environment. We call this class of
applications live stream analysis applications, because streams are analyzed and
consumed “live,” as the data is produced. Many such applications also require
access to historical data – data that was streamed in the past and is now archived.

While such applications are becoming ubiquitous, programming support is
relatively immature. Our broad goal is the development of a unified distributed
programming abstraction for accessing live and historical stream data, suitable
in scenarios requiring significant signal processing on heavyweight streams such
as audio and video. Existing solutions for constructing such applications tend
to fit into two broad categories: 1) “stream database” or “stream processing
engine”-style systems or 2) general-purpose distributed programming systems.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 328–348, 2009.
c© IFIP International Federation for Information Processing 2009

Persistent Temporal Streams 329

The former category has centrally managed and controlled execution, while the
latter does not impose a particular computational model on applications, only
modeling data interactions. The latter support loosely coupled systems of inde-
pendent communicating components with no centralized control. To the best of
our knowledge, no prior system has provided a unified abstraction for both trans-
port and storage of live streams as a simple distributed programming primitive.
In this paper we propose Persistent Temporal Streams (PTS), a novel distributed
system that provides simple and efficient programming idioms for dealing with
distributed stream data. At the heart of PTS is the temporal stream abstraction,
providing a uniform interface for both time-based retrieval of current streaming
data and data persistence.

PTS fits between very high-level and heavyweight solutions like full databases
with query languages and lower-level non-stream oriented distributed commu-
nications facilities typically used for distributed applications (MPI, RMI, etc.)
plus separate storage facilities. Our approach represents a middle-ground in a
vast design space. At one extreme are high-level heavy-weight solutions that
incorporate full databases with query processing capabilities. At the other ex-
treme are lower-level non-stream oriented distributed communication facilities
for constructing distributed applications that require a separate treatment of
persistent data. This middle-ground for continuous streaming data is roughly
analogous to solutions such as Distributed Data Structures [1], BerkeleyDB [2]
and Boxwood [3] for non-streaming data. The temporal stream provides first-
class recognition of time, which is a critical distinguishing aspect of continuous
live streams over other types of data; the tailoring of the abstraction to the
problem domain makes live stream analysis applications more straightforward
to build, as does eliminating a programmer-visible artificial distinction between
past streamed data and current “live” data.

This paper’s contributions are the following:

– A persistent temporal stream abstraction targeted for live stream analysis
applications (Section 2)

– An architecture for stream persistence and an analysis of the potential design
space of persistent temporal streams (Sections 2.1 & 2.2)

– A system design and implementation of PTS, a distributed runtime realizing
the persistent temporal stream abstraction (Section 3)

– A system-level experimental evaluation of PTS and an application-based
evaluation using a video-based surveillance system [4] (Section 4)

We conclude with related work (Section 5) and a summation (Section 6).

2 Persistent Temporal Streams

Temporal streams are a key feature of live stream analysis applications – as a
concrete example, think of a video feed: the stream is unbounded and produced at
a finite rate, and the video frames are temporally ordered. Each frame represents
some sampled interval of time based on the frame rate. Event streams and other

330 D. Hilley and U. Ramachandran

aperiodic streams may not have fixed output rates, but trigger based on certain
environmental conditions, like a temperature sensor sending an alert when a
threshold is reached. In both cases, data items are associated with specific time
information. All “live” streams have a natural relationship with time (wall-clock
time). Broadly, our model of temporal streams is a time-indexed sequence of
discrete data items; each item has a timestamp and spans a time interval ending
with the timestamp of the next item.

In PTS, a temporal stream is represented by a channel, which is a distributed
data structure encompassing an interface for both transport and manipulation
of streaming data; each channel holds a time-indexed sequence of discrete data
items (such as video frames) and analysis code retrieves data items by specifying
time intervals of interest. Applications interact with channels by means of “get”
and “put” operations. The basic stream operations are 1) put(i, t) – put data
item i on the stream with timestamp t (typically the current time); and 2)
get(l, h) – get all items falling within the interval [l, h). A variety of expressive
time variables [5] (such as now) are also provided to formulate intervals such as
“the most recent 10 seconds of video data”, and a wide range producer/consumer
patterns can be expressed using these time variables. The system maintains a
window of current stream data, automatically garbage collecting older items –
for example, an application could specify that channel c1 should keep 30 seconds
worth of data, and items older than that may be reclaimed.

The benefit of this model is that it provides a higher-level stream abstraction,
which fits at the intersection of an application’s manipulation of data and stream
transport. Since the stream abstraction has a familiar get/put-based interface as
a data structure, it is simple to use. Finally, by providing first-class recognition
of time, it provides a more natural way to write analysis code that deals with
continuous streams – similar to tuple models in streaming database work, and
higher level than general-purpose distributed programming mechanisms appro-
priate for high-volume data transfer. Rather than managing and buffering an
ephemeral, linear flow of data, the application can access stream data in terms
of higher-level time information. Since many live stream analysis applications
also need to store and retrieve historical data for trend analysis, a persistence
mechanism that fits within the temporal stream model is a useful feature. For
instance, a surveillance system might store historical video streams for some
predetermined archival period in a degraded form (e.g. lower resolution).

Integrating persistence into the temporal stream abstraction avoids an arti-
ficial distinction between data that is currently available in streams (a window
of recent data) and data that was streamed in the past but is now archived.
This change elevates the temporal stream abstraction from a communication
abstraction to a general-purpose data abstraction, uniformly modeling stream
data interactions. Although the same abstraction is used for live and stored data,
information about the source of data should still be made available to the pro-
grammer since the difference in access time and data quality or representation
can be significant. From a programming perspective, eliminating unnecessary

Persistent Temporal Streams 331

non-uniformity is desirable as it can make applications simpler to construct and
less brittle in the face of change.

The issues surrounding the incorporation of persistence into the stream pro-
gramming model are the core of this paper. In the following subsections, we
present an architecture for accomplishing this goal. The architecture explores
and answers several important questions related to incorporating persistence in
a seamless manner into a distributed programming model for a wide range of
streaming applications:
– How is persistence integrated into the programming model API?
– How are data items mapped to persistent forms?
– What factors affect the choice of storage backends for persistent stream data?
– How do we account for information lifecycle management (ILM) issues (e.g.

redundancy, free space management, hierarchical secondary storage)?

2.1 An Integrated Architecture for Live and Archived Streams

Our high-level persistence interface is directly enabled by extending the time-
oriented channel interface – a channel can now be marked by an application as
persistent (at creation time or later). Persistent channels empower the applica-
tion programmer in the following ways: 1) items are automatically committed
to persistent storage with related time-stamp information, and 2) time intervals
for retrieval of items may now reference both live and persistent items. Figure
1 depicts a get operation with an interval spanning live and stored data. Other
high level interface decisions are described below.

n
o
w

Live Data (60 sec.)

Get Interval

Stored Data

...

Fig. 1. Get operation spanning stored and live data

Get interface: The application may optionally constrain a retrieval operation to
adjust for the difference in latency of access and potential data format differences
of stored versus live items. The options are as follows: 1) ANY – any items, live
or stored; 2) LIVE – only live items, 3) STORED – only stored items; 4) ANYSPLIT
– return live items and load stored items from disk in the background, caching
them in a temporary in-memory cache for a subsequent get.

Per-stream data representation: An application can also control how items
are mapped to a persistent form. Some may wish to degrade the quality of items,
reduce the number of items or otherwise change their format. An application can
provide a pickling handler, which is responsible for mapping items to their per-
sistent representation (defaulting to the identity function). For example, a video
channel’s handler may JPEG compress video frames or reduce the image resolu-
tion. In addition to one-to-one item mappings, the pickling handler can take N

332 D. Hilley and U. Ramachandran

items and produce a single item to store: for example, an event channel’s handler
may transform thirty small events into some sort of digest. When N items are
mapped to one item, the original timestamp information is retained, so the same
get request will operate similarly on live and stored data. That is to say, if two
items are mapped to a single stored item, it will span the combined time interval
of the original items. As a direct extension of this functionality, an application
may provide multiple handlers with varying levels of disk usage versus processing
time and the runtime can automatically switch based on system-level cues.

Per-item persistence control: In addition to per-stream control via pickling
handlers, per-item control is possible: a data producer may mark an item placed
into a channel with the NOPERSIST flag. This will cause the persistence mecha-
nism to ignore it, so the item will disappear for good when it is garbage collected
from the live stream.

All-in-all, the programmer visible interface to a channel is essentially un-
changed – put(i, t) and get(l, h) still operate as before, but the potential span
of items available in a channel now includes historical data rather than just a
window of current live data. Put takes an optional NOPERSIST flag and get takes
an optional ANY, LIVE, STORED or ANYSPLIT modifier (ANY is the default).

2.2 Storage Requirements and Design Choices

At the high level, the stream persistence interface is natural and intuitive; all
an application needs to know is that data items are mapped to persistent forms
using a known transformation and stored along with timestamp information. Un-
derneath this abstraction, however, the data must be stored to “stable” storage
somehow, and the potential design space is large. The streams could be stored to
a local filesystem, a distributed filesystem, a DBMS, a distributed virtual block
device, an object store, or some other storage abstraction (Boxwood [3]’s persis-
tent B-link tree abstraction is potentially quite well-suited), and there are many
orthogonal design choices associated with each. In this subsection, we discuss
several PTS design properties.

Redundancy/Availability: Some properties of the underlying storage mech-
anism manifest themselves as higher-level concerns. For example, an application
may desire some form of redundancy so a stored stream does not become inac-
cessible due to disk or host failure. This could be accomplished in a variety of
ways such as using a redundant, distributed storage mechanism as a backend,
using primary copy replication, or making use of shared disks (e.g. via a SAN).

Free space management: Another storage-level property exposed at a higher-
level is the management of free space. For high-bandwidth data streams, like
video, an application will often want to use local storage as a ring-buffer so the
oldest stored data will be overwritten when storage is full. Support for some
policies may already be provided by a storage backend, however. For example,
the GPFS [6] distributed filesystem provides internal support for rich information
lifecycle policies based on filesystem metadata – a policy could specify that old
data can be reclaimed or moved to lower performance storage.

Persistent Temporal Streams 333

External applications: One may also want a persistent stream stored in a
particular backend for reasons external to the application: for example, a user
may want sensor readings inserted into a table in a relational database for offline
analysis by another application or a third party.

Suitability for workload: The access patterns created by storing stream-
ing data are atypical workloads for some potential backends. Stored items are
never updated and are read rarely (relative to the number stored). From a
storage perspective, the data is essentially append-only, which affords simple
and efficient consistency management strategies. Ideally, the backend should not
block concurrent reads of older data while appending newer data. The system
must also support ranged queries since data is accessed by specifying inter-
vals. When multiple streams are involved, the typical access patterns of stor-
ing many append-only streams simultaneously do not interact well with most
general-purpose filesystem layouts [7]. Hyperion [7] addresses the problem of
writing and querying multiple streams of captured high-data rate network traf-
fic with a custom filesystem called StreamFS. The authors also present a “log
file rotation” strategy for improving stream data layout on typical Unix filesys-
tems.

To deal with diversity in requirements, we provide pluggable storage backends.
Given the design tradeoffs discussed above, our initial prototype supports three
backends: 1) a local filesystem backend (called fs1), 2) a distributed filesys-
tem backend using GPFS (called gpfs1), and 3) a MySQL backend. Since we
want to be able to handle multiple high bandwidth streams, we think Hyperion’s
StreamFS [7] (or a slightly modified version) is best-suited to our target domain
when using local disks. StreamFS is not publicly available, so we implemented
our own filesystem-based backend called fs1 as a first-order approximation us-
ing the “log file rotation” approach presented in the Hyperion paper. We would
also like to provide a distributed storage solution with advanced ILM functional-
ity, so we leverage the distributed filesystem GPFS for this purpose. A MySQL
backend is provided for scenarios where streams need to be stored in a rela-
tional database (e.g. for analysis by other applications). In general, we do not
believe MySQL is a good general backend choice because it imposes a relatively
large overhead on the storage process and was not designed for this particular
workload.

3 System Design and Implementation

In this section we describe the concrete system architecture of PTS and salient
implementation details. First, we provide general high-level system details (Sec-
tion 3.1), followed by channel implementation details independent of whether a
channel is persistent or not (Section 3.2). Section 3.3 summarizes the implemen-
tation of the stream persistence architecture. Figure 2 shows the structure of the
PTS system software stack.

334 D. Hilley and U. Ramachandran

3.1 System Structure

The system is structured as a distributed runtime and the core of the system
is a set of cooperating peers using the PTS library – peers are data consumers
or producers and host resources. In typical usage, a peer can be thought of as
a multi-threaded process with a distinguished identity in PTS. We also have
a distributed, replicated directory storing system metadata (for instance, nam-
ing information or mappings between opaque PTS endpoints and network end-
points) which is accessed by peers via an RPC-like protocol. Understanding
the persistent stream architecture does not require knowledge of the metadata
directory design; for the purposes of this discussion, one can simply imagine
naming/location metadata is available in some centralized directory.

Channels are PTS’s distributed and time-indexed representation of temporal
streams and the fundamental mechanism for data transport, manipulation and
storage. Almost all of the implementation complexity of peers revolves around
hosting or accessing channels. Peers place timestamped items into channels
(“put” operations) and retrieve items based on time intervals (“get” operations).
Channels are hosted at a single peer, but they may be read-only replicated (pri-
mary copy replication) for capacity or availability; a channel may also migrate
dynamically to another peer if necessary. Architecturally, every peer is a first
class entity that may host channels or interact with existing channels.

The system assumes data producers will have synchronized clocks, which is
not an unreasonable burden. NTP [8] is widely deployed and can keep hosts over
the Internet synchronized with high precision. For extremely limited devices,
more lightweight techniques or producer proxies can be used.

The implementation described here is written in ANSI/ISO C89 with pthreads.

3.2 Channels without Data Persistence

Live

Channel

Layer

o
ld
e
s
t n

o
w

Generic

Persistence

Layer

Persist

Trigger

Queue
Pickling Handler

Backend

New Item Triggers

GC Triggers

Garbage List

Producers & Consumers

put
get

GC Thread

get

persist_item
get_interval

init
cleanup

f

Configured Backend

Channel

Interaction

Layer

Channel Book-keeping

Worker Threads

Fig. 2. PTS Architecture

A channel stores current live
stream items ordered by times-
tamp; items older than a given
“currency” bound (e.g. 30s) are
automatically reclaimed. Con-
ceptually, a channel may be
viewed as an ordered list of
data items and associated meta-
data (e.g. timestamps) located
at the peer hosting a channel.
Each peer has a single gate-
keeper TCP/IP endpoint where
other peers can either interact
with channels hosted locally or negotiate a separate dedicated connection to a
particular channel for bulk data transfer. The transport protocol of dedicated
connections can be negotiated on a per-connection basis (e.g. shared memory for
colocated processes, RDMA or SCTP within a cluster, etc.). A pool of worker
threads is used to handle remote get/put requests on dedicated connections.

Persistent Temporal Streams 335

When performing get or put operations, a channel is identified by a channel
descriptor, which is an opaque reference to a particular channel data connec-
tion. Each peer has a table mapping channel descriptors to concrete connection
endpoint information, which acts like a cache: normally, channel operations use
the cached information and no metadata lookup or binding is necessary. When a
channel moves or a new connection to a channel is needed, the runtime contacts
the system metadata directory to find out which peer is hosting a channel and
then contacts the peer’s gatekeeper endpoint to negotiate a data connection.

A channel also has an integral trigger mechanism with two different types of
triggers: 1) garbage collection triggers and 2) new item triggers. Both types of
triggers are functions which apply to a single item at a time. Garbage collection
triggers are invoked when an item is about to be removed from the channel’s
“live” data and either freed or placed on a garbage list; new item triggers are
invoked when a new item is added to a channel. While this is a very simple
concept, it is also remarkably flexible. Triggers are used to implement a variety
of functionality – new item triggers are the basis for replication of channels,
multicasting channel data, an optional push-style programming interface, and a
virtual synchronization mechanism [5]. For example, to set up a copy of channel
A replicated at host B, the system creates a new locally hosted channel at host
B, and sets up a new item trigger on channel A to send each item to the replica.
Any host can now use the copy by updating its channel descriptor table to point
to the replicated channel.

To execute triggers, each channel maintains a list of functions to call for each
trigger type and invokes them sequentially and in the execution context of the
thread that added an item or caused an old item to be prepared for garbage
collection. Consequently, trigger functions are expected to have short, bounded
execution times. When a trigger is added, an initialization function is run which
can set up an event queue and a dedicated listening thread or bind to a shared
thread/thread pool for asynchronously servicing longer triggers (analogous to
“bottom half” processing for interrupt handlers). Triggers can be loaded by
name statically or dynamically (via dlopen).

The C-based runtime uses reference counting for internal storage management
of channel data. Without persistence, channel garbage collection is easy: since a
put call places a single timestamped item into a channel, we just check to see if we
can reclaim the oldest item in the channel after a put call. If the span between
the newest and oldest items is greater than the channel’s specified currency
bound, the item is removed from the live channel and the system invokes the
GC trigger functions. The last trigger will either place the item on a garbage
list if its refcount is non-zero or immediately free it otherwise. If the item isn’t
immediately freed, we walk through a small fixed number of items on the garbage
list and free those with refcounts of zero. There is no need for a background GC
thread because new garbage is only generated when old items are displaced by
newly arriving data, so the system can maintain stasis by doing a small amount
of GC work cooperatively during each put call.

336 D. Hilley and U. Ramachandran

3.3 Persistence

The persistence mechanism implements the high-level channel persistence se-
mantics and is separated into three general layers: 1) the channel interaction
layer, 2) the generic persistence layer and 3) specific persistence backends. The
persistence backends are loaded dynamically and handle interfacing with a par-
ticular storage mechanism (e.g. a filesystem). Both the generic persistence layer
and concrete persistence backends provide a simple API with four basic calls:
persist item and get interval as well as init and cleanup. persist item
and get interval directly correspond to the live channel get/put operations.

Channel interaction layer: The channel interaction layer is the small set of
hooks in the channel implementation (described in Section 3.2) which interfaces
with the generic persistence layer. For channel get operations, this consists of the
logic to interpret get types (ANY, LIVE, etc.) and to call down to the persistence
layer if stored items will be needed. If a get operation is performed on interval
[l, h] and some live item has a timestamp ≤ l, then no call to the persistence
layer is needed. After a get interval call to the persistence layer is made, this
layer also handles placing temporary items retrieved from the storage backend
on the garbage list.

Triggers are used to send items to the lower levels of the storage stack by call-
ing persist item in the generic persistence layer. The channel interaction layer
also contains routines to initialize the persistence interface. When a channel is
initially marked as persistent, a background garbage collection thread is spawned
since get operations spanning persisted items may create significant additional
garbage and our previous strategy may not be able to keep up (particularly if
put calls are rare).

Generic Persistence Layer: This layer sits between the channel implemen-
tation and a particular concrete storage backend. It maintains a small queue of
items to be persisted in batches, and is responsible for calling pickling handlers
to map items into their persistent representation. The persist item call just in-
crements an item’s refcount and enqueues it on a processing work queue handled
by a worker thread. This structure has several key properties: 1) it prevents the
persist item call from blocking a long time (since it is called from a trigger),
2) queueing is necessary for pickling handlers that transform N items to 1 item,
3) if items are eagerly pushed to storage on a channel with multiple producers,
some queueing is necessary to ensure items are written out in temporal order,
and 4) it allows the generic persistence layer to serialize writes to the backend.

Several of these properties simplify the assumptions a storage backend must
deal with. For example, serializing writes to the backend by the persistence layer
simplifies backend implementation – it may assume there are no concurrent writ-
ers, although a single writer may overlap with item reads. Another feature of
this layer is that it guarantees that items will be presented in temporal order to
the storage backend, which again can simplify the backend’s implementation.

To process a get inverval request, the generic persistence layer must search
its work queue for items that are waiting to be persisted as well as call down into

Persistent Temporal Streams 337

the concrete storage backend layer to retrieve items that have reached “stable”
storage. Finally, the generic persistence layer is also responsible for dynamically
loading storage backends and pickling functions (via dlopen) when a channel
is first marked as persistent. The generic persistence layer can also monitor
and react to different kinds of resource contention: by measuring the latency of
backend persist item calls, it can determine if storage contention is too high.
Similarly, by timing pickling handler execution, it can estimate CPU load. The
generic persistence layer can adjust to these conditions by switching between
pickling handlers or disabling pickling. The persistence layer primarily affects
CPU and storage contention; network and memory usage can be monitored and
controlled by the live channel implementation (Section 3.2).

Storage backends: As mentioned earlier, the storage backends are responsible
for implementing persist item and get interval calls.

MySQL backend: The MySQL backend is not designed for streams with high
data rates, but it is certainly appropriate for low bandwidth sensors.
persist item simply puts a tuple with (timestamp, data) into a specified table
and get interval performs a SELECT of items with timestamps in the interval
[low, high). Given the SELECT query, the timestamp column should also have
an index suitable for range queries (e.g. B-trees). Currently the backend simply
stores item data as BLOBs, which is not very flexible. We are looking into pro-
viding a richer interface by allowing user-defined functions to map binary item
data into some number of separate data items matching the desired schema.

Filesystem backend: The fs1 filesystem backend is implemented as a light-
weight overlay on top of a filesystem (SGI’s XFS [9] generally has the best overall
performance for these workloads [7]), but could also be implemented directly on a
block device. The data layout is quite simple and uses the properties provided by
the generic storage layer to avoid unnecessary complexity and synchronization.
We use the log file rotation approach from the Hyperion paper [7].

A backend needs to store timestamped data items in order and retrieve them
by bounded time intervals. To accomplish this, fs1 uses a two-level indexing
scheme. A given channel has a single top-level index file and many individual
data files, each with a second-level index; a data file’s size is roughly bounded
by a chunk size parameter (default 16MB per file) and the small, fixed index is
stored at the beginning. The overall organization is similar to ISAM.

Since the generic persistence layer guarantees that items arrive in order and
there is only a single writer, the data files are append-only, which leads to simple
logic for put item. Items are added by first writing file data, adding the offset
and length to the index and finally by writing the timestamp into the index. This
allows readers to co-exist with writers without much synchronization – a memory
fence may be needed to ensure that item data appears before the timestamp in
the index, depending on underlying hardware write ordering semantics.

Distributed filesystem backend: This backend is a variant of the fs1 filesys-
tem backend. It stores streams as whole files with a separate multi-level in-
dex directly on GPFS [6], which is already relatively well-tuned for streaming

338 D. Hilley and U. Ramachandran

workloads. This backend also takes into account desired replication/failure se-
mantics in placing data into proper filesets/storage pools with GPFS tools.

4 Evaluation

Here we present two sets of PTS evaluations. The first consists of system-level
benchmarks testing the performance of pieces of our persistence architecture.
The second is an application-based evaluation using a video-based surveillance
application. We believe it is representative of a variety of live stream analysis
applications in its basic structure and requirements.

4.1 System/Architectural Benchmarks

In order to measure the architectural overhead of our design, we perform several
sets of targeted experiments. We start with a relative comparison of the storage
backends, the lowest layer. After that we use our most lightweight backend and
target the higher layers, showing the overhead for get operations, performing
storage scaling tests with pickling handlers and adaptive load shedding, and
finally showing the relative performance between live and stored gets in both
pathological situations with no locality and locality-friendly scenarios.

The experiment in this section are performed on an x86 64 Linux 2.6.24 host
with an Intel Core 2 Duo E6750 (2.66Ghz) processor and 4GB of DDR667 RAM.
For storage results, we use the fs1 backend (on a dedicated 300GB Seagate
7200.8 drive with XFS) since it has the lowest overhead and is self-contained.

Single Producer Storage Backend Overhead: As a baseline, we compare
the relative overhead of the different storage backends using OProfile [10], a low-
overhead, sampling-based system-wide profiling tool integrated with the Linux
kernel capable of profiling un-instrumented binaries. Although the results are
elided for space, we found that the overheads associated with an RDBMS like
MySQL are very high for such workloads (e.g. 2-3x the user+kernel cycles com-
pared to *fs1 backends). These trends validate our decision (and intuition) to
build lighter-weight, task-specific storage backends – fs1 is only about 600 lines
of C code and gpfs1 is similar.

Number of Items
0 25 50 75 100

M
ic

ro
se

co
nd

s

0

50

100

150

200

250

Fig. 3. Cost of gets with an increasing number
of items: 50 live items, 100 stored items

Single Consumer Get Over-
head: This experiment demon-
strates baseline retrieval overheads
of the storage layer with fs1. In
Figure 3, we measure the cost of
a get interval operation as we in-
crease the maximum number of
items in the interval to include
stored items. We place 100 items
in an persistent channel (using the
fs1 backend) which will hold up

Persistent Temporal Streams 339

to 50 live items. Each item is 1024 bytes and the gets are performed over loop-
back TCP/IP networking. Each get is performed 10,000 times and we report
the per-get averages (i.e. measured time / 10,000); the values are averaged over
five runs (the standard deviations are less than 1% and thus not drawn on the
graph). In the figure, get operations scale roughly linearly with the number of
items requested until items must be fetched from the storage backend. At that
point, each operation incurs a fixed cost of approximately 118 microseconds, and
the roughly linear trend continues – obviously the additional cost of accessing
stored items will vary widely depending on the storage backend and underlying
storage media, but these figures show baseline overheads for fs1 (when all data
is in buffer cache).

Multiple Stream Scaling: This experiment shows how the fs1 backend and
our persistence architecture scale with increasing I/O rates by scaling the number
of concurrent streams committed to the same disk. Figure 4(a) shows the results
of multiple persistent channels simultaneously saving data to the same local XFS
partition using the fs1 backend with a chunk-size of 144MB. Each channel is
filled by a producer putting 300KB RGB video frames at 30 frames per second,
and the experiment runs for 36,000 items in each channel (20 minutes at 9MB/sec
per stream). We scale the number of concurrent producers and show results for
the normal configuration as well as results where data writes simply go to a file
descriptor which throws away the data (/dev/null) – since the local disk will
bottleneck long before other components, “no op” disk writes let us isolate the
overhead of other pieces of our architecture. We modified the backend to get the
current time after an item’s data is written out and modify the item’s stored
timestamp to provide an estimate of the total latency from the time it arrives in
the channel to the time it is written out. We also set the level of queuing in the
generic persistence layer to one, so each item is sent to the backend as soon as it
arrives to the generic persistence layer. We present the results of item latencies
in the form of several statistical percentiles (50%, 90%, 99%, 100%) because
the general distribution is hard to characterize with a single number. For each
percentile, we present the maximum among all producers. The vast majority of
items have small latencies and then median times are quite low, but heavy I/O
tends to induce a small tail of extreme outliers, particularly when the data rate
streaming to disk is high (note the graphs’ log scale and broken axes). The 99th
percentile latencies seem to be primarily influenced by the amount of filesystem
traffic and contention between multiple producers writing to a common disk.
The absolute worst case measures (100%) have a high variance and are less
meaningful across tests, because they are determined by a single high reading.

Multiple Stream Scaling with Pickling Handlers: The next experiment
shows how applying pickling handlers to producers effectively reduces the data
rate of streams committed to disk, enabling us to scale up the number of streams.
We cannot reliably commit five concurrent 9MB/s streams using fs1 with our
particular hard disk and XFS, so we configure a pickling handler to compress
each 300KB RGB video frame into a JPEG image. The average JPEG size is 20K,

340 D. Hilley and U. Ramachandran

1us

10us

100us

1ms

100ms

1s

1 2 3 4

la
te

nc
y

With Data

~~~~

 1us

10us

100us

10ms

100ms

1 2 3 4 8
Metadata Only

~~~~

(a) RGB video streams

1ms

10ms

100ms

1s

4/2 3/5 6 8 12
RGB/MJPEG MJPEG

(b) JPEG pickling

Fig. 4. Item latencies by statistical percentile

a fifteen-fold reduction
in data committed to
disk. Figure 4(b) shows
the results for runs with
6, 8 or 12 producers
all doing JPEG compres-
sion, and a mix of RGB
and JPEG producers. The
item latency now includes
a JPEG compression step,
performed by libjpeg6b,
so the median item la-
tencies are ∼4.5ms versus
∼210μs without the added compression and creation of temporary items. The
raw measured cost of the JPEG compression by itself (without dynamic alloca-
tion of items or buffers) is ∼3.7ms per frame on average. Although the data rate
of 12 MJPEG streams is still less than a single RGB stream, each producer re-
quires at least 270MB of memory to hold 30 seconds of RGB data in the live chan-
nel (plus some extra memory for temporary JPEG items), and we run into some
physical memory pressure around 14-15 streams. We could reduce the number of
seconds of live data that each channel holds to add more producers, but we even-
tually hit a CPU bottleneck for JPEG compression before the disk bottlenecks.
If we look at the all JPEG producer runs versus the mixed runs, we see that the
99th percentile latencies are now more indicative of CPU contention versus disk
contention; since we present the maximum value over all producers for each per-
centile and compression adds significant latency in the critical path for all JPEG
streams, the storage latency for uncompressed items will generally be overshad-
owed by JPEG items. Again, the 100th percentile measures are less meaningful.

item number
0 100 200 300 400 500 600

se
co

nd
s

0
0.5

1
1.5

2
2.5

3
3.5

4

item number
600 1200 1800 2400 3000

se
co

nd
s

0

0.005

0.01

0.015

0.02

Fig. 5. 8 producers: latency before/after adjustment

Dynamic Load Ad-
justment with Pick-
ling Handlers: This
experiment shows how
PTS can dynamically ad-
just to overload condi-
tions. By measuring
operation latencies in the
generic persistence layer,
the system can react by adding pickling handlers if the disk is overloaded or
removing/changing them if the CPU is overloaded. The user could also provide
several pickling handlers to compromise between stored item size and compu-
tational cost. In our current prototype we’ve implemented a simple proof-of-
concept to illustrate the possibility of dynamic load adjustment: currently we
only consider disk load and a single pickling handler, but if the item latency
starts to increase heavily, some number of consumers automatically switch to
using their pickling handlers until the overload is resolved. We ran successful

Persistent Temporal Streams 341

tests starting with 6, 8 and 12 RGB video producers with JPEG pickling han-
dlers; in all initial configurations (6, 8 and 12 uncompressed video streams), the
load is too great for the local disk and the system would normally fall behind
and never recover without removing producers. Figure 5 shows the item latencies
for a single producer of the 8 producer run before and after it switches to JPEG
frames.

Mixed Stored/Live Reader Workload: In order to demonstrate the perfor-
mance impact of accessing stored versus live items, we vary the percentage of
get operations requesting live versus stored items and measure the time to per-
form 10,000 get operations. Again we use 300KB RGB frames and perform get
operations which request 50 items from a point in the channel determined by a
probability distribution. 72,000 items are placed into the channel with a storage
backend of fs1, and the last 200 items will stay in the live channel. Since the size
of all of the items is ∼20.6GB, it is much larger than can fit in memory. We mea-
sure the cost of gets of exactly 50 items from some random point in the channel
(containing all stored or all live items), and we limit the transferred data of each
item to 100 bytes to eliminate the network transfer overhead and emphasize the
overhead of stored data retrieval (all data is still read from disk when stored
items are fetched). We vary the percentage of requests for live items from 0 to
100 and measure the total time to complete 10,000 requests with three different
distributions – a uniform random distribution, a Zipf distribution (s = 2.0) and
a binomial distribution (p = 0.5). The uniform random distribution exhibits no
locality and rapidly bottlenecks by the raw speed of the disk. Both the Zipf and
binomial distributions exhibit a lot of locality and thus benefit from caching,
scaling much better (in fact, their differences are too small to see on the graph
scale). Figure 6 shows the average per-get time for the distributions (each point
is also averaged over five runs). Although none of these test configurations are
realistic models of an actual application, which might have many different clus-
ters of “popular” historical data based on detected events, it does show the
gamut of scaling behavior between pathologically bad and more locality-friendly
workloads. Real workloads should fall in-between these extremes.

These system experiments show that the persistence architecture and prim-
itives can be implemented in a lightweight manner, scaling to store relatively
high data rate streams.

percentage of live gets
0 20 40 60 80 100

m
il

li
se

co
n

d
s

0
5

10
15
20
25
30
35
40
45 uniform

zipf
binomial

50 60
8

8.5

9

9.5

10

Fig. 6. Per-get time with historical query distribution

342 D. Hilley and U. Ramachandran

4.2 Application-Based Evaluation

For an application-based evaluation, we use a representative kernel of a video
surveillance application implemented on PTS. Although live stream analysis
applications vary greatly, we believe that the core of a video analytics system can
potentially represent a wide range of applications because the general structure of
such applications is usually similar. Each application has some set of potentially
high bandwidth streams (like video), a set of feature detectors running on these
baseline streams to produce more structured high-level data, and a hierarchy
of higher-level analysis modules which analyze and aggregate multiple potential
feature streams and produce alerts/adjust future analysis/perform actions/etc.
Some higher-level analysis will require historical data from archived streams.

Since distributed stream processing is at the heart of these applications,
they require efficient low overhead stream transport with persistence manage-
ment. Using a system like PTS simplifies the application logic significantly and
provides greater functionality than non-stream oriented primitives, supporting
richer domain-specific communication features, and transparent persistence of
data streams. The video surveillance kernel implemented using PTS is only 670
lines of C code, not including command-line argument parsing or interfaces to
OpenCV / libjpeg. Although it is subjective, the logic is very straightforward
with PTS handling stream operations.

Components: Our PTS application consists of six parts: 1) the agents hosting
video and sensor channels, 2) video data producers, 3) sensor data producers, 4)
video feature detectors – face detection and optical flow, 5) random query agents,
and 6) feature aggregation agents. Figure 7 depicts the dataflow between com-
ponents. Each agent hosts some number of persistent video and sensor channels.
The video data is 225KB RGB video frames at ∼29fps, transformed to JPEG
format using a pickling handler. The sensor data is random 1024 byte samples
produced at ∼15fps. Video producers generate the RGB video frames by decod-
ing MJPEG 3-4 minute compressed video files captured from TV and playing
them back on a loop. The feature detectors get video frames one at a time from
the channels and run either face detection or optical flow analysis on each frame.
The optical flow process first converts each video frame to grayscale but only
performs the subsequent optical flow computation on every other frame (the
CPUs limited our ability to do full frame-rate optical flow). Each feature detec-
tor outputs a small 128-byte digest of the results into a channel. The random
query agents generate random historical and live data queries on the video and
sensor data with a specific probability distribution. Finally, there is a single fea-
ture aggregation agent for each feature detector type (face detector or optical
flow); each agent gets the results from all feature detectors of the given type
(corresponding to all video channels) and calculates the latency of processing
video frames. All components process data in order and do not drop frames.

Topology: In our setup, we host four video channels and two sensor channels
per agent, with one agent per cluster node. The four video producers and two
sensor data producers corresponding to an agent are also colocated on the same

Persistent Temporal Streams 343

node, although they are logically separate processes. This node will be decoding 4
MJPEG video streams to produce RGB video frames, encoding 4 MJPEG video
streams from the same RGB frames for pickling handlers and committing all six
data streams to disk. It is also responsible for serving video content to eight fea-
ture detectors (four of each type) and handling live and historical queries from
the random query agents. The rest of the pieces run on independent nodes in
different groupings. The feature detectors run two per node and host their own
output channels locally. The random query agents run six per node (four video,
two sensor) and both measurement agents run on separate nodes. For our ex-
periments, we use two agents and eight video streams total. Table 1 summarizes
this setup.

Table 1. Video surveillance experiment

Component Configuration Total
Agent 1 per node, hosts 4 vid. / 2 sensor 2

Producers 6 per agent node, one per stream 12
Historical Query 6 per dedicated node 12

Face Detection / Optical Flow 2 per dedicated node 8 / 8
Feature Aggregators 1 per dedicated node 2

Experimental Setup: Our experiments are run on 14 nodes from a cluster of
dual-processor 64-bit Linux nodes. Each node has two Pentium 4-based Xeon
3.2Ghz processors with 1MB of L2 cache, 800Mhz FSB, 6GB of RAM, and IP
over Infiniband networking (4x SDR). The nodes run RHEL 4u6, kernel 2.6.9-
67.0.1.ELsmp (64-bit). The feature detector functionality is from OpenCV 1.0
and libjpeg6b is again used for JPEG operations. All binaries are built with gcc
4.1.2 with -O2 and -g. Persistent channels use fs1, writing to an ext3 filesystem
on a Seagate ST373207LC 10k SCSI drive.

ASAP Agent

4 RGB Video

2 Sensors

Face

Detectors

Random

Historical Queries

Feature

Aggregators

Video

Channels

Face

Channels

Motion

Channels

Optical

Flow

Sensor

Channels

Fig. 7. Video surveillance components

Workload Characteristics: We
perform five runs of each exper-
iment, each normal run lasting
six minutes and involving about
10,500 frames of video for each
channel. Each query agent makes

a video query every 100ms requesting a live or historical frame with equal prob-
ability. The historical frames’ timestamps are chosen based on a probability dis-
tribution that is roughly Zipfian(we use a power-law distribution to approximate
a situation where most video captured will be uninteresting with a few periodic
events of high interest). The standard configuration has all streams converted
to MJPEG before being stored to disk. The 1RGB configuration has one stream
per agent (two total streams) stored to disk without compression to increase the
size of the historical data-set. Similarly, the 2RGB configuration has two streams
per agent stored without compression. Due to the large amount of RAM on each
node, the set of files comprising all historical streams can fit in buffer cache
easily on the shorter runs. Consequently, we also run some significantly longer

344 D. Hilley and U. Ramachandran

experiments to ensure that the historical data set size is large enough to ensure
that all requests cannot be serviced from RAM. All of the longer experiments
have one RGB stream per agent.

Face FaceAgg Opt OptAgg
0

10

20

30

40

50

60

70

80

90

100

L
a
t
e
n
c
y
 i
n
 m

s

Standalone
0RGB
1RGB
2RGB
1RGB-30mins
1RGB-45mins

Fig. 8. Component latency in ms

Feature Detector Re-
sults: Figure 8 shows the
feature detector latencies
(in milliseconds) of several
different configurations: the
first two columns are the
processing latency measure-
ments at the face detector
and optical flow feature de-
tectors. The Agg columns
show the measured latency
at the aggregation agents.
In both cases, the latency is calculated using the timestamp of the original video
frame. The aggregation agents include another network hop since they consume
the feature detection output data stream; in addition, the aggregation agents
get the newest item from all feature detectors of a given type in sequence rather
than concurrently, and each get call can potentially block. Consequently, the
feature aggregation agents’ latencies (and standard deviation) increase with the
number of streams they are consuming. Having a separate thread handle each
feature stream independently would alleviate this, but the most straightforward
implementation (sequential) is entirely adequate for our target application and
the performance is still quite good.

Face detection is less expensive than the optical flow calculation, so the laten-
cies are as expected. The baseline costs for the stand-alone feature detectors run
on the same datasets on an unloaded node are shown as “Standalone.” The face
detection standard deviation is slightly higher because the face detection opera-
tion takes a varying amount of time depending on how many potential faces are
present in an image, while the optical flow is only dependent on the image reso-
lution. The deviation drops slightly going from nRGB to n+1RGB because the
processing load decreases slightly with the removal of JPEG encoding pickling
handlers. The variance on all components increases on the longer runs because
of the effect of historical queries that cannot fit into RAM.

Historical Query Results: Figure 9 shows the average time to make a random
historical query (in milliseconds) for video streams. We separate the RGB and
the compressed streams to show the effect of larger historical data sets. We can
see that the average query time and variance grows as the amount of historical
data grows – since the RAM size is constant, our locality gets worse as the total
dataset grows. The compressed streams’ latencies are affected too (but not as
severely) because the same node and disk are used to host both types of streams.

Persistent Temporal Streams 345

All Historical RGB Compressed
0

10

20

30

40

T
im

e
 i
n
 m

s

0RGB
1RGB
2RGB
1RGB-30mins
1RGB-45mins

Fig. 9. Query time in ms

To provide a frame of
reference for our num-
bers, ASAP [4] is a video
surveillance system imple-
mented in Java; its pub-
lished end-to-end latency
results for live queries
are between 135-175 ms,
which in practice are per-
fectly adequate for the ap-
plication domain. In our

PTS-based evaluation, the highest latency we have measured for historical
queries is 18ms (+/-16ms). Although the PTS-based implementation and func-
tionality are not directly comparable to the ASAP system, the structure of our
application components is derived from the ASAP design and both evaluations
were run on the same hardware using the same OpenCV library primitives for
analytics. This does show that the results are promising and potentially provide
headroom for higher fidelity. These preliminary results also show that the PTS
runtime adds minimal overhead to the baseline stream processing operations
which are at the core of such applications.

5 Related Work

As mentioned earlier, most work in alleviating higher-level concerns for live
stream analysis applications comes in the form of stream processing engines
or stream databases. These systems manage execution of stream analysis func-
tionality and often use continuous queries in declarative query languages. There
are a variety of relevant research systems like domain-specific Gigascope [11] and
Hyperion [7] (for network monitoring) as well as more general-purpose systems
like TelegraphCQ [12], Borealis [13] (and its predecessor Aurora [14]), and Stan-
ford’s STREAM Data Manager [15]. IBM’s Stream Processing Core [16] (part
of System S) is another research system using a continuous query approach for
“stream mining” (data mining on streaming data). General-purpose commercial
systems include StreamBase and Coral8. Various extended SQLs and non-SQL
based temporal query languages have been proposed over the last twenty years:
CQL [17] and GSQL [11] are recent examples.

While these systems are impressive, they represent a different architectural
approach than temporal streams. These systems provide centrally managed and
controlled execution (often with high level query languages), while our system
is a glue for loosely coupled systems of independent communicating components
with no centralized control. Our system is also targeted at scenarios involving
significant feature detection/analysis on streams such as audio and video, in con-
trast to SQL-like declarative query languages often more suited to domains with
highly structured data like network monitoring or stock trading. The authors of
the WaveScript language [18]/XStream engine [19] note that traditional stream

346 D. Hilley and U. Ramachandran

database approaches are not well suited to signal analysis applications (audio, for
example) and provide an augmented stream management system for isochronous
signal processing. The Linear Road benchmark [20], the only standard bench-
mark for stream databases/stream processing engines, uses highly structured
data for analysis and does not include signal analysis or feature detection from
data sources like video.

Our approach does not impose a particular computational model on stream
analysis applications; PTS only models stream data interactions, supporting ar-
bitrary communication/data dependencies between components at the expense
of being less declarative. In the end, we believe this tradeoff is acceptable given
the added flexibility of general distributed applications (e.g. components can be
developed independently/in different languages, hold internal state, utilize ex-
ternal resources, be integrated into existing systems, etc.). Our approach also
provides a substrate for higher-level domain-specific solutions which raise the
level of abstraction for a set of applications.

Ultimately, our approach represents another point in the design space bal-
ancing tradeoffs between flexibility/generality as well as performance and the
level of abstraction. Our choices are similar to Distributed Data Structures [1]
and BerkeleyDB [2], where some higher-level and heavyweight features of a full
DBMS are traded off for a simpler, more procedural programmatic interface. In
some ways our approach is similar to Boxwood [3], which provides distributed,
managed data structures as a fundamental storage abstraction; in our case, the
stream abstraction also serves as the storage interface.

PTS builds on the earlier work in StampedeRT [5], which defines a program-
ming model for live stream analysis applications. The StampedeRT paper [5] sur-
veys relevant work related to data-flow programming models like StreamIt [21]
or TStreams [22] and the communications aspects of temporal stream abstrac-
tions: distributed programming systems/programming models, such as message-
passing systems, distributed shared memory, RPC/RMI, group communication,
tuple spaces, or publish/subscribe systems. The workload of live stream analysis
applications is unique and lends itself well to distributed programming, because
stream processing has natural and explicit communication boundaries.

The general concept of processing streamed data as it is made available is
fundamental – for example, the Unix pipe [23] is a ubiquitous streaming data
flow abstraction, as are lazily-evaluated infinite lists in functional programming
languages [24] or various reactive programming constructs. Hundreds of other
abstractions in many diverse areas also model streams as a sequence of bytes or
messages; this view is significantly different from the data-parallel array model
typical in stream programming/GPGPU workand much closer to our preferred
model for live stream analysis applications. Unlike most previous work, our ab-
stract model of streams used in live stream analysis applications also includes a
notion of time and random access.

Distributed programming models and runtime systems designed for process-
ing/mining large amounts of data, such as MapReduce [25] and Dryad [26],
often have similar concerns as live analysis applications, which makes many re-

Persistent Temporal Streams 347

lated ideas relevant to our domain. For example, Sawzall [27] provides a small
domain-specific language for item-at-a-time processing of stored data sets within
MapReduce, but it could also apply to streaming data. The key difference is that
live stream analysis is continuous and data is explicitly time-related, while these
aforementioned systems operate on stored data for batch processing. Although
stored data is often streamed for processing, the time at which a streamed data
item becomes available for processing is unrelated to the data itself. In live
stream analysis, time is semantically significant. Also, systems such as MapRe-
duce are generally optimized for throughput over latency, are not limited to
one-pass processing, and often have foreknowledge of the size of a dataset to
partition processing.

6 Conclusion

Many critical applications involve continuous and computationally intensive
analysis on live streaming data and also require access to historical data. While
distributed programming support for traditional high-performance computing
applications is fairly mature, existing solutions for live stream analysis appli-
cations are still in their early stages and, in our view, inadequate. We have
described Persistent Temporal Streams (PTS), which are specifically designed to
address the needs of these distributed applications by providing a higher-level
unified abstraction for dealing with live and archived streams. The channel prim-
itive of our PTS system unifies transport, manipulation and storage of streams.
We have presented a detailed description of the PTS system architecture and
elements of its implementation. Finally, we have presented a set of system-level
benchmarks looking at pieces of the system in isolation as well as a whole-system,
application-based evaluation. Although preliminary, these results show that the
PTS architecture can be implemented in a lightweight manner and provide good
performance in a video-surveillance application scenario based.

References

1. Gribble, S.D., Brewer, E.A., Hellerstein, J.M., Culler, D.: Scalable, Distributed
Data Structures for Internet Service Construction. In: Proceedings of OSDI 2000,
p. 22 (2000)

2. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Proceedings of USENIX
ATC 1999, p. 43 (1999)

3. MacCormick, J., et al.: Boxwood: Abstractions as the Foundation for Storage In-
frastructure. In: Proceedings of OSDI 2004, p. 8 (2004)

4. Shin, J., et al.: ASAP: A Camera Sensor Network for Situation Awareness.
In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878,
pp. 31–47. Springer, Heidelberg (2007)

5. Hilley, D., Ramachandran, U.: StampedeRT: Programming abstractions for live
streaming applications. In: Proceedings of ICDCS 2007, June 2007, p. 65 (2007)

6. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing
Clusters. In: Proceedings of FAST 2002, Berkeley, CA, USA, p. 19 (2002)

348 D. Hilley and U. Ramachandran

7. Desnoyers, P., Shenoy, P.: Hyperion: High Volume Stream Archival for Retrospec-
tive Querying. In: Proceedings of USENIX ATC 2007, June 2007, pp. 45–58 (2007)

8. Mills, D.L., Thyagarajan, A.: Network Time Protocol Version 4 Proposed Changes.
EE Deptartment Report 94-10-2, University of Delaware (October 1994)

9. Sweeney, A., et al.: Scalability in the XFS File System. In: Proceedings of USENIX
ATC 1996, pp. 1–14 (1996)

10. Levon, J., Elie, P.: OProfile: A System Profiler for Linux, http://oprofile.sf.net
11. Cranor, C., et al.: Gigascope: A Stream Database for Network Applications. In:

Proceedings of SIGMOD 2003, pp. 647–651. ACM Press, New York (2003)
12. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. In: Proceedings of CIDR 2003 (January 2003)
13. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In:

Proceedings of CIDR 2005, Asilomar, CA (January 2005)
14. Balakrishnan, H., et al.: Retrospective on Aurora. The VLDB Journal 13(4),

370–383 (2004)
15. Arasu, A., et al.: STREAM: The Stanford Data Stream Management System. In:

Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management: Process-
ing High-Speed Data Streams. Springer, Heidelberg (2008) (in press)

16. Amini, L., et al.: SPC: A Distributed, Scalable Platform for Data Mining. In:
Proceedings of DMSSP 2006, pp. 27–37. ACM, New York (2006)

17. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic
Foundations & Query Execution. The VLDB Journal 15(2), 121–142 (2006)

18. Girod, L., et al.: The Case for a Signal-Oriented Data Stream Management System.
In: Proceedings of CIDR 2007, Monterey, CA (January 2007)

19. Girod, L., et al.: XStream: A Signal-Oriented Data Stream Management System.
In: Proceedings of ICDE 2008, Canc’un, M’exico (April 2008)

20. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear Road: A Stream Data Management Benchmark.
In: Proceedings of VLDB 2004, VLDB Endowment, pp. 480–491 (2004)

21. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A Language for Stream-
ing Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

22. Knobe, K., Offner, C.D.: TStreams: How to Write a Parallel Program. Technical
Report HPL-2004-193, HP Laboratories Cambridge (October 2004)

23. Ritchie, D.M., Thompson, K.: The UNIX time-sharing system. Communications
of the ACM 17(7), 365–375 (1974)

24. Jones, S.P. (ed.): Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

25. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proceedings of OSDI 2004, p. 10 (2004)

26. Isard, M., et al.: Dryad: Distributed Data-Parallel Programs from Sequential Build-
ing Blocks. In: Proceedings of EuroSys 2007, pp. 59–72. ACM, New York (2007)

27. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the Data: Parallel
Analysis with Sawzall. Scientific Programming 13(4), 277–298 (2005)

http://oprofile.sf.net

Why Do Upgrades Fail and What Can We Do about It?
Toward Dependable, Online Upgrades in Enterprise System

Tudor Dumitraş and Priya Narasimhan

Carnegie Mellon University, Pittsburgh PA 15213, USA
tudor@cmu.edu, priya@cs.cmu.edu

Abstract. Enterprise-system upgrades are unreliable and often produce down-
time or data-loss. Errors in the upgrade procedure, such as broken dependencies,
constitute the leading cause of upgrade failures. We propose a novel upgrade-
centric fault model, based on data from three independent sources, which focuses
on the impact of procedural errors rather than software defects. We show that cur-
rent approaches for upgrading enterprise systems, such as rolling upgrades, are
vulnerable to these faults because the upgrade is not an atomic operation and it
risks breaking hidden dependencies among the distributed system-components.
We also present a mechanism for tolerating complex procedural errors during an
upgrade. Our system, called Imago, improves availability in the fault-free case, by
performing an online upgrade, and in the faulty case, by reducing the risk of fail-
ure due to breaking hidden dependencies. Imago performs an end-to-end upgrade
atomically and dependably by dedicating separate resources to the new version
and by isolating the old version from the upgrade procedure. Through fault in-
jection, we show that Imago is more reliable than online-upgrade approaches that
rely on dependency-tracking and that create system states with mixed versions.

1 Introduction

Software upgrades are unavoidable in enterprise systems. For example, business reasons
sometimes mandate switching vendors; responding to customer expectations and con-
forming with government regulations can require new functionality. Moreover, many
enterprises can no longer afford to incur the high cost of downtime and must perform
such upgrades online, without stopping their systems. While fault-tolerance mecha-
nisms focus almost entirely on responding to, avoiding, or tolerating unexpected faults
or security violations, system unavailability is usually the result of planned events, such
as upgrades. A 2007 survey of 50 system administrators from multiple countries (82%
of whom had more than five years of experience) concluded that, on average, 8.6% of
upgrades fail, with some administrators reporting failure rates up to 50% [1]. The sur-
vey identified broken dependencies and altered system-behavior as the leading causes
of upgrade failure, followed by bugs in the new version and incompatibility with legacy
configurations. This suggests that most upgrade failures are not due to software defects,
but to faults that affect the upgrade procedure.

For instance, in August 1996, an upgrade in the main data center of AOL—the world’s
largest Internet Service Provider at the time—was followed by a 19-hour outage. The

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 349–372, 2009.
c© IFIP International Federation for Information Processing 2009

tudor@cmu.edu
priya@cs.cmu.edu

350 T. Dumitraş and P. Narasimhan

system behavior did not improve even after the upgrade was rolled back, because the
routing tables had been corrupted during the upgrade [2]. In November 2003, the up-
grade of a customer relationship management (CRM) system at AT&T Wireless created
a ripple effect that disabled several key systems, affecting 50,000 customers per week.
The complexity of dependencies on 15 legacy back-end systems was unmanageable, the
integration could not be tested in advance in a realistic environment, and rollback became
impossible because enough of the old version had not been preserved. The negative ef-
fects lasted for 3 months with a loss of $100 M in revenue, which had dire consequences
for the future of the company [3]. In 2006, in the emergency room of a major hospital, an
automated drug dispenser went offline, after the upgrade of a separate system, preventing
a patient in critical condition from receiving the appropriate medication [4].

Existing upgrade techniques rely on tracking the complex dependencies among the
distributed system components. When the old and new versions of the system-under-
upgrade share dependencies (e.g., they rely on the same third-party component but re-
quire different versions of its API), the upgrade procedure must avoid breaking these
dependencies in order to prevent unavailability or data-loss. Because dependencies can-
not always be inferred automatically, upgrade techniques rely on metadata that is par-
tially maintained by teams of developers and quality-assurance engineers through a
time-intensive and error-prone manual process. Moreover, the problem of resolving
the dependencies of a component is NP-complete [5], which suggests that the size of
dependency-repositories will determine the point at which ensuring the correctness of
upgrades by tracking dependencies becomes computationally infeasible.

Because the benefits of dependency-tracking are reaching their limit, industry best-
practices recommend “rolling upgrades,” which upgrade-and-reboot one node at a time,
in a wave rolling through the cluster. Rolling upgrades cannot perform incompatible
upgrades (e.g., changing a component’s API). However, this approach is believed to
reduce the risks of upgrading because failures are localized and might not affect the
entire distributed system [6, 7].

In this paper, we challenge this conventional wisdom by showing that atomic, end-to-
end upgrades provide more dependability and flexibility. Piecewise, gradual upgrades
can cause global system failures by breaking hidden dependencies—dependencies that
cannot be detected automatically or that are overlooked because of their complexity.
Moreover, completely eliminating software defects would not guarantee the reliabil-
ity of enterprise upgrades because faults in the upgrade procedure can lead to broken
dependencies. We make three contributions:

– We establish a rigorous, upgrade-centric fault model, with four distinct categories:
(1) simple configuration errors (e.g., typos); (2) semantic configuration errors (e.g.,
misunderstood effects of parameters); (3) broken environmental dependencies (e.g.,
library or port conflicts); and (4) data-access errors, which render the persistent data
partially-unavailable. §2

– We present Imago1 (Fig. 1), a system aiming to reduce the planned downtime,
by performing an online upgrade, and to remove the leading cause of upgrade
failures—broken dependencies [1]—by presenting an alternative to tracking depen-

1 The imago is the final stage of an insect or animal that undergoes a metamorphosis, e.g., a
butterfly after emerging from the chrysalis [8].

Why Do Upgrades Fail and What Can We Do about It? 351

dencies. While relying on the knowledge of the planned changes in data-formats in
the new version, Imago treats the system-under-upgrade as a black box. We avoid
breaking dependencies by installing the new version in a parallel universe—a log-
ically distinct collection of resources, realized either using different hardware or
through virtualization—and by transferring the persistent data, opportunistically,
into the new version. Imago accesses the universe of the old version in a read-only
manner, isolating the production system from the upgrade operations. When the
data transfer is complete, Imago performs the switchover to the new version, com-
pleting the end-to-end upgrade as an atomic operation. Imago also enables the in-
tegration of long-running data conversions in an online upgrade and the live testing
of the new version. §3

– We evaluate the benefits of Imago’s mechanisms (e.g., atomic upgrades, depen-
dency isolation) through a systematic fault-injection approach, using our upgrade-
centric fault model. Imago provides a better availability in the presence of upgrade
faults than two alternative approaches, rolling upgrade and big flip [9] (result sig-
nificant at the p = 0.01 level). §4

Parallel Universe (U
new

)

HTTP

Universe of the Original System (U
old

)

Differences:

• Data-formats

• APIs

• Behaviors

Application flow

Upgrade flow

I

E

Ingress interceptor

Egress interceptor

Legend
Data

Conversion

Driver

Persistent

Data
- Performance

metrics

- Updates

Compare

engine

Replies

Requests

S
h

u
n

t

Data

storeI E

Front-end

Fig. 1. Dependable upgrades with Imago

Compared with the existing strate-
gies for online upgrades, Imago trades
off the need for additional resources
for an improved dependability of
the online upgrade. While it can-
not prevent latent configuration er-
rors, Imago eliminates the internal
single-points-of-failure for upgrade
faults and the risk of breaking hid-
den dependencies by overwriting an
existing system. Additionally, Imago
avoids creating system states with
mixed versions, which are difficult to
test and to validate. Our results suggest that an atomic, dependency-agnostic approach,
such as Imago, can improve the dependability of online software-upgrades despite hid-
den dependencies.

2 Fault Model for Enterprise Upgrades

Several classifications of upgrade faults have been proposed [10,11,12,13], but the fault
categories are not disjoint, the criteria for establishing these categories remain unclear,
or the classifications are relevant only for subsets of the upgrade faults. Moreover, data
on upgrade-faults in the industry is scarce and hard to obtain due to the sensitivity of
this subject. We analyze 55 upgrade faults from the best available sources, and, through
statistical cluster-analysis, we establish four categories of upgrade faults.2

We combine data from three independent sources, which use different methodolo-
gies: a 2004 user study of system-administration tasks in an e-commerce system [12], a

2 We discuss the statistical techniques in more detail in [14]. This technical report and the
annotated fault data are available at http://www.ece.cmu.edu/~tdumitra/upgrade_faults.

http://www.ece.cmu.edu/~tdumitra/upgrade_faults

352 T. Dumitraş and P. Narasimhan

Table 1. Examples of hidden dependencies (sorted by frequency)

Hidden dependency Procedure violation Impact
Service location:

– File path
– Network address Omission

Components unavailable,
latent errors

Dynamic linking:
– Library conflicts
– Defective 3rd party components

Components unavailable

Database schema:
– Application/database mismatch Omission Data unavailable
– Missing indexes Omission Performance degradation

Access privileges to file system, database
objects, or URLs:

– Excessive Wrong action Vulnerability
– Insufficient Omission
– Unavailable (from directory service) Omission

Components/data
unavailable

Constraints among configuration
parameters

Outage, degraded perfor-
mance, vulnerability

Replication degree (e.g., number of front-
end servers online)

Omission, inversion,
spurious action

Outage, degraded
performance

Amount of storage space available Omission Transactions aborted
Client access to system-under-upgrade Wrong action Incorrect functionality
Cached data (e.g., SSL certificates, DNS
lookups, kernel buffer-cache)

Incorrect functionality

Listening ports Omission Components unavailable
Communication-protocol mismatch (e.g.,
middle-tier not HTTP-compliant)

Components unavailable

Entropy for random-number generation Deadlock
Request scheduling Access denied unexpectedly
Disk speed Wrong action Performance degradation

2006 survey of database administrators [13], and a previously unpublished field study of
bug reports filed in 2007 for the Apache web server [14]. While the administrators tar-
geted by these studies focus on different problems and handle different workloads, we
start from the premise that they use similar mental models during change-management
tasks, which yield comparable faults. This hypothesis is supported by the observation
that several faults have been reported in more than one study. Furthermore, as each of
the three methodologies is likely to emphasize certain kinds of faults over others, com-
bining these dissimilar data sets allows us to provide a better coverage of upgrade faults
than previous studies.

2.1 The Four Types of Upgrade Faults

We conduct a post-mortem analysis of each fault from the three studies in order to deter-
mine its root cause [10]—configuration error, procedural error, software defect, hard-
ware defect—and whether the fault has broken a hidden dependency, with repercussions

Why Do Upgrades Fail and What Can We Do about It? 353

for several components of the system-under-upgrade. Errors introduced while editing
configuration files can can be further subdivided in three categories [11]: typographical
errors (typos), structural errors (e.g. misplacing configuration directives), and semantic
errors (e.g. ignoring constraints among configuration parameters). Additionally, a small
number of configuration errors do not occur while editing configuration files (e.g., set-
ting incorrect access privileges). Operators can make procedural errors by performing
an incorrect action or by violating the sequence of actions in the procedure through an
omission, an order inversion, or the addition of a spurious action.

Most configuration and procedural errors break hidden dependencies (see Table 1).
Incorrect or omitted actions sometimes occur because the operators ignore, or are not
aware of, certain dependencies among the system components (e.g., the database
schema queried by the application servers and the schema materialized in the produc-
tion database). In 56% of cases, however, the operators break hidden dependencies (e.g.,
by introducing shared-library conflicts) despite correctly following the mandated pro-
cedure. This illustrates the fact that even well-planned upgrades can fail because the
complete set of dependencies is not always known in advance. We emphasize that the
list of hidden dependencies from Table 1, obtained through a post-mortem analysis of
upgrade faults, is not exhaustive and that other hidden dependencies might exist in dis-
tributed systems, posing a significant risk of failure for enterprise-system upgrades.

We perform statistical cluster-analysis, with five classification variables:3 (i) the root
cause of each fault; (ii) the hidden dependency that the fault breaks (where applicable);
(iii) the fault location—front-end, middle-tier, or back-end—; (iv) the original classifi-
cation, from the three studies; and (v) the cognitive level involved in the reported oper-
ator error. There are three cognitive levels at which humans solve problems and make
mistakes [11]: the skill-based level, used for simple, repetitive tasks, the rule-based
level, where problems are solved by pattern-matching, and the knowledge-based level,
where tasks are approached by reasoning from first principles. The high-level fault de-
scriptions from the three studies are sufficient for determining the values of the five
classification variables. We include all the faults reported in the three studies, except
for software defects, faults that did not occur during upgrades and client-side faults. If
a fault is reported in several sources, we include only one of its instances in the clus-
ter analysis. We exclude software defects4 from our taxonomy because they have been
rigorously classified before [16] and because they are orthogonal to the upgrading con-
cerns and might be exposed in other situations as well. Moreover, the survey from [1]
suggests that most upgrade failures are not due to software defects.

This analysis suggests that there are four natural types of faults (Fig. 2):

– Type 1 corresponds to simple configuration errors (typos or structural) and to pro-
cedural errors that occur on the skill-based cognitive level. These faults break de-
pendencies on network addresses, file paths, or the replication degree.

– Type 2 corresponds to semantic configuration errors, which occur on the knowledge-
based cognitive level and which indicate a misunderstanding of the configuration

3 We compare faults using the Gower distance, based on the categorical values of the classifica-
tion variables. We perform agglomerative, hierarchical clustering with average linkage [15].

4 The fault descriptions provided in the three studies allow us to distinguish the operator errors
from the manifestations of software defects.

354 T. Dumitraş and P. Narasimhan

User study (u) Survey (s) Field study (f)

Probability density

Frequency estimate

Confidence interval []
x

Fault clusters

3

4 x[]

y y Confidence interval []

uu

s

s

s
s
s

ss

ss
s

ss
s

s s

s

sf

Type 4

p
e
n

d
e
n

c
y

Database schemas

Storage-space availability

Access privileges

R t h d li

F
a
u

lt
 T

y
p

e

2

3

u u

u
uu ss s

f
ff
f

f

f
ff

f
f f

f f

f
f

ff

Type 1

Type 2 Type 3

ro
k
e
n

 h
id

d
e
n

-d
e

p Request scheduling
Cached data

Parameter constraints

Shared libraries
Listening ports

Communication protocols

Fault Frequency

1

0% 10% 20% 30% 40% 50% 60%

x[]

Configuration faults

u

u
uu

u

u
u

uu
fff f

f

f
fType 1

Procedural faults

B
r Communication protocols

Network addresses
File paths

Replication degrees

(a) (b)

Fig. 2. Upgrade-centric fault model. Principal-component analysis (a) creates a two-dimensional
shadow of the five classification variables, The survey and the user study also provide information
about the distribution of fault-occurrence rates (b).

directives used. These faults break dependencies on the request scheduling, cached
data, or parameter constraints.

– Type 3 corresponds to broken environmental dependencies, which are procedural
errors that occur on the rule-based cognitive level. These faults break dependencies
on shared libraries, listening ports, communication protocols, or access privileges.

– Type 4 corresponds to data-access errors, which are complex procedural or config-
uration errors that occur mostly on the rule- and knowledge-based cognitive levels.
These faults prevent the access to the system’s persistent data, breaking dependen-
cies on database schemas, access privileges, the replication degree, or the storage
availability.

Faults that occur while editing configuration files are of type 1 or 2. Types 1–3 are
located in the front-end and in the middle tier, and, except for a few faults due to omitted
actions, they usually do not involve violating the mandated sequence of actions. Type
4 faults occur in the back-end, and they typically consist of wrong or out-of-sequence
actions (except order inversions). Principal-component analysis (Fig. 2(a)) suggests that
the four types of faults correspond to disjoint and compact clusters. Positive values on
the x-axis indicate procedural faults, while negative values indicate faults that occur
while editing configuration files. The y-axis corresponds, approximately, to the hidden
dependencies broken by the upgrade faults.

We also estimate how frequently these fault types occur during an upgrade (Fig. 2(b)),
by considering the percentage of operators who induced the fault (during the user study)
or the percentage of DBAs who consider the specific fault among the three most fre-
quent problems that they have to address in their respective organizations (in the sur-
vey). We cannot derive frequency information from the field-study data. The individual
estimations are imprecise, because the rate of upgrades is likely to vary among organi-
zations and administrators, and because of the small sample sizes (5–51 subjects) used

Why Do Upgrades Fail and What Can We Do about It? 355

in these studies. We improve the precision of our estimations by combining the individ-
ual estimations for each fault type.5 We estimate that Type 1 faults occur in 14.6% of
upgrades (with a confidence interval of [0%,38.0%]). Most Type 1 faults (recorded in
the user study) occur in less than 21% of upgrades. Similarly, we estimate that Type 4
faults occur in 18.7% of upgrades (with a confidence interval of [0%,45.1%]). Because
faults of types 2 and 4 are predominantly reported in the field-study, we lack sufficient
information to compute a statistically-significant fault frequency for these clusters.

Threats to validity. Each of the three studies has certain characteristics that might
skew the results of the cluster analysis. Because the user study is concerned with the
behavior of the operators, it does not report any software defects or hardware failures.
Configuration errors submitted as bugs tend to be due to significant misunderstandings
of the program semantics, and, as a result, our field study contains an unusually-high
number of faults occurring on the knowledge cognitive level. Moreover, the results of
bug searches are not repeatable because the status of bugs changes over time; in partic-
ular, more open bugs are likely to be marked as invalid or not fixed in the future. Finally,
Crameri et al. [1], who identify broken dependencies as the leading cause of upgrade
failures, caution that their survey is not statistically rigorous.

2.2 Tolerating Upgrade Faults

Several automated dependency-mining techniques have been proposed such as static
and semantic analysis [18], but these approaches cannot provide a complete coverage
of dependencies that only manifest dynamically, at runtime. Our upgrade-centric fault
model emphasizes the fact that different techniques are required for tolerating each of
the four types of faults. Modern software components check the syntax of their con-
figuration files, and they are able to detect many Type 1 faults at startup (e.g., syntax
checkers catch 38%–83% of typos [11]). Type 2 faults are harder to detect automati-
cally; Keller et al. [11] argue that checking the constraints among parameter values can
improve the robustness against such semantic faults. To prevent faults that fall under
Type 3, modern operating systems provide package managers that make a best-effort
attempt to upgrade a software component along with all of its dependencies [19, 20].
Oliveira et al. propose validating the actions of database administrators using real work-
loads, which prevents some Type 4 faults but is difficult to implement when the admin-
istrator’s goal is to change the database schema or the system’s observable behavior.

Industry best-practices recommend carefully planning the upgrades and minimizing
their risks by deploying the new version gradually, in successive stages [6]. For instance,
two widely-used upgrading approaches are the rolling upgrades and the big-flip [9].
The first approach upgrades and then reboots each node, in a wave rolling through the
cluster. The second approach upgrades half of the nodes while the other half continues to

5 The precision of a measurement indicates if the results are repeatable, with small variations,
and the accuracy indicates if the measurement is free of bias. While in general it is not possible
to improve the accuracy of the estimation without knowing the systematic bias introduced in
an experiment, minimizing the sum of squared errors from dissimilar measurements improves
the precision of the estimation [17].

356 T. Dumitraş and P. Narasimhan

process requests, and then the two halves are switched. Both these approaches attempt to
minimize the downtime by performing an online upgrade. A big flip has 50% capacity
loss, but it enables the deployment of an incompatible system. Instead, a rolling upgrade
imposes very little capacity loss, but it requires the old and new versions to interact with
the data store and with each other in a compatible manner.

Commercial products for rolling upgrades provide no way of determining if the in-
teractions between mixed versions are safe and leave these concerns to the application
developers [7]. However, 47 of the 55 upgrade faults analyzed break dependencies that
remain hidden from the developers or the operators performing the upgrade (see Ta-
ble 1), and some procedural or configuration errors occur despite correctly following
the upgrading procedure. This suggests that a novel approach is needed for improving
the dependability of enterprise-system upgrades.

3 Design and Implementation of Imago

To provide dependable, online upgrades, we built Imago with three design goals:

– Isolation: The dependencies within the old system must be isolated from the up-
grade operations.

– Atomicity: At any time, the clients of the system-under-upgrade must access the
full functionality of either the old or the new systems, but not both. The end-to-end
upgrade must be an atomic operation.

– Fidelity: The testing environment must reproduce realistically the conditions of the
production environment.

Distributed enterprise-systems typically have one or more ingress points (I), where
clients direct their requests, and one or more egress points (E), where the persistent
data is stored (see Fig. 1). The remainder of the infrastructure (i.e., the request paths be-
tween I and E) implements the business-logic and maintains only volatile data, such as
user-sessions or cached data-items. We install the new system in a parallel universe—a
logically distinct collection of resources, including CPUs, disks, network links, etc.—
that is isolated from the universe where the old system continues to operate. The new
system may be a more recent version of the old system, or it may be a completely differ-
ent system that provides similar or equivalent functionality. Imago updates the persistent
data of the new system through an opportunistic data-transfer mechanism. The logical
isolation between the universe of the old system, Uold, and the universe of the new sys-
tem, Unew, ensures that the two parallel universes do not share resources and that the
upgrade process, operating on Unew, has no impact on the dependencies encapsulated in
Uold. Our proof-of-concept implementation provides isolation by using separate hard-
ware resources, but similar isolation properties could be achieved through virtualization.
Because Imago always performs read-only accesses on Uold, the dependencies of the
old system cannot be broken and need not be known in advance.

Assumptions. We make three assumptions. We assume that (1) the system-under-
upgrade has well-defined, static ingress and egress points; this assumption simplifies the

Why Do Upgrades Fail and What Can We Do about It? 357

task of monitoring the request-flow through Uold and the switchover to Unew. We fur-
ther assume that (2) the workload is dominated by read-only requests; this assumption
is needed for guaranteeing the eventual termination of the opportunistic data-transfer.
Finally, we assume that the system-under-upgrade provides hooks for: (3a) flushing in-
progress updates (needed before switchover); and (3b) reading from Uold’s data-store
without locking objects or obstructing the live requests in any other way (to avoid inter-
fering with the live workload). We do not assume any knowledge of the internal com-
munication paths between the ingress and egress points.

These assumptions define the class of distributed systems that can be upgraded using
Imago. For example, enterprise systems with three-tier architectures—composed of a
front-end tier that manages client connections, a middle tier that implements the busi-
ness logic of the application, and a back-end tier where the persistent data is stored—
satisfy these assumptions. An ingress point typically corresponds to a front-end proxy
or a load-balancer, and an egress point corresponds to a master database in the back-end.
E-commerce web sites usually have read-mostly workloads [21], satisfying the second
assumption. The two Uold hooks required in the third assumption are also common in
enterprise systems; for instance, most application servers will flush the in-progress up-
dates to their associated persistent storage before shutdown, and most modern databases
support snapshot isolation6 as an alternative to locking.

Bootstrapping Data Transfer Termination Switchover

Testing

Upgrade Procedure. Imago uses a procedure with five phases: bootstrapping, data-
transfer, termination, testing, and switchover. Imago lazily transfers the persistent data
from the system in Uold to the system in Unew, converts it into the new format, monitors
the data-updates reaching Uold’s egress points and identifies the data objects that need
to be re-transferred in order to prevent data-staleness. The live workload of the system-
under-upgrade, which accesses Uold’s data store concurrently with the data-transfer pro-
cess, can continue to update the persistent data. The egress interceptor, E, monitors
Uold’s data-store activity to ensure that all of the updated or new data objects are even-
tually (re)-transferred to Unew. Because Imago always performs read-only accesses on
Uold, the dependencies of the old system cannot be broken and need not be known in
advance. Moreover, E monitors the load and the performance of Uold’s data store, al-
lowing Imago to regulate its data-transfer rate in order to avoid interfering with the live
workload and satisfying our isolation design-goal. This upgrade procedure is described
in detail in [22].

The most challenging aspect of an online upgrade is the switchover to the new ver-
sion. The data transfer will eventually terminate if the transfer rate exceeds the rate at
which Uold’s data is updated (this is easily achieved for read-mostly workloads). To
complete the transfer of the remaining in-progress updates, we must enforce a brief
period of quiescence for Uold. Imago can enforce quiescence using the E interceptor,
by marking all the database tables read-only, or using the I interceptors, by blocking

6 This mechanism relies on the multi-versioning of database tables to query a snapshot of the
database that only reflects committed transactions and is not involved in subsequent updates.

358 T. Dumitraş and P. Narasimhan

The driver executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 Wait until the data-transfer is nearly completed
3 BCAST (flush)
4 while ∃I ∈ IGrp : I has not delivered flush-done
5 do DELIVER (msg)
6 if msg = self -disconnect
7 then JOIN (IGrp)
8 elseif msg ∈ {self -join, interceptor-join}
9 then BCAST (flush)

⊳ Received flush-done from all live interceptors
10 Complete data-transfer
11 Send all requests to Unew
12 BCAST (shutdown)

Each ingress interceptor I executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 DELIVER (msg)
3 if msg = flush
4 then Block incoming write requests
5 for ∀host ∈ {middle-tier connections}
6 do

⊳ Flush in-progress requests
7 FLUSH (host)
8 BCAST (flush-done)
9 while (TRUE)

10 do DELIVER (msg)
11 if msg = self -disconnect
12 then JOIN (IGrp)
13 elseif msg ∈ {flush,driver-join}
14 then BCAST (flush-done)
15 elseif msg = shutdown
16 then Shut down I

Fig. 3. Pseudocode of the switchover protocol

all the incoming write requests. The first option is straightforward: the database pre-
vents the system in Uold from updating the persistent state, allowing the data-transfer
to terminate. This approach is commonly used in the industry due to its simplicity [7].

If the system-under-upgrade can not tolerate the sudden loss of write-access to the
database, Imago can instruct the I interceptors to block all the requests that might update
Uold’s persistent data (read-only requests are allowed to proceed). In this case, Imago
must flush the in-progress requests to Uold’s data store in order to complete the transfer
to Unew. Imago does not monitor the business logic of Uold, but the I interceptors record
the active connections of the corresponding ingress servers to application servers in
the middle tier and invoke the flush-hooks of these application servers. When all the
interceptors report the completion of the flush operations, the states of the old and new
systems are synchronized, and Imago can complete the switchover by redirecting all
the traffic to Unew (this protocol is described in Fig. 3). The volatile data (e.g., the user
sessions) is not transferred to Unew and is reinitialized after switching to the new system.
Until this phase the progress of the ongoing upgrade is transparent to the clients, but
after the switchover only the new version will be available.

Imago also supports a series of iterative testing phases before the switchover. Imago
checkpoints the state of the system in Unew and then performs offline testing—using
pre-recorded or synthetically-generated traces that check the coverage of all of the ex-
pected features and behaviors—and online testing—using the live requests recorded at
I. In the second case, the testing environment is nearly identical to the production en-
vironment, which satisfies our fidelity design-goal. Quiescence is not enforced during
the testing phase, and the system in Uold resumes normal operation while E continues
to monitor the persistent-state updates. At the end of this phase, Imago rolls the state
of the system in Unew back to the previous checkpoint, and the data transfer resumes in
order to account for any updates that might have been missed while testing. A detailed
discussion of the testing phase is beyond the scope of this paper.

Why Do Upgrades Fail and What Can We Do about It? 359

After adequate testing, the upgrade can be rolled back, by simply discarding the Unew
universe, or committed, by making Unew the production system, satisfying our atomicity
design-goal. Imago treats the system-under-upgrade as a black box. Because we do not
rely on any knowledge of the internal communication paths between the ingress and
egress points of Uold and because all of the changes required by the upgrade are made
into Unew, Imago does not break any hidden dependencies in Uold.

Implementation. Imago has four components (see Fig. 1): the upgrade driver, which
transfers data items from the data store of Uold to that of Unew and coordinates the up-
grade protocol, the compare-engine, which checks the outputs of Uold and Unew during
the testing phase, and the I and E interceptors. The upgrade driver is a process that ex-
ecutes on hardware located outside of the Uold and Unew universes, while I and E are
associated with the ingress and egress points of Uold. We implement the E interceptor
by monitoring the query log of the database. The I interceptor uses library interposi-
tion to redefine five system calls used by the front-end web servers: accept() and
close(), which mark the life span of a client connection, connect(), which opens
a connection to the middle tier, and read() and writev(), which reveal the content
of the requests and replies, respectively. These five system calls are sufficient for im-
plementing the functionality of the I interceptor. We maintain a memory pool inside the
interceptor, and the redefined read() and writev() system-calls copy the content
of the requests and replies into buffers from this memory pool. The buffers are subse-
quently processed by separate threads in order to minimize the performance overhead.

In order to complete the data transfer, the upgrade driver invokes the switchover pro-
tocol from Fig. 3. We use reliable group-communication primitives to determine when
all the interceptors are ready to switch: JOIN allows a process to join the group of inter-
ceptors and to receive notifications when processes join or disconnect from the group;
BCAST reliably sends a message to the entire group; and DELIVER delivers messages
in the same order at all the processes in the group. These primitives are provided by the
Spread package [23]. The switchover protocol also relies on a FLUSH operation, which
flushes the in-progress requests from a middle-tier server. Each I interceptor invokes
the FLUSH operation on the application servers that it has communicated with.

Table 2. Structure of Imago’s code

Lines of code Size in memory
Upgrade driver 2,038

216 kBEgress interceptor 290

}
Ingress interceptor 2,056

228 kBSwitchover library 1,464

}
Compare engine 571 48 kB
Common libraries 591 44 kB
Application bindings 1,113 108 kB
Total 8,123 —

We have implemented the
FLUSH operation for the Apache
and JBoss servers. For Apache,
we restart the server with the
graceful swirch, allowing the
current connections to complete.
For JBoss, we change the times-
tamp of the web-application
archive (the application.war

file), which triggers a rede-
ployment of the application.
Both these mechanisms cause
the application servers to evict all the relevant data from their caches and to
send the in-progress requests to the back-end. This switchover protocol provides

360 T. Dumitraş and P. Narasimhan

strong consistency, and it tolerates crashes and restarts of the driver or the intercep-
tors. All the modules of Imago are implemented in C++ (see Table 2). The application
bindings contain all the application-specific routines (e.g., data conversion) and consti-
tute 14% of the code. Most of this application-specific code would also be necessary to
implement and offline upgrade.

4 Experimental Evaluation

We evaluate the dependability of enterprise-system upgrades performed using Imago.
Specifically, we seek answers to the following questions:

– What overhead does Imago impose during a successful upgrade? §4.1
– Does Imago improve the availability in the presence of upgrade faults? §4.2
– How do types 1–4 of upgrade faults affect the reliability of the upgrade? §4.3

Upgrade Scenario. We use Imago to perform an upgrade of RUBiS (the Rice Univer-
sity Bidding System) [24], an open-source online bidding system, modeled after eBay.
RUBiS has been studied extensively, and several of its misconfiguration- and failure-
modes have been previously reported [12, 13]. RUBiS has multiple implementations
(e.g., using PHP, EJB, Java Servlets) that provide the same functionality and that use
the same data schema. We study an upgrade scenario whose goal is to upgrade RUBiS
from the version using Enterprise Java Beans (EJB) to the version implemented in PHP.
The system-under-upgrade is a three-tier infrastructure, comprising a front-end with two
Apache web servers, a middle tier with four Apache servers that execute the business
logic of RUBiS, and a MySQL database in the back-end. More specifically, the upgrade
aims to replace the JBoss servers in the middle tier with four Apache servers where we
deploy the PHP scripts that implement RUBiS’s functionality. The RUBiS database con-
tains 8.5 million data objects, including 1 million items for sale and 5 million bids. We
use two standard workloads, based on the TPC-W specification [21], which are typical
for e-commerce web sites. The performance bottleneck in this system is the amount of
physical memory in the front-end web servers, which limits the system’s capacity to
100 simultaneous clients. We conduct our experiments in a cluster with 10 machines
(Pentium 4 at 2.4 GHz, 512 MB RAM), connected by a 100 Mbps LAN.

We compare Imago with two alternative approaches, rolling upgrades and big flip
(see Section 2.2). These procedures are illustrated in Fig. 4. In both cases, the front-end
and back-end remain shared between the old and new versions. Rolling upgrades run
for a while in a mode with mixed versions, with a combination of PHP (Apache) and
EJB (JBoss) nodes in the middle tier, while the big flip avoids this situation but uses
only half of the middle-tier servers. With the former approach an upgraded node is tested
online (Fig. 4(a)), while the latter approach performs offline tests on the upgraded nodes
and re-integrates them in the online system only after the flip has occurred (Fig. 4(b)).
In contrast, Imago duplicates the entire architecture, transferring all of the 8.5 million
RUBiS data-items to Unew, in order to avoid breaking dependencies during the upgrade.

Why Do Upgrades Fail and What Can We Do about It? 361

StopStart

Middle tier
2

Middle tier
1 Stop

JBoss

Start

Apache

Stop

JBossApache

Front-end
1

Middle tier
2

Reconfigure Reconfigure

Database

TestTest

Front-end
2

Reconfigure Reconfigure
Database

TestTest

Middle tier
4

Middle tier
3 Stop

JBoss

Start

Apache
Stop

JB
Start

JBossApache

(a) Rolling upgrade

Old version

Upgrade

Upgrade

New version

Reconfigure Reconfigure

Test

Reconfigure Reconfigure
Test

Upgrade

UpgradeUpgrade

(b) Big-flip upgrade

Fig. 4. Current approaches for online upgrades in RUBiS

Methodology. We estimate Imago’s effectiveness in performing an online upgrade, in
the absence of upgrade-faults, by comparing the client-side latency of RUBiS before,
and during, the upgrade. We assess the impact of broken dependencies by injecting
upgrade faults, according to the fault model presented in Section 2, and by measuring
the effect of these faults on the system’s expected availability. Specifically, we estimate
the system’s yield [9], which is a fine-grained measure of availability with a consistent
significance for windows of peak and off-peak load:

Yield(f ault) =
Requestscompleted(f ault)

Requestsissued

We select 12 faults (three for each fault type) from the data analyzed in Section 2, prior-
itizing faults that have been confirmed independently, in different sources or in separate
experiments from the same source. We repeat each fault-injection procedure three times
and we report the average impact, in terms of response time and yield-loss, on the sys-
tem. Because this manual procedure limits us to injecting a small number of faults, we
validate the results using statistical-significance tests, and we complement these exper-
iments with an automated injection of Type 1 faults.

From a client’s perspective, the upgrade faults might cause a full outage, a partial out-
age (characterized by a higher response time or a reduced throughput), a delayed outage
(due to latent errors) or they might have no effect at all. A full outage (Yield = 0) is
recorded when the upgrade-fault immediately causes the throughput of RUBiS to drop
to zero. Latent errors remain undetected until they are eventually exposed by external
factors (e.g., a peak load) or by system-configuration changes. To be conservative in
our evaluation, we consider that (i) the effect of a latent error is the same as the effect
of a full outage (Yield = 0); (ii) an upgrade can be stopped as soon as a problem is
identified; and (iii) all errors (e.g., HTTP-level or application-level errors) are detected.
An upgrading mechanism is able to mask a dependency-fault when the fault is detected
before reintegrating the affected node in the online system. To avoid additional approx-
imations, we do not attempt to estimate the durations of outages caused by the broken
dependencies. As the yield calculations do not include the time needed to mitigate the
failures, the values reported estimate the initial impact of a fault but not the effects of
extended outages. While the result that Imago provides better availability under upgrade
faults is statistically significant, the quantitative improvements depend on the system

362 T. Dumitraş and P. Narasimhan

10
0

10
1

10
2

10
3

10
4

RU
Bi

S
re

sp
on

se
 tim

e [
ms

]

RUBiS and Imago (non adaptive)
RUBiS and Imago (adaptive)
RUBiS alone

30 35 40 45 50
0

100

200

300

400

Time [min]Im
ag

o t
ra

ns
fer

 [it
em

s/s
]

(a) Imago overhead.

100

μ
s]

1183

60

80

ns
e

T
im

e
[μ

40

B
iS

R
es

po
n

0

20

R
U

B

(b) Overhead breakdown.

Fig. 5. Upgrade overhead on a live RUBiS system

architecture and on the specific faults injected, and they might not be reproducible for a
different system-under-upgrade. The goal of our fault-injection experiments is to deter-
mine the qualitative reasons for unavailability during online upgrades, and to emphasize
the opportunities for improving the current state-of-the-art.

4.1 Performance Overhead without Faults

The latency of querying the content of a data item from Uold and inserting it in Unew
dominates the performance of the data-transfer; less than 0.4% out of the 5 ms needed,
on average, to transfer one item are spent executing Imago’s code. Fig. 5(a) shows the
impact of the data transfer on RUBiS’s end-to-end latency (measured at the client-side).
If requests arrive while a data-transfer is in progress, the response times increase by
three orders of magnitude (note the log scale in the top panel of Fig. 5(a)). These high
latencies correspond to a sharp drop in the transfer rate as the Uold database tries to
adjust to the new load. However, Imago can use the information collected by the E in-
terceptor to self-regulate in order to avoid overloading the production system. We have
found that the incoming query rate for Uold’s database provides sufficient warning: if
Imago uses a simple adaptation policy, which pauses the data transfer when the RUBiS
clients issue more than 5 queries/s, the end-to-end latency is indistinguishable from the
case when clients do not compete with Imago for Uold’s resources (Fig. 5(a)). After
resuming the data transfer, Imago must take into account the data items added by RU-
BiS’s workload. These new items will be transferred during subsequent periods of client
inactivity. Under a scenario with 1000 concurrent clients, when the site is severely over-
loaded, Imago must make progress, opportunistically, for 2 minutes per hour in order
to catch up eventually and complete the data transfer.

Fig. 5(b) compares the overheads introduced by different Imago components (the
error bars indicate the 90% confidence intervals for the RUBiS response time). The I
interceptors impose a fixed overhead of 4 ms per request; this additional processing
time does not depend on the requests received by the RUBiS front-ends. When Imago
performs a data conversion (implemented by modifying the RUBiS code, in order to
perform a database-schema change during the upgrade), the median RUBiS latency is

Why Do Upgrades Fail and What Can We Do about It? 363

not affected but the maximum latency increases significantly. This is due to the fact
that the simple adaptation policy described above is not tuned for the data-conversion
scenario.

The rolling upgrade does not impose any overhead, because sequentially rebooting
all the middle-tier nodes does not affect the system’s latency or throughput. The big flip
imposes a similar run-time overhead as Imago because half of the system is unavailable
during the upgrade. With Imago, the upgrade completes after ≈13h, which is the time
needed for transferring all the persistent data plus the time when access to Uold was
yielded to the live workload. This duration is comparable to the time required to per-
form an offline upgrade: in practice, typical Oracle and SAP migrations require planned
downtimes of tens of hours to several days [25].

Before switching to Unew, Imago enforces quiescence by either marking the database
tables read-only, or by rejecting write requests at the I interceptors and flushing the
in-progress updates to the persistent storage. When the middle-tier nodes are running
Apache/PHP servers, the flush operation takes 39 s on average, including the synchro-
nization required by the protocol from Fig. 3. In contrast, flushing JBoss application
servers requires only 4.4 s on average, because in this case we do not need to restart the
entire server. The switchover mechanism does not cause a full outage, as the clients can
invoke the read-only functionality of RUBiS (e.g., searching for items on sale) while
Imago is flushing the in-progress requests. Moreover, assuming that the inter-arrival
times follow an exponential distribution and the workload mix includes 15% write re-
quests (as specified by TPC-W [21]), we can estimate the maximum request rate that
the clients may issue without being denied access. If the switchover is performed during
a time window when the live request rate does not exceed 0.5 requests/min, the clients
are unlikely (p=0.05) to be affected by the flush operations.

4.2 Availability under Upgrade-Faults

Table 3 describes the upgrade-faults injected and their immediate, local manifestation.
We were unable to replicate the effects of one fault (apache_largefile, which was
reported as bugs 42751 and 43232 in the field study) in our experimental test-bed. We
inject the remaining 11 faults in the front-end (5 faults), middle tier (4 faults) and the
back-end (3 faults) during the online upgrade of RUBiS. In a rolling upgrade, a node
is reintegrated after the local upgrade, and resulting errors might be propagated to the
client. The big flip can mask the upgrade-faults in the offline half but not in the shared
database. Imago masks all the faults that can be detected (i.e., those that do not cause
latent errors).

Fig.6 shows the impacts that Types 1–4 of upgrade faults have on the system-under-
upgrade. Certain dependency-faults lead to an increase in the system’s response time.
For instance, the apache_port_f fault doubles the connection load on the remaining
front-end server, which leads to an increased queuing time for the client requests and a
8.3% increase in response-time when the fault occurs. This outcome is expected during
a big-flip, but not during a rolling upgrade (see Fig. 4). This fault does not affect the
system’s throughput or yield because all of the requests are eventually processed and
no errors are reported to the clients.

364 T. Dumitraş and P. Narasimhan

Table 3. Description of upgrade-faults injected

Name /
Instances [source] Location Fault-Injection Procedure Local Manifestation

wrong_apache

2 [12] Front-end
Restarted wrong version of
Apache on one front-end.

Server does not forward re-
quests to the middle tier.

config_nochange

1 [12] Front-end
Did not reconfigure front-end
after middle-tier upgrade.

Server does not forward re-
quests to the middle tier.T

yp
e

1

config_staticpath

2 [12, 14] Front-end
Mis-configured path to static
web pages on one front-end.

Server does not forward re-
quests to the middle tier.

config_samename

1 [12] Front-end
Configured identical names
for the application servers.

Server communicates with
a single middle-tier node.

apache_satisfy

1 [14] Middle tier
Used Satisfy directive incor-
rectly.

Clients gain access to re-
stricted location.T

yp
e

2

apache_largefile

2 [14] Middle tier
Used mmap() and sendfile()

with network file-system.
No negative effect (could
not replicate the bug).

apache_lib

1 [14] Middle tier Shared-library conflict. Cannot start application
server.

T
yp

e
3

apache_port_f

1 [14] Front-end
Listening port already in use
by another application.

Cannot start front-end web
server.

apache_port_m

1 [14] Middle tier
Listening port already in use
by another application.

Cannot start application
sever.

wrong_privileges

2 [12, 13] Back-end
Wrong privileges for RUBiS
database user.

Database inaccessible to
the application servers.

T
yp

e
4

wrong_shutdown

2 [12, 13] Back-end
Unnecessarily shut down the
database.

Database inaccessible to
the application servers.

db_schema

4 [13] Back-end
Changed DB schema (re-
named bids table).

Database partially inacces-
sible to application servers.

The config_nochange and wrong_apache faults prevent one front-end server
from connecting to the new application servers in the middle tier. The front-end ser-
ver affected continues to run and to receive half of the client requests, but it generates
HTTP errors (Yield = 0.5). Application errors do not manifest themselves as notice-
able degradations of the throughput, in terms of the rate of valid HTTP replies, mea-
sured at either the client-side or the server-side. These application errors can be detected
only by examining the actual payload of the front-end’s replies to the client’s requests.
For instance, db_schema causes intermittent application errors that come from all four
middle-tier nodes. As this fault occurs in the back-end, both the rolling upgrade and the
big flip are affected. Imago masks this fault because it does not perform any configu-
ration actions on Uold. Similarly, Imago is the only mechanism that masks the remain-
ing Type 4, wrong_privileges and wrong_shutdown. The apache_satisfy fault
leads to a potential security vulnerability, but does not affect the yield or the response
time. This fault can be detected, by issuing requests for the restricted location, unlike
the config_staticpath fault, which causes the front-end to serve static web pages
from a location that might be removed in the future. Because this fault does not have
any observable impact during the rolling upgrade or the big flip, we consider that it pro-
duces a latent error. Imago masks config_staticpath because the obsolete location
does not exist in Unew, and the fault becomes detectable. The config_samename fault

Why Do Upgrades Fail and What Can We Do about It? 365

Type 1 Type 2 Type 3 Type 4

N
um

be
r

of
 fa

ul
ts

0

1

2

3

(a) Rolling Upgrade.

Type 1 Type 2 Type 3 Type 4

0

1

2

3

(b) Big Flip.

Type 1 Type 2 Type 3 Type 4

Latent error
Security vulnerability
Increased latency
Degraded throughput
Full outage

0

1

2

3

(c) Imago.

Fig. 6. Impact of upgrade faults

prevents one front-end server from forwarding requests to one middle-tier node, but
the three application servers remaining can successfully handle the RUBiS workload,
which is not computationally-intensive. This fault produces a latent error that might be
exposed by future changes in the workload or the system architecture and is the only
fault that Imago is not able to mask.

The rolling upgrade masks 2 faults, which occur in the middle tier and do not degrade
the response time or the yield, but have a visible manifestation (the application server
fails to start). The big flip masks 6 faults that are detected before the switch of the halves.
Imago masks 10 out of the 11 injected faults, including the ones masked by the big flip,
and excluding the latent error. A paired, one-tailed t-test7 indicates that, under upgrade
faults, Imago provides a better yield than the rolling upgrade (significant at the p = 0.01
level) and than the big flip (significant at the p = 0.05 level).

4.3 Upgrade Reliability

We observe in Fig.6 that broken environmental dependencies (Type 3) have only a small
impact on enterprise-system upgrades, because their manifestations (e.g., a server’s fail-
ure to start) are easy to detect and compensate for in any upgrading mechanism. Rolling
upgrades create system states with mixed versions, where hidden dependencies can be
broken. Contrary to the conventional wisdom, these faults can have a global impact on
the system-under-upgrade, inducing outages, throughput- or latency-degradations, se-
curity vulnerabilities or latent errors.

Compared with a big flip, Imago improves the availability because (i) it removes
the single points of failure for upgrade faults and (ii) it performs a clean installation
of the new system. For instance, the config_staticpath fault induces a latent error
during the big flip because the upgrade overwrites an existing system. The database
represents a single point of failure for the big flip, and any Type 4 fault leads to an
upgrade failure for this approach. Such faults do not always cause a full outage; for
instance, the db_schema fault introduces a throughput degradation (with application
errors). However, although in this case the application error-rate is relatively low (9%

7 The t-test takes into account the pairwise differences between the yield of two upgrading ap-
proaches and computes the probability p that the null hypothesis—that Imago doesn’t improve
the yield—is true [17].

366 T. Dumitraş and P. Narasimhan

of all replies), the real impact is much more severe: while clients can browse the entire
site, they cannot bid on any items. In contrast, Imago eliminates the single-points-of-
failure for upgrade faults by avoiding an in-place upgrade and by isolating the system
version in Uold from the upgrade operations.

Imago is vulnerable to latent configuration errors such as config_samename, which
escapes detection. This failure is not the result of breaking a shared dependency, but cor-
responds to an incorrect invariant of the new system, established during a fresh install.
This emphasizes the fact that any upgrading approach, even Imago, will succeed only
if an effective mechanism for testing the upgraded system is available.

Because our qualitative evaluation does not suggest how often the upgrade faults
produce latent errors, we inject Type 1 faults automatically, using ConfErr [11]. Con-
fErr explores the space of likely configuration errors by injecting one-letter omissions,
insertions, substitutions, case alterations and transpositions that can be created by an
operator who mistakenly presses keys in close proximity to the mutated character. We
randomly inject 10 typographical and structural faults into the configuration files of
Apache web servers from the front-end and the middle tier, focusing on faults that are
likely to occur during the upgrade (i.e., faults affecting the configuration directives of
mod_proxy and mod_proxy_balancer on the front-end and of mod_php on the mid-
dle tier). Apache’s syntactic analyzer prevents the server from starting for 5 front-end
and 9 middle-tier faults. Apache starts with a corrupted address or port of the appli-
cation server after 2 front-end faults and with mis-configured access privileges to the
RUBiS URLs after 1 middle-tier fault. The remaining three faults, injected in the front-
end, are benign because they change a parameter (the route from a BalancerMember
directive) that must be unique but that has no constraints on other configuration settings.
These faults might have introduced latent errors if the random mutation had produced
identical routes for two application servers; however, the automated fault-injection did
not produce any latent errors. This suggests that latent errors are uncommon and that
broken dependencies, which are tolerated by Imago, represent the predominant impact
of Type 1 faults.

5 Lessons Learned

Offline upgrades of critical enterprise-systems (e.g., banking infrastructures) provide the
opportunity for performing extensive tests for accepting or rejecting the outcome of the
upgrade. Online upgrades do not have this opportunity; when there are mixed versions,
system states are often short-lived and cannot be tested adequately, while the system-
under-upgrade must recover quickly from any upgrade faults. Unlike the existing strate-
gies for online upgrade, which rely on tracking dependencies, Imago trades off spatial
overhead (i.e., additional hardware and storage space) for an increased dependability
of the online upgrade. Imago was designed for upgrading enterprise systems with tra-
ditional three-tier architectures. The current implementation cannot be readily applied
to certain kinds of distributed systems, such as peer-to-peer systems, which violate the
first assumption by accommodating large numbers of dynamically added ingress-points,
or data-intensive computing (e.g., MapReduce), which distribute their persistent data
throughout the infrastructure and do not have a well-defined egress point. However, the

Why Do Upgrades Fail and What Can We Do about It? 367

Table 4. Design choices for online upgrades in enterprise systems

In-Place Out-of-Place

M
ix

ed
V

er
si

on
s

– Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur run-time overhead for data conversions
– Risk breaking hidden dependencies

– Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur spatial overhead

A
to

m
ic – Incur run-time overhead for data conversions

– Risk breaking hidden dependencies
– Incur spatial overhead

– Incur spatial overhead

availability improvements derive from the three properties (isolation, atomicity and fi-
delity) that Imago provides. Specifically, the isolation between the old and new versions
reduces the risk of breaking hidden dependencies, which is the leading cause of upgrade
failure [1], while performing the end-to-end upgrade as an atomic operation increases
the upgrade reliability by avoiding system states with mixed versions. Imago improves
the upgrade dependability because it implements dependency-agnostic upgrades. In the
future, we plan to investigate mechanisms for implementing the isolation, atomicity and
fidelity properties in other distributed-system architectures, and for reducing Imago’s
spatial overhead through virtualization.

Moreover, upgrades that aim to integrate several enterprise systems (e.g., following
commercial mergers and acquisitions) require complex data conversions for changing
the data schema or the data store, and such data conversions are often tested and de-
ployed in different environments [13], which increases the risk of upgrade failure. Imago
is able to integrate complex data-conversions in an online upgrade and to test the new
version online, in an environment nearly identical to the deployment system. While an
in-depth discussion of these topics is outside the scope of this paper, we note that there
are two major design choices for software-upgrade mechanisms: (i) whether the upgrade
will be performed in-place, replacing the existing system, and (ii) whether the upgrade
mechanisms will allow mixed versions, which interact and synchronize their states until
the old version is retired. Table 4 compares these choices. Mixed versions save storage
space because the upgrade is concerned with only the parts of the data schema that
change between versions. However, mixed versions present the risk of breaking hidden
dependencies; e.g., if the new version includes a software defect that corrupts the per-
sistent data, this corruption will be propagated back into the old version, replacing the
master copy. Mixed, interacting versions also require an indirection layer, for dispatch-
ing requests to the appropriate version [26], which might introduce run-time overhead
and will likely impose downtime when it is first installed. A system without mixed ver-
sions performs the upgrade in a single direction, from the old version to the new one.
However, for in-place upgrades, the overhead due to data conversions can have a neg-
ative impact on the live workload. When, instead, an upgrade uses separate resources
for the new version, the computationally-intensive processing can be performed down-
stream, on the target nodes (as in the case of Imago). As we have shown in Section 4,
in-place upgrades introduce a high risk of breaking hidden dependencies, which de-
grades the expected availability.

368 T. Dumitraş and P. Narasimhan

The most significant disadvantage of out-of-place upgrades is the spatial overhead
imposed. However, the cost of new hardware decreases while unavailability becomes
more expensive [9], and enterprises sometimes take advantage of a software upgrade to
renew their hardware as well [25, 27]. Moreover, Imago requires additional resources
only for implementing and testing the online upgrade, and storage and compute cycles
could be leased, for the duration of the upgrade, from existing cloud-computing infras-
tructures (e.g., the Amazon Web Services). This suggests that Imago is the first step
toward an upgrades-as-a-service model, making complex upgrades practical for a wide
range of enterprise systems.

6 Related Work

In our previous work [22], we have outlined the upgrade procedure on which Imago is
based. Here, we review the research related to our contributions in this paper.

6.1 Upgrade Fault-Models

Oppenheimer et al. [10] study 100+ post-mortem reports of user-visible failures from
three large-scale Internet services. They classify failures by location8 (front-end, back-
end and network) and by the root cause of the failure8 (operator error, software fault,
hardware fault). Most failures reported occurred during change-management tasks, such
as scaling or replacing nodes and deploying or upgrading software. Nagaraja et al. [12]
report the results of a user study9 with 21 operators and observe seven classes of faults:8

global misconfiguration, local misconfiguration, start of wrong software version, unnec-
essary restart of software component, incorrect restart, unnecessary hardware replace-
ment, wrong choice of hardware component. Oliveira et al. [13] present a survey of 51
database administrators,9 who report eight classes of faults:8 deployment, performance,
general-structure, DBMS, access-privilege, space, general-maintenance, and hardware.
Keller et al. [11] study configuration errors and classify them according to their rela-
tionship with the format of the configuration file8 (typographical, structural or semantic)
and to the cognitive level where they occur8 (skill, rule or knowledge). These models
do not constitute a rigorous taxonomy of upgrade faults. Some classifications are too
coarse-grained [10] or relevant for only a subset of the upgrade faults [11]. In many
cases, the fault categories are not disjoint and the criteria for establishing these cate-
gories are not clearly stated.

6.2 Online Upgrades

The problem of dynamic software update (DSU), i.e., modifying a running program
on-the-fly, has been studied for over 30 years. Perhaps the most advanced DSU tech-
niques are implemented in the Ginseng system, of Neamtiu et al. [28], which uses static
analysis to ensure the safety and timeliness of updates (e.g., establishing constraints to

8 We use this subdivision as a classification variable in our upgrade fault-model (Section 2).
9 We use this data to develop our upgrade fault-model (Section 2).

Why Do Upgrades Fail and What Can We Do about It? 369

prevent old code from accessing new data) and supports all the changes required for up-
dating several practical systems. When upgrading distributed systems with replicated
components (e.g., multiple application servers in the middle tier), practitioners often
prefer rolling upgrades [9], because of their simplicity. DSU techniques are difficult
to use in practicebecause they require programmers to annotate (e.g., indicating suit-
able locations for performing the update) or to modify the source code of the old and
new versions. Moreover, active code (i.e., functions on the call stack of the running pro-
gram) cannot be replaced, and updating multi-threaded programs remains a challenging
task [29]. Like Imago, DSU techniques require state conversion between program ver-
sions [28], but Imago never produces mixed versions and does not have to establish
correctness conditions for the interactions among these versions. Imago performs the
entire end-to-end upgrade as one atomic action.

6.3 Dependable Upgrades

To improve the dependability of single-node upgrades, modern operating systems in-
clude package-management tools, which track the dependencies among system com-
ponents in depth, to prevent broken dependencies. Instead of tracking the dependen-
cies of each package, Crameri et al. [1] suggest that the risk of upgrade failure can be
reduced by testing new or updated packages in a wide variety of user environments
and by staging the deployment of upgrades to increasingly dissimilar environments.
Imago is closest in spirit to the previous upgrading approaches that avoid dependency
tracking by isolating the new version from the old one. Lowell et al. [30] propose up-
grading operating systems in a separate, lightweight virtual-machine and describe the
Microvisor virtual-machine monitor, which allows a full, “devirtualized” access to the
physical hardware during normal operation. The online applications are migrated to
a separate virtual machine during the upgrade. To facilitate this application-migration
process, Potter et al. [31] propose AutoPod, which virtualizes the OS’s system calls, al-
lowing applications to migrate among location-independent “pods”. These approaches
do not provide support for application upgrades. While providing better isolation prop-
erties than other in-place upgrades, the approaches based on virtual machines induce
run-time overhead, which might break dependencies on performance levels (e.g., appli-
cations that disable write-access when the response time increases).

Multi-node upgrades are vulnerable to Types 1–4 of upgrade faults. Nagaraja et al. [12]
propose a technique for detecting operator errors by performing upgrades or configura-
tion changes in a “validation slice,” isolated from the production system. The upgraded
components are tested using the live workload or pre-recorded traces. This approach re-
quires component-specific inbound- and outbound-proxies for recording and replaying
the requests and replies received by each component-under-upgrade. If changes span
more than one node, multiple components (excluding the database) can be validated at
the same time. Oliveira et al. [13] extend this approach by performing change oper-
ations on an up-to-date replica of the production database. Because these approaches
operate at component granularity, they require knowledge of the system’s architecture
and queuing paths, and some errors remain latent if the components are tested in iso-
lation [12]. Moreover, implementing the inbound- and outbound-proxies requires an
understanding of each component’s behavior, e.g., the communication protocols used

370 T. Dumitraş and P. Narasimhan

and its non-determinism. For instance, routing requests to a different application server
in the validation slice would produce equivalent results, but processing database trans-
actions in a different order would compromise the replication. To enforce a common
order of execution, database requests must be serialized in order to prevent transaction
concurrency, for both the production database and the validation slice [13]. Aside from
inducing a performance penalty during the upgrade, this intrusive technique prevents
testing the upgrade’s impact on the concurrency-control mechanisms of the database,
which limits the usefulness of the validation results. Compared with these approaches,
Imago does not change the way requests are processed in the production system and
only requires knowledge of the ingress and egress points. The other components of the
system-under-upgrade and the internal queuing paths are treated as a black box. Un-
like the previous approaches, Imago targets end-to-end upgrades of distributed systems,
and it addresses the problem of coordinating the switchover to the new version. More-
over, Imago’s design facilitates upgrades that require long-running, computationally-
intensive conversions to a new data format.

6.4 Dependability Benchmarking for Upgrade Mechanisms

Evaluations of most of the previous upgrade mechanisms focus on the types of changes
supported and on the overhead imposed, rather than on the upgrade dependability. Be-
cause of this reason, while the costs of upgrading techniques (e.g., atomic upgrades,
isolation between the old and new versions) can be assessed in a straightforward man-
ner, their benefits are not well understood. User studies [12], fault injection [12,13] and
simulation [1] have been used to assess the effectiveness of previous approaches in re-
ducing the number of upgrade failures. We rely on our upgrade-centric fault model to
perform systematic fault-injection experiments, with an improved coverage of upgrade
faults. We inject faults manually, in order to determine the impact of each fault type on
the three upgrading approaches compared, and we also use an existing fault-injection
tool for automatically injecting Type 1 faults. Similar fault-injection tools can be devel-
oped for upgrade faults of Types 2–4, in order to evaluate the dependability of future
upgrade mechanisms.

7 Conclusions

We propose a new fault model for upgrades in enterprise systems, with four types of
faults. The impact of Type 3 faults (broken environmental dependencies) seems to be
easy to detect using existing techniques. Faults of Type 1, 2, and 4 frequently break
hidden dependencies in the system-under-upgrade. Existing mechanisms for online up-
grade are vulnerable to these faults because even localized failures might have a global
impact on the system. We present the design and implementation of Imago, a system for
upgrading three-tier, enterprise systems online, despite hidden dependencies.
Imago performs the end-to-end upgrade as an atomic operation and does not rely on
dependency-tracking, but it requires additional hardware and storage space. The up-
grade duration is comparable to that of an offline upgrade, and Imago can switch over
to the new version without data loss and, during off-peak windows, without disallow-
ing any client requests. Manual and automated fault-injection experiments suggest that

Why Do Upgrades Fail and What Can We Do about It? 371

Imago improves the dependability of the system-under-upgrade by eliminating the sin-
gle points of failure for upgrade faults.

Acknowledgements. We thank Dan Siewiorek, Greg Ganger, Bruce Maggs, and Asit
Dan for their feedback during the early stages of this research. We also thank Lorenzo
Keller for providing assistance with the use of ConfErr.

References

1. Crameri, O., Knežević, N., Kostić, D., Bianchini, R., Zwaenepoel, W.: Staged deployment
in Mirage, an integrated software upgrade testing and distribution system. In: Symposium
on Operating Systems Principles, Stevenson, WA, October 2007, pp. 221–236 (2007)

2. Neumann, P., et al.: America Offline. The Risks Digest 18(30-31) (August 8-9, 1996),
http://catless.ncl.ac.uk/Risks/18.30.html

3. Koch, C.: AT&T Wireless self-destructs. CIO Magazine (April 2004),
http://www.cio.com/archive/041504/wireless.html

4. Wears, R.L., Cook, R.I., Perry, S.J.: Automation, interaction, complexity, and failure: A case
study. Reliability Engineering and System Safety 91(12), 1494–1501 (2006)

5. Di Cosmo, R.: Report on formal management of software dependencies. Technical report,
INRIA (EDOS Project Deliverable WP2-D2.1) (September 2005)

6. Office of Government Commerce: Service Transition. Information Technology Infrastructure
Library, ITIL (2007)

7. Oracle Corporation: Database rolling upgrade using Data Guard SQL Apply. Maximum
Availability Architecture White Paper (December 2008)

8. Oxford English Dictionary, 2nd edn. Oxford University Press, Oxford (1989),
http://www.oed.com

9. Brewer, E.A.: Lessons from giant-scale services. IEEE Internet Computing 5(4), 46–55
(2001)

10. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet services fail, and what
can be done about it? In: USENIX Symposium on Internet Technologies and Systems, Seat-
tle, WA (March 2003)

11. Keller, L., Upadhyaya, P., Candea, G.: ConfErr: A tool for assessing resilience to human
configuration errors. In: International Conference on Dependable Systems and Networks,
Anchorage, AK (June 2008)

12. Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R.P., Nguyen, T.D.: Understanding and
dealing with operator mistakes in Internet services. In: USENIX Symposium on Operating
Systems Design and Implementation, San Francisco, CA, December 2004, pp. 61–76 (2004)

13. Oliveira, F., Nagaraja, K., Bachwani, R., Bianchini, R., Martin, R.P., Nguyen, T.D.: Un-
derstanding and validating database system administration. In: USENIX Annual Technical
Conference (June 2006)

14. Dumitraş, T., Kavulya, S., Narasimhan, P.: A fault model for upgrades in distributed systems.
Technical Report CMU-PDL-08-115, Carnegie Mellon University (2008)

15. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis.
Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester (1990)

16. Sullivan, M., Chillarege, R.: Software defects and their impact on system availability-a study
of field failures in operating systems. In: Fault-Tolerant Computing Symposium, pp. 2–9
(1991)

17. Chatfield, C.: Statistics for Technology: A Course in Applied Statistics, 3rd edn. Chapman
& Hall/CRC (1983)

http://catless.ncl.ac.uk/Risks/18.30.html
http://www.cio.com/archive/041504/wireless.html
http://www.oed.com

372 T. Dumitraş and P. Narasimhan

18. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated detection of refactorings in
evolving components. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 404–428.
Springer, Heidelberg (2006)

19. Anderson, R.: The end of DLL Hell. MSDN Magazine (January 2000)
20. Di Cosmo, R., Zacchiroli, S., Trezentos, P.: Package upgrades in FOSS distributions: details

and challenges. In: Workshop on Hot Topics in Software Upgrades (October 2008)
21. Menascé, D.: TPC-W: A benchmark for e-commerce. IEEE Internet Computing 6(3), 83–87

(2002)
22. Dumitraş, T., Tan, J., Gho, Z., Narasimhan, P.: No more HotDependencies: Toward

dependency-agnostic upgrades in distributed systems. In: Workshop on Hot Topics in Sys-
tem Dependability, Edinburgh, Scotland (June 2007)

23. Amir, Y., Danilov, C., Stanton, J.: A low latency, loss tolerant architecture and protocol for
wide area group communication. In: International Conference on Dependable Systems and
Networks, New York, NY, June 2000, pp. 327–336 (2000)

24. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J., Rajamani,
K., Zwaenepoel, W.: Specification and implementation of dynamic web site benchmarks.
In: IEEE Workshop on Workload Characterization, Austin, TX, November 2002, pp. 3–13
(2002), http://rubis.objectweb.org/

25. Downing, A.: Oracle Corporation. Personal communication (2008)
26. Boyapati, C., Liskov, B., Shrira, L., Moh, C.H., Richman, S.: Lazy modular upgrades in

persistent object stores. In: Object-Oriented Programing, Systems, Languages and Applica-
tions, Anaheim, CA, pp. 403–417 (2003)

27. Zolti, I.: Accenture. Personal communication (2006)
28. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating for C. In:

ACM Conference on Programming Language Design and Implementation, Ottawa, Canada,
June 2006, pp. 72–83 (2006)

29. Neamtiu, I., Hicks, M.: Safe and timely dynamic updates for multi-threaded programs. In:
ACM Conference on Programming Language Design and Implementation, Dublin, Ireland
(June 2009)

30. Lowell, D., Saito, Y., Samberg, E.: Devirtualizable virtual machines enabling general, single-
node, online maintenance. In: International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Boston, MA, October 2004, pp. 211–223
(2004)

31. Potter, S., Nieh, J.: Reducing downtime due to system maintenance and upgrades. In: Large
Installation System Administration Conference, San Diego, CA, December 2005, pp. 47–62
(2005)

http://rubis.objectweb.org/

DR-OSGi : Hardening Distributed Components
with Network Volatility Resiliency

Young-Woo Kwon1, Eli Tilevich1, and Taweesup Apiwattanapong2

1 Department of Computer Science,Virginia Tech
{ywkwon,tilevich}@cs.vt.edu

2 National Electronics and Computer Technology Center
taweesup.apiwattanapong@nectec.or.th

Abstract. Because middleware abstractions remove the need for low-
level network programming, modern distributed component systems
expose network volatility (i.e., frequent but intermittent outages) as appli-
cation-level exceptions, requiring custom manual handling. Unfortunately,
handling network volatility effectively is nontrivial—the programmer
must consider not only the specifics of the application, but also of its target
deployment environment. As a result, to make a distributed component
application resilient against network volatility, programmers commonly
create custom solutions that are ad-hoc, tedious, and error-prone. In ad-
dition, these solutions are difficult to customize for different networks and
to reuse across different applications.

To address these challenges, this paper presents a systematic approach
to hardening distributed components to become resilient against network
volatility. Specifically, we present an extensible framework for enhancing
a distributed component application with the ability to continue execut-
ing in the presence of network volatility. To accommodate the diverse
hardening needs of various combinations of networks and applications,
our framework not only provides a collection of hardening strategies, but
also simplifies the creation of new strategies. Our reference implemen-
tation, built on top of the R-OSGi infrastructure, is called DR-OSGi1.
DR-OSGi imposes a very low overhead on the hardened applications, re-
quires no changes to their source code, and is plug-in extensible. Applying
DR-OSGi to several realistic distributed applications has hardened them
with resiliency to effectively withstand network volatility.

Keywords: Distributed Component Architectures, Network Volatility,
Aspect Oriented Programming, OSGi, R-OSGi.

1 Introduction

As the world is becoming more interconnected, our daily existence depends on a
variety of network-enabled gadgets. Smart phones, PDAs, GPSs, netbook com-
puters, all run network applications. Many of these gadgets are connected to
1 Pronounced as “Doctor OSGi” (Disconnected Remote Open Service Gateway

Initiative).

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 373–392, 2009.
c© IFIP International Federation for Information Processing 2009

taweesup.apiwattanapong@nectec.or.th

374 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

a wireless network such as Wi-Fi. Despite the significant progress made in im-
proving the reliability of wireless networks in recent years, real-world wireless
environments are still subject to network volatility—a condition arising when
a network becomes temporarily unavailable or suffers an outage. Usually the
network becomes operational again within minutes of becoming unavailable.

Volatility is a permanent presence of many network environments for several
reasons. For one, Wi-Fi networks transmit radio signals, which are volatile, of-
ten making it impossible to reach a 100% reliability. Another condition causing
network volatility is congestion, which occurs when radio channels interfere with
each other or multiple data is transmitted concurrently over the same radio link
[9]. Furthermore, wireless networks are rapidly becoming available in emerging
markets (e.g., such as in rural or remote areas), which cannot always rely on the
existence of an advanced networking infrastructure [30].

Despite its temporary nature, network volatility can prove extremely disrup-
tive for those distributed applications that are built under the assumption that
the underlying network is highly-reliable, and network outages are a rare excep-
tion rather than a permanent presence. This could happen, for example, when
a distributed application, built for a LAN, is later executed in a wireless envi-
ronment.

Distribution middleware provides a set of abstractions through a standardized
API that hide away various complexities of building distributed systems, includ-
ing the need for low-level network programming. Distributed component systems
such as DCOM [15], CORBA CC [19], and R-OSGi [23] expose network volatility
as system-level exceptions that are handled by the programmer in an application-
specific fashion. Thus, the programmer writes custom exception-handling code
that is difficult to keep consistent, maintain, and reuse.

If the underlying network is expected to be volatile during the execution of a
distributed system, a consistent strategy can be beneficial for handling the cases
of network outages. Manually written outage handling code makes it difficult to
ensure that a consistent strategy be applied throughout the application. Since the
outage handling code is also scattered throughout the application, it can create a
serious maintenance burden. Finally, the expertise developed in handling outages
in one distributed application becomes difficult to apply to another application,
with a copy-and-paste approach being the only option.

This paper argues that it is both possible and useful to handle network out-
ages systematically, in a consistent and reusable way. Although software archi-
tecture researchers have outlined approaches to continue distributed application
execution in the presence of network outages, these approaches are difficult to
implement, apply, and reuse.

This work builds upon these approaches to define hardening strategies, which
are exposed as reusable components that can be seamlessly integrated with an
extant distributed component infrastructure. These reusable and customizable
components can be added to an existing distributed component application,
thereby hardening it against network volatility.

DR-OSGi : Hardening Distributed Components 375

As our experimental platform, we use R-OSGi—a state-of-the-art distributed
computing infrastructure that enables service-oriented computing in Java. We
have created an extensible framework—DR-OSGi—which can harden any R-
OSGi application, enabling it to cope with network volatility. DR-OSGi provides
programming abstractions for expressing hardening strategies, which can also be
reused across applications. The programmer selects a hardening strategy that is
most appropriate for a given R-OSGi application and its deployment environ-
ment. DR-OSGi then handles all the underlying machinery required to harden
the R-OSGi application with the selected strategy.

In our experiments, we have executed several realistic R-OSGi applications in
a simulated networking environment to which we injected periodic network out-
ages. By comparing the execution of the original and hardened versions of each
application, we have assessed their respective ability to complete the execution,
the total time taken to arrive to a result, and the overhead of the hardening
functionality. Our results indicate that it is feasible and useful to systematically
harden existing distributed component applications with the ability to cope with
network volatility. Based on our results, the technical contributions of this paper
are as follows:

– A clear exposition of the challenges of treating the ability to cope with
network volatility as a separate concern that can be expressed modularly.

– An approach for hardening distributed component applications with re-
siliency against network volatility.

– A proof of concept infrastructure implementation—DR-OSGi—which demon-
strates how existing distributed component applications can be hardened
against network volatility.

The rest of this paper is structured as follows. Section 2 introduces the concepts
and technologies used in this work. Section 3 describes our approach and refer-
ence implementation. Section 4 evaluates the utility and efficiency of DR-OSGi
through performance benchmarks and a case study. Section 5 compares our ap-
proach to the existing state of the art. Finally, Section 6 presents future research
directions and concluding remarks.

2 Background

In the following discussion, we first look at network volatility from the networking
perspective. Then we outline the concepts and technologies used in implementing
our framework.

2.1 Network Volatility

Modern computing networks are sophisticated multi-component systems whose
reliability can be affected by hardware and software failure. These failure condi-
tions include random channel errors, node mobility, and congestion. The relia-
bility of a wireless network can be additionally afflicted by the contention from
hidden stations and frequency interference [7,10].

376 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

To improve the performance and reliability of modern networks, researchers
have investigated various solutions, including congestion control, error control,
and mobile IP. Most of these solutions improve various parts of the actual net-
working infrastructure. This work, by contrast, is concerned with solutions that
treat network volatility as an unavoidable presence to be accommodated in soft-
ware at the application level.

2.2 Software Components

A software component is an abstraction that improves encapsulation and reusabil-
ity, thus reducing software construction costs. Typically a component encapsu-
lates some unit of functionality that is accessed by outside clients through the
component’s interface. Component interfaces tend to remain stable, evolving in-
frequently and systematically. This reduced coupling between a component and
its clients makes it possible to change the component’s underlying implementa-
tion without having to change its clients. Examples of software component archi-
tectures include COM [15], CORBA CC [19], CCA [1], and OSGi [20].

OSGi. For our reference implementation, we have chosen a mature software
component platform for implementing service oriented applications called OSGi
[20]. Among the reasons for choosing OSGi is its wide adoption by multiple
industry and research stakeholders, organized into the OSGi Alliance [20]. OSGi
is used in large commercial projects such as the Spring framework and Eclipse,
which uses this platform to update and manage plug-ins. The OSGi standard is
currently implemented by several open-source projects, including Apache Felix,
Knopflerfish, Eclipse Equinox, and Concierge[22].

OSGi provides a platform for implementing services. It allows any Java class
to be used as a service by publishing it as a service bundle. OSGi manages
published bundles, allowing them to use each other’s services. OSGi manages
the lifecycle of a bundle (i.e., moving between install, start, stop, update, and
delete stages) and allows it to be added and removed at runtime.

R-OSGi. Despite its versatility, OSGi only allows inter-bundle communication
within a single host. To support distributed services via OSGi, the R-OSGi dis-
tributed component infrastructure was introduced [23]. R-OSGi enables proxy-
based distribution for services, providing proxies also as standard OSGi bundles.
An R-OSGi distribution proxy redirects method calls to a remote bundle via a
TCP channel, supporting both synchronous and asynchronous remote invoca-
tions. R-OSGi also provides a distributed service registry, thus enabling the
treatment of remote services uniformly with local services.

Thus, R-OSGi introduces distribution transparently, without modifying the
core OSGi implementation. It can even enable remote access to an existing reg-
ular OSGi bundle, transforming the bundle into a remote service. The transfor-
mation employs the concept of the surrogation bundle, which registers the service
and redirects remote calls to the original bundle.

DR-OSGi : Hardening Distributed Components 377

With respect to network volatility, R-OSGi treats it similarly to other dis-
tributed component infrastructures. Specifically, in response to a network dis-
connection, a client accessing a remote R-OSGi service will receive an exception.
The programmer can then write custom code to handle the exception.

2.3 Hardening Strategies to Cope with Network Volatility

When the underlying network fails, a distributed application will typically signal
an error to the end user, who can then decide on how to proceed. The user, for
example, could choose to check the network connection and restart the applica-
tion. The purpose of hardening strategies is to enable a distributed application
to continue executing when the underlying network becomes unavailable. In a
recent publication, Mikic-Rakic and Medvidovic classify disconnected operation
techniques as well as how they can be applied to improve the overall system
dependability [16]. Next we outline these techniques and discuss how they can
be applied to harden a distributed component application to cope with network
volatility.

Caching—This strategy employs caching techniques to store a subset of re-
mote data locally, so that it could be retrieved and used by remote service re-
quests when the network becomes unavailable. The effectiveness of this strategy
depends strongly on the hit rate of the caching scheme in place. That is, since
the size of any cache is always limited, the main challenge becomes to cache the
remote data that is most likely to be needed by a service invocation when the
network is unavailable. This strategy can in effect fail completely if there is a
cache miss.

Hoarding—This strategy prefetches all the remote data needed for success-
fully completing any remote service invocation. It assumes, however, that data
alone is sufficient for invoking a remote service. Unfortunately, this assump-
tion fails for any resource-driven distribution—collocating hardware resources
with the code and data they use. For example, a remote sensor has to operate
at a remote location from which it is collecting data; hoarding any amount of
the sensor’s output data will fail to provide up-to-date sensor information upon
disconnection. Thus, a hoarding-based strategy can be effective only when com-
putation is distributed for performance reasons, and computation with a given
data input yields the same results on any network node. These execution prop-
erties are often exhibited by high-performance cluster environments that use
distribution to improve performance.

Queuing—This strategy intercepts and records remote requests made to an
unreachable remote service. The recorded requests are then replayed when the
service becomes available. This technique can only work if the results of a remote
call are not immediately needed by the client code (e.g., to be used in an if

statement). Otherwise, the client code will block, not being able to benefit from
this strategy. Queuing is also poorly applicable for realtime applications.

Replication—This strategy maintains a local copy of a remote component.
When the remote component becomes unreachable, the local copy is used. If
the replicated component is stateful, then the states of the local and remote

378 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

copies have to be kept consistent. When the network is available, client requests
can be multiplexed to both local and remote copies. Alternatively, a consistency
protocol can be used. Upon reconnection, the remote copy has to be synchronized
with the local copy. This strategy has the same applicability preconditions as
hoarding.

Multi-modal components—This strategy employs several of the strategies
above and can apply them either individually, based on some runtime condition,
or together, combining some features of individual strategies. For example, both
caching and queuing can be used, depending on which remote service method
is invoked. Similarly, replication can be applied to remote components while
hoarding the data used by the replicated components.

2.4 Aspect-Oriented Programming and JBoss AOP

This work aims at treating network volatility resiliency as a distributed cross-
cutting concern. A powerful methodology for modularizing cross-cutting concerns
is aspect oriented programming (AOP)[13]. We believe that network volatility re-
siliency is similar to other cross-cutting concerns such as logging, persistence, and
authentication—essential functionality, but not directly related to the business
logic.

AOP modularizes cross-cutting concerns and weaves them into the applica-
tion at compile-time, load-time, or runtime. Major AOP infrastructures include
AspectJ[4], Spring AOP[26], and JBoss AOP[11]. Some AOP technologies have
even been applied to OSGi, including the Eclipse Foundation’s AspectJ plug-in
and Equinox. For our purposes, we needed to weave in the outage handling func-
tionality at runtime, which typically requires modifying the JVM or rewriting
the bytecode. We also needed the ability to modify the parameters of a remote
service method. Among the major AOP systems, only JBoss AOP provides all
the required capabilities. Another draw of JBoss AOP is that it does not either
introduce a new language, thus flattening the learning curve, or changes the
JVM, thus ensuring portability.

3 DR-OSGi: Treating Symptoms of Network Volatility

Our reasoning behind the name DR-OSGi—our reference implementation of an
infrastructure for systematic handling of network volatility—is our skeptical view
of the power of modern medicine. Despite all its impressive accomplishments,
modern medicine can only treat some of the symptoms of the majority of known
diseases—it cannot eliminate the disease itself. Take common cold as an example.
They say that “If you treat a cold, it takes seven days to recover from it, but if
you do not, it takes a week.” When a cold is concerned, modern medicine can
only help eliminate its symptoms, such as fever, sneezing, and coughing, thereby
improving the patient’s quality of life.

By analogy, we treat network volatility as a disease—an annoying but un-
avoidable condition that cannot be eliminated. All we want to do is to treat the

DR-OSGi : Hardening Distributed Components 379

symptoms of this disease systematically. By helping the patient (a distributed
system) to effectively cope with the symptoms of network volatility (an inability
to make remote service calls), we improve the patient’s quality of life (QoS).

We next demonstrate our approach by showing how our approach can system-
atically harden distributed component applications against network volatility. In
the following discussion, we first state our design goals, before presenting the ar-
chitecture of our reference implementation and its individual components.

3.1 Design Objectives

Can any distributed component architecture be effectively hardened against net-
work volatility? In other words, are there any special capabilities a distributed
component architecture must provide to make itself amenable to hardening? For
our approach to work, we assume that a distributed component architecture can
detect and convey to the distributed application the following two scenarios:

1. A remote service becomes unavailable—this scenario should be effec-
tively detected by the underlying distributed component architecture, so that
an appropriate exception could be raised.

2. A temporarily unavailable remote service becomes available again—
this scenario assumes that the component architecture does not “give up”
trying to reach a remote service, periodically attempting to access it.

To the best of our knowledge, most distributed component architectures can
effectively handle the first scenario. However, only advanced distributed compo-
nent architectures can handle the second one. As a concrete example, R-OSGi
employs the Service Discovery Protocol, which periodically attempts to recon-
nect to a remote service, if the service were to become unavailable. If, for exam-
ple, a remote service becomes unreachable due to a network outage, the R-OSGi
Service Discovery Protocol will keep trying to reach the service until the net-
work connection is restored. It is these advanced capabilities of R-OSGi that
convinced us to use this distributed component architecture as our experimen-
tation platform.

Our system, called DR-OSGi, can harden existing R-OSGi applications to
become resilient against network volatility. In designing DR-OSGi, we pursued
the following goals:

1. Transparency—any hardening strategy should not affect the core function-
ality of the underlying R-OSGi application.

2. Flexibility—DR-OSGi should be capable of adding or removing the hard-
ening strategies at any time without having to stop the application.

3. Extensibility—DR-OSGi should provide flexible abstractions, enabling
expert programmers to easily implement and apply custom hardening
strategies.

380 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

3.2 Design Overview

The purpose of DR-OSGi is to harden an R-OSGi application with resiliency to
cope with network volatility. Thus, to explain the general architecture of DR-
OSGi, we start by outlining the fundamental building blocks of R-OSGi. Figure
1 shows that R-OSGi integrates a remoting proxy that redirects service calls to a
remote OSGi bundle and also transfers the results of the calls back to the client.

R-OSGi
Proxy

Remote OSGi

S
ervice

R-OSGi

Remote
OSGiChannelS

er
vi
ce

Fig. 1. Initial architecture of R-OSGi

Since the channels to a remote OSGi bundle use TCP, which provides reliable
data transport, packet loss is handled at the transport layer. TCP, however,
provides no assistance to deal with network volatility conditions arising as a
result of link failure, node mobility, or high congestion. Therefore, to detect
network instability or disconnection, an R-OSGi channel uses a timer to block
the caller until the service has returned or the timeout has been exceeded. In
the case of exceeding the timeout, an exception is thrown. R-OSGi handles such
exceptions by having a remote OSGi bundle dispose of the channel and remove
all proxies, preventing remote service calls while the network in unavailable. R-
OSGi periodically checks whether the network has become available again and,
if so, recreates the remoting proxies and channels.

DR-OSGi intercepts the handling of R-OSGi network-related exceptions and
the successful completions of its reconnection attempts. Specifically, DR-OSGi
handles R-OSGi network-related exceptions by triggering a hardening strategy.
The type of the triggered strategy is determined by a programmer-specified con-
figuration. The hardening strategy stops being applied when DR-OSGi intercepts
a successful R-OSGi reconnection attempt.

Figure 2 shows how DR-OSGi is integrated into a typical R-OSGi application.
DR-OSGi augments an R-OSGi application with a hardening manager and a col-
lection of hardening strategies. The manager and each strategy are encapsulated
in separate OSGi bundles.

The hardening manager plugs into an R-OSGi application to intercept the
handling of network exceptions and of the successful completions of reconnection
attempts. In response to these events, the manager starts and stops the hardening
strategies as configured by the programmer.

To integrate the hardening manager with an R-OSGi application without
changing the application’s source code, we employ Dynamic Aspect Oriented
Programming. Because OSGi bundles are deployed at runtime, DR-OSGi has
to be able to interpose the hardening logic dynamically. The dynamic AOP
technology that fits our design objectives is JBoss AOP.

DR-OSGi : Hardening Distributed Components 381

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi
Proxy

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi
Channel

Hardening Strategy B
Hardening Strategy A

Hardening Strategy B
Hardening Strategy A

Service Service

Fig. 2. Hardened architecture

3.3 Programming Model

Next we detail the DR-OSGi programming model and demonstrate how it sim-
plifies the creation and deployment of custom hardening strategies. To harden
an R-OSGi application, the programmer has to provide a configuration file that
specifies which hardening strategy should be applied to which application bundle.
The following configuration file specifies that the application bundle “MyBun-
dle” is to be hardened by the strategy implemented in the DR-OSGi-conformant
bundle “CachingHardening”:

RemoteServiceName=org.mypackage.MyBundle
HardeningServiceName=org.otherpackage.CachingHardening

The simple syntax of the DR-OSGi configuration files is sufficiently expressive
and supports wildcards which can be used to specify that a hardening strategy
be applied to multiple bundles. Several hardening strategies can be applied to
the same application bundle simultaneously. For example, remote invocations
can be both cached and queued when the network is available. The programmer
can specify in the configuration file which strategy bundle should be primary
(i.e., to be applied first). If, when the network becomes unavailable, the first
strategy succeeds, DR-OSGi does not apply the second one.

To implement a hardening strategy, the programmer needs only to implement
interface DisconnectionListener , which is defined as follows:

public interface DisconnectionListener {
public Object disconnectedInvoke(RemoteCallMessage invokeMessage);
public Object reconnected(String uri);
public void remoteInvoke(RemoteCallMessage invokeMessage, Object result);
public void serviceAdded(String uri);
public void serviceRemoved(String uri);

}
Method disconnectedInvoke is called by DR-OSGi, when R-OSGi detects that the
network connection has been lost. Method reconnected is called by DR-OSGi,

382 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

when R-OSGi manages to successfully reestablish a connection to a remote bun-
dle. Finally, remoteInvoke is called when a remote service method has been suc-
cessfully invoked.

The implemented class has to be deployed as a regular OSGi bundle, and an
entry describing the implementation must be added to the configuration file.

3.4 System Architecture

In the following we discuss the system architecture of DR-OSGi. The key objec-
tive of this work is to explore how network volatility hardening strategies can
be implemented modularly and applied to an existing distributed component
application that may have been written without fault-tolerance capabilities in
mind. In other words, we argue that it is possible to treat hardening strate-
gies as reusable software components, which can be developed by third-party
programmers and reused across multiple applications.

Figure 3 shows how we have designed DR-OSGi, so that it could naturally in-
tegrate with the existing OSGi and R-OSGi infrastructures. DR-OSGi makes
use of existing OSGi services such as Service Registration and Service
Tracker. Every DR-OSGi component, including the hardening manager and all

Hardening Strategy Bundle A

Hardening Manager Bundle
ServiceTracker
Customizer

addingService

removedService

modifiedService

Connection
Handler

DisconnectionListener
remoteInvoke

disconnectedInvoke
reconnected

OSGi
Service Registry

Hardening
Strategy

Activator

Activator

2. Service Registration

1. Service Registration

3.
S
er
vi
ce

N
ot
ifi
ca

tio
n

Remote OSGi
Bundle Proxy Bundle

DR-OSGi

OSGi

R-OSGi
Service
Location

Protocol Bundle

4. Event Monitoring

Service Tracker

Hardening Strategy Bundle B

DisconnectionListener
remoteInvoke

disconnectedInvoke
reconnected

Hardening
Strategy

Activator

5.
S
en

d
E
ve

nt

Fig. 3. DR-OSGi Design

DR-OSGi : Hardening Distributed Components 383

hardening strategies, register themselves with OSGi, which manages them as
standard registered services. This arrangement makes it possible to locate DR-
OSGi components using the OSGi Service Tracker and load them on demand.

To receive service change events from OSGi, the hardening manager imple-
ments the ServiceTrackerCustomizer interface, which is discussed below. In turn, to
make it possible for the manager to send the relevant events to hardening strat-
egy bundles, each bundle implements the DisconnectionListener interface. All the
lifecycle events in DR-OSGi are triggered by sending and receiving events, with
Service Tracker and Service Registration enabling the hardening manager
and hardening bundles to be loosely coupled.

When a new hardening strategy is deployed, OSGi sends an event—addingService

—to Service Tracker, which then forwards the event to the hardening manager
by calling the corresponding ServiceTrackerCustomizer interface method.

public interface ServiceTrackerCustomizer {
public Object addingService(ServiceReference reference);
public void modifiedService (ServiceReference reference , Object service);
public void removedService(ServiceReference reference , Object service);

}
The hardening manager keeps track of which hardening strategies have been
registered and maintains a searchable repository of all the registered strategy
bundles.

Weaving in Resiliency Strategies with Aspects. To intercept the discon-
nection/reconnection procedures of R-OSGi, without changing its source code,
we use dynamic Aspect Oriented Programming technology, JBoss AOP. The
ability to apply aspects dynamically is required due to OSGi loading bundles
dynamically at runtime. JBoss AOP makes use of XML configuration files that
specify at which points aspects should be weaved. Using AOP enables DR-OSGi
to keep its implementation modular and avoid having to modify the source code
of R-OSGi.

3.5 Discussion

The hardening approach of DR-OSGi is quite general and can be applied to a
variety of distributed components. Although our reference implementation is de-
pendent on R-OSGi and JBoss AOP, DR-OSGi relies only on their core features,
which are common in other related technologies. Specifically, we leverage the
ability of R-OSGi to convey network failure as application-level exceptions and
to reestablish connections once the network becomes available. JBoss AOP effec-
tively modularizes hardening strategies. Although our approach delivers tangible
benefits to the distributed component programmers, it also has some inherent
limitations.

Advantages. DR-OSGi makes it possible to handle network volatility consis-
tently throughout a distributed component application. This means that the most

384 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

appropriate hardening strategy can be applied to any subset of application com-
ponents, and the strategies can be switched through a simple change in the con-
figuration file. Furthermore, each strategy is modularized inside a separate OSGi
bundle, thus streamlining maintenance and evolution. Finally, modularized strate-
gies can be easily reused across different distributed component applications.

Limitations. Creating a pragmatic solution that can be implemented straight-
forwardly required constraining our design in several respects. For example, we
chose to maintain a one-to-one correspondence between application bundles and
their hardening strategy bundles. That is, a hardening strategy for all the services
in a bundle must be implemented in a single DR-OSGi strategy bundle. Strat-
egy bundle implementations, of course, can combine any hardening strategies.
We have made this design choice to simplify the deployment and configuration
of strategy bundles. Another limitation is inherited from JBoss AOP, which is
loaded by the infrastructure irrespective of whether a hardening strategy will be
applied, thus possibly consuming system resources needlessly. This may present
an issue in a resource-scarce environment such as an embedded system. A pos-
sible solution to this inefficiency would be to extend OSGi with a meta-model
that would allow the programmer to systematically extend services.

4 Evaluation

To evaluate the effectiveness and performance properties of DR-OSGi, we have
conducted three benchmark experiments and a larger case study.

4.1 Benchmarks

Since R-OSGi can easily distribute any existing OSGi application, our bench-
marks use third-party OSGi components accessed remotely across the network.

As our benchmark applications, we have used a remote log service, a remote
user administration service, and a distributed search engine.

To create a controlled networking environment with predictable network out-
age rates, we have used a network emulator—netem [2]—to introduce network
volatility conditions, including transmission delay, packet loss, packet duplica-
tion, and packet re-ordering.

In our experimental setup, we have emulated a network with the round trip
time (RTT) metrics equal to 14ms, which is typical for a modern wireless net-
work. To emulate network outages, we used netem to generate packets losses
at the server. Lossy network conditions were emulated by losing a high num-
ber of random packets (i.e., over 30% loss); totally disconnected networks were
emulated by losing all the transmitted packets.

The experimental environment has comprised a Fujitsu S7111 laptop (1.8 GHz
Intel Dual-Core CPU, 2.5 GB RAM) communicating with a Dell XPS M1330
laptop (2.0 GHz Intel Dual-Core CPU, 3 GB RAM) via a IEEE 802.11g wireless
LAN, with both laptops running the Sun’s client JVM, JDK J2SE 1.6.0 13.

DR-OSGi : Hardening Distributed Components 385

Log Service. For this experiment, we used a log service defined by the OSGi
specification [20]. The OSGi log service records standard output and error mes-
sages printed during a bundle’s execution. The service can be configured to log
different amounts of messages by calling its setLevel methods (the higher the
level, the more messages are logged).

Imagine needing to log messages generated by a remote service locally. In this
experiment, we have used R-OSGi to access the existing log service of Knopfler-
fish, a popular, open-source implementation of OSGi. To enable remote access,
we have used the surrogation bundle approach to register the existing log service.

Network volatility should not cause a remote log service to stop functioning.
Logs are typically examined for a postmortem analysis, for which the actual
time when the messages are written to a log file is not important, as long as the
messages’ timestamps reflect their actual origination time.

In our experiment, we used the log service to record 10 text messages generated
consecutively without any delay. The network is available during the remote
logging of the first 3 messages. Immediately after logging the third message, the
network becomes totally disconnected. Then after the fifth message, the network
connection is restored.

We have executed this scenario under two setups: plain R-OSGi and DR-OSGi
with a queuing strategy. Recall that queuing works by recording remote service
calls when the network is unavailable and replays the recorded calls once the
connection is restored. Under the original setup, the remote log service recorded
only 8 messages (3 before the disconnection and 5 after). Two messages were
lost irretrievably. The hardened version recorded all 10 messages.

Table 1 shows the delay for each message delivery. For the queued messages
(columns 4 and 5), the delays is significantly higher than for the other messages.
Despite the delay of the queued messages, all the messages are delivered in the
order in which they are sent. Since real-time guarantees are not required, we
can conclude that the hardening strategy has provided the requisite QoS for the
remote log service, allowing it to cope with network volatility.

Table 1. Message delivery delay under a queuing hardening strategy

Network condition connection disconnection connection
Message number 1 2 3 4 5 6 7 8 9 10

Sent log time(min:sec) 0:00 1:12 1:21 1:51 2:51 3:19 4:01 4:03 4:42 4:46
Received log time(min:sec) 0:00 1:15 1:21 3:20 3:20 3:20 4:02 4:05 4:42 4:46

User Admin Service. For this experiment, we used the User Admin Service,
which comes as a part of the core OSGi system services. The service authenticates
and authorizes users by running their credentials against a database. Oftentimes,
this service may need to be accessed remotely. To introduce distribution, we have
registered the standard User Admin Service bundle using a surrogation bundle,
similar to the approach we took in distributing the log service.

386 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

A network outage should not prevent a client from using the User Admin
Service, if the client has used the service in the past, and the security policy
specifies that user credentials change infrequently and can be cached safely. In
other words, the caching hardening strategy must be coordinated with the se-
curity policy in place, lest the system’s security can be compromised. One way
to accomplish this is to avoid caching the authentication data that may change
while the network is temporarily unavailable.

We have emulated a scenario in which 100 remote authentication attempts
have been made across the network, which randomly suffers disconnections with
the rate equal to 1 disconnection per 20 authentication attempts. Disconnections
always cause the R-OSGi version of the application to fail. The ability of the
DR-OSGi hardened version to continue executing depends on the number of
clients. In this simulation, we assume that all the clients use the service equally.
Thus, if for example, there were n authentication requests made from m users,
then the expected number of authentications performed by a single user is n/m.
Since the cache size is set to 5, the hit rate is negatively correlated with the
number of users, standing at 100% for 2 and 4, and going down to 90%, 85%,
and 78% for 6, 8, and 10 users, respectively.

Distributed Lucene. For this experiment, we have used Lucene, a widely-
used Java search engine library. Among the capabilities provided by Lucene are
indexing files and finding indexes of a given search word. Because searching is
computationally intensive, there is great potential benefit in distributing the
searching tasks across multiple machines, so that they could be performed in
parallel.

Despite several known RMI-based Lucene distributions, for our experiments
we have created an R-OSGi distribution, which turned out to be quite straight-
forward. We have followed a simple Master Worker model, with the Master
assigning search tasks to individual Workers as well as collecting and filtering
search results. This distribution strategy, depicted in Figure 4, requires that only
the Master node be hardened against network volatility. This embarrassingly
parallel data distribution arrangement imposes a strict one way communication
protocol with the Master always calling Workers but never vice versa.

Once again, a caching hardening strategy has turned out to be most appropri-
ate for hardening the distributed Lucene R-OSGi application. Specifically, every
work assignment for individual nodes is used as a key mapped to the returned
result. The intuition behind this caching scheme is that files are read-only and
searching a file for the same string multiple times must return identical results.
For writable files, the caching scheme would have to be modified to invalidate all
the cached results for the changed files. As it turns out, the absolute majority
of environments that use Lucene feature read-only files only, including digital
books, scientific articles, and news archives.

Since distributed Lucene is representative of a large class of realistic applica-
tions, we have used it to assess the performance overhead imposed by DR-OSGi.
The first benchmark has measured the binding time, which is defined as the
total time expended on establishing a remote connection, requesting the service,

DR-OSGi : Hardening Distributed Components 387

OSGi
Framework

Service

R
-O

S
G
i

Lucene
Library

Hardening
Manager

Cache

OSGi Framework

JBoss AOP

P
ro
xy

S
er
vi
ce

R-OSGi

Master

Workers

OSGi
Framework

Service

R
-O

S
G
i

Lucene
Library

Fig. 4. Distributed Lucene

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2

5.22

R-OSGi DR-OSGi

Th
e

bi
nd

in
g

ti
m

e(
 x

10
00

m
s)

Fig. 5. The Binding Time

receiving the interface, and building the remoting proxy. R-OSGi is quite effi-
cient, with R-OSGi application consistently outperforming their RMI versions
[23]. The purpose of our benchmark was to ensure that DR-OSGi does not im-
pose an unreasonable performance overhead on top of R-OSGi. As it turns out,
there is not a pronounced difference between the binding time of a plain R-OSGi
version of Lucene and its hardened with DR-OSGi version, as shown in Figure
5. One could argue that binding is a one-time expense incurred at the very start
of a service and as such is not critical.

To distill the pure overhead of DR-OSGi, we have measured the total time it
took to synchronously invoke a remote service under three scenarios:

1. running the original R-RSGi version with no network volatility present
2. running the hardened with DR-OSGi version with no network volatility

present
3. running the hardened with DR-OSGi version with a randomly introduced

complete network disconnection

The measurements are the result of averaging the total time taken by 1 ∗ 103

remote service invocations. To emulate a complete network disconnection, we
have generated a 100% packet loss. While the original R-OSGi version takes
9043.5 ms to execute, the hardened one takes 9321.9 ms, thus incurring only 3%
overhead when no volatility is present. When the network becomes unavailable,
the DR-OSGi caching strategy improves the performance quite significantly, as it
eliminates the need for any computation to be done by the worker node. While,
somewhat unrealistically, we used the 100% hit rate to isolate the overhead of
DR-OSGi, the actual performance is likely to vary widely depending on the
applicaion-specific caching scheme in place.

388 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

These performance results indicate that the insignificant performance over-
head that DR-OSGi imposes on a hardened distributed application can certainly
be justified by the added resiliency to cope with network volatility.

4.2 Case Study

As a larger case study, we have hardened “DNA Hound,” a three-tier R-OSGi
application for assisting detectives conducting a criminal investigation. The ap-
plication works by automating the process of analyzing and warehousing DNA
evidence, collected at crime scene investigation sites. Figure 6 depicts the archi-
tecture of “DNA Hound.” The detective collects DNA evidence using a hand-held
device, and then sends it to a search facility using a mobile data network (or
any other wireless network). The search facility matches the sent DNA evidence
against a database of DNA sequences (via parallel processing) and reports if a
match is found. The collected DNA evidence is then sent to a crime evidence
warehouse for storage.

We have implemented a complete working prototype of “DNA Hound,” but
in lieu of DNA extracting hardware, we simulated the found DNA evidence by
randomly selecting DNA sequences from a GenBank NCBI database [5]. The
search is performed using a parallelization of the Smith-Waterman algorithm
[25] on a compute cluster.

Portable DNA
Extractor

Replication
Bundle

Replication Assistant
Bundle

Search Bundle

Warehouse Bundle

Synchronization

R-OSGi R-OSGi

R-OSGi

Result

DNA Sequence Evidence

DR-OSGi DR-OSGi

DNA Sequence Search

DNA Evidence Warehouse

Portable DNA Extractor

Queuing
Bundle

St
or
e C

oll
ec
ted

DN
A
Ev
ide

nc
e

Fig. 6. DNA Hound System Architecture

DR-OSGi : Hardening Distributed Components 389

Hardening “DNA Hound”. Because “DNA Hound” is used in the field, it re-
lies on a wireless network that can be unreliable. Therefore, to ensure that the
application continues to provide service, we have used DR-OSGi to harden it
against network volatility. We have used two hardening strategies implemented
as regular OSGi bundles.

Replication. To harden the application for the network volatility that can occur
between the hand-held DNA extractor and the analyzer, we have used a replica-
tion strategy. Although DNA sequence search is very computationally-intensive,
usually requiring parallel processing to shorten the search time, it can also be
done sequentially, albeit much slower. With the advance in data storage tech-
nologies, even a hand-held device can comfortably store a substantial database
of DNA sequences. The DNA search bundle is replicated at the hand-held de-
vice. We have used the native OSGi replication facilities to install the search
bundle at both sites. When the network is up, the search is performed using a
compute cluster at the search site, and the index of the most recently searched
database sequence is periodically sent to the search bundle at the hand-held site.
Once the network becomes unavailable, the search bundle at the hand-held site
continues the search locally, using an inefficient sequential algorithm; the search
is continued from the index of the last searched sequence at the cluster. If the
index is not up-to-date, then some overlap in the search will occur. Once the
connection goes back up, the cluster could then report any matches found while
the network was not available.

Queuing. To harden the application for the network volatility that can occur
between the hand-held DNA extractor and the criminal evidence warehouse, we
have used a queuing strategy. The calls to store a new piece of DNA evidence are
queued up at the hand-held site once the network becomes unavailable. Then the
queued calls are resent to the warehouse once the network connection is restored.

Discussion. The original R-OSGi version of the application was written without
any functionality enabling it to cope with network volatility–it thus fails imme-
diately once either network link is lost. DR-OSGi made it possible to harden this
unaware application, so that it can meaningfully continue its operation in the
presence of network volatility, thus improving the application’s utility and safety.
This demonstrates how DR-OSGi makes it possible to treat network volatility
resiliency as a separate concern that can be implemented separately and added
to an existing application. Furthermore, the queuing bundle came from the li-
brary of standard hardening strategy bundles that are part of our DR-OSGi
distribution, thus requiring no programmer effort. The replication bundle was
custom tailored for this application, but we are currently working on general-
izing the implementation, so that only the synchronization functionality would
require custom coding.

390 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

5 Related Work

DR-OSGi derives its hardening strategies from a recent survey of disconnected
operation techniques by Mikic-Rakic and Medvidovic [16]. These techniques are
used by several systems, including the Rover toolkit [12], Mobile Extension [6],
Odyssey [17], and FarGo-DA [28]. Unlike these systems, DR-OSGi enables the
programmer to harden distributed applications without having to modify their
source code explicitly. By avoiding ad-hoc modification that can be tedious and
error-prone,DR-OSGi not only hardens applications more systematically, but also
enables greater reuse of the hardening strategies across different applications.

Aldrich et al.’s ArchJava [3] extends Java to integrate architectural specifica-
tions with the implementation by providing language support for user-defined
connectors. Their techniques bears similarity to DR-OSGi in separating reusable
connection logic from the application logic and integrating them together system-
atically. ArchJava, however, operates at the source code level, using its language
extension to express different connectors. DR-OSGi is a middleware solution that
does not need to modify the source code.

Sadjadi and McKinley’s adaptive CORBA template (ACT) enables CORBA
applications to adapt to unanticipated changes [24]. To do so, ACT employs
a generic interceptor, a type of CORBA portable request interceptor [18] that
works around the constraints of replying to intercepted requests or modifying
the invoked method’s parameters. Specifically, a generic interceptor forwards re-
quests to a proxy, a CORBA object that can reply and modify the requests.
Similarly to DR-OSGi, ACT introduces additional functionality to a distributed
application without modifying its code explicitly. Using ACT to harden against
network volatility, however, would require that portable interceptors be avail-
able, which may not be the case for many distributed component infrastructures
including R-OSGi.

A number of techniques for making existing systems fault tolerant [8,21,27]
are related to our approach. GRAFT [27] automatically specializes middleware
for fault-tolerance. It employs the Component Availability Modeling Language
(CAML) to annotate a distributed application’s model, and then automatically
specializes the application’s middleware for domain-specific fault-tolerant re-
quirements. While GRAFT requires that the programmer express the requested
fault-tolerance functionality at the model level using a domain-specific language,
DR-OSGi provides a simple Java API for implementing hardening strategies as
OSGi bundles, which it then manages at runtime.

Our idea of hardening against network volatility was inspired by security
hardening, a systematic approach to making a pre-existing program artifact more
secure such as Wuyts et al’s recent work [29]. Our approach hardens distributed
components to become more resilient against network volatility.

6 Future Work and Conclusions

One future work direction will assess the generality of our approach by applying
it to other distributed component infrastructures. Another direction will focus

DR-OSGi : Hardening Distributed Components 391

on identifying suitable hardening strategies through the program analysis of
distributed components.

We have presented DR-OSGi, a promising approach for systematically harden-
ing distributed components to cope with network volatility. The reference imple-
mentation features an extensible framework for deploying hardening strategies,
with caching, queuing, and replication used to demonstrate the effectiveness of
our approach. As we rely on greater numbers of network-enabled devices with
network volatility remaining a permanent presence, the importance of hardening
distributed components will only increase, motivating the creation of systematic
and flexible hardening approaches as showcased by DR-OSGi.

Availability: DR-OSGi and all the applications described in the paper can be
downloaded from http://research.cs.vt.edu/vtspaces/drosgi.

References

1. CCA-Forum, http://www.cca-forum.org/
2. Net:Netem, http://www.linuxfoundation.org/en/Net:Netem/
3. Aldrich, J., Sazawal, V., Chambers, C., Notkin, D.: Language support for connec-

tor abstractions. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743. Springer,
Heidelberg (2003)

4. The AspectJ project, http://www.eclipse.org/aspectj/
5. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler,

D.L.: Genbank. Nucleic Acids Res. 30, 17–20 (2002)
6. Dahlin, M., Chandra, B., Gao, L., Khoja, A., Nayate, A., Razzaq, A., Sewani,

A.: Using mobile extensions to support disconnected services. Technical Report
CS-TR-00-20, University of Texas at Austin (2000)

7. Fullmer, C.L., Garcia-Luna-Aceves, J.: Solutions to hidden terminal problems in
wireless networks. In: Proceedings ACM SIGCOMM, pp. 39–49 (1997)

8. Herrero, J.L., Sanchez, F., Sanchez, O., Toro, M.: Fault tolerance AOP approach.
In: Workshop on AOP and Separation of Concerns, pp. 44–52 (2001)

9. Hull, B., Jamieson, K., Balakrishnan, H.: Mitigating congestion in wireless sensor
networks. In: ACM SenSys 2004, Baltimore, MD (November 2004)

10. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-
hop wireless network performance. In: MobiCom 2003: Proceedings of the 9th an-
nual international conference on Mobile computing and networking, pp. 66–80.
ACM, New York (2003)

11. JBoss AOP, http://www.jboss.org/jbossaop
12. Joseph, A.D., de Lespinasse, A.F., Tauber, J.A., Gifford, D., Kaashoek, M.F.:

Rover: A toolkit for mobile information access. In: Proceedings of the Fifteenth
Symposium on Operating Systems Principles (December 1995)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Knopflerfish - open source OSGi, http://www.knopflerfish.org
15. Microsoft. Component Object Model (COM)
16. Mikic-Rakic, M., Medvidovic, N.: A classification of disconnected operation tech-

niques. In: Proceedings of the 32nd EUROMICRO Conference on Software engi-
neering and Advanced Applications (EUROMICRO-SEAA 2006) (2006)

http://research.cs.vt.edu/vtspaces/drosgi
http://www.cca-forum.org/
http://www.linuxfoundation.org/en/Net:Netem/
http://www.eclipse.org/aspectj/
http://www.jboss.org/jbossaop
http://www.knopflerfish.org

392 Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong

17. Noble, B.D., Sayanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker,
K.R.: Agile application-aware adaptation for mobility. In: Proceedings of the 16th
ACM Symposium on Operating Systems Principles (October 1997)

18. Object Management Group. The common object request bro-
ker: Architecture and specification version 3.0 (July 2003),
http://doc.ece.uci.edu/CORBA/formal/02-06-33.pdf

19. Object Management Group. The CORBA component model specification. Speci-
fication, Object Management Group (2006)

20. OSGi Alliance. OSGi release 4.1 specification. Specification (2007)
21. Polze, A., Schwarz, J., Malek, M.: Automatic generation of fault-tolerant CORBA-

services. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000.
LNCS, vol. 1786. Springer, Heidelberg (2000)

22. Rellermeyer, J.S., Alonso, G.: Concierge: a service platform for resource-
constrained devices. In: The 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pp. 245–258 (2007)

23. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed applications
through software modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Mid-
dleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

24. Sadjadi, S.M., McKinley, P.K.: ACT: An adaptive CORBA template to support
unanticipated adaptation. In: Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS 2004), pp. 74–83 (2004)

25. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147, 195–197 (1981)

26. Spring Framework, http://www.springsource.org/
27. Tambe, S., Dabholkar, A., Balasubramanian, J., Gokhale, A.: Automating middle-

ware specializations for fault tolerance. In: Proceedings of the International Sym-
posium on Object/component/service-oriented Real-time distributed Computing,
ISORC 2009 (March 2009)

28. Weinsberg, Y., Ben-Shaul, I.: A programming model and system support for
disconnected-aware applications on resource-constrained devices. In: Proceedings
of the 24th International Conference on Software Engineering, Orlando, Florida,
May 2002, pp. 374–384 (2002)

29. Wuyts, K., Scandariato, R., Claeys, G., Joosen, W.: Hardening XDS-based archi-
tectures. In: ARES 2008: Proceedings of the 2008 Third International Conference
on Availability, Reliability and Security, Washington, DC, USA, pp. 18–25. IEEE
Computer Society, Los Alamitos (2008)

30. Zhang, M., Wolff, R.: Crossing the digital divide: cost-effective broadband wireless
access for rural and remote areas. IEEE Communications Magazine 42(2), 99–105
(2004)

http://doc.ece.uci.edu/CORBA/formal/02-06-33.pdf
http://www.springsource.org/

Automatic Stress Testing of Multi-tier Systems
by Dynamic Bottleneck Switch Generation

Giuliano Casale1, Amir Kalbasi2, Diwakar Krishnamurthy2, and Jerry Rolia3

1 SAP Research, CEC Belfast, UK
giuliano.casale@sap.com

2 University of Calgary, Calgary, AB, Canada
{akalbasi,dkrishna}@ucalgary.ca

3 Automated Infrastructure Lab, HP Labs, Bristol, UK
jerry.rolia@hp.com

Abstract. The performance of multi-tier systems is known to be sig-
nificantly degraded by workloads that place bursty service demands on
system resources. Burstiness can cause queueing delays, oversubscribe
limited threading resources, and even cause dynamic bottleneck switches
between resources. Thus, there is need for a methodology to create bench-
marks with controlled burstiness and bottleneck switches to evaluate
their impact on system performance. We tackle this problem using a
model-based technique for the automatic and controlled generation of
bursty benchmarks. Markov models are constructed in an automated
manner to model the distribution of service demands placed by sessions
of a given system on various system resources. The models are then used
to derive session submission policies that result in user-specified levels of
service demand burstiness for resources at the different tiers in a system.
Our approach can also predict under what conditions these policies can
create dynamic bottleneck switching among resources. A case study us-
ing a three-tier TPC-W testbed shows that our method is able to control
and predict burstiness for session service demands. Further, results from
the study demonstrate that our approach was able to inject controlled
bottleneck switches. Experiments show that these bottleneck switches
cause dramatic latency and throughput degradations that are not shown
by the same session mix with non-bursty conditions.

Keywords: Benchmarking, performance, burstiness, bottleneck switch.

1 Introduction

Burstiness refers to temporally dependent workload request patterns that cause
serial correlations in service demands at various system resources. Recent work
has suggested that burstiness is prevalent in multi-tier systems [17]. Further-
more, bursty workloads are known to stress such systems more than workloads
with random patterns. For example, burstiness can trigger frequent bottleneck
switches between system resources that limit scalability and make performance

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 393–413, 2009.
c© IFIP International Federation for Information Processing 2009

394 G. Casale et al.

prediction a challenging task [15]. Consequently, techniques are needed to incor-
porate burstiness in a controlled manner within the synthetic workloads used
for stress testing and system sizing exercises. Unfortunately, due to the session-
oriented nature of workloads, this is a non-trivial task for multi-tier systems.
A synthetic workload for such systems must simultaneously match many dif-
ferent characteristics such as request mix and session inter-arrival time distri-
bution while using only semantically correct request sequences. Furthermore,
the creation of controlled burstiness requires a detailed understanding of hard-
to-estimate characteristics of the service demand (e.g., variance, distribution)
placed by requests on each performance attribute (e.g., a CPU resource, an IO
resource) at each tier of the architecture. In this paper, we propose an automated
approach to generate controlled burstiness in benchmarks.

The problem under study can be formulated as follows. Consider a multi-tier
system with a pre-existing set of G test suites g = 1, . . .G. Each test suite g
is a group of sessions chosen from S available session types for a system. Each
session type is a semantically correct fixed sequence of requests. Requests in a
system are assumed to belong to one of R available request types. Requests in
sessions are submitted serially; think time between each request is assumed to
be zero. Our goal is to automatically create a benchmark B that submits a se-
quence of sessions to the system by drawing using a uniform distribution sessions
from the G groups so that a user-specified request type mix ρ = (ρ1, . . . , ρR),∑

r ρr = 1, where ρr ∈ [0, 1] describes the percentage of type-r requests submit-
ted, is matched while simultaneously causing a user-specified level of burstiness
in resource consumption at the different tiers.

The proposed methodology has three steps: demand characterization, com-
position, and search. The demand characterization step involves a method that
automatically deduces for each test suite g a service demand distribution model
for a session drawn using a uniform distribution from that test suite. It relies on
commonly available coarse grained resource usage measurements for sessions in
the test suites. The composition step describes the service consumption of the
benchmark B as a function of the service demand distribution models of the G
test suites B is based on. The composition step also allows to define a test suite
group mix γ ≡ (γ1, . . . , γG),

∑
g γg = 1, where γg ∈ [0, 1] describes the percent-

age of sessions drawn from group g used, that generates the desired request mix
ρ. Finally, the search step combines the results of the composition and demand
characterization steps within an optimization program that searches for a policy
that governs the sequence of groups from which sessions are randomly selected
to cause the desired burstiness.

Our approach can be used to support performance sizing, controller tuning,
and system debugging exercises. Sizing requires representative burstiness in syn-
thetic test workloads to ensure a system can handle its load with appropriate
response times. In shared virtualized environments, application resource alloca-
tions may be governed dynamically by automated controllers. Our approach can
be helpful in ensuring that these controllers are tuned appropriately to react
effectively to bursts in application workloads and any corresponding bottleneck

Automatic Stress Testing of Multi-tier Systems 395

switches. System debugging also benefits from fine control over burstiness, e.g., it
can help determine the impact of burstiness on cache misses and virtual memory
swapping effects that may not be present with arbitrary workloads.

Summarizing, the proposed methodology has the following main advantages:
(i) it causes a controlled level of burstiness in service demands. We are not
aware of any other benchmarking approach that supports the ability to explic-
itly control the level of burstiness in service demands. Most existing methods
focus on burstiness with respect to the arrival of sessions or requests, see [16]
and references therein; (ii) it is automated, combining pre-existing non-bursty,
semantically correct sessions for the definition of a benchmark with burstiness
based on the solution of an optimization program; (iii) it has wide applicabil-
ity since it only requires information about mean service demands of the pre-
existing sessions. Such demands can be deduced directly via system performance
measurements or by using techniques such as linear regression [3], operational
analysis [3], or LSA [19].

The remainder of the paper is organized as follows. Section 2 describes related
work. The demand characterization step is described in Section 3, the compo-
sition and search steps are described in Section 4. A case study is offered in
Section 5, followed by summary and concluding remarks in Section 6.

We point out that a short version of this paper has been presented in the
HotMetrics workshop 2009 [5]. The present paper significantly improves [5] with
new or extended discussion in Sections 2, 3, 4.1, 4.4, 5.2, and with new exper-
imental data in Figures 4, 5, and 6. We also point out that a technical report
for this work is available at [4]. The report has a summary table of our notation
and adds appendices on phase-type distributions and semi-Markov models.

2 Related Work

Benchmarking is a well accepted method for evaluating the behavior of soft-
ware and hardware platforms [9]. In general, the purpose of benchmarking is to
rank the relative capacity, scalability, and cost/performance trade-offs of alter-
native combinations of software and hardware. Historically, benchmarking does
not attempt to directly predict performance behavior for any customized use
of a platform. However, recent advances in virtualized and programmable in-
frastructure are enabling the cost-effective use of benchmarking-like exercises in
support of system sizing and highly controlled performance testing.

Dujmovic describes benchmark design theory that models benchmarks using
an algebraic space and minimizes the number of benchmark tests needed to
provide maximum information [8]. Dujmovic’s seminal work informally describes
the concept of interpreting the results of a mix of different benchmarks to better
predict the behavior of a customized system, but no formal method is given to
compute the mix. Krishnaswamy and Scherson [13] also model benchmarks as
an algebraic space but also do not consider the problem of finding a mix.

The approach presented in this paper is motivated by the previous work of
Krishnamurthy et al. on synthetic workload generation for session-based sys-
tems [12]. The work has developed the Session-Based Web Application Tester

396 G. Casale et al.

(SWAT) tool. The tool includes a method that exploits an algebraic space
to automatically select a subset of pre-existing semantically correct user ses-
sions from a session-based system and computes a mix of session types σj =
(σj,1, . . . , σj,s, . . . , σj,S) to achieve specific workload characteristics, where σj,s ∈
[0, 1] is the percentage of type-s sessions used in the submitted workload. For
example, the technique can reuse the existing sessions to simultaneously match
by the session type mix σ a user specified request type mix ρ and a particular
session length distribution. It can also prepare a corresponding synthetic work-
load to be submitted to the system. Our current work exploits and extends these
concepts. SWAT can be used to find a mix of session types σ that matches a
request type mix ρ and other session properties. The approach presented in this
paper then decides the order in which sessions are executed to match a desired
level of burstiness for resource demands.

Burstiness in service demands has recently emerged as an important feature
of multi-tier systems which has been shown to be responsible of major perfor-
mance degradation [17]. Service demand burstiness differs substantially from the
well-understood burstiness in the arrival of requests to a system. Arrival bursti-
ness has been systematically examined in networking [14] and there are many
benchmarking tools that can shape correlations between arrivals [2,11,16,12]. In
contrast, service demand burstiness can be seen as the result of serially corre-
lated service demands placed by consecutive requests on a hardware or software
system [18,17,15], rather than a feature of the inter-arrival times between re-
quests. For instance, the use of caches at the disk drive, memory, database, and
application layers inevitably involves temporal and spatial locality effects which
introduce correlation and burstiness in the service demands [18]. It is much
harder to model and predict system performance for workloads with service
demand burstiness than for traditional workloads [6]. This stresses the need for
benchmarking tools that support analytic and simulation techniques to study the
performance impact of service demand burstiness. To the best of our knowledge,
we are not aware of any benchmarking tools specifically focused on generating
service demand burstiness. We believe this to be a significant lack since service
burstiness, in contrast to burstiness in arrivals, describes intrinsic properties of
the system related to the way requests are served and is thus crucial for outlining
insights on the best system configuration decisions.

3 Demand Characterization

The goal of the demand characterization step is to model the service demand dis-
tribution of groups. Demand distributions are characterized for the performance
attributes of interest belonging to all server tiers. Demand characterization is fun-
damental for understanding how a given workload consumes individual resources
throughout the multi-tier architecture. Specifically, our goal is to infer the service
demand distribution of each group from limited or coarse-grained system mea-
surements and fit a set of Markov models, known as phase-type distributions [10],
to summarize the observed resource consumption. The phase-type distributions

Automatic Stress Testing of Multi-tier Systems 397

T0 a b c d T1
0

0.2

0.4

0.6

0.8

1

time

C
P

U
 u

til
iz

at
io

n

sample period

(a) deterministic demand

T0 a b c d T1
0

0.2

0.4

0.6

0.8

1

time

C
P

U
 u

til
iz

at
io

n

sample period

(b) variable demand

Fig. 1. Utilization sampling for a set of four requests served by a resource

obtained in this step, called group service demand models, are fundamental inputs
for the burstiness generation methodology presented in Section 4.

The next subsections consider three different abstractions for modeling ser-
vice demand distributions. Section 3.1 and Section 3.2 discuss request-level and
session-level characterizations, respectively. Section 3.3 describes how a session
group level abstraction can improve characterization. Section 3.4 introduces
group service demand models based on phase-type distributions.

3.1 Request Characterization

To begin, consider CPU usage for a single server of a multi-tier architecture
ignoring its dependence with other system components. Figure 1 illustrates two
possible examples of CPU utilization measurements within a sample period of
duration T1 − T0. In both examples, four requests of the same type are served
within the time period at instants a, b, c, and d. The grey boxes illustrate the
demands caused by each request and ther busy time within the sample period.
Busy time divided by the duration of the sample period is defined as utilization.

Consider the general case of R request types, it is routine to estimate the mean
service demand E[Dreq,r] of type-r requests using the count of the number of
type-r requests served in the jth sample period, n

(j)
r , and the sampled utilization

U (j) in that period. Assume that all sample periods have identical length T1−T0,
then utilization and number of completed requests are related in the sample
period by the utilization law [3]

E[U (j)] =
R∑

r=1

E[Dreq,r]

(
n

(j)
r

T1 − T0

)
, (1)

where E[U (j)] is computed over all available samples j = 1, . . . , J and E[Dreq,r]
are to be estimated. Estimates for E[Dreq,r] can be readily obtained from (1)
using multivariate linear regression [3].

Figure 1 also illustrates the fundamental difficulty of estimating the request
service demand distribution from utilization measurements. The two diagrams

398 G. Casale et al.

show different busy times imposed by the requests. Although the distribution
of the service demands in the two cases shows different variabilities, the total
utilization U (j) of the CPU in Figure 1(a) and 1(b) is identical. That is, the
sampling of the utilization values results in information loss with respect to the
distribution of the request service times, since it is not possible to discriminate
the variability of the two distributions by only looking at the total utilization
U (j) in the sample period. Unfortunately, U (j) is the only information returned
by standard CPU monitoring tools, therefore making it difficult to characterize
the service demand distribution of requests. This poses a challenge to modeling
burstiness and injecting it in a controlled manner into synthetic workloads.

Consider the following scheme for estimating the service demand variance
that generalizes (1). We observe that U (j)(T1 − T0) is the total busy time of the
CPU during the jth sample period and therefore is a summation of the service
demands of the requests completed in that interval1. Assuming request service
demands are independent of each other, it follows from the expression for the
variance of the sum of independent random variables that

V ar[U (j)(T1 − T0)] =
R∑

r=1

n(j)
r V ar[Dreq,r], (2)

However, CPU monitors do not provide direct estimates of the left-hand side
variance of (2) thus complicating the estimation of the V ar[Dreq,r] values. The
variance of total busy times can be calculated by measuring the busy times at
J different samples. However, this approach requires that the numbers of re-
quests belonging to each of the R request types be the same for the J different
samples (i.e., n

(j)
r = n

(j′)
r for all samples j and j′). Since enforcing this is unreal-

istic in practice, the expression given in (2) must be approximated by replacing
n

(j)
r with E[n(j)

r]. However, this returns very inaccurate results unless there is
very low variability in the n

(j)
r values. Summarizing, this discussion highlights

a fundamental problem of service variance estimation at the request-level. CPU
monitors are unable to provide direct estimates of V ar[U (j)(T1 − T0)], thus we
need to compute this variance from different sample intervals and this cannot
be done accurately by (2).

3.2 Session Characterization

In what follows, we show that changing the level of abstraction in the analysis
can significantly help in addressing the limitations of the variance estimation at
the request level. Suppose we have S session types, the previous observations
generalize directly to the estimation of the service demand Dsess,s of a session
of type s instead of a single request. A generalization of the above analysis
1 Henceforth, we ignore the contribution to the busy period of requests that start in a

sample period j and conclude execution in a different sample period j′ > j. In fact,
it is always possible to consider a sampling granularity sufficiently large to make
these effects negligible with respect to the total busy time in the sample period j.

Automatic Stress Testing of Multi-tier Systems 399

leads to formulas almost identical to (1)-(2), but where n
(j)
r is replaced by n

(j)
s

which is the number of sessions of type s completed in the jth sample period.
While E[Dsess,s] can be estimated reliably, identical difficulties of the request
consumption analysis apply to the estimation of V ar[Dsess,s] for sessions. To the
best of our knowledge, the estimation problem of higher-order characteristics of
the resource consumption has been never addressed in the literature. In the next
subsection, we propose the first available general purpose approximation based
on a concept of demand characterization for session groups.

3.3 Session Group Characterization Approach

To overcome the difficulties of variance estimation described above, we propose
to evaluate the service demand distribution of a group of sessions, instead of
each individual session type or request type. These groups can be either suites
of pre-existing micro-benchmarks that are already implemented for the multi-
tier system (e.g., the TPC-W workload mixes) or user-defined collections of
sessions which perform semantically-homogeneous business operations (e.g., sales
sessions, financial and business operations sessions). We assume in the rest of the
paper that all groups are already defined by the user according to his knowledge
of the multi-tier application characteristics or based on an pre-existing test suite.

The fundamental idea behind the group characterization approach is to as-
sume that the variability of resource consumption within a group is mostly due
to the heterogeneity of the sessions the group is made of, rather than due to the
individual demand variability of each of them. Suppose that a characterization
of the mean session service demand E[Dsess,s] has been obtained, as discussed
in the previous subsection, for each type of session s. Let Dgrp,g be the service
demand of a random session drawn from the group g. Then the mean service
demand of a random session in the group g is E[Dgrp,g] =

∑
s∈g πs,gE[Dsess,s],

where πs,g is the probability of drawing a session of type s from group g. Given
the assumption of ignoring the complete distribution of the session service de-
mand, we approximate higher-order moments of Dgrp,g with those of a Markov
process jumping randomly between values in the set E[Dsess,1], . . . , E[Dsess,S].
That is, we completely characterization session service demands by their means.
The properties of this special class of Markov processes are overviewed in Ap-
pendix B of [4] and provide the following estimator for the variance of Dgrp,g:

V ar[Dgrp,g] ≈
S∑

s=1

πs,g(E[Dsess,s])2 − E[Dgrp,g]2. (3)

The last formula translates the concept that a random sampling from a group g
imposes a service demand variability that is mostly dominated by the variance
in the mean request consumption of the different sessions in the group, rather
than by each session type variance.

Based on E[Dgrp,g] and V ar[Dgrp,g] one can immediately fit, according to
the procedure discussed in the next subsection, a service demand model that
describes the resource consumption the group g. The above approximation (3)

400 G. Casale et al.

generalizes immediately to higher-order moments k according to the relation
E[Dk

grp,g] =
∑S

s=1 πs,g(E[Dsess,s])k which provides additional information to
fit group service demand models. Finally, this same technique can be applied to
different performance attributes at different servers in the multi-tier architecture.

3.4 Group Service Demand Model

Starting from the E[Dgrp,g] and V ar[Dgrp,g] values obtained in the previous
subsection, we specify group service demand models using phase-type distribu-
tions [10], which are a special family of continuous-time Markov chains such
that the execution of a job is modeled as a passage through a number of stages
with exponentially-distributed service times. Henceforth, we represent phase-
type distributions using the (D0,D1) matrix notation [10]. The transitions in
D1 are conventionally associated with the completion of service for the job cur-
rently in service, while all the remaining transitions describe the accumulation of
busy time and are placed in D0. As an example of the (D0,D1) notation, a two-
stage Erlang distribution is obtained by summing the samples of two exponential
distributions with same mean, which can be expressed as

D0 =
[
−λ λ
0 −λ

]
, D1 =

[
0 0
λ 0

]
(4)

where D0 describes that a job starting in state 1 (first row) first accumulates
exponentially-distributed service time with rate λ as specified by the element
(−D0)1,1, then it jumps with probability −(D0)1,2/(D0)1,1 = 1 to state 2 where
it receives a new exponential service with rate (−D0)2,2 = λ. Finally, (D1)2,1
implies that after receiving the second exponential service the job is completed
and the following job starts service again from state 1.

Details regarding the general fitting of phase-type distributions to match
E[Dgrp,g] and V ar[Dgrp,g] are given in [4]. By applying the fitting techniques
proposed in the appendix to all E[Dgrp,g] and V ar[Dgrp,g] pairs generated in the
session group characterization we obtain a set of (D0,D1) matrices, henceforth
denoted by Di,g = (Di,g

0 ,Di,g
1), that describe the service demand distribution of

sessions in group g for each performance attribute i.

4 Benchmark Generation Methodology

This section presents the methodology for automatic generation of bursty bench-
marks proposed in this paper. Throughout the following sections, we denote by
B the benchmark produced as an output by our methodology. As described in
Section 2, our approach exploits the SWAT workload generator [12]. SWAT can
be easily adapted to compute a group mix vector γ = (γ1, . . . , γG) defined over
the space of the G session groups that matches a desired request mix ρ and other
properties such as a desired session length distribution. For the purpose of this
paper, we assume that γ has already been computed using SWAT. Therefore,
we focus in this section on how to define workload generation mechanisms that

Automatic Stress Testing of Multi-tier Systems 401

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

session number

si
m

ul
at

ed
 s

es
si

on
 d

ur
at

io
n

(a) Bursty policy

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

session number

si
m

ul
at

ed
 s

es
si

on
 d

ur
at

io
n

(b) Traditional policy

Fig. 2. Generation of burstiness using the session submission policy P. Engineered
definition of the state transition probabilities in the Markov chain P enables burstiness
properties in the session demand.

insert tunable burstiness in the session service demands. Specifically, we control
the sequence in which sessions selected from the G session groups are submitted
through a session submission policy P. The policy P is specified as a discrete-
time Markov chain responsible for selecting the session type for the next session
to be submitted in a benchmark B. Controlling the sequence through P allows
us to inject a user-specified level of burstiness in B while fixing γ.

4.1 Session Submission Policy

The session submission policy P determines the sequence of sessions submitted
to the system, both in terms of their type and relative ordering. The policy works
as follows. P is a discrete-time Markov chain

P =

⎡
⎢⎢⎢⎣

p1,1 p1,2 . . . p1,G

p2,1 p2,2 . . . p2,G

...
...

. . .
...

pG,1 pG,2 . . . pG,G

⎤
⎥⎥⎥⎦

such that after generating a session from group g there is probability pg,g′ that
the following one will be sampled from group g′. The challenge is how to define
these probabilities to match the desired group mix vector γ and burstiness levels.
It is simple to show using standard results for discrete-time Markov chains [3],
that if the policy satisfies

γ = γP, (5)

then P generates exactly the desired session group mix γ. Our observation is
that (5) leaves considerable flexibility in the definition of P, which we can use
to controlled generate burstiness in the demands. An illustrative example of this
concept is proposed below.

402 G. Casale et al.

Burstiness Generation Example. We have considered two policies Ptrad for
a traditional workload generation model and Pburst for a bursty benchmark.
These are defined upon G = 2 session groups and both satisfy the same require-
ment γ = (0.5, 0.5) such that 50% of the sessions are drawn from group 1 and
50% from group 2. Consider the following definition for the two policies:

Ptrad =
[
0.50 0.50
0.50 0.50

]
, Pburst =

[
0.99 0.01
0.01 0.99

]

which both satisfy (5) and differ for the fact that in Pburst there is large 0.99
probability of consecutively sampling sessions from the same group g. This is
a critical difference because the high probability of sampling sessions from the
same state in Pburst implies formation of bursts, as shown by the simulation in
Figure 2(a) that are absent in the traditional workload generation model results
shown in Figure 2(b). Therefore, by carefully selecting the transition probability
in the submission policies we can create radically different behaviors in terms of
burstiness. In the next subsection, we explain how the policy P creates service
demand burstiness on a per-resource level.

4.2 Composition Step and Benchmark Burstiness Model

This subsection describes the composition step of the proposed methodology.
We define Markovian arrival processes (MAPs) [10] to predict the service de-
mand burstiness created at the different system tiers by a benchmark B that
submits sessions as per a policy P. These models are useful for assessing if P is
a good candidate for generating the requested level of burstiness in the system.
We remark that MAPs are similar to phase-type distributions, share the same
notation, but they are more general as they can also model burstiness; we point
to [10] for technical details.

Given a policy P and the group demand characterization obtained in Sec-
tion 3, a burstiness model for a benchmark B for performance attribute i (e.g.,
front server CPU, DB CPU, ...) is

Di = f i(Di,g ,P)

where the function f i(Di,g ,P) specifies how the burstiness model Di is con-
structed from the input parameters. In our methodology, f i(Di,g ,P) is defined as

Di
0 =

⎡
⎢⎢⎢⎢⎢⎣

Di,1
0 0 . . . 0

0 Di,2
0 . . . 0

...
...

. . .
...

0 0 . . . Di,G
0

⎤
⎥⎥⎥⎥⎥⎦ , Di

1 =

⎡
⎢⎢⎢⎢⎢⎣

p1,1D
i,1
1 p1,2D

i,1
1 . . . p1,GDi,1

1

p2,1D
i,2
1 p2,2D

i,2
1 . . . p2,GDi,2

1
...

...
. . .

...

pG,1D
i,G
1 pG,2D

i,G
1 . . . pG,GDi,G

1

⎤
⎥⎥⎥⎥⎥⎦ . (6)

Automatic Stress Testing of Multi-tier Systems 403

The Di
0 matrix specifies that the service demands of a session generated by

a group g follow its service demand distribution model Di,g; the Di
1 matrix

describes the modulation due to the session submission policy P.
The fundamental result achieved by the composition step described above is

that the benchmark burstiness model Di defined for a performance attribute i
lets us evaluate by closed-form analytical expressions the burstiness in the service
demands for performance attribute i due to the benchmark B. Under positive
autocorrelations, burstiness levels for a performance attribute can be evaluated
and specified by the index of dispersion [10]

I = CV 2(1 + 2
∑∞

k=1 ρ(k)),

where CV is the coefficient of variation of the service demands, ρ(k) is the
lag-k autocorrelation coefficient of the service demands, see [10,15] for further
information. The autocorrelation function ρ(k) is often used as a more accurate
burstiness descriptor than the index of dispersion I, therefore we consider both in
the rest of the paper. For the model (Di

0,D
i
1), the service demand of performance

attribute i has moments

E[Dk
i] = k!πe(−Di

0)
−ke, (7)

where E[Dk
i] is kth moment of the service demand of the benchmark B on

performance attribute i, and πe = πe(−Di
0)−1Di

1 describes the equilibrium
state of the MAP. The index of dispersion of performance attribute i which
quantifies its burstiness levels is given by

I(i) = 1 + 2
(

E[Di] −
πe

E[Di]
Di

1(D
i
0 + Di

1 + eπe)Di
1e

)
. (8)

Equation (8) shows the full potential of our model-based methodology: starting
from the characterization of the session groups and of the submission policy, we
are able to evaluate the burstiness of the service demands for all performance
attributes of all servers before running the benchmark. This fundamental result
is exploited below to search for a submission policy P that introduces the desired
burstiness in the system.

4.3 Searching for a Submission Policy to Match Burstiness

Finally, we use a nonlinear optimization program to search for policy P that
provides the desired levels of burstiness in the service demands. Our approach is
to evaluate iteratively the burstiness generated by several policies P and choose
the one that is closest to the target burstiness specified by the user. Additionally,
the optimization is constrained on the benchmark B generating the predefined
session group mix γ. Due to limited space, we exemplify the generation of bursti-
ness for a performance attribute i to match a given index of dispersion value
Itarget(i). This is achieved by the following nonlinear optimization program

404 G. Casale et al.

min
P

z = |I(i) − Itarget(i)| s.t. (9)

(Di
0,D

i
1) = f i(Di,j ,P); (10)

I(i) = 1 + 2
(
E[Di] − E[Di]

−1
πeDi

1(D
i
0 + Di

1 + eπe)Di
1e

)
; (11)

E[Di] = πe(−Di
0)

−1e; (12)

πe = πe(−Di
0)

−1Di
1; (13)

Pe = e; (14)
P ≥ 0; (15)

γP = γ; (16)

where e is a column vector of size G composed of all ones. The search is on the
entries of the policy P which minimize the difference between the target index
of dispersion and the one estimated for the service demands of performance
attribute i based on the f i(Di,j ,P) mapping. The constraints are of three types:
(11)-(13) are the formulas for computing the index of dispersion I applied to
the burstiness model (Di

0,D
i
1); (14)-(15) impose that P is a stochastic matrix;

finally, (16) imposes the session group mix γ.
The nonlinear program (9)-(16) returns a session submission policy P that

achieves the stated goal of this paper of creating a benchmark B with the de-
sired burstiness Itarget in a performance attribute i. Theoretically, there are no
limits to the maximum achievable index of dispersion in a server, yet very large
values create long-range dependence that requires very long executions of the
benchmark in order to realize the desired level of burstiness [7]. Although the
optimization program is nonlinear, we have found it in practice easy to solve. In
the experiments reported in Section 5, we always obtained good solutions in less
than one minute.

If one is interested in generating controlled burstiness in several performance
attributes simultaneously, it is possible either to consider multiple objective func-
tions, one for each performance attribute of interest, or to inject burstiness into
the aggregate service demand of the sessions, i.e., the round-trip time of a session
when executed in isolation on the system. For instance, for a system with a front
server and a database server, the aggregate service demand is A = Dfront +Ddb,
where Dfront and Ddb are service demands at the two servers. We illustrate the
effectiveness of this approach in the first case study proposed in the next section.

4.4 Generating Dynamic Bottleneck Switches

Finally, we discuss the relation between generation of burstiness and dynamic
bottleneck switches. As observed in [15], significant performance degradation
due to burstiness is observed mainly if there are dynamic bottleneck switches
between the resources that create adverse queueing conditions. For instance, in
the TPC-W benchmark it is observed that the Best Seller transaction places
a very high demand at the database server CPU while in execution. Due to

Automatic Stress Testing of Multi-tier Systems 405

burstiness, several Best Seller transactions may be scheduled for execution con-
secutively, this results in the front server CPU and the database server CPU
cyclically alternating the role of bottleneck in the system.

From the above discussion, it follows naturally that the basic requirement for
the benchmark B to create dynamic bottleneck switches between M performance
attributes is that there exist for each attribute m = 1, . . . , M at least a group
g that places an average service demand E[Dgrp,g] on m that is bigger than
the average demand placed on any other performance attribute in the system.
This implies that when the policy P starts to draw consecutively from the group
g as in the example of Section 4.1, then resource m would become the system
bottleneck until P chooses another group to sample from. Our technique exploits
the service demand models to construct benchmarks that will cause a bottleneck
switch. One such benchmark is discussed in detail in Section 5.

5 Validation Experiments

To show that our benchmark generation approach is effective in creating con-
trolled burstiness, we present a case study that considers a particular combi-
nation of the browsing, ordering, and shopping mix benchmarks of TPC-W.
The resulting benchmark B is run on a real testbed; we consider CPU usage at
the different computing nodes as performance attributes. The testbed consists
of a front server node, a database node, and a client node connected by a non-
blocking Ethernet switch that provides a dedicated 1 Gbps connectivity between
any two machines in the setup. The front server and database nodes are used to
execute the TPC-W bookstore application implemented at Rice University [1].
The client node is dedicated for running the httperf Web request generator. This
was configured to emulate multiple concurrent sessions in our experiments. The
httperf generator has features such as non-blocking socket calls that allow it to
stress servers and sustain overloads without the need for multiple client nodes.
All nodes in the setup contain an Intel 2.66 GHZ Core 2 CPU and 2 GB of
RAM. The Windows perfmon utility is used to gather CPU, disk, memory, and
network usage at the server nodes; httperf provides detailed logs of end user
response times. In all our experiments we noticed very little disk, paging, and
network activity.

Throughout the experiments, we have used pre-existing test suites created
to follow the shopping, browsing, and ordering mixes specified by TPC-W. The
matrix P that results from the benchmark generation step is used to construct a
trace of 10,000 sessions with desired mix and burstiness and that combines the
three test suites. Finally, httperf is used to submit the session trace to the system.
Due to limited space, we report below only two case studies, but we remark that
we have considered several other experiments resulting in qualitatively similar
results to those reported below.

406 G. Casale et al.

5.1 Validation of Service Demand and Burstiness Models

We first consider a benchmark B defined only by a mix of sessions of shopping
(shp) and ordering (ord) type. The mix is balanced with group request mix
γshp = γord = 0.50, and we assume the session submission policy P is assigned
such that shopping (resp. ordering) sessions have a probability pshp,shp = 0.995
(resp. pord,ord = 0.995) that the next session generated after them will be again
of shopping (resp. ordering) type, i.e.,

P =
[
0.995 0.005
0.005 0.995

]

The aim of this case study is to validate the prediction accuracy of the models
proposed in Sections 3 and 4. Since it is hard to obtain direct measurement of
the service demands, we focus on prediction of utilization and aggregate service
demand measurements for the sessions executed in isolation on the system.

For the group service demand model definition, we have run in isolation the
shopping and ordering benchmarks and estimated the mean session demands
for each of the session types used in the these mixes. Table 1 presents results.
The table shows the estimated moments for the different CPU service demands
and the respective moments of the phase-type distributions we have fitted; the
number of states we have used in the phase-type models is always less than 7.
The results indicate that the phase-type distributions match very well mean and
CV of the measured group service demands, while they slightly underestimate
the value of the skewness probably due to the difficulty in modeling in a Marko-
vian setting the nearly-deterministic demand of individual session types. Using
the phase-type distributions Di,g and the policy P, we have then defined the
MAPs that describe the CPU service demands at the front server Dfs and at
the database server Ddb. We have also defined a MAP to describe the aggregate
service demand of the sessions generated by B: assuming that each session visits
the front server and database server once before completing execution, the MAP
that captures the aggregate service demands has (D0,D1) representation, de-
noted by (A0,A1), which is a simple combination of Dfs,shp, Ddb,shp, Dfs,ord,
Ddb,ord weighted by the probabilities pord,ord and pshp,shp similarly to (6).

Figure 3(a) compares the cumulative distribution function (CDF) for the ag-
gregate service demand of the benchmark B sessions with the ones predicted

Table 1. Group service demand models for CPU. Means are expressed in seconds

front server demand DB server demand

shopping mean CV skew mean CV skew
measured 0.290 0.575 2.671 0.097 7.590 4.509
phase-type 0.290 0.575 1.665 0.097 7.591 3.161
ordering mean CV skew mean CV skew
measured 0.131 0.805 1.797 0.623 1.761 2.530
phase-type 0.131 0.805 1.328 0.623 1.340 2.002

Automatic Stress Testing of Multi-tier Systems 407

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

cd
f P

[r
ou

nd
 tr

ip

≤
t]

trace
model

(a) CDF Aggregate De-
mand (sec)

0 10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

lag

au
to

co
rr

el
at

io
n

co
effi

ci
en

t

model
trace
sample path

(b) Front Server Utilization

0 10 20 30 40 50 60 70 80 90 100

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

lag

au
to

co
rr

el
at

io
n

co
ef

fic
ie

nt

model
trace
sample path

(c) DB Server Utilization

Fig. 3. Experimental results for the mix of shopping and ordering sessions

by the (A0,A1) model. The distribution of the MAP matches the empirical
distribution of the aggregate service demand very well, thus suggesting the ef-
fectiveness of our demand models in capturing the distribution of the service
demands. Using (A0,A1), we have also compared the burstiness of the aggre-
gate service demands predicted by the model with the one measured on the real
system using the autocorrelation function as a descriptor of burstiness [17]. The
result (not shown graphically due to limited space) indicates good prediction
accuracy, with the aggregate service demand autocorrelation coefficients quickly
decaying to zero for both the model and the measurements, and with the lag-1
coefficient being ρ(1) = 0.028 for the measured aggregate service demands and
ρ(1) = 0.039 for the (A0,A1) model.

The results of the aggregate service demand analysis suggest that the models
developed in Sections 3 and 4 capture service demands very well, otherwise it
would be hard to predict accurately aggregate service demands distribution and
burstiness for sessions of the benchmark B. To further validate accuracy, we
have also performed a trace-driven analysis of the system to compare the prop-
erties of the measured utilizations with those predicted by the MAP models.
Figure 3(b)-(c) show the autocorrelation function of the measured and modeled
CPU utilizations for the front server and database server, respectively. The au-
tocorrelations of the model are estimated by averaging the autocorrelations over
100 random experiments; conversely, the sample path curve shows a representa-
tive example of autocorrelation estimate for one of these random experiments.
The results are qualitatively similar for both servers suggesting that the session
generation policy impacts equally on the two tiers. For low lags, model and sam-
ple path autocorrelations are in very good agreement with the TPC-W trace.
Low lags are the most significant for burstiness, as they measure the similar-
ities of consecutive sessions that pack into bursts, while high lags are mostly
related to the length of these bursts. The autocorrelation coefficient values for
lags greater than 10 seem instead to suffer significant noise due to limited size of
the measurement due to the utilization sampling; the presence of noise is proved
by the difference between the sample path curve and the model results averaged
over 100 experiments. Yet, the good agreement of the sample path with the

408 G. Casale et al.

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization sample

ut
ili

za
tio

n

front
db

(a) I = 1.14, No Burstiness

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization sample

ut
ili

za
tio

n

front
db

(b) I = 50, High Burstiness

0 50 100 150 200 250 300
0

20

40

60

sample interval number

th
ro

ug
hp

ut

no burstiness (I=0)

0 50 100 150 200 250 300
0

20

40

60

sample interval number

th
ro

ug
hp

ut

high burstiness (I=50)

(c) Throughput

Fig. 4. CPU utilization and session throughput for the bursty and the non-bursty
benchmarks

0 50 100 150 200 250 300
0

50

100

150

200

250

sample period of arrival

nu
m

be
r

of
 r

eq
ue

st
s

in
 th

e
sy

st
em

bro
shp
ord
total

(a) No Burstiness

0 50 100 150 200 250 300
0

50

100

150

200

250

sample period of arrival

nu
m

be
r

of
 r

eq
ue

st
s

in
 th

e
sy

st
em

bro
shp
ord
total

(b) High Burstiness

Fig. 5. Time series showing the number of requests that are concurrently served by the
multi-tier application during each experiment. Measurements are taken at the instant
of arrival of a new request.

trace proves that sample paths of the MAP model are representative of system
behavior observed in real experiments.

Summarizing, the experiments in this section suggest that the proposed phase-
type and MAP models can summarize and predict effectively the properties of
the demands in both the pre-existing benchmark suites and in the composed
benchmark B. The next case study focuses instead on the quality and practical
impact of the burstiness generation methodology.

5.2 Generation of Burstiness and Its Impact

We consider a mix of ordering, browsing and shopping sessions, but we now
focus on generating benchmarks to evaluate the performance of the TPC-W
system under burstiness conditions. The results presented in this section prove
that this can be done successfully with the proposed methodology and prove the
existence of scalability problems for systems that are not revealed by executions
of traditional benchmarks without burstiness.

Solving the nonlinear optimization program defined in Section 4.3 with the
fmincon function of MATLAB 7.6.0, we have created two session submission

Automatic Stress Testing of Multi-tier Systems 409

0 50 100 150 200 250 300

1E2

1E3

1E4

1E5

sample period of arrival

m
ea

n
re

sp
on

se
 ti

m
e

[m
s]

bro
shp
ord

(a) No Burstiness

0 50 100 150 200 250 300

1E2

1E3

1E4

1E5

sample period of arrival

m
ea

n
re

sp
on

se
 ti

m
e

[m
s]

bro
shp
ord

(b) High Burstiness

0 1e1 1e2 1e3 1e4 1e5

1e−5

1e−4

1e−3

1e−2

1e−1

1

t − request response times

C
C

D
F:

 1
−

F(
t)

no burstiness
burstiness, I=50

(c) CCDF Response Times

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

sample interval number

nu
m

be
r

of
 D

B
 lo

ck
s

no burstiness
burstiness I=50

(d) Locks

Fig. 6. Performance effects of the dynamic bottleneck switch

policies Pnon−burst and Phigh−burst that both combine browsing (bro), shopping
(shp) and ordering (ord) sessions with group mix γbro = 0.014 and γshp =
γord = 0.493. The group mix is essentially the same as in Section 5.1, but there
is in our workload also a component of about 100− 200 browsing sessions which
shows that our methodology can apply also to combination of more than two
test suites. Only a limited fraction of browsing sessions is used to avoid having
a bottleneck switch due to this test suite and not to the policy P that we want
to validate. In fact, the browsing mix is known to impose fluctuations between
front server and database server CPU utilizations [15]. The two policies differ
only with respect to the index of dispersion values in the aggregate demand.
The non-bursty benchmark defined by Pnon−burst has index of dispersion in the
aggregate demand I = 1.14, which is a case corresponding to the removal of
burstiness by imposing a zero value for all the autocorrelation coefficients2. This
also results in negligible burstiness in the service demands at the server CPUs:
the expected index of dispersions at the front server CPUs and at the database
server CPUs are Ifs = 0.82 and Idb = 2.11, respectively. The scale of the index
of dispersion is comparable to the scale of the squared coefficient of variation
CV 2, thus I < 1 indicates low or no burstiness, whereas I of the order of tens or
more generally stands for high burstiness. The high-burstiness benchmark defined
by Phigh−burst has index of dispersion I = 50 in the aggregate demand, which

2 In fact, in this workload CV 2 = 1.14, thus I = CV 2 implies from the definition of
the index of dispersion that

∑∞
k=1 ρ(k) = 0.

410 G. Casale et al.

creates large burstiness both in the aggregate and per-server service demands.
The expected index of dispersion for the front server CPUs is Ifs = 597.34 and
for the database CPUs is Idb = 2242.9.

Figure 4 compares the performance impact of the two benchmarks on the
TPC-W system for an experiment with Poisson session arrivals and multiple
concurrent sessions in execution. Even though both benchmarks have the same
session type mix, session inter-arrival time distribution, and almost identical
server CPU utilizations, the bursty benchmark stresses the system differently
than the non-bursty benchmark. From Figures 4(a)-(b), the front and database
server CPU utilizations display a more random pattern for the bursty bench-
mark. As expected, Figures 5(a)-(b) show that these patterns are also reflected
immediately in the number of active requests which varies according to the active
session group. In all plots, the sampling granularity is of 15 seconds. The bursty
workload adversely impacts the responsiveness and throughput of the system.
From Figures 4(a)-(b), the maximum utilization of the database server is higher
for the bursty workload than the non-bursty workload. From Figure 4(b), it can
be observed that the database server is saturated from sample 0 to sample 100
and from sample 200 to sample 300. This behavior is absent in the non-bursty
workload. The heightened contention for the database server causes the num-
ber of concurrent sessions in the system to rise beyond the limit imposed by the
sizes of the front server thread pool and listen queue. As a result, the front server
drops several connections leading to a 25% drop in request throughput relative
to the non-bursty case. This is evident also in Figure 4(c) which illustrates the
number of successfully completed sessions over time. The figure clearly indicates
that for the bursty workload the throughput of successfully completed sessions
drops below acceptable levels frequently when the database is saturated, whereas
throughput is steady in the non-bursty case.

The experiments also reveal that burstiness can cause bottleneck switches
that can introduce unpredictable transient behavior into the system. From Fig-
ure 4(b), the system bottleneck switches from the database server to the front
server near the 100th sample. In contrast, from Figure 4(a), there is no bottle-
neck switch with the non-bursty workload. The bottleneck switch is caused due
to a transition from the database intensive browsing and ordering sessions to
the front server intensive shopping sessions in the bursty workload. It can be
observed from Figure 5(b) that there is a significant accumulation of shopping
sessions in the system exactly at the time of the bottleneck switch, as visible
around sample 110 by the number of ordering sessions decreasing while shopping
sessions accumulate at a fast rate. This large accumulation of shopping sessions
is caused because of these sessions being delayed by the last of the bro wsing and
ordering sessions at the database server. As a result of this dynamic, it takes the
system around 12 minutes spanning the period from sample 110 to sample 160 to
significantly reduce the backlog of shopping sessions. This type of unstable tran-
sient behavior was not observed with the non-bursty workload and represents
a unique feature of burstiness that cannot be exposed with non-bursty submis-
sion policies or by running the two benchmarks in isolation. Specifically, such

Automatic Stress Testing of Multi-tier Systems 411

techniques would result in no backlog for the shopping sessions and therefore
would never exhibit the properties highlighted in Figure 5(b).

Furthermore, the accumulation of the backlog due to bottleneck switch dom-
inates the response time results presented in Figure 6. Figure 6(a)-(b) show the
mean response times of requests over time. Specifically, Figure 6(b) shows many
important points for our analysis. First, ordering and browsing sessions have
considerably larger response times when executed on the system from sample
0 to sample 110 and from sample 210 to 300 than in the corresponding peri-
ods of the non-bursty benchmark in Figure 6(a). This suggests that burstiness
is more critical for the response times of browsing and ordering sessions which
are both database intensive and hence place a strongest congestion level if they
are executed in the system without shopping sessions interleaved between them
that can alleviate the bottleneck by shifting more load on the front server. The
second fundamental observation is that, from sample 110 to 130, the first shop-
ping sessions entering into the system receive dramatically large response times
due to the bottleneck switch phenomena. Progressively, as the backlog is flushed
response times display a reducing trend. From sample 160 the response times
of shopping sessions is lower than in the no-burstiness case, suggesting that the
front server can cope well with this level of parallelism for shopping sessions. Fi-
nally, it is important to observe that the introduction of burstiness has eventually
resulted into a generalized spread of delays, with the exception of the small range
from sample 160 to 200. Figure 6(c) compares request response times under the
bursty and non-bursty benchmarks: most of the requests without burstiness are
served in less than 10 seconds, however more than 20% of the requests in the
bursty benchmark require at least 100 seconds to be completed, thus making the
point that our approach is better suited than other approaches for stress testing.

Finally, Figure 6(d) plots for both the bursty and non-bursty benchmark the
number of database queries that are waiting to acquire locks for rows in the
database. From the figure the bursty workload causes heightened contention for
locks after the first bottleneck switch. Recall that the bottleneck switch was
caused by the arrival of a burst of shopping sessions. Furthermore, shopping
sessions rely on a common set of data. Consequently, the burst of shopping
sessions causes increased locking activity in the system while accessing this com-
mon data set. In contrast, the non-bursty workload does not contain significant
bursts of sessions of similar type and as a result does not expose heightened lock
contention and the associated performance implications.

6 Conclusion

We have proposed a model-based methodology for the automatic generation of
benchmarks with customizable levels of burstiness in the service demands. Our
methodology extends existing approaches for automatic synthesis of benchmarks
such as SWAT [12]. Experiments on a real TPC-W testbed have shown that
the proposed models are very accurate in predicting the service demands and
their burstiness at the different tiers of the architecture. We have shown a case

412 G. Casale et al.

where the ordering and shopping mixes of TPC-W have been combined to inject
controlled burstiness in the demands resulting in critical stress conditions for
performance that are not shown by non-bursty combinations of the two mixes.

We plan to further develop and validate this new approach within a framework
that aims to characterize, synthesize, and predict the impact of burstiness on
multi-tier systems. We want to further investigate in detail the various kinds
of system level degradations that can be caused by burstiness and study how
to specify groups given different alternatives. Finally, a point that needs to be
investigated in future work is to assess the validity of the proposed techniques in
presence of long lived sessions, such as those performing long database queries
that may take several minutes to execute and may suffer considerable variability
in running times. Under these conditions, it may be needed to define ad-hoc
estimators for the demand variance of such transactions. Given such variance
estimates, a possible approach to extend our methodology could be to isolate
these sessions into separate groups and have a phase-type distribution of their
demand, however further work is needed to assess the feasibility of this approach.

Acknowledgements

This research was partially funded by the InvestNI/SAP project MORE and by
grants from the Natural Sciences and Engineering Research Council of Canada
(NSERC). We thank Stephen Dawson for helpful feedback during the prepara-
tion of this work.

References

1. Amza, C., Ch, A., Cox, A.L., Elnikety, S., Gil, R., Rajamani, K., Cecchet, E.,
Marguerite, J.: Specification and implementation of dynamic web site benchmarks.
In: Proc. of WWC workshop, Austin, TX (November 2002)

2. Barford, P., Crovella, M.: Generating Representative Web Workloads for Network
and Server Performance Evaluation. ACM PER 26(1), 151–160 (1998)

3. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains. Wiley, Chichester (2006)

4. Casale, G., Kalbasi, A., Krishnamurthy, D., Rolia, J.: Automated Stress Testing
of Multi-Tier Systems by Dynamic Bottleneck Switch Generation. University of
Calgary Technical Report SERG-2009-02 (April 2009),
http://people.ucalgary.ca/~dkrishna/SERG-2009-02.pdf

5. Casale, G., Kalbasi, A., Krishnamurthy, D., Rolia, J.: Automatically Generating
Bursty Benchmarks for Multi-Tier Systems. Presented at the 2nd Workshop on Hot
Topics in Measurement and Modeling of Computer Systems (HotMetrics) (June
2009), http://www.sigmetrics.org/conferences/sigmetrics/2009/workshops/
papers_hotmetrics/session2_1.pdf

6. Casale, G., Mi, N., Smirni, E.: Bound analysis of closed queueing networks with
workload burstiness. In: Proc. of ACM SIGMETRICS, pp. 13–24 (2008)

7. Crovella, M., Lipsky, L.: Long-Lasting Transient Conditions in Simulations with
Heavy-Tailed Workloads. In: Winter Simulation Conference, pp. 1005–1012 (1997)

http://people.ucalgary.ca/~dkrishna/SERG-2009-02.pdf
http://www.sigmetrics.org/conferences/sigmetrics/2009/workshops/papers_hotmetrics/session2_1.pdf
http://www.sigmetrics.org/conferences/sigmetrics/2009/workshops/papers_hotmetrics/session2_1.pdf

Automatic Stress Testing of Multi-tier Systems 413

8. Dujmovic, J.J.: Universal benchmark suites. In: Proc. of MASCOTS, pp. 197–205
(1999)

9. Grace, R.: The benchmark book. Prentice Hall, Englewood Cliffs (1996)
10. Heindl, A.: Traffic-Based Decomposition of General Queueing Networks with

Correlated Input Processes. Ph.D. Thesis. Shaker Verlag, Aachen (2001)
11. Kant, K., Tewary, V., Iyer, R.: An Internet Traffic Generator for Server Architec-

ture Evaluation. In: Proc. CAECW (January 2001)
12. Krishnamurthy, D., Rolia, J.A., Majumdar, S.: A synthetic workload generation

technique for stress testing session-based systems. IEEE Trans. Soft. Eng. 32(11),
868–882 (2006)

13. Krishnaswamy, U., Scherson, D.: A framework for computer performance evalua-
tion using benchmark sets. IEEE Trans. on Computers 49(12), 1325–1338 (2000)

14. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature
of ethernet traffic. IEEE/ACM Trans. on Networking 2(1), 1–15 (1994)

15. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Burstiness in multi-tier applications:
Symptoms, causes, and new models. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 265–286. Springer, Heidelberg (2008)

16. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Injecting Realistic Burstiness to a
Traditional Client-Server Benchmark. In: Proc. of ICAC, June 2009, pp. 149–158
(2009)

17. Mi, N., Zhang, Q., Riska, A., Smirni, E., Riedel, E.: Performance impacts of auto-
correlated flows in multi-tiered systems. Perf. Eval. 64(9-12), 1082–1101 (2007)

18. Riska, A., Riedel, E.: Long-range dependence at the disk drive level. In: Proc. of
QEST, pp. 41–50 (2006)

19. Rolia, J., Krishnamurthy, D., Kalbasi, A., Dawson, S.: Resource demand modeling
for complex services (under submission)

DSF: A Common Platform for Distributed
Systems Research and Development

Chunqiang Tang

IBM T.J. Watson Research Center
ctang@us.ibm.com

Abstract. This paper presents Distributed Systems Foundation (DSF),
a common platform for distributed systems research and development.
It can run a distributed algorithm written in Java under multiple exe-
cution modes—simulation, massive multi-tenancy, and real deployment.
DSF provides a set of novel features to facilitate testing and debugging,
including chaotic timing test and time travel debugging with mutable re-
play. Unlike existing research prototypes that offer advanced debugging
features by hacking programming tools, DSF is written entirely in Java,
without modifications to any external tools such as JVM, Java runtime
library, compiler, linker, system library, OS, or hypervisor. This simplic-
ity stems from our goal of making DSF not only a research prototype
but more importantly a production tool. Experiments show that DSF
is efficient and easy to use. DSF’s massive multi-tenancy mode can run
4,000 OS-level threads in a single JVM to concurrently execute (as op-
posed to simulate) 1,000 DHT nodes in real-time.

Keywords: distributed systems, simulation, debugging, mutable replay,
massive multi-tenancy, chaotic timing test.

1 Introduction

Nowadays, almost every application becomes distributed for one reason or
another. Their functions are diverse and their working environments are het-
erogeneous, ranging from small embedded devices for home healthcare moni-
toring, to large mainframe servers for extremely reliable transaction processing.
Despite their prevalence, it still remains challenging to build robust and high-
performance distributed systems, simply because of their very nature: concurrent
and asynchronous execution in potentially volatile and failure-prone environ-
ments. For example, the “simple” Paxos algorithm was invented in 1990, while
its robust implementation remained a challenging problem that was worth pub-
lishing in a top research conference in 2007 [1].

In the past, several complimentary methods have been proposed to facilitate
the development of distributed systems:

• Simulation [6,10,12]: Provide a framework that can execute the same code
of a distributed algorithm in both simulation and real deployment. The sim-
ulation mode eases the tasks of testing and debugging.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 414–436, 2009.
c© IFIP International Federation for Information Processing 2009

A Common Platform for Distributed Systems Research and Development 415

• Deterministic replay [3,7,8,15,17]: Log application activities during normal
execution and, if a bug shows up, replay the execution flow to precisely repeat
the bug. This helps capture elusive, unreproducible bugs.

• Fault injection [16]: Provide a framework that automatically exercises a
distributed application with various failure scenarios, which helps trigger bugs
that do not show up under normal operations.

• Model checking [11,13,20]: Write assertions that an application’s distributed
states must satisfy, and then use a runtime or offline tool to discover violations
of the assertions. This helps find a bug soon after its inception.

• Code generation [14]: Describe a distributed algorithm in a high-level spec-
ification language, and then use a tool to translate the specification into a real
implementation. This method may help reduce both the development effort
and the chance of introducing bugs.

These ideas have been well known for some time, and each of them provides cer-
tain benefits in lowering the difficulty of developing distributed systems. How-
ever, these ideas mostly still stay in research labs and their wide adoption in
mainstream software development (either open-source or proprietary) is yet to
be reported. One main reason of their limited adoption is that they often de-
viate from the mainstream programming environments and rely on customized
programming tools that are not familiar to layman programmers, e.g., an “ex-
tended” programming language or a hacked hypervisor, OS, runtime, compiler,
linker, etc. Moreover, customized tools also limit the lifetime of a research pro-
totype, due to the lack of long-term support and inability to keep up with the
evolution of mainstream programming tools.

1.1 Distributed Systems Foundation (DSF)

The authors develop both research prototypes and commercial software products
at IBM. Like many past efforts, we build our own framework, called Distributed
Systems Foundation (DSF), to ease the task of developing distributed systems.
For practical reasons, the design of DSF strictly follows one rule: no hacking
programming tools. DSF is written entirely in Java, without hacking any external
tools such as JVM, Java runtime library, compiler, linker, system library, OS, or
hypervisor. We strongly believe that this simplicity is key to ensuring that DSF
has a long life as programming tools evolve, and this simplicity is also crucial to
the success of DSF not only as a research prototype but more importantly as a
production tool.

Like previous work, DSF provides some well-known features to facilitate test-
ing and debugging, including simulation, deterministic replay, fault injection,
and model checking. In addition, DSF offers several novel features not available
in previous work:

• Mutable replay: After observing an elusive bug, the most popular debugging
technique perhaps is to add code to do detailed logging for activities related

416 C. Tang

to the bug, re-compile the program, and then run it again, hoping that the
bug will show up again but with detailed information logged this time. All ex-
isting deterministic replay methods [3,7,8,15,17], however, do not support this
popular debugging practice, because they cannot replay a modified program
even if the modification has no side effects on the application logic, e.g., simple
read-only statements for logging or assertion. Moreover, even if the executable
of the program does not change, those methods cannot replay the program
with a changed configuration, e.g., changing the logging level of log4j from
“INFO” to “DEBUG” in order to log detailed debug information. By con-
trast, DSF supports mutable replay. For the example above, DSF guarantees
that the bug precisely repeats itself in the replay run as in the original run,
while the added (or newly enabled) debugging code logs more information to
help pinpoint the root cause of the bug. Moreover, after the code is changed
to fix the bug (which is almost certain to have side effects on the application
logic), DSF can deterministically replay the original execution flow until right
before the new code, and then start to execute the new code and test whether
the bug still shows up.

• Chaotic timing test: Because of the concurrent and asynchronous nature of
distributed systems, many elusive, unreproducible bugs are caused by unex-
pected interaction sequences between distributed components or unexpected
timing of these events. In addition to fault injection [16], DSF introduces
randomized, chaotic timing to all event executions in order to systematically
exercise a distributed system under diverse timing, by drastically varying de-
lays in thread scheduling, timer wake-up, message propagation, and message
processing. Because of this feature, DSF’s simulation mode overcomes many
limitations of existing systems’ simulation modes [10,12], and (in terms of find-
ing bugs) is actually as powerful as a combination of their real deployment
mode and simulation mode (see Section 6).

• Massive multi-tenancy: In addition to the simulation mode and the real
deployment mode, DSF also provides the massive multi-tenancy mode that
is not available in previous work. With a careful design and implementation,
this extremely efficient mode can run thousands of OS-level threads inside
a single JVM (i.e., one OS process) to concurrently execute (as opposed to
simulate) thousands of instances of a distributed algorithm (e.g., thousands
of DHT nodes) in real-time. This not only simplifies testing and debugging,
but also makes elusive race condition bugs and subtle performance bugs more
evident, due to the severe contention among thousands of threads.

Setting up large-scale distributed testing on many servers is hard, due to both
hardware resource constraints and human resource constraints (time and ef-
forts). Moreover, chasing an elusive bug in such a setting can be time consum-
ing, because pieces of the program states related to the bug may be scattered
on different servers. One focus in DSF is to test and debug a large-scale setup of
a distributed algorithm inside a single JVM. The massive multi-tenancy mode
and the simulation mode with chaotic timing test are motivated by this need,

A Common Platform for Distributed Systems Research and Development 417

which allow DSF to trigger most bugs (even those elusive race condition bugs)
in a single JVM. Moreover, with all the states of a distributed algorithm read-
ily available in one JVM, these two execution modes allow the user to easily
write model checking code to catch violations of global invariants, or to use an
interactive debugger to inspect all data structures related to a bug, even if they
logically belong to different “distributed” components.

1.2 Contributions

As veteran developers of both research and commercial distributed systems,
we constantly feel the pain of low productivity, and DSF grew out of our own
needs. DSF takes a pragmatic approach while offering many advanced features.
Specifically, we make the following contributions in this paper:

• Simplicity: Unlike previous work, DSF offers many advanced features (in-
cluding simulation, deterministic replay, fault injection, and model checking)
without hacking any programming tools. We believe that this simplicity is
crucial to the success of DSF not only as a research prototype but more im-
portantly as a production tool.

• Novel features: DSF provides several novel features not available in previ-
ous work, including mutable replay, chaotic timing test, and massive multi-
tenancy. These features help significantly improve development productivity.

• Implementation: We build a solid implementation of DSF, demonstrating
that our ideas are not only feasible but can also be implemented efficiently.
For example, DSF’s massive multi-tenancy mode is capable of running 4,000
OS-level threads in a single JVM to concurrently execute 1,000 DHT nodes in
real-time.

2 Overview of DSF

This section presents an overview of DSF. We first describe how DSF’s API vir-
tualization approach helps improve application portability. We then discuss the
challenges in testing and debugging, and how DSF’s different execution modes
(simulation, massive multi-tenancy, and real deployment) help address these
challenges.

2.1 Portability through API Virtualization

Since DSF is written in Java, portability might seem trivial but it is actually
not. DSF’s implementations of distributed algorithms are intended for broad
code reuse across many applications, from small embedded systems to large
mainframe servers. Even for tasks as simple as sending a network message, the
network APIs vary in different environments.

For servers that can run Java 2 Standard Edition (J2SE), it is natural to imple-
ment network communication using the high-performance non-blocking java.nio

418 C. Tang

package. For embedded systems that can only run Java 2 Micro Edition (J2ME),
java.nio is not available and network communication has to use the less efficient
java.net package. This was exactly the problem faced by people who tried to port
FreePastry to J2ME (see https://mailman.rice.edu/pipermail/freepastry-discussion-
l/2005-April/000030.html).

Moreover, sophisticated commercial products and open source projects may
even mandate the use of certain powerful network packages so that all compo-
nents handle issues such as security and firewall tunneling in a uniform man-
ner. Examples include Apache FtpServer built atop the Apache MINA network
framework, and IBM WebSphere [9] built atop the WebSphere Channel Frame-
work.

Our solution to the portability problem is API virtualization. Figure 1 shows
the architecture of DSF, where the DSF APIs provide a programming environ-
ment that isolates platform-dependent details. For example, distributed algo-
rithms simply use TCP.send(Message) for network communication, and then
can run on different platforms, by plugging in different implementations of
TCP.send().

2.2 Challenges in Testing and Debugging

Distributed systems are notoriously hard to test and debug, which often con-
sume the biggest fraction of the development time, due to the very nature of
distributed systems.

• Hard to set up large-scale testing: In most organizations, a developer
has only a handful of development machines, and can do large-scale testing
only for limited time, by carefully coordinating machine usage with many
other developers. This inconvenience results in not only low productivity for
developers, but also insufficient testing of code.

• Unexpected failures: During design and implementation, it is hard to fully
anticipate all possible failure scenarios of distributed components, while a
single unexpected failure can move the system into an incorrect state.

• Unexpected event timing: During design and implementation, it is hard
to fully anticipate all possible interaction sequences and event timing among

Simulation

Java Virtual Machine

DSF APIs

[TCP, thread, time, random number, file access]

Paxos DHT Publish/Subscribe Gossip...Membership

 ...
J2SE

Wrapper

J2ME

Wrapper

J2SE + CFW

Wrapper

Fig. 1. Architecture of DSF. The DSF APIs are shown in Figure 3.

A Common Platform for Distributed Systems Research and Development 419

distributed components, while just one delayed thread activity or one message
arriving at an unexpected time can move the system into an incorrect state.

• Hard-to-repeat bugs: Sometimes, automated testing may take days or even
weeks to experience a rare race condition that triggers a bug. Because the race
condition is unexpected, it is not uncommon that the log does not contain
sufficient information to help pinpoint the root cause of the bug. After the
developer adds more debugging code and then restarts the test, it may take a
long time for the bug to show up again, or the bug may simply become dormant
due to changes of non-deterministic factors in the execution environment.

• Lack of a global view for checking global consistency: Often, testing
and debugging involves comparing the internal states of distributed compo-
nents to catch inconsistency. For example, in an overlay network, if node X
considers node Y as its neighbor, after some reasonable delay, Y should also
consider X as its neighbor. Otherwise, it is a bug of inconsistency. Automated
global consistency checking is difficult for a large-scale distributed system,
because the states of its components scatter on different servers.

In addition to improving portability, DSF’s API virtualization approach (see
Figure 1) provides the opportunity of building a powerful testing and debugging
framework to address the challenges described above. A distributed algorithm
implemented on top of the DSF APIs can run in different execution modes
(simulation, massive multi-tenancy, and real deployment), each of which offers
certain advantages in testing and debugging. The DSF APIs are minimal and
straightforward. They are listed in Figure 3 and will be discussed in Section 3.
Below, we start our discussion with the simulation mode.

2.3 Simulation Mode

The simulation mode allows a developer to write the code of a distributed algo-
rithm on a laptop, and then locally simulate its behavior of running on thousands
of servers. During simulation, DSF can conduct large-scale failure tests by contin-
uously failing servers and adding new servers. In the simulation mode, the states
of all distributed components (e.g., thousands of DHT nodes) are available in
a single JVM, which allows the developer to easily write a debug subroutine to
check the global consistency of all nodes. Instead of defining a new scripting lan-
guage (e.g., as in [12]) for checking consistency, we opt for having the developer
write the checking subroutine in Java, because it is simple and flexible, and the
developer perhaps has been familiar with doing that for local components since
the very beginning of programming.

The timing of every event in DSF (e.g., thread delay, network delay, server
failure time, and timer wake-up) is randomized, in order to fully exercise the code
under diverse timing. The randomization, however, is controlled by a pseudo
random number generator and hence the events are precisely repeatable if the
generator is initialized with the same seed. After the developer encounters a bug,

420 C. Tang

she can re-run the test in an interactive debugger and step through the code.
The bug is repeatable, because all events are deterministically repeatable.

If the bug is triggered by a rare race condition, the simulation may take
days or even weeks before the bug shows up. After observing the bug, what the
developer wants is time travel back to, e.g., just five minutes before the bug
happens, and then start to debug from there. DSF supports this by periodically
checkpointing the simulation state into a file. After a bug happens, the developer
can add debugging code to log more information, re-compile the program, and
then instantly resume the simulation from a recent checkpoint. This saves weeks
of time to re-run the simulation from the very beginning.

If the bug is in a colleague’s code, the developer can send the checkpoint
file to the colleague, who then can deterministically replay and reproduce the
bug, even if the checkpoint was taken on one platform (e.g., Windows) while
the colleague’s re-run is on another platform (e.g., Linux). The checkpoint file
contains the execution environment that triggers the bug. No additional efforts
are needed to replicate the environment, which sometimes is hard to do.

DSF’s implementation of checkpoint is a pure Java solution. It saves in a
file the serialized representations of objects in the JVM. By contrast, tradi-
tional OS-level solutions checkpoint the process image of JVM, while traditional
hypervisor-level solutions checkpoint the image of the entire OS. They are less
flexible as they do not support the most popular practice of debugging—adding
debugging code to check conditions or log more information. A replay run from
an OS image or a JVM process image always executes exactly the same old code,
and does not allow changing the Java program’s source code or configurations
such as logging level.

If the program reads or writes certain files, DSF saves those files’ contents
and states (e.g., a random access file’s current file pointer position) along with
the checkpoint, so that a later run resumed from the checkpoint sees exactly the
same file contents and states as the original run does, even if those files have
been modified since the checkpoint time.

2.4 Massive Multi-tenancy Mode

The simulation mode is helpful in finding and fixing bugs but it cannot discover
all bugs. This is because the simulated implementation of the DSF APIs differs
from the real implementation of the DSF APIs that is used in production envi-
ronments. For example, because the two implementations handle DSF’s thread
pool APIs differently, the simulation mode may not discover certain synchro-
nization bugs.

We address this problem by providing the massive multi-tenancy mode. It uses
exactly the same implementation of the DSF APIs as that in the real deployment
mode. Inside one JVM, it creates thousands of OS-level threads to do real-time
execution (as opposed to simulation) of thousands of distributed components,
e.g., thousands of DHT nodes. Each DHT node has its own thread pool and
listens on a different TCP port. Although the nodes are in the same JVM, they
still communicate through real TCP connections and the traffic goes through

A Common Platform for Distributed Systems Research and Development 421

a JVM with

450 DSF peers

Server X Server Y

a JVM with

800 DSF peers

a JVM with

450 DSF peers

Server Z

a JVM with

1000 DSF peers

TCP/IP Netwrk

Fig. 2. Distributed multi-tenancy mode

the OS kernel, because the multi-tenancy mode uses the real implementation of
the DSF APIs.

The massive multi-tenancy mode allows the developer to easily conduct large-
scale testing of thousands of nodes on one powerful server. Because the states of
all nodes are in one JVM, the multi-tenancy mode and the simulation mode can
use the same debug subroutine to check the global consistency of all nodes. More-
over, synchronization bugs, timing bugs, and performance bugs all become more
evident in the massive multi-tenancy mode, as thousands of threads compete for
CPUs and their execution orders change constantly.

The scalability of the multi-tenancy mode is limited by the physical resources
of one server. The distributed multi-tenancy mode in Figure 2 address this prob-
lem by connecting multiple servers running the multi-tenancy mode into one
large distributed system. This mode differs from distributed simulation, because
it uses the real implementation of the DSF APIs. In Figure 2, server X runs two
JVMs instead of one JVM because sometimes one JVM may not be able to fully
utilize the resources of a powerful server, due to JVM’s internal bottlenecks.

2.5 Real Deployment Mode

Once the implementation of a distributed algorithm passes the rigorous tests in
DSF and reaches a stable stage, it can be packaged into a library (i.e., one JAR
file) together with an appropriate real implementation of the DSF APIs, and then
widely reused by many different distributed applications. Those applications can
simply use the high-level APIs provided by the distributed algorithm (e.g., the
DHT APIs for routing and storage), and do not even need to know the existence
of DSF or its APIs. That is, a distributed application as a whole need not conform
to the DSF APIs.

3 The DSF APIs

This section presents the DSF APIs, which provide accesses to TCP, thread,
time, random number, and file in a platform-independent manner. Distributed
algorithms implemented on top of the DSF APIs are portable and can run in
multiple execution modes, each of which offers certain advantages in testing and
debugging. We use the term, DSF runtime, to refer to an implementation of the
DSF APIs.

422 C. Tang

class Peer {
Peer (Config config); // Configure the DSF runtime.
void start (); // Boot the DSF runtime.
void stop (); // Emulate a failure.
Endpoint getLocalEndpoint(); // IP and listening port.
TCP tcpConnect (Endpoint server); // Outgoing TCP.
void submitJob (Runnable job); // Submit to thread pool.
void submitFifoJob (String fifoJobQueue, Runnable job);
TimerHandle submitTimer (long delay, Timer timer); //Timer fires after ‘‘delay’’ ms.
long localTime (); // Like System.currentTimeMillis()
static Random random (); // Deterministic in simulation.
void registerService (String name, Object service);
boolean deregisterService (String name, Object service);
Object lookupService (String name);
RandomAccessFileIfc getRandomAccessFile (String file, String mode);

}

class TCP {
void send (Message msg);
void close ();
boolean registerTCPClosedCallback (TCPClosedCallback callback);
boolean deregisterTCPClosedCallback (TCPClosedCallback callback);

}

class Message implements java.io.Serializable {
Message (String fifoMsgQueue);
void procMessage (Peer peer, TCP tcp);

}

Fig. 3. Summary of the DSF APIs

In Figure 3, the Peer class represents the execution environment seen by
the distributed algorithm. This section uses a DHT algorithm as an example,
for which one Peer object represents one DHT node. The program can create
multiple Peer objects in one JVM in order to run multiple DHT nodes.

Node Start and Stop. Suppose the DHTImpl class contains the implementa-
tion of the DHT protocol. To start a new DHT node, the code creates a Peer
object and a DHTImpl object, invokes Peer.registerService(“DHT”, dhtImpl) to
register the DHTImpl object, and finally invokes Peer.start() to boot the DSF
runtime. The code of DHTImpl invokes the methods of the Peer object to in-
teract with the DSF runtime, e.g., sending messages or executing timers to do
periodical DHT maintenance. DSF supports code componentization. Another
module can invoke Peer.lookupService(“DHT”) to discover the registered DHT
service, without being hard-wired with any particular DHT implementation. The
class Config used in the constructor Peer(Config) specifies configurations such
as the node’s TCP listening port. The node’s local IP address and TCP listening
port can be obtained from Peer.getLocalEndpoint(), where Endpoint is a more
efficient representation of java.net.InetSocketAddress. To emulate the failure of
a DHT node, the testing code can invoke Peer.stop() to terminate the node.

A Common Platform for Distributed Systems Research and Development 423

TCP and Message. An outgoing TCP connection is created by invoking
Peer.tcpConnect(Endpoint server), which returns a TCP object. TCP.send
(Message) sends an outgoing message. When the message arrives at the desti-
nation, Message.procMessage(Peer, TCP) is automatically invoked by the DSF
runtime, where the argument Peer is the destination’s execution environment,
and the argument TCP is the connection over which the message arrived. In-
side Message.procMessage(), the code can invoke Peer.lookupService(“DHT”) to
retrieve the registered DHTImpl object to assist processing. The code can also
use TCP.registerTCPClosedCallback() to register a callback, which will be in-
voked by the DSF runtime when the TCP connection breaks. In DSF, there is
no TCP.receive(), because message processing is automatically invoked by the
DSF runtime when a message arrives.

DSF is designed for developing high-performance implementations of dis-
tributed algorithms that can be directly used in production systems. Because
massive multi-core processors will become prevalent in the near future, DSF
strives to minimize synchronization and maximize concurrency. Following this
principle, unless specifically required, the DSF runtime does not promise that
it will invoke Message.procMessage() in sequential order for messages coming
from the same TCP connection, because that would preclude concurrent mes-
sage processing. For example, in a DHT implementation, a node X may send to
another node Y multiple DHT lookup messages through one TCP connection.
Unless there are specific semantic restrictions, it would be more efficient for Y to
concurrently process these DHT lookup messages on multiple processors, instead
of processing them in sequential order on one processor.

The argument of the constructor Message(String fifoMsgQueue) controls the
order of message processing. Only messages from the same TCP connection
and tagged with the same fifoMsgQueue are processed in sequential order. In
addition to the message ordering specified by fifoMsgQueue, the “user code” can
freely employ any synchronization mechanisms inside Message.procMessage() to
protect critical regions. (Note that, in the rest of this paper, we use the term,
“user code”, to refer to the code of a distributed algorithm written on top of the
DSF APIs.)

Currently, DSF provides no APIs for UDP communication. They can be added
easily, but we explicitly discourage the use of UDP in production systems, be-
cause of the complications in security and firewall tunneling. This is a hard
lesson we learned from our experience of productizing our research prototypes
into WebSphere [9].

Timer and Thread Related Jobs. Peer.submitTimer(long delay, Timer job)
submits a timer to be executed by the DSF runtime after “delay” milliseconds.
DSF makes best efforts but does not guarantee the accuracy of the timer delay.
Expired timers can run concurrently or in any order. DSF does not guarantee
that a timer with expiration time x always executes before a timer with expira-
tion time x+1.

Peer.submitJob(Runnable job) submits a job to be executed by the
DSF runtime “immediately”, which is semantically equivalent to (new

424 C. Tang

Thread(job)).start(). Submitted jobs can be executed concurrently or in any
order. By contrast, Peer.submitFifoJob(String fifoJobQueue, Runnable job) pro-
vides the ordering guarantee. Jobs tagged with the same fifoJobQueue are exe-
cuted in sequential order.

To maximize concurrency and to avoid potential deadlocks, the DSF
runtime always invokes the user callback code (e.g., timers, jobs, and Mes-
sage.procMessage()) without holding any locks. It is the developer’s responsi-
bility to implement proper synchronization, e.g., by using Java’s synchronized
language construct.

If the developer wants to run a distributed algorithm in the simulation mode
and benefit from its testing and debugging capabilities, then the user code is not
allowed to directly create its own threads or put threads into sleep by invoking
Thread.sleep(long delay) or Object.wait(). Instead, it should use DSF’s jobs or
timers to implement the same function. Otherwise, the simulation mode cannot
provide the feature of “precise replay of buggy runs,” because the execution
order of threads not under DSF’s control is non-deterministic.

This restriction only applies to the part of the code that the developer wants
to run in the simulation mode. If the developer merely uses libraries (e.g., DHT)
developed in DSF to build an application and has no intention to run the entire
application in the simulation mode, then the application need not follow this
restriction and can use threads freely. See the related discussion in Section 2.5.

File Access. In the simulation mode, the DSF runtime periodically se-
rializes and checkpoints the entire state of the program in order to sup-
port time travel debugging. Files accessed by the program are part of the
state that should be saved in the checkpoint. However, Java’s file utili-
ties (e.g., java.io.RandomAccessFile) are not serializable and hence cannot
be checkpointed. To work around this problem, the program should ac-
cess files through objects returned by Peer.getRandomAccessFile(String file,
String mode). Those objects are serializable and provide functions identi-
cal to java.io.RandomAccessFile. The DSF APIs also provide the equiva-
lences of other file utilities, including java.io.FileReader, java.io.FileWriter,
java.io.FileInputStream, and java.io.FileOutputStream.

Random Number. Random numbers are widely used in distributed algo-
rithms. For example, introducing randomness into timer delays helps avoid
pathological synchronized behaviors of distributed nodes. To provide the fea-
ture of “precise replay of buggy runs,” all random numbers used by the code
must be pseudo random but actually deterministic in the simulation mode. One
simple way to achieve this is to replace the statement “new Random()” with
“new Random(Peer.random().nextInt())”, i.e., using a controlled pseudo ran-
dom seed to initialize the random number generator. In the real deployment
mode, Peer.random() is truly random. In the simulation mode, Peer.random()
is deterministically controlled by Config.randomSeed.

System Time. To run properly in the simulation mode, the code should use
Peer.localTime() to read system time. In the real deployment mode,

A Common Platform for Distributed Systems Research and Development 425

Peer.localTime() and System.currentTimeMillis() are identical. In the simula-
tion mode, Peer.localTime() returns the time in the simulated world.

Optional Testing Framework. Using the DSF APIs in Figure 3, the devel-
oper can implement a distributed algorithm as well as its testing environment.
Optionally, the developer can also use DSF’s built-in testing framework to save
efforts. The developer only needs to write a global consistency checking sub-
routine, which takes as inputs a set of Peer objects and reports whether their
internal states are consistent. Controlled by a configuration file, DSF starts a
certain number of Peers with the user’s algorithm code registered as a plug-in
service of each Peer. DSF automatically alternates between churn periods and
stable periods. During a churn period, DSF randomly fails existing Peers and
starts new Peers. In the simulation mode and the massive multi-tenancy mode,
DSF periodically invokes the user’s consistency checking subroutine to detect
state inconsistency among Peers.

4 Implementations of the DSF APIs

This section describes the simulated and real implementations of the DSF APIs.

4.1 Simulated Implementation of the DSF APIs

In the simulation mode, DSF simulates TCP, thread, and time, but provides real
file access. The DSF APIs interact with a discrete-event simulation engine that
uses one thread to execute events ordered in time. Timers and jobs submitted by
Peer.submitTimer(), Peer.submitJob(), and Peer.submitFifoJob() are treated as
future events to be executed. DSF also generates events internally, e.g., for the
arrival of TCP messages.

Simulated TCP. DSF simulates the high-level semantics of the TCP proto-
col, including connection establishment, in-order and reliable data transfer, and
connection termination. Currently, DSF does not simulate low-level details such
as TCP congestion control, but can simulate volatile network delay and varying
available bandwidth. A developer can either use DSF’s built-in network model,
or link her own network model with DSF through a well defined interface.

DSF simulates a TCP port manager that recycles ports as Peers start and
stop. It allows the use of much more than 65,536 ports in order to simulate
a large system. DSF can be configured to pass messages between Peers using
either serialization or cloning. Serialization allows DSF to accurately measure
network traffic, but is about 7 times slower than cloning.

Peer.stop() simulates a fail-stop failure, which can be either apparent or silent.
To illustrate the difference, consider a distributed system with two processes X
and Y , and a TCP connection between them. The failure of X is apparent to Y , if
Y ’s read operation from the TCP connection returns immediately with an error.
For example, if process X crashes but the OS that hosts X still functions, then
the OS will close all X ’s TCP connections and Y will immediately notice the

426 C. Tang

TCP read error. The failure of X is silent to Y , if Y ’s TCP read operation returns
no errors. This happens, for example, if the machine that hosts X suddenly lost
power, or if X encounters an uncaught exception and hangs. Silent failures are
usually more subtle to handle and more difficult to test in deployed systems.
Simulating silent failure helps test whether the user code handles them properly
through mechanisms such as heartbeat timeout.

Chaotic timing test. To discover race condition bugs that depend on event
timing, DSF purposely introduces randomized delays into simulated thread
scheduling, timers, message propagation, and message processing. Recall that
Peer.submitJob(job) is semantically equivalent to (new Thread(job)).start(). To
simulate the delay before the thread is scheduled to run on a CPU and the time
it takes to finish the job, DSF adds a randomized delay to the simulated event
that represents the execution of this job. As a result, it is possible that a job sub-
mitted later actually gets executed before a job submitted earlier. DSF’s built-in
thread delay model uses a long tailed distribution, and a user can also link her
own thread delay model with DSF through a well defined interface. Randomized
delays are added to all other types of events as well. DSF’s randomized event
timing respects event causality as well as event ordering required by semantics,
e.g., message processing order mandated by fifoMsgQueue.

Checkpoint and rollback. During simulation, DSF periodically checkpoints
the states of all distributed components in order to support time travel debug-
ging. We do not use traditional OS or hypervisor level checkpoint methods [3,17],
because they rely on customized programming tools and do not support the most
popular practice of debugging—adding debugging code to check assertions or log
more information. Unlike DSF’s mutable replay method, the OS or hypervisor
level methods cannot resume from a checkpoint to run a modified version of the
program that has added or newly enabled debugging code, even if the modifica-
tion has no side effects on the application logic.

DSF implements checkpointing by serializing Java objects in the program and
saving them in a file. A checkpoint is always taken between the executions of two
events, so that we need not worry about local variables in the user code. DSF does
not serialize all objects in the JVM, e.g., the objects that represent loaded Java
classes. Instead, DSF only serializes the Peer objects and the object that repre-
sents the simulation engine. Due to the deep-copy semantics of Java serialization,
all other objects recursively reachable through those objects are also serialized.
For the DHT example in Section 3, the DHTImpl object that implements the
DHT protocol is serialized along with the Peer object, because the Peer ob-
ject adds a reference to the DHTImpl object when Peer.registerService(“DHT”,
dhtImpl) was invoked in the initialization phase.

DSF also checkpoints files accessed by the user code. Because Java’s file utili-
ties are not serializable, the DSF APIs provide our own serializable file utilities. A
file “/dirX/dirY/fileZ” accessed through our utilities is saved on the real file sys-
tem as file “/tmp/dsf/$peer id/dirX/dirY/fileZ”, where $peer id differentiates
peers. During a checkpointing operation, DSF flushes all file buffers to ensure

A Common Platform for Distributed Systems Research and Development 427

that the files on disk are up to date. It then makes a copy of the entire directory
“/tmp/dsf” and saves it along with the checkpoint file. DSF also saves in the
checkpoint file the states of the files accessed by the user code, e.g., a random
access file’s current file pointer position.

Suppose the developer encounters a bug, adds some debugging code, re-
compiles the program, and resumes the execution from a checkpoint. During the
checkpoint recovery, DSF restores the Peer objects and the simulation engine ob-
ject. It copies the saved files back to the directory “/tmp/dsf”, re-opens those
files, and sets the file pointers to the exact positions before the checkpoint. DSF
then continues to execute the next event in the recovered event queue, guar-
anteeing the bug precisely repeats itself in the resumed run as in the original
run, while the added debugging code logs more information to help pinpoint
the root cause of the bug. After the developer fixes the bug, she can re-compile
the program and resume the execution from the checkpoint again. This time, the
resumed run executes the new code and tests whether the bug still shows up. That
is, DSF’s mutable replay not only helps understand the root cause of the bug, but
can also test whether the bug fix actually works.

4.2 Real Implementation of the DSF APIs

This section presents a real implementation of the DSF APIs based on J2SE.
In the real implementation, each Peer has its own pool of worker threads that
execute jobs submitted by Peer.submitJob() or Peer.submitFifoJob(). Proper
synchronization ensures that FIFO jobs are executed in sequential order. The
size of the worker thread pool is configurable. Each Peer has a dedicated “timer
thread” to keep track of all timers submitted by Peer.submitTimer(). Inside
a loop, this thread sleeps until the first timer expires, and then transfers the
expired timer to the worker thread pool for execution.

DSF uses the non-blocking, high-performance java.nio package for network
communication. A Message is serialized before being sent over the network and
then deserialized at the destination. Each Peer has a dedicated “network thread”
that accepts incoming TCP connections on the Peer’s TCP listening port. This
thread also reads data for all established TCP connections. Once a complete
Message is read in, a job is submitted to the worker thread pool to execute
Message.procMessage(). Proper synchronization ensures that the ordering re-
quirements of message processing are enforced. If the “network thread” notices
that a TCP connection is broken, it submits a job to invoke the user callback
code previously registered through TCP.registerTCPClosedCallback().

For an outgoing message, the thread invoking TCP.send() serializes the mes-
sage and then performs a non-blocking network write operation. Unless the mes-
sage is large, this write typically can send out the entire message. Otherwise, the
“network thread” will be responsible for sending out the rest of the message later
when this TCP connection is ready for write again. All operations performed by
the “network thread” are non-blocking so that a single thread can handle all
network I/O operations.

428 C. Tang

The implementation of other DSF APIs is straightforward. All threads used by
the DSF runtime are created inside the constructor Peer(Config), and activated to
run by Peer.start(). Peer.localTime() is mapped to System.currentTimeMillis().
RandomAccessFileIfc is mapped to java.io.RandomAccessFile. Peer.random() re-
turns a true random number generator.

5 Experiments and Experience

This section evaluates the efficiency, scalability, and usability of DSF, and reports
our experience of using DSF to find bugs.

5.1 Scalability of the Multi-tenancy Mode

We first demonstrate that both the real implementation and the simulated im-
plementation of the DSF APIs are scalable. All experiments are conducted on
an IBM System x3850 server with 16GB memory and four dual-core 3GHz Intel
Xeon processors, running Linux 2.6.9. To demonstrate that DSF does not make
any changes to the programming tools, we use both IBM JDK 1.5.0 and Sun
JDK 1.6.0 in our experiments.

We have implemented multiple distributed algorithms in DSF. This exper-
iment uses a DHT implementation called BlueDHT, which adopts the ring
topology as that in Chord [18], but uses our own algorithms for maintenance
and routing. BlueDHT uses a hard-state, rate-limited, reactive maintenance
protocol, as opposed to Chord’s soft-state, periodical recovery protocol.
BlueDHT has low maintenance overhead and is robust under churn, but its
implementation is challenging because of its hard-state protocol. The testing
and debugging features of DSF provided great help in developing BlueDHT.
The details of BlueDHT are beyond the scope of this paper. Below, we use
BlueDHT to evaluate the scalability of DSF.

Figure 4 shows the CPU utilization of the x3850 server during one run of
BlueDHT in the massive multi-tenancy mode. This experiment runs 4,000 OS-
level threads in a single IBM JVM to concurrently execute (as opposed to sim-
ulate) 1,000 DHT nodes in real-time. The lifetime of a node is only about 120
seconds (with randomization to avoid synchronized behaviors of nodes). After a
node dies, a new node is booted as a replacement. During its lifetime, every node
issues a new request roughly every 5 seconds to route a message to the node that
is responsible for a random DHT key. The destination node then sends back a
confirmation message to the request node.

During the starting phase, a new node is booted roughly every 25 milliseconds.
By time 25 seconds, 1,000 nodes have fully booted. The CPU utilization remains
high until time 50 seconds, as all nodes are busy with building up their routing
tables. DSF’s massive multi-tenancy mode is efficient in doing large-scale ex-
periments. With 4,0000 threads running 1,000 DHT nodes in a single JVM, the
CPU utilization stays below 30% even under high churn and high traffic, where

A Common Platform for Distributed Systems Research and Development 429

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
1

60
1

66
1

72
0

Time since the experiment starts (seconds)

C
P

U
 U

ti
liz

at
io

n

finish booting
1000 nodes

turn off churn

fail 500 nodes boot 500 nodes

stablized after
massive booting

Fig. 4. The massive multi-tenancy mode runs 4,000 threads in a single JVM to concur-
rently execute (as opposed to simulate) 1,000 DHT nodes in real-time. This experiment
was conducted on an IBM System x3850 server with four dual-core 3GHz Intel Xeon
processors.

the node lifetime is only 120 seconds and every node initiates a new DHT lookup
every 5 seconds. This excellent performance is due to DSF’s scalable runtime as
well as BlueDHT’s efficient hard-state maintenance protocol.

In addition to automated fault injection, DSF provides an interactive de-
bugging console that allows the developer to manually turn on/off churn and
boot/fail nodes. At time 178 seconds, churn is turned off so that nodes do not
fail anymore unless triggered manually. At time 376 seconds, a command is is-
sued to fail 500 nodes concurrently, which causes a spike in the CPU utilization.
Within 15 seconds from the time the command was issued, BlueDHT fully re-
covers from the massive failure. With 2,0000 threads running the remaining 500
DHT nodes in a steady state, the CPU utilization is only about 3%. BlueDHT
uses a hard-state, rate-limited, reactive protocol. The “hard-state” aspect of
BlueDHT (as opposed to Chord’s soft-state protocol) is the source of the effi-
ciency in the steady state. The “reactive” aspect of BlueDHT (as opposed to
Chord’s periodical recovery) is the reason behind the fast recovery. The reac-
tive maintenance operations are “rate limited” so that, even under high churn
or massive concurrent failures, the maintenance operations do not generate so
much traffic as to cause system collapse.

At time 551 seconds, a command is issued to instantly boot 500 nodes,
which causes another spike in the CPU utilization. Within 20 seconds, BlueDHT
quickly re-stabilizes from this flash crowd join, and the CPU utilization goes back
to a low level. Again, BlueDHT’s hard-state, rate-limited, reactive protocol is
the reason for the fast stabilization and the low CPU utilization.

This experiment shows that the massive multi-tenancy mode is efficient and
scalable even with thousands of threads running inside one JVM. Because the
multi-tenancy mode and the real deployment mode use exactly the same real
implementation of the DSF APIs, this implies that the real deployment mode

430 C. Tang

also has high performance. This experiment also shows that it is easy to conduct
sophisticated large-scale tests in the massive multi-tenancy mode. This 1,000-
node experiment (which comprises constant churns, massive concurrent node
failures, and flash crowd node joins) takes only about 10 minutes. The developer
simply starts one JVM and then issues commands on the debugging console.
In the background, the global consistency checking subroutine automatically
checks system states and catches bugs. Our experience indicates that the ability
to easily test and debug a large-scale setup in a single JVM is the single most
important factor that boots development productivity.

5.2 Scalability of the Simulation Mode

The experiment in Figure 5 runs BlueDHT in DSF’s simulation mode. The
lifetime of DHT nodes is only 120 seconds and every node initiates a new
DHT lookup every 5 seconds. Figure 5 reports the “relative simulation time”
of BlueDHT of different sizes. Suppose a BlueDHT with n nodes has “relative
simulation time” t. It means that DSF takes t seconds wall clock time to simulate
all the activities conducted in the simulated world by the n nodes during one
second simulated time. The 1,000-node system has t=0.138, which means that
the simulation is 1/t=7.2 times faster than execution in the real world. In other
words, it takes only about 8 minutes wall clock time to simulate one-hour activ-
ities (in the simulated world) of the 1,000-node system. This efficiency improves
the developer’s productivity by reducing the time spent on testing and debug-
ging. This figure also shows that the simulation mode scales well as the system
size increases, which is due to the good scalability of both the DSF runtime and
the BlueDHT algorithm.

Figure 6 shows the time needed to create a checkpoint and the size of the
checkpoint file. The checkpoint size scales well. As the system size increases from
1,000 nodes to 10,000 nodes, the checkpoint size only increases by a factor of 12.
The checkpoint size is small because DSF saves only the algorithm states (e.g.,
the DHT routing tables) as opposed to the memory image of the JVM process.
The time to create a checkpoint is also scalable. As the system size grows from
1,000 to 10,000 nodes, the checkpoint time increases from 1.3 seconds to 16.8
seconds, i.e., a 13 fold increase. This experiment uses the Sun JVM.

5.3 Bugs Found in the Simulation Mode

Next, we report our experience of using DSF to find bugs. Because DSF’s simu-
lation mode proactively conducts chaotic event timing tests, it is more powerful
than the simulation modes of other tools in terms of triggering bugs (see Sec-
tion 6 for a comparison). Our experience indicates that, equipped with features
such as long-running automated tests, randomized fault injection, chaotic event
timing, and global consistency checking, the simulation mode often helps dis-
cover more than 95% of the total bugs. The tricky bugs are often related to
race conditions caused by unexpected event timing. We give a concrete example
below.

A Common Platform for Distributed Systems Research and Development 431

0

0.5

1

1.5

2

2.5

1000 2000 4000 6000 8000 10000

BlueDHT with different numbers of nodes

R
el

at
iv

e
 s

im
ul

at
io

n
 t

im
e

Fig. 5. Relative simulation time of
BlueDHT with different numbers of nodes

0

50

100

150

200

1000 2000 4000 6000 8000 10000

BlueDHT with different numbers of nodes

C
he

ck
po

in
t

 S
iz

e
 (

M
B

)

0

5

10

15

20

checkpoint size

checkpoint time

C
he

ck
po

in
t

T
im

e
(s

ec
on

ds
)

Fig. 6. Time needed to create a check-
point for BlueDHT and the size of the
checkpoint file

One race condition bug in BlueDHT happens when a node Y reacts to the
failure event and the reboot event of another node X out of order. Suppose
X and Y are overlay neighbors, and X fails and then immediately reboots
with the same IP and TCP listening port. When X fails, Y ’s DSF runtime
detects that the TCP connection to X is broken, and (without holding any
locks) invokes Y ’s callback function nbrClosed() previously registered through
TCP.registerTCPClosedCallback(). Suppose the actual execution of nbrClosed()
is delayed due to thread scheduling. In the meanwhile, X finishes rebooting and
becomes a new neighbor of Y . During the neighbor-establishment process, Y
uses the new instance of X to replace the old instance of X in its local data
structure, which is a correct behavior.

When Y finally executes nbrClosed() after a long delay, it tries to find and
remove an existing neighbor with the same IP and port as the failed neighbor X .
Y finds the new instance of X , mistakenly considers it as the failed old instance
of X , and drops it from the neighbor set without closing the TCP connection
to X (because Y considers this connection already closed). The final states are
inconsistent: X considers Y as a neighbor, but Y does not considers X as a
neighbor.

This bug is a rare race condition in real deployments, because typically X ’s
reboot is slow so that Y processes the failure event of X before processing the
reboot event of X . A combination of DSF’s testing features helped find the bug.
(1) Randomized fault injection triggers one condition of the bug. (2) Random-
ized network delay triggers one condition of the bug. (3) Randomized thread
scheduling delay triggers one condition of the bug. (4) Long-running, automated
testing triggers even rare event timing. (5) Finally, global consistency checking
automatically catches the bug.

A colleague reported this bug to us and sent us the related checkpoint file.
The colleague took the checkpoint on an AIX/Power server, but we were able to
resume the execution in our Linux/x86 environment, because the checkpoint file
contains serialized Java objects in an platform-independent format. Moreover,
there was no need for us to figure out or manually replicate the colleague’s setup
that triggered the bug. All that information was in the checkpoint file and was
taken care of by DSF’s replay component automatically. The combined powers

432 C. Tang

of time travel debugging and mutable replay helped us quickly understand the
root cause of the bug. We added debugging code, re-compiled the program, and
then instantly resumed the execution, without waiting to re-run the simulation
from the very beginning. As the bug precisely repeated itself in the resumed run,
logs generated by the added debugging code revealed that the bug was triggered
by the out-of-order processing of X ’s failure and rejoin. We then fixed the bug
by using epoch numbers to differentiate multiple incarnations of the same node.

5.4 Bugs Found in the Multi-tenancy Mode

The simulation mode randomizes event timing at the event boundary. It can-
not trigger race conditions that exist below the event granularity, i.e., inside the
subroutine for processing an event. Most of these low-level race condition bugs
are caused by incorrect uses of locks. For example, a ConcurrentModificationEx-
ception bug happened in BlueDHT when it processed an incoming message and
read a java.util.collection data structure without holding a lock.

Synchronization and timing bugs become more evident in the massive multi-
tenancy mode, as thousands of threads compete for CPUs and their execution
orders change constantly. On the other hand, even under the extreme competi-
tion of thousands of threads, it still took about 24 hours of automated testing
to trigger the ConcurrentModificationException bug described above. This is
because the code that accesses the java.util.collection data structure without
properly holding a lock is very short and hence the probability of concurrent
accesses is very low. This indicates that detecting synchronization bugs without
the massive multi-tenancy mode would be even more difficult.

Running thousands of threads in one JVM also makes performance bugs (e.g.,
over synchronization and code inefficiency) more evident, because any perfor-
mance problems are drastically magnified. For example, an early version of DSF
locks the TCP object before deserializing an incoming message. This lock un-
necessarily prevents other threads of the same Peer from using this TCP object
to send outgoing messages. Because Java deserialization is relatively slow, the
locking duration sometimes can be long. DSF has a built-in utility that periodi-
cally logs snapshots of all thread stacks. With thousands of threads in one JVM,
their blocking patterns easily pop up. We identified this over-synchronization
problem and moved the deserialization code outside the lock.

5.5 Bugs Found in Real Deployments

To understand the limitations of testing tools (including DSF), it is interesting
to report some bug that slipped through our hands and got into deployed sys-
tems. We implemented a distributed performance monitoring algorithm, which
collects real-time performance data (e.g., CPU utilization and transaction re-
sponse time) from a large number of servers to guide resource allocation [9,19].
This algorithm builds a distributed tree out of an overlay network to collect
the data. To ensure the responsiveness of data gathering, a parent node in the
tree may bypass a child node to directly collect data from the grandchildren

A Common Platform for Distributed Systems Research and Development 433

nodes if the child node is temporarily slow, e.g., due to Java garbage collection.
Our responsiveness goal is to gather data from most servers in a 1,000-server
system within one second most of the time. The algorithm worked well in our
environment, but the responsiveness goal was violated from time to time in a de-
ployment environment. By activating DSF’s utility that logs the processing time
of every event, we first located events that introduced long delays, and then
found that the problem was caused by slow DNS lookups—a piece of obsolete
debugging code that nobody cared anymore was “accidentally” activated to re-
solve IP addresses to host names, solely for the purpose of printing user-friendly
debugging information. DNS lookups were fast in our development environment
but sometimes were slow in the deployment environment. We subsequently dis-
abled all code on the critical path that does DNS lookups. This example shows
the difficulty of capturing all bugs in the development environment.

6 Related Work

We first discuss in detail the work that is closest to DSF, and then summarize
other related work.

WiDS [12,13]. The closest work to DSF is WiDS, which provides a set of pow-
erful tools for debugging, e.g., replay-based predicate checking. Like DSF, WiDS
also defines a set of APIs, under which different implementations can support
simulation and real deployment. DSF and WiDS, however, differ significantly
in many aspects. Compared with our three contributions listed in Section 1.2,
WiDS (1) is significantly more complicated as it hacks many programming tools,
including compiler and linker; (2) does not have DSF’s novel features such as
mutable replay, chaotic timing test, and massive multi-tenancy; and (3) cannot
be used to build high-performance production systems running on multi-core
processors, because it uses only a single OS kernel thread to execute all events
(i.e., all messages, timers, and user-level thread jobs). The WiDS APIs allows
the creation of multiple user-level threads. However, in order to guarantee deter-
ministic replay, all the user-level threads are multiplexed onto a single OS kernel
thread.

In its simulation mode, WiDS does not introduce random delays into timers,
user-level thread jobs, or message processing. It strictly executes all events in se-
quential order and always processes an event in “one (simulated) clock tick” [12].
Because “event handling (in the real deployment) can take arbitrarily long,” the
authors of WiDS [12] noted that “the sequence of events (in the real deploy-
ment mode) can differ in unexpected ways (from that in the simulation mode),
making it difficult to discover those (race condition) bugs in the simulation en-
vironment.” Because of this limitation, WiDS Checker [13] has to collect event
traces from a system running in the real deployment mode, and then feeds the
traces into simulation in order to find race condition bugs.

By contrast, DSF’s simulation mode purposely introduces random delays into
event timing in order to proactively trigger race condition bugs. One limitation of
DSF’s simulation mode is that it randomizes event timing at the event boundary,

434 C. Tang

and hence cannot trigger race conditions that exist below the event granularity,
i.e., inside the subroutine for processing an event. However, even WiDS’ real
deployment mode cannot trigger race condition below the event granularity,
because it uses a single OS kernel thread to process all events. Therefore, in terms
of finding bugs, DSF’s simulation mode alone is as powerful as the combination
of WiDS’ real deployment mode and simulation mode. (This observation is not
unique to WiDS. It applies to other previous work [10] as well.) Moreover, all the
bugs found by WiDS’ real deployment mode can actually be found more easily by
DSF’s simulation mode, because DSF’s chaotic timing tests proactively trigger
(as opposed to just passively observe) race condition bugs. Specifically, it would
be difficult for WiDS’ real deployment mode or simulation mode to trigger the
race condition bug described in Section 5.3, because the failure event and the
rejoin event are rarely processed out of order.

Other related work. There is an enormous body of work related to develop-
ment framework for distributed systems, including simulation [6,10,12], deter-
ministic replay [3,7,8,15,17], fault injection [16], model checking [11], and code
generation [14]. Below, we only review some representative ones.

Jones and Dunagan [10] developed peer-to-peer systems that use the same
code base for simulation and real deployment. Like WiDS, their systems use a
single-threaded event-processing model. PlanetSim [6] also supports both simu-
lation and real deployment. These systems, however, do not provide advanced
debugging features such as deterministic replay.

Checkpoint and rollback is a well studied topic [5]. Our serialization-based
checkpoint method is novel in that it supports mutable replay, i.e., the resumed
run can execute a modified program with added debugging code while still get-
ting deterministic replay. ReVirt [3] logs all non-deterministic events in hyper-
visor to help replay the execution of a guest OS. Flashback [17] modifies the OS
kernel to support rollback.

MACEDON [14] allows the user to specify overlay network algorithms in a
domain-specific language, and then automatically generates the corresponding
C++ code. TLA [11] is a formal specification language for concurrent systems,
and the correctness of an algorithm described in TLA can be verified mechani-
cally.

DejaVu [2] modifies JVM to support deterministic replay of multi-threaded
Java programs. ConTest [4] uses source code instrumentation to introduce
chaotic timing into every shared memory accesses and synchronization opera-
tion. Because of its heavy instrumentation, our evaluation shows that ConTest
can cause application slowdown by a factor of 100 or more. DSF introduces
chaotic timing only at event boundary, which is more efficient but may miss
some bugs. ConTest is not designed for testing distributed systems and does
not handle bugs caused by concurrent and asynchronous interactions between
distributed components.

A Common Platform for Distributed Systems Research and Development 435

7 Conclusions

We have presented DSF, a common platform for distributed systems research and
development. It can run a distributed algorithm written in Java under multiple
execution modes—simulation, massive multi-tenancy, and real deployment. DSF
grew out of our own needs in developing research prototypes and commercial
software products. It takes a pragmatic approach while offering many advanced
features.

Compared with a large body of related work, we made several contributions
in this paper. First, we presented a simple yet powerful design that does not
hack any programming tools. This simplicity stems from our goal of making
DSF not only a research prototype but more importantly a production tool.
Second, DSF provides a set of novel testing and debugging features that are not
available in previous work, including mutable replay, chaotic timing test, and
massive multi-tenancy mode. Finally, we demonstrate through a robust and ef-
ficient implementation that our ideas are practical. For example, DSF’s massive
multi-tenancy mode can run 4,000 OS-level threads in a single JVM to concur-
rently execute 1,000 DHT nodes in real-time.

The design of DSF takes a pragmatic approach, which naturally has many
limitations and leaves room for future improvements. So far, our focus is to
provide rich features in the simulation mode and the massive multi-tenancy
mode, which allow the developer to easily test and debug a large-scale setup
of a distributed algorithm inside a single JVM. This perhaps is the single most
important factor that boosts development productivity. Next, we may move
on to focus on the real deployment mode. For example, currently DSF’s real
deployment mode provides no global consistency checking. We may follow the
approach in Stardust [20] to store events in a database, and then use SQL to
check global consistency.

Acknowledgements

We thank the anonymous reviewers and our shepherd Antony Rowstron for their
valuable feedback.

References

1. Chandra, T., Griesemer, R., Redstone, J.: Paxos Made Live—An Engineering Per-
spective. In: PODC (2007)

2. Choi, J.-D., Srinivasan, H.: Deterministic replay of Java multithreaded applications.
In: Proceedings of the SIGMETRICS symposium on Parallel and distributed tools
(1998)

3. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Logging and Replay. In: OSDI (2002)

4. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41(1), 111–125 (2002)

436 C. Tang

5. Elnozahy, E., Alvisi, L., Wang, Y., Johnson, D.: A survey of rollback-recovery proto-
cols in message-passing systems. ACM Computing Surveys (CSUR) 34(3), 375–408
(2002)

6. Garćıa, P., Pairot, C., Mondéjar, R., Pujol, J., Tejedor, H., Rallo, R.: Planetsim:
A new overlay network simulation framework. In: Gschwind, T., Mascolo, C. (eds.)
SEM 2004. LNCS, vol. 3437, pp. 123–136. Springer, Heidelberg (2005)

7. Geels, D., Altekar, G., Shenker, S., Stoica, I.: Replay Debugging for Distributed Ap-
plications. In: USENIX (2006)

8. Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z., Wu, M., Kaashoek, F., Zhang, Z.: R2:
An Application-Level Kernel for Record and Replay. In: OSDI (2008)

9. IBM WebSphere Extended Deployment,
http://www-306.ibm.com/software/webservers/appserv/extend/

10. Jones, M., Dunagan, J.: Engineering Realities of Building a Working Peer-to-Peer
System. Technical report, MSR Technical Report MSR-TR-2004-54 (2004)

11. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Amster-
dam (2002)

12. Lin, S., Pan, A., Zhang, Z., Guo, R., Guo, Z.: WiDS: an Integrated Toolkit for Dis-
tributed System Development. In: HotOS (2005)

13. Liu, X., Lin, W., Pan, A., Zhang, Z.: WiDS Checker: Combating Bugs in Distributed
Systems. In: NSDI (2007)

14. Rodriguez, A., Killian, C., Bhat, S., Kostic, D., Vahdat, A.: MACEDON: Method-
ology for Automatically Creating, Evaluating, and Designing Overlay Networks. In:
NSDI (2004)

15. Saito, Y.: Jockey: a user-space library for record-replay debugging. In: Proceedings of
the sixth international symposium on Automated analysis-driven debugging (2005)

16. Segall, Z., Vrsalovic, D., Siewiorek, D., Yaskin, D., Kownacki, J., Varton, J., Dancey,
R., Robinson, A., Lin, T.: FIAT–Fault injection based automated testing environ-
ment. In: Proc. 18th Int. Symp. Fault-Tolerant Comput., pp. 102–107 (1988)

17. Srinivasan, S.M., Kandula, S., Andrews, C.R., Zhou, Y.: Flashback: A lightweight
extension for rollback and deterministic replay for software debugging. In: USENIX
(2004)

18. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM (2001)

19. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A Scalable Application Placement
Algorithm for Enterprise Data Centers. In: WWW (2007)

20. Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-Malek, M., Lopez, J.,
Ganger, G.R.: Stardust: tracking activity in a distributed storage system. In: SIG-
METRICS (2006)

http://www-306.ibm.com/software/webservers/appserv/extend/

Erratum to: Middleware 2009

Jean M. Bacon1 and Brian F. Cooper2

1 Computer Laboratory, University of Cambridge, William Gates Building,
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

jmb25@cl.cam.ac.uk
2 Yahoo! Research, 4401 Great America Parkway, Santa Clara, CA 95054, USA

cooperb@yahoo-inc.com

Erratum to:

J.M. Bacon and B.F. Cooper (Eds.)

Middleware 2009
DOI: 10.1007/978-3-642-10445-9

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© IFIP International
Federation for Information Processing. The book has been updated with the
changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-642-10445-9

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, p. E1, 2009.
c© IFIP International Federation for Information Processing 2017

http://dx.doi.org/10.1007/978-3-642-10445-9
http://dx.doi.org/10.1007/978-3-642-10445-9

Author Index

Alonso, Gustavo 83
Andrade, Henrique 308
Apiwattanapong, Taweesup 373
Arshad, Fahad A. 205

Bagchi, Saurabh 205
Barreto, João 103
Baumann, Andrew 184
Beauche, Sandrine 123
Ben Mabrouk, Nebil 123
Boyer, Fabienne 143
Bromberg, Yérom-David 21

Cappos, Justin 184
Casale, Giuliano 393
Coulson, Geoff 1

De Palma, Noël 143
Diallo, Mamadou H. 247
Dumitraş, Tudor 349

Ferreira, Paulo 103
Frey, Davide 42
Friedman, Roy 288

Gedik, Buğra 308
Georgantas, Nikolaos 123
Gill, Christopher 268
Giurgiu, Ioana 83
Grace, Paul 1
Grothe, David M. 205
Gruber, Olivier 143
Guerraoui, Rachid 42

Hildrum, Kirsten 308
Hilley, David 328
Hiltunen, Matti A. 163
Hore, Bijit 62, 247
Hutchison, David 1

Issarny, Valérie 123

Jafarpour, Hojjat 62
Joshi, Kaustubh R. 163
Julien, Christine 226

Jung, Gueyoung 163
Juric, Dejan 83

Kalbasi, Amir 393
Kermarrec, Anne-Marie 42
Khandekar, Rohit 308
Kogan, Alex 288
Koldehofe, Boris 42
Krishnamurthy, Diwakar 393
Krivulev, Ivan 83
Kuznetsova, Elena 123
Kwon, Young-Woo 373

Laguna, Ignacio 205
Lawall, Julia L. 21

Massaguer, Daniel 247
Mehrotra, Sharad 62, 247
Mogensen, Martin 42
Monod, Maxime 42
Muller, Gilles 21

Narasimhan, Priya 349

Parekh, Sujay 308
Payton, Jamie 226
Philippe, Jérémy 143
Pu, Calton 163

Quéma, Vivien 42

Rajamani, Vasanth 226
Rajan, Deepak 308
Ramachandran, Umakishore 328
Ramdhany, Rajiv 1
Réveillère, Laurent 21
Riva, Oriana 83
Rolia, Jerry 393
Roman, Gruia-Catalin 226, 268
Roscoe, Timothy 184

Schlichting, Richard D. 163
Schüpbach, Adrian 184

438 Author Index

Tang, Chunqiang 414
Thomas, Louis 268
Tilevich, Eli 373

Venkatasubramanian, Nalini 62, 247

Wilson, Justin 268
Wolf, Joel 308
Wu, Kun-Lung 308

Yin, Qin 184

	Title Page
	Preface
	Organization
	Table of Contents
	Communications I (Protocols)
	MANETKit: Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols
	Introduction
	Related Work
	Background Concepts Underpinning MANETKit
	The Design of MANETKit
	Overview
	Protocol Composition
	Other Key Frameworks
	Concurrency
	Reconfiguration Management

	Implementation Case Studies
	OLSR
	DYMO

	Evaluation
	Performance
	Resource Overhead
	Time Taken to Develop and Port Protocols

	Conclusions and Future Work
	References

	Automatic Generation of Network ProtocolGateways
	Introduction
	Issues in Developing Gateways
	SpecifyingaGatewayUsingZ2z
	Overview of the z2z Language
	Protocol Specification Module
	Message Specification Module
	Message Translation Module

	Implementation
	Verifications
	Code Generation
	Runtime System

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Heterogeneous Gossip
	Introduction
	HEAP
	Background: Gossip-Based Content Dissemination
	Adapting Contribution

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Adaptation to Heterogeneous Upload Capabilities
	Stream Quality
	Stream Lag
	Resilience to Catastrophic Failures

	Related Work
	Proactive Protocols
	Reactive Protocols

	Concluding Remarks
	References

	Communications II (Optimization)
	CCD: Efficient Customized Content Dissemination in Distributed Publish/Subscribe
	Introduction
	Customized Content Dissemination
	Content Adaptation Graph
	Cost-Based Customized Dissemination

	Multilayer Graph Representation of CCD
	Optimal CCD Algorithm
	CCD Problem for Large CAGs
	Experimental Evaluation
	System Setup
	Dissemination Scenarios
	Experiments

	Related Work
	Conclusions and Future Work
	References

	Calling the Cloud: Enabling Mobile Phones as Interfaces to Cloud Applications
	Introduction
	Flexible Module Deployment
	AlfredO Overview
	Application Profiling
	Consumption Graph

	Partitioning Algorithms
	Optimization Problem
	Pre-processing
	ALL Algorithm
	K-Step Algorithm

	Evaluation
	Application Bundles and Service Dependencies
	Startup Process
	Interaction Time
	Multiple Service Invocations
	Algorithm Performance

	Use Case
	Limitations and Open Problems
	Related Work
	Conclusions
	References

	Efficient Locally Trackable Deduplication in Replicated Systems
	Introduction
	SystemModel
	Data Deduplication Protocol
	Step I: Version Tracking
	Step II: Local Chunk Redundancy Detection
	Putting It All Together

	Log Storage and Maintenance
	Implementation
	Evaluation
	Experimental Setting
	Results

	Related Work
	Conclusions
	References

	Service Component Composition/Adaptation
	QoS-Aware Service Composition in Dynamic Service Oriented Environments
	Introduction
	Related Work
	Composition Approach Overview
	QoS Model
	Composition Model

	Service Selection Algorithm
	Scaling Phase
	Local Classification
	Global Selection

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	References

	Self-adapting Service Level in Java Enterprise Edition
	Introduction
	Autonomic Adaptation
	Adaptation Gains
	Example
	Evaluation
	Implementation Requirements
	Software Environment
	Profiling Overhead
	RUBiS Benchmark
	TPC-W Benchmark
	Combining TPC-W and RUBiS

	Related Work
	Service-Level Adaptation
	Performance Profiles

	Conclusion
	References

	A Cost-Sensitive Adaptation Engine for Server Consolidation of Multitier Applications
	Introduction
	Architecture
	Technical Approach
	Experimental Results
	Model Calibration and Testbed
	Model Prediction Accuracy
	Controller Evaluation

	Related Work
	Conclusions
	References

	Monitoring
	Rhizoma: A Runtime for Self-deploying, Self-managing Overlays
	Introduction
	Background and Motivation
	Constraint Logic Programming
	Network Testbeds

	UsingRhizoma
	Initial Deployment
	The Constraint Program
	Example: PsEPR
	Rhizoma-Aware Programs
	Observing the Application
	Discussion

	Operation
	Sensors and Knowledge Base
	Coordinator Node
	Steady-State Behavior
	Optimization Process
	Adding or Removing Nodes

	Implementation
	Use of ECLiPSe
	PlanetLab Sensors and Actuators
	Discussion

	Evaluation
	Basic Performance Measures
	Different Measures of Utility
	Effect of Overlay Monitoring
	Adaptivity to Failure
	Cost Function Sensitivity
	Strawman Comparison with SWORD
	Overhead

	Related Work
	Conclusion and Future Work
	References

	How to Keep Your Head above Water While Detecting Errors
	Introduction
	Motivation
	Our Contributions

	Background
	Fault Model
	Stateful Detection
	Building FSM from Traces

	Handling High Streaming Rates: Intelligent Sampling
	Sampling in Monitor
	Intelligent Sampling Approach
	Intelligent Sampling Algorithm

	Reducing Non-determinism: HMM-Based State Vector Reduction
	Hidden Markov Model
	Algorithm for Reducing the State Vector Using HMM

	Experimental Testbed
	J2EE Application and Web Users Emulator
	Pinpoint Implementation

	Experiments and Results
	Benefits of Intelligent Sampling
	Definition of Performance Metrics
	Error Injection Model
	Detecting Performance Problems
	Detecting Anomalous Web Interactions

	Efficient Rule Matching
	Motivation
	Selective Rule Matching Approach
	Memory Leak Injection
	Rule for Detecting Memory Leak Error
	Rule Matching Latency Reduction

	Related Work
	Conclusions and Limitations
	References

	PAQ: Persistent Adaptive Query Middleware for Dynamic Environments
	Introduction
	Related Work and Motivation
	A Middleware for Persistent Query Processing
	A Model of One-Time Query Execution
	The PAQ Perspective

	Two Abstractions for Persistent Query Processing
	Inquiry Strategies
	Integration Strategies

	Two Abstractions for Persistent Query Adaptation
	Introspection Strategies
	Adaptation Strategies

	The PAQ Middleware: Example Applications
	Monitoring Hazardous Conditions
	Road Traffic Monitoring

	Evaluating the PAQ Middleware
	Conclusions
	References

	Pervasive
	Middleware for Pervasive Spaces: Balancing Privacy and Utility
	Introduction
	Pervasive Space Model as Viewed by the Applications
	Modeling Generalization Hierarchies

	Problem Formulation
	Background Knowledge Model
	Privacy vs Utility
	The Utility Maximization Problem

	Solution
	Problem Characterization
	A Simulated Annealing Based Solution

	Implementation
	Policy Manager
	Background Knowledge Generator
	Disclosure Control

	Experiments
	Related Work
	Conclusions and Future Work
	References

	Achieving Coordination through Dynamic Construction of Open Workflows
	Introduction
	Problem Definition
	Motivating Example
	Formalization

	Collaborative Construction, Allocation, and Execution
	Construction
	Allocation and Execution

	System Architecture
	An Open Workflow Management System
	Goals, Design Principles, and Architecture

	Evaluation
	Directions for Future Work

	Related Work
	Conclusions
	References

	Power Aware Management Middleware for Multiple Radio Interfaces
	Introduction
	Related Work
	Architecture of OCM
	The OCM Management Module
	Network Model and Data Structures
	High-Level Overview
	Clusters Merging

	Integration of OCM with Routing
	Performance Evaluation
	Energy Model
	Mobility Models
	The Impact of k on the Performance of OCM
	The Effect of Mobility on the Performance of OCM
	The Performance of OCM under Two-Phase Mobility with Hot-Spots

	Conclusions
	References

	Stream Processing
	COLA: Optimizing Stream Processing Applications via Graph Partitioning
	Introduction
	Operator Graphs and the Fusion Problem
	Our Contributions

	BasicCOLA
	Problem Formulation
	Solution Approach

	AdvancedCOLA
	User-Defined Fusion Constraints
	Problem Formulation
	Solution Approach

	COLA Experiments
	Conclusions and Future Work
	References

	Persistent Temporal Streams
	Introduction
	Persistent Temporal Streams
	An Integrated Architecture for Live and Archived Streams
	Storage Requirements and Design Choices

	System Design and Implementation
	System Structure
	Channels without Data Persistence
	Persistence

	Evaluation
	System/Architectural Benchmarks
	Application-Based Evaluation

	Related Work
	Conclusion
	References

	Failure Resilience
	Why Do Upgrades Fail andWhat CanWe Do about It? Toward Dependable, Online Upgrades in Enterprise System
	Introduction
	Fault Model for Enterprise Upgrades
	The Four Types of Upgrade Faults
	Tolerating Upgrade Faults

	Design and Implementation of Imago
	Experimental Evaluation
	Performance Overhead without Faults
	Availability under Upgrade-Faults
	Upgrade Reliability

	Lessons Learned
	RelatedWork
	Upgrade Fault-Models
	Online Upgrades
	Dependable Upgrades
	Dependability Benchmarking for Upgrade Mechanisms

	Conclusions
	References

	DR-OSGi: Hardening Distributed Components with Network Volatility Resiliency
	Introduction
	Background
	Network Volatility
	Software Components
	Hardening Strategies to Cope with Network Volatility
	Aspect-Oriented Programming and JBoss AOP

	DR-OSGi: Treating Symptoms of Network Volatility
	Design Objectives
	Design Overview
	Programming Model
	System Architecture
	Discussion

	Evaluation
	Benchmarks
	Case Study

	Related Work
	Future Work and Conclusions
	References

	Support for Testing
	Automatic Stress Testing of Multi-tier Systems by Dynamic Bottleneck Switch Generation
	Introduction
	Related Work
	Demand Characterization
	Request Characterization
	Session Characterization
	Session Group Characterization Approach
	Group Service Demand Model

	Benchmark Generation Methodology
	Session Submission Policy
	Composition Step and Benchmark Burstiness Model
	Searching for a Submission Policy to Match Burstiness
	Generating Dynamic Bottleneck Switches

	Validation Experiments
	Validation of Service Demand and Burstiness Models
	Generation of Burstiness and Its Impact

	Conclusion
	References

	DSF: A Common Platform for Distributed Systems Research and Development
	Introduction
	Distributed Systems Foundation (DSF)
	Contributions

	OverviewofDSF
	Portability through API Virtualization
	Challenges in Testing and Debugging
	Simulation Mode
	Massive Multi-tenancy Mode
	Real Deployment Mode

	TheDSFAPIs
	Implementations of the DSF APIs
	Simulated Implementation of the DSF APIs
	Real Implementation of the DSF APIs

	Experiments and Experience
	Scalability of the Multi-tenancy Mode
	Scalability of the Simulation Mode
	Bugs Found in the Simulation Mode
	Bugs Found in the Multi-tenancy Mode
	Bugs Found in Real Deployments

	Related Work
	Conclusions
	References

	Erratum to: Middleware 2009
	Author Index

